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Preface

This volume is a collection of recent contributions and up-to-date surveys on
many contemporary trends in the mathematics of quantum mechanics, and more
generally on mathematical problems arising in quantum many-body dynamics,
quantum graph theory, cold atoms and unitary gases. Special emphasis is devoted to
development of the specific mathematical tools needed, including linear and non-
linear Schrödinger equations, topological invariants, non-commutative geometry,
resonances and operator extension theory.

Most of the contributors are leading international experts or recognised young
researchers in mathematical physics, PDE theory and operator theory. The material
that they present is the fruit of recent studies that have already become a reference
in the community. The underlying motivation from condensed matter physics, solid
state physics and ultra-cold atom physics, and the topicality of the research topics,
give the volume a distinctive perspective at the edge of mathematics and physics.

A large part of the material was presented and discussed thoroughly on the
occasion of the INdAM international meeting entitled “Contemporary Trends in the
Mathematics of Quantum Mechanics”, which took place in Rome from 4 to 8 July
2016 and which we had the honour of organising thanks to a very generous funding
and most helpful logistic support from INdAM. The remainder of the material was
produced as a follow-up to that meeting or as closely related work.

First and foremost, our thanks go to the scientific board of INdAM and the
responsible administrative staff at the INdAM headquarters in Rome for providing
such a stimulating atmosphere and all the necessary practical help. We would also
like to warmly acknowledge all contributors and anonymous reviewers for their
careful work and the quality of their reports. Finally, we extend our gratitude to
the extremely supportive team of the INdAM Springer Series for their services
throughout the editing and publishing process.

Trieste, Italy Gianfausto Dell’Antonio
Trieste, Italy Alessandro Michelangeli
April 2017
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Shell Interactions for Dirac Operators

Naiara Arrizabalaga

Abstract In this notes we gather the latest results on spectral theory for the
coupling H C V , where H D �i˛ � r C mˇ is the free Dirac operator in R

3, m > 0

and V is a measure-valued potential. The potentials under consideration are given
in terms of surface measures on the boundary of bounded regular domains in R

3.
We give three main results. We study the self-adjointness. We give a criterion for
the existence of point spectrum, with applications to electrostatic shell potentials,
V�, which depend on a parameter � 2 R. Finally, we prove an isoperimetric-type
inequality for the admissible range of �’s for which the coupling H C V� generates
pure point spectrum in .�m;m/. The ball is the unique optimizer of this inequality.

Keywords Dirac operator • Self-adjoint extension • Shell interaction • Singular
integral

1 Introduction and Main Results

The quantum mechanical model presented in these notes is a shell interaction for
Dirac operators, which is nothing else than the free Dirac operator in R

3 coupled
with a measure-valued potential.

Given m � 0, the free Dirac operator in R
3 is defined by H D �i˛ � r C mˇ;

where ˛ D .˛1; ˛2; ˛3/,

˛j D
�
0 �j

�j 0

�
for j D 1; 2; 3; ˇ D

�
I2 0

0 �I2

�
; I2 D

�
1 0

0 1

�
;

and �1 D
�
0 1

1 0

�
; �2 D

�
0 �i
i 0

�
; �3 D

�
1 0

0 �1
� (1)

N. Arrizabalaga (�)
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2 N. Arrizabalaga

is the family of Pauli matrices. It is a first order symmetric differential operator that
was introduced by Paul Dirac in 1929. The operator is a local version of

p��C m2

and satisfies

H2 D .��C m2/I4; (2)

which turns to be a very useful property. The equation associated to this operator
describes a relativistic electron or positron which moves freely as there were no
external forces nor other particles, and, has played a fundamental role in various
areas of physics and mathematics.

In this work we show spectral properties of the coupling H C V where V is a
singular potential located at the boundary of a bounded regular domain. The first
point is to construct a domain where these operators are self-adjoint. Secondly,
we give a criterion for the existence of eigenvalues of H C V . This criterion is a
kind of Birman-Schwinger principle adapted to our setting. We apply this criterion
to electrostatic shell potentials, V�, where � 2 R is the coupling constant, for
which we are able to prove more specific spectral properties. Finally, we study an
isoperimetric-type inequality for the possible �’s for which the operator H C V�
have non trivial eigenvalues in .�m;m/. We also show that the ball is the unique
optimizer of this inequality.

Note that one can take m D 0 in the definition of H, however, throughout these
notes we assume m > 0 to allow the existence of a nontrivial pure point spectrum
in the interval .�m;m/ for the corresponding couplings.

The results presented in these notes have been obtained in a joint work with
Albert Mas and Luis Vega (see [1–3]).

1.1 Self-Adjointness for H C V

The problem of self-adjointness of Dirac operators has a long history starting in
the early 1970s. In what respects to shell interactions, the case of the sphere was
previously studied in [4] by J. Dittrich, P. Exner and P. Seba. Since the proofs for that
case rely heavily on spherical symmetry and spherical harmonics, it is not possible
to extend those arguments to a more general domains, as it is our case.

First, let us present our setting. The ambient Hilbert space is L2.R3; �/4 with
respect to the Lebesgue measure �. Given a bounded regular domain ˝ � R

3 with
boundary @˝ and surface measure � , our aim is to find domains D � L2.R3; �/4 in
which H C V W D ! L2.R3; �/4 is an unbounded self-adjoint operator, where H is
defined in the sense of distributions and V is a suitable L2.@˝; �/4-valued potential.
To shorten notation we denote L2.R3; �/4 and L2.@˝; �/4 by L2.R3/4 and L2.�/4,
respectively. We construct the domain D as follows: by assumption, V is L2.�/4-
valued. Thus, given ' 2 D, we can write V.'/ D �g in the sense of distributions
for some g 2 L2.�/4. Moreover, since .H C V/.'/ 2 L2.R3/4, we can also write
.H C V/.'/ D G for some G 2 L2.R3/4. Therefore, H.'/ D G C g in the sense of
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distributions, and therefore, ' should be the convolution � � .G C g/, where

�.x/ D e�mjxj

4�jxj
�

mˇ C .1C mjxj/ i˛ � x

jxj2
�

is a fundamental solution of H. This fundamental solution can be easily computed
by using (2). In particular,

D � f' D � � .G C g/ W G 2 L2.R3/4; g 2 L2.�/4g and

V.'/ D �g for all ' D � � .G C g/ 2 D:
(3)

To ensure that HCV is self-adjoint on D, we need to impose some relations between
G and g with the aid of bounded self-adjoint operators � W L2.�/4 ! L2.�/4. In
other words, given suitable �’s, following (3) we find domains D� (which depend
on �) where H C V is self-adjoint.

We consider the potential V given by (3) as a generic potential since it seems to
be prescribed from the beginning as V.'/ D �g for all ' D � � .G C g/ 2 D�, so
V is independent of �. Hence, if we want to work with a given boundary potential,
that we will denote by V� , the key idea to construct a domain where H C V� is self-
adjoint is to find a particular bounded self-adjoint operator � so that V� .'/ D �g
for all ' 2 D�.

Let us roughly mention the idea behind the generic potential V given by (3). If
we know that the gradient of a function ' has an absolutely continuous part G and a
singular part g supported on @˝ (in our setting, V.'/ 2 L2.�/4 and .H C V/.'/ 2
L2.R3/4), then ' must have a jump across @˝ , and this jump completely determines
the singular part of the gradient (that is, the jump determines the value V.'/). For
a given potential V� , one manages to define a suitable domain D such that, for any
' 2 D, the singular part which comes from the gradient on the jump of ' across @˝
agrees with �V� .'/. From now on we will simply denote by V the given boundary
potential under study.

Observe that H, which is symmetric and initially defined in C1
c .R3/4 (C4-valued

functions in R
3 which are C 1 and with compact support), can be extended by

duality to the space of distributions with respect to the test space C 1
c .R3/4 and,

in particular, it can be defined on X D ˚
G�C g� W G 2 L2.R3/4; g 2 L2.�/4

�
:

In order to construct a domain of definition where H C V is self-adjoint, we
have to consider the trace operator on @˝ . So, to ensure that the trace operator is
well defined, we need to use the following lemma: if G 2 L2.R3/4, then � � G 2
W1;2.R3/4 and .� � G/j@˝ 2 L2.�/4 (see [1]).

Given an operator between vector spaces S W X ! Y, denote kr.S/ D fx 2 X W
S.x/ D 0g and rn.S/ D fS.x/ 2 Y W x 2 Xg:
Theorem 1.1 Let � W L2.�/4 ! L2.�/4 be a bounded operator. Set

D D f� � .G C g/ W G�C g� 2 X ; .� � G/j@˝ D �.g/g � L2.R3/4
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and HCV on D, where V.'/ D �g� and .HCV/.'/ D G for all ' D ��.GCg/ 2
D. If � is self-adjoint and rn.�/ is closed, then H C V W D ! L2.R3/4 is an
essentially self-adjoint operator. Moreover, if f� � h W h 2 kr.�/g is closed in
L2.R3/4, then H C V is self-adjoint.

Furthermore, if � is self-adjoint and semi-Fredholm, then H C V is self-adjoint.
We study other differential operators and measures and other relations between
.� � G/j@˝ and g, but we consider that they are not relevant for the purpose of
these notes. In [7] (see also [8, Sect. 2]), A. Posilicano gives a more general result.
There the author provides, in a very general framework, all self-adjoint extensions
of symmetric operators obtained by restricting a self-adjoint operator to a dense
subspace of the domain. See [1] for the complete details.

1.2 Point Spectrum for H C V

The natural question that comes to our mind after studying the self-adjointness of
shell interactions for Dirac operators is: what can we say about their point spectrum?
In this section, we show a criterion for the existence of eigenvalues in .�m;m/
for H C V . This criterion is a kind of Birman-Schwinger principle adapted to our
setting. Afterwards, we show some applications to the case of electrostatic shell
potentials.

For convenience, set ˝ D ˝C. Let @˝ be the boundary of a bounded Lipschitz
domain ˝C � R

3, let � and N be the surface measure and outward unit normal
vector field on @˝ , respectively, and set ˝� D R

3 n˝C, so @˝ D @˝˙. Note that
� is 2-dimensional. Since we are not interested in optimal regularity assumptions,
for the sequel we assume that @˝ is of class C 2.

Before stating the main result of this subsection, we need to consider some
properties of operators defined only at the boundary of the domain. Let a 2 .�m;m/,
a fundamental solution of H � a for x 2 R

3 n f0g is given by

�a.x/ D e�p
m2�a2jxj

4�jxj
�

a C mˇ C
�
1C

p
m2 � a2jxj

�
i˛ � x

jxj2
�
:

Lemma 1.2 Given g 2 L2.�/4 and x 2 @˝ , set

Ca
� .g/.x/ D lim

	&0

Z
jx�zj>	

�a.x � z/g.z/ d�.z/

and

Ca˙.g/.x/ D lim
˝˙3y

nt�!x

.�a � g�/.y/;

where ˝˙ 3 y
nt�! x means that y 2 ˝˙ tends to x 2 @˝ non-tangentially. Then,

the Cauchy type singular operator Ca
� and the operators Ca

˙ are bounded and linear
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in L2.�/4. Moreover, the following holds:

(i) Ca
˙ D � i

2
.˛ � N/C Ca

� (Plemelj–Sokhotski jump formulae),
(ii) for any a 2 Œ�m;m
, Ca

� is self-adjoint and �4.Ca
� .˛ � N//2 D I4.

The following criterion relates the eigenvalues of H C V with a spectral property of
bounded operators in L2.�/4 mentioned in Lemma 1.2, that is, it relates a problem
in R

3 with a problem settled exclusively on @˝ .

Proposition 1.3 Let H C V be as in Theorem 1.1. Given a 2 .�m;m/, there exists
' D ��.GCg/ 2 D such that .HCV/.'/ D a' if and only if�.g/ D .Ca

� �C� /.g/
and G D a�a �g. Therefore, kr.H CV �a/ ¤ 0 if and only if kr.�CC� �Ca

� / ¤ 0.

1.2.1 Applications to Electrostatic Shell Potentials

In this summary we are particularly interested in the case of electrostatic shell
potentials as the ones defined in the theorem below, V�. These potentials are
also known as ı-shell potentials. It is for these potentials for which we give the
isoperimetric-type inequality detailed in the next subsection.

Theorem 1.4 Let � 2 R n f0g and a 2 .�m;m/. D D ˚
' D � � .G C g/ W

.� � G/j@˝ D �.1=� C C� /g
�
, and V�.'/ D �

2
.'C C '�/; where '˙ are the

boundary values of ' when approaching @˝ from ˝C or ˝�.

(i) H C V� defined on D is self-adjoint for all � ¤ ˙2.
(ii) Ker.H C V� � a/ ¤ 0 iff Ker.1=�C Ca

� / ¤ 0.
(iii) H C V� and H C V�4=� have the same eigenvalues in Œ�m;m
.
(iv) If j�j 62 Œ1=kCa

�k; 4kCa
�k
, then Ker.H C V� � a/ D 0.

(v) If j�j 62 Œ1=C; 4C
, where C D supa2.�m;m/ kCa
�k < 1, then H C V� has no

eigenvalues in .�m;m/.
(vi) If ˝� is connected, then H C V� has no eigenvalues in R n Œ�m;m
.

The last theorem shows that there are a lower and upper thresholds on the possible
values of � in order to have non trivial eigenvalues in .�m;m/. This is different
from what happens with other similar potentials, such as the Coulomb potential or
the characteristic function of a ball. The Coulomb potential, for example, generates
eigenvalues for any small �. The self-adjointness for the cases � D ˙2 is currently
under study.

1.3 Isoperimetric-Type Inequality

Previously, we found that for the case of electrostatic shell potentials there is no
possible ' verifying

.H C V�/.'/ D a' (4)
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for any a 2 .�m;m/ if j�j is either too big or too small. More precisely, we showed
that there exist upper and lower thresholds �u.@˝/ and �l.@˝/, respectively, with
0 < �l.@˝/ � 2 � �u.@˝/ and such that if j�j 62 Œ�l.@˝/; �u.@˝/
 then there
exists no nontrivial ' verifying (4) for some a 2 .�m;m/.

The main purpose of this section is to determine how small can Œ�l.@˝/; �u.@˝/


be under some constraint on the size of @˝ and/or˝ .
Given a compact set E � R

3, the Newtonian capacity of E (sometimes referred
in the literature as electrostatic or harmonic capacity) is defined by

Cap.E/ D
�

inf
�

“
d�.x/ d�.y/

4�jx � yj
��1

;

where the infimum is taken over all probability Borel measures � supported in E.
Sometimes in the literature, the 4� appearing in the definition of Cap.E/ is changed
by another precise constant. For the case of open sets U � R

3, one defines

Cap.U/ D supfCap.E/ W E � U; E compactg:

Let us mention some examples of constraints where the Newtonian capacity
appears. Let ˝ � R

3 be a bounded smooth domain. On the one hand, we have
the following isoperimetric inequality

36�Vol.˝/2 � Area.@˝/3:

On the other hand, the Pólya-Szegö inequality, [6], asserts that

Cap.˝/ � 2.6�2Vol.˝//1=3;

where � is the probability measure and supp.�/ � ˝. In both cases, equality holds
if and only if ˝ is a ball. Our main result in this sense is the following one.

Theorem 1.5 Let˝ � R
3 be a bounded domain with smooth boundary and assume

that

m
Area.@˝/

Cap.˝/
>

1

4
p
2
: (5)

Then

supfj�j W kr.H C V� � a/ ¤ 0 for some a 2 .�m;m/g

� 4

 
m

Area.@˝/

Cap.˝/
C
s

m2

�
Area.@˝/

Cap.˝/

�2
C 1

4

!
;
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inffj�j W kr.H C V� � a/ ¤ 0 for some a 2 .�m;m/g

� 4

 
� m

Area.@˝/

Cap.˝/
C
s

m2

�
Area.@˝/

Cap.˝/

�2
C 1

4

!
:

In both cases, the equality holds if and only if ˝ is a ball.

2 On the Proof of the Main Results

For the sake of shortness we focus our attention on the proof of the newest result,
Theorem 1.5. See [1] for the details on the proof of Theorem 1.1 and [2] for
Proposition 1.3 and Theorem 1.4.

There are three key steps on the proof of Theorem 1.5. First, recall that this
result is for electrostatics shell potentials. Thus, the starting point is Theorem1.4 (ii),
where we relate (4) with the existence of a nontrivial eigenvalue c.a/ of Ca

� . Once
we have this relation, we show that c.a/ is a monotone function of a 2 .�m;m/.
This has important consequences because it reduces the problem to the study of
the limiting cases a D ˙m: Thanks to the well-known properties of the Cauchy
operator stated in Lemma 1.2, it is sufficient to consider just the case a D m. Hence,
it is enough to study Ker.1=� C Cm

� /. The next step is to prove that solving our
optimization problem (to find the optimal � for which Ker.1=� C Cm

� / ¤ 0) is
equivalent to minimizing, in terms of ˝ , the infimum over all � > 0 such that

�
4

�

�2Z
@˝

jW. f /j2 d� C 8m

�

Z
@˝

K. f / � f d� �
Z
@˝

j f j2 d�; (6)

for all f 2 L2.�/2. It is to this infimum � to which we prove the isoperimetric-
type inequality in Theorem 1.5. Finally, we write the isoperimetric-type inequality
in terms of area and capacity.

2.1 Monotonicity

The following lemma contains the monotonicity property mentioned above.

Lemma 2.1 Given a 2 Œ�m;m
, the eigenvalues of Ca
� form a finite or countable

sequence ; ¤ fcj.a/gj � R, with 1=4 being the only possible accumulation point of
fcj.a/2gj. Moreover, d

da cj.a/ > 0 for all a 2 .�m;m/ and all j.
As a consequence, given a 2 .�m;m/, the set of real �’s such that kr.H C

V� � a/ ¤ 0 form a finite or countable sequence ; ¤ f�j.a/gj � R, with 4 being
the only possible accumulation point of f�j.a/2gj. Furthermore, �j.a/ is a strictly
monotonous increasing function of a 2 .�m;m/ for all j.
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For any a 2 Œ�m;m
, the existence of the sequence ; ¤ fcj.a/gj � R stated in the
lemma and its possible accumulation point are guaranteed by the self-adjointness of
Ca
� and the fact that if we define �a

˙ D 1=�˙ Ca
� , then

�aC�a� D 1

�2
� .Ca

� /
2 D 1

�2
� 1

4
� Ca

� .˛ � N/f˛ � N;Ca
� g;

where Ca
� .˛ � N/f˛ � N;Ca

� g is a compact operator and self-adjoint. We want to study
@acj.a/. We denote @a 	 d

da to shorten. Let gj.a/ 2 L2.�/4 be such that kgj.a/k� D 1

and

Ca
� .gj.a// D cj.a/gj.a/: (7)

To differentiate cj.a/ with respect to a, we take the scalar product of (7) with
gj.a/, so

cj.a/ D hcj.a/gj.a/; gj.a/i� D hCa
� .gj.a//; gj.a/i� :

Thus, at a formal level and by using that Ca
� is self-adjoint,

@acj.a/ D h.@aCa
� /.gj.a//; gj.a/i� C 2Reh@agj.a/;C

a
� .gj.a//i� : (8)

Since kgj.a/k� D 1 for all a 2 .�m;m/, then (7) gives

0 D cj.a/@ahgj.a/; gj.a/i� D 2Reh@agj.a/;C
a
� .gj.a//i� :

Hence, we obtain @acj.a/ D h.@aCa
� /.gj.a//; gj.a/i� :

To justify the above computations, in particular in what respects to the issue of
the principal value in the definition of Ca

� , one can decompose the kernel

�a.x/ D e�
p

m2�a2jxj

4� jxj
�

a C mˇ C i
p

m2 � a2 ˛ � x

jxj
�

C e�
p

m2�a2jxj � 1

4�
i

�
˛ � x

jxj3
�

C i

4�

�
˛ � x

jxj3
�
:

Note that the principal value only concerns to the last term, since the other two are
absolutely integrable on @˝ and actually define compact operators, but the last one
does not depend on a. At this point, standard arguments in perturbation theory allow
us to justify the formal computations carried out above concerning @a.

The next step is to understand the operator @aCa
� . Since Ca

� is defined as the
convolution operator on @˝ with the fundamental solution of H � a, and formally
@a..H � a/�1/ D .H � a/�2, then, as we may guess, @aCa

� is defined as the
convolution operator on @˝ with the fundamental solution of .H � a/2. In the
following lines, we are going to prove the details of this argument. We can easily
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compute

@a.�
a.x// D ae�p

m2�a2jxj

4�
p

m2 � a2

�
a C mˇ C i

p
m2 � a2 ˛ � x

jxj
�

C e�p
m2�a2jxj

4�jxj :

(9)

Since �i˛ � r.e�p
m2�a2jxj/ D i

p
m2 � a2e�p

m2�a2jxj ˛ � x

jxj , then,

@a.�
a.x// D a .H C a/

e�p
m2�a2jxj

4�
p

m2 � a2
C e�p

m2�a2jxj

4�jxj : (10)

A simple calculation shows that

.��C m2 � a2/
e�p

m2�a2jxj

8�
p

m2 � a2
D e�p

m2�a2jxj

4�jxj ; (11)

which combined with (10) and using that ��C m2 � a2 D .H � a/.H C a/; yields

@a.�
a.x// D .H C a/2

e�p
m2�a2jxj

8�
p

m2 � a2
: (12)

By using that .4�jxj/�1e�p
m2�a2jxj is a fundamental solution of ��C m2 � a2 and

that .H � a/2.H C a/2 D .�� C m2 � a2/2; because �� C m2 � a2 commutes
with H C a, then, we finally deduce that .H � a/2 @a.�

a.x// D ı0; which means
that @a.�

a.x// is a fundamental solution of .H � a/2, and @aCa
� corresponds to the

operator of convolution on @˝ with this kernel. Note that @a.�
a.x// D O.1=jxj/ for

jxj ! 0, so in particular @aCa
� is compact in L2.�/4.

Given g 2 L2.�/4, set

u.x/ D
Z
@a.�

a.x � y//g.y/ d�.y/ for x 2 R
3;

so u D .@aCa
� /.g/ on @˝ . Using (12), that �� C m2 � a2 and H C a commute

and (11), we see that for any x 2 R
3 n @˝,

.H � a/u.x/ D
Z
.Hx � a/@a.�

a.x � y//g.y/ d�.y/ D �a � .g/.x/: (13)

Hx denote the Dirac operator acting as a derivative on the x variable. Since �a is
a fundamental solution of H � a, we see from (13) that .H � a/2u D 0 outside
@˝ .

From Lemma 1.2.i/, we have g D i.˛ � N/.CaC.g/� Ca�.g//: Therefore, using the
divergence theorem for H � a, that .H � a/�a � .g/ D 0 outside @˝ and (13), we
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finally get

h.@aCa
� /.g/; gi� D

Z
R3n@˝

j�a � .g/j2 d�: (14)

Thanks to the Plemelj–Sokhotski jump formulae from Lemma 1.2.i/, we see that if
g 2 L2.�/4 is such that �a � .g/ D 0 in R

3 n @˝ then Ca
˙.g/ D 0, and thus g D 0.

Therefore, applying (14) to gj.a/ and plugging it into

@acj.a/ D h.@aCa
� /.gj.a//; gj.a/i�

yields

@acj.a/ D h.@aCa
� /.gj.a//; gj.a/i� D

Z
R3n@˝

j�a � .gj.a//j2 d� > 0:

Finally, by setting cj.a/ D �1=�j.a/ we see that �j.a/ is a strictly monotonous
increasing function of a 2 .�m;m/ for all j. This finishes the proof of the lemma.

From Theorem1.4 (ii) we know that the study of the eigenvalues of H C V�
is equivalent to the study of eigenvalues of Ca

� , and from the previous result the
eigenvalues of Ca

� are a monotonous increasing function of a. Therefore, this reduces
the problem to the study of a D ˙m. Moreover, by using the properties on
Lemma 1.2, it is sufficient to consider just the case a D m. Therefore, the problem
has been reduced to the study of kr.1=�C Cm

� / ¤ 0.

2.2 Quadratic Forms

Let us introduce some bounded operators defined exclusively on the boundary of
the domain. For a 2 R and ¢ D .�1; �2; �3/, where the �j’s compose the family of
Pauli matrices introduced in (1), define the kernels

ka.x/ D e�p
m2�a2jxj

4�jxj I2 and wa.x/ D e�p
m2�a2jxj

4�jxj3
�
1C

p
m2 � a2jxj

�
i ¢ � x

for x 2 R
3 n f0g. Given f 2 L2.�/2 and x 2 @˝ , set

Ka. f /.x/ D
Z

ka.x�z/f .z/ d�.z/ and Wa. f /.x/ D lim
	&0

Z
jx�zj>	

wa.x�z/f .z/ d�.z/:
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That Ka and Wa are bounded operators in L2.�/2 can be verified similarly to the
case of Ca

� in L2.�/4, we omit the details. Moreover, note that

Ca
� D

�
.a C m/Ka Wa

Wa .a � m/Ka

�
: (15)

For any a 2 Œ�m;m
, Ka is positive and both Ka and the singular integral operator
Wa are self-adjoint. For simplicity of notation, we write k, w, K and W instead of km,
wm, Km and Wm, respectively. Thus, the study of Ker.1=�C Cm

� / ¤ 0 is equivalent
to find � 2 R and u; h 2 L2.�/2 such that

�
2mK.u/C W.h/ D �u=�;

W.u/ D �h=�:

Now by using the properties

f.¢ � N/K; .¢ � N/Wg D 0 and Œ.¢ � N/W
2 D �1=4; (16)

we get u D .4=�/.� � N/W.� � N/.h/: Plugging u into the first equation we obtain
that there exists f 2 L2.�/2; f ¤ 0 such that

�
�8m

�
K C 1 � 16

�2
W2

�
f D 0:

Multiply by f , integrate with respect to � and we get

�
4

�

�2Z
jW. f /j2 d� C 8m

�

Z
K. f / � f d� D

Z
j f j2 d�;

where the second term on the left hand side is positive. Thus, the quadratic form is
decreasing for � > 0. As a consequence we have

�˝ D inf

(
� > 0 W

�
4

�

�2Z
jW. f /j2 d� C 8m

�

Z
K. f / � f d� �

Z
j f j2 d�;

)

for all f 2 L2.�/2.
These arguments lead us to the next theorem, that is a key ingredient to derive

the isoperimetric-type inequalities contained in Theorem 1.5. It gives the connection
between the admissible �’s that generate eigenvalues of C˙m

� with the optimal
constant of the inequality (17).
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Theorem 2.2 Let �˝ be the infimum over all � > 0 such that

�
4

�

�2Z
jW. f /j2 d� C 8m

�

Z
K. f / � f d� �

Z
j f j2 d� (17)

for all f 2 L2.�/2. Then,

(i) 4
�
mkKk� Cp

m2kKk2� C 1=4
	 � �˝ � 4

�
mkKk� Cp

m2kKk2� C kWk2�
	
;

(ii) If � > 0 is such that kr.1=�C Cm
� / ¤ 0 then � � �˝ ,

(iii) If � D �˝ > 2
p
2 then the equality holds, and the minimizers of (17) give

rise to functions in kr.1=�˝ C Cm
� / and vice versa.

For the first part of the theorem, we denote by A.�; f / the left hand side of (17)
for a given � > 0 and f 2 L2.�/2. Note that

A.�; f / �
 �

4kWk�
�

�2
C 8mkKk�

�

!
k f k2� : (18)

Hence, if � � 4
�
mkKk� Cp

m2kKk2� C kWk2�
	

then (18) yields A.�; f / � k f k2� for

all f 2 L2.�/2, which in turn implies that �˝ � 4
�
mkKk� Cp

m2kKk2� C kWk2�
	
.

The inequality from below is a bit more involved. Let � > 0 be such that

A.�; f / � k f k2� for all f 2 L2.�/2: (19)

If we set h D 4
�
.¢ �N/W. f / 2 L2.�/2, then f D ��.¢ �N/W.h/ by (16). Furthermore,

Z
jW. f /j2 d� D

�
�

4

�2Z
jhj2 d� and

Z
j f j2 d� D �2

Z
jW.h/j2 d�: (20)

Moreover, using (16) again,

Z
K. f / � f d� D �2

Z
K.¢ � N/W.h/ � .¢ � N/W.h/ d� D �2

4

Z
K.h/ � h d�:

(21)
Gathering (19) with (20) and (21) yields

Z
jhj2 d� C 2m�

Z
K.h/ � h d� � �2

Z
jW.h/j2 d� (22)

for all h 2 L2.�/2. If we multiply (22) by 16=�4 we get

16

�4

Z
j f j2 d� C 32m

�3

Z
K. f / � f d� � 16

�2

Z
jW. f /j2 d�
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for all f 2 L2.�/2, which added to (19) gives

2m
Z

K. f / � f d� �
�
�

4
� 1

�

�Z
j f j2 d� for all f 2 L2.�/2:

Since K is bounded, positive and self-adjoint, we see from the above inequality that

2mkKk� D 2m sup
k f k�D1

Z
K. f / � f d� � �

4
� 1

�
;

which in turn is equivalent to �2 � 8mkKk�� � 4 � 0; since � > 0 by assumption.
Therefore, we must have � � 4

�
mkKk� C p

m2kKk2� C 1=4
	

for all � > 0

satisfying (19). This gives the desired inequality from below for �˝ , and finishes
the proof of .i/. Observe that this lower bound for �˝ is strictly greater than 2
because kKk� > 0. The proof of (ii) comes from the arguments presented before
the theorem. And, for the last part, since K is positive, A.�; f / is a non-increasing
function of � > 0 for all f 2 L2.�/2. By the definition of �˝ , this monotony implies
that (17) holds for all � � �˝ and it is sharp for � D �˝ . It remains to be shown
that if �˝ > 2

p
2 then the equality is attained and that the minimizers give rise to

functions in kr.1=�˝ C Cm
� / and vice versa. We will not give these details in order

to shorten the notes, see [3].
The constraint (5) needed in Theorem 1.5, appears precisely as a technical

obstruction on the arguments that we use to prove that equality holds in (17). The
items .ii/ and .iii/ in Theorem 2.2 ensure that

�˝ D supfj�j W kr.1=�C Cm
� / ¤ 0g and 4=�˝ D inffj�j W kr.1=�C Cm

� / ¤ 0g:
(23)

2.3 The Isoperimetric-Type Inequality

Finally, in this subsection we gather the previous results and give the isoperimetric-
type inequality in terms of area and capacity. Notice that we are looking for an
inequality for �˝ .

At this point the following result become crucial. If ˝ is a ball then 2W is an
isometry and kW˝k2� D 1=4. The opposite implication is proved in [5]. Thus, �˝ D
4
�
mkKk� Cp

m2kKk2� C 1=4
	
:

For a general˝ , kWk2� � 1=4 holds. Then,

kKk� D sup
f ¤0

1

k f k2�

Z
Kf � f � �.@˝/

“
1

4�jx � yj
d�.x/

�.@˝/

d�.y/

�.@˝/

� Area.@˝/

Cap.˝/
:
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Equality holds in the las two inequalities if ˝ is a ball. Hence,

�˝ � 4

 
m

Area.@˝/

Cap.˝/
C
s

m2

�
Area.@˝/

Cap.˝/

�2
C 1

4

!
: (24)

Therefore, combining (23) and (24) we get the desired result.
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Correlation Inequalities for Classical
and Quantum XY Models

Costanza Benassi, Benjamin Lees, and Daniel Ueltschi

Abstract We review correlation inequalities of truncated functions for the classical
and quantum XY models. A consequence is that the critical temperature of the XY
model is necessarily smaller than that of the Ising model, in both the classical and
quantum cases. We also discuss an explicit lower bound on the critical temperature
of the quantum XY model.

Keywords Classical XY model • Correlation inequalities • Lattice systems •
Quantum XY model • Spin systems

1 Setting and Results

The goal of this survey is to recall some results of old that have been rather
neglected in recent years. We restrict ourselves to the cases of classical and quantum
XY models. Correlation inequalities are an invaluable tool that allows to obtain
the monotonicity of spontaneous magnetisation, the existence of infinite volume
limits, and comparisons between the critical temperatures of various models. Many
correlation inequalities have been established for the planar rotor (or classical XY)
model, with interesting applications and consequences in the study of the phase
diagram and the Gibbs states [1–7]. Some of these inequalities can also be proved
for its quantum counterpart [8–11].

Let � be a finite set of sites. The classical XY model (or planar rotor model) is a
model of interacting spins on such a lattice. The configuration space of the system is
defined as ˝� D ff�xgx2� W �x 2 S

1 8x 2 �g: each site hosts a unimodular vector
lying on a unit circle. It is convenient to represent the spins by means of angles,
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namely

�1x D cos�x (1)

�2x D sin �x (2)

with �x 2 Œ0; 2�
. The energy of a configuration � 2 ˝� with angles � D f�xgx2�
is

Hcl
�.�/ D �

X
A��

J1A
Y
x2A

�1x C J2A
Y
x2A

�2x ; (3)

with Ji
A 2 R for all A � �. The expectation value at inverse temperature ˇ of a

functional f on the configuration space is

h f icl
�;ˇ D 1

Zcl
�;ˇ

Z
d�e�ˇHcl

�.�/f .�/; (4)

where Zcl
�;ˇ D R

d�e�ˇHcl
�.�/ is the partition function and

R
d� D R 2�

0 : : :
R 2�
0Q

x2�
d�x
2�

.
We now define the quantum XY model. We restrict ourselves to the spin- 1

2
case.

As before, the model is defined on a finite set of sites�; the Hilbert space is H qu
� D

˝x2�C2. The spin operators acting on C
2 are the three hermitian matrices Si, i D

1; 2; 3, that satisfy


S1; S2

� D iS3 and its cyclic permutations, and .S1/2 C .S2/2 C
.S3/2 D 3

4
1. They are explicitly formulated in terms of Pauli matrices:

S1 D 1
2

�
0 1

1 0

�
; S2 D 1

2

�
0 �i
i 0

�
; S3 D 1

2

�
1 0

0 �1
�
: (5)

The hamiltonian describing the interaction is

Hqu
� D �

X
A��

J1A
Y
x2A

S1x C J2A
Y
x2A

S2A; (6)

with Si
x D Si ˝1�nfxg. The fJi

AgA�� are nonnegative coupling constants. The Gibbs
state at inverse temperature ˇ is

hOiqu
�;ˇ D 1

Zqu
�;ˇ

TrO e�ˇH
qu
� ; (7)

with Zqu
�;ˇ D Tr e�ˇH

qu
� the partition function and O any operator acting on H

qu
� .

The first result holds for both classical and quantum models.
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Theorem 1.1 Assume that J1A; J
2
A � 0 for all A � �. The following inequalities

hold true for all X;Y � �, and for all ˇ > 0.

Classical W
DY

x2X

�1x

Y
x2Y

�1x

Ecl

�;ˇ
�
DY

x2X

�1x

Ecl

�;ˇ

DY
x2Y

�1x

Ecl

�;ˇ
� 0;

DY
x2X

�1x

Y
x2Y

�2x

Ecl

�;ˇ
�
DY

x2X

�1x

Ecl

�;ˇ

DY
x2Y

�2x

Ecl

�;ˇ
� 0:

Quantum W
DY

x2X

S1x
Y
x2Y

S1x
Equ

�;ˇ
�
DY

x2X

S1x
Equ

�;ˇ

DY
x2Y

S1x
Equ

�;ˇ
� 0;

DY
x2X

S1x
Y
x2Y

S2x
Equ

�;ˇ
�
DY

x2X

S1x
Equ

�;ˇ

DY
x2Y

S2x
Equ

�;ˇ
� 0:

In the quantum case, similar inequalities hold for Schwinger functions, see [11]
for details. The proofs are given in Sects. 3 and 4 respectively. These inequalities
are known as Ginibre inequalities—first introduced by Griffiths for the Ising model
[12] and systematised in a seminal work by Ginibre [13], which provides a general
framework for inequalities of this form. Ginibre inequalities for the classical XY
model have then been established with different techniques [1, 3–5, 13]. The
equivalent result for the quantum case has been proved with different approaches
[8–11]. An extension to the ground state of quantum systems with spin 1 was
proposed in [11]. A straightforward corollary of this theorem is monotonicity with
respect to coupling constants, as we see now.

Corollary 1.2 Assume that J1A; J
2
A � 0 for all A � �. Then for all X;Y � �, and

for all ˇ > 0

Classical W @

@J1Y
h
Y
x2X

�1x icl
�;ˇ � 0;

@

@J2Y
h
Y
x2X

�1x icl
�;ˇ � 0:

Quantum W @

@J1Y
h
Y
x2X

S1xiqu
�;ˇ � 0;

@

@J2Y
h
Y
x2X

S1xiqu
�;ˇ � 0:

Interestingly this result appears to be not trivially true for the quantum Heisen-
berg ferromagnet. Indeed a toy version of the fully SU(2) invariant model has
been provided explicitly, for which this result does not hold (nearest neighbours
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interaction on a three-sites chain with open boundary conditions) [14]. The question
whether this result might still be established in a proper setting is still open. On
the other hand, Ginibre inequalities have been proved for the classical Heisenberg
ferromagnet [1, 2, 4].

Monotonicity of correlations with respect to temperature does not follow
straightforwardly from the corollary. This can nonetheless be proved for the classical
XY model.

Theorem 1.3 Classical model: Assume that J1A � jJ2Aj for all A � �, and that
J2A D 0 whenever jAj is odd. Then for all A;B � �, we have

@

@̌

DY
x2B

�1x

Ecl

�;ˇ
� 0:

Let us restrict to the two-body case and assume that Hcl
� is given by

Hcl
� D �

X
x;y2�

Jxy
�
�1x �

1
y C �xy�

2
x �

2
y

	
:

Then if j�xyj � 1 for all x; y,

@

@Jxy
h
Y
z2A

�1z icl
�;ˇ � 0: (8)

Notice that this theorem has a wider range of applicability than Corollary 1.2: in
the theorem above, the coupling constants along one of the directions are allowed
to be negative (though not too negative), while in the corollary the nonnegativity of
all coupling constants a is necessary hypothesis. This result has been proposed and
discussed in various works [4, 6, 13]—see Sect. 3 for the details. Unfortunately we
lack a quantum equivalent of these statements.

We conclude this section by remarking that correlation inequalities in the quan-
tum case can be applied also to other models of interest. For example, we consider a
certain formulation of Kitaev’s model (see [15] for its original formulation and [16]
for a review of the topic). Let� �� Z

2 be a square lattice with edges E�. Each edge
of the lattice hosts a spin, i.e. the Hilbert space of this model is H Kitaev

� D ˝e2E�C2.
The Kitaev hamiltonian is

HKitaev
� D �

X
x2�

Jx

Y
e2E�W

x2e

S1e C
X
F��

JF

Y
e�F

S3e ; (9)

where F denotes the faces of the lattice, i.e. the unit squares which are the building
blocks of Z2, Jx; JF are ferromagnetic coupling constants and Si

e D Si ˝ 1E�ne.
HKitaev
� has the same structure as hamiltonian (6) so Ginibre inequalities apply as
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well. It is not clear, though, whether this might lead to useful results for the study of
this specific model.

Another relevant model is the plaquette orbital model that was studied in [17, 18];
interactions between neighbours x; y are of the form �Si

xSi
y, with i being equal to 1

or 3 depending on the edge.

2 Comparison Between Ising and XY Models

We now compare the correlations of the Ising and XY models and their respective
critical temperatures. The configuration space of the Ising model is˝ Is

� D f�1; 1g�,
that is, Ising configurations are given by fsxgx2� with sx D ˙1 for each x 2 �. We
consider many-body interactions, so the energy of a configuration s 2 ˝ Is

� is

HIs
�;fJAg.s/ D �

X
A��

JA

Y
x2A

sxI (10)

we assume that the system is “ferromagnetic”, i.e. the coupling constants JA � 0 are
nonnegative. The Gibbs state at inverse temperature ˇ is

h f iIs
�;fJAg;ˇ D 1

ZIs
�;fJAg;ˇ

X
s2˝Is

�

f .s/ e�ˇHIs
�;fJAg ; (11)

with f any functional on ˝ Is
� and ZIs

�;fJAg;ˇ D P
s2˝Is

�
e�ˇHIs

�;fJAg is the partition
function. The following result holds for both the classical [5] and the quantum case
[9, 19].

Theorem 2.1 Assume that J1A; J
2
A � 0 for all A � �. Then for all X � � and all

ˇ > 0,

Classical: h
Y
x2X

�1x icl
�;ˇ � h

Y
x2X

sxiIs
�;fJ1Ag;ˇ:

Quantum: h
Y
x2X

S1xiqu
�;ˇ � 2�jXjh

Y
x2X

sxiIs
�;fJ�

A g;ˇ;

with J�
A D 2�jAjJ1A.

A review of the proof of the classical case is proposed in Sect. 3. In the quantum
case, this statement for spin- 1

2
is a straightforward consequence of Corollary 1.2, but

interestingly this result has been extended to any value of the spin [19]. We review
the proof of this general case in Sect. 4.
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We now consider the case of spin- 1
2

and pair interactions, that is, the hamiltonian
is

Hqu
� D �

X
x;y2�

.S1xS1y C S2xS2y/: (12)

We define the spontaneous magnetisation m.ˇ/ at inverse temperature ˇ by

m.ˇ/2 D lim inf
�%Zd

1

j�j2
X

x;y2�
hS1xS1yiqu

�;ˇ: (13)

We define the critical temperature for the model Tqu
c D 1=ˇ

qu
c as

ˇqu
c D sup

˚
ˇ > 0 W m.ˇ/ D 0

�
; (14)

where ˇqu
c 2 .0;1
. A consequence of Theorem 2.1 is the following.

Corollary 2.2 The critical temperatures satisfy

Tqu
c � 1

4
T Ising

c :

The critical temperature of the Ising model in the three-dimensional cubic lattice
has been calculated numerically and is T Ising

c D 4:511 ˙ 0:001 [20]. It is Tcl
c D

2:202˙0:001 [21] for the classical model and Tqu
c D 1:008˙0:001 for the quantum

model (S. Wessel, private communication).
A major result of mathematical physics is the rigorous proof of the occurrence

of long-range order in the classical and quantum XY models, in dimensions three
and higher, and if the temperature is low enough [22, 23]. The method can be used
to provide a rigorous lower bound on critical temperatures; the following theorem
concerns the quantum model.

Theorem 2.3 For the three-dimensional cubic lattice, the temperature of the
quantum XY model satisfies

Tqu
c � 0:323:

The best rigorous upper bound on the critical temperature of the three-
dimensional Ising model is T Ising

c � 5:0010 [24]. Together with the above corollary
and theorem, we get

0:323 � Tqu
c � 1

4
T Ising

c � 1:250: (15)

Proof (Theorem 2.3) We consider the XY model with spins in the 1–3 directions for
convenience. We make use of the result [25, Theorem 5.1], that was obtained with
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the method of reflection positivity and infrared bounds [22, 23]. Precisely, we use
Eqs. (5.54), (5.57) and (5.63) of [25].

m.ˇ/2 �
8<
:
1
4

� J3
2

q
hS10S

1
e1iqu � K3

ˇ

hS10S
1
e1

iqu
� � I3

2

q
hS10S

1
e1

iqu � K0
3

ˇ

(16)

where e1 is a nearest neighbour of the origin, and J3; I3;K3;K0
3 are real numbers

coming from explicit integrals. Their values are J3 D 1:15672; I3 D 0:349884;
K3 D 0:252731; and K0

3 D 0:105107. Notice that ˇ is rescaled by a factor 2 with
respect to [25], due to a different choice of coupling constants in the hamiltonian.

Let x D
q

hS10S
1
e1iqu; since we do not have good bounds on x, we treat it as an

unknown. The magnetisation m.ˇ/ is guaranteed to be positive if x � t where t is

the zero of 1
4

� K3
ˇ

� J3
2

x; or x � rC, where rC is the largest zero of x2 � I3
2

x � K0
3

ˇ
.

At least one of these holds true when rC < t, that is, when

1
2

�
I3
2

C
r

I23
4

C 4K0
3

ˇ

�
< 1

2J3
� 1

ˇ
2K3
J3

(17)

This is the case for 1=ˇ < 0:323 giving the upper bound Tc � 0:323.

3 Proofs for the Classical XY Model

The proofs require several steps and additional lemmas. The following paragraphs
are devoted to a complete study of their proofs. Given local variables f�xgx2�, we
denote � i

A D Q
x2A �

i
x for A � �.

3.1 Griffiths and FKG Inequalities, and Proof of Theorem 1.1

We start with Theorem 1.1. We describe the approach proposed in [1, 5], and use a
similar notation. Their framework relies on some well known properties of the Ising
model and on the so called FKG inequality.

Lemma 3.1 (Griffiths Inequalities for the Ising Model) Let f and g be
functionals on ˝ Is

� such that they can be expressed as power series of
Q

x2A sx,
A � � with positive coefficients. Then

h f iIs
�;fJAg;ˇ � 0I

h fgiIs
�;fJAg;ˇ � h f iIs

�;fJAg;ˇhgiIs
�;fJAg;ˇ:
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We do not provide the proof of this result—see [12, 13] for the original
formulation and [26] for a modern description. An immediate consequence is the
following.

Corollary 3.2 Given f with the properties in Lemma 3.1, we have for any A � �

@

@JA
h f iIs

�;fJAg;ˇ � 0:

Another result which is very useful in this framework is the so called FKG
inequality. We formulate it in a specific setting. Let IN D 


0; �
2

�N
for some N 2 N.

Any  2 IN is then a collection of angles  D . 1; : : : ;  N/. It is possible to
introduce a partial ordering relation on IN as follows: for any  ;  2 IN ,  �  if
and only if  i � i for all i 2 f1; : : : ;Ng. A function f on IN is said to be increasing
(or decreasing) if  �  implies f . / � f ./ (or f . / � f ./) for all  ;  2 IN .
The following result holds.

Lemma 3.3 (FKG Inequality) Let d�. / D p. /
QN

iD1 d�. i/ be a normalised
measure on IN, with d�. i/ a normalised measure on



0; �

2

�
, p. / � 0 for all

 2 IN and

p. _ /p. ^ / � p. /p./; (18)

where . _ /i D max. i; i/ and . ^ /i D min. i; i/. Then for any f and g
increasing (or decreasing) functions on IN

Z
fgd� �

Z
fd�

Z
gd�:

The inequality changes sign if one of the functions is increasing and the other is
decreasing.

We also skip the proof of this statement. We refer to [27] for the original result,
to [5, 28] for the formulation above, and [26] for its relevance in the study of the
Ising model.

Before turning to the actual proof of the theorem, we introduce another useful
lemma.

Lemma 3.4 Let fqxgx2� be a collection of positive increasing (decreasing) func-
tions on



0; �

2

�
. Then for any �;  2 Ij�j and any A � �,

qA.� _  /C qA.� ^  / � qA. /C qA.�/:

We do not provide the proof here, see [5, 28] for more details. We can now discuss
the proof of Theorem 1.1.
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Proof (Theorem 1.1) Since the temperature does not play any rôle in this section,
we set ˇ D 1 in the following and we drop any dependency on it. The main idea of
the proof is to describe a classical XY spin as a pair of Ising spins and an angular
variable. The new notation for �x 2 S

1 is

�1x D cos.�x/Ux; (19)

�2x D sin.�x/Vx; (20)

with Ux;Vx 2 f�1; 1g for all x 2 � and � D .�x1 ; : : : ; �x�/ 2 Ij�j. With this
notation, it is possible to express Hcl

� of Eq. (3) as the sum of two Ising hamiltonians
with spins fUxgx2�, fVxgx2� respectively:

Hcl
� .�;U;V/ D �

X
A��

 
J1A
Y
x2A

cos.�x/UA C J2A
Y
x2A

sin.�x/VA

!
(21)

D HIs
�;fcos.�/AJ1Ag.U/C HIs

�;fsin.�/AJ2Ag.V/: (22)

Let us introduce the notation: J1A
Q

x2A cos.�x/ D JA.�/, J2A
Q

x2A sin.�x/ D K A.�/,R
d� D R �

2

0 : : :
R �

2

0

Q
x2� 2

�
d�x. Then

h�1X�1Y iHcl
�

D
R

d� ZIs
�;fJA.�/gZ

Is
�;fK A.�/g cos.�/X cos.�/YhUXUYiIs

�;fJA.�/gR
d� ZIs

�;fJA.�/gZ
Is
�;fK A.�/g

�
R

d� ZIs
�;fJA.�/gZ

Is
�;fK A.�/g cos.�/XhUXiIs

�;fJA.�/g cos.�/YhUYiIs
�;fJA.�/gR

d� ZIs
�;fJA.�/gZ

Is
�;fK A.�/g

:

The inequality above follows from Lemma 3.1. Moreover

h�1X�2YiHcl
�

D
R

d�ZIs
�;fJA.�/gZ

Is
�;fK A.�/g cos.�/XhUXiIs

�;fJA.�/g sin.�/YhVYiIs
�;fK A.�/gR

d� ZIs
�;fJA.�/gZ

Is
�;fK A.�/g

:

cos.�/X and sin.�/X are respectively decreasing and increasing on Ij�j for any
X � �. Let us now consider hUXiIs

�;fJA.�/g. By Corollary 3.2, it is a decreasing

function on Ij�j for any X � �, since the coupling constants of HI
�;fJA.�/g are

decreasing in � . Analogously, hVXiIs
�;fK A.�/g is an increasing function on Ij�j for

any X � �. Theorem 1.1 is then a simple consequence of Lemma 3.3, with
d�.�x/ D 2

�
d�x and

p.�/ D
ZIs
�;fJA.�/gZ

Is
�;fK A.�/gR

d� ZIs
�;fJA.�/gZ

Is
�;fK A.�/g

: (23)
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The last step missing is to show that p.�/ defined as above fulfills hypothesis (18)
of Lemma 3.3. This amounts to showing

ZIs
�;fK A.�_ /gZ

Is
�;fK A.�^ /g � ZIs

�;fK A.�/gZ
Is
�;fK A. /gI (24)

ZIs
�;fJA.�_ /gZ

I
�;fJA.�^ /g � ZIs

�;fJA.�/gZ
Is
�;fJA. /g: (25)

Since the arguments to prove these inequalities are very similar, we prove explicitly
only the first one. Equation (24) is equivalent to

 
ZIs
�;fK A.�/g

ZIs
�;fK A.�^ /g

!�1  
ZIs
�;fK A.�_ /g
ZIs
�;fK A. /g

!
� 1 (26)

Notice that

 
ZIs
�;fK A.�/g

ZIs
�;fK A.�^ /g

!�1  
ZIs
�;fK A.�_ /g
ZIs
�;fK A. /g

!
D

h e�HIs
�;fK A.�_ /�K A. /g iIs

�;fK A. /g
h e�HIs

�;fK A.�/�K A.�^ /g iIs
�;fK A.�^ /g

:

Thanks to Lemma 3.4, the functions whose expectation value we are computing
above fulfill the hypothesis of Lemma 3.1 and Corollary 3.2. Then, applying
Lemma 3.4 and Corollary 3.2,

h e�HIs
�;fK A.�_ /�K A. /g iIs

�;fK A. /g � h e�HIs
�;fK A.�/�K A.�^ /g iIs

�;fK A. /g

� h e�HIs
�;fK A.�/�K A.�^ /g iIs

�;fK A.�^ /g:
(27)

Hence p.�/ has the required property.

3.2 Proof of Theorem 1.3

Let us now turn to Theorem 1.3. We follow the framework described in [4, 13].

Lemma 3.5 Let Hcl
� be the hamiltonian defined in (3). If J1A � jJ2Aj for all A � �

and J2A D 0 for jAj odd, then there exist non negative coupling constants fKMgM2Z�
such that

Hcl
�.�/ D �

X
M2Z�

KM cos .M � �/ ; (28)

where, given M 2 Z
�, M D .m1;m2; : : : ;m�/, M � � D P

x2� mx�x.
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Proof The statement follows from the two following identities:

cos.�/ cos.�/ D 1

2
.cos.� � �/C cos.� C �//; (29)

sin.�/ sin.�/ D 1

2
.cos.� � �/ � cos.� C �//; (30)

8�; � 2 Œ0; 2�
.
A necessary step for this lemma and for Theorem 1.3 is duplication of variables
[13]: we consider two sets of angles (i.e. spins) on the lattice instead of just one, and
denote them by f�xgx2� and f N�xgx2�. The hamiltonian for the f N�xg is

NHcl
�.

N�/ D �
X
A��

�NJ1A N�1A C NJ2A N�2A
	

D �
X

M2Z�
NKM cos.M � N�/: (31)

Here, f N�xg are related to f N�xg as in Eqs. (1) and (2). The NJi
A are non negative coupling

constants with NJ1A � jNJ2Aj � 0 and f NKMg are as in Lemma 3.5. A composite
hamiltonian can be defined as

� OH�.�; N�/ D �Hcl
�.�/ � NHcl

�.
N�/

D
X

M2M
KMC NKM

2

�
cos.M � �/C cos.M � N�/	C KM� NKM

2

�
cos.M � �/� cos.M � N�/	

(32)
In the following we always suppose KM � NKM for all M 2 Z

�.The expectation
value of any functional f .�; N�/ can be written as

h f i OH�;ˇ D 1

ZH�;ˇZ NH�;ˇ

Z
d�d N�e�ˇ OH�.�; N�/f .�; N�/: (33)

Lemma 3.6 Suppose f .�; N�/ belongs to the cone generated by cos.M � �/ ˙
cos.M � N�/, M 2 Z

�, i.e. f can be written as product, sum or multiplication by
a positive scalar of objects of that form. Then

h f i OH�;ˇ � 0: (34)

Proof Firstly, notice that

Z
d�d N�

nY
sD1
.cos.Ms � �/˙ cos.Ms � N�/ � 0 (35)
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for any M1; : : : ;Mn 2 Z
� and any sequence of .˙/. This follows from

cos.M � �/C cos.M � N�/ D 2 cos.M � ˚/ cos.M � N̊ /; (36)

cos.M � �/ � cos.M � N�/ D 2 sin.M � ˚/ sin.M � N̊ /; (37)

with ˚i D 1
2
.�i C N�i/ and N̊ i D 1

2
.�i � N�i/. The integral (35) can be formulated as

Z
d˚d N̊ F.˚/F. N̊ / D

�Z
d˚F.˚/

�2
� 0; (38)

with F.˚/ an appropriate product of sines, cosines and positive constants.
Let us now turn to hf i OH�;ˇ . Since the partition function is always positive, we can

focus on
Z

d�d N�e�ˇ OH�.�; N�/f .�; N�/: (39)

By a Taylor expansion of e�ˇ OH�.�; N�/ and by the properties of f , this can be
expressed as a sum with positive coefficients of integrals in the form (35). Hence
the nonnegativity of the expectation value.
We have now all we need to prove Theorem 1.3.

Proof (Theorem 1.3) In order to prove the first statement of the theorem we use the
formulation of the hamiltonian described in Lemma 3.5. Moreover, since �1A can
be clearly expressed as the sum (with positive coefficients) of terms of the form
cos.M � �/, M 2 Z

�, it is enough to prove that for any M;N 2 Z
�

@

@KN
hcos.M � �/icl

�;ˇ

D hcos.M � �/ cos.N � �/icl
�;ˇ � hcos.M � �/icl

�;ˇhcos.N � �/icl
�;ˇ � 0:

(40)

Consider now the hamiltonian OH� introduced above and h�i OH�;ˇ the correspond-
ing Gibbs state. From Lemma 3.6 we have

h�cos.M � �/� cos.M � N�/	 �cos.N � �/ � cos.N � N�/	i OH�;ˇ � 0: (41)

If we take the limit NKM % KM , we find twice the expression in Eq. (40). Hence the
result.

Let us now turn to the second statement of the theorem. In the case of two-body
interaction Hcl

� assumes the form (8), which, with a notation resembling the one
introduced in Lemma 3.5 can be explicitly formulated as

Hcl
�.�/ D �

X
x;y2�

K�
xy cos.�x � �y/C KC

xy cos.�x C �y/ (42)
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with

Kẋy D Jxy

2

�
1� �xy

	
: (43)

Clearly Kẋy is analogous to the KM introduced in Lemma 3.5 for M 2 Z
� such that

all its elements are zero except mx D 1; my D ˙1. Then we have

@

@Jxy
h�AiHcl

�
D 1C �xy

2

@

@K�
xy

h�AiHcl
�

C 1 � �xy

2

@

@KC
xy

h�AiHcl
�
: (44)

Due to Eq. (40) the expression above is the sum of two positive terms, hence it is
positive.

3.3 Proof of Theorem 2.1

In this section we discuss the proof of Theorem 2.1 for the classical XY model.
We use some of the concepts introduced in Sect. 3.2. The present proof has been
proposed in [1, 5].

Proof (Theorem 2.1) As for the proof of Theorem 1.1, we express the XY spins
by means of two Ising spins and an angle in



0; �

2

�
—see Eqs. (19) and (20) for the

explicit expression of the spins and (22) for the new formulation of the hamiltonian
Hcl
�. With the same notation:

h�1XiHcl
�

D
R

d� ZIs
�;fJA.�/gZ

Is
�;fK A.�/g cos.�/XhUXiIs

�;fJA.�/gR
d� ZIs

�;fJA.�/gZ
Is
�;fK A.�/g

�
R

d� ZIs
�;fJA.�/gZ

Is
�;fK A.�/g max�2Ij�j

hUXiIs
�;fJA.�/gR

d� ZIs
�;fJA.�/gZ

Is
�;fK A.�/g

D hUAiIs
�;fJ1Ag:

(45)

4 Proof for the Quantum XY Model

We now discuss the proof of Theorem 1.1 in the quantum case. This theorem has
been proved for pair interaction in [8], and it has been proposed independently in
various works for more generic interactions [9–11]. We describe here the simpler
approach proposed in [11]. Since the temperature does not play any role from now
on, we set ˇ D 1 and omit any dependency on it in the following. As for the classical
case we introduce the notation Si

A D Q
x2A Si

x.
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Proof (Theorem 1.1) For the proof it is convenient to perform a unitary transforma-
tion on the hamiltonian (6) and consider its version with interactions along the first
and third directions of spin, namely

Hqu
� D �

X
A��

J1AS1A C J3AS3A; (46)

with J3A D J2A for all A � �.
The proof of this theorem uses some techniques similar to the ones introduced

for the classical Theorem 1.3. These were indeed introduced by Ginibre [13] in a
general framework. As for the classical case, it is convenient to duplicate the model.
We introduce a new doubled Hilbert space NH� D H� ˝ H�. Given an operator O
acting on H� we define two operators acting on NH�,

O˙ D O ˝ 1 ˙ 1 ˝ O: (47)

The hamiltonian we consider for the doubled system is Hqu
�;C:

Hqu
�;C D Hqu

� ˝ 1� C 1� ˝ Hqu
� D �

X
A��

J1A.S
1
A/C C J3A.S

3
A/C (48)

The Gibbs state is denoted as

hhOii D 1

.Zqu
� /

2
Tr O e�H

qu
�;C ; (49)

for any operator O acting on NH�. It follows from some straightforward algebra that

hOPiqu
� � hOiqu

� hPiqu
� D 1

2
hhO�P�iiI (50)

.OP/˙ D 1

2
.OCP˙ C O�P�/ ; (51)

for any O , P operators on H�.
Just as C

2 constitutes the “building block” for H�, so C
2 ˝ C

2 is to NH�. We
can provide an explicit basis of C2 ˝ C

2 such that S1C, S1�, S3C, �S3� have all non
negative elements:

j�Ci D 1p
2
.j C Ci C j � �i/ ; j��i D 1p

2
.j C Ci � j � �i/ ; (52)

j�Ci D 1p
2
.j C �i C j � Ci/ ; j��i D 1p

2
.j C �i � j � Ci/ : (53)
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Above by jCi and j�i we denote the basis of C2 formed by eigenvectors of S3 with
eigenvalues 1

2
and � 1

2
respectively, and ji; ji D jii ˝ j ji. It can be easily checked

that the basis above has the required property. This result implies straightforwardly
that there exists a basis of NH� such that .S1x/C, .S1x/�, .S3x/C and .�S3x/� have non
negative element for all x 2 �. Let us consider the truncated correlation function
we are interested in:

DY
x2X

S1x
Y
x2Y

S1x
Equ

�
�
DY

x2X

S1x
Equ

�

DY
x2Y

S1x
Equ

�
D 1

2
hh�S1X	� �S1Y	�ii: (54)

We can evaluate the right hand side of the equation above by a Taylor expansion:

.Zqu
� /

2hh�S1X	� �S1Y	�ii D
X
n�0

1

nŠ
Tr
�
S1X
	

�
�
S1Y
	

� .�Hqu
�;C/

n (55)

Given the formulation of Hqu
�;C as in Eq. (48) and relation (51), it is clear that

it can be expressed as a polynomial with positive coefficients of operators with
nonnegative elements. The same holds for .S1X/� and.S1Y/�. The trace of operators
with nonnegative elements is non negative, hence the first inequality of the theorem.
The second inequality can be proved precisely in the same way (with S2Y substituted
by S3Y), by noticing that .S3Y/� has necessarily non positive elements.

Let us now turn to Theorem 2.1. While in the classical case it is necessary to
introduce an artificial framework, interestingly the proof for the quantum case does
not require such a construction. For spin- 1

2
the statement can be easily recovered by

recalling that the classical Ising model can be recovered as a particular case of the
quantum XY model (not of the classical one!). We review here a more general proof
valid for any value of spin S [19].

Proof (Theorem 2.1) We reformulate the quantum Hamiltonian in order to have
the interaction along the first and the third axis, as in Eq. (46). We prove here the
following result, which is unitarily equivalent to the statement of the theorem:

˝
S3X
˛qu

�;ˇ
� S jXjhsAiIs

�;fS jAjJ3Ag;ˇ: (56)

From now on we set ˇ D 1 and drop all the dependencies on ˇ since it does not play
any role. Let S i

x D S �1Si
x be the rescaled spin operators. The models we compare

are the following:

Hqu
�;S D �

X
A��

J1AS
1
A C J3AS

3
A; (57)

HIs
�;fJ3Ag D �

X
A��

J3AsA: (58)
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Clearly, (56) is equivalent to

hS 3Xiqu
�;S � hsXiIs

�;fJ3Ag: (59)

This is what we aim to prove. Let us now build a composite system where each site
of the lattice hosts a quantum degree of freedom and an Ising variable at the same
time. Let H D Hqu

�;S C HIs
�;fJ3Ag, i.e.

H D �
X
A��

J1AS
1
A C J3A.sA C S 3A/: (60)

The Gibbs state is the natural one given the Gibbs states for the two separated
systems. We denote it by h�i�. We are interested in the expectation value hsX � S 3Xi�
for some X � �. Since the trace is invariant under unitary transformations, we can
apply on each site the unitary .S 1x ; S 2x ; S 3x / ! .S 1x ; sxS 2s ; sxS 3x / and find

X
s2˝�

Tr
�
sX � S 3X

	
e�H D

X
s2˝�

Tr sX.1 � S 3X/ e
P

A�� J1AS
1
ACJ3AsA.1CS3A/ (61)

The expression evaluated above is just the expectation value we are interested in
multiplied by the partition function of the system—which is positive and therefore
not useful in the evaluation of the sign of hsX � S 3Xi�. By a Taylor expansion and by
the property

P
s2˝�

Q
x2A snx

x � 0 with nx 2 N for all x 2 � and any A � �, it is
clear that the expression above is nonnegative. This implies that

hsXiIs
�;fJ3Ag � hS 3Xiqu

�;S D hsX � S 3Xi� � 0: (62)

This proves Eq. (59).

Acknowledgements The authors thank S. Bachmann and C.E. Pfister for useful comments.
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Dissipatively Generated Entanglement

Fabio Benatti

Abstract Given two non-interacting 2-level systems weakly coupled to an envi-
ronment and thus evolving according to a statistically mixing dissipative reduced
dynamics, we provide necessary and sufficient conditions for the generator of the
time-evolution to entangle the two systems.

Keywords Entanglement • Markovian quantum evolutions • Open quantum
systems

1 Introduction

Quantum systems always interact with the environment in which they are immersed;
when the coupling to the environment is negligible, they evolve reversibly. Other-
wise, when the interaction with the environment is weak, but cannot be neglected,
quantum systems are called open [1, 2]. The weakness of the interaction allows one
to derive a reduced dynamics that describes the noisy and dissipative effects due
to the presence of the environment after it has been eliminated by tracing out its
degrees of freedom. Usually, this operation yields an irreversible time-evolution
characterised by memory effects that can be eliminated by suitable Markovian
approximations that lead to master equations of the form

@t%t D LŒ%t
 ; (1)

for all t � 0, where L is a time-independent generator. Assuming the system to be a
d-level system, then %t 2 Md.C/ must be a (positive and normalized) d 
 d density
matrix describing the state of the open quantum system at time t � 0.

Therefore, the dynamical maps �t D etL generated by (1) must preserve the
positivity of any initial %, so that the eigenvalues of %t D �tŒ%
 � 0 might be
interpretable as probabilities at all times t � 0; namely, �t must be positivity
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preserving, positive in short, for all t � 0. This condition is necessary but not
sufficient to ensure the full physical consistency of �t; indeed, one can always
statistically couple an open quantum system S with another inert d-level system
S, so that the states % 2 Md.C/ ˝ Md.C/ of the compound bipartite system S C S
would evolve under the action of a fully admissible dynamical map �t ˝ id. If the
states % were all of the form

�sep D
X

k

�k�
.1/
k ˝ �

.2/
k ; �k � 0 ;

X
k

�k D 1 ; (2)

with their correlations only due to the mixing with weights �k of the uncorrelated
tensor products of constituent system states �.1/k ˝ �

.2/
k , the positivity of �t would

clearly be sufficient to guarantee that �t ˝ idŒ�sep
 � 0. However, not all bipartite
states are expressible in a separable form as in (2): those which cannot are called
entangled [3]. It turns out that, when �t is positive, but not completely positive,
there surely exists an entangled state %ent 2 Md.C/˝ Md.C/ such that�t ˝ idŒ%ent


assumes negative eigenvalues in the course of time [4]. Summarizing, complete
positivity of �t is necessary (and sufficient) to guarantee that both �t and �t ˝ id
be positivity preserving and thus physically consistent.

In the Markovian case, the dynamical maps �t are completely positive if and
only if the generator is of the so-called Gorini-Kossakowski-Sudarshan-Lindblad
form [5, 6]

LŒ%t
 D �iŒH ; %t
C
d2�1X
jD1

Kij

�
Fi %t F�j � 1

2

n
F�j Fi ; %t

o�
; (3)

with traceless matrices such that fFjgd2�1
jD1 , Tr.F�i Fj/ D ıij, which, together with

Fd2 D 1=
p

d, constitute an orthonormal basis in Md.C/ and the .d2 � 1/
 .d2 � 1/
matrix K D ŒKij
, known as Kossakowski matrix, being positive semi-definite.

Markovian semigroups of completely positive maps are used to describe deco-
herence processes detrimental to the persistence of non-classical correlations, like
entanglement, and to their use to perform classically impossible informational
tasks like teleportation and quantum cryptography [7]. However, not always the
presence of an environment is negative; sometimes, it is also possible to engineer
the environment in such a way that two non-directly interacting systems immersed
in it become entangled [8–10].

For two 2-level systems, a sufficient condition for such a possibility to occur was
provided in [9] in the case of a purely dissipative generator of the form

LŒ%t
 D �iŒH ; %t
 C
6X

j;kD1
Kj;k

�
Sj %t Sk � 1

2

n
SkSj ; %t

o�

H D
X
jD1

Hj Sj ; Hj D H�
j ;
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where Sj D �j ˝ 1 for j D 1; 2; 3, Sj D 1 ˝ �j�3 for j D 4; 5; 6, with �1;2;3 the Pauli
matrices and 1 the identity 2 
 2 matrix, and the hermitean Kossakowski matrix
K D ŒKjk
 is positive semi-dedefinite. Notice the absence in the above generator
of operators pertaining simultaneously to the two qubits like �i ˝ �j. Then, the
emergence of entanglement during the time-evolution may only be due to the mixing
properties of the dissipation and not to dynamical effects.

In the following, we provide necessary and sufficient conditions for the above
generator to create entanglement by focussing on just one part of the generator and
proving the following result.

Theorem 1 Let two 2-level systems immersed in a common environment evolve
according to a master equation @t%t D LŒ%t
 generated by L as in (5). Given an
initially separable state %sep, the generated dynamical maps�t on M2.C/˝ M2.C/

turns it into an entangled state, if and only if so does the dynamics generated by

ZŒ%
 D �i
�

H � i

2
�
�
% C i %

�
H C i

2
�
�

� D
6X

j;kD1
Kjk SkSj � 0 :

2 Dissipative Entanglement Generation

The simplest introduction to the notion of entanglement is by means of two 2-level
systems, or in the jargon of quantum information, by systems consisting of two
qubits. We shall denote by fjiig1iD0 the orthonormal basis of the eigenvectors of �3
in the single qubit Hilbert space C2: � jii D .�/ijii.

Then, two qubit vector states j�12i 2 C
4 are entangled if they cannot be written

as tensor products j i˝j�i of single qubit vector states, the prototype of such states
being the so-called symmetric state

j�Ci D j0i ˝ j0i C j1i ˝ j1ip
2

: (4)

Entanglement as a property of quantum states is strictly related to positive,
but not completely positive maps on quantum observables [4, 11], the prototype
of such maps being the transposition map T (defined with respect to the chosen
representation). Indeed, the latter is a positive map as it does not alter the spectrum
of the matrices on which it acts; however, the partial transpositionT˝id, transposing
only the first factor of a bipartite tensor product of operators, fails to be positive.
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Indeed, the symmetric projector PC D j�Cih�Cj changes from

PC D 1

2

�
j0ih0j ˝ j0ih0j C j1ih1j ˝ j1ih1j C j0ih1j ˝ j0ih1j C j1ih0j ˝ j1ih0j

�

into

.T ˝ id/ŒPC


D 1

2

�
j0ih0j ˝ j0ih0j C j1ih1j ˝ j1ih1j C j1ih0j ˝ j0ih1j C j0ih1j ˝ j1ih0j

�

which has the anti-symmetric state

j��i D 1p
2

�
j0i ˝ j1i � j1i ˝ j0i

�

as eigenvector relative to the negative eigenvalue �1=2. Therefore, though T is a
sensible, positivity preserving map on single qubits, its so-called lifting T˝ id fails
to be such when acting on systems consisting of two qubits due to the existence of
entangled states. In practice, transposition acts as a witness for the entanglement of
PC; actually for two qubits T is an exhaustive entanglement witness [12].

Theorem 2 A state % in M2.C/ ˝ M2.C/ is entangled if and only if it does not
remain positive semi-definite under partial transposition, namely if and only if

.T ˝ id/Œ%
 � 0 :

The issue at stake in the following is the role of the dissipative part of the
generator in Theorem 1,

LŒ%t
 D �iŒH ; %t
C
6X

j;kD1
Kjk

�
Sj %t Sk � 1

2

n
SkSj ; %t

o�
(5)

H D
6X

jD1
Hj Sj ; Hj D H�

j ; (6)

with Sj D �j ˝ 1 for j D 1; 2; 3 and Sj D 1 ˝ �j�3 for j D 4; 5; 6, in transforming
an initial separable state (2) into an entangled state.

Notice that the Hamiltonian part splits into two terms acting independently on
the two qubits and cannot thus entangle them, being thus only the dissipative
contribution that can achieve it.
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The generator can be subdivided into two terms: the first one, Z, consists of a
pseudo-commutator

ZŒ%
 D �i

�
H � i

2
�

�
% C i %

�
H C i

2
�

�
(7)

� D
6X

j;kD1
Kjk Sk Sj ; (8)

with respect to a non-hermitean Hamiltonian. Since � � 0 because the
Kossakowski matirx K � 0, Z generates a damped quantum dynamics sending
projections into non-normalized projections:

etZŒj ih j
 D e�it.H�i�=2/ j ih j eit.HCi�=2/ : (9)

As to the remaining contribution to the generator,

BŒ%
 D
6X

j;kD1
Kjk Sj % Sk ; (10)

by using the spectral representation of the Kossakowski matrix K D ŒKjk
 � 0, it can
be expressed in the standard Kraus-Stinespring form of completely positive maps

BŒ%
 D
6X
`D1

V` %V�

` : (11)

Unlike the damping term, B transforms projectors into mixtures of projections, thus
representing a so-called noisy channel1 The standard lore has it that entanglement
comes from mutual interactions between the qubits described by the Hamiltonian
H, while the remaining dissipative contributions are responsible for its depletion in
time due to damping and noise.

This conclusion is not always true: suitably engineered dissipative dynamics
may lead to dissipatively generated entanglement even in absence of direct qubit
interactions and this entanglement can also persist asymptotically in time [8–10, 13].

Regarding the generator (5), in [9] a sufficient condition for entanglement
generation was provided that was related to the structure of the 6 
 6 Kossakowski
matrix C D ŒCjk
. In the following, we shall show that the actual source of
entanglement might only be due to the pseudo-commutative contribution, the noise
term being unable to counteract this fact.

1Notice that the trace is preserved since Tr.BŒ%
C Tr.ZŒ%
/ D 0.



38 F. Benatti

2.1 Checking Entanglement Generation

In order to ascertain whether�t D etL acting on an initially separable two qubit state
may or not entangle it in the course of time, we base our strategy upon Theorem 2
and the following observations:

• since general separable density matrices are liner convex combination of pure
separable states, one need just study the action of �t on projections of the form
P ˝ P� ;

• one need check whether there exist separable projections such that

.T ˝ id/ ı�tŒP ˝ P�
 � 0 I

• one can focus upon very small times; indeed, in order to become negative an
eigenvalue of .T˝ id/ı�tŒP ˝ P�
 must first become zero at some time t� � 0

and then < 0 at t� C ", for " > 0 sufficiently small.

Then, the maps �t are entanglement generating if and only if there exists a
separable pure state projection P ˝ P� onto j i ˝ j�i such that, at first order
in t,

.T ˝ id/ ı�tŒP ˝ P�
 ' P � ˝ P� C t .T ˝ id/ ı LŒP ˝ P�
 (12)

is not positive semi-definite. Here, j �i is the conjugate of j i with respect to the
orthonormal basis where �3 is diagonal so that, under transposition, �T

j D 	j �j with
	j, j D 1; 2; 3, determined by

�T
1 D �1 ; �T

2 D ��2 ; �T
3 D �3 : (13)

For later use, we then introduce the following 3 
 3 diagonal matrix

E WD
0
@	1 0 0

0 	2 0

0 0 	3

1
A D

0
@1 0 0

0 �1 0
0 0 1

1
A : (14)

The lack of positive semi-definiteness of .T ˝ id/ ı�tŒP ˝ P�
 can be studied
by considering its expectation values with respect to an (entangled) pure state j� i
orthogonal to j �i ˝ j�i, so that

h� j.T˝ id/ ı�tŒP ˝ P�
� i ' t h� j.T˝ id/ ıLŒP ˝ P�
j� i DW �.t/ : (15)

Remark 1 The vector j� i must be entangled: if P� D j� ih� j D P 1 ˝ P 2 , where
P 1 D j 1ih 1j, P 2 D j 2ih 2j, by transferring the partial transposition from
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�tŒP ˝ P�
 onto P� , one would obtain

h� j.T ˝ id/ ı�tŒP ˝ P�
� i D Tr
�
.T ˝ id/ŒP� 
�tŒP ˝ P�


�

D h �
1 ˝  2j�tŒP ˝ P�
 

�
1 ˝  2i � 0 ;

where j �
1 i is the conjugate of j 1i that comes from transposing P 1 in the fixed

representation.
The action of the partial transposition on the generator L is better understood by

rewriting the 6 
 6 Kossakowski matrix K D ŒKjk
 � 0 as

K D
�

A B
B� C

�
(16)

with A;B;C 2 M3.C/ and A and C necessarily positive semi-definite, and then,
recasting � as

� D
3X

j;kD1
Ajk �k�j ˝ 1 C

3X
j;kD1

Cjk 1 ˝ �k�j

C
3X

j;kD1
Bjk �j ˝ �k C

3X
j;kD1

B�
kj �k ˝ �j ; (17)

and BŒ%
 in (10) as

BŒ%
 D
3X

j;kD1
Ajk �j ˝ 1 % �k ˝ 1 C

3X
j;kD1

Cjk 1 ˝ �j % 1 ˝ �k (18)

C
3X

j;kD1
Bjk �j ˝ 1 % 1 ˝ �k C

3X
j;kD1

B�
jk 1 ˝ �k % �j ˝ 1 : (19)

Then, using (13) one computes

.T ˝ id/ ı ZŒP ˝ P�
 D �i
3X

jD1

Hj	j



P � ; �j

�˝ P� � i
6X

jD4

Hj P � ˝ 

�j ; P�

�
(20)

�1
2

3X
j;kD1

Ajk	j	k

˚
P � ; �j�k

�˝ P� � 1

2

3X
j;kD1

Cjk P � ˝ ˚
�k�j ; P�

�
(21)

�
3X

j;kD1

Re.Bjk/ 	j

�
�j ˝ 1 P � ˝ P� 1 ˝ �k C 1 ˝ �kP � ˝ P� �j ˝ 1

�
; (22)
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and

.T ˝ id/ ı BŒP ˝ P�
 D
3X

j;kD1
Ajk	j	k �k ˝ 1

�
P � ˝ P�

�
�j ˝ 1 (23)

C
3X

j;kD1
Cjk 1 ˝ �j

�
P � ˝ P�

�
�k ˝ 1 (24)

C
3X

j;kD1
Bjk	j

�
P � ˝ P�

�
�j ˝ �k (25)

C
3X

j;kD1
B�

jk 	j �j ˝ �k

�
P � ˝ P�

�
: (26)

Notice that, by putting together the above expressions, it thus turns out that partial
transposition transforms the generatorL into a linear mapN WD .T˝id/ıLı.T˝id/
such that

NŒ%
 D �iŒeH ; %
 C
6X

j;kD1
Njk

�
Sj % Sk � 1

2

˚
Sk Sj ; %

��
(27)

eH WD �
3X

jD1
	jHj Sj C

6X
jD4

Hj Sj C
3X

j;kD1
	jI m.Bjk/ �j ˝ �k (28)

N D ŒNjk
 WD E

�
AT .B C B�/=2

.B� C BT/=2 C

�
E ; (29)

where E is the matrix introduced in (14), B� is the matrix with entries B�
jk and BCB�

is the 3 
 3 matrix with real entries 2Re.Bjk/.

Remark 2 The linear map N generates a semigroup of maps Nt D exp.tN/. Since,
the matrix N D ŒNjk
 need not be positive semi-definite, the partially transposed
semigroup need not have any physical meaning.

We now expand j� i along the orthonormal basis of C
2 ˝ C

2 given by the
orthogonal pairs fj �i; j. �/?ig and fj�i; j�?ig,

j� i D a j �i ˝ j�i C b j. �/?i ˝ j�i C c j. �/?i ˝ j�?i : (30)
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Then, the orthogonality between j� i and j �i ˝ j�1i reduces to one the contribu-
tions to �.t/ in (15):

�.t/ D th� jNŒP � ˝ P�
j� i D
6X

j;kD1
h� j Sj P � ˝ P� Sk j� i : (31)

From these considerations the following result ensues [14]).

Proposition 1 The dissipative semigroup of completely positive maps �t D
exp.tL/, with L as in (5), is entanglement generating if and only if there exist vectors
j i ; j�i 2 C

2 such that �.t/ in (31) becomes negative at some t > 0.

2.2 Case 1: Z Does Not Generate Entanglement

We shall first show that, if Z in (7) and (8) cannot generate entanglement, then B

in (10) is such that L D Z C B cannot either.

Proposition 2 Suppose the pseudo-commutator Z in (7) does not entangle any
initial separable projection P ˝ P�; then, in (29), B C B� D 0.

Proof The argument leading to Proposition 1 applies also when the time-evolution
is generated by Z only, the difference being that the evolving state is a non-
normalized projection (see (9)). Then, to the corresponding quantity �.t/ there
contributes only the term (22), so that �.t/ in (15) becomes

�.t/ D t h� j.T ˝ id/ ı ZŒP � ˝ P�
j� i

D �2I m
�

a b�
3X

j;kD1
"j Re.Bjk/ h �j�j. 

�/?ih�?j�k�i
�

D �2I m

�
a b�

�
u

ˇ̌
ˇ̌E B C B�

2
v

�

where j� i is the entangled state in (30) orthogonal to j �i ˝ j�i and

jui D
0
@ h. �/?j�1 �i

�h. �/?j�2 �i
h. �/?j�3 �i

1
A ; jvi D

0
@h�?j�1�i

h�?j�2�i
h�?j�3�i

1
A :
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The assumption that Z generate no entanglement amounts to the request that �.t/
be non negative for all possible a; b 2 C and all jui, jvi. This in turn asks for

�
u

ˇ̌
ˇ̌E B C B�

2
v


D 0

for all jui jvi 2 C
3. By choosing j i to be an eigenstate of �1, then of �2 and

finally of �3, one gets three linearly independent jui 2 C
3 and analogously for jvi.

Then, the request that �.t/ be non-negative for all j i ; j�i 2 C
2, together with the

invertibility of the matrix E in (14) yields the result.

Corollary 1 If Z does not generate entanglement, neither does L in (5).

Proof Given the hypothesis, the previous proposition makes diagonal the matrix
N D ŒNij
 in (29),

N D
�
E ATE 0

0 C

�
:

Since L generates a semigroup of completely positive maps, then, by Gorini-
Kossakowski-Sudarshan-Lindblad theorem (see (3)), the Kossakowski matrix K
must be positive semi-definite, whence E ATE and C are both positive semi-definite
matrices. Then, by the same theorem, the partially transposed generator N in (27)
also generates a semigroup of completely positive maps Nt D exp .tN/ (see
Remark 2), so that NtŒP � ˝ P�
 is always positive semi-definite for all t � 0

and�.t/ in (31) cannot become negative.

2.3 Case 2: Z Generates Entanglement

Without restricting to the specific generator L in the previous section, we now cast
the master Eq. (1) as an equation for the dynamical maps �t, @t�t D L ı �t, and
introduce the Laplace transform of the solution�t,

e�s WD
Z C1

0

dt e�st �t s � 0 : (32)

Then, the master equation translates into

e�s D 1

s � L
D 1

s � Z � B
D 1

s � Z
C 1

s � Z

�
s � Z � .s � Z � B/

� 1

s � Z � B

D 1

s � Z

C1X
kD0

�
B

1

s � Z

�k

: (33)
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One thus sees that if �t, t � 0, is positive, respectively completely positive, such
is also the Laplace transform e�s, s � 0, since the latter is an integral of positive,
respectively completely positive maps weighted by positive factors. Moreover, the
same is true of

.�/k dk

dsk
e�s D

Z C1

0

dt tk �t 8 k � 0 : (34)

A theorem of Bernstein [15] asserts that the latter ones are not only necessary, but
also sufficient conditions for�t to be positive, respectively completely positive.

Remark 3 The Laplace transform of the dynamics has been thoroughly used in
dealing with the complete positivity of dynamical maps outside the Markovian
regime when they are generated by time-dependent master equations of the form

@t%t D
Z t

0

d� Kt�� Œ%� 
 ; �tD0 D id ; (35)

whereKt is a suitable kernel. In this case, not so many results are available regarding
the form it ought to have in order to generate a complete positive dynamics.
Postulating a kernel of the form Kt WD Zt C Bt satisfying trace preservation (see
footnote 1), the use of (33) allowed the construction of legitimate pairs (Zt ; Bt),
such that the generated dynamics is completely positive [15]. In this approach, it
clearly emerges the pivotal role played by the the Zt term with respect to Bt in
ensuring the complete positivity of the generated time-evolution.

Since we are dealing with two qubits, the linear maps Z and B have finite norms
kZk and kBk on M4.C/. Then, from (33) one can estimate, for s > kZk C kBk,

����e�s � 1

s � Z

���� �
1X

kD1
kBkk

���� 1

s � Z

����
kC1

� kBk
.s � kBk/2

1

1 � kBk
s�kZk

;

whence, for large s � 0,

e�s D 1

s � Z
C o

�
s�1	 ; .�/k dk

dsk
e�s D kŠ

.s � Z/kC1 C o
�
s�.kC1/	 : (36)

Applying these considerations, we can prove the following result.

Proposition 3 Consider a semigroup of completely positive maps �t D exp.tL/,
t � 0, on the state space of two qubits, with L D Z C B as in (3). Then, if Z
generates entanglement, so does L.

Proof Since Z generates entanglement, the dynamical maps �t WD exp.tNZ/, with
NZ WD .T˝ id/ ıZ ı .T˝ id/, cannot be positive. Indeed, there must exist an initial
separable projection P ˝ P� such that �tŒP ˝ P�
 becomes entangled at some
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t > 0. Thus, Theorem 2 together with the fact that

.T ˝ id/ ı etZ ı .T ˝ id/ D etNZ ;

and ..T ˝ id//2 D id implies that

.T ˝ id/ ı etZŒP ˝ P�
 D �tŒP � ˝ P�


is no longer positive semi-definite. Then, going to the Laplace trasforme� t, Bernstein
theorem (see (34)) implies that there must exist an integer k � 0 such that

.�/k dk

dsk
e� s D kŠ

.s � NZ/kC1

is not a positive map. Let us now consider the full generator L D Z C B and its
partially transposed partner

N D .T ˝ id/ ı L ı .T ˝ id/ D NZ C NB ; NB WD .T ˝ id/ ı B ı .T ˝ id/ :

Then, regarding the Laplace transform fN s of the maps Nt D etN, from the
asymptotic behaviour (36) for large s � 0, one can conclude that also

.�/k dk

dsk
fN s D kŠ

.s � NZ/kC1 C o
�
s�.kC1/	

cannot be a positive map for sufficiently large s � 0. Therefore, again by Bernstein
theorem, Nt D .T ˝ id/ ı�t cannot be positive and thus �t must be entanglement
generating for some t � 0.

3 Conclusions

Two qubits have been considered in weak interaction with a common environment
that makes them evolve according to a dissipative semigroup of completely positive
maps�t D exp.tL/ that do not provide mediated interaction between the two open
quantum systems, but only statistically mix them. The paper provides necessary and
sufficient conditions on the generator L D Z C B for the dynamical maps �t to
be able to entangle initial separable states. As is the case with master equations
generating semigroups of completely positive maps, the generator L consists of
two terms: a pseudo-commutative term Z responsible for a damped time-evolution
transforming vector states into non-normalized vector states and a noise term
B transforming vector states into mixtures of projections. A Laplace transform
technique has been used that reduced the problem to the discussion of the properties
of the pseudo-commutatorZ showing that if the latter alone generates entanglement
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so does L and vice versa. As shortly mentioned in Remark 3, the Laplace transform
had been used in [15] to study the complete positivity of the maps generated by
a master equation with a time-dependent memory kernel Kt D Zt C Bt. There,
it became apparent the prominence of the role of the pseudo-commutator Zt in
fixing the properties of the generator Kt. The result in Theorem 1 confirms such
an evidence in a memory-less context and in relation to entanglement generation.
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Abelian Gauge Potentials on Cubic Lattices
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Abstract The study of the properties of quantum particles in a periodic potential
subjected to a magnetic field is an active area of research both in physics and
mathematics, and it has been and is yet deeply investigated. In this chapter we
discuss how to implement and describe tunable Abelian magnetic fields in a system
of ultracold atoms in optical lattices. After reviewing two of the main experimental
schemes for the physical realization of synthetic gauge potentials in ultracold set-
ups, we study cubic lattice tight-binding models with commensurate flux. We finally
discuss applications of gauge potentials in one-dimensional rings.
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1 Introduction

The study of the dynamics of a quantum particle in a magnetic field is a fascinating
subject of perduring interest both in physics and mathematics literature. The
quantization of energy levels giving rise to the Landau levels is at the basis of our
understanding of integer and fractional quantum Hall effects [11, 13, 39, 66, 77]
and its higher-dimensional counterparts and generalizations, including topological
insulators [14, 19, 67]. The use of vector potentials in quantum mechanics is
associated in itself to very interesting consequences, such as the purely quantum
mechanical interference in the Aharonov-Bohm effect [3]. On the other side, the
mathematical formalism for a particle in a magnetic field has been developed and
refined along the time, based on the rigorous definition of Schrödinger operators
with magnetic fields [10]. An important role is played by the construction of families
of observables in the presence of gauge fields relying on the progresses in gauge
covariant pseudodifferential calculus [42] and the C�-algebraic formalism [58] (see
for a review Ref. [57]). A major area of research in the field of single-particle and
many-body properties in the presence of a magnetic field is provided by the study
of the effects of periodic potentials. The interplay of the magnetic field and the
discreteness induced by the lattice provides a paradigmatic system for the study of
incommensurability effects [12, 38] and it results in an energy spectrum exhibiting
a fractal structure, referred to as the Hofstadter butterfly [38]. Very interesting
examples of the analysis of the so-called colored gaps can be found in [9, 68], while
a discussion of the colored Hofstadter butterflies in honeycomb lattices can be found
in [2].

The study of the Hofstadter Hamiltonian attracted in the years a sparkling
activity, also due to its connections with the one-dimensional Harper model [36].
A concise, but very clear discussion is presented in [71], where it is shown how the
Schrödinger equation for an electron in a magnetic field in the presence of a two-
dimensional periodic potential can be mapped in a one-dimensional quasiperiodic
equation. A derivation of Harper and Hofstadter models in the context of effective
models for the conductance in magnetic fields was presented in [22], while a
treatment of the Schrödinger operator in two dimensions with a periodic potential
and a strong constant magnetic field perturbed by slowly varying non-periodic scalar
and vector potentials has been recently discussed in [28]. A remarkable motivation
for the studies of a two-dimensional electron gas in a uniform magnetic field and a
periodic substrate potential is as well coming from the connection with topological
invariants, as one can see from the study of the Hall conductance [72].

The theoretical studies on properties of lattice systems in a periodic potential
found a experimental matching in the active research of solid-state realizations of
the Hofstadter and related Hamiltonians. This effect has never been observed so
far in a natural crystal due to the fact that a very large magnetic field would be
required, however signatures of the Hofstadter bands has been observed in artificial
superlattices [21, 27, 29, 59, 65]. This activity found recently a counterpart in the
field of cold atoms, where it has been possible to load a neutral atomic gas in an
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optical lattice and simulate by external lasers an artificial magnetic potential [5, 60].
Given the fact that ultracold atoms, due to the high level of control and tunability of
parameters [64], are an ideal physical setup in which perform quantum simulation
[15], these and related experimental achievements opened the way to study a variety
of lattice systems in a magnetic potential. In particular one can load on the lattice
interacting bosonic and/or fermionic atoms, control the parameters of the lattice, use
several components in each lattice site [54] and implement a variety of lattices of
different dimensionalities (not only D D 2, but also D D 1 and D D 3).

The rationale of this Chapter is to report an introduction to the different ways
to implement artificial magnetic potentials in the presence of a controllable lattice,
with the goal to create a link with the many available results in theoretical and
mathematical physics. From the other side we think that the variety of lattice models
in magnetic fields implementable with ultracold gases may be a context in which
test and apply techniques from the mathematical literature, and motivate further
analytical and rigorous results, starting from the treatment of three-dimensional
fermionic lattice systems. With these objectives, we then present in Sect. 2 a
discussion on several different ways of realizing artificial magnetic fluxes in optical
lattice systems. In Sects. 3 and 4 we present two possible applications of the results
presented in Sect. 2 both to illustrate the versatility of possible uses of artificial
magnetic potentials and to show results for 3D and 1D lattices. In Sect. 3 we review
and study cubic lattice tight-binding models with a commensurate Abelian flux, also
presenting results for the case of anisotropic fluxes. In Sect. 4 we consider 1D rings
pierced by a magnetic field discussing how the latter can enhance the quantum state
transfer and the entanglement entropy in the system.

We acknowledge several discussions we had along the years on the subjects
treated in this chapter with several people, and special acknowledgements go to
M. Aidelsburger, E. Alba, T. Apollaro, H. Buljan, A. Celi, I. C. Fulga, N. Goldman,
G. Gori, M. Mannarelli, G. Mussardo, G. Panati, H. Price, M. Rizzi, P. Sodano and
A. Smerzi. S. P. is supported by a Rita Levi-Montalcini fellowship of MIUR.

2 Realization of Artificial Magnetic Fluxes in Optical
Lattice Systems

In the last 10 years many experiments with ultracold atoms demonstrated the
possibility of realizing artificial magnetic fluxes trapped in two-dimensional optical
lattices. Similar setups pave the way for a systematic study of topological phases
of matter in the highly controllable environment provided by ultracold atoms [15].
Such experiments offer, on one side, the possibility of reaching regimes that are
hardly achievable in solid state devices and, on the other, to verify the emergence
of topological phenomena through observables typical of ultracold gases, such as
the motion of the center of mass of the system, or the momentum distribution of the
atoms [64]. The measurement of these quantities therefore provides useful tools to
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detect the appearance of topological phases of matter which are complementary to
the usual transport measurements performed in solid state platforms.

The main result which enabled the experimental study of topological models
in ultracold atomic systems was the realization of artificial gauge potentials. In
this framework, we speak about artificial (or synthetic) gauge potentials because
ultracold atoms are neutral, therefore their motion is not directly affected by the
presence of a true electromagnetic field. Despite that, however, it turned out to be
possible to engineer systems in which the dynamics of the slow and low-energy
degrees of freedom can be described by an effective Hamiltonian in which the free,
non-interacting, part is the one of a free-particle in a magnetic field. An interesting
point to be observed is that the obtained Hamiltonian, featuring the presence of
an artificial magnetic field, is interacting, with the interaction term tunable by e.g.
Feshbach resonances or by acting on the geometry of the system. At the same time,
typically, as we are going to discuss in the following, the synthetic field does not
depend on the interactions or on the density of the system, being in a word a single-
particle effect.

An efficient way to implement a synthetic gauge potential A giving rise to an
artificial, static magnetic field B / r 
 A, is to implement with ultracold atoms
in optical lattice a tight-binding Hamiltonian with hopping amplitudes which are,
in general, complex and whose phases depend on the position. To be more clear,
we point out that the implementation of synthetic gauge potentials in lattices relies
on the well-established experimental successes in the quantum simulation of tight-
binding Hamiltonians for both bosons and fermions [15].

For ultracold bosons, if a condensate is loaded in an optical lattice, then one
can expand the condensate wavefunctions in the basis of the Wannier functions and
obtain a discrete nonlinear Schrödinger (DNLS) equation [73]. The coefficient of the
nonlinear term in the DNLS equation is proportional to the s-wave scattering length
a and in general the coefficients of the DNLS equation depend on integrals of the
Wannier functions. For a D 0 (i.e., for an effectively non-interacting condensate)
one gets the discrete linear Schrödinger, which is nothing but the tight-biding
model for which one can apply consolidated numerical analyses [55] and rigorous
[16] techniques for the definition and determination of the Wannier functions and
their behaviour. When a ¤ 0 a rigorous theory of (nonlinear) Wannier functions
does not exist, and the semiclassical equations of motion should be modified as a
consequence of the existence of the nonlinearity. The development of a rigorous
extension of Wannier functions in the presence of nonlinearity is a challenging
mathematical problem for the future. We think this independently from the fact that
an approximate determination of the Wannier functions (see e.g. for a variational
approach in [18, 74, 75]) typically works very well to describe the experimental
results when the laser intensity, i.e. the strength of the periodic potential, is large
enough, also when the system approaches the superfluid-Mott transition and/or
the gas is not longer condensate due to the presence of strong interactions [40].
Similar considerations apply for ultracold fermions: when there is in average no
more than one particle per well and only the lowest band is occupied, a single-band
tight-binding approximation works very well both when the dilute fermionic gas is
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polarized (corresponding to a D 0) and when more species or levels of fermions
are present. In the following we consider tight-binding models describing ultracold
atoms in optical lattices, sticking to the non-interacting limit and discussing how to
simulate artificial gauge potentials in such systems. We alert anyway the reader that,
albeit non-rigorous, the experimental techniques to implement synthetic magnetic
field are the same also for interacting particles, even though the interacting terms
may modify or generate additional coefficients in the tight-binding model and
introduce corrections to the results obtained with the Peierls substitution [63].

To fix the notation, let us consider a lattice whose sites are denoted by r: for a
cubic D-dimensional lattice we have r 2 Z

D. By using the Peierls substitution to
take into account the effect of the magnetic field [45, 53, 63], the Hamiltonian we
consider then reads

H.f�g/ D �
X
r ; Oj

wOj c�
rCOj ei�j.r/cr C H.c. ; (1)

where Oj are unitary vectors characterizing the links of the lattice, wOj are the hopping
amplitudes (assumed isotropic in the following of the Section: wOj 	 w). The phases
�j depend in general on the position r and can be thought as the integral of an
artificial and classical vector potential A.r/ between neighboring sites:

�j.r/ D
Z rCOj

r
A.x/ � dx : (2)

The ladder operators cr and c�r annihilate and create an atom in the lattice site r and
they may obey either fermionic or bosonic commutation relations depending on the
atoms species.

It is important to emphasize that the artificial vector potential A constitutes a
classical and static field; despite that, we can define U.1/ gauge transformations
acting on the ladder operators of the previous Hamiltonian and on the vector
potentials, which leave the dynamics of the system invariant; A is thus, in this
context, a properly defined gauge potential (see the reviews [20, 32] for more
details). Notice as well that one can simulate gauge potentials without a periodic
potential [20, 32], but that typically the implementation of magnetic potential in an
optical lattice can crucially take advantage of the presence of the lattice potential
itself (in other words, decreasing to zero the intensity of the laser beams amounts to
make vanishing the magnetic potentials as well).

The effect of the gauge symmetry is that the main observables we must consider
are gauge-invariant observables - although, due to the artificial nature of these gauge
potentials, also gauge-dependent quantity may be evaluated in the experimental
setups, going beyond the previous effective Hamiltonian description. The main
gauge-invariant quantity determining the dynamics of the system is the magnetic
flux which characterizes each plaquette in the lattice. Such flux describes an
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Aharonov-Bohm phase acquired by an atom hopping around a lattice plaquette and
can be defined as:

˚p D
X
.r;Oj/2p

�j.r/ D
I

p
A.x/ � dx ; (3)

where .r; Oj/ labels the links along the plaquette p in order to consider a counter-
clockwise path. The lattice spacing is denoted by a, and if not differently stated is
intended to be set to 1.

On the experimental side there are two broad classes of techniques which have
been adopted to engineer effective Hamiltonians of the form in Eq. (1). The first
corresponds to the “lattice shaking”, which consists in a fast periodic modulation
of the optical lattice trapping the atoms whose effect is to reproduce, at the level
of the slow motion of the atoms, the required complex hopping amplitudes. The
second is the “laser-assisted tunneling” of the atoms in optical lattices in which the
atom motion is suppressed along one direction and restored through the introduction
of additional Raman lasers able to imprint additional space-dependent phases to the
tunneling of the particles. Both these techniques allow for the generation of artificial
magnetic fluxes and are based on non-trivial time-dependent Hamiltonians which
determine, at the level of the slow motion of the system, a dynamics which can be
described by an effective Hamiltonian of the kind in Eq. (1). In the following we will
summarize first the technique developed in [31] which provides a very useful tool
for the analysis of these driven time-dependent systems, and then we will describe
some of the main examples of systems obtained through lattice shaking or laser-
assisted tunneling.

2.1 An Effective Description for Periodically Driven Systems

The technique for the analysis of periodically driven systems proposed in [31],
whose presentation we follow in this Section, is based on the distinction of two
main ingredients whose combination describes the dynamics of modulated setups.
The first is an effective Hamiltonian H, independent on the initial conditions of the
dynamics, and capturing the long-time motion of the particles in the system. The
second is a so-called kick-operator K describing the effects due to the initial and
final phases of the modulation. In particular it is responsible for both the initial
conditions of the system and for the so-called micro-motion, which includes the
periodic dynamics of all the fast-evolving degrees of freedom. To be explicit, let
us assume that the modulated system is described by a time-periodic Hamiltonian
QH.t/ D QH.t C T/. It is then possible to decompose the evolution of the system into:

U.ti ! tf / D e�iK.tf /e�iH.tf �ti/eiK.ti/ : (4)
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Here H is the effective, time-independent, Hamiltonian, not depending on ti and
tf ; the kick operator K.t/ D K.t C T/ is a periodic time-dependent operator, and
hereafter we set „ D 1. The approach in [31] consists in a series expansion of H and
K in the small parameter 1=! D T=.2�/, where ! is the driving frequency of the
system and must constitute the largest energy scale of the problem.

To study optical lattices with non-trivial artificial magnetic fluxes it is usually
enough to consider the long-term dynamics of the driven system and thus the
effective Hamiltonian only (the situation would be different for systems involving
also spin degrees of freedom, or for the evaluation of the heating of the driven
system). To this purpose, we decompose the time-dependent Hamiltonian QH.t/ into
its Fourier component:

QH.t/ D H0 C
X
n>0

ein!tV.n/ C
X
n>0

e�in!tV.�n/ (5)

with V.�n/ D V.n/�. H0 is the time-independent component of QH, whereas the
operators V.�n/ are associated to its harmonics. In terms of these operators it is
possible to show that the effective Hamiltonian reads:

H D H0 C 1

!

1X
nD1

1

n



V.n/;V.�n/

�C

C 1

2!2

1X
nD1

1

n2
�



V.n/;H0

�
;V.�n/

�C H.c.
	C O.T3/ : (6)

This expansion allows for a determination of the effective Hamiltonian in the main
examples of systems of ultracold atoms trapped in optical lattices, subject either to
a modulation of the trapping lattice or two additional Raman couplings. One needs
to consider carefully, though, the issue of the convergence of this series which must
be evaluated specifically for each system. The readers are referred to [31] for more
detail.

2.2 Artificial Gauge Potentials from Lattice Shaking

The first attempts to experimentally modify the hopping amplitudes of the effective
tight-binding models for atoms trapped in optical lattices through the introduction
of modulations date back to the works [25, 43, 51]. To understand how the effect of
the lattice shaking can determine the tunneling amplitudes of the atoms let us first
address a one-dimensional setup. Although, in this case, it is not possible to define
magnetic fields and fluxes, the analysis of this simplified system will be useful to
understand the appearance of artificial magnetic fluxes in higher dimensions. We
consider an optical potential of the form V.t/ D V0 sin2 .x � 0 cos.!t// where !
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is the shaking frequency. The Hamiltonian with this oscillating potential can be
mapped in a co-moving frame .x ! x C 0 cos.!t// characterized by the following
Hamiltonian:

QH.t/ D p2 C V0 sin2 .x/ � 1

2
x0!

2 cos.!t/ ; (7)

where the last term accounts for the additional force in the non-inertial frame and
we set the mass to m D 1=2 for the sake of simplicity. Finally, by approximating
with a tight-binding model we obtain:

QH.t/ D
X

x

�
�w c�xC1cx � w c�xcxC1 � 1

2
x0!

2 cos.!t/c�xcx

�
: (8)

In this case it is possible to derive the full effective Hamiltonian without recurring
to a series expansion to obtain [24]:

H D �wJ0.0!=2/
X

x

c�xC1cx C c�xcxC1 (9)

where J0 is a Bessel function of the first kind which renormalizes the tunneling
amplitude and may assume either positive or negative values depending on 0!.
Despite the fact that, in this case, the hopping amplitude remains always real, it is
interesting to notice that it can change sign.

In 1D systems, such a change of sign is simply translated in a different dispersion
for the single particle problem; however, it is possible to extend this naive example
to higher dimensions and less trivial geometries: in this case the result of the lattice
shaking provides a first tool for the engineering of non-trivial fluxes. We also
observe that, applying the formalism of [31], we have that H0 D �w

P
x c�xC1cx C

H.c., V.1/ D V.�1/ D �x!2 c�xcx=4 and all the other harmonics are absent. The
effective Hamiltonian based on Eq. (6) would then correspond to a series expansion
of the Bessel function in Eq. (9) [31].

The lattice shaking techniques can be also extended to obtain complex hopping
amplitudes. To this purpose, in this simple one-dimensional model, it is necessary
to change the time-dependence of the modulation of the lattice in order to break
the time-reversal symmetry [V.t � t0/ D V.�t � t0/] and a shift antisymmetry
[V.t/ D V.t C T=2/] [69]. This has been realized for the first time for a Rb Bose-
Einstein condensate and the presence of non-trivial hopping phases has been verified
through time-of-flight measurements of its momentum distribution as a function
of the modulation amplitude [69]. This may be counterintuitive because, in one
dimension, the observation of the hopping phase corresponds to the observation
of a gauge-dependent quantity. We notice, however, that only the effective tight-
binding models adopted in the description of the slow dynamics of the system, and
the related observables, are indeed gauge-invariant; in the experiment, though, one
can access also additional “gauge-dependent” observables through operations which



Abelian Gauge Potentials on Cubic Lattices 55

do not have a physical counterpart in the effective toy model: this is the case of the
time-of-flight imaging which follows from switching off the optical lattice. Such
procedure maps the crystal momentum of the tight binding model (9) (which is a
gauge-dependent quantity) into the velocity of the particles during the time of flight,
which is an observable quantity which exists only considering the embedding of the
system in the larger laboratory setting.

The effects of lattice shaking become even more remarkable in two-dimensional
setups. In this case lattices may be accelerated along two different directions to cause
a global periodic motion of the optical lattice around a closed orbit which yields, at
the level of the effective Hamiltonian, a tight-binding model with non-trivial fluxes.

On triangular optical lattices this technique has been adopted to realize staggered
flux configurations [70] and, more recently, the same method, with a circular
modulation of the lattice position [61], has been used to simulate the topological
Haldane model [35] on the honeycomb lattice with a gas of fermionic 40K [41].
The Haldane model represents a topological insulator of fermions hopping in a
honeycomb lattice with nearest-neighbor and next-nearest-neighbor tunnelings. It is
based on both the presence of a pattern of staggered fluxes ˚ to break time-reversal
symmetry and an onsite staggering potential to break space inversion symmetry
[35]. By varying the value of either of these parameters, the model undergoes
topological phase transitions, characterized by discontinuities of the Chern number
of the lowest energy band. These discontinuities have been experimentally detected
through measurements of the drift of the center of mass of the system in the presence
of an additional magnetic gradient to add an additional constant force [41].

2.3 Artificial Gauge Potential from Laser-Assisted Tunneling

Complex hopping amplitudes in the effective Hamiltonian can be obtained also
through a different technique based on the introduction of pairs of Raman lasers
coupling the low-energy states of the atoms trapped in the optical lattice. In this case
the phase differences and space dependence of the Raman lasers may be inherited by
the dynamics of the atoms, thus allowing for complex space-dependent amplitudes.

To reach this result, however, it is necessary to first suppress the motion of the
atoms in the optical lattice, at least, along one direction. This is obtained through
the introduction of suitable energy offsets, depending on the positions, which shift
the energy of neighboring sites by an energy �. These offsets can be obtained, for
example, by tilting the lattice (i.e., with gravity), or by introducing suitable magnetic
gradients in the system which couple with the atomic magnetic dipole moments
(thus generating a position dependent Zeeman term) or through the introduction of
superlattices.

Let us start by considering one of the simplest realization of strong fluxes
in optical square lattices as experimentally realized [4]. In this experiment an
optical superlattice, generated by a standing wave with wavelength 2a, was used
to introduce an additional staggering along the Ox direction for the trapped atoms,
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Fig. 1 Schematic illustration of the setup adopted in the experiment [4] for the realization of
staggered magnetic fluxes. The tunneling along the horizontal direction is suppressed by the
introduction of the staggering � through a superlattice. A pair of Raman lasers (red arrows) are
added to the system to restore the horizontal tunneling. As a result the even horizontal links (blue
dashed links) acquire a tunneling phase e�ikRr, whereas the odd (red dashed links) acquire the
opposite phase eikRr. kR is the recoil momentum of the pair of Raman lasers

such that the initial, time-independent setup can be modeled by the following
Hamiltonian:

QH0
0 D �w

X
r ; Oj

�
c�

rCOjcr C H.c.
�

C �

2

X
r

.�1/xc�rcr (10)

where r D .x; y/ and� is the staggering related to the amplitude of the superlattice
(see Fig. 1). Two running Raman lasers with wave vectors k1;2 and frequencies !1;2,
tuned such that !1 � !2 D �, are then introduced in the system. The associated
electric field is E1 cos.k1r � !1t/ C E2 cos.k2r � !2t/ which, neglecting the fast
oscillating terms, generates a potential:

V.t/ D �ei.kRr��t/c�rcr C H.c. ; (11)

where � D 2E1E2 and kR D k1 � k2 is the recoil momentum of the Raman lasers.
The time-evolution of the system is ruled by the Schrödinger equation i@t D

QH0.t/ , where QH0.t/ D QH0
0 C V.t/. Since the static Hamiltonian QH0

0 contains the
staggered-potential term that explicitly diverges with the driving frequency �, it is
convenient to apply the unitary transformation [33, 56]

 D R.t/ Q D exp .�iWt/ Q ; (12)
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with W being the staggering term:

W D �

2

X
r

.�1/xc�rcr : (13)

Such transformation removes the diverging term and maps QH0 into:

QH.t/ D R�.t/

 QH0

0 C V.t/
�

R.t/ � W D (14)

D H0 C V.1/ei�t C V.�1/e�i�t; (15)

where

H0 D �w
X
x;y

�
c�x;yC1cx;y C c�x;ycx;yC1

�
; (16)

OV.1/ D �
X

r

e�ikRrc�rcr � w
X

x odd;y

�
c�xC1;ycx;y C c�x�1;ycx;y

�
; (17)

OV.�1/ D �
X

r

eikRrc�rcr � w
X

x even;y

�
c�xC1;ycx;y C c�x�1;ycx;y

�
: (18)

From these terms it is easy to derive the effective Hamiltonian in Eq. (6) at first
order:

H D �w
X
x;y

�
c�x;yC1cx;y C c�x;ycx;yC1

�
� (19)

� w �

�

X
x even;y

h�
e�ikROx � 1

� �
e�ikRrc�xC1;ycx;y C eikRrc�x;ycx�1;y

�
C H.c.

i
C O.1=�2/ ;

This effective Hamiltonian describes in general a two-dimensional model with
staggered magnetic fluxes where the sign of the fluxes alternate in the plaquettes
belonging to even and odd columns. In the experiment [4], the recoil momentum
was chosen as kR D .Ox C Oy/˚ . In this case the Ox component has no relevance in
the definition of the fluxes and the previous Hamiltonian becomes, after a suitable
gauge transformation:

H D �wy

X
x;y

�
c�x;yC1cx;y C c�x;ycx;yC1

�
� (20)

wx

X
x even;y

h�
e�i˚yc�xC1;ycx;y C ei˚yc�x;ycx�1;y

�
C H.c.

i
C O.1=�2/

with wy D w and wx D 2w� sin.˚=2/=� (this value is the one obtained at
the first order in the perturbative expansion, and it must be considered only an
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approximation). From the Hamiltonian in Eq. (20) it is evident the alternation of
fluxes ˙˚ on the plaquettes along the horizontal direction.

The introduction of the staggering term, however, allows also for more refined
setups in which the even and odd links may be separately addressed [33]. This
requires the introduction of two different pairs of Raman lasers with opposite
frequency shifts ˙� and it permits to obtain systems with a uniform magnetic flux
˚ in each plaquette [33]. In this way the Hofstadter model on the square lattice has
been realized for 87Rb [6] and it was possible to measure the Chern number of the
different energy bands through the motion of the mass center of the system.

The staggered potential, however, it is not the only possible choice to suppress the
motion along one direction. The first quantum simulations with ultracold atoms of
the Hofstadter model [5, 60] were instead based on an external potential of the kind
W D P

r�xc�rcr. In this case the introduction of two Raman lasers yields indeed to
an effective Hamiltonian with rectified fluxes, and this result can be obtained with
calculations analogous to the previous one where the distinction between even and
odd links is no longer required, and all the horizontal links acquire a tunneling phase
of the form eikRr consistent with a constant flux.

The laser-assisted techniques to design artificial gauge potentials are extremely
versatile, and the previous approach can be generalized to different geometries
and to multi-component species. The introduction of additional potential through
superlattices, for example, enabled the realization of ladder models pierced by
uniform fluxes which are characterized by chiral currents and a Meissner-like effect
[8]. Furthermore the introduction of spin-dependent potentials, as in [5], permits to
mix different spin-species subject to opposite magnetic fluxes and some theoretical
proposals generalized these systems to engineer an artificial spin-orbit couplings for
two-component atoms [31, 56].

3 Cubic Lattice Tight-Binding Models
with Commensurate Flux

In this Section we consider cubic lattices in a magnetic field, focusing on the case
of Abelian fluxes. This is a very interesting mathematical problem in itself and it
has a counterpart in the experimental implementations we discussed in the previous
Section.

3.1 Isotropic Flux

We start our study with a single-species tight-binding model on a cubic lattice with
N D L3 sites, in the presence of an Abelian uniform and static magnetic field B D
˚ .1; 1; 1/ isotropic on the three directions. This field gives rise on each plaquette of
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the lattice (with area a2, a being the lattice spacing) to a magnetic flux ˚ D B � a2.
The presence of this flux amounts to a phase ei˚ gathered by a particle hopping
around a single plaquette, because of the Stokes theorem. The generalization of this
model to many species is straightforward, since an Abelian gauge field does not mix
the different species. The magnetic flux is chosen commensurate:

˚ D 2�
m

n
: (21)

The commensurate condition allows us to solve the model analytically, imposing
periodic boundary condition on the lattice. At variance, in the incommensurate case
the determination of spectrum requires a numerical solution of the real space tight-
binding matrix, see e.g. [17, 52] - for a discussion of the Hofstadter butterfly in three
dimensions see [46], while a study in higher dimensions is reported in [44].

By exploiting the gauge redundancy, the static magnetic field B can be associated
to various physically equivalent gauge potentials A�.x/. For the sake of simplicity,
we choose here a time-independent gauge configuration, adopting the (static)
Coulomb gauge A0.x/ D 0.

Because of the magnetic phases in Eq. (2), the sites of the lattice, all equivalent
each other at B D 0, get inequivalent, the inequivalence lying in the phases gathered
after each hopping along the bonds starting from a certain site. In this way, the
lattice gets divided, in a gauge-dependent way, in a certain number of sublattices.
Exploiting this freedom, in order to perform calculations in the easiest way as
possible, it is useful to look for the (set of) gauge(s) characterized, for a given
commensurate magnetic flux ˚ D 2� m

n , by the smallest number of sublattices.
A simple (and still not unique) gauge fulfilling this requirement is [37]:

A D 2�

a2
m

n
.0; x � y; y � x/ ; (22)

with permutations in x; y; z also equally acceptable. This gauge is a three-
dimensional generalization of the Landau gauge in two dimensions [47], reducing
indeed to the Landau gauge in this limit (wOz ! 0), up to a gauge redefinition to
absorb the term �y in Ay.

Assuming the choice in Eq. (22), the Hamiltonian in Eq. (1) can be recast in the
form

H D �
X

r

h
wOx c�rCOx cr C wOy UOy.x; y/ c�rCOycr C wOz UOz.x; y/ c�rCOzcr

i
C H.c. ; (23)

where the tunneling magnetic phases UOj.x; y/ D ei�Oj.x;y/ are defined as:

Ux D 1 ; (24)

UOy.x; y/ D exp
�

i
R x;yCa;z

x;y;z Ay dy
�

D exp
�

i 2�
�

x�y
a � 1

2

�
m
n

�
; (25)

UOz.x; y/ D exp
�

i
R x;y;zCa

x;y;z Az dz
�

D exp
�
�i 2�

�
x�y

a

�
m
n

�
: (26)
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The hopping phases in Eqs. (25) and (26) explicitly depend on the positions labelled
modulo n. Since the z coordinate is not present in Eq. (22), every wave-function of
the Hamiltonian in Eq. (23) can be written as [50]:

 .x; y; z/ D eikzz u.x; y/ ; (27)

allowing for a dimensional reduction of the eigenvalues problem as for the corre-
sponding problem in two dimensions where the Harper equation is found [38, 71].

The Hamiltonian in Eq. (23) with the hopping phases in Eqs. (24)–(26) is
translational invariant. For gauge invariant systems, translational invariance implies
that a translation of the coordinates by a vector w transforms the Hamiltonian of the
system to a gauge-equivalent one [50], and one may find [49]:

H.r C w/ D T �
w .r/H.r/Tw.r/ ; (28)

with Tw.r/ 2 U.1/ being a suitably chosen local gauge transformation which
depends on w.

The Hamiltonian in Eq. (23) with the gauge potential in Eq. (22) is translationally
invariant because it fulfills Eq. (28). We stress that the potentials of the form in
Eq. (22) are not the only ones satisfying the condition in Eq. (28), but instead
all the potentials obtained from Eq. (22) through local gauge transformation are
characterized by the same physical translational invariance. The property in Eq. (28)
is indeed a physical property of the system which is reflected on all the gauge-
invariant observables, as for example, the Wilson loops W.C / D Pei

H
C A.r/�dr

evaluated on closed paths along the lattice.
The Hamiltonian in Eq. (23) is also periodic with period n along Ox Oy, due to

the presence of the nontrivial magnetic hopping phases UOy.x; y/ ;UOz.x; y/, thus the
reduced wavefunctions u.x; y/ have the same periodicity. In this way the magnetic
unitary cell, defined by the elementary translations leading from a site to equivalent
ones in the three lattice directions, can be defined now as enlarged n times along
two directions (say Ox; Oy).

The problem to find the eigenvalues of the Hamiltonian in Eq. (23) on a lattice
with N number of sites would naïvely require in general the diagonalization of a
N 
 N adjacency matrix in real space. However, assuming translational invariance,
the calculation can be remarkably simplified by exploiting the division in sublattices
seen above. Indeed, in the presence of a magnetic flux˚ D 2� m

n and working in the
gauge in Eq. (22), the cubic lattice divides in n sublattices, labelled by the quantity
.x � y/mod.n/. In this way the Hamiltonian in Eq. (23) becomes:

H D �
X

Oj
wOj
X

s

ei�s;Oj
X

rs

c�
rsCOj crs C H.c. ; (29)

where s labels the sublattices and rs labels the sites of the s-th sublattice.
Since the magnetic unitary cell is defined now as enlarged n times along two

directions, the corresponding magnetic Brillouin zone (MBZ) in momentum space
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becomes f 2�a ; 2�an ;
2�
na g [or other permutations of the factors 1

n between the space
directions, consisting in a mere redefinition of A.r/]. Correspondingly, the allowed
momenta k are N

n2
, of the form k D f 2�aLx

px;
2�
aLy

py;
2�
aLz

pzg, with pOx D 0; : : : ;L � 1

and pOy;Oz D 0; : : : ; L
n � 1. In this way, all the physical quantities display a momentum

periodicity k ! k C 2�
na .lx; ly; lz/, with li being again integer numbers.

The counting of the N
n2

allowed momenta proceeds as follows: each sublattice
differs from another one by ˙Ox or ˙Oy translations that are not primary, then we
correspondingly expect n sets of N

n inequivalent energy eigenstates [50]. These
sets form n subbands in the MBZ. However, any sublattice is further divided in
n sub-sublattices differing by a primary translation ˙.Ox C Oy/, leaving invariant the
potential in Eq. (22). In this way, any N

n -fold set of eigenstates is again partitioned in
n equivalent and degenerate sub-sets, each one having N

n2
element. These elements

are parametrized by the N
n2

momenta in the MBZ described above. Moreover the
second partition translates in n-fold degeneracy of each subband. In the particular
case ˚ D � , two sub-bands are obtained, touching in Weyl cones as discussed
in [23, 48, 49]; in this case the system in Eq. (23) is the direct three-dimensional
generalization of the square lattice model with �-fluxes in [1].

The Hamiltonian in Eq. (29) can be expressed in momentum space using the
formulas crs D 1p

N=n2

P
k c.k/ eik�rs and

P0
rs

eik�rs D N
n2

. The vectorial label rs

runs here on the N
n2

sites of one sub-sublattice of the sublattice s, the upper index in
the sum of the second formula meaning this restriction. We obtain:

H D �
X

k

X
Oj

wOj
X

s

ei�s;Oj e�ik�j c�
s0DsCOj.k/ cs.k/ C H.c. ; (30)

where we have also taken into account that, starting from the s-th sublattices and
moving in the Oj direction, a new sublattice (denoted as s0) is univocally found, as
consequences of Eq. (22). This is the reason oh the notation s0 D s C Oj.

The Hamiltonian in Eq. (30) can be recast in the sublattices basis as:

H D �
X

k

X
Oj

wOj
X

s

c�
s0DsCOj.k/

�
TAB

Oj
�

s0;s
e�ik�j cs.k/ C H. c. ; (31)

where TAB
Oj are n 
 n hopping matrices in the sublattice basis, reading, up to ciclic

permutations Zn:

TAB
Ox

D

0
BBBB@

0 1 : : : 0

0 0
: : : 0

0 0 : : : 1

1 0 0 0

1
CCCCA TAB

Oy
D e�i� m

n

0
BBBB@

0 : : : 0 '0

'1 0 : : : 0

0
: : : 0 0

0 : : : 'n�1 0

1
CCCCA TAB

Oz
D

0
BBBB@

'0 0 : : : 0

0 'n�1 0 0

0 0
: : : 0

0 0 : : : '1

1
CCCCA ;

(32)



62 M. Burrello et al.

with 'l D ei2� m
n l ; l D 0; : : : ; n � 1.

The matrices TAB
Ox;y;z do not commute each other, implying that the unitary cell of

the lattice does not coincides with its geometric smallest cell (with area a2), as seen

above. However, the n-power of these matrices yields the identity:
�

TAB
fOx;Oy;Ozg

�n D
1n�n, recovering the MBZ f 2�a ; 2�an ;

2�
an g. Moreover, if m

n ¤ 1
2

the unitary matrices
TAB

Ox;y;z
are not invariant (even possibly up to a global phase) by the conjugate

operation, reflecting the breaking of the time-reversal symmetry, due to the magnetic
field B itself. A notable result of the discussion above is that the diagonalization of
a N 
 N matrix is reduced to the diagonalization of a n 
 n one.

We conclude this Section by observing that in the presence of more species
(labelled by the index ˛ D 1; : : : ;m) hopping on the lattice and subject to the
Abelian gauge potential in Eq. (22), the Hamiltonian in Eq. (31) generalizes to

H D �
X

k

X
Oj

wOj
X

s

c�
s0DsCOj;˛0

.k/
�

TAB
Oj ˝ 1m�m

�
s0;˛0 ;s;˛

e�ik�j cs;˛.k/ C H. c. ;

(33)

where no mixing of the different species involved occurs.

3.2 Generalization: Anisotropic Abelian Lattice Fluxes

In the previous analysis we assumed that the value of the fluxes was the same for
the three orientations of the plaquettes. Now we discuss some extension in which
we relax this hypothesis. We analyze first the case in which the magnetic field Oz is
perturbed, such that we introduce an anisotropy in the previous system:

B D 2 �

a2

�m

n
;

m

n
;

mz

nz

�
: (34)

Again we may assume, without any loss of generality, mz and nz prime with each
other as well as m and n. In the case of Eq. (34), a gauge similar to the one in Eq. (22)
can be used:

A D 2�

a2

�
0;

mz

nz
.x � y/;

m

n
.y � x/

�
: (35)

This choice still depends on one parameter only, thus ensuring the appearance of
minimal gauge-dependent sublattices. More in detail, the lattice divides again in
n2 D l. c. m. .n; nz/ inequivalent sublattices, defined by the periodicity of the phases
in the Ox and Oy directions and labelled by the set .x � y/mod.n2/. Indeed the hopping
phases from Eq. (35) are:

�rCOj;r D 2�

a

�
0;

mz

nz

�
x � y � a

2

�
;

m

n
.y � x/

�
: (36)
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Similarly to the previous case, each sublattice is again divided in n2 equivalent sub-
sublattices, each one having N

n22
sites. For this reason, similarly to the Sect. 3.1,

n2 subbands appear, each of them with a n2 degeneracy. Correspondingly the BZ
divides by n2 in two directions, so that k D f 2�aLx

px;
2�
aLy

py;
2�
aLz

pzg, pOx D 0; : : : ;L�1,

pOy;Oz D 0; : : : ; L
n2

� 1, or permutations in the pairs of the restricted momentum
directions. The Hamiltonian in Eq. (1) can then be rewritten, in terms of these quasi-
momenta, as in Eq. (31), by means of three m2 
 m2 matrices in the basis of the m2

sublattices, derived similarly to the ones in Eq. (32).
In the completely asymmetric case the magnetic potential reads

B D 2 �

a2

�mx

nx
;

my

ny
;

mz

nz

�
; (37)

a convenient gauge choice, inducing the magnetic field in Eq. (37), reads:

AAB D 2�

a2

 �my

ny
� mx

nx

�
.z � x/;

mz

nz
.x � y/;

mx

nx
.y � x/

!
: (38)

The hopping phases from Eq. (38) are:

�rCOj;r D 2�

a

 �my

ny
� mx

nx

� �
z � x � a

2

�
;

mz

nz

�
x � y � a

2

�
;

mx

nx
.y � x/

!
: (39)

The gauge in Eq. (38), similarly to the previous case, ensures the appearance of
the minimum number of gauge-dependent sublattices. In particular, due to the
simultaneous x dependence of all the components of AAB and following the same
logic as in the Sect. 3.1, we obtain

ns D l. c. m. .nx; ny; nz/ (40)

inequivalent sublattices (obtained varying y and z at fixed x) and corresponding
subbands. Again each sublattice is then further divided in equivalent subsublattices.

More in detail, the counting of these subsublattices proceeds as follows. Starting
from a point .x0; y0; z0/ belonging to a certain sublattice, they are obtained by adding
1 to each components: .x0; y0; z0/ ! .x0 C 1; y0 C 1; z0 C 1/. The variable z has
periodicity given by l. c. m. .nx; ny/ possible inequivalent values, y has periodicity
l. c. m. .nx; nz/ and finally x has l. c. m. .nx; ny; nz/ inequivalent values. For this
reason each inequivalent sublattice divides in

nd D min
�

l. c. m. .nx; ny/ ; l. c. m. .nx; nz/ ; l. c. m. .nx; ny; nz/
�

D (41)

D min
�

l. c. m. .nx; ny/ ; l. c. m. .nx; nz/
�

equivalent subsublattices.



64 M. Burrello et al.

Correspondingly, we find N
ns�nd

quasi-momenta defining each subband: k D
f 2�aLx

px;
2�
aLy

py;
2�
aLz

pzg, pOx D 0; : : : ;L � 1, pOy D 0; : : : ; L
ns

� 1, pOz D 0; : : : ; L
nd

� 1, or
permutations in the pairs of the restricted momentum directions. The Hamiltonian
in Eq. (1) can be then rewritten, in terms of these quasi-momenta and in the basis
of the ns sublattices as in Eq. (31), by means of three ns 
 ns matrices similar to the
ones in Eq. (32).

4 Two Applications of Synthetic Gauge Potentials
in 1D Rings

The possibilities offered by ultracold atoms in optical lattices to engineer tight-
binding models in tunable magnetic potential open as well new possibilities also in
the field of quantum information in the sense that they could be used in perspective
to perform quantum information tasks and control the amount of entanglement of
the system. Here, as two examples we believe paradigmatic of such potentialities,
we want to shortly address two specific applications showing how tuning a gauge
potential could modify the capability of a system to share quantum information.
We consider one-dimensional models of free fermions on a ring geometry in the
presence of a synthetic magnetic field piercing the ring. We first analyze for short-
range lattice models how a topological phase helps to enhance the fidelity in a
quantum state transfer (QST) process between different sites of the lattice [7, 62].
Then we study a long-range model to see how the presence of a topological phase
can lead to the a volume-law behavior of the entanglement entropy (EE) for the
ground state of the system.

4.1 Quantum State Transfer in a Ring Pierced
by a Magnetic Flux

We consider a one-dimensional tight-binding model for free fermions with nearest-
neighbors hopping in a ring geometry embedded in a magnetic field. Such magnetic
field determines the boundary conditions of the problem: its role is to induce an
Aharonov-Bohm phase in the transport of a particle along a full circle around the
ring geometry. The Hamiltonian of the system reads

H D �w
X

j

ei�c�j cjC1 C h:c: ; (42)

where � D 2�
NS
˚ (˚ being the Abelian magnetic flux piercing the ring chain in units

of 2 �), NS is the number of sites, and the site coordinate is r D aj mod NS.
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The single-particle energy dispersion is

Ek.�/ D �2w cos .ak � �/ D 2t cos

�
2�

NS
.nk �˚/

�
; (43)

with k D 2�
aNS

nk. Due to the nontrivial phase ei� , the single-particle dispersion
is shifted, as well as the points corresponding to the Fermi surface. For a single
fermion, the introduction of this topological phase affects the wave-packet diffusion,
giving a useful tool to optimize the quantum state transfer of a certain state from a
part of the chain to another one.

One can consider a fermion initially localized at the time t D 0 around the site
j D 0:

j 0.0/i D
X

j

gjc
�
j j0i ; (44)

with a square wave packet distribution extended over � D 2M C 1 sites:

gl D
(

1p
2MC1 If � M � l � M

0 elsewhere :
(45)

After the state evolution j 0.t/i D e�iHt j 0.0/i, the capacity for the channel to
produce QST from the site j D 0 to site j D d can be measured by the square
projection of the evolved state on the initial state localized on the site d:

Fd.t/ D jh d.0/j 0.t/ij2 ' A.t/ e
� ŒdC2wt sin�
2

2�2F .t/ ; (46)

with

A.t/ D 3�2

�
p
.�2 � 1/2 C 144w2t2 cos2 �

; (47)

and

�2F.t/ D .�2 � 1/2 C 144w2t2 cos2 �

12.�2 � 1/
: (48)

For � D ��=2, the dispersion becomes approximately linear and the wave-
packet does not diffuse. Moreover, it propagates with velocity v D 2w causing an
enhancement in the fidelity (see Fig. 2). In particular, Fd.t/ assumes its maximum
value at the approximate time

t� D d

2w
: (49)
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Fig. 2 Time evolution of the fidelity Fd.t/ in the square packet preparation (M D 5), with phase
� D ��=2, different values for the final site d D 10; 30; 60; 90 and N D 500. The thick line
indicates the maxima of fidelity reached by each site at different times

4.2 Violation of the Area-Law in Long-Range Systems

The study of the ground-state entanglement properties plays an essential role in
the characterization of a quantum many-body system. In this Section, we show
how the introduction of a gauge potential in a free-fermion model with a long-
range hopping can qualitatively change the scaling behavior of the ground state
entanglement. The amount of entanglement of a pure state is well quantified by
the so-called Entanglement Entropy (EE), defined as follows. Partitioning a given
system in two subsystems A and its complement NA, the EE is the Von Neumann
entropy S of one of the two subsystems (say A) calculated from its reduced density
matrix �A:

S D �Tr .�A ln �A/ : (50)

Typically for gapped short-range quantum systems (where gapped means with
a finite energy difference of the first excited level, compared to the ground state
energy), the EE grows as the boundary of the subsystem A, i.e., for a system
in d dimensions the EE scales as S / @Ld�1. This is commonly known as the
area law [26]. The physical origin of this law is that entanglement is appreciably
nonvanishing only between parts of the system very close each others, since the
quantum correlation functions between two points decay exponentially with their
distance, with a finite decay constant  that increases as the mass gap decreases. At
variance, for short-range free fermionic systems at a critical (gapless) point it has
been shown that the divergence of  (resulting in an algebraic decay of quantum
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correlations) produces a logarithmic correction of the area law, S / Ld�1 ln L
[30, 76], so that in one dimension one expects to find S / ln L. A more relevant, non-
logarithmic, violation of the area law is obtained when S / Lˇ with d � 1 < ˇ < d.
When ˇ D d one has a volume law.

Referring to free fermions on a lattice, in order to find violation to the area law
in gapped regimes, one has to introduce longer-range connections, changing the
Fermi surface in a suitable way. In one-dimensional short-range systems, the Fermi
surface is typically composed by a finite set of points. This is what happens also
in the simplest long-range models when, despite of the long-range hoppings, strong
entanglement is created only between closed lattice sites. At variance, if the Fermi
surface is a set of points with finite dimension, it can occurs that antipodal sites of the
lattice becomes maximally entangled (Bell pairs). As a consequence, a bipartition
into two connected complementary parts would cut a number of Bell pairs of the
order of the volume of the smaller subsystem, giving rise to a violation of the area
law. To this aim, a long-range connection appears useful but not sufficient.

A possible way to create a nontrivial Fermi surface is to introduce a gauge
potential [34]. Let us consider a model with long-range hopping with periodic
boundary conditions:

H D �
X

j

wi;jc
�
i cj C h:c: (51)

with

wi;j D w
ei� di;j

jdi;jj˛ ; (52)

where � D 2�
NS
˚ , being˚ a constant, NS the number of sites. The filling f is defined

to be f D N=NS, where N is the number of sites. di;j is the oriented distance between
the sites i and j,

di;j D
�
.i � j/ if ji � jj � NS � ji � jj

�NS C ji � jj otherwise:
(53)

Due to the translational invariance, the eigenstates are plane waves, and, for finite
NS, the spectrum is given by:

Ek D �2w

8̂̂
<̂
ˆ̂̂:

P N�1
2

mD1
1

m˛ cos ..k C �/m/ for odd NS ;

P N
2 �1

mD1
1
j˛ cos ..k C �/m/C cos.�nk/

2
�

NS
2

�˛ for even NS :

(54)

For � D 0, the single-particle spectrum is always monotonous in the interval
k 2 Œ0; �
, while for � ¤ 0 the spectrum can split in two branches for ˛ < ˛c < 1,
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Fig. 3 Spectrum of the Hamiltonian in Eq. (51) with ˚ D 0:1, ˛ D 0:1, filling factor f D 0:5 and
NS D 100. Left inset: detail of the main plot showing the alternating occupation of the modes k, the
Fermi energy corresponding to the dashed line. Right inset: decrease of the alternating occupation
with increasing ˛. We set ˚ D 0:1, ˛ D 0:4, f D 0:5 and NS D 100

where the critical value ˛c depends both on N and �. This means that at fixed �
and NS � 1 at half-filling, all the momenta k are occupied in an alternating way, as
shown in Fig. 3. Thus, for ˛ < ˛c and at half-filling, the ground-state is a Bell-
paired state, and the EE grows linearly with Ns (with slope ln 2), resulting in a
volume law and the Fermi surface has a fractal counting box dimension dbox D 1.
On the contrary, when ˛ > ˛c only a fraction of the momenta are occupied in an
alternating way, since the “zig-zag” structure of the dispersion relation is partially
lost. As a result, the slope of the EE decreases.

We conclude by observing that as long as the dispersion is such that the half-
filling occupation is alternate in k, entanglement is created between antipodal sites
and the system violates the area law behavior, in favour of a volume law.
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Relative-Zeta and Casimir Energy
for a Semitransparent Hyperplane
Selecting Transverse Modes

Claudio Cacciapuoti, Davide Fermi, and Andrea Posilicano

Abstract We study the relative zeta function for the couple of operators A0 and
A˛, where A0 is the free unconstrained Laplacian in L2.Rd/ (d � 2) and A˛ is the
singular perturbation of A0 associated to the presence of a delta interaction supported
by a hyperplane. In our setting the operatorial parameter ˛, which is related to the
strength of the perturbation, is of the kind ˛ D ˛.��k/, where ��k is the free
Laplacian in L2.Rd�1/. Thus ˛ may depend on the components of the wave vector
parallel to the hyperplane; in this sense A˛ describes a semitransparent hyperplane
selecting transverse modes.

As an application we give an expression for the associated thermal Casimir
energy. Whenever ˛ D �I.��k/, where �I is the characteristic function of an
interval I, the thermal Casimir energy can be explicitly computed.

Keywords Casimir effect • Delta-interactions • Finite temperature quantum
fields • Relative zeta function • Zeta regularization
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1 Introduction

Analytic continuation techniques are well known to be useful to give a meaning to
otherwise divergent series. The most classical example is the Riemann zeta function.
The series
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converges only for s 2 C with Re s > 1; however, it is well known that the function
s 7! �R.s/ can be analytically continued to all complex s ¤ 1. In this way one can
formally evaluate the series in Eq. (1) also for Re s < 1.

The same regularization procedure can be used to give a meaning to divergent
series arising when computing traces of powers of operators, such as Tr A�s. Indeed,
when A is a positive, elliptic differential operator with pure point spectrum, which
we denote by f�ng1

nD1 (�n > 0 and each eigenvalue is counted with its multiplicity),
one can set, in analogy with Eq. (1),

�.AI s/ WD Tr A�s D
1X

nD1

1

�s
n

: (2)

The striking feature of the function �.AI s/ is that, even though the series on the r.h.s.
converges only for large enough Re s, under certain assumptions on the operator A
it can be extended to a meromorphic function with possible poles only on the real
line, see [34].

When the essential spectrum of the operator A is not empty the regularization
procedure described above cannot be applied. This is the case, for example, when
the operator A is the Laplacian on a non compact manifold; in such a situation the
trace Tr A�s cannot be defined for any s 2 C.

Zeta-regularization techniques, however, turn out to be a powerful tool also in
these circumstances if one is interested in the comparison between two operators:
an operator A associated to the “interacting” dynamics and a reference “non
interacting” or “free” operator A0. Both A and A0 are assumed to be nonnegative,
they may have non empty essential spectrum and the traces Tr A�s and Tr A�s

0

may not be defined. Nevertheless, what may be defined is the relative zeta function
�.A;A0I s/ WD Tr .A�s � A�s

0 /.
In certain situations the relative zeta function can be equivalently expressed

in terms of the heat semigroups. We recall the following result from [36]. If the
operator .A� z/�1� .A0� z/�1, with z in the resolvent set of A and A0, is trace class,
and such trace has certain asymptotic expansions for z ! 0 and z ! 1 (see [36]
and [29] for the details), then the formula

�.A;A0I s/ D 1

� .s/

Z 1

0

ts�1 Tr .e�tA � e�tA0 /dt (3)

holds true for s0 � Re s � s1, with s0 and s1 depending on the asymptotic
expansions of the trace, and where � .s/ is the Gamma function.

The subject of our paper is the study of the relative zeta function for the couple of
operators A0 and A˛ defined as follows (see Sect. 2 for the rigorous definitions):

• A0 is the free unconstrained Laplacian in L2.Rd/ (d � 2).
• A˛ is the Laplacian in the presence of a semitransparent hyperplane selecting

transverse modes. More precisely, let � denote the hyperplane

� WD fx 2 Rd j x1 D 0g I (4)
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this is naturally identified with Rd�1. A˛ is the self-adjoint operator in L2.Rd/

which formally corresponds to the Laplacian plus a singular potential supported
by the hyperplane � . In our setting the parameter ˛, which is related to the
“strength” of the potential, may depend on the components of the wave vector
parallel to � . More precisely, we set ˛ D ˛.��k/, where ��k is the free
unconstrained Laplacian in L2.Rd�1/. Heuristically speaking, this indicates that
the singular potential supported on � acts differently, depending on the transverse
modes (parallel to the hyperplane). Denoting by ı1 the 1-dimensional Dirac delta
in x1 D 0, the operator A˛ formally corresponds to the heuristic expression
“A˛ D ��C hı1; �i ı1 ˝ ˛.��k/” on L2.Rd/ 	 L2.R/˝ L2.Rd�1/.

We remark that both operators, A˛ and A0, enjoy the translation invariance in
the directions xk parallel to � . This symmetry of the system has two important
consequences. On one side the operator A�s

˛ � A�s
0 is not trace class no matter how

large Re s is (a similar remark holds true for the operator e�tA˛ � e�tA0). On the
other hand it is clear that any relevant (possibly infinite) physical quantity cannot
depend on the coordinate xk and can be associated to a finite density by averaging
on any finite subset of � . With this remark in mind, and by Eq. (3), we infer that the
quantity of interest in our analysis is the relative zeta function

�1.s/ 	 �1.A˛;A0I s/ WD 1

� .s/

Z C1

0

dt ts�1
Z

R
dx1Qrel.tI x1; x1; 0/ ; (5)

where Qrel.tI x1; y1; xk � yk/ is the integral kernel of the operator Qrel.t/ WD e�tA˛ �
e�tA0 . We remark that here we have used the translation invariance of the system to
conclude that the integral kernel Qrel is a function of xk � yk.

We also note that the integrand function in Eq. (5) has been obtained by taking
x1 D y1 and xk D yk in the integral kernel Qrel.tI x1; y1; xk�yk/. Since the integrand
function does not depend on xk, the integral

R
R dx1 could be rewritten in terms of

the average j˝j�1 RR dx1
R
˝ dxk, where ˝ is any finite region of � of volume j˝j.

In this way, taking the limit ˝ ! Rd�1, would reconstruct an “averaged trace” of
the operator Qrel.t/. In the applications, for example when computing the thermal
Casimir energy (see Sect. 4), the “average argument” could be made rigorous. A
possible approach would be to constrain the system to a rectangular box of size L
along the directions xk, take the average with respect to the volume of the box, and
then take the limit L ! 1. Here we do not pursue this goal, we just recall that
the problem of the reduction to a density was already present in the original paper
by Casimir [7] as well as in more recent papers such as [22]. In the latter work this
problem is approached by adding a mass parameter that afterwords is sent to infinity.

Our main result is summed up in Eqs. (41)–(43), where we give the analytic
continuation of the map s ! �1.s/.

As an application, in Sect. 4, we compute the thermal Casimir energy per unit
surface for a massless scalar field at temperature T D 2�=ˇ, and discuss an explicit
choice of the function ˛.
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In the remaining part of the introduction we discuss the physical motivations of
our analysis and several related works.

Major applications of the zeta-regularization approach are related to the problem
of zero point oscillations or Casimir effect in Quantum Field Theory (QFT).

In his 1948 paper [7] the Dutch physicists H. B. G. Casimir pointed out that
two parallel, neutral, perfectly conducting plates will show an attractive force. This
phenomenon, which was later on named Casimir effect, originates from the variation
of the electromagnetic zero point energy due to the boundaries represented by the
plates.

In his setting, Casimir considered a box-shaped cavity with a plate inside, placed
parallel to the walls of the cavity. Casimir showed that the plate interacts with
the walls through a force (later referred to as Casimir force) which is inversely
proportional to the cube of the distance between the plate and the walls.

The crucial observation in the paper [7] is the following. The energy of the cavity
is given by 1

2

P „! (resp. 1
2

P„!0) where ! (resp. !0) are the resonant frequencies
of the cavity with (resp. without) the plate inserted in it, and the sum runs over
all the possible frequencies. Even though the sums 1

2

P „! and 1
2

P „!0 diverge,
a finite value (which depends on the position of the plate) can be assigned to the
difference of these energies. The Casimir force was indeed computed by taking the
derivative of this finite energy difference with respect to the parameter associated to
the position of the plate.

Nowadays the term Casimir effect refers to a wide class of phenomena that are
associated to the variation of the zero point energy or zero point oscillations in QFT,
where a quantized field can be described as a set of oscillators. In a bounded region
of the space, for example, the zero point energy of the field is given by a sum of
the form

P
j !j, where !j are all the possible frequencies of the oscillators and the

sum runs over an infinite set of quantum numbers (here denoted by j). This series is,
in general, divergent. Casimir’s approach allows to regularize, by subtraction, this
divergent quantity and extract the relevant information from the regularized energy.

The applications of Casimir’s regularization are extremely numerous and the
literature on the subject is massive. We refer to the monographs [4, 6, 25] for an
exhaustive discussion on this topic and a list of related references. Here we just point
out the evident relation between the divergent series in the Casimir effect and zeta-
regularization techniques. Indeed, Casimir’s force can be computed by regularizing
a series of the form given in Eq. (2) through analytic continuation, and then taking
the limit lims!�1 �.AI s/ (see, e.g., [12]).

The first attempts to regularize sums involving the eigenvalues of elliptic opera-
tors through analytic continuation date back to the works of Minakshisundaram and
Pleijel [27, 28]. A first example of an application of zeta-regularization to investigate
geometrical properties of manifolds is in [33], where the authors used it to compute
the analytic torsion of a smooth, compact manifold.

One of the first applications to QFT is in [10] to compute the effective Lagrangian
and the energy-momentum tensor associated to a scalar field in a De Sitter
background. In [10], the authors point out that this regularization procedure may
produce a result different from the one obtained by dimensional regularization.
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Indeed, shortly afterwards zeta-regularization was discussed by Hawking, see [20],
as a method to resolve the ambiguity in the dimensional regularization of path
integrals for fields in curved spacetime. A slightly different (and to some extent
more rigorous) formulation of Hawking’s approach was developed by Wald in [37].

Temperature effects in the classical Casimir effect were first investigated by Fierz
[18] and Mehra [24]. The general dependence on temperature in QFT, instead, was
first discussed in [11]. A more recent work in this direction is [31].

More recently, the zeta-regularization approach was presented in [13–17] as a
tool to cure the divergences in the vacuum expectation value of both local and global
observables in QFT.

One of the first attempts at using models with singular potentials (delta-
interactions) to compute the energy momentum tensor is in [23]. The same model
was taken up again in [5]. Delta type interactions intuitively model semitransparent
walls. From a mathematical point of view they offer a two-fold advantage: in
a certain sense they are less singular than pure Dirichlet conditions; moreover
they produce highly solvable models, i.e. are simple enough to perform explicit
computations. In [19] the authors compute the Casimir energy of a boson field in
the presence of two semitransparent walls in spatial dimension d D 1 and of a
delta interaction supported by a circle in dimension d D 2. In a similar setting, but
in d D 1 and d D 3 space dimensions, the Casimir energy and the pressure for a
massless scalar field are explicitly computed in [26]. See [8] for a similar analysis in
the case of a delta interaction supported on a cylindrical shell. A systematic analysis
of the configuration with two semitransparent walls (with a discussion of the limit
in which the boundary conditions become of Dirichlet type) is in [30].

We remark that none of the works mentioned in the discussion above uses the
relative-zeta function regularization scheme. The general theory of the relative-zeta
approach was developed by Müller in the seminal paper [29].

When computing the relative zeta function �1.s/, however, we will not use
directly the results in [29] but we will follow the equivalent approach presented in
[36]. Our choice relies on the fact that in [29] the relative-zeta function is computed
by exploiting its relation with the difference of the semigroups e�tA˛ �e�tA0 ; in [36],
instead, it is obtained by working with the difference of the resolvents

R˛.z/� R0.z/ WD .A˛ � z/�1 � .A0 � z/�1:

In our setting the theory of self-adjoint extensions of symmetric operators, see, e.g.
[32], allows us to obtain an explicit formula for R˛.z/ � R0.z/, see Sect. 2, and
perform exact calculations in a relatively easy way.

We conclude by mentioning few works in which the relative zeta function is used
in a setting with singular interactions supported by points: [1] where the case of a
point potential in the half-space is discussed; and [2] where the authors analyze the
combined effect of the Coulomb together with a point potential, both centered at the
origin.

The paper is structured as follows. In Sect. 2 we introduce the model and obtain
an explicit formula for the resolvent of the operator A˛ , in terms of the resolvent of
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A0. In Sect. 3 we obtain a formula for the relative zeta function and study its analytic
continuation. In Sect. 4 we give a formula for the thermal Casimir energy; moreover
we compute it explicitly in the case in which the function ˛ is the characteristic
function of an interval. We conclude the paper with an Appendix in which we
discuss the case ˛ D constant.

2 The General Framework

We work in d � 2 spatial dimensions and write x 	 .xi/iD1;:::;d to denote points in
Rd. We identify the points of the plane � defined in Eq. (4) with xk 	 .x2; : : : ; xd/ 2
Rd�1. Moreover, we shall use the notations

.x1; xk/ 	 x 2 Rd 	 R 
 Rd�1: (6)

We denote by F and F�1 the distributional Fourier and inverse Fourier transform
defined on integrable functions as

F'.k/ WD
Z

Rd
dx e�ik�x'.x/ ; F�1'.x/ WD

Z
Rd

dk
eik�x

.2�/d
'.k/:

Notice that, with the above choice, the convolution of two functions '; fulfills

F .' �  /.k/ D F'.k/F .k/ :

The free Laplacian on Rd is the self-adjoint operator

A0 WD �� W Dom.A0/ � L2.Rd/ ! L2.Rd/ ;

where Dom.A0/ D H2.Rd/ (the Sobolev space of order two); the associated
resolvent is the bounded operator

R0.z/ WD .A0 � z/�1 W L2.Rd/ ! H2.Rd/ ; z 2 C n Œ0;C1/ :

Throughout the paper we consider the natural determination of the argument for
complex numbers, i.e. arg W C n Œ0;C1/ ! .0; 2�/; furthermore, for any z 2
C n Œ0;C1/, we always use the notation

p
z to denote the principal square root, i.e.

the one with positive imaginary part.
As well known, the action of R0.z/ can be expressed in terms of the cor-

responding convolution kernel as R0.z/' D R0.z/ � ', where R0.zI x/ D
1
2�
.

�i
p

z
2�jxj /

d=2�1Kd=2�1.�i
p

z jxj/ (K� is the modified Bessel function of second kind
of order �). We also recall that the Fourier transform of R0.zI �/ is given by
.FR0.z//.k/ D .jkj2 � z/�1.
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Together with the notation introduced in (6), we shall often write

.k1;kk/ 	 k 2 Rd 	 R 
 Rd�1 :

Next, let us consider a non-negative, piecewise continuous, and compactly sup-
ported function ˛ such that, for some ı > 0, it holds true:

˛.�/ > ı 8� 2 supp.˛/: (7)

The trace on the hyperplane � D fx 2 Rd j x1 D 0g is the unique linear bounded
operator

�� W Hr.Rd/ ! Hr� 1
2 .Rd�1/ ; r > 1=2 ;

such that, for any continuous ' there holds

.��'/.xk/ D '.0; xk/ ; xk 2 Rd�1 :

Here and below Hs.˝/, s 2 R, denotes the usual scale of Sobolev-Hilbert spaces on
the open subset ˝  Rn. In particular, considering the Sobolev spaces on the half
spaces Rd

˙ WD fx 2 Rd j ˙ x1 > 0g, one introduces the lateral traces

��̇ W Hr.Rd
˙/ ! Hr� 1

2 .Rd�1/ ; r > 1=2 ;

defined as the unique linear bounded operators such that, for any continuous (up to
the boundary) function on Rd

˙ there holds

.��̇ '/.xk/ D '.0˙; xk/ ; xk 2 Rd�1 :

Setting

Hr.Rd n�/ WD Hr.Rd�/˚ Hr.RdC/ ;

one has that ' D '� ˚ 'C 2 Hr.Rd n�/, 1=2 < r < 3=2, belongs to Hr.Rd/ if and
only if ��

� '� D �C
� 'C; in this case ��̇ '˙ D ��'.

To proceed, consider the free Laplacian on Rd�1, indicated hereafter with ��k;
since its spectrum coincides with the half-line Œ0;C1/, one can define via standard
functional calculus the bounded self-adjoint operator

˛.��k/ W L2.Rd�1/ ! L2.Rd�1/ :
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We use such an operator to define a self-adjoint singular perturbation of the free
Laplacian A˛ W Dom.A˛/ � L2.Rd/ ! L2.Rd/ with domain

Dom.A˛/ Df' D '� ˚ 'C 2H2.Rd n�/ j ��
� '� D �C

� 'C

�C
� @1'C � ��

� @1'� D ˛.��k/��'g :
(8)

Similar models, with momentum dependent delta-interactions supported on spheri-
cal shells, were studied in [3, 9, 35].

Let us consider, for any z 2 CnŒ0;C1/, the bounded operator

MGz W L2.Rd/ ! H3=2.Rd�1/ ; MGz' WD ��R0.z/':

Next, consider the adjoint of MGNz with respect to the H�3=2.Rd�1/-H3=2.Rd�1/ duality
.�j�/, that is the unique bounded operator

Gz W H�3=2.Rd�1/ ! L2.Rd/ ;

fulfilling

hGzqj'iL2.Rd/ D .qj MGNz'/ q 2 H�3=2.Rd�1/; ' 2 L2.Rd/:

One can easily check that Gz corresponds to the single layer operator of the
hyperplane � .

Let us now introduce a convenient representation of R0.z/; since it is a bounded
operator, it suffices to consider its action on any ' D '1˝'k belonging to the dense
subset S .R/˝ S .Rd�1/. Recalling the explicit representation of the kernel of the
resolvent of the free 1-dimensional Laplacian�1, one has

.R0.z/'1 ˝ 'k/ .x1; xk/ D ..A0 � z/�1'1 ˝ 'k/ .x1; xk/

D 1

.2�/d

Z
Rd�1

dkk ei kk�ykF'k.kk/
 Z

R
dk1

eik1x1F'1.k1/

k21 C jkkj2 � z

!

D 1

.2�/d�1

Z
Rd�1

dkk ei kk�ykF'k.kk/
����1 C jkkj2 � z

	�1
'1

�
.x1/

D 1

.2�/d�1

Z
Rd�1

dkk ei kk�ykF'k.kk/
 Z

R
dy1

iei
p

z�jkkj2 jx1�y1j

2
p

z � jkkj2 '1.y
1/

!

D i

2

��Z
R

dy1 '1.y
1/ eijx1�y1j .zC�k/

1=2

�
.z C�k/�1=2'k

�
.xk/ :
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This gives

. MGz'1 ˝ 'k/.xk/ D i

2

��Z
R

dy1 '1.y
1/ eijy1j .zC�k/

1=2

�
.z C�k/�1=2'k

�
.xk/

and so

.Gzq/.x
1; xk/ D i

2

�
eijx1j .zC�k/

1=2

.z C�k/�1=2q
�
.xk/ : (9)

We note that the corresponding integral kernels are of convolution type in the
variables xk and yk, i.e.

. MGz'/.xk/ D
Z

R
dy1

Z
Rd�1

dyk Gz.y
1; xk � yk/'.y1; yk/ D

Z
R

dy1.Gz.y
1; �/ � '.y1; �//.xk/ ;

.Gzq/.x
1; xk/ D

Z
Rd�1

dyk Gz.x
1; xk � yk/q.yk/ D .Gz.x

1; �/ � q/.xk/ :

Moreover the Fourier transform (on xk) of the function Gz.x1; xk/ is given by

.FGz.x
1; �//.kk/ D ieijx1jpz�jkkj2

2
p

z � jkkj2 :

By Eq. (9), one infers that ��Gz, z 2 C n Œ0;C1/, extends to a well defined
pseudodifferential operator Mz of order .�1/ defined on the whole scale of Sobolev-
Hilbert spaces on Rd�1:

Mz W Hr.Rd�1/ ! HrC1.Rd�1/ ; Mz WD i

2
.z C�k/�1=2 :

Then, by using Mz, we define, for any z 2 C n Œ0;C1/,

W˛.z/ WD �˛.��k/
�
1C ˛.��k/Mz

��1 W L2.Rd�1/ ! L2.Rd�1/ :

Notice that W˛.z/ is a bounded operator since, by functional calculus, W˛.z/ D
wz.��k/, where

wz.�/ D � ˛.�/
p

z � �p
z � �C i˛.�/=2

and wz 2 L1.0;C1/ for any z 2 C n Œ0;C1/. Indeed, the associated convolution
kernel is given by W˛.zI xk � yk/, with .FW˛.zI �//.kk/ D wz.jkkj2/.
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Finally, for any z 2 C n Œ0;C1/ we define the bounded linear operator R˛.z/ by

R˛.z/ W L2.Rd/ ! L2.Rd/ ; R˛.z/ D R0.z/C Gz W˛.z/ MGz :

By the results provided in [32, Sect. 2], applied to the case in which the map there
denoted by � is given by � WD p

˛.��k/�� , one gets that R˛ is a pseudo-resolvent,
i.e. it satisfies the resolvent identity R˛.w/�R˛.z/ D .z�w/R˛.w/R˛.z/. Moreover,
by Eq. (9),

��
� @1Gzq � �C

� @1Gzq D q (10)

and so Ran.Gz/\H2.Rd/ D f0g, i.e. R˛.z/ is injective. In conclusion, since R˛.Nz/ D
R˛.z/�, R˛.z/ is the resolvent of the (z-independent) self-adjoint operator A˛ WD
R˛.z/�1 C z defined on the domain Dom.A˛/ WDRan.R˛.z//. Setting G WD G�1 and
W˛ WD W˛.�1/, one has

Dom.A˛/ D f' 2 L2.Rd/ j ' D '0 C GW˛��'0 ; '0 2 H2.Rd/g (11)

and, by the identity R˛.�1/.A0 C 1/'0 D '0 C GW˛��'0,

.A˛ C 1/' D .A0 C 1/'0 : (12)

The representation of Dom.A˛/ given in (11) coincides with (8) by ��
� Gq D �C

� Gq
(which is consequence of Eq. (9)) and by the identities (here we use Eq. (10) and the
definition of W˛)

�C
� @1' � ��

� @1' D �C
� @1GW˛��'0 � ��

� @1GW˛��'0 D �W˛��'0

D � .1C ˛.��k/��G/W˛��'0 C ˛.��k/��GW˛��'0

D˛.��k/��'0 C ˛.��k/��GW˛��'0 D ˛.��k/��' :

Moreover, since .�� C 1/G D ı� , where ı� denotes the tempered distribution
defined by ı�.�/ WD R

Rd�1 �.0; xk/ dxk, � 2 S .Rd/, by Eq. (12) one has

A˛' D A0'0 C GW˛��'0 D ��' � W˛��'0ı� D ��' C ˛.��k/��'ı� :

3 The Relative Zeta Function

In this section we obtain an explicit expression for the relative zeta function �1.s/.
The formula is given in Eq. (16) and expresses the relative zeta function as an
integral of the relative spectral measure e1.v/. This identity holds true for the
values of s in the strip (17). The function e1.v/ is defined in Eq. (15) and computed
explicitly in Sect. 3.1. In the same section we also obtain the asymptotic expansions
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of the function e1.v/ for v ! 0C and v ! C1. We will use these asymptotic
expansions in Sect. 3.3 to obtain the analytic continuation of the function �1.s/ to
the strip defined by Eq. (42).

Denote by Rrel.z/ the operator

Rrel.z/ WD R˛.z/ � R0.z/ z 2 C n Œ0;C1/:

The integral kernel of Rrel.z/ is of convolution type on the variables xk and yk and it
is given by

Rrel.zI x1; y1; xk � yk/ D .Gz.x
1; �/ � W˛.zI �/ � Gz.y

1; �//.xk � yk/

D 1

4.2�/d�1

Z
Rd�1

dkk eikk�.xk�yk/
˛.jkkj2/ ei.jx1jCjy1j/pz�jkkj2

p
z � jkkj2

�p
z � jkkj2 C i˛.jkkj2/=2

� :
(13)

To compute the relative zeta function defined in Eq. (5) we will compute first the
function

r1.z/ WD
Z

R
dx1 Rrel.zI x1; x1; 0/ z 2 C n Œ0;C1/: (14)

Then we will show that the relative spectral measure1

e1.v/ WD v

i�
lim
"!0C

h
r1.v

2 C i"/� r1.v
2 � i"/

i
(15)

is well defined for any v > 0, see Sect. 3.1. Finally, is Sect. 3.2, we shall prove that
the function �1.s/ can be expressed through the following fundamental formula

�1.s/ D
Z C1

0

dv v�2s e1.v/ (16)

for any complex s in the strip

�
s 2 C

ˇ̌
ˇ � 1

2
< Re s <

d � 1

2

�
: (17)

Formula (16), together with the asymptotic expansions of e1.v/ for v ! 0C and
v ! C1, see Eqs. (30) and (31), can be used to obtain the analytic continuation of
the map s ! �1.s/ outside the strip (17), see Eqs. (41)–(43).

1We remark that here we are slightly abusing terminology, as “relative spectral measure” usually
denotes the function e.v/ WD v

i� lim"!0C Tr .R.v2 C i"/� R0.v2 � i"//.
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We start by computing function r1.z/ defined in Eq. (14).
For notational convenience, we introduce the rescaled function

Q̨ .�/ WD 1

2
˛.�/ .� 2 Œ0;C1/ / : (18)

Setting y1 D x1 and yk D xk in Eq. (13) and integrating over x1; we are left with

r1.z/ D i�

.2�/d

Z
Rd�1

dkk
Q̨ .jkkj2/

.z � jkkj2/
�p

z � jkkj2 C i Q̨ .jkkj2/
� : (19)

Note that for any z 2 C n Œ0;C1/, we have Im
p

z � jkkj2 > 0 and recall that
the function ˛.�/ is compactly supported by assumption. Hence, one can exchange
order of integration and perform the integral over x1.

Next, passing to polar coordinates and considering the change of variable � WD
jkkj2 2 .0;C1/, one obtains

r1.z/ D i�2

.2�/
dC3
2 � . d�1

2
/

Z C1

0

d�
�

d�3
2 Q̨ .�/

.z � �/.pz � � C i Q̨ .�// ; (20)

where � .�/ denotes the Euler Gamma function.

3.1 The Relative Spectral Measure and Its Asymptotic
Expansion

In this section we obtain an explicit formula for the function e1.v/ defined in
Eq. (15) (see Eq. (26) below). Then compute its asymptotic expansion for v ! 0C,
see Eq. (30), and for v ! C1, see Eq. (31).

First of all, let us point out the trivial identity

Q̨ .�/
.z � �/.

p
z � �C i Q̨ .�// D � i

z � � C ip
z � �.

p
z � �C i Q̨ .�// :

In view of the above identity, and recalling Eq. (20), the difference r1.v2 C i"/ �
r1.v2 � i"/ can be expressed via simple algebraic manipulations as

r1.v
2 C i"/� r1.v

2 � i"/ D i�2

.2�/
dC3
2 �

�
d�1
2

	 �E1."I v/C E2."; v/C E3."I v/
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where

E1."I v/ WD �
Z

supp˛
d��

d�3
2

2"

.v2 � �/2 C "2
;

E2."I v/ WD i
Z

supp˛
d�

�
d�3
2p

v2 � �C i"C i Q̨.�/

 
1p

v2 � �C i"
� 1p

v2 � � � i"

!
;

E3."I v/ WDi
Z

supp˛
d�

�
d�3
2p

v2 � � � i"



 

1p
v2 � � C i"C i Q̨.�/ � 1p

v2 � � � i"C i Q̨.�/

!
:

We study the convergence for " ! 0C term by term.
For the term E1."I v/ we use the fact that 2"

.v2��/2C"2 ! �ı.� � v2/ and the fact

that, �
d�3
2 �supp˛.�/ is piecewise continuous (here and below �supp˛.�/ denotes the

characteristic function of supp˛) to get (see, e.g., [21, Ex. 1.13])

lim
"!0C

E1."I v/ D �2�vd�3�supp˛.v2/ (21)

To compute the limit of E2."I v/ and E3."I v/ requires a bit more work. We start by
recalling the following inequalities, holding for some C > 0:

j
p
�C i" �

p
� � i" � 2

p
�j � C

p
" 8� > 0 I (22)

j
p
�C i" � p

� � i"j � C
p
" 8� < 0 : (23)

Next, we analyze the term E2."I v/. We note the identity

E2."I v/� i
Z
supp˛\.0;v2/

d�
�

d�3
2p

v2 � �C i"C i Q̨.�/
2
p
v2 � �p

.v2 � �/2 C "2

D i
Z
supp˛\.0;v2/

d�
�

d�3
2p

v2 � �C i"C i Q̨.�/

p
v2 � �C i"�

p
v2 � � � i"� 2

p
v2 � �p

.v2 � �/2 C "2

C i
Z
supp˛\.v2;C1/

d�
�

d�3
2p

v2 � �C i"C i Q̨ .�/

p
v2 � �C i"�

p
v2 � � � i"p

.v2 � �/2 C "2
;

where we used the fact that, due to our definition of the square root, we have thatp
v2 � � C i"

p
v2 � � � i" D �p.v2 � �2/C "2. To proceed, let us recall that

the square root is taken with positive imaginary part and that ˛.�/ > ı for all
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� 2 supp˛, see Eq. (7); then, by using the inequalities (22)–(23), we infer

ˇ̌
ˇ̌̌E2."I v/� i

Z
supp˛\.0;v2/

d�
�

d�3
2p

v2 � �C i"C i Q̨ .�/
2
p
v2 � �p

.v2 � �/2 C "2

ˇ̌
ˇ̌̌

� C

ı

 Z
supp˛

d��
d�3
2

p
"p

.v2 � �/2 C "2

!
� C"1=4

ı

Z
supp˛

d��
d�3
2

1

jv2 � �j3=4

� C.˛; d/"1=4 :

Since, by dominated convergence, one has

lim
"!0C

i
Z

supp˛\.0;v2/
d�

�
d�3
2p

v2 � � C i"C i Q̨ .�/
2
p
v2 � �p

.v2 � �/2 C "2

D i
Z

supp˛\.0;v2/
d�

�
d�3
2p

v2 � �C i Q̨ .�/
2p
v2 � �

;

we conclude that

lim
"!0C

E2."; v/ D i
Z

supp˛\.0;v2/
d�

�
d�3
2p

v2 � �C i Q̨ .�/
2p
v2 � � : (24)

Reasoning in a similar way, let us consider the identity

E3."I v/� i
Z
supp˛\.0;v2/

d�
�

d�3
2 .v2 � � � i"/�1=22

p
v2 � ��

Re
p
v2 � �C i"

	2 C �
Im

p
v2 � �C i"C Q̨.�/	2

Di
Z
supp˛\.0;v2/

d�
�

d�3
2 .v2 � � � i"/�1=2.

p
v2 � �C i"�p

v2 � � � i"� 2
p
v2 � �/�

Re
p
v2 � �C i"

	2 C �
Im

p
v2 � �C i"C Q̨ .�/	2

C i
Z
supp˛\.v2;C1/

d�
�

d�3
2 .v2 � � � i"/�1=2.

p
v2 � �C i"�

p
v2 � � � i"/�

Re
p
v2 � �C i"

	2 C �
Im

p
v2 � �C i"C Q̨.�/	2 ;

where we used the fact that Re
p
v2 � � � i" D � Re

p
v2 � �C i" and

Im
p
v2 � � � i" D Im

p
v2 � �C i". This allows us to infer

ˇ̌
ˇ̌̌E3."I v/ � i

Z
supp˛\.0;v2/

d�
�

d�3
2 .v2 � � � i"/�1=22

p
v2 � ��

Re
p
v2 � �C i"

	2 C �
Im

p
v2 � �C i"C Q̨ .�/	2

ˇ̌
ˇ̌̌

�
p
"

ı2

Z
supp˛

d�
�

d�3
2

jpv2 � � � i"j �
p
"

ı2

Z
supp˛

d�
�

d�3
2pjv2 � �j � C.˛; d/

p
":
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As before, by using the dominated convergence theorem, one can prove that

lim
"!0C

E3."I v/ D �i
Z

supp˛\.0;v2/
d�

�
d�3
2p

v2 � �

2
p
v2 � �

v2 � �C Q̨ .�/2 : (25)

Summing up the limits (24) and (25), we conclude

lim
"!0C

�
E2."I v/C E3."I v// D

Z v2

0

d�
�

d�3
2p

v2 � �

2 Q̨ .�/
v2 � �C Q̨ .�/2 :

Taking into account also the limit (21) we get the following expression:

e1.v/ D � v

.2�/
dC1
2 � . d�1

2
/

h
� vd�3 �supp˛.v2/C I˛.v

2/ �.0;C1/.v/
i
; (26)

where we introduced the notation

I˛.�/ WD 1

�

Z �

0

d�
�

d�3
2 Q̨ .�/p

� � � .� � � C Q̨ .�/2/ for any � 2 .0;C1/ : (27)

Before proceeding, let us stress that due to the assumptions on ˛, the integral I˛
can be easily checked to be finite and positive for any � 2 .0;C1/. In fact, by
Lebesgue’s dominated convergence theorem, one can infer that the map � 7! I˛.�/
is continuous on Œ0;C1/.

Next, let us pass to discuss the asymptotic behavior of the map � 7! I˛.�/ for
� ! 0C and � ! C1. For � ! 0C, we have that

I˛.�/ � k˛k1
�ı2

Z �

0

d�
�

d�3
2p

� � � � k˛k1�
d�3
2

�ı2

Z �

0

d�
1p
� � � � C.˛/�

d�2
2 :

Hence,

I˛.�/ D O.�
d�2
2 / for � ! 0C :

Next we discuss the asymptotic behavior of I˛.�/ in the limit � ! C1;
in particular, we shall show that that there exits a family of real coefficients
. pn/nD0;1;2;::: such that, for any N 2 f0; 1; 2; : : :g,

I˛.�/ D ��3=2
NX

nD0
pn �

�n C O.��N� 5
2 / for � ! C1 I (28)
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for example, the first two coefficients are

p0 WD 1

�

Z
supp˛

d� �
d�3
2 Q̨ .�/ ;

p1 WD 1

�

Z
supp˛

d� �
d�3
2 Q̨ .�/

�
3

2
� � Q̨ .�/2

�
:

(29)

Keeping in mind that ˛ is assumed to have compact support, let us fix arbitrarily
�1 2 .0;C1/ such that

supp˛  Œ0; �1
 :

Next, let us consider the representation (27) of I˛.�/ and notice that, for any � > �1,
it can be re-expressed as

I˛.�/ WD ��3=2

�

Z �1

0

d�
�

d�3
2 Q̨ .�/q

1� �

�

�
1C Q̨.�/2��

�

� :

To proceed, notice that for any N 2 f0; 1; 2; : : :g and any fixed � 2 .0; �1/ there exits
a family of coefficients .gn.�//nD0;:::;N and a Taylor-Lagrange reminder function
TN.�I �/ W .�1;C1/ ! R, � 7! TN.�I�/, such that

Q̨ .�/q
1� �

�

�
1C Q̨.�/2��

�

� D
NX

nD0
gn.�/ �

�n C TN.�; �/ for all � > �1 :

Let us mention that the coefficients gn.�/ (n D 0; : : : ;N) are all determined by
integer powers of ˛.�/; for example, one has

g0.�/ WD Q̨ .�/ ; g1.�/ WD Q̨ .�/
�
3

2
� � Q̨ .�/2

�
; . . .

Therefore, since ˛ is assumed to be bounded, one easily infers that all the functions
� 7! gn.�/ (n D 0; : : : ;N) are also uniformly bounded on .0; �1/.

Concerning the reminder TN , one has

jTN.�I�/j � SNC1.�/ ��.NC1/ for all � 2 .0; �1/; � 2 .�1 C 1;C1/ ;

where we have introduced the positive-valued function

SNC1.�/ WD sup
�2.�1C1;C1/

ˇ̌
ˇ̌
ˇ̌̌ 1

.N C 1/Š

dNC1

d�NC1

0
B@ Q̨ .�/q

1� �

�

�
1C Q̨.�/2��

�

�
1
CA
ˇ̌
ˇ̌
ˇ̌̌ I

the latter can be easily proved to be uniformly bounded on .0; �1/.
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Summing up, the above results allow to infer that

I˛.�/ D ��3=2

�

NX
nD0

 Z �0

0

d� �
d�3
2 gn.�/

!
��n C O.��N� 5

2 / for � ! C1 ;

thus proving Eqs. (28)–(29).
The above results on I˛.�/, along with the explicit expression (26) of the relative

spectral measure, allow to infer straightforwardly the following facts concerning the
map .0;C1/ ! R, v 7! e1.v/:

1. e1 2 C0..0;C1/I R/; in particular, e1 is locally bounded on .0;C1/.
2. There holds

e1.v/ D O.vd�2/ for v ! 0C: (30)

3. For any N 2 f0; 1; 2; : : :g, there holds the asymptotic expansion

e1.v/ D 1

v2

NX
nD0

Qpn v
�2n C O.v�2�2.NC1// for v ! C1 ; (31)

where the real coefficients . Qpn/nD0;1;2;::: are related to the coefficients
. pn/nD0;1;2;::: appearing in Eq. (28) by the rescaling

Qpn WD �

.2�/
dC1
2 � . d�1

2
/

pn : (32)

3.2 Relative Zeta Function in Terms of the Relative Spectral
Measure

This section is devoted to the proof of identity (16).
The function �1.s/ is defined in terms of the integral kernel of the operator Qrel D

e�tA˛ � e�tA0 by Eq. (5). We start by recalling the well known identity

Qrel.tI x1; y1; xk � yk/ D � 1

2�i

Z
�"

dz e�ztRrel.zI x1; y1; xk � yk/ ; (33)

where, for any " > 0, �" is the contour

�" D C" [�C
" [��

" where

C D fz D "ei� j � 2 Œ�=2; 3�=2
g ; �"̇ D fz D �˙ i"j � 2 Œ0;C1/g;
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and the integral over�" is taken counterclockwise. From the definition of �1.s/, see
Eq. (5), and identity (33) one has

�1.s/ D � 1

2�i� .s/

Z C1

0

dt ts�1
Z

R
dx1

Z
�"

dz e�ztRrel.zI x1; x1; 0/:

We claim that for all " > 0 and t > 0
Z

R
dx1

Z
�"

dz e�ztRrel.zI x1; x1; 0/ D
Z
�"

dz e�ztr1.z/ :

To prove the latter identity it is enough to show that the integrals can be exchanged.
To this aim we note that, by Eq. (13) and our assumptions on ˛ one has

Z
R

dx1
Z
�"

dz
Z

Rd�1

dkk
je�ztj ˛.jkkj2/e�2jx1j Im

p
z�jkkj2ˇ̌

ˇpz � jkkj2
ˇ̌
ˇ
ˇ̌
ˇpz � jkkj2 C i˛.jkkj2/=2

ˇ̌
ˇ

� k˛k1
Z
�"

dz
Z

fjkkj22supp˛g
dkk

je�ztj�
Im

p
z � jkkj2

�3 I
(34)

moreover, using the inequality

1

Im
p

z � jkkj2 � Cp
"

max

(
1;

r
�

"
;

jkkjp
"

)
for all z 2 �";

one can easily prove that the integral on the r.h.s. of Eq. (34) is bounded for all
" > 0 and t > 0. This suffices to infer that the integrals can be exchanged, as stated
previously.

Next we note that, by the analyticity properties of r1.z/, there exists a sequence
"n ! 0C such that

�1.s/ D � 1

2�i� .s/

Z C1

0

dt ts�1
Z
�"

dz e�ztr1.z/

D � 1

2�i� .s/

Z C1

0

dt ts�1 lim
n!C1

Z
�"n

dz e�ztr1.z/: (35)

We claim that for all t > 0 one has

1

2�i
lim
"!0C

Z
�"

dz e�ztr1.z/ D �
Z C1

0

dv e�v2te1.v/: (36)
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Then the identity (16) follows from Eqs. (35) and (36), by exchanging order of
integration and by taking into account the identity 1

� .s/

R1
0

dt ts�1e�v2 t D v�2s.
To prove Eq. (36) we start by noticing that for all t > 0

Z
�"

dz e�ztr1.z/ D � lim
"!0C

Z C1

0

d�
�
e�.�Ci"/tr1.�C i"/� e�.��i"/tr1.� � i"/

	
;

(37)
where we used the fact that

lim
"!0C

Z
C"

dz e�ztr1.z/ D 0 :

The latter claim follows from the bound

jr1."ei� /j � C
k˛k1
ı

Z
fjkkj22supp˛g

dkk
1p

"2 C jkkj4 8z 2 C";

where we used Eq. (19) and the fact that jz � jkkj2j�1 � ."2 C jkkj4/�1=2 for all
z 2 C". In fact, in view of the estimate

R
fjkkj22supp˛gdkk ."2 C jkkj4/�1=2 � C "�3=4

for all 0 < " < 1 (where C is a constant that depends on d and supp˛), the mentioned

bound allows to infer
ˇ̌
ˇRC" dz e�ztr1.z/

ˇ̌
ˇ � C "1=4, thus proving the previous claim.

To move the limit inside the integral in Eq. (37) we use dominated convergence
theorem. To this aim, we use first the trivial bound

ˇ̌
e�.�Ci"/tr1.�C i"/ � e�.��i"/tr1.� � i"/

ˇ̌
� e��t j2 sin."t/r1.�C i"/j C e��t jr1.�C i"/� r1.� � i"/j :

(38)

Next we note that

e��t j2 sin."t/r1.�C i"/j � Ce��tt
p
"

k˛k1
ı

Z
fjkkj22supp˛g

dkk
1ˇ̌

� � jkkj2ˇ̌1=2 :

Hence the limit for " ! 0C of the first term at the r.h.s. of Eq. (38) is zero. On the
other hand, for the second term at the r.h.s. we use, see Eq. (19),

jr1.�C i"/� r1.� � i"/j � Ck˛k1

 
1

ı

Z
fjkkj22supp˛g

dkk
"

.� � jkkj2/2 C "2

C 1

ı2

Z
fjkkj22supp˛g

dkk

ˇ̌p
� � jkkj2 C i" �p

� � jkkj2 � i"
ˇ̌

ˇ̌
� � jkkj2 C i"

ˇ̌
!
:
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The first term is uniformly bounded in ". For the second term we use the inequalityˇ̌p
�Ci"�p

��i"
ˇ̌

ˇ̌
�Ci"

ˇ̌ � Cpj�j , which holds true for all � 2 R and " > 0, from which it

follows that the second term is uniformly bounded as well. Identity (36) follows
from the dominated convergence theorem applied to Eq. (37) together with the
change of variables � ! v2.

3.3 Analytic Continuation of the Relative Zeta Function

In this section we obtain the analytic continuation of the relative zeta function �1.s/.
We start with the representation (16). In view of the continuity of the map v 7! e1.v/
on .0;C1/ and of its asymptotic behaviours for v ! 0C and v ! C1 discussed
previously (see, in particular, Eqs. (30) and (31)), it appears that the integral in
Eq. (16) converges for any complex s in the strip given in Eq. (17).

To proceed, let us recall the well-known fact that the asymptotic expansions of
e1.v/ for v ! 0C and v ! C1 can be used to construct explicitly the analytic
continuation of the map s 7! �1.s/ to larger regions of the complex plane, by means
of standard techniques. Let us point out that, for the applications to be discussed
in the forthcoming Sect. 4, it suffices to determine the said analytic continuation of
�1.s/ to regions with larger negative values of Re s (in particular, to a neighbour of
s D �1=2); to this purpose, let us fix v0 2 .0;C1/ arbitrarily and re-express the
relative partial zeta function as

�1.s/ D �
.</
1 .s/C �

.>/
1 .s/ ;

�
.</
1 .s/ WD

Z v0

0

dv v�2s e.v/ ; �
.>/
1 .s/ WD

Z C1

v0

dv v�2s e.v/ :
(39)

Notice that the asymptotic behaviour in Eq. (30) suffices to infer that the map
s 7! �

.</
1 .s/ is analytic for Re s < .d � 1/=2. On the other hand, the integral

defining �.>/1 .s/ only converges for Re s > �1=2; in order to construct its analytic
continuation to larger negative Re s, let us fix N 2 f0; 1; 2; : : :g and proceed to add
and subtract to the integrand in Eq. (39) the first N C 1 terms of the asymptotic
expansion of e1.v/ for v ! C1 (see Eq. (31)); we thus obtain

�
.>/
1 .s/ D

NX
nD0

Qpn

Z C1

v0

dv v�2s�2�2n C
Z C1

v0

dv v�2s

 
e1.v/ � 1

v2

NX
nD0

Qpn v
�2n

!
:

Therefore, using the elementary identity

Z C1

v0

dv v�2s�2�2n D v�2s�2n�1
0

2s C 2n C 1
for all s2C; n2N with Re s > �n � 1

2
;
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one obtains

�
.>/
1 .s/ D

NX
nD0

v�2s�2n�1
0

2s C 2n C 1
QpnC

Z C1

v0

dv v�2s

 
e1.v/ � 1

v2

NX
nD0

Qpn v
�2n

!
: (40)

Even though the above expression was derived under the assumption Re s > �1=2,
the following facts are apparent. On the one hand, the first term on the right-
hand side of Eq. (40) is a sum of functions which are meromorphic on the whole
complex plane, with only simple poles at the points f�1=2;�3=2; : : : ;�N � 1=2g;
on the other hand, the second term in Eq. (40) is an integral which converges by
construction for any Re s > �N � 3=2 and defines an analytic function of s in this
region.

Summing up, the above arguments allow to infer that the identity

�1.s/ D
NX

nD0

v�2s�2n�1
0

2s C 2n C 1
Qpn C

Z v0

0

dv v�2s e1.v/C
Z C1

v0

dv v�2s

 
e1.v/ � 1

v2

NX
nD0

Qpn v
�2n

!

(41)

determines the analytic continuation of the map s 7! �1.s/ to a function which is
meromorphic in the larger strip

�
s 2 C

ˇ̌
ˇ � 3

2
� N < Re s <

d � 1

2

�
; (42)

with possible simple pole singularities at the points

f�1=2;�3=2; : : : ;�N � 1=2g : (43)

4 The Thermal Casimir Energy

We work in natural units, meaning that we fix the speed of light c, the reduced Plank
constant „ and the Boltzmann constant � as follows:

c WD 1 ; „ WD 1 ; � WD 1 :

In this section we proceed to compute the renormalized Casimir energy per unit
surface E .ˇ/ for a massless scalar field at temperature T D 2�=ˇ (ˇ 2 .0;C1/),
living in .d C 1/-dimensional spacetime. A simple adaptation of the arguments
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presented in [36] allows to infer that this observable is completely determined by
the singular and regular parts of the Laurent expansion at s D �1=2 of the relative
zeta function �1.s/, discussed in the previous section; more precisely, there holds

E .ˇ/ D 1

2
Res0

ˇ̌̌
sD�1=2�1.s/ C .1 � log.2`// Res1

ˇ̌̌
sD�1=2�1.s/C @ˇ log �.ˇ/ ;

(44)
where ` 2 .0;C1/ is a length parameter required by dimensional arguments and

log �.ˇ/ WD
Z C1

0

dv log.1 � e�ˇv/ e1.v/ : (45)

In view of Eq. (41), here employed with N D 0 and any fixed v0 2 .0;C1/, one
readily infers the following2:

Res1
ˇ̌
ˇ
sD�1=2�1.s/ D 1

2
Qp0 ; (46)

Res0
ˇ̌
ˇ
sD�1=2�1.s/ D �Qp0 log v0 C

Z v0

0

dv v e1.v/C
Z C1

v0

dv v

�
e1.v/ � Qp0

v2

�
:

(47)

Summing up, Eqs. (44)–(47) give the explicit expression for the renormalized
Casimir energy

E .ˇ/ D (48)

1

2

"�
1 � log.2` v0/

�
Qp0 C

Z v0

0
dv v e1.v/C

Z C1

v0

dv v

�
e1.v/ � Qp0

v2

�
C
Z C1

0
dv

2 v e1.v/

eˇv � 1

#
;

where the relative spectral measure e1.v/ and the coefficient Qp0 are given, respec-
tively, by Eqs. (26)–(27) and Eqs. (29) and (32).

Before proceeding, let us remark that the first three terms in Eq. (48) correspond
to the zero temperature (ˇ ! C1) contribution, while the last term gives the
temperature correction.

2Following [36], for any s0 2 C we use the notation

Resn

ˇ̌
ˇ
sDs0

�1.s/ WD
�

coefficient of .s � s0/
�n

in the Laurent expansion of �1.s/ at s D s0

�
:
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4.1 The Casimir Energy for a Simple Model in Spatial
Dimension d D 3

As a simple application of the results derived previously, let us consider the 3-
dimensional configuration corresponding to the choice

˛.�/ D ˛0 �.0;K2/.�/ for some ˛0;K > 0 .d D 3/ I

this clearly fulfils our assumptions on ˛. In the following, in agreement with
Eq. (18), we put

Q̨0 WD ˛0=2 : (49)

In this case, one can derive a simple, fully explicit expression for the corresponding
thermal Casimir energy. To this purpose, let us first notice that the expression (27)
of the integral I˛ can be evaluated to give

I˛.�/ D 2

�

"
arctan

 p
�

Q̨0

!
� �.K2;C1/.�/ arctan

 p
� � K2

˛0

!#
:

Substituting the above result in Eq. (26) and making a few elementary manipula-
tions, one obtains for the relative spectral measure

e1.v/ D � v

2�2

"
arctan

� Q̨0
v

�
� arctan

� Q̨0p
v2 � K2

�
�.K;C1/.v/

#
;

On the other hand, Eqs. (29) and (32) give straightforwardly

Qp0 D 1

4�2
Q̨0 K2 :

Due to the above results and upon evaluation of some elementary integrals, for any
ˇ; ` 2 .0;C1/ and some fixed v0 2 .0;K/ chosen arbitrarily, Eq. (48) yields

E .ˇ/ D � 1

12�2

"
�

2
K3 C 3

2
Q̨0 K2

�
log.`R/� 7

6

�
C Q̨ 30 log

�
2 Q̨0
K

�
� !. Q̨0;K/ C

C
Z C1

0

dv

 
6 v2

eˇv � 1
� 6 v

p
v2 C K2

eˇ
p
v2CK2 � 1

!
arctan

� Q̨0
v

�#
;
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where we have introduced the (continuous) function

!.x; y/ WD

8̂̂
ˆ̂<
ˆ̂̂̂:

.x2 � y2/3=2 arccoth

 
xp

x2 � y2

!
for x � y ;

.y2 � x2/3=2
"
3�

2
� arctan

 
xp

y2 � x2

!#
for x < y :

Note that the above result allows to infer by simple arguments that, in the limiting
case where ˛0 is kept fixed and K ! C1, there holds

E .ˇ/ D Q̨ 30
12�2

"
�

K3

Q̨ 30
� 3

2

K2

Q̨ 20

�
log.`K/� 1

2

�
� 9�

4

K

Q̨0 C log.`K/ C

C
�
4

3
� log.2` Q̨0/

�
� 1

Q̨ 30

Z C1

0

dv
6 v2

eˇv � 1
arctan

� Q̨0
v

�
C O

� Q̨0
K

�#
:

(50)
Obviously enough, the above result allows to make a comparison with the model
corresponding to a constant, not compactly supported function

˛.�/ D ˛0 for all � 2 Œ0;C1/ and some ˛0 > 0 .d D 3/ ; (51)

that is the model typically considered in the literature [5, 19, 22, 23, 30]; as reviewed
in Appendix, in this case the Casimir energy is given by

E .ˇ/ D Q̨30
12�2

�
4

3
� log.2` Q̨0/

�
� 1

2�2

Z C1

0

dv
v2

eˇv � 1
arctan

� Q̨0
v

�
:

(52)
This appears to coincide with the finite, “renormalized” part of the asymptotic
expansion (50), which is obtained removing by brute force the divergent terms in
the cited expansion.
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Appendix: The Case ˛ D const: in Spatial Dimensions d D 3

In order to make connection with the existing literature, in the present appendix we
briefly review the computation of the Casimir energy for the 3-dimensional model
described in Eq. (51), that is

˛.�/ D ˛0 for all � 2 Œ0;C1/ and some ˛0 > 0 .d D 3/ :
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As a matter of fact, it can be easily checked that all the arguments described in the
present manuscript continue to make sense also in this particular case, even though
˛ does not fulfil the required assumptions since it does not have compact support.

First of all, let us notice that the integral representation (20) for the function r1.z/
continues to make sense for any z 2 C n Œ0;C1/ (the integral in the cited equation
is trivially seen to remain finite in the present case). Then, by the same arguments
of Sect. 3.1 one obtains an expression like Eq. (26) for the relative spectral measure
e1.v/; moreover, the term I˛ appearing therein (given by Eq. (27) ) can be evaluated
explicitly. This allows to infer for the relative spectral measure the expression

e1.v/ D � v

2�2
arctan

� Q̨0
v

�
�.0;C1/.v/ ; (53)

where Q̨0 is defined according to Eq. (49). This shows that the map v 7! e1.v/ is
continuous on .0;C1/ and fulfils, for any N 2 f0; 1; 2; : : :g,

e1.v/ D

8̂
<
:̂

O.v/ for v ! 0C ;
NX

nD0

.�1/nC1 Q̨ 2nC1
0

2�2.2n C 1/
v�2n C O.v�2.NC1// for v ! C1 :

Next, let us consider the representation (16) of the relative zeta function �1.s/ in
terms of e1.v/; in view of the above considerations, it appears that the integral in the
cited equation is finite for any complex s inside the strip

n
s 2 C

ˇ̌̌ 1
2
< Re s < 1

o
:

To proceed, notice that for any such s the integral in Eq. (16) can be evaluated
explicitly using the expression (53) for e1.v/; one obtains

�1.s/ D � Q̨ 2�2s
0

8� .s � 1/ cos.�s/
;

which determines the analytic continuation of s 7! �1.s/ to a function which is
meromorphic on the whole complex plane, with simple pole singularities at s D 1

and s D ˙1=2;˙3=2; : : : .
Using the above expression for �1.s/ and Eqs. (44)–(45) for the thermal Casimir

energy E .ˇ/, one easily infers the final result (52), that is

E .ˇ/ D Q̨ 30
12�2

�
4

3
� log.2` Q̨0/

�
� 1

2�2

Z C1

0

dv
v2

eˇv � 1
arctan

� Q̨0
v

�
:

For completeness, let us mention that the above expression can be easily employed
to derive the zero temperature expansion (ˇ ! C1) of the Casimir energy E .ˇ/.
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Analysis of Fluctuations Around Non-linear
Effective Dynamics

Serena Cenatiempo

Abstract We consider the derivation of effective equations approximating the
many-body quantum dynamics of a large system of N bosons in three dimensions,
interacting through a two-body potential N3ˇ�1V.Nˇx/. For any 0 � ˇ � 1 well
known results establish the trace norm convergence of the k-particle reduced density
matrices associated with the solution of the many-body Schrödinger equation
towards products of solutions of a one-particle non linear Schrödinger equation,
as N ! 1. In collaboration with C. Boccato and B. Schlein we studied
fluctuations around the approximate non linear Schrödinger dynamics, obtaining
for all 0 < ˇ < 1 a norm approximation of the evolution of an appropriate class of
data on the Fock space.

Keywords Gross-Pitaevskii equation • Interacting bosons • Nonlinear
Schrödinger equations • Quantum dynamics • Quantum fluctuations

1 Introduction

The understanding of the properties of many body quantum systems is a challenging
topic in quantum mechanics, the challenge being how to derive from the micro-
scopic and fundamental description of the system those collective properties which
are successfully exploited in condensed matter laboratories. The analysis of the
time evolution of quantum many particle systems and the derivation of effective
descriptions in interesting limiting regimes nestle in this research line. From a
mathematical physics perspective the main goals in this field are on the one hand to
justify the use of effective equations, and on the other hand to clarify the limits of
applicability of the effective theories.

While we refer to [5] for an introduction on this topic, and a panorama on existing
results and open problems in the context of bosonic and fermionic systems, we focus
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here on some recent results concerning the analysis of the time evolution of bosonic
systems in three dimensions.

A bosonic system of N particles moving in three space dimensions can be
described through a complex-valued wave function  N on the Hilbert space of
permutation symmetric L2.R3N/ wave functions

L2s .R
3N/ D f  N 2 L2.R3N/ W

 N.x�.1/; : : : ; x�.N// D  N.x1; : : : ; xN/ for any permutation � 2 SNg
with k Nk2 D 1. The evolution of an initial wave function  N;0 2 L2s .R

3N/ is
governed by the Schrödinger equation

i@t N;t D HN N;t ; (1)

where the subscript t indicates the time dependence of  N;t and HN is a self
adjoint operator on L2s .R

3N/ known as Hamiltonian of the system. We will restrict
our attention to Hamiltonians with two body interactions, and we will consider
interactions scaling with the number of particles, as follows:

H.ˇ/
N D

NX
iD1
.��xi/C

NX
i<j

N3ˇ�1V.Nˇ.xi � xj// ; (2)

with 0 � ˇ � 1 and V a spherically symmetric interaction potential. We will be
interested in situations where the number of particles N is large.

For ˇ D 0 the Hamiltonian (2) describes N bosons interacting by a mean field
potential N�1V.xi � xj/; this regime is a first approximation for the behaviour of
dilute Bose gases and is characterized by very weak interactions for large N. A more
accurate model for interactions among bosons in experiments on cold gases is given
by the so called Gross-Pitaevskii regime, which corresponds to the ˇ D 1 case in (2).
In this regime the interaction scales as N2V.N.xi �xj//, corresponding to a situation
where there are strong and short range collisions. While in the mean field regime, as
we will see, correlations among particles can be neglected in order to obtain a (first)
effective description of the system, they play a crucial role in the Gross-Pitaevskii
regime, due to the singularity of the potential. Values of ˇ between zero and one
describe intermediate scalings between the mean field and Gross-Pitaevskii regimes,
and therefore we may expect correlations to become more and more important as ˇ
approaches one.

We will be interested in studying the evolution under (2) of a particular class
of initial data, exhibiting complete condensation, meaning that there exists a one-
particle wave function ' 2 L2.R3/ (the so called condensate wave function) such
that the one-particle reduced density matrix associated to the many body wave
function  N;0

�
.1/
N;0 WD NTr2:::N j N;0ih N;0j ; (3)
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satisfies

Tr
ˇ̌
ˇN�1�.1/N;0 � j'ih'j

ˇ̌
ˇ ! 0 as N ! 1 ; (4)

where j'ih'j denotes the orthogonal projection onto '. From a physical point of
view bosonic quantum states such that the one-particle reduced density matrix has
an eigenvalue of order N in the limit of large N are models for Bose-Einstein
condensates, as realized in experiments on low density cold gases since 20 years [1].

We recall that the expectation of a bounded one particle observable O.1/ on
the many particle state described by  N;0 is given by Tr.�.1/N;0O

.1//. Therefore
whenever (4) occurs the knowledge of the condensate wave function is sufficient
to determine the expectation of any bounded observable on the state described by
 N;0 in the limit N ! 1. Additionally, since property (4) for bosonic systems
also implies that for any k D 2; 3; : : : ;N the k-particle reduced density matrix
�
.k/
N;0 D �N

k

	
TrkC1;:::;N j N;0ih N;0j is given by a rank one projection onto

�N
K

	
'˝k,

we can also calculate the expectation of any bounded k-particle observable in the
limit N ! 1.

Now, let us start with an initial datum satisfying (4) and let the system evolve with
the Hamiltonian (2). Due to the presence of the interaction we cannot expect (4)
to hold at positive times. However one can show that this property remains
approximately true in the limit of large N. Furthermore, one can derive an effective
dynamics for the condensate wave function in the scaling regimes described by (2).
More precisely one can prove (references will follow at the end of this section)
that, for every family of initial data  N;0 2 L2.R3N/ satisfying (4), the one-particle

reduced density matrix �.1/N;t corresponding to the evolved state  N;t D e�itH
.ˇ/
N  N;0

(under suitable assumptions on the interacting potential) satisfies

Tr
ˇ̌
N�1�.1/N;t � j'tih'tj

ˇ̌ ����!
N!1 0 ; (5)

with 't solution of a non linear Schrödinger equation with initial datum '0 D ',
whose precise form depends on ˇ. In particular 't satisfies:

i@t't D ��'t C .V ? j'tj2/'t if ˇ D 0 ; (6)

i@t't D ��'t C .

Z
V/ j'tj2't if 0 < ˇ < 1 ; (7)

i@t't D ��'t C 8�a0j'tj2't if ˇ D 1 : (8)

The parameter a0 appearing in (8) is the scattering length of the interaction V , i.e.
8�a0 D R

V.x/f .x/ with f .x/ the solution of the zero energy scattering equation

�
��C 1

2
V

�
f D 0 ; f .x/ ���!

x!1 1 : (9)
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From a physical point of view the scattering length a0 describes the low-energy
scattering among particles, in the sense that two particles interacting through the
potential V , when they are far apart, feel the other particle as a hard sphere with
radius a0.

The appearance of a0 in the effective equation (8) is a consequence of the fact
that the many body Schrödinger evolution with Gross-Pitaevskii potential develops a
singular correlation structure which varies on the same length scale of the potential.
Heuristically this can be seen considering the evolution equation for the one-particle
reduced density matrix

i@t�
.1/
N;t D Œ��; �.1/N;t 
C

1

2
Tr2


VN.x1 � x2/; �

.2/
N;t

�
: (10)

To take into account correlations among the particles and the short scale structure
they create in the marginal density �.2/N;t , we may use the ansatz

N�1�.1/N;t .x1I x0
1/ D 't.x1/'t.x

0
1/ ; 

N

2

!�1
�
.2/
N;t .x1; x2I x0

1; x
0
2/ D fN.x1 � x2/fN.x

0
1 � x0

2/'t.x1/'t.x2/'t.x
0
1/'t.x

0
2/ ;

(11)

with fN.x/ D f .Nx/ the zero energy scattering function corresponding to the
potential N2V.Nx/. Then Eq. (8) arises from (10) as the self consistent equation for
't; the coefficient in front of the non linearity is given by

R
dxN3V.N.x//f .Nx/ D

8�a0. Note that the ansatz (11) does not contradict complete condensation of the
system at time t. On the contrary in the weak limit N ! 1 the function fN
converges to one, and therefore �.2/N;t converges to j'tih'tj˝2.

This heuristics also explains why for 0 < ˇ < 1 we get
R

V instead of a0 in
the effective equation for 't, starting from the ansatz (11). As shown for example in
[7, Lemma 2.1] the potential N3ˇ�1V.Nˇx/ has scattering length of order N�1 for
any choice of 0 < ˇ < 1, and the solution fNˇ .x/ of the scattering equation with
potential N3ˇ�1V.Nˇx/ satisfies the bound

�
1 � fNˇ

	
.x/ � C

N.jxj C N�ˇ/
for 0 < ˇ < 1 : (12)

Therefore the coefficient appearing in front of the non linearity in the self consistent
equation for 't, obtained from (10) under the assumptions (11) with fN.x/ substituted
by fNˇ .x/, is

Z
dx N3ˇV.Nˇx/fNˇ .x/ D

Z
V � cNˇ�1 ; (13)

which equals
R

V in the limit N ! 1, for any 0 < ˇ < 1. Thus ˇ D 1 is the only
scaling for which the coefficient of the non linearity in the effective equation for 't

is given by the scattering length of the unscaled potential V .
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The rigourous derivation of the effective equation (6) (the Hartree equation),
in the form presented in (5), has been first obtained by Spohn [36] for bounded
potentials, and Erdős-Yau [2, 11] for singular potentials, analysing the BBGKY
hierarchy for the density matrices. More recent approaches by Rodnianskii-Schlein
[34] and Knowles-Pickl [23] also give the rate of convergence towards the Hartree
dynamics. A derivation of the Gross-Pitaevskii equation (8) was obtained in a
series of works [12, 14, 15] and later with an alternative approach in [30]. More
recently, convergence towards the Gross-Pitaevskii dynamics with a precise rate of
convergence has been obtained in [4]. The derivation of the non linear Schrödinger
equation in the intermediate regimes 0 < ˇ < 1 may be obtained with the same
approaches, and it is in fact a simpler problem than the ˇ D 1 case (see for example
[13, 30]; the proof in [4] could be also easily adapted to cover any ˇ < 1).

Beyond the approximation for the reduced density matrices, there is some interest
in obtaining an approximation for the evolved N-particle wave function  N;t in
the appropriate Hilbert space norm. This corresponds to study fluctuations around
the effective dynamics described by the non linear Schrödinger equation for the
condensate wave function. Several results in this direction have been obtained in
the mean field regime, starting from the pioneering works by Hepp and Ginibre-
Velo [16, 22] and later in [3, 8, 9, 20, 21, 26, 27]. More recent results deal with the
intermediate scalings with ˇ > 0, see [7, 18, 19, 28, 29]. In particular, the result in
[7] covers all ˇ < 1. An analogous result for the Gross-Pitaevskii regime is up to
now still open.

More generally, from a statical point of view, one would aim to completely
construct the ground state wave function and study its excitation spectrum at least
in the interesting limiting regimes described by (2) (and even more ambitiously in
the thermodynamic limit). These goals have been partially achieved in the context
of mean field bosons, where the ground state energy and excitation spectrum have
been proved to be correctly described by the famous Bogoliubov approximation
[10, 17, 25, 35] and the ground state has been fully constructed in the presence of an
ultraviolet cutoff [31–33]. Up to now no similar results are available for any ˇ > 0.1

From this point of view studying the fluctuation dynamics for ˇ > 0 may also give
some insight into the problem of approximating the ground state.

The aim of this contribution is to present the strategy used in [7] to obtain a
norm approximation for the dynamics described by the Hamiltonian H.ˇ/

N , with
0 < ˇ < 1. This approximation is obtained for a special class of initial data in the
Fock space. The choice of the initial data is a main point in our analysis, since in
order to cover all ˇ < 1 we need to introduce a suitable correlation structure among
particles. We will come back to the role of correlations in our analysis in the next
sections.

1Very recently, after the submission of this contribution, the validity of Bogoliubov prediction
for the ground state energy and the low-lying excitation spectrum has been established for any
ˇ > 0 [6].
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2 The Coherent State Approach

The strategy used in [7], also known as coherent state approach, was first introduced
by Hepp in [22]. More recently it has been further developed in [34] and [4] to
obtain the rate of the trace norm convergence in the mean field and Gross-Pitaevskii
regimes respectively. The main idea of this approach is that even if the dynamics
described by H.ˇ/

N preserves the particle number, it is convenient to represent our
bosonic system in the Fock space, where we have the opportunity to consider a
more general class of initial data than wave functions in L2s .R

3N/. The choice of the
class of initial data crucially depends on the scaling of the potential. For this reason
we first describe which choice turns out to be convenient in the mean field regime,
and then present the physical and mathematical motivations leading to a different
choice in the Gross-Pitaevskii regime. Before that, let us start with summarising the
Fock space representation of a bosonic system.

Fock Space Representation

We represent our bosonic system in the bosonic Fock space

F D ˚n�0L2s .R3n/ : (14)

A state � 2 F is therefore a sequence � D f .n/gn�0, where  .0/ 2 C and
 .n/ 2 L2s .R

3n/. The space F is a Hilbert space with respect to the inner product

˝
�;˚

˛ D  .0/'.0/ C
X
n�1

˝
 .n/; '.n/

˛
; (15)

and each component of � 2 F has a probabilistic interpretation, namely k .n/k22
is the probability of having n particle in the state described by  . Clearly we are
interested in states where

P
n�0 k .n/k22 D 1. The number of particles operator is

defined requiring that

.N �/.n/ D n .n/ ; (16)

and therefore the expected number of particles in a state � 2 F is given by

˝
�;N �

˛ D
X
n�0

nk .n/k22 : (17)

A state with exactly N particles is represented by a vector in F where only the N-th
component is non zero. A special example of such a state is the vacuum state with
˝ D f1; 0; 0; : : : ; 0g, describing a state with no particles. More in general, given
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a one-particle operator O.1/ the corresponding operator d� .O.1// on F (called the
second quantization of O.1/) is defined by the requirement that

�
d� .O.1//�

	.n/ D
nX

iD1
O.1/

i  
.n/ ; (18)

where O.1/
i denotes the operator acting on L2.R3n/ as O.1/ on the i-th particle and as

the identity on the other .n � 1/ particles.
In order to define a time evolution on F we introduce the Hamilton operator

H .ˇ/
N , which is defined through its action on vectors of F :

.H
.ˇ/

N �/.n/ D �
H.ˇ/

N

	.n/
 .n/ ;

�
H.ˇ/

N

	.n/ D
nX

iD1
.��xi/C

nX
i<j

N3ˇ�1V.Nˇ.xi � xj// : (19)

By definition the operator H .ˇ/
N acts on states with a variable number of particles

but leaves all sectors with fixed number of particles invariant. Note that the scaling
parameter N in H .ˇ/

N in general has nothing to do with the number of particles of
the system (which is not fixed now). To recover the relevant scaling limits we are
interested in, we will consider in the following the evolution of states with expected
number of particle N.

Being the number of particles in F not fixed, it is useful to introduce operators
that create or annihilate a particle. For f 2 L2.R3/ we define the creation operator
a�. f / and the annihilation operator a. f / by

�
a�. f /�

	.n/
.x1; : : : ; xn/ D 1p

n

nX
jD1

f .xj/ 
.n�1/.x1; : : : ; 6 xj; : : : ; xn/ n � 1 ; (20)

�
a. f /�

	.n/
.x1; : : : ; xn/ D p

n C 1

Z
dx f .x/ .nC1/.x; x1; : : : ; xn/ n � 0 ; (21)

and we set .a�. f /�/.0/ WD 0. It is simply to check that a�. f / D .a. f //�, and that
the following commutation relations hold:

Œa. f /; a�.g/
 D ˝
f ; g
˛
L2
; Œa. f /; a.g/
 D Œa�. f /; a�.g/
 D 0 : (22)

We have a. f /˝ D 0. The action of .a�. f //N on the vacuum generates a state with
exactly N particles with wave function f , that is

.
p

NŠ/�1.a�. f //N D f0; : : : ; 0; f ˝N ; 0; : : :g : (23)
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We also introduce operator valued distribution a�
x and ax, defined by

a�. f / D
Z

dx f .x/a�
x ; and a. f / D

Z
dx f .x/ax ; (24)

which formally creates or annihilates a particle in the point x. From (22) we have
Œax; a�

y 
 D ıx;y and Œax; ay
 D Œa�
x ; a

�
y 
=0.

The second quantization of any (densely defined) self adjoint operator can
be conveniently expressed by means of a�

x and ax, see e.g. [5, Sect. 3] and
[24, Sect. 1.3]. The expressions for the particle number operator and the Hamilto-
nian are

N D
Z

dxa�
x ax ; (25)

and

H .ˇ/
N D

Z
dxrxa�

x rxax C 1

2

Z
dxdyN3ˇ�1V.Nˇ.x � y//a�

x a�
y axay (26)

respectively. The r. h. s. of (25) and (26) should be understood in the sense of
forms; for example (25) means that for any �;˚ 2 F we have

˝
�;N ˚

˛ DR
dx
˝
ax�; ax˚

˛
.

Moreover, the kernel of the one-particle reduced density matrix �.1/ associated
to the state � 2 F can be expressed as

�.1/.xI y/ D ˝
�; a�

x ay�
˛
: (27)

The expression (25) for N suggests that, although creation and annihilation
operators are unbounded operators, they can be bounded with respect to the square
root of the number of particles operator, in the sense that

ka. f /�k � k f k2kN 1=2�k
ka�. f /�k � k f k2k.N C 1/1=2�k (28)

for all f 2 L2.R3/, � 2 F . Moreover, given a bounded one particle operator O.1/ on
the L2.R3/ space, its second quantization d� .O.1//, although generally unbounded,
is bounded with respect to the number of particles operator:

j˝�; d� .O.1//�
˛j � kO.1/k˝�;N �

˛
; � 2 F : (29)

Properties (28) and (29) will be essential for our analysis.
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2.1 Choice of the Class of Initial States in the Mean Field
Regime

Our goal is to study the time evolution under H .ˇ/
N of a suitable class of initial data

in F with expected number of particles N and one-particle reduced density matrix
�
.1/
N;0 satisfying (4) for some ' 2 L2.R3/. In the mean field regime ˇ D 0 a natural

choice is to consider as class of initial data the so called coherent states.
A coherent state with wave function f 2 L2.R3/ is a linear combination of states

with all possible number of particles, all described by the same wave function f .
Such a state is built acting on the vacuum with the so called Weyl operator

W. f / D exp.a�. f / � a. f // ; (30)

thus obtaining

W. f /˝ D e�k f k2=2
�
1; f ;

f ˝2
p
2Š
; : : : ;

f ˝n

p
nŠ
; : : :

�
: (31)

The Weyl operator is a unitary operator on F which acts on the annihilation and
creation operators as follows:

W�. f / ax W. f / D ax C f .x/

W�. f / a�
x W. f / D a�

x C f .x/ : (32)

Since the expected particle number of the coherent state W. f /˝ is equal to

˝
W. f /˝;N W. f /˝

˛ D k f k22 ; (33)

a coherent state with expected particle number N is given by

W.
p

N'/˝ ; k'k2 D 1 : (34)

Using (32) it is also simple to check that the kernel of the one-particle density
associated to W.

p
N'/˝ is

�
.1/
N .x; y/ D ˝

W.
p

N'/˝; a�
x ayW.

p
N'/˝

˛ D N'.x/'.y/ : (35)

For this class of initial data the following theorem was proven in [34], in the mean
field regime.
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Theorem 1 Let V be a measurable function, satisfying the operator inequality
V2.x/ � C.1��/ for some C > 0 and let ' 2 H1.R3/. Let �.1/N;t be the one-particle
reduced density associated with

�N;t D e�itH
.0/

N W.
p

N'/˝ :

Then, there exist constants D; k > 0 s.t.

Tr
ˇ̌
�
.1/
N;t � Nj'tih'tj

ˇ̌ � Dekjtj

for all t 2 R and all N 2 N, with 't satisfying (6) with initial data '0 D '.

Remark 1 Note that the assumptions on V in Theorem 1 include the Coulomb case
V.x/ D ˙1=jxj.

The strategy to prove Theorem 1 is to define a unitary operator UN.t/ through the
requirement:

�N;t D e�itH
.0/

N W.
p

N'/˝ WD W.
p

N't/UN.t/˝ : (36)

Note that if UN.t/ was the identity operator, than the evolution of W.
p

N'/˝ under
the mean field Hamiltonian would be exactly a coherent state with evolved wave
function 't. In this sense the vector UN.t/˝ is a fluctuation vector and

UN.t/ D W�.
p

N't/e
�itH

.0/
N W.

p
N'/ : (37)

can be interpreted as a fluctuation dynamics. Using the definition (36) we can write
the kernel of the one particle reduced density matrix associated to the evolved state
�N;t as follows

�
.1/
N;t .x; y/ D ˝

UN.t/˝;W
�.

p
N'/a�

x ayW.
p

N'/UN.t/˝
˛
: (38)

For any compact one-particle observable O.1/ on L2.R3/ one has

Tr O.1/
�
�
.1/
N;t � Nj'tih'tj

�
D p

N
˝
UN.t/˝; Œ a�.O.1/'t/C a.O.1/'t/ 
UN.t/˝

˛

C ˝
UN.t/˝; d� .O

.1//UN.t/˝
˛
; (39)

with d� .O.1// defined in (18). Using (28) and (29) we have

ˇ̌
ˇTr O.1/

�
�
.1/
N;t � Nj'tih'tj

�ˇ̌ˇ � p
N
˝
UN.t/˝; .N C 1/UN.t/˝

˛
: (40)

Since the space of trace class operators on L2.R3/, equipped with the trace norm,
is the dual of the space of compact operators, equipped with the operator norm, the
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proof of Theorem 1 ends up with controlling the r.h.s. of (40). In particular, to get a
bound on the rate of the convergence of the many body evolution towards the mean
field dynamics proportional to

p
N it is enough to show that the number of particles

with respect to the fluctuation dynamics UN.t/ grows uniformly in N. To this aim
we compute

i@t
˝
UN.t/˝;N UN.t/˝

˛ D ˝
UN.t/˝; ŒL

.0/
N .t/;N 
UN.t/˝

˛
; (41)

with

L
.0/

N .t/ D �
i@tW

�.
p

N't/
	
W.

p
N't/C W�.

p
N't/H

.0/
N W.

p
N't/ : (42)

the generator of the fluctuation dynamics UN.t/. In contrast with the original Hamil-
tonian, L .0/

N .t/ contains terms which do not commute with N . As a consequence,
the expectation of N is not preserved along the evolution of UN , that is fluctuations
are going to grow. However, under the assumption on the regularity of the potential
stated in Theorem 1 it can be shown that

˙ ŒL
.0/

N .t/;N 
 � C
�
N C 1

	
: (43)

Using a Gronwall lemma, we obtain that
˝
UN.t/˝; .N C 1/UN.t/˝

˛
is bounded

uniformly in N. The fact that 't should satisfy the Hartree equation (6) arises
quite naturally, because this is the condition to be imposed in order to cancel some
terms of order

p
N in the generator which are linear in a�

x and ax and therefore
do not commute with N . Some more work is needed to get the (optimal) rate of
convergence in Theorem 1 rather than the factor

p
N in (40), but this issue is not

relevant for the aim of this contribution.

2.2 Choice of the Class of Initial States in the Gross-Pitaevskii
Regime

We consider now the Gross-Pitaevskii regime ˇ D 1. To get the trace norm
convergence result in this regime, the initial data (34) has to be suitably modified to
take into account correlations among particles, that play now a crucial role. In fact
the Gross-Pitaevskii evolution develops singular correlations which are not captured
by an approximation given in terms of coherent states.

From the mathematical point of view this reflects into the fact that we cannot
approximate the evolution of the class of coherent states (34) underH .GP/

N WD H
.1/

N
with a new coherent state with evolved wave function given by the Gross-Pitaevskii
equation (8). If we defined the fluctuation dynamics

QUN.t/ D W�.
p

N't/e
�itH

.GP/
N W.

p
N'/ ; (44)
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analogously to what was done in the mean field regime, then the number of
fluctuations

˝ QUN.t/˝;N QUN.t/˝
˛

would grow with N. In fact the generator of the
dynamics QUN.t/ contains some linear and quadratic terms in the annihilation and
creation operators whose commutator with N cannot be bounded uniformly in N.

The idea used in [4] to implement the appropriate correlation structure in the
Fock space is to define the correlation kernel

kt.x; y/ D �N!.N.x � y/'N
t .x/'

N
t .y/ ; (45)

with !.x/ D 1 � f .x/, f .x/ the solution of the zero energy scattering equation (9),
and 'N

t the solution of the following modified Gross-Pitaevskii equation2:

i@t'
N
t D ��'N

t C �
N3V.N�/f .N�/ ? j'N

t j2	'N
t : (46)

It is simple to check that the function !.x/ satisfies the bound N!.Nx/ � C.jxj C
1=N/�1 and kt is the kernel of an Hilbert-Schmidt operator. In the following we
identify the function kt 2 L2.R3 
 R

3/ with the operator having kt as its integral
kernel. Using kt we define a unitary operator T.kt/ acting on the Fock space F by

T.kt/ D e
1
2

R
dxdy. kt.x;y/a�

x a�
y �kt.x;y/axay / : (47)

The action of T.kt/ on the creation and annihilation operators can be explicitly
computed. For any f 2 L2.R3/ we have (see [4, Lemma 2.3])

T�.kt/ a. f /T.kt/ D a.coshkt. f //C a�.sinhkt . Nf //
T�.kt/ a�. f /T.kt/ D a�.coshkt. f //C a.sinhkt . Nf // ;

where we used the notation coshkt and sinhkt for the linear operators on L2.R3/
given by

coshkt D
X
n�0

1

.2n/Š
.ktkt/

n ; sinhkt D
X
n�0

1

.2n C 1/Š
.ktkt/

nkt ; (48)

where products of kt and Nkt have to be understood as products of operators. We now
use the unitary operator T.kt/ to approximate the correlation structure developed
by the many-body evolution. To this aim, we consider the evolution of initial data

2The choice of using the solution of the modified Gross-Pitaevskii equation (46) rather than the
solution of Eq. (8) is due to technical reasons; however note that in the limit N ! 1 the solution
of (46) approaches the solution of (8), as shown in [4, Proposition 3.1]. Despite the operators kt

being N-dependent we do not put an extra N-index to keep the notation light.
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having the form

�N;0 D W.
p

N'/T.k0/˝ : (49)

Initial data given by Eq. (49), known as squeezed coherent states, are a natural class
of initial data approximating the ground state of Bose-Einstein condensates trapped
in a volume of order one. In fact they have expected particle number N C kktk2
(with kktk of order one) and energy equal at leading order to ground state energy for
trapped bosons in the Gross-Pitaevskii regime, see [5, Appendix A]. From a physical
point of view a good approximation for the ground state energy of a system of N
bosons is believed to be of the form '˝N

Q
i<j f .N.xi �xj//. Then, the class of states

W.
p

N'/T.k0/˝ 2 F captures some of the correlations which are believed to truly
appear in the ground state of dilute bosonic systems.

The trace norm convergence result in the Gross-Pitaevskii regime is obtained
studying the dynamics of states of the form �N;0 D W.

p
N'/T.k0/˝ under the

Gross-Pitaevskii Hamiltonian H .GP/
N . The fluctuation operator UN.t/ is defined

through the requirement that the many body evolution preserves the form of the
initial data, up for the evolution of ' into 'N

t , that is

�N;t D e�itH
.GP/

N W.
p

N'/T.k0/˝ WD W.
p

N'N
t /T.kt/UN.t/˝ : (50)

If UN.t/ was the identity operator then the evolution of a state of the form (49)
would be a state of the same type with evolved condensate wave function 'N

t given
by the modified Gross-Pitaevskii equation (46). In this sense UN.t/˝ is a fluctuation
vector and we refer to UN.t/ as a fluctuation dynamics. Using the definition (50) we
can write the kernel of the one particle reduced density matrix associated to the
evolved state �N;t as follows

�
.1/
N;t .x; y/ D ˝

UN.t/˝;T
�.kt/W

�.
p

N'N
t /a

�
x ayW.

p
N'N

t /T.kt/UN.t/˝
˛
; (51)

with

UN.t/ D T�.kt/W
�.

p
N'N

t /e
�itH

.GP/
N W.

p
N'/T.k0/ : (52)

The generator of the fluctuation dynamics UN.t/ is given by

LN.t/ D .i@tT
�.kt//T.kt/ (53)

CT�.kt/

 �

i@tW
�.

p
N'N

t /
	

W.
p

N'N
t /C W�.

p
N'N

t /H
.GP/

N W.
p

N'N
t /
�
T.kt/ ;

where

T�.kt/W
�.

p
N'N

t /axW.
p

N'N
t /T.kt/ D p

N 'N
t .x/C a.cx/C a�.sx/

T�.kt/W
�.

p
N'N

t /a
�
x W.

p
N'N

t /T.kt/ D p
N 'N

t .x/C a�.cx/C a.sx/ ; (54)
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with cx.z/ D coshkt.z; x/ and sx.z/ D sinhkt.z; x/. Note that the action of the
Bogoliubov transformation T.kt/ in Eq. (53) generates terms in LN.t/ where the
creation and annihilation operators are not in normal order (a product of creation
and annihilation operators is said to be normal ordered if all creation operators are
to the left of all annihilation operators). When we use the commutation relations (22)
to restore the normal order, this procedure generates some new linear and quadratic
terms in the creation and annihilation operators, coming from the normal ordering
of some cubic and quartic terms respectively. These terms, together with the fact
that the correlation kernel kt contains the solution fN of the scattering equation, lead
to some cancellations in the generator LN which are essential to control the growth
of the number of fluctuations uniformly in N. In particular, the sum of the linear
terms (which would be of order

p
N) gives zero when 'N

t is chosen to satisfy the
effective equation (46). A second cancellation arises between some quadratic terms
that are too singular in the Gross-Piteavskii regime. After these cancellations (see
[4, Sect. 3] for details) we have

˙ ŒLN.t/;N 
 � HN C cN 2=N C Cekjtj�N C 1
	

(55)

for some C; c; k > 0 independent on N and t. The time dependence on the r.h.s.
of the last equation arises through high Sobolev norms of the solution 't of the
Gross-Pitaevskii equation.

The bound (55) shows a further difference with respect to the strategy used to
prove Theorem 1: in order to control the growth of the number of fluctuations˝
UN.t/˝;N UN.t/˝

˛
in the Gross-Pitaevskii case we also need to control the

growth of HN . To this aim, in a very similar way as used to prove (55) one can
also obtain the bounds

LN.t/ � 3

2
HN C cN 2=N C cekjtj.N C 1/ ; (56)

LN.t/ � 1

2
HN � cN 2=N � cekjtj.N C 1/ ; (57)

˙ PLN.t/ � 2LN.t/C cekjtj.N C 1C N 2=N/ : (58)

Moreover, it is easy to show that the number of fluctuations is just bounded by the
total number of particles:

˝
UN.t/˝; .N

2=N/UN.t/˝
˛ � ˝

UN.t/˝;N UN.t/˝
˛C ˝

˝; .N 2=N/˝
˛
: (59)

Using (55), (56), (58) and (59) one is able to close a Gronwall type estimate for the
expectation

˝
UN.t/˝;

�
LN.t/C Dekjtj.N C 1/

	
UN.t/˝

˛
; (60)
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for some D > 0, and show that it remains bounded uniformly in N. We get finally
the desired bound on the growth of N observing that the lower bound (57) together
with (59) implies

˝
UN.t/˝;

�
2LN.t/C c1e

kjtj.N C 1/
	

UN.t/˝
˛ � ˝

UN.t/˝;HNUN.t/˝
˛ � 0 ;

for some c1 > 0. Since D can be chosen to be greater than .c1 C 1/, the bound
for (60) also implies that

˝
UN.t/˝;N UN.t/˝

˛
remains bounded uniformly in N.

This allows to prove the following theorem, see [4].

Theorem 2 Consider a non-negative and spherically symmetric potential V 2 L1\
L3.R3; .1C jxj6/dx/. Let ' 2 H4.R3/ and ˝ 2 F the vacuum state. Consider the
family of initial data

�N D W.
p

N'/T.k0/˝ ;

and denote by �.1/N;t the one-particle reduced density matrix associated with the

evolution �N;t D e�itH
.GP/

N �N. Then

Tr
ˇ̌
�
.1/
N;t � Nj'tih'tj

ˇ̌ � CN1=2 exp.exp.cjtj//

for all t 2 R. Here 't satisfies the Gross-Pitaevskii equation (8) .

Remark 2 Theorem 2 still holds if we substitute the vacuum state ˝ with a
sequence of states N 2 F such that kNk D 1 and

˝
N ;

�
H .GP/

N C N C N 2=N/N
˛

� C ; for some C > 0 independent on N.

3 Norm Approximation Result and Ideas of the Proof

We switch now to the problem of studying fluctuations around the effective
dynamics described by (6), (7) or (8). The fact that the coherent state approach
could also be used to describe fluctuations around the limiting equation has been
first exploited in [16, 22, 34] in the mean field setting.

In [7] we follow the strategy used in [34], the main difference coming from the
necessity of taking into account correlations among particles in the condensate.
As discussed in the introduction, the many body evolution given by H

.ˇ/
N for

0 < ˇ < 1 develops weaker correlations than in the Gross-Pitaevskii regime.
This is the reason why the effective dynamics is described by the non linear
Schrödinger equation (7), rather than the Gross-Pitaevskii equation (8). Anyway two
body correlations are not negligible in the analysis of fluctuations. In fact, to get a
norm approximation result valid for all ˇ < 1, we need to introduce a correlation
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structure, which is a suitable modification of the one defined in (45). More precisely,
instead of working with the kernel defined in (45) we consider

k`;t.xI y/ D �N!N;`.x � y/. Q'N
t ..x C y/=2//2 : (61)

Here Q'N
t is the solution of the N-dependent Schrödinger equation

i@t Q'N
t D �� Q'N

t C �
N3ˇV.Nˇ �/fN;` ? j Q'N

t j2	 Q'N
t ; (62)

!N;` D 1 � fN;`, and fN;` is the solution of the eigenvalue problem

h
��C 1

2
N3ˇ�1V.Nˇx/

i
fN;`.x/ D �N;` fN;`.x/�.jxj � `/ ; (63)

associated with the smallest possible eigenvalue �N;`, normalized so that fN;` D 1

for jxj D ` and continued to R
3 by requiring that fN;` D 1 for all jxj � `. With this

choice the kernel k`;t.xI y/ D 0 for all jx�yj > `, that is we are considering particles
correlated up to relative distance `. Note that, for all 0 < ˇ < 1, the solution Q'N

t
of (62) approaches the solution of the non linear equation (7) as N ! 1. However it
furnishes a better approximation for the dynamics of the condensate wave function,
since it contains the factor fN;` which takes into account the correlations among the
particles.

Using k`;t we define the Bogoliubov transformation T.k`;t/ through (47). For any
0 < ˇ < 1 we consider the evolution of initial data of the form W.

p
N'/T.k`;0/˝ ,

defining the fluctuation dynamics:

U`;N.t/ D T�.k`;t/W�.
p

N Q'N
t /e

�itH
.ˇ/

N W.
p

N'/T.k`;0/ ; (64)

with Q'N
0 D '. The following result holds.

Theorem 3 Let V � 0, smooth, spherically symmetric and compactly supported.
Fix 0 < ˇ < 1 and consider H .ˇ/

N defined in (26). Let Q'N
t defined in (62) with Q'N

0 D
' 2 H4.R3/. Fix ` > 0 and consider k`;t defined in (61). Let ˛ D min.ˇ=2; .1 �
ˇ/=2/. Then there exist a unitary evolution U2;N.t/ with a quadratic (in the creation
and annihilation operators) generator and constants C; c1; c2 > 0 such that

k e�itH
.ˇ/

N W.
p

N'/T.k`;0/˝ � e�i
R t
0 �N .s/ds W.

p
N Q'N

t / T.k`;t/U2;N.t/˝ k2

� C N�˛ ec1 exp .c2jtj/ (65)

for all t 2 R and N large enough.
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Theorem 3 still holds if we substitute the vacuum state ˝ with a sequence
of states N 2 F such that kNk D 1 and

˝
N ;

�
N 2 C K 2 C H

.ˇ/
N

	
N
˛ � C

uniformly in N. Here K D R
dxrxa�

x rxax is the kinetic energy operator. It is also
possible to approximate the dynamics of the fluctuations by a limiting evolution
U2;1.t/, again with a quadratic generator, but now independent of N, as shown in
[7, Prop. 2.1].

While we refer to [7] for a complete proof of Theorem 3, we briefly describe here
the general strategy used there. The main idea is to identify a limiting fluctuation
dynamics with a quadratic generator, and then apply it to obtain the norm bound
for the many body dynamics of our class of initial data. The fact that this limiting
dynamics may exist is suggested by the form of the generator L`;N.t/ of the
dynamics U`;N , where the cubic and quartic terms seem to vanish in the limit of
large N. From (64) is apparent that, W. f / and T.k`;t/ being unitary operators, the
following proposition is sufficient to prove Theorem 3.

Proposition 1 Let U`;N defined in (64), and ˛ D min.ˇ=2; .1�ˇ/=2/. Then, there
exist a unitary quadratic evolution U2;N and constants C; c1; c2 > 0 such that, for
all t 2 R and all N large enough,

kU`;N.tI 0/˝ � e�i
R t
0 �N .s/dsU2;N.tI 0/˝k � CN�˛ exp.exp.c2jtj// : (66)

The proposition follows from the fact that the generator L`;N.t/ can be written as

L`;N.t/ D �N.t/C L2;N.t/C VN C EN.t/ ; (67)

where �N.t/ is a phase, L2;N.t/ is a quadratic generator,

VN D 1

2

Z
dxdyN3ˇ�1V.Nˇ.x � y//a�

x a�
y axay (68)

is the interaction, and EN.t/ satisfies

jh 1;EN.t/ 2ij � CN�˛eKjtj
h 1; .K C N C 1/ 1i
C h 2; .K 2 C .N C 1/2/ 2i

�
(69)

for all  1; 2 2 F . To prove Proposition 1 we use that

d

dt
kU`;N.t/˝ � e�i

R t
0 �N .s/dsU2;N.t/˝k2

D 2Im
˝
U`;N˝; .L`;N.t/ � L2;N.t/ � �N.t//e

�i
R t
0 �N .s/dsU2;N.t/˝

˛
; (70)
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with U2;N.t/ the dynamics generated by L2;N.t/. The r.h.s. of (70) is controlled
using (67) and (69):

j˝U`;N.t/˝; .VN C EN.t//U2;N.t/˝
˛j

� CN�˛ekjtj
h ˝

U`;N.t/˝; .HN C N C 1/U`;N.t/˝
˛

C ˝
U2;N.t/˝; .K

2 C N 2 C 1/U2;N.t/˝
˛ i
:

(71)

The problem ends up in showing that the expectations appearing in the r.h.s. of (71)
are all bounded uniformly in N. The growth of N and HN with respect to the
full dynamics U`;N are controlled by means of Gronwall type estimates for the
expectation of N and L`;N.t/, following the same strategy described at the end
of Sect. 2 for the trace norm convergence result. The new issue here is that we also
need to prove bounds for the growth of the expectation of N 2 and K 2 with respect
to the dynamics generated by the quadratic part of the generator L2;N.t/. We prove
that the quadratic generator L2;N.t/ satisfies the bounds

˙.L2;N.t/ � K / � CeKjtj.N C 1/; .L2;N.t/ � K /2 � CeKjtj.N C 1/2

˙ ŒN ;L2;N.t/
 � CeKjtj.N C 1/; ˙ 

N 2;L2;N.t/

� � CeKjtj.N C 1/2

˙ PL2;N.t/ � CeKjtj.N C 1/; j PL2;N.t/j2 � CeKjtj.N C 1/2 :

(72)

Using Gronwall’s Lemma and the bounds in (72), we obtain

hU2;N.tI 0/˝;N 2U2;N.tI 0/˝i � C exp.c1 exp.c2jtj//h˝; .N C 1/2˝i
hU2;N.tI 0/˝;L 2

2;N.t/U2;N.tI 0/˝i � C exp.c1 exp.c2jtj//h˝; .K C N C 1/2˝i :

The last bounds, combined with the bound for .L2;N.t/ � K /2, also implies that

hU2;N.tI 0/˝;K 2U2;N.tI 0/˝i � C exp.c1 exp.c2jtj//h˝; .K C N C 1/2˝i :

Note that some of the bounds in (72) would not hold if we used the correlation
structure defined in (45); this is the reason why we implemented correlations
through the kernel defined in (61).

Remark 3 In [7] we considered fluctuations around the non linear Schrödinger
dynamics for initial states on the Fock space. For N particle initial data a more
convenient approach to study fluctuations around the effective dynamics has been
introduced in [26] in the mean field scaling. This approach was later exploited in
[28, 29] to analyze fluctuations in the regimes up to ˇ < 1=2. The major difficulty in
the extension of these results to larger values of ˇ is the introduction of correlations
in the N particle approach proposed in [26].
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4 Conclusions and Open Problems

We reported on the proof of a norm approximation for the many-body dynamics
described by (26) of a particular class of initial data in the Fock space which is a
good candidate to describe the ground state of trapped bosons interacting with a
pair potential of the form N3ˇ�1V.Nˇx/, with 0 < ˇ < 1. In particular we showed
that for any 0 < ˇ < 1 one can approximate the fluctuation dynamics U`;N defined
in (64) by a quadratic evolution in norm.

Instead of considering fluctuations of the time evolution around the time depen-
dent non linear Schrödinger equation, it is also possible to approach the problem
from a static point of view. To this end, one can trap the system in a finite volume
(either by imposing boundary conditions or by turning on an external potential) and
one can study the difference between the many-body ground state energy and the
minimum of the energy functional

E .'/ D
Z

dx

jr'.x/j2 C .

Z
V/j'.x/j4� : (73)

In this respect Theorem 3 suggests that a good approximation for the many-
body ground state of the Hamiltonian H

.ˇ/
N , with 0 < ˇ < 1, may have the

form W.
p

N'/S˝ , where ' minimizes the energy functional (73) and S is the
exponential of a quadratic expression, related to the limiting quadratic evolution.
Similarly, a good approximation for low-lying excited states may be of the form
W.

p
N0'/Sa�.g1/ : : : a�.gk/˝ , for appropriate k 2 N, N0 D N � k and orbitals

g1; : : : ; gk orthogonal to '. It would be very interesting to obtain a proof of the
above mentioned conjectures.

Concerning the extension of our result to the Gross-Pitaevskii regime, new ideas
are needed. In fact, if we follow the same strategy that we use for ˇ < 1, it
turns out that in the Gross-Pitaevskii regime one cannot approximate the fluctuation
dynamics U`;N by a quadratic evolution in norm. In fact, although one can control
their effect on the growth of the number of particles (needed to prove the trace
norm convergence), the cubic and quartic components of the generator of U`;N

are not negligible in the limit of large N as soon as ˇ D 1. In other words the
fluctuation dynamics of quasi–free states is not described by a quadratic generator.
One may interpret this difficulty saying that the action of T.k`;0/ is not sufficient to
describe the correlation structure developed in the Gross-Pitaevskii regime with the
precision needed to get a norm approximation result. In this perspective the analysis
of the fluctuation dynamics around the Gross-Pitaevskii equation may be useful to
get some information on the ground state wave function in this physically relevant
regime. Vice versa some new results on the time-independent characterization of
bosonic systems in the Gross-Pitaevskii regime may help the understanding of the
dynamical properties of the system.

We hope to be able to address some of these problems in the next future.
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Logarithmic Sobolev Inequalities for an Ideal
Bose Gas

Fabio Cipriani

Abstract The aim of this work is to derive logarithmic Sobolev inequalities,
with respect to the Fock vacuum state and for the second quantized Hamiltonian
d� .H� � �I/ of an ideal Bose gas with Dirichlet boundary conditions in a finite
volume �, from the free energy variation with respect to a Gibbs temperature
state and from the monotonicity of the relative entropy. Hypercontractivity of the
semigroup e�ˇd� .H�/ is also deduced.

Keywords Free energy • Gibbs state • Hypercontractivity • Ideal bose gas •
Logarithmic sobolev inequality • Relative entropy

1 Introduction

In the 1938 the mathematical physicist S.L. Sobolev proved the following inequality

�Z
Rn

j .x/jp dx
�2=p � cn

Z
Rn

jr .x/j2 dx;  2 C1
c .R

n/ ;

for n � 3, p D 2n
n�2 and some constant cn > 0. Due to the possible interpretation

of the Dirichlet integral on the right hand side as an energy functional, their are of
great use in mathematical physics and became such a basic tool of investigation in
linear and nonlinear PDE, that is impossible to exaggerate their importance.

In Quantum Mechanics, Dirichlet integrals are the quadratic form of the Laplace
operator H0 WD �� that represent the kinetic energy observable of a finite system of
particles and the use of the inequality above provides, among other things, classes
of possibly unbounded potentials V whose quantum Hamiltonians H0 C V are self-
adjoint on the Lebesgue space L2.Rn; dx/.
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At a more fundamental level, E. Lieb recognized in the Sobolev inequalities
an uncertainty principle which is one of the fundamental ingredients to prove the
Stability of the Matter [8].

In 1976, L. Gross [7] proved the following Logarithmic Sobolev inequality for
f 2 C1

c .R
n/ and k f kL2.Rn;�/ D 1

Z
Rn
�.dx/j f .x/j2 log j f .x/j2 �

Z
Rn
�.dx/jrf .x/j2

with respect to the Gaussian probability measure �.dx/ D .2�/�n=2e�jxj2=2dx.
He demonstrated that this inequality is an infinitesimal version of the Nelson’s
hypercontractivity

ke�teHukL4.Rn;�/ � kukL2.Rn;�/; t > 0 ; u 2 L2.Rn; �/

of the Ornstein-Uhlenbeck semigroup e�teH generated by the ground state represen-
tation eH of the Hamiltonian H D 1

2
.�� C jxj2 � 1/ of the quantum harmonic

oscillator (see [10]).
A first key difference between SI and LSI is that in the latter, the constant in front

the Gaussian Dirichlet integral is dimension independent. This fact allowed Gross
to prove LSI on infinite dimensional Gaussian Banach spaces, providing a useful
tool to infinite dimensional analysis.

Both E. Nelson and L. Gross were motivated in discovering their results by
the problems of constructive Quantum Field Theory where hypercontractivity and
logarithmic Sobolev inequalities provide sufficient compactness near the bottom
of the spectrum of free Hamiltonians H0 to prove essential self-adjointness, lower
semiboundedness, existence and finite degeneracy of the ground state as well its
uniqueness in case of ergodicity, for interacting Hamiltonians H0CV (see [6, 9] and
also [13, 14]).

Among the applications of infinite dimensional LSI to Mathematical Physics, we
recall the work of E. Carlen and D. Stroock [3] on the extension of the Bakry-Emery
criterion and its use to prove LSI for non product Gibbs measures for continuous
spin systems as well as the work of D. Stroock and B. Zegarlinski [15] about the
equivalence of LSI with the Dobrushin-Shlosman mixing condition for lattice gases
with compact continuous spin space.

Later, E.B. Davies and B. Simon [5] discovered that families of LSI

Z
X

dm juj2 log juj2 � ˇE Œu
C b.ˇ/; ˇ > 0 ; kukL2.X;�/ D 1

on a locally compact measured space .X; �/, are deeply connected with the
ultracontractivity of the heat semigroup associated to the Dirichlet form E , provided
the local norm b.ˇ/ is not too singular as ˇ goes to zero. This theory was
subsequently used by E.B. Davies [D] to get sharp off diagonal bounds upon the
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heat kernel of the Markovian semigroup generated by a Dirichlet form E satisfying
such logarithmic Sobolev inequality.

The first aim of this work is prove logarithmic Sobolev inequalities LSI.�/,
with respect to the Fock vacuum state !�F or measure ��F , for the second quantized
Hamiltonian ˇd� .H���I/ (at fixed inverse temperature ˇ > 0 and activity� 2 R)
of a gas of non interacting identical particles obeying the Bose-Einstein statistics
and confined in a bounded Euclidean domain where they are subject to Dirichlet
boundary conditions.

Our second aim is to introduce a new approach to logarithmic Sobolev inequality
based on two fundamental ideas of Quantum Statistical Mechanics, namely, the
relation between Helmholtz free energy, Gibbs states and relative entropy, on one
hand, and the monotonicity of relative entropy, on the other hand.

2 Logarithmic Sobolev Inequalities for Ideal Bosons Gas in
Finite Volume

To properly state the main result of the paper and introduce notations, we start to
describe the framework of the work. For the standard fundamental result we will
use, we refer to the standard classical monographies [2, 13].

Warning: Whenever a self-adjoint operator H is semi-bounded, to ease notation
the expression . ;H / will be denote the value of the lower semicontinuous
quadratic form of H at an element  of its quadratic form domain.

Let � � R
d be a bounded Euclidean domain and H� be the Dirichlet-Laplacian

operator on the complex Hilbert space h� WD L2.�/, considered with respect to the
Lebesgue measure on �, defined as the closure of �� on the domain C1

c .�/.
Denote by F.h�/ the bosonic Fock space and by U.h�/ the CCR algebra builded

on h�, when considered as a symplectic real vector space with the symplectic form

�. f ; g/ WD Im . f ; g/h�; f ; g 2 h� :

The vacuum vector˝ 2 F.h�/ is cyclic forU.h�/ and defines on it the Fock vacuum
state

!�F .A/ WD .˝;A˝/h� :

The annihilation and creation operators fa. f /; a�. f / W f 2 h�g define the self-
adjoint field operators f˚. f / W f 2 h�g

˚. f / WD a. f /C a�. f /p
2



124 F. Cipriani

which give rise to the Weyl unitaries

W. f / WD ei˚. f /

that satisfy the Weyl’s form of the Canonical Commutation Relation

W. f /W.g/ D W. f C g/e�i�. f ;g/=2; f ; g 2 h� :

The subspace L2
R
.�/ of real functions is a Lagrangian submanifold of L2.�/ in the

sense that the symplectic form vanishes identically so that the corresponding Weyl
operators commute

W. f /W.g/ D W. f C g/ D W.g/W. f /; f ; g 2 L2
R
.�/

and the (double commutant) von Neumann algebra

M� WD fW. f / 2 B.F.h�// W f 2 L2
R
.�/g00

is abelian. By a fundamental theorem due to J. von Neumann, M� is identical with
the weak closure of the subspace of linear combinations of Weyl unitaries in the
algebra of all bounded operators on the Fock space.

The Fock vacuum state !�F is normal on M� so that the pair .M�; !
�
F /

can be realized as the abelian von Neumann algebra L1.Q�;�
�
F / of essentially

bounded measurable functions on a suitable measurable space Q�, endowed with a
probability measure. The fundamental relation

!�F .W. f // D !�F .e
i˚. f // D e� 1

4k f k2 ; f 2 h�

allow the identification of the system of self-adjoint operators f˚. f / W f 2 hR�g as a
Gaussian random field (or process) f�. f / W f 2 hR�g on a Gaussian space .Q�; �

�
F /,

where the following relations hold true for f ; g 2 hR�

!�F .˚. f /˚.g// D
Z

Q�

�. f /�.g/ d��F D 1

2
. f ; g/h� D 1

2

Z
�

f .x/g.x/dx:

Under the Segal isomorphism, the complex Hilbert space L2.Q�;�
�
F / is identified

with the Fock space F.h�/ and the constant function 1 on Q� is identified or with
the identity I operator, when considered as the unit of L1.Q�;�

�
F /, or with the

vacuum vector˝ , when considered as an element of L2.Q�;�
�
F /.

We shall make use of the particular realization of the Gaussian random process
where Q� is the infinite product of the one-point compactification of the real line
Q� WD ˘1

nD1 PR and where the Gaussian measure ��F is the infinite product of copies
of the Gaussian probability measure on PR

�.dx/ WD �� 1
2 e�x2dx :
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Choosing an orthonormal basis f fn W n � 1g � hR�, the field operator ˚. fn/ is
identified with the multiplication operator �. fn/ on L2.Q�;�

�
F /

.�. fn/g/.x1; : : : / D xng.x1; : : : /; .x1; : : : / 2 Q� ; g 2 L2.Q�;�
�
F / :

Notice that, using the Segal isomorphism, the relative entropy HM�.!1; !2/ of
restrictions to the abelian von Neumann algebra M� of states !1 ; !2 of the CCR
algebra U.h�/, appears as

HM�.!2; !1/ D
Z

Q�

d�2 ln
�d�2

d�1

�

in terms of the probability measures �1, �2 on Q� representing !1, !2 restricted to
M�, provided �2 is absolutely continuous with respect to �1.

We shall denote by

!�ˇ .A/ WD Tr .e�ˇK�� A/

Tr .e�ˇK�� /
(1)

the Gibbs grand canonical equilibrium state, at inverse temperature ˇ > 0 and
activity � < inf �.H�/, over the CCR algebra U.h�/, corresponding to the second
quantization Hamiltonian K�

� WD d� .H� � �I/ on F.h�/ of the one-particle
Hamiltonian H� � �I on L2.�/ [2, 5.2.5]. Concerning the existence of the Gibbs
state above, notice that, since � is bounded then e�ˇH�

is trace class for any ˇ > 0
and consequently, by [2] Proposition 5.2.27, e�ˇK�� is trace class too for any ˇ > 0

(and in fact for any real �). We shall denote by N� WD d� .I/ the number operator
on F.h�/. For a unit vector  2 F.h�/, we shall denote by ! the corresponding
vector state on U.h�/, as well as its restriction to M�.

The first step to the main result of the work is the following observation.

Lemma 1 (Free Energy Variation, Gibbs State and Relative Entropy) Denote
by N the von Neumann algebra B.F.h�// of all bounded operators on the Fock
space. On its normal state space N�;1, identified with the space of nonnegative trace
class operators � such that Tr .�/ D 1 (called density matrices), define the energy
functional

E W N�;1 ! Œ0;C1
; E.�/ WD Tr .�1=2K�
� �

1=2/; � 2 N�;1 ;

the von Neumann entropy functional

SN W N�;1 ! Œ0;C1
; SN.�/ WD �Tr .� ln �/; � 2 N�;1 ;
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and the Helmholtz free energy functional at inverse temperature ˇ > 0

Fˇ W N�;1 ! Œ0;C1
; Fˇ.�/ WD E.�/� 1

ˇ
S.�/; � 2 N�;1 :

The free energy functional attains its minimum value Fˇ.�ˇ/ D �ˇ�1 ln Tr .e�ˇK�� /

at the Gibbs state !�ˇ , represented by the density matrix �ˇ WD e�ˇK�� =Tr .e�ˇK�� /.
Moreover, the variation of the free energy with respect to the Gibbs state, is
proportional by ˇ, to the relative entropy HN of the states

0 � HN.�; �ˇ/ D ˇ.F.�/ � F.�ˇ//; � 2 N�;1 : (2)

Proof We may assume that ˇ D 1 and that Tr .e�ˇK�� / D 1. By the cyclicity of the
trace

F1.�1/ D E.�1/ � SN.�1/ D Tr .�1=21 K�
� �

1=2
1 /C Tr .�1 ln �1/

D �Tr .�1=21 .ln e�K�� /�
1=2
1 /C Tr .�1 ln �1/

D �Tr .�1=21 .ln �1/�
1=2
1 /C Tr .�1 ln �1/

D �Tr .�1 ln �1/C Tr .�1 ln �1/ D 0

and, for all � 2 N�;1, by the definition of the relative entropy HN (see [16]) we have

F1.�/ D E.�/� SN.�/ D Tr .�1=2K�
� �

1=2/C Tr .� ln �/

D �Tr .�1=2.ln �1/�1=2/C Tr .� ln �/

D Tr .�1=2.ln � � ln �1/�1=2/

D HN.�; �1/ :

The second step in the proof of the our main result is the following fundamental
property.

Theorem 1 (Relative Entropy Monotonicity, [16] Theorem 4’) Let !1 ; !2 be
normal states on N WD B.F.h�// and !0

1, !
0
2 their restriction to the von Neumann

subalgebra M�. Denoting by HN and HM� , the relative entropy on N and M�,
respectively, one has

HM�.!
0
1; !

0
2/ � HN.!1; !2/ : (3)
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More explicitly, if �1, �2 are the density matrices representing !1, !2 and�1, �2 are
the probability measures on Q� representing the restrictions !0

1, !
0
2, then one has

Z
Q�

d�2
�d�1

d�2

�
ln
�d�1

d�2

�
� Tr .�1=21 .ln �1 � ln �2/�

1=2
1 / : (4)

The following is the main result of the work.

Theorem 2 Let � � R
d be a bounded Euclidean domain and H� be the Dirichlet-

Laplacian operator on h� WD L2.�/. Denote by K�
� WD d� .H� � �I/ its second

quantization on the Fock space F.h�/, with activity � < inf �.H�/.
Then the following logarithmic Sobolev inequalities hold true for any ˇ > 0 and

k kF.h�/ D 1

HM�.! ; !
�
F / � ˇ. ;K�

�  /C ln Tr e�ˇK�� C4d.ˇ; �/. ;N� /Cd.ˇ; �/ (5)

where z WD eˇ� and d.ˇ; �/ WD Tr .ze�ˇH�
.I C ze�ˇH�

/�1/. In terms of the free
energy of the system the inequality reads as follows

HM�.! ; !
�
F / � ˇ.F.! / � F.!�ˇ //C 4d.ˇ; �/. ;N� /C d.ˇ; �/ : (6)

Notice that, when M� is identified with L1.Q�; d��F /, we have

HM�.! ; !
�
F / D

Z
Q�

d��F j j2 ln j j2; k kL2.Q�;�
�
F /

D 1 :

Notice also that, by a classical result [4, 1.9], the following bound holds true

d.ˇ; �/ � z.1C ze�ˇ�0 /�1.4�ˇ/�d=2j�j; ˇ > 0 :

Proof Denoting by � and �ˇ the probability measures on Q� representing the
restriction to M� ' L1.Q�;�F/ of the normal states represented by the density
matrix � and �ˇ, by Uhlmann’s monotonicity theorem [16] or Theorem 1 above, we
have

HM�.�;�ˇ/ � HN.�; �ˇ/; � 2 N�;1

so that, by Lemma 1 above, the following inequality holds true

HM�.�;�ˇ/ � ˇ.F.�/� F.�ˇ//; � 2 N�;1:

The density matrix � representing a vector state ! is the orthogonal projection
onto the subspace generated by  . On it the von Neumann entropy vanishes
S.� / D 0 and the value of the energy functional is given by E.� / D
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Tr .�1=2 K�
� �

1=2
 / D . ;K�

�  / so that F.� / D ˇ. ;K�
�  /. Denoting by � D

j j2 � �F the probability measure on Q� representing the restriction to M� of the
state represented by � , we obtain the following logarithmic Sobolev inequality
with respect to the Gaussian measure �ˇ

HM�.� ; �ˇ/ � ˇ. ;K�
� /C ln Tr .e�ˇK�� /; k kF.h�/ D 1

which can be written as
Z

Q�

d� ln
�d� 

d�ˇ

�
� ˇ. ;K�

�  /C ln Tr .e�ˇK�� /; k kF.h�/ D 1

and as
Z

Q�

d�ˇ
�d� 

d�ˇ

�
ln
�d� 

d�ˇ

�
� ˇ. ;K�

�  /C ln Tr .e�ˇK�� /; k kF.h�/ D 1 :

Since

d� 
d�ˇ

D j j2 d��F
d�ˇ

we have, for k kF.h�/ D 1,

Z
Q�

d��F

� d�ˇ
d��F

��d� 
d�ˇ

�
ln
�d� 

d�ˇ

�
� ˇ. ;K�

�  /C ln Tr .e�ˇK�� /

Z
Q�

d��F
�d� 

d��F

�
ln
�d� 

d�ˇ

�
� ˇ. ;K�

�  /C ln Tr .e�ˇK�� /

Z
Q�

d��F
�d� 

d��F

�
ln
�d� 

d��F

d��F
d�ˇ

�
� ˇ. ;K�

�  /C ln Tr .e�ˇK�� /

Z
Q�

d��F j j2 ln
�
j j2 d��F

d�ˇ

�
� ˇ. ;K�

�  /C ln Tr .e�ˇK�� /

Z
Q�

d��F j j2 ln j j2 � ˇ. ;K�
�  /C ln Tr .e�ˇK�� /C

C
Z

Q�

d��F j j2 ln
� d�ˇ

d��F

�

(7)

provided we show that measure associated to the Gibbs state is absolutely continu-
ous with respect to the one associated to the Fock vacuum state.
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Since e�ˇH�
is trace class on h�, by Proposition 5.2.7 and Theorem 5.2.8 in [2],

the operator e�ˇK�� is trace class over the Fock space F.h�/ and the Gibbs grand
canonical equilibrium state !�ˇ is a gauge-invariant quasi-free state over the CCR
algebra U.h�/ with two-point function

!�ˇ .a
�. f /a.g// D .g;T�ˇ;�f /; f ; g 2 h�

where T�ˇ;� WD ze�ˇH�
.I � ze�ˇH�

/�1 and z WD eˇ�. Since !�F .W. f // D e� 1
4 k f k2h� ,

by Example 5.2.18 in [2] Example 5.2.18 we have that the two-point function of
the Fock vacuum state vanishes identically so that the operator T�F defined by its
two-point function vanishes too

0 D !�F .a
�. f /a.g// DW .g;T�F f /; f ; g 2 h� :

Since T�ˇ;� � ze�ˇH�
.I � ze�ˇ�0 /�1 then T�ˇ;� is a trace class operator and

q
T�ˇ;� �

q
T�F D

q
T�ˇ;�

is an Hilbert-Schmidt operator. By [1], main Theorem p. 285, the state !�ˇ is quasi-

equivalent to the Fock vacuum state !�F in the sense that they have quasi-equivalent
GNS representation and thus give rise to the same (abelian) von Neumann algebra
M� which can be identified with L1.Q�;�

�
F / . We thus have the mutual absolute

continuity of the Gaussian measures ��ˇ and ��F on Q� representing the states !�ˇ
and !�F . By [12], Theorem 3, the Radon-Nikodym derivative d��ˇ =d��F is given by

d��ˇ
d��F

. f / D .det .A//�1=2 expŒ. f ; .I � A�1/f /
; f 2 h� ;

where

A WD I C ze�ˇH�

I � ze�ˇH�
; I � A�1 D I � I � ze�ˇH�

I C ze�ˇH�
D 2ze�ˇH�

I C ze�ˇH�
;

provided we show that det A is well defined. In fact, since

0 � A � I D 2ze�ˇH�

I � ze�ˇH�
� 2eˇ�

1 � e�ˇ.�0��/ e�ˇH�

;

the trace class property of e�ˇH�
implies the same property for A � I and then

det A � eTr .A�I/ < C1 :
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In particular

ln
d��ˇ
d��F

. f / D �1
2

ln det A C . f ; .I � A�1/f /

D �1
2

ln det A C . f ; 2ze�ˇH�

.I C ze�ˇH�

/�1f / :

Recall now that, in the model where the space Q� of the Gaussian random
process associated to h� is identified with the infinite product of the one-point
compactification of the real line Q� WD ˘1

nD1 PR, the logarithm of the Radon-
Nikodym derivative above is the random variable which associates to .x1; x2; : : : / 2
Q� the value

ln
d��ˇ
d��F

.x1; x2; : : : / D �1
2

ln det A C
1X

nD1
2ze�ˇ�n.1C ze�ˇ�n/�1x2n :

If we choose as a basis for h� the normalized eigenfunctions f fn 2 h� W n � 1g
of H� corresponding to the eigenvalues f�n 2 .0;C1/ W n � 1g, H�fn D �nfn,
then the self-adjoint operator on the Fock space corresponding to the real random
variable ln d��ˇ =d��F is given by

ln
d��ˇ
d��F

D �1
2

�
ln det A

�
I C

1X
nD1

2ze�ˇ�n.1C ze�ˇ�n/�1�. fn/
2 :

Since by [2] Lemma 5.2.12

�. fn/
2 � 2a�. fn/a. fn/C I D 2N. fn/C I ;

we have

ln
d��ˇ
d��F

� �1
2

�
ln det A

�
I C

1X
nD1

2ze�ˇ�n.1C ze�ˇ�n/�1.2N. fn/C I/ :

Since moreover

ln det A D
1X

nD1
ln
�1C ze�ˇ�n

1 � ze�ˇ�n

�
;
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setting

b.ˇ; �/ WD
1X

nD1

2ze�ˇ�n

1C ze�ˇ�n
C 1

2
ln
�
1 � 2ze�ˇ�n

1C ze�ˇ�n

�
;

c.ˇ; �/ WD 4

1X
nD1

ze�ˇ�n.1C ze�ˇ�n/�1

we have

ln
d��ˇ
d��F

� b.ˇ; �/I C c.ˇ; �/N :

If d.ˇ; �/ WD P1
nD1 ze�ˇ�n.1 C ze�ˇ�n/�1 then b.ˇ; �/ � d.ˇ; �/ and c.ˇ; �/ D

4d.ˇ; �/ so that

ln
d��ˇ
d��F

� d.ˇ; �/I C 4d.ˇ; �/N : (8)

From the intrinsic logarithmic Sobolev inequality (2.8) for the operator K�
� on the

Gaussian space L2.Q�;�
�
F / obtained above, we have

Z
Q�

d��F j j2 ln j j2 � ˇ. ;K�
�  /C ln Tr e�ˇK�� C

Z
Q�

d��F j j2 ln
d��ˇ
d��F

(9)

for k kL2.Q�;�
�
F /

D 1, which, on the Fock space, reads as follows

HM�.! ; !
�
F / � ˇ. ;K�

�  /C ln Tr e�ˇK�� C . ; ln
d��ˇ
d��F

 / (10)

for k kF.h�/ D 1. By the bound (2.8) above we have the desired logarithmic
Sobolev inequalities (2.5)

HM�.! ; !
�
F / � ˇ. ;K�

�  /C ln Tr e�ˇK�� C 4d.ˇ; �/. ;N� /C d.ˇ; �/

for k kF.h�/ D 1.

Corollary 1 There exists ˇ0 > 0 depending on 0 < � < �0 such that the following
logarithmic Sobolev inequalities hold true for all ˇ � ˇ0

HM�.! ; �
�
F / � ˇ. ; d� .H�/ /C ln Tr e�ˇK�� C zTr .e�ˇH�

/; (11)

HM�.! ; �
�
F / � ˇ. ; d� .H�/ /C z

1 � ze�ˇ�0 Tr .e�ˇH�

/ (12)

with k kF.h�/ D 1.
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Proof Since K�
� D d� .H� � �I/ D d� .H�/ � �N, from the theorem above we

have

HM�
.! ;!

�
F / �

� ˇ. ; d� .H�/ /C ln Tr e�ˇK�� C d.ˇ; �/C .4d.ˇ; �/� ˇ�/. ;N /

for all k kF.h�/ D 1. Since d.ˇ; �/ � zTr .e�ˇH�
/ and d.ˇ; �/ is decreasing to

0 as ˇ increase to C1, there exists ˇ0 > 0 such that 4d.ˇ; �/ � ˇ� � 0 for all
ˇ � ˇ0 and we get (2.11). Finally, by Proposition 5.2.27 in [2] we have

ln Tr .e�ˇK�� / � z.1 � ze�ˇ�0 /�1Tr .e�ˇH�

/

so that

ln Tr e�ˇK�� C zTr .e�ˇH�

/ � Œz C z.1 � ze�ˇ�0 /�1
Tr .e�ˇH�

/ �
� z

1 � ze�ˇ�0 Tr .e�ˇH�

/

from which (2.12) follows.

Corollary 2 The semigroup fe�ˇd� .H�/ W ˇ > 0g is hypercontractive, i.e. it is
Markovian in the sense that it is positivity preserving and contractive on Lp.Q�;�

�
F /

for any p 2 Œ0;C1
 and e�ˇ0H�
is bounded from L2.Q�;�

�
F / to L4.Q�;�

�
F /.

In particular, the following logarithmic Sobolev inequality holds true for some
ˇh > ˇ0

HM�.! ; �
�
F / � ˇh. ; d� .H

�/ /; k kF.h�/ D 1 : (13)

Proof Since ˇH� � 0 for all ˇ > 0, then e�ˇd� .H�/ D d� .e�ˇH�
/ is positive

preserving (see [11]). Since, by construction, e�ˇd� .H�/˝ D ˝ for all ˇ > 0, the
semigroup is also contractive on M� ' L1.Q�;�

�
F /, hence Markovian.

Fix now 0 < � < �0 and consider the value ˇ0 determined in Corollary 2.
Since, by construction, the spectrum of d� .H�/ is discrete, 0 D inf �.d� .H�//

and the logarithmic Sobolev inequality (2.12) holds true, the stated results follow
from Theorem 6.1.22 ii) in [5].

Acknowledgements This work has been supported by GREFI-GENCO INDAM Italy-CNRS
France and MIUR PRIN 2012 Project No 2012TC7588-003.



Logarithmic Sobolev Inequalities for an Ideal Bose Gas 133

References

1. H. Araki, S. Yamagami, On quasi-equivalence of quasifree states of canonical commutation
relations. Publ. RIMS Kyoto Univ. 18, 283–338 (1982)

2. O. Bratteli, D.W. Robinson, “Operator algebras and Quantum Statistical Mechanics 2”,
2nd edn. (Springer, Berlin, Heidelberg, New York, 1996), 517 p.

3. E. Carlen, D. Stroock, An Application of the Bakry-Emery Criterion to Infinite-Dimensional
Diffusions. Séminaire de Probabilités, XX, 1984/85, Lecture Notes in Math., vol. 1204
(Springer, Berlin, 1986), pp. 341–348

4. E.B. Davies, Heat Kernels and Spectral Theory, vol. 92 (Cambridge Tracts in Mathematics,
Cambridge, 1989)

5. E.B. Davies, B. Simon, Ultracontractivity and the heat kernel for Schroedinger operators and
Dirichlet Laplacians. J. Funct. Anal. 59, 335–395 (1984)

6. L. Gross, Existence and uniqueness of physical ground states. J. Funct. Anal. 10, 59–109
(1972)

7. L. Gross, Hypercontractivity and logarithmic Sobolev inequalities for the Clifford–Dirichlet
form. Duke Math. J. 42, 383–396 (1975)

8. E. Lieb, The stability of matter. Rev. Modern Phys. 48(4), 553–569 (1976)
9. E. Nelson, A quartic interaction in two dimension, Mathematical theory of elementary particles

(Proceedings of the Conference on the mathematical Theory of Elementary particles held at
Hendicott House in Dedham, Mass., September 12–15, 1965), Roe Goodman and Irving E.
Segal eds. (1966), 69–73

10. E. Nelson, The free Markov field. J. Funct. Anal. 12, 211–227 (1973)
11. I.E. Segal, Tensor algebras over Hilbert spaces I. Trans. Am. Math. Soc. 81, 106–134 (1956)
12. I.E. Segal, Distributions in Hilbert space and canonical systems of operators. Trans. Am. Math.

Soc. 88, 12–41 (1958)
13. B. Simon, “The P.˚/2 Euclidean (Quantum) Field Theory” (Princeton University Press,

Princeton, New Jersey, 1974)
14. B. Simon, R. Hoegh-Krohn, Hypercontractivity semigroups and two dimensional self-coupled

Bose fields. J. Funct. Anal. 9, 121–180 (1972)
15. D. Stroock, B. Zegarlinski, The equivalence of Logarithmic Sobolev Inequality and the

Dobrushin-Shlosmann mixing condition. Comm. Math. Phys. 144, 303–323 (1992)
16. H. Umegaki, Conditional expectation in an operator algebra. IV. Entropy and information.

Kodai Math. Sem. Rep. 14, 59–85 (1962)



Spherical Schrödinger Hamiltonians: Spectral
Analysis and Time Decay

Luca Fanelli

Abstract In this survey, we review recent results concerning the canonical dis-
persive flow eitH led by a Schrödinger Hamiltonian H. We study, in particular,
how the time decay of space Lp-norms depends on the frequency localization of
the initial datum with respect to the some suitable spherical expansion. A quite
complete description of the phenomenon is given in terms of the eigenvalues and
eigenfunctions of the restriction of H to the unit sphere, and a comparison with
some uncertainty inequality is presented.

Keywords Dispersive estimates • Electromagnetic potentials • Schrödinger
equation

1 Introduction

For  D  .t; x/ W R 
 R
d ! C, let us consider the free Schrödinger equation

@t D i� ;  .0; x/ D  0.x/: (1)

Solving (1) with initial datum  0.x/ 2 L2.Rd/ is to find a wavefunction  2
C 1.RI L2.Rd// such that b .t; / D e�itjj2b 0./, the hat denoting the Fourier
transform in the x-variable

b .t; / WD
Z
Rd

e�itx� .t; x/ dx:

Computing the distributional Fourier transform of e�itjj2 , one finds that the unique
solution to (1), in the above sense, is given by

 .t; x/ D .4�it/� d
2 ei jxj2

4t �  0.x/ D .4�it/� d
2 ei jxj2

4t

Z
Rd

ei x�y
2t ei jyj2

4t  0.y/ dy: (2)
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From now on, we will denote by eit� the one-parameter flow on L2.Rd/ defined by
formula (2), namely eit� 0.�/ D  .t; �/, being  as in (2). By Plancherel Theorem
it follows that eit� is unitary on L2.Rd/, namely

��eit� 0.�/
��

L2.Rd/
D k 0kL2.Rd/; 8t 2 R: (3)

By (2), it also immediately follows that

��eit� 0.�/
��

L1.Rd/
6 Cjtj� d

2 k 0kL1.Rd/; 8t 2 R; (4)

with a constant C > 0 independent on t and  0. The last inequality, together
with (3), gives by Riesz-Thorin the full list of time decay estimates for the free
Schrödinger equation

��eit� 0.�/
��

Lp.Rd/
6 Cjtj�d

�
1
2� 1

p

�
k 0kLp0

.Rd/; 8t 2 R; 8p > 2 (5)

where the constant C only depends on p and d. Inequalities (5) turn out to be a
crucial tool in Scattering Theory and Nonlinear Analysis; in particular, a suitable
time average of the same leads to the so called Strichartz estimates (see the standard
reference [23]), which play a fundamental role both for fixed point results and as
Restriction Theorems for the Fourier transform:

��eit� 0
��

L
q
t Lr

x
6 Ck 0kL2.Rd/; (6)

with 2=q D d=2� d=r, q > 2 and .q; r; d/ ¤ .2;1; 2/, and

��eit� 0.�/
��

Lp.Rd/
WD
�����eit� 0.�/

��
Lr.Rd/

���
Lq.R/

:

From now on, we point our attention on estimate (4) and try to give it a deeper
insight. First of all, it is clear by (2) that a crucial role is played by the plane wave
K.x; y/ WD ei x�y

2t which is uniformly bounded with respect to the x; y variables, for
any fixed time t ¤ 0, i.e.

sup
x;y2Rd

ˇ̌
ˇei x�y

2t

ˇ̌
ˇ D 1 < 1; 8t ¤ 0: (7)

We stress that a completely analogous behavior occurs when one solves, for positive
times, the Heat Equation

@tu D �u; u.0; x/ D u0.x/ 2 Lp.Rd/; (8)
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since the solution is given by the convolution

u.t; x/ D .4�t/�
d
2 e

�jxj2

4t � u0.x/; .t > 0/ (9)

for all p 2 Œ1;C1
. This shows that (8) satisfies the same a priori estimates (5) as
equation (1). Notice that (1) and (8) enjoy the same scaling invariance: namely, if  
and u solve (1) and (8), respectively, then the rescaled function  �; u�, where

f�.t; x/ WD f
� t

�2
;

x

�

�
� > 0:

solve the same equations as  and u, respectively, for any � > 0. In addition,
the Gaussian decay in (9) is much smoother than the oscillating character of the
fundamental solution in (2), and leads to much stronger phenomena than the ones
led by the dispersive flow eit�. Nevertheless, from the point of view of estimate (4)
the behavior is the same for the flows et�; eit�, when t > 0. Our first question is the
following:

A is the time decay of the flows et�; eit� related to the lowest frequency behavior of
the corresponding fundamental solutions?

We now pass to a more precise analysis of the decay estimate in (4), to describe some
additional phenomenon which is hidden in formula (2). To this aim, let us recall
the Jacobi-Anger expansion of plane waves, which combined with the Addition
Theorem for spherical harmonics (see for example [21, formula (4.8.3), p. 116] and
[2, Corollary 1]) yields

eix�y D .2�/d=2
�jxjjyj	� d�2

2

1X
`D0

i`J`C d�2
2

�jxjjyj	
� mX̀

mD1
Y`;m

�
x

jxj
	
Y`;m

� y
jyj
	�

(10)

for all x; y 2 R
d. Here J� denotes the �-th Bessel function of the first kind

J�.t/ D
�

t

2

�� 1X
kD0

.�1/k
� .k C 1/� .k C � C 1/

�
t

2

�2k

and the Y`;m are usual spherical harmonics. Recalling that J�.t/ � t� , for � > 0, as t
goes to 0, we see that an additional time-decay, for t large is hidden in formula (2),
in the term ei x�y

t . Roughly speaking, we expect that initial data localized at higher
frequencies (with respect to the spherical harmonics expansion) decay polynomially
faster along a Schrödinger evolution, in suitable topologies. This leads to our second
question:

B how can the above described phenomenon be quantified, and how stable is it
under lower-order perturbations?
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Looking to identity (10), the presence of spherical harmonics and special functions
gives the hint that the spherical laplacian is playing an important role in the
description of the above mentioned phenomena. The aim of this survey is to describe
this role, giving partial answers to the above questions and leaving some open
problems, corroborated by some recent results.

2 A Stationary Viewpoint: Hardy’s Inequality

We devote a preliminary section to introduce an interesting stationary viewpoint of
the above picture, related to some uncertainty inequalities. To this aim, we recall the
well known Hardy’s inequality:

.d � 2/2
4

Z
Rd

j .x/j2
jxj2 dx 6

Z
Rd

jr .x/j2 dx; .d > 3/ (11)

which holds for any function  2 PH1.Rd/, being PH1.Rd/ the completion of
C1

c .Rd/ with respect to the seminorm

k f k2PH1.Rd/
WD
Z
Rd

jrf j2 dx;

taking its quotient by the equivalence relation

f � g if 9c 2 R W f D g C c:

The constant in front of inequality (11) is sharp, and it is not attained on any function
 for which the right-hand side is finite, as we see in a while. Inequality (11) can be
rewritten in operator terms as

�� � �

jxj2 > 0; 8� 6 .d � 2/2
4

.d > 3/: (12)

This has to be interpreted in the sense of the associated quadratic form. The proof
of (11) relies on the following fact: given a symmetric operator S and a skew-
symmetric operator A on L2, one can (formally) compute

0 6
Z
Rd

j.A C S / j2 dx D
Z
Rd

jA  j2 dx C
Z
Rd

jS j2 dx �
Z
Rd
 ŒA ;S 
  dx;

where ŒA ;S 
 D AS � SA . Then the choices

A WD r; S WD d � 2

2

x

jxj2 ) ŒA ;S 
 D .d � 2/2
2jxj2
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immediately give (11) for functions  smooth enough, and a regularization
argument completes the proof. Also notice the equality in (11) is attained when
.A C S / 	 0, which yields the maximizing function  .x/ D jxj1� d

2 , and we
see that jr j … L2, as mentioned above. In addition, one immediately realizes that,
given eA D @r D r � x

jxj , then

Œ eA ;S 
 D ŒA ;S 
 D .d � 2/2
2jxj2 ;

which yields the more precise inequality

.d � 2/2
4

Z
Rd

j .x/j2
jxj2 dx 6

Z
Rd

j@r .x/j2 dx; .d > 3/ (13)

In other words, inequality (13) shows that the angular component of �� is not
playing a role in (11)–(12). To understand this fact, it is convenient to use spherical
coordinates and write

� D @2r C d � 1

r
@r C 1

r2
�Sd�1 ; (14)

being�Sd�1 the spherical laplacian, i.e. the Laplace-Beltrami operator on the .d�1/-
dimensional unit sphere. We recall that ��Sd�1 is a (positive) operator with compact
inverse, hence it has purely point spectrum which accumulates at infinity, which is
explicitly given by the set

� .��Sd�1 / D �p .��Sd�1 / D f`.`C d � 2/g`D0;1;2;:::: (15)

Spherical harmonics fY`;mg are associated eigenfunctions, which form a complete
orthonormal set in L2.Sd�1/. Denoting by H` the eigenspace associated to the
`-th eigenvalue of ��Sd�1 , by D` its algebraic dimension, and by H`;m the space
generated by Y`;m, we have the well known decomposition

L2.Sd�1/ D
M

l>0
16m6D`

H`;m

Therefore any function  2 L2.Rd/ has a (unique) expansion

 .x/ D
1X
`D0

DX̀
mD1

 `;m.r/Y`;m.!/ x D r!; r WD jxj (16)
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and moreover

k f .r!/kL2.Sd�1/ D
X
`>0

16m6D`

j f`;mj2:

We can hence use (14) to write

Z
Rd

jr j2 dx D �
Z
Rd
 � dx (17)

D �
Z
Rd
 

�
@2r C d � 1

r
@r 

�
dx

„ ƒ‚ …
DWI

C
Z
Rd

1

jxj2 h ;��Sd�1 iL2.Sd�1/ dx:
„ ƒ‚ …

DWII

where the brackets h�; �iL2.Sd�1/ denote the inner product in L2.Sd�1/. Arguing as
above we see that

I > .d � 2/2

4

Z
Rd

j .x/j2
jxj2 dx; .d > 3/

which is inequality (13). On the other hand, it follows by (15) that

II > 0;

therefore no additional contribution to (11) is given by ��Sd�1 . Nevertheless, given
 2 L2.Rd�1/, if  0;1 D 0 in the expansion (16) (notice that H0;1 coincides with the
space of L2-radial functions), then by (15) it follows that

h ;��Sd�1 iL2.Sd�1/ > .d � 1/k .!/kL2.Sd�1/ if  0;1 D 0

and inequality (13) improves:

Z
Rd

j@r .x/j2 dx >
�
.d � 2/2

4
C .d � 1/

�Z
Rd

j .x/j2
jxj2 dx; .d > 2/  0;1 D 0:

(18)

Notice that the previous gives a non trivial 2D-inequality, holding on functions  
which are orthogonal to L2-radial functions. More in general, given  2 L2.Rd/, let

`0 WD minf` 2 N such that 9m D 1; : : : ;D` W  `;m ¤ 0g:

Then, by (17), the following Hardy’s inequality holds:

Z
Rd

j@r .x/j2 dx >
�
.d � 2/2

4
C `0.`0 C d � 2/

�Z
Rd

j .x/j2
jxj2 dx: .d > 1/

(19)
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Inequality (19) is a quantitative stationary manifestation of the phenomenon
described by question B in the Introduction. Here it is clear that the improvement
comes from the angular component of the free Hamiltonian. In addition, the above
arguments clearly suggest that the sharp constant in front of inequality (19) only
depends the lowest energies, which is reminiscent of question A in the Introduction.

Having this in mind, we now see how linear lower-order perturbations of the free
spherical Hamiltonian can perturb the spectral picture in (15), with consequences
on the Hardy’s inequality (19).

Example 1 (0-Order Perturbations) For a 2 R, consider the shifted Hamiltonians
in dimension d > 3

H D ��C a

jxj2 ; L D ��Sd�1 C a:

Clearly L only has point spectrum, which is just a shift of (15)

� .L/ D �p .L/ D f`.`C d � 2/C ag`D0;1;2;:::
and spherical harmonics are still eigenfunctions. The corresponding Hardy’s
inequality is trivially

�
.d � 2/2

4
C a

�Z
Rd

j .x/j2
jxj2 dx 6

Z
Rd

jr .x/j2 dxCa
Z
Rd

j .x/j2
jxj2 dx: .d > 3/

(20)

More in general, if a D a.!/ W S
d�1 ! R, then it is still true that L as only

point spectrum, but the picture is more complicated. A typical phenomenon is the
formation of clusters of eigenvalues around the (shifted) free eigenvalues. The size
of the clusters depends on some universal dimensional quantity related to a.!/ (see
e.g. the standard references [3, 20, 29, 30, 33] and Lemma 1 below). Moreover, for
the lowest eigenvalue of L we have

�0 WD min � .L/ D inf
!2Sd�1

a.!/:

One easily see by the same arguments as above that the following Hardy’s inequality
holds

�
.d � 2/2

4
C �0

�Z
Rd

j .x/j2
jxj2 dx 6

Z
Rd
 H dx: (21)

Example 2 (1st-Order Perturbations) Let A 2 L2loc.R
d/, and recall the diamagnetic

inequality

j.�ir C A/ .x/j > jrj .x/jj:



142 L. Fanelli

This gives for free, together with (11), that

.d � 2/2
4

Z
Rd

j .x/j2
jxj2 dx 6

Z
Rd

j.�ir C A/ .x/j dx; .d > 3/: (22)

We wonder if an improvement to the best constant of inequality (22) can occur, due
to the presence of an angular perturbation of the associated Hamiltonian, in the same
style as in the above example. The main example we have in mind is given by the
2D-Aharonov-Bohm vector potential: for � 2 R, consider let us denote by

A W R2 ! R
2; A.x; y/ WD �

� �y

x2 C y2
;

x

x2 C y2

�

and consider the following quadratic form

qŒ 
 WD
Z
R2

j.�ir C A/ j2 dx:

Since q is positive, we can consider the Friedrichs’ extension of the self-adjoint
Hamiltonian H WD �r2

A, on the natural form domain induced by q (see Sect. 3
below for details). The angular component of H is the operator

L WD ��ir
S1 C A .!/

	2
; A W S1 ! S

1; A .x; y/ D �

 
�yp

x2 C y2
;

xp
x2 C y2

!
:

As above, L has compact inverse and its spectrum is explicitly given by

�.L/ D �p.L/ D f.�� z/2gz2Z:

Therefore, the lowest eigenvalue is given by

�0 WD min �.L/ D dist .�;Z/2 > 0

and we gain the following 2D-Hardy’s inequality, proved in [24]

�0

Z
R2

j .x/j2
jxj2 dx 6

Z
R2

j.�ir C A/ j2 dx: (23)

As soon as � … Z, this is an improvement with respect to the free case A 	 0, in
which such an inequality cannot hold for any function  such that jr j 2 L2.R2/
(since the weight jxj�2 is not locally integrable in 2D).
In view of the above considerations, we will restrict our attention, from now on,
to some scaling-critical electromagnetic Hamiltonians and we will present some
recent results which partially answer to questions A and B in the Introduction of
this survey.
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3 Decay Estimates: Main Results

From now on, for any x 2 R
d, we denote by x D r!, r D jxj. Let

A D A.!/ W Sd�1 ! R
d; a D a.!/ W Sd�1 ! R

be 0-degree homogeneous functions, and consider the quadratic form

qŒ 
 WD
Z
Rd

ˇ̌̌
ˇ
�

�ir C A.!/

r

�
 .x/

ˇ̌̌
ˇ
2

dx C
Z
Rd

a.!/

r2
j .x/j2 dx: (24)

As we see in the sequel, under suitable conditions, a self-adjoint Hamiltonian

H WD
�

�ir C A.!/

r

�2
C a.!/

r2
; (25)

associated to q (Friedrichs’ Extension) is well defined on a domain containing
L2.Rd/, therefore the L2-initial value problem

(
i@t D �iH ;

 .0/ D  0 2 L2.Rd/;
(26)

for the wavefunction  D  .t; x/ W R 
 R
d ! C makes sense. Here d > 2, and we

choose a transversal gauge for the magnetic vector potential, i.e. we assume

A.!/ � ! D 0 for all ! 2 S
d�1: (27)

Notice that equation (26) is invariant under the scaling u�.x; t/ WD u.x=�; t=�2/,
which is the same of the free Schrödinger equation.

The aim is to understand the role of the spherical operator L associated to H,
defined by

L D � � i rSd�1 C A
	2 C a.!/; (28)

where rSd�1 is the spherical gradient on the unit sphere S
d�1. Assuming

a 2 L1.Sd�1IR/;A 2 C 1.Sd�1IRd/, then the spectrum of the operator L
is formed by a diverging sequence of real eigenvalues with finite multiplicity
�0.A; a/ 6 �1.A; a/ 6 � � � 6 �k.A; a/ 6 � � � (see e.g. [16, Lemma A.5]),
where each eigenvalue is repeated according to its multiplicity. Moreover we have
that limk!1�k.A; a/ D C1. To each k > 1, we can associate a L2

�
S

d�1;C
	
-

normalized eigenfunction 'k of the operator L on S
d�1 corresponding to the k-th
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eigenvalue �k.A; a/, i.e. satisfying

8<
:

L'k D �k.A; a/ 'k; in S
d�1;R

Sd�1 j'kj2 dS.�/ D 1:
(29)

In particular, if d D 2, 'k are one-variable 2�-periodic functions, i.e. 'k.0/ D
'k.2�/. Since the eigenvalues �k.A; a/ are repeated according to their multiplicity,
exactly one eigenfunction 'k corresponds to each index k > 1. We can choose the
functions 'k in such a way that they form an orthonormal basis of L2.Sd�1;C/. We
also introduce the numbers

˛k WD d � 2

2
�
s�

d � 2
2

�2
C �k. A; a/; ˇk WD

s�
d � 2

2

�2
C �k.A; a/;

(30)

so that ˇk D d�2
2

� ˛k, for k D 1; 2; : : : .
Under the condition

�0.A; a/ > � .d � 2/2

4
(31)

the quadratic form q in (24) associated to H is positive definite, and the Friedrichs’
extension of H is well defined, with domain

D WD ˚
f 2 H1�.Rd/ W Hf 2 L2.Rd/

�
; (32)

where H1�.Rd/ is the completion of C1
c .R

d n f0g;C/ with respect to the norm

k f kH1
�.R

d/ D
�Z

RN

�
jrf .x/j2 C j f .x/j2

jxj2 C j f .x/j2
��

dx

�1=2
:

By the Hardy’s inequality (11), H1�.Rd/ D H1.Rd/ with equivalent norms if d > 3,
while H1�.Rd/ is strictly smaller than H1.Rd/ if d D 2. Furthermore, from condition
(31) and [16, Lemma 2.2], it follows that H1�.Rd/ coincides with the space obtained
by completion of C1

c .R
d n f0g;C/ with respect to the norm naturally associated to

H, i.e.

qŒ 
C k k22:

We remark that H could be not essentially self-adjoint. Indeed, in the case A 	 0,
Kalf, Schmincke, Walter, and Wüst [22] and Simon [28] proved that H is essentially
self-adjoint if and only if�0.0; a/ > �� d�2

2

	2C1 and, consequently, admits a unique
self-adjoint extension (which coincides with the Friedrichs’ extension); otherwise,
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i.e. if �0.0; a/ < �� d�2
2

	2 C 1, H is not essentially self-adjoint and admits infinitely
many self-adjoint extensions, among which the Friedrichs’ extension is the only one
whose domain is included in the domain of the associated quadratic form (see also
[9, Remark 2.5]).

The Friedrichs’ extension H naturally extends to a self adjoint operator on the
dual D? of D and the unitary group e�itH extends to a group of isometries on the
dual ofD which will be still denoted as e�itH (see [6], Section 1.6 for further details).
Then for every  0 2 L2.Rd/,

 .t; x/ WD e�itH 0.x/ 2 C .RI L2.Rd//\ C 1.RID?/;

is the unique solution to (26).
Now, by means of (29) and (30) define the following kernel:

K.x; y/ D
1X

kD�1
i�ˇk j�˛k .jxjjyj/'k

�
x

jxj
	
'k
� y

jyj
	
; (33)

where

j�.r/ WD r� d�2
2 J�C d�2

2
.r/

and J� denotes the usual Bessel function of the first kind

J�.t/ D
�

t

2

�� 1X
kD0

.�1/k
� .k C 1/� .k C � C 1/

�
t

2

�2k

:

Notice that (33) reduces to (10), in the free case A 	 a 	 0. The first result we
mention in this survey is the following representation formula for e�itH :

Theorem 1 (L. Fanelli, V. Felli, M. Fontelos, A. Primo—[12]) Let d > 3, a 2
L1.Sd�1;R/ and A 2 C1.Sd�1;RN/, and assume (27) and (31). Then, for any
 0 2 L2.Rd/,

e�itH 0.x/ D e
ijxj2

4t

i.2t/d=2

Z
Rd

K

�
xp
2t
;

yp
2t

�
ei jyj2

4t  0.y/ dy: (34)

As an immediate consequence, we see by (34) that the analog to condition (7) gives
for H the complete list of usual time decay estimates (5):

Corollary 1 Let d > 3, a 2 L1.Sd�1;R/ and A 2 C1.Sd�1;RN/, and assume (27)
and (31). If

sup
x;y2Rd

jK.x; y/j < 1; (35)
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then

��e�itH 0.�/
��

Lp.Rd/
6 Cjtj�d

�
1
2� 1

p

�
k 0kLp0

.Rd/; 8t 2 R; 8p > 2; (36)

for some C > 0 independent on  0.
In the two last decades, estimates (36) were intensively studied by several authors.
The following is an incomplete list of results about this topic [1, 7, 8, 10, 11, 17,
18, 25–27, 31, 32, 34–37]. In all these papers, the potentials are sub-critical with
respect to the functional scale of the Hardy’s inequality (11): in other words, the
critical potentials in (25) are never considered, and it does not seem that one could
handle them by perturbation techniques, which are a common factor of all the above
mentioned papers. Now, formula (34) and Corollary 1 give a usual tool to reduce
matters to prove time decay, to a spectral analysis problem. This allowed us to prove
some new positive results concerning with estimates (36). In 2D, the picture is quite
well understood, thanks to the following theorem.

Theorem 2 (L. Fanelli, V. Felli, M. Fontelos, A. Primo—[13]) Let d D 2, a 2
W1;1.S1;R/, A 2 W1;1.S1;R2/ satisfying (27) and �1.A; a/ > 0, and H be given
by (25). Then, for any  0 2 L2.Rd/ \ Lp0

.Rd/,

��e�itH 0.�/
��

Lp.R2/
6 Cjtj�2

�
1
2� 1

p

�
k 0kLp0

.R2/; 8t 2 R; 8p > 2; (37)

for some C > 0 independent on  0.
Theorem 2 is proved in [13]. The core consists in proving that (35) holds, and
a crucial role is played by the following Lemma, which gives a quite explicit
expansion of eigenvalues and eigenfunctions of L, generalizing the results in [20]:

Lemma 1 (L. Fanelli, V. Felli, M. Fontelos, A. Primo—[13]) Let a 2 W1;1.S1/,
ea WD 1

2�

R 2�
0

a.s/ ds, A 2 W1;1.S1/ such that

eA D 1

2�

Z 2�

0

A.s/ ds 62 1

2
Z: (38)

Then there exist k�; ` 2 N such that f�k W k > k�g D f�j W j 2 Z; j jj > `g,

q
�j �ea D .sgn j/

�eA � �eA C 1
2

˘ �C j jj C O
�
1

j jj3
	
; as j jj ! C1

and

�j Dea C
�

j CeA � �eA C 1
2

˘�2 C O
�
1
j2

	
; as j jj ! C1: (39)
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Furthermore, for all j 2 Z, j jj > `, there exists a L2
�
S
1;C

	
-normalized

eigenfunction 'j of the operator L on S
1 corresponding to the eigenvalue �j such

that

'j.�/ D 1p
2�

e�i
�
ŒeAC1=2
�CR �0 A.t/ dt

	�
ei.eACj/� C Rj.�/

�
; (40)

where kRjkL1.S1/ D O
�
1

j jj3
	

as j jj ! 1. In the above formula b�c denotes the floor
function bxc D maxfk 2 Z W k 6 xg.
Analogous results to Lemma 1 can be proved (and are in part available) in higher
dimension d > 3. Nevertheless, the higher dimensional scenario is quite more
complicate, and some chaotic behavior of the eigenvalues of L can occur. This makes
the generic validity of (36) completely unclear in dimension d > 3. In this direction,
the only result which is available at the moment is concerned with the 3D-inverse
square electric potential, and reads as follows:

Theorem 3 (L. Fanelli, V. Felli, M. Fontelos, A. Primo—[12]) Let d D 3, A 	 0

and a.!/ 	 a 2 R, with a > � 1
4
.

i) If a > 0, then, for any  0 2 L2.R3/\ Lp0

.R3/,

��e�itH 0.�/
��

Lp.R2/
6 Cjtj�3

�
1
2� 1

p

�
k 0kLp0

.R2/; 8t 2 R; 8p > 2;

(41)

for some C > 0 which does not depend on  0.
ii) If � 1

4
< a < 0, let ˛1 as in (30), and define

k kp;˛1 WD
�Z

R3

.1C jxj�˛1/2�pj .x/jp dx

�1=p

; p > 1:

Then the following estimates hold

��e�itH 0.�/
��

p;˛1
6 C.1C jtj˛0/1� 2

p

jtj3
�
1
2� 1

p

� k kp0 ;˛0 ; p > 2;
1

p
C 1

p0 D 1; (42)

for some constant C > 0 which does not depend on  0.

Remark 1 It is interesting to remark that, in the range �1=4 < a < 0, (41) does not
hold, while the full set of usual Strichartz estimates hold (see [4, 5]). This is now
clearly understood in terms of formula (34): notice that, if a D �0 < 0, then ˛0 > 0
and a negative-index Bessel function appears in the kernel K given by (33); since
negative-index functions J� are singular at the origin, one cannot either expect the
solution (34) to be in L1.
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This can be proved as a general fact:

Theorem 4 (L. Fanelli, V. Felli, M. Fontelos, A. Primo—[13]) Let d > 3, a 2
L1.Sd�1;R/, A 2 C1.Sd�1;Rd/, and assume (27), (31), and �0 < 0. Then, for
almost every t 2 R, e�itH.L1/ 6 L1; in particular e�itH is not a bounded operator
from L1.Rd/ to L1.Rd/.
The above phenomenon can be quantified. To this aim, let us restrict our attention
to the case

H D ��C a

jxj2 ; x 2 R
3:

Let us define

Vn;j.x/ D jxj�˛j e� jxj2

4 Pj;n

� jxj2
2

�
 j

� x

jxj
�
; n; j 2 N; j > 1; (43)

where Pj;n is the polynomial of degree n given by

Pj;n.t/ D
nX

iD0

.�n/i�
d
2

� ˛j
	

i

ti

iŠ
;

denoting as .s/i, for all s 2 R, the Pochhammer’s symbol

.s/i D
i�1Y
jD0
.s C j/; .s/0 D 1:

Moreover, for all k > 1, define

Uk D span
˚
Vn;j W n 2 N; 1 6 j < k

� � L2.RN/:

The functions Vn;j spans L2.R3/ (see [14] for details). Moreover, as initial data
for (1), these functions have a quite explicit evolution: indeed, denoting by eVn;j WD
Vn;j=kVn;jk2, the following identity holds:

e�itHeVn;j.x/ D e
it
�
��C a

jxj2

�
Vn;j.x/ (44)

D .1C t2/�
d
4C ˛j

2 jxj�˛j
e

�jxj2

4.1Ct2/

kVn;jkL2.Rd/

e
i jxj2 t
4.1Ct2/ e�i�n;j arctan t j

�
x

jxj
	
Pn;j

� jxj2
2.1Ct2/

	
:

Formula (44) has been proved in [14]. Clearly, if a D �0 > 0, then ˛0 6 0 and the
first functioneV1;0 decays polynomially faster than usual, in a weighted space. This
is reminiscent to question B in the Introduction, and gives us the following evolution
version of the frequency-dependent Hardy’s inequality (19):
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Theorem 5 (L. Fanelli, V. Felli, M. Fontelos, A. Primo—[14]) Let d D 3, a D
�0 > 0, ˛0 as in (30).

(i) There exists C > 0 such that, for all  0 2 L2.R3/ with jxj�˛0 0 2 L1.R3/,

��jxj˛0e�itH 0.�/
��

L1 6 Cjtj� 3
2C˛0kjxj�˛0 0kL1 :

(ii) For all k 2 N, k > 1, there exists Ck > 0 such that, for all  0 2 U ?
k with

jxj�˛k 0 2 L1.R3/,

��jxj˛k e�itH 0.�/
��

L1 6 Ckjtj� 3
2C˛k kjxj�˛k 0kL1 :

Some analogous results, only concerning with the decay of the first frequency space,
had been previously proven in [15, 19].

To complete the survey, we leave some open questions.

(i) Concerning Theorems 2, 3, does any general result hold in dimension d > 3?
(ii) In what extent can one perturb the models in (25)? What is the real role played

by the scaling invariance?
(iii) The proof of formula (34) strongly relies on some pseudoconformal law

associated to the free Schrödinger flow (Appell transform; see [12]). Is there
any analog for other dispersive models, e.g. the wave equation?

(iv) One can use formula (34) to represent the wave operators

W˙ WD L2 � lim
t!˙1 eitHe�itH0 ; H0 WD ��:

What can one prove about the boundedness of W˙ in Lp.Rd/, in the same style
as in [31, 32, 34–37] (at least in 2D, having in mind Theorem 2.

(v) By standard TT?-arguments, one can obtain some weighted Strichartz esti-
mates by Theorem 5. Which kind of informations do these estimates give for
nonlinear Schrödinger equations associated to H?
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On the Ground State for the NLS Equation
on a General Graph

Domenico Finco

Abstract We review some recent results on the existence of the ground state for
a nonlinear Schrödinger equation (NLS) posed on a graph or network composed
of a generic compact part to which a finite number of half-lines are attached. In
particular we concentrate on the main theorem in Cacciapuoti et al. (Ground state
and orbital stability for the NLS equation on a general starlike graph with potentials,
preprint arXiv:1608.01506) which covers the most general setting and we compare
it with similar results.

Keywords Concentration-compactness techniques • Quantum graphs • Non-
linear Schrödinger equation

1 Introduction

Analysis on metric graphs and networks is a growing subject with many potential
applications of physical and technological character. The interest in these structures,
also from a mathematical point of view lies in the fact that they are relatively simple
analytically, being essentially one dimensional, but on the other hand they can have
in a sense arbitrary complexity due to nontrivial connectivity and topology.

A large part of the literature is devoted to linear equations on graphs (see [15, 30]
for an overview of theory and the many applications), as limit model for propagation
of waves in thin domains where the transverse dimensions are much smaller than the
longitudinal one. A special emphasis is placed on Schrödinger equation describing
the so called quantum graphs. Recently nonlinear equations have attracted attention,
and a certain amount of mathematical work has been done on nonlinear Schrödinger
equation on quantum graphs, at least in some special situations. The NLS is used in
many situations, among them we mention the propagations of pulses in nonlinear
Kerr media and the dynamics of Bose-Einstein condensates. A relevant feature of
NLS in homogeneous media, or in general in presence of symmetries, is that it
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admits solitons or traveling waves, non dispersive solutions which evolves rigidly
translating without modifying their profile. The NLS on graphs can be used as model
for a number of phenomena: propagation and splitting of pulses in various optical
devices such as Y-junctions, H-junctions and others, symmetry breaking due to
defects and formation of pinned stationary states around the inhomogeneities, (see
for example [2–4, 6, 8, 11–14, 17, 27, 29, 32, 33]; a review with references to related
physical research is in [31]). Such pinned states may have relevant influence on the
dynamics of traveling waves producing effective potentials well and capturing part
of incoming waves. The mathematical analysis of such situation is very difficult
with very few rigorous results, see [35, 36].

A first relevant question has been recently addressed in a wide generality at
mathematical level is the existence of the ground state for the focusing NLS with
power nonlinearity on a graph. That is the existence of an absolute minimizer of the
energy functional with a mass constraint. Here we review the main theorem in [18]
which provides the most general setting. In Sect. 2 we give a precise statement of
the theorem and give some ideas of proof while in Sect. 3 we discuss some other
recent related results in the literature.

2 Main Result

In this section we present and discuss the main theorem in [18]. We skip technical
details and omit proofs referring to the original paper.

We consider a connected metric graph G D .V;E/ where V is the set of vertices
and E is the set of edges. We assume that the cardinalities jVj and jEj of V and E
are finite. We identify each edge e 2 E with length Le 2 .0;1
 with the interval
Ie D Œ0;Le
, if Le is finite, or Œ0;1/, if Le is infinite. The set of edges with finite
length is denoted by Ein while the set of edges with infinite length is denoted by Eex.
Moreover we associate each finite length edge with two vertices, and each infinite
length edges with one vertex. The notation v 2 e with v 2 V and e 2 E, denotes
that v is a vertex of the edge e. Two vertices v1 and v2 are adjacent, v1 � v2 if
they are vertices of a common edge which connects them. The degree of a vertex
is the number of edges emanating from it. We denote by fe � vg the set of edges
connecting the vertex e. We fix a coordinate x on each interval Ie such that x D 0

and x D Le correspond to vertices if Le < 1 while if Le D 1 the vertex attached
to the rest of the graph corresponds to x D 0. Any choice of orientation of finite
length edges is equivalent for our purposes. To avoid ambiguities, from now on we
will denote points on the graph with x D .e; x/, where e 2 E identifies the edge and
x 2 Ie is the coordinate on the corresponding edge. In this paper we will assume that
there is at least one edge with infinite length, so that the considered graph is non
compact. A function � W G ! C is equivalent to a family of functions f ege2E with
 e W Ie ! C. In our notation, if x D .e; x/

�.x/ D  e.x/:
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The spaces Lp.G /, 1 6 p 6 1, are made of functions � such that  e 2 Lp.Ie/ for
all e 2 E and

k�kp
p D

X
e2E

k ekp
Lp.Ie/

; 1 6 p < 1 k�k1 D max
e2E

k ekL1.Ie/:

We denote by .�; �/ the inner product associated with L2.G /. When p D 2, the
index will be omitted We denote by C.G / the set of continuous functions on G and
introduce the spaces

H1.G / WD ˚
� 2 C.G / s.t.  e 2 H1.Ie/ 8e 2 E

�

equipped with the norm

k�k2H1.G / D
X
e2E

k ek2H1.Ie/
:

and

H2.G / WD ˚
� 2 H1.G / s.t.  e 2 H2.Ie/ 8e 2 E

�

equipped with the norm

k�k2H2.G / D
X
e2E

k ek2H2.Ie/
:

In the following, whenever a functional norm refers to a function defined on the
graph, we omit the symbol G .

Here we consider a connected graph G , composed by a compact core to which
a finite number of half-lines are attached (and at least one), see Fig. 1, and a
defocusing NLS with power nonlinearity of the form

i
d

dt
� D H� � j� j2��: (1)

Fig. 1 13 edges (10 interior, 3 exterior); 6 vertices
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We denote by H the Hamiltonian with a ı-coupling of strength ˛.v/ 2 R at each
vertex and a potential term W on each edge. It is defined as the operator in L2.G /
with domain

D.H/ WD
8<
:� 2 H2 s.t.

X
e	v

@o e.v/ D ˛.v/ e.v/ 8v 2 V

9=
; :

where we have denoted by @o the outward derivative from the vertex, it coincides
with d

dx or � d
dx according to the orientation on the edge. The action of H is defined

by

.H�/e D � 00
e C We e;

where We is the component of the potential W on the edge e. If one has in mind
as reference physical model, the propagation of concentrated wave packets, the
compact core plays the role of a quantum logic port that is, it reflects, splits and
transmits the pulses into the infinite edges as a sort of black box scattering. The
complexity of the graph together with a ı-interaction in should cover a large class
of possibilities. This phenomenon was discussed at the linear level in [21] in the
free case (W D 0), where it was proved that for a graph made by N half lines and
one vertex, all the time reversal conditions can be approximated by suitable rescaled
compact core with ı interactions in the added vertices.

We make very weak hypothesis in the potential W:

Assumption 1 W D WC � W� with W˙ > 0, WC 2 L1.G /C L1.G /, and W� 2
Lr.G / for some r 2 Œ1; 1C 1=�
.
The quadratic form of this operator is defined on the energy space given by H1.G /
and it is explicitly given by

ElinŒ� 
 D k� 0k2 C .�;W�/C
X
v2V

˛.v/j�.v/j2

Notice that �.v/ is well defined due to the continuity condition in H1.G /. One can
prove that under Assumption 1 one has

ˇ̌̌
.�;W�/C

X
v2V

˛.v/j�.v/j2
ˇ̌̌
6 ak� 0k2 C bk�k2; with 0 < a < 1; b > 0;

which, by KLMN theorem, implies that the form Elin is closed and hence defines
a selfadjoint operator. It is easy to prove that the corresponding operator coincides
with H.

Let us define

�E0 D inf
˚
ElinŒ� 
; � 2 H1.G /; k�k D 1

�
:
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This corresponds to the bottom of the spectrum of H. A second assumption is needed
in the proof of the main theorem.

Assumption 2 inf �.H/ WD �E0 is strictly negative
Notice that this implies that �E0 < 0 is an isolated simple eigenvalue. We denote
by ˚0 the corresponding normalized eigenfunction.

Equation (1) is well posed in H1.G / and the proof proceeds along well known
lines as an application of Banach fixed point theorem. Global well-posedness then
follows by conservation laws. We introduce the integral form of Eq. (1)

�.t/ D e�iHt�0 C i
Z t

0

e�iH.t�s/j�.s/j2��.s/ ds (2)

Proposition 1 (Local Well-Posedness in H1.G /) Let � > 0 and Assumption 1
hold true. For any �0 2 H1.G /, there exists T > 0 such that the Eq. (2) has a
unique solution � 2 C.Œ0;T/;H1.G // \ C1.Œ0;T/;H1.G /?/. Moreover, Eq. (2) has
a maximal solution defined on an interval of the form Œ0;T?/, and the following
“blow-up alternative” holds: either T? D 1 or

lim
t!T?

k�.t/kH1.G / D C1:

The nonlinear energy reads

EŒ� 
 DElinŒ� 
 � 1

�C 1
k�k2�C2

2�C2

Dk� 0k2 C .�;W�/C
X
v2V

˛.v/j�.v/j2 � 1

�C 1
k�k2�C2

2�C2

and it is defined on H1.G /. The mass functional is given by

MŒ� 
 D k�k2:

Proposition 2 (Conservation Laws) Let � > 0. For any solution � 2
C0.Œ0;T/;H1.G // \ C1.Œ0;T/;H1.G /?/ to the problem (2), the following
conservation laws hold at any time t:

MŒ�.t/
 D MŒ�.0/
; EŒ�.t/
 D EŒ�.0/
:

Proposition 3 (Global Well-Posedness) Let 0 < � < 2. For any �0 2 H1.G /, the
Eq. (2) has a unique solution � 2 C0.Œ0;1/;H1.G //\ C1.Œ0;1/;H1.G /?/.
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The main theorem in [18] gives the existence of nonlinear ground state under the
above assumptions.

Theorem 1 Let 0 < � < 2 and consider on a graph G the following minimization
problem:

� � D inffEŒ� 
 s.t. � 2 H1.G /; MŒ� 
 D mg: (3)

If Assumptions 1, and 2 hold true, then mE0 < � < C1 for any m > 0. Moreover,
there exists m� > 0 such that for 0 < m < m� there exists O� 2 H1.G /, with
MŒ O�
 D m, such that EŒ O�
 D ��.
Notice that by standard arguments O� is orbitally stable, see [19]. We make some
comments on the assumptions and then we sketch some ideas of the proof.

We remark that if G is a compact connected graph without infinite edges, the
minimization problem (3) admits a solution whenever the energy functional EŒ� 
 is
bounded from below.

Assumption 1 is a rather weak hypothesis which is sufficient to guarantee that
Elin is the quadratic form of a selfadjoint operator bounded from below.

Assumption 2 assures existence of a unique linear ground state and it is satisfied
in many relevant examples, such as the following:

(a) No delta terms, i.e. ˛.v/ D 0 for all v (also called Kirchhoff boundary
conditions at vertices, see, e.g. [28]) and a sufficiently well behaved and
decaying external potential attractive in the mean, i.e. such that

R
G W < 0:

In the pure Kirchhoff case (with no potentials) an extensive analysis of NLS
with power nonlinearity has been given in the recent papers [8, 11], where in
particular it is shown that existence of a ground state for subcritical nonlinearity
holds true only in some exceptional cases, the simplest one being the tadpole
graph [17, 32]. Here we show that summing a small negative potential restores
the ground state generically.

(b) Absence of potential term and delta interactions negative in the mean:P
v2V ˛.v/ < 0 (Se also [20] for an explicit example in this case).

(c) A mixing of the two: delta interaction at the vertices and well behaved potentials
with negative potential energy:

P
v2V ˛.v/C R

G W < 0.

Notice that at the level of quadratic form and in this one dimensional problem,
strictly speaking, one could consider on the same footing both the delta terms
and the regular potential term. We have a preference to keep separate the two
contributions because this is the usual way they are treated in quantum graph
literature.

Assumption 1 with the additional request that the potential W is relatively
compact with respect to the laplacian on the graph (Kirchhoff or delta boundary
conditions or a mixing of the two) assures that the Hamiltonian H admits an essential
spectrum �e.H/ D Œ0;C1/. So that, with this additional condition, a necessary
hypothesis for Assumption 2 be satisfied is that at least a negative eigenvalue exists.
It is straightforward to prove, considering a trial function constant on the compact
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part of the graph and smoothly vanishing at infinity that if
P

v2V j˛.v/j C R
G W

is negative the quadratic form is negative on this trial function and so a negative
eigenvalue exists. Moreover the delta interactions contribute at most with a finite
number of eigenvalues and the same holds true if W� is vanishing sufficiently fast
at infinity. The additional request

R
G W.x/.1 C jxj/dx < 1, as in the line or half

line cases is sufficient to guarantee that the discrete spectrum is finite. In particular
�E0 < 0 is an isolated eigenvalue.

The non degeneracy of the principal eigenvalue is a subtler problem. When a
ground state exists this property is assured by and is equivalent to the fact that
the heat semigroup S.t/ D exp.�tH/ associated to H is positivity improving (see
[34, Theorem XIII.44]). Moreover, a positivity preserving heat semigroup S.t/ is
positivity improving, its generator has no ground state degeneracy and its ground
state is positive if and only if S.t/ is irreducible. The Hamiltonian operator H0,
corresponding to the operator H with W D 0 and ˛.v/ 	 0 generates a positive
improving heat semigroup, see [25, 26]. This property is recovered for H by a
standard approximation argument. We add, by way of information, that simplicity of
all eigenvalues of quantum graph with delta interactions at vertices can be shown to
be a generic property up to changing edge lengths and intensity of delta interactions,
and again in absence of tadpoles (see [16] for details).

The main tool of the proof is an adaptation of concentration compactness lemma
to the considered class of graphs. Notice that the translation invariance of the domain
is broken and this forces a more detailed analysis of the Compact case which is split
into Convergence and Runaway.

Let d.x; y/ be the distance between two points of the graph, defined as the
infimum of the length of the paths connecting x to y and let B.y; t/ be the open
ball of radius t and center y

B.y; t/ WD fx 2 G s.t. d.x; y/ < tg:

For any function � 2 L2 and t > 0 we define the concentration function �.�; t/ as

�.�; t/ D sup
y2G

k�k2B.y;t/ :

For any sequence �n 2 L2 we define the concentrated mass parameter � as

� D lim
t!1 lim inf

n!1 �.�n; t/ :

The parameter � plays a key role in the concentration compactness lemma because
it distinguishes the occurrence of vanishing, dichotomy or compactness in H1.G /-
bounded sequences.
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Lemma 1 (Concentration Compactness) Let m > 0 and f�ngn2N be such that:
�n 2 H1.G /,

MŒ�n
 ! m as n ! 1 ;

sup
n2N

k� 0
nk < 1 :

Then there exists a subsequence f�nk gk2N such that:

i) (Compactness) If � D m, at least one of the two following cases occurs:

i1/ (Convergence) There exists a function � 2 H1.G / such that �nk ! � in
Lp as k ! 1 for all 2 6 p 6 1 .

i2/ (Runaway) There exists e� 2 Eex, such that for any t > 0, and 2 6 p 6 1

lim
k!1

0
@X

e¤e�

k.�nk /ekp
Lp.Ie/

C k.�nk /e�kp
Lp..0;t//

1
A D 0:

ii) (Vanishing) If � D 0, then �nk ! 0 in Lp as k ! 1 for all 2 < p 6 1.
iii) (Dichotomy) If 0 < � < m, then there exist two sequences fRkgk2N and fSkgk2N

in H1.G / such that

supp Rk \ supp Sk D ;
jRk.x/j C jSk.x/j 6 j�nk.x/j 8x 2 G

kRkkH1.G / C kSkkH1.G / 6 ck�nk kH1.G /

lim
k!1 MŒRk
 D � lim

k!1 MŒSk
 D m � �

lim inf
k!1

�k� 0
nk

k2 � kR0
kk2 � kS0

kk2
	
> 0

lim
k!1

�k�nk kp
p � kRkkp

p � kSkkp
p

	 D 0 2 6 p < 1

lim
k!1

��j�nk j2 � jRkj2 � jSkj2
��1 D 0:

The strategy of the proof is simple. We have to prove that a minimizing sequence
f�ngn2N can not be Vanishing, Dychotomic and Runaway as in the Concentration
Compactness Lemma. Then it is straightforward to prove Theorem 1 from the
Convergent case.

Up to subsequence, �n satisfy the following lower bound:

1

�C 1
k�nk2�C2

2�C2 C .�;W��/C
X
v2V�

j˛.v/jj�n.v/j2 > �

2
:
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where V� is the set of vertices where ˛.v/ < 0. This is sufficient to rule out the
Vanishing and the Dichotomy case. In order to rule out the Runaway case a more
detailed analysis is required.

First it is proved that the energy of a Runaway sequence admits a lower bound
by E1 D E1.m; �/ which provides a threshold. This energy is associated with the
corresponding variational problem on the line, that is:

E1 D inf

�
1

2

Z
R

j�0.x/j2 dx

� 1

2�C 2

Z
R

j�.x/j2�C2 s.t. � 2 H1.R/ ;

Z
R

j�.x/j2dx D m

�

Such a value is a crucial threshold in the minimization problem: if we can exhibit a
trial function with lower energy then the Runaway case does not occur. Otherwise
we can not exclude that �n converges weakly to 0 and we expect that the minimizer
O� does not exist. This lower bound is quite natural since in the Runaway case �n

is localized a single edge farther and farther from the compact region and therefore
its contribution is negligible. We can say in general that for minimizing sequence
f�ng there is a competition between the possibility of staying in the compact region
and running away at infinity along a single edge. Intuitively if the potential well is
sufficiently deep the first possibility is favored otherwise the second occurs. It turns
out that it is sufficient to assume that the potential creates a negative eigenvalue for
H in order to rule out the Runaway case.

In order to exhibit such a trial function one need some guess on the ground state.
In [18] it has been provided by bifurcation analysis of stationary state equation

H˚! � j˚!j2�˚! D �!˚! ˚ 2 D.H/; ! > 0; (4)

It has been proved that for sufficiently small m there is a continuous branch of
solutions˚! of (4) bifurcating from the linear ground state ˚0 that has lower energy
than the threshold described above and therefore the Runaway case does not happen
and we are in the convergent case. Assumption 2 allows to apply bifurcation theory
from an eigenvalue in its easiest version and to construct the nonlinear ground state.
We stress that there is no obstruction in principle to consider bifurcation from a
degenerate eigenvalue but we prefer to avoid unnecessary complications. Moreover
the ground state is an element of such branch of stationary states.

3 Comparison with Other Results

In this section we compare Theorem 1 with other similar recent results in the
literature. First of all notice that it ensures the existence of an absolute minimum
just for an interval of masses. This is due to the nature of the problem and not to
technical limitations as the results in [7] show. We comment on such results.
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In [7] the same variational problem as in Theorem 1 is considered but in a simpler
setting. First no external potential is present and then the underlying graph is a
star graph, N half-lines with a common vertex, with an attractive ı-interaction of
strength ˛ in the vertex. Similar results are obtained.

Theorem 2 Let m�� be defined by

m�� D 2
.�C 1/1=�

�

� j˛j
N

� 2��
�
Z 1

0

.1� t2/
1
��1 dt:

Let ˛ < 0 and assume m 6 m�� and 0 < � < 2. Define

�� D inffEŒ� 
 s.t. � 2 E ; MŒ� 
 D mg ;

then 0 < � < 1 and there exists O� such that MŒ O�
 D m and EŒ O�
 D ��.
The explicit expression of O� and of any other critical points of the energy

functional can be given. For any ! > 0, we label the soliton profile on the real
line as

�!.x/ D Œ.�C 1/!

1
2� sech

1
� .�

p
!x/: (5)

For any ˛ < 0, j D 0; : : : ;



N�1
2

�
(Œx
 denoting the integer part of x) and ! > ˛2

.N�2j/2

we define �!;j as

�
˚!;j

	
.x; i/ D

(
�!.x � aj/ i D 1; : : : ; j

�!.x C aj/ i D j C 1; : : : ;N
(6)

with

aj D 1

�
p
!

arctanh

� j˛j
.N � 2j/

p
!

�
: (7)

The functions˚!;j 2 D.H/ and are solutions of the stationary equation

H˚! � j˚! j2�˚! D �!˚!: (8)

We say that ˚!;j has a “bump” (resp. a “tail”) on the edge i if
�
˚!;j

	
.x; i/ is of

the form �!.x � aj/ (resp. �!.x C aj/). The index j in ˚!;j denotes the number of
bumps of the state ˚!;j. For this reason, we refer to the stationary state ˚!;0 as the
“N-tail state”. We remark that the N-tail state is the only symmetric (i.e. invariant
under permutation of the edges) solution of Eq. (8). For j > 1 there are

�N
j

	
distinct

solutions obtained by formulae (6) and (7) by positioning the bumps on the edges in
all the possible ways. For instance, if N D 3 then there are two stationary states, a
three-tail state and a two-tail/one-bump state. They are shown in Fig. 2.
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Fig. 2 Stationary states for N D 3, ˛ < 0

Theorem 3 Let ˛ < 0 and assume m 6 m�� and 0 < � < 2; then the minimizer
O� coincides with the N-tail state defined by ˚!0;0 where !0 is chosen such that

MŒ˚!0;0
 D m.
The explicit knowledge of the putative ground allows to obtain an explicit

estimate of m�� in a straightforward way by giving a sufficient condition such that
EŒ�!0;0
 < E1 and the Runaway case is excluded. For � D 1 the energy of the
ground state takes a simple expression and it is given by

EŒ˚!0;0
 D � 1

24N2
m.m2 C 6mj˛j C 12j˛j2/

while the threshold at infinity is given by

E1 D �m3

96

Then if N > 2 and m=j˛j is sufficiently big, we have that EŒ˚!0;0
 > E1 and
no absolute minimizer exists since any other critical points has higher energy than
the N-tail state. It is interesting noticing that in such limit ˚!0;0 is still a stationary
state and in facts it becomes a local minimizers for large m, see [10]. This concrete
example shows that we can not expect to find a ground state for the NLS at any mass
m. The case N 6 2 is not included in this remark, indeed in the case of the line with
a delta interaction, the existence of the ground state for every value of the mass was
given in [5], which covers also other examples of point interactions, while an even
more singular interaction is treated in [1].
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One unusual feature of the star graph is the possibility to find all the critical points
of the energy functional. This is due to the simplicity of the compact core, which is
in this case just a point. If one consider a more general solution, when the compact
case admit cycles (a closed path), a much more complex scenario is expected.
In particular if the edges of a cycles are rationally dependent, the linear operator
H admits infinitely many eigenvalues embedded in the continuum spectrum with
corresponding eigenvectors localized in the compact core of the graph. Stationary
states of the non linear problem may bifurcate from such eigenvalues of the linear
problem. This phenomenon is observed in [17] where the stationary equation is
considered for a cubic NLS on a tadpole graph.

H˚! � j˚!j2�˚! D �!˚! ˚ 2 D.H/; (9)

A tadpole is a cycle with one vertex and one infinite edge, see Fig. 3. A Kirchhoff
boundary condition is considered in the vertex. In the cubic case, solutions of (9)
in compact region, i.e. the cycle, are written in term of Jacobi elliptic functions.
The Hamiltonian admits �n D .n�=L/2 as eigenvalues and the corresponding
eigenvectors are localized on the head of the tadpole. Two families of stationary
states are found. The first family called cn-solutions is infinite for every ! and is
made by solutions ˚!;n of (9) which bifurcate from the vacuum as ! crosses �n and
are localized on the head of the tadpole. Moreover each branch of cn-solution ˚!;n
has an unexpected secondary bifurcation at ! D 0 splitting into ˚C

!;n and ˚�
!;n; this

related to the presence of zero energy resonance of H. See Fig. 4 for a plot of the
first elements of this family and for the secondary bifurcation of an element. The
second family called dn-solutions and denoted by �!;n;1 (left) and�!;n;2 ,exist only
for ! < 0 and it is finite although the number of existing dn-solutions depend on
!. They are non zero everywhere and have no linear counterpart. See Fig. 5 for a
plot of the first elements of this family. The tadpole graph shows that it would be
extremely difficult for a general graph to have even a partial picture of the nonlinear
spectrum, that is the set of critical points of the energy functional, although it is
expected that they influence the propagation in the time dependent problem, see e.g.
[24]. The analysis stationary states for general graphs in a suitable regime with weak
nonlinearity has been carried out in [22] and [23].

– L

L

x

y

Fig. 3 Tadpole graph
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–L L L L L–L –L –L

Fig. 4 Left: plots of representatives of cn-state ˚!;1 (left) and ˚!;2 (right). Right: plots of
representatives of cn-state ˚C

!;1 (left) and ˚�
!;1 (right). On the left of the horizontal axis the ring

Œ�L; L
; on the right the halfline

– L L – L – L – L LLL

Fig. 5 Left: plots of representatives of dn-state �!;0;1 (left) and �!;0;2 (right). Right: plots of
representatives of dn-state �!;1;1 (left) and �!;1;2 (right)

The ground state for the NLS on a general graph, like in Theorem 1, with
Kirchhoff boundary condition, i.e. ˛.v/ D 0, and no potential W, has been studied
in a series of detailed papers, see [8, 9, 11]. It is clear that in this case the main
hypothesis of Theorem 1, namely Assumption 2, is not satisfied since H > 0 and no
negative eigenvalue is possible. In this setting there is no negative potential favoring
Convergence over Runaway for a minimizing sequence and therefore the existence
of ground state is not expected. They prove that for a very large class of graphs this
the case, see [8]:

Theorem 4 Assume that every point of G lies in a path connecting different vertices
at infinity, then �� D E1 and it is not achieved unless G is a special class of graphs
called “ bubble tower”.
These techniques and these results seem to be limited only to the Kirchhoff case.
Indeed if we perturb a single vertex v such that ˛.v/ < 0 and 0 otherwise, it is
straightforward to prove that Assumption 2 is satisfied and Theorem 1 holds true,
therefore a ground state exists.

It is also proved in [11] that if the topological assumption in Theorem 4 is
violated, for certain graphs the a minimizer may exist depending on m. One example
of such graph is the tadpole graph described above due to the presence of single
half-line.

A second example is a star graph with a edge of length l. Notice this situation is
qualitatively different from the situation considered in [7]. The reason is that, when
looking for stationary states, one has a Neumann boundary condition in the vertex of
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degree one instead of Dirichlet one. Therefore we do not expect that the minimizer,
for instance, approaches the N-tail state of [7] as l ! 1. Indeed they prove that the
ground state exists for sufficiently large masses which is the opposite of Theorem 2.
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Self-Adjoint Extensions of Dirac Operator
with Coulomb Potential

Matteo Gallone

Abstract In this note we give a concise review of the present state-of-art for
the problem of self-adjoint realisations for the Dirac operator with a Coulomb-
like singular scalar potential V.x/ D �.x/I4. We try to follow the historical and
conceptual path that leads to the present understanding of the problem and to
highlight the techniques employed and the main ideas. In the final part we outline
a few major open questions that concern the topical problem of the multiplicity of
self-adjoint realisations of the model, and which are worth addressing in the future.

Keywords Dirac-Coulomb operator • Distinguished self-adjoint extension •
Self-adjoint extensions • von Neumann extension theory

1 Introduction

In relativistic quantum mechanics one is interested in the study of Dirac equation,
a partial differential equation that describes the dynamics of a 1

2
–spin fermion. The

phase space of the physical system is the Hilbert space L 2 WD L2.R3;C4; d3x/
which is

L 2 WD ˚
u j u W R3 ! C

4; kukL 2 < 1�
; (1)

where if u D .u1; u2; u3; u4/, with uj W R3 ! C, kuk2
L 2 D R

R3

P4
jD1 juj.x/j2 d3x.

The minimal Dirac operator is defined by

T D ’ � p C ˇ C V.x/ (2)

on the compactly supported smooth functions:

D.T/ D C1
c WD C1

c .R
3 n f0gIC4/; (3)
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where p D �ir is the momentum operator, ’ D .˛1; ˛2; ˛3/, ˛j and ˛4 D ˇ are
4 
 4 Hermitian matrices which satisfy the anti-commutation relation

˛j˛k C ˛k˛j D 2ıjkI4; (4)

In is the n 
 n identity matrix and V.x/ is a real 4 
 4 matrix valued function called
potential. A standard form for the ˛ matrices is the following

˛j D
�
0 �j

�j 0

�
; ˇ D

�
I2 0

0 �I2

�
; (5)

where �j are the Pauli matrices

�1 D
�
0 1

1 0

�
; �2 D

�
0 �i
i 0

�
; �3 D

�
1 0

0 �1
�
: (6)

In these notes we are interested in real scalar potentials of the form
V.x/ D �.x/I4 which have a Coulomb-like singularity at the origin, namely
limx!0 jxj�.x/ D � 2 R. For the sake of simplicity we will denote by T0 the free
Dirac operator and will refer to the operator T D T0 C V as the Dirac-Coulomb
operator. A natural choice for � is the Coulomb potential

�.x/ D �

jxj ; (7)

and this means that one is modelling an electron subject to the electric field
generated by � positive charge in the origin.

In atomic models � is related to the atomic number by

� D Z

˛
; (8)

where Z is the atomic number and ˛ is the fine-structure constant ˛ � 137.
In the case of a multi-electron atom one can use some kind of screening

approximation and an effective potential which is still Coulomb-like but it loses
some properties like the spherical symmetry. This makes the study of self-adjoint
extensions physically interesting also in the case of potentials with non spherical
symmetry.

We collect in the following theorem what is known about the existence and
uniqueness of self-adjoint extensions of the minimal Dirac-Coulomb operator
[11, 14, 22–24, 26, 29].
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Theorem 1 (Self-Adjoint Extensions of the Minimal Dirac-Coulomb Operator)
Let T D T0 C V be a Dirac-Coulomb operator defined on C1

c with V.x/ D �.x/I4
and

lim
x!0

jxj�.x/ D �: (9)

Then:

i) if j�j <
p
3
2

, then the operator T is essentially self-adjoint and its unique self-
adjoint extension has domain

D. NT/ D H 1 WD H1.R3;C4; d3x/: (10)

ii) If
p
3
2
< j�j < 1, then the operator T has infinitely many self-adjoint extensions

and if �.x/ is bounded below or above there exists a unique distinguished
extension Td with the properties

D.Td/ � D.jxj�1=2/; D.Td/ � D.jT0j1=2/: (11)

iii) If j�j > 1, then there are infinitely many self-adjoint extensions of T.

The reason why in the regime
p
3
2
< j�j < 1 we call Td distinguished is that

physically the condition (11) is a requirement for the functions in D.Td/ to have
a finite kinetic and potential energy. It is also notice-worthy that Td is the unique
self-adjoint extension with this property (see Sect. 3.2).

Another important remark is on the threshold value j�j D
p
3
2

. In fact, in this case,
it is not possible to determine whereas T is essentially self-adjoint or not without
any further information on V (see [29] for more details). In the special case of the

pure Coulomb potential (7) for the choice j�j D
p
3
2

the operator T is essentially
self-adjoint.

Due to these reasons, in the literature one usually refers to (i) as the regular
regime, to (ii) as the transitory regime, and to (iii) as the critical regime.

The first step in the study of self-adjoint extensions is the computation of the
deficiency indices of the Dirac-Coulomb operator: we discuss it in Sect. 2. In Sect. 3
we place the study of the self-adjoint extensions of Dirac-Coulomb operators into a
historical perspective from Kato’s paper in 1951 up to recent works. This includes
also the sketch of some key proofs, with no pretension of completeness. In Sect. 4
we present what is known about the classification of self-adjoint extensions of the
Dirac operator. Last, in Sect. 5 we present some questions that, to our opinion, are
more relevant and deserve further investigations.
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2 Deficiency Indices

In this section we compute the deficiency indices for the Dirac-Coulomb opera-
tor. We recall that given a densely defined symmetric operator T its deficiency
indices are

n˙ WD dim ker.T� � i/: (12)

In a sense they measure ‘how far’ the operator T is from being self-adjoint. More
precisely, by a well-known result (see [18] Corollary to Theorem X.2), a densely
defined symmetric operator admits non-trivial self-adjoint extensions if and only if
the deficiency indices are equal and different from zero: nC D n� ¤ 0. If this is true
and nC < 1, then all the self-adjoint extensions of T are parametrized by n2C real
parameters. It is therefore very natural to begin this review on self-adjoint extensions
of Dirac-Coulomb operator with the computation of the deficiency indices.

Theorem 2 ([26], Theorem 6.9) Let T be the Dirac operator with Coulomb
potential with V.x/ D �

jxj I4 defined on C1
c . Then the deficiency indices are

i) .0; 0/ if j�j �
p
3
2

;

ii) .2n.n C 1/; 2n.n C 1// if
q

n2 � 1
4
< j�j �

q
.1C n/2 � 1

4
with n 2 N.

Remark 1 The deficiency indices for the Dirac operator with scalar potential are
the same even if we relax the hypothesis of spherical symmetry of the potential.
In fact, the statement of the theorem remains unchanged except for the fact that
the inequalities become all strict. In order to compute the deficiency indices for

� D
q

n2 � 1
4

in the general case of non spherical symmetry one needs additional
information on the potential (see [29] Theorem 4.2).

Proof By passing to polar coordinates and denoting with d˝ the surface measure
of the unit sphere we obtain an isomorphism

U W L2.R3;C; d3x/ ! L2..0;1/;C; dr/˝ L2.S2;C; d˝/ (13)

by setting for each � 2 L2.R3;C; d3x/

.U�/.r; #; '/ D r�.x.r; #; '//: (14)

The isomorphism can be extended to L 2 component-wise and it will be denoted
with the same symbol. Under this transformation the free Dirac operator takes the
form

UT0U
� D �i.’ � Or/

�
@

@r
� 2

r
S � L

�
C ˇ: (15)
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Here L D x 
 p denotes the angular momentum operator, S D � 1
4
’ 
 ’ the spin

operator and Or is the radial versor.
A direct computation shows that the operator S � L commutes with the free Dirac

operator UT0U�. To proceed in the analysis it is convenient to introduce the operator
K D 2ˇ.S � L C 1/ in order to re-write the free Dirac operator as

UT0U
� D �i.’ � Or/

�
@

@r
C 1

r
� 1

r
ˇK

�
C ˇ: (16)

Denoting with J D L C S the total angular momentum operator, it is possible to
show that the operator K commutes with J2 and with the third component of the total
angular momentum operator J3. Moreover, it is possible to find a common basis of
infinitely differentiable orthonormal eigenfunctions on L2.S2;C4; d˝/ and to prove
that all these operators have pure point spectrum (see [26] appendix to section 1).

The Hilbert space decomposes into the direct sum of 2-dimensional spaces

L2.S2;C4; d˝/ D
M

j2NC 1
2

jM
mjD�j

M
�jD˙. jC 1

2 /

Kmj;�j ; (17)

where Kmj;�j D spanf˚C
mj;�j

; ˚�
mj;�j

g and ˚�̇j;mj
are smooth common eigenfunctions

of J2, K, J3 with eigenvalues j. j C 1/, �j and mj respectively.
Now each vector  2 U�C 1

c can be written as

 .r; #; '/ D 1

r

X
j;mj;�j

�
f C
mj;�j

.r/˚C
mj;�j

.#; '/C f �
mj;�j

.r/˚�
mj;�j

.#; '/
�

(18)

with coefficient functions fṁj;�j
.r/ 2 C1

c ..0;1//. Hence, by putting together all the
ingredients, we can compute the action of the radial Dirac-Coulomb operator on
each reducing subspace Kmj;�j ˝ C1

c ..0;1// as

tmj;�j D
�
1C �

r � d
dr C �j

r
d
dr C �j

r �1C �
r

�
; (19)

and one is left with the computation of the deficiency indices for this ordinary
differential operator.

Following Weidmann’s argument we exploit a limit-point/limit-circle analysis.
The differential operator tmj;�j is said to be in the limit point case at 0 (resp. at 1)
if for every � 2 C all solutions of .tmj;�j � �/u D 0 are square integrable in .0; 1/
(resp. in .1;1/). The operator tmj;�j is said to be in the limit circle case at 0 (resp. at
1) if for every � 2 C there is at least one solution of .tmj;�j � �/u D 0 which is not
square integrable in .0; 1/ (resp. in .1;1/).
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Once we know if tmj;�j is in the limit circle case or in the limit point case the
following general theorem gives us the deficiency indices.

Theorem 3 ([26], Theorem 5.7) The deficiency indices of tmj;�j are

i) .2; 2/ if tmj;�j is in limit circle case at both 0 and 1;
ii) .1; 1/ if tmj;�j is in limit circle case at one end point and in limit point case at the

other;
iii) .0; 0/ if tmj;�j is in limit point case at both 0 and 1.

By Weyl’s alternative theorem (see [26] Theorem 5.6), either for every � 2 C all
solutions of .tmj;�j � �/u D 0 are square integrable in .0; 1/ (resp. in .1;1/), or for
every � 2 C n R there exists a unique (up to a multiplicative constant) solution u of
.tmj;�j � �/u D 0 which is square integrable in .0; 1/ (resp. in .1;1/). Therefore,
since no third option is possible, it is sufficient to check whether both the solutions
of tmj;�ju D 0 are square integrable in .0; 1/ and .1;1/.

To check if tmj;�j is in the limit-point or in the limit-circle case we consider the
operator .tmj;�j � ˇ/. The subtraction of a bounded operator does not change the
computation of the deficiency indices. Choosing � D 0, the equation to be solved is
.tmj;�j � ˇ/u D 0. Its solutions are

u.r/ D
�

uC.r/
u�.r/

�
D
 

˙
q
�2j � �2 � �j

�

!
r

˙
q
�2j ��2

: (20)

From this explicit expression we see that the solution with positive exponent
cannot be square integrable in .1;1/ and hence independently of the parameters �j

and � the operator is always in the limit point case at infinity.
The solution with positive exponent is always square integrable in .0; 1/ while

the one with negative square root is square integrable near zero if and only if

� 2
q
�2j � �2 � �1; (21)

which means

�2 � �2j � 1

4
: (22)

Then if � satisfies (22), the operator is in the limit point case at both endpoints.
By Theorem 3, if (22) holds the deficiency indices of the operator are .0; 0/,
otherwise the deficiency indices of the operator are .1; 1/.

To compute the deficiency indices of the full operator we have to count how many
reduced operators are not essentially self-adjoint. Explicitly,

n˙ D
X

j2NC 1
2

jX
mjD�j

X
�jD˙. jC 1

2 /

�
1 if �2 > �j � 1

4

0 else
: (23)
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Let n be the integer such that n2 � 1
4
< �2 � .n C 1/2 � 1

4
. We obtain

n˙ D
n� 1

2X
j2NC 1

2

jX
mjD�j

2 D 2n.n C 1/: (24)

3 Potential with Coulomb-Like Singularity

In this section we review the historical path that, together with the results in the
previous section, led to the present understanding on the existence and uniqueness
of self-adjoint extensions of the minimal Dirac-Coulomb operator.

Conceptually and historically the two main questions addressed so far, and that
we are going to analyse are:

1. Is the operator T0 C V essentially self-adjoint?
2. If it is not, is there a special self-adjoint extension which is physically relevant?

The technique employed in answering the first question is essentially a pertur-
bative argument based on the Kato-Rellich theorem and it is addressed in the first
subsection.

The second question presents a wider range of answers and many authors pro-
vided different meaningful special extensions. Only at a later stage they recognized
that, under some hypothesis, they were referring to the same operator. This subject
is addressed in the second subsection.

3.1 Essential Self-Adjointness via Kato-Rellich Theorem

One of the first proofs of the essential self-adjointness for the Dirac-Coulomb
operator is due to Kato in 1951 as a direct application of the Kato-Rellich theorem.
Despite the simplicity of the proof, this does not cover the whole range of the
parameter � on which the Dirac-Coulomb operator is essentially self-adjoint.

Some years later two different approaches based on the same theorem were

developed in order to cover the range Œ0;
p
3
2

: the first one, due to Rejtö and

Gustafsson [10, 19] aimed to weaken its hypotheses, the other one due to Schminke
[22] uses the original theorem. Instead of looking to V as a perturbation of T0 he
introduced an operator C and considered T0 C V D .T0 C C/ C .V � C/. To
prove the essential self-adjointness of T0 C V he proved separately the essential
self-adjointness of T0 C C and looked at V � C as a perturbation satisfying the
hypothesis of Kato-Rellich.
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Several other works dealt with the same problem, among which we mention
[5, 7, 15, 20, 21, 25]. For a self-contained conceptual review we present in detail
only the above-mentioned ones of Rejtö-Gustaffson and Schmincke.

Since it will play a central role in this subsection, we recall the classical statement
of the Kato-Rellich theorem.

Theorem 4 (Kato-Rellich) Suppose that A is an essentially self-adjoint operator,
B is a symmetric operator that is A-bounded with relative bound a < 1, namely

i) D.B/ � D.A/;
ii) For some a < 1, b 2 R and for all ' 2 D.A/,

kB'k � akA'k C bk'k: (25)

Then A C B is self-adjoint on D. NA/ and essentially self-adjoint on any core of A.
Let us start with surveying Kato’s proof from [12, 13]. The starting point is the

well-known Hardy inequality (see [18] section X.2 p.169)

kpuk2 � 1

4
kr�1uk2; 8u 2 C1

c .R
3/: (26)

By using the properties of the ’ matrices we get the identity

kT0uk2 D kpuk2 C h.ˇ’ � p C ’ � pˇ/u; ui C kuk2 D kpuk2 C kuk2: (27)

Thus, we see that if the potential is j�.x/j � �
jxj , we get the following chain of

inequalities

kpuk2 � 1

4
kr�1uk2 � 1

4�2
k�.x/uk2; (28)

from which it follows that

k�.x/uk � 4�2kT0uk2 � 4�2kuk2: (29)

If � < 1
2
, the hypotheses of the Kato-Rellich theorem are satisfied and one deduces

that T0 C V is essentially self-adjoint and the domain of the unique self adjoint
extension is

D.T0 C V/ D H 1: (30)

Remark 2 By using Wüst theorem (see [18] theorem X.14) one can cover the case
� D 1

2
. However the information on the domain of the self-adjoint extension is lost.

Remark 3 The result is independent of the possible spherical symmetry and of pre-
cise matricial form of the potential: the conclusion holds if limx!0 jxjjVij.x/j < 1

2
,

where i; j D 1; 2 and Vij are the entries of the matrix V .
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Remark 4 Arai [1, 2] showed that by considering more general matrix-valued
potentials of the form

V.x/ D Z

r
I4 C i

r
’ � Orˇb1 C ˇ

r
b2 (31)

the necessary and sufficient condition for the essential self-adjointness is .�jCb1/2C
b22 � Z2 C 1

4
and hence the threshold 1

2
is optimal, in the sense that if V is in the

form above and one of the entry of the matrix satisfies jxjjVijj > 1
2

then it is possible
to choose Z; b1; b2 such that the operator is not essentially self-adjoint.

In a work from 1970, Rejtö [19] discussed the particular case of spherically
symmetric Coulomb-like potentials. By denoting with B.L 2/ the set of bounded
operators on L 2, the requirement on V for the operator T0CV to be essentially self-
adjoint on C1

c boils down to asking that 9�˙ in the upper/lower closed complex
half plane such that

.1 � NV.�˙ � NA0/�1/ 2 B.L 2/: (32)

Proving that the Dirac operator with Coulomb interaction satisfies this hypothesis
for � 2 Œ0; 3

4
/, he was able to show that under this condition such an operator is

essentially self-adjoint and the domain of its self-adjoint extension is H 1.
In fact [19] provides some sort of intermediate results that led to the more relevant

work [10] by Gustaffson and Rejtö. In this relevant continuation they generalized
further Kato-Rellich theorem and they were able to achieve the essential self-
adjointness for the Dirac operator in the regime � 2 Œ0;p3=2/.

Their generalization relies on Fredholm’s theory, that we briefly recall here for
the self-consistency of the presentation. A densely defined operator A in a Banach
space X is said to be Fredholm if A is closed, ran A is closed, and both dim ker A
and dimX =ran T are finite. The index of a Fredholm operator A is the number
i.T/ D dim ker A � dimX =ran A.

Theorem 5 ([10], Theorem 3.1, Generalized Kato-Rellich Theorem) Let T0 be
essentially self-adjoint, V symmetric with D.V/ � D.T0/ where V is T0-bounded.
For each � in the resolvent set of T0 define the operator A� 2 B.L 2/ by

A� WD I � NV.� � NT0/�1: (33)

Then the three conditions below

i) T0 C V is essentially self-adjoint;
ii) T0 C V D NT0 C NV;

iii) D.T0 C V/ D D. NT0/;
hold if and only if there exists �C in the closed upper half plane and �� in the
closed lower half plane such that the operators A�˙

are Fredholm of index zero.
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Proof (Sketch) We start from the identity

� � NT0 � NV D ŒI � NV.� � NT0/�1
.� � NT0/: (34)

Since � 2 �.T0/, � � NT0 is Fredholm of index zero and since the composition of
Fredholm operators is Fredholm and the index of the composition is the sum of
the indices, by using a standard criterion of essential self-adjointness, we prove the
sufficient condition.

The necessity follows using the same index-formula and the fact that if A1A2 is
Fredholm with A2 Fredholm and A1 closed, then A1 is Fredholm and therefore by
the above formula A˙i is Fredholm of index 0.

Remark 5 This theorem includes the classical Kato-Rellich noting that with �˙ D
˙i a

b one has k NV.�˙� NT0/�1k < 1. Hence A�˙
are invertible and therefore Fredholm

of index zero.
The proof of the essential self-adjointness of the Dirac operator with Coulomb

potential uses the following corollary:

Corollary 1 If there exist �C and �� as in the previous theorem such that A�˙
D

B˙ C C˙ where B�1˙ 2 B.L 2/ and C˙ are compact, then T0 C V is essentially
self-adjoint and D.T0 C V/ D D. NT0/.
Proof This corollary follows from the fact that an invertible operator is Fredholm
of index zero and that this property is stable under compact perturbations.

By using the spherical symmetry and the decomposition of the Dirac operator

Rejtö and Gustaffson prove that for j�j 2 Œ0;
p
3
2
/ the hypothesis of Corollary 1 are

satisfied and hence the spherically symmetric Dirac-Coulomb operator is essentially
self-adjoint for that range of parameters.

In this respect the work of Schmincke [22] is of interest in that the same
conclusion on essential self-adjointness was obtained independently of the spherical
symmetry of the potential.

Theorem 6 ([22]) Let � 2 L2loc.R
3 n f0g;R; d3x/ be a real-valued function that

can be expressed as � D �1 C �2 with �1 2 C0.R3 n f0g;R/ and �2 2 L1.R3 n
f0g;R; d3x/ with

j�1.x/j � �

jxj (35)

and � 2 Œ0;
p
3
2
/. Then T0 C V is essentially self-adjoint.

The way Schmincke proves its result consists of using the standard Kato-Rellich
theorem. He introduces a certain intercalary operator C in order to write T0 C V D
.T0 C C/C .V � C/ and to regard V � C as a small perturbation of T0 C C.
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More precisely he continues

C WD 1

4

�
a � 1

r

�
’ � Or; 1 < a < 3 (36)

and T0 D ’ � p C ˇ. He further introduces a bounded operator S2 on which we omit
the details. From these definitions it is clear that for z 2 C, 0 < jzj < 1,

T0 C V D .A C ˇ C zC/C .V � zC � S2/C S2 D F C G C S2: (37)

With these definitions Schmincke proves that kGuk2 � kkFuk2 with k < 1 and
hence Gu is F-bounded with a small bound. One can thus apply Kato-Rellich1 to
obtain that T CV CS2 is essentially self-adjoint and, since S2 is a bounded operator,
this also implies the essentially self-adjointness of T.

3.2 The Distinguished Self-Adjoint Extension

As stated in Theorem 1, in the transitory regime there are infinitely many self-
adjoint extensions of the minimal Dirac-Coulomb operator. Before considering their
classification the main interest throughout the 1970s was the study of a distinguished
extension characterized by being the most physically meaningful. The first work
that introduced this particular self-adjoint extension is due to Schmincke [23] who
obtained this extension by means of a multiplicative intercalary operator. This self-
adjoint realisation is physically relevant because its domain is contained in the
domain of the potential energy form and hence each function on the domain has
a finite expectation value of the potential energy operator.

A second and more explicit construction of a distinguished self-adjoint extension
of the minimal Dirac-Coulomb operator was found by Wüst [27, 28] by means
of cut-off potentials. He built a sequence of self-adjoint operators that converges
strongly in the operator graph topology to a self-adjoint extension of the minimal
Dirac-Coulomb operator. Remarkably that the domain of this self-adjoint extension
is also contained in the domain of the potential energy.

At that point it was not clear whether Wüst’s and Schmincke’s self-adjoint
extensions were the same or not. The first attempt to look for a distinguished self-
adjoint extension with a requirement of uniqueness was made by Nenciu [17] who
found that there exists a unique self-adjoint extension of the minimal Dirac operator
whose domain is contained in the domain of the kinetic energy form.

1Schmincke used a complex version of Kato-Rellich that deals with closed operators instead of
self-adjoint ones. This is necessary because, in general, the z appearing in the proof is not real.
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In 1979 Klaus and Wüst [14] proved that in the regime � 2 .
p
3
2
; 1/ if the potential

� is semi-bounded all the above mentioned distinguished self-adjoint extensions
coincide.

Let us start with Schmincke’s result.

Theorem 7 ([23], Theorems 2 and 3) Let � 2 L2loc.R
3 n f0g;R; d3x/ be a real-

valued function such that � D �1 C �2 with �1 and �2 both real valued, �1 2
C0.R3 n f0g/, and �2 2 L1.R3;R; d3x/. Let s 2 Œ0; 1/. Suppose there exists k > 1,
c > 1 and f 2 C1..0;1// positive valued and bounded from above by 1�s

2c such that

1

r2

�
f .r/C s

2

�2 � k

�
j�1.x/j2 C 1

r2
f 2.r/

�
� 1

r2

�
f .r/C s C 1

2

�2
C 1

r
f 0.r/:

(38)
Then there exists a bounded symmetric operator S such that

TG WD
�

r� s
2

� �
r

s
2 .T � S/

�
C NS (39)

is an essential self-adjoint extension of T and 8m 2 Œ 1
2
; 1 � s

2



D.TG/ D D.T�/ \ D
�
r�m

	
: (40)

Remark 6 Note that in particular D.TG/ � D
�

r�1=2
�

, which physically means

that all the functions in the domain of this distinguished self-adjoint extension have
a finite expectation of the potential energy.

Schmincke proved this using a multiplicative intercalary operator. If T D T0 C V
with T0 essentially self-adjoint and if there exists a symmetric operator G satisfying
suitable properties (see Theorem 1 in [23]), then

TG WD G�1 GT (41)

is an essentially self-adjoint extension of T.
Noticeably in the case of Coulomb potential the assumptions of the theorem are

satisfied when

1 � 4�2 � .1 � s2/ � 4.1� �2/; (42)

which means � < 1.
Wüst, instead, showed that given a potential �.x/ 2 C0.R3 n f0g/ such that

j�.x/j � �

jxj j�j < 1; (43)
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if one fixes a positive constant c > 0 and defines

Vt.x/ WD
�

V.x/ jxj � c
t

R.x/ jxj < c
t ;

(44)

where R is chosen such that the components of Vt are continuous functions. If Vt.x/
is definitely monotone, the sequence of operators Tt D T0 C Vt g-converges to a
self-adjoint operator Tg which is a self-adjoint extension of T with the property that

D.Tg/ � D
�

r1=2
�
: (45)

In 1976 Nenciu [17] proposed an alternative distinguished self-adjoint extension
TN by requiring this extension to be the unique with the property that all the
functions in its domain have finite kinetic energy, namely

D.TN/ � D.j NT0j 12 /: (46)

The precise result can be stated as follows.

Theorem 8 ([17], Theorem 5.1) Let w.t/ be a decreasing function on Œ0;1/ such
that 0 � w.t/ � 1, limt!1 w.t/ D 0, T0 and V be a matrix-valued potential.

If

i) V.x/ D w.jxj/W.x/ where W is a small perturbation of T0, or
ii) V.x/ D V1.x/ C V2.x/ where V1 is dominated by the Coulomb potential with

coupling constant � < 1 and V2 D w.jxj/W2.x/ where W2 is non-singular,

then

i) there exists a unique operator TN such that

D.T/ � D.jT0j 12 /I (47)

ii) �ess.T/ � �ess.T0/.

The proof relies on a variant of Lax-Milgram lemma and has the inconvenience
not to be constructive.

In 1979 Klaus and Wüst [14] showed that in the case of semi-bounded potential
Wüst’s and Nenciu’s distinguished extensions actually coincide. This is an interest-
ing fact both from a physical and from a mathematical point of view. Physically this
coincidence means that the distinguished self-adjoint extension has the property of
being the only one whose functions in the domain have finite potential and kinetic
energy. From a mathematical point of view this overcomes the fact that Nenciu’s
method was not constructive and provides instead an explicit expression for its self-
adjoint extension in terms of g-limit of Tt.
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The identification of a certain distinguished extension was pushed further by
Esteban and Loss [6] up to the value � D 1. In that paper they proposed to define
the distinguished self-adjoint extension via Hardy-Dirac inequalities. By a limit
argument this procedure can define a sort of distinguished self-adjoint extension
also when � D 1 but, in that case, the domain of this self-adjoint extension will be
neither contained in the domain of the kinetic energy form nor in the domain of the
potential energy form. In a subsequent work, Arrizabalaga [3] weakened further the
hypothesis on the construction of the self-adjoint extension of Esteban and Loss.

4 Classification of the Self-Adjoint Extensions

In the previous section we discussed the distinguished extension of the minimal
Dirac-Coulomb operator with respect to an infinite multiplicity of others. We come
now to the major problem of classifying the one-parameter family of self-adjoint
extensions of such an operator.

There is essentially one work, by Hogreve [11], that deals systematically with
this problem. There the classification is made by means of von Neumann’s extension
theory. We start by recalling von Neumann’s theorem on general parametrization of
symmetric extension.

Theorem 9 (von Neumann) Let T be a densely defined, closed and symmetric
operator. The closed symmetric extensions of T are in one to one correspondence
with the set of partial isometries (in the usual inner product) of ker.T� C i/ into
ker.T� � i/. If U is such an isometry with initial space I.U/  ker.T� C i/, then the
corresponding closed symmetric extension TU has domain

D.TU/ D f' C '.i/ C U'.i/ j ' 2 D.T/; '.i/ 2 I.U/g (48)

and

TU.' C '.i/ C U'.i// D T' C i'.i/ � iU'.i/: (49)

If dim I.U/ < 1, the deficiency indices of TU are

n˙.TU/ D n˙.T/� dimŒI.U/
: (50)

Recalling that if �2 > �2j � 1
4

the deficiency indices of tmj;�j are .1; 1/, the
isometries are just phases: given � 2 Œ0; 2�/ we have

U� W ker.T� C i/ ! ker.T� � i/
 .i/ 7! ei� .�i/;

(51)
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and hence at every value of � there corresponds one self-adjoint extension of the
minimal operator tmj;�j .

Let  .r/ D . 1.r/;  2.r// 2 AC..0;1/;C2/. We define

.�� /.r/ D . 
.�i/
2 .r/C ei� 

.i/
2 .r/;� .�i/

1 .r/� ei� 
.i/
1 .r// �

�
 1.r/
 2.r/

�
: (52)

Theorem 10 ([11], Theorem 7.1) Let j�j >
q
�2j � 1

4
, the self-adjoint extensions

t�mj;�j
of the minimal operator tmj;�j of (19) are uniquely determined by � 2 Œ0; 2�/

via the formulas

D.t�mj;�j
/ D f 2 L2..0;1/;C2/\ AC..0;1/;C2/ j lim

r!0
.�� /.r/;

tmj;�j 2 L2..0;1//g (53)

t�mj;�j
 D t�mj;�j

 : (54)

Proof We prove only one direction of the theorem.
By von Neumann’s theorem above and the explicit formula for the unitary

transformation we have

D.t�mj;�j
/ D D

�
t�mj;�j

�
C fc. .i/ C ei� .�i// j c 2 Cg (55)

and hence by taking the limit r ! 0 one gets

c D lim
r!0

 n.r/ � �n.r/

 
.�i/
n C ei� 

.i/
n .r/

(56)

with n D 1; 2. This implies that taking into account that  n ! 0, for r ! 0 the
quantity with n D 1 equals the one with n D 2 and this is precisely the condition
limr!0.�� / D 0.

5 Future Perspectives: A Selection of Main Open Problems

In the final part of these notes we survey a few topical questions concerning the
multiplicity of self-adjoint realisations of the model.

(i) Characterisation of D.t�mj;�j
/. The sole characterisation of the domains of the

self-adjoint extensions present in the literature, namely (53) above, does not
give any explicit detail on the behaviour of the functions near the origin. More
refined information on this short scale behaviour is expected to be achievable
by means of the self-adjoint extension theory of Kreı̆n-Višik-Birman (KVB)
(see for example [16]).
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(ii) Adaptation of the original extension formulas for initial operators that are not
semi-bounded (as is the case for t�mj;�j

). The original KVB theory is developed
in order to classify the self-adjoint extensions of a semi-bounded operator. An
operator version of the extension formula for non semi-bounded operators with
a spectral gap can be found in [8, 9] but, to our knowledge, a similar theorem
for the corresponding quadratic forms is not available in the literature.

(iii) Qualification of further features of the domain of the distinguished extension.
Beside the huge amount of studies concerning the domain of the distinguished
extension (see for example [3, 4]), the available knowledge on such operator
remains somewhat implicit. Among the other informations, one would like
to qualify the most singular behaviour at zero of the generic element of the
domain, and how this behaviour may depend on the magnitude of the coupling
constant �.

(iv) General classification of the extensions both in the operator sense and in the
quadratic form sense, where the effectiveness of the classification relies in the
possibility of qualifying special subclasses of interest (e.g. invertible ones). In
particular, it would be of relevance to reproduce, in analogy to what happens
for semi-bounded operators, the natural ordering of the quadratic forms.

(v) Study of the spectral properties of the generic extension, with particular focus
on the discrete spectrum lying in Œ�1; 1
. For example, one would like to
identify the self-adjoint realisation with the highest number of eigenvalues or
the one with the lowest eigenvalue or one could even try to identify the lowest
possible (absolute value of the) eigenvalue among the extensions.

(vi) Identification of an analogous notion of distinguished extension in the regime
� > 1. The reason for which if � > 1 there is no self-adjoint realisation with
the property that its domain is contained in the domain of the potential energy
form can be seen with the decomposition (17). If � > 1 the functions in the
domain of the reduced operator in the sector with j D 1

2
do not vanish at r D 0.

In all the other sectors, however, this is not the case. It is thus possible to prove
the existence of a special self-adjoint realisation of the reduced Dirac operator
in the sectors with j � 3

2
that retains most of the properties of the distinguished

extension in the regime � 2 Œ
p
3
2
; 1/.

Acknowledgements This work is partially supported by INdAM (GNFM) and by the 2014–2017
MIUR-FIR grant Cond-Math: Condensed Matter and Mathematical Physics code RBFR13WAET.

References

1. M. Arai, On essential self-adjointness of Dirac operators. RIMS Kokyuroku, Kyoto Univ. 242,
10–21 (1975)

2. M. Arai, On essential self-adjointness, distinguished self-adjoint extension and essential
spectrum of Dirac operators with matrix valued potentials. Publ. RIMS, Kyoto Univ. 19, 33–57
(1983)



Self-Adjoint Extensions of Dirac Operator with Coulomb Potential 185

3. N. Arrizabalaga, Distinguished self-adjoint extensions of Dirac operators via Hardy-Dirac
inequalities. J. Math. Phys. 52, 092301 (2011)

4. N. Arrizabalaga, J. Duoandikoetxea, L. Vega, Self-Adjoint extensions of Dirac operators with
Coulomb-like singularity. J. Math. Phys. 54, 041504 (2013)

5. P.R. Chernhoff, Schrödinger and Dirac operators with singular potentials and hyperbolic
equations. Pac. J. Math. 72, 361–382 (1977)

6. M. Esteban, L. Loss, Self-adjointness for Dirac operators via Hardy-Dirac inequalities. J. Math.
Phys. 48(11), 112107 (2007)

7. W.D. Evans, On the unique self-adjoint extension of the Dirac operator and the existence of the
Green matrix. Proc. Lond. Math. Soc. (3) 20, 537–557 (1970)

8. G. Grubb, A characterization of the non-local boundary value problems associated with an
elliptic operator. Ann. Scuola Norm. Sup. Pisa (3), 22, 425–513 (1968)

9. G. Grubb, Distributions and Operators, vol. 252 of Graduate Texts in Mathematics (Springer,
New York, 2009)

10. K.E. Gustafson, P.A. Rejtö, Some essentially self-adjoint Dirac operators with spherically
symmetric potentials. Isr. J. Math. 14, 63–75 (1973)

11. G. Hogreve, The overcritical Dirac-Coulomb Operator. J. Phys. A Math. Theor. 46, 025301
(2013)

12. T. Kato, Fundamental properties of Hamiltonian operators of Schrödinger type. Trans. Am.
Math. Soc. 70, 195–211 (1951)

13. T. Kato, Perturbation Theory for Linear Operators (Springer, New York, 1966)
14. M. Klaus, R. Wüst, Characterization and uniqueness of distinguished self-adjoint extensions

of Dirac operators. Commun. Math. Phys., 64, 171–176 (1979)
15. J.J. Landgren, P.A. Rejtö, On a theorem of Jörgens and Chernoff concerning essential self-

adjointness of Dirac operators. J. Reine Angew. Math. 332, 1–14 (1981)
16. A. Michelangeli, The Kreı̆n-Višik-Birman self-adjoint extension theory revisited. SISSA

preprint 59/2015/MAT http://urania.sissa.it/xmlui/handle/1936/35174 (2015)
17. G. Nenciu, Self-adjointness and invariance of the essential spectrum for Dirac operators defined

as quadratic forms. Commun. Math. Phys. 48, 235–247 (1976)
18. M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. 2 (Academic Press, New

York, 1975)
19. P.A. Rejtö, Some essentially self-adjoint one-electron Dirac operators. Isr. J. Math. 9, 144–171

(1971)
20. F. Rellich, Eigenwerttheorie Partieller Differentialgleichungen II (Vorlesungsmanuskript,

Göttingen, 1953)
21. B.W. Roos, W.C. Sangren, Spectral theory of Dirac’s radial relativistic wave equations. J. Math.

Phys. 3, 702–723 (1962)
22. U.W. Schmincke, Essential selfadjointness of Dirac operators with a strongly singular poten-

tial. Math. Z. 126, 71–81 (1972)
23. U.W. Schmincke, Distinguished self-adjoint extensions of Dirac Operators. Math. Z. 129, 335–

349 (1972)
24. B. Thaller, The Dirac Equation (Springer, Berlin, 1992)
25. J. Weidmann Oszillationsmethoden für Systeme gewöhnlicher Differentialgleichungen. Math.

Z. 119, 349–373 (1971)
26. J. Weidmann, Spectral Theory of Ordinary Differential Operators (Springer, Berlin, 1987)
27. R. Wüst, Distinguished self-adjoint extensions of Dirac operators constructed by means of cut-

off potentials. Math. Z. 141, 93–98 (1975)
28. R. Wüst, Dirac Operations with Strongly Singular Potentials–distinguished self-adjoint exten-

sions constructed with a spectral gap theorem and cut-off potentials. Math. Z. 152, 259–271
(1977)

29. J. Xia, On the contribution of the coulomb singularity of arbitrary charge to the Dirac
Hamiltonian. Trans. Am. Math. Soc. 351, 1989–2023 (1999)

http://urania.sissa.it/xmlui/handle/1936/35174


Dispersive Estimates for Schrödinger Operators
with Point Interactions in R

3

Felice Iandoli and Raffaele Scandone

Abstract The study of dispersive properties of Schrödinger operators with point
interactions is a fundamental tool for understanding the behavior of many body
quantum systems interacting with very short range potential, whose dynamics can
be approximated by non linear Schrödinger equations with singular interactions. In
this work we proved that, in the case of one point interaction in R

3, the perturbed
Laplacian satisfies the same Lp � Lq estimates of the free Laplacian in the smaller
regime q 2 Œ2; 3/. These estimates are implied by a recent result concerning the
Lp boundedness of the wave operators for the perturbed Laplacian. Our approach,
however, is more direct and relatively simple, and could potentially be useful to
prove optimal weighted estimates also in the regime q � 3.

Keywords Dispersive estimates • Point interactions • Schrödinger operators •
Weighted Fourier inequalities

1 Introduction

In quantum mechanics, a huge variety of phenomena are described by system of
quantum particles interacting with a very short range potentials, supported near
away a discrete set of points in R

d. This leads to the study of Hamiltonians which
formally are defined as

H�;Y D “ ��C
X
y2Y

�jıy” (1)

where �� is the free Laplacian on R
d, Y WD fy1; y2; : : :g is a countable discrete

subset of Rd and �yj are real coupling constants. Thus H describes the motion of
a quantum particle interacting with a “contact potentials”, created by point sources
of strength �yj centered at yj. The first appearance of such Hamiltonians dates back
to the celebrated paper of Kronig and Penney [14], where they consider the case
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d D 1, Y D Z and �y independent on y as a model of a nonrelativistic electron
moving in a fixed crystal lattice. The mathematical rigorous study of H�;Y was
initiated by Albeverio et al. [1], and subsequently continued by other authors (see
for instance [8, 11, 12, 21]). In this work we focus on the case of finitely many
point interactions on R

3. The rigorous definition of H�;Y is based on the theory of
self adjoint extensions of symmetric operators (see [2] for a complete and detailed
discussion): one starts with

QHY WD ��jC1
0 .R

3nfYg/; (2)

which is a densely defined, non-negative, symmetric operator on L2.R3/, with
deficiency indices .N;N/, and hence it admits a N2-parameter family of self adjoint
extensions. Among these, we find the important subfamily of the so called local
extensions, characterized by the following proposition (see [2, 9]):

Proposition 1 Fix Y WD .y1; : : : ; yN/ � R
3 and ˛ WD .˛1; ˛2; : : : ; ˛N/ 2

.�1;C1
N. Given z 2 C, define

Gz.x/ WD eizjxj

4�jxj ;
QGz.x/ WD

(
eizjxj

4�jxj x ¤ 0

0 x D 0
(3)

and the N 
 N matrix

Œ�˛;Y.z/
.j;l/ WD
��
˛j � iz

4�

�
ıj;l � QGz.yj � yl/

�
.j;l/

(4)

The mesomorphic function z 7! Œ�˛;Y .z/
�1 has at most N poles in the upper half
space CC, which are all located along the positive imaginary semi-axis. We denote
by E the set of such poles. There exists a self adjoint extension H˛;Y of QHY with the
following properties:

• Given z 2 C
CnfE g, the domain of H˛;Y can be written as:

D.H˛;Y / D
8<
: WD �z C

NX
j;lD1

.�˛;Y.z/
�1/j;l�z.jl/Gz.� � yj/ ; �z 2 H2

9=
; : (5)

The decomposition is unique for a given z.
• With respect to the decomposition (5), the action of H˛;Y is given by

.H˛;Y � z2/ WD .�� � z2/�: (6)

Remark 1 The family of self adjoint operators H˛;Y realizes in a rigorous way the
heuristic definition given by expression (1). It is worth noticing the different roles
played by parameters: while �j measures the strength of the point interactions at
yj, ˛j is related to the scattering length. Indeed, a generic function  2 D.H˛;Y /
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satisfies the so called Bethe-Peierls contact condition

 .x/ �
x!yi

1

jx � yjj C 4�˛j; j D 1; : : : ;N (7)

which is typical for the low-energy behavior of an eigenstate of the Schrödinger
equation for a quantum particle subject to a very short range potential, centered at
yj and with s-wave scattering length �.4�˛j/

�1 (see the works of Bethe and Peierls
[5, 6]). When ˛j D C1, no actual interactions take place at yj (the s-wave has zero
scattering length); in particular when ˛ D C1 we recover the Friedrichs extension
of QHY , namely the free Laplacian on L2.R3/.
The spectral properties of H˛;Y are well known and completely characterized; we
encode them in the following proposition (see [2, 9]):

Proposition 2

1. The spectrum �.H˛;Y / of H˛;Y consists of at most N negative eigenvalues and the
absolutely continuous part �ac.H˛;Y/ D Œ0;C1/. Moreover, there exists a one to
one correspondence between the poles i� 2 E and the negative eigenvalues ��2
of H˛;Y , counted with multiplicity.

2. The resolvent of H˛;Y is a rank N perturbation of the free resolvent, and it is given
by:

.H˛;Y � z2/�1 � .H0 � z2/�1 D
NX

j;kD1
.�˛;Y .z/

�1/jk G
yj
z ˝ Gyk

z : (8)

We conclude this introduction by observing that H˛;Y can be also realized as limit of
scaled short range Schrödinger operator. Indeed we have the following Proposition
(see [2]):

Proposition 3 Fix ˛ 2 .�1;C1
N and Y D fy1; : : : ; yNg � R
3. There exist

real valued potentials V1; : : :VN of finite Rollnik norm, and real analytic functions
�j W R ! R, with �j.0/ D 1, such that the family of Schrödinger operators

H" WD ��C
NX

jD1

�j."/

"2
V
�x � yj

"

�
(9)

converges in strong resolvent sense to H˛;Y as " goes to zero. Moreover:

˛j ¤ C1 for some j ” ��C Vj has a zero energy resonance: (10)

Remark 2 Proposition 3 makes more convincing the idea of considering the
Hamiltonian H˛;Y as an approximation of more realistic phenomena, governed
by very short range interactions.
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2 Dispersive Properties of H˛;Y

Since H˛ is a self adjoint operator, it generates a unitary group of operators eitH˛;Y ;
in particular the L2 norm is preserved by the evolution:

keitH˛;Y f kL2.R3/ D k f kL2.R3/: (11)

It is natural to investigate the dispersive properties of eitH˛;Y . The first work in this
direction is by D’ancona et al. [7], who proved weighted L1 � L1 estimates

kw�1eitH˛;Y Pac f kL1.R3/ . t� 3
2 kwf kL1.R3/ (12)

where Pac is the projection onto the absolutely continuous spectrum of H˛;Y and

w.x/ D
NX

jD1

�
1C 1

jx � yjj
�
; (13)

under the following assumption:

Assumption 1 The matrix �˛;Y.z/ is invertible for z � 0, with locally bounded
inverse.
It is worth noticing that the presence of a weight in (12) is unavoidable, because
of the singularities appearing in the domain of H˛;Y . In the case of one single point
interaction, Assumption 1 is always satisfied except for ˛ D 0, in which case the
perturbed Hamiltonian has a zero energy resonance. Nevertheless, exploiting the
explicit formula for the propagator eitH available in the case N D 1 (see [3, 18]), also
the case ˛ D 0 was settle down in [7], by showing weighted dispersive inequality
with a slower decay in t, a typical phenomenon for Schrödinger operators with zero
energy resonances:

kw�1eitH0;y f kL1.R3/ . t� 1
2 kwf kL1.R3/: (14)

Observe now that, interpolating (12) and (14) with the trivial bound (11), we get
weighted dispersive inequalities in the full range q 2 Œ2;C1
:

Proposition 4

1. Under Assumption 1, the following estimates holds:

kw�
�
1� 2

q

�
eitH˛;Y Pac f kLq.R3/ . t�

3
2 .
1
p � 1

q /kw
2
p �1f kLp.R3/ (15)

where q 2 Œ2;C1
 and p is the dual exponent of q.
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2. In the case N D 1, ˛ D 0 we have

kw�
�
1� 2

q

�
eitH0;y f kLq.R3/ . t�

1
2

�
1
p � 1

q

�
kw

2
p �1f kLp.R3/ (16)

where q 2 Œ2;C1
 and p is the dual exponent of q.

However, since the singularities Gi.x � yj/ belong to Lq.R3/ for q 2 Œ2; 3/, one may
hope, at least in principle, to prove an unweighted version of (15) and (16). This is
true indeed, and it is a consequence of a recent result [9]:

Theorem 1 For any Y and ˛, the wave operators

W˙̨
;Y D s � lim

t!C1 eitH˛;Y eit� (17)

for the pair .H˛;Y ;��/ exist and are complete on L2.R3/, and they are bounded on
Lq.R3/ for 1 < q < 3.

Remark 3 The restriction 1 < q < 3 already emerges at level of approximating
Schrödinger operators. Indeed, if H D ��C V has a zero energy resonance (which
by Proposition 3 is a necessary condition for H" to converges to H), then the wave
operators

WV̇ WD s � lim
t!C1 eit.��CV/eit� (18)

are bounded on Lq if and only if 1 < q < 3 (see Yajima [20])
Owing to Theorem 1 and the intertwining property of wave operators, viz.

f .H˛;Y /PacH˛;Y D W˙̨
;Y f .��/.W˙̨

;Y /
� (19)

for any Borel function f on R
3, one can lift the classical dispersive estimates for

the free Laplacian into analogous estimates for H˛;Y , albeit for the restriction on the
exponent q. Thus we find:

Proposition 5 For any ˛ and Y, we have the estimate

keitH˛;Y Pac f kLq.R3/ . t�
3
2 .
1
p � 1

q /k f kLp.R3/ for q 2 Œ2; 3/: (20)

Interpolating (20) respectively with (12) and (14), we deduce also the following:

Corollary 1

1. Under Assumption 1, we have

kw�
�
1� 3�"

q

�
eitH˛;Y Pac f kLq.R3/ . t�

3
2 .
1
p � 1

q /kw
�
1� 3�"

q

�
f kLp.R3/ (21)

in the regime q 2 Œ3;C1
.
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2. When N D 1 and ˛ D 0, we have

kw�
�
1� 3�"

q

�
eitH0;y f kLq.R3/ . t�

1
2C "

q kw
�
1� 3�"

q

�
f kLp.R3/ (22)

in the regime q 2 Œ3;C1
.

We can see that the results in [9] improves the one in [7] in various ways:

1. In the regime q 2 Œ2; 3/, with an arbitrary number of centers, both the weights
and the hypothesis 1 on � are removed.

2. In the regime q 2 Œ3;C1
, with an arbitrary number of centers and under the
hypothesis 1, the weights are strengthened to be almost optimal [indeed we can
not remove " in estimate (21)].

3. In the case N D 1, ˛ D 0 and in the regime q 2 Œ2; 3/, the weights are removed
and the time decay is strengthened.

4. In the case N D 1, ˛ D 0 and in the regime q 2 Œ3;C1
, both the weights and
the time decay are strengthened, and again the weights are almost optimal.

In this work we want to provide a new and simpler proof of Proposition 5 in the
particular case N D 1, without using any knowledge about the wave operators.

3 Proof of Proposition 5, Case N D 1

The operators H˛;y1 and H˛;y2 are conjugated by translations, hence we can assume
y D 0 and we will simply write H˛ instead of H˛;0. We recall an useful factorization
for the operator H˛ (see [2]). Introducing spherical coordinates on R

3, we can
decompose L2.R3/ with respect to angular momenta:

L2.R3/ D L2.RC; r2dr/˝ L2.S2/ (23)

where S2 is the unit sphere in R
3. Moreover, using the unitary transformation

U W L2..0;C1/; r2dr/ ! L2.RC; rdr/; .Uf /.r/ D rf .r/ (24)

and decomposing L2.S2/ into spherical harmonics

fYl;ml 2 N;m D 0;˙1; : : : ;˙lg ; (25)

we obtain

L2.R3/ D
C1M
lD0

U�1L2.RC; rdr/˝ hYl;�l; : : : ;Yl;li: (26)
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With respect to this decomposition, the symmetric operator QH WD QHf0g writes as

QH D
C1M
lD0

U�1hlU ˝ 1 (27)

where hl, l � 0 are symmetric operators on L2.RC/, with common domainC1
0 .RC/

and actions given by

hl D � d2

dr2
C l.l C 1/

r2
; r > 0: (28)

It is well known [17] that hl are essentially self adjoint for l � 1, while h0 admits a
one parameter family of selfadjoint extension Ph0;˛ such that

H˛ D Ph0;˛ ˚
C1M
lD1

U�1 PhlU ˝ 1 (29)

where Phl is the unique self adjoint extension of hl, for l � 1. Identity (29) tells
us that H˛ completely diagonalizes with respect to decomposition (26), and that it
coincides with �� after projecting out the subspace of radial functions. Hence it
immediately follows

Lemma 1 Suppose f 2 L2.R3/ is orthogonal to the subspace of radial functions.
Then

eitH˛ f D e�it�f (30)

Lemma 1 has an important Corollary, which considerably simplifies our proof:

Corollary 2 In the proof of Proposition 5 (in the special case N D 1) we can
suppose f to be radial.

Proof Suppose (20) to be true for radial functions. Given a generic f 2 L2.R3/, we
can decompose it as f1 C f2, where

f1 WD 4�

jyj2
Z

Sy

f .r; !/dH 2.!/ (31)

is the orthogonal projection onto L2rad.R
3/. By Lemma 1, we get

eitH˛ f D eitH˛ f1 C e�it�f2: (32)
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By hypothesis and using the dispersive estimates for the free Laplacian, we deduce

keitH˛ f kLq � t
3
2

�
1
p � 1

q

�
.k f1kLp C k f2kLp/: (33)

Now, using Hölder inequality, we get

k f1kp
Lp �

Z C1

0

r2�2p

�Z
Sr

jf .r; !/jdH 2.!/

�p

dr

�
Z C1

0

r2�2pC 2p
q

Z
Sr

jf .r; !/jpdH 2.!/dr D
Z C1

0

Z
Sr

jjf .r; !/jdH 2.!/jp D k f kp
Lp

and consequently

k f2kLp � k f kLp C k f1kLp . k f kLp (34)

which concludes the proof.
Now we are in turn to prove our main result. As mentioned before, in the case
N D 1, the propagator associated to H˛ is explicitly known. In particular, Scarlatti
and Teta [18] have proved the following characterization:

eitH˛ f D

8̂
<̂
ˆ̂:

e�it�f C limR!1 MRf if ˛ D 0

eitH0 f C limR!1 M˛;Rf if ˛ > 0

eitH0 f C limR!1 eM˛;Rf if ˛ < 0

(35)

where the limit is taken in the L2 sense and

MRf .x/ WD .4�it/�1=2
1

4�jxj
Z

BR

ef .jyj/
jyj e�i .jxjCjyj/2

4t dy; (36)

M˛;R f .x/ WD �.4�it/�1=2
˛

jxj
Z
R3

f .y/

jyj
Z C1

0

e�4�˛se�i .jxjCjyjCs/2

4t dsdy; (37)

eM˛;Rf .x/ WD
 

�  ˛.x/
Z

BR

 ˛.y/f .y/e
it.4�˛/2dy

� ˛

jxj.it�/
�1=2

Z
BR

f .y/

jyj
Z C1

0

e4�˛s exp

�
� .u � jxj � jyj/2

4it

�
dsdy

!
;

(38)
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and ˛.x/ D p�2˛ e4�˛jxj

jxj is the normalized eigenfunction associated to the negative

eigenvalue �.4�˛/2 for ˛ < 0. We are going to show that the following estimates
hold uniformly in R > 0:

kMR f kLq . t�
3
2 .
1
p � 1

q /k f kLp ; (39)

kM˛;R f kLq . t�
3
2 .

1
p � 1

q /k f kLp ; (40)

keM˛;RPac f kLq . t�
3
2 .

1
p � 1

q /k f kLp : (41)

The latter inequalities are clearly sufficient to prove Proposition 5 in the special
case N D 1. Let us start by proving inequality (39). Thanks to Corollary 2 we can
suppose f .y/ D ef .jyj/ for someef W R ! R. Using spherical coordinates in both
variables x and y we get

kMR f kLq . t�1=2
"Z C1

0

r2�q

ˇ̌
ˇ̌Z R

0

exp

�
�i
�r

2t
� i
�2

4t

�
�ef .�/d�

ˇ̌
ˇ̌q dr

#1=q

: (42)

Setting

h.�/ WD
(

e�i�2=4t�ef .�/ 0 � � � R
0 � 2 R n Œ0;R
 (43)

the latter expression becomes

t�1=2
�Z C1

0

r2�q
ˇ̌b̌h� r

2t

�ˇ̌ˇq dr

�1=q

; (44)

which is equal to

t�
3
2 .
1
p � 1

q /

�Z C1

0

r2�qjbh.r/jqdr

�1=q

: (45)

At this point we are ready to use a classical weighted Fourier transform norm
inequality, also known in literature as Pitt’s inequality. We state here the original
theorem proved by Pitt in 1937 [16]:

Theorem 2 (Pitt’s Theorem) Let 1 < � � � < 1, choose 0 < b < 1
� 0 with

1
�

C 1
� 0 D 1, set ˇ D 1� 1

�
� 1

�
� b < 0 and define v.x/ D jxjb� for all x 2 R. There

is a constant C > 0 such that

�Z
R

jbf ./j�jjˇ�d
�1=�

� C

�Z
R

jf .x/j� jxjb�dx

�1=�
; (46)

for all f 2 L�v .R/.
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Since q < 3 we may use this Theorem in the case � D q, � D p, ˇ D 2�q
q and

b D 2�p
p obtaining

t�
3
2 .
1
p � 1

q /

�Z C1

0

r2�qjbh.r/jqdr

�1=q

. t�
3
2 .
1
p � 1

q /

�Z C1

0

jh.r/jpr2�pdr

�1=p

; (47)

which essentially is the desired estimate, indeed

�Z C1

0

jh.r/jpr2�pdr

�1=p

D k f kLp : (48)

This concludes the proof of (39), which, together with the standard dispersive
estimates for the free Laplacian, implies the dispersive estimates for the semigroup
feitH0gt>0.

Let us turn in to proving (40). Since q < 3 the function 1=jyj belongs to Lq.BR/,
hence we can exchange the order of integration and use Minkowski inequality

kMR f kLq .

. t�1=2
Z C1

0

����
Z

BR

1

jxj exp

�
�4�˛s � i

.jxj C jyj C s/2

4t

�ef .y/
jyj dy

����
Lq

ds

D t�1=2
Z C1

0

e�4�˛s

����
Z

BR

1

jxj exp

�
�i

jyj2
4t

� i
jxjjyj
2t

� i
sjyj
2t

�
f .y/

jyj dy

����
Lq

ds;

(49)
which, as before, in spherical coordinates is bounded, up to constants, by

t�1=2
Z C1

0

e�4�˛s

 Z C1

0

r2�q

ˇ̌
ˇ̌Z R

0

e�i r�
2t hs.�/.�/d�

ˇ̌
ˇ̌q dr

!
ds; (50)

where

hs.�/ WD
(

exp
�
�i �

2

4t � i s�
2t

�
�ef .�/ 0 � � � R

0 � 2 R n Œ0;R

: (51)

The quantity (50) is nothing but

t�1=2
Z C1

0

e�4�˛s

�Z C1

0

r2�q
ˇ̌
ˇbhs

� r

2t

�ˇ̌ˇq dr

�1=q

ds; (52)

which, arguing as before, is bounded by t�
3
2 .

1
p � 1

q /k f kLp . This concludes the proof
of (40).
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The proof of (41) is very similar, indeed after projecting f onto the absolutely
continuous spectrum of H˛ , the first summand in the right hand side of (38)
disappears and hence the remaining part can be treated exactly in the same way
as done in the proof of (40).

4 Conclusions

The proof given in Sect. 3 is quite direct and does not use any deep results from
scattering theory for the perturbed Hamiltonian H˛;Y . Nevertheless, it is worth
noticing that the proof of Pitt’s inequality, the main tool of our argument, requires
some technical results from harmonic analysis such as Muckenhaupt estimates
[10, 15], which play an essential role also in the proof of the Lp boundedness of
the wave operators W˙ given in [9]. The main advantage of our approach is that,
owing to more general weighted Fourier inequalities (see for instance [4, 13]) rather
than Pitt’s inequality (in which the weights are forced to be pure powers), it can
potentially be adapted to prove optimal Lp � Lq estimates also in the regime q � 3.
In particular, we conjecture the following result:

Conjecture 1 Fix q 2 Œ3;C1
, and let wq.x/ a weight such that w.x/ 	 1 outside a
ball centered at the origin and w�1

q Gi 2 Lq.R3/. Then for every ˛ ¤ 0 and y 2 R
3,

the following estimates hold:

kwq.� � y/�1eitH˛;yPac f kLq.R3/ . t�
3
2

�
1
p � 1

q

�
kwq.� � y/f kLp.R3/: (53)

When ˛ D 0, a similar estimate holds but with a slower time decay:

kwq.� � y/�1eitH˛;y f kLq.R3/ . t� 1
2 kwq.� � y/f kLp.R3/: (54)

Remark 4 Conjecture 1 is motivated by the natural principle for which removing
the local singularity is enough to get dispersive estimates, and it would improve the
result in Corollary 1. For example when q D 3 we expect that a logarithmic weight
would suffice, while in estimates (21) and (22) there appear polynomial weights.
An alternative conjecture can be expressed in term of weighted Lorentz space, in
which context there are other generalizations of Pitt’s inequality (see for instance
[19]):

Conjecture 2 Given q 2 Œ3;C1
, define the weight

wq WD 1C jxj 3q �1
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Then for every ˛ ¤ 0 and y 2 R
3, the following estimates hold:

��wq.� � y/�1eitH˛;y Pac f
��

Lq;1.R3/
. t�

3
2

�
1
p � 1

q

� ��wq.� � y/f
��

Lp;1.R3/
: (55)

When ˛ D 0, a similar estimates holds but with a slower time decay:

��wq.� � y/�1eitH˛;y f
��

Lq;1.R3/
. t�

1
2

��wq.� � y/f
��

Lp;1.R3/
: (56)

Remark 5 The function w�1
q Gi belongs to Lq;1.R3/, hence the plausibility of the

conjecture. Observe moreover that it would be enough to prove (55) and (56) when
q D 3, the general case following by interpolation with q D 1, in which case we
recover the weighted L1 � L1 estimates (12) and (14) proved in [7].
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Chern and Fu–Kane–Mele Invariants
as Topological Obstructions

Domenico Monaco

Abstract The use of topological invariants to describe geometric phases of quan-
tum matter has become an essential tool in modern solid state physics. The first
instance of this paradigmatic trend can be traced to the study of the quantum Hall
effect, in which the Chern number underlies the quantization of the transverse Hall
conductivity. More recently, in the framework of time-reversal symmetric topolog-
ical insulators and quantum spin Hall systems, a new topological classification has
been proposed by Fu, Kane and Mele, where the label takes value in Z2.

We illustrate how both the Chern number c 2 Z and the Fu–Kane–Mele invariant
ı 2 Z2 of 2-dimensional topological insulators can be characterized as topological
obstructions. Indeed, c quantifies the obstruction to the existence of a frame of Bloch
states for the crystal which is both continuous and periodic with respect to the crystal
momentum. Instead, ı measures the possibility to impose a further time-reversal
symmetry constraint on the Bloch frame.

Keywords Chern numbers • Fu–Kane–Mele invariants • Obstruction theory •
Quantum hall effect • Quantum spin hall effect • Topological insulators

1 Introduction

One of the most prominent instances of Wigner’s “unresonable effectiveness of
mathematics” in condensed matter systems is provided by topological insulators
[15]. These materials, although insulating in the bulk, have the property of con-
ducting currents on their boundary, making them amenable to various types of
applications in material science, and even in quantum computing. A thorough
understanding of the transport properties of these materials, however, can be
achieved only by investigating the topology of the occupied states that fill the bulk
energy bands, by virtue of a principle known as the bulk-edge correspondence.
Consequently, some of the techniques of topology and differential geometry, once
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relegated to abstract mathematics, have nowadays become common knowledge also
among solid state physicists.

To better understand how topology enters in the world of condensed matter
systems, it is particularly instructive to consider the archetypal example of a topo-
logical insulator, given by a quantum Hall system [13]. An effectively 2-dimensional
crystalline medium is immersed in a uniform magnetic field perpendicular to
the plane of the sample, and an electric current is driven in one direction along
the crystal. The induced current is measured in the transverse direction. In a
remarkable experiment, performed at very low temperatures by von Klitzing and
his collaborators [28], the (Hall) conductivity �H associated to this transverse current
was shown to display plateaux which occurred at integer multiples of a fundamental
constant, measured moreover with an astounding precision:

�H D n
e2

h
; n 2 Z: (1)

Later theoretical investigations showed that a topological phenomenon underlies
this quantization: the integer n in the above formula was shown to be the first Chern
number of a vector bundle, naturally associated to the quantum system [1, 2, 27].

The only role played by the magnetic field in quantum Hall systems is that
of breaking time-reversal symmetry: if the system were time-reversal symmetric,
then the Hall conductivity would vanish, and the system would remain in an
insulating state. This fact was clarified by Haldane [14], who showed that non-
trivial topological phases can be displayed also in absence of a magnetic field, thus
initiating the field of Chern insulators [3, 5]. Picking up on the work by Haldane,
Fu, Kane and Mele [11, 12, 18] later introduced a model which still displays
a topological phase even if time-reversal symmetry is preserved, and is by now
recognized as a milestone in the history of topological insulators. The phenomenon
that the model proposed to illustrate is that of the quantum spin Hall effect, which
differs from the quantum Hall effect in that the external magnetic field is replaced
by spin-orbit interactions (exactly to preserve time-reversal symmetry), and spin
rather than charge currents flow on the boundary of the sample. From the point
of view of topological phases, the peculiarity of this phenomenon is that, contrary
to what happens for Chern and quantum Hall insulators, one can only distinguish
between the trivial (insulating) and non-trivial (quantum spin Hall) phase: the label
is then assigned by a Z2-valued topological index. Giving a full account of the
geometric nature of this invariant has been a primary objective for mathematical
physicists in the last decade, and a plethora of mathematical tools has been used in
this endeavour, ranging from K-theory to homotopy theory, from functional analysis
to noncommutative geometry, from equivariant cohomology to operator theory. We
refer to [7, 10, 25] for recent accounts on the ever-growing literature on the subject.

The purpose of this contribution is to express both the Chern number and the
Fu–Kane–Mele Z2 index of 2-dimensional topological insulators in a common
framework, provided by obstruction theory. It will be shown how both invariants
arise as topological obstructions to the existence of a Bloch frame, which roughly
speaking can be described as a set of continuous functions which parametrize the



Chern and Fu–Kane–Mele Invariants as Topological Obstructions 203

occupied states of the physical systems and are compatible with its symmetries,
namely periodicity with respect to the Bravais lattice of the crystal and, possibly,
time-reversal symmetry; a precise definition will be given in the next Section. The
nature of these topological invariants as obstructions was early realized [11, 20],
employing methods from bundle theory and using local trivializing charts. Our
strategy relies instead on successive extensions of the definition of the Bloch frame,
which is well-suited for induction on the dimension of the system and is reminiscent
of the extension of a section of a bundle along the cellular decomposition of its
base space. We use only basic facts from linear algebra and the topology of the
group of unitary matrices U.m/; besides, our method has the further advantage of
constructing the required Bloch frame in an algorithmic fashion.

2 Topology of Crystalline Systems

2.1 Periodic Hamiltonians

To set up a rigorous investigation of topological phases of quantum matter, we
first have to understand the mathematical description of crystalline systems. The
starting point is a periodic Hamiltonian: one could think of continuous models
described by Schrödinger operators, or of discrete, tight-binding models described
by hopping matrices. Periodicity means that the operator H should commute with
the translations associated to a lattice � ' Z

d � R
d, namely the Bravais

lattice of the crystal under scrutiny. This symmetry of the Hamiltonian leads to a
partial diagonalization of it, by looking at common (generalized) eigenstates for
the Hamiltonian and the translations: this procedure, which is reminiscent of the
Fourier decomposition, goes by the name of Bloch-Floquet reduction [22]. In this
representation, the Hamiltonian becomes a fibered operator, with fibre H.k/ acting
on a space Hf containing the degrees of freedom associated to a unit cell for � .
The parameter k 2 R

d, also called crystal or Bloch momentum, is determined up to
translations by vectors in the dual lattice � WD � �, and thus can be considered as
an element of the Brillouin torus Td WD R

d=�. Indeed, the fibre Hamiltonians at k
and k C �, � 2 �, are unitarily intertwined by a representation � W� ! U .Hf/,
namely

H.k C �/ D �� H.k/ ��1
� :

The above relation will be called �-covariance in what follows.
Due to the compactness of the unit cell, under fairly general assumptions1 the

operator H.k/ has discrete spectrum: the function k 7! En.k/, associated to one of

1In continuous models, where H is a Schrödinger operator, these assumptions usually amount to
asking that the electromagnetic potentials be infinitesimally Kato-small (possibly in the sense of
quadratic forms) with respect to the kinetic part [26].
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its eigenvalues (labelled, say, in increasing order), is called the Bloch band. The
spectrum of the original Hamiltonian is recovered by considering the (possibly
overlapping) ranges of all these functions, and leads to the well-known band-gap
structure of the spectrum of a periodic operator. If one assumes that the Fermi
energy of the system lies in a spectral gap for H, then it makes sense to consider
the Fermi projector P.k/ on the m occupied bands. The gap condition implies that
the dependence of P.k/ on k is analytic, and the family of operators P.k/ is also
�-covariant (see e.g. [24, Proposition 2.1]).

For the applications to topological insulators that we are aiming at, we need to
consider also a further symmetry of the Hamiltonian, namely time-reversal symme-
try. This is implemented antiunitarily on the Hilbert space of the quantum particle,
and flips the arrow of time (and hence the crystal momentum). Mathematically, this
amounts to require the existence of an antiunitary operator � on Hf, squaring to
˙1Hf , and such that

H.�k/ D �H.k/��1:

We say that the family of operators H.k/ is time-reversal symmetric if the above
holds. It is easy to verify that the Fermi projectors associated to a time-reversal
symmetric Hamiltonians are time-reversal symmetric as well. In what follows, we
will focus mainly on the case of a fermionic time-reversal symmetry operator,
namely on the case where �2 D �1Hf , as is the case for example for quantum
spin Hall systems.

2.2 Bloch Bundle, Berry Connection and Berry Curvature

From the previous analysis of periodic and time-reversal symmetric Hamiltonians,
we ended up with a family of projectors fP.k/gk2Rd � B.Hf/, P.k/� D P.k/ D
P.k/2, satisfying the following properties:

(P1) analyticity: the map k 7! P.k/ is a real-analytic map on R
d with values in

B.Hf/;
(P2) �-covariance: the map k 7! P.k/ satisfies

P.k C �/ D �� P.k/ ��1
�

for a unitary representation � W� ! U .Hf/ of the lattice � ' Z
d � R

d;
(P3) time-reversal symmetry: the map k 7! P.k/ satisfies

P.�k/ D � P.k/��1

for an antiunitary operator�WHf ! Hf such that �2 D �1Hf .
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The topology underlying the quantum system described by the Hamiltonian H
is encoded in its eigenprojectors, satisfying the above properties.2 Indeed, one can
associate to any family of projectors satisfying (P1) and (P2) a vector bundle E over
the torus Td, called the Bloch bundle, via a procedure reminiscent of the Serre–Swan
construction: the fibre of E over the point k 2 T

d is the m-dimensional vector space
Ran P.k/ (we refer to [22, 23] for details). The geometry of the Bloch bundle for
d D 2 is what enters in the theoretical understanding of the quantum Hall effect:
the integer n that equals the Hall conductivity (1) in natural units is the (first) Chern
number of E , defined as

c1.P/ WD 1

2�i

Z
T2

TrHf .P.k/ Œ@1P.k/; @2P.k/
/ dk1dk2 2 Z: (2)

When d D 2, the above integer characterizes the isomorphism class of E as a vector
bundle over T2 [23]. Since both quantum Hall and quantum spin Hall systems are
2-dimensional, in the following we will mostly restrict ourselves to d D 2, where in
particular the previous characterization holds.

In the case where fP.k/gk2Rd satisfies also (P3), then the Bloch bundle can be
equipped with further structure, namely that of a fiberwise antilinear endomorphismb�WE ! E , lifting the involution �.k/ D �k on the base torus and squaring to the
operator which multiplies fiberwise by �1. We call a vector bundle endowed with
such an endomorphism b� a time-reversal symmetric vector bundle. One can verify
that if d D 2 every such vector bundle is trivial, i.e. isomorphic to the product bundle
T
2 
 C

m, since under (P3) the integrand in the definition (2) of the Chern number
is an odd function of k, and hence integrates to zero on T

2 [22, 23]. However, the
Bloch bundle may still be non-trivial as time-reversal symmetric bundle [8, 10]. The
index that characterizes the isomorphism class of E is the Fu–Kane–Mele index
ı.P/ 2 Z2, first introduced in [11] to describe quantum spin Hall systems. The
expression of the Z2 index is slightly more involved than the one for the Chern
number, and requires the introduction of some further terminology, which will be
however essential in what follows.

Given a family of projectors fP.k/gk2Rd of constant rank m, a Bloch frame for it
is a family of m-tuples of vectors � D f a.k/g1
a
m; k2Rd , which are orthonormal
and span the vector subspace Ran P.k/ � Hf for all k 2 R

d. If P.k/ depends
smoothly on k, then the same can be required of the frame � . We immediately
stress that, when fP.k/gk2Rd satisfies (P1) and (P2), then a Bloch frame is nothing
but a trivializing frame for the associated Bloch bundle, and hence the existence of
a continuous frame is in general guaranteed only locally in k. Let us also point out
that, whenever a Bloch frame � exists (say on an open domain ˝ � R

d), then any

2In order for (P2) and (P3) to be compatible with each other, one should also require that �� � D
��1
� � for all � 2 �. We will assume this in the following.
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other Bloch frame ˚ is obtained by setting

�b.k/ WD
mX

aD1
 a.k/U.k/ab; 1 � b � m; (3)

where U.k/, k 2 ˝ , is a unitary matrix, called the Bloch gauge. We use the
shorthand notation

˚.k/ D �.k/ G U.k/; k 2 ˝; (4)

to write (3) in a more compact form. This defines a free right action of U.m/ on
frames, meaning that .� G U1/ G U2 D � G .U1 U2/ and that � G U1 D � G U2 if
and only if U1 D U2.

When a (local) Bloch frame� D f a.k/g1
a
m; k2Rd is given, then one can define
the Berry connection, i.e. the matrix-valued 1-form given by

A D
0
@ dX
�D1

A�.k/ab dk�

1
A
1
a;b
m

; A�.k/ab WD �i
˝
 a.k/; @� b.k/

˛
: (5)

This is indeed the matrix 1-form of the Grassmann connection on the Bloch bundle
E (i.e. the pullback of the standard connection d via the obvious inclusion E ,!
T

d 
Hf), subordinated to the local trivialization induced by the choice of the Bloch
frame. The abelian or U.1/ Berry connection is then the trace of the connection
matrix, namely

A WD Tr.A/ D
dX

�D1
A�.k/ dk�; A�.k/ WD �i

mX
aD1

˝
 a.k/; @� a.k/

˛
:

The Berry curvature 2-form is the curvature of the Berry connection, namely

F WD dA � i


A ;̂ A

�

which spells out to

F D
X

1
�<�
d

F��.k/ dk� ^ dk�;

F��.k/ WD @�A�.k/ � @�A� � i
�
A� ^ A� � A� ^ A�
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(the wedge product between matrix-valued 1-forms entails also the row-by-column
product). Similarly, the abelian or U.1/ Berry curvature is the trace

F WD Tr.F/ D dA : (6)

In terms of the Bloch frame � , the curvature F reads

F D
X

1
�<�
d

F��.k/ dk� ^ dk�; F��.k/ WD 2Im

 
mX

aD1

˝
@� a.k/; @2 a.k/

˛!
:

However, even if the Bloch frame is just a local object, the Berry curvature is a
global one, as it can be expressed directly in terms of the family of projectors: a
lengthy but straight-forward computation indeed shows that

F��.k/ D �i TrHf

�
P.k/



@�P.k/; @�P.k/

� 	
: (7)

When d D 2, the above identity allows us to rewrite the Chern number as the
integral of the (abelian) Berry curvature, namely

c1.P/ D 1

2�

Z
T2

F 2 Z (8)

[compare (2)]. Moreover, coming back to the Fu–Kane–Mele index of a time-
reversal symmetric family of projectors, we can formulate ı.P/ 2 Z2 through the
notions we have just introduced as

ı.P/ WD 1

2�

Z
T
2
C

F � 1

2�

Z
@T2

C

A mod 2 (9)

where T
2C denotes the set of points in T

2 with non-negative k1 coordinate [7, 11].
Remember that the Berry connection depends on the choice of a Bloch frame: for
the above formula to be well-posed one must require that the Bloch frame be time-
reversal symmetric, in a sense to be specified in the next Subsection. This point will
be discussed further in Sect. 4.

Remark 1 (Gauge Dependence of Berry Connection and Curvature) For future
reference, let us notice how the Berry connection and curvature matrices, as well
as their abelian versions, change under a change of Bloch gauge. If ˚ and � are
related by the gauge transformation U as in (4), their connection matrices A˚ and
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A˚ are linked by the equation3

A˚ D U�1 A� U � iU�1 dU:

Taking the trace of both sides of the above equation we obtain the corresponding
relation for the abelian Berry connections, namely

A ˚.k/ D A � .k/ � i Tr
�
U�1 dU

	
: (10)

One can similarly compute that the Berry curvature is a gauge-covariant object,
namely

F˚ D U�1 F� U;

and consequently the abelian Berry curvature F is gauge-invariant (namely F˚ D
F� ), as could be deduced already from its expression (7) given directly in terms of
the projectors P.k/.

2.3 Obstruction Theory

Even though (2) and (9) express the Chern number and the Fu–Kane–Mele Z2

index by means of geometric objects related to the family of projectors (its Berry
connection and Berry curvature, specifically), the fact that they indeed compute
integers or integers mod 2 is a highly non-trivial statement. In the next Sections,
we will deduce this fact by means of obstruction theory, a framework which allows

3An easy way to realize this is the following. The connection matrices A�� .k/ and A˚� .k/ satisfy

�.k/ G A�� .k/ D �i@��.k/; ˚.k/ G A˚� .k/ D �i@�˚.k/:

As by definition we have ˚.k/ D �.k/ G U.k/, we obtain

�.k/ G .U.k/A˚� .k// D .�.k/ G U.k// G A˚� .k/ D ˚.k/ G A˚� .k/ D �i@�˚.k/

D �i@� .�.k/ G U.k// D ��i@��.k/
	 G U.k/C �.k/ G ��i@�U.k/

	

D
�
�.k/ G A�� .k/

�
G U.k/C �.k/ G ��i@�U.k/

	

D �.k/ G
�

A�� .k/U.k/ � i@�U.k/
�

by which we deduce that

U.k/A˚� .k/ D A�� .k/U.k/ � i@�U.k/:
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to identify both indices as topological obstructions. This method has the advantage
of manifesting both the quantization and the topological invariance of both indices,
and requires only simple tools from linear algebra and basic topology.

Obstruction theory concerns the existence of a Bloch frame for a family of rank-
m projectors fP.k/gk2R2 satisfying (P1), (P2) and, possibly, (P3), which obeys the
same symmetries of the projectors themselves. More specifically, we say that a
Bloch frame ˚ for fP.k/gk2R2 is

(F1) continuous if the map k 7! ˚.k/ is a continuous map from R
2 to H m

f ;
(F2) �-equivariant if4

˚.k C �/ D �� ˚.k/ for all k 2 R
2; � 2 �I

(F3) time-reversal symmetric if5

˚.�k/ D �˚.k/ G "

for a skew-symmetric unitary matrix ". Without loss of generality [16], it can be
assumed that

" D
�
0 1

�1 0
�

˚ m=2 times� � � ˚
�
0 1

�1 0
�
: (11)

The above properties in general compete against each other, as was early realized
[11, 20] and as becomes apparent upon observing that a continuous, �-equivariant
(and time-reversal symmetric) Bloch frame would provide a global trivialization of
the Bloch bundle as a (time-reversal symmetric) vector bundle.

The general strategy of obstruction theory consists in considering a continuous,
globally defined Bloch frame � , and trying to modify it in order to obtain a
new Bloch frame ˚ which satisfies also the properties of being �-equivariant
and, possibly, time-reversal symmetric. The input frame � can be constructed by
covering R

d with open balls Br.kj/, r > 0, kj 2 R
d, in which

��P.k/� P.kj/
�� < 1,

k 2 Br.kj/, and using the Kato–Nagy unitary U.kI kj/, which intertwines P.k/ and
P.kj/, to extend the choice of an orthonormal basis in the vector space Ran P.kj/ to
a continuous choice of an orthonormal basis �.k/ in Ran P.k/ (that is, by definition,
to a continuous Bloch frame on Br.kj/) [19]. An alternative construction makes use
of the parallel transport associated to the family of projectors P.k/, see e.g. [7]. The
modification of� into˚ is performed by successive extensions, first at certain high-
symmetry points, then along the edges that connect them, and finally on the whole

4The action of any (anti)unitary operator on Hf is lifted to H m
f componentwise.

5The presence of the reshuffling matrix " is needed to make the time-reversal symmetry condition
self-consistent. This follows essentially from the fact that the antiunitary operator � defines by
restriction a symplectic structure on the invariant subspace Ran P.k]/ � Hf if k] � �k] mod �.
Notice that in particular the rank m of P.k/ must be even under (P3).
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R
2. We will see that this latter step, from 1-dimensional lines to 2-dimensional faces,

is in general topologically obstructed, and that this obstruction is encoded in the
vanishing of the Chern number if one requires the Bloch frame ˚ to satisfy (F1)
and (F2) (see Sect. 3), or in the vanishing of the Fu–Kane–Mele index if one also
requires (F3) to hold (see Sect. 4).

Remark 2 (Analytic Bloch Frames) The obstruction to the existence of symmetric
Bloch frames, being topological in nature, fits well inside the continuous category.
However, one may wonder whether an analytic family of projectors as in (P1) admits
a Bloch frame depending analytically on k as well. This question is crucial in
the study of conduction/insulation properties in crystals via maximally localized
Wannier functions (see e.g. [4, 21]). There are by now several techniques that are
able to construct analytic frames out of continuous ones preserving moreover all the
symmetries, for example by convolution with suitable kernels [6, 7]. These are all
incarnations of the more general Oka’s principle, which states that in fair generality
the obstruction to the triviality of a vector bundle in the continuous category can be
lifted to the analytic one [23].

3 The Chern Number as a Topological Obstruction

In this section we illustrate how the Chern number in (2) encodes the topological
obstruction to the existence of a continuous and �-equivariant Bloch frame for a
family of projectors fP.k/gk2R2 satisfying (P1) and (P2).

3.1 Reduction to the Unit Cell

The �-covariance of the family of projectors allows one to focus on points k lying
in the fundamental unit cell for the lattice � D Span

Z
fe1; e2g, namely

B WD ˚
k D k1e1 C k2e2 2 R

2 W jkjj � 1=2; 1 � j � 2
�
:

Indeed, if one can find a continuous Bloch frame ˚ on B such that ˚.k C �/ D
��˚.k/ whenever k 2 B and � 2 � are such that k C � 2 B (a condition to be
imposed on the boundary of the fundamental unit cell), then one can enforce �-
equivariance to extend the definition of ˚ to the whole R

2 in a continuous way.
Conversely, the restriction ˚ to B of a continuous, �-equivariant Bloch frame
defined on the whole R2 satisfies exactly the condition stated above.

As sketched in Sect. 2.3, the approach of obstruction theory starts from a Bloch
frame � defined on the unit cell. One then modifies its definition on the boundary
of B in order to enforce �-equivariance there, and then investigates whether it is
possible to extend this modification continuously also on the interior of the unit
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cell. In particular, this construction on the boundary requires to take care of what
happens at the four vertices of B, namely the four points

v1 D
�

�1
2
;�1
2

�
; v2 D

�
1

2
;�1
2

�
; v3 D

�
1

2
;
1

2

�
; v4 D

�
�1
2
;
1

2

�
:

If this procedure is successful, then the “output” frame ˚.k/, k 2 B, will satisfy
�-equivariance on the boundary, and it will then be continuously extendable to the
whole R2 by �-equivariant continuation, as explained above.

Notice that both the input frame �.k/ and the output frame ˚.k/ give orthonor-
mal bases for the vector space Ran P.k/, hence they differ by the action of a unitary
transformation (a Bloch gauge) U.k/ 2 U.m/, as in (3). It is sometimes convenient
to consider the continuous map UWB ! U.m/ as the unknown of the problem, rather
than the Bloch frame ˚ .

We will see that the only step of the construction of ˚ which may be topologi-
cally obstructed is the “face” extension (from the boundary to the interior of B), and
that a quantitative measure of the presence of this topological obstruction is given
by the Chern number of the family of projectors.

3.2 Bloch Frame on the Boundary

As a first step, we construct a continuous Bloch frame on the boundary of the
fundamental unit cell which satisfies the �-equivariance condition. The construction
can be performed as follows. Given the reference frame �.v1/, one can consider
its �-translates �e1�.v1/ and �e2�.v1/, which constitute orthonormal bases in
the subspaces Ran P.v2/ and Ran P.v4/, respectively. Let Uobs.v2/ (respectively
Uobs.v4/) be the unitary matrix which maps the input frame �.v2/ (respectively
�.v4/) to �e1�.v1/ (respectively �e2�.v1/):

�e1�.v1/ D �.v2/ G Uobs.v2/; �e2�.v1/ D �.v4/ G Uobs.v4/:

If � were already �-equivariant then these obstruction unitaries would equal the
identity matrix. Write Uobs.v]/ D eiT.v]/, with T.v]/ D T.v]/� self-adjoint, for
v] 2 fv2; v4g. Define moreover

b̊.k/ WD

8̂̂
ˆ̂<
ˆ̂̂̂:

�.k1;� 1
2
/ G ei.2k1C1/T.v2/=2 if k D .k1;� 1

2
/; k1 2 Œ� 1

2
; 1
2

;

�e1�.� 1
2
; k2/ G ei.2k2C1/T.v4/=2 if k D . 1

2
; k2/; k2 2 Œ� 1

2
; 1
2

;

�e2�.k1;� 1
2
/ G ei.2k1C1/T.v2/=2 if k D .k1;

1
2
/; k1 2 Œ� 1

2
; 1
2

;

�.� 1
2
; k2/ G ei.2k2C1/T.v4/=2 if k D .� 1

2
; k2/; k2 2 Œ� 1

2
; 1
2

:

(12)
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The frame b̊ is defined on the boundary @B of the fundamental unit cell, where it
is also �-equivariant. Moreover, it is continuous, as on the vertex v3 the definitions
coincide. Indeed we have

�e1�.v4/ G Uobs.v4/ D �e1�e2�.v1/ D �e2�e1�.v1/ D �e2�.v2/ G Uobs.v2/:

3.3 Extension to the Face: A Topological Obstruction

In order to see whether it is possible to extend the frame b̊ to a continuous �-
equivariant Bloch frame ˚ defined on the whole unit cell B, we first introduce the
unitary map bU.k/ which maps the input frame �.k/ to the frame b̊.k/, i.e. such
that

b̊.k/ D �.k/ G bU.k/; k 2 @B (13)

[compare (3)]. This defines a continuous map bUW @B ! U.m/. If we can find a
continuous extension UWB ! U.m/ of bU to the unit cell, then (3) can be used to
define an extension of the frame ˚ which preserves continuity and �-equivariance:
it turns out that also the converse is true (compare Proposition 1 below).

It is a well-known fact in topology [9, Theorem 17.3.1] that a continuous mapbUW @B ! U.m/ extends continuously to the inside of the unit cell if and only if
the map is homotopically trivial, i.e. it can be continuously deformed to a constant
map. This condition can be checked by verifying that the integral

c WD deg.ŒbU
/ D i

2�

I
@B

dk Tr
�bU.k/�1@kbU.k/

�
(14)

vanishes: this is because two maps @B ! U.m/ are homotopic if and only if
their degrees, defined like in (14), coincide. Notice that the integral above gives an
integer, and provides an isomorphism of the fundamental group �1.U.m// (whose
elements are homotopy classes of maps @B ! U.m/) with the group of integers Z
by assigning bU 7! deg.ŒbU
/ [17, Chap. 8, Sect. 12].

Remark 3 (Unwinding the Determinant is Forbidden) Since we have to extend
the frame b̊ rather than the unitary bU, one may argue that it may be possible to
find another unitary-matrix-valued map that “unwinds” the determinant of bU, while
preserving the relevant symmetries of the Bloch frame. This possibility is ruled out
by the following result.

Proposition 1 Let ˚ be a continuous Bloch frame on @B which is �-equivariant,
and assume that XW @B ! U.m/ is a continuous map such that ˚ G X is also �-
equivariant. Then

deg.ŒX
/ D 0:
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v1 v2

v3v4

e1

e2

E1

E2

E3

E4

Fig. 1 The fundamental unit cell B, its vertices and its edges

Proof We spell out what it means for ˚ and ˚ G X to be both �-equivariant:

˚.k C �/ G X.k C �/ D �� .˚.k/ G X.k// D ��˚.k/ G X.k/ D ˚.k C �/ G X.k/:

This implies that X.k C �/ D X.k/, whenever k 2 @B and � 2 � are such
that k C � 2 @B. As a consequence, the same is true for the expression x.k/ WD
Tr
�
X.k/�1 @kX.k/

	
appearing in the integral defining deg.ŒX
/ [compare (14)].

Denote by Ei the edge of @B connecting vi with v.iC1/ mod 4 (compare Fig. 1). Then
the property x.k C �/ D x.k/ implies that

Z
E3

dk x.k/ D
Z

�.E1Ce1/
dk x.k/ D �

Z
E1

dk x.k/; that is
Z

E1CE3

dk x.k/ D 0:

Similarly

Z
E2CE4

dk x.k/ D 0:

We conclude that

deg.ŒX
/ D i

2�

Z
E1CE2CE3CE4

dk x.k/ D 0

as wanted.
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3.4 The Obstruction is the Chern Number

We now want to rewrite the integer c in (14) and characterize it as a topological
invariant of the family of projectors fP.k/gk2R2 [showing in particular that it does
not depend on the input Bloch frame � and on the specific interpolation performed
on the obstruction matrices in (12)]. To this end, we will make use of the (abelian)
Berry connection and curvature, introduced in Sect. 2.2.

If we calculate bA on @B as in (5) using the vectors of the frame b̊ and
analogously compute A using � , then

bA D A � i Tr
�bU�1dbU� on @B; (15)

in view of (13) and (10). Integrating both sides of Eq. (15) on @B, we obtain that

1

2�

I
@B

bA D 1

2�

I
@B

A � i

2�

I
@B

dk Tr
�bU.k/�1@kbU.k/

�

D
�
1

2�

Z
B

F

�
� c

(16)

by (6) and Stokes theorem.
We will now show that the left-hand side of the above equality vanishes. In order

to do so, we exploit the �-equivariance of the Bloch frame b̊, that is, b̊.k C �/ D
�� b̊.k/. Indeed, in terms of the Berry connection matrix A D A.k/ dk we have that

b̊.k C �/ G bA.k C �/ D �i@k b̊.k C �/ D ��

�
�i@k b̊.k/

�

D ��

�b̊.k C �/ G bA.k/� D �� b̊.k C �/ G bA.k/
D b̊.k C �/ G bA.k/

(17)

so that bA.k C�/ D bA.k/ and, taking the trace, bA .k C�/ D bA .k/. Arguing similarly
to the proof of Proposition 1, one can show that the latter relation implies

Z
E1CE3

bA D 0;

Z
E2CE4

bA D 0;

yielding the vanishing of the left-hand side of (16).
Hence we conclude that

�
1

2�

Z
B

F

�
� c D 1

2�

I
@B

bA D 0
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which in view of (8) yields

c D 1

2�

Z
B

F D c1.P/ (18)

as wanted.

4 The Fu–Kane–Mele Invariant as a Topological Obstruction

In this Section, we switch to the time-reversal symmetric setting. As was already
mentioned, in this case the presence of a further symmetry kills the topological
obstruction given by the Chern number (2) [22, 23]. However, the same symmetry
allows to refine the notion of “symmetric Bloch frame” by requiring that it be also
time-reversal symmetric (compare Sect. 2.3). This gives rise to a new topological
obstruction encoded in the Fu–Kane–Mele Z2 invariant [10, 11], as we will now
show.

Throughout this section, fP.k/gk2R2 denotes a family of orthogonal projectors
satisfying (P1), (P2) and (P3).

4.1 Reduction to the Effective Unit Cell

In order to investigate the existence of a global Bloch frame for P.k/ which is
continuous, �-equivariant, and time-reversal symmetric, it is sufficient to focus one’s
attention to momenta in the effective unit cell for the lattice � D Span

Z
fe1; e2g,

defined as

Beff WD ˚
k D k1e1 C k2e2 2 R

2 W 0 � k1 � 1=2; �1=2 � k2 � 1=2
�
:

Indeed, all points of R2 can be mapped to Beff (in an a.e. unique way) by means
of a combination of a translation k 7! k C �, � 2 �, and possibly an inversion
k 7! �k. This means that if a Bloch frame is defined on Beff and satisfies the
relevant symmetries there, then it is possible to extend its definition first to the
unit cell B by enforcing time-reversal symmetry, and secondly to the whole R

2

imposing �-equivariance. This dictates that the required frame ˚ on Beff satisfies
certain compatibility conditions on the boundary of the effective unit cell, namely
that ˚.k C �/ D ��˚.k/ and ˚.�k/ D �˚.k/ G ", whenever k 2 @Beff and � 2 �
are such that ˙k C � 2 @Beff.

We will again resort to the technique of obstruction theory. Consequently, we
will choose a continuous Bloch frame � on Beff, and try to modify it into a frame
˚ satisfying the symmetries mentioned above. The two frames �.k/ and ˚.k/ will
be related by a unitary transformation, which we denote by U.k/ as in (3). As in
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k0 ke1

ke2

k−e2 ke1−e2

ke1+e2

e1

e2

E1

E2

E3

E4

E5

E6

Fig. 2 The effective unit cell Beff and the time-reversal invariant momenta

Sect. 3.1, a special role is played by the high-symmetry points k�, defined by the
relation k� C � D �k� with � 2 � (that is, k� D �=2). Six such points lie on the
boundary of Beff, and are usually referred to as the time-reversal invariant momenta
(compare Fig. 2).

4.2 Bloch Frame on the Boundary

As a first step, we provide here the construction of a symmetric Bloch frame defined
on the boundary of the effective unit cell Beff, following the obstruction-theoretic
approach employed in the previous Section for the non-time-reversal-symmetric
case.

Let k� be any of the time-reversal invariant momenta. Given the input frame
�.k�/, the transformed frames ��.k�/ G " and ���.k�/�.k�/ both give bases of
the same vector space Ran P.�k�/ D Ran P.k� C �/. As such, they must differ by
the action of an obstruction unitary matrix:

��.k�/ G " D ���.k�/ G Uobs.k�/: (19)

These unitary matrices satisfy a further self-compatibility condition, namely

Uobs.k�/
T " D "Uobs.k�/; (20)
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as can be deduced from the following considerations. Applying the operator ��� D
���1

� to both sides of the identity (19), and using the defining properties of the
time-reversal operator�, we obtain

���.k�/ G .�"/ D ��.k�/ G Uobs.k�/:

Using the relation (19) again we can rewrite the above equality as

��.k�/ G ��"Uobs.k�/
�1 "

	 D ��.k�/ G Uobs.k�/

from which we deduce that �"Uobs.k�/�1 " D Uobs.k�/. Taking complex conjugates
and using the fact that �" D "�1 (by unitarity and skew-symmetry) yields
exactly (20).

Write now Uobs.v]/ D eiT.v]/ for v] 2 fv1; : : : ; v4g, with T.v]/ D T.v]/� self-
adjoint and satisfying �.T.v]// � .��; �
. This normalization on the arguments of
the eigenvalues of Uobs.v]/ gives that T.v]/ inherits the property (20) in the form

T.v]/
T " D " T.v]/ (21)

(see [16, Sect. 6, Lemma]).
Set now

b̊.k/ WD

8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

�.k/ G V.k/ if k 2 S;

��1
e1 ��.

1
2
;�k2/ G

�
V. 1

2
;�k2/ "

�
if k D . 1

2
; k2/; k2 2 Œ0; 1

2

;

�e2�.k1;� 1
2
/ G V.k1;� 1

2
/ if k D .k1;

1
2
/; k1 2 Œ0; 1

2

;

��.0;�k2/ G
�

V.0;�k2/ "
�

if k D .0; k2/; k2 2 Œ0; 1
2

;

(22)

where

S WD ˚
k D .0; k2/ W k2 2 
� 1

2
; 0
�� [ ˚

k D �
k1;� 1

2

	 W k1 2 
0; 1
2

��
[ ˚

k D �
1
2
; k2
	 W k2 2 
� 1

2
; 0
��

and for k 2 S

V.k/ WD

8̂
<̂
ˆ̂:

eiŒ.1C2k2/T.v1/�2k2T.v2/
=2 if k D .0; k2/; k2 2 Œ� 1
2
; 0
;

eiŒ.1�2k1/T.v2/C2k1T.v3/
=2 if k D .k1;� 1
2
/; k1 2 Œ� 1

2
; 0
;

eiŒ.1C2k2/T.v3/�2k2T.v4/
=2 if k D . 1
2
; k2/; k2 2 Œ� 1

2
; 0
:

(23)

Equation (22) above defines a Bloch frame b̊ on @Beff which is by construction
�-equivariant and time-reversal symmetric. Notice also that (23) yields

Uobs.k�/ D V.k�/
2 D V.k�/"

�1V.k�/T"
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at the time-reversal invariant momenta. Repeated use of the defining property (19)
for Uobs.k�/ and of its generator T.k�/, together with (20) and (21), shows thatb̊ also joins continuously at the time-reversal invariant momenta. For example, at
k� D ke1 D .1=2; 0/ we have

��1
e1 ��.ke1/ G

�
V.ke1 / "

�
D ��1

e1 ��.ke1/ G �"V.ke1/
�	

D ��1
e1
.��.ke1 / G "/ G V.ke1 /

�

D ��1
e1 .�e1�.ke1 / G Uobs.ke1 // G V.ke1 /

�1

D �.ke1/ G �V.ke1 /
2V.ke1 /

�1	 D �.ke1 / G V.ke1 /:

4.3 Extension to the Face: A Topological Obstruction

Let bU denote the unitary transformation mapping the input frame � to the Bloch
frame b̊ we just constructed, as in (13). We have already argued in the previous
Section that the obstruction to the continuous extension of the map bUW @Beff ! U.m/
to the interior of the effective unit cell is measured precisely by the vanishing of the
integer deg.ŒbU
/ 2 Z given by

deg.ŒbU
/ D i

2�

I
@Beff

dk Tr
�bU.k/�1@kbU.k/

�
(24)

[compare (14)]. However, in this new setting it is no longer the case that the
extension problem for the unitary bU is equivalent to the one for the frame b̊, as
opposed to the situation in Remark 3. Indeed, we have the following result.

Proposition 2 Let˚ be a continuous Bloch frame on @Beff which is symmetric, and
assume that XW @Beff ! U.m/ is a continuous map such that˚GX is also symmetric.
Then

deg.ŒX
/ 2 2Z:

Proof One easily computes that asking that ˚ G X be again �-equivariant and time-
reversal symmetric is equivalent to the conditions

X.k C �/ D X.k/ and X.�k C �/T "X.k/ D " (25)

whenever k 2 @Beff and � 2 � are such that ˙k C � 2 @Beff. In view of the above
conditions, the integral computing the degree of X, as in (24), simplifies to

deg.ŒX
/ D 2

�
i

2�

Z
E1

dk Tr
�
X.k/�1@kX.k/

	C i

2�

Z
E3

dk Tr
�
X.k/�1@kX.k/

	�

(26)
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where the Ei’s are the portions of @Beff connecting two consecutive time-reversal
invariant momenta (compare Fig. 2).

Notice now that for a unitary-matrix-valued map

Tr
�
X.k/�1@kX.k/

	 D .k/�1@k.k/; with .k/ D det X.k/ 2 U.1/

(see e.g. [7, Lemma 2.12]). On E1 and E3, the maps k 7! .k/ are actually
periodic, since the second condition in (25) implies that at the time-reversal invariant
momenta k� the matrix X.k�/ must be symplectic and thus of unit determinant. The
term in curly brackets on the right-hand side of (26) then computes the sum of the
winding numbers of the maps 

ˇ̌
E1

and 
ˇ̌
E3

, and is thus an integer. This concludes
the proof of the Proposition.

The above result shows that if deg.ŒbU
/ D 2r 2 2Z is even, it is still possible
to “unwind” the map bU with the help of an auxiliary map X, without breaking
the symmetries (�-equivariance, time-reversal) enjoyed by the frame b̊ as in (22).
Indeed, it is easily verified that the map XW @Beff ! U.m/ defined (in the basis where
" is of the form (11)) by

X.k/ D
(

e�2� ir.k2C1=2/12 ˚ 1m�2 if k D . 1
2
; k2/ 2 E3 [ E4; k2 2 Œ� 1

2
; 1
2

;

1m elsewhere in @Beff;

satisfies (25) and deg.ŒX
/ D �2r. It follows that the frame � G .bUX/ is still
continuous, �-equivariant and time-reversal symmetric, and extends to a continuous
Bloch frame ˚ in the interior of Beff since deg.ŒbUX
/ D 0.

We conclude that the topological obstruction to the existence of a continuous and
symmetric Bloch frame is measured by the quantity

d WD deg.ŒbU
/ mod 2: (27)

It can be shown [10] that d 2 Z2 defines a true topological invariant for the family of
projectors P.k/ enjoying (P1), (P2) and (P3), that is, it does not depend on the choice
of the input frame � and on the explicit form of the interpolation V as in (23),
and moreover it stays constant under continuous deformations (homotopies) of the
family of projectors which preserve its symmetry properties.

4.4 The Obstruction is the Fu–Kane–Mele Index

Arguing along the same lines of Sect. 3.4, it is possible to write the topological
invariant d in terms of the Berry connection and the Berry curvature associated to
the family of projectors P.k/, which in turn connects d with the Fu–Kane–Mele Z2
index for time-reversal symmetric topological insulators [11]. Indeed, the analogue
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of (16) reads now

ı D 1

2�

Z
Beff

F � 1

2�

I
@Beff

bA mod 2 D ı.P/; (28)

compare (9). Let us stress that the Berry connection bA appearing in the above
formula must be computed with respect to a frame b̊ which is �-equivariant
and time-reversal symmetric on the boundary of the effective unit cell Beff. This
guarantees, for example, that the expression on the right-hand side is gauge-
independent, as we have seen how a change of unitary gauge which preserves the
symmetries must have even degree (Proposition 2).

Notice that, contrary to the case of the Chern number treated in Sect. 3.4, the
“boundary term” in (28) need not vanish. Indeed, the symmetries

bA .k C �/ D bA .k/ D bA .�k/ (29)

of the coefficient of the Berry connection 1-form, which are inherited from the �-
equivariance and the time-reversal symmetry of the underlying frame b̊, only imply
that its integral on @Beff can be simplified to

I
@Beff

bA D 2

Z
E1CE3

bA D 2

 Z 1=2

0

dk2
h bA .1=2; k2/� bA .0; k2/

i!
:

The first equality in (29) can be argued exactly as in (17), while for the second
one we proceed as follows. From the time-reversal symmetry property b̊.�k/ D
� b̊.k/ G " it follows that

�
�
@k b̊.k/

�
G " D �

�
@k b̊

�
.�k/:

Using the relation above together with the defining property b̊.k/ G bA.k/ D
�i@k b̊.k/ for the connection matrix bA.k/ we then obtain

� b̊.k/ G
�
"bA.�k/

�
D b̊.�k/ G bA.�k/ D �i

�
@k b̊

�
.�k/

D i�
�
@k b̊.k/

�
G " D �

�
�i@k b̊.k/

�
G "

D �
�b̊.k/ G bA.k/� G " D � b̊.k/ G

�bA.k/"� :

We conclude that bA.�k/ D "�1bA.k/", and by taking the trace that bA .�k/ D
bA .k/ D bA .k/, because bA .k/ takes values in the Lie algebra u.1/ D R.
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Norm Approximation for Many-Body Quantum
Dynamics and Bogoliubov Theory

Phan Thành Nam and Marcin Napiórkowski

Abstract We review some recent results on the norm approximation to the
Schrödinger dynamics. We consider N bosons in R

3 with an interaction potential
of the form N3ˇ�1w.Nˇ.x � y// with 0 � ˇ < 1=2, and show that in the large
N limit, the fluctuations around the condensate can be effectively described using
Bogoliubov approximation.

Keywords Bogoliubov approximation • Bose-Einstein condensation • Many
body quantum dynamics

1 Introduction

In 1924–1925, Bose [10] and Einstein [14] predicted that at a very low temperature,
many bosons condense into a common quantum state. It took 70 years until this
phenomenon was first observed by Cornell, Wieman and Ketterle [3, 12]. Since then,
many interesting questions remain unsolved from the theoretical point of view. In
fact, Bose and Einstein only considered the ideal gas. The study of interacting Bose
gas was initiated in 1947 by Bogoliubov [9]. Roughly speaking, Bogoliubov theory
is based on the reduction to quasi-free particles, which can be seen as the bosonic
analogue to the Bardeen–Cooper–Schrieffer theory [5] for superconductivity.

In the last decades, there have been many attempts to justify Bogoliubov theory
from the first principles of quantum mechanics, namely from Schrödinger equation.
In the context of the ground state problem, this has been done successfully for
one and two-component Bose gases [33, 34, 47], for the Lee-Huang-Yang formula
of homogeneous, dilute gases [19, 27, 49] and for the excitation spectrum in the
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mean-field regime [13, 22, 31, 41, 46]. In the context of the dynamical problem,
Bogoliubov theory has been used widely to study the quantum dynamics of coherent
states in Fock space [8, 20, 21, 23–26, 28, 29, 45]. Very recently, Lewin, Schlein and
one of us [30] were able to justify Bogoliubov theory as a norm approximation for
the N-particle quantum dynamics in the mean-field regime. In [39, 40], we revisited
the approach in [30] and extended it to the case of a dilute gas. In the following, we
will review our results in [39, 40] and explain the ideas of the proof.

We consider a system of N bosons in R
3, described by a wave function �N.t/

in the Hilbert space HN D NN
sym L2.R3/. The system is governed by Schrödinger

equation �N.t/ D e�itHN�N.0/ with a typical N-body Hamiltonian

HN D
NX

jD1
��xj C 1

N � 1
X

1
 j<k
N

wN.xj � xk/:

We are interested in the delta-type interaction

wN.x � y/ D N3ˇw.Nˇ.x � y//

where w � 0 is a fixed function which is smooth, radially symmetric, decreasing
and with compact support. We put the coupling constant 1=.N �1/ in order to make
the kinetic energy and interaction energy comparable in the large N limit.

The parameter ˇ � 0 describes the character of the interaction between the
particles. In the mean-field regime ˇ < 1=3, there are many but weak collisions
and it is naturally to treat the particles as if they were independent but subjected to
a common self-consistent mean-field potential. In the dilute regime ˇ > 1=3, there
are few but strong collisions and the particles are more correlated. The latter regime
is more relevant physically, but also more difficult mathematically.

Our motivation is that �N.0/ is the ground state of a trapped system and the
time evolution �N.t/ is observed when the trapping potential is turned off. From the
rigorous result on the ground state in [31], we will assume that

�N.0/ D
NX

nD0
u.0/˝.N�n/ ˝s 'n.0/ D

NX
nD0

.a�.u.0///N�np
.N � n/Š

'n.0/ (1)

where u.0/ is a normalized function in L2.R3/ which describes the condensate and
˚.0/ D .'n.0//

1
nD0 is a state in the Fock space of the excited particles. Here we use

the usual notations of the annihilation and creation operators

a�. f / D
Z
R3

f .x/a�
x dx; a. f / D

Z
R3

f .x/ax dx; 8f 2 H;

where the operator valued distributions ax and a�
x satisfy Œa�

x ; a
�
y 
 D Œax; ay
 D 0,

Œax; a�
y 
 D ı.x � y/.
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When ˇ D 0, it was shown in [30] that if (1) holds then

lim
N!1

������N.t/ �
NX

nD0
u.t/˝.N�n/ ˝s 'n.t/

����� D 0 (2)

(see also the recent work [38] for another approach). Here u.t/ is the evolution of
the condensate, governed by the (N-dependent) Hartree equation

i@tu.t/ D � ��C wN � ju.t/j2 � �N.t/
	
u.t/; u.t D 0/ D u.0/: (3)

The phase parameter �N.t/ plays the role of the chemical potential and it can be
chosen as

�N.t/ D 1

2

“
R3�R3

ju.t; x/j2wN.x � y/ju.t; y/j2 dx dy:

The vector ˚.t/ D .'n.t//1nD0 in (2) is a state in the excited Fock space

FC.t/ D
1M

nD0
HC.t/n; HC.t/n D

nO
sym

fu.t/g?

and it is determined by Bogoliubov equation

i@t˚.t/ D H.t/˚.t/; ˚.t D 0/ D ˚.0/: (4)

Here H.t/ is a quadratic Hamiltonian in Fock space:

H.t/ D d�.h.t//C 1

2

“
R3�R3

�
K2.t; x; y/a

�
x a�

y C K2.t; x; y/axay

�
dx dy;

which is obtained from Bogoliubov approximation (which we will explain in
Sect. 2). We use the notations d�.A/ D R

a�
x Axax dx (for example, d�.1/ D N

is the number operator) and

h.t/ D ��C ju.t; �/j2 � wN � �N.t/C Q.t/eK1.t/Q.t/;

K2.t/ D Q.t/˝ Q.t/eK2.t/; Q.t/ D 1 � ju.t/ihu.t/j;

whereeK2.t; x; y/ D u.t; x/wN.x�y/u.t; y/ is a function inH2 andeK1.t/ is an operator
on H with kerneleK1.t; x; y/ D u.t; x/wN.x � y/u.t; y/.

In order to extend (2) to the case ˇ > 0, we have to restrict the initial state
˚.0/ in (1) to quasi-free states (namely the states satisfying Wick theorem) with
finite kinetic energy. This reduction is again admissible by the rigorous properties
of ground states in [31] (in fact, ˚.0/ is the ground state of a quadratic Hamiltonian



226 P.T. Nam and M. Napiórkowski

on Fock space, and hence it is a quasi-free state with finite kinetic energy). Our main
result in [40] is

Theorem 1 (Validity of Bogoliubov Theory as a Norm Approximation) Let
�N.t/ D e�itHN�N.0/ with �N.0/ given in (1). We assume

• u.t/ satisfies Hartree equation (3) with the (possibly N-dependent) initial state
u.0; �/ satisfying ku.0; �/kW`;1.R3/ � C for ` sufficiently large;

• ˚.t/ D .'n.t//1nD0 2 FC.t/ satisfies Bogoliubov equation (4) (or equivalently,
Eq. (12) in Sect. 2) with the (possibly N-dependent) initial state ˚.0/ being a
quasi-free state in FC.0/ such that for all " > 0,

˝
˚.0/;N ˚.0/

˛ � C"N
";

˝
˚.0/; d�.1 ��/˚.0/˛ � C"N

ˇC": (5)

Then for all 0 � ˇ < 1=2, all " > 0 and all t > 0 we have

����N.t/ �
NX

nD0
u.t/˝.N�n/ ˝s 'n.t/

���2
HN

� C".1C t/1C"N.2ˇ�1C"/=2: (6)

Convention We always denote by C (or C") a general positive constant independent
of N and t (C" may depend on ").

There are grand canonical analogues of (2) related to the fluctuations around
coherent states in Fock space [20, 21, 23, 25, 26, 28, 29]. In particular, our Theorem 1
is comparable to the Fock-space result of Kuz [29]. Thanks to a heuristic argument
in [29], the range 0 � ˇ < 1=2 is optimal for the norm approximation (2) to hold.

When ˇ > 1=2, to achieve (2) we have to modify the effective equations to take
two-body scattering processes into account. This has been done in the Fock space
setting by Boccato, Cenatiempo and Schlein [8] and Grillakis and Machedon [24]
(see also [4] for a related study). Similar results for N-particle dynamics are still
open and we hope to be able to come back to this problem in the future.

The proof of Theorem 1 in [40] is built up on the previous works [30] and [39].
The main new ingredient is the following kinetic estimate.

Theorem 2 (Kinetic Estimate) Let �N.0/ as in Theorem 1. Then for all 0 < ˇ <
1=2, all " > 0 and all t > 0, we have

˝
�N.t/; d�.Q.t/.1 ��/Q.t//�N.t/

˛ � C".N
ˇC" C N3ˇ�1/: (7)

We can introduce the density matrix �.1/�N .t/
W H ! H with kernel �.1/�N .t/

.x; y/ D
h�N.t/; a�

y ax�N.t/i and rewrite (7) as

Tr
�p

1 ��Q.t/�.1/�N .t/
Q.t/

p
1 ��

�
� C".N

ˇC" C N3ˇ�1/: (8)
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By the Cauchy-Schwarz inequality, (8) implies that for all 0 < ˇ < 2=3,

lim
N!1 Tr

ˇ̌
ˇp1 ��

�
N�1�.1/�N

� ju.t/ihu.t/j
�p

1 ��
ˇ̌
ˇ D 0 (9)

(see Sect. 3 for more details). In case ˇ D 0, the approximation of the form (9) has
been studied in [2, 36–38]. Note that (9) is stronger than the standard definition of
the Bose-Einstein condensation

lim
N!1 Tr

ˇ̌̌
N�1�.1/�N

� ju.t/ihu.t/j
ˇ̌̌

D 0 (10)

which has been studied by many authors; see [1, 6, 15, 16, 48] for some pioneer
works (in these works, the convergence (10) was derived using the BBGKY
hierarchy, a method that is less quantitative than our approach).

Note that when ˇ D 1 (the Gross–Pitaevskii regime), the strong correlations
between particles require a subtle correction: the nonlinear term wN � ju.t/j2 in
Hartree equation (3) is replaced by 8�aju.t/j2 with a the scattering length of w. This
has been justified rigorously in the context of the Bose-Einstein condensation (10);
see [32, 35, 43] for the ground state problem and [7, 17, 18, 44] for the dynamical
problem. The norm approximation is completely open.

In the rest, we discuss Hartree and Bogoliubov equations in Sect. 2, and then go
to the proofs of Theorems 2 and 1 in Sects. 3 and 4, respectively.

2 Effective Equations

We recall the well-posedness of Hartree equation from [23, Proposition 3.3 &
Corollary 3.4].

Lemma 1 (Hartree Equation) If u.0; �/ 2 H2.R3/, then Hartree equation (3) has
a unique global solution u 2 C.Œ0;1/;H2.R3//\ C1..0;1/;L2.R3//. Moreover, if
ku.0; �/kW`;1.R3/ � C with ` sufficiently large, then

ku.t; �/kH2 � C; k@tu.t; �/kL2 � C; ku.t; �/kL1 C k@tu.t; �/kL1 � C.1C t/�3=2:

As in [31, Sect. 2.3], any vector � 2 HN can be written uniquely as

� D
NX

nD0
u.t/˝.N�n/ ˝s 'n D

NX
nD0

.a�.u.t///N�np
.N � n/Š

'n

with 'n 2 HC.t/n. This gives rise to the unitary operator UN.t/ W HN ! 1
NFC.t/

UN.t/� D '0 ˚ '1 ˚ � � � ˚ 'N :
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Here 1
N stands for the projection onto C ˚ H ˚ � � � ˚ HN . Some fundamental
properties of UN.t/ can be found in [31, Proposition 4.2] and [30, Lemma 6].

Next, as in [30], we introduce ˚N.t/ WD UN.t/�N.t/ and rewrite the Schrödinger
equation as

i@t˚N.t/ D eHN.t/˚N.t/; ˚N.0/ D 1
N˚.0/: (11)

Here eHN.t/ D 1
N
h
H.t/C 1

2

P4
jD0.Rj C R�

j /
i
1
N with

R0 D d� .Q.t/ŒwN � ju.t/j2 CeK1.t/ � �N.t/
Q.t//
1 � N

N � 1
;

R1 D �2N
p

N � N

N � 1
a.Q.t/ŒwN � ju.t/j2
u.t//;

R2 D
“

K2.t; x; y/a
�
x a�

y dx dy

 p
.N � N /.N � N � 1/

N � 1
� 1

!
;

R3 D
p

N � N

N � 1

ZZZZ
.1˝ Q.t/wNQ.t/˝ Q.t//.x; yI x0; y0/



 u.t; x/a�
y ax0ay0 dx dy dx0 dy0;

R4 D 1

2.N � 1/

ZZZZ
.Q.t/˝ Q.t/wNQ.t/˝ Q.t//.x; yI x0; y0/



 a�
x a�

y ax0ay0 dx dy dx0 dy0:

(In R0 and R1 we write wN for the function wN.x/, while in R3 and R4 we write wN

for the two-body multiplication operator wN.x � y/.)
The idea of Bogoliubov approximation is that when N ! 1 all error terms Rj’s

are so small that we can ignore them and replace (11) by Bogoliubov equation (4).
Some important properties of this equation are collected in the following

Lemma 2 (Bogoliubov Equation)

(i) If˚.0/ belongs to the quadratic form domain Q.d�.1��//, then Eq. (4) has a
unique global solution in Q.d�.1��//. Moreover, the pair of density matrices
.�˚.t/; ˛˚.t// is the unique solution to

8̂̂
<
ˆ̂:

i@t� D h� � �h C K2˛ � ˛�K�
2 ;

i@t˛ D h˛ C ˛hT C K2 C K2�
T C �K2;

�.t D 0/ D �˚.0/; ˛.t D 0/ D ˛˚.0/:

(12)
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(ii) If we assume further that ˚.0/ is a quasi-free state in FC.0/, then ˚.t/ is a
quasi-free state in FC.t/ for all t > 0 and

h˚.t/;N ˚.t/i � C
�
h˚.0/;N ˚.0/i2 C Œlog.2C t/
2

�
: (13)

Recall that �˚.t/ W H ! H, ˛˚.t/ W H 	 H� ! H are operators with kernels
�˚.t/.x; y/ D h˚.t/; a�

y ax˚.t/i, ˛˚.t/.x; y/ D h˚.t/; axay˚.t/i and K2 W H 	 H� !
H is an operator with kernel K2.t; x; y/. Note that (12) is similar (but not identical)
to the effective equations used in the Fock space setting in [23, 29].

Proof

(i) For existence and uniqueness of ˚.t/, we refer to [30, Theorem 7]. To
derive (12), we use (4) to compute

i@t�˚.t/.x
0; y0/ D i@th˚.t/; a�

y0ax˚.t/i D h˚.t/; Œa�
y0ax;H.t/
˚.t/i

D
“

h.t; x; y/
�
ı.x0 � x/�˚.t/.y; y

0/ � ı.y0 � y/�˚.t/.x
0; x/

�
dx dy

C 1

2

“
k.t; x; y/

�
ı.x0 � x/˛�̊

.t/.y; y
0/C ı.x0 � y/˛�̊

.t/.y
0; x/

�
dx dy

� 1

2

“
k�.t; x; y/

�
ı.y0 � y/˛˚.t/.x; x

0/C ı.y0 � x/˛˚.t/.y; x
0/
�

dx dy

D
�

h.t/�˚.t/ � �˚.t/h.t/C K2.t/˛
�̊
.t/ � ˛˚.t/K

�
2 .t/

�
.x0; y0/

This is the first equation in (12). The second equation is proved similarly.
(ii) Now we show that if ˚.0/ is a quasi-free state, then ˚.t/ is a quasi-free state

for all t > 0. We will write .�; ˛/ D .�˚.t/; ˛˚.t// for short. Let us introduce

X WD � C �2 � ˛˛�; Y WD �˛ � ˛�T:

It is a general fact (see, e.g., [39, Lemma 8]) that˚.t/ is a quasi-free state if and
only if X.t/ D 0 and Y.t/ D 0. In particular, we have X.0/ D 0 and Y.0/ D 0

by the assumption on ˚.0/. Using (12) it is straightforward to see that

i@tX D hX � Xh C kY� � Yk�;

i@tX
2 D .i@tX/X C X.i@tX/D hX2 � X2h C .K2Y

� � YK�
2 /X C X.K2Y

� � YK�
2 /:
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Then we take the trace and use Tr.hX2 � X2h/ D 0 (hX2 and X2h may be not
trace class but we can introduce a cut-off; see [39] for details). We find that

kX.t/k2HS � 4

Z t

0

kK2.s/k � kX.s/kHS � kY.s/kHS ds

We also obtain a similar bound for kY.t/kHS. Then summing these estimates and
using the fact that kK2.t/k is bounded uniformly in time (see [40, Eq. (48)]) ,
we conclude by Grönwall’s inequality that X.t/ D 0, Y.t/ D 0 for all t > 0 .

A similar argument can be used to the uniqueness of solutions to (12).
To obtain (13), we first estimate k˛k2HS C k�k2HS by a Grönwall-type

inequality, and then use the identity k˛k2HS D Tr.� C �2/. We refer to [39]
for details. ut

3 Kinetic Bounds

In this section, we discuss Theorem 2. As mentioned, it is equivalent to (8) and in
case ˇ < 2=3 it implies (9). Let us explain the implication from (8) to (9) in more
details. We will write P.t/ D ju.t/ihu.t/j for short. We can decompose

N�1�.1/�N.t/
� P.t/ D N�1Q.t/�.1/�N .t/

Q.t/ � N�1Tr
�

Q.t/�.1/�N .t/
Q.t/

�
P.t/

C N�1Q.t/�.1/�N .t/
P.t/C N�1P.t/�.1/�N .t/

Q.t/

and use the triangle inequality of the trace norm to estimate

Tr
ˇ̌̌p
1 ��

�
N�1�.1/�N

� ju.t/ihu.t/j
�p

1 ��
ˇ̌̌

� N�1Tr
�p

1 ��Q.t/�.1/�N .t/
Q.t/

p
1 ��

�
C N�1Tr

�
Q.t/�.1/�N .t/

Q.t/
�
ku.t; �/k2H1

C 2N�1Tr
ˇ̌
ˇp1 ��Q.t/�.1/�N .t/

P.t/
p
1 ��

ˇ̌
ˇ: (14)

Using the Cauchy-Schwarz inequality (for Schatten norm)

Tr
ˇ̌
ˇ.1 ��/1=2Q.t/�.1/�N .t/

P.t/.1 ��/1=2
ˇ̌
ˇ

�
���.1 ��/1=2Q.t/

�
�
.1/

�N .t/

�1=2���
HS

�
�����.1/�N .t/

�1=2��� �
���P.t/.1 ��/1=2

���
HS
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we deduce from (8) and (14) that for all " > 0,

Tr
ˇ̌̌p
1 ��

�
N�1�.1/�N

� ju.t/ihu.t/j
�p

1 ��
ˇ̌̌

� C"N
aC" (15)

where a D maxfˇ � 1; .ˇ � 1/=2; 3ˇ� 2; .3ˇ � 2/=2g. If ˇ < 2=3, then (9) holds.
Now we turn to another version of Theorem 2. From the definition ˚N.t/ D

UN.t/�N.t/, we can check that Q.t/�.1/�N
Q.t/ D �

.1/
˚N

(e.g. by using [31, Proposi-
tion 4.2]). Thus Theorem 2 is equivalent to

Theorem 3 (Kinetic Estimate) Let ˚N.t/ be as in (11), with ˚.0/ as in Theo-
rem 1. Then for all " > 0 and all t > 0, we have

˝
˚N.t/; d�.1 ��/˚N.t/

˛ � C".N
ˇC" C N3ˇ�1C"/: (16)

Before proving Theorem 3, let us start with a simpler bound.

Lemma 3 (Bogoliubov Kinetic Bound) Let ˚.t/ be as in Theorem 1. Then

˝
˚.t/; d�.1 ��/˚.t/

˛ � C"N
ˇC"; 8t > 0:

Proof For a general quadratic Hamiltonian, we have

d�.H/C1

2

“ �
K.x; y/a�

x a�
y CK.x; y/axay

�
dx dy � �1

2

“
j.H�1=2

x K.x; y/j2 dx dy:

This bound can be found in our recent joint work with Solovej [42, Lemma 9] (see
also [11, Theorem 5.4] for a similar result). Combining this with the Sobolev-type
estimate (see [40, Lemma 6])

k.1 ��x/
�1=2K2.t; �; �/k2L2 C k.1 ��x/

�1=2@tK2.t; �; �/k2L2 � C".1C t/�3NˇC"

we obtain the quadratic form inequalities (see [40, Lemma 7])

˙
�
H.t/C d�.�/

�
� �d� .1 ��/C C".N C NˇC"/

�.1C t/3
; (17)

˙@tH.t/ � �d�.1 ��/C C".N C NˇC"/
�.1C t/3

; (18)

˙iŒH.t/;N 
 � �d�.1 ��/C C".N C NˇC"/
�.1C t/3

(19)

for all � > 0. On the other hand, from Bogoliubov equation (4), we have

˝
˚.t/;H.t/˚.t/

˛ � ˝
˚.0/;H.0/˚.0/

˛ D
Z t

0

˝
˚.s/; @sH.s/˚.s/

˛
ds: (20)
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Using (17) with � D 1=2 we have
˝
˚.0/;H.0/˚.0/

˛ � C"NˇC" and

˝
˚.t/;H.t/˚.t/

˛ � 1

2

˝
˚.t/; d�.1��/˚.t/

˛ � C"
�˝
˚.t/;N ˚.t/

˛C NˇC"�

Using (18) with � D .1C t/�3=2 we get

˝
˚.t/; @tH.t/˚.t/

˛ � C".1C t/�3=2
�˝
˚.t/; d�.1 ��/˚.t/˛C NˇC"

�
:

Thus (20) implies that

˝
˚.t/; d�.1 ��/˚.t/˛ � C"

Z t

0

.1C s/�3=2
˝
˚.s/; d�.1 ��/˚.s/˛ ds

C C"
�˝
˚.t/;N ˚.t/

˛C NˇC"�: (21)

Similarly, we can estimate @th˚.t/;N ˚.t/i by using Bogoliubov equation (4)
and (19) with � D .1C t/�3=2. Then we integrate the resulting bound and obtain

h˚.t/;N ˚.t/i � C"

Z t

0

.1C s/�3=2
˝
˚.s/; d�.1 ��/˚.s/˛ ds C C"N

ˇC":

Inserting the latter inequality into the right side of (21) we obtain

˝
˚.t/; d�.1 ��/˚.t/˛ � C".1C s/�3=2

Z t

0

˝
˚.s/; d�.1 ��/˚.s/˛ ds C C"N

ˇC":

The desired result then follows from a Gronwall-type inequality. ut
The proof of Theorem 3 is based on a similar argument. We will use the following

estimates on the error terms Rj’s in (11) (see [40, Lemmas 9, 11]).

Lemma 4 (Control of Error Terms) Let Rj’s be as in (11). Then we have the
quadratic form estimates on 1
NFC.t/:

˙.Rj C R�
j / ��

�
R4 C N 2

N

�
C C.1C N /

�.1C t/3
; 8� > 0; 8j D 0; 1; 2; 3;

0 � R4 � CN3ˇ�1N 2; R4 � CNˇ�1d�.��/N ;

˙@t.Rj C R�
j / � �

�
R4 C N 2

N

�
C C.1C N /

�.1C t/3
; 8j D 0; 1; 2; 3; 4;

˙iŒ.Rj C R�
j /;N 
 � �

�
R4 C N 2

N

�
C C.1C N /

�.1C t/3
; 8j D 0; 1; 2; 3; 4:

Now we are ready to provide
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Proof (of Theorem 3) From (11) we have

˝
˚N.t/;eHN.t/˚N.t/

˛ � ˝
˚N.0/;eHN.0/˚N.0/

˛ D
Z t

0

˝
˚N.s/; @seHN.s/˚N.s/

˛
ds:

(22)
Using (17) and Lemma 4, we can estimate

˝
˚N.t/;eHN.t/˚N.t/

˛ � 1

2

˝
˚N.t/; .d�.1 ��/C R4/˚N.t/

˛

� C"
�

NˇC" C ˝
˚N.t/;N ˚N.t/

˛�
;

˝
˚N.0/;eHN.0/˚N.0/

˛ � C".N
ˇC" C N3ˇ�1C"/:

Here in the last inequality, we have used R4 � CN3ˇ�1N 2 (see Lemma 4) and a
well-known moment estimate that holds for every quasi-free state ˚ :

D
˚; .1C N /s˚

E
� Cs

D
˚; .1C N /˚

Es
(23)

where the constant Cs depends only on s 2 N (see e.g. [39, Lemma 5]). Moreover,
from (18) and Lemma 4 we obtain

˝
˚N.t/; @teHN.t/˚N .t/

˛ � C".1C t/�3=2
�˝
˚N.t/; .d�.1 ��/C R4/˚N.t/

˛C NˇC"
�
:

Thus (22) implies that

˝
˚N.t/; .d�.1 ��/C R4/˚N.t/

˛ � C"

Z t

0

˝
˚N.s/; .d�.1��/C R4/˚N.s/

˛
.1C s/3=2

ds

C C"
�

NˇC" C N3ˇ�1C" C ˝
˚N.t/;N ˚N.t/

˛�
: (24)

Next, we estimate @t
˝
˚N.t/;N ˚N.t/

˛
by using (11), (19) and the last inequality in

Lemma 4. Then we integrate the resulting bound to get

h˚.t/;N ˚.t/i � C"

Z t

0

.1C s/�3=2
˝
˚N.s/; .d�.1��/C R4/˚N.s/

˛
ds C C"N

ˇC":

Substituting the latter estimate into (24), we find that

˝
˚N.t/; .d�.1 ��/C R4/˚N.t/

˛

� C"

Z t

0

˝
˚N.s/; .d�.1 ��/C R4/˚N.s/

˛
.1C s/3=2

ds C C".N
ˇC" C N3ˇ�1C"/:
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By a Gronwall-type inequality, we conclude that

˝
˚N.t/; .d�.1 ��/C R4/˚N.t/

˛ � C".N
ˇC" C N3ˇ�1C"/:

Since R4 � 0, the desired kinetic estimate follows. ut

4 Norm Approximation

Proof (of Theorem 1) Step 1. The desired estimate (6) is

k�N.t/ � UN.t/
�1
N˚.t/k2HN � C".1C t/1C"N.2ˇC"�1/=2; 8" > 0:

Since ˚.t/ D UN.t/�N.t/ and UN.t/ W HN ! 1
NFC.t/ is a unitary operator,

k�N.t/ � UN.t/
�1
N˚.t/kHN D kUN.t/�N.t/ � 1
N˚.t/k � k˚N.t/ �˚.t/k:

It remains to bound k˚N.t/ � ˚.t/k. Using Eqs. (4) and (11), we can write

@tk˚N.t/ �˚.t/k2 D 2< ˝
i˚N.t/; .eHN.t/ � H.t//˚.t/

˛
(25)

D
4X

jD0
<˝i˚N.t/; .Rj C R�

j /1

N˚.t/

˛ � 2< ˝
i˚N.t/;H1>N˚.t/

˛

where 1>N WD 1 � 1
N . Next, we will estimate the right side of (25).
Step 2. To bound the last term of (25), we use ˚N.t/ 2 1
NFC.t/ to write

˝
˚N.t/;H1>N˚.t/

˛ D ˝
˚N.t/; .H � d�.h//1>N˚.t/

˛
:

As in the proof of Lemma 3, we can show that

˙.H � d�.h// � C.N C N3ˇ/:

It is a general fact that if ˙B � A as quadratic forms, then we have the Cauchy-
Schwarz type inequality jh f ;Bgij � 3h f ;Af i1=2hg;Agi1=2. Consequently,

ˇ̌˝
˚N.t/; .H � d�.h//1>N˚.t/

˛ˇ̌
� 3

˝
˚N.t/; .N C N3ˇ/˚N.t/

˛1=2˝
1>N˚.t/; .N C N3ˇ/1>N˚.t/

˛1=2
� 3.N C N3ˇ/1=2

˛1=2˝
1>N˚.t/; .N C N3ˇ/N sN�s1>N˚.t/

˛1=2
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for all s � 1. The term h˚.t/;N s˚.t/i can be bounded by (23) and the bound on
h˚.t/;N ˚.t/i in Lemma 2. We can choose s large enough (but fixed) and obtain

ˇ̌˝
˚N.t/;H1>N˚.t/

˛ˇ̌ � C".1C t/"N�1: (26)

Step 3. To control the first term on the right side of (25), we have to introduce a
cut-off on the number of particles. Since there are at most 2 creation or annihilation
operators in the expressions of Rj’s, we can write

˝
˚N.t/; .Rj C R�

j /1

N˚.t/

˛ D ˝
1
M˚N.t/; .Rj C R�

j /1

MC2˚.t/

˛
C ˝

1>M˚N.t/; .Rj C R�
j /1


N1>M�2˚.t/
˛

for all 4 < M < N � 2. Then we estimate each term on the right side by Lemma 4
and the Cauchy-Schwarz type inequality as in Step 2. We obtain

ˇ̌˝
˚N.t/; .Rj C R�

j /1

N˚.t/

˛ˇ̌ � C.E1 C E2/ (27)

where

E1 D inf
�>0

�
1
M˚N.t/;

�
.1C �/R4 C �

N 2

N
C 1C N

�.1C t/3

�
1
M˚N.t/

1=2



�
1
MC2˚.t/;

�
.1C �/R4 C �

N 2

N
C 1C N

�.1C t/3

�
1
MC2˚.t/

1=2
;

E2 D inf
�>0

�
1>M˚N.t/;

�
.1C �/R4 C �

N 2

N
C 1C N

�.1C t/3

�
1>M˚N.t/

1=2



�
1>M�2˚.t/;

�
.1C �/R4 C �

N 2

N
C 1C N

�.1C t/3

�
1>M�2˚.t/

1=2
:

To bound E1, we use

1
MR4 � CNˇ�11
MN d�.��/ � CNˇ�1Md�.��/

(see Lemma 4) together with the kinetic estimate in Theorem 3, and then optimize
over � > 0. We get

E1 � C"
�

MN.2ˇC"�1/=2 C M3=2N�1=2�:
(The error term N3ˇ�1C" in Theorem 3 is absorbed by NˇC" when ˇ < 1=2.)

The bound on E2 is obtained using the argument in Step 2 and reads

E2 � C";sN
3ˇC1M1�s=2Ns"Œlog.2C t/
s:
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In summary, from (27) it follows that

ˇ̌˝
˚N.t/; .Rj C R�

j /1

N˚.t/

˛ˇ̌ � C"
�

MN.2ˇC"�1/=2 C M3=2N�1=2�

C C";sN
3ˇC1M1�s=2Ns"Œlog.2C t/
s

for all 4 < M < N �2 and s � 2. We can choose M D N3" and s D s."/ sufficiently
large (e.g. s � 6.1C ˇ C "/=") to obtain

ˇ̌˝
˚N.t/; .Rj C R�

j /1

N˚.t/

˛ˇ̌ � C"
�

N.2ˇC9"�1/=2 C N�1.1C t/"
�
: (28)

Step 4. Inserting (26) and (28) into (25), we find that

@tk˚N.t/ � ˚.t/k2 � C"
�

N.2ˇC9"�1/=2 C N�1.1C t/"
�
:

Integrating over t and using

k˚N.0/� ˚.0/k2 D h˚.0/;1>N˚.0/i � N�1h˚.0/;N ˚.0/i � C"N
"�1:

we obtain

k˚N.t/ �˚.t/k2 � C".1C t/1C"N.2ˇC9"�1/=2

for all " > 0. This leads to the desired estimate (6), as explained in Step 1. ut

References

1. R. Adami, F. Golse, A. Teta, Rigorous derivation of the cubic NLS in dimension one. J. Stat.
Phys. 127(6) (2007), 1193–1220

2. I. Anapolitanos, M. Hott, A simple proof of convergence to the Hartree dynamics in Sobolev
trace norms (2016). e-print arxiv:1608.01192

3. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of
Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

4. V. Bach, S. Breteaux, T. Chen, J. Fröhlich, I.M. Sigal, The time-dependent Hartree-Fock-
Bogoliubov equations for Bosons (2015). e-print arXiv:1602.05171

5. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108, 1175
(1957)

6. C. Bardos, F. Golse, N.J. Mauser, Weak coupling limit of the N-particle Schrödinger equation.
Methods Appl. Anal. 7(2), 275–293 (2000)

7. N. Benedikter, G. de Oliveira, B. Schlein, Quantitative derivation of the Gross-Pitaevskii
equation. Commun. Pure Appl. Math. 68(8), 1399–1482 (2015)

8. C. Boccato, S. Cenatiempo, B. Schlein, Quantum many-body fluctuations around nonlinear
Schrödinger dynamics. Ann. Henri Poincaré (2016). Available online. doi:10.1007/s00023-
016-0513-6

9. N. Bogoliubov, On the theory of superfluidity. J. Phys. (USSR) 11, 23 (1947)



Quantum Dynamics and Bogoliubov Theory 237

10. S.N. Bose, Plancks Gesetz und Lichtquantenhypothese. Z. Phys. 26, 178–181 (1924)
11. L. Bruneau, J. Dereziński, Bogoliubov Hamiltonians and one-parameter groups of Bogoliubov

transformations. J. Math. Phys. 48, 022101 (2007)
12. K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W.

Ketterle, Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–
3973 (1995)
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Effective Non-linear Dynamics of Binary
Condensates and Open Problems

Alessandro Olgiati

Abstract We report on a recent result concerning the effective dynamics for a
mixture of Bose-Einstein condensates, a class of systems much studied in physics
and receiving a large amount of attention in the recent literature in mathematical
physics; for such models, the effective dynamics is described by a coupled system
of non-linear Schödinger equations. After reviewing and commenting our proof in
the mean-field regime from a previous paper, we collect the main details needed
to obtain the rigorous derivation of the effective dynamics in the Gross-Pitaevskii
scaling limit.

Keywords Coupled nonlinear Schrödinger system • Cubic NLS • Effective
non-linear evolution equations • Gross-Pitaevskii scaling • Manybody quantum
dynamics • Mean-field regime • Mixture condensates • Partial trace • Reduced
density matrix

1 Introduction

Bose-Einstein condensation is the physical phenomenon according to which a
macroscopic number of bosons collapse onto the same quantum state. This was
first predicted theoretically in the 1920s and then widely studied both in physics
and mathematics in the later decades; the topic received a further strong boost since
the mid 1990s, when the first condensates were produced in experiments.

Mathematically, to a system of N identical bosons is associated the Hilbert space
L2.R3/˝symN and states are positive trace-class operators �N on such space, with
unit trace. The notion of condensation is appropriately described in terms of the
corresponding one-body reduced density matrix, or one-body marginal,

�
.1/
N D TrN�1�N ; (1)
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where the degrees of freedom 2 to N are traced out; the operation TrN�1 in (1) is
called the partial trace. Thus, given a N-body density matrix �N of the system, and a
pure state u 2 L2.R3/, one says that �N exhibits complete asymptotic condensation
on the condensate wave-function u if

lim
N!1 �

.1/
N D juihuj: (2)

Since the limit in (2) is a rank-one projection, weak convergence implies trace-norm
convergence, and thus, the limit can be considered in any of such topologies.

Within this framework, a problem naturally arising is the proof of persistence
of condensation under the dynamics generated by some many-body Hamiltonian.
Thus, given a time-evolution governed by HN , and the flow

�N 7! �N;t D e�itHN�NeitHN ;

one would like to prove that

�
.1/
N ' ju0ihu0j ) �

.1/
N;t ' jutihutj: (3)

The interest in a result like (3) is manifest: a large system is well approximated
by a single-particle orbital, an object much more manageable in computations and
informative when one-body observables are considered. The price to pay is that in
the limit the interparticle interactions result in a non-linearity, or self-interaction
term; hence, a typical equation for ut is

i@tut D ��ut C N .ut/ut;

where, as said, N .:/ accounts for the effective two-body potential via a cubic self-
interaction. We refer to the review [3] for a comprehensive outlook on the problem.
It has to be remarked that this class of problems has involved many different
techniques, with tools from operator theory, measure theory and kinetic theory.

2 Two-Component Condensates

A consistent part of both theoretical and experimental studies on Bose-Einstein
condensation is devoted to systems in which two (or more) components interact;
such systems are usually referred to as two-component condensates (respectively
multi-component condensates). This can be attained in multiple ways: either by
considering bosons occupying different hyperfine spin states [16, 23] (spinor
condensates) or by considering different atomic species [15] (mixture condensates);
in the case of different spin states, one can also account for transitions between
the two components, for example by turning on an external magnetic field or a
spin-spin interaction (this is discussed in Sect. 5). Physical evidence suggests that
the dynamics of a multi-component condensate is governed by a coupled system
of non-linear Schrödinger equations (see [22, Sect. 21]), the unknowns being the
condensate wave-functions of each component.
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In this work we consider the case of the mixture condensate, namely a system
consisting of N1 identical bosons of some atomic species A and N2 identical bosons
of some (different) species B; the Hilbert space of such system is

HN1;N2 D L2sym.R
3N1 ; dx1 : : : dxN1/˝ L2sym.R

3N1 ; dy1 : : : dyN2/: (4)

We want to consider states of such system in which condensation is present in each
component: this can be monitored by means of a “double” reduced density matrix.
For each state �N1;N2 of the system, we define the trace-class operator

�
.1;1/
N1;N2

D TrN1�1 ˝ TrN2�1�N1;N2 ; (5)

acting on the space L2.R3; dx/ ˝ L2.R3; dy/ of one particle of type A and one of
type B.

In this setting, one can extend the notion of condensation, namely, one says �N1;N2
exhibits complete condensation in both components, with condensate functions u
and v, if

lim
N1!1
N2!1

�
.1;1/
N1;N2

D ju ˝ vihu ˝ vj D juihuj ˝ jvihvj: (6)

In analogy to the one-component case, it is of interest to investigate the persistence
of condensation simultaneously in each component. Of course one has to specify a
Hamiltonian generating the time-evolution; moreover, since at the moment no result
is attainable in a genuine thermodynamic limit of large system, the Hamiltonian
must be chosen together with a scaling prescription that mimics the true limit [3, 10].

2.1 Mean-Field Regime

For the multi-component system built in Sect. 2, we define the three-dimensional
mean-field Hamiltonian

HN1;N2 D
N1X

iD1
.��xi/C 1

N1

N1X
i<j

V1.xi � xj/

C
N2X

rD1
.��yr/C 1

N2

N2X
r<s

V2.yr � ys/

C 1

N1 C N2

N1X
iD1

N2X
rD1

V12.xi � yr/;

(7)

where the variables x1; : : : xN1 ; y1 : : : yN2 are referred to the ones in Eq. (4).
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Throughout this paper, we will consider the case in which N1 and N2 scale in
such a way that their ratio is asymptotically constant, namely there exist constants
c1; c2 > 0 such that

ci D lim
N1!1
N2!1

Ni

N1 C N2
; i D 1; 2: (8)

For simplicity of presentation, we assume that (8) holds identically for every fixed
N1 and N2, and not only in the limit; this stronger assumption could easily be
removed. Under such assumptions, it is easy to see that our choice of the mean-
field pre-factors N�1

1 , N�1
2 , .N1 C N2/�1 ensures all terms in (7) to remain of the

same order O.N1 C N2/. Of course, one could argue that many other choices would
ensure this behavior, for example a common .N1N2/�1=2 factor; the reader can refer
to Sect. 4 in [12] for a discussion of why the choice in (7) is the physically relevant
mean-field scaling.

Our result is the proof of persistence of condensation under the dynamics
generated by (7), namely

�
.1;1/
N1;N2

.0/ ' ju0 ˝ v0ihu0 ˝ v0j ) �
.1;1/
N1;N2

.t/ ' jut ˝ vtihut ˝ vtj; (9)

where .ut; vt/ solves the initial value problem

i@tut D ��ut C .V1 � jutj2/ut C c2.V12 � jvtj2/ut

i@tvt D ��vt C .V2 � jvtj2/vt C c1.V12 � jutj2/vt;
(10)

with initial datum .u0; v0/.
Let us now state the assumptions on Vj and .u0; v0/ under which it is possible to

prove (9).

• (A1) The potentials Vj, j 2 f1; 2; 12g are real-valued, even, and such that

kVj � j�j2k1 . k�k2H1 8� 2 H1.R3/ j D 1; 2; 12

kV2
j � j�j2k1 . k�k2H1 8� 2 H1.R3/ j D 1; 2; 12:

(11)

• (A2) The initial data for the system (10) are u.0/ D u0 and v.0/ D v0 for given
functions u0; v0 2 H1.R3/ with ku0k2 D kv0k2 D 1. By general theory, this is
enough to have a unique global-in-time solution

.ut; vt/ 2 C.R;H1.R3/˚ H1.R3// \ C1.R;H�1.R3/˚ H�1.R3//: (12)

• (A3) The many-body initial datum is �N1;N2 2 D ŒHN1;N2 
 \ HN1;N2;sym with
k�N1;N2k2 D 1.
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Let �N1;N2 .t/ WD e�itHN1;N2 �N1;N2 be the unique solution in C.R;D ŒHN1;N2 
 \
HN1;N2;sym/ to the many-body Schrödinger equation

i@t�N1;N2 .t/ D HN1;N2�N1;N2 .t/ ; �N1;N2 .0/ D �N1;N2 ; (13)

and let .ut; vt/ be the unique solution to the system of coupled NLS (10) as in (12).
Our main result in the mean-field regime is the following Theorem.

Theorem 1 ([12]) Consider a two-species bosonic system under assumptions
(A1)–(A3) above. Let �.1;1/N1;N2

.t/ be the double reduced density matrix associated with
�N1;N2 .t/, given by (5), and define

˛
.1;1/
N1;N2

.t/ WD 1� ˝
ut ˝ vt ; �

.1;1/
N1;N2

.t/ ut ˝ vt
˛
: (14)

Then

˛
.1;1/
N1;N2

.t/ 6
�
˛
.1;1/
N1;N2

.0/C 1

N1 C N2

�
e f .t/; (15)

where f does not depend on N.

Corollary 1 ([12]) In the same hypothesis of Theorem 1, if

lim
N1!1
N2!1

�
.1;1/
N1;N2

.0/ D ju0 ˝ v0ihu0 ˝ v0j;

in trace norm, then

lim
N1!1
N2!1

�
.1;1/
N1;N2

.t/ D jut ˝ vtihut ˝ vtj;

again in trace norm.
We show here the immediate proof of Corollary 1, postponing to Sect. 3 a sketch

of the proof of Theorem 1,

Proof (Corollary 1) The thesis follows from (15) using the chain of inequalities
(see [12] Eq. (3.7) or [11])

˛
.1;1/
N1;N2

.t/ 6 Tr
ˇ̌̌
�
.1;1/
N1;N2

.t/ � jut ˝ vtihut ˝ vtj
ˇ̌̌
6 C

q
˛
.1;1/
N1;N2

.t/: (16)

A few remarks on the results we stated are in order.

Remark 1 Assumption (A1) covers, by Hardy inequality, the physically relevant
case of Coulomb singularities jxj�1.
Remark 2 To keep the exposition short and self-contained, we limited the class
of Hamiltonians for which a result like Theorem 1 holds; in particular, one could
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deal with several meaningful generalizations of the one-body operator ��, as for
example the magnetic Laplacian with external potential ��A C U.x/, or its semi-
relativistic counterpart .1 ��A/

1=2 C U.x/, where�A WD .r � iA/2.

Remark 3 The second bound in (16) is not sharp: indeed, one could adapt a
recent result [14] and obtain convergence in trace norm with the same rate as the
convergence of ˛.1;1/N1;N2

. This, by (15), implies that the total rate is the worst among

the rates of ˛.1;1/N1;N2
.0/ and of .N1 C N2/�1.

The functional˛.1;1/N1;N2
.t/ is a two-component generalization of the one-component

functional

˛N.t/ WD 1 � h N.t/; p1.t/ N.t/i;

where

p1.t/ WD juti1hutj1 (17)

is the projection onto the condensate wave-function in the variable x1; for later
convenience we also define the orthogonal complement to p as

q1.t/ WD 1 � p1.t/: (18)

Such a construction is the starting point of the so-called “counting” method
introduced by Pickl in [20] and by Knowles and Pickl in [9]. In those works, ˛N.t/
is used to prove trace-norm convergence with a quantitative rate for a wide class of
potentials in the single component case.

The meaning of Eq. (16) (and of its one-component counterpart, see Lemma 2.3
in [9]) is that ˛.1;1/N1;N2

is a convenient indicator of condensation, namely its conver-
gence to zero is tantamount as the convergence in trace norm to the condensate
wave-function. In our two-component case, one could also argue that condensation
can also be expressed in terms of one-component reduced density matrices, which
can be defined as

�
.1;0/
N1;N2

D TrN1�1 ˝ TrN2�N1;N2 ; �
.0;1/
N1;N2

D TrN1 ˝ TrN2�1�N1;N2 : (19)

The control of condensation by means of both �.1;0/N1;N2
and �.0;1/N1;N2

has been addressed
by Heil [6] (we also refer to [1] for a more recent work); in Lemma 3.1 in [12] we
establish the bound

max
˚
1 � hu;� .1;0/N1;N2

ui ; 1 � hv; �.0;1/N1;N2
vi� 6 1 � hu ˝ v; �

.1;1/
N1;N2

u ˝ vi
6 .1� hu; � .1;0/N1;N2

ui/C .1 � hv; �.0;1/N1;N2
vi/;

(20)
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which shows that our collective indicator �.1;1/N1;N2
covers (and is in fact equivalent to)

such a control.

2.2 Gross-Pitaevskii Regime

The mean-field result stated above can be extended to the more interesting and
realistic Gross-Pitaevskii regime we describe in the following; in its essence, what
we report already stems from the work [12]. Nonetheless, we state here the result
and present the main steps of the proof, in order to provide an explicit reference.

Consider the two-component Hamiltonian

HN1;N2 D
N1X

iD1
.��xi/C N2

1

N1X
i<j

V1.N1.xi � xj//

C
N2X

rD1
.��yr/C N2

2

N2X
r<s

V2.N2.yr � ys//

C .N1 C N2/
2

N1X
iD1

N2X
rD1

V12..N1 C N2/.xi � yr//;

(21)

where now the potentials are rescaled according to the Gross-Pitaevskii scaling. This
implies very strong (� N2) but rare interactions, since particles interact only when
their distances are of order N�1, and this makes the regime quite different from the
mean field in Sect. 2.1: whereas in mean field each particle only feels the average
density of the whole gas, in the Gross-Pitaevskii regime interactions are very strong
and effective only on short spatial scales. For this reason, this scaling is a much more
realistic approximation for a gas in a zero temperature and high dilution regime.

One can prove a statement similar to Theorem 1 also in this case, but with an
amount of modifications. Indeed, now the limit (9) holds for .ut; vt/ solutions to the
local system of NLS

i@tut D ��ut C 8�a1jutj2ut C c2 8�a12jvtj2ut

i@tvt D ��vt C 8�a2jvtj2vt C c1 8�a12jutj2vt;
(22)

where, for j 2 f1; 2; 12g, aj is the s-wave scattering length of Vj.
Since, to treat the Gross-Pitaevskii case, one also has to take into account energy

comparisons between many-body and effective dynamics, we define the following
two functionals: the many-body energy functional

EN1;N2 .�N1;N2 / WD 1

N1 C N2
h�N1;N2 ;HN1;N2�N1;N2i; (23)
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and the Gross-Pitaevskii energy

E GP.u; v/ WDhu;��ui C hv;��vi C 4�a1hu; juj2ui
C 4�a2hv; jvj2vi C 8�a12hu; jvj2ui:

(24)

We suppose the following on the potential and on the initial data.

• (B1) The potentials V˛, ˛ 2 f1; 2; 12g are positive, spherically symmetric,
compactly supported, L1-functions.

• (B2) The initial data for the system (10) are u.0/ D u0 and v.0/ D v0 for given
functions u0; v0 2 L2.R3/ with ku0k2 D kv0k2 D 1 chosen such that the solution
belongs to

L1�
R;H2.R3/˚ H2.R3/

�
:

• (B3) The many-body initial datum is �N1;N2 2 D ŒHN1;N2 
 \ HN1;N2;sym with
k�N1;N2k2 D 1 and

lim
N1!1
N2!1

�
.1;1/
N1;N2

D ju0 ˝ v0ihu0 ˝ v0j:

• (B4) The sequence �N1;N2 satisfies

lim
N1!1
N2!1

EN1;N2 .�N1;N2 / D E GP.u0; v0/:

Here is our main result.

Theorem 2 Consider a two-species bosonic system under assumptions (B1)–(B4)
above. Let �.1;1/N1;N2

.t/ be the double reduced density matrix associated with �N1;N2 .t/,
given by (5). Then

lim
N1!1
N2!1

�
.1;1/
N1;N2

.t/ D jut ˝ vtihut ˝ vtj; (25)

and

lim
N1!1
N2!1

EN1;N2 .�N1;N2 .t// D E GP.ut; vt/; (26)

where .ut; vt/ are solutions of (22) with initial data .u0; v0/.

Remark 4 A generalization of the technique used in the proof allows one to cover
also the case of one-body Hamiltonians more general than ��. This has been
pointed out in the single component case in Remark 2.1 in [21]; we refer the reader
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to [18] for a more detailed analysis of what is needed in order to adapt the argument
to the relevant case of the magnetic Laplacian �A D .r � iA/2.

Remark 5 Assumption (B1) on the potential is crucial in this formalism; with dif-
ferent techniques (see [2]) it is possible to consider potentials with some singularity
and unbounded support. Conversely, the removal of the positivity condition is an
important open problem in the subject; in [19], it is proven positivity can be removed
for a much softer scaling than the one in (21).

The one-component problem, namely the derivation of the Gross-Pitaevskii
equation

i@tut D ��ut C 8�ajutj2ut;

has been an important open problem in mathematical physics in recent years. It
was first solved by Erdős, Schlein and Yau in 2006 (see [4] and [5]); their proof
was based on the BBGKY formalism and did not provide a convergence rate. Later
results by Benedikter et al. [2] and by Pickl [21] relied on different techniques and
allowed to get a quantitative control of the convergence.

3 Proof of Theorem 1

The strategy to get (15) is to establish an estimate of type

@t˛
.1;1/
N1;N2

.t/ 6 f .t/

�
˛
.1;1/
N1;N2

.t/C 1

N1 C N2

�
; (27)

and then to apply Grönwall lemma to get the result. The function f will depend on
the population ratios c1; c2 and on certain norms of the potentials V1;V2;V12 and
of the solutions ut, vt. For brevity, we will use from now on the shorthand notation
˛.1;1/ WD ˛

.1;1/
N1;N2

.t/.
One can show that our hypothesis certainly assure ˛.1;1/ to be differentiable

in time; its derivative can be shown to split into three pieces, each one of them
containing only one potential, according to

P̨ .1;1/ D i .CV1 C CV2 C CV12/; (28)

with

CV1 WD
D
�;
h� 1

N1

N1X
i<j

V1.xi � xj/�
N1X

iD1
.Vu

1 /i

�A
;

N1X
kD1

N2X
`D1

1 � pA
k pB

`

N1N2

i
�
E
; (29)

CV2 WD
D
�;
h� 1

N2

N2X
r<s

V2.yr � ys/�
N2X

rD1
.Vv

2 /r

�B
;

N1X
kD1

N2X
`D1

1 � pA
k pB

`

N1N2

i
�
E
; (30)
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CV12 D
D
�;
h 1

N1 C N2

N1X
iD1

N2X
rD1

V12.xi � yr/� c2

N1X
iD1
.Vv

12/
A
i

� c1

N2X
rD1
.Vu

12/
B
r ;

N1X
kD1

N2X
`D1

1 � pA
k pB

`

N1N2

i
�
E
:

(31)

Here and in what follows, the superscript A (respectively B) indicates that pA
1 acts

on the first variable of the sector A, namely x1 (respectively y1). Each of these three
summands will be estimated in terms of ˛.1;1/ and of .N1CN2/�1 so as to obtain (27).
The terms CV1 and CV2 contain only infra-species interactions, and, for this reason,
their estimate is less involved; the detailed proof can be found in [12] (see also [9]
for the single-component case).

To estimate CV12 one can exploit the bosonic symmetry of � and the definition
of cj to obtain the bound

jCV12 j 6 N1N2
N1 C N2

ˇ̌
ˇD�; h.V12/11 � .Vv

12/
A
1 � .Vu

12/
B
1 ;

N1X
kD1

N2X
`D1

pA
k pB

`

N1N2

i
�
Eˇ̌ˇ : (32)

At this point, one is free to insert, on both sides of the commutator, the identity

1 D . pA
1 C q A

1 /. pB
1 C qB

1 /; (33)

with p and q as in (17), (18). The insertion clearly produces 16 terms, that we can
split into two groups with a self-explanatory notation

� WD . pp; pp/C Œ. pq; pq/C .qp; qp/
C .qq; qq/

C Œ. pq; qp/C complex conjugate 

(34)

and

˝ WD . pp; qp/C .qp; qq/C . pp; qq/C . pp; pq/C . pq; qq/

C complex conjugate:
(35)

The terms . pp; pp/, .qq; qq/, . pq; pq/C .qp; qp/ in (34) vanish identically, which
can be easily checked using the fact that pA

1q A
1 D 0; all the others could, in principle,

provide some contribution to (27). While we refer the reader to Sect. 5 in [12] for
the detailed computation, we try to sketch here how each term can be handled.

Since we need to reconstruct ˛.1;1/ D 1 � h�; pA
1pB
1� i [as in (27)], we can make

a clever use of every q A
1 � or qB

1� in the non-vanishing terms: indeed, kq A
1 �k2 6

˛.1;1/. For this reason, when at least one q from (33) appears on each side of the
commutator, one only has to control the operator norm of p1V12.x1 � y1/ and this
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allows to obtain the bound
ˇ̌̌
Œ. pq; qp/C c.c. 
C Œ.qp; qq/C . pq; qq/C c.c 


ˇ̌̌

6 f .t/

�
˛
.1;1/
N1;N2

.t/C 1

N1 C N2

�
:

(36)

The term . pp; qq/ has the correct number of q’s too, but they appear on the same
side, and this would not allow to extract kq A

1 �k2; however, one q can be brought to
the other side at the expense of some .N1 C N2/�1 smallness. This allows to obtain

ˇ̌̌
. pp; qq/C c.c.

ˇ̌̌
6 f .t/

�
˛
.1;1/
N1;N2

.t/C 1

N1 C N2

�
: (37)

The only remaining term, . pp; qp), is the most important: in this case, only one q is
surely not enough to re-create ˛.1;1/ and thus, some cancellation is needed to close
the Grönwall estimate (27). Indeed, the key fact is that

pB
1V12.x1 � y1/p

B
1 D pB

1

�
V12 � jvj2

�
.x1/p

B
1 :

This “dressing” of the true potential V12 allows one to get an exact cancellation with
the mean-field potential and obtain

. pp; qp/C c.c. D 0: (38)

Collecting (36)–(38), one finally gets (27).

4 Proof of Theorem 2

To describe how the proof proceeds, we need to revisit more in detail the so-called
“counting” method developed by Pickl. In order to get more compact expressions,
we drop the subscript N1;N2 in ˛, � , E ; the reader should keep in mind that
everything always depends on the two population numbers. Given pA

1 and q A
1 as

in (17) and (18), we define a new family of projectors: for each k 2 N, take

PA
k WD

�
q A
1 : : : q

A
k pA

kC1 : : : pA
N

�
sym
; (39)

with the convention that PA
k D 0 if k > N or k < 0; we remark that the symbol

‘sym’ in (39) denotes the mere sum (without normalisation factor) of all possible
permuted versions of the considered string of projections. A perfectly analogous
definition of PB

k of course holds for the sector B. By definition, the range of PA
k is

the component of the Hilbert space in which exactly k particles of type A are in a



250 A. Olgiati

state orthogonal to u (recall that p D juihuj), that is to say outside of the condensate.
Thus, k PA

k � k2 D h�N1;N2 ; Pk �N1;N2 i is a measure of how large the component of
�N1;N2 is, with exactly k particles of type A outside the condensate.

Now, given a positive function g W N ! R, define the operator

bg A WD
N1X

kD0
g.k/PA

k ; (40)

and the functional

˛
.1;0/
N1;N2;g

WD h�N1;N2 ; bg A �N1;N2 i: (41)

This amounts to assign some weight g.k/ to the component of a many-body state
with exactly k particles of type A outside the condensate, and then summing over k.
In the same way one defines

˛
.0;1/
N1;N2;g

WD h�N1;N2 ; bg B �N1;N2 i: (42)

The interest in this construction of course depends on the choice of g; it turns out
that for some g’s, convergence to zero of both ˛.1;0/N1;N2;g

and ˛.0;1/N1;N2;g
is equivalent to

convergence in trace norm (25). This is true, for example, for the special choice of
the weight function s.k/ WD k=N, which yields to the single-component analogous
of (14).

4.1 The Functional ˛
.1;0/
m;<

Unfortunately, the scaling in (21) is too singular to allow one to close a Grönwall
argument for the weight s.k/. We try to explain here all the modifications needed
in order to get the machinery working. It turns out that, if one tries to perform
calculations with the weight s, one gets

ˇ̌
@th�; bs A � iˇ̌ 6 C

�
h�; bs A � i C h�; bn A � i C o.1/C ˇ̌

E .�/� E GP.u; v/
ˇ̌�
;

where n.k/ WD .k=N/1=2. Since n.k/ > s.k/, the summand h�; bn � i cannot be
bounded and the estimate cannot be closed. This would suggest, in principle, that a
Grönwall estimate could be proven only by choosing as functional to control

ę.1;0/ WD h�; bn A � i C ˇ̌
E .�/� E GP.u; v/

ˇ̌
: (43)

We observe that the convergence to zero of such ę would allow again to obtain
the statement in trace norm (25), since (see Lemma 6.1 in [21], adaptable to the
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two-component case)

lim
N1!1
N2!1

h�; bn � i D 0 , lim
N1!1
N2!1

�.1;1/.t/ D jut ˝ vtihut ˝ vtj:

The functional ę is however not efficient enough yet; the reason is that its first and
second derivative, which crucially enter in computations (see again [21], Appendix
A.2), are singular for k D 0. For this reason, one defines a new weight, with a less
singular behavior for small k’s. For some fixed  > 0, we define

m.k/ WD

8̂
<̂
ˆ̂:

p
k=N; for k > N1�2

1
2

�
N�1Ck C x�	; else:

(44)

With this weight, we define a new functional as

˛
.1;0/
m;< WD h�; bm A � i C ˇ̌

E .�/� E GP.u; v/
ˇ̌
: (45)

The vanishing of this indicator and of its corresponding ˛.0;1/m;< is again equivalent to
convergence in trace norm since

n.k/ 6 m.k/ 6 maxfn.k/;N�g:

It turns out that ˛.1;0/m;< and ˛.0;1/m;< allow to control convergence for the softer scaling

VN D N�1C3ˇV.Nˇ.x � y//; (46)

with 0 < ˇ < 1, but not for the true Gross-Pitaevskii scaling, corresponding to
the case ˇ D 1. The reason is that, for ˇ D 1, an important role is played by the
short-scale correlation among particles.

4.2 Adding Correlations

In the derivation of Gross-Pitaevskii equation, correlations are customarily
accounted for (see for example [2]) by means of the solution fN to the zero-energy
scattering equation

�
��x C 1

2
VN.x/

�
fN.x/ D 0; with f .x/ ! 1 for jxj ! 1; (47)
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where VN.x/ D N2V.Nx/. In the setting we are considering, it is however more
efficient [21] to consider a slight modification of (47). Recalling that we defined ak

as the scattering length of Vk for k 2 f1; 2; 12g, we can define, for given constants
Cj;C12, the new potentials

Wj;ˇ.x/ WD

8̂
ˆ̂<
ˆ̂̂:

4�aj

Nj
N3ˇ

j ; for N�ˇ
j < x < CjN

�ˇ
j

0 else;

(48)

with j 2 f1; 2g, and

W12;ˇ.x/ WD

8̂̂
<
ˆ̂:
4�a12.N1 C N2/3ˇ�1; .N1 C N2/�ˇ < x < C12.N1 C N2/�ˇ

0 else:
(49)

One can show that there exist Cj, C12 such that the scattering lengths of N2
j V.Nˇ

j �/�
Wj;ˇ.�/ and of .N1CN2/2V..N1CN2/ˇ �/�W12;ˇ.�/ are zero (see Lemma 5.1 in [21] or
Lemma 5.5 in [8] for a more detailed proof). One can now define two functions fj;ˇ
and gj;ˇ , j D 1; 2, by means of a modified zero-energy scattering equation, namely

�
��x C 1

2

�
Vj;Nj.x/ � Wj;ˇ.x/

	�
fj;ˇ.x/ D 0; with fj;ˇ.x/ ! 1 for jxj ! 1;

(50)

and

gj;ˇ WD 1 � fj;ˇ; (51)

with the analogous definition for f12;ˇ and g12;ˇ. By insertion of the new potential, it
turns that out the norms of gj;ˇ have a better behavior in .N1 C N2/ than they would
have without the additional potential.

Now, by construction, the key properties of Wj;ˇ are

kWj;ˇk1 � O.N1 C N2/
�1; and kWj;ˇk1 � O.N1 C N2/

�1C3ˇ;

and the same holds for W12;ˇ . For this reason, replacing VjN ;j (respectively V12;N1CN2)
in the proof with Wj;ˇ (respectively W12;ˇ) one would deal with a potential with
a much less peaked scaling; of course the price to pay is the appearance of their
difference, but this can be dealt with by adding a further term to the functional one
aims to control.
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Definition 1 (˛.1;0/m and ˛.0;1/m ) We define the indicators of convergence for the
Hamiltonian (21) as

˛.1;0/m WD ˛
.1;0/
m;< � N1.N1 � 1/Reh�; g1;ˇ.x1 � x2/ R A

.12/ i
� N1N2Reh�; g12;ˇ.x1 � y1/ R A

.12/ i
(52)

and

˛.0;1/m WD ˛
.0;1/
m;< � N2.N2 � 1/Reh�; g2;ˇ.y1 � y2/ R B

.12/ i
� N1N2Reh�; g12;ˇ.x1 � y1/ R B

.12/ i;
(53)

where R.12/ WD p1p2.bm �bm2/C . p1q2 C q1p2/.bm �bm1/, having used the shorthand
notationbmj WD PN

kD0 m.k/PkCj.

Remark 6 The terms bm � bm1 and bm � bm2 are bounded in operator norm by
supk jm0.k/j. This is the reason why we had to define m.k/ by cutting .k=N/1=2 for
small k’s.

Remark 7 The terms subtracted from ˛
.1;0/
m;< and ˛.0;1/m;< in Definition 1 are real but

with no definite sign. However, one can easily prove a priori estimates for them; for
example

N1.N1 � 1/Reh�; g1;ˇ.x1 � x2/ R A
.12/ i � N��; (54)

for some � > 0, and the same holds for the other four terms. This helps in closing
the Grönwall estimate even though the considered functionals have no definite sign.

By repeating the computations in Appendix A.2 in [21] with minor changes, one
can prove the estimate

d

dt

�
˛.0;1/m .t/C ˛.1;0/m .t/

�
6 f .t/

�
˛
.1;0/
m;< .t/C ˛

.0;1/
m;< .t/C .N1 C N2/

���:
Now, by using the a priori estimate (54) and Grönwall Lemma, this is enough to get

˛
.1;0/
m;< .t/C ˛

.0;1/
m;< .t/ 6 e

R t
0 f .s/ds

�
˛.0;1/m .0/C ˛.1;0/m .0/C N��

�
:

Since ˛.0;1/m .0/C˛
.1;0/
m .0/ is converging to zero by Assumption (B3) and by Eq. (16)

for t D 0, we get the thesis by using again Eq. (16) for t > 0.
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5 Spinor Condensates and Other Multi-Component Models

As already remarked, the study of multi-component condensates is a very popular
topic in theoretical and experimental physics; we would like to present in this section
an account of some highly studied models, different from the mixture gas considered
in this paper, that fall under the name of multi-component condensates.

In Sect. 2 we mentioned that a well-known example of multi-component conden-
sate is a gas of spin bosons. Consider for example a system of atoms allowed to
populate different hyperfine states; it is often assumed (and easily realizable with
modern experimental techniques), that an external field is tuned in such a way that
only two hyperfine levels are coupled and enter the effective Hamiltonian. When this
is the case, then one can model the system by means of an auxiliary spin-1/2 bosonic
theory. These systems are often referred to as pseudo-spinor condensates, since a
proper spin-spin interaction is not present; nonetheless, the situation is already non
trivial since one could even account for transitions between the two hyperfine levels:
this can be realized for example by a (possibly time-dependent) external magnetic
field. In this setting, the effective equations for the spin-1/2 case are (see for example
[22, Sect. 21.3])

i@tut D ��ut C 8�a.jutj2 C jvtj2/ut C B.t/vt

i@tvt D ��vt C 8�a.jutj2 C jvtj2/vt C B.t/ut;
(55)

where a is the scattering length of the interaction and B.t/ is the magnetic field;
the linear coupling provided by B.t/ is called Rabi coupling. We refer the reader
to [13] for the derivation of (55) from the many-body dynamics of a pseudo-spinor
condensate.

An even more interesting situation is the presence of spin-spin interaction. In the
relevant case of a gas of alkali atoms, one should in principle take into account
the presence of different values of hyperfine spin (e.g. F D 1 and F D 2);
however, due to energetic arguments, a good low-energy approximation for the
interaction can be obtained by completely neglecting the presence of one of the
two hyperfine level, say F D 2. Under this approximation, it turns out that a general
interaction Hamiltonian that preserves the hyperfine spin of the individual atoms
and is rotationally invariant in the hyperfine spin space has the form

ı.xi � xj/
�
c0 C c1Si � Sj

	
; (56)

where Si is the vector of spin-1 operators for the particle i. This not only provides
population transfer, but it also correlates particles and for this reason the effect must
be present on the non-linearity too. The factor ı.xi � xj/ can be modeled by some
Gross-Pitaevskii potential with scattering length c1, and thus we can write the total
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spin-spin interaction term for a spinor condensate (neglecting the irrelevant c0) as

N2
X
i<j

V.N.xi � xj//Si � Sj: (57)

For the spin-1 case, this produces the equations [7, 17]

i@tut D ��ut C 8�a
�
jvtj2ut C wtv

2
t C jutj2ut � jwtj2ut

�

i@tvt D ��vt C 8�a
�
jutj2vt C 2vtwtut C jwtj2vt

�

i@twt D ��wt C 8�a
�
jvtj2wt C utv

2
t � jutj2wt C jwtj2wt

�
;

(58)

where again a is the scattering length of V . The rigorous derivation of the
system (58) from many-body quantum dynamics is undoubtedly one of the next
frontiers in the mathematics of the Bose gas.
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Remarks on the Derivation of Gross-Pitaevskii
Equation with Magnetic Laplacian

Alessandro Olgiati

Abstract The effective dynamics for a Bose-Einstein condensate in the regime
of high dilution and subject to an external magnetic field is governed by a
magnetic Gross-Pitaevskii equation. We elucidate the steps needed to adapt to the
magnetic case the proof of the derivation of the Gross-Pitaevskii equation within the
“projection counting” scheme.

Keywords Bose-Einstein condensate • Effective evolution equations • Gross-
Pitaevskii scaling • Magnetic Gross-Pitaevskii equation • Magnetic Laplacian •
Magnetic Sobolev space • Magnetic vector potential • Many-body quantum
dynamics • Non-linear cubic Schrödinger equation • Reduced density matrix

1 Introduction and Result

The purpose of this note is to provide explicitly the non trivial adaptations of the
known result [9] which are needed to prove the derivation of the so-called time-
dependent magnetic Gross-Pitaevskii equation from the many-body Schrödinger
dynamics of a dilute gas of identical bosons subject to an external magnetic
field. The presentation is therefore somewhat technical; nonetheless, since, to our
knowledge, no explicit details were so far available in the literature, we propose
it as a reference for the increasingly interesting topic of the effective many-body
quantum dynamics with magnetic field.

The rigorous derivation of the Gross-Pitaevskii equation has been over the last
two decades a central topic in the mathematics of the Bose gas; in its essence, it is
a problem of persistence of condensation, or propagation of chaos, in the following
sense. Suppose that the initial datum of a three dimensional Bose gas displays
condensation onto a one-body state u0 2 L2.R3/, namely

lim
N!1 �

.1/
N;0 D ju0ihu0j;
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where �.1/N;0 is the one-particle reduced density matrix associated to the initial datum
 N;0. Then condensation persists up to some time T if

lim
N!1 �

.1/
N;t D jutihutj; 8t 2 Œ0;T
;

for a condensate wave-function u 	 ut.x/ solution to the Gross-Pitaevskii equation

i@tu D ��u C 8�ajuj2u

with initial datum u0. Here a is the scattering length of the pair interaction among
the particles of the many-body system.

The first complete proof of a result of this type is due to Erdős, Schlein, and Yau
in 2006 (see [3, 4]); it was later reproduced with different methods by Pickl [9],
by Benedikter, de Oliveira, and Schlein [1], and by Brennecke and Schlein [2]. All
such derivations deal with a system of N interacting bosons in the Gross-Pitaevskii
scaling limit with non-relativistic kinetic operator given by ��; this corresponds to
a many-body Hamiltonian of the form

HN D
NX

iD1
.��i/C

X
i<j

N2V.N.xi � xj//:

Such methods can be adapted if the one-body Laplacian is modified by the insertion
of an external (confining) potential. Analogously, it is of great relevance and interest
to insert an external magnetic field which the charged particles are coupled with;
mathematically this is modeled, with minimal coupling, by replacing the kinetic
part in HN with its magnetic counterpart

NX
iD1
.��A/i WD

NX
iD1
.�iri C A.xi//

2;

where A W R3 ! R
3 is a vector potential. This would in turn imply the effective

dynamics to be ruled by the magnetic Gross-Pitaevskii equation

i@tut D ��Aut C 8�ajutj2ut: (1)

The fact that an external magnetic field can be accommodated into the many-body
dynamics, and that the one-body marginal can be controlled analogously to what
is done when the one-particle operator is simply the negative Laplacian, is to be
expected and indeed is mentioned explicitly in [9, Remark 2.1]. However, such
an adaptation is not as straightforward as the analogous insertion of an external
trapping potential: the magnetic Laplacian is formally the sum of the ordinary
Laplacian plus a derivative term that is linear in the magnetic potential and a further
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quadratic term in the magnetic potential itself; this more complicated structure
requires an a priori not immediate adjustment of a number of crucial estimates and
steps in the main proof. The related (simpler) problem of derivation of the magnetic
Hartree equation from many-body quantum dynamics is dealt with in [7].

Before stating the result, let us define the magnetic Sobolev space Hk
A as the set

of u 2 L2 such that

kuk2
Hk

A
D

X
0
j
k

k.r � iA/juk22 < C1:

We will consider the magnetic Hamiltonian

HN;A WD �
NX

iD1
�i;A C

X
i<j

N2V.N.xi � xj//;

as the generator of the linear many-body Schrödinger dynamics. Moreover, we
define the two A-dependent energy functionals

EN. N/ WD 1

N
h N ;HN;A Ni (2)

and

E GP.u/ WD hu;��Aui C 4�ahu; juj2ui: (3)

They represent the energies conserved along the flow of, respectively, the many-
body Schrödinger equation and the magnetic Gross-Pitaevskii equation. We can now
state the result as follows.

Theorem 1 Let V be a positive, L1, spherically symmetric, and compactly sup-
ported function on R

3, and let A 2 W1;1.R3;R3/ be chosen such that r � A D 0.
Suppose that the sequence of initial many-body states f N;0gN2N is condensed in the
sense of reduced densities, i.e.,

lim
N!1 �

.1/
N;0 D ju0ihu0j

on a condensate wave-function u0 2 H2
A (here �.1/N;0 is the one-particle reduced

density matrix of  N;0). Suppose in addition that

lim
N!1EN. N;0/ D E GP.u0/:

Then one has condensation for all t > 0, that is

lim
N!1 �

.1/
N;t D jutihutj (4)
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on a state ut that solves the magnetic Gross-Pitaevskii equation (1) with initial
datum u0. Here a is the scattering length of the interaction V.

We remark that our hypotheses on A certainly ensures that k � kHk
A

is equivalent

to the standard Sobolev norm k � kHk for k 2 f0; 1; 2g; indeed, for any f 2 H2, one
has

k�A f k2 . k�f k2 C kAk1krf k2 C kAk21k f k2 . k f kH2

and, for any f 2 H2
A,

k�f k2 .k�A f k2 C kAk1krf k2 C kAk21k f k2:

Since krf k2 . 	k�f k2 C 1=	k f k2 for any 	 > 0, by choosing 	 > 0 small enough
one gets k f kH2 . k f kH2A

. The cases k D 0 and k D 1 follow trivially.

We also stress that, again due to the hypotheses A 2 W1;1 and r � A D 0,
the global existence of solution to the magnetic Gross-Pitaevskii equation (1) in
the magnetic Sobolev spaces up to k D 2 is granted due to standard arguments. It
would be of great interest to find a larger class of vector potentials such that a result
similar to Theorem 1 holds: for example, a constant magnetic field B D r 
 A is
not attainable by A 2 W1;1.

An interesting future outlook is the derivation of the magnetic Gross-Pitaevskii
equation for time-dependent magnetic potentials A.t/. Since the treatment in [9]
already deals with time-dependent external (electric) fields, it is expected that such
result could be extended to cover a suitable class of A.t/ having enough space and
time regularity.

2 Proof of Theorem 1

Theorem 1 is proven with the same strategy as Theorem 2.1 in [9]. The crucial
quantity one wants to control is

˛N;t WD h N ;bm NiCjEN. N/�E GP.u/j�N.N�1/Reh N ; gˇ.x1�x2/br Ni: (5)

For the definition of bm andbr in (5) see [9, Def. 6.1 and Def. 6.2]. The definition of
gˇ is recalled in eq. (10), since its role is slightly modified by the presence of A. The
core of the proof is to look for an estimate of the form

@t˛N;t � C.t/
�
h N ;bm Ni C jEN. N/ � E GP.u/j C N��

�
(6)

for some � > 0. By Grönwall Lemma, this is enough to get (4) (see [9, Sect. 6] for
details). The factor C.t/, which varies from step to step during the proof, represents
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a function depending on the magnetic Sobolev norms k N;tkH1A
and kutkH2A

; for this
reason, it is in general exponentially growing in time, but not N-dependent.

Computing the time-derivative of ˛N;t one gets

@t˛N;t � �b C �c C �d C �e C �f C �l; (7)

where the terms �j, j 2 fb; c; d; e; f g are defined in [5, Def. 6.6] and [9, Def. 6.3],
while the new summand

�l WD N2
ˇ̌h N ; rx1gˇ.x1 � x2/A.x1/br Niˇ̌ (8)

emerges in our case due to the presence of A; let us remark that for us �a D 0 since
we are not considering external traps.

In [9, Appendix A.2] it is shown in detail how �j, j 2 fb; c; d; e; f g (see
[5, Sect. 6.4] for the estimate of �f ) can be bounded in terms of h N ;bm Ni,
jEN. N/ � E GP.u/j and N��, in order to obtain (6). We report in what follows the
main adaptations needed in the magnetic case for the treatment presented in [9,
Appendix A.2], plus the estimate of the additional term �l.

2.1 Cancellation of the Kinetic Part

A remarkable feature of the counting method we are considering here (introduced
in [6, 8]) is that the single-particle terms in HN (among them the kinetic part) get
canceled exactly when computing @t˛N;t; in [9], this happens in Lemma 6.2 and it
occurs in the case of ��A as well. More precisely, when computing @th N ;bm Ni,
one has

@th N ;bm Ni D i
D
 N ;

h
HN;A �

NX
iD1
.��A;xi C 8�ajuj2i /;bm

i
 N

E
;

and one easily sees that the magnetic Laplacians get exactly canceled. This
cancellation is the reason why, in the less involved mean-field case considered in
[6], not much needs be done to deal with magnetic Laplacians. Apart from technical
assumptions, all the proof proceeds in the same way since ��A does not play a
role. In the Gross-Pitaevskii regime however, even though the cancellation takes
place and the kinetic part does not have to be directly estimated, nonetheless ��A

still plays a role along the proof through the emergence of the energy difference
jEN. N/ � E GP.u/j.
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2.2 Cancellation of VN � Wˇ

In analogy to the other known derivations of the Gross-Pitaevskii equation, one
needs to include in the treatment a function displaying some short-scale structure
that allows one to weaken the strong singularity of the interaction term N2V.N�/.
This is done by means of the solution fˇ to the zero-energy scattering problem
relative to the modified potential VN � Wˇ , where Wˇ is the less singular potential
introduced in [9, Sect. 5] so as to make VN � Wˇ have zero scattering length. fˇ is
thus the solution to

�
��C 1

2
.VN � Wˇ/

�
fˇ D 0; (9)

with fˇ ! 1 for jxj ! 1. The function gˇ that appears in (5) is defined as

gˇ WD 1 � fˇ: (10)

As explained in [9, Sect. 6.2], the function gˇ plays a crucial role in the
replacement of the strong potential VN , which is of order N2 at short distances, with
the softer Wˇ , which is instead of order N3ˇ�1; this is of course at the expense of the
appearance of their difference, but this can be shown to disappear exactly modulo
terms that can be estimated. Performing all calculations for @t˛N;t in the magnetic
case, one gets as already mentioned the terms �b to �f as appearing in [9, Def. 6.3]
and [5, Def. 6.6]; however, when computing ŒHN ; gˇ.x1 � x2/
 as one can find after
[9, Eq. 6.17], one gets

ŒHN ; gˇ.x1 � x2/
 DŒ�A;x1 C�A;x2 ; fˇ.x1 � x2/


D.VN � Wˇ/fˇ.x1 � x2/ � 2.rx1gˇ.x1 � x2//rx1

� 2.rx2gˇ.x1 � x2//rx2 � 2iA.x1/.rx1gˇ.x1 � x2//

� 2iA.x2/.rx2gˇ.x1 � x2//;

(11)

having used r � A D 0 and (9). The terms containing .rgˇ/r are present in [9] too,
and they provide the term �c. The terms containing A were instead not present in
the purely kinetic case, and they exactly correspond to �l.

2.3 Adapting the Estimates

To get the desired estimate (6) one has to treat separately �b, �c, �d, �e, �f , �l. The
calculations proceed exactly as in [9, Appendix A.2], with some modifications we
describe here.
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2.3.1 Insertion of hˇ1;ˇ

Lemma A.4 in [9] is used to prove the bound for �b and in its proof (to treat the term
of type III for small ˇ and of type I, II and III for arbitrary ˇ) one replaces Vˇ with
Uˇ1;ˇ C�hˇ1;ˇ; for example, one has (see [9, proof of Lemma A.4 (3), for ˇ small])

N2
ˇ̌h N ; q1p2Vˇ.x1 � x2/bmq1q2 Niˇ̌ � N2

ˇ̌h N ; q1p2U0;ˇ.x1 � x2/bmq1q2 Niˇ̌
C N2

ˇ̌h N ; q1p2.�1h0;ˇ.x1 � x2//bmq1q2 Niˇ̌

The first summand can be bounded easily, since U0;ˇ is less singular than Vˇ . To
treat the second summand, the strategy is then to integrate by parts �hˇ1;ˇ once or
twice and then to manipulate the outcome in order to obtain the Sobolev norms of
�N;t or ut. This procedure can be adapted to the magnetic case since one can use the
trivial relation

r D rA C iA;

which allows to get a magnetic gradient at the expense of a L1-bounded term. This
allows to bound the second summand by

N2
ˇ̌hr1;Aq1p2 N ; .r1h0;ˇ.x1 � x2//bmq1q2 Niˇ̌ (12)

C N2
ˇ̌h N ; q1p2.r1h0;ˇ.x1 � x2//r1;Abmq1q2 Niˇ̌ (13)

C N2
ˇ̌h N ; q1p2A.x1/.r1h0;ˇ.x1 � x2//bmq1q2 Niˇ̌: (14)

At this point one can repeat the computations performed in [9] to bound the
terms (A.14)–(A.17), the only difference being that rA will produce magnetic norms
in the estimates of (12) and (13); (14) is even less singular, since it contains only one
derivative, and it can again be bounded by repeating the bounds for [9, Eqs. A.14–
A.17].

2.3.2 Magnetic Norms

The Sobolev norms k N;tkH1 or kutkHk with k D 1; 2 emerge frequently along the
proof, not only due to the integration by parts of �hˇ1;ˇ , but also typically by a
Sobolev embedding argument (see e.g. [9, Eqs. A.37 and A.15]), or due to [9,
Prop. A.3]. While in the non-magnetic case, such terms are bounded by some N-
independent function of time, in the case of A ¤ 0 one needs to use the inequality
k � kHk 6 C k � kHk

A
granted by the equivalence of the two norms for k D 1; 2. Then,

by general facts about magnetic Schrödinger equations, the two norms k N;tkH1A
and

kutkH1A
are uniformly bounded in time. The magnetic Sobolev norm k�kH2A

is instead
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not a priori bounded, but the W1;1-boundedness of A allows to get

kutkH2A
� DeKjtj;

in the same way as for the non-magnetic case. The norm kutk1 often appears as
well, typically every time [9, Lemma 4.1 (5)] is used; kutk1 can of course be
bounded by kutkH2 by standard embedding arguments, and hence by C kutkH2A

again
by equivalence of norms.

2.3.3 Lemma 5.2 of [9]

Lemma 5.2 in [9] allows one to bound a part of the kinetic energy by means of the
functional ˛N;t and N��; it plays a role in the estimate of the term of type III in
Lemma A.4 of [9] and in the bound of �d [9, pp. 39–41]. It still holds in our case,
with the substitution r 7! rA and with the appropriate magnetic energy functionals
defined in (2) and (3). In the proof (see [9, Appendix A.3]), one has exactly all the
magnetic analogous of the terms [9, Eqs. A.53–A.60]. The term corresponding to
[9, Eq. A.54] can be bounded by

jhr1;Aq1 N ; IA1r1;Ap1 Nij � jhr1;Aq1 N ;r1;Ap1 Nij
C jhr1;Aq1 N ; IA1

r1;Ap1 Nij
� jhbn�1=2q1 N ; �1;Abn1=21 p1 Nij

C kIA 1
kopkr1;Aq1 Nkkr1;Ap1kop

� C.t/
�
h N ;bn Ni C N��

�
;

having used [9, Lemma 4.1 (3)] as well as the fact that bn�1=2 is well defined on
Ran q1 for the second step and [9, Prop. A.1 (2)] for the third one. Here IA1 is the
characteristic function of the set A1 defined in [9, Def. 5.2], while C.t/ is a function
depending on the magnetic Sobolev norm kutkH2A

. With similar arguments one can
bound the magnetic analogous of [9, Eq. A.59], i.e.,

kIA1r1;Ap1 Nk2 � kr1;Auk2;

and this is enough to get the thesis of [9, Lemma 5.2] (the interaction terms are of
course unmodified by the insertion of A).

2.3.4 Bound on �l

We show here how the term �l defined in (8) can be estimated in order to get (6).
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Lemma 1 There exists � > 0 such that

�l 6 C.t/N��

for a function C.t/ depending on kutkH2A
but not on N.

Proof We recall that

br WD p1p2bm b C .p1q2 C q1p2/bm a;

wherebm b and bm a are in [9, Def. 6.2]. By symmetry of gˇ, we can integrate by parts
in the x2 variable; we get

j�lj 6N2
ˇ̌hrx2 N ; gˇ.x1 � x2/A.x1/br Niˇ̌

C N2
ˇ̌h N ; gˇ.x1 � x2/A.x1/rx2br Niˇ̌: (15)

We can use the definition ofbr for the first term and get

N2
ˇ̌hrx2 N ; g12 A.x1/br Niˇ̌ � N2kr2 NkkAk1kg12p1k1.kbm akop C kbm bkop/;

having used the short-hand notation g12 WD gˇ.x1 � x2/. Now, by [9, Lemma 4.1],
[9, Lemma 5.1] and [9, Eq. 6.11], one gets

N2
ˇ̌hrx2 N ; g12 A.x1/br Niˇ̌ 6 C.t/N1Ck NkH1

A
kgˇk 6 C.t/N�ˇ=2C ;

for some  > 0 to be chosen suitably small. Here we used the uniform boundedness
of the first magnetic Sobolev norm k NkH1A

and the fact that kutk1, produced by
[9, Lemma 4.1], is bounded by C kutkH2A

.
As for the second term in (15), we can remark that two summands ofbr contain

p1, and their sum is equal to p1br. For them, one can use Hölder inequality in the
variable x2 and then Sobolev inequality again in the variable x2 to get

N2
ˇ̌h N ; g12 A.x1/rx2 p1br Niˇ̌ 6 N2

Z
d3x1 d3x3 : : : d

3xNkgˇ.x1 � �/k3=2

 k N.x1; �; x3 : : : xN/k6kA.x1/.r p1br N/.x1; � ; x3 : : : xN/k6

6 N2kgˇk3=2kAk1
Z

d3x1 d3x3 : : : d
3xN


 kr N.x1; � ; x3 : : : xN/kk.� p1br N/.x1; � ; x3 : : : xN/k
6C.t/N2k NkH1

A
kgˇk3=2k�uk.kbm akop C kbm bkop/;

having used in the last step the definition ofbr, the fact that k�pkop D k�uk2 and [9,
Cor. 4.1]. By interchanging the roles of x1 and x2, the same estimate can be proven
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if q1br replaces p1br. One can now use k�uk 6 CkukH2
A

, [9, Lemma 5.1] (plus a

standard interpolation argument to obtain kgˇk3=2 � kgˇk2=32 kgˇk1=31 � C N�1�ˇ1 )
and [9, Eq. 6.11] and get

N2
ˇ̌h N ; g12 A.x1/rx2br Niˇ̌ 6 C.t/N�ˇC ;

which is enough to get the thesis.
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On the Inverse Spectral Problems for Quantum
Graphs

M. Olivieri and D. Finco

Abstract We review some aspects of inverse spectral problems for quantum graphs.
Under hypothesis of rational independence of lengths of edges it is possible, thanks
to trace formulas, to reconstruct information on compact and non compact graphs
from the knowledge, respectively, of the spectrum of Laplacian and of the scattering
phase. In the case of Sturm-Liouville operators defined on compact graphs and in
general for differential operators on compact star-graphs, unknown potentials can
be recovered from the knowledge of the spectrum of operators obtained imposing
different boundary conditions.

Keywords Inverse problems • Inverse scattering problems • Sturm-Liouville
operators • Quantum graphs

MSC 2010 35R30, 81U40, 34B24

1 Introduction

Quantum graphs are metric graphs provided with a selfadjoint operator that
describes the dynamics of waves on the graph. The most natural application of a
quantum graph is in the study of nanoscopic networks and their quantum properties,
and in the new important area of technological development in quantum wires.
Quantum graphs are in general good models for wave dynamics in thin structures,
for example in the case of photonic crystals, or in chemistry for the study of
dynamics of �-electrons in naphthalene molecule (see [7]).
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In the present work we deal with the spectral problems of quantum graphs.
(Direct) spectral problem is usually referred to the problem of obtaining the
spectrum of an operator from information about the graph; instead the inverse
spectral problem is in general referred to acquiring information about the graph
from the knowledge of the spectrum of a selfadjoint operator defined on the graph.

We review some inverse problems under different sets of hypotheses. In the first
section we introduce fundamental definitions concerning selfadjoint operators and
quantum systems on graphs. In the second and third ones we study inverse problems
on compact graphs and we answer to the question of which information on the graph
we can recover with or without the hypothesis of rational independence of lengths
of edges. In the fourth section we consider non compact graphs and search for the
relations between the scattering on graph, its spectrum and its topological structure.
The final section is dedicated to recovering potentials of Sturm-Liouville operators
defined on compact graphs from spectra of different problems that are obtained
varying boundary conditions at vertices. We present the same problem for general
differential operator on compact star-shaped graphs.

2 Fundamental Definitions

A graph is a couple of at most countable sets: � D .V ; E/, with V D fvigV
iD1 set of

vertices and E D feigE
iD1 set of edges.

Every edge is a binary relation between two vertices: if e 2 E , then e D fv;wg D
fw; vg; v;w 2 V ; we say that the vertices v;w are incident to e and indicate it with
v;w � e (loops and multiple edges are also admitted, for example: e D fv; vg is a
loop).

With oriented graph we mean a graph in which an orientation has been defined
on every edge. We will call bonds the oriented edges and indicate the set of bonds
with B, so if b 2 B, then b D .v;w/ 2 V 
 V . The inverse bond of b is simply
defined as Nb D .w; v/. By definition, B contains the bonds and their inverse bonds
(so jBj D 2E), instead if we consider a precise orientation for every edge, we can
indicate the set of such bonds always with E , without considering the edges with
inverse orientation. From now on we are going to consider only oriented graphs.

If we put an orientation on a graph it is possible to turn the graph into a metric
system defining a length function. A metric graph is a graph with a length assigned
to every bond: Lb 2 .0;C1
 for every b 2 B and the property that Lb D LNb. So it is
possible to define the length of every edge without contradiction: Le WD Lb D LNb, if
b D .v;w/ and e D fv;wg.

A compact graph is a graph with a finite number of edges with finite length,
otherwise we will call it non compact.

On an edge e of a metric graph we can define a coordinate xe 2 Œ0;Le


and the respective Lebesgue measure dxe (the coordinate increases following the
orientation).
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In the case of a quantum system we need to identify a Hilbert space H as space of
states. In our case, if not specified otherwise, we will always take the Hilbert space
associated to one particle moving on the graph

H D L2.� / WD
M
e2E

L2.e; dxe/

that is, a square-integrable function on a metric graph can be thought as a collection
of E L2-functions defined on every edge:

 WD . 1.x1/;  2.x2/; : : : ;  E.xE//; x1 2 Œ0;L1
; x2 2 Œ0;L2
; : : : ; xE 2 Œ0;LE


and so an operator on a graph acts on the set of these functions.
A quantum graph is a triple .�;H;D.H// with � metric graph, H a selfadjoint

operator and D.H/  H its domain.
A concrete example is given by the Laplacian on a metric graph, defined as

H WD � d2

dx2
D
�

� d2

dx2e

�
e2E

that acts on every edge as a second derivative. The next theorem from [2] guarantees
conditions on its domain for selfadjointness, under reasonable physical hypotheses
on graph structure (that from now on we will always assume). Let us denote the
degree of a vertex v by dv that is the number of edges incident to v, that we assume
finite for every vertex:

dv WD jfe 2 E W e D fv;wg;w 2 Vgj:

Theorem 2.1 Let � be a metric graph with every length of edge bounded from
below by a length L0 (i.e. 0 < L0 � Le; for every e 2 E), and H the Laplacian with
domain D.H/  H. The operator H is selfadjoint on D.H/ if and only if D.H/ is
the set of  such that:

(i)  2 Le2E H2.e; dxe/, with H2.e; dxe/ Sobolev space on edge e:

H2.e; dxe/ WD f�e 2 L2.e; dxe/ W �00
e 2 L2.e; dxe/gI

(ii) (vertices condition) for every v 2 V exist Av;Bv 2 Mat.dv/ such that

• rk.AvjBv/ D dv , with .AvjBv/ matrix that has as columns the union of
columns of Av and Bv;

• AvB�
v is selfadjoint;

• Av .v/ C Bv 0.v/ D 0, where  .v/ is the vector . 1.v/; : : : ;  dv .v// of
the components of  on the edges incident to v valued in the coordinate
corresponding to v on the edge;
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and it is assumed that kB�1
v AvQvk is uniformly bounded (where Qv denotes the

orthogonal projection onto the range of B�
v , and B�1

v is the inverse matrix of Bv
acting from the range of B�

v to the range of Bv).
So with the previous conditions, .�;H;D.H// is a quantum graph.

We observe that the vertices conditions are implicitly determined also by
assigning a scattering matrix �v at each vertex v, defined as follows:

�v.k/ WD �.Av C ikBv/
�1.Av � ikBv/; k 2 C: (1)

See [2] for the physical meaning of the scattering matrices and their relation with
transmission through the vertices of waves moving along the graph.

Let us consider a particular case of conditions at vertices that assure selfadjoint-
ness thanks to the Theorem 2.1. We take for every vertex v

Av D

0
BB@
1 �1 0 : : : 0 0

0 1 �1 : : : 0 0

: : : : : : : : : : : : 1 �1
0 0 : : : : : : 0 0

1
CCA ; Bv D

0
BB@
0 0 : : : : : : 0 0

: : : : : : : : : : : : : : : : : :

0 0 : : : : : : 0 0

1 1 : : : : : : 1 1

1
CCA

and so we obtain Kirchhoff-Neumann (K-N) conditions: for every vertex v,  has to
satisfy

�
 continuous in vP

e�v  0
e.v/ D 0:

(2)

where the derivatives are taken in the outgoing direction from the vertex v and the
continuity condition is:  1.v/ D : : : D  dv .v/.

In this case the scattering matrices are k-independent (so energy independent, see
[2]) and their elements have the explicit form [8]:

�vi;j D 2

dv
� ıi;j; (3)

where ıi;j is the Kronecker delta.

3 Compact Graphs: Inverse Problem with Rational
Independence of Edges Lengths

In this section we deal with the inverse spectral problem for compact quantum
graphs. From now on � will be a metric compact graph, .H;D.H// the Laplacian
with K-N conditions (from now on called as K-N Laplacian).

Under these hypotheses a trace formula exists that gives a relation between the
spectrum of the Laplacian and the topological structure of the graph.

First of all let us remark that from [2] (Theorem 3.1.1) we have that the K-
N Laplacian on a compact quantum graph has a discrete spectrum composed by
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positive eigenvalues with finite multiplicity and accumulation at infinity. So we can
express the spectrum in this way:

�.H/ D fk2ngn2N  R; 0 D k20 < k21 � k22 � : : :

Now we can define a distribution, the spectral density u:

u.k/ WD 2ı.k/C
1X

nD1
.ı.k � kn/C ı.k C kn//

and its Fourier transform:

p
2� Ou.l/ D 2C

1X
nD1
.e�iknl C eiknl/:

The trace formula gives an alternative formula for the spectral density and its
transform involving periodic orbits on the graph (see [9]).

Theorem 3.1 Let � be a metric, compact, connected graph and .H;D.H// the K-
N Laplacian. Then the following trace formulas establish the relation between the
spectrum �.H/ D fk2ngn2N of H and the set of periodic orbits, the total length and
the Euler characteristic of the graph:

u.k/ D �ı.k/C L

�
C 1

2�

X
p2P

.Apeiklp C A�
p eiklp/; (4)

p
2� Ou.l/ D �C 2Lı.l/C

X
p2P

.Apı.l � lp/C A�
p ı.l C lp//; (5)

where

Ap D lp0

0
@ Y
�vij 2T .p/

�vij

1
A ; A�

p D lp0

0
@ Y
�vij 2T .p/

�vij

1
A ;

• � WD V � E is the Euler characteristic of the graph;
• L W sum of the lengths of the edges of � , called the total length;
• P set of periodic orbits on � . A periodic orbit is an equivalence class of oriented

closed paths invariant under the action of a cyclic permutation of edges of the
path;

• p0 primitive orbit of p. If p has a length multiple of lengths of other orbits, p0 is
the orbit among these ones that has the minimal length;

• lp length of the orbit p;
• T .p/ set of all scattering matrices elements �vi;j associated to vertices v and edges

i; j that belong to the periodic orbit p.



272 M. Olivieri and D. Finco

Knowledge of the spectrum allows one to define the spectral density, and thanks
to the trace formula we obtain that the support of (5) is the set of the lengths of all
periodic orbits of the graph. In [9], if we assume hypothesis of rational independence
of edges lengths and cleaning of graph (absence of vertices with degree 2), an
algorithmic procedure to recover information about the graph is presented. The most
important steps are the definitions of three sets L00  L0  L where:

• L WD flp W p 2 Pg is the set of the lengths of periodic orbits that can be obtained
by the support of (5);

• L0 WD
n
l 2 L W Pp2PWlDlp

Ap ¤ 0
o

gives connectivity of the graph because it

contains the lengths of the edges and combination of lengths of couples of edges
that are connected;

• L00 WD fl 2 L0 W l � 2Lg, that is a finite set, and so one can find a basis of lengths
such that any element of L00 can be obtained as semi-integer combination of the
elements of the basis. The basis with the minimal lengths is the set of the lengths
of the edges of the graph or their double (depending if an edge forms a loop or
not respectively).

And so it is possible to recover the edges lengths fLege2E and how they are
connected, i.e. it is possible to reconstruct the graph.

Theorem 3.2 Let � be a compact, connected, quantum graph with .H;D.H// K-N
Laplacian. If we suppose that

(i) � is clean (no vertices of degree 2),
(ii) the lengths of the edges are rational independent,

then from the spectrum �.H/ it is possible to reconstruct uniquely the graph � (that
is, the lengths of edges and how they are connected).

In [4] a counterexample is produced that shows the failure of reconstruction of
graphs without the hypothesis of rational independence. Let us take �1 in Fig. 1 and
K-N Laplacian .H;D.H//.

Fig. 1 Graph �1
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Fig. 2 Graph �2

Its lengths are rational dependent. The spectrum of H is obtained solving the
secular equation (see [4]), and consists of zeros of the function

f1.k/ D tan.2.a C b/k/C
2 tan.ak/C 2 tan.bk/C tan..2a C b/k/C tan..a C 2b/k/

1 � .2 tan.ak/C tan.bk//.tan.bk/C tan..2a C b/k/C tan..a C 2b/k//
:

If we consider now .H;D.H// on graph �2 in Fig. 2, always with rational
dependence lengths, this time the spectrum of H consists of zeros of the function

f2.k/ D tan.2ak/�
2 tan.ak/C 2 tan.bk/C tan..a C 2b/k/C tan..2a C 3b/k/

1 � .tan.ak/C tan.bk/C tan..a C 2b/k/.tan.ak/C tan.bk/C tan..2a C 3b/k//
:

From [3] we have that zeros of f1 and zeros of f2 are the same, that is, �1 and �2
are isospectral graphs. So there is the failure of unique reconstruction of the graph
from the spectrum of the Laplacian.

4 Compact Graphs: Inverse Problem in General

Now we do not assume the rational independence of edges lengths. Without this
hypothesis only the Euler characteristic can be recovered (see [8]) and we have,
thanks again to the trace formula, an explicit formula for �.

Theorem 4.1 Let � be a compact, connected, quantum graph with .H;D.H// the
K-N Laplacian. Then from the spectrum �.H/ D fk2ngn2N it is possible to recover
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uniquely the Euler characteristic � of the graph by the formula:

� D2C 2 lim
t!C1

X
kn¤0

cos.kn=t/

�
sin.kn=2t/

kn=2t

�2
(6)

D2 � 2 lim
t!C1

X
kn¤0

1 � 2 cos.kn=t/C cos.2kn=t/

.kn=t/2
: (7)

It is possible to extend this result to bounded perturbation of the Laplacian (see
[8]): let Hq be the operator

Hq D H C q; D.Hq/ WD D.H/:

where q 2 L1.� / acts as a multiplication operator. Hq is selfadjoint in its domain
and has a discrete spectrum: �.Hq/ WD f.k0

n/
2gn2N. Taking into account of the

asymptotic formula jkn � k0
nj D O

�
1
n

	
, where k2n and k02

n are the eigenvalues of
H and Hq respectively, formula (6) still holds replacing kn with k0

n.

Theorem 4.2 Let � be a compact, connected, quantum graph with .Hq;D.Hq// the
operator defined above. Then from the spectrum �.Hq/ D f.k0

n/
2gn2N it is possible

to recover uniquely the Euler characteristic � of the graph by the formula:

� D 2C 2 lim
t!C1

1X
nD0

cos.k0
n=t/

�
sin.k0

n=2t/

k0
n=2t

�2
(8)

5 Non Compact Graphs: Inverse Problem with Scattering

Now we are going to consider graphs with finite number of edges but also with
infinite lengths. We deal with inverse problems for graphs that consist of a compact
part and bonds of infinite length attached to some vertices and going to infinity. We
call these bonds leads, their set Bext, and denote them with .v;1/ 2 Bext, with v
vertex the lead is attached to (inverse bonds of leads are not admitted).

So the graph can be expressed in the form � D .V ;B/; B WD Bint [ Bext where
Bint are the bonds of the compact part.

Let us also make, for simplicity, the hypothesis of at most one lead attached to
every vertex, so jBextj D N � V . If we do not consider inverse bonds, we denote
with E D E int [ Eext, E int set of internal edges of compact part of the graph, and Eext

edges associated to leads (obviously Eext D Bext).
The eigenvalues problem for the Laplacian with general selfadjoint conditions at

vertices

� d2

dx2b
 b.x/ D k2 b.x/; b 2 B
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on the bonds in the compact part of the graph has the solutions:

 b.x/ D ˛beikxb C ˛NbeikLb e�ikxb ; if b 2 Bint (9)

while on leads we are interested in solution of the form:

 b.x/ D Cin
b e�ikxb C Cout

b eikxb ; if b 2 Bext: (10)

In [2] it is explained how are related the 2E-vector of coefficients of outgoing
waves from vertices ˛ WD f˛bgb2Bint , the N-vectors of coefficients of waves that
leave the graph on leads Cout WD fCout

b gb2Bext and the ones that reach the graph on
the leads Cin WD fCin

b gb2Bext :

�
Cout

˛

�
D
�

R.k/ To.k/
Ti.k/ S.k/

��
Cin

˛

�
(11)

where in the previous expression the matrix is .2E C N/ 
 .2E C N/ and

• S.k/ describes the evolution of waves inside the compact part of the graph;
• R.k/ describes the immediate reflection of waves from the graph (from leads into

leads);
• To.k/ and Ti.k/ describe transmission from the compact part out and from the

leads into the compact part correspondingly.

Solving Eq. (11) (see [2] for explicit calculation) we find that

Cout D ˙.k/Cin

where ˙.k/ WD R.k/ C To.k/.1 � S.k//�1Ti.k/ is the scattering matrix1 (1 is the
identity matrix). The knowledge of this matrix gives the opportunity to obtain again
a method of reconstruction of a metric graph. If we define the scattering phase ˚
by

˚.k/ WD �i log det.˙.k//

and the resonance density u by

u.k/ WD 1

2�

d˚.k/

dk

we have in this case a trace formula for the resonance density (see [6] and [5]).

1The scattering matrices defined in the previous chapter can be thought as a restriction of this one
for compact graphs. In fact for compact graphs there are not the lead-transmission terms and in a
proper base: ˙ D diag.�1; : : : ; �V/.
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Theorem 5.1 Let � be a non-compact, metric graph formed by a compact part
with at most one lead attached to every vertex, .H;D.H// the K-N Laplacian and˙
the scattering matrix associated. The next formula holds for the resonance density:

u.k/ D
QL
�

C 1

2�

X
p2 QP

� QApeiklp C QA�
p e�iklp

	

where

QAp D lp0

0
B@ Y
�vij 2 QT .p/

�vij

1
CA ; QA�

p D lp0

0
B@ Y
�vij 2 QT .p/

�vij

1
CA ;

• QL is the total length of the compact part of the graph: QL WD 1
2

P
b2Bint Lb;

• QP is the set of periodic orbits in the compact part of the graph;
• p0 primitive orbit of p;
• lp the length of the orbit p;
• QT .p/ set of all scattering matrices �v associated to vertices that belong to the

periodic orbit p in the compact part of the graph.

From the knowledge of the scattering phase and under the same hypotheses of
Kirchhoff-Neumann conditions, cleanliness and rational independence of lengths,
it is possible to reconstruct uniquely the graph with the same algorithm (find
the support of the Fourier transform of u, and from it the lengths of edges and
connectivity).

Theorem 5.2 Let � be a non-compact, connected, quantum graph with .H;D.H//
K-N Laplacian, formed by a compact part with at most one lead attached to every
vertex. If we suppose that

(i) � is clean,
(ii) the lengths of the edges are rational independent,

then from the scattering matrix ˙ it is possible to reconstruct uniquely the compact
part of the graph � .

Also in this case it is possible to find some counterexamples. The impossibility
of unique reconstruction holds also for more general operators than the Laplacian
H: let � be a non-compact graph with a finite number of bonds and leads, and HQ

be the Schrödinger operator

HQ WD H C Q (12)

HQ D
�

� d2

dx2e
 e.xe/C qe.xe/ e.xe/

�
e2E
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where Q D fqege2E 2 L1.� / WD L
e2E L1.e/, Q real-valued and on the leads b there

is the further request

Z
b
.1C jxbj/jqb.xb/jdxb < C1:

We have seen that the knowledge of the scattering matrix allows to find the
scattering phase and, with the hypothesis of rational independence, reconstruct the
graph.

The results given below show that if one knows the scattering matrix associated
to operator (12) without further hypotheses on lengths of edges, reconstruction is no
more possible. Also information on the potential can not be obtained.

We remark the fact that if two scattering matrices ˙ and ˙ 0 are similar (see
[10]) then the corresponding Schrödinger operators are unitarily equivalent. So the
next results have to be intended up to unitary equivalence of operators and up to
similarity for scattering matrices (for further details, see always [10]):

1. (Bargmann) the knowledge of the graph, the selfadjoint boundary conditions
at the vertices and the scattering matrix ˙ for the Schrödinger operator HQ is
generally not enough to determine the real-valued potential Q (for a proof see
[1]);

2. the knowledge of the scattering matrix ˙ for the K-N Laplacian is generally not
enough to determine the topological structure of the graph uniquely;

3. the knowledge of the topological structure of the graph and of the scattering
matrix ˙ for the K-N Laplacian is generally not enough to determine the graph
uniquely;

4. the knowledge of the graph, the real-valued potential Q and the scattering matrix
˙ for the Schrödinger operator HQ is generally not enough to determine the
Schrödinger operator uniquely.

If not otherwise specified, the counterexamples are all shown in [10].

6 Inverse Problem for Sturm-Liouville Operators
on Graphs: Recovering Potential

We now consider the problem of the reconstruction of the potential from the
knowledge of the spectrum of the operator associated to various vertices conditions
on compact graphs in the case of Sturm-Liouville operators, and then more in
general for differential operators of a variable order.

Let � D .V ; E/ be a compact graph. We call

V0 WD fv 2 V W dv D 1g
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the set of external vertices, i.e., the set of vertices of degree 1 (jV0j D V0). The
others are called internal and indicated with V1 (jV1j D V1), so that

V D V0 [ V1; V D V0 C V1:

Edges that are incident to external vertices are called external edges and indicated
with E0 (the same for bonds).

A cycle is an ordered sequence of bonds .b1; b2; : : : ; bn/ such that they form a
closed curve: b1 D bn. We indicate the set of edges whose bonds form a cycle with
E2, instead the ones that do not form a cycle with E1 . Obviously E0  E1 because
we are not considering inverse bonds.

We enumerate the edges as follows:

• E0 WD fe1; : : : ; epg;
• E1 WD fe1; : : : ; erg; r � p, p D V0 (every external vertex is incident to only one

external edge);
• E2 WD ferC1; : : : ; eEg.

As in the previous cases, we assign lengths to edges and consider an orientation
on the graph so that coordinates on the edges are well defined. Let us take a function
 D . e/e2E with every  e 2 AC.e/, where AC.e/ is the set of absolutely
continuous functions on e; we take Q D .qe/e2E 2 L1.� / to play the role of
potential.

We define the Sturm-Liouville problem:

� d2

dx2e
 e.x/C qe.x/ e.x/ D � e.x/; e 2 E (13)

with K-N conditions on every internal vertex, that here we rewrite for convenience:
for every v 2 V1

�
 continuous in vP

e�v  0
e.v/ D 0:

(14)

With the specification of conditions on external vertices, we can produce various
associated problems:

• L0.� / problem: (13)–(14) problem with Dirichlet conditions on external ver-
tices, that is: for every v 2 V0

 e.v/ D 0; for every e � vI
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• Lk.� / problems, k D 1; : : : ; p � 1 W (13)–(14) problem with Dirichlet conditions
on external vertices except for the vertex vk, that has Neumann condition

 0
e.vk/ D 0; for every e � vk;

 e.v/ D 0; for every v 2 V0 � fvkg; e � vI

• L�.� / problems,  D r C 1; : : : ;E; � D 0; 1 W  identifies an edge e part of a

cycle. Denoting with v the vertex with coordinate zero on e , the L�.� / problem
is (13) problem with K-N conditions on every internal vertex but not in v . In v
we have K-N condition involving every incident edge except e ,2 while along
e , the problem with � D 0 corresponds to Dirichlet condition on v , while the
problem with � D 1 corresponds to Neumann condition on v . In the external
vertices there are Dirichlet conditions:

(
 e .v/ D 0; if � D 0I
 0

e
.v/ D 0; if � D 1I

 e.v/ D 0; for every v 2 V0; e � vk:

Every problem defined above gives a different spectrum of the operator HQ WD
� d2

dx2
C Q as solution. Let us associate every spectral set to problems in this way:

Problems Eigenvalues sets
L0.� / �0 WD f�0ngn�1
Lk.� / �k WD f�kngn�1
L�.� / �


� WD f��ngn�1

Knowledge of all this spectral sets allows one to recover an unknown potential
of the HQ operator, as stated in [11].

Theorem 6.1 Let � be a metric, compact, graph, and HQ WD � d2

dx2
C Q a

Schrödinger operator as previously defined. From the knowledge of

• �0 ;
• �k for k D 1; : : : ; p � 1;
• �


� for  D r C 1; : : : ;E and � D 0; 1

it is possible to recover uniquely the potential Q D .qe/e2E .

2So in the vertex v K-N conditions have to be rewritten as

X
e¤e�v

 0
e.v / D 0

.
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Let us now deal with the case of general differential operators of variable order.
In this case, if we admit also the presence of cycles, we have a result for star-shaped
graphs.

Let � D .V ; E/ be a metric, compact star-shaped graph with a cycle, i.e. if
V D fv0; : : : ; vE�1g and E D fe0; : : : ; eE�1g we suppose that e0 WD .v0; v0/ is
a loop, and all the other edges are incident to v0: ej WD .vj; v0/, with orientation
in the direction entering in the vertex v0 (so we can denote the edges simply with
correspondent indices). Also in this case we take functions  2 Le2E AC.e/.

Fix numbers 2 D n0 � n1 � : : : � nE�1, and consider differential equations

 
.nj/

j .x/C
nj�2X
�D0

q�j.x/ 
.�/
j .x/ D � j.x/: j D 0; : : : ;E � 1 (15)

where q�j 2 L1.e/ for every j, and so we have a potential Q WD fq�jg with j D
0; : : : ;E � 1 and � D 0; : : : ; nj � 2.

Let us define conditions on the vertex v0. First of all we introduce the linear
forms

Uj�. j/ WD
�X

�D0
�j�� 

.�/
j .Lj/

with j D 1; : : : ;E � 1; � D 0; : : : ; nj � 1 and 0 ¤ �j�� 2 C are fixed complex
numbers. Consider also the form

U0�. 0/ WD  
.�/
0 .L0/; � D 0; 1:

We define continuity conditions C.�/;C.0; ˛/ and Kirchhoff conditions K.�/ of
order � as follows:

• C.�/:

UE�1;�. E�1/ D Uj�. j/; j D 0; : : : ;E � 2I � < nj � 1I

• C.0; ˛/ W C.0/ conditions and ˛ 0.0/ D  0.L0/;
• K.�/ W

X
jW�<nj

 
.�/
j .Lj/ D ı1� 

0
0.0/

where ıjk is the Kronecker delta and ˛ 2 C � f0g.
We define now, for fixed s; k; �, with s 2 f1; : : : ;E � 1g; k 2 f1; : : : ; ns � 1g and

� 2 fk; : : : ; nsg, the Lsk� problem for the variable order differential operators. It can
be defined as the problem (15) with
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1. continuity conditions: C.0; ˛s/, C.�/; for � D 1; : : : ; k � 1, and K.�/, for � D
k; : : : ; ns � 1 at the vertex v0 (˛s being non-zero numbers at least two of which
are different);

2. boundary conditions:

 
.��1/
k .0/ D 0; � D 1; : : : ; k � 1; �I

 
.��1/
j .0/ D 0; � D 1; : : : ; nj � kI j D 1; : : : ;E � 1I j ¤ s W nj > kI

 j.0/ D 0; j D 1; : : : ;E � 1 W nj � k

Solutions to these problems give discrete spectra �sk� WD f�lsk�gl�1, for s D
1; : : : ;E �1I k D 1; : : : ; ns �1I� D k; : : : ; ns. Always from [11] we have a theorem
of reconstruction of the potential Q.

Theorem 6.2 Let � be a metric star-graph with a loop in the internal vertex.
Consider Eq. (15) with associated Lsk� problems, s D 1; : : : ;E � 1I k D 1; : : : ; ns �
1I� D k; : : : ; ns on the graph. Then from the knowledge of�sk�, for every s; k; �, it
is possible to recover the unknown potential Q.
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Double-Barrier Resonances and Time Decay
of the Survival Probability: A Toy Model

Andrea Sacchetti

Abstract In this talk we consider the time evolution of a one-dimensional quantum
system with a double barrier given by a couple of repulsive Dirac’s deltas. In such
a pedagogical model we give, by means of the theory of quantum resonances, the
asymptotic behavior of h ; e�itH�i for large times, where H is the double-barrier
Hamiltonian operator and where and � are two test functions. In particular, when
 is close to a resonant state then explicit expression of the dominant terms of the
survival probability defined as jh ; e�itH ij2 is given.

Keywords Lambert special functions • Quantum resonances • Quantum survival
probability • Singular barrier potential

1 Introduction

The phenomenon of exponential decay associated with quantum resonances is well
known since the pioneering works on the Stark effect in an isolated hydrogen atom.
Atomic hydrogen in an external electric field was first studied experimentally in
1913 by Stark [18] and Lo Surdo [11], and quantum mechanically in 1926 by
Schrödinger [16]. The time independent Schrödinger equation for a hydrogen atom
of nuclear charge Z, electron charge e, electron (reduced) mass m, in a uniform
external electric field F directed along one axis (i.e. the z axis) has the form

H.F/ D E ; H.F/ WD � „2
2m
�C eZ

r
C Fez : (1)

A. Sacchetti (�)
Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Universitá degli Studi di Modena e
Reggio Emilia, Via Campi 213/A, Modena 41125, Italy
e-mail: andrea.sacchetti@unimore.it

© Springer International Publishing AG 2017
A. Michelangeli, G. Dell’Antonio (eds.), Advances in Quantum Mechanics,
Springer INdAM Series 18, DOI 10.1007/978-3-319-58904-6_17

283

mailto:andrea.sacchetti@unimore.it


284 A. Sacchetti

When the external electric is absent, i.e. F D 0, then H.0/ has discrete negative
eigenvalues given by (we set „ D 1, 2m D 1 and e D 1)

E D En;n1;m D � Z2

2n2

where n D n1 C n2 C jmj C 1 D 1; 2; : : : is the principal quantum number, jmj D
0; 1; 2; : : : ; n � 1 and the quantum number n1 is the number of nodes of the wave
function.

In fact, when we switch on the electric field then the eigenvalues problem (1) has
no eigenvalues at all as soon as F 6D 0. Thus, the quantum states experimentally
observed in the Stark effect are not truly bound, but are instead quantum resonances
associated with a decay effect of the survival probability. In fact, they are shape
resonances, which correspond to confinement of a particle by a barrier, through
which tunneling occurs; although the strength of the electric field may be small, the
perturbation interaction remains large somewhere far from the origin.

In order to explain the decay effect due to resonances let us consider, in a more
general context, an Hamiltonian with a discrete eigenvalue E0 and an associated
normalized eigenvector  0. We suppose to weakly perturb such an Hamiltonian
and that the new Hamiltonian H has purely absolutely continuous spectrum, that is
the eigenvalue of the former Hamiltonian disappears into the continuous spectrum.
Then we physically expect that, after a very short time, the survival amplitude has
the following asymptotic behavior

h 0; e�itH 0i � e�itE (2)

where E is a quantum resonance close to the unperturbed eigenvalue E0, i.e. <E �
<E0 and =E < 0 is such that j=E j � 1. The survival probability is defined as the
square of the absolute value of the survival amplitude (sometimes in the literature,
with abuse of notation, both objects are named survival probability).

The validity of (2) has been proved when the perturbation term is given by a
Stark potential. In such a case Herbst [10] proved that (2) holds true with an
estimate of the error term. However, we should remark that Simon [17] pointed out
that the exponentially decreasing behavior is dominant for large times only when
the perturbed Hamiltonian H is not bounded from below. In fact, in the case of
Hamiltonian H bounded from below we expect to observe a time decay for the
survival amplitude of the form

h 0; e�itH 0i D e�itE C b.t/ (3)

where the remainder term b.t/ is dominant for small and large times, and the
exponential behavior is dominant for intermediate times. On the other hand,
dispersive estimates for one-dimensional Schrödinger operators suggest that for
large times the remainder term b.t/ is bounded by ct�r, for some c > 0 and r > 0,
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as in the free model where r D 1
2
. However, this estimate is very raw because it

does not take into account the resonances effects.
The analysis of the problem of the exponential decay rate versus the power

decay rate in the time dependent survival amplitude defined by (3) is a research
argument since the ’50. In the seminal paper by Winter [20] it has been numerically
conjectured that a transition effect between the two different kind of decays starts
around some instant t. Recently a more rigorous analysis of the Winter’s model,
consisting of a one-dimensional model with one Dirac’s delta potential at x D
R > 0 and Dirichlet boundary condition at x D 0, has been done [7]. Such a
transition effect has been also observed in ultra-cold sodium atoms trapped in an
accelerating periodic optical potential [19]; more precisely, they show a transition
from non-exponential decay for short times to exponential decay for intermediate
time. Furthermore, Winter-like models, where a more general singular potential is
considered, have been recently studied, see e.g. [4].

In this paper we consider a simple one-dimensional model with a symmetric
double barrier potential with Hamiltonian

H˛ D � „2
2m

d2

dx2
C ˛ı.x C a/C ˛ı.x � a/

on the whole real axis [13, 14]. The two barriers are modeled by means of two
symmetric repulsive Dirac’s deltas at x D ˙a, for some a > 0, with strength ˛ 2
.0;C1
. This model has been considered by [9], as a pedagogical model for the
explicit study of quantum barrier resonances. However, H˛ also has some physical
interest as a model for ultra-thin double-barrier semiconductor heterostructures [12].

When ˛ D C1 the spectrum consists of a sequence of discrete eigenvalues
E1;n, n D 1; 2; 3; : : : ; embedded in the continuum Œ0;C1/. When ˛ < C1
the spectrum of H˛ is purely absolutely continuous and the eigenvalues obtained
for H1 disappear into the continuum. More precisely, such eigenvalues becomes
quantum resonances E˛;n and the time decay of h ; e�iHt�i, where  and � are two
test functions, has the form (3) where

b.t/ D c˛t�3=2 C O.t�5=2/ (4)

for large t and for some c˛ > 0 (see Theorem 1 below); in particular, in the case
where the two test functions coincide with the unperturbed eigenvector then c˛ may
be explicitly computed (see Theorem 2 below) and it turns out that c˛ � ˛�2 in
agreement with the fact that the asymptotic behavior (4) cannot uniformly hold true
in a neighborhood of ˛ D 0.

In fact, we prove that a cancellation effect occurs and that the t�1=2 factor
coming from the free evolution propagator e�itH0 , as usually occurs for the free one-
dimensional Laplacian problem, is canceled by means of an opposite term coming
from the two Dirac’s deltas barrier. Hence, we can conclude that the effect of the
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double barrier is twice:

- the time-decay becomes faster, for t large for any ˛ > 0;
- for intermediate times the time-decay is slowed down because of the effect of the

quantum resonant states.

Finally, we also find out the asymptotic value, for large ˛, of the instant t around
which the transition between exponentially and power decay rate starts.

We should mention some papers where a weighted t�3=2 dispersive estimate has
been proved for the evolution operator under some assumptions on the potential. In
particular, [8] (see also [15]) assumed that the potential is a L1 function and that
zero energy is not a resonance. We have to point out that the condition about the
absence of zero energy resonance is crucial. In fact, in our model we see that the first
resonance E˛;1 has limit zero when ˛ goes to zero and the asymptotic behavior (4)
does not hold true in such limit because c˛ goes to infinity. We could overcome this
problem by choosing the test vector  in a suitable subspace [3].

2 Description of the Model and Quantum Resonances

We consider the resonances problem for a one-dimensional Schrödinger equation
with two symmetric potential barriers. In particular we model the two barriers by
means of two Dirac’s ı at x D ˙a, for some a > 0. The Schrödinger operator is
formally defined on L2.R; dx/ as (let „ D 1 and 2m D 1)

H˛ D � d2

dx2
C ˛ı.x C a/C ˛ı.x � a/

where ˛ 2 .0;C1
 denotes the strength of the Dirac’s ı.
When ˛ < C1 it means that the wavefunction should satisfies to the matching

conditions

 .xC/ D  .x�/ and  0.xC/ D  0.x�/C ˛ .x/ at x D ˙a ; (5)

and H˛ has self-adjoint realization on the space of functions H2 .R n f˙ag/\H1.R/

satisfying the matching conditions (5). When ˛ D C1 it means that H1 has
self-adjoint realization on a domain of functions satisfying the Dirichlet conditions
 .˙a/ D 0. In this latter case then the eigenvalue problem H1 D E1 has
simple eigenvalues E1;n D k2n where kn D n�

2a , n D 1; 2; : : :, with associated
(normalized) eigenvectors

 n.x/ D

8̂
<
:̂
0 if x < �a
1p
a

cos


knx � �

4
.1C .�1/n/� if � a < x < Ca

0 if C a < x

: (6)
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Fig. 1 Double-barrier model with two repulsive Dirac’s ı at x D ˙a. Resonances are associated
with the outgoing conditions A D F D 0 or, equivalently, to the poles of the kernel of the resolvent
operator in the unphysical complex half-plane =E < 0

The spectrum of H1 is then given by the continuum Œ0;C1/ with embedded
eigenvalues E1;n.

In the case ˛ 2 .0;C1/ then the eigenvalue problem

H˛ D E˛ 

has no real eigenvalues, but resonances; where resonances correspond to the
complex values of E˛ such that the wavefunction

 .x/ D
8<
:

Aeikx C Be�ikx if x < �a
Ceikx C De�ikx if � a < x < Ca
Eeikx C Fe�ikx if C a < x

; k D
p
E˛ ; =k � 0 ;

satisfying the matching condition (5), satisfies the outgoing conditions too (see
Fig. 1)

A D 0 and F D 0 : (7)

We should remark that the outgoing condition A D F D 0 implies that the
wavefunction behaves like eikjxj and thus it exponentially decays when the energy
belongs to the unphysical complex half-plane =E < 0.

The matching condition (5) and the resonance condition (7) imply that k satisfies

to the following equation M2;2 D 0, where M is the transfer matrix

�
E
F

�
D

M

�
A
B

�
. A straightforward calculation gives that equation M2;2 D 0 takes the form

1

4k2


e4ika˛2 C 4k2 C i4k˛ � ˛2� D 0

that is

�
e2ika˛

	˙ i .2k C i˛/ D 0 (8)
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which has two families of complex-valued solutions

k1;m D i

2a
ŒWm.�a˛ea˛/� a˛
 and k2;m D i

2a
ŒWm.a˛ea˛/� a˛
 (9)

where Wm.x/ is the m-th branch, m 2 Z, of the Lambert special function. The
Lambert function [2], denoted by W.z/ and introduced by Johann Heinrich Lambert
(1728–1777), is defined to be the multivalued analytic function satisfying the
equation W.z/eW.z/ D z, z 2 C.

It turns out that =kj;m < 0 for any j and m, but k2;0 D 0, and thus equation
H˛ D E˛ has no eigenvalues for any ˛ > 0. However, we have to remark that
for m < 0 then <kj;m > 0 and =kj;m < 0 and then E˛ D �

kj;m
	2

belongs to the
unphysical sheet with =E˛ < 0 for m D �1;�2;�3; : : :. Therefore, we conclude
that the spectral problem H˛ D E˛ has a family of resonances given by

E˛;n D
8<
:

k21;�.nC1/=2 D
h

i
2a

�
W� nC1

2
.�a˛ea˛/ � a˛

�i2
if n D 1; 3; 5; : : :

k22;�n=2 D 

i
2a

�
W� n

2
.a˛ea˛/ � a˛

	�2
if n D 2; 4; 6; : : :

:

Let a > 0 be fixed, then it follows that for n fixed and ˛ large enough the asymptotic
behavior of the resonances follows from the asymptotic expansion of the Lambert
function (see Eq. (4.18) by [2]) and it is given by (see [14] where the correct
asymptotic expansion of the imaginary part of the resonance is reported)

E˛;n D
�n�

2a

�2 �
1 � 1

a˛
C 1

a2˛2
� i

a2˛2
n�

2
C O

�
1

˛3

��2

�
�n�

2a

�2 � i
n3�3

4a4˛2

The explicit form of the resolvent of H˛ , ˛ 2 .0;C1/ is given by [1]

�

H˛ � k2

��1
�
�
.x/ D

Z
R

K˛.x; yI k/�.y/dy; � 2 L2.R/; =k � 0 ;

where the integral kernel K˛ is given by

K˛.x; yI k/ D K0.x; yI k/C
4X

jD1
Kj.x; yI k/

with K0.x; yI k/ D i
2k eikjx�yj and Kj.x; yI k/ D Lj.x; yI k/=g.k/ where g.k/ D 0 is the

resonance’s equation,

g.k/ WD �2k
�
.2k C i˛/2 C ˛2ei4ka

	
;
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and

L1.x; yI k/ D �˛.2k C i˛/ eikjxCajeikjyCaj; L4.x; yI k/ D L1.�x;�yI k/

L2.x; yI k/ D i˛2 e2ika eikjxCajeikjy�aj; L3.x; yI k/ D L2.�x;�yI k/:

Resonances can be defined as the complex poles in the unphysical sheet =E˛ < 0

of the kernel of the resolvent, too; that is the pole of the function g.k/ in agreement
with (8).

3 Time Decay: Main Results

Let � and  two well localized wave-functions, we are going to estimate the time
decay of the term

h ; e�itH˛�i (10)

Theorem 1 Let us assume that � and  have compact support. Then we have that

h ; e�itH˛�i D c˛t�3=2 C
1X

nD1
ˇncne�iE˛;nt C O.t�5=2/ (11)

for some constants c˛ and cn and where

ˇn D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

1 if
ˇ̌̌
=pE˛;n

ˇ̌̌
<
ˇ̌̌
<pEn;˛

ˇ̌̌

1
2

if
ˇ̌̌
=pE˛;n

ˇ̌̌
D
ˇ̌̌
<pE˛;n

ˇ̌̌

0 if
ˇ̌
ˇ=pE˛;n

ˇ̌
ˇ >

ˇ̌
ˇ<pE˛;n

ˇ̌
ˇ

: (12)

We may remark that in the case ˛ D 0, that is when there are no barriers, then
h ; e�itH0�i � t�1=2 and an apparent contradiction appears. The point is that the
asymptotic expansion (11) is not uniform as ˛ goes to zero. In fact, in an explicit
model, see Theorem 2, it results that c˛ ! 1 as ˛ ! 0. We can explain this
apparent contradicion by remarking that the first resonance E˛;1 ! 0 when ˛ ! 0

and that H0 has a zero energy resonance.

Remark 1 Some authors [5, 6] discuss if and how the smoothness of the wave-
functions  and � plays a special role in the asymptotic behavior of the survival
probability. Although this is a quite interesting question we don’t treat it in such a
paper.
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We consider now, in particular, the asymptotic behavior of (10) when the test
vectors � and  coincide with one of the localized states, e.g. with  1.x/ D
�Œ�a;Ca
.x/ cos.k1x/ defined by (6) for n D 1.

Theorem 2 Let  D � coinciding with the eigenvector  1 of H1 associated with
E1;1 D �

�
2a

	2
, let `.k/ be the function defined as

`.k/ D 2�
p

a
e2kai C 1

�2 � 4k2a2
; (13)

and let E 2
˛;1 D k1;�m be the resonances defined by (9). Then

h 1; e�itH˛ 1i D c˛t�3=2 C
1X

mD1
ˇmcme�iE˛;1t C O.t�5=2/ (14)

where ˇm is defined by (12) and

c˛ D �2
3=2.1C i/a

�5=2˛2
; cm D � ˛`.k1;�m/

2

1C ˛a
�
1C 2k1;�m

i˛

�

This result agrees with the limit case when ˛ D C1. Indeed, we check that

`.k1;�m/ D 4i�
p

ak1;�m

˛.�2 � 4k21;�ma2/

Hence

`.k1;�m/ � O.˛�1/ if m 6D 1

as ˛ ! C1. For m D 1, from the asymptotic behavior of k1;�1 it follows that

�2 � 4k21;�1a2 � �2 � 4a2
�
�2

4a2

�
1 � 2

a˛

��
D 2�2

a˛

and then

`.k1;�1/ � i
p

a ; as ˛ ! C1 :

Hence, as ˛ goes to infinity it follows that the dominant term of h 1; e�itH˛ 1i is
given by

h 1; e�itH˛ 1i D e�i. �2a/
2
t C O.˛�1/

in agreement with the fact that h 1; e�iH1 t 1i D e�iE˛;1t.
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The proof of the Theorems is given by [13] and it is based on the explicit
calculation of the evolution operator, obtained by the expression of the kernel of
the resolvent operator, on the stationary phase theorem and the residue theorm.

4 Decay Transition

Let us compare, in the limit of large ˛ and a fixed such that a˛ � 1, the absolute
values of the two dominant terms of h 1; e�itH˛ 1i given by (14); that is the power

term d1
˛2t3=2

, where d1 D
ˇ̌̌
23=2.1Ci/a
�5=2

ˇ̌̌
D 4a

�5=2
, and the exponential term

ˇ̌
c1e

�iE˛;1t
ˇ̌ D d3e

=E˛;1t � d3e
�d2t=˛2 ;

where

d2 D �3

4a4
and d3 D jc1j D

ˇ̌̌
ˇ̌
ˇ

˛`.k1;�1/2

1C ˛a
�
1C 2k1;�1

i˛

�
ˇ̌̌
ˇ̌
ˇ � 1 :

In order to understand when the power behavior dominates and when the exponen-
tial behavior dominates we have to solve the inequality

d1
˛2t3=2

< d3e
�d2t=˛2 :

A straightforward calculation gives that this inequality is satisfied for any t 2 Œt1; t2
,
where 0 < t1 < t2 are given by

t1 D �3˛
2

2d2
W0.z/ and t2 D �3˛

2

2d2
W�1.z/ (15)

where

z D �2
3

d2d
2=3
1

˛10=3d2=33

:

This interval is not empty provided that the argument z of the Lambert function
is between .�1=e; 0/; which holds true for ˛ large enough. Furthermore, we should
remark that

t1.˛/ � d2=31

˛4=3d2=33

� 1 and t2.˛/ � 1
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Fig. 2 Plot of the absolute value of the survival amplitude P.t/ D ˇ̌h 1; e�itH˛ 1i
ˇ̌

given by the
dominant terms of (14) for large times t 2 Œ100; 6000
 and for different values of ˛, here we fix
a D 1

2
. Around t D t2.˛/ a transition of the decay law starts; for t < t2.˛/ the exponential decay

dominates, while for t > t2.˛/ the power law decay dominates

because W0.�/ � � if j�j � 1 and

W�1.�/ � ln./ � ln .� ln.//

if 0 <  � 1.
Finally, we can resume these results in the following statement.

Proposition (decay transition) Let ˛ > 0 be large enough, and let t2.˛/ given
by (15). Let h 1; e�itH˛ 1i be the survival amplitude of the state  1 given by (14)
and consisting by a superposition of the exponential and power law decay terms.
Then a transition from the exponential to the power law decay term starts around
t2.˛/. More precisely, for t < t2.˛/ the exponential decay term dominates, while
for t > t2.˛/ the power law decay term dominates (see Fig. 2).
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