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Abstract We review some recent results on the norm approximation to the
Schrödinger dynamics. We consider N bosons in R

3 with an interaction potential
of the form N3ˇ�1w.Nˇ.x � y// with 0 � ˇ < 1=2, and show that in the large
N limit, the fluctuations around the condensate can be effectively described using
Bogoliubov approximation.
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1 Introduction

In 1924–1925, Bose [10] and Einstein [14] predicted that at a very low temperature,
many bosons condense into a common quantum state. It took 70 years until this
phenomenon was first observed by Cornell, Wieman and Ketterle [3, 12]. Since then,
many interesting questions remain unsolved from the theoretical point of view. In
fact, Bose and Einstein only considered the ideal gas. The study of interacting Bose
gas was initiated in 1947 by Bogoliubov [9]. Roughly speaking, Bogoliubov theory
is based on the reduction to quasi-free particles, which can be seen as the bosonic
analogue to the Bardeen–Cooper–Schrieffer theory [5] for superconductivity.

In the last decades, there have been many attempts to justify Bogoliubov theory
from the first principles of quantum mechanics, namely from Schrödinger equation.
In the context of the ground state problem, this has been done successfully for
one and two-component Bose gases [33, 34, 47], for the Lee-Huang-Yang formula
of homogeneous, dilute gases [19, 27, 49] and for the excitation spectrum in the
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mean-field regime [13, 22, 31, 41, 46]. In the context of the dynamical problem,
Bogoliubov theory has been used widely to study the quantum dynamics of coherent
states in Fock space [8, 20, 21, 23–26, 28, 29, 45]. Very recently, Lewin, Schlein and
one of us [30] were able to justify Bogoliubov theory as a norm approximation for
the N-particle quantum dynamics in the mean-field regime. In [39, 40], we revisited
the approach in [30] and extended it to the case of a dilute gas. In the following, we
will review our results in [39, 40] and explain the ideas of the proof.

We consider a system of N bosons in R
3, described by a wave function �N.t/

in the Hilbert space HN D NN
sym L2.R3/. The system is governed by Schrödinger

equation �N.t/ D e�itHN �N.0/ with a typical N-body Hamiltonian

HN D
NX

jD1

��xj C 1

N � 1

X

1� j<k�N

wN.xj � xk/:

We are interested in the delta-type interaction

wN.x � y/ D N3ˇw.Nˇ.x � y//

where w � 0 is a fixed function which is smooth, radially symmetric, decreasing
and with compact support. We put the coupling constant 1=.N� 1/ in order to make
the kinetic energy and interaction energy comparable in the large N limit.

The parameter ˇ � 0 describes the character of the interaction between the
particles. In the mean-field regime ˇ < 1=3, there are many but weak collisions
and it is naturally to treat the particles as if they were independent but subjected to
a common self-consistent mean-field potential. In the dilute regime ˇ > 1=3, there
are few but strong collisions and the particles are more correlated. The latter regime
is more relevant physically, but also more difficult mathematically.

Our motivation is that �N.0/ is the ground state of a trapped system and the
time evolution �N.t/ is observed when the trapping potential is turned off. From the
rigorous result on the ground state in [31], we will assume that

�N.0/ D
NX

nD0

u.0/˝.N�n/ ˝s 'n.0/ D
NX

nD0

.a�.u.0///N�n

p
.N � n/Š

'n.0/ (1)

where u.0/ is a normalized function in L2.R3/ which describes the condensate and
˚.0/ D .'n.0//1

nD0 is a state in the Fock space of the excited particles. Here we use
the usual notations of the annihilation and creation operators

a�. f / D
Z

R3

f .x/a�
x dx; a. f / D

Z

R3

f .x/ax dx; 8f 2 H;

where the operator valued distributions ax and a�
x satisfy Œa�

x ; a�
y � D Œax; ay� D 0,

Œax; a�
y � D ı.x � y/.
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When ˇ D 0, it was shown in [30] that if (1) holds then

lim
N!1

�
�
�
�
�
�N.t/ �

NX

nD0

u.t/˝.N�n/ ˝s 'n.t/

�
�
�
�
�

D 0 (2)

(see also the recent work [38] for another approach). Here u.t/ is the evolution of
the condensate, governed by the (N-dependent) Hartree equation

i@tu.t/ D � � � C wN � ju.t/j2 � �N.t/
�
u.t/; u.t D 0/ D u.0/: (3)

The phase parameter �N.t/ plays the role of the chemical potential and it can be
chosen as

�N.t/ D 1

2

“

R3�R3

ju.t; x/j2wN.x � y/ju.t; y/j2 dx dy:

The vector ˚.t/ D .'n.t//1
nD0 in (2) is a state in the excited Fock space

FC.t/ D
1M

nD0

HC.t/n; HC.t/n D
nO

sym

fu.t/g?

and it is determined by Bogoliubov equation

i@t˚.t/ D H.t/˚.t/; ˚.t D 0/ D ˚.0/: (4)

Here H.t/ is a quadratic Hamiltonian in Fock space:

H.t/ D d�.h.t// C 1

2

“

R3�R3

�
K2.t; x; y/a

�
x a

�
y C K2.t; x; y/axay

�
dx dy;

which is obtained from Bogoliubov approximation (which we will explain in
Sect. 2). We use the notations d�.A/ D R

a�
x Axax dx (for example, d�.1/ D N

is the number operator) and

h.t/ D �� C ju.t; �/j2 � wN � �N.t/ C Q.t/eK1.t/Q.t/;

K2.t/ D Q.t/ ˝ Q.t/eK2.t/; Q.t/ D 1 � ju.t/ihu.t/j;

whereeK2.t; x; y/ D u.t; x/wN.x�y/u.t; y/ is a function inH2 andeK1.t/ is an operator
on H with kerneleK1.t; x; y/ D u.t; x/wN.x � y/u.t; y/.

In order to extend (2) to the case ˇ > 0, we have to restrict the initial state
˚.0/ in (1) to quasi-free states (namely the states satisfying Wick theorem) with
finite kinetic energy. This reduction is again admissible by the rigorous properties
of ground states in [31] (in fact, ˚.0/ is the ground state of a quadratic Hamiltonian
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on Fock space, and hence it is a quasi-free state with finite kinetic energy). Our main
result in [40] is

Theorem 1 (Validity of Bogoliubov Theory as a Norm Approximation) Let
�N.t/ D e�itHN �N.0/ with �N.0/ given in (1). We assume

• u.t/ satisfies Hartree equation (3) with the (possibly N-dependent) initial state
u.0; �/ satisfying ku.0; �/kW`;1.R3/ � C for ` sufficiently large;

• ˚.t/ D .'n.t//1
nD0 2 FC.t/ satisfies Bogoliubov equation (4) (or equivalently,

Eq. (12) in Sect. 2) with the (possibly N-dependent) initial state ˚.0/ being a
quasi-free state in FC.0/ such that for all " > 0,

˝
˚.0/;N ˚.0/

˛ � C"N
";

˝
˚.0/; d�.1 � �/˚.0/

˛ � C"N
ˇC": (5)

Then for all 0 � ˇ < 1=2, all " > 0 and all t > 0 we have

�
�
��N.t/ �

NX

nD0

u.t/˝.N�n/ ˝s 'n.t/
�
�
�

2

HN
� C".1 C t/1C"N.2ˇ�1C"/=2: (6)

Convention We always denote by C (or C") a general positive constant independent
of N and t (C" may depend on ").

There are grand canonical analogues of (2) related to the fluctuations around
coherent states in Fock space [20, 21, 23, 25, 26, 28, 29]. In particular, our Theorem 1
is comparable to the Fock-space result of Kuz [29]. Thanks to a heuristic argument
in [29], the range 0 � ˇ < 1=2 is optimal for the norm approximation (2) to hold.

When ˇ > 1=2, to achieve (2) we have to modify the effective equations to take
two-body scattering processes into account. This has been done in the Fock space
setting by Boccato, Cenatiempo and Schlein [8] and Grillakis and Machedon [24]
(see also [4] for a related study). Similar results for N-particle dynamics are still
open and we hope to be able to come back to this problem in the future.

The proof of Theorem 1 in [40] is built up on the previous works [30] and [39].
The main new ingredient is the following kinetic estimate.

Theorem 2 (Kinetic Estimate) Let �N.0/ as in Theorem 1. Then for all 0 < ˇ <

1=2, all " > 0 and all t > 0, we have

˝
�N.t/; d�.Q.t/.1 � �/Q.t//�N.t/

˛ � C".N
ˇC" C N3ˇ�1/: (7)

We can introduce the density matrix �
.1/

�N .t/ W H ! H with kernel �
.1/

�N .t/.x; y/ D
h�N.t/; a�

y ax�N.t/i and rewrite (7) as

Tr
�p

1 � �Q.t/�.1/

�N .t/Q.t/
p

1 � �
�

� C".N
ˇC" C N3ˇ�1/: (8)
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By the Cauchy-Schwarz inequality, (8) implies that for all 0 < ˇ < 2=3,

lim
N!1 Tr

ˇ
ˇ
ˇ
p

1 � �
�
N�1�

.1/
�N

� ju.t/ihu.t/j
�p

1 � �
ˇ
ˇ
ˇ D 0 (9)

(see Sect. 3 for more details). In case ˇ D 0, the approximation of the form (9) has
been studied in [2, 36–38]. Note that (9) is stronger than the standard definition of
the Bose-Einstein condensation

lim
N!1 Tr

ˇ
ˇ
ˇN�1�

.1/
�N

� ju.t/ihu.t/j
ˇ
ˇ
ˇ D 0 (10)

which has been studied by many authors; see [1, 6, 15, 16, 48] for some pioneer
works (in these works, the convergence (10) was derived using the BBGKY
hierarchy, a method that is less quantitative than our approach).

Note that when ˇ D 1 (the Gross–Pitaevskii regime), the strong correlations
between particles require a subtle correction: the nonlinear term wN � ju.t/j2 in
Hartree equation (3) is replaced by 8�aju.t/j2 with a the scattering length of w. This
has been justified rigorously in the context of the Bose-Einstein condensation (10);
see [32, 35, 43] for the ground state problem and [7, 17, 18, 44] for the dynamical
problem. The norm approximation is completely open.

In the rest, we discuss Hartree and Bogoliubov equations in Sect. 2, and then go
to the proofs of Theorems 2 and 1 in Sects. 3 and 4, respectively.

2 Effective Equations

We recall the well-posedness of Hartree equation from [23, Proposition 3.3 &
Corollary 3.4].

Lemma 1 (Hartree Equation) If u.0; �/ 2 H2.R3/, then Hartree equation (3) has
a unique global solution u 2 C.Œ0; 1/;H2.R3// \C1..0; 1/;L2.R3//. Moreover, if
ku.0; �/kW`;1.R3/ � C with ` sufficiently large, then

ku.t; �/kH2 � C; k@tu.t; �/kL2 � C; ku.t; �/kL1 C k@tu.t; �/kL1 � C.1 C t/�3=2:

As in [31, Sect. 2.3], any vector � 2 HN can be written uniquely as

� D
NX

nD0

u.t/˝.N�n/ ˝s 'n D
NX

nD0

.a�.u.t///N�n

p
.N � n/Š

'n

with 'n 2 HC.t/n. This gives rise to the unitary operator UN.t/ W HN ! 1�NFC.t/

UN.t/� D '0 ˚ '1 ˚ � � � ˚ 'N :
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Here 1�N stands for the projection onto C ˚ H ˚ � � � ˚ HN . Some fundamental
properties of UN.t/ can be found in [31, Proposition 4.2] and [30, Lemma 6].

Next, as in [30], we introduce ˚N.t/ WD UN.t/�N.t/ and rewrite the Schrödinger
equation as

i@t˚N.t/ D eHN.t/˚N.t/; ˚N.0/ D 1�N˚.0/: (11)

Here eHN.t/ D 1�N
h
H.t/ C 1

2

P4
jD0.Rj C R�

j /
i
1�N with

R0 D d	 .Q.t/ŒwN � ju.t/j2 CeK1.t/ � �N.t/�Q.t//
1 � N

N � 1
;

R1 D �2
N

p
N � N

N � 1
a.Q.t/ŒwN � ju.t/j2�u.t//;

R2 D
“

K2.t; x; y/a�
x a

�
y dx dy

 p
.N � N /.N � N � 1/

N � 1
� 1

!

;

R3 D
p
N � N

N � 1

ZZZZ

.1 ˝ Q.t/wNQ.t/ ˝ Q.t//.x; yI x0; y0/�

� u.t; x/a�
y ax0ay0 dx dy dx0 dy0;

R4 D 1

2.N � 1/

ZZZZ

.Q.t/ ˝ Q.t/wNQ.t/ ˝ Q.t//.x; yI x0; y0/�

� a�
x a

�
y ax0ay0 dx dy dx0 dy0:

(In R0 and R1 we write wN for the function wN.x/, while in R3 and R4 we write wN

for the two-body multiplication operator wN.x � y/.)
The idea of Bogoliubov approximation is that when N ! 1 all error terms Rj’s

are so small that we can ignore them and replace (11) by Bogoliubov equation (4).
Some important properties of this equation are collected in the following

Lemma 2 (Bogoliubov Equation)

(i) If ˚.0/ belongs to the quadratic form domainQ.d�.1��//, then Eq. (4) has a
unique global solution inQ.d�.1��//. Moreover, the pair of density matrices
.�˚.t/; ˛˚.t// is the unique solution to

8
ˆ̂
<

ˆ̂
:

i@t� D h� � �h C K2˛ � ˛�K�
2 ;

i@t˛ D h˛ C ˛hT C K2 C K2�T C �K2;

�.t D 0/ D �˚.0/; ˛.t D 0/ D ˛˚.0/:

(12)
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(ii) If we assume further that ˚.0/ is a quasi-free state in FC.0/, then ˚.t/ is a
quasi-free state inFC.t/ for all t > 0 and

h˚.t/;N ˚.t/i � C
�
h˚.0/;N ˚.0/i2 C Œlog.2 C t/�2

�
: (13)

Recall that �˚.t/ W H ! H, ˛˚.t/ W H � H� ! H are operators with kernels
�˚.t/.x; y/ D h˚.t/; a�

y ax˚.t/i, ˛˚.t/.x; y/ D h˚.t/; axay˚.t/i and K2 W H � H� !
H is an operator with kernel K2.t; x; y/. Note that (12) is similar (but not identical)
to the effective equations used in the Fock space setting in [23, 29].

Proof

(i) For existence and uniqueness of ˚.t/, we refer to [30, Theorem 7]. To
derive (12), we use (4) to compute

i@t�˚.t/.x
0; y0/ D i@th˚.t/; a�

y0ax˚.t/i D h˚.t/; Œa�
y0ax;H.t/�˚.t/i

D
“

h.t; x; y/
�
ı.x0 � x/�˚.t/.y; y

0/ � ı.y0 � y/�˚.t/.x
0; x/

�
dx dy

C 1

2

“

k.t; x; y/
�
ı.x0 � x/˛�̊

.t/.y; y
0/ C ı.x0 � y/˛�̊

.t/.y
0; x/

�
dx dy

� 1

2

“

k�.t; x; y/
�
ı.y0 � y/˛˚.t/.x; x

0/ C ı.y0 � x/˛˚.t/.y; x
0/
�

dx dy

D
�
h.t/�˚.t/ � �˚.t/h.t/ C K2.t/˛�̊

.t/ � ˛˚.t/K
�
2 .t/

�
.x0; y0/

This is the first equation in (12). The second equation is proved similarly.
(ii) Now we show that if ˚.0/ is a quasi-free state, then ˚.t/ is a quasi-free state

for all t > 0. We will write .�; ˛/ D .�˚.t/; ˛˚.t// for short. Let us introduce

X WD � C �2 � ˛˛�; Y WD �˛ � ˛�T:

It is a general fact (see, e.g., [39, Lemma 8]) that ˚.t/ is a quasi-free state if and
only if X.t/ D 0 and Y.t/ D 0. In particular, we have X.0/ D 0 and Y.0/ D 0

by the assumption on ˚.0/. Using (12) it is straightforward to see that

i@tX D hX � Xh C kY� � Yk�;

i@tX
2 D .i@tX/X CX.i@tX/ D hX2 �X2hC .K2Y

� � YK�
2 /X CX.K2Y

� � YK�
2 /:
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Then we take the trace and use Tr.hX2 � X2h/ D 0 (hX2 and X2h may be not
trace class but we can introduce a cut-off; see [39] for details). We find that

kX.t/k2
HS � 4

Z t

0

kK2.s/k � kX.s/kHS � kY.s/kHS ds

We also obtain a similar bound for kY.t/kHS. Then summing these estimates and
using the fact that kK2.t/k is bounded uniformly in time (see [40, Eq. (48)]) ,
we conclude by Grönwall’s inequality that X.t/ D 0, Y.t/ D 0 for all t > 0 .

A similar argument can be used to the uniqueness of solutions to (12).
To obtain (13), we first estimate k˛k2

HS C k�k2
HS by a Grönwall-type

inequality, and then use the identity k˛k2
HS D Tr.� C �2/. We refer to [39]

for details. ut

3 Kinetic Bounds

In this section, we discuss Theorem 2. As mentioned, it is equivalent to (8) and in
case ˇ < 2=3 it implies (9). Let us explain the implication from (8) to (9) in more
details. We will write P.t/ D ju.t/ihu.t/j for short. We can decompose

N�1�
.1/

�N.t/ � P.t/ D N�1Q.t/�.1/

�N .t/Q.t/ � N�1Tr
�
Q.t/�.1/

�N .t/Q.t/
�
P.t/

C N�1Q.t/�.1/

�N .t/P.t/ C N�1P.t/�.1/

�N .t/Q.t/

and use the triangle inequality of the trace norm to estimate

Tr
ˇ
ˇ
ˇ
p

1 � �
�
N�1�

.1/
�N

� ju.t/ihu.t/j
�p

1 � �
ˇ
ˇ
ˇ

� N�1Tr
�p

1 � �Q.t/�.1/

�N .t/Q.t/
p

1 � �
�

C N�1Tr
�
Q.t/�.1/

�N .t/Q.t/
�
ku.t; �/k2

H1

C 2N�1Tr
ˇ
ˇ
ˇ
p

1 � �Q.t/�.1/

�N .t/P.t/
p

1 � �
ˇ
ˇ
ˇ: (14)

Using the Cauchy-Schwarz inequality (for Schatten norm)

Tr
ˇ
ˇ
ˇ.1 � �/1=2Q.t/�.1/

�N .t/P.t/.1 � �/1=2
ˇ
ˇ
ˇ

�
�
�
�.1 � �/1=2Q.t/

�
�

.1/

�N .t/

�1=2��
�

HS
�
�
�
�
�
�

.1/

�N .t/

�1=2��
� �
�
�
�P.t/.1 � �/1=2

�
�
�

HS
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we deduce from (8) and (14) that for all " > 0,

Tr
ˇ
ˇ
ˇ
p

1 � �
�
N�1�

.1/
�N

� ju.t/ihu.t/j
�p

1 � �
ˇ
ˇ
ˇ � C"N

aC" (15)

where a D maxfˇ � 1; .ˇ � 1/=2; 3ˇ � 2; .3ˇ � 2/=2g. If ˇ < 2=3, then (9) holds.
Now we turn to another version of Theorem 2. From the definition ˚N.t/ D

UN.t/�N.t/, we can check that Q.t/�.1/
�N

Q.t/ D �
.1/
˚N

(e.g. by using [31, Proposi-
tion 4.2]). Thus Theorem 2 is equivalent to

Theorem 3 (Kinetic Estimate) Let ˚N.t/ be as in (11), with ˚.0/ as in Theo-
rem 1. Then for all " > 0 and all t > 0, we have

˝
˚N.t/; d�.1 � �/˚N.t/

˛ � C".N
ˇC" C N3ˇ�1C"/: (16)

Before proving Theorem 3, let us start with a simpler bound.

Lemma 3 (Bogoliubov Kinetic Bound) Let ˚.t/ be as in Theorem 1. Then

˝
˚.t/; d�.1 � �/˚.t/

˛ � C"N
ˇC"; 8t > 0:

Proof For a general quadratic Hamiltonian, we have

d�.H/C1

2

“ �
K.x; y/a�

x a
�
y CK.x; y/axay

�
dx dy � �1

2

“

j.H�1=2
x K.x; y/j2 dx dy:

This bound can be found in our recent joint work with Solovej [42, Lemma 9] (see
also [11, Theorem 5.4] for a similar result). Combining this with the Sobolev-type
estimate (see [40, Lemma 6])

k.1 � �x/
�1=2K2.t; �; �/k2

L2 C k.1 � �x/
�1=2@tK2.t; �; �/k2

L2 � C".1 C t/�3NˇC"

we obtain the quadratic form inequalities (see [40, Lemma 7])

˙
�
H.t/ C d�.�/

�
� 
d	 .1 � �/ C C".N C NˇC"/


.1 C t/3
; (17)

˙@tH.t/ � 
d�.1 � �/ C C".N C NˇC"/


.1 C t/3
; (18)

˙iŒH.t/;N � � 
d�.1 � �/ C C".N C NˇC"/


.1 C t/3
(19)

for all 
 > 0. On the other hand, from Bogoliubov equation (4), we have

˝
˚.t/;H.t/˚.t/

˛ � ˝
˚.0/;H.0/˚.0/

˛ D
Z t

0

˝
˚.s/; @sH.s/˚.s/

˛
ds: (20)
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Using (17) with 
 D 1=2 we have
˝
˚.0/;H.0/˚.0/

˛ � C"NˇC" and

˝
˚.t/;H.t/˚.t/

˛ � 1

2

˝
˚.t/; d�.1 � �/˚.t/

˛ � C"

�˝
˚.t/;N ˚.t/

˛C NˇC"
�

Using (18) with 
 D .1 C t/�3=2 we get

˝
˚.t/; @tH.t/˚.t/

˛ � C".1 C t/�3=2
�˝

˚.t/; d�.1 � �/˚.t/
˛C NˇC"

�
:

Thus (20) implies that

˝
˚.t/; d�.1 � �/˚.t/

˛ � C"

Z t

0

.1 C s/�3=2
˝
˚.s/; d�.1 � �/˚.s/

˛
ds

C C"

�˝
˚.t/;N ˚.t/

˛C NˇC"
�
: (21)

Similarly, we can estimate @th˚.t/;N ˚.t/i by using Bogoliubov equation (4)
and (19) with 
 D .1 C t/�3=2. Then we integrate the resulting bound and obtain

h˚.t/;N ˚.t/i � C"

Z t

0

.1 C s/�3=2
˝
˚.s/; d�.1 � �/˚.s/

˛
ds C C"N

ˇC":

Inserting the latter inequality into the right side of (21) we obtain

˝
˚.t/; d�.1 � �/˚.t/

˛ � C".1 C s/�3=2

Z t

0

˝
˚.s/; d�.1 � �/˚.s/

˛
ds C C"N

ˇC":

The desired result then follows from a Gronwall-type inequality. ut
The proof of Theorem 3 is based on a similar argument. We will use the following

estimates on the error terms Rj’s in (11) (see [40, Lemmas 9, 11]).

Lemma 4 (Control of Error Terms) Let Rj’s be as in (11). Then we have the
quadratic form estimates on 1�NFC.t/:

˙.Rj C R�
j / �


�
R4 C N 2

N

�
C C.1 C N /


.1 C t/3
; 8
 > 0; 8j D 0; 1; 2; 3;

0 � R4 � CN3ˇ�1N 2; R4 � CNˇ�1d�.��/N ;

˙@t.Rj C R�
j / � 


�
R4 C N 2

N

�
C C.1 C N /


.1 C t/3
; 8j D 0; 1; 2; 3; 4;

˙iŒ.Rj C R�
j /;N � � 


�
R4 C N 2

N

�
C C.1 C N /


.1 C t/3
; 8j D 0; 1; 2; 3; 4:

Now we are ready to provide
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Proof (of Theorem 3) From (11) we have

˝
˚N.t/;eHN.t/˚N.t/

˛ � ˝
˚N.0/;eHN.0/˚N.0/

˛ D
Z t

0

˝
˚N.s/; @seHN.s/˚N.s/

˛
ds:

(22)
Using (17) and Lemma 4, we can estimate

˝
˚N.t/;eHN.t/˚N.t/

˛ � 1

2

˝
˚N.t/; .d�.1 � �/ C R4/˚N.t/

˛

� C"

�
NˇC" C ˝

˚N.t/;N ˚N.t/
˛�

;

˝
˚N.0/;eHN.0/˚N.0/

˛ � C".N
ˇC" C N3ˇ�1C"/:

Here in the last inequality, we have used R4 � CN3ˇ�1N 2 (see Lemma 4) and a
well-known moment estimate that holds for every quasi-free state ˚ :

D
˚; .1 C N /s˚

E
� Cs

D
˚; .1 C N /˚

Es
(23)

where the constant Cs depends only on s 2 N (see e.g. [39, Lemma 5]). Moreover,
from (18) and Lemma 4 we obtain

˝
˚N.t/; @teHN.t/˚N .t/

˛ � C".1 C t/�3=2
�˝

˚N.t/; .d�.1 � �/ C R4/˚N.t/
˛C NˇC"

�
:

Thus (22) implies that

˝
˚N.t/; .d�.1 � �/ C R4/˚N.t/

˛ � C"

Z t

0

˝
˚N.s/; .d�.1 � �/ C R4/˚N.s/

˛

.1 C s/3=2
ds

C C"

�
NˇC" C N3ˇ�1C" C ˝

˚N.t/;N ˚N.t/
˛�

: (24)

Next, we estimate @t
˝
˚N.t/;N ˚N.t/

˛
by using (11), (19) and the last inequality in

Lemma 4. Then we integrate the resulting bound to get

h˚.t/;N ˚.t/i � C"

Z t

0

.1 C s/�3=2
˝
˚N.s/; .d�.1 � �/ C R4/˚N.s/

˛
dsCC"N

ˇC":

Substituting the latter estimate into (24), we find that

˝
˚N.t/; .d�.1 � �/ C R4/˚N.t/

˛

� C"

Z t

0

˝
˚N.s/; .d�.1 � �/ C R4/˚N.s/

˛

.1 C s/3=2
ds C C".N

ˇC" C N3ˇ�1C"/:
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By a Gronwall-type inequality, we conclude that

˝
˚N.t/; .d�.1 � �/ C R4/˚N.t/

˛ � C".N
ˇC" C N3ˇ�1C"/:

Since R4 � 0, the desired kinetic estimate follows. ut

4 Norm Approximation

Proof (of Theorem 1) Step 1. The desired estimate (6) is

k�N.t/ � UN.t/�1�N˚.t/k2
HN � C".1 C t/1C"N.2ˇC"�1/=2; 8" > 0:

Since ˚.t/ D UN.t/�N.t/ and UN.t/ W HN ! 1�NFC.t/ is a unitary operator,

k�N.t/ � UN.t/�1�N˚.t/kHN D kUN.t/�N.t/ � 1�N˚.t/k � k˚N.t/ � ˚.t/k:

It remains to bound k˚N.t/ � ˚.t/k. Using Eqs. (4) and (11), we can write

@tk˚N.t/ � ˚.t/k2 D 2< ˝
i˚N.t/; .eHN.t/ � H.t//˚.t/

˛
(25)

D
4X

jD0

<˝i˚N.t/; .Rj C R�
j /1�N˚.t/

˛ � 2< ˝
i˚N.t/;H1>N˚.t/

˛

where 1>N WD 1 � 1�N . Next, we will estimate the right side of (25).
Step 2. To bound the last term of (25), we use ˚N.t/ 2 1�NFC.t/ to write

˝
˚N.t/;H1>N˚.t/

˛ D ˝
˚N.t/; .H � d�.h//1>N˚.t/

˛
:

As in the proof of Lemma 3, we can show that

˙.H � d�.h// � C.N C N3ˇ/:

It is a general fact that if ˙B � A as quadratic forms, then we have the Cauchy-
Schwarz type inequality jh f ;Bgij � 3h f ;Af i1=2hg;Agi1=2. Consequently,

ˇ
ˇ
˝
˚N.t/; .H � d�.h//1>N˚.t/

˛ˇ
ˇ

� 3
˝
˚N.t/; .N C N3ˇ/˚N.t/

˛1=2˝
1>N˚.t/; .N C N3ˇ/1>N˚.t/

˛1=2

� 3.N C N3ˇ/1=2
˛1=2˝

1>N˚.t/; .N C N3ˇ/N sN�s1>N˚.t/
˛1=2
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for all s � 1. The term h˚.t/;N s˚.t/i can be bounded by (23) and the bound on
h˚.t/;N ˚.t/i in Lemma 2. We can choose s large enough (but fixed) and obtain

ˇ
ˇ
˝
˚N.t/;H1>N˚.t/

˛ˇ
ˇ � C".1 C t/"N�1: (26)

Step 3. To control the first term on the right side of (25), we have to introduce a
cut-off on the number of particles. Since there are at most 2 creation or annihilation
operators in the expressions of Rj’s, we can write

˝
˚N.t/; .Rj C R�

j /1�N˚.t/
˛ D ˝

1�M˚N.t/; .Rj C R�
j /1�MC2˚.t/

˛

C ˝
1>M˚N.t/; .Rj C R�

j /1�N1>M�2˚.t/
˛

for all 4 < M < N � 2. Then we estimate each term on the right side by Lemma 4
and the Cauchy-Schwarz type inequality as in Step 2. We obtain

ˇ
ˇ
˝
˚N.t/; .Rj C R�

j /1�N˚.t/
˛ˇ
ˇ � C.E1 C E2/ (27)

where

E1 D inf

>0

�

1�M˚N.t/;
�
.1 C 
/R4 C 


N 2

N
C 1 C N


.1 C t/3

�
1�M˚N.t/

�1=2

�
�

1�MC2˚.t/;
�
.1 C 
/R4 C 


N 2

N
C 1 C N


.1 C t/3

�
1�MC2˚.t/

�1=2

;

E2 D inf

>0

�

1>M˚N.t/;
�
.1 C 
/R4 C 


N 2

N
C 1 C N


.1 C t/3

�
1>M˚N.t/

�1=2

�
�

1>M�2˚.t/;
�
.1 C 
/R4 C 


N 2

N
C 1 C N


.1 C t/3

�
1>M�2˚.t/

�1=2

:

To bound E1, we use

1�MR4 � CNˇ�11�MN d�.��/ � CNˇ�1Md�.��/

(see Lemma 4) together with the kinetic estimate in Theorem 3, and then optimize
over 
 > 0. We get

E1 � C"

�
MN.2ˇC"�1/=2 C M3=2N�1=2

�
:

(The error term N3ˇ�1C" in Theorem 3 is absorbed by NˇC" when ˇ < 1=2.)
The bound on E2 is obtained using the argument in Step 2 and reads

E2 � C";sN
3ˇC1M1�s=2Ns"Œlog.2 C t/�s:
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In summary, from (27) it follows that

ˇ
ˇ
˝
˚N.t/; .Rj C R�

j /1�N˚.t/
˛ˇ
ˇ � C"

�
MN.2ˇC"�1/=2 C M3=2N�1=2

�

C C";sN
3ˇC1M1�s=2Ns"Œlog.2 C t/�s

for all 4 < M < N � 2 and s � 2. We can choose M D N3" and s D s."/ sufficiently
large (e.g. s � 6.1 C ˇ C "/=") to obtain

ˇ
ˇ
˝
˚N.t/; .Rj C R�

j /1�N˚.t/
˛ˇ
ˇ � C"

�
N.2ˇC9"�1/=2 C N�1.1 C t/"

�
: (28)

Step 4. Inserting (26) and (28) into (25), we find that

@tk˚N.t/ � ˚.t/k2 � C"

�
N.2ˇC9"�1/=2 C N�1.1 C t/"

�
:

Integrating over t and using

k˚N.0/ � ˚.0/k2 D h˚.0/;1>N˚.0/i � N�1h˚.0/;N ˚.0/i � C"N
"�1:

we obtain

k˚N.t/ � ˚.t/k2 � C".1 C t/1C"N.2ˇC9"�1/=2

for all " > 0. This leads to the desired estimate (6), as explained in Step 1. ut
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