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Abstract The effective dynamics for a Bose-Einstein condensate in the regime
of high dilution and subject to an external magnetic field is governed by a
magnetic Gross-Pitaevskii equation. We elucidate the steps needed to adapt to the
magnetic case the proof of the derivation of the Gross-Pitaevskii equation within the
“projection counting” scheme.
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1 Introduction and Result

The purpose of this note is to provide explicitly the non trivial adaptations of the
known result [9] which are needed to prove the derivation of the so-called time-
dependent magnetic Gross-Pitaevskii equation from the many-body Schrödinger
dynamics of a dilute gas of identical bosons subject to an external magnetic
field. The presentation is therefore somewhat technical; nonetheless, since, to our
knowledge, no explicit details were so far available in the literature, we propose
it as a reference for the increasingly interesting topic of the effective many-body
quantum dynamics with magnetic field.

The rigorous derivation of the Gross-Pitaevskii equation has been over the last
two decades a central topic in the mathematics of the Bose gas; in its essence, it is
a problem of persistence of condensation, or propagation of chaos, in the following
sense. Suppose that the initial datum of a three dimensional Bose gas displays
condensation onto a one-body state u0 2 L2.R3/, namely

lim
N!1 �

.1/
N;0 D ju0ihu0j;
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where �.1/N;0 is the one-particle reduced density matrix associated to the initial datum
 N;0. Then condensation persists up to some time T if

lim
N!1 �

.1/
N;t D jutihutj; 8t 2 Œ0;T�;

for a condensate wave-function u � ut.x/ solution to the Gross-Pitaevskii equation

i@tu D ��u C 8�ajuj2u

with initial datum u0. Here a is the scattering length of the pair interaction among
the particles of the many-body system.

The first complete proof of a result of this type is due to Erdős, Schlein, and Yau
in 2006 (see [3, 4]); it was later reproduced with different methods by Pickl [9],
by Benedikter, de Oliveira, and Schlein [1], and by Brennecke and Schlein [2]. All
such derivations deal with a system of N interacting bosons in the Gross-Pitaevskii
scaling limit with non-relativistic kinetic operator given by ��; this corresponds to
a many-body Hamiltonian of the form

HN D
NX

iD1
.��i/C

X

i<j

N2V.N.xi � xj//:

Such methods can be adapted if the one-body Laplacian is modified by the insertion
of an external (confining) potential. Analogously, it is of great relevance and interest
to insert an external magnetic field which the charged particles are coupled with;
mathematically this is modeled, with minimal coupling, by replacing the kinetic
part in HN with its magnetic counterpart

NX

iD1
.��A/i WD

NX

iD1
.�iri C A.xi//2;

where A W R3 ! R
3 is a vector potential. This would in turn imply the effective

dynamics to be ruled by the magnetic Gross-Pitaevskii equation

i@tut D ��Aut C 8�ajutj2ut: (1)

The fact that an external magnetic field can be accommodated into the many-body
dynamics, and that the one-body marginal can be controlled analogously to what
is done when the one-particle operator is simply the negative Laplacian, is to be
expected and indeed is mentioned explicitly in [9, Remark 2.1]. However, such
an adaptation is not as straightforward as the analogous insertion of an external
trapping potential: the magnetic Laplacian is formally the sum of the ordinary
Laplacian plus a derivative term that is linear in the magnetic potential and a further
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quadratic term in the magnetic potential itself; this more complicated structure
requires an a priori not immediate adjustment of a number of crucial estimates and
steps in the main proof. The related (simpler) problem of derivation of the magnetic
Hartree equation from many-body quantum dynamics is dealt with in [7].

Before stating the result, let us define the magnetic Sobolev space Hk
A as the set

of u 2 L2 such that

kuk2
Hk
A

D
X

0�j�k

k.r � iA/juk22 < C1:

We will consider the magnetic Hamiltonian

HN;A WD �
NX

iD1
�i;A C

X

i<j

N2V.N.xi � xj//;

as the generator of the linear many-body Schrödinger dynamics. Moreover, we
define the two A-dependent energy functionals

EN. N/ WD 1

N
h N ;HN;A Ni (2)

and

E GP.u/ WD hu;��Aui C 4�ahu; juj2ui: (3)

They represent the energies conserved along the flow of, respectively, the many-
body Schrödinger equation and the magnetic Gross-Pitaevskii equation.We can now
state the result as follows.

Theorem 1 Let V be a positive, L1, spherically symmetric, and compactly sup-
ported function on R

3, and let A 2 W1;1.R3;R3/ be chosen such that r � A D 0.
Suppose that the sequence of initial many-body states f N;0gN2N is condensed in the
sense of reduced densities, i.e.,

lim
N!1 �

.1/
N;0 D ju0ihu0j

on a condensate wave-function u0 2 H2A (here �.1/N;0 is the one-particle reduced
density matrix of  N;0). Suppose in addition that

lim
N!1EN. N;0/ D E GP.u0/:

Then one has condensation for all t > 0, that is

lim
N!1 �

.1/
N;t D jutihutj (4)



260 A. Olgiati

on a state ut that solves the magnetic Gross-Pitaevskii equation (1) with initial
datum u0. Here a is the scattering length of the interaction V.

We remark that our hypotheses on A certainly ensures that k � kHk
A
is equivalent

to the standard Sobolev norm k � kHk for k 2 f0; 1; 2g; indeed, for any f 2 H2, one
has

k�A fk2 . k�fk2 C kAk1krfk2 C kAk21k fk2 . k fkH2

and, for any f 2 H2A,

k�fk2 .k�A fk2 C kAk1krfk2 C kAk21k fk2:

Since krfk2 . �k�fk2 C 1=�k fk2 for any � > 0, by choosing � > 0 small enough
one gets k fkH2 . k fkH2A . The cases k D 0 and k D 1 follow trivially.

We also stress that, again due to the hypotheses A 2 W1;1 and r � A D 0,
the global existence of solution to the magnetic Gross-Pitaevskii equation (1) in
the magnetic Sobolev spaces up to k D 2 is granted due to standard arguments. It
would be of great interest to find a larger class of vector potentials such that a result
similar to Theorem 1 holds: for example, a constant magnetic field B D r � A is
not attainable by A 2 W1;1.

An interesting future outlook is the derivation of the magnetic Gross-Pitaevskii
equation for time-dependent magnetic potentials A.t/. Since the treatment in [9]
already deals with time-dependent external (electric) fields, it is expected that such
result could be extended to cover a suitable class of A.t/ having enough space and
time regularity.

2 Proof of Theorem 1

Theorem 1 is proven with the same strategy as Theorem 2.1 in [9]. The crucial
quantity one wants to control is

˛N;t WD h N ;bm NiCjEN. N/�E GP.u/j�N.N�1/Reh N ; gˇ.x1�x2/br Ni: (5)

For the definition of bm andbr in (5) see [9, Def. 6.1 and Def. 6.2]. The definition of
gˇ is recalled in eq. (10), since its role is slightly modified by the presence ofA. The
core of the proof is to look for an estimate of the form

@t˛N;t � C.t/
�
h N ;bm Ni C jEN. N/ � E GP.u/j C N��

�
(6)

for some � > 0. By Grönwall Lemma, this is enough to get (4) (see [9, Sect. 6] for
details). The factor C.t/, which varies from step to step during the proof, represents



Remarks on the Derivation of Gross-Pitaevskii Equation with Magnetic Laplacian 261

a function depending on the magnetic Sobolev norms k N;tkH1A and kutkH2A ; for this
reason, it is in general exponentially growing in time, but not N-dependent.

Computing the time-derivative of ˛N;t one gets

@t˛N;t � �b C �c C �d C �e C �f C �l; (7)

where the terms �j, j 2 fb; c; d; e; f g are defined in [5, Def. 6.6] and [9, Def. 6.3],
while the new summand

�l WD N2
ˇ̌h N ; rx1gˇ.x1 � x2/A.x1/br Niˇ̌ (8)

emerges in our case due to the presence of A; let us remark that for us �a D 0 since
we are not considering external traps.

In [9, Appendix A.2] it is shown in detail how �j, j 2 fb; c; d; e; f g (see
[5, Sect. 6.4] for the estimate of �f ) can be bounded in terms of h N ;bm Ni,
jEN. N/ � E GP.u/j and N��, in order to obtain (6). We report in what follows the
main adaptations needed in the magnetic case for the treatment presented in [9,
Appendix A.2], plus the estimate of the additional term �l.

2.1 Cancellation of the Kinetic Part

A remarkable feature of the counting method we are considering here (introduced
in [6, 8]) is that the single-particle terms in HN (among them the kinetic part) get
canceled exactly when computing @t˛N;t; in [9], this happens in Lemma 6.2 and it
occurs in the case of ��A as well. More precisely, when computing @th N ;bm Ni,
one has

@th N ;bm Ni D i
D
 N ;

h
HN;A �

NX

iD1
.��A;xi C 8�ajuj2i /;bm

i
 N

E
;

and one easily sees that the magnetic Laplacians get exactly canceled. This
cancellation is the reason why, in the less involved mean-field case considered in
[6], not much needs be done to deal with magnetic Laplacians. Apart from technical
assumptions, all the proof proceeds in the same way since ��A does not play a
role. In the Gross-Pitaevskii regime however, even though the cancellation takes
place and the kinetic part does not have to be directly estimated, nonetheless ��A

still plays a role along the proof through the emergence of the energy difference
jEN. N/ � E GP.u/j.
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2.2 Cancellation of VN � Wˇ

In analogy to the other known derivations of the Gross-Pitaevskii equation, one
needs to include in the treatment a function displaying some short-scale structure
that allows one to weaken the strong singularity of the interaction term N2V.N�/.
This is done by means of the solution fˇ to the zero-energy scattering problem
relative to the modified potential VN � Wˇ , where Wˇ is the less singular potential
introduced in [9, Sect. 5] so as to make VN � Wˇ have zero scattering length. fˇ is
thus the solution to

�
��C 1

2
.VN � Wˇ/

�
fˇ D 0; (9)

with fˇ ! 1 for jxj ! 1. The function gˇ that appears in (5) is defined as

gˇ WD 1 � fˇ: (10)

As explained in [9, Sect. 6.2], the function gˇ plays a crucial role in the
replacement of the strong potential VN , which is of order N2 at short distances, with
the softerWˇ , which is instead of order N3ˇ�1; this is of course at the expense of the
appearance of their difference, but this can be shown to disappear exactly modulo
terms that can be estimated. Performing all calculations for @t˛N;t in the magnetic
case, one gets as already mentioned the terms �b to �f as appearing in [9, Def. 6.3]
and [5, Def. 6.6]; however, when computing ŒHN ; gˇ.x1 � x2/� as one can find after
[9, Eq. 6.17], one gets

ŒHN ; gˇ.x1 � x2/� DŒ�A;x1 C�A;x2 ; fˇ.x1 � x2/�

D.VN � Wˇ/fˇ.x1 � x2/ � 2.rx1gˇ.x1 � x2//rx1

� 2.rx2gˇ.x1 � x2//rx2 � 2iA.x1/.rx1gˇ.x1 � x2//

� 2iA.x2/.rx2gˇ.x1 � x2//;

(11)

having used r �A D 0 and (9). The terms containing .rgˇ/r are present in [9] too,
and they provide the term �c. The terms containing A were instead not present in
the purely kinetic case, and they exactly correspond to �l.

2.3 Adapting the Estimates

To get the desired estimate (6) one has to treat separately �b, �c, �d, �e, �f , �l. The
calculations proceed exactly as in [9, Appendix A.2], with some modifications we
describe here.



Remarks on the Derivation of Gross-Pitaevskii Equation with Magnetic Laplacian 263

2.3.1 Insertion of hˇ1;ˇ

Lemma A.4 in [9] is used to prove the bound for �b and in its proof (to treat the term
of type III for small ˇ and of type I, II and III for arbitrary ˇ) one replaces Vˇ with
Uˇ1;ˇ C�hˇ1;ˇ; for example, one has (see [9, proof of Lemma A.4 (3), for ˇ small])

N2
ˇ̌h N ; q1p2Vˇ.x1 � x2/bmq1q2 Niˇ̌ �N2

ˇ̌h N ; q1p2U0;ˇ.x1 � x2/bmq1q2 Niˇ̌

C N2
ˇ̌h N ; q1p2.�1h0;ˇ.x1 � x2//bmq1q2 Niˇ̌

The first summand can be bounded easily, since U0;ˇ is less singular than Vˇ . To
treat the second summand, the strategy is then to integrate by parts �hˇ1;ˇ once or
twice and then to manipulate the outcome in order to obtain the Sobolev norms of
�N;t or ut. This procedure can be adapted to the magnetic case since one can use the
trivial relation

r D rA C iA;

which allows to get a magnetic gradient at the expense of a L1-bounded term. This
allows to bound the second summand by

N2
ˇ̌hr1;Aq1p2 N ; .r1h0;ˇ.x1 � x2//bmq1q2 Niˇ̌ (12)

C N2
ˇ̌h N ; q1p2.r1h0;ˇ.x1 � x2//r1;Abmq1q2 Niˇ̌ (13)

C N2
ˇ̌h N ; q1p2A.x1/.r1h0;ˇ.x1 � x2//bmq1q2 Niˇ̌: (14)

At this point one can repeat the computations performed in [9] to bound the
terms (A.14)–(A.17), the only difference being thatrA will producemagnetic norms
in the estimates of (12) and (13); (14) is even less singular, since it contains only one
derivative, and it can again be bounded by repeating the bounds for [9, Eqs. A.14–
A.17].

2.3.2 Magnetic Norms

The Sobolev norms k N;tkH1 or kutkHk with k D 1; 2 emerge frequently along the
proof, not only due to the integration by parts of �hˇ1;ˇ , but also typically by a
Sobolev embedding argument (see e.g. [9, Eqs. A.37 and A.15]), or due to [9,
Prop. A.3]. While in the non-magnetic case, such terms are bounded by some N-
independent function of time, in the case of A ¤ 0 one needs to use the inequality
k � kHk 6 C k � kHk

A
granted by the equivalence of the two norms for k D 1; 2. Then,

by general facts about magnetic Schrödinger equations, the two norms k N;tkH1A and
kutkH1A are uniformly bounded in time. The magnetic Sobolev norm k�kH2A is instead
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not a priori bounded, but theW1;1-boundedness of A allows to get

kutkH2A � DeKjtj;

in the same way as for the non-magnetic case. The norm kutk1 often appears as
well, typically every time [9, Lemma 4.1 (5)] is used; kutk1 can of course be
bounded by kutkH2 by standard embedding arguments, and hence by C kutkH2A again
by equivalence of norms.

2.3.3 Lemma 5.2 of [9]

Lemma 5.2 in [9] allows one to bound a part of the kinetic energy by means of the
functional ˛N;t and N��; it plays a role in the estimate of the term of type III in
Lemma A.4 of [9] and in the bound of �d [9, pp. 39–41]. It still holds in our case,
with the substitution r 7! rA and with the appropriate magnetic energy functionals
defined in (2) and (3). In the proof (see [9, Appendix A.3]), one has exactly all the
magnetic analogous of the terms [9, Eqs. A.53–A.60]. The term corresponding to
[9, Eq. A.54] can be bounded by

jhr1;Aq1 N ; IA1r1;Ap1 Nij � jhr1;Aq1 N ;r1;Ap1 Nij
C jhr1;Aq1 N ; IA1

r1;Ap1 Nij
� jhbn�1=2q1 N ; �1;Abn1=21 p1 Nij

C kIA 1
kopkr1;Aq1 Nkkr1;Ap1kop

�C.t/
�
h N ;bn Ni C N��

�
;

having used [9, Lemma 4.1 (3)] as well as the fact that bn�1=2 is well defined on
Ran q1 for the second step and [9, Prop. A.1 (2)] for the third one. Here IA1 is the
characteristic function of the setA1 defined in [9, Def. 5.2], while C.t/ is a function
depending on the magnetic Sobolev norm kutkH2A . With similar arguments one can
bound the magnetic analogous of [9, Eq. A.59], i.e.,

kIA1r1;Ap1 Nk2 � kr1;Auk2;

and this is enough to get the thesis of [9, Lemma 5.2] (the interaction terms are of
course unmodified by the insertion of A).

2.3.4 Bound on �l

We show here how the term �l defined in (8) can be estimated in order to get (6).
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Lemma 1 There exists � > 0 such that

�l 6 C.t/N��

for a function C.t/ depending on kutkH2A but not on N.

Proof We recall that

br WD p1p2bmb C .p1q2 C q1p2/bma;

where bmb and bma are in [9, Def. 6.2]. By symmetry of gˇ, we can integrate by parts
in the x2 variable; we get

j�lj 6N2
ˇ̌hrx2 N ; gˇ.x1 � x2/A.x1/br Niˇ̌

C N2
ˇ̌h N ; gˇ.x1 � x2/A.x1/rx2br Niˇ̌:

(15)

We can use the definition ofbr for the first term and get

N2
ˇ̌hrx2 N ; g12A.x1/br Niˇ̌ � N2kr2 NkkAk1kg12p1k1.kbmakop C kbmbkop/;

having used the short-hand notation g12 WD gˇ.x1 � x2/. Now, by [9, Lemma 4.1],
[9, Lemma 5.1] and [9, Eq. 6.11], one gets

N2
ˇ̌hrx2 N ; g12A.x1/br Niˇ̌ 6 C.t/N1C	k NkH1Akgˇk 6 C.t/N�ˇ=2C	 ;

for some 	 > 0 to be chosen suitably small. Here we used the uniform boundedness
of the first magnetic Sobolev norm k NkH1A and the fact that kutk1, produced by
[9, Lemma 4.1], is bounded by C kutkH2A .

As for the second term in (15), we can remark that two summands ofbr contain
p1, and their sum is equal to p1br. For them, one can use Hölder inequality in the
variable x2 and then Sobolev inequality again in the variable x2 to get

N2
ˇ̌h N ; g12A.x1/rx2 p1br Niˇ̌ 6 N2

Z
d3x1 d

3x3 : : : d
3xNkgˇ.x1 � �/k3=2

� k N.x1; �; x3 : : : xN/k6kA.x1/.r p1br N/.x1; � ; x3 : : : xN/k6

6 N2kgˇk3=2kAk1
Z

d3x1 d
3x3 : : : d

3xN

� kr N.x1; � ; x3 : : : xN/kk.� p1br N/.x1; � ; x3 : : : xN/k
6C.t/N2k NkH1Akgˇk3=2k�uk.kbmakop C kbmbkop/;

having used in the last step the definition ofbr, the fact that k�pkop D k�uk2 and [9,
Cor. 4.1]. By interchanging the roles of x1 and x2, the same estimate can be proven
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if q1br replaces p1br. One can now use k�uk 6 CkukH2A , [9, Lemma 5.1] (plus a

standard interpolation argument to obtain kgˇk3=2 � kgˇk2=32 kgˇk1=31 � CN�1�ˇ1 )
and [9, Eq. 6.11] and get

N2
ˇ̌h N ; g12A.x1/rx2br Niˇ̌ 6 C.t/N�ˇC	 ;

which is enough to get the thesis.
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