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Abstract We review some recent methods of subgrid-scale parameterization used
in the context of climate modeling. These methods are developed to take into
account (subgrid) processes playing an important role in the correct representation
of the atmospheric and climate variability. We illustrate these methods on a simple
stochastic triad system relevant for the atmospheric and climate dynamics, and we
show in particular that the stability properties of the underlying dynamics of the
subgrid processes have a considerable impact on their performances.
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1 Introduction

From a global point of view, the Earth system is composed of a myriad of different
interacting components. These components can be regrouped in compartments
like the atmosphere, the hydrosphere, the lithosphere, the biosphere, and the
cryosphere (Olbers, 2001).1 Those compartments play a role on different timescales
from seconds to ice ages. In this perspective, the resulting Earth’s climate is a
“concert” at which each compartment seems to play its own partition with its
own tempo. Their respective contribution to the total variability of an observable,
say, e.g., the global temperature, is, however, the outcome of complex interactions
between the different components, leading to an emergent dynamics far from the
one that could be generated by a linear additive superposition principle (Nicolis and
Nicolis, 1981, 2012).

1More recently, a new compartment has appeared, whose effect is not negligible at all and which is
not predictable nor descriptive by evolution equations, namely the impact of the human activities.
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A paradigmatic example is provided in the work of Hasselmann, detailed in
his seminal paper of 1976, which states precisely that the slowly evolving com-
ponents of the climate system, besides their own dynamics due their own physical
processes, also integrate the impact of the faster components (Hasselmann, 1976).
Hasselmann describes this process using the analogy of the Brownian motion where
a macro-particle in a liquid integrates the effect of the collisions with the fluid’s
micro-particles, leading to the erratic trajectory of the former. The interest of this
framework is that it provides a natural description of the “red noise” spectral density
observed in most climatic records and observations (Ghil et al., 2002; Lovejoy and
Schertzer, 2013). Subsequently, during the following decade, stochastic modeling
for meteorology and climatology became an important research topic (Frankignoul,
1979; Frankignoul and Hasselmann, 1977; Frankignoul and Müller, 1979; Lemke,
1977; Lemke et al., 1980; Nicolis, 1981, 1982; Nicolis and Nicolis, 1981; Penland,
1989) before falling into disuse in what has been described as a “lull” of work
in this field (Arnold et al., 2003). However, during that period, the ideas that
correct parameterizations of subgrid processes are important to improve climate and
weather models gained popularity (Newman et al., 1997; Penland, 1996; Penland
and Matrosova, 1994). Stochastic parameterizations for the “turbulent” closure in
2-D large-eddy simulations on the sphere have also been considered (Frederiksen,
1999; Frederiksen and Davies, 1997). It led recently to the implementation of
stochastic schemes to correct the model errors (Nicolis, 2003, 2004) made in
large numerical weather prediction (NWP) models (Buizza et al., 1999; Shutts,
2005), improving the reliability of probabilistic forecasts and correcting partially
their variability (Doblas-Reyes et al., 2009; Nicolis, 2005). The relation between
multiplicative noise and the non-Gaussian character observed in some geophysical
variables has also been considered (Sardeshmukh and Penland, 2015; Sura et al.,
2005), as well as stochastic models for the climate extremes (Sura, 2013).

Since the beginning of the twenty-first century, a revival of the interest in
stochastic parameterization methods have occurred, due to the availability of new
mathematical methods to perform the stochastic reduction of ODEs systems. Almost
simultaneously, a rigorous mathematical framework for the Hasselmann “program”
was devised (Arnold, 2001; Kifer, 2001, 2003) and a new method based on the
singular perturbation theory of Markov processes (Majda et al., 2001) was proposed.
The latter approach is currently known as the Majda–Timofeyev–Vanden-Eijnden
(MTV) method. Both methods have been tested and implemented successfully in
geophysical models (Arnold et al., 2003; Culina et al., 2011; Franzke et al., 2005;
Vannitsem, 2014). The revival of the Hasselmann program has also stressed the
need to consider the occurrence of very rare events triggered by the noise that
allow for the solutions of the system to jump from one local attractor to another
one (Arnold, 2001). Such events display recurrence timescales that are few orders
greater than the timescale of the climate variables considered, and thus induce
transitions between different climatic states. The statistics of these transitions is
then given by the so-called Large Deviations theory (Freidlin and Wentzell, 1984)
[for recent developments on this matter, see Bouchet et al. (2016)]. In addition to
these two methods, the modeling of the effects of subgrid scale through conditional
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Markov chain has been considered (Crommelin and Vanden-Eijnden, 2008) and
recently, new stochastic parameterization techniques have been proposed, based on
an expansion of the backward Kolmogorov equation (Abramov, 2015) and on the
Ruelle response theory (Wouters and Lucarini, 2012). The latter has been tested on
a simple coupled ocean-atmosphere model (Demaeyer and Vannitsem, 2016), on
stochastic triads (Wouters et al., 2016), and on an adapted version of the Lorenz’96
model (Vissio and Lucarini, 2016).

This renewal of interest for stochastic modeling and reduction methods illustrates
how fruitful was the original idea of Hasselmann. However, in view of the
availability of several possible approaches, one might wonder about their efficiency
in different situations. Indeed, depending on the specific purpose that it needs
to fulfill, some parameterizations might perform better than others. The present
review aims to shed some light on these questions and to illustrate some of the
aforementioned parameterization methods on a simple model for which most of the
calculations can be made analytically.

In Sect. 2, we will present the general framework in which the problem of
stochastic parameterizations is posed. In Sect. 3, we present the different parame-
terizations that we shall consider for the analysis model. The stochastic triad model
used here and the comparison are presented in Sect. 4. Finally, the conclusions are
given in Sect. 5.

2 The Parameterization Problem

Consider the following system of ordinary differential equations (ODEs):

PZ D T.Z/ (1)

where Z 2 Rd is a set of variables relevant for the problem under interest for which
the tendencies T.Z/ are known. And suppose that one wants to separate this set
of variables into two different subset Z D .X; Y/, with X 2 Rm and Y 2 Rn. In
general, such a decomposition is made such that the subset X and Y have strongly
differing response times �Y � �X (Arnold et al., 2003), but we will assume here that
this constraint is not necessarily met. System (1) can then be expressed as:

( PX D F.X; Y/

PY D H.X; Y/
(2)

The timescale of the X sub-system is typically (but not always) longer than the one
of the Y sub-system, and it is often materialized by a parameter ı D �Y=�X � 1 in
front of the time derivative PY . The X and the Y variables represent, respectively, the
resolved and the unresolved sub-systems. The resolved sub-system is the part of the
full system that we would like to simulate, i.e., generate explicitly and numerically



58 J. Demaeyer and S. Vannitsem

its time-evolution. The general problem of model reduction consists thus to approx-
imate the resolved component X as accurately as possible by obtaining a closed
equation for the system X alone (Arnold et al., 2003). The term “accurately” here
can have several meanings, depending on the kind of problem to solve. For instance,
we can ask that the closed system for X has statistics that are very close to the ones
of the X component of system (2). We can also ask that the closed system trajectories
remain as close as possible to the trajectories of the full system for long times.

In general a parameterization of the sub-system Y is a relation � between the
two sub-systems:

Y D �.X; t/ (3)

which allows to effectively close the equations for the sub-system X while retaining
the effect of the coupling to the Y sub-system.

The problem of the model reduction is not new, and was considered first in
celestial mechanics. Famous mathematicians have considered it and contributed
to what is known nowadays as the theory of averaging (Sanders and Verhulst,
1985) and which forms the first step of the Hasselmann program (Arnold, 2001).
The mathematical framework was set in the 1960s by the influential contribution
of Bogoliubov and Mitropolski (1961). However, this averaging technique is a
deterministic method which does not take into account the deviations from the
average. The proposition of Hasselmann was thus to take into account these
deviations by considering stochastic parameterization where the relation (3) can
be considered in a statistical sense. In that framework, the Y sub-system and its
effect on the sub-system X can be considered as a stochastic process, which possibly
depends upon the state of the X sub-system. Different methods to achieve this
program are now discussed in Sect. 3.

3 The Parameterization Methods

Let us now write system (2) as:

( PX D FX.X/ C �X.X; Y/

PY D FY.Y/ C �Y.X; Y/
(4)

where the coupling and the intrinsic dynamics are explicitly specified. In the present
work, we shall focus on parameterizations that are defined in terms of stochastic
processes. We will consider methods based

• on the Ruelle response theory (Demaeyer and Vannitsem, 2016; Wouters and
Lucarini, 2012; Wouters et al., 2016).

• on the singular perturbation theory of Markov processes (Franzke et al., 2005;
Majda et al., 2001).
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• on the Hasselmann averaging methods (Arnold et al., 2003; Culina et al., 2011;
Kifer, 2003; Vannitsem, 2014).

• on empirical methods (Arnold et al., 2013).

All these parameterizations can be written in the following form:

PX D FX.X/ C G.X; t/ C �.X/ � Q�.t/ (5)

where the matrix � , the deterministic function G, and the random processes Q�.t/
have to be determined. The mathematical definition of these quantities obtained
through averaging procedure and the measure being used to perform the averaging
are usually both differing between the methods. These different choices are rooted
in their different underlying hypothesis, as it will be discussed below. Specifically,
the response theory method uses the measure of the uncoupled unresolved sub-
system PY D FY.Y/, the singular perturbation method uses the measure of the
perturbation, and the averaging methods use the measure of the full unresolved sub-
system PY D H.X; Y/ with X considered as “frozen” (constant). Finally, the empirical
methods use in general the output of the full unresolved Y sub-system, conditional
or unconditional on the state X.

In the rest of the section, we shall describe more precisely each of the above
methods.

3.1 The Method Based on Response Theory

This method is based on the Ruelle response theory (Ruelle, 1997, 2009) and was
proposed by Wouters and Lucarini (2012, 2013). In this context, system (4) must
be considered as two intrinsic sub-dynamics for X and Y that are weakly coupled.
The response theory quantifies the contribution of the “perturbation” �X , �Y to the
invariant measure2 Q� of the fully coupled system (4) as:

Q� D �0 C ı� �.1/ C ı�;� �.2/ C O.� 3/ (6)

where �0 is the invariant measure of the uncoupled system which is also supposed
to be an existing, well-defined SRB measure. As shown in Wouters and Lucarini
(2012), this theory gives the framework to parameterize the effect of the coupling
on the component X. The parameterization is based on three different terms having
a response similar, up to order two, to the couplings �X and �Y :

PX D FX.X/ C M1.X/ C M2.X; t/ C M3.X; t/ (7)

2The theory assumes that for the system under consideration, a SRB measure (Young, 2002) exists
(e.g., an Axiom-A system).
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where

M1.X/ D
D
�X.X; Y/

E
�0;Y

(8)

is an averaging term. �0;Y is the measure of the uncoupled system PY D FY.Y/. The
term M2.X; t/ D �R.X; t/ is a correlation term:

D
�R.X; t/ ˝ �R.X; t C s/

E
D g.X; s/ D

D
� 0

X.X; Y/ ˝ � 0
X

�
�s

X.X/; �s
Y.Y/

�E
�0;Y

(9)

where ˝ is the outer product, � 0
X.X; Y/ D �X.X; Y/ � M1.X/ is the centered

perturbation, and �s
X , �s

Y . There are two flows and two systems PX D FX.X/ and
PY D FY.Y/. The process �R is thus obtained by taking the square root of the matrix
g, which is here accomplished by a decomposition of � 0

X on a proper basis (Wouters
and Lucarini, 2012). The M3 term is a memory term:

M3.X; t/ D
Z 1

0

ds h.X.t � s/; s/: (10)

involving the memory kernel

h.X; s/ D
D
�Y.X; Y/ � rY�X

�
�s

X.X/; �s
Y.Y/

�E
�0;Y

(11)

All the averages are thus taken with �0;Y , the invariant measure of the unperturbed
system PY D FY.Y/. This particular choice of the measure is due to the perturbative
nature of the method and simplifies the averaging procedure in many cases.
The terms M1, M2 and M3, are derived (Wouters and Lucarini, 2012) such that
their responses up to order two match the response of the perturbation �X and
�Y . Consequently, this ensures that for a weak coupling, the response of the
parameterization (7) on the observables will be approximately the same as the
coupling.

The advantages of this simplified averaging procedure (by using �0;Y ) should be
tempered by the additional cost induced by the computation of the memory term,
the latter implying that this parameterization is a non-Markovian one (Chekroun
et al., 2015). However, the integral (10) in this memory term must only be evaluated
from 0 up to the timescale �Y of the fast variable, due to the exponential decrease of
the integrand. Moreover, in some cases, this non-Markovian parameterization can
be effectively replaced by a Markovian one (Wouters et al., 2016).
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3.2 Singular Perturbation Theory Method

Singular perturbation methods were developed in the 1970s for the analysis of the
linear Boltzmann equation in some asymptotic limit (Ellis et al., 1975; Grad, 1969;
Majda et al., 2001; Papanicolaou, 1976). Here, these methods are applicable if the
problem can be cast into a Fokker–Planck equation. The procedure described in
Majda et al. (2001) requires assumptions on the timescales of the different terms
of system (4). In terms of the small parameter ı D �Y=�X defined in Sect. 2, the
fast variability of the unresolved component Y is considered of order O.ı�2/ and
modeled as an Ornstein–Uhlenbeck process. The Markovian nature of the process
defined by Eq. (4) and its singular behavior in the limit of an infinite timescale
separation (ı ! 0) allow then to apply the method.

More specifically, the parameter ı serves to distinguish terms with different
timescales and is then used as a small perturbation parameter. In this setting, the
backward Fokker–Planck equation reads (Majda et al., 2001):

�@�ı

@s
D

�
1

ı2
L1 C 1

ı
L2 C L3

�
�ı (12)

where the function �ı.s; X; Yjt/ is defined with the final value problem f .X/:
�ı.t; X; Yjt/ D f .X/. The function �ı can be expanded in terms of ı and inserted
in Eq. (12). The zeroth order of this equation �0 can be shown to be independent
of Y and its evolution given by a closed, averaged backward Fokker–Planck
equation (Kurtz, 1973):

�@�0

@s
D NL �0 (13)

This equation is obtained in the limit ı ! 0 and gives the sought limiting, averaged
process X.t/. Note that this procedure does not necessarily require the presence
of the explicit small parameter ı in the original Eq. (4). Since ı disappears from
Eq. (13), one can simply use the parameter to identify the fast terms to be considered,
and eventually consider ı D 1 (Franzke et al., 2005).

The parameterization obtained by this procedure is given by Franzke et al.
(2005):

PX D FX.X/ C G.X/ C p
2 �MTV.X/ � Q�.t/ (14)

with

G.X/ D
Z 1

0

ds
h˝

�Y.X; Y/ � rY�X.X; �s
Y.Y//

˛
Q�

C˝
�X.X; Y/ � rX�X.X; �s

Y.Y//
˛
Q�
i

(15)



62 J. Demaeyer and S. Vannitsem

�MTV.X/ D
�Z 1

0

ds
˝
� 0

X.X; Y/ � 0
X.X; �s

Y.Y//
˛
Q�

�1=2

(16)

with the same notation as in the previous subsection. The measure Q� is the measure
of the O.ı�2/ perturbation, i.e., the source of the fast variability of the unresolved
Y component. This measure thus depends on which terms of the unresolved
component are considered as “fast,” and some assumptions should here be made.
For instance, it is customary to consider as the fast terms the quadratic terms in Y
and to replace them by Ornstein–Uhlenbeck processes whose measures are used to
compute the averages (Franzke et al., 2005; Majda et al., 2001).

Finally, if one assumes that the source of the fast variability in the sub-system is
given by the “intrinsic” term FY.Y/ (such that Q� D �0;Y ) and if the perturbation �X

only depends on Y , this parameterization is simply given by the integration of the
function g.s/ and h.X; s/ of the response theory parameterization given by Eqs. (9)
and (11). This can be interpreted as an averaging of the latter parameterization when
the timescale separation is infinite and X can thus be considered as constant over the
timescale of the integrand. Therefore, M2 can be modeled as a white noise and the
memory term is Markovian.

3.3 Hasselmann Averaging Method

Since the initial work of Hasselmann in the 1970s (Hasselmann, 1976), various
approaches have been considered to average directly the effects of the “fast”
evolving variables on the “slow” ones. These methods assume in general a sufficient
timescale separation between the resolved and unresolved components of the
systems, and a direct average can be performed as,

PX D NF.X/ D ˝
F.X; Y/

˛
�YjX

(17)

where �YjX is the measure of the system

PY D H.X; Y/ (18)

conditional on the value of X. In this approach, X is thus viewed as a constant
parameter for the unresolved dynamics. In other words, this particular framework
assumes that since X is slowly evolving with respect to the typical timescale
of Y , it can be considered as “frozen” while Y evolves. With some rigorous
assumptions, this approach has been mathematically justified (Kifer, 2003) and
applied successfully to idealized geophysical models (Arnold et al., 2003) with non-
trivial invariant measures. In the same vein, an approximation has been proposed in
Abramov (2013) for the average (17), assuming that F is at most quadratic,
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˝
F.X; Y/

˛
�YjX

D F.X; NY.X// C 1

2

@2F

@Y2
.X; NY.X// W †.X/ (19)

where “:” means the element-wise matrix product with summation and where

NY.X/ D hYi�YjX (20)

†.X/ D h.Y � NY.X/ ˝ .Y � NY.X//i�YjX : (21)

The approximation to the second order is particularly well suited for the application
to atmospheric and climate flows for which the quadratic terms are usually the main
non-linearities associated with the advection in the system.

In Abramov (2013), an approach based on the fluctuation–dissipation theorem is
proposed to estimate the mean state NY.X/ and the covariance matrix †.X/.

The deterministic parameterization (17) can be recast in a stochastic parameter-
ization following the same principle. Such a parameterization is derived in Arnold
et al. (2003), Abramov (2015) and reads

PX D NF.X/ C �A.X/ � �.t/ (22)

with

�A.X/ D
�

2

Z 1

0

ds
D�

F.X; �s
YjX.Y// � NF.X/

� �
F.X; Y/ � NF.X/

�E
�YjX

�1=2

(23)

where �s
YjX is the flow of the system (18) for X constant (“frozen”). A drawback

of such an approach is that it requires that the measure �YjX exists and is well-
defined [ideally a SRB measure (Arnold et al., 2003)]. Such a requirement may
not be always fulfilled, for instance, if the fast system conditional on the state X is
unstable and does not possess any attractor (see Sect. 4 for an example).

3.4 Empirical Methods

The empirical methods are generally based on the statistical analysis of the
timeseries Y of the full system (4). Many procedures exist as discussed in Sect. 1 but
we will consider here a method based on state-dependent AR(1) processes proposed
in Arnold et al. (2013). In this case, a timeserie r.t/ of the coupling part �X of the X
tendency must first be computed with (4). The parameterization is then given by

PX D FX.X/ C U .X/ (24)
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with

U .X/ D Udet.X/ C e.X.t/; t/: (25)

The function Udet.X/ represents the deterministic part of the parameterization and is
obtained by a least-squares fit of the timeserie r.t/ versus the timeserie X.t/ with the
cubic function Udet.X/ D p0 Cp1 X Cp2 X2 Cp3 X3. The “stochastic” part e.X.t/; t/
is then given by the following state-dependent AR(1) process:

e.X.t/; t/ D �
�e.X.t//

�e.X.t � 	t//
e.X.t � 	t/; t � 	t/ C �e.X.t// .1 � �2/1=2 z.t/ (26)

where z.t/ is a standard Gaussian white noise process. The parameters of the
process e are determined by considering the residual timeserie r.t/ � Udet.X.t//
to compute the lag-1 autocorrelation � and the state-dependent standard deviation
�e.X/ which is modeled as �e.X/ D �0 C �1 jXj with the parameters �0 and �1

given by a binning procedure. The parameter 	t is the time step of integration of
Eq. (24). Other empirical parameterizations have been proposed by Arnold et al.
(2013), notably one with the function U .X/ D .1 C e.t//Udet.X/ which resembles
the SPPT3 parameterization used in the ECMWF4 Numerical Weather Prediction
model (Buizza et al., 1999). However, the study shows no substantial differences
with the parameterization (25).

4 Applications and Results

In this section, we will illustrate the various parameterizations described in Sect. 3
to the following example:

( PX D �D X C q �.t/ C "
ı
YT � C � Y

PY D 1
ı2

�
A � Y C ı BY � �Y.t/

	
C "

ı
X V � Y

(27)

where D > 0, q > 0 and

Y D
�

y1

y2

�
: (28)

The matrices involved are defined as

3Acronym for Stochastically Perturbed Parameterization Tendencies Scheme.
4Acronym for European Center for Medium-Range Weather Forecasts.
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C D
�

0 B
B 0

�
; A D

� �a ˇ

�ˇ �a

�
; V D

�
0 B1

B2 0

�
and BY D

�
qY 0

0 qY

�
(29)

with a; ˇ; qY > 0. The process �.t/ and �Y.t/ are uncorrelated standard Gaussian
white noise processes.

The X and Y variables represent, respectively, the resolved and the unresolved
sub-systems. The parameter ı > 0 quantifies the timescale separation of the terms
of the tendencies of the two components, with the three timescales O.1/,O.ı�1/,
and O.ı�2/ as in Majda et al. (2001) (see also Sect. 3.2). Additionally, the parameter
" > 0 controls the coupling strength between the two sub-systems. In this setup the
coupling is thus proportional to the ratio "=ı, and therefore the characterization of
the coupling as “weak” depends directly on the timescale separation.

The deterministic part of Eq. (27) is a well-known model called a triad encoun-
tered in fluid dynamics (Ohkitani and Kida, 1992; Smith and Waleffe, 1999;
Waleffe, 1992), and in simplified geophysical flows, e.g. Majda et al. (2001),
Wouters et al. (2016). Due to the presence of invariant manifolds, its mathematical
structure can be found in higher-order model. See Demaeyer and Vannitsem (2016)
for an example of such structure in the framework of a coupled ocean-atmosphere
model. In the present study, the interest of the stochastic triad model (27) is that,
H.X; Y/ being linear in Y , the measure �0;Y and �YjX can be analytically computed
since both PY D FY.Y/ and PY D H.z; Y/jzDX are two-dimensional Ornstein–
Uhlenbeck processes. Therefore, for this simple case, the set of methods proposed in
the previous section can be applied exactly without resorting to a binning procedure
of the output of the Y sub-system.5

As energy conservation is a rule in physical systems in the absence of dissipation
and fluctuations, we will adopt this rule for the current system. System (27)
conserves the “energy” .X2 C y2

1 C y2
2/=2 if the coefficient B, B1, and B2 are chosen

such that (Majda et al., 2001; Smith and Waleffe, 1999)

2B C B1 C B2 D 0: (30)

It allows for the following configurations of their signs: .C; �; �/, .C; C; �/,
.C; �; C/, .�; C; C/, .�; C; �/, .�; �; C/. These different configurations are
associated with different kinds of energy exchange scenarios and different stability
properties (Waleffe, 1992).

We will focus on the two configurations .�; �; C/ and .�; C; C/, with parame-
ters

1. B D �0:0375, B1 D �0:025, B2 D 0:1

2. B D �0:0375, B1 D 0:025, B2 D 0:05

5Except for the empirical methods which by definition use this kind of procedures.
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and consider various values of the parameters ı and ". The other parameters are
fixed to a D 0:01, D D 0:01, and ˇ D 0:01=12. Once the parameterizations
have been developed, the different model versions have integrated over 4:5 � 105

timeunits with a timestep 	t D 0:01 after a transient period of 5:0 � 104

timeunits to let the system relax to its stationary state. The state X has been
recorded every 0:1 timeunit, giving a dataset of 4:5 � 106 points for the analysis.
The parameterizations given by Eqs. (7), (14), and (22) have been integrated with
a second order Runge–Kutta (RK2) stochastic scheme which converges to the
Stratonovich calculus (Hansen and Penland, 2006; Rüemelin, 1982). Equation (24)
has been integrated with a deterministic RK2 scheme where the stochastic forcing
e.X; t/ is considered constant during the timestep. The memory term M3 appearing
in the parameterization (7) and given by the integral (10) over the past of X has
been computed numerically at each timestep. Although it increases considerably
the integration time, this method is adopted in order to clarify the memory effect
in Eq. (7). A Markovianization of this parameterization is possible (Wouters et al.,
2016) but in the present case it would have required some assumptions that would
blur the comparison of the methods.

The relative performances of the parameterizations can be tested in multiple
ways, by comparing the climatology (the average state) or the variability (variance)
of the systems (Nicolis, 2005). Another method is to look at the predictive skill
score of the models, that is the ability of the parameterizations to provide skillful
forecast compared to original system, as in Arnold et al. (2013), Wouters et al.
(2016). On longer term, the good representation of the “climate” of a model by the
parameterizations can be assessed by looking at the stationary probability densities
and comparing them using some score (Abramov, 2012, 2013, 2015; Crommelin
and Vanden-Eijnden, 2008; Franzke et al., 2005). The decorrelation properties of the
models and the parameterizations can also be tested, to provide information about
the correct representation of the timescales of the models. All those different aspects
can be significant, depending on the purpose of the parameterization scheme.
However, for the brevity of the present work, we shall focus on the probability
densities and whether or not they are correctly reproduced by the parameterizations.

We present now the results obtained by with the proposed methods and consider
first the different measures used for averaging in system (27).

4.1 Stability and Measures

All the ingredients needed to compute the parameterizations presented in Sect. 3 can
be derived with the help of the covariance and the correlation of the Y variables in
the framework of two different systems related to the unresolved dynamics, namely
the unperturbed dynamics PY D FY.Y/ and the unresolved dynamics PY D H.X; Y/

with X frozen. The measure of the former is necessary to derive the response theory
and the singular perturbation based parameterizations, while the latter is needed for
the Hasselmann averaging method. These two systems are both two-dimensional
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Ornstein–Uhlenbeck processes of the form

PY D T � Y C B � �Y.t/ (31)

for which, respectively, T D A=ı2 and T D A=ı2 C ." X=ı/ V � Y . In both cases, we
have B D BY=ı. Their measure is then given by Wouters et al. (2016)

�.Y/ D 1

Z
exp

�
�1

2
YT � †�1 � Y

�
(32)

where Z is a normalization factor and where † is the covariance matrix solution of

T � † C † � TT D �B � BT: (33)

In order for theses processes to be stable, the real part of the eigenvalues of the
matrix T must be negative (Gardiner, 2009) for every state X that the full coupled
system (27) can possibly achieve. The eigenvalues of the system PY D FY.Y/ are

˙ D .�a ˙ iˇ/=ı2 and it is thus always stable (since a > 0 and ˇ 2 R). On the
other hand, the system PY D H.X; Y/ has the eigenvalues 
˙ D .�a ˙ p

	.X//=ı2

with

	.X/ D � .B1Xı� C ˇ/ .ˇ � B2Xı�/ (34)

Therefore, if

Re
�p

	.X/
	

> a (35)

for some X, the Ornstein–Uhlenbeck process is unstable, and it is then called an
explosive process. For any initial condition, the process diverges, and thus the
only possible stationary measure is the trivial one. Consequently, Eq. (33) gives
nonphysical solutions, the stationary covariance matrix does not exist, and the
parameterizations depending upon cannot be derived.

For the system (27), if sgn.B1 B2/ D �1, as in case 1, then the process is stable

for every X if a2 > � .B1CB2/2ˇ2

4B1B2
. For case 1, this inequality is satisfied, and thus

the process (31) is stable for every X. Moreover, depending on the sign of 	.X/,
the process for X fixed is a stochastic focus (if 	.X/ > 0) or a stochastic damped
oscillator (if 	.X/ < 0). Here, it is a focus if

X 2 Œmin.�ˇ=ı"B1; ˇ=ı"B2/; max.�ˇ=ı"B1; ˇ=ı"B2/� (36)

and an oscillator otherwise. That is, for the considered " and ı parameters value, the
system (27) is an oscillator for most of the X values.

If sgn.B1 B2/ D 1, as in case 2, then the condition (35) must be satisfied for every
state X. For case 2, this inequality was not satisfied for every state X for most of the
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values of the " and ı parameters considered (see Sect. 4.3 below). The stability is
therefore reversed as the system is non-oscillating for most of the X values.

To summarize, if B1 and B2 are of opposite sign, the dynamics of PY D H.X; Y/ is
stable and generally oscillatory. If B1 and B2 have the same sign, then the dynamics
is unstable in most cases and generally hyperbolic. This is a consequence of the
well-known difference of stability of the triads depending on their energy exchange
properties (Waleffe, 1992).

For the interested reader, the exact calculation of the parameterization of Sect. 3
using the covariance and correlation matrices is detailed in the Appendix (see
section “Appendix: Practical Computation of the Parameterizations”).

4.2 The .�;�;C/ Stochastic Triad (Case 1)

Let us now consider case 1 corresponding to the .�; �; C/ stochastic triad for two
different values of the timescale separation ı D 0:1 and 0:4. For each of these
timescale separation, we considered three values of the coupling strength ": 0:05,
0:125, and 0:4. The probability densities associated with these different systems
are represented in Figs. 1 and 2. For a timescale separation ı D 0:1, the fully
coupled dynamics given by Eq. (27) is quite well represented by all the proposed
parameterizations. Since it is hard to distinguish the different density curves, a score
such as the Hellinger distance (Arnold et al., 2013)

H.P; Q/ D 1

2

Z �p
dP � p

dQ
	2

(37)

between the distribution P of the full coupled system and the distribution Q of the
parameterizations is worth computing to quantify the differences (the smaller the
better). It is depicted for ı D 0:1 on Fig. 3, and it shows that for a very small
coupling parameter " D 0:05, the best parameterization is the response theory given
by Eq. (7). For larger values of ", it is the Hasselmann averaging method which
performs best. The empirical method gives a good correction of the uncoupled
dynamics for " D 0:125 but diverges for " D 0:4. This may be due to instabilities
introduced by the cubic deterministic parameterization Udet.X/ or to the inadequacy
of the fitting function �0 C �1 jXj for the standard deviation �e.X/ in the AR(1)
process (26). Indeed, in general, this model fits quite well the statistics in the
neighborhood of X D 0, but the standard deviation reaches a plateau for higher
values of X. A more complicated fitting function would thus be necessary to get
a stable dynamics. For a timescale separation ı D 0:4, the same conclusions are
reached, but the singular perturbation method performs not very well in all cases,
as illustrated in Fig. 4 that for " D 0:125 and 0:4. The response based and singular
perturbation methods are even less effective than the uncoupled dynamics. It is not
surprising for the latter since it is supposed to be valid in the limit ı ! 0.
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Fig. 1 Probability densities
of the full coupled
dynamics (27), the uncoupled
dynamics
PX D �D X C q �.t/, and the
parameterized model versions
for the timescale separation
ı D 0:1 and for the triad
parameters of case 1. The
empirical parameterization
density is not represented for
" D 0:4 due to its divergence
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Fig. 2 Same as Fig. 1 but for
the timescale separation
ı D 0:4
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Fig. 3 Hellinger
distance (37) between the
densities of the different
parameterized models and the
full coupled system density
for case 1. A small distance
indicates that the two
densities concerned are very
similar. The Hellinger
distance between the full
coupled system and the
uncoupled system distribution
is depicted as reference. In
case " D 0:4, the empirical
parameterization is not
represented due to its
divergence
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Fig. 4 Same as Fig. 3 but for
the timescale separation
ı D 0:4
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Fig. 5 Probability densities
of the coupled full
dynamics (27), the uncoupled
dynamics
PX D �D X C q �.t/, and the
parameterized models for the
timescale separation ı D 0:1

and for the triad parameters
of case 2. The direct
averaging parameterization
density is only represented for
" D 0:05 because the system
diverges for the other values
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Fig. 6 Same as Fig. 5 but for
the timescale separation
ı D 0:4
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Fig. 7 Hellinger
distance (37) between the
densities of the different
parameterized models and the
full coupled system density
for case 2. A small distance
indicates that the two
densities concerned are very
similar. The Hellinger
distance between the full
coupled system and the
uncoupled system distribution
is depicted as reference. In
case " D 0:4, the empirical
parameterization is not
represented due to its
divergence
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Fig. 8 Same as Fig. 7 but for
the timescale separation
ı D 0:4
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4.3 The .�;C;C/ Stochastic Triad (Case 2)

We now consider the parameters of case 2, for which the system (27) is a .�; C; C/

stochastic triad. The probability densities are depicted in Figs. 5 and 6, and the
Hellinger distances are shown in Figs. 7 and 8. First, we must remark that the
parameterization based on the Hasselmann’s averaging method is not defined for
most of the ı and " parameters values. It is due to the fact that the dynamics of the
unresolved component Y with X considered as a parameter is unstable, as shown in
Sect. 4.1. Indeed, this linear system undergoes a bifurcation at some value X? which
destabilizes the dynamics PY D H.X; Y/ with X frozen. Therefore, the measure �YjX
is not defined for some ranges of the full X dynamics and the method fails. The
only case where this destabilization does not occur is for ı D 0:1 and " D 0:05,
but the parameterization does not perform well. For these parameter values, the
only parameterization that performs very well is the one based on response theory.
For the other values of the parameters ı and ", all the parameterizations have good
performances. A particularly unexpected result is the very good correction provided
by the response theory and singular perturbation based methods for the extreme case
ı D 0:4 and " D 0:4 (see the bottom panel of Fig. 8). This have to be contrasted
with their bad performances in the case of the other triad (see the bottom panel of
Fig. 4). Note that for this extreme case, the direct averaging method fails and the
empirical method is unstable and diverges.

4.4 Discussion

The results obtained so far with these two types of triads highlight the utility of
the parameterization schemes discussed here. First, the empirical parameterization
gives usually good results when it does not destabilize the dynamics. However,
this method requires a case by case time-consuming statistical analysis whose
complexity increases with the dimensionality of the problem considered. Physically
based parameterizations do not require such an analysis, and the best approach in the
present system is the Hasselmann averaging one, but it requires that the dynamics of
the unresolved system be stable. It was thus very effective to correct the dynamics
of the .�; �; C/ triad, but not the other triad .�; C; C/. In this latter case, the
perturbative methods like the singular perturbation method or the response theory
method give very good results. This difference is quite intriguing and interesting.
It indicates that different physically-based parameterizations should be considered
depending on the kind of problems encountered. In particular, the stability properties
of the system considered seem to play an important role. This conclusion holds
whatever the timescale separation and for the most realistic values of the coupling
strength between the components (" D 0:125 and 0:4). However, for very small
values of the coupling strength, the response based method seems to be the best
approach in all cases.
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A question that is left open in the present work is to determine precisely which
stability property is giving the contrasting observed result. More specifically, is it the
hyperbolic instability of the .�; C; C/ triad which makes the perturbative approach
and the response based parameterization perform so well, or is it simply the fact
that it is unstable? On the other hand, is it the damped oscillatory behavior of the
.�; �; C/ triad which makes the Hasselmann’s method works well, or is it simply
the fact that it is stable? Such questions should be addressed in the case of a more
complex, globally stable system, which allows to have locally stable and unstable
fast dynamics.

5 Conclusions

The parameterization of subgrid-scale processes is an important tool in model
reduction, in order to improve the statistical properties of the forecasting systems.
The variety of approaches available bear witness of the richness of the field but at
the same time can also lead to questions on the best choice for the problem at hand.
The purpose of the present review was to describe briefly some of the most recent
methods and to illustrate them on a simple stochastic triad example. The methods
covered include perturbative methods like the Ruelle response theory (Wouters and
Lucarini, 2012), the singular perturbation theory (Majda et al., 2001), averaging
methods like the Hasselmann method (Arnold et al., 2003; Hasselmann, 1976) and
an empirical method (Arnold et al., 2013). As expected, these parameterizations
provided contrasting results depending on the timescale separation and on the
coupling between the resolved variables and the subgrid one. But more importantly,
our results in the context of this simple triad stress the importance of the underlying
stability properties of the unresolved system. It thus confirms a known result that the
structure of the Jacobian and of the Hessian of a given system controls the behavior
and performance of model error parameterizations (Nicolis, 2005).

Further comparisons of the different methods are needed in the context of more
sophisticated systems in order to analyze the role of the stability properties of the
subgrid scale processes on their performances. This type of analysis is currently
under way in the context of a coupled ocean-atmosphere system (De Cruz et al.,
2016).

Appendix: Practical Computation of the Parameterizations

In the following section, for illustrative purposes, we detail the computation that we
have made to obtain the result of the present review. We start with the method based
on response theory.
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Response Theory Method

We consider the system (27) with the form (4) in mind. In this case, the influence of
the Y sub-system on the X sub-system is parameterized as:

PX D �D X C q �.t/ C M1.X/ C M2.X; t/ C M3.X; t/ (38)

where then terms M1, M2, and M3 are, respectively, given by Eqs. (8), (9, and (10).
The average in these formula are performed with the measure �0;Y of the unperturbed
Y dynamics PY D FY.Y/. Since this latter is an Ornstein–Uhlenbeck process, its
measure is the Wiener measure

�0;Y.Y/ D 1

Z
exp

�
�1

2
YT � †�1 � Y

�
(39)

where † is the covariance matrix solution of

A � † C † � AT D �BY � BT
Y (40)

and Z is a normalization factor.
The covariance and correlation of the stationary process PY D FY.Y/ are thus

straightforward to compute (Gardiner, 2009):

† D ˝
Y ˝ Y

˛ D q2
Y

2a
I (41)˝

� t
Y.Y/ ˝ �s

Y.Y/
˛ D E.t � s/ � †; t > s (42)˝

� t
Y.Y/ ˝ �s

Y.Y/
˛ D † � E.s � t/T; t < s (43)

where I is the identity matrix, � t
Y is the flow of PY D FY.Y/, and the matrix E.t/ is

the exponential

E.t/ D exp.At=ı2/ D e�at=ı2

�
cos.ˇt=ı2/ sin.ˇt=ı2/

� sin.ˇt=ı2/ cos.ˇt=ı2/

�
(44)

The various terms Mi are then computed as follows.

The Term M1

It is the average term:

M1.X/ D ˝
�X.X; Y/

˛
(45)
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We have thus

M1.X/ D 2B
"

ı
hy1 y2i D 2B

"

ı
†12 D 0 (46)

by using Eq. (41).

The Term M2

It is the noise/correlation term which is defined here as:

M2.t/ D �R.t/ (47)

with

h�R.t/�R.t0/i D g.t � t0/ (48)

and the correlation function

g.s/ D ˝
� 0

X.Y/� 0
X.�s

Y.Y//
˛

(49)

where � 0
X.Y/ D �X.Y/ � M1. The result in the present case is given by the formula

[see Demaeyer and Vannitsem (2016)]:

g.s/ D "2

ı2
Tr

��
C C CT� � † � E.s/T � CT � E.s/ � †

� D "2

ı2

q4
Y

a2
B2e�2as=ı2

cos.2ˇs=ı2/

(50)
The term M2 must thus be devised as a process with the same correlation.

The Term M3

This is the memory term, defined by

M3.X; t/ D
Z 1

0

ds h.X.t � s/; s/ (51)

with the memory kernel

h.X; s/ D h�Y.X; Y/ � rY�X.�s
Y.Y//i (52)

which in the present case is given by the formula [see Demaeyer and Vannitsem
(2016)]
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h.X; s/ D "2

ı2
Tr

�
.X V � †/ � �

E.s/T � �
C C CT� � E.s/

��
(53)

D "2

ı2

q2
Y

a
XB.B1 C B2/e�2as=ı2

cos.2ˇs=ı2/ (54)

The fact that the memory kernel (54) and the correlation function (50) present the
same form implies that a Markovian parameterization is available (Wouters et al.,
2016) even if by definition, Eq. (38) is a non-Markovian parameterization.

The Singular Perturbation Method

With this parameterization, the parameter ı serves to distinguish terms with different
timescale and is then used as a small perturbation parameter (Franzke et al., 2005;
Majda et al., 2001). The parameterization is given by:

PX D �D X C q �.t/ C G.X/ C p
2 �MTV.X/ � Q�.t/ (55)

with notably h�.t/ Q�.t0/i D 0 and

G.X/ D
Z 1

0

ds
˝
�Y.X; Y/ � rY�X.X; �s

Y.Y//
˛
Q� (56)

�MTV.X/ D
�Z 1

0

ds
˝
� 0

X.X; Y/ � 0
X.X; �s

Y.Y//
˛
Q�

�1=2

(57)

We see that the quantities appearing in this parameterization can easily be obtained
from the functions h and g of section “Response Theory Method”. Indeed we have

G.X/ D
Z 1

0

ds h.X; s/ D "2Xq2
Y

B.B1 C B2/

2.a2 C ˇ2/
(58)

SMTV.X/ D
Z 1

0

ds g.s/ D "2 q4
YB2

2a.a2 C ˇ2/
(59)

where we notice that the parameter ı has disappeared, since this parameterization is
valid in the limit ı ! 0.

Averaging Method

In this approach, we consider the system (2) and the parameterization (Abramov,
2013):

PX D NF.X/ (60)
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with

NF.X/ D ˝
F.X; Y/

˛
�YjX

D F.X; NY.X// C 1

2

@2F

@Y2
.X; NY.X// W †.X/ (61)

and

NY.X/ D hYi�YjX (62)

†.X/ D h.Y � NY.X/ ˝ .Y � NY.X//i�YjX (63)

where �YjX is the measure of the system PY D H.X; Y/ with X “frozen.” It is the
measure of an Ornstein–Uhlenbeck process

�0;Y.Y/ D 1

Z
exp

�
�1

2
YT � †�1.X/ � Y

�
(64)

where Z is a normalization factor and †.X/ is the stationary covariance matrix
solution of

T.X/ � † C † � T.X/T D � 1

ı2
BY � BT

Y (65)

with

T.X/ D A=ı2 C " X V=ı: (66)

With the help of NY.X/ D 0 and †.X/, we can now rewrite Eq. (61) as

NF.X/ D F.X; 0/ C "

ı
C W †.X/

D �D X C q�.t/ C B .B1 C B2/ q2
YX�2

2 .a2 C ˇ2 � Xˇı"B2 C Xı"B1 .ˇ � Xı"B2//
(67)

This forms a deterministic averaging parameterization. It can be extended into a
stochastic parameterization (Abramov, 2015) as follows:

PX D NF.X/ C �A.X/ � �.t/ (68)

with

�A.X/ D
p

S.X/ (69)

and
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S.X/ D 2

Z 1 �
2

Z 1

0

ds
D�

F.X; �s
YjX.Y// � NF.X/

� �
F.X; Y/ � NF.X/

�E
�YjX

�1=2

(70)
We thus have

S.X/ D 2
"2

ı2

Z 1

0

ds Tr
��

C C CT� � †.X/ � exp


T.X/Ts

� � CT � exp ŒT.X/s� � †.X/
�

where we have extended the result of Eq. (50) to the stationary Ornstein–Uhlenbeck
process PY D H.X; Y/ for X “frozen”. The function S.X/ can be computed
analytically using mathematical software but is a very complicate function that is
not worth displaying in this review. This can, however, be provided upon query to
the authors.
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