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Abstract In this notes we gather the latest results on spectral theory for the
coupling H C V , where H D �i˛ � r C mˇ is the free Dirac operator in R

3, m > 0

and V is a measure-valued potential. The potentials under consideration are given
in terms of surface measures on the boundary of bounded regular domains in R

3.
We give three main results. We study the self-adjointness. We give a criterion for
the existence of point spectrum, with applications to electrostatic shell potentials,
V�, which depend on a parameter � 2 R. Finally, we prove an isoperimetric-type
inequality for the admissible range of �’s for which the coupling H C V� generates
pure point spectrum in .�m; m/. The ball is the unique optimizer of this inequality.

Keywords Dirac operator • Self-adjoint extension • Shell interaction • Singular
integral

1 Introduction and Main Results

The quantum mechanical model presented in these notes is a shell interaction for
Dirac operators, which is nothing else than the free Dirac operator in R

3 coupled
with a measure-valued potential.

Given m � 0, the free Dirac operator in R
3 is defined by H D �i˛ � r C mˇ;

where ˛ D .˛1; ˛2; ˛3/,

˛j D
�

0 �j

�j 0

�
for j D 1; 2; 3; ˇ D

�
I2 0

0 �I2

�
; I2 D

�
1 0

0 1

�
;

and �1 D
�

0 1

1 0

�
; �2 D

�
0 �i
i 0

�
; �3 D

�
1 0

0 �1
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is the family of Pauli matrices. It is a first order symmetric differential operator that
was introduced by Paul Dirac in 1929. The operator is a local version of

p�� C m2

and satisfies

H2 D .�� C m2/I4; (2)

which turns to be a very useful property. The equation associated to this operator
describes a relativistic electron or positron which moves freely as there were no
external forces nor other particles, and, has played a fundamental role in various
areas of physics and mathematics.

In this work we show spectral properties of the coupling H C V where V is a
singular potential located at the boundary of a bounded regular domain. The first
point is to construct a domain where these operators are self-adjoint. Secondly,
we give a criterion for the existence of eigenvalues of H C V . This criterion is a
kind of Birman-Schwinger principle adapted to our setting. We apply this criterion
to electrostatic shell potentials, V�, where � 2 R is the coupling constant, for
which we are able to prove more specific spectral properties. Finally, we study an
isoperimetric-type inequality for the possible �’s for which the operator H C V�

have non trivial eigenvalues in .�m; m/. We also show that the ball is the unique
optimizer of this inequality.

Note that one can take m D 0 in the definition of H, however, throughout these
notes we assume m > 0 to allow the existence of a nontrivial pure point spectrum
in the interval .�m; m/ for the corresponding couplings.

The results presented in these notes have been obtained in a joint work with
Albert Mas and Luis Vega (see [1–3]).

1.1 Self-Adjointness for HC V

The problem of self-adjointness of Dirac operators has a long history starting in
the early 1970s. In what respects to shell interactions, the case of the sphere was
previously studied in [4] by J. Dittrich, P. Exner and P. Seba. Since the proofs for that
case rely heavily on spherical symmetry and spherical harmonics, it is not possible
to extend those arguments to a more general domains, as it is our case.

First, let us present our setting. The ambient Hilbert space is L2.R3; �/4 with
respect to the Lebesgue measure �. Given a bounded regular domain ˝ � R

3 with
boundary @˝ and surface measure � , our aim is to find domains D � L2.R3; �/4 in
which H C V W D ! L2.R3; �/4 is an unbounded self-adjoint operator, where H is
defined in the sense of distributions and V is a suitable L2.@˝; �/4-valued potential.
To shorten notation we denote L2.R3; �/4 and L2.@˝; �/4 by L2.R3/4 and L2.�/4,
respectively. We construct the domain D as follows: by assumption, V is L2.�/4-
valued. Thus, given ' 2 D, we can write V.'/ D �g in the sense of distributions
for some g 2 L2.�/4. Moreover, since .H C V/.'/ 2 L2.R3/4, we can also write
.H C V/.'/ D G for some G 2 L2.R3/4. Therefore, H.'/ D G C g in the sense of
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distributions, and therefore, ' should be the convolution � � .G C g/, where

�.x/ D e�mjxj

4�jxj
�

mˇ C .1 C mjxj/ i˛ � x

jxj2
�

is a fundamental solution of H. This fundamental solution can be easily computed
by using (2). In particular,

D � f' D � � .G C g/ W G 2 L2.R3/4; g 2 L2.�/4g and

V.'/ D �g for all ' D � � .G C g/ 2 D:
(3)

To ensure that HCV is self-adjoint on D, we need to impose some relations between
G and g with the aid of bounded self-adjoint operators � W L2.�/4 ! L2.�/4. In
other words, given suitable �’s, following (3) we find domains D� (which depend
on �) where H C V is self-adjoint.

We consider the potential V given by (3) as a generic potential since it seems to
be prescribed from the beginning as V.'/ D �g for all ' D � � .G C g/ 2 D�, so
V is independent of �. Hence, if we want to work with a given boundary potential,
that we will denote by V� , the key idea to construct a domain where H C V� is self-
adjoint is to find a particular bounded self-adjoint operator � so that V� .'/ D �g
for all ' 2 D�.

Let us roughly mention the idea behind the generic potential V given by (3). If
we know that the gradient of a function ' has an absolutely continuous part G and a
singular part g supported on @˝ (in our setting, V.'/ 2 L2.�/4 and .H C V/.'/ 2
L2.R3/4), then ' must have a jump across @˝ , and this jump completely determines
the singular part of the gradient (that is, the jump determines the value V.'/). For
a given potential V� , one manages to define a suitable domain D such that, for any
' 2 D, the singular part which comes from the gradient on the jump of ' across @˝

agrees with �V� .'/. From now on we will simply denote by V the given boundary
potential under study.

Observe that H, which is symmetric and initially defined in C1
c .R3/4 (C4-valued

functions in R
3 which are C 1 and with compact support), can be extended by

duality to the space of distributions with respect to the test space C 1
c .R3/4 and,

in particular, it can be defined on X D ˚
G� C g� W G 2 L2.R3/4; g 2 L2.�/4

�
:

In order to construct a domain of definition where H C V is self-adjoint, we
have to consider the trace operator on @˝ . So, to ensure that the trace operator is
well defined, we need to use the following lemma: if G 2 L2.R3/4, then � � G 2
W1;2.R3/4 and .� � G/j@˝

2 L2.�/4 (see [1]).
Given an operator between vector spaces S W X ! Y, denote kr.S/ D fx 2 X W

S.x/ D 0g and rn.S/ D fS.x/ 2 Y W x 2 Xg:
Theorem 1.1 Let � W L2.�/4 ! L2.�/4 be a bounded operator. Set

D D f� � .G C g/ W G� C g� 2 X ; .� � G/j@˝
D �.g/g � L2.R3/4
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and HCV on D, where V.'/ D �g� and .HCV/.'/ D G for all ' D ��.GCg/ 2
D. If � is self-adjoint and rn.�/ is closed, then H C V W D ! L2.R3/4 is an
essentially self-adjoint operator. Moreover, if f� � h W h 2 kr.�/g is closed in
L2.R3/4, then H C V is self-adjoint.

Furthermore, if � is self-adjoint and semi-Fredholm, then H C V is self-adjoint.
We study other differential operators and measures and other relations between
.� � G/j@˝

and g, but we consider that they are not relevant for the purpose of
these notes. In [7] (see also [8, Sect. 2]), A. Posilicano gives a more general result.
There the author provides, in a very general framework, all self-adjoint extensions
of symmetric operators obtained by restricting a self-adjoint operator to a dense
subspace of the domain. See [1] for the complete details.

1.2 Point Spectrum for HC V

The natural question that comes to our mind after studying the self-adjointness of
shell interactions for Dirac operators is: what can we say about their point spectrum?
In this section, we show a criterion for the existence of eigenvalues in .�m; m/

for H C V . This criterion is a kind of Birman-Schwinger principle adapted to our
setting. Afterwards, we show some applications to the case of electrostatic shell
potentials.

For convenience, set ˝ D ˝C. Let @˝ be the boundary of a bounded Lipschitz
domain ˝C � R

3, let � and N be the surface measure and outward unit normal
vector field on @˝ , respectively, and set ˝� D R

3 n ˝C, so @˝ D @˝˙. Note that
� is 2-dimensional. Since we are not interested in optimal regularity assumptions,
for the sequel we assume that @˝ is of class C 2.

Before stating the main result of this subsection, we need to consider some
properties of operators defined only at the boundary of the domain. Let a 2 .�m; m/,
a fundamental solution of H � a for x 2 R

3 n f0g is given by

�a.x/ D e�p
m2�a2jxj

4�jxj
�

a C mˇ C
�
1 C

p
m2 � a2jxj

�
i˛ � x

jxj2
�

:

Lemma 1.2 Given g 2 L2.�/4 and x 2 @˝ , set

Ca
� .g/.x/ D lim

	&0

Z
jx�zj>	

�a.x � z/g.z/ d�.z/

and

Ca˙.g/.x/ D lim
˝˙3y

nt�!x

.�a � g�/.y/;

where ˝˙ 3 y
nt�! x means that y 2 ˝˙ tends to x 2 @˝ non-tangentially. Then,

the Cauchy type singular operator Ca
� and the operators Ca

˙ are bounded and linear
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in L2.�/4. Moreover, the following holds:

(i) Ca
˙ D � i

2
.˛ � N/ C Ca

� (Plemelj–Sokhotski jump formulae),
(ii) for any a 2 Œ�m; m
, Ca

� is self-adjoint and �4.Ca
� .˛ � N//2 D I4.

The following criterion relates the eigenvalues of H C V with a spectral property of
bounded operators in L2.�/4 mentioned in Lemma 1.2, that is, it relates a problem
in R

3 with a problem settled exclusively on @˝ .

Proposition 1.3 Let H C V be as in Theorem 1.1. Given a 2 .�m; m/, there exists
' D ��.GCg/ 2 D such that .HCV/.'/ D a' if and only if �.g/ D .Ca

� �C� /.g/

and G D a�a �g. Therefore, kr.H CV �a/ ¤ 0 if and only if kr.�CC� �Ca
� / ¤ 0.

1.2.1 Applications to Electrostatic Shell Potentials

In this summary we are particularly interested in the case of electrostatic shell
potentials as the ones defined in the theorem below, V�. These potentials are
also known as ı-shell potentials. It is for these potentials for which we give the
isoperimetric-type inequality detailed in the next subsection.

Theorem 1.4 Let � 2 R n f0g and a 2 .�m; m/. D D ˚
' D � � .G C g/ W

.� � G/j@˝ D �.1=� C C� /g
�
, and V�.'/ D �

2
.'C C '�/; where '˙ are the

boundary values of ' when approaching @˝ from ˝C or ˝�.

(i) H C V� defined on D is self-adjoint for all � ¤ ˙2.
(ii) Ker.H C V� � a/ ¤ 0 iff Ker.1=� C Ca

� / ¤ 0.
(iii) H C V� and H C V�4=� have the same eigenvalues in Œ�m; m
.
(iv) If j�j 62 Œ1=kCa

� k; 4kCa
� k
, then Ker.H C V� � a/ D 0.

(v) If j�j 62 Œ1=C; 4C
, where C D supa2.�m;m/ kCa
� k < 1, then H C V� has no

eigenvalues in .�m; m/.
(vi) If ˝� is connected, then H C V� has no eigenvalues in R n Œ�m; m
.

The last theorem shows that there are a lower and upper thresholds on the possible
values of � in order to have non trivial eigenvalues in .�m; m/. This is different
from what happens with other similar potentials, such as the Coulomb potential or
the characteristic function of a ball. The Coulomb potential, for example, generates
eigenvalues for any small �. The self-adjointness for the cases � D ˙2 is currently
under study.

1.3 Isoperimetric-Type Inequality

Previously, we found that for the case of electrostatic shell potentials there is no
possible ' verifying

.H C V�/.'/ D a' (4)
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for any a 2 .�m; m/ if j�j is either too big or too small. More precisely, we showed
that there exist upper and lower thresholds �u.@˝/ and �l.@˝/, respectively, with
0 < �l.@˝/ � 2 � �u.@˝/ and such that if j�j 62 Œ�l.@˝/; �u.@˝/
 then there
exists no nontrivial ' verifying (4) for some a 2 .�m; m/.

The main purpose of this section is to determine how small can Œ�l.@˝/; �u.@˝/


be under some constraint on the size of @˝ and/or ˝ .
Given a compact set E � R

3, the Newtonian capacity of E (sometimes referred
in the literature as electrostatic or harmonic capacity) is defined by

Cap.E/ D
�

inf
�

“
d�.x/ d�.y/

4�jx � yj
��1

;

where the infimum is taken over all probability Borel measures � supported in E.
Sometimes in the literature, the 4� appearing in the definition of Cap.E/ is changed
by another precise constant. For the case of open sets U � R

3, one defines

Cap.U/ D supfCap.E/ W E � U; E compactg:

Let us mention some examples of constraints where the Newtonian capacity
appears. Let ˝ � R

3 be a bounded smooth domain. On the one hand, we have
the following isoperimetric inequality

36�Vol.˝/2 � Area.@˝/3:

On the other hand, the Pólya-Szegö inequality, [6], asserts that

Cap.˝/ � 2.6�2Vol.˝//1=3;

where � is the probability measure and supp.�/ � ˝. In both cases, equality holds
if and only if ˝ is a ball. Our main result in this sense is the following one.

Theorem 1.5 Let ˝ � R
3 be a bounded domain with smooth boundary and assume

that

m
Area.@˝/

Cap.˝/
>

1

4
p

2
: (5)

Then

supfj�j W kr.H C V� � a/ ¤ 0 for some a 2 .�m; m/g

� 4

 
m

Area.@˝/

Cap.˝/
C
s

m2

�
Area.@˝/

Cap.˝/

�2

C 1

4

!
;
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inffj�j W kr.H C V� � a/ ¤ 0 for some a 2 .�m; m/g

� 4

 
� m

Area.@˝/

Cap.˝/
C
s

m2

�
Area.@˝/

Cap.˝/

�2

C 1

4

!
:

In both cases, the equality holds if and only if ˝ is a ball.

2 On the Proof of the Main Results

For the sake of shortness we focus our attention on the proof of the newest result,
Theorem 1.5. See [1] for the details on the proof of Theorem 1.1 and [2] for
Proposition 1.3 and Theorem 1.4.

There are three key steps on the proof of Theorem 1.5. First, recall that this
result is for electrostatics shell potentials. Thus, the starting point is Theorem1.4 (ii),
where we relate (4) with the existence of a nontrivial eigenvalue c.a/ of Ca

� . Once
we have this relation, we show that c.a/ is a monotone function of a 2 .�m; m/.
This has important consequences because it reduces the problem to the study of
the limiting cases a D ˙m: Thanks to the well-known properties of the Cauchy
operator stated in Lemma 1.2, it is sufficient to consider just the case a D m. Hence,
it is enough to study Ker.1=� C Cm

� /. The next step is to prove that solving our
optimization problem (to find the optimal � for which Ker.1=� C Cm

� / ¤ 0) is
equivalent to minimizing, in terms of ˝ , the infimum over all � > 0 such that

�
4

�

�2Z
@˝

jW. f /j2 d� C 8m

�

Z
@˝

K. f / � f d� �
Z

@˝

j f j2 d�; (6)

for all f 2 L2.�/2. It is to this infimum � to which we prove the isoperimetric-
type inequality in Theorem 1.5. Finally, we write the isoperimetric-type inequality
in terms of area and capacity.

2.1 Monotonicity

The following lemma contains the monotonicity property mentioned above.

Lemma 2.1 Given a 2 Œ�m; m
, the eigenvalues of Ca
� form a finite or countable

sequence ; ¤ fcj.a/gj � R, with 1=4 being the only possible accumulation point of
fcj.a/2gj. Moreover, d

da cj.a/ > 0 for all a 2 .�m; m/ and all j.
As a consequence, given a 2 .�m; m/, the set of real �’s such that kr.H C

V� � a/ ¤ 0 form a finite or countable sequence ; ¤ f�j.a/gj � R, with 4 being
the only possible accumulation point of f�j.a/2gj. Furthermore, �j.a/ is a strictly
monotonous increasing function of a 2 .�m; m/ for all j.
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For any a 2 Œ�m; m
, the existence of the sequence ; ¤ fcj.a/gj � R stated in the
lemma and its possible accumulation point are guaranteed by the self-adjointness of
Ca

� and the fact that if we define �a
˙ D 1=� ˙ Ca

� , then

�aC�a� D 1

�2
� .Ca

� /2 D 1

�2
� 1

4
� Ca

� .˛ � N/f˛ � N; Ca
� g;

where Ca
� .˛ � N/f˛ � N; Ca

� g is a compact operator and self-adjoint. We want to study
@acj.a/. We denote @a 	 d

da to shorten. Let gj.a/ 2 L2.�/4 be such that kgj.a/k� D 1

and

Ca
� .gj.a// D cj.a/gj.a/: (7)

To differentiate cj.a/ with respect to a, we take the scalar product of (7) with
gj.a/, so

cj.a/ D hcj.a/gj.a/; gj.a/i� D hCa
� .gj.a//; gj.a/i� :

Thus, at a formal level and by using that Ca
� is self-adjoint,

@acj.a/ D h.@aCa
� /.gj.a//; gj.a/i� C 2Reh@agj.a/; Ca

� .gj.a//i� : (8)

Since kgj.a/k� D 1 for all a 2 .�m; m/, then (7) gives

0 D cj.a/@ahgj.a/; gj.a/i� D 2Reh@agj.a/; Ca
� .gj.a//i� :

Hence, we obtain @acj.a/ D h.@aCa
� /.gj.a//; gj.a/i� :

To justify the above computations, in particular in what respects to the issue of
the principal value in the definition of Ca

� , one can decompose the kernel

�a.x/ D e�
p

m2�a2jxj

4� jxj
�

a C mˇ C i
p

m2 � a2 ˛ � x

jxj
�

C e�
p

m2�a2jxj � 1

4�
i

�
˛ � x

jxj3
�

C i

4�

�
˛ � x

jxj3
�

:

Note that the principal value only concerns to the last term, since the other two are
absolutely integrable on @˝ and actually define compact operators, but the last one
does not depend on a. At this point, standard arguments in perturbation theory allow
us to justify the formal computations carried out above concerning @a.

The next step is to understand the operator @aCa
� . Since Ca

� is defined as the
convolution operator on @˝ with the fundamental solution of H � a, and formally
@a..H � a/�1/ D .H � a/�2, then, as we may guess, @aCa

� is defined as the
convolution operator on @˝ with the fundamental solution of .H � a/2. In the
following lines, we are going to prove the details of this argument. We can easily
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compute

@a.�a.x// D ae�p
m2�a2jxj

4�
p

m2 � a2

�
a C mˇ C i

p
m2 � a2 ˛ � x

jxj
�

C e�p
m2�a2jxj

4�jxj :

(9)

Since �i˛ � r.e�p
m2�a2jxj/ D i

p
m2 � a2e�p

m2�a2jxj ˛ � x

jxj , then,

@a.�a.x// D a .H C a/
e�p

m2�a2jxj

4�
p

m2 � a2
C e�p

m2�a2jxj

4�jxj : (10)

A simple calculation shows that

.�� C m2 � a2/
e�p

m2�a2jxj

8�
p

m2 � a2
D e�p

m2�a2jxj

4�jxj ; (11)

which combined with (10) and using that �� C m2 � a2 D .H � a/.H C a/; yields

@a.�a.x// D .H C a/2 e�p
m2�a2jxj

8�
p

m2 � a2
: (12)

By using that .4�jxj/�1e�p
m2�a2jxj is a fundamental solution of �� C m2 � a2 and

that .H � a/2.H C a/2 D .�� C m2 � a2/2; because �� C m2 � a2 commutes
with H C a, then, we finally deduce that .H � a/2 @a.�a.x// D ı0; which means
that @a.�a.x// is a fundamental solution of .H � a/2, and @aCa

� corresponds to the
operator of convolution on @˝ with this kernel. Note that @a.�a.x// D O.1=jxj/ for
jxj ! 0, so in particular @aCa

� is compact in L2.�/4.
Given g 2 L2.�/4, set

u.x/ D
Z

@a.�a.x � y//g.y/ d�.y/ for x 2 R
3;

so u D .@aCa
� /.g/ on @˝ . Using (12), that �� C m2 � a2 and H C a commute

and (11), we see that for any x 2 R
3 n @˝,

.H � a/u.x/ D
Z

.Hx � a/@a.�a.x � y//g.y/ d�.y/ D �a � .g/.x/: (13)

Hx denote the Dirac operator acting as a derivative on the x variable. Since �a is
a fundamental solution of H � a, we see from (13) that .H � a/2u D 0 outside
@˝ .

From Lemma 1.2.i/, we have g D i.˛ � N/.CaC.g/ � Ca�.g//: Therefore, using the
divergence theorem for H � a, that .H � a/�a � .g/ D 0 outside @˝ and (13), we
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finally get

h.@aCa
� /.g/; gi� D

Z
R3n@˝

j�a � .g/j2 d�: (14)

Thanks to the Plemelj–Sokhotski jump formulae from Lemma 1.2.i/, we see that if
g 2 L2.�/4 is such that �a � .g/ D 0 in R

3 n @˝ then Ca
˙.g/ D 0, and thus g D 0.

Therefore, applying (14) to gj.a/ and plugging it into

@acj.a/ D h.@aCa
� /.gj.a//; gj.a/i�

yields

@acj.a/ D h.@aCa
� /.gj.a//; gj.a/i� D

Z
R3n@˝

j�a � .gj.a//j2 d� > 0:

Finally, by setting cj.a/ D �1=�j.a/ we see that �j.a/ is a strictly monotonous
increasing function of a 2 .�m; m/ for all j. This finishes the proof of the lemma.

From Theorem1.4 (ii) we know that the study of the eigenvalues of H C V�

is equivalent to the study of eigenvalues of Ca
� , and from the previous result the

eigenvalues of Ca
� are a monotonous increasing function of a. Therefore, this reduces

the problem to the study of a D ˙m. Moreover, by using the properties on
Lemma 1.2, it is sufficient to consider just the case a D m. Therefore, the problem
has been reduced to the study of kr.1=� C Cm

� / ¤ 0.

2.2 Quadratic Forms

Let us introduce some bounded operators defined exclusively on the boundary of
the domain. For a 2 R and ¢ D .�1; �2; �3/, where the �j’s compose the family of
Pauli matrices introduced in (1), define the kernels

ka.x/ D e�p
m2�a2jxj

4�jxj I2 and wa.x/ D e�p
m2�a2jxj

4�jxj3
�
1 C

p
m2 � a2jxj

�
i ¢ � x

for x 2 R
3 n f0g. Given f 2 L2.�/2 and x 2 @˝ , set

Ka. f /.x/ D
Z

ka.x�z/f .z/ d�.z/ and Wa. f /.x/ D lim
	&0

Z
jx�zj>	

wa.x�z/f .z/ d�.z/:
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That Ka and Wa are bounded operators in L2.�/2 can be verified similarly to the
case of Ca

� in L2.�/4, we omit the details. Moreover, note that

Ca
� D

�
.a C m/Ka Wa

Wa .a � m/Ka

�
: (15)

For any a 2 Œ�m; m
, Ka is positive and both Ka and the singular integral operator
Wa are self-adjoint. For simplicity of notation, we write k, w, K and W instead of km,
wm, Km and Wm, respectively. Thus, the study of Ker.1=� C Cm

� / ¤ 0 is equivalent
to find � 2 R and u; h 2 L2.�/2 such that

�
2mK.u/ C W.h/ D �u=�;

W.u/ D �h=�:

Now by using the properties

f.¢ � N/K; .¢ � N/Wg D 0 and Œ.¢ � N/W
2 D �1=4; (16)

we get u D .4=�/.� � N/W.� � N/.h/: Plugging u into the first equation we obtain
that there exists f 2 L2.�/2; f ¤ 0 such that

�
�8m

�
K C 1 � 16

�2
W2

�
f D 0:

Multiply by f , integrate with respect to � and we get

�
4

�

�2Z
jW. f /j2 d� C 8m

�

Z
K. f / � f d� D

Z
j f j2 d�;

where the second term on the left hand side is positive. Thus, the quadratic form is
decreasing for � > 0. As a consequence we have

�˝ D inf

(
� > 0 W

�
4

�

�2Z
jW. f /j2 d� C 8m

�

Z
K. f / � f d� �

Z
j f j2 d�;

)

for all f 2 L2.�/2.
These arguments lead us to the next theorem, that is a key ingredient to derive

the isoperimetric-type inequalities contained in Theorem 1.5. It gives the connection
between the admissible �’s that generate eigenvalues of C˙m

� with the optimal
constant of the inequality (17).
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Theorem 2.2 Let �˝ be the infimum over all � > 0 such that

�
4

�

�2Z
jW. f /j2 d� C 8m

�

Z
K. f / � f d� �

Z
j f j2 d� (17)

for all f 2 L2.�/2. Then,

(i) 4
�
mkKk� Cp

m2kKk2
� C 1=4

	 � �˝ � 4
�
mkKk� Cp

m2kKk2
� C kWk2

�

	
;

(ii) If � > 0 is such that kr.1=� C Cm
� / ¤ 0 then � � �˝ ,

(iii) If � D �˝ > 2
p

2 then the equality holds, and the minimizers of (17) give
rise to functions in kr.1=�˝ C Cm

� / and vice versa.

For the first part of the theorem, we denote by A.�; f / the left hand side of (17)
for a given � > 0 and f 2 L2.�/2. Note that

A.�; f / �
 �

4kWk�

�

�2

C 8mkKk�

�

!
k f k2

� : (18)

Hence, if � � 4
�
mkKk� Cp

m2kKk2
� C kWk2

�

	
then (18) yields A.�; f / � k f k2

� for

all f 2 L2.�/2, which in turn implies that �˝ � 4
�
mkKk� Cp

m2kKk2
� C kWk2

�

	
.

The inequality from below is a bit more involved. Let � > 0 be such that

A.�; f / � k f k2
� for all f 2 L2.�/2: (19)

If we set h D 4
�
.¢ �N/W. f / 2 L2.�/2, then f D ��.¢ �N/W.h/ by (16). Furthermore,

Z
jW. f /j2 d� D

�
�

4

�2Z
jhj2 d� and

Z
j f j2 d� D �2

Z
jW.h/j2 d�: (20)

Moreover, using (16) again,

Z
K. f / � f d� D �2

Z
K.¢ � N/W.h/ � .¢ � N/W.h/ d� D �2

4

Z
K.h/ � h d�:

(21)
Gathering (19) with (20) and (21) yields

Z
jhj2 d� C 2m�

Z
K.h/ � h d� � �2

Z
jW.h/j2 d� (22)

for all h 2 L2.�/2. If we multiply (22) by 16=�4 we get

16

�4

Z
j f j2 d� C 32m

�3

Z
K. f / � f d� � 16

�2

Z
jW. f /j2 d�
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for all f 2 L2.�/2, which added to (19) gives

2m
Z

K. f / � f d� �
�

�

4
� 1

�

�Z
j f j2 d� for all f 2 L2.�/2:

Since K is bounded, positive and self-adjoint, we see from the above inequality that

2mkKk� D 2m sup
k f k� D1

Z
K. f / � f d� � �

4
� 1

�
;

which in turn is equivalent to �2 � 8mkKk� � � 4 � 0; since � > 0 by assumption.
Therefore, we must have � � 4

�
mkKk� C p

m2kKk2
� C 1=4

	
for all � > 0

satisfying (19). This gives the desired inequality from below for �˝ , and finishes
the proof of .i/. Observe that this lower bound for �˝ is strictly greater than 2

because kKk� > 0. The proof of (ii) comes from the arguments presented before
the theorem. And, for the last part, since K is positive, A.�; f / is a non-increasing
function of � > 0 for all f 2 L2.�/2. By the definition of �˝ , this monotony implies
that (17) holds for all � � �˝ and it is sharp for � D �˝ . It remains to be shown
that if �˝ > 2

p
2 then the equality is attained and that the minimizers give rise to

functions in kr.1=�˝ C Cm
� / and vice versa. We will not give these details in order

to shorten the notes, see [3].
The constraint (5) needed in Theorem 1.5, appears precisely as a technical

obstruction on the arguments that we use to prove that equality holds in (17). The
items .ii/ and .iii/ in Theorem 2.2 ensure that

�˝ D supfj�j W kr.1=� C Cm
� / ¤ 0g and 4=�˝ D inffj�j W kr.1=� C Cm

� / ¤ 0g:
(23)

2.3 The Isoperimetric-Type Inequality

Finally, in this subsection we gather the previous results and give the isoperimetric-
type inequality in terms of area and capacity. Notice that we are looking for an
inequality for �˝ .

At this point the following result become crucial. If ˝ is a ball then 2W is an
isometry and kW˝k2

� D 1=4. The opposite implication is proved in [5]. Thus, �˝ D
4
�
mkKk� Cp

m2kKk2
� C 1=4

	
:

For a general ˝ , kWk2
� � 1=4 holds. Then,

kKk� D sup
f ¤0

1

k f k2
�

Z
Kf � f � �.@˝/

“
1

4�jx � yj
d�.x/

�.@˝/

d�.y/

�.@˝/

� Area.@˝/

Cap.˝/
:
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Equality holds in the las two inequalities if ˝ is a ball. Hence,

�˝ � 4

 
m

Area.@˝/

Cap.˝/
C
s

m2

�
Area.@˝/

Cap.˝/

�2

C 1

4

!
: (24)

Therefore, combining (23) and (24) we get the desired result.
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