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Abstract The use of topological invariants to describe geometric phases of quan-
tum matter has become an essential tool in modern solid state physics. The first
instance of this paradigmatic trend can be traced to the study of the quantum Hall
effect, in which the Chern number underlies the quantization of the transverse Hall
conductivity. More recently, in the framework of time-reversal symmetric topolog-
ical insulators and quantum spin Hall systems, a new topological classification has
been proposed by Fu, Kane and Mele, where the label takes value in Z2.

We illustrate how both the Chern number c 2 Z and the Fu–Kane–Mele invariant
ı 2 Z2 of 2-dimensional topological insulators can be characterized as topological
obstructions. Indeed, c quantifies the obstruction to the existence of a frame of Bloch
states for the crystal which is both continuous and periodic with respect to the crystal
momentum. Instead, ı measures the possibility to impose a further time-reversal
symmetry constraint on the Bloch frame.

Keywords Chern numbers • Fu–Kane–Mele invariants • Obstruction theory •
Quantum hall effect • Quantum spin hall effect • Topological insulators

1 Introduction

One of the most prominent instances of Wigner’s “unresonable effectiveness of
mathematics” in condensed matter systems is provided by topological insulators
[15]. These materials, although insulating in the bulk, have the property of con-
ducting currents on their boundary, making them amenable to various types of
applications in material science, and even in quantum computing. A thorough
understanding of the transport properties of these materials, however, can be
achieved only by investigating the topology of the occupied states that fill the bulk
energy bands, by virtue of a principle known as the bulk-edge correspondence.
Consequently, some of the techniques of topology and differential geometry, once
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relegated to abstract mathematics, have nowadays become common knowledge also
among solid state physicists.

To better understand how topology enters in the world of condensed matter
systems, it is particularly instructive to consider the archetypal example of a topo-
logical insulator, given by a quantumHall system [13]. An effectively 2-dimensional
crystalline medium is immersed in a uniform magnetic field perpendicular to
the plane of the sample, and an electric current is driven in one direction along
the crystal. The induced current is measured in the transverse direction. In a
remarkable experiment, performed at very low temperatures by von Klitzing and
his collaborators [28], the (Hall) conductivity �H associated to this transverse current
was shown to display plateauxwhich occurred at integer multiples of a fundamental
constant, measured moreover with an astounding precision:

�H D n
e2

h
; n 2 Z: (1)

Later theoretical investigations showed that a topological phenomenon underlies
this quantization: the integer n in the above formula was shown to be the first Chern
number of a vector bundle, naturally associated to the quantum system [1, 2, 27].

The only role played by the magnetic field in quantum Hall systems is that
of breaking time-reversal symmetry: if the system were time-reversal symmetric,
then the Hall conductivity would vanish, and the system would remain in an
insulating state. This fact was clarified by Haldane [14], who showed that non-
trivial topological phases can be displayed also in absence of a magnetic field, thus
initiating the field of Chern insulators [3, 5]. Picking up on the work by Haldane,
Fu, Kane and Mele [11, 12, 18] later introduced a model which still displays
a topological phase even if time-reversal symmetry is preserved, and is by now
recognized as a milestone in the history of topological insulators. The phenomenon
that the model proposed to illustrate is that of the quantum spin Hall effect, which
differs from the quantum Hall effect in that the external magnetic field is replaced
by spin-orbit interactions (exactly to preserve time-reversal symmetry), and spin
rather than charge currents flow on the boundary of the sample. From the point
of view of topological phases, the peculiarity of this phenomenon is that, contrary
to what happens for Chern and quantum Hall insulators, one can only distinguish
between the trivial (insulating) and non-trivial (quantum spin Hall) phase: the label
is then assigned by a Z2-valued topological index. Giving a full account of the
geometric nature of this invariant has been a primary objective for mathematical
physicists in the last decade, and a plethora of mathematical tools has been used in
this endeavour, ranging fromK-theory to homotopy theory, from functional analysis
to noncommutative geometry, from equivariant cohomology to operator theory. We
refer to [7, 10, 25] for recent accounts on the ever-growing literature on the subject.

The purpose of this contribution is to express both the Chern number and the
Fu–Kane–Mele Z2 index of 2-dimensional topological insulators in a common
framework, provided by obstruction theory. It will be shown how both invariants
arise as topological obstructions to the existence of a Bloch frame, which roughly
speaking can be described as a set of continuous functions which parametrize the
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occupied states of the physical systems and are compatible with its symmetries,
namely periodicity with respect to the Bravais lattice of the crystal and, possibly,
time-reversal symmetry; a precise definition will be given in the next Section. The
nature of these topological invariants as obstructions was early realized [11, 20],
employing methods from bundle theory and using local trivializing charts. Our
strategy relies instead on successive extensions of the definition of the Bloch frame,
which is well-suited for induction on the dimension of the system and is reminiscent
of the extension of a section of a bundle along the cellular decomposition of its
base space. We use only basic facts from linear algebra and the topology of the
group of unitary matrices U.m/; besides, our method has the further advantage of
constructing the required Bloch frame in an algorithmic fashion.

2 Topology of Crystalline Systems

2.1 Periodic Hamiltonians

To set up a rigorous investigation of topological phases of quantum matter, we
first have to understand the mathematical description of crystalline systems. The
starting point is a periodic Hamiltonian: one could think of continuous models
described by Schrödinger operators, or of discrete, tight-binding models described
by hopping matrices. Periodicity means that the operator H should commute with
the translations associated to a lattice � ' Z

d � R
d, namely the Bravais

lattice of the crystal under scrutiny. This symmetry of the Hamiltonian leads to a
partial diagonalization of it, by looking at common (generalized) eigenstates for
the Hamiltonian and the translations: this procedure, which is reminiscent of the
Fourier decomposition, goes by the name of Bloch-Floquet reduction [22]. In this
representation, the Hamiltonian becomes a fibered operator, with fibre H.k/ acting
on a space Hf containing the degrees of freedom associated to a unit cell for � .
The parameter k 2 R

d, also called crystal or Bloch momentum, is determined up to
translations by vectors in the dual lattice � WD � �, and thus can be considered as
an element of the Brillouin torus Td WD R

d=�. Indeed, the fibre Hamiltonians at k
and k C �, � 2 �, are unitarily intertwined by a representation � W� ! U .Hf/,
namely

H.k C �/ D ��H.k/ �
�1
� :

The above relation will be called �-covariance in what follows.
Due to the compactness of the unit cell, under fairly general assumptions1 the

operator H.k/ has discrete spectrum: the function k 7! En.k/, associated to one of

1In continuous models, where H is a Schrödinger operator, these assumptions usually amount to
asking that the electromagnetic potentials be infinitesimally Kato-small (possibly in the sense of
quadratic forms) with respect to the kinetic part [26].
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its eigenvalues (labelled, say, in increasing order), is called the Bloch band. The
spectrum of the original Hamiltonian is recovered by considering the (possibly
overlapping) ranges of all these functions, and leads to the well-known band-gap
structure of the spectrum of a periodic operator. If one assumes that the Fermi
energy of the system lies in a spectral gap for H, then it makes sense to consider
the Fermi projector P.k/ on the m occupied bands. The gap condition implies that
the dependence of P.k/ on k is analytic, and the family of operators P.k/ is also
�-covariant (see e.g. [24, Proposition 2.1]).

For the applications to topological insulators that we are aiming at, we need to
consider also a further symmetry of the Hamiltonian, namely time-reversal symme-
try. This is implemented antiunitarily on the Hilbert space of the quantum particle,
and flips the arrow of time (and hence the crystal momentum). Mathematically, this
amounts to require the existence of an antiunitary operator � on Hf, squaring to
˙1Hf , and such that

H.�k/ D �H.k/��1:

We say that the family of operators H.k/ is time-reversal symmetric if the above
holds. It is easy to verify that the Fermi projectors associated to a time-reversal
symmetric Hamiltonians are time-reversal symmetric as well. In what follows, we
will focus mainly on the case of a fermionic time-reversal symmetry operator,
namely on the case where �2 D �1Hf , as is the case for example for quantum
spin Hall systems.

2.2 Bloch Bundle, Berry Connection and Berry Curvature

From the previous analysis of periodic and time-reversal symmetric Hamiltonians,
we ended up with a family of projectors fP.k/gk2Rd � B.Hf/, P.k/� D P.k/ D
P.k/2, satisfying the following properties:

(P1) analyticity: the map k 7! P.k/ is a real-analytic map on R
d with values in

B.Hf/;
(P2) �-covariance: the map k 7! P.k/ satisfies

P.k C �/ D �� P.k/ �
�1
�

for a unitary representation � W� ! U .Hf/ of the lattice � ' Z
d � R

d;
(P3) time-reversal symmetry: the map k 7! P.k/ satisfies

P.�k/ D � P.k/��1

for an antiunitary operator�WHf ! Hf such that �2 D �1Hf .
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The topology underlying the quantum system described by the Hamiltonian H
is encoded in its eigenprojectors, satisfying the above properties.2 Indeed, one can
associate to any family of projectors satisfying (P1) and (P2) a vector bundle E over
the torusTd, called the Bloch bundle, via a procedure reminiscent of the Serre–Swan
construction: the fibre of E over the point k 2 T

d is the m-dimensional vector space
RanP.k/ (we refer to [22, 23] for details). The geometry of the Bloch bundle for
d D 2 is what enters in the theoretical understanding of the quantum Hall effect:
the integer n that equals the Hall conductivity (1) in natural units is the (first) Chern
number of E , defined as

c1.P/ WD 1

2�i

Z
T2

TrHf .P.k/ Œ@1P.k/; @2P.k/	/ dk1dk2 2 Z: (2)

When d D 2, the above integer characterizes the isomorphism class of E as a vector
bundle over T2 [23]. Since both quantum Hall and quantum spin Hall systems are
2-dimensional, in the following we will mostly restrict ourselves to d D 2, where in
particular the previous characterization holds.

In the case where fP.k/gk2Rd satisfies also (P3), then the Bloch bundle can be
equipped with further structure, namely that of a fiberwise antilinear endomorphismb�WE ! E , lifting the involution 
.k/ D �k on the base torus and squaring to the
operator which multiplies fiberwise by �1. We call a vector bundle endowed with
such an endomorphism b� a time-reversal symmetric vector bundle. One can verify
that if d D 2 every such vector bundle is trivial, i.e. isomorphic to the product bundle
T
2 � C

m, since under (P3) the integrand in the definition (2) of the Chern number
is an odd function of k, and hence integrates to zero on T

2 [22, 23]. However, the
Bloch bundle may still be non-trivial as time-reversal symmetric bundle [8, 10]. The
index that characterizes the isomorphism class of E is the Fu–Kane–Mele index
ı.P/ 2 Z2, first introduced in [11] to describe quantum spin Hall systems. The
expression of the Z2 index is slightly more involved than the one for the Chern
number, and requires the introduction of some further terminology, which will be
however essential in what follows.

Given a family of projectors fP.k/gk2Rd of constant rank m, a Bloch frame for it
is a family of m-tuples of vectors � D f a.k/g1�a�m; k2Rd , which are orthonormal
and span the vector subspace RanP.k/ � Hf for all k 2 R

d. If P.k/ depends
smoothly on k, then the same can be required of the frame � . We immediately
stress that, when fP.k/gk2Rd satisfies (P1) and (P2), then a Bloch frame is nothing
but a trivializing frame for the associated Bloch bundle, and hence the existence of
a continuous frame is in general guaranteed only locally in k. Let us also point out
that, whenever a Bloch frame � exists (say on an open domain ˝ � R

d), then any

2In order for (P2) and (P3) to be compatible with each other, one should also require that �� � D
��1
� � for all � 2 �. We will assume this in the following.
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other Bloch frame ˚ is obtained by setting

�b.k/ WD
mX

aD1
 a.k/U.k/ab; 1 � b � m; (3)

where U.k/, k 2 ˝ , is a unitary matrix, called the Bloch gauge. We use the
shorthand notation

˚.k/ D �.k/ G U.k/; k 2 ˝; (4)

to write (3) in a more compact form. This defines a free right action of U.m/ on
frames, meaning that .� G U1/ G U2 D � G .U1U2/ and that � G U1 D � G U2 if
and only if U1 D U2.

When a (local) Bloch frame� D f a.k/g1�a�m; k2Rd is given, then one can define
the Berry connection, i.e. the matrix-valued 1-form given by

A D
0
@ dX

D1

A
.k/ab dk


1
A
1�a;b�m

; A
.k/ab WD �i
˝
 a.k/; @
 b.k/

˛
: (5)

This is indeed the matrix 1-form of the Grassmann connection on the Bloch bundle
E (i.e. the pullback of the standard connection d via the obvious inclusion E ,!
T
d �Hf), subordinated to the local trivialization induced by the choice of the Bloch

frame. The abelian or U.1/ Berry connection is then the trace of the connection
matrix, namely

A WD Tr.A/ D
dX


D1
A
.k/ dk
; A
.k/ WD �i

mX
aD1

˝
 a.k/; @
 a.k/

˛
:

The Berry curvature 2-form is the curvature of the Berry connection, namely

F WD dA � i
�
A ;̂ A

�

which spells out to

F D
X

1�
<��d

F
�.k/ dk
 ^ dk�;

F
�.k/ WD @
A�.k/ � @�A
 � i
�
A� ^ A
 � A
 ^ A�

�
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(the wedge product between matrix-valued 1-forms entails also the row-by-column
product). Similarly, the abelian or U.1/ Berry curvature is the trace

F WD Tr.F/ D dA : (6)

In terms of the Bloch frame � , the curvatureF reads

F D
X

1�
<��d

F
�.k/ dk
 ^ dk�; F
�.k/ WD 2Im

 
mX

aD1

˝
@
 a.k/; @2 a.k/

˛!
:

However, even if the Bloch frame is just a local object, the Berry curvature is a
global one, as it can be expressed directly in terms of the family of projectors: a
lengthy but straight-forward computation indeed shows that

F
�.k/ D �i TrHf

�
P.k/

�
@
P.k/; @�P.k/

� �
: (7)

When d D 2, the above identity allows us to rewrite the Chern number as the
integral of the (abelian) Berry curvature, namely

c1.P/ D 1

2�

Z
T2

F 2 Z (8)

[compare (2)]. Moreover, coming back to the Fu–Kane–Mele index of a time-
reversal symmetric family of projectors, we can formulate ı.P/ 2 Z2 through the
notions we have just introduced as

ı.P/ WD 1

2�

Z
T
2
C

F � 1

2�

Z
@T2

C

A mod 2 (9)

where T2C denotes the set of points in T
2 with non-negative k1 coordinate [7, 11].

Remember that the Berry connection depends on the choice of a Bloch frame: for
the above formula to be well-posed one must require that the Bloch frame be time-
reversal symmetric, in a sense to be specified in the next Subsection. This point will
be discussed further in Sect. 4.

Remark 1 (Gauge Dependence of Berry Connection and Curvature) For future
reference, let us notice how the Berry connection and curvature matrices, as well
as their abelian versions, change under a change of Bloch gauge. If ˚ and � are
related by the gauge transformation U as in (4), their connection matrices A˚ and
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A˚ are linked by the equation3

A˚ D U�1 A� U � iU�1 dU:

Taking the trace of both sides of the above equation we obtain the corresponding
relation for the abelian Berry connections, namely

A ˚.k/ D A � .k/ � i Tr
�
U�1 dU

�
: (10)

One can similarly compute that the Berry curvature is a gauge-covariant object,
namely

F˚ D U�1 F� U;

and consequently the abelian Berry curvatureF is gauge-invariant (namelyF˚ D
F� ), as could be deduced already from its expression (7) given directly in terms of
the projectors P.k/.

2.3 Obstruction Theory

Even though (2) and (9) express the Chern number and the Fu–Kane–Mele Z2

index by means of geometric objects related to the family of projectors (its Berry
connection and Berry curvature, specifically), the fact that they indeed compute
integers or integers mod 2 is a highly non-trivial statement. In the next Sections,
we will deduce this fact by means of obstruction theory, a framework which allows

3An easy way to realize this is the following. The connection matrices A�
 .k/ and A˚
 .k/ satisfy

�.k/ G A�
 .k/ D �i@
�.k/; ˚.k/ G A˚
 .k/ D �i@
˚.k/:

As by definition we have ˚.k/ D �.k/ G U.k/, we obtain

�.k/ G .U.k/A˚
 .k// D .�.k/ G U.k// G A˚
 .k/ D ˚.k/ G A˚
 .k/ D �i@
˚.k/

D �i@
 .�.k/ G U.k// D ��i@
�.k/
� G U.k/C �.k/ G ��i@
U.k/

�

D
�
�.k/ G A�
 .k/

�
G U.k/C �.k/ G ��i@
U.k/

�

D �.k/ G
�
A�
 .k/U.k/ � i@
U.k/

�

by which we deduce that

U.k/A˚
 .k/ D A�
 .k/U.k/ � i@
U.k/:
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to identify both indices as topological obstructions. This method has the advantage
of manifesting both the quantization and the topological invariance of both indices,
and requires only simple tools from linear algebra and basic topology.

Obstruction theory concerns the existence of a Bloch frame for a family of rank-
m projectors fP.k/gk2R2 satisfying (P1), (P2) and, possibly, (P3), which obeys the
same symmetries of the projectors themselves. More specifically, we say that a
Bloch frame ˚ for fP.k/gk2R2 is
(F1) continuous if the map k 7! ˚.k/ is a continuous map from R

2 to H m
f ;

(F2) �-equivariant if4

˚.k C �/ D �� ˚.k/ for all k 2 R
2; � 2 �I

(F3) time-reversal symmetric if5

˚.�k/ D �˚.k/ G "

for a skew-symmetric unitary matrix ". Without loss of generality [16], it can be
assumed that

" D
�
0 1

�1 0
	

˚ m=2 times� � � ˚
�
0 1

�1 0
	
: (11)

The above properties in general compete against each other, as was early realized
[11, 20] and as becomes apparent upon observing that a continuous, �-equivariant
(and time-reversal symmetric) Bloch frame would provide a global trivialization of
the Bloch bundle as a (time-reversal symmetric) vector bundle.

The general strategy of obstruction theory consists in considering a continuous,
globally defined Bloch frame � , and trying to modify it in order to obtain a
new Bloch frame ˚ which satisfies also the properties of being �-equivariant
and, possibly, time-reversal symmetric. The input frame � can be constructed by
covering R

d with open balls Br.kj/, r > 0, kj 2 R
d, in which



P.k/� P.kj/


 < 1,

k 2 Br.kj/, and using the Kato–Nagy unitary U.kI kj/, which intertwines P.k/ and
P.kj/, to extend the choice of an orthonormal basis in the vector space RanP.kj/ to
a continuous choice of an orthonormal basis �.k/ in RanP.k/ (that is, by definition,
to a continuous Bloch frame on Br.kj/) [19]. An alternative construction makes use
of the parallel transport associated to the family of projectors P.k/, see e.g. [7]. The
modification of� into˚ is performed by successive extensions, first at certain high-
symmetry points, then along the edges that connect them, and finally on the whole

4The action of any (anti)unitary operator on Hf is lifted to H m
f componentwise.

5The presence of the reshuffling matrix " is needed to make the time-reversal symmetry condition
self-consistent. This follows essentially from the fact that the antiunitary operator � defines by
restriction a symplectic structure on the invariant subspace RanP.k]/ � Hf if k] � �k] mod �.
Notice that in particular the rank m of P.k/ must be even under (P3).
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R
2. We will see that this latter step, from 1-dimensional lines to 2-dimensional faces,

is in general topologically obstructed, and that this obstruction is encoded in the
vanishing of the Chern number if one requires the Bloch frame ˚ to satisfy (F1)
and (F2) (see Sect. 3), or in the vanishing of the Fu–Kane–Mele index if one also
requires (F3) to hold (see Sect. 4).

Remark 2 (Analytic Bloch Frames) The obstruction to the existence of symmetric
Bloch frames, being topological in nature, fits well inside the continuous category.
However, one may wonder whether an analytic family of projectors as in (P1) admits
a Bloch frame depending analytically on k as well. This question is crucial in
the study of conduction/insulation properties in crystals via maximally localized
Wannier functions (see e.g. [4, 21]). There are by now several techniques that are
able to construct analytic frames out of continuous ones preserving moreover all the
symmetries, for example by convolution with suitable kernels [6, 7]. These are all
incarnations of the more generalOka’s principle, which states that in fair generality
the obstruction to the triviality of a vector bundle in the continuous category can be
lifted to the analytic one [23].

3 The Chern Number as a Topological Obstruction

In this section we illustrate how the Chern number in (2) encodes the topological
obstruction to the existence of a continuous and �-equivariant Bloch frame for a
family of projectors fP.k/gk2R2 satisfying (P1) and (P2).

3.1 Reduction to the Unit Cell

The �-covariance of the family of projectors allows one to focus on points k lying
in the fundamental unit cell for the lattice � D Span

Z
fe1; e2g, namely

B WD ˚
k D k1e1 C k2e2 2 R

2 W jkjj � 1=2; 1 � j � 2
�
:

Indeed, if one can find a continuous Bloch frame ˚ on B such that ˚.k C �/ D
��˚.k/ whenever k 2 B and � 2 � are such that k C � 2 B (a condition to be
imposed on the boundary of the fundamental unit cell), then one can enforce �-
equivariance to extend the definition of ˚ to the whole R

2 in a continuous way.
Conversely, the restriction ˚ to B of a continuous, �-equivariant Bloch frame
defined on the whole R2 satisfies exactly the condition stated above.

As sketched in Sect. 2.3, the approach of obstruction theory starts from a Bloch
frame � defined on the unit cell. One then modifies its definition on the boundary
of B in order to enforce �-equivariance there, and then investigates whether it is
possible to extend this modification continuously also on the interior of the unit
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cell. In particular, this construction on the boundary requires to take care of what
happens at the four vertices of B, namely the four points

v1 D
�

�1
2
;�1
2

	
; v2 D

�
1

2
;�1
2

	
; v3 D

�
1

2
;
1

2

	
; v4 D

�
�1
2
;
1

2

	
:

If this procedure is successful, then the “output” frame ˚.k/, k 2 B, will satisfy
�-equivariance on the boundary, and it will then be continuously extendable to the
whole R2 by �-equivariant continuation, as explained above.

Notice that both the input frame �.k/ and the output frame ˚.k/ give orthonor-
mal bases for the vector space RanP.k/, hence they differ by the action of a unitary
transformation (a Bloch gauge) U.k/ 2 U.m/, as in (3). It is sometimes convenient
to consider the continuousmapUWB ! U.m/ as the unknown of the problem, rather
than the Bloch frame ˚ .

We will see that the only step of the construction of ˚ which may be topologi-
cally obstructed is the “face” extension (from the boundary to the interior of B), and
that a quantitative measure of the presence of this topological obstruction is given
by the Chern number of the family of projectors.

3.2 Bloch Frame on the Boundary

As a first step, we construct a continuous Bloch frame on the boundary of the
fundamental unit cell which satisfies the �-equivariance condition. The construction
can be performed as follows. Given the reference frame �.v1/, one can consider
its �-translates �e1�.v1/ and �e2�.v1/, which constitute orthonormal bases in
the subspaces RanP.v2/ and RanP.v4/, respectively. Let Uobs.v2/ (respectively
Uobs.v4/) be the unitary matrix which maps the input frame �.v2/ (respectively
�.v4/) to �e1�.v1/ (respectively �e2�.v1/):

�e1�.v1/ D �.v2/ G Uobs.v2/; �e2�.v1/ D �.v4/ G Uobs.v4/:

If � were already �-equivariant then these obstruction unitaries would equal the
identity matrix. Write Uobs.v]/ D eiT.v]/, with T.v]/ D T.v]/� self-adjoint, for
v] 2 fv2; v4g. Define moreover

b̊.k/ WD

8̂
ˆ̂̂<
ˆ̂̂̂
:

�.k1;� 1
2
/ G ei.2k1C1/T.v2/=2 if k D .k1;� 1

2
/; k1 2 Œ� 1

2
; 1
2
	;

�e1�.� 1
2
; k2/ G ei.2k2C1/T.v4/=2 if k D . 1

2
; k2/; k2 2 Œ� 1

2
; 1
2
	;

�e2�.k1;� 1
2
/ G ei.2k1C1/T.v2/=2 if k D .k1;

1
2
/; k1 2 Œ� 1

2
; 1
2
	;

�.� 1
2
; k2/ G ei.2k2C1/T.v4/=2 if k D .� 1

2
; k2/; k2 2 Œ� 1

2
; 1
2
	:

(12)
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The frame b̊ is defined on the boundary @B of the fundamental unit cell, where it
is also �-equivariant. Moreover, it is continuous, as on the vertex v3 the definitions
coincide. Indeed we have

�e1�.v4/ G Uobs.v4/ D �e1�e2�.v1/ D �e2�e1�.v1/ D �e2�.v2/ G Uobs.v2/:

3.3 Extension to the Face: A Topological Obstruction

In order to see whether it is possible to extend the frame b̊ to a continuous �-
equivariant Bloch frame ˚ defined on the whole unit cell B, we first introduce the
unitary map bU.k/ which maps the input frame �.k/ to the frame b̊.k/, i.e. such
that

b̊.k/ D �.k/ G bU.k/; k 2 @B (13)

[compare (3)]. This defines a continuous map bUW @B ! U.m/. If we can find a
continuous extension UWB ! U.m/ of bU to the unit cell, then (3) can be used to
define an extension of the frame ˚ which preserves continuity and �-equivariance:
it turns out that also the converse is true (compare Proposition 1 below).

It is a well-known fact in topology [9, Theorem 17.3.1] that a continuous mapbUW @B ! U.m/ extends continuously to the inside of the unit cell if and only if
the map is homotopically trivial, i.e. it can be continuously deformed to a constant
map. This condition can be checked by verifying that the integral

c WD deg.ŒbU	/ D i

2�

I
@B

dk Tr
�bU.k/�1@kbU.k/

�
(14)

vanishes: this is because two maps @B ! U.m/ are homotopic if and only if
their degrees, defined like in (14), coincide. Notice that the integral above gives an
integer, and provides an isomorphism of the fundamental group �1.U.m// (whose
elements are homotopy classes of maps @B ! U.m/) with the group of integers Z
by assigning bU 7! deg.ŒbU	/ [17, Chap. 8, Sect. 12].
Remark 3 (Unwinding the Determinant is Forbidden) Since we have to extend
the frame b̊ rather than the unitary bU, one may argue that it may be possible to
find another unitary-matrix-valuedmap that “unwinds” the determinant of bU, while
preserving the relevant symmetries of the Bloch frame. This possibility is ruled out
by the following result.

Proposition 1 Let ˚ be a continuous Bloch frame on @B which is �-equivariant,
and assume that XW @B ! U.m/ is a continuous map such that ˚ G X is also �-
equivariant. Then

deg.ŒX	/ D 0:
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v1 v2

v3v4

e1

e2

E1

E2

E3

E4

Fig. 1 The fundamental unit cell B, its vertices and its edges

Proof We spell out what it means for ˚ and ˚ G X to be both �-equivariant:

˚.k C �/ G X.k C �/ D �� .˚.k/ G X.k// D ��˚.k/ G X.k/ D ˚.k C �/ G X.k/:

This implies that X.k C �/ D X.k/, whenever k 2 @B and � 2 � are such
that k C � 2 @B. As a consequence, the same is true for the expression x.k/ WD
Tr
�
X.k/�1 @kX.k/

�
appearing in the integral defining deg.ŒX	/ [compare (14)].

Denote by Ei the edge of @B connecting vi with v.iC1/ mod 4 (compare Fig. 1). Then
the property x.k C �/ D x.k/ implies that

Z
E3

dk x.k/ D
Z

�.E1Ce1/
dk x.k/ D �

Z
E1

dk x.k/; that is
Z
E1CE3

dk x.k/ D 0:

Similarly

Z
E2CE4

dk x.k/ D 0:

We conclude that

deg.ŒX	/ D i

2�

Z
E1CE2CE3CE4

dk x.k/ D 0

as wanted.
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3.4 The Obstruction is the Chern Number

We now want to rewrite the integer c in (14) and characterize it as a topological
invariant of the family of projectors fP.k/gk2R2 [showing in particular that it does
not depend on the input Bloch frame � and on the specific interpolation performed
on the obstruction matrices in (12)]. To this end, we will make use of the (abelian)
Berry connection and curvature, introduced in Sect. 2.2.

If we calculate bA on @B as in (5) using the vectors of the frame b̊ and
analogously computeA using � , then

bA D A � i Tr
�bU�1dbU� on @B; (15)

in view of (13) and (10). Integrating both sides of Eq. (15) on @B, we obtain that

1

2�

I
@B

bA D 1

2�

I
@B

A � i

2�

I
@B

dk Tr
�bU.k/�1@kbU.k/

�

D
�
1

2�

Z
B

F

	
� c

(16)

by (6) and Stokes theorem.
We will now show that the left-hand side of the above equality vanishes. In order

to do so, we exploit the �-equivariance of the Bloch frame b̊, that is, b̊.k C �/ D
�� b̊.k/. Indeed, in terms of the Berry connection matrix A D A.k/ dk we have that

b̊.k C �/ G bA.k C �/ D �i@k b̊.k C �/ D ��

�
�i@k b̊.k/

�

D ��

�b̊.k C �/ G bA.k/� D �� b̊.k C �/ G bA.k/
D b̊.k C �/ G bA.k/

(17)

so that bA.kC�/ D bA.k/ and, taking the trace, bA .kC�/ D bA .k/. Arguing similarly
to the proof of Proposition 1, one can show that the latter relation implies

Z
E1CE3

bA D 0;

Z
E2CE4

bA D 0;

yielding the vanishing of the left-hand side of (16).
Hence we conclude that

�
1

2�

Z
B

F

	
� c D 1

2�

I
@B

bA D 0
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which in view of (8) yields

c D 1

2�

Z
B

F D c1.P/ (18)

as wanted.

4 The Fu–Kane–Mele Invariant as a Topological Obstruction

In this Section, we switch to the time-reversal symmetric setting. As was already
mentioned, in this case the presence of a further symmetry kills the topological
obstruction given by the Chern number (2) [22, 23]. However, the same symmetry
allows to refine the notion of “symmetric Bloch frame” by requiring that it be also
time-reversal symmetric (compare Sect. 2.3). This gives rise to a new topological
obstruction encoded in the Fu–Kane–Mele Z2 invariant [10, 11], as we will now
show.

Throughout this section, fP.k/gk2R2 denotes a family of orthogonal projectors
satisfying (P1), (P2) and (P3).

4.1 Reduction to the Effective Unit Cell

In order to investigate the existence of a global Bloch frame for P.k/ which is
continuous, �-equivariant, and time-reversal symmetric, it is sufficient to focus one’s
attention to momenta in the effective unit cell for the lattice � D Span

Z
fe1; e2g,

defined as

Beff WD ˚
k D k1e1 C k2e2 2 R

2 W 0 � k1 � 1=2; �1=2 � k2 � 1=2
�
:

Indeed, all points of R2 can be mapped to Beff (in an a.e. unique way) by means
of a combination of a translation k 7! k C �, � 2 �, and possibly an inversion
k 7! �k. This means that if a Bloch frame is defined on Beff and satisfies the
relevant symmetries there, then it is possible to extend its definition first to the
unit cell B by enforcing time-reversal symmetry, and secondly to the whole R

2

imposing �-equivariance. This dictates that the required frame ˚ on Beff satisfies
certain compatibility conditions on the boundary of the effective unit cell, namely
that ˚.k C �/ D ��˚.k/ and ˚.�k/ D �˚.k/ G ", whenever k 2 @Beff and � 2 �
are such that ˙k C � 2 @Beff.

We will again resort to the technique of obstruction theory. Consequently, we
will choose a continuous Bloch frame � on Beff, and try to modify it into a frame
˚ satisfying the symmetries mentioned above. The two frames �.k/ and ˚.k/ will
be related by a unitary transformation, which we denote by U.k/ as in (3). As in
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k0 ke1

ke2

k−e2 ke1−e2

ke1+e2

e1

e2

E1

E2

E3

E4

E5

E6

Fig. 2 The effective unit cell Beff and the time-reversal invariant momenta

Sect. 3.1, a special role is played by the high-symmetry points k�, defined by the
relation k� C � D �k� with � 2 � (that is, k� D �=2). Six such points lie on the
boundary of Beff, and are usually referred to as the time-reversal invariant momenta
(compare Fig. 2).

4.2 Bloch Frame on the Boundary

As a first step, we provide here the construction of a symmetric Bloch frame defined
on the boundary of the effective unit cell Beff, following the obstruction-theoretic
approach employed in the previous Section for the non-time-reversal-symmetric
case.

Let k� be any of the time-reversal invariant momenta. Given the input frame
�.k�/, the transformed frames ��.k�/ G " and ���.k�/�.k�/ both give bases of
the same vector space RanP.�k�/ D RanP.k� C �/. As such, they must differ by
the action of an obstruction unitarymatrix:

��.k�/ G " D ���.k�/ G Uobs.k�/: (19)

These unitary matrices satisfy a further self-compatibility condition, namely

Uobs.k�/
T " D "Uobs.k�/; (20)
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as can be deduced from the following considerations. Applying the operator ��� D
���1

� to both sides of the identity (19), and using the defining properties of the
time-reversal operator�, we obtain

���.k�/ G .�"/ D ��.k�/ G Uobs.k�/:

Using the relation (19) again we can rewrite the above equality as

��.k�/ G ��"Uobs.k�/
�1 "

� D ��.k�/ G Uobs.k�/

fromwhich we deduce that�"Uobs.k�/�1 " D Uobs.k�/. Taking complex conjugates
and using the fact that �" D "�1 (by unitarity and skew-symmetry) yields
exactly (20).

Write now Uobs.v]/ D eiT.v]/ for v] 2 fv1; : : : ; v4g, with T.v]/ D T.v]/� self-
adjoint and satisfying �.T.v]// � .��; �	. This normalization on the arguments of
the eigenvalues of Uobs.v]/ gives that T.v]/ inherits the property (20) in the form

T.v]/
T " D " T.v]/ (21)

(see [16, Sect. 6, Lemma]).
Set now

b̊.k/ WD

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

�.k/ G V.k/ if k 2 S;

��1
e1 ��.

1
2
;�k2/ G

�
V. 1

2
;�k2/ "

�
if k D . 1

2
; k2/; k2 2 Œ0; 1

2
	;

�e2�.k1;� 1
2
/ G V.k1;� 1

2
/ if k D .k1;

1
2
/; k1 2 Œ0; 1

2
	;

��.0;�k2/ G
�
V.0;�k2/ "

�
if k D .0; k2/; k2 2 Œ0; 1

2
	;

(22)

where

S WD ˚
k D .0; k2/ W k2 2 �� 1

2
; 0
�� [ ˚

k D �
k1;� 1

2

� W k1 2 �0; 1
2

��
[ ˚

k D �
1
2
; k2
� W k2 2 �� 1

2
; 0
��

and for k 2 S

V.k/ WD

8̂
<̂
ˆ̂:
eiŒ.1C2k2/T.v1/�2k2T.v2/	=2 if k D .0; k2/; k2 2 Œ� 1

2
; 0	;

eiŒ.1�2k1/T.v2/C2k1T.v3/	=2 if k D .k1;� 1
2
/; k1 2 Œ� 1

2
; 0	;

eiŒ.1C2k2/T.v3/�2k2T.v4/	=2 if k D . 1
2
; k2/; k2 2 Œ� 1

2
; 0	:

(23)

Equation (22) above defines a Bloch frame b̊ on @Beff which is by construction
�-equivariant and time-reversal symmetric. Notice also that (23) yields

Uobs.k�/ D V.k�/
2 D V.k�/"

�1V.k�/T"
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at the time-reversal invariant momenta. Repeated use of the defining property (19)
for Uobs.k�/ and of its generator T.k�/, together with (20) and (21), shows thatb̊ also joins continuously at the time-reversal invariant momenta. For example, at
k� D ke1 D .1=2; 0/ we have

��1
e1 ��.ke1/ G

�
V.ke1 / "

�
D ��1

e1 ��.ke1/ G �"V.ke1/��

D ��1
e1
.��.ke1 / G "/ G V.ke1 /

�

D ��1
e1 .�e1�.ke1 / G Uobs.ke1 // G V.ke1 /

�1

D �.ke1/ G �V.ke1 /2V.ke1 /�1� D �.ke1 / G V.ke1 /:

4.3 Extension to the Face: A Topological Obstruction

Let bU denote the unitary transformation mapping the input frame � to the Bloch
frame b̊ we just constructed, as in (13). We have already argued in the previous
Section that the obstruction to the continuous extension of the map bUW @Beff ! U.m/
to the interior of the effective unit cell is measured precisely by the vanishing of the
integer deg.ŒbU	/ 2 Z given by

deg.ŒbU	/ D i

2�

I
@Beff

dk Tr
�bU.k/�1@kbU.k/

�
(24)

[compare (14)]. However, in this new setting it is no longer the case that the
extension problem for the unitary bU is equivalent to the one for the frame b̊, as
opposed to the situation in Remark 3. Indeed, we have the following result.

Proposition 2 Let˚ be a continuous Bloch frame on @Beff which is symmetric, and
assume that XW @Beff ! U.m/ is a continuousmap such that˚GX is also symmetric.
Then

deg.ŒX	/ 2 2Z:

Proof One easily computes that asking that ˚ G X be again �-equivariant and time-
reversal symmetric is equivalent to the conditions

X.k C �/ D X.k/ and X.�k C �/T "X.k/ D " (25)

whenever k 2 @Beff and � 2 � are such that ˙k C � 2 @Beff. In view of the above
conditions, the integral computing the degree of X, as in (24), simplifies to

deg.ŒX	/ D 2

�
i

2�

Z
E1

dk Tr
�
X.k/�1@kX.k/

�C i

2�

Z
E3

dk Tr
�
X.k/�1@kX.k/

�


(26)
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where the Ei’s are the portions of @Beff connecting two consecutive time-reversal
invariant momenta (compare Fig. 2).

Notice now that for a unitary-matrix-valuedmap

Tr
�
X.k/�1@kX.k/

� D �.k/�1@k�.k/; with �.k/ D detX.k/ 2 U.1/

(see e.g. [7, Lemma 2.12]). On E1 and E3, the maps k 7! �.k/ are actually
periodic, since the second condition in (25) implies that at the time-reversal invariant
momenta k� the matrix X.k�/ must be symplectic and thus of unit determinant. The
term in curly brackets on the right-hand side of (26) then computes the sum of the
winding numbers of the maps �

ˇ̌
E1

and �
ˇ̌
E3
, and is thus an integer. This concludes

the proof of the Proposition.
The above result shows that if deg.ŒbU	/ D 2r 2 2Z is even, it is still possible

to “unwind” the map bU with the help of an auxiliary map X, without breaking
the symmetries (�-equivariance, time-reversal) enjoyed by the frame b̊ as in (22).
Indeed, it is easily verified that the map XW @Beff ! U.m/ defined (in the basis where
" is of the form (11)) by

X.k/ D
(
e�2� ir.k2C1=2/12 ˚ 1m�2 if k D . 1

2
; k2/ 2 E3 [ E4; k2 2 Œ� 1

2
; 1
2
	;

1m elsewhere in @Beff;

satisfies (25) and deg.ŒX	/ D �2r. It follows that the frame � G .bUX/ is still
continuous, �-equivariant and time-reversal symmetric, and extends to a continuous
Bloch frame ˚ in the interior of Beff since deg.ŒbUX	/ D 0.

We conclude that the topological obstruction to the existence of a continuous and
symmetric Bloch frame is measured by the quantity

d WD deg.ŒbU	/ mod 2: (27)

It can be shown [10] that d 2 Z2 defines a true topological invariant for the family of
projectors P.k/ enjoying (P1), (P2) and (P3), that is, it does not depend on the choice
of the input frame � and on the explicit form of the interpolation V as in (23),
and moreover it stays constant under continuous deformations (homotopies) of the
family of projectors which preserve its symmetry properties.

4.4 The Obstruction is the Fu–Kane–Mele Index

Arguing along the same lines of Sect. 3.4, it is possible to write the topological
invariant d in terms of the Berry connection and the Berry curvature associated to
the family of projectors P.k/, which in turn connects d with the Fu–Kane–Mele Z2
index for time-reversal symmetric topological insulators [11]. Indeed, the analogue
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of (16) reads now

ı D 1

2�

Z
Beff

F � 1

2�

I
@Beff

bA mod 2 D ı.P/; (28)

compare (9). Let us stress that the Berry connection bA appearing in the above
formula must be computed with respect to a frame b̊ which is �-equivariant
and time-reversal symmetric on the boundary of the effective unit cell Beff. This
guarantees, for example, that the expression on the right-hand side is gauge-
independent, as we have seen how a change of unitary gauge which preserves the
symmetries must have even degree (Proposition 2).

Notice that, contrary to the case of the Chern number treated in Sect. 3.4, the
“boundary term” in (28) need not vanish. Indeed, the symmetries

bA .k C �/ D bA .k/ D bA .�k/ (29)

of the coefficient of the Berry connection 1-form, which are inherited from the �-
equivariance and the time-reversal symmetry of the underlying frame b̊, only imply
that its integral on @Beff can be simplified to

I
@Beff

bA D 2

Z
E1CE3

bA D 2

 Z 1=2

0

dk2
h bA .1=2; k2/� bA .0; k2/

i!
:

The first equality in (29) can be argued exactly as in (17), while for the second
one we proceed as follows. From the time-reversal symmetry property b̊.�k/ D
� b̊.k/ G " it follows that

�
�
@k b̊.k/

�
G " D �

�
@k b̊

�
.�k/:

Using the relation above together with the defining property b̊.k/ G bA.k/ D
�i@k b̊.k/ for the connection matrix bA.k/ we then obtain

� b̊.k/ G
�
"bA.�k/

�
D b̊.�k/ G bA.�k/ D �i

�
@k b̊

�
.�k/

D i�
�
@k b̊.k/

�
G " D �

�
�i@k b̊.k/

�
G "

D �
�b̊.k/ G bA.k/� G " D � b̊.k/ G

�bA.k/"� :

We conclude that bA.�k/ D "�1bA.k/", and by taking the trace that bA .�k/ D
bA .k/ D bA .k/, because bA .k/ takes values in the Lie algebra u.1/ D R.
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