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Abstract The atmosphere is governed by continuum mechanics and thermodynam-
ics yet simultaneously obeys statistical turbulence laws. Up until its deterministic
predictability limit (�w � 10 days), only general circulation models (GCMs) have
been used for prediction; the turbulent laws being still too difficult to exploit.
However, beyond �w—in macroweather—the GCMs effectively become stochastic
with internal variability fluctuating about the model—not the real world—climate
and their predictions are poor. In contrast, the turbulent macroweather laws become
advantageously notable due to (a) low macroweather intermittency that allows for
a Gaussian approximation, and (b) thanks to a statistical space-time factorization
symmetry that (for predictions) allows much decoupling of the strongly correlated
spatial degrees of freedom. The laws imply new stochastic predictability limits. We
show that pure macroweather—such as in GCMs without external forcings (control
runs)—can be forecast nearly to these limits by the ScaLIng Macroweather Model
(SLIMM) that exploits huge system memory that forces the forecasts to converge to
the real world climate.

To apply SLIMM to the real world requires pre-processing to take into account
anthropogenic and other low frequency external forcings. We compare the overall
Stochastic Seasonal to Interannual Prediction System (StocSIPS, operational since
April 2016) with a classical GCM (CanSIPS) showing that StocSIPS is superior for
forecasts 2 months and further in the future, particularly over land. In addition, the
relative advantage of StocSIPS increases with forecast lead time.

In this chapter we review the science behind StocSIPS and give some details of
its implementation and we evaluate its skill both absolute and relative to CanSIPS.
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1 Introduction

1.1 Deterministic, Stochastic, Low Level, High Level Laws

L. F. Richardson’s “Weather forecasting by numerical process” (1922) opened the
era numerical weather prediction. Richardson not only wrote down the modern
equations of atmospheric dynamics, but he also pioneered numerical techniques
for their solution and even laboriously attempted a manual integration. Yet this
work also contained the seed of an alternative: buried in the middle of a paragraph,
he slyly inserted the now iconic poem: “Big whirls have little whirls that feed
on their velocity, little whirls have smaller whirls and so on to viscosity (in the
molecular sense)”. Soon afterwards, this was followed by the Richardson 4/3 law
of turbulent diffusion (Richardson 1926), which today is celebrated as the starting
point for modern theories of turbulence including the key idea of cascades and
scale invariance. Unencumbered by later notions of meso-scale, with remarkable
prescience, he even proposed that his scaling law could hold from dissipation up
to planetary scales, a hypothesis that has been increasingly confirmed in recent
years. Today, he is simultaneously honoured by the Royal Meteorological Society’s
Richardson prize as the father of numerical weather prediction, and by the Nonlinear
Processes division the European Geosciences Union’s Richardson medal as the
grandfather of turbulence approaches.

Richardson was not alone in believing that in the limit of strong nonlinearity
(high Reynolds number, Re), that fluids would obey new high level turbulent
laws. Since then, Kolmogorov, Corrsin, Obhukhov, Bolgiano and others proposed
analogous laws, the most famous of which is the Kolmogorov law for velocity
fluctuations (it is nearly equivalent to Richardson’s law). While the laws of
continuum mechanics and thermodynamics are deterministic, the classical turbulent
laws characterize the statistics of fluctuations as a function of space-time scale;
they are stochastic. Just as the laws of statistical mechanics are presumed to
be compatible with those of continuum mechanics—and even though no proof
(yet) exists—the latter are also presumed to be compatible with the higher level
turbulence laws, see the comprehensive review (Lovejoy and Schertzer 2013).

If both continuum mechanics and turbulent laws are valid, then both are
potentially exploitable for making forecasts. Yet for reasons that we describe below,
for forecasting, only the brute force integration of the equations of continuum
mechanics—general circulation models (GCMs)—have been developed to any
degree. In this paper we review an early attempt to directly exploit the turbulent
laws for macroweather forecasting, i.e. for forecasts beyond the deterministic
predictability limit (�10 days).
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1.2 The Status of the Turbulent Laws

The classical turbulent laws are of the scaling form: fluctuation � (turbulent
flux) � (scale)H where H is the fluctuation exponent (for the Kolmogorov law,
H D 1/3, see below). The scaling form is a consequence of the scale invariance
of the governing laws; symbolically, (laws) �! (scale change by factor �) �!
�H (laws), (note that the scale change must be anisotropic, see Schertzer et al.
(2012)). The atmosphere has structures spanning the range of scales from planetary
to submillimetric with Re � 1012: making it in principle an ideal place to test
such high Re theories. However, the classical laws were based on very restrictive
assumptions, they used unrealistic notions of turbulent flux and scale. In particular,
the fluxes (which are actually in Fourier space and typically go from small to
large wavenumbers) were assumed to be homogeneous or at least quasi-Gaussian.
However a basic feature of atmospheric dynamics is that almost all of the energy
and other fluxes are sparsely distributed in storms—and in their centres—and
this enormous turbulent intermittency was not taken into account. In addition, the
classical notion of scale was naïve: it was taken to be the usual Euclidean distance
between two points, i.e. it was isotropic, the same in all directions.

To be realistic, Schertzer and Lovejoy (1985) argued that the classical laws
needed to be generalized precisely to take into account intermittency and anisotropy
(especially stratification) and they introduced the main tools: multifractal cascade
processes and Generalized Scale Invariance. Profiting from the golden age of
geophysical data (remotely sensed, in situ and airborne), models and reanalyses
(model–data hybrids), a growing body of work has largely vindicated this view, and
has resulted in a quantitative characterization of the relevant multifractal hierarchy
of exponents over wide ranges of space and time scales. While the laws are indeed
of the (generalized) scaling form indicated above, with only a few exceptions
the values of the exponents still have not been derived theoretically. They are
nevertheless robust with quite similar values being found in diverse empirical data
sets as well as in GCM outputs.

While large scale boundary conditions clearly affect the largest scales of flows,
at small enough scales, the latter become unimportant so that, for example, in the
atmosphere for scales below about 5000 km, the predictions of turbulent cascade
theories are accurate to within typically ˙0.5% (see, e.g., Chap. 4 of Lovejoy and
Schertzer (2013), although at larger scales, deviations are important. If the turbulent
laws are insensitive to driving mechanisms and boundary conditions, then they
should be “universal”, operating, for example, in other planetary atmospheres. This
prediction was largely confirmed in a quantitative comparison of turbulent laws on
Earth and on Mars. It turns out with the exception of the largest factor of five or so
in scale that statistically, we are twins with our sister planet (Chen et al. 2016), see
Fig. 1a, b!

http://dx.doi.org/10.1007/978-3-319-58895-7_4
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Fig. 1 (a) (Top row): The zonal spectra of Earth (top left) and Mars (top right) as functions of the
nondimensional wave numbers for the pressure (p, purple), meridional wind (v, green), zonal wind
(u, blue) and temperature (T, red) lines. The data for Earth were taken at 69% atmospheric pressure
for 2006 between latitudes ˙45ı. The data for Mars were taken at 83% atmospheric pressure for
Martian Year 24 to 26 between latitudes ˙45ı. The reference lines (top left, Earth) have absolute
slopes, from top to bottom: 3.00, 2.40, 2.40, and 2.75 (for p, v, u, and T, respectively). Top right
(Mars) have reference lines with absolute slopes, from top to bottom: 3.00, 2.05, 2.35 and 2.35
(for p, v, u and T, respectively). The spectra have been rescaled to add a vertical offset for clarity
and wavenumber k D 1 corresponds to the half circumference of the respective planets. (Bottom
row): The same as top row except for the meridional spectra of Earth (left) and Mars (right). The
reference lines (left, Earth) have absolute slopes, from top to bottom: 3.00, 2.75, 2.75 and 2.40
(for p, v, u and T, respectively). The reference lines (right, Mars) have absolute slopes, from top to
bottom: 3.00, 2.40, 2.80 and 2.80 (for p, v, u and T, respectively). The spectra have been rescaled
to add a vertical offset for clarity. Adapted from (Chen et al. 2016). (b) The three known weather–
macroweather transitions: air over the Earth (black and upper purple), the Sea Surface Temperature
(SST, ocean) at 5ı resolution (lower blue) and air over Mars (Green and orange). The air over earth
curve is from 30 years of daily data from a French station (Macon, black) and from air temps for
last 100 years (5ı � 5ı resolution NOAA NCDC), the spectrum of monthly averaged SST is from
the same database (blue, bottom). The Mars spectra are from Viking lander data (orange) as well
as MACDA Mars reanalysis data (Green) based on thermal infrared retrievals from the Thermal
Emission Spectrometer (TES) for the Mars Global Surveyor satellite. The strong green and orange
“spikes” at the right are the Martian diurnal cycle and its harmonics. Adapted from Lovejoy et al.
(2014). (c) Spectra from the 20CR reanalysis (1871–2008) at 45ıN for temperature (T), zonal
and meridional wind (u, v) and specific humidity (hs). The reference lines have correspond to
ˇmw D 0.2, ˇw D 2 left to right, respectively. Adapted from Lovejoy and Schertzer (2013)
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1.3 Status of Forecasts Based on the Classical Laws
and their Prospects with Turbulence Laws

Over the last decades, conventional numerical approaches have developed to the
point where they are now skilful up until nearly their theoretical (deterministic)
predictability limits—itself close to the lifetimes of planetary structures (about
10 days, see below). Actually—due to stochastic parametrizations—state of the
art ensemble GCM forecasts are stochastic–deterministic hybrids, but this limit is
still fundamental. At the same time, the strong intermittency (multifractality) over
this range has meant that stochastic forecasts based on the turbulent laws must be
mathematically treated as (state) vector anisotropic multifractal cascade processes,
the mathematical understanding of which is still in its infancy (see, e.g., Schertzer
and Lovejoy (1995)), GCMs are the only alternative. However, if we consider scales
of many lifetimes of planetary structures—the macroweather regime—then the
situation is quite different. On the one hand, because of the butterfly effect (sensitive
dependence on initial conditions), in macroweather even fully deterministic GCMs
become stochastic. On the other hand, as pointed out in Lovejoy and Schertzer
(2013) (Lovejoy and de Lima 2015; Lovejoy et al. 2015) in their macroweather limit,
the turbulence laws become much simpler and—as we review below—can already
be used to yield monthly, seasonal, annual and decadal forecasts that are comparable
or better than the GCM alternatives. The stochastic forecasts that we describe here
thus effectively harness the butterfly effect. Significantly, their forecasts already
appear to be close to new—stochastic—predictability limits.

As we review below, there are two principal reasons that macroweather turbulent
laws are tractable for forecasts. The first is that macroweather intermittency is
generally low enough that a Gaussian model is a workable approximation (although
not for the extremes)—and the corresponding prediction problem has been mathe-
matically solved. This is the basis of the ScaLIng Macroweather Model (SLIMM
(Lovejoy et al. 2015)) that is the core of the Stochastic Seasonal and Annual
Prediction System (StocSIPS) that we describe in this review paper. The second
macroweather simplification is that the usual size-lifetime relations breakdown,
being replaced by new ones and an important new property called “statistical
space-time factorization” (SSTF) holds (at least approximately). It turns out that
the SSTF effectively transforms the forecast problem from a familiar deterministic
nonlinear PDE initial value problem into a stochastic, fractional order linear ODE
past value problem. In contrast at macroweather time scales, a fundamental GCM
limitation comes to the fore: each GCM converges to its own model climate,
not to the real world climate. While this was not important at shorter weather
scales, now it becomes a fundamental obstacle. We conclude that for macroweather
forecasting, the turbulent approach becomes attractive while the GCM approach
becomes unattractive. Below, we compare the skills of the two different approaches
and underline the advantages of exploiting the turbulent laws.
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This review is structured as follows: we first discuss and summarize
macroweather statistics (Sect. 2). In Sect. 3, we describe the forecast model and its
skill, and in Sect. 4, we compare stochastic hindcasts with GCMs both with and
without external forcings. In Sect. 5 we conclude.

2 Macroweather Statistics

2.1 The Transition from Weather to Macroweather

Ever since the first atmospheric spectra (Panofsky and Van der Hoven 1955; Van
der Hoven 1957), it has been known that there is a drastic change in atmospheric
statistics at time scales of several days. At first ascribed to “migratory pressure
systems”, termed a “synoptic maximum” (Kolesnikov and Monin 1965), it was
eventually theorized as baroclinic instability (Vallis 2010). However, its presence in
all the atmospheric fields (Fig. 1c), its true origin and its fundamental implications
could not be appreciated until the turbulent laws were extended to planetary scales.

The key point is that the horizontal dynamics are controlled by the energy flux "

to smaller scales (units W/Kg, also known as the “energy rate density”). Although
this is the same dimensional quantity upon which the Kolmogorov law is based
(�v D "1/3L1/3 for the velocity difference �v across a distance L), it had not been
suggested that it hold up to planetary scales; Kolmogorov himself believed that it
would not hold to more than several hundred metres (Fig. 2). Indeed as pointed out
in Lovejoy et al. (2007) on the basis of state-of-the-art dropsonde data, the original
Kolmogorov law is isotropic and doesn’t appear to hold anywhere in the atmosphere
(at least at scales above �5 m)! However, the recognition that an anisotropic
generalization of the Kolmogorov law could account for the horizontal statistics
(with the vertical being controlled by buoyancy force variance fluxes and Bolgiano–
Obhukhov statistics) explains how it is possible for the horizontal Kolmogorov law
to hold up to planetary scales (see Fig. 1a, for the space-time scaling up to planetary
scales, see also Fig. 3 for IR radiances). The classical lifetime–size (L) relation is
then obtained by using dimensional analysis on ": � � "�1/3L2/3 where L is the
horizontal extent of a structure (no longer an isotropic 3D estimate of its size). This
law has been validated in both Lagrangian and Eulerian frames, see Radkevitch et al.
(2008) (Pinel et al. 2014, Fig. 3).

If one estimates " by dividing the total tropospheric mass by the total solar
power that is transformed into mechanical energy (about 4% of the total this is the
thermodynamic efficiency of the atmospheric heat engine; see e.g. Pauluis (2011)),
then one finds " � 1 mW/Kg which is close to the directly estimated empirical
value (it even explains regional variations, see Fig. 2). Using " � 1 mW/Kg,
L D 20,000 km (the largest great circle distance) this value implies that the lifetime
of planetary structures and hence the weather–macroweather transition is �w � 5–
10 days. When the theory is applied to the ocean (which is similarly turbulent
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Fig. 2 The weather–macroweather transition scale �w estimated directly from break points in
the spectra for the temperature (red) and precipitation (green) as a function of latitude with the
longitudinal variations determining the dashed one standard deviation limits. The data are from the
138-year long Twentieth Century reanalyses (20CR (Compo et al. 2011)), the �w estimates were
made by performing bilinear log–log regressions on spectra from 180-day long segments averaged
over 280 segments per grid point. The blue curve is the theoretical �w obtained by estimating the
distribution of " from the ECMWF reanalyses for the year 2006 (using �w D "�1/3L2/3 where
L D half earth circumference), it agrees very well with the temperature �w. �w is particularly high
near the equator since the winds tend to be lower, hence lower ". Similarly, �w is particularly
low for precipitation since it is usually associated with high turbulence (high "). Reproduced from
Lovejoy and Schertzer (2013)

Fig. 3 The zonal, meridional and temporal spectra of 1386 images ( 2 months of data, September
and October 2007) of radiances fields measured by a thermal infrared channel (10.3–11.3 �m)
on the geostationary satellite MTSAT over south-west Pacific at resolutions 30 km and 1 h. over
latitudes 40ıS—30ıN and longitudes 80ıE—200ıE. With the exception of the (small) diurnal
peak (and harmonics), the rescaled spectra are nearly identical and are also nearly perfectly scaling
(the black line shows exact power law scaling after taking into account the finite image geometry.
Reproduced from Pinel et al. (2014)
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Fig. 4 A comparison of temperature spectra from a grid point of the 20CR data (bottom, orange
line) and from a turbulence cascade model (top, blue line) showing that it well reproduces the
weather–macroweather transition. Reproduced from Lovejoy and Schertzer (2013)

with " � 10�8 W/Kg), one obtains a transition at about 1–2 years (also observed,
Lovejoy and Schertzer (2010), Fig. 1b). Finally, it can be used to accurately estimate
" � 40 mW/Kg on Mars and hence the corresponding Martian transition scale at
about 1.8 sols (Fig. 1b, Lovejoy et al. 2014).

From the point of view of turbulent laws, the transition from weather to
macroweather is a “dimensional transition” since at time scales longer than �w,
the spatial degrees of freedom are essentially “quenched” so that the system’s
dimension is effectively reduced from 1 C 3 to 1 (Lovejoy and Schertzer 2010).
Using spectral analysis Fig. 4 shows that simple multifractal turbulence models
reproduce the transition. GCM control runs, i.e. with constant external forcings (see
Sect. 2.2 and Fig. 5c)—also reproduce realistic macroweather variability, justifying
the term “macroweather”. However in forced GCMs—as with instrumental and
multiproxy data beyond a critical time scale � c, the variability starts to increase again
(as in the weather regime) and the true climate regime begins; � c � 10 years in the
anthropocene, and � c & 100 years in the pre-industrial epoch, (see Sect. 2.2, Fig. 5).

In order to understand the key difference between weather, macroweather and the
climate, rather than spectra, it is useful to consider typical fluctuations. Classically—
for example, in the Kolmogorov law—fluctuations were taken to be differences, i.e.
�T(�t):

.�T .�t//diff D T.t/ � T .t � �t/ (1)

While this is fine for weather fluctuations—these typically increase with scale
�t—it is not adequate for those that typically decrease with �t, and as we shall see
this includes macroweather fluctuations. For these, we often consider “anomalies”;
for example, for the temperature anomaly T(t) is the temperature with both the
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a

b

Fig. 5 (a) The RMS difference structure function estimated from local (Central England)
temperatures since 1659 (open circles, upper left), northern hemisphere temperature (black
circles), and from paleo-temperatures from Vostok (Antarctic, solid triangles), Camp Century
(Greenland, open triangles) and from an ocean core (asterixes). For the northern hemisphere
temperatures, the (power law, linear on this plot) climate regime starts at about 10 years.
The rectangle (upper right) is the “glacial-interglacial window” through which the structure
function must pass in order to account for typical variations of ˙2 to ˙3 K for cycles with
half periods �50 kyrs. Reproduced from Lovejoy and Schertzer 1986). (b) A composite RMS
Haar structure function from (daily and annually detrended) hourly station temperatures (left),
20CR temperatures (1871–2008 averaged over 2ı pixels at 75ıN) and paleo-temperatures from
EPICA ice cores (right) over the last 800 kyrs. The glacial–interglacial window is shown upper
right rectangle. Adapted from Lovejoy (2015a). (c) Haar fluctuation analysis of globally, annually
averaged outputs of past Millenium simulations over the pre-industrial period (1500–1900) using
the NASA GISS E2R model with various forcing reconstructions. Also shown (thick, black) are
the fluctuations of the pre-industrial multiproxies showing that they have stronger multi centennial
variability. Finally, (bottom, thin black) are the results of the control run (no forcings), showing that
macroweather (slope < 0) continues to millennial scales. Reproduced from Lovejoy et al. (2013).
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c

d

Fig. 5 (continued) (d) Haar fluctuation analysis of Climate Research Unit (CRU, HadCRUtemp3
temperature fluctuations), and globally, annually averaged outputs of past Millenium simulations
over the same period (1880–2008) using the NASA GISS model with various forcing reconstruc-
tions (dashed). Also shown are the fluctuations of the pre-industrial multiproxies showing the
much smaller centennial and millennial scale variability that holds in the pre-industrial epoch.
Reproduced from (Lovejoy et al. 2013)

annual cycle and the overall mean of the series removed so that hTi D 0 where
“h.i” indicates averaging. For such zero mean anomaly series T(t), define the �t
resolution anomaly fluctuation by:
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.�T .�t//anom � 1

�t

tZ

t��t

T
�
t0
�

dt0 (2)

(as for differences, in �T(�t) we suppressed the t dependence since we assume
that the fluctuations are statistically stationary). Since T(t) fluctuates around zero,
averaging it at larger and larger �t tends to decrease the fluctuations so that the
decreasing classical anomaly fluctuations and the increasing difference fluctuations
will each have restricted and incompatible ranges of validity.

In general, average fluctuations may either increase or decrease depending on the
range of �t considered so that we must define fluctuations in a more general way;
wavelets provide a fairly general framework for this. A simple expedient combines
averaging and differencing while overcoming many of the limitations of each: the
Haar fluctuation (from the Haar wavelet). It is simply the difference of the mean
over the first and second halves of an interval:

.�T .�t//Haar D 2

�t

tZ

t��t=2

T
�
t0
�

dt0 � 2

�t

t��t=2Z

t��t

T
�
t0
�

dt0 (3)

(see Lovejoy and Schertzer (2012) for these fluctuations in a wavelet formalism). In
words, the Haar fluctuation is the difference fluctuation of the anomaly fluctuation,
it is also equal to the anomaly fluctuation of the difference fluctuation. In regions
where the fluctuations decrease with scale we have:

.�T .�t//Haar � .�T .�t//anom .decreasing with �t/

.�T .�t//Haar � .�T .�t//diff .increasing with �t/
(4)

In order for Eq. (4) to be reasonably accurate, the Haar fluctuations in Eq. (3)
need to be multiplied by a calibration factor; here, we use the canonical value 2
although a more optimal value could be tailored to individual series.

Over ranges where the dynamics have no characteristic time scale, the statistics
of the fluctuations are power laws so that:

hj�T .�t/jqi / �t�.q/ (5)

the left-hand side is the qth order structure function and �(q) is the structure function
exponent. “< >” indicates ensemble averaging; for individual series this is estimated
by temporal averaging (over the disjoint fluctuations in the series). The first order
(q D 1) case defines the “fluctuation exponent” �(1) D H:

hj�T .�t/ji / �tH (6)
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In the special case where the fluctuations are quasi-Gaussian, �(q) D qH and the
Gaussian white noise case corresponds to H D �1/2. More generally, there will be
“intermittency corrections” so that:

K.q/ D qH � �.q/ (7)

where K(q) is a convex function with K(1) D 0. K(q) characterizes the multifractal-
ity associated with the intermittency.

Equation (6) shows that the distinction between increasing and decreasing mean
fluctuations corresponds to the sign of H. It turns out that the anomaly fluctuations
are adequate when �1 < H < 0 whereas the difference fluctuations are adequate
when 0 < H < 1. In contrast, the Haar fluctuations are useful over the range
�1 < H < 1 which encompasses virtually all geoprocesses, hence its more general
utility. When H is outside the indicated ranges, then the corresponding statistical
behaviour depends spuriously on either the extreme low or extreme high frequency
limits of the data.

2.2 The low Frequency Macroweather Limit and the Transition
to the Climate

We have argued that there is a drastic statistical transition in all the atmospheric
fields at time scales of 5–10 days, and that the basic equations have no characteristic
time scale. However, it was noted since (Lovejoy and Schertzer 1986) (Fig. 5a) that
global temperature differences tend to increase in a scaling manner right up to the
ice age scales: the glacial-interglacial “window” at about 50 kyrs (a half cycle) over
which fluctuations are typically of the order ˙2 to ˙4 K.

Figure 5a shows the root mean square second order structure function defined by

difference fluctuations
D
�T.�t/2

diff

E1=2

for both local and hemispherically averaged

temperatures. From the above discussion, we anticipate that it will give spurious
results in the regions where the true fluctuations decrease with scale; indeed,
the local (central England) series (upper left in Fig. 5a and ocean cores beyond
�100 kyrs, upper right) are spuriously flat (i.e., the differences do not reflect the
underlying scaling of the fluctuations that are in fact decreasing over these ranges).
This is confirmed using more modern data as well as Haar rather than difference
fluctuations, in Fig. 5b that shows a composite of temperature variability over the
range of scales of hours to nearly a million years. From Fig. 5b, it can be seen
that the drastic weather–macroweather spectral transition corresponds to a change
in the sign of H for H > 0 to H < 0, i.e. from fluctuations increasing to fluctuations
decreasing with scale. The bottom of the figure shows extracts of typical data at
the corresponding resolutions, when H > 0, the signal “wanders” like a drunkard’s
walk, when H < 0, successive fluctuations tend to cancel out.
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Fig. 6 Variation of �w (bottom) and � c (top) as a function of latitude as estimated from the 138-
year long 20CR reanalyses, 700 mb temperature field (the � c estimates are only valid in the
anthropocene). The bottom red and thick blue curves for �w are from Fig. 2; also shown at the
bottom is the effective external scale (� eff ) of the temperature cascade estimated from the European
Centre for Medium-Range Weather Forecasts interim reanalysis for 2006 (thin blue). The top � c

curves were estimated by bilinear log–log fits on the Haar structure functions applied to the same
20CR temperature data. The macroweather regime is the regime between the top and bottom curves

Moving to the longer time scales, one may also note that beyond a decade or two,
the fluctuations again increase with scale. In reality, as one averages from weeks to
months to years, the temperature fluctuations are indeed averaged out, appearing to
converge to a fixed climate. However, starting at decades, this apparent fixed climate
actually starts to fluctuate, varying up to ice age scales in much the same way as the
weather varies (with nearly the same exponent H � 0.4, see Fig. 5b). While the
adage says “The climate is what you expect, the weather is what you get”, the actual
data indicate that “Macroweather is what you expect, the climate is what you get”.

The annual and decadal scales in Fig. 5a, b are from the anthropocene, it is
important to compare this with the pre-industrial variability. This comparison is
shown in detail in Fig. 5c, d that includes comparisons with GCM outputs. From the
figures we see that in the anthropocene, macroweather ends (scale � c) at around a
decade or so; Fig. 6 gives estimates of � c averaged over fixed latitudes showing that
it is a little shorter in the low latitudes. We have seen (Fig. 4) that without external
forcing, turbulence models when taken to their low frequency limit reproduce
macroweather statistics; the same is true of GCMs in their “control run” mode (Fig.
5c). These results are important for macroweather forecasting since they represent a
potential calculable climate perturbation to the otherwise (pure internal variability)
macroweather behaviour.

In order to reproduce the low frequency climate regime characterized by
increasing fluctuations, we therefore need something new: either a new source
of internal variability or external forcings. Figure 5d shows that whereas in the
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anthropocene, the GCMs with Green House Gas (GHG) forcings do a good job
of reproducing the variability, in the pre-industrial period (Fig. 5c), their centennial
and millennial scale variability seems to be too weak (at least when using current
estimates of “reconstructed” solar and volcanic forcings (Lovejoy et al. 2013)).

The usual way to understand the low frequencies is to consider them as responses
to small perturbations, indeed, even the strong anthropogenic forcing is less than
1% of the mean solar flux and may be considered this way. This smallness is the
usual justification for making the approximation that the external forcings (whether
of natural or anthropogenic origin) yield a roughly linear response, indeed, this is
the basis of linearized energy balance models and it can also be supported from a
dynamical systems point of view (Ragone et al. 2015).

In order to avoid confusion, it is worth making these notions more precise. For
simplicity, consider the atmosphere with fixed external radiative forcing F(r) at
location r, (e.g. corresponding to GCM control runs). For this fixed forcing, the
(stochastic) temperature field is:

TF .r; t/ D hTF .r/i C T 0
F .r; t/ (8)

where the ensemble average is independent of time (since the past forcing is fixed)
and T’ (with hT’i D 0) is the random deviation. If we identify hTF .r/i with the
climate and T 0

F .r; t/ with the internal variability, then:

TF;int ernal .r; t/ D TF .r; t/ � TF;clim .r/ I TF;clim .r/ D hTF .r; t/i I
TF;internal .r; t/ D T 0

F .r; t/ (9a)

For simplicity, we have ignored the annual cycle, the internal variability is
somewhat different than the notion of temperature anomalies discussed in Sect. 4.

Now increase the forcing from F .r/ ! F .r/ C �F .r; t/ so that the climate part
increases from hTF .r/i ! hTFC�F .r; t/i i.e. TF;clim .r/ ! TFC�F;clim .r; t/ and:

�T�F;clim .r; t/ D TFC�F;clim .r; t/ � TF;clim .r/ (9b)

is the change in the climate response to the changed forcing. The generalized climate
sensitivity � can then be defined as:

� .r; t/ D @TF;clim .r; t/

@F .r; t/
� �TF;clim .r; t/

�F .r; t/
(10)

GCMs make many realizations (sometimes from many models—“multimodel
ensembles”) and this equation may be used to determine the climate response
and generalized sensitivity (the more common equilibrium and transient climate
sensitivities are discussed momentarily). If t is a future time, then TFC�F .r; t/ is
a prediction of the future state of the atmosphere including the internal variability
and the changed forcing, whereas TFC�F;clim .r; t/ is called a climate “projection”.
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Sometimes climate projections and sensitivities are estimated from single GCM
model runs by estimating the ensemble averages by temporal averages over decadal
time scales.

We can now state the linear response assumption:

�Tclim .r; t/ D G .r; t/ � �F .r; t/ (11)

where G(r,t) is the system Green’s function, in this context, it is also known as
the Climate Response Function (CRF), “*” means convolution. Equation (11) is the
most general statement of linearity for systems whose physics is the same at all times
and locations (it assumes that only the differences in times and locations between
the forcing and the responses are important). To date, applications of CRFs have
been limited to globally averaged temperatures and forcings so that the spatial (r)
dependence is averaged out; for simplicity, below we drop the spatial dependence.

The CRF is only meaningful if the system is linear, in which case it is the
response of the system to a Dirac function forcing. The simplest CRF is itself
a Dirac function possibly with a lag �t � 0, i.e. G(t) D �ı(t � �t), (sensitivity
�). Such CRFs have been used with some success by Lean and Rind (2008) and
Lovejoy (2014a) to account for both anthropogenic and natural forcings. Rather
than characterize the system by a response to Dirac forcing, it is more usual to
characterize it by its responses to a step function F(t) (the Equilibrium Climate
Sensitivities, ECS) or to a linearly increasing F(t) (“ramps”; Transient Climate
Responses, TCR). Since step functions and ramps are simply the first and second
integrals of the Dirac function, if the response is linear (Eq. 11), then knowledge
of these responses as functions of time is equivalent to the CRF (note that usually
the ECS is defined as the response after an infinite time, and TCR after a finite
conventional period of 70 years).

Traditionally, Green’s functions are deduced from linear differential operators
arising from linear differential equations. For example, by treating the ocean as a
homogeneous slab, the linearized energy balance equation may be used to determine
the CRF, but the latter is an integer ordered ordinary differential equation for the
mean global temperature which leads to exponential CRFs (e.g. Schwartz 2012;
Zeng and Geil 2017). Such CRFs are unphysical since they break the scaling
symmetry of the dynamics; the dynamical ocean is better modelled as a hierarchy
of slabs each with its own time constant (rather than a unique slab with a unique
constant). To model this in the linear energy balance framework requires introducing
differential terms of fractional order; these generally lead to the required scaling
CRFs (SCRF) and will be investigated elsewhere.

Rather than determine the CRF from differential operators, they can be deter-
mined directly from the symmetries of the problem. In this case (considering only
the temporal CRF, G(t)), the three relevant symmetries are: (a) that the physics is
stationary in time, (b) that the system is causal, (c) that there is no characteristic
time scale. From these three symmetries we obtain G.t/ / tHR�1‚.t/ where HR is
the SCRF response exponent and ‚(t) is the Heaviside function (D0 for t < 0, D1
for t � 0), necessary to ensure causality of the response.
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Before continuing, we must note that such pure power law SCRFs are unusable
due to either high or low frequency divergences; in this context, the divergences
are aptly called “runaway Green’s function effect” (Hébert and Lovejoy 2015)
so that truncations are needed. For forcings that have infinite “impulses” (such
as step functions or ramps whose temporal integrals diverge), when HR > 0 low
frequency temperature divergences will occur, unless G(t) has a low frequency
cutoff whereas whenever HR < 0, the cutoff must be at high frequencies. For
example, Rypdal (2015) and Rypdal and Rypdal (2014) use an SCRF with exponent
HR > 0 (without cutoff) so that low frequency temperature divergences occur unless
all the forcings return to zero quickly enough. This is why Hebert et al. (2017) use
HR < 0 but introduce a high frequency cutoff � in order to avoid the divergences:
G.t/ D �H.t=� C 1/HR�1‚.t/; �H is a generalized sensitivity. In this case, the cutoff
should correspond to the smallest time scale over which the linear approximation
is valid. While the most general (space-time) linear approximation (i.e. with G(r,t))
may be valid at shorter time scales, if we reduce the problem to a “zero dimensional”
(globally averaged) series T(t), then clearly a linear response is only possible at
scales over which the ocean and atmosphere are strongly coupled. The breakthrough
in understanding and quantifying this was to use Haar fluctuations to show that the
coupling of air temperature fluctuations over land and SST fluctuations abruptly
change from very low to very high at the ocean weather-ocean macroweather
transition scale of � D 1–2 years (see Fig. 7). A truncated SCRF with this � and with
HR � �0.5 allows (Hebert et al. 2017) to make future projections based on historical
forcings as well as to accurately project the forced response of GCM models.

Fig. 7 The correlations quantifying the coupling of global, land and ocean temperature fluctu-
ations. At each scale �t, the correlation coefficient � of the corresponding Haar fluctuations was
calculated for each pair of the monthly resolution series. The key curve is the correlation coefficient
of globally averaged air over land with globally averaged sea surface temperature (SST, bottom,
red). One can see that there is a sharp transition at � � 1–2 years from very low correlations,
to very high correlations corresponding to uncoupled and coupled fluctuations. Reproduced from
Hebert et al. (2017)
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a

b

c

top is spatial fluctuations, bottom temporal at equator

Fig. 8 (a) A comparison of temporal and spatial macroweather series at 2o resolution. The top are
the absolute first differences of a temperature time series at monthly resolution (from 80ıE, 10ıN,
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2.3 Climate Zones and Intermittency: In Space and Time

We have argued that macroweather is the dynamical regime of fluctuations with
time scales between the lifetimes of planetary structures (�w) and the climate
regime where either new (slow) internal processes or external forcings begin to
dominate (� c). We have seen that a key characteristic is that mean fluctuations tend
to decrease with time scale so that the macroweather fluctuation exponent H < 0.
However in general, fluctuations require an infinite hierarchy of exponents for their
characterization (the entire function K(q) in Eq. (7)). In particular, when K(q) is
large, the process is typically “spikey” with the spikes distributed in a hierarchical
manner over various fractal sets.

To see this, consider the data shown in Fig. 8a (macroweather time series and
spatial transects, top and bottom, respectively). Fig. 8b compares the root mean
square (RMS, exponent �(2)/2) and mean fluctuation (exponent H D �(1)) of
macroweather temperature temporal data (bottom) and for the transect (top). When
the system is Gaussian, �(q) D qH so that K(q) D 0) and we obtain �(2)/2 D �(1)
so that the lines in the figure will be parallel. We see that to a good approximation
this is indeed true of the nonspikey temporal series (Fig. 8a, top). However, the
spatial transect is highly spikey (Fig. 8a, bottom) and the corresponding statistics
(the top lines in Fig. 8b) tend to converge at large �t. To a first approximation, it
turns out that �(2)/2 – �(1) � K0(1) D C1 which characterizes the intermittency near
the mean. However, there is a slightly better characterization of C1 (described in
Lovejoy and Schertzer (2013), Chap. 11), using the intermittency function (see Fig.
8c and caption) whose theoretical slope (for ensemble averaged statistics) is exactly
K0(1) D C1. As a point of comparison, recall that fully developed turbulence in the
weather regime typically has C1 � 0.09, (see Lovejoy and Schertzer (2013), Table
4.5). The temporal macroweather intermittency (C1 � 0.01) is indeed small whereas
the spatial intermittency is large (C1 � 0.12).

The strong spatial intermittency is the statistical expression of the existence of
climate zones (Lovejoy and Schertzer 2013). However we shall see that due to
space-time statistical factorization (next subsection), each region may be forecast
separately. In addition, a low intermittency (Gaussian) approximation can be made

J
Fig. 8 (continued) 1880–1996, displaced by 4 K for clarity), and the bottom is the series of
absolute first differences of a spatial latitudinal transect (annually averaged, 1990 from 60ıN),
as a function of longitude. Both use data from the 20CR. One can see that while the top is noisy,
it is not very “spikey”. (b) The first order and RMS Haar fluctuations of the series and transect
from (a). One can see that in the spikey transect, the fluctuation statistics converge at large lags
(time scale �t), the rate of the converge is quantified by the intermittency parameter C1. The
series (bottom) is less spikey, converges very little and has low C1 (see (c)). (c) A comparison of
the intermittency function F D hj�Tji(hj�Tj1 C �qi)/(hj�Tj1 � �qi)1/�q (more accurate than the
approximation indicated in the figure) for the series and transect in the (a) and (b), quantifying the
difference in intermittencies: in time C1 � 0.01, in space, C1 � 0.12. Since K0(1) D C1, when �q
is small enough (here, �q D 0.1 was used), we have F .�t/ D �tC1 . The break in the temporal
scaling at about 20–30 years is due to anthropogenic forcings

http://dx.doi.org/10.1007/978-3-319-58895-7_11
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for the temporal statistics. Note that in spite of this Gaussian approximation for
forecasts, there is evidence that the 5th and higher moments of the temperature
fluctuations diverge (i.e. power probability distributions) so that the Gaussian
approximation fails badly for the extreme 3% or so of the fluctuations (see Lovejoy
and Schertzer (1986) and Lovejoy (2014a)).

2.4 Scaling, Space-Time Statistical Factorization
and Size-Lifetime Relations

In the previous section we saw that there was evidence for scaling separately both
in space and in time with the former being highly intermittent (multifractal) and
the latter being nearly Gaussian (Fig. 8). However, in order to make stochastic
macroweather forecasts, we need to understand the joint space-time macroweather
statistics and these turn out to be quite different from those in the weather regime.
For the latter, recall that there exist well-defined statistical relations between weather
structures (“meso-scale complexes”, “storms”, “turbulence”, etc.) of a given size
L and their lifetimes � . Indeed, the textbook space-time “Stommel” diagrams
that adorn introductory meteorology textbooks show log spatial scale versus log
temporal scale plots with boxes or circles corresponding to different morphologies
and phenomenologies and these typically occupy the diagonals. These diagrams
are usually interpreted as implying that each factor of two or so in spatial scale
corresponds to fundamentally different dynamical processes, each with its own
typical spatial extent and corresponding lifetime. However, as pointed out in
Schertzer et al. (1997), the part of the diagram occupied by realistic structures
and processes are typically not only on diagonals (implying a scaling space-time
relation), but are on the precise diagonal whose slope has the value 2/3, theoretically
predicted by the (Lagrangian, co-moving) size-lifetime relation discussed above:
� D "�1/3L2/3. The usual interpretation is an example of the “phenomenological
fallacy” (Lovejoy and Schertzer 2007): rather than refute the scaling hypothesis, the
Stommel diagrams support it.

As usual, the Eulerian (fixed frame) space-time relations are much easier to
determine empirically, although theoretically their relation to Lagrangian statistics is
not trivial. In a series of papers based on high resolution lidar data (Lilley et al. 2008;
Lovejoy et al. 2008; Radkevitch et al. 2008) and then geostationary IR data (Fig. 3,
Pinel et al. (2014)), an argument by Tennekes (1975) about the small structures
being “swept” by larger ones was extended to the (atmospheric) case assuming
that there was no scale separation between small and large horizontal scales. It
was concluded that the corresponding Eulerian (i.e. fixed frame) space-time relation
generally had space-time spectra of the form:

Pxyt
�
kx; ky; !

� D �
Œ
�
kx; ky; !

��
�
�s

(12)
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where Pxyt is the space-time spectra density:

Pxyt
�
kx; ky; !

� /
Dˇ̌ QT �kx; ky; !

�ˇ̌2E
(13)

and �(kx, ky, !)� is the wavenumber (kx,ky)–frequency (¨) scale function nondimen-
sionalized by the large scale turbulent velocities (i.e. using " and the size of the
earth). The analogous (real space) second order joint space-time structure function
statistics:

Sxyt .�x; �y; �t/ D
D
�T.�x; �y; �t/2

E
(14)

were of the form:

Sxyt .�x; �y; �t/ D ŒŒ.�x; �y; �t/���.2/ (15)

where �(�x, �y, �t)� is the real space (nondimensional) scale function for
horizontal lag (�x,�y) and temporal lag �t. The scale functions relevant
here satisfy the isotropic scaling: ���1(�x, �y, �t)� D ��1�(�x, �y, �t)� and
��(kx, ky, !)� D ��(kx, ky, !)� where � is a scale reduction factor. This is directly
confirmed in Fig. 3 for IR radiances.

In the simplest cases (with no mean advection and ignoring weak scaling
singularities associated with waves (Pinel and Lovejoy 2014)), and retaining only
a single spatial lag �x, and wavenumber kx, the nondimensional scale functions
reduce to the usual vector norms, i.e. they are of the form:

ŒŒ.�x; �t/�� D �
�x2 C �t2

�1=2
(16)

ŒŒ.kx; !/�� D �
k2

x C !2
�1=2

(17)

With s D d C �(2) with d D the dimension of space-time, in this example d D 2.
In order to define a relationship between a structure of extent L with the lifetime

� , we can use Sxt. For example, if we wait at a fixed location (�x D 0) for a time
� , we may ask what distance L must we go at a given instant (�t D 0) in order to
expect the same typical fluctuation? This gives us an implicit relation between L and
� : Sxt(0, � ) D Sxt(L, 0); in this simple case (Eqs. 15 and 16) this implies � D L for the
nondimensional variables so that the dimensional relationship would correspond to
a constant speed relating space and time. A similar relation would be obtained by
using the same argument in Fourier space on the spectral density P.

What is the space-time relation in macroweather where we consider temporal
averages over periods >�w, typically months or longer? In this case, we average
over many lifetimes of structures of all sizes, so clearly size-lifetime relations valid
in the weather regime must break down. Lovejoy and Schertzer (2013) and Lovejoy
and de Lima (2015) argued on theoretical, numerical and empirical grounds that—
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at least to a good approximation—the result is statistical space-time factorization
(SSTF). The application of the SSTF to the second order statistics means:

Pxt .kx; !/ D Px .kx/ Pt .!/

Rxt .�x; �t/ D Rx .�x/ Rt .�t/ I (18)

Note that in real space we have used correlation functions Rxt(�x, �t) D hT(t, x)
T(t � �t, x � �x)i rather than Haar structure functions S; in macroweather (H < 0),
they are essentially equivalent. However for small lags in time, one effectively goes
outside the macroweather regime and �t D 0 is problematic. When both Ht < 0 and
Hx < 0 we can avoid issues that arise at small �t, �x by using correlation functions
(Fig. 9a) (for the case Ht < 0, Hx > 0, see Sect. 10.3 of Lovejoy and Schertzer
(2013)).

Using the autocorrelations to obtain space-time macroweather relations, we
obtain Rxt(0, � ) D Rxt(L, 0) so that using factorization and the identity Rt(0) D Rx(0)
the implicit � -L relation is:

Rt .�/ D Rx.L/ (19)

This is valid if both space and time have H < 0; if there is scaling, we have
Rt .�/ / �Ht and Rx.L/ / LHx with exponents Ht < 0, Hx < 0. The lifetime of a
macroweather structure of size L is thus:

� / LHx=Ht (20)

which—unless Hx D Ht —is quite different from the lifetime-size relationship in
the weather regime; Fig. 9a shows that � / L0.65, for macroweather temperature and
precipitation. Fig. 9a, shows that empirically the factorization works well for both
temperature and precipitation data, and Fig. 9b shows that it is also (even better)
obeyed by the GISS E2R GCM; Del Rio Amador 2017 shows that it holds very
accurately for 36 CMIP5 control runs.

It turns out that the SSTF is important for macroweather forecasting. This is
because, using means square estimators, it implies that no matter how strong the
correlations (teleconnections), if one has long time series at each point, pixel or
region, that no further improvement can be made in the forecast by adding co-
predictors such as the temperature data at other locations (Del Rio Amador 2017).
This effectively means that the original nonlinear initial value PDE problem has
been effectively transformed into a linear but fractional ordered ODE “past value”
problem, we pursue this in the next sections.
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a

Fig. 9 (a) The joint space (�™ i.e. angle subtended) time (�t) RMS fluctuations of temperature
(top, adapted from (Lovejoy 2017)) and precipitation (bottom, adapted from (Lovejoy and de Lima
2015)). In both cases, zonal spatial anomaly fluctuations are given for data averaged over 1, 2, 4,
: : : , 1024 months (since the temporal H < 0 this is an anomaly fluctuation). The temperature data
are from the HadCRUtemp3 database and the precipitation data from the Global Historical Climate
Network, both at 5ı, monthly resolutions and spanning the twentieth century. On this log–log
plot, SSTF implies S	 t(�	 , �t) D S	 (�	 )St(�t) so that the curves will be parallel. If in addition
they respect spatial scaling, then they will be linear, and if they respect the temporal scaling, then
as we double the temporal resolution (top to bottom), they will be equally spaced (separated by
log 2H). Eventually (red), the temporal scaling breaks down (at � c � 256 months). Over the
regimes where both SSTF and scaling hold we have for temperature, S	 , t(�	 , �t) � �	�0.2�t�0.3

and for precipitation S	 , t(�	 , �t) � �	�0.3�t�0.4. The double headed red arrows show the
corresponding total predicted range over macroweather time scales. (b) The same as (a), but for
temperature fluctuations from GISS-E2R historical simulations from 1850. In this case, rather than
using anomalies (which were the only data available for (a)), we used the difference between two
realizations of the same historical simulation (i.e. with identical external boundary conditions)
obtained by slightly varying the initial conditions. The temporal behaviour of this plot shows
rapidly the model climate is approached under temporal averaging, and how it varies as a
function of angular scale. Again we see that the joint fluctuations have nearly exactly the same
shapes (confirming SSTF); over the ranges where the scaling holds, the joint structure function
is:S	 , t(�	 , �t) � �	0.3�t�0.4. This plot shows that GCMs obey the SSTF very accurately, a fact
confirmed in Sect. 4 by the success by which they can be predicted by SLIMM
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b

Fig. 9 (continued)

3 Macroweather Forecasting

3.1 The Fractional Gaussian Noise Model and some
of Its Characteristics

We have argued that macroweather is scaling but with low intermittency, so that
a Gaussian forecasting model may be an acceptable approximation. The simplest
such model is fractional Gaussian noise (fGn). We now give a brief summary of
some useful properties of fGn; for a longer review, see Lovejoy et al. (2015) and for
an extensive mathematical treatment see (Biagini et al. 2008).

Over the parameter range of interest �1/2 < H < 0, fGn is essentially a smoothed
Gaussian white noise and its mathematical definition raises similar issues. For our
purposes, it is most straightforward to use the framework of generalized functions
and start with the unit Gaussian white noise 
 (t) which has h
i D 0 and is “•

correlated”:

˝

.t/


�
t0
�˛ D ı

�
t � t0

�
(21)

where “•” is the Dirac function. The H parameter fGn GH(t) is thus:

GH.t/ D cH
�.1=2CH/

tR
�1

.t � t0/�.1=2�H/

 .t0/ dt0I �1 < H < 0 (22)

The constant cH is a constant chosen so as to make the expression for the
statistics particularly simple, see below. Mathematically 
 (t) is thus the density of
the Wiener process W(t), often written 
 (t)dt D dW: just as the Dirac function is
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only meaningful when integrated, the same is true of 
 (t). For fGn, we shall see
below that GH(t)dt D dBH’ where BH’ is a generalization of the Wiener process,
fractional Brownian motion (fBm, parameter H0 D 1 C H) and BH’ reduces to a
Wiener process when H0 D 1/2. GH(t) is thus the (singular) density of an fBm
measure. In practice, we will always consider GH(t) smoothed over finite resolutions
so that whether we define GH(t) indirectly via fBm or directly as a smoothing of
Eq. (22) the result is equivalent.

We can see by inspection of Eq. (22) that GH(t) is statistically stationary and by
taking ensemble averages of both sides of Eq. (22) we see that the mean vanishes:
hGH(t)i D 0. When H D �1/2, the process G�1/2(t) itself is simply a Gaussian white
noise. Although we justified the use of fGn as the simplest scaling process, it could
also be introduced as the solution of a stochastic fractional ordered differential
equation:

dHC1=2T

dtHC1=2
D 
.t/ (23)

the solution of which is T(t) / GH(t).
Now, take the average of GH over � , the “� resolution anomaly fluctuation”:

GH;� .t/ D 1

�

tZ

t��

GH
�
t0
�

dt0 (24)

If cH is now chosen such that:

cH D
�

�

2 cos .�H/ � .�2H � 2/

�1=2

(25)

then we have:
D
GH;� .t/2

E
D �2HI �1 < H < 0 (26)

This shows that a fundamental property of fGn is that in the small scale limit
(� ! 0), the variance diverges and H is scaling exponent of the root mean square
(RMS) value. This singular small scale behaviour is responsible for the strong power
law resolution effects in fGn. Since hGH(t)i D 0, sample functions GH,� (t) fluctuate
about zero with successive fluctuations tending to cancel each other out; this is the
hallmark of macroweather.

Anomalies

An anomaly is the average deviation from the long-term average and since
hGH(t)i D 0, the anomaly fluctuation over interval �t is simply GH at resolution
�t rather than � :
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.�GH;� .�t//anom D 1
�t

tR
t��t

GH;� .t0/ dt0 D 1
�t

tR
t��t

GH .t0/ dt0 D GH;�t.t/I �t > �

(27)

Hence using Eq. (26):

D
.�GH;� .�t//2

anom

E
D �t2HI �1 < H < 0 (28)

Differences

In the large �t limit we have:

D
.�GH;� .�t//2

diff

E
� 2�2H

 
1 � .H C 1/ .2H C 1/

�
�t

�

�2H
!

(29)

Since H < 0, the differences asymptote to the value 2�2H (double the variance).
Notice that since H < 0, the differences are not scaling with �t.

Haar Fluctuations

For the Haar fluctuation we obtain:
D
.�GH;� .�t//2

Haar

E
D 4�t2H

�
2�2H � 1

� I �t � 2� (30)

this scales as �t2H and does not depend on the resolution � . This relation can be
used to estimate the spatial variation of H, Fig. 10 gives the spatial distribution
using 20CR data. It can be seen that H is near zero over the oceans and is lower
over land, typical values being �0.1 and �0.3, respectively. Below, we see that
this corresponds to large memory (and hence forecast skill) over oceans and lower
memory and skill over land.

Autocorrelations

hG�;H.t/G�;H .t��t/iDR
�c�t

	

D�2H

2


�c�tC1
	2HC2C

�c�t�1
	2HC2�2c�t

2HC2
�

I c�tD�t

�

(31)
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Fig. 10 The spatial distribution of the exponent H estimated at 5
ı � 5

ı

resolution using monthly
resolution data from the NCEP reanalyses (1948–2010) and estimated by a maximum liklihood
method. The mean was �0.11 ˙ 0.09

Spectra

Since fGn is stationary, its spectrum is given by the Fourier transform of the
autocorrelation function. Note that in the above, �t > 0; since the autocorrelation is
symmetric for the Fourier transform with respect to �t, we use the absolute value
of �t. We obtain:

E .!/ D �.3C2H/ sin �Hp
2�

j!j�ˇI ˇ D 1 C 2H (32)

Relation to fBm

It is more common to treat fBm whose differential dBH’(t) is given by:

dBH0 D GH.t/dtI H0 D H C 1I 0 < H0 < 1 (33)

so that:

�BH0 .�/ D BH0.t/ � BH0 .t � �/ D
tZ

t��

GH0

�
t0
�

dt0 D �GH0;� .t/ (34)

with the property:

D
�BH0.�t/2

E
D �t2H0

(35)
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While this defines the increments of BH’(t) and shows that they are stationary,
it does not completely define the process. For this, one conventionally imposes
BH’(0) D 0, and this leads to the usual definition:

BH0.t/ D cH0

� .H0 C 1=2/

0Z

�1

�
.t � s/H0�1=2 � .�s/H0�1=2

	

.s/ds

C cH0

� .H0 C 1=2/

tZ

0

.t � s/H0�1=2
.s/ds (36)

(Mandelbrot and Van Ness 1968). Whereas fGn has a small scale divergence
that can be eliminated by averaging over a finite resolution � , the fGn integral

tR
�1

GH .t0/ dt0 on the contrary has a low frequency divergence. This is the reason

for the introduction of the second term in the first integral in Eq. (36): it eliminates
this divergence at the price of imposing BH0 (0) D 0 so that fBm is nonstationary
(although its increments are stationary, Eq. (34)).

A comment on the parameter H is now in order. In treatments of fBm, it is
usual to use the parameter H confined to the unit interval, i.e. to characterize the
scaling of the increments of fBm. However, fBm (and fGn) are very special scaling
processes, and even in low intermittency regimes such as macroweather—they are
at best approximate models of reality. Therefore, it is better to define H more
generally as the fluctuation exponent (Eq. 6); with this definition, H is also useful for
more general (multifractal) scaling processes although the interpretation of H as the
“Hurst exponent” is only valid for fBm). When �1 < H < 0, the mean at resolution
� (Eq. 24) defines the anomaly fluctuation, so that H is equal to the fluctuation
exponent for fGn, in contrast, for processes with 0 < H < 1, the fluctuations scale
as the mean differences and Eq. (35) shows that H0 is the fluctuation exponent for
fBm. In other words, as long as an appropriate definition of fluctuation is used, H
and H0 D 1 C H are fluctuation exponents of fGn, fBm, respectively. The relation
H0 D H C 1 follows because fBm is an integral order 1 of fGn. Therefore, since
the macroweather fields of interest have fluctuations with mean scaling exponent
�1/2 < H < 0, we use H for the fGn exponent and ½ < H0 < 1 for the corresponding
integrated fBm process.

We can therefore define the resolution � temperature as:

T� .t/ D TGH;� .t/ D T
BH0.t/ � BH0 .t � �/

�
(37)

Using Eq. (26), the � resolution temperature variance is thus:
˝
T2

�

˛ D 2
T�2H (38)

From this and the relation T� (t) D TGH , � (t), we can trivially obtain the statistics
of T� (t) from those of GH , � (t).
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3.2 Mean Square (MS) Estimators for fGn and the ScaLIng
Macroweather Model (SLIMM)

The Mean Square (MS) estimator framework is a general framework for predicting
stochastic processes, it determines predictors that minimize the prediction error
variance, see, e.g., Papoulis (1965). Since Gaussian processes are completely
determined by their second order statistics, the MS framework therefore gives
optimum forecasts for fGn.

Our problem is to use data T� (s) at times s < 0 (or equivalently, the innovations

 (s)) to predict the future temperature T� (t) at times t > 0. Denoting this predictor
by bT� .t/ MS theory then shows that the latter is given by a linear combination of
data, i.e. either the T� (s) or equivalently by a linear combination of past white noise
“innovations” 
 (s):

bT� .t/ D R
��0<s�0

MT .t; s/ T� .s/ds

bT� .t/ D R
��0<s�0

M
 .t; s/ 
.s/ds
(39)

where MT , M
 are the predictor kernels based on past temperatures and past
innovations, respectively, and the range of integration is over all available data, the
range –�0 < s � 0. The simplest problems are those where the range extends to the
infinite past (�0 ! 1), but practical predictions require the solution for finite �0.

The prediction error is thus:

ET.t/ D T� .t/ �bT� .t/ (40)

and from MS theory, the basic condition imposed by minimizing the error variance˝
E2

T.t/
˛

is:

D
ET.t/bT� .t/

E
D hET.t/T� .s/i D hET.t/
.s/i D 0I t > 0I s � 0 (41)

This equation states that the (future) prediction error ET (t) is statistically
independent of the predictorbT� .t/ or, equivalently, it is independent of the past data
T� (s), 
 (s) upon which the predictor is based. This makes intuitive sense: if there
was a nonzero correlation between the available data and the prediction error, then
there would still information in the data that could be used to improve the predictor
and reduce the error. Since GCM forecasts are not MS, they do not satisfy this
orthogonality condition. On the one hand, this explains how they can have negative
skill (see below), on the other, it justifies complex GCM post-processing that exploit
past data to reduce the errors. Indeed, a condition used to optimize post-processing
corrections is actually close to the orthogonality condition.

In Lovejoy et al. (2015), the mathematically simplest predictor was given in the
case of infinite past data but using the innovations 
 (s):
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bT� .t/ D
0R

�1
M
 .t; s/ 
.s/ds

M
 .t; s/ D cHT
��.HC3=2/

h
.t � s/HC1=2 � .t � � � s/HC1=2

i (42)

The error is:

ET D T� .t/ �bT� .t/

D cHT

�� .H C 3=2/

2
4

tZ

0

.t � s/HC1=2
.s/ds �
t��Z

0

.t � � � s/HC1=2
.s/ds

3
5 (43)

Since bT.t/ depends only on 
 (s) for s < 0 and ET on 
 (s) for s > 0, it can be
seen by inspection that the orthogonality condition (Eq. 41) holds. Using this MS
predictor, we can define the Mean Square Skill Score (MSSS) or “skill” for short:

MSSS D Sk.t/ D 1 �
D
ET.t/2

E
D
T� .t/2

E (44)

For MS forecasts, we can use the orthogonality condition to obtain equivalently;

Sk.t/ D
DbT2

� .t/
E

hT2
� .t/i (45)

which shows that for MS forecasts, the skill is the same as the fraction of the
variance explained by the predictor.

Using the predictor (Eq. 42) we can easily obtain the skill for fGn forecasts:

Sk .�/ D



FH.1/�FH.�/

FH.1/C 1
2HC2

�
I � D t=� I � � 1 (46)

where the auxiliary function FH is given by:

FH .�/ D
��1R

0

�
.1 C u/HC1=2 � uHC1=2

	2

duI � � 1 (47)

with:

FH .1/ D ��1=22�.2HC2/� .�1 � H/ � .3=2 C H/ (48)

and the asymptotic expression:

FH .�/ D FH .1/ � .H C 1=2/2

�2H
�2H C : : : (49)
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(Lovejoy et al. 2015). For any system that has quasi-Gaussian statistics and scaling
fluctuations with �1/2 < H < 0 the theoretical skill, Eq. (46) represents a stochastic
predictability limit, of similar fundamental significance to the usual deterministic
predictability limits arising from sensitive dependence on initial conditions. In Sect.
4.2, we show that CMIP5 GCMs can indeed be predicted to nearly this limit using
the MS approach outlined here.

Although the MSSS is commonly used for evaluating forecasts, the correlation
coefficient between the hindcast and the temperature is occasionally used:

�_
T ;T

.t; �/ D
D_
T � .t/T� .t/

E
�
D_
T � .t/

E
hT� .t/i

D_
T � .t/2

E1=2D
T� .t/2

E1=2
(50)

Since hTi D 0, the upper right cross term vanishes and using orthogonalityD
T� .t/

_

T � .t/
E

D
D_
T � .t/2

E
we obtain:

�_
T ;T

.t; �/ D Sk.t; �/1=2 (51)

Therefore, MS forecast skill can equivalently be quantified using either correla-
tions or MSSS.

Figure 11a shows the theoretical skill as a function of H for different forecast
horizons. To underscore the huge memory implied by the power law kernel M
 ,
we can compare the fGn kernel with that of the exponential kernels that arise in
auto-regressive (AR) type processes. This is relevant here since the main existing
stochastic macroweather forecasts techniques (“Linear Inverse Modelling”, LIM,
see the next subsection) are vector AR processes that reduce to scalar AR processes
in an appropriately (diagonalized) frame. If for simplicity we consider only forecasts
one time step into the future (i.e. horizon � , for a process resolution � ), then the
fraction f (�) of the predictor variance that is due to innovations at times �� or further
in the past can be written in the same form as for fGn:

f .�/ D I.�/

I.0/
I I .�/ D

��R
�1

.g.s/ � g .s � 1//2ds (52)

where g(s) D (�s)1/2 C H for fGn (for SLIMM predictions) and g(s) D es for AR
processes. The comparison is shown in Fig. 11b, it can be seen that almost all the
information needed to forecast an AR process is in the most recent three steps,
whereas for SLIMM, with H D �0.1 (appropriate for forecasting the globally
averaged temperature), roughly 20% comes from innovations more than 1000 steps
in the past. Significantly, we will see that this does not mean that we need such
long series to make good forecast; this is because even relatively short series with
H D �0.1 have information from the distant past; this is discussed below.
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a

b

Fig. 11 (a) Forecast skill for nondimensional forecast horizons � D (horizon/resolution) D 1, 2,
4, 8, : : : , 64 (left to right) as functions of H. For reference, the rough empirical values for land,
ocean and the entire globe (the value used here, see below) are indicated by dashed vertical lines.
The horizontal lines show the fraction of the variance explained (the skill, Sk, Eq. (46)) in the case
of a forecast of resolution � data at a forecast horizon t D � (� D 1; corresponding to forecasting
the anomaly fluctuation one time unit ahead). (b) The fraction of the prediction variance of a
forecast one time step ahead that is due to innovations further in the past than � time units (one
unit D resolution �). The right four curves are for SLIMM (H D �0.1, �0.2, �0.3, �0.4), and
the far left curve is for an auto-regressive process F D f (�) D Fraction of total memory used in
forecasts one step into the future
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3.3 SLIMM Prediction Skill and Alternative Stochastic
Macroweather Prediction Systems

Following Hasselmann (1976) who proposed the use of stochastic differential
equations to understand low frequency weather (i.e. macroweather), attempts have
been made to use this for monthly, Seasonal to Interannual forecasts. The basic idea
is to model the atmosphere as an Ornstein-Uhlenbeck process, i.e. the solution of
dT
dt C T=� D 
.t/ where � is the basic time scale and 
 is a white noise forcing. The
idea is that the weather acts essentially as a random white noise perturbation to the
temperature T. Fourier analysis shows that the spectrum is E(!) / 1/(!2 C ��2) so
that at high frequencies, E(!) / !�2 whereas at low frequencies, E(¨) � constant.
The process is thus an (unpredictable) white noise; this can be seen directly by
taking the low frequency limit dT/dt � 0 in the equation. From an empirical point
of view, there are two scaling regimes (exponents ˇ D 0, 2), corresponding to
H D (ˇ�1)/2 D �1/2 and H D ½, respectively, but neither is realistic: for example,
the true values for the temperature are closer to ��0.1, �0.4 for macroweather,
weather respectively with the former showing significant spatial variations, see
Fig. 10. The key point is that models based on integer order differential equations
implicitly assume that the low frequencies are unpredictable whereas on the
contrary, the temporal scaling implies long range dependencies, a large memory.
From the point of view of differential equations, we thus require terms of fractional
order (see Eq. (22)).

Over the decades, the Hasselman inspired approach has been significantly
developed, in the framework of “Linear Inverse Modelling” (LIM), sometimes also
called the “Stochastic Linear Framework” (SLF), although the latter is somewhat
a misnomer since it restrictively excludes fractional ordered (but still linear)
terms (for LIM, SLF see, e.g., Penland (1996), Penland and Sardeshmuhk (1995),
Sardeshmukh et al. (2000), and Newman (2013)). The essential development is
the extension of scalar Ornstein-Uhlenbeck processes to vector processes with
each component being a significant macroweather variable (e.g. an El Nino index,
an ocean temperature at a particular grid point, etc.). Typical implementations
such as described in Newman (2013) involve 20 components (implying hundreds
of empirical parameters). When diagonalized, the system reduces to decoupled
Ornstein-Uhlenbeck processes whose longest characteristic times are about 1 year,
and beyond this, the system has little skill, see Fig. 12a.

Because its theoretical basis is weak and it involves a large number of empirical
parameters, LIM is an example of what is commonly termed an “empirically based”
approach. Other such approaches have been proposed, notably by Suckling et al.
(2016) and they have had some success by using carefully chosen climate indices
that are linearly related to macroweather variables of interest and using empirically
determined time delays. In contrast, SLIMM is based on fundamental space-time
scale symmetries that we argue are respected by the dynamical equations.

In order to use SLIMM for forecasts, it is important to first remove the low
frequency responses to anthropogenic forcings, failure to do so (Baillie and Chung
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2002) leads to poor results. For annually, globally averaged temperatures, it turns out
that reasonable results can be obtained using the CO2 radiative forcing (proportional
to logCO2 concentration) as a linear surrogate for all anthropogenic forcings
(Fig. 12b). SLIMM then forecasts the internal variability: the residuals. The reason
that this works so well is presumably that all anthropogenic effects are linked
through the economy and the economy is well characterized by energy use and
hence by CO2 emissions.

a

Fig. 12 (a) A comparison of Root Mean Square Error (RMSE) of hindcasts of various global
annual temperatures for horizons of 1–9 years: the (GCMbased) ENSEMBLES experiment (from
(Garcıa-Serrano and Doblas-Reyes 2012), LIM (Newman 2013) and SLIMM (Lovejoy et al.
2015). The light lines are from individual members of the ENSEMBLE experiment; the heavy
line is the multimodel ensemble. This shows the RMSE comparisons for the global mean surface
temperatures compared to NCEP/NCAR (2 m air temperatures). Horizontal reference lines indicate
the standard deviations of Tnat (bottom horizontal line, the RMS of the residuals after removing
the anthropogenic forcing using the CO2 as a linear surrogate, itself nearly equivalent to the pre-
industrial variability (Lovejoy 2014a)) and of the RMS of the residuals of the linearly detrended
temperatures (top horizontal line). Also shown are the RMSE for the LIM model and the SLIMM.
Adapted from Lovejoy et al. (2015). (b) The NASA GISS globally, annually averaged temperature
series from 1880–2013 plotted as a function of CO2 radiative forcing. The regression slope
indicated corresponds to 2.33 ˙ 0.22 K/CO2 doubling. The internal variability forecast by SLIMM
are the residuals (see (c)). Adapted from Lovejoy (2014b). (c) (Top): The residuals temperature of
(b) after the low frequency anthropogenic rise has been removed (blue) with the hindcast from
1998 (red). (Bottom left): The anomaly defined as the average natural temperature (i.e., residual)
over the hindcast horizon (blue), red is the hindcast. (Bottom right): The temperature since 1998
(blue) with hindcast (red), a blowup of the hindcast part of the top right. Adapted from Lovejoy
(2015b). (d) This shows the kernel MT (t,s) (Eq. (39), the discrete case) when the data extends to
s0 D �0 in the past with parameter H D �0.1. Note the strong weighting on both the most recent
(right) and the most ancient available data (left). Reproduced from Del Rio Amador (2017)
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b

c

Fig. 12 (continued)
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Fig. 12 (continued)

When SLIMM hindcasts are made for hemispheric and global scales (Lovejoy
et al. 2015), they are generally better than LIM and GCM forecasts (Fig. 12a). In
addition, Lovejoy (2015b) made global scale SLIMM forecasts and showed that
they could accurately (to within about ˙0.05 ıC for three year anomalies) forecast
the so-called “pause” in the warming (1998–2015). In comparison, CMIP3 GCM
predictions were about 0.2 ıC too high. While the cause of the GCM over-prediction
is currently debated (e.g., Schmidt et al. 2014; Guemas et al. 2013; Steinman et al.
2015), the SLIMM prediction was successful large because as Fig. 12b shows, the
pause was simply a natural cooling event that followed the enormous “pre-pause”
1992–1998 warming, with all of this superposed on a rising anthropogenic warming
trend.

The SLIMM forecast technique showed that the fGn model was worth pursuing.
However, the original technique was based on M
 , i.e. finding the optimum predictor
using the innovations 
 (s) directly (obtained by numerically inverting Eq. (22)) and
assuming that the available data extended into the infinite past. It is much more
convenient to use the past data T(s) and to take into account the fact that the past
data are only finite in extent. Since an fGn process at resolution � is the average
of the increments of an fBm, process, it suffices to forecast fBm so that in the
operational version of SLIMM described below, we therefore availed ourselves of
the mathematical solution of the prediction problem of finding the kernel MT (t,s)
in Eq. (39) for both finite and infinite past data. Gripenberg and Norros (1996)
mathematically solved the fBm solution with ½ < H0 < 1 and this was numerically
investigated by Hirchoren and D’attellis (1998).

We saw that the (infinite past) innovation kernel M
 (Eq. 42) gave a strong
(even singular) weight to the recent past, forecasting AR processes has an analogous
strong weighting of the recent data. However, Gripenberg and Norros (1996) found
something radically new in the case of finite data: the most ancient available data
also had a singular weighting! In their words, this was because “the closest witnesses
to the unobserved past have special weight”, see Fig. 12d for a graphical example.
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4 Stochastic Predictability Limits and Forecast Skill

4.1 Stochastic Predictability Limits: StocSIPS Hindcasting
Skill Demonstrated on CMIP5 Control Runs

We are used to the deterministic predictability limits that arise from the “butterfly
effect”—sensitive dependence on initial conditions—we argued that this limit (the
inverse Lyapunov exponent of the largest structures) was roughly given by the
lifetime of planetary structures: �w D "�1/3L2/3 (Schertzer and Lovejoy 2004).
However, we also argued that when taken way beyond this limit, that both the GCMs
and the atmosphere should be considered stochastic. More precisely, we argued that
fGn provides a good approximation for the temporal variability, and that due to
SSTF, attempting to use spatial correlations for co-predictors may not lead to an
improvement when compared to direct predictions that exploit the huge memory of
the system. However, SSTF does not necessarily extend from temperatures to other
series such as climate indices. It is possible that use of the latter as co-predictors
may yield larger skills.

Since fGn has stochastic predictability limits that determine its skill, Eq. (46),
these should therefore be relevant in both GCMs and in real macroweather. How-
ever, in the latter and in externally forced GCMs, as discussed in Sect. 4.2 there are
low frequency responses to climate forcings, and these must be forecast separately
(using linearity Eq. (11)) from the internal macroweather variability modelled by
fGn processes. This means that the best place to test our predictors is on unforced
GCMs, i.e. on control runs. For this purpose we used 36 globally and monthly
averaged CMIP5 model control runs. For each, we estimated the relevant exponent
H by determining the value that made the predictor best satisfy the orthogonality
condition (Eq. 41); this was slightly more accurate than using either spectra or
Haar fluctuation analysis (Del Rio Amador 2017). While each model had somewhat
different exponents, we found a mean H D �0.11 ˙ 0.09 theoretically implying
a huge memory (see, e.g., Fig. 11a, b). We used the discrete MT kernel (following
(Hirchoren and Arantes 1998)) and produced 12-month hindcasts comparing both
the theoretical skill and the actual hindcast skill, see Fig. 13a. Figure 13b shows
that the control runs were hindcast very nearly to their theoretical limits. It is thus
quite plausible that the theoretical stochastic predictability limit Eq. (46) really is an
upper bound on the skill of macroweather forecasts.

4.2 Regional Forecasting

In the previous section, we saw that without external forcings, we can make global
scale macroweather forecasts that nearly attain their theoretical limits, and in Sect.
3.3 (the pause), we already indicated that by appropriately removing the low
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Fig. 13 (a) The MSSS for hindcasting 36 CMIP5 GCM control runs, each at least 2400 months
long. Each GCM had a slightly different H and hence different theoretical predictability. The graph
shows that both the means and the spreads of theory and practice (SLIMM hindcasts) agree very
well. Reproduced from Del Rio Amador (2017). (b) The ratio of the actual MSSS hindcast skill to
theortical MSSS skill evaluated for the CMIP5 control runs used in (a). Reproduced from Del Rio
Amador (2017)

frequencies (in that case, the anthropogenic forcings), we could also make accurate
global scale real world forecasts. Due to SSTF, we argued that if at a given location
long series were available, they could be forecast directly, that using information at
other locations as co-predictors would not increase the overall skill. In this section,
we therefore discuss regional forecasts at 5ı resolution. This resolution was chosen
because it is the smallest that is available from both historical data and reanalysis
data sets that we used.

The various steps in the forecast are illustrated in Fig. 14 using the pixel over
Montreal as an example. The first step is to remove the low frequencies that are
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Fig. 14 An example of forecasting the temperature at Montreal using the National Centers for
Environmental Prediction (NCEP) reanalysis (at 5

ı � 5
ı

resolution). The top left shows the raw
monthly data, the bottom left shows the mean annual cycle as deduced using a (causal) 30-year
running estimate, the upper right shows the low frequency (a causal 30-year running average) trend
and the bottom right shows the resulting anomalies that were forecast by SLIMM. Reproduced
from Del Rio Amador (2017)

not due to internal macroweather variability; failure to remove them will lead to
serious biases since the SLIMM forecast assumes a long-term mean equal to 0 and
the ensemble forecast is always towards this mean. The low frequencies have both
a mean component (mostly anthropogenic in origin but also one due to internal
variability) and a strong annual cycle that slowly evolves from one year to the
next. Using the knowledge (Fig. 5d) that the scaling is broken at decadal scales,
we can use a high pass filter to separate out these from the internal variability.
Similarly, the annual cycle can be forecast by using the past thirty years of data in
order to make running estimates of the relevant Fourier coefficients (only keeping
those for the annual cycle and 6, 4 and 3 month harmonics). The various steps are
shown in Fig. 14. Finally the anomalies (lower right) were forecast using SLIMM.
The regional variation of the skill of the resulting StocSIPS hindcasts is shown in
Fig. 15a, we can see that it is close to the theoretical maximum.
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4.3 StocSIPS-CanSIPS Comparison

The previous section reminded us that real world forecasts must estimate, remove
and separately forecast the nonmacroweather low frequencies, the higher frequency
internal fGn-like component. The overall model, including this “pre-processing”
is called the Stochastic Seasonal to Interannual Prediction System (StocSIPS, see
the website: http://www.physics.mcgill.ca/StocSIPS/), it is comparable in scope to
the Canadian Seasonal to Interannual Prediction System (CanSIPS (Merryfield
et al. 2011)) and the European Seasonal to Interannual Prediction System
(EuroSIPS, http://www.ecmwf.int/en/forecasts/documentation-and-support/long-
range/seasonal-forecast-documentation/eurosip-user-guide/multi-model), but of
course is based directly on a stochastic rather than a deterministic-stochastic

Fig. 15 (a) Theoretical (top) versus empirical (bottom) hindcast skill for 1 month hindcasts using
Period Sep, 1980–Dec, 2015. Reference: NCEP Reanalysis. The theory and practice are very close.
Reproduced from Del Rio Amador (2017). (b) The MSSS, shown for the actuals and estimated
from hindcasts from six of the 12 “producing centres”, adapted from the WMO web site (accessed
in April 2016). To aid in the interpretation, an example is given by the black arrow: when the
MSSS D �5, the Mean Square Error (MSE) is 5 times the amplitude of the anomaly variance. It
can be seen that actuals’ error variances are typically several times the anomaly variances leading
to significant negative skill over most of the earth. Reproduced from Del Rio Amador (2017)

http://www.physics.mcgill.ca/StocSIPS
http://www.ecmwf.int/en/forecasts/documentation-and-support/long-range/seasonal-forecast-documentation/eurosip-user-guide/multi-model
http://www.ecmwf.int/en/forecasts/documentation-and-support/long-range/seasonal-forecast-documentation/eurosip-user-guide/multi-model
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Fig. 15 (continued)

(GCM) model. Indeed, according to the World Meteorological Organization
(WMO) site (http://www.wmo.int/pages/prog/wcp/wcasp/gpc/gpc.php), there are
12 international “producing” centres; StocSIPS based at McGill would be the
13th. Although completely unfunded, since April 2016, it has provided operational
monthly, seasonal and annual temperature forecasts at 5ı resolution.

As the previous section showed, SLIMM can forecast GCM control runs to nearly
their theoretical stochastic predictability limits. However, we must evaluate the full
StocSIPS system (pre-processing plus SLIMM) and compare it with conventional
approaches. We singled out CanSIPS, which since 2010 is the institutional product
of Environment Canada, for particularly close comparisons. Every month, CanSIPS
makes monthly through annual temperature and precipitation forecasts; the publi-
cally available maps are only over Canada, but we accessed the global products and
made global hindcast comparisons since 1980. The CanSIPS products are based
on “multimodel ensemble” consisting of 10 realizations of the CanCM3 and 10
realizations of the CanCM4 GCM.

Before continuing, recall the method by which GCMs currently produce
macroweather forecasts. The first step is the initialization; when CanSIPS is
initialized it uses reanalyses from the European Centre for Medium-range Weather
Forecasts (ECMWF) and these are data-model “hybrids” obtained by assimilating
meteorological observations into the ECMWF GCM. The problem is that both

http://www.wmo.int/pages/prog/wcp/wcasp/gpc/gpc.php
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the reanalyses and CanSIPS have their own different climatologies so that the
latter cannot directly ingest the ECMWF reanalyses, instead, the ECMWF initial
values must be converted into ECMWF anomalies. These anomalies are used to
determine the CanSIPS initial values, the “actuals”. The process can be symbolically
written as:

TCanSIPS .r; t/ D Ti.t/;CanSIPS .r/ C T 0
CanSIPS .r; t/

TECMWF .r; t/ D Ti.t/;ECMWF .r/ C T 0
ECMWF .r; t/

(53)

where the overbar represents the climatological temperature Ti .r/ at position r, for
the month number i D 1, 2, : : : , 12 and the primes indicate the anomalies which
are functions of both position and time (i(t) denotes the month number of time t).
The conventional way to define Ti .r/ is to use the averages over the previous 30 ith

months (at each location/pixel r). Aside from the annual cycle (that was deliberately
ignored in Sect. 2.2), the anomalies differ from the internal variability because they
are based on temporal rather than ensemble averages and they have contributions
from external forcings.

CanSIPS is thus initialized TCanSIPS .r; 0/ using the ECMWF anomaly at time
t D 0:

TCanSIPS .r; 0/ D Ti.0/;CanSIPS .r/ C T 0
ECMWF .r; 0/ (54)

The forecasts bTCanSIPS .r; t/ (at t > 0, indicated with circonflex) are then made
using the 20 member CanSIPS ensemble followed by complex (and time consum-
ing) post-processing that primarily correct for the “model drift” and poor climate
sensitivity. “Model drift” refers to the tendency of model temperatures (even in
control runs) to display low frequency variations that are usually attributed to slow
(mostly ocean) processes, artefacts that are not fully “balanced” when the model is
initialized. Since the model does not have perfect representation of the sensitivity to
anthropogenic effects, the corresponding systematic errors also contribute a further
low frequency “drift”. Both are removed (to some extent) using hindcasts over the
previous 5-year period in an attempt to estimate (and remove) spurious linear trends
(Merryfield et al. 2011). Unfortunately, 5 years is too short to properly estimate the
trend (the true trends are buried in the macroweather noise until a decade or so in
scale, see Fig. 5d) so that the internal 5-year variability is thus spuriously removed
in the post-processing.

In spite of these manipulations, the final resultbTCanSIPS .r; t/—i.e. an “actual”—
is seriously in error as can be seen in Fig. 15b: which shows that the actuals’ error
variance is typically several times larger than the anomaly variance. Due to this, the

publically available macroweather forecasts are of the anomalies bT 0
CanSIPS .r; t/ DbTCanSIPS .r; t/�Ti.t/;CanSIPS .r; t/. For these anomalies, the comparison with StocSIPS

is much closer, see Fig. 16. The figure shows that even for anomalies over most of
the globe, for 2 months and longer, StocSIPS has higher skill. StocSIPS’ increased
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Fig. 16 The differences in MSSS for CanSIPS and StocSIPS anomaly hindcasts over the period
1980–2010 for lead times of 1, 2, 6, 9 months, red indicates regions over which StocSIPS has
higher skill. It may be seen that for 2 months and longer, this is over most of the globe. StocSIPS’
increased skill is particularly noticeable over land, probably due to the fact that the CanSIPS ocean
model is still within its deterministic predictability limit of 1–2 years. Reproduced from Del Rio
Amador (2017)

skill is particularly noticeable over land, probably due to the fact that the CanSIPS
ocean model is still within its deterministic predictability limit of 1–2 years making
its ocean forecast reasonably accurate. This impression is bolstered in Fig. 17 which
compares CanSIPS at 6 months and StocSIPS at 2 years (the skill is comparable),
and also in Fig. 18 that shows that StocSIPS’ relative advantage grows with lead
time and is particularly strong over land.

Although we have not discussed it in this review, StocSIPS actually provides
forecasts of the probability distributions (both mean, discussed up until now, and
the standard deviation about the mean). This can be used for various probabilistic
forecasts. For example, Fig. 19a, b shows a typical seasonal forecast and its
validation. In Fig. 19a we see that the StocSIPS anomaly forecasts generally follow
the data better than CanSIPS. In Fig. 19b, we see that for this location and date, that
the StocSIPS forecast was both more accurate and less uncertain than the CanSIPS
forecast. This was true for both the actuals and the anomalies. This can be seen
since not only is the dashed red StocSIPS mean closer to the NCEP validation
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Fig. 17 A comparison of the MSSS for StocSIPS at 2 year lead times (top left) and CanSIPS at
6 months (bottom left). The map of their differences (top right) and histogram of the differences
lower right using both the ECMWF interim reanalyses (ERA-I, red) and NCEP reanalyses (blue)
show that the 2 year StocSIPS forecast is somewhat better than the CanSIPS 6 month forecast.
Reproduced from Del Rio Amador (2017)

Fig. 18 The relative skill of StocSIPS and CanSIPS anomaly hindcasts (1980–2010) over the
globe and over land only showing that StocSIPS’ relative advantage increase systematically with
lead time and is particularly strong over land. Reproduced from Del Rio Amador (2017)
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(dashed black) than the CanSIPS dashed blue, but the uncertainties (the spreads in
the probability densities) is narrower for the StochSIPS forecast. Other probabilistic
forecasts that can readily be produced by StocSIPS include tercile forecasts: i.e. the
probabilities of the forecast temperature being below, above or equal to the local
climatology; see the StocSIPS site for examples.

a

Fig. 19 (a) StocSIPS (top, red) and CanSIPS (bottom, blue) seasonal forecasts, two seasons ahead
for temperature anomalies at 97.5 W, 77.5 N (see blue point on the map at right). The forecasts
are compared with the NCEP reanalysis anomalies (black) that are calculated with respect to the
period 1980–2010. It can be seen that StocSIPS is much closer to the data (see also (b)). (b)
The histograms of seasonal forecasts, two seasons ahead for DJF (2009–2010) using data up to
t D 0 D JJA 2009, location the same as in (a) (top actuals, bottom, anomalies, StocSIPS in red,
CanSIPS in blue, NCEP data in black). The dashed black lines are the NCEP validation data
for DJF, the black probability density curves show the spread of the climatological variations
based on past NCEP reanalyses (1981–2010), the variability is thus placed around the observed
DJF temperature. The StocSIPS and CanSIPS dashed lines (red and blue) are their respective
forecasts for DJF, the curves represent the estimated uncertainties in the forecast. For both actuals
and anomalies StocSIPSs forecasts are sharper—their probability density functions (PDFs) are
narrower and more peaked; they are also more accurate since the red dashed lines (the StocSIPS
forecasts) are closer to validation data (the black dashed lines)
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b

Fig. 19 (continued)

5 Conclusions

Over the last decades, it has become increasingly clear that at weather scales,
atmospheric dynamics are governed by both deterministic laws of continuum
mechanics and by stochastic turbulence laws. Although the GCM equations do not
acknowledge the existence of atoms or molecules, they are nevertheless compatible
with statistical mechanics. Similarly they are also believed to be compatible with
the turbulence laws and indeed, they obey them quite accurately. Over the same
period, the GCM approach has—with the development of ensemble forecasting and
stochastic parametrizations—itself evolved into a stochastic one, making it tempting
to make weather forecasts directly using the turbulence laws. However the weather
regime is highly intermittent, and it involves vector multifractal processes, whose
corresponding mathematical prediction problem has yet to be solved. The GCM
approach to weather prediction is thus the only one currently available.

The situation is radically different at time scales beyond the GCM deterministic
predictability limit—in macroweather. On the one hand, GCMs have large errors
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associated with unrealistic model climatologies, especially poor representations of
the annual cycle, and they also display model drift and unrealistic sensitivities to
anthropogenic effects. On the other hand, macroweather “turbulence” (the extension
of turbulence models to the macroweather regime) has low intermittency so that
Gaussian models are useable approximations (fractional Gaussian noise, fGn). In
addition, a new symmetry: statistical space-time factorization essentially decouples
space and time so that mean square predictions can conveniently be made for each
spatial location independently. Physically this means that even though strong spatial
correlations exist (including “teleconnections”), if one has a long enough history at
a given point, this spatial information is also implicit in the series so that using data
at other spatial locations as co-predictors does not necessarily improve the forecast.
The factorization is not exact and does not necessarily apply to other series such
as climate indices so that there may be future scope for finding co-predictors and
improve the skill.

The ideal testing ground for this approach is in GCM control runs since this is
closest to pure fGn. We found that the ScaLIng Macroweather Model (SLIMM)
based on an fGn model applied to temperatures from GCM control runs (i.e. pure
macroweather processes, no changes in external forcings) is nearly able to attain
the maximum theoretical stochastic predictability limit, verifying that GCMs well
obey the macroweather laws upon which SLIMM is based and raising the possibility
that these stochastic predictability limits are true GCM limits. With respect to usual
stochastic forecasts based on exponential correlations (Auto Regressive, or Linear
Inverse Modelling), the radically new feature of SLIMM is its exploitation of the
huge long range memory. The SLIMM prediction kernel thus has singular weighting
to both the most recent data and the most ancient data since the latter contain the
maximum information of the distant past.

Applying SLIMM to real data requires pre-processing to remove non-
macroweather processes in particular to remove low frequency anthropogenic
effects and—for regional forecasts—the annual cycle. The overall resulting system
(i.e. pre-processing plus SLIMM) is the STOChastic Seasonal to Interannual
Prediction System (StocSIPS). We compared StocSIPS with one of the leading
GCM macroweather products: CanSIPS. Even without any co-predictors or other
use of spatial correlations, we showed that StocSIPS was much superior to CanSIPS
for forecasting “actuals”: this was due to StocSIPS’ ability to essentially forecast
the climatology (especially the annual cycle). However, even for anomaly forecasts,
StoSIPS was superior to CanSIPS for lead times of 2 months or longer and its
relative advantage grew with the forecast lead time, the advantage was particularly
important over land where for 2 months and longer StocSIPS was superior over
more than �80% the earth’s land surface.

Aside from its increased skill, StocSIPS has other advantages. For example,
at the moment, seasonal forecasts for the city of Montreal (or other localized
region) are highly indirect. First data from all atmospheric fields from all over the
world must be assimilated. Then the model—on grids typically several hundred
kilometres across—is integrated forward in time. Anomalies are calculated, and
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post-processing is performed to make low frequency corrections for some of
the known biases. Finally, the Montreal temperature anomaly is estimated by
“downscaling” from the large pixel scale to the local city scale. This can be
done either using sophisticated (but complex) nested regional models (of GCM
type) or via ad hoc statistical methods based on local climatology. In contrast,
if long enough (preferably several decades) of monthly or seasonal data are
available, StocSIPS simply removes the low frequencies (including the annual
cycle), separately forecasts the anomalies and low frequencies and adds them to
produce the forecast. The overall saving in computational speed is estimated to be
of the order of 107 (about 105 to 106 for global forecasts on 5o � 5o grids). Finally,
StocSIPS directly forecasts the conditional ensemble average, i.e. effectively the
results of an infinite ensemble whereas CanSIPS uses only 20 members.

StocSIPS can be directly extended to other fields such as wind or precipitation
which instead are known to have macroweather statistics roughly satisfying the
SLIMM requirements (low intermittency temporal macroweather scaling with
�1/2 < H < 0 and space-time statistical factorization (SSTF), Lovejoy and de
Lima (2015) and Fig. 9a). But StocSIPS’ main advantage may be its ability to
directly forecast other fields, such as insolation, wind power or degree-days, that
can currently only be very indirectly forecast by GCMs. Other future extensions of
StocSIPS could include drought indices and the prediction of extremes.
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