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Abstract The study of the properties of quantum particles in a periodic potential
subjected to a magnetic field is an active area of research both in physics and
mathematics, and it has been and is yet deeply investigated. In this chapter we
discuss how to implement and describe tunable Abelian magnetic fields in a system
of ultracold atoms in optical lattices. After reviewing two of the main experimental
schemes for the physical realization of synthetic gauge potentials in ultracold set-
ups, we study cubic lattice tight-binding models with commensurate flux. We finally
discuss applications of gauge potentials in one-dimensional rings.
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1 Introduction

The study of the dynamics of a quantum particle in a magnetic field is a fascinating
subject of perduring interest both in physics and mathematics literature. The
quantization of energy levels giving rise to the Landau levels is at the basis of our
understanding of integer and fractional quantum Hall effects [11, 13, 39, 66, 77]
and its higher-dimensional counterparts and generalizations, including topological
insulators [14, 19, 67]. The use of vector potentials in quantum mechanics is
associated in itself to very interesting consequences, such as the purely quantum
mechanical interference in the Aharonov-Bohm effect [3]. On the other side, the
mathematical formalism for a particle in a magnetic field has been developed and
refined along the time, based on the rigorous definition of Schrödinger operators
with magnetic fields [10]. An important role is played by the construction of families
of observables in the presence of gauge fields relying on the progresses in gauge
covariant pseudodifferential calculus [42] and the C�-algebraic formalism [58] (see
for a review Ref. [57]). A major area of research in the field of single-particle and
many-body properties in the presence of a magnetic field is provided by the study
of the effects of periodic potentials. The interplay of the magnetic field and the
discreteness induced by the lattice provides a paradigmatic system for the study of
incommensurability effects [12, 38] and it results in an energy spectrum exhibiting
a fractal structure, referred to as the Hofstadter butterfly [38]. Very interesting
examples of the analysis of the so-called colored gaps can be found in [9, 68], while
a discussion of the colored Hofstadter butterflies in honeycomb lattices can be found
in [2].

The study of the Hofstadter Hamiltonian attracted in the years a sparkling
activity, also due to its connections with the one-dimensional Harper model [36].
A concise, but very clear discussion is presented in [71], where it is shown how the
Schrödinger equation for an electron in a magnetic field in the presence of a two-
dimensional periodic potential can be mapped in a one-dimensional quasiperiodic
equation. A derivation of Harper and Hofstadter models in the context of effective
models for the conductance in magnetic fields was presented in [22], while a
treatment of the Schrödinger operator in two dimensions with a periodic potential
and a strong constant magnetic field perturbed by slowly varying non-periodic scalar
and vector potentials has been recently discussed in [28]. A remarkable motivation
for the studies of a two-dimensional electron gas in a uniform magnetic field and a
periodic substrate potential is as well coming from the connection with topological
invariants, as one can see from the study of the Hall conductance [72].

The theoretical studies on properties of lattice systems in a periodic potential
found a experimental matching in the active research of solid-state realizations of
the Hofstadter and related Hamiltonians. This effect has never been observed so
far in a natural crystal due to the fact that a very large magnetic field would be
required, however signatures of the Hofstadter bands has been observed in artificial
superlattices [21, 27, 29, 59, 65]. This activity found recently a counterpart in the
field of cold atoms, where it has been possible to load a neutral atomic gas in an



Abelian Gauge Potentials on Cubic Lattices 49

optical lattice and simulate by external lasers an artificial magnetic potential [5, 60].
Given the fact that ultracold atoms, due to the high level of control and tunability of
parameters [64], are an ideal physical setup in which perform quantum simulation
[15], these and related experimental achievements opened the way to study a variety
of lattice systems in a magnetic potential. In particular one can load on the lattice
interacting bosonic and/or fermionic atoms, control the parameters of the lattice, use
several components in each lattice site [54] and implement a variety of lattices of
different dimensionalities (not only D D 2, but also D D 1 and D D 3).

The rationale of this Chapter is to report an introduction to the different ways
to implement artificial magnetic potentials in the presence of a controllable lattice,
with the goal to create a link with the many available results in theoretical and
mathematical physics. From the other side we think that the variety of lattice models
in magnetic fields implementable with ultracold gases may be a context in which
test and apply techniques from the mathematical literature, and motivate further
analytical and rigorous results, starting from the treatment of three-dimensional
fermionic lattice systems. With these objectives, we then present in Sect. 2 a
discussion on several different ways of realizing artificial magnetic fluxes in optical
lattice systems. In Sects. 3 and 4 we present two possible applications of the results
presented in Sect. 2 both to illustrate the versatility of possible uses of artificial
magnetic potentials and to show results for 3D and 1D lattices. In Sect. 3 we review
and study cubic lattice tight-binding models with a commensurate Abelian flux, also
presenting results for the case of anisotropic fluxes. In Sect. 4 we consider 1D rings
pierced by a magnetic field discussing how the latter can enhance the quantum state
transfer and the entanglement entropy in the system.

We acknowledge several discussions we had along the years on the subjects
treated in this chapter with several people, and special acknowledgements go to
M. Aidelsburger, E. Alba, T. Apollaro, H. Buljan, A. Celi, I. C. Fulga, N. Goldman,
G. Gori, M. Mannarelli, G. Mussardo, G. Panati, H. Price, M. Rizzi, P. Sodano and
A. Smerzi. S. P. is supported by a Rita Levi-Montalcini fellowship of MIUR.

2 Realization of Artificial Magnetic Fluxes in Optical
Lattice Systems

In the last 10 years many experiments with ultracold atoms demonstrated the
possibility of realizing artificial magnetic fluxes trapped in two-dimensional optical
lattices. Similar setups pave the way for a systematic study of topological phases
of matter in the highly controllable environment provided by ultracold atoms [15].
Such experiments offer, on one side, the possibility of reaching regimes that are
hardly achievable in solid state devices and, on the other, to verify the emergence
of topological phenomena through observables typical of ultracold gases, such as
the motion of the center of mass of the system, or the momentum distribution of the
atoms [64]. The measurement of these quantities therefore provides useful tools to
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detect the appearance of topological phases of matter which are complementary to
the usual transport measurements performed in solid state platforms.

The main result which enabled the experimental study of topological models
in ultracold atomic systems was the realization of artificial gauge potentials. In
this framework, we speak about artificial (or synthetic) gauge potentials because
ultracold atoms are neutral, therefore their motion is not directly affected by the
presence of a true electromagnetic field. Despite that, however, it turned out to be
possible to engineer systems in which the dynamics of the slow and low-energy
degrees of freedom can be described by an effective Hamiltonian in which the free,
non-interacting, part is the one of a free-particle in a magnetic field. An interesting
point to be observed is that the obtained Hamiltonian, featuring the presence of
an artificial magnetic field, is interacting, with the interaction term tunable by e.g.
Feshbach resonances or by acting on the geometry of the system. At the same time,
typically, as we are going to discuss in the following, the synthetic field does not
depend on the interactions or on the density of the system, being in a word a single-
particle effect.

An efficient way to implement a synthetic gauge potential A giving rise to an
artificial, static magnetic field B / r � A, is to implement with ultracold atoms
in optical lattice a tight-binding Hamiltonian with hopping amplitudes which are,
in general, complex and whose phases depend on the position. To be more clear,
we point out that the implementation of synthetic gauge potentials in lattices relies
on the well-established experimental successes in the quantum simulation of tight-
binding Hamiltonians for both bosons and fermions [15].

For ultracold bosons, if a condensate is loaded in an optical lattice, then one
can expand the condensate wavefunctions in the basis of the Wannier functions and
obtain a discrete nonlinear Schrödinger (DNLS) equation [73]. The coefficient of the
nonlinear term in the DNLS equation is proportional to the s-wave scattering length
a and in general the coefficients of the DNLS equation depend on integrals of the
Wannier functions. For a D 0 (i.e., for an effectively non-interacting condensate)
one gets the discrete linear Schrödinger, which is nothing but the tight-biding
model for which one can apply consolidated numerical analyses [55] and rigorous
[16] techniques for the definition and determination of the Wannier functions and
their behaviour. When a ¤ 0 a rigorous theory of (nonlinear) Wannier functions
does not exist, and the semiclassical equations of motion should be modified as a
consequence of the existence of the nonlinearity. The development of a rigorous
extension of Wannier functions in the presence of nonlinearity is a challenging
mathematical problem for the future. We think this independently from the fact that
an approximate determination of the Wannier functions (see e.g. for a variational
approach in [18, 74, 75]) typically works very well to describe the experimental
results when the laser intensity, i.e. the strength of the periodic potential, is large
enough, also when the system approaches the superfluid-Mott transition and/or
the gas is not longer condensate due to the presence of strong interactions [40].
Similar considerations apply for ultracold fermions: when there is in average no
more than one particle per well and only the lowest band is occupied, a single-band
tight-binding approximation works very well both when the dilute fermionic gas is
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polarized (corresponding to a D 0) and when more species or levels of fermions
are present. In the following we consider tight-binding models describing ultracold
atoms in optical lattices, sticking to the non-interacting limit and discussing how to
simulate artificial gauge potentials in such systems. We alert anyway the reader that,
albeit non-rigorous, the experimental techniques to implement synthetic magnetic
field are the same also for interacting particles, even though the interacting terms
may modify or generate additional coefficients in the tight-binding model and
introduce corrections to the results obtained with the Peierls substitution [63].

To fix the notation, let us consider a lattice whose sites are denoted by r: for a
cubic D-dimensional lattice we have r 2 Z

D. By using the Peierls substitution to
take into account the effect of the magnetic field [45, 53, 63], the Hamiltonian we
consider then reads

H.f�g/ D �
X

r ; Oj
wOj c

�

rCOj e
i�j.r/cr C H.c. ; (1)

where Oj are unitary vectors characterizing the links of the lattice, wOj are the hopping
amplitudes (assumed isotropic in the following of the Section: wOj � w). The phases
�j depend in general on the position r and can be thought as the integral of an
artificial and classical vector potential A.r/ between neighboring sites:

�j.r/ D
Z rCOj

r
A.x/ � dx : (2)

The ladder operators cr and c�r annihilate and create an atom in the lattice site r and
they may obey either fermionic or bosonic commutation relations depending on the
atoms species.

It is important to emphasize that the artificial vector potential A constitutes a
classical and static field; despite that, we can define U.1/ gauge transformations
acting on the ladder operators of the previous Hamiltonian and on the vector
potentials, which leave the dynamics of the system invariant; A is thus, in this
context, a properly defined gauge potential (see the reviews [20, 32] for more
details). Notice as well that one can simulate gauge potentials without a periodic
potential [20, 32], but that typically the implementation of magnetic potential in an
optical lattice can crucially take advantage of the presence of the lattice potential
itself (in other words, decreasing to zero the intensity of the laser beams amounts to
make vanishing the magnetic potentials as well).

The effect of the gauge symmetry is that the main observables we must consider
are gauge-invariant observables - although, due to the artificial nature of these gauge
potentials, also gauge-dependent quantity may be evaluated in the experimental
setups, going beyond the previous effective Hamiltonian description. The main
gauge-invariant quantity determining the dynamics of the system is the magnetic
flux which characterizes each plaquette in the lattice. Such flux describes an
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Aharonov-Bohm phase acquired by an atom hopping around a lattice plaquette and
can be defined as:

˚p D
X

.r;Oj/2p
�j.r/ D

I

p
A.x/ � dx ; (3)

where .r; Oj/ labels the links along the plaquette p in order to consider a counter-
clockwise path. The lattice spacing is denoted by a, and if not differently stated is
intended to be set to 1.

On the experimental side there are two broad classes of techniques which have
been adopted to engineer effective Hamiltonians of the form in Eq. (1). The first
corresponds to the “lattice shaking”, which consists in a fast periodic modulation
of the optical lattice trapping the atoms whose effect is to reproduce, at the level
of the slow motion of the atoms, the required complex hopping amplitudes. The
second is the “laser-assisted tunneling” of the atoms in optical lattices in which the
atom motion is suppressed along one direction and restored through the introduction
of additional Raman lasers able to imprint additional space-dependent phases to the
tunneling of the particles. Both these techniques allow for the generation of artificial
magnetic fluxes and are based on non-trivial time-dependent Hamiltonians which
determine, at the level of the slow motion of the system, a dynamics which can be
described by an effective Hamiltonian of the kind in Eq. (1). In the following we will
summarize first the technique developed in [31] which provides a very useful tool
for the analysis of these driven time-dependent systems, and then we will describe
some of the main examples of systems obtained through lattice shaking or laser-
assisted tunneling.

2.1 An Effective Description for Periodically Driven Systems

The technique for the analysis of periodically driven systems proposed in [31],
whose presentation we follow in this Section, is based on the distinction of two
main ingredients whose combination describes the dynamics of modulated setups.
The first is an effective Hamiltonian H, independent on the initial conditions of the
dynamics, and capturing the long-time motion of the particles in the system. The
second is a so-called kick-operator K describing the effects due to the initial and
final phases of the modulation. In particular it is responsible for both the initial
conditions of the system and for the so-called micro-motion, which includes the
periodic dynamics of all the fast-evolving degrees of freedom. To be explicit, let
us assume that the modulated system is described by a time-periodic Hamiltonian
QH.t/ D QH.t C T/. It is then possible to decompose the evolution of the system into:

U.ti ! tf / D e�iK.tf /e�iH.tf �ti/eiK.ti/ : (4)
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Here H is the effective, time-independent, Hamiltonian, not depending on ti and
tf ; the kick operator K.t/ D K.t C T/ is a periodic time-dependent operator, and
hereafter we set „ D 1. The approach in [31] consists in a series expansion of H and
K in the small parameter 1=! D T=.2�/, where ! is the driving frequency of the
system and must constitute the largest energy scale of the problem.

To study optical lattices with non-trivial artificial magnetic fluxes it is usually
enough to consider the long-term dynamics of the driven system and thus the
effective Hamiltonian only (the situation would be different for systems involving
also spin degrees of freedom, or for the evaluation of the heating of the driven
system). To this purpose, we decompose the time-dependent Hamiltonian QH.t/ into
its Fourier component:

QH.t/ D H0 C
X

n>0

ein!tV.n/ C
X

n>0

e�in!tV.�n/ (5)

with V.�n/ D V.n/�. H0 is the time-independent component of QH, whereas the
operators V.�n/ are associated to its harmonics. In terms of these operators it is
possible to show that the effective Hamiltonian reads:

H D H0 C 1

!

1X

nD1

1

n

�
V.n/;V.�n/

�C

C 1

2!2

1X

nD1

1

n2
���

V.n/;H0
�
;V.�n/

�C H.c.
�C O.T3/ : (6)

This expansion allows for a determination of the effective Hamiltonian in the main
examples of systems of ultracold atoms trapped in optical lattices, subject either to
a modulation of the trapping lattice or two additional Raman couplings. One needs
to consider carefully, though, the issue of the convergence of this series which must
be evaluated specifically for each system. The readers are referred to [31] for more
detail.

2.2 Artificial Gauge Potentials from Lattice Shaking

The first attempts to experimentally modify the hopping amplitudes of the effective
tight-binding models for atoms trapped in optical lattices through the introduction
of modulations date back to the works [25, 43, 51]. To understand how the effect of
the lattice shaking can determine the tunneling amplitudes of the atoms let us first
address a one-dimensional setup. Although, in this case, it is not possible to define
magnetic fields and fluxes, the analysis of this simplified system will be useful to
understand the appearance of artificial magnetic fluxes in higher dimensions. We
consider an optical potential of the form V.t/ D V0 sin2 .x � �0 cos.!t// where !
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is the shaking frequency. The Hamiltonian with this oscillating potential can be
mapped in a co-moving frame .x ! x C �0 cos.!t// characterized by the following
Hamiltonian:

QH.t/ D p2 C V0 sin2 .x/ � 1

2
x�0!

2 cos.!t/ ; (7)

where the last term accounts for the additional force in the non-inertial frame and
we set the mass to m D 1=2 for the sake of simplicity. Finally, by approximating
with a tight-binding model we obtain:

QH.t/ D
X

x

�
�wc�xC1cx � wc�xcxC1 � 1

2
x�0!

2 cos.!t/c�xcx

�
: (8)

In this case it is possible to derive the full effective Hamiltonian without recurring
to a series expansion to obtain [24]:

H D �wJ0.�0!=2/
X

x

c�xC1cx C c�xcxC1 (9)

where J0 is a Bessel function of the first kind which renormalizes the tunneling
amplitude and may assume either positive or negative values depending on �0!.
Despite the fact that, in this case, the hopping amplitude remains always real, it is
interesting to notice that it can change sign.

In 1D systems, such a change of sign is simply translated in a different dispersion
for the single particle problem; however, it is possible to extend this naive example
to higher dimensions and less trivial geometries: in this case the result of the lattice
shaking provides a first tool for the engineering of non-trivial fluxes. We also
observe that, applying the formalism of [31], we have that H0 D �w

P
x c
�
xC1cx C

H.c., V.1/ D V.�1/ D �x!2 c�xcx=4 and all the other harmonics are absent. The
effective Hamiltonian based on Eq. (6) would then correspond to a series expansion
of the Bessel function in Eq. (9) [31].

The lattice shaking techniques can be also extended to obtain complex hopping
amplitudes. To this purpose, in this simple one-dimensional model, it is necessary
to change the time-dependence of the modulation of the lattice in order to break
the time-reversal symmetry [V.t � t0/ D V.�t � t0/] and a shift antisymmetry
[V.t/ D V.t C T=2/] [69]. This has been realized for the first time for a Rb Bose-
Einstein condensate and the presence of non-trivial hopping phases has been verified
through time-of-flight measurements of its momentum distribution as a function
of the modulation amplitude [69]. This may be counterintuitive because, in one
dimension, the observation of the hopping phase corresponds to the observation
of a gauge-dependent quantity. We notice, however, that only the effective tight-
binding models adopted in the description of the slow dynamics of the system, and
the related observables, are indeed gauge-invariant; in the experiment, though, one
can access also additional “gauge-dependent” observables through operations which
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do not have a physical counterpart in the effective toy model: this is the case of the
time-of-flight imaging which follows from switching off the optical lattice. Such
procedure maps the crystal momentum of the tight binding model (9) (which is a
gauge-dependent quantity) into the velocity of the particles during the time of flight,
which is an observable quantity which exists only considering the embedding of the
system in the larger laboratory setting.

The effects of lattice shaking become even more remarkable in two-dimensional
setups. In this case lattices may be accelerated along two different directions to cause
a global periodic motion of the optical lattice around a closed orbit which yields, at
the level of the effective Hamiltonian, a tight-binding model with non-trivial fluxes.

On triangular optical lattices this technique has been adopted to realize staggered
flux configurations [70] and, more recently, the same method, with a circular
modulation of the lattice position [61], has been used to simulate the topological
Haldane model [35] on the honeycomb lattice with a gas of fermionic 40K [41].
The Haldane model represents a topological insulator of fermions hopping in a
honeycomb lattice with nearest-neighbor and next-nearest-neighbor tunnelings. It is
based on both the presence of a pattern of staggered fluxes ˚ to break time-reversal
symmetry and an onsite staggering potential to break space inversion symmetry
[35]. By varying the value of either of these parameters, the model undergoes
topological phase transitions, characterized by discontinuities of the Chern number
of the lowest energy band. These discontinuities have been experimentally detected
through measurements of the drift of the center of mass of the system in the presence
of an additional magnetic gradient to add an additional constant force [41].

2.3 Artificial Gauge Potential from Laser-Assisted Tunneling

Complex hopping amplitudes in the effective Hamiltonian can be obtained also
through a different technique based on the introduction of pairs of Raman lasers
coupling the low-energy states of the atoms trapped in the optical lattice. In this case
the phase differences and space dependence of the Raman lasers may be inherited by
the dynamics of the atoms, thus allowing for complex space-dependent amplitudes.

To reach this result, however, it is necessary to first suppress the motion of the
atoms in the optical lattice, at least, along one direction. This is obtained through
the introduction of suitable energy offsets, depending on the positions, which shift
the energy of neighboring sites by an energy �. These offsets can be obtained, for
example, by tilting the lattice (i.e., with gravity), or by introducing suitable magnetic
gradients in the system which couple with the atomic magnetic dipole moments
(thus generating a position dependent Zeeman term) or through the introduction of
superlattices.

Let us start by considering one of the simplest realization of strong fluxes
in optical square lattices as experimentally realized [4]. In this experiment an
optical superlattice, generated by a standing wave with wavelength 2a, was used
to introduce an additional staggering along the Ox direction for the trapped atoms,
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Fig. 1 Schematic illustration of the setup adopted in the experiment [4] for the realization of
staggered magnetic fluxes. The tunneling along the horizontal direction is suppressed by the
introduction of the staggering � through a superlattice. A pair of Raman lasers (red arrows) are
added to the system to restore the horizontal tunneling. As a result the even horizontal links (blue
dashed links) acquire a tunneling phase e�ikRr, whereas the odd (red dashed links) acquire the
opposite phase eikRr. kR is the recoil momentum of the pair of Raman lasers

such that the initial, time-independent setup can be modeled by the following
Hamiltonian:

QH0
0 D �w

X

r ; Oj

�
c�
rCOjcr C H.c.

	
C �

2

X

r

.�1/xc�rcr (10)

where r D .x; y/ and� is the staggering related to the amplitude of the superlattice
(see Fig. 1). Two running Raman lasers with wave vectors k1;2 and frequencies !1;2,
tuned such that !1 � !2 D �, are then introduced in the system. The associated
electric field is E1 cos.k1r � !1t/ C E2 cos.k2r � !2t/ which, neglecting the fast
oscillating terms, generates a potential:

V.t/ D �ei.kRr��t/c�rcr C H.c. ; (11)

where � D 2E1E2 and kR D k1 � k2 is the recoil momentum of the Raman lasers.
The time-evolution of the system is ruled by the Schrödinger equation i@t D

QH0.t/ , where QH0.t/ D QH0
0 C V.t/. Since the static Hamiltonian QH0

0 contains the
staggered-potential term that explicitly diverges with the driving frequency �, it is
convenient to apply the unitary transformation [33, 56]

 D R.t/ Q D exp .�iWt/ Q ; (12)
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with W being the staggering term:

W D �

2

X

r

.�1/xc�rcr : (13)

Such transformation removes the diverging term and maps QH0 into:

QH.t/ D R�.t/
� QH0

0 C V.t/
�
R.t/ � W D (14)

D H0 C V.1/ei�t C V.�1/e�i�t; (15)

where

H0 D �w
X

x;y

�
c�x;yC1cx;y C c�x;ycx;yC1

	
; (16)

OV.1/ D �
X

r

e�ikRrc�rcr � w
X

x odd;y

�
c�xC1;ycx;y C c�x�1;ycx;y

	
; (17)

OV.�1/ D �
X

r

eikRrc�rcr � w
X

x even;y

�
c�xC1;ycx;y C c�x�1;ycx;y

	
: (18)

From these terms it is easy to derive the effective Hamiltonian in Eq. (6) at first
order:

H D �w
X

x;y

�
c�x;yC1cx;y C c�x;ycx;yC1

	
� (19)

� w �

�

X

x even;y

h�
e�ikROx � 1

	 �
e�ikRrc�xC1;ycx;y C eikRrc�x;ycx�1;y

	
C H.c.

i
C O.1=�2/ ;

This effective Hamiltonian describes in general a two-dimensional model with
staggered magnetic fluxes where the sign of the fluxes alternate in the plaquettes
belonging to even and odd columns. In the experiment [4], the recoil momentum
was chosen as kR D .Ox C Oy/˚ . In this case the Ox component has no relevance in
the definition of the fluxes and the previous Hamiltonian becomes, after a suitable
gauge transformation:

H D �wy

X

x;y

�
c�x;yC1cx;y C c�x;ycx;yC1

	
� (20)

wx

X

x even;y

h�
e�i˚yc�xC1;ycx;y C ei˚yc�x;ycx�1;y

	
C H.c.

i
C O.1=�2/

with wy D w and wx D 2w� sin.˚=2/=� (this value is the one obtained at
the first order in the perturbative expansion, and it must be considered only an
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approximation). From the Hamiltonian in Eq. (20) it is evident the alternation of
fluxes ˙˚ on the plaquettes along the horizontal direction.

The introduction of the staggering term, however, allows also for more refined
setups in which the even and odd links may be separately addressed [33]. This
requires the introduction of two different pairs of Raman lasers with opposite
frequency shifts ˙� and it permits to obtain systems with a uniform magnetic flux
˚ in each plaquette [33]. In this way the Hofstadter model on the square lattice has
been realized for 87Rb [6] and it was possible to measure the Chern number of the
different energy bands through the motion of the mass center of the system.

The staggered potential, however, it is not the only possible choice to suppress the
motion along one direction. The first quantum simulations with ultracold atoms of
the Hofstadter model [5, 60] were instead based on an external potential of the kind
W D P

r�xc
�
rcr. In this case the introduction of two Raman lasers yields indeed to

an effective Hamiltonian with rectified fluxes, and this result can be obtained with
calculations analogous to the previous one where the distinction between even and
odd links is no longer required, and all the horizontal links acquire a tunneling phase
of the form eikRr consistent with a constant flux.

The laser-assisted techniques to design artificial gauge potentials are extremely
versatile, and the previous approach can be generalized to different geometries
and to multi-component species. The introduction of additional potential through
superlattices, for example, enabled the realization of ladder models pierced by
uniform fluxes which are characterized by chiral currents and a Meissner-like effect
[8]. Furthermore the introduction of spin-dependent potentials, as in [5], permits to
mix different spin-species subject to opposite magnetic fluxes and some theoretical
proposals generalized these systems to engineer an artificial spin-orbit couplings for
two-component atoms [31, 56].

3 Cubic Lattice Tight-Binding Models
with Commensurate Flux

In this Section we consider cubic lattices in a magnetic field, focusing on the case
of Abelian fluxes. This is a very interesting mathematical problem in itself and it
has a counterpart in the experimental implementations we discussed in the previous
Section.

3.1 Isotropic Flux

We start our study with a single-species tight-binding model on a cubic lattice with
N D L3 sites, in the presence of an Abelian uniform and static magnetic field B D
˚ .1; 1; 1/ isotropic on the three directions. This field gives rise on each plaquette of
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the lattice (with area a2, a being the lattice spacing) to a magnetic flux ˚ D B � a2.
The presence of this flux amounts to a phase ei˚ gathered by a particle hopping
around a single plaquette, because of the Stokes theorem. The generalization of this
model to many species is straightforward, since an Abelian gauge field does not mix
the different species. The magnetic flux is chosen commensurate:

˚ D 2�
m

n
: (21)

The commensurate condition allows us to solve the model analytically, imposing
periodic boundary condition on the lattice. At variance, in the incommensurate case
the determination of spectrum requires a numerical solution of the real space tight-
binding matrix, see e.g. [17, 52] - for a discussion of the Hofstadter butterfly in three
dimensions see [46], while a study in higher dimensions is reported in [44].

By exploiting the gauge redundancy, the static magnetic field B can be associated
to various physically equivalent gauge potentials A	.x/. For the sake of simplicity,
we choose here a time-independent gauge configuration, adopting the (static)
Coulomb gauge A0.x/ D 0.

Because of the magnetic phases in Eq. (2), the sites of the lattice, all equivalent
each other at B D 0, get inequivalent, the inequivalence lying in the phases gathered
after each hopping along the bonds starting from a certain site. In this way, the
lattice gets divided, in a gauge-dependent way, in a certain number of sublattices.
Exploiting this freedom, in order to perform calculations in the easiest way as
possible, it is useful to look for the (set of) gauge(s) characterized, for a given
commensurate magnetic flux ˚ D 2� m

n , by the smallest number of sublattices.
A simple (and still not unique) gauge fulfilling this requirement is [37]:

A D 2�

a2
m

n
.0; x � y; y � x/ ; (22)

with permutations in x; y; z also equally acceptable. This gauge is a three-
dimensional generalization of the Landau gauge in two dimensions [47], reducing
indeed to the Landau gauge in this limit (wOz ! 0), up to a gauge redefinition to
absorb the term �y in Ay.

Assuming the choice in Eq. (22), the Hamiltonian in Eq. (1) can be recast in the
form

H D �
X

r

h
wOx c

�

rCOx cr C wOy UOy.x; y/ c
�

rCOycr C wOz UOz.x; y/ c
�

rCOzcr
i

C H.c. ; (23)

where the tunneling magnetic phases UOj.x; y/ D ei�Oj.x;y/ are defined as:

Ux D 1 ; (24)

UOy.x; y/ D exp
�
i
R x;yCa;z
x;y;z Ay dy

	
D exp

�
i 2�

�
x�y
a � 1

2

	
m
n

	
; (25)

UOz.x; y/ D exp
�
i
R x;y;zCa
x;y;z Az dz

	
D exp

�
�i 2�

�
x�y
a

	
m
n

	
: (26)
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The hopping phases in Eqs. (25) and (26) explicitly depend on the positions labelled
modulo n. Since the z coordinate is not present in Eq. (22), every wave-function of
the Hamiltonian in Eq. (23) can be written as [50]:

 .x; y; z/ D eikzz u.x; y/ ; (27)

allowing for a dimensional reduction of the eigenvalues problem as for the corre-
sponding problem in two dimensions where the Harper equation is found [38, 71].

The Hamiltonian in Eq. (23) with the hopping phases in Eqs. (24)–(26) is
translational invariant. For gauge invariant systems, translational invariance implies
that a translation of the coordinates by a vector w transforms the Hamiltonian of the
system to a gauge-equivalent one [50], and one may find [49]:

H.r C w/ D T �
w .r/H.r/Tw.r/ ; (28)

with Tw.r/ 2 U.1/ being a suitably chosen local gauge transformation which
depends on w.

The Hamiltonian in Eq. (23) with the gauge potential in Eq. (22) is translationally
invariant because it fulfills Eq. (28). We stress that the potentials of the form in
Eq. (22) are not the only ones satisfying the condition in Eq. (28), but instead
all the potentials obtained from Eq. (22) through local gauge transformation are
characterized by the same physical translational invariance. The property in Eq. (28)
is indeed a physical property of the system which is reflected on all the gauge-
invariant observables, as for example, the Wilson loops W.C / D Pei

H
C A.r/�dr

evaluated on closed paths along the lattice.
The Hamiltonian in Eq. (23) is also periodic with period n along Ox Oy, due to

the presence of the nontrivial magnetic hopping phases UOy.x; y/ ;UOz.x; y/, thus the
reduced wavefunctions u.x; y/ have the same periodicity. In this way the magnetic
unitary cell, defined by the elementary translations leading from a site to equivalent
ones in the three lattice directions, can be defined now as enlarged n times along
two directions (say Ox; Oy).

The problem to find the eigenvalues of the Hamiltonian in Eq. (23) on a lattice
with N number of sites would naïvely require in general the diagonalization of a
N � N adjacency matrix in real space. However, assuming translational invariance,
the calculation can be remarkably simplified by exploiting the division in sublattices
seen above. Indeed, in the presence of a magnetic flux˚ D 2� m

n and working in the
gauge in Eq. (22), the cubic lattice divides in n sublattices, labelled by the quantity
.x � y/mod.n/. In this way the Hamiltonian in Eq. (23) becomes:

H D �
X

Oj
wOj
X

s

ei�s;Oj
X

rs

c�
rsCOj crs C H.c. ; (29)

where s labels the sublattices and rs labels the sites of the s-th sublattice.
Since the magnetic unitary cell is defined now as enlarged n times along two

directions, the corresponding magnetic Brillouin zone (MBZ) in momentum space
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becomes f 2�a ; 2�an ; 2�na g [or other permutations of the factors 1
n between the space

directions, consisting in a mere redefinition of A.r/]. Correspondingly, the allowed
momenta k are N

n2
, of the form k D f 2�aLx px; 2�aLy py; 2�aLz pzg, with pOx D 0; : : : ;L � 1

and pOy;Oz D 0; : : : ; Ln � 1. In this way, all the physical quantities display a momentum
periodicity k ! k C 2�

na .lx; ly; lz/, with li being again integer numbers.
The counting of the N

n2
allowed momenta proceeds as follows: each sublattice

differs from another one by ˙Ox or ˙Oy translations that are not primary, then we
correspondingly expect n sets of N

n inequivalent energy eigenstates [50]. These
sets form n subbands in the MBZ. However, any sublattice is further divided in
n sub-sublattices differing by a primary translation ˙.Ox C Oy/, leaving invariant the
potential in Eq. (22). In this way, any N

n -fold set of eigenstates is again partitioned in
n equivalent and degenerate sub-sets, each one having N

n2
element. These elements

are parametrized by the N
n2

momenta in the MBZ described above. Moreover the
second partition translates in n-fold degeneracy of each subband. In the particular
case ˚ D � , two sub-bands are obtained, touching in Weyl cones as discussed
in [23, 48, 49]; in this case the system in Eq. (23) is the direct three-dimensional
generalization of the square lattice model with �-fluxes in [1].

The Hamiltonian in Eq. (29) can be expressed in momentum space using the
formulas crs D 1p

N=n2

P
k c.k/ eik�rs and

P0
rs e

ik�rs D N
n2

. The vectorial label rs

runs here on the N
n2

sites of one sub-sublattice of the sublattice s, the upper index in
the sum of the second formula meaning this restriction. We obtain:

H D �
X

k

X

Oj
wOj
X

s

ei�s;Oj e�ik�j c�
s0DsCOj.k/ cs.k/ C H.c. ; (30)

where we have also taken into account that, starting from the s-th sublattices and
moving in the Oj direction, a new sublattice (denoted as s0) is univocally found, as
consequences of Eq. (22). This is the reason oh the notation s0 D s C Oj.

The Hamiltonian in Eq. (30) can be recast in the sublattices basis as:

H D �
X

k

X

Oj
wOj
X

s

c�
s0DsCOj.k/

�
TAB

Oj
	

s0;s
e�ik�j cs.k/ C H. c. ; (31)

where TAB
Oj are n � n hopping matrices in the sublattice basis, reading, up to ciclic

permutations Zn:

TAB
Ox

D

0
BBBB@

0 1 : : : 0

0 0
: : : 0

0 0 : : : 1

1 0 0 0

1
CCCCA
TAB

Oy
D e�i� m

n

0
BBBB@

0 : : : 0 '0

'1 0 : : : 0

0
: : : 0 0

0 : : : 'n�1 0

1
CCCCA

TAB
Oz

D

0
BBBB@

'0 0 : : : 0

0 'n�1 0 0

0 0
: : : 0

0 0 : : : '1

1
CCCCA
;

(32)
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with 'l D ei2�
m
n l ; l D 0; : : : ; n � 1.

The matrices TAB
Ox;y;z do not commute each other, implying that the unitary cell of

the lattice does not coincides with its geometric smallest cell (with area a2), as seen

above. However, the n-power of these matrices yields the identity:
�
TAB

fOx;Oy;Ozg
	n D

1n�n, recovering the MBZ f 2�a ; 2�an ; 2�an g. Moreover, if m
n ¤ 1

2
the unitary matrices

TAB
Ox;y;z

are not invariant (even possibly up to a global phase) by the conjugate
operation, reflecting the breaking of the time-reversal symmetry, due to the magnetic
field B itself. A notable result of the discussion above is that the diagonalization of
a N � N matrix is reduced to the diagonalization of a n � n one.

We conclude this Section by observing that in the presence of more species
(labelled by the index ˛ D 1; : : : ;m) hopping on the lattice and subject to the
Abelian gauge potential in Eq. (22), the Hamiltonian in Eq. (31) generalizes to

H D �
X

k

X

Oj
wOj
X

s

c�
s0DsCOj;˛0

.k/
�
TAB

Oj ˝ 1m�m

	

s0;˛0 ;s;˛
e�ik�j cs;˛.k/ C H. c. ;

(33)

where no mixing of the different species involved occurs.

3.2 Generalization: Anisotropic Abelian Lattice Fluxes

In the previous analysis we assumed that the value of the fluxes was the same for
the three orientations of the plaquettes. Now we discuss some extension in which
we relax this hypothesis. We analyze first the case in which the magnetic field Oz is
perturbed, such that we introduce an anisotropy in the previous system:

B D 2 �

a2

�m
n
;
m

n
;
mz

nz

	
: (34)

Again we may assume, without any loss of generality, mz and nz prime with each
other as well as m and n. In the case of Eq. (34), a gauge similar to the one in Eq. (22)
can be used:

A D 2�

a2

�
0;

mz

nz
.x � y/;

m

n
.y � x/

	
: (35)

This choice still depends on one parameter only, thus ensuring the appearance of
minimal gauge-dependent sublattices. More in detail, the lattice divides again in
n2 D l. c. m. .n; nz/ inequivalent sublattices, defined by the periodicity of the phases
in the Ox and Oy directions and labelled by the set .x � y/mod.n2/. Indeed the hopping
phases from Eq. (35) are:

�rCOj;r D 2�

a

�
0;

mz

nz

�
x � y � a

2

	
;
m

n
.y � x/

	
: (36)
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Similarly to the previous case, each sublattice is again divided in n2 equivalent sub-
sublattices, each one having N

n22
sites. For this reason, similarly to the Sect. 3.1,

n2 subbands appear, each of them with a n2 degeneracy. Correspondingly the BZ
divides by n2 in two directions, so that k D f 2�aLx px; 2�aLy py; 2�aLz pzg, pOx D 0; : : : ;L�1,

pOy;Oz D 0; : : : ; L
n2

� 1, or permutations in the pairs of the restricted momentum
directions. The Hamiltonian in Eq. (1) can then be rewritten, in terms of these quasi-
momenta, as in Eq. (31), by means of three m2 � m2 matrices in the basis of the m2
sublattices, derived similarly to the ones in Eq. (32).

In the completely asymmetric case the magnetic potential reads

B D 2 �

a2

�mx

nx
;
my

ny
;
mz

nz

	
; (37)

a convenient gauge choice, inducing the magnetic field in Eq. (37), reads:

AAB D 2�

a2

 �my

ny
� mx

nx

	
.z � x/;

mz

nz
.x � y/;

mx

nx
.y � x/

!
: (38)

The hopping phases from Eq. (38) are:

�rCOj;r D 2�

a

 �my

ny
� mx

nx

	 �
z � x � a

2

	
;
mz

nz

�
x � y � a

2

	
;
mx

nx
.y � x/

!
: (39)

The gauge in Eq. (38), similarly to the previous case, ensures the appearance of
the minimum number of gauge-dependent sublattices. In particular, due to the
simultaneous x dependence of all the components of AAB and following the same
logic as in the Sect. 3.1, we obtain

ns D l. c. m. .nx; ny; nz/ (40)

inequivalent sublattices (obtained varying y and z at fixed x) and corresponding
subbands. Again each sublattice is then further divided in equivalent subsublattices.

More in detail, the counting of these subsublattices proceeds as follows. Starting
from a point .x0; y0; z0/ belonging to a certain sublattice, they are obtained by adding
1 to each components: .x0; y0; z0/ ! .x0 C 1; y0 C 1; z0 C 1/. The variable z has
periodicity given by l. c. m. .nx; ny/ possible inequivalent values, y has periodicity
l. c. m. .nx; nz/ and finally x has l. c. m. .nx; ny; nz/ inequivalent values. For this
reason each inequivalent sublattice divides in

nd D min
�

l. c. m. .nx; ny/ ; l. c. m. .nx; nz/ ; l. c. m. .nx; ny; nz/
	

D (41)

D min
�

l. c. m. .nx; ny/ ; l. c. m. .nx; nz/
	

equivalent subsublattices.
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Correspondingly, we find N
ns�nd

quasi-momenta defining each subband: k D
f 2�aLx px; 2�aLy py; 2�aLz pzg, pOx D 0; : : : ;L� 1, pOy D 0; : : : ; L

ns
� 1, pOz D 0; : : : ; L

nd
� 1, or

permutations in the pairs of the restricted momentum directions. The Hamiltonian
in Eq. (1) can be then rewritten, in terms of these quasi-momenta and in the basis
of the ns sublattices as in Eq. (31), by means of three ns � ns matrices similar to the
ones in Eq. (32).

4 Two Applications of Synthetic Gauge Potentials
in 1D Rings

The possibilities offered by ultracold atoms in optical lattices to engineer tight-
binding models in tunable magnetic potential open as well new possibilities also in
the field of quantum information in the sense that they could be used in perspective
to perform quantum information tasks and control the amount of entanglement of
the system. Here, as two examples we believe paradigmatic of such potentialities,
we want to shortly address two specific applications showing how tuning a gauge
potential could modify the capability of a system to share quantum information.
We consider one-dimensional models of free fermions on a ring geometry in the
presence of a synthetic magnetic field piercing the ring. We first analyze for short-
range lattice models how a topological phase helps to enhance the fidelity in a
quantum state transfer (QST) process between different sites of the lattice [7, 62].
Then we study a long-range model to see how the presence of a topological phase
can lead to the a volume-law behavior of the entanglement entropy (EE) for the
ground state of the system.

4.1 Quantum State Transfer in a Ring Pierced
by a Magnetic Flux

We consider a one-dimensional tight-binding model for free fermions with nearest-
neighbors hopping in a ring geometry embedded in a magnetic field. Such magnetic
field determines the boundary conditions of the problem: its role is to induce an
Aharonov-Bohm phase in the transport of a particle along a full circle around the
ring geometry. The Hamiltonian of the system reads

H D �w
X

j

ei�c�j cjC1 C h:c: ; (42)

where � D 2�
NS
˚ (˚ being the Abelian magnetic flux piercing the ring chain in units

of 2 �), NS is the number of sites, and the site coordinate is r D aj mod NS.
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The single-particle energy dispersion is

Ek.�/ D �2w cos .ak � �/ D 2t cos



2�

NS
.nk �˚/

�
; (43)

with k D 2�
aNS

nk. Due to the nontrivial phase ei� , the single-particle dispersion
is shifted, as well as the points corresponding to the Fermi surface. For a single
fermion, the introduction of this topological phase affects the wave-packet diffusion,
giving a useful tool to optimize the quantum state transfer of a certain state from a
part of the chain to another one.

One can consider a fermion initially localized at the time t D 0 around the site
j D 0:

j 0.0/i D
X

j

gjc
�
j j0i ; (44)

with a square wave packet distribution extended over 
 D 2M C 1 sites:

gl D
(

1p
2MC1 If � M � l � M

0 elsewhere :
(45)

After the state evolution j 0.t/i D e�iHt j 0.0/i, the capacity for the channel to
produce QST from the site j D 0 to site j D d can be measured by the square
projection of the evolved state on the initial state localized on the site d:

Fd.t/ D jh d.0/j 0.t/ij2 ' A.t/ e
� ŒdC2wt sin��2

2�2F .t/ ; (46)

with

A.t/ D 3
2

�
p
.
2 � 1/2 C 144w2t2 cos2 �

; (47)

and

�2F.t/ D .
2 � 1/2 C 144w2t2 cos2 �

12.
2 � 1/
: (48)

For � D ��=2, the dispersion becomes approximately linear and the wave-
packet does not diffuse. Moreover, it propagates with velocity v D 2w causing an
enhancement in the fidelity (see Fig. 2). In particular, Fd.t/ assumes its maximum
value at the approximate time

t� D d

2w
: (49)
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Fig. 2 Time evolution of the fidelity Fd.t/ in the square packet preparation (M D 5), with phase
� D ��=2, different values for the final site d D 10; 30; 60; 90 and N D 500. The thick line
indicates the maxima of fidelity reached by each site at different times

4.2 Violation of the Area-Law in Long-Range Systems

The study of the ground-state entanglement properties plays an essential role in
the characterization of a quantum many-body system. In this Section, we show
how the introduction of a gauge potential in a free-fermion model with a long-
range hopping can qualitatively change the scaling behavior of the ground state
entanglement. The amount of entanglement of a pure state is well quantified by
the so-called Entanglement Entropy (EE), defined as follows. Partitioning a given
system in two subsystems A and its complement NA, the EE is the Von Neumann
entropy S of one of the two subsystems (say A) calculated from its reduced density
matrix A:

S D �Tr .A ln A/ : (50)

Typically for gapped short-range quantum systems (where gapped means with
a finite energy difference of the first excited level, compared to the ground state
energy), the EE grows as the boundary of the subsystem A, i.e., for a system
in d dimensions the EE scales as S / @Ld�1. This is commonly known as the
area law [26]. The physical origin of this law is that entanglement is appreciably
nonvanishing only between parts of the system very close each others, since the
quantum correlation functions between two points decay exponentially with their
distance, with a finite decay constant � that increases as the mass gap decreases. At
variance, for short-range free fermionic systems at a critical (gapless) point it has
been shown that the divergence of � (resulting in an algebraic decay of quantum
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correlations) produces a logarithmic correction of the area law, S / Ld�1 lnL
[30, 76], so that in one dimension one expects to find S / lnL. A more relevant, non-
logarithmic, violation of the area law is obtained when S / Lˇ with d � 1 < ˇ < d.
When ˇ D d one has a volume law.

Referring to free fermions on a lattice, in order to find violation to the area law
in gapped regimes, one has to introduce longer-range connections, changing the
Fermi surface in a suitable way. In one-dimensional short-range systems, the Fermi
surface is typically composed by a finite set of points. This is what happens also
in the simplest long-range models when, despite of the long-range hoppings, strong
entanglement is created only between closed lattice sites. At variance, if the Fermi
surface is a set of points with finite dimension, it can occurs that antipodal sites of the
lattice becomes maximally entangled (Bell pairs). As a consequence, a bipartition
into two connected complementary parts would cut a number of Bell pairs of the
order of the volume of the smaller subsystem, giving rise to a violation of the area
law. To this aim, a long-range connection appears useful but not sufficient.

A possible way to create a nontrivial Fermi surface is to introduce a gauge
potential [34]. Let us consider a model with long-range hopping with periodic
boundary conditions:

H D �
X

j

wi;jc
�
i cj C h:c: (51)

with

wi;j D w
ei� di;j

jdi;jj˛ ; (52)

where � D 2�
NS
˚ , being˚ a constant, NS the number of sites. The filling f is defined

to be f D N=NS, where N is the number of sites. di;j is the oriented distance between
the sites i and j,

di;j D
�
.i � j/ if ji � jj � NS � ji � jj

�NS C ji � jj otherwise:
(53)

Due to the translational invariance, the eigenstates are plane waves, and, for finite
NS, the spectrum is given by:

Ek D �2w

8
ˆ̂̂
<

ˆ̂̂
:

P N�1
2

mD1
1
m˛ cos ..k C �/m/ for odd NS ;

P N
2 �1
mD1

1
j˛ cos ..k C �/m/C cos.�nk/

2
�
NS
2

	˛ for even NS :

(54)

For � D 0, the single-particle spectrum is always monotonous in the interval
k 2 Œ0; ��, while for � ¤ 0 the spectrum can split in two branches for ˛ < ˛c < 1,
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Fig. 3 Spectrum of the Hamiltonian in Eq. (51) with ˚ D 0:1, ˛ D 0:1, filling factor f D 0:5 and
NS D 100. Left inset: detail of the main plot showing the alternating occupation of the modes k, the
Fermi energy corresponding to the dashed line. Right inset: decrease of the alternating occupation
with increasing ˛. We set ˚ D 0:1, ˛ D 0:4, f D 0:5 and NS D 100

where the critical value ˛c depends both on N and �. This means that at fixed �
and NS � 1 at half-filling, all the momenta k are occupied in an alternating way, as
shown in Fig. 3. Thus, for ˛ < ˛c and at half-filling, the ground-state is a Bell-
paired state, and the EE grows linearly with Ns (with slope ln 2), resulting in a
volume law and the Fermi surface has a fractal counting box dimension dbox D 1.
On the contrary, when ˛ > ˛c only a fraction of the momenta are occupied in an
alternating way, since the “zig-zag” structure of the dispersion relation is partially
lost. As a result, the slope of the EE decreases.

We conclude by observing that as long as the dispersion is such that the half-
filling occupation is alternate in k, entanglement is created between antipodal sites
and the system violates the area law behavior, in favour of a volume law.
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