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Abstract We consider the derivation of effective equations approximating the
many-body quantum dynamics of a large system of N bosons in three dimensions,
interacting through a two-body potential N3ˇ�1V.Nˇx/. For any 0 � ˇ � 1 well
known results establish the trace norm convergence of the k-particle reduced density
matrices associated with the solution of the many-body Schrödinger equation
towards products of solutions of a one-particle non linear Schrödinger equation,
as N ! 1. In collaboration with C. Boccato and B. Schlein we studied
fluctuations around the approximate non linear Schrödinger dynamics, obtaining
for all 0 < ˇ < 1 a norm approximation of the evolution of an appropriate class of
data on the Fock space.

Keywords Gross-Pitaevskii equation • Interacting bosons • Nonlinear
Schrödinger equations • Quantum dynamics • Quantum fluctuations

1 Introduction

The understanding of the properties of many body quantum systems is a challenging
topic in quantum mechanics, the challenge being how to derive from the micro-
scopic and fundamental description of the system those collective properties which
are successfully exploited in condensed matter laboratories. The analysis of the
time evolution of quantum many particle systems and the derivation of effective
descriptions in interesting limiting regimes nestle in this research line. From a
mathematical physics perspective the main goals in this field are on the one hand to
justify the use of effective equations, and on the other hand to clarify the limits of
applicability of the effective theories.

While we refer to [5] for an introduction on this topic, and a panorama on existing
results and open problems in the context of bosonic and fermionic systems, we focus
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here on some recent results concerning the analysis of the time evolution of bosonic
systems in three dimensions.

A bosonic system of N particles moving in three space dimensions can be
described through a complex-valued wave function  N on the Hilbert space of
permutation symmetric L2.R3N/ wave functions

L2s .R
3N/ D f  N 2 L2.R3N/ W

 N.x�.1/; : : : ; x�.N// D  N.x1; : : : ; xN/ for any permutation � 2 SNg
with k Nk2 D 1. The evolution of an initial wave function  N;0 2 L2s .R

3N/ is
governed by the Schrödinger equation

i@t N;t D HN N;t ; (1)

where the subscript t indicates the time dependence of  N;t and HN is a self
adjoint operator on L2s .R

3N/ known as Hamiltonian of the system. We will restrict
our attention to Hamiltonians with two body interactions, and we will consider
interactions scaling with the number of particles, as follows:

H.ˇ/
N D

NX

iD1
.��xi/C

NX

i<j

N3ˇ�1V.Nˇ.xi � xj// ; (2)

with 0 � ˇ � 1 and V a spherically symmetric interaction potential. We will be
interested in situations where the number of particles N is large.

For ˇ D 0 the Hamiltonian (2) describes N bosons interacting by a mean field
potential N�1V.xi � xj/; this regime is a first approximation for the behaviour of
dilute Bose gases and is characterized by very weak interactions for largeN. A more
accurate model for interactions among bosons in experiments on cold gases is given
by the so called Gross-Pitaevskii regime, which corresponds to the ˇ D 1 case in (2).
In this regime the interaction scales as N2V.N.xi �xj//, corresponding to a situation
where there are strong and short range collisions. While in the mean field regime, as
we will see, correlations among particles can be neglected in order to obtain a (first)
effective description of the system, they play a crucial role in the Gross-Pitaevskii
regime, due to the singularity of the potential. Values of ˇ between zero and one
describe intermediate scalings between the mean field and Gross-Pitaevskii regimes,
and therefore we may expect correlations to become more and more important as ˇ
approaches one.

We will be interested in studying the evolution under (2) of a particular class
of initial data, exhibiting complete condensation, meaning that there exists a one-
particle wave function ' 2 L2.R3/ (the so called condensate wave function) such
that the one-particle reduced density matrix associated to the many body wave
function  N;0

�
.1/
N;0 WD NTr2:::N j N;0ih N;0j ; (3)
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satisfies

Tr
ˇ̌
ˇN�1�.1/N;0 � j'ih'j

ˇ̌
ˇ ! 0 as N ! 1 ; (4)

where j'ih'j denotes the orthogonal projection onto '. From a physical point of
view bosonic quantum states such that the one-particle reduced density matrix has
an eigenvalue of order N in the limit of large N are models for Bose-Einstein
condensates, as realized in experiments on low density cold gases since 20 years [1].

We recall that the expectation of a bounded one particle observable O.1/ on
the many particle state described by  N;0 is given by Tr.�.1/N;0O

.1//. Therefore
whenever (4) occurs the knowledge of the condensate wave function is sufficient
to determine the expectation of any bounded observable on the state described by
 N;0 in the limit N ! 1. Additionally, since property (4) for bosonic systems
also implies that for any k D 2; 3; : : : ;N the k-particle reduced density matrix
�
.k/
N;0 D �N

k

�
TrkC1;:::;N j N;0ih N;0j is given by a rank one projection onto

�N
K

�
'˝k,

we can also calculate the expectation of any bounded k-particle observable in the
limit N ! 1.

Now, let us start with an initial datum satisfying (4) and let the system evolve with
the Hamiltonian (2). Due to the presence of the interaction we cannot expect (4)
to hold at positive times. However one can show that this property remains
approximately true in the limit of large N. Furthermore, one can derive an effective
dynamics for the condensate wave function in the scaling regimes described by (2).
More precisely one can prove (references will follow at the end of this section)
that, for every family of initial data  N;0 2 L2.R3N/ satisfying (4), the one-particle

reduced density matrix �.1/N;t corresponding to the evolved state  N;t D e�itH
.ˇ/
N  N;0

(under suitable assumptions on the interacting potential) satisfies

Tr
ˇ̌
N�1�.1/N;t � j'tih'tj

ˇ̌ ����!
N!1 0 ; (5)

with 't solution of a non linear Schrödinger equation with initial datum '0 D ',
whose precise form depends on ˇ. In particular 't satisfies:

i@t't D ��'t C .V ? j'tj2/'t if ˇ D 0 ; (6)

i@t't D ��'t C .

Z
V/ j'tj2't if 0 < ˇ < 1 ; (7)

i@t't D ��'t C 8�a0j'tj2't if ˇ D 1 : (8)

The parameter a0 appearing in (8) is the scattering length of the interaction V , i.e.
8�a0 D R

V.x/f .x/ with f .x/ the solution of the zero energy scattering equation

�
��C 1

2
V

�
f D 0 ; f .x/ ���!

x!1 1 : (9)
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From a physical point of view the scattering length a0 describes the low-energy
scattering among particles, in the sense that two particles interacting through the
potential V , when they are far apart, feel the other particle as a hard sphere with
radius a0.

The appearance of a0 in the effective equation (8) is a consequence of the fact
that the many body Schrödinger evolution with Gross-Pitaevskii potential develops a
singular correlation structure which varies on the same length scale of the potential.
Heuristically this can be seen considering the evolution equation for the one-particle
reduced density matrix

i@t�
.1/
N;t D Œ��; �.1/N;t �C

1

2
Tr2
�
VN.x1 � x2/; �

.2/
N;t

�
: (10)

To take into account correlations among the particles and the short scale structure
they create in the marginal density �.2/N;t , we may use the ansatz

N�1�.1/N;t .x1I x0
1/ D 't.x1/'t.x

0
1/ ;

 
N

2

!�1
�
.2/
N;t .x1; x2I x0

1; x
0
2/ D fN.x1 � x2/fN.x

0
1 � x0

2/'t.x1/'t.x2/'t.x
0
1/'t.x

0
2/ ;

(11)

with fN.x/ D f .Nx/ the zero energy scattering function corresponding to the
potential N2V.Nx/. Then Eq. (8) arises from (10) as the self consistent equation for
't; the coefficient in front of the non linearity is given by

R
dxN3V.N.x//f .Nx/ D

8�a0. Note that the ansatz (11) does not contradict complete condensation of the
system at time t. On the contrary in the weak limit N ! 1 the function fN
converges to one, and therefore �.2/N;t converges to j'tih'tj˝2.

This heuristics also explains why for 0 < ˇ < 1 we get
R
V instead of a0 in

the effective equation for 't, starting from the ansatz (11). As shown for example in
[7, Lemma 2.1] the potential N3ˇ�1V.Nˇx/ has scattering length of order N�1 for
any choice of 0 < ˇ < 1, and the solution fNˇ .x/ of the scattering equation with
potential N3ˇ�1V.Nˇx/ satisfies the bound

�
1 � fNˇ

�
.x/ � C

N.jxj C N�ˇ/
for 0 < ˇ < 1 : (12)

Therefore the coefficient appearing in front of the non linearity in the self consistent
equation for 't, obtained from (10) under the assumptions (11) with fN.x/ substituted
by fNˇ .x/, is

Z
dx N3ˇV.Nˇx/fNˇ .x/ D

Z
V � cNˇ�1 ; (13)

which equals
R
V in the limit N ! 1, for any 0 < ˇ < 1. Thus ˇ D 1 is the only

scaling for which the coefficient of the non linearity in the effective equation for 't
is given by the scattering length of the unscaled potential V .
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The rigourous derivation of the effective equation (6) (the Hartree equation),
in the form presented in (5), has been first obtained by Spohn [36] for bounded
potentials, and Erdős-Yau [2, 11] for singular potentials, analysing the BBGKY
hierarchy for the density matrices. More recent approaches by Rodnianskii-Schlein
[34] and Knowles-Pickl [23] also give the rate of convergence towards the Hartree
dynamics. A derivation of the Gross-Pitaevskii equation (8) was obtained in a
series of works [12, 14, 15] and later with an alternative approach in [30]. More
recently, convergence towards the Gross-Pitaevskii dynamics with a precise rate of
convergence has been obtained in [4]. The derivation of the non linear Schrödinger
equation in the intermediate regimes 0 < ˇ < 1 may be obtained with the same
approaches, and it is in fact a simpler problem than the ˇ D 1 case (see for example
[13, 30]; the proof in [4] could be also easily adapted to cover any ˇ < 1).

Beyond the approximation for the reduced density matrices, there is some interest
in obtaining an approximation for the evolved N-particle wave function  N;t in
the appropriate Hilbert space norm. This corresponds to study fluctuations around
the effective dynamics described by the non linear Schrödinger equation for the
condensate wave function. Several results in this direction have been obtained in
the mean field regime, starting from the pioneering works by Hepp and Ginibre-
Velo [16, 22] and later in [3, 8, 9, 20, 21, 26, 27]. More recent results deal with the
intermediate scalings with ˇ > 0, see [7, 18, 19, 28, 29]. In particular, the result in
[7] covers all ˇ < 1. An analogous result for the Gross-Pitaevskii regime is up to
now still open.

More generally, from a statical point of view, one would aim to completely
construct the ground state wave function and study its excitation spectrum at least
in the interesting limiting regimes described by (2) (and even more ambitiously in
the thermodynamic limit). These goals have been partially achieved in the context
of mean field bosons, where the ground state energy and excitation spectrum have
been proved to be correctly described by the famous Bogoliubov approximation
[10, 17, 25, 35] and the ground state has been fully constructed in the presence of an
ultraviolet cutoff [31–33]. Up to now no similar results are available for any ˇ > 0.1

From this point of view studying the fluctuation dynamics for ˇ > 0 may also give
some insight into the problem of approximating the ground state.

The aim of this contribution is to present the strategy used in [7] to obtain a
norm approximation for the dynamics described by the Hamiltonian H.ˇ/

N , with
0 < ˇ < 1. This approximation is obtained for a special class of initial data in the
Fock space. The choice of the initial data is a main point in our analysis, since in
order to cover all ˇ < 1 we need to introduce a suitable correlation structure among
particles. We will come back to the role of correlations in our analysis in the next
sections.

1Very recently, after the submission of this contribution, the validity of Bogoliubov prediction
for the ground state energy and the low-lying excitation spectrum has been established for any
ˇ > 0 [6].
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2 The Coherent State Approach

The strategy used in [7], also known as coherent state approach, was first introduced
by Hepp in [22]. More recently it has been further developed in [34] and [4] to
obtain the rate of the trace norm convergence in the mean field and Gross-Pitaevskii
regimes respectively. The main idea of this approach is that even if the dynamics
described by H.ˇ/

N preserves the particle number, it is convenient to represent our
bosonic system in the Fock space, where we have the opportunity to consider a
more general class of initial data than wave functions in L2s .R

3N/. The choice of the
class of initial data crucially depends on the scaling of the potential. For this reason
we first describe which choice turns out to be convenient in the mean field regime,
and then present the physical and mathematical motivations leading to a different
choice in the Gross-Pitaevskii regime. Before that, let us start with summarising the
Fock space representation of a bosonic system.

Fock Space Representation

We represent our bosonic system in the bosonic Fock space

F D ˚n�0L2s .R3n/ : (14)

A state � 2 F is therefore a sequence � D f .n/gn�0, where  .0/ 2 C and
 .n/ 2 L2s .R

3n/. The space F is a Hilbert space with respect to the inner product

˝
�;˚

˛ D  .0/'.0/ C
X

n�1

˝
 .n/; '.n/

˛
; (15)

and each component of � 2 F has a probabilistic interpretation, namely k .n/k22
is the probability of having n particle in the state described by  . Clearly we are
interested in states where

P
n�0 k .n/k22 D 1. The number of particles operator is

defined requiring that

.N �/.n/ D n .n/ ; (16)

and therefore the expected number of particles in a state � 2 F is given by

˝
�;N �

˛ D
X

n�0
nk .n/k22 : (17)

A state with exactly N particles is represented by a vector in F where only the N-th
component is non zero. A special example of such a state is the vacuum state with
˝ D f1; 0; 0; : : : ; 0g, describing a state with no particles. More in general, given
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a one-particle operator O.1/ the corresponding operator d� .O.1// on F (called the
second quantization of O.1/) is defined by the requirement that

�
d� .O.1//�

�.n/ D
nX

iD1
O.1/i  

.n/ ; (18)

where O.1/i denotes the operator acting on L2.R3n/ as O.1/ on the i-th particle and as
the identity on the other .n � 1/ particles.

In order to define a time evolution on F we introduce the Hamilton operator
H .ˇ/

N , which is defined through its action on vectors of F :

.H
.ˇ/
N �/.n/ D �

H.ˇ/
N

�.n/
 .n/ ;

�
H.ˇ/

N

�.n/ D
nX

iD1
.��xi/C

nX

i<j

N3ˇ�1V.Nˇ.xi � xj// : (19)

By definition the operator H .ˇ/
N acts on states with a variable number of particles

but leaves all sectors with fixed number of particles invariant. Note that the scaling
parameter N in H .ˇ/

N in general has nothing to do with the number of particles of
the system (which is not fixed now). To recover the relevant scaling limits we are
interested in, we will consider in the following the evolution of states with expected
number of particle N.

Being the number of particles in F not fixed, it is useful to introduce operators
that create or annihilate a particle. For f 2 L2.R3/ we define the creation operator
a�. f / and the annihilation operator a. f / by

�
a�. f /�

�.n/
.x1; : : : ; xn/ D 1p

n

nX

jD1

f .xj/ 
.n�1/.x1; : : : ; 6 xj; : : : ; xn/ n � 1 ; (20)

�
a. f /�

�.n/
.x1; : : : ; xn/ D p

n C 1

Z
dx f .x/ .nC1/.x; x1; : : : ; xn/ n � 0 ; (21)

and we set .a�. f /�/.0/ WD 0. It is simply to check that a�. f / D .a. f //�, and that
the following commutation relations hold:

Œa. f /; a�.g/� D ˝
f ; g
˛
L2
; Œa. f /; a.g/� D Œa�. f /; a�.g/� D 0 : (22)

We have a. f /˝ D 0. The action of .a�. f //N on the vacuum generates a state with
exactly N particles with wave function f , that is

.
p
NŠ/�1.a�. f //N D f0; : : : ; 0; f˝N ; 0; : : :g : (23)
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We also introduce operator valued distribution a�
x and ax, defined by

a�. f / D
Z

dx f .x/a�
x ; and a. f / D

Z
dx f .x/ax ; (24)

which formally creates or annihilates a particle in the point x. From (22) we have
Œax; a�

y � D ıx;y and Œax; ay� D Œa�
x ; a

�
y �=0.

The second quantization of any (densely defined) self adjoint operator can
be conveniently expressed by means of a�

x and ax, see e.g. [5, Sect. 3] and
[24, Sect. 1.3]. The expressions for the particle number operator and the Hamilto-
nian are

N D
Z

dxa�
x ax ; (25)

and

H .ˇ/
N D

Z
dxrxa

�
x rxax C 1

2

Z
dxdyN3ˇ�1V.Nˇ.x � y//a�

x a
�
y axay (26)

respectively. The r. h. s. of (25) and (26) should be understood in the sense of
forms; for example (25) means that for any �;˚ 2 F we have

˝
�;N ˚

˛ DR
dx
˝
ax�; ax˚

˛
.

Moreover, the kernel of the one-particle reduced density matrix �.1/ associated
to the state � 2 F can be expressed as

�.1/.xI y/ D ˝
�; a�

x ay�
˛
: (27)

The expression (25) for N suggests that, although creation and annihilation
operators are unbounded operators, they can be bounded with respect to the square
root of the number of particles operator, in the sense that

ka. f /�k � k fk2kN 1=2�k
ka�. f /�k � k fk2k.N C 1/1=2�k (28)

for all f 2 L2.R3/, � 2 F . Moreover, given a bounded one particle operatorO.1/ on
the L2.R3/ space, its second quantization d� .O.1//, although generally unbounded,
is bounded with respect to the number of particles operator:

j˝�; d� .O.1//� ˛j � kO.1/k˝�;N �
˛
; � 2 F : (29)

Properties (28) and (29) will be essential for our analysis.
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2.1 Choice of the Class of Initial States in the Mean Field
Regime

Our goal is to study the time evolution under H .ˇ/
N of a suitable class of initial data

in F with expected number of particles N and one-particle reduced density matrix
�
.1/
N;0 satisfying (4) for some ' 2 L2.R3/. In the mean field regime ˇ D 0 a natural

choice is to consider as class of initial data the so called coherent states.
A coherent state with wave function f 2 L2.R3/ is a linear combination of states

with all possible number of particles, all described by the same wave function f .
Such a state is built acting on the vacuum with the so called Weyl operator

W. f / D exp.a�. f / � a. f // ; (30)

thus obtaining

W. f /˝ D e�k fk2=2
�
1; f ;

f˝2
p
2Š
; : : : ;

f˝n

p
nŠ
; : : :

	
: (31)

The Weyl operator is a unitary operator on F which acts on the annihilation and
creation operators as follows:

W�. f / ax W. f / D ax C f .x/

W�. f / a�
x W. f / D a�

x C f .x/ : (32)

Since the expected particle number of the coherent state W. f /˝ is equal to

˝
W. f /˝;N W. f /˝

˛ D k fk22 ; (33)

a coherent state with expected particle number N is given by

W.
p
N'/˝ ; k'k2 D 1 : (34)

Using (32) it is also simple to check that the kernel of the one-particle density
associated to W.

p
N'/˝ is

�
.1/
N .x; y/ D ˝

W.
p
N'/˝; a�

x ayW.
p
N'/˝

˛ D N'.x/'.y/ : (35)

For this class of initial data the following theorem was proven in [34], in the mean
field regime.
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Theorem 1 Let V be a measurable function, satisfying the operator inequality
V2.x/ � C.1��/ for some C > 0 and let ' 2 H1.R3/. Let �.1/N;t be the one-particle
reduced density associated with

�N;t D e�itH
.0/
N W.

p
N'/˝ :

Then, there exist constants D; k > 0 s.t.

Tr
ˇ̌
�
.1/
N;t � Nj'tih'tj

ˇ̌ � Dekjtj

for all t 2 R and all N 2 N, with 't satisfying (6) with initial data '0 D '.

Remark 1 Note that the assumptions on V in Theorem 1 include the Coulomb case
V.x/ D ˙1=jxj.

The strategy to prove Theorem 1 is to define a unitary operator UN.t/ through the
requirement:

�N;t D e�itH
.0/
N W.

p
N'/˝ WD W.

p
N't/UN.t/˝ : (36)

Note that if UN.t/ was the identity operator, than the evolution of W.
p
N'/˝ under

the mean field Hamiltonian would be exactly a coherent state with evolved wave
function 't. In this sense the vector UN.t/˝ is a fluctuation vector and

UN.t/ D W�.
p
N't/e

�itH
.0/
N W.

p
N'/ : (37)

can be interpreted as a fluctuation dynamics. Using the definition (36) we can write
the kernel of the one particle reduced density matrix associated to the evolved state
�N;t as follows

�
.1/
N;t .x; y/ D ˝

UN.t/˝;W
�.

p
N'/a�

x ayW.
p
N'/UN.t/˝

˛
: (38)

For any compact one-particle observable O.1/ on L2.R3/ one has

Tr O.1/


�
.1/
N;t � Nj'tih'tj

�
D p

N
˝
UN.t/˝; Œ a

�.O.1/'t/C a.O.1/'t/ �UN.t/˝
˛

C ˝
UN.t/˝; d� .O

.1//UN.t/˝
˛
; (39)

with d� .O.1// defined in (18). Using (28) and (29) we have

ˇ̌
ˇTr O.1/



�
.1/
N;t � Nj'tih'tj

�ˇ̌
ˇ � p

N
˝
UN.t/˝; .N C 1/UN.t/˝

˛
: (40)

Since the space of trace class operators on L2.R3/, equipped with the trace norm,
is the dual of the space of compact operators, equipped with the operator norm, the
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proof of Theorem 1 ends up with controlling the r.h.s. of (40). In particular, to get a
bound on the rate of the convergence of the many body evolution towards the mean
field dynamics proportional to

p
N it is enough to show that the number of particles

with respect to the fluctuation dynamics UN.t/ grows uniformly in N. To this aim
we compute

i@t
˝
UN.t/˝;N UN.t/˝

˛ D ˝
UN.t/˝; ŒL

.0/
N .t/;N �UN.t/˝

˛
; (41)

with

L
.0/
N .t/ D �

i@tW
�.

p
N't/

�
W.

p
N't/C W�.

p
N't/H

.0/
N W.

p
N't/ : (42)

the generator of the fluctuation dynamics UN.t/. In contrast with the original Hamil-
tonian, L .0/

N .t/ contains terms which do not commute with N . As a consequence,
the expectation of N is not preserved along the evolution of UN , that is fluctuations
are going to grow. However, under the assumption on the regularity of the potential
stated in Theorem 1 it can be shown that

˙ ŒL
.0/
N .t/;N � � C

�
N C 1

�
: (43)

Using a Gronwall lemma, we obtain that
˝
UN.t/˝; .N C 1/UN.t/˝

˛
is bounded

uniformly in N. The fact that 't should satisfy the Hartree equation (6) arises
quite naturally, because this is the condition to be imposed in order to cancel some
terms of order

p
N in the generator which are linear in a�

x and ax and therefore
do not commute with N . Some more work is needed to get the (optimal) rate of
convergence in Theorem 1 rather than the factor

p
N in (40), but this issue is not

relevant for the aim of this contribution.

2.2 Choice of the Class of Initial States in the Gross-Pitaevskii
Regime

We consider now the Gross-Pitaevskii regime ˇ D 1. To get the trace norm
convergence result in this regime, the initial data (34) has to be suitably modified to
take into account correlations among particles, that play now a crucial role. In fact
the Gross-Pitaevskii evolution develops singular correlations which are not captured
by an approximation given in terms of coherent states.

From the mathematical point of view this reflects into the fact that we cannot
approximate the evolution of the class of coherent states (34) underH .GP/

N WD H
.1/
N

with a new coherent state with evolved wave function given by the Gross-Pitaevskii
equation (8). If we defined the fluctuation dynamics

QUN.t/ D W�.
p
N't/e

�itH
.GP/
N W.

p
N'/ ; (44)
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analogously to what was done in the mean field regime, then the number of
fluctuations

˝ QUN.t/˝;N QUN.t/˝
˛

would grow with N. In fact the generator of the
dynamics QUN.t/ contains some linear and quadratic terms in the annihilation and
creation operators whose commutator with N cannot be bounded uniformly in N.

The idea used in [4] to implement the appropriate correlation structure in the
Fock space is to define the correlation kernel

kt.x; y/ D �N!.N.x � y/'N
t .x/'

N
t .y/ ; (45)

with !.x/ D 1 � f .x/, f .x/ the solution of the zero energy scattering equation (9),
and 'N

t the solution of the following modified Gross-Pitaevskii equation2:

i@t'
N
t D ��'N

t C �
N3V.N�/f .N�/ ? j'N

t j2�'N
t : (46)

It is simple to check that the function !.x/ satisfies the bound N!.Nx/ � C.jxj C
1=N/�1 and kt is the kernel of an Hilbert-Schmidt operator. In the following we
identify the function kt 2 L2.R3 � R

3/ with the operator having kt as its integral
kernel. Using kt we define a unitary operator T.kt/ acting on the Fock space F by

T.kt/ D e
1
2

R
dxdy. kt.x;y/a�

x a
�

y �kt.x;y/axay / : (47)

The action of T.kt/ on the creation and annihilation operators can be explicitly
computed. For any f 2 L2.R3/ we have (see [4, Lemma 2.3])

T�.kt/ a. f /T.kt/ D a.coshkt. f //C a�.sinhkt . Nf //
T�.kt/ a�. f /T.kt/ D a�.coshkt. f //C a.sinhkt . Nf // ;

where we used the notation coshkt and sinhkt for the linear operators on L2.R3/
given by

coshkt D
X

n�0

1

.2n/Š
.ktkt/

n ; sinhkt D
X

n�0

1

.2n C 1/Š
.ktkt/

nkt ; (48)

where products of kt and Nkt have to be understood as products of operators. We now
use the unitary operator T.kt/ to approximate the correlation structure developed
by the many-body evolution. To this aim, we consider the evolution of initial data

2The choice of using the solution of the modified Gross-Pitaevskii equation (46) rather than the
solution of Eq. (8) is due to technical reasons; however note that in the limit N ! 1 the solution
of (46) approaches the solution of (8), as shown in [4, Proposition 3.1]. Despite the operators kt
being N-dependent we do not put an extra N-index to keep the notation light.
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having the form

�N;0 D W.
p
N'/T.k0/˝ : (49)

Initial data given by Eq. (49), known as squeezed coherent states, are a natural class
of initial data approximating the ground state of Bose-Einstein condensates trapped
in a volume of order one. In fact they have expected particle number N C kktk2
(with kktk of order one) and energy equal at leading order to ground state energy for
trapped bosons in the Gross-Pitaevskii regime, see [5, Appendix A]. From a physical
point of view a good approximation for the ground state energy of a system of N
bosons is believed to be of the form '˝N

Q
i<j f .N.xi �xj//. Then, the class of states

W.
p
N'/T.k0/˝ 2 F captures some of the correlations which are believed to truly

appear in the ground state of dilute bosonic systems.
The trace norm convergence result in the Gross-Pitaevskii regime is obtained

studying the dynamics of states of the form �N;0 D W.
p
N'/T.k0/˝ under the

Gross-Pitaevskii Hamiltonian H .GP/
N . The fluctuation operator UN.t/ is defined

through the requirement that the many body evolution preserves the form of the
initial data, up for the evolution of ' into 'N

t , that is

�N;t D e�itH
.GP/
N W.

p
N'/T.k0/˝ WD W.

p
N'N

t /T.kt/UN.t/˝ : (50)

If UN.t/ was the identity operator then the evolution of a state of the form (49)
would be a state of the same type with evolved condensate wave function 'N

t given
by the modified Gross-Pitaevskii equation (46). In this sense UN.t/˝ is a fluctuation
vector and we refer to UN.t/ as a fluctuation dynamics. Using the definition (50) we
can write the kernel of the one particle reduced density matrix associated to the
evolved state �N;t as follows

�
.1/
N;t .x; y/ D ˝

UN.t/˝;T
�.kt/W�.

p
N'N

t /a
�
x ayW.

p
N'N

t /T.kt/UN.t/˝
˛
; (51)

with

UN.t/ D T�.kt/W�.
p
N'N

t /e
�itH

.GP/
N W.

p
N'/T.k0/ : (52)

The generator of the fluctuation dynamics UN.t/ is given by

LN.t/ D .i@tT
�.kt//T.kt/ (53)

CT�.kt/
� �
i@tW

�.
p
N'N

t /
�
W.

p
N'N

t /C W�.
p
N'N

t /H
.GP/
N W.

p
N'N

t /
�
T.kt/ ;

where

T�.kt/W�.
p
N'N

t /axW.
p
N'N

t /T.kt/ D p
N 'N

t .x/C a.cx/C a�.sx/

T�.kt/W�.
p
N'N

t /a
�
x W.

p
N'N

t /T.kt/ D p
N 'N

t .x/C a�.cx/C a.sx/ ; (54)
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with cx.z/ D coshkt.z; x/ and sx.z/ D sinhkt.z; x/. Note that the action of the
Bogoliubov transformation T.kt/ in Eq. (53) generates terms in LN.t/ where the
creation and annihilation operators are not in normal order (a product of creation
and annihilation operators is said to be normal ordered if all creation operators are
to the left of all annihilation operators). When we use the commutation relations (22)
to restore the normal order, this procedure generates some new linear and quadratic
terms in the creation and annihilation operators, coming from the normal ordering
of some cubic and quartic terms respectively. These terms, together with the fact
that the correlation kernel kt contains the solution fN of the scattering equation, lead
to some cancellations in the generator LN which are essential to control the growth
of the number of fluctuations uniformly in N. In particular, the sum of the linear
terms (which would be of order

p
N) gives zero when 'N

t is chosen to satisfy the
effective equation (46). A second cancellation arises between some quadratic terms
that are too singular in the Gross-Piteavskii regime. After these cancellations (see
[4, Sect. 3] for details) we have

˙ ŒLN.t/;N � � HN C cN 2=N C Cekjtj
�
N C 1

�
(55)

for some C; c; k > 0 independent on N and t. The time dependence on the r.h.s.
of the last equation arises through high Sobolev norms of the solution 't of the
Gross-Pitaevskii equation.

The bound (55) shows a further difference with respect to the strategy used to
prove Theorem 1: in order to control the growth of the number of fluctuations˝
UN.t/˝;N UN.t/˝

˛
in the Gross-Pitaevskii case we also need to control the

growth of HN . To this aim, in a very similar way as used to prove (55) one can
also obtain the bounds

LN.t/ � 3

2
HN C cN 2=N C cekjtj.N C 1/ ; (56)

LN.t/ � 1

2
HN � cN 2=N � cekjtj.N C 1/ ; (57)

˙ PLN.t/ � 2LN.t/C cekjtj.N C 1C N 2=N/ : (58)

Moreover, it is easy to show that the number of fluctuations is just bounded by the
total number of particles:

˝
UN.t/˝; .N

2=N/UN.t/˝
˛ � ˝

UN.t/˝;N UN.t/˝
˛C ˝

˝; .N 2=N/˝
˛
: (59)

Using (55), (56), (58) and (59) one is able to close a Gronwall type estimate for the
expectation

˝
UN.t/˝;

�
LN.t/C Dekjtj.N C 1/

�
UN.t/˝

˛
; (60)
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for some D > 0, and show that it remains bounded uniformly in N. We get finally
the desired bound on the growth of N observing that the lower bound (57) together
with (59) implies

˝
UN.t/˝;

�
2LN.t/C c1e

kjtj.N C 1/
�
UN.t/˝

˛ � ˝
UN.t/˝;HNUN.t/˝

˛ � 0 ;

for some c1 > 0. Since D can be chosen to be greater than .c1 C 1/, the bound
for (60) also implies that

˝
UN.t/˝;N UN.t/˝

˛
remains bounded uniformly in N.

This allows to prove the following theorem, see [4].

Theorem 2 Consider a non-negative and spherically symmetric potential V 2 L1\
L3.R3; .1C jxj6/dx/. Let ' 2 H4.R3/ and ˝ 2 F the vacuum state. Consider the
family of initial data

�N D W.
p
N'/T.k0/˝ ;

and denote by �.1/N;t the one-particle reduced density matrix associated with the

evolution �N;t D e�itH
.GP/
N �N. Then

Tr
ˇ̌
�
.1/
N;t � Nj'tih'tj

ˇ̌ � CN1=2 exp.exp.cjtj//

for all t 2 R. Here 't satisfies the Gross-Pitaevskii equation (8) .

Remark 2 Theorem 2 still holds if we substitute the vacuum state ˝ with a
sequence of states �N 2 F such that k�Nk D 1 and

˝
�N ;

�
H .GP/

N C N C N 2=N/�N
˛

� C ; for some C > 0 independent on N.

3 Norm Approximation Result and Ideas of the Proof

We switch now to the problem of studying fluctuations around the effective
dynamics described by (6), (7) or (8). The fact that the coherent state approach
could also be used to describe fluctuations around the limiting equation has been
first exploited in [16, 22, 34] in the mean field setting.

In [7] we follow the strategy used in [34], the main difference coming from the
necessity of taking into account correlations among particles in the condensate.
As discussed in the introduction, the many body evolution given by H

.ˇ/
N for

0 < ˇ < 1 develops weaker correlations than in the Gross-Pitaevskii regime.
This is the reason why the effective dynamics is described by the non linear
Schrödinger equation (7), rather than the Gross-Pitaevskii equation (8). Anyway two
body correlations are not negligible in the analysis of fluctuations. In fact, to get a
norm approximation result valid for all ˇ < 1, we need to introduce a correlation
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structure, which is a suitable modification of the one defined in (45). More precisely,
instead of working with the kernel defined in (45) we consider

k`;t.xI y/ D �N!N;`.x � y/. Q'N
t ..x C y/=2//2 : (61)

Here Q'N
t is the solution of the N-dependent Schrödinger equation

i@t Q'N
t D �� Q'N

t C �
N3ˇV.Nˇ �/fN;` ? j Q'N

t j2� Q'N
t ; (62)

!N;` D 1 � fN;`, and fN;` is the solution of the eigenvalue problem

h
��C 1

2
N3ˇ�1V.Nˇx/

i
fN;`.x/ D 	N;` fN;`.x/
.jxj � `/ ; (63)

associated with the smallest possible eigenvalue 	N;`, normalized so that fN;` D 1

for jxj D ` and continued to R
3 by requiring that fN;` D 1 for all jxj � `. With this

choice the kernel k`;t.xI y/ D 0 for all jx�yj > `, that is we are considering particles
correlated up to relative distance `. Note that, for all 0 < ˇ < 1, the solution Q'N

t
of (62) approaches the solution of the non linear equation (7) as N ! 1. However it
furnishes a better approximation for the dynamics of the condensate wave function,
since it contains the factor fN;` which takes into account the correlations among the
particles.

Using k`;t we define the Bogoliubov transformation T.k`;t/ through (47). For any
0 < ˇ < 1 we consider the evolution of initial data of the form W.

p
N'/T.k`;0/˝ ,

defining the fluctuation dynamics:

U`;N.t/ D T�.k`;t/W�.
p
N Q'N

t /e
�itH

.ˇ/
N W.

p
N'/T.k`;0/ ; (64)

with Q'N
0 D '. The following result holds.

Theorem 3 Let V � 0, smooth, spherically symmetric and compactly supported.
Fix 0 < ˇ < 1 and considerH .ˇ/

N defined in (26). Let Q'N
t defined in (62) with Q'N

0 D
' 2 H4.R3/. Fix ` > 0 and consider k`;t defined in (61). Let ˛ D min.ˇ=2; .1 �
ˇ/=2/. Then there exist a unitary evolutionU2;N.t/ with a quadratic (in the creation
and annihilation operators) generator and constants C; c1; c2 > 0 such that

k e�itH
.ˇ/
N W.

p
N'/T.k`;0/˝ � e�i

R t
0 �N .s/ds W.

p
N Q'N

t / T.k`;t/U2;N.t/˝ k2

� CN�˛ ec1 exp .c2jtj/ (65)

for all t 2 R and N large enough.
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Theorem 3 still holds if we substitute the vacuum state ˝ with a sequence
of states �N 2 F such that k�Nk D 1 and

˝
�N ;

�
N 2 C K 2 C H

.ˇ/
N

�
�N
˛ � C

uniformly in N. Here K D R
dxrxa�

x rxax is the kinetic energy operator. It is also
possible to approximate the dynamics of the fluctuations by a limiting evolution
U2;1.t/, again with a quadratic generator, but now independent of N, as shown in
[7, Prop. 2.1].

While we refer to [7] for a complete proof of Theorem 3, we briefly describe here
the general strategy used there. The main idea is to identify a limiting fluctuation
dynamics with a quadratic generator, and then apply it to obtain the norm bound
for the many body dynamics of our class of initial data. The fact that this limiting
dynamics may exist is suggested by the form of the generator L`;N.t/ of the
dynamics U`;N , where the cubic and quartic terms seem to vanish in the limit of
large N. From (64) is apparent that, W. f / and T.k`;t/ being unitary operators, the
following proposition is sufficient to prove Theorem 3.

Proposition 1 LetU`;N defined in (64), and ˛ D min.ˇ=2; .1�ˇ/=2/. Then, there
exist a unitary quadratic evolution U2;N and constants C; c1; c2 > 0 such that, for
all t 2 R and all N large enough,

kU`;N.tI 0/˝ � e�i
R t
0 �N .s/dsU2;N.tI 0/˝k � CN�˛ exp.exp.c2jtj// : (66)

The proposition follows from the fact that the generator L`;N.t/ can be written as

L`;N.t/ D �N.t/C L2;N.t/C VN C EN.t/ ; (67)

where �N.t/ is a phase, L2;N.t/ is a quadratic generator,

VN D 1

2

Z
dxdyN3ˇ�1V.Nˇ.x � y//a�

x a
�
y axay (68)

is the interaction, and EN.t/ satisfies

jh 1;EN.t/ 2ij � CN�˛eKjtj�h 1; .K C N C 1/ 1i
C h 2; .K 2 C .N C 1/2/ 2i

�
(69)

for all  1; 2 2 F . To prove Proposition 1 we use that

d

dt
kU`;N.t/˝ � e�i

R t
0 �N .s/dsU2;N.t/˝k2

D 2Im
˝
U`;N˝; .L`;N.t/ � L2;N.t/ � �N.t//e

�i
R t
0 �N .s/dsU2;N.t/˝

˛
; (70)
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with U2;N.t/ the dynamics generated by L2;N.t/. The r.h.s. of (70) is controlled
using (67) and (69):

j˝U`;N.t/˝; .VN C EN.t//U2;N.t/˝
˛j

� CN�˛ekjtj
h ˝

U`;N.t/˝; .HN C N C 1/U`;N.t/˝
˛

C ˝
U2;N.t/˝; .K

2 C N 2 C 1/U2;N.t/˝
˛ i
:

(71)

The problem ends up in showing that the expectations appearing in the r.h.s. of (71)
are all bounded uniformly in N. The growth of N and HN with respect to the
full dynamics U`;N are controlled by means of Gronwall type estimates for the
expectation of N and L`;N.t/, following the same strategy described at the end
of Sect. 2 for the trace norm convergence result. The new issue here is that we also
need to prove bounds for the growth of the expectation of N 2 and K 2 with respect
to the dynamics generated by the quadratic part of the generator L2;N.t/. We prove
that the quadratic generator L2;N.t/ satisfies the bounds

˙.L2;N.t/ � K / � CeKjtj.N C 1/; .L2;N.t/ � K /2 � CeKjtj.N C 1/2

˙ ŒN ;L2;N.t/� � CeKjtj.N C 1/; ˙ �
N 2;L2;N.t/

� � CeKjtj.N C 1/2

˙ PL2;N.t/ � CeKjtj.N C 1/; j PL2;N.t/j2 � CeKjtj.N C 1/2 :

(72)

Using Gronwall’s Lemma and the bounds in (72), we obtain

hU2;N.tI 0/˝;N 2U2;N.tI 0/˝i � C exp.c1 exp.c2jtj//h˝; .N C 1/2˝i
hU2;N.tI 0/˝;L 2

2;N.t/U2;N.tI 0/˝i � C exp.c1 exp.c2jtj//h˝; .K C N C 1/2˝i :

The last bounds, combined with the bound for .L2;N.t/ � K /2, also implies that

hU2;N.tI 0/˝;K 2U2;N.tI 0/˝i � C exp.c1 exp.c2jtj//h˝; .K C N C 1/2˝i :

Note that some of the bounds in (72) would not hold if we used the correlation
structure defined in (45); this is the reason why we implemented correlations
through the kernel defined in (61).

Remark 3 In [7] we considered fluctuations around the non linear Schrödinger
dynamics for initial states on the Fock space. For N particle initial data a more
convenient approach to study fluctuations around the effective dynamics has been
introduced in [26] in the mean field scaling. This approach was later exploited in
[28, 29] to analyze fluctuations in the regimes up to ˇ < 1=2. The major difficulty in
the extension of these results to larger values of ˇ is the introduction of correlations
in the N particle approach proposed in [26].
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4 Conclusions and Open Problems

We reported on the proof of a norm approximation for the many-body dynamics
described by (26) of a particular class of initial data in the Fock space which is a
good candidate to describe the ground state of trapped bosons interacting with a
pair potential of the form N3ˇ�1V.Nˇx/, with 0 < ˇ < 1. In particular we showed
that for any 0 < ˇ < 1 one can approximate the fluctuation dynamics U`;N defined
in (64) by a quadratic evolution in norm.

Instead of considering fluctuations of the time evolution around the time depen-
dent non linear Schrödinger equation, it is also possible to approach the problem
from a static point of view. To this end, one can trap the system in a finite volume
(either by imposing boundary conditions or by turning on an external potential) and
one can study the difference between the many-body ground state energy and the
minimum of the energy functional

E .'/ D
Z

dx
�jr'.x/j2 C .

Z
V/j'.x/j4� : (73)

In this respect Theorem 3 suggests that a good approximation for the many-
body ground state of the Hamiltonian H

.ˇ/
N , with 0 < ˇ < 1, may have the

form W.
p
N'/S˝ , where ' minimizes the energy functional (73) and S is the

exponential of a quadratic expression, related to the limiting quadratic evolution.
Similarly, a good approximation for low-lying excited states may be of the form
W.

p
N0'/Sa�.g1/ : : : a�.gk/˝ , for appropriate k 2 N, N0 D N � k and orbitals

g1; : : : ; gk orthogonal to '. It would be very interesting to obtain a proof of the
above mentioned conjectures.

Concerning the extension of our result to the Gross-Pitaevskii regime, new ideas
are needed. In fact, if we follow the same strategy that we use for ˇ < 1, it
turns out that in the Gross-Pitaevskii regime one cannot approximate the fluctuation
dynamics U`;N by a quadratic evolution in norm. In fact, although one can control
their effect on the growth of the number of particles (needed to prove the trace
norm convergence), the cubic and quartic components of the generator of U`;N

are not negligible in the limit of large N as soon as ˇ D 1. In other words the
fluctuation dynamics of quasi–free states is not described by a quadratic generator.
One may interpret this difficulty saying that the action of T.k`;0/ is not sufficient to
describe the correlation structure developed in the Gross-Pitaevskii regime with the
precision needed to get a norm approximation result. In this perspective the analysis
of the fluctuation dynamics around the Gross-Pitaevskii equation may be useful to
get some information on the ground state wave function in this physically relevant
regime. Vice versa some new results on the time-independent characterization of
bosonic systems in the Gross-Pitaevskii regime may help the understanding of the
dynamical properties of the system.

We hope to be able to address some of these problems in the next future.
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