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Abstract In this talk we consider the time evolution of a one-dimensional quantum
system with a double barrier given by a couple of repulsive Dirac’s deltas. In such
a pedagogical model we give, by means of the theory of quantum resonances, the
asymptotic behavior of h ; e�itH�i for large times, where H is the double-barrier
Hamiltonian operator and where and � are two test functions. In particular, when
 is close to a resonant state then explicit expression of the dominant terms of the
survival probability defined as jh ; e�itH ij2 is given.

Keywords Lambert special functions • Quantum resonances • Quantum survival
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1 Introduction

The phenomenon of exponential decay associated with quantum resonances is well
known since the pioneering works on the Stark effect in an isolated hydrogen atom.
Atomic hydrogen in an external electric field was first studied experimentally in
1913 by Stark [18] and Lo Surdo [11], and quantum mechanically in 1926 by
Schrödinger [16]. The time independent Schrödinger equation for a hydrogen atom
of nuclear charge Z, electron charge e, electron (reduced) mass m, in a uniform
external electric field F directed along one axis (i.e. the z axis) has the form

H.F/ D E ; H.F/ WD � „2
2m
�C eZ

r
C Fez : (1)
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When the external electric is absent, i.e. F D 0, then H.0/ has discrete negative
eigenvalues given by (we set „ D 1, 2m D 1 and e D 1)

E D En;n1;m D � Z2

2n2

where n D n1 C n2 C jmj C 1 D 1; 2; : : : is the principal quantum number, jmj D
0; 1; 2; : : : ; n � 1 and the quantum number n1 is the number of nodes of the wave
function.

In fact, when we switch on the electric field then the eigenvalues problem (1) has
no eigenvalues at all as soon as F 6D 0. Thus, the quantum states experimentally
observed in the Stark effect are not truly bound, but are instead quantum resonances
associated with a decay effect of the survival probability. In fact, they are shape
resonances, which correspond to confinement of a particle by a barrier, through
which tunneling occurs; although the strength of the electric field may be small, the
perturbation interaction remains large somewhere far from the origin.

In order to explain the decay effect due to resonances let us consider, in a more
general context, an Hamiltonian with a discrete eigenvalue E0 and an associated
normalized eigenvector  0. We suppose to weakly perturb such an Hamiltonian
and that the new Hamiltonian H has purely absolutely continuous spectrum, that is
the eigenvalue of the former Hamiltonian disappears into the continuous spectrum.
Then we physically expect that, after a very short time, the survival amplitude has
the following asymptotic behavior

h 0; e�itH 0i � e�itE (2)

where E is a quantum resonance close to the unperturbed eigenvalue E0, i.e. <E �
<E0 and =E < 0 is such that j=E j � 1. The survival probability is defined as the
square of the absolute value of the survival amplitude (sometimes in the literature,
with abuse of notation, both objects are named survival probability).

The validity of (2) has been proved when the perturbation term is given by a
Stark potential. In such a case Herbst [10] proved that (2) holds true with an
estimate of the error term. However, we should remark that Simon [17] pointed out
that the exponentially decreasing behavior is dominant for large times only when
the perturbed Hamiltonian H is not bounded from below. In fact, in the case of
Hamiltonian H bounded from below we expect to observe a time decay for the
survival amplitude of the form

h 0; e�itH 0i D e�itE C b.t/ (3)

where the remainder term b.t/ is dominant for small and large times, and the
exponential behavior is dominant for intermediate times. On the other hand,
dispersive estimates for one-dimensional Schrödinger operators suggest that for
large times the remainder term b.t/ is bounded by ct�r, for some c > 0 and r > 0,
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as in the free model where r D 1
2
. However, this estimate is very raw because it

does not take into account the resonances effects.
The analysis of the problem of the exponential decay rate versus the power

decay rate in the time dependent survival amplitude defined by (3) is a research
argument since the ’50. In the seminal paper by Winter [20] it has been numerically
conjectured that a transition effect between the two different kind of decays starts
around some instant t. Recently a more rigorous analysis of the Winter’s model,
consisting of a one-dimensional model with one Dirac’s delta potential at x D
R > 0 and Dirichlet boundary condition at x D 0, has been done [7]. Such a
transition effect has been also observed in ultra-cold sodium atoms trapped in an
accelerating periodic optical potential [19]; more precisely, they show a transition
from non-exponential decay for short times to exponential decay for intermediate
time. Furthermore, Winter-like models, where a more general singular potential is
considered, have been recently studied, see e.g. [4].

In this paper we consider a simple one-dimensional model with a symmetric
double barrier potential with Hamiltonian

H˛ D � „2
2m

d2

dx2
C ˛ı.x C a/C ˛ı.x � a/

on the whole real axis [13, 14]. The two barriers are modeled by means of two
symmetric repulsive Dirac’s deltas at x D ˙a, for some a > 0, with strength ˛ 2
.0;C1�. This model has been considered by [9], as a pedagogical model for the
explicit study of quantum barrier resonances. However, H˛ also has some physical
interest as a model for ultra-thin double-barrier semiconductor heterostructures [12].

When ˛ D C1 the spectrum consists of a sequence of discrete eigenvalues
E1;n, n D 1; 2; 3; : : : ; embedded in the continuum Œ0;C1/. When ˛ < C1
the spectrum of H˛ is purely absolutely continuous and the eigenvalues obtained
for H1 disappear into the continuum. More precisely, such eigenvalues becomes
quantum resonances E˛;n and the time decay of h ; e�iHt�i, where  and � are two
test functions, has the form (3) where

b.t/ D c˛t
�3=2 C O.t�5=2/ (4)

for large t and for some c˛ > 0 (see Theorem 1 below); in particular, in the case
where the two test functions coincide with the unperturbed eigenvector then c˛ may
be explicitly computed (see Theorem 2 below) and it turns out that c˛ � ˛�2 in
agreement with the fact that the asymptotic behavior (4) cannot uniformly hold true
in a neighborhood of ˛ D 0.

In fact, we prove that a cancellation effect occurs and that the t�1=2 factor
coming from the free evolution propagator e�itH0 , as usually occurs for the free one-
dimensional Laplacian problem, is canceled by means of an opposite term coming
from the two Dirac’s deltas barrier. Hence, we can conclude that the effect of the
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double barrier is twice:

- the time-decay becomes faster, for t large for any ˛ > 0;
- for intermediate times the time-decay is slowed down because of the effect of the

quantum resonant states.

Finally, we also find out the asymptotic value, for large ˛, of the instant t around
which the transition between exponentially and power decay rate starts.

We should mention some papers where a weighted t�3=2 dispersive estimate has
been proved for the evolution operator under some assumptions on the potential. In
particular, [8] (see also [15]) assumed that the potential is a L1 function and that
zero energy is not a resonance. We have to point out that the condition about the
absence of zero energy resonance is crucial. In fact, in our model we see that the first
resonance E˛;1 has limit zero when ˛ goes to zero and the asymptotic behavior (4)
does not hold true in such limit because c˛ goes to infinity. We could overcome this
problem by choosing the test vector  in a suitable subspace [3].

2 Description of the Model and Quantum Resonances

We consider the resonances problem for a one-dimensional Schrödinger equation
with two symmetric potential barriers. In particular we model the two barriers by
means of two Dirac’s ı at x D ˙a, for some a > 0. The Schrödinger operator is
formally defined on L2.R; dx/ as (let „ D 1 and 2m D 1)

H˛ D � d2

dx2
C ˛ı.x C a/C ˛ı.x � a/

where ˛ 2 .0;C1� denotes the strength of the Dirac’s ı.
When ˛ < C1 it means that the wavefunction should satisfies to the matching

conditions

 .xC/ D  .x�/ and  0.xC/ D  0.x�/C ˛ .x/ at x D ˙a ; (5)

and H˛ has self-adjoint realization on the space of functionsH2 .R n f˙ag/\H1.R/

satisfying the matching conditions (5). When ˛ D C1 it means that H1 has
self-adjoint realization on a domain of functions satisfying the Dirichlet conditions
 .˙a/ D 0. In this latter case then the eigenvalue problem H1 D E1 has
simple eigenvalues E1;n D k2n where kn D n�

2a , n D 1; 2; : : :, with associated
(normalized) eigenvectors

 n.x/ D

8

<̂

:̂

0 if x < �a
1p
a

cos
�
knx � �

4
.1C .�1/n/� if � a < x < Ca

0 if C a < x

: (6)
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Fig. 1 Double-barrier model with two repulsive Dirac’s ı at x D ˙a. Resonances are associated
with the outgoing conditions A D F D 0 or, equivalently, to the poles of the kernel of the resolvent
operator in the unphysical complex half-plane =E < 0

The spectrum of H1 is then given by the continuum Œ0;C1/ with embedded
eigenvalues E1;n.

In the case ˛ 2 .0;C1/ then the eigenvalue problem

H˛ D E˛ 

has no real eigenvalues, but resonances; where resonances correspond to the
complex values of E˛ such that the wavefunction

 .x/ D
8
<

:

Aeikx C Be�ikx if x < �a
Ceikx C De�ikx if � a < x < Ca
Eeikx C Fe�ikx if C a < x

; k D
p
E˛ ; =k � 0 ;

satisfying the matching condition (5), satisfies the outgoing conditions too (see
Fig. 1)

A D 0 and F D 0 : (7)

We should remark that the outgoing condition A D F D 0 implies that the
wavefunction behaves like eikjxj and thus it exponentially decays when the energy
belongs to the unphysical complex half-plane =E < 0.

The matching condition (5) and the resonance condition (7) imply that k satisfies

to the following equation M2;2 D 0, where M is the transfer matrix

�
E
F

�

D

M

�
A
B

�

. A straightforward calculation gives that equation M2;2 D 0 takes the form

1

4k2
�
e4ika˛2 C 4k2 C i4k˛ � ˛2� D 0

that is

�
e2ika˛

� ˙ i .2k C i˛/ D 0 (8)
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which has two families of complex-valued solutions

k1;m D i

2a
ŒWm.�a˛ea˛/� a˛� and k2;m D i

2a
ŒWm.a˛e

a˛/� a˛� (9)

where Wm.x/ is the m-th branch, m 2 Z, of the Lambert special function. The
Lambert function [2], denoted by W.z/ and introduced by Johann Heinrich Lambert
(1728–1777), is defined to be the multivalued analytic function satisfying the
equation W.z/eW.z/ D z, z 2 C.

It turns out that =kj;m < 0 for any j and m, but k2;0 D 0, and thus equation
H˛ D E˛ has no eigenvalues for any ˛ > 0. However, we have to remark that
for m < 0 then <kj;m > 0 and =kj;m < 0 and then E˛ D �

kj;m
�2

belongs to the
unphysical sheet with =E˛ < 0 for m D �1;�2;�3; : : :. Therefore, we conclude
that the spectral problem H˛ D E˛ has a family of resonances given by

E˛;n D
8
<

:

k21;�.nC1/=2 D
h

i
2a

�
W� nC1

2
.�a˛ea˛/ � a˛

	i2
if n D 1; 3; 5; : : :

k22;�n=2 D �
i
2a

�
W� n

2
.a˛ea˛/ � a˛

��2
if n D 2; 4; 6; : : :

:

Let a > 0 be fixed, then it follows that for n fixed and ˛ large enough the asymptotic
behavior of the resonances follows from the asymptotic expansion of the Lambert
function (see Eq. (4.18) by [2]) and it is given by (see [14] where the correct
asymptotic expansion of the imaginary part of the resonance is reported)

E˛;n D
�n�

2a

	2



1 � 1

a˛
C 1

a2˛2
� i

a2˛2
n�

2
C O

�
1

˛3

��2

�
�n�

2a

	2 � i
n3�3

4a4˛2

The explicit form of the resolvent of H˛ , ˛ 2 .0;C1/ is given by [1]

��
H˛ � k2

��1
�

	
.x/ D

Z

R

K˛.x; yI k/�.y/dy; � 2 L2.R/; =k � 0 ;

where the integral kernel K˛ is given by

K˛.x; yI k/ D K0.x; yI k/C
4X

jD1
Kj.x; yI k/

with K0.x; yI k/ D i
2k e

ikjx�yj and Kj.x; yI k/ D Lj.x; yI k/=g.k/ where g.k/ D 0 is the
resonance’s equation,

g.k/ WD �2k �
.2k C i˛/2 C ˛2ei4ka

�
;
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and

L1.x; yI k/ D �˛.2k C i˛/ eikjxCajeikjyCaj; L4.x; yI k/ D L1.�x;�yI k/
L2.x; yI k/ D i˛2 e2ika eikjxCajeikjy�aj; L3.x; yI k/ D L2.�x;�yI k/:

Resonances can be defined as the complex poles in the unphysical sheet =E˛ < 0

of the kernel of the resolvent, too; that is the pole of the function g.k/ in agreement
with (8).

3 Time Decay: Main Results

Let � and  two well localized wave-functions, we are going to estimate the time
decay of the term

h ; e�itH˛�i (10)

Theorem 1 Let us assume that � and  have compact support. Then we have that

h ; e�itH˛�i D c˛t
�3=2 C

1X

nD1
ˇncne

�iE˛;nt C O.t�5=2/ (11)

for some constants c˛ and cn and where

ˇn D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

1 if
ˇ
ˇ
ˇ=p

E˛;n

ˇ
ˇ
ˇ <

ˇ
ˇ
ˇ<p

En;˛

ˇ
ˇ
ˇ

1
2

if
ˇ
ˇ
ˇ=p

E˛;n

ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ<p

E˛;n

ˇ
ˇ
ˇ

0 if
ˇ
ˇ
ˇ=p

E˛;n

ˇ
ˇ
ˇ >

ˇ
ˇ
ˇ<p

E˛;n

ˇ
ˇ
ˇ

: (12)

We may remark that in the case ˛ D 0, that is when there are no barriers, then
h ; e�itH0�i � t�1=2 and an apparent contradiction appears. The point is that the
asymptotic expansion (11) is not uniform as ˛ goes to zero. In fact, in an explicit
model, see Theorem 2, it results that c˛ ! 1 as ˛ ! 0. We can explain this
apparent contradicion by remarking that the first resonance E˛;1 ! 0 when ˛ ! 0

and that H0 has a zero energy resonance.

Remark 1 Some authors [5, 6] discuss if and how the smoothness of the wave-
functions  and � plays a special role in the asymptotic behavior of the survival
probability. Although this is a quite interesting question we don’t treat it in such a
paper.
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We consider now, in particular, the asymptotic behavior of (10) when the test
vectors � and  coincide with one of the localized states, e.g. with  1.x/ D
�Œ�a;Ca�.x/ cos.k1x/ defined by (6) for n D 1.

Theorem 2 Let  D � coinciding with the eigenvector  1 of H1 associated with
E1;1 D �

�
2a

�2
, let `.k/ be the function defined as

`.k/ D 2�
p
a

e2kai C 1

�2 � 4k2a2
; (13)

and let E 2
˛;1 D k1;�m be the resonances defined by (9). Then

h 1; e�itH˛ 1i D c˛t
�3=2 C

1X

mD1
ˇmcme

�iE˛;1t C O.t�5=2/ (14)

where ˇm is defined by (12) and

c˛ D �2
3=2.1C i/a

�5=2˛2
; cm D � ˛`.k1;�m/

2

1C ˛a
�
1C 2k1;�m

i˛

	

This result agrees with the limit case when ˛ D C1. Indeed, we check that

`.k1;�m/ D 4i�
p
ak1;�m

˛.�2 � 4k21;�ma
2/

Hence

`.k1;�m/ � O.˛�1/ if m 6D 1

as ˛ ! C1. For m D 1, from the asymptotic behavior of k1;�1 it follows that

�2 � 4k21;�1a2 � �2 � 4a2


�2

4a2

�

1 � 2

a˛

��

D 2�2

a˛

and then

`.k1;�1/ � i
p
a ; as ˛ ! C1 :

Hence, as ˛ goes to infinity it follows that the dominant term of h 1; e�itH˛ 1i is
given by

h 1; e�itH˛ 1i D e�i. �2a/
2
t C O.˛�1/

in agreement with the fact that h 1; e�iH1 t 1i D e�iE˛;1t.
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The proof of the Theorems is given by [13] and it is based on the explicit
calculation of the evolution operator, obtained by the expression of the kernel of
the resolvent operator, on the stationary phase theorem and the residue theorm.

4 Decay Transition

Let us compare, in the limit of large ˛ and a fixed such that a˛ � 1, the absolute
values of the two dominant terms of h 1; e�itH˛ 1i given by (14); that is the power

term d1
˛2t3=2

, where d1 D
ˇ
ˇ
ˇ
23=2.1Ci/a
�5=2

ˇ
ˇ
ˇ D 4a

�5=2
, and the exponential term

ˇ
ˇc1e

�iE˛;1t
ˇ
ˇ D d3e

=E˛;1t � d3e
�d2t=˛2 ;

where

d2 D �3

4a4
and d3 D jc1j D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

˛`.k1;�1/2

1C ˛a
�
1C 2k1;�1

i˛

	

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� 1 :

In order to understand when the power behavior dominates and when the exponen-
tial behavior dominates we have to solve the inequality

d1
˛2t3=2

< d3e
�d2t=˛2 :

A straightforward calculation gives that this inequality is satisfied for any t 2 Œt1; t2�,
where 0 < t1 < t2 are given by

t1 D �3˛
2

2d2
W0.z/ and t2 D �3˛

2

2d2
W�1.z/ (15)

where

z D �2
3

d2d
2=3
1

˛10=3d2=33

:

This interval is not empty provided that the argument z of the Lambert function
is between .�1=e; 0/; which holds true for ˛ large enough. Furthermore, we should
remark that

t1.˛/ � d2=31

˛4=3d2=33

� 1 and t2.˛/ � 1
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Fig. 2 Plot of the absolute value of the survival amplitude P.t/ D ˇ
ˇh 1; e�itH˛ 1i

ˇ
ˇ given by the

dominant terms of (14) for large times t 2 Œ100; 6000� and for different values of ˛, here we fix
a D 1

2
. Around t D t2.˛/ a transition of the decay law starts; for t < t2.˛/ the exponential decay

dominates, while for t > t2.˛/ the power law decay dominates

because W0.�/ � � if j�j � 1 and

W�1.��/ � ln.�/ � ln .� ln.�//

if 0 < � � 1.
Finally, we can resume these results in the following statement.

Proposition (decay transition) Let ˛ > 0 be large enough, and let t2.˛/ given
by (15). Let h 1; e�itH˛ 1i be the survival amplitude of the state  1 given by (14)
and consisting by a superposition of the exponential and power law decay terms.
Then a transition from the exponential to the power law decay term starts around
t2.˛/. More precisely, for t < t2.˛/ the exponential decay term dominates, while
for t > t2.˛/ the power law decay term dominates (see Fig. 2).
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