
Dissipatively Generated Entanglement

Fabio Benatti

Abstract Given two non-interacting 2-level systems weakly coupled to an envi-
ronment and thus evolving according to a statistically mixing dissipative reduced
dynamics, we provide necessary and sufficient conditions for the generator of the
time-evolution to entangle the two systems.
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1 Introduction

Quantum systems always interact with the environment in which they are immersed;
when the coupling to the environment is negligible, they evolve reversibly. Other-
wise, when the interaction with the environment is weak, but cannot be neglected,
quantum systems are called open [1, 2]. The weakness of the interaction allows one
to derive a reduced dynamics that describes the noisy and dissipative effects due
to the presence of the environment after it has been eliminated by tracing out its
degrees of freedom. Usually, this operation yields an irreversible time-evolution
characterised by memory effects that can be eliminated by suitable Markovian
approximations that lead to master equations of the form

@t%t D LŒ%t� ; (1)

for all t � 0, where L is a time-independent generator. Assuming the system to be a
d-level system, then %t 2 Md.C/ must be a (positive and normalized) d � d density
matrix describing the state of the open quantum system at time t � 0.

Therefore, the dynamical maps �t D etL generated by (1) must preserve the
positivity of any initial %, so that the eigenvalues of %t D �tŒ%� � 0 might be
interpretable as probabilities at all times t � 0; namely, �t must be positivity
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preserving, positive in short, for all t � 0. This condition is necessary but not
sufficient to ensure the full physical consistency of �t; indeed, one can always
statistically couple an open quantum system S with another inert d-level system
S, so that the states % 2 Md.C/ ˝ Md.C/ of the compound bipartite system S C S
would evolve under the action of a fully admissible dynamical map �t ˝ id. If the
states % were all of the form

�sep D
X

k

�k�
.1/
k ˝ �

.2/
k ; �k � 0 ;

X

k

�k D 1 ; (2)

with their correlations only due to the mixing with weights �k of the uncorrelated
tensor products of constituent system states �.1/k ˝ �

.2/
k , the positivity of �t would

clearly be sufficient to guarantee that �t ˝ idŒ�sep� � 0. However, not all bipartite
states are expressible in a separable form as in (2): those which cannot are called
entangled [3]. It turns out that, when �t is positive, but not completely positive,
there surely exists an entangled state %ent 2 Md.C/˝Md.C/ such that�t ˝ idŒ%ent�
assumes negative eigenvalues in the course of time [4]. Summarizing, complete
positivity of �t is necessary (and sufficient) to guarantee that both �t and �t ˝ id
be positivity preserving and thus physically consistent.

In the Markovian case, the dynamical maps �t are completely positive if and
only if the generator is of the so-called Gorini-Kossakowski-Sudarshan-Lindblad
form [5, 6]

LŒ%t� D �iŒH ; %t�C
d2�1X

jD1
Kij

�
Fi %t F

�
j � 1

2

n
F�j Fi ; %t

o�
; (3)

with traceless matrices such that fFjgd2�1jD1 , Tr.F�i Fj/ D ıij, which, together with

Fd2 D 1=
p
d, constitute an orthonormal basis in Md.C/ and the .d2 � 1/� .d2 � 1/

matrix K D ŒKij�, known as Kossakowski matrix, being positive semi-definite.
Markovian semigroups of completely positive maps are used to describe deco-

herence processes detrimental to the persistence of non-classical correlations, like
entanglement, and to their use to perform classically impossible informational
tasks like teleportation and quantum cryptography [7]. However, not always the
presence of an environment is negative; sometimes, it is also possible to engineer
the environment in such a way that two non-directly interacting systems immersed
in it become entangled [8–10].

For two 2-level systems, a sufficient condition for such a possibility to occur was
provided in [9] in the case of a purely dissipative generator of the form

LŒ%t� D �iŒH ; %t� C
6X

j;kD1
Kj;k

�
Sj %t Sk � 1

2

n
SkSj ; %t

o�

H D
X

jD1
Hj Sj ; Hj D H�

j ;
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where Sj D �j ˝ 1 for j D 1; 2; 3, Sj D 1 ˝ �j�3 for j D 4; 5; 6, with �1;2;3 the Pauli
matrices and 1 the identity 2 � 2 matrix, and the hermitean Kossakowski matrix
K D ŒKjk� is positive semi-dedefinite. Notice the absence in the above generator
of operators pertaining simultaneously to the two qubits like �i ˝ �j. Then, the
emergence of entanglement during the time-evolutionmay only be due to the mixing
properties of the dissipation and not to dynamical effects.

In the following, we provide necessary and sufficient conditions for the above
generator to create entanglement by focussing on just one part of the generator and
proving the following result.

Theorem 1 Let two 2-level systems immersed in a common environment evolve
according to a master equation @t%t D LŒ%t� generated by L as in (5). Given an
initially separable state %sep, the generated dynamical maps�t on M2.C/˝M2.C/

turns it into an entangled state, if and only if so does the dynamics generated by

ZŒ%� D �i
�
H � i

2
�

�
% C i %

�
H C i

2
�

�

� D
6X

j;kD1
Kjk SkSj � 0 :

2 Dissipative Entanglement Generation

The simplest introduction to the notion of entanglement is by means of two 2-level
systems, or in the jargon of quantum information, by systems consisting of two
qubits. We shall denote by fjiig1iD0 the orthonormal basis of the eigenvectors of �3
in the single qubit Hilbert space C2: � jii D .�/ijii.

Then, two qubit vector states j	12i 2 C
4 are entangled if they cannot be written

as tensor products j i˝j
i of single qubit vector states, the prototype of such states
being the so-called symmetric state

j	Ci D j0i ˝ j0i C j1i ˝ j1ip
2

: (4)

Entanglement as a property of quantum states is strictly related to positive,
but not completely positive maps on quantum observables [4, 11], the prototype
of such maps being the transposition map T (defined with respect to the chosen
representation). Indeed, the latter is a positive map as it does not alter the spectrum
of the matrices on which it acts; however, the partial transpositionT˝id, transposing
only the first factor of a bipartite tensor product of operators, fails to be positive.
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Indeed, the symmetric projector PC D j	Cih	Cj changes from

PC D 1

2

�
j0ih0j ˝ j0ih0j C j1ih1j ˝ j1ih1j C j0ih1j ˝ j0ih1j C j1ih0j ˝ j1ih0j

�

into

.T ˝ id/ŒPC�

D 1

2

�
j0ih0j ˝ j0ih0j C j1ih1j ˝ j1ih1j C j1ih0j ˝ j0ih1j C j0ih1j ˝ j1ih0j

�

which has the anti-symmetric state

j	�i D 1p
2

�
j0i ˝ j1i � j1i ˝ j0i

�

as eigenvector relative to the negative eigenvalue �1=2. Therefore, though T is a
sensible, positivity preserving map on single qubits, its so-called lifting T˝ id fails
to be such when acting on systems consisting of two qubits due to the existence of
entangled states. In practice, transposition acts as a witness for the entanglement of
PC; actually for two qubits T is an exhaustive entanglement witness [12].

Theorem 2 A state % in M2.C/ ˝ M2.C/ is entangled if and only if it does not
remain positive semi-definite under partial transposition, namely if and only if

.T ˝ id/Œ%� � 0 :

The issue at stake in the following is the role of the dissipative part of the
generator in Theorem 1,

LŒ%t� D �iŒH ; %t�C
6X

j;kD1
Kjk

�
Sj %t Sk � 1

2

n
SkSj ; %t

o�
(5)

H D
6X

jD1
Hj Sj ; Hj D H�

j ; (6)

with Sj D �j ˝ 1 for j D 1; 2; 3 and Sj D 1 ˝ �j�3 for j D 4; 5; 6, in transforming
an initial separable state (2) into an entangled state.

Notice that the Hamiltonian part splits into two terms acting independently on
the two qubits and cannot thus entangle them, being thus only the dissipative
contribution that can achieve it.
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The generator can be subdivided into two terms: the first one, Z, consists of a
pseudo-commutator

ZŒ%� D �i

�
H � i

2
�

�
% C i %

�
H C i

2
�

�
(7)

� D
6X

j;kD1
Kjk Sk Sj ; (8)

with respect to a non-hermitean Hamiltonian. Since � � 0 because the
Kossakowski matirx K � 0, Z generates a damped quantum dynamics sending
projections into non-normalized projections:

etZŒj ih j� D e�it.H�i�=2/ j ih j eit.HCi�=2/ : (9)

As to the remaining contribution to the generator,

BŒ%� D
6X

j;kD1
Kjk Sj % Sk ; (10)

by using the spectral representation of the Kossakowski matrixK D ŒKjk� � 0, it can
be expressed in the standard Kraus-Stinespring form of completely positive maps

BŒ%� D
6X

`D1
V` %V

�

` : (11)

Unlike the damping term, B transforms projectors into mixtures of projections, thus
representing a so-called noisy channel1 The standard lore has it that entanglement
comes from mutual interactions between the qubits described by the Hamiltonian
H, while the remaining dissipative contributions are responsible for its depletion in
time due to damping and noise.

This conclusion is not always true: suitably engineered dissipative dynamics
may lead to dissipatively generated entanglement even in absence of direct qubit
interactions and this entanglement can also persist asymptotically in time [8–10, 13].

Regarding the generator (5), in [9] a sufficient condition for entanglement
generation was provided that was related to the structure of the 6 � 6 Kossakowski
matrix C D ŒCjk�. In the following, we shall show that the actual source of
entanglement might only be due to the pseudo-commutative contribution, the noise
term being unable to counteract this fact.

1Notice that the trace is preserved since Tr.BŒ%�C Tr.ZŒ%�/ D 0.
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2.1 Checking Entanglement Generation

In order to ascertain whether�t D etL acting on an initially separable two qubit state
may or not entangle it in the course of time, we base our strategy upon Theorem 2
and the following observations:

• since general separable density matrices are liner convex combination of pure
separable states, one need just study the action of �t on projections of the form
P ˝ P
 ;

• one need check whether there exist separable projections such that

.T ˝ id/ ı�tŒP ˝ P
� � 0 I

• one can focus upon very small times; indeed, in order to become negative an
eigenvalue of .T˝ id/ı�tŒP ˝P
� must first become zero at some time t� � 0

and then < 0 at t� C ", for " > 0 sufficiently small.

Then, the maps �t are entanglement generating if and only if there exists a
separable pure state projection P ˝ P
 onto j i ˝ j
i such that, at first order
in t,

.T ˝ id/ ı�tŒP ˝ P
� ' P � ˝ P
 C t .T ˝ id/ ı LŒP ˝ P
� (12)

is not positive semi-definite. Here, j �i is the conjugate of j i with respect to the
orthonormal basis where �3 is diagonal so that, under transposition, �T

j D �j �j with
�j, j D 1; 2; 3, determined by

�T
1 D �1 ; �T

2 D ��2 ; �T
3 D �3 : (13)

For later use, we then introduce the following 3 � 3 diagonal matrix

E WD
0

@
�1 0 0

0 �2 0

0 0 �3

1

A D
0

@
1 0 0

0 �1 0
0 0 1

1

A : (14)

The lack of positive semi-definiteness of .T ˝ id/ ı�tŒP ˝ P
� can be studied
by considering its expectation values with respect to an (entangled) pure state j	 i
orthogonal to j �i ˝ j
i, so that

h	 j.T˝ id/ ı�tŒP ˝P
�	 i ' t h	 j.T˝ id/ ıLŒP ˝P
�j	 i DW �.t/ : (15)

Remark 1 The vector j	 i must be entangled: if P	 D j	 ih	 j D P 1 ˝P 2 , where
P 1 D j 1ih 1j, P 2 D j 2ih 2j, by transferring the partial transposition from
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�tŒP ˝ P
� onto P	 , one would obtain

h	 j.T ˝ id/ ı�tŒP ˝ P
�	 i D Tr
�
.T ˝ id/ŒP	 ��tŒP ˝ P
�

�

D h �
1 ˝  2j�tŒP ˝ P
� 

�
1 ˝  2i � 0 ;

where j �
1 i is the conjugate of j 1i that comes from transposing P 1 in the fixed

representation.
The action of the partial transposition on the generator L is better understood by

rewriting the 6 � 6 Kossakowski matrix K D ŒKjk� � 0 as

K D
�
A B
B� C

�
(16)

with A;B;C 2 M3.C/ and A and C necessarily positive semi-definite, and then,
recasting � as

� D
3X

j;kD1
Ajk �k�j ˝ 1 C

3X

j;kD1
Cjk 1 ˝ �k�j

C
3X

j;kD1
Bjk �j ˝ �k C

3X

j;kD1
B�
kj �k ˝ �j ; (17)

and BŒ%� in (10) as

BŒ%� D
3X

j;kD1
Ajk �j ˝ 1 % �k ˝ 1 C

3X

j;kD1
Cjk 1 ˝ �j % 1 ˝ �k (18)

C
3X

j;kD1
Bjk �j ˝ 1 % 1 ˝ �k C

3X

j;kD1
B�
jk 1 ˝ �k % �j ˝ 1 : (19)

Then, using (13) one computes

.T ˝ id/ ı ZŒP ˝ P
� D �i
3X

jD1

Hj�j
�
P � ; �j

� ˝ P
 � i
6X

jD4

Hj P � ˝ �
�j ; P


�
(20)

�1
2

3X

j;kD1

Ajk�j�k
˚
P � ; �j�k

� ˝ P
 � 1

2

3X

j;kD1

Cjk P � ˝ ˚
�k�j ; P


�
(21)

�
3X

j;kD1

Re.Bjk/ �j

�
�j ˝ 1P � ˝ P
 1 ˝ �k C 1 ˝ �kP � ˝ P
 �j ˝ 1

�
; (22)
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and

.T ˝ id/ ı BŒP ˝ P
� D
3X

j;kD1
Ajk�j�k �k ˝ 1

�
P � ˝ P


�
�j ˝ 1 (23)

C
3X

j;kD1
Cjk 1 ˝ �j

�
P � ˝ P


�
�k ˝ 1 (24)

C
3X

j;kD1
Bjk�j

�
P � ˝ P


�
�j ˝ �k (25)

C
3X

j;kD1
B�
jk �j �j ˝ �k

�
P � ˝ P


�
: (26)

Notice that, by putting together the above expressions, it thus turns out that partial
transposition transforms the generatorL into a linear mapN WD .T˝id/ıLı.T˝id/
such that

NŒ%� D �iŒeH ; %� C
6X

j;kD1
Njk

�
Sj % Sk � 1

2

˚
Sk Sj ; %

��
(27)

eH WD �
3X

jD1
�jHj Sj C

6X

jD4
Hj Sj C

3X

j;kD1
�jIm.Bjk/ �j ˝ �k (28)

N D ŒNjk� WD E

�
AT .B C B�/=2

.B� C BT/=2 C

�
E ; (29)

where E is the matrix introduced in (14), B� is the matrix with entries B�
jk and BCB�

is the 3 � 3 matrix with real entries 2Re.Bjk/.

Remark 2 The linear map N generates a semigroup of mapsNt D exp.tN/. Since,
the matrix N D ŒNjk� need not be positive semi-definite, the partially transposed
semigroup need not have any physical meaning.

We now expand j	 i along the orthonormal basis of C
2 ˝ C

2 given by the
orthogonal pairs fj �i; j. �/?ig and fj
i; j
?ig,

j	 i D a j �i ˝ j
i C b j. �/?i ˝ j
i C c j. �/?i ˝ j
?i : (30)
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Then, the orthogonality between j	 i and j �i ˝ j
1i reduces to one the contribu-
tions to �.t/ in (15):

�.t/ D th	 jNŒP � ˝ P
�j	 i D
6X

j;kD1
h	 j Sj P � ˝ P
 Sk j	 i : (31)

From these considerations the following result ensues [14]).

Proposition 1 The dissipative semigroup of completely positive maps �t D
exp.tL/, with L as in (5), is entanglement generating if and only if there exist vectors
j i ; j
i 2 C

2 such that �.t/ in (31) becomes negative at some t > 0.

2.2 Case 1: Z Does Not Generate Entanglement

We shall first show that, if Z in (7) and (8) cannot generate entanglement, then B

in (10) is such that L D Z C B cannot either.

Proposition 2 Suppose the pseudo-commutator Z in (7) does not entangle any
initial separable projection P ˝ P
; then, in (29), B C B� D 0.

Proof The argument leading to Proposition 1 applies also when the time-evolution
is generated by Z only, the difference being that the evolving state is a non-
normalized projection (see (9)). Then, to the corresponding quantity �.t/ there
contributes only the term (22), so that �.t/ in (15) becomes

�.t/ D t h	 j.T ˝ id/ ı ZŒP � ˝ P
�j	 i

D �2Im
�
a b�

3X

j;kD1
"j Re.Bjk/ h �j�j. �/?ih
?j�k
i

�

D �2Im

�
a b�

	
u

ˇ̌
ˇ̌E

B C B�

2
v


�

where j	 i is the entangled state in (30) orthogonal to j �i ˝ j
i and

jui D
0

@
h. �/?j�1 �i

�h. �/?j�2 �i
h. �/?j�3 �i

1

A ; jvi D
0

@
h
?j�1
i
h
?j�2
i
h
?j�3
i

1

A :
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The assumption that Z generate no entanglement amounts to the request that �.t/
be non negative for all possible a; b 2 C and all jui, jvi. This in turn asks for

	
u

ˇ̌
ˇ̌E B C B�

2
v



D 0

for all jui jvi 2 C
3. By choosing j i to be an eigenstate of �1, then of �2 and

finally of �3, one gets three linearly independent jui 2 C
3 and analogously for jvi.

Then, the request that �.t/ be non-negative for all j i ; j
i 2 C
2, together with the

invertibility of the matrix E in (14) yields the result.

Corollary 1 If Z does not generate entanglement, neither does L in (5).

Proof Given the hypothesis, the previous proposition makes diagonal the matrix
N D ŒNij� in (29),

N D
�
E ATE 0

0 C

�
:

Since L generates a semigroup of completely positive maps, then, by Gorini-
Kossakowski-Sudarshan-Lindblad theorem (see (3)), the Kossakowski matrix K
must be positive semi-definite, whence E ATE and C are both positive semi-definite
matrices. Then, by the same theorem, the partially transposed generator N in (27)
also generates a semigroup of completely positive maps Nt D exp .tN/ (see
Remark 2), so that NtŒP � ˝ P
� is always positive semi-definite for all t � 0

and�.t/ in (31) cannot become negative.

2.3 Case 2: Z Generates Entanglement

Without restricting to the specific generator L in the previous section, we now cast
the master Eq. (1) as an equation for the dynamical maps �t, @t�t D L ı �t, and
introduce the Laplace transform of the solution�t,

e�s WD
Z C1

0

dt e�st�t s � 0 : (32)

Then, the master equation translates into

e�s D 1

s � L
D 1

s � Z � B
D 1

s � Z
C 1

s � Z

�
s � Z � .s � Z � B/

� 1

s � Z � B

D 1

s � Z

C1X

kD0

�
B

1

s � Z

�k

: (33)
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One thus sees that if �t, t � 0, is positive, respectively completely positive, such
is also the Laplace transform e�s, s � 0, since the latter is an integral of positive,
respectively completely positive maps weighted by positive factors. Moreover, the
same is true of

.�/k d
k

dsk
e�s D

Z C1

0

dt tk�t 8 k � 0 : (34)

A theorem of Bernstein [15] asserts that the latter ones are not only necessary, but
also sufficient conditions for�t to be positive, respectively completely positive.

Remark 3 The Laplace transform of the dynamics has been thoroughly used in
dealing with the complete positivity of dynamical maps outside the Markovian
regime when they are generated by time-dependent master equations of the form

@t%t D
Z t

0

d Kt� Œ% � ; �tD0 D id ; (35)

whereKt is a suitable kernel. In this case, not so many results are available regarding
the form it ought to have in order to generate a complete positive dynamics.
Postulating a kernel of the form Kt WD Zt C Bt satisfying trace preservation (see
footnote 1), the use of (33) allowed the construction of legitimate pairs (Zt ; Bt),
such that the generated dynamics is completely positive [15]. In this approach, it
clearly emerges the pivotal role played by the the Zt term with respect to Bt in
ensuring the complete positivity of the generated time-evolution.

Since we are dealing with two qubits, the linear maps Z and B have finite norms
kZk and kBk onM4.C/. Then, from (33) one can estimate, for s > kZk C kBk,

����e�s � 1

s � Z

���� �
1X

kD1
kBkk

����
1

s � Z

����
kC1

� kBk
.s � kBk/2

1

1 � kBk
s�kZk

;

whence, for large s � 0,

e�s D 1

s � Z
C o

�
s�1 ; .�/k d

k

dsk
e�s D kŠ

.s � Z/kC1
C o

�
s�.kC1/ : (36)

Applying these considerations, we can prove the following result.

Proposition 3 Consider a semigroup of completely positive maps �t D exp.tL/,
t � 0, on the state space of two qubits, with L D Z C B as in (3). Then, if Z
generates entanglement, so does L.

Proof Since Z generates entanglement, the dynamical maps �t WD exp.tNZ/, with
NZ WD .T˝ id/ ıZ ı .T˝ id/, cannot be positive. Indeed, there must exist an initial
separable projection P ˝ P
 such that �tŒP ˝ P
� becomes entangled at some
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t > 0. Thus, Theorem 2 together with the fact that

.T ˝ id/ ı etZ ı .T ˝ id/ D etNZ ;

and ..T ˝ id//2 D id implies that

.T ˝ id/ ı etZŒP ˝ P
� D �tŒP � ˝ P
�

is no longer positive semi-definite. Then, going to the Laplace trasforme� t, Bernstein
theorem (see (34)) implies that there must exist an integer k � 0 such that

.�/k d
k

dsk
e� s D kŠ

.s � NZ/kC1

is not a positive map. Let us now consider the full generator L D Z C B and its
partially transposed partner

N D .T ˝ id/ ı L ı .T ˝ id/ D NZ C NB ; NB WD .T ˝ id/ ı B ı .T ˝ id/ :

Then, regarding the Laplace transform fN s of the maps Nt D etN, from the
asymptotic behaviour (36) for large s � 0, one can conclude that also

.�/k d
k

dsk
fN s D kŠ

.s � NZ/kC1
C o

�
s�.kC1/

cannot be a positive map for sufficiently large s � 0. Therefore, again by Bernstein
theorem,Nt D .T ˝ id/ ı�t cannot be positive and thus �t must be entanglement
generating for some t � 0.

3 Conclusions

Two qubits have been considered in weak interaction with a common environment
that makes them evolve according to a dissipative semigroup of completely positive
maps�t D exp.tL/ that do not provide mediated interaction between the two open
quantum systems, but only statistically mix them. The paper provides necessary and
sufficient conditions on the generator L D Z C B for the dynamical maps �t to
be able to entangle initial separable states. As is the case with master equations
generating semigroups of completely positive maps, the generator L consists of
two terms: a pseudo-commutative term Z responsible for a damped time-evolution
transforming vector states into non-normalized vector states and a noise term
B transforming vector states into mixtures of projections. A Laplace transform
technique has been used that reduced the problem to the discussion of the properties
of the pseudo-commutatorZ showing that if the latter alone generates entanglement
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so does L and vice versa. As shortly mentioned in Remark 3, the Laplace transform
had been used in [15] to study the complete positivity of the maps generated by
a master equation with a time-dependent memory kernel Kt D Zt C Bt. There,
it became apparent the prominence of the role of the pseudo-commutator Zt in
fixing the properties of the generator Kt. The result in Theorem 1 confirms such
an evidence in a memory-less context and in relation to entanglement generation.
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