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Foreword

In early July 2016, the meeting “30 Years of Nonlinear Dynamics in Geosciences”
was hosted by Aegean Conferences in Rhodes, Greece, and organized by Anastasios
A. (“Tasos” to most of us) Tsonis. This was ten years after the first “20 Years of
Nonlinear Dynamics in Geosciences” conference that also took place in Rhodes in
June 2006.

Standing on the shoulders of giants, I will go a step further than Ed Lorenz, ten
years ago, and ask, “Why 30 and not 3000”? One of the oldest nonlinear problems
in the geosciences is certainly drawing a right angle on the face of the Earth,
e.g., between a meridian and a parallel: it is equivalent to solving the Diophantine
equation a2 C b2 D c2. And the ancient Egyptians, who had to solve it to build the
pyramids, from the basis up, knew the particular solution a D 3, b D 4, c D 5 very
well and used it in order to build the great pyramids of Gizeh (also spelled in the
Roman alphabet as Giza or Jizah), and many other temples, palaces, and tombs.

But that’s, of course, not what we all have in mind, since we know well the
saying, oft attributed to Stanislaw Ulam, that “nonlinear dynamics is akin to non-
elephant zoology,” or words to that effect. What we mean by tracing back the rapid
rise of nonlinear dynamics, nonlinear sciences, or what not to some time after World
War II is the following fact: according to the well-known story of the lamppost, and
of attempts to find the forlorn keys in its circle of light, a superb development of
methods for solving linear algebraic and differential equations in the nineteenth
century led to great emphasis on solving such problems in the first half of the
twentieth century.

Basically, linear problems are easily separable, and hence solvable, due to
the superposition principle, projection onto orthonormal bases, and so on. Thus,
many such problems were solved over 200 years, and quite important ones, at
that. And these methods are still of great use to us, in deriving and determining
the properties of tangent linear equations, adjoint operators, and many other
mathematical approximations of real-world problems.

It is, as Ed Lorenz already pointed out in his letter to the participants of the
previous anniversary conference, the rise of more-and-more powerful computational
devices after World War II that changed our way of thinking about what a solution
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viii Foreword

really is, i.e., not necessarily an analytical expression but an algorithm for obtaining
information about a solution with prescribed accuracy. I would add that the
improvement in observational methods—in the geosciences and elsewhere, whether
in vitro, i.e., in the lab, or in vivo, i.e., outdoors—has also contributed greatly to our
appetite for going beyond linear approximation to model, simulate, understand, and
predict the complexity of the phenomena under study.

The nonlinear way of thinking about problems, in the geosciences and
many other sciences—physical sciences in general, biosciences, socio-economic
sciences—still needs to operate within the circles of light projected into the night
of our ignorance by a certain number of lampposts. These lampposts include the
theory of dynamical systems, statistical mechanics, scale invariances, the theory of
localized coherent structures, and several others. Some lampposts that have been
added or whose light circle has expanded in the last decade or so are network theory
and the theory of non-autonomous and random dynamical systems. The program
of the conference—and the table of contents of this volume—indicates that all of
these lampposts were well represented by those who, luckily for them, were able to
attend the meeting in person.

May all the light circles of nonlinear dynamics in the geosciences expand,
overlap, and generally increase our delight in what we are all trying to accomplish,
for our own enjoyment and for the benefit of humanity. And I fondly hope and trust
that those who were present in the flesh, and not just in spirit, did not forget to
revel in the blue waters of the Aegean and in the delights of the local architecture,
customs, food, and wine. Nonlinear dynamics in the geosciences and the Aegean—
immortalized in Greek poetry of all ages—are both very dear to my heart, as they
should be to the heart of every geoscientist and civilized person, respectively.

Ecole Normale Supérieure, Paris, France Michael Ghil
and University of California, Los Angeles, CA, USA



Preface

From July 3 to 8, 2016, a group of scientists from around the world met in
Rhodes, Greece, 10 years after the meeting “20 Years of Nonlinear Dynamics in
Geosciences” held at the same place in June 2006. The purpose of the meeting was
to discuss the new advances in Nonlinear Geosciences since then and to propose
future research directions.

A lot has happened since 2006. Most notably, the introduction of networks in
geosciences studies, advances in chaos synchronization, topological data analysis,
new insights on fractals, multifractals and stochasticity, climate dynamics, extreme
events, complexity, and causality, among other topics.

This volume is the result of this meeting. I would like to thank all the contributors
for their effort to produce this book. I am honored to host all of you and I hope that
there will be a “40 Years in Nonlinear Dynamics in Geosciences” in 10 years from
now.

By the way, the sequence of the papers is based on the alphabetic order of the
first author.

Milwaukee, WI, USA Anastasios A. Tsonis
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Pullback Attractor Crisis in a Delay Differential
ENSO Model

Mickaël D. Chekroun, Michael Ghil, and J. David Neelin

Abstract We study the pullback attractor (PBA) of a seasonally forced delay
differential model for the El Niño–Southern Oscillation (ENSO); the model has two
delays, associated with a positive and a negative feedback. The control parameter is
the intensity of the positive feedback and the PBA undergoes a crisis that consists
of a chaos-to-chaos transition. Since the PBA is dominated by chaotic behavior, we
refer to it as a strange PBA. Both chaotic regimes correspond to an overlapping
of resonances but the two differ by the properties of this overlapping. The crisis
manifests itself by a brutal change not only in the size but also in the shape of the
PBA. The change is associated with the sudden disappearance of the most extreme
warm (El Niño) and cold (La Niña) events, as one crosses the critical parameter
value from below. The analysis reveals that regions of the strange PBA that survive
the crisis are those populated by the most probable states of the system. These
regions are those that exhibit robust foldings with respect to perturbations. The effect
of noise on this phase-and-parameter space behavior is then discussed. It is shown
that the chaos-to-chaos crisis may or may not survive the addition of small noise to
the evolution equation, depending on how the noise enters the latter.

Keywords Chaos-to-Chaos crisis • El nino-southern oscillation • Pullback attrac-
tors • Satistical equilibrium

M.D. Chekroun (�) • J.D. Neelin
Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA,
USA
e-mail: mchekroun@atmos.ucla.edu; neelin@atmos.ucla.edu

M. Ghil
Geosciences Department, Ecole Normale Supérieure and PSL Research University, Paris, France

Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA,
USA
e-mail: ghil@atmos.ucla.edu

© Springer International Publishing AG 2018
A.A. Tsonis (ed.), Advances in Nonlinear Geosciences,
DOI 10.1007/978-3-319-58895-7_1

1

mailto:mchekroun@atmos.ucla.edu
mailto:neelin@atmos.ucla.edu
mailto:ghil@atmos.ucla.edu


2 M.D. Chekroun et al.

1 Introduction and Motivation

The El Niño–Southern Oscillation (ENSO) is a dominant mode of climate variability
on seasonal-to-interannual time scales and affects the climate over a great portion
of the globe on interdecadal and longer time scales. A major aspect of ENSO is the
strong coupling between the Tropical Pacific ocean and the atmosphere above, and
the physical mechanisms that give rise to ENSO are fairly well understood (Neelin
et al. 1998; Philander 1992).

A key mechanism, originally proposed in Bjerknes (1969), is the positive
atmospheric feedback on the equatorial sea surface temperature (SST) field via the
surface wind stress. Still, ENSO’s unstable, recurrent but irregular behavior implies
challenges for prediction (Cane 1986), even at subannual lead times. Conceptual
numerical modeling plays a prominent role in understanding ENSO variability and
developing prediction methods for it (Chekroun et al. 2011a; Ghil and Jiang 1998;
Mechoso et al. 2003; Neelin et al. 1998). The delayed oscillator description of
ENSO has led to a hierarchy of models of increasing complexity that include delay
effects taking various forms (Battisti and Hirst 1989; Galanti and Tziperman 2000;
Neelin et al. 1998; Suarez and Schopf 1988), via negative (Ghil and Zaliapin 2015;
Ghil et al. 2008a) and positive (Tziperman et al. 1994) feedbacks.

Seasonal forcing has been suggested as a crucial ingredient in explaining ENSO’s
irregularity (Jiang et al. 1995; Jin et al. 1994, 1996; Tziperman et al. 1994, 1995). In
this approach, the intrinsic ENSO oscillator may enter into nonlinear resonance with
the seasonal forcing. In the case of exact frequency locking with the seasonal cycle,
such resonant behavior is characterized by perfect periodicity. ENSO’s irregularity
occurs when the nonlinear effects are stronger, and several resonances may coexist.
In this case, the ENSO oscillator is not able to lock to a single resonance, and it
jumps irregularly between several resonances, while the resulting irregular behavior
still bears the fingerprint of the underlying frequency-locked regimes that now
coexist. Dynamically, this phenomenon corresponds to the overlapping of nonlinear
resonances also known as Arnold tongues in parameter space (Arnold 1988; Ghil
et al. 2008b; Jensen et al. 1984). Noise due to atmospheric internal variability has
also been shown to be an important factor in ENSO irregularity (Blanke et al. 1997;
Eckert and Latif 1997; Kleeman and Moore 1997).

To study the effects of the seasonal cycle in the aforementioned ENSO models,
direct numerical integrations and examination of return maps in a low-dimensional,
reconstructed phase space1 are often preferred to a rigorous mathematical analysis,
which is typically challenging to carry out. Recently, continuation methods for
bifurcations in delay differential equations (DDEs) have also been used to analyze
the interactions of the seasonal cycle with the ENSO oscillator (Keane et al. 2015,
2016; Krauskopf and Sieber 2014). Rigorous approximation techniques of DDEs
by systems of ordinary differential equations (ODEs) Chekroun et al. (2016b) offer
another path to the analysis of such interactions.

1Relying, for instance, on the Takens embedding theorem (Takens 1981).
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In this study, we propose yet another approach, which relies on the theory of
pullback attractors (PBAs) (Carvalho et al. 2013; Chekroun et al. 2011b) and the
statistical equilibria they support Chekroun and Glatt-Holtz (2012), Lukaszewicz
and Robinson (2014). The application to DDEs herein uses careful numerical
approximations of the PBAs (Chekroun et al. 2011b), along with visualization in
low-dimensional, embedded phase space; see Ghil and Zaliapin (2015), Ghil (2017)
for preliminary DDE results. Here, PBAs are used to analyze a complicated chaos-
to-chaos transition.

We focus in this chapter on the seasonally forced ENSO model of Tziperman
et al. (1994) that includes delayed positive and negative feedback mechanisms. For
the sake of the nonspecialist reader, this model is outlined in Sect. 2.1 below. We
compute for this model approximations of the PBA and of the statistical equilibrium
it supports, both of which are represented in a natural two-dimensional (2-D)
embedded phase space. Recall that, loosely speaking, a global PBA A .t/ describes
the states in the system’s phase space X that are reached at a time t, when the system
is initiated from an asymptotic past, s ! �1, and the initial states are varied within
a collection of bounded sets of X (Carvalho et al. 2013). The statistical equilibrium
�t supported by the PBA, as defined in Sect. 2.4, is crucial for the description of the
distribution of current states at time t (Chekroun et al. 2011b; Ruelle 1999).

After recalling in Sect. 2.2 some fundamentals about PBAs, in particular in the
context of DDEs, we first numerically show the “strangeness” of an embedded
version of A .t/ in Sect. 2.3. In particular, the folding and stretching that is typical
of nonlinear, chaotic dynamics in the autonomous setting are observed in various
regions of this PBA. After proving the periodicity of A .t/ with the same period as
that of the seasonal forcing, the time evolution of A .t/ within a calendar year is
then analyzed in Sect. 2.3. There, we show that the PBA provides a natural global
geometric view of the dynamics, consistent with variations in ENSO phase-locking
that occur within a given frequency-locked regime, as previously documented in the
literature (Galanti and Tziperman 2000; Neelin et al. 2000). In Sect. 2.4, we provide
a brief but still rigorous description of the aforementioned statistical equilibrium �t.

Section 3 contains a parameter-dependence study of the PBA A .t/ and of the sta-
tistical equilibrium �t it supports. Numerical experiments allow us to conclude that
a chaos-to-chaos crisis takes place as the intensity of the positive feedback crosses
a critical value; see Sect. 3.1. The crisis separates two different types of overlapping
of nonlinear resonances. In Sect. 3.2, we analyze the changes in the PBA and in
the statistical equilibrium across the crisis. Both these mathematical objects change
relatively smoothly, until reaching eventually an abrupt, discontinuous change as the
critical parameter value is crossed. The crisis manifests itself by a brutal change not
only in the size but also in the shape of the PBA, which keeps its strange character
across the transition.

Dynamically, this abrupt change in the PBA is associated with the sudden
disappearance of extreme warm (El Niño) and cold (La Niña) events, as one crosses
the critical parameter value from below. The analysis of the statistical equilibrium
�t supported by the PBA A .t/ reveals that the regions of the strange PBA that
survive the crisis are those populated by the most probable states of the system.
These regions are those that exhibit robust foldings with respect to perturbations.
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Two dynamical mechanisms are proposed in Sect. 3.3 to explain the origin of the
chaos-to-chaos crisis identified herein. One consists of the crossing of a crisis line
within an overlapping region of two Arnold tongues (Mori and Kuramoto 2013)
that separate two coexisting PBAs. The other consists of a PBA-widening scenario
suggested in Grebogi et al. (1987) for low-dimensional autonomous maps. In our
case, an unstable pullback periodic orbit would collide with A .t/ as one crosses a
critical value of the control parameter, causing the PBA widening reported hereafter.

Finally, the effect of noise on this phase-and-parameter space behavior is
discussed in Sect. 3.4. It is shown that the chaos-to-chaos crisis may or may not
survive the addition of small noise to the evolution equation, depending on how the
noise enters the latter. These noise effects find a natural interpretation within each
of the aforementioned possible crisis mechanisms.

2 PBAs and Statistical Equilibria in a Periodically Forced
ENSO Model with Delays

2.1 The Model

We focus hereafter on the nonlinear delay oscillator mechanism, and analyze a
statistical crisis occurring in this model as a certain control parameter varies. The
model takes its root in the following conceptual description.

A positive SST perturbation along the eastern equatorial Pacific weakens the
easterly trade winds above the equator. The change in the winds excites a down-
welling wave in the thermocline that travels eastward to the South American
coast as equatorial Kelvin waves and an upwelling signal that travels westward as
equatorial Rossby waves. The downwelling Kelvin waves enhance the warming off
the coast of South America, starting an El Niño event. Subsequently, the westward-
traveling upwelling Rossby waves are reflected from the western boundary of the
Pacific Ocean as upwelling Kelvin waves, which travel eastward to counter the
downwelling Kelvin waves. This negative feedback ultimately terminates the El
Niño event.

A simple model of such a delay mechanism, including one Kelvin wave, one
Rossby wave mode, and a dynamic link from mid-Pacific wind stress anomalies
to these equatorial wave modes has been proposed in Tziperman et al. (1994).
The model includes an idealized seasonal forcing term that represents the effects
of the numerous seasonally varying features of the equatorial Pacific ocean and
atmosphere, such as wind amplitude and SST variations. The single dependent
variable in the equation is h.t/—the thermocline depth deviation from seasonal
depth values at the eastern boundary—and the model reads as follows:

dh

dt
D aR

h
h
�

t �
L

2CK

�i
� bR

h
h
�

t �
L

CK
�

L

2CR

�i
C c cos.!at C '/: (1)

A version of this model with only the negative feedback included was studied in
Ghil and Zaliapin (2015), including its PBA.
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In Eq. (1) L is the basin width, !a denotes the annual frequency of the seasonal
forcing, and ' denotes its phase. The wind-forced Kelvin mode that travels eastward
at a speed CK is represented by the first term in the right-hand side of Eq. (1). It takes
this wave a time L=.2CK/ to reach the eastern boundary from the middle of the basin.
The second term is due to the Rossby wave that travels westward at a speed CR; this
wave is excited by the wind at a delayed time, namely t � .L=CK C L=.2CR//; and
it is reflected as a Kelvin wave off the western basin boundary.

The function RŒh� relates wind stress to SST, and SST to thermocline depth. We
follow here (Münnich et al., 1991), where the nonlinear form of RŒh� is given by

RŒh� D

8̂
<̂
ˆ̂:

bC C
bC

aC

�
tanh

� �aC

bC
.h � hC/

�
� 1

�
; if hC < h;

�h; if h� � h � hC;

�b� � b�

a�

�
tanh

�
�a�

b�
.h � h�/

�
� 1

�
; if h < h�:

(2)

The specific form of RŒh� reflects the non-uniform stratification of the ocean; it is
fashioned after the shape of the tropical thermocline. The slope of R.h/ at h D 0,
set by the parameter �, provides a measure of the strength of the ocean-atmosphere
coupling. Based on Münnich et al. (1991), we consider here a˙ > 1, and

hC D
bC

�aC

.aC � 1/; h� D �
b�

�a�

.a� � 1/: (3)

These values ensure that RŒh� is continuous at hC and h�. As h ! ˙1, we get
RŒh� ! b˙: The parameters a˙ control the curvature of RŒh�; and the greater a˙,
the faster the limits b˙ are reached as h ! ˙1: The values used in our numerical
simulations are reported in Table 1.

The parameter �, cf. (Tziperman et al. 1994, Fig. 1), is a key parameter in the
control of the model’s dynamical behavior. For small values of �, the time series
h.t/ is, for instance, perfectly periodic with the annual period of the forcing. Besides

Table 1 Glossary of model’s parameter

Parameter Interpretation Numerical value

L Basin width 1

!a Frequency of the annual cycle 2�=360

' Phase of the forcing �=2

CK Kelvin wave speed 1=69 days�1

CR Rossby wave speed 1=207 days�1

aC=� Control parameters of the curvature of AŒh� 1

b� Limit of AŒh� as h ! �1 �0.44

bC Limit of AŒh� as h ! C1 2.2

a; b Magnitude of the feedbacks a D .1:12C ı/=180, b D 1=120

c Magnitude of the periodic forcing c D 2:2=180

� Slope at the origin in Eq. (2) 2.6
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Fig. 1 A strange pullback attractor (PBA) A .t/ associated with the periodically forced delay
differential equation (DDE) (1). The PBA is projected onto the delay coordinates .h.t/; h.t C 1//

this simple periodic behavior, three dynamical regimes are typically exhibited by the
model. For the parameter values used in Tziperman et al. (1994), these regimes are
classified as follows:

(I) Irregular quasi-periodic dynamics. As � increases, an internal frequency !i

appears; it characterizes the natural oscillator of the Tropical Pacific’s ocean-
atmosphere system (Jin and Neelin 1993; Neelin et al. 1998). This second
frequency is, in general, incommensurable with the annual frequency; the
superposition of two incommensurable frequencies creates a quasi-periodic
time series. The resulting oscillations are irregular but not chaotic; the power
spectrum shows two dominant frequencies with several subharmonics; see
again (Tziperman et al., 1994, Fig. 1).

(II) Frequency-locked dynamics. For a steeper slope of AŒh� at h D 0, the
system becomes frequency-locked: The frequency of the nonlinear delay
oscillator changes slightly to a simple rational multiple of the driving annual
frequency: !i D !ap=q, with p and q integers. This regime corresponds to a
nonlinear resonance between the driving annual frequency !a and the internal
oscillatory frequency !i. The time series is periodic, and the phase-space
diagram (in a Poincaré section) is a set of points whose number depends on
the values of p and q. The parameter regimes corresponding to the frequency-
locked solutions are also known as Arnold tongues; see, for instance, Ghil
et al. (2008b, Fig. 7).
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(III) Chaos by overlapping of resonances. For certain values of �, the time series
h.t/ becomes irregular, and it is associated with a strange PBA and a power
spectrum that is broad and no longer contains sharp peaks, as in Regimes (I) or
(II). Two or more frequency-locked solutions—that is, solutions with different
ratios p=q—may coexist; the nonlinear resonances are said to overlap in this
case. The chaotic behavior is caused by the irregular “trapping” of the system
among the different possible resonances. This characterization of Regime (III)
in terms of a strange PBA is provided in Sect. 2.2 below.

In what follows, we denote by �1 and �2, the basin-crossing times L=.2CK/ and
L=CK C L=.2CR/, respectively.

2.2 PBAs of Delay Models with Time-Dependent Forcing

Recall that the standard theory of global attractors in the autonomous case (Temam
1997) requires one first to define a phase space in which the solutions of a given
evolution equation are well-defined. It is necessary to proceed in the same way for
non-autonomous dynamical systems (NDSs) and their PBAs.

In the case of nonlinear DDEs, such as Eq. (1), several function spaces can be
used as a state space. Among the most standard ones, those that start with the
space of continuous functions on the interval Œ��; 0� play an important role; see, for
instance, Diekmann et al. (1995), Hale and Verduyn-Lunel (1993). Hilbert spaces,
though, are better adapted to the approximation of DDEs by systems of ordinary
differential equations (ODEs) (Chekroun et al. 2016b).

The reformulation of Eq. (1) as a retarded functional differential equation
(RFDE) is classical and proceeds as follows. Let us denote by ht the time evolution
of the history segments of a solution h to Eq. (1). In other words, for each t, ht is a
function from Œ��; 0� into R defined as

ht.�/ WD h.t C �/; t � 0; � 2 Œ��; 0�: (4)

Introducing the phase space X WD C .Œ��; 0�;R/ of continuous functions from
Œ��; 0� into R, with � D �2 > �1, and the nonlinearity F defined for all  in X by

F . / D aR Œ .��1/� � bR Œ .��2/� ; with R given in (2); (5)

Eq. (1) can be recast into the following RFDE:

dh

dt
D F .ht/C g.t/; (6)

in which the time-dependent forcing g.t/ is given by

g.t/ D c cos.!t/: (7)
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Note that the nonlinearity F in (5) is bounded as a mapping from X into R,

jF . /j � max.bC; jb�j/; for all  in X: (8)

Furthermore, F is globally Lipschitz on X endowed with the uniform-norm
topology, i.e., the topology induced by the supremum norm

k�k1 WD sup
�2Œ��;0�

j�.�/j: (9)

Since F is continuous, due to Eq. (3), as well as bounded and Lipschitz
continuous, the general theory of RFDEs (Hale and Verduyn-Lunel 1993) applied to
Eq. (6) ensures that, for any .s; �/ in R� X, there exists a unique solution to Eq. (6),
defined on a maximal interval Œs;Tmax.�//, Tmax.�/ > s, such that

hs.�/ D �.�/; � 2 Œ��; 0�: (10)

Moreover if Tmax.�/ < 1, then the solution blows up at time Tmax.�/, i.e.,

lim
t!Tmax.�/�

khtk1 D 1; (11)

On the other hand, an integration of Eq. (6) between s and t for s � t < Tmax.�/

and the bounds (8) with g.t/ � c lead to the estimate

khtk1 � k�k1 C .Tmax.�/ � s/.c C max.bC; jb�j//: (12)

This latter inequality is incompatible with (11) and therefore Tmax.�/ D 1 for all
� in X. As a consequence, solutions to Eq. (6) are guaranteed to exist in X for all
positive times t, and to be uniquely determined by an initial history � in X, taken
over any anterior time interval Œs � �; s�, with s � t:

In other words, one can define a nonlinear process (Hale and Verduyn-Lunel,
1993, Chap. 4), i.e., a solution map U defined by

.t; s; �/ 7! U.t; s/� WD ht 2 X; t � s; � 2 X; (13)

where ht denotes the unique solution to Eq. (6) that emanates from � at a time s � t,
i.e., such that hs D �. The existence and uniqueness property translates here into
the process composition property, which replaces the more traditional (semi-)group
property (Temam 1997, Chap. I, Sect. 1.1) and is formulated here as

U.t; s/ ı U.s; r/ D U.t; r/; t � s � r: (14)

The solution map U can be thus referred to as a two-parameter semigroup of
transformations of X. It provides a two-time description of the dynamics associated
with Eq. (1): the time s describes when the system was initialized, while the other
time t is associated with the current state of the system. In the autonomous case,
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only the amount of time separating s and t, i.e., t � s, matters and a one-parameter
(semi-)group suffices to entirely determine the dynamics; e.g. Chekroun et al.
(2011b, 2016b). In the non-autonomous case, the history of the forcing between the
time s and the time t—which we call a forcing snippet—is an important ingredient
of the dynamics and may drive the system differently between a time s0 and a time
t0, even though t0 � s0 D t � s:2

Note also that the phase space X on which the process U is acting is infinite-
dimensional as a function space. Even in this setting, a PBA can be rigorously
defined (Caraballo et al., 2005; Carvalho et al., 2013). A family of compact3 sets
fA .t/g of X is then said to be a (global) PBA for U, if it satisfies

(i) (Invariance property) U.t; s/A .s/ D A .t/ for all t � s; and
(ii) (Pullback attraction property) lims!�1 distX.U.t; s/B;A .t// D 0; for all

bounded subsets B of X.

The pullback attraction property (ii) considers a collection of states of the system
at time t when the system is initiated in a distant past s, as s goes to �1 and for
initial states lying in B. As B is varied in the collection of bounded subsets of X,
a useful explicit PBA characterization in terms of the omega limit set is available
(Carvalho et al. 2013, Theorem 2.12); see also (18) below.

Note that distX.E;F/ denotes here the Hausdorff semi-distance between the
subsets E and F of X,

dX.E;F/ WD sup
x2E

dX.x;F/ with dX.x;F/ WD inf
y2F

kx � yk: (15)

One calls dX.E;F/ a semi-distance since, in general, dX.E;F/ ¤ dX.F;E/ and
dX.E;F/ D 0 merely imply E � F. From (ii) above, one can thus say, loosely
speaking, that, for any set B of initial data, U.t; s/B is “almost included” in the
pullback attractor A .t/, whenever t � s is sufficiently large. Intuitively, for B
spanning a sufficiently large ensemble of possible initial data, one can reasonably
say that U.t; s/B constitutes a good approximation of a significant portion of the
pullback attractor A .t/.

In the nonlinear physics literature, U.t; s/B is often called a “snapshot attractor”
(Bódai and Tél 2012; Bódai et al. 2011, 2013; Drótos et al. 2015; Romeiras et al.
1990). In practice one lets, roughly speaking, a cloud of points—each driven
by the same segment of the forcing—flow forward in time. However, to justify
this procedure, one needs to ensure the existence of a global PBA, which allows
for a rigorous characterization of dissipation in the presence of time-dependent
forcing, either deterministic (Carvalho et al. 2013) or random (Crauel and Flandoli
1994; Crauel et al. 1997). This rigorous treatment has to be valid also in the
infinite-dimensional context of partial differential equations (PDEs), such as the

2Still, a segment Œs0; t0� of the forcing may drive the system in a way that is similar to that over the
segment Œs; t�, even when g.t/ is a white noise, provided the system’s solutions exhibit recurrent
patterns as time evolves; see Chekroun et al. (2011a), Kondrashov et al. (2013).
3Here compact set is understood in the sense of point set topology (Kelley 1975).
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2-D Navier–Stokes equations, subject to time-dependent disturbances, or to that of
the delay differential ENSO model considered here. Remarkably, global PBAs sup-
port meaningful invariant measures that characterize the statistics of the nonlinear,
non-autonomous dynamics, as explained in Sect. 2.4 below. Global PBAs are thus
natural objects to describe both the statistics and the geometry of non-autonomous
dynamics, and identifying conditions for their existence is theoretically crucial.

Useful conditions—expressing often a form of balance between the forcing and
the intrinsic dissipative effects of the underlying autonomous dynamics—may be
identified within the PBA framework to ensure their existence; see, for instance,
Pierini et al. (2016, Appendix) and the proof of Kondrashov et al. (2015, Theorem
3.1). In the context of the DDE model (6), the nonlinearity F defined in (5) is
responsible for autonomous dissipative effects in X and the periodic forcing g.t/
permits their translation into a pullback dissipation.

We do not address the rigorous existence of such a pullback dissipation here, nor
of a global PBA, and refer to Caraballo et al. (2001, 2005) for techniques to prove
the existence of PBAs for DDEs. Instead, we illustrate next, by means of numerical
simulations, geometric features of the global PBA associated with Eq. (6). These
features are studied in the chaotic regime that corresponds to the value ı D 15�10�3

of the parameter ı that affects the magnitude of the feedback a in the model (1),
while the other parameters take the values listed in Table 1.

2.3 A Strange PBA and Its Time Evolution

Characterizing Strangeness of a PBA

To analyze the structure of the global PBA for the parameters considered in this
chapter, we first computed approximations of the PBAs A .t/ for different values of
t and for ı D 15�10�3. To do so, we have integrated numerically Eq. (1), using a set
B of N D 5 � 105 initial histories � that have been sampled over Œ��; 0�, according
to a distribution described in Sect. 3.2, below. The results are shown in Fig. 1 for
t � s sufficiently large: we found that t � 147:64 years and s D 0 are sufficient to
ensure convergence, that is to have U.t; t � s/B, with � 2 B, “quasi-contained” in
A .t/, i.e., distX.U.t; t � s/B;A .t// � 0. Thus we do not distinguish U.t; t � s/B
from A .t/ in the discussion below.

The PBA A .t/ is plotted in Fig. 1 in the embedded phase space of the delay
coordinates .h.t/; h.t C 1/, where the unit delay corresponds to 1 year. The
PBA’s global structure is indicative of nonlinear effects, with characteristic folds
occurring in several locations. To simplify the discussion, we often make hereafter
no distinction between A .t/ and its embeddings, such as that shown in this figure.
A zoom at a specific location of A .t/, depicted in the inset of Fig. 1, shows
finer structure with several interleaved stretchings and foldings that occur over a
very narrow region of the embedded phase space. Several other regions of the
PBA (not shown) reveal the same fine filamentation when put under this kind of
magnifying glass.
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It is, in fact, not surprising to find a complex structure associated with stretching
and folding in the global PBA of a system exhibiting chaos when subject to a time-
dependent forcing: such PBA geometry was illustrated in Chekroun et al. (2011b),
Pierini et al. (2016) for dynamical systems of lower dimension than considered here;
see also Ghil (2017). The emergence of strange attractors in periodically forced
dynamical systems has even been addressed rigorously recently for a broad class
of evolution equations, including some parabolic PDEs (Lu et al., 2013). At the
core of this approach is a geometric mechanism for the production of chaos that
has been first identified in Wang and Young (2008) and generalized in subsequent
works of the same authors (Wang and Young, 2001, 2003). In particular Wang
and Young (2003, Theorem 1) shows that when suitably kicked by an external
periodic forcing, a limit cycle can be turned into a strange attractor. Further details
of this theory are discussed below in Sect. 2.4. We turn next to the PBA’s time
evolution.

Time Evolution of the PBA

First, note that, due to the periodicity of the forcing, the process U is T-periodic,
with T D 1 years. Indeed, given s < t, it follows that integrating Eq. (6) from s C T
to t C T is equivalent to integrating it from s to t, since the vector field F (on X) is
time independent and g is T-periodic. In other words, for all � in X and any s � t,

U.t C T; s C T/� D U.t; s/�: (16)

From this property we conclude that the pullback omega limit set of any bounded
subset B of X (Carvalho et al. 2013, Definition 2.2) satisfies4

!B.t/ WD
\
��0

[
s��

U.t; t � s/B D
\
��0

[
s��

U.t C T; t C T � s/B D !B.t C T/; (17)

where E (E � X) denotes the set of points of X that can be obtained as limit of
elements in E. Thus, recalling the characterization of the global PBA in terms of
omega limit sets (Carvalho et al. 2013, Theorem 2.12), we have

A .t/ WD
[

B2B.X/

!B.t/ D
[

B2B.X/

!B.t C T/ D A .t C T/; for all t 2 R; (18)

where B.X/ denotes the collection of bounded subsets of X.

4This set is equivalently defined as the set of elements  in X obtained as the pullback limit
 D lim

k!1
U.t; sk/�k, with sk ! �1 and �k 2 B.
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Fig. 2 Time evolution of the PBA A .t/ in Fig. 1 throughout a calendar year. Each snapshot is
represented—for ı D 15 � 10�2—by a heavy curve, hiding the fine-scale details and foldings
shown in Fig. 1 for t � 147:64. Note that the snapshot of A .t/ that is represented in red at the
bottom of the figure for t � 146:64 years is actually exactly the same as that shown in Fig. 1, due
to the periodicity of the seasonal forcing; see (18)

The time evolution of A .t/ within a year is illustrated in Fig. 2; the four
snapshots are shown at 3-month intervals. The periodicity of the global PBA can be
seen by comparing the bottom snapshot in Fig. 2 (red curve) for t � 146:64 years
with the PBA shown in Fig. 1 for t � 147:64 years.

As can be seen in Fig. 2, the PBA is experiencing global deformations and shifts
with time in the embedded phase space. The PBA’s strangeness, with its foldings and
stretchings, is also present in each of the snapshots shown in Fig. 2, but the mode of
representation adopted here prevents one to display these fine-scale structures.5

As we will see in the next section, each PBA A .t/ supports a complicated
probability measure that describes the statistics of the dynamics and, in particular,
that of the model’s extremes events. The latter correspond to the PBA’s filaments that
meander with time in the embedded phase space. This meandering helps provide a
useful physical interpretation of the model’s dynamics.

For instance, due to the embedding used, at constant time, for each of the
horizontal planes shown in Fig. 2, one can infer that a negative and large value of
h.t/ followed by a negative and large value of h.t C 1/, i.e., 1 year later, is less
likely to occur in boreal winter (black and magenta curves in Fig. 2) than in boreal
summer (blue and red curves in Fig. 2). This seasonal dependence of the extremes is
well known in ENSO models, and it is reflected strikingly here by the global PBA’s
time evolution.

5Heavy curves have been used for a better visualization of the overall evolution in the three-
dimensional representation used in Fig. 2.
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We turn next to a natural class of probability measures supported by a strange
PBA, such as the one shown in Fig. 1. These invariant measures will help complete
our description of seasonal dependence of the extremes, as encoded by the time
evolution of A .t/, by attributing useful statistics to this dependence.

2.4 Pullback Statistical Equilibria of Periodically Forced
Systems

In this section, we provide the theoretical underpinnings for the study of probability
measures in periodically forced, infinite-dimensional systems like our ENSO model.
Given a reference probability measure m0 on the phase space X, one wishes to
consider time-dependent probability measures �t on X that can be obtained as a
weak limit of the measure mt WD U.t; s/ � m0, as s ! �1:

Equivalently, the probability measure mt is defined for any Borel set E of X by

mt.E/ D m0.U.t; s/
�1.E//; (19)

i.e., it gives the “m0-volume” of points of X that fall into the set E when propagated
by U.t; s/, and it characterizes therewith the evolution of the initial measure m0

under the action of U.t; s/. A weak limit is understood here in the following sense:
for all continuous and bounded real-valued function ' on X, we have

lim
s!�1

Z

X
'.U.t; s/x/ dm0.x/ D

Z

X
'.x/ d�t.x/: (20)

In infinite dimensions, though, the existence of the limit on the left-hand side
of (20) is not guaranteed in general, even in the autonomous case. By making,
however, use of a generalized Banach limit6 (Foias et al., 2001), a weaker version
of (20) has been shown to hold in the autonomous setting7 for a broad class of
infinite-dimensional dissipative systems, as soon as they exhibit a global attractor;
see Chekroun and Glatt-Holtz (2012, Theorem 2.2).

This result has been generalized to the non-autonomous setting by Lukaszewicz
and Robinson (2014). In either case, autonomous or not, (Chekroun and Glatt-Holtz
2012, Theorem 2.2) or (Lukaszewicz and Robinson 2014, Theorem 4.1) ensures
that such a limiting measure is necessarily invariant and supported by the global
attractor. In the non-autonomous setting, the invariance property is

U.t; s/ � �s D �t; (21)

6Allowing, for instance, for a weighted combination over the possible accumulation points in X of
the trajectory s 7! U.t; s/x.
7In this case, U.t; s/ D S.t � s/ becomes a (semi-)flow and �t is time independent.
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or, equivalently,

Z

A .s/
'.U.t; s/x/ d�s.x/ D

Z

A .t/
'.x/ d�t.x/; s � t; ' 2 Cb.X/; (22)

with Cb.X/ the space of real-valued, continuous, and bounded functions on X:
In the periodically forced case of Eq. (6), the existence of a global PBA A .t/

ensures thus that, starting from an initial probability measure m0, an invariant
measure �t supported by A .t/ is reached at time t under the action of U.t; s/, as the
initial time s is stretched into the past. Furthermore, recalling that A .t/ D A .tCT/,
cf. (18), one can prove from (21) and (16) that

�tCT D �t; with T D 1 years: (23)

Obviously, the existence of a unique invariant probability measure �t that
satisfies Eq. (20)—irrespectively of m0—is not yet guaranteed at this stage. The
difficulty does not come from the techniques underlying the aforementioned
mathematical results, but rather from the infinite-dimensional nature of the phase
space X. In finite dimensions, a unique measure �t satisfying (20), irrespective of
any measure m0 possessing a density with respect to the Lebesgue measure, has
been shown to exist for several systems (Eckmann and Ruelle 1985; Ruelle 1999),
giving rise often to a Sinai–Ruelle–Bowen (SRB) measure. In the non-autonomous
setting, this measure describes the statistics of time evolutions of almost all solutions
starting from the basin of attraction of a PBA A .t/; see Ruelle (1999), Chekroun
et al. (2011b), Young (2016).

There is, however, no direct generalization of the ideas surrounding SRB
measures to infinite dimensions. This is due in part8 to the absence of a notion
of Lebesgue measure in function spaces such as X:

As mentioned earlier in Sect. 2.3, an important step towards the existence of an
analogue of SRB measures in infinite dimension has been taken; see Young (2016)
for a recent survey. It concerns the case of periodically forced systems that exhibit a
limit cycle when the forcing is turned off. Loosely speaking, in the case of the origin
losing its stability via a supercritical Hopf bifurcation, if the strong stable foliation
Wss originating from 0—and for which each Wss-curve meets the limit cycle in
exactly one point—has Wss-curves twisted near the origin, then suitable periodic
kicks in the vicinity of the supercritical limit cycle lead to folding and stretching of
the phase space, and eventually to a strange attractor.

If the foliation is of finite codimension and sufficiently regular, e.g., Lipschitz
continuous, then there is a well-defined Lebesgue measure class transversal to

8The other aspect of the problem that renders the analysis difficult is tied to the lack of smoothing
of the flow in probability space by the Liouville equation (Chekroun et al., 2014)— in the present,
deterministic setting—as compared to the Fokker–Planck equation, which is its counterpart in the
presence of noise; see Chekroun et al. (submitted).
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its leaves. If the codimension is two, for instance, and—for every embedded
2-D surface S transversal to the leaves of Wss—a given property holds almost
everywhere with respect to the Riemannian measure on S, then it holds almost
everywhere transversal to Wss. This way, a proper Lebesgue-like meaning to “almost
all solutions” can be given, and the conclusion of Lu et al. (2013, Theorem 3.4)
ensures the existence of SRB measures for a broad class of periodically kicked
evolution equations in infinite dimension, whenever the kicks are suitable and the
twist of the Wss-curves sufficiently strong.

Such a theory of SRB measures provides a very useful and general geomet-
ric mechanism for the production of chaos from periodically kicked evolution
equations, but its application to Eq. (6) requires a certain level of mathematical
technicalities that go beyond the scope of this article. Instead, we will show
in Sect. 3.2, by means of high-resolution numerics, that the singular nature of
a statistical equilibrium �t satisfying (20), for an appropriately chosen initial
probability measure m0, strongly suggests the existence of such an SRB measure
for Eq. (6), albeit without guaranteeing its uniqueness.

3 Chaos-to-Chaos Crisis and Pullback Symptoms

3.1 Crisis Symptoms in the Kolmogorov–Smirnov Metric

For simplicity, let us consider probability measures 	 and 
 on the real line R. We
introduce the following abstract probability metric, subject to the choice of a set F
of test functions:

dF .	; 
/ D sup
f 2F

ˇ̌
ˇ
Z

f d	 �

Z
f d


ˇ̌
ˇ: (24)

If F D ff W kf k1 � 1g, then dF is the total variation metric TV . If

F D f1.�1;x�; x 2 Rg; (25)

then dF is the Kolmogorov–Smirnov (KS) metric dKS.
It follows readily that, for any pair .	; 
/ of probability measures,

dKS.	; 
/ � TV.	; 
/: (26)

If one considers a family f	�g of probability measures indexed by a parameter
�, a key property of the KS metric is that a discontinuity of the mapping � 7!

dKS.	�0 ; 	�/ at a point � D �� indicates a brutal change in the cumulative
distribution function (CDF) of 	� at that point. This change is given by
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Fig. 3 Sharp transition in the Kolmogorov–Smirnov (KS) metric. The vertical dashed line
emanates from the estimated value 15:7 � 10�3 � ı� � 15:707 � 10�3 at which a critical
chaos-to-chaos transition occurs

dKS.	�; 	��
/ D sup

x

ˇ̌
ˇ	�..�1; x�/ � 	��

..�1; x�/
ˇ̌
ˇ; (27)

and there are standard statistical tests for its significance.
For Eq. (1) and for a given ı, we considered hereafter the probability distribution

	ı of a simulated time series h.t/ sampled every year. The support of this probability
measure is contained in the real line, more exactly is contained in the projection of
the global attractor of the time-T map (with T D 1 years) associated with Eq. (1).
The simulations of h.t/ are each 85;000-years long and have been performed over a
ı-grid of size 6:6667 � 10�6 from ı D 0 to ı D 16 � 10�3.

Given an arbitrary reference parameter ı0, with ı0 D 13:3 � 10�3 here, we
computed dKS.	ı0 ; 	ı/, where we used the kernel estimation algorithm of Botev
et al. (2010) to estimate each probability measure 	ı . The numerical results are
reported in Fig. 3. From these results, a sharp discontinuity—up to the numerical
accuracy of our experiments—can be reasonably conjectured to take place for a
critical parameter value ı� lying between ı D 15:7 � 10�3 and ı D 15:707 � 10�3.
As a consequence, a discontinuity in the CDF of the probability measure 	ı occurs.

This approach based on the KS distance between one-dimensional CDFs is useful
but it has its limitations. For instance, it does not allow one to distinguish what is
happening dynamically right before and after the jump in the KS metric.
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To get a better idea of the changes across ı�, we examined carefully the time
series h.t/ as the parameter ı is varied from ı < ı� in Fig. 4 to ı > ı� in Fig. 5. In
Fig. 4, the most common year-to-year positive/negative excursions of h correspond
to moderately warm (positive h anomaly, El Niño) and to moderately cold (negative
h anomaly, La Niña) events. A small subset of these high and low excursions of h
extend well beyond the typical range in Fig. 4, and are termed extreme El Niño and
La Niña events.

As ı tends to ı� from below, these extreme El Niño and La Niña events become
less frequent; see the time series segments in panels (a) and (b) of Fig. 4. Such
extremes disappear completely as ı� is crossed, cf. Fig. 5.

The power spectral densities (PSDs) of the complete time series, though, as
shown in Figs. 4 and 5, do not provide a clear imprint in the frequency domain of the
increasing rarity of occurrence of these extreme events as one approaches ı� from
below (Fig. 4), nor about the disappearance of the latter as the critical parameter ı�

has been crossed (Fig. 5).
We show in the next section that more plentiful and reliable information

regarding the nature of the dynamical transition occurring at ı D ı� is gained by
visualizing the corresponding PBA, as well as by estimating a statistical equilibrium
�t that this PBA supports and that satisfies Eq. (20) for an appropriate choice of
initial probability measure m0.

3.2 Pullback Symptoms

The high-resolution numerical experiments in this section are designed to shed
light on the transition in the behavior of the PBA and of the pullback statistical
equilibrium �t it supports, as the parameter ı crosses the critical value ı�.

To estimate �t as per (20), the initial histories are drawn from an initial
distribution m0 and propagated according to the RFDE (6). The distribution m0 is
designed as follows. Over the interval Œ��; 0�, with � D �2 � 3:3 years, and for a
grid resolution corresponding to ng equally spaced points f�j D ��.1� j=ng/ W 1 �

j � ngg, the N initial histories �k are selected at random according to the formula

�k.�j/ WD �1C "k C ."k/
1
p �j; 1 � k � N; (28)

with " D 2=N and p � 1. Here the �j’s are ng independent real-valued random
normal variables of mean zero and unit variance.

The fractional exponent 1=p in (28) is chosen so that the initial distribution
follows roughly a Gaussian shape in the embedded .�.�1/; �.0//-plane9: the closer
this exponent is to unity, the sharper the peak of the distribution, and the smaller it is,
the more bell-shaped the distribution. Figure 6 shows a distribution of N D 4 � 105

initial histories.

9Here �.�1/ corresponds to the value of the initial histories at �1 years.
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Fig. 4 Time series and PSDs for ı D 15� 10�3and ı D 15:7� 10�3. Both these values of ı are
strictly less than ı�. (a) Time series and PSD. Here a D 0:00630555. (b) Time series and PSD.
Here a D 0:00630944
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Fig. 5 Time series and PSDs for ı D 15:707 � 10�3 andı D 16 � 10�3. Both these values of ı
are strictly greater than ı�. (a) Time series and PSD. Here a D 0:00630948. (b) Time series and
PSD. Here a D 0:00631111
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Fig. 6 A distribution m0 of initial histories, embedded in the .�.�1/; �.0//-plane. Here the initial
histories are drawn according to (28) with p D 12 and ng D 400

Due to the dissipative effects present in Eq. (6), one does not need to reach exactly
the asymptotic limit in (20) in order to obtain a reliable approximation of �t. For
instance, after flowing from s D 0 to t D t� � 147:64 years, the N D 4� 105 initial
histories whose distribution is shown in Fig. 6, one obtains the approximations of
�t shown in Figs. 7 and 8. These approximations remain indistinguishable from
those shown in these figures, when the same initial histories are flown from a time
s 	 0 up to the same t� (not shown). Actually, even for some times s > 0,
similar approximations (not shown) are obtained but we do not aim in this chapter
to determine the minimum interval of time t� � s that ensures convergence in (20).

We focus here, as stated above, on the crisis of the global PBA and of its
statistical equilibrium, when crossing the vertical dashed line in Fig. 3. For the sake
of simplicity, we will no longer differentiate between �t and its approximations
shown in Figs. 7 and 8.

Figures 7 and 8 clearly illustrate the singular nature of (the embedding of)�t with
respect to the bell-shaped distribution m0 shown in Fig. 6. This is not surprising, as
the theory predicts that �t is supported by the strange PBA Aı.t/, whose stretching
and folding features were shown in Fig. 1 for ı D 15�10�3. The PBA’s strangeness
is also manifest for the other values of ı in the interval 15:0� 10�3 � ı � 15:707�

10�3 (not shown), and the singular support of the probability measures �t.ı/ is
plotted as red curves in Figs. 7b and 8a, b.
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Fig. 7 Embedding of the pullback statistical equilibrium �t.ı/ associated with the DDE (1). The
embedding is shown within the .h.t/; h.t C1//-plane, for t � 147:64 years and for (a) ı D 0 < ı�

and (b) ı D 15� 10�3 . ı�, respectively
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Recall that what is observed here is within the embedded phase space .h.t/; h.tC
1//, and one may ask to which extent we can rely on this embedding to reach
conclusions about the true nature of �t in the full phase space X. Rigorous results
from the dimension theory of Borel probability measures with compact support
(Hunt and Kaloshi 1997) shed light on this issue. Denoting for a moment by P�t

the projection of the measure �t onto the 2-D embedded phase space, like the
one at hand, these results show that the correlation dimension D2 (Grassberger
and Procaccia 1983) of the measure P�t visualized herein after embedding and
projection10 is

D2.P�t/ D min.2;D2.�t//: (29)

Therefore, if D2.P�t/ is strictly less than 2, we can conclude that the singular nature
of this embedded measure—with respect to the Lebesgue measure of R2—reflects
a genuinely singular nature of �t,11 and it is not due to some numerical artifact.

We have estimated the correlation dimension D2.P�t/ following the algorithm of
Grassberger and Procaccia (2004) and while taking into consideration the practical
suggestions of Kostelich and Swinney (1989). We found that D2.P�t/ � 1:21,
which allows us to conclude that �t itself is singular, and not just its 2-D embedding
shown in Figs. 7 or 8. For brevity’s sake, we will not distinguish hereafter between
�t and its 2-D embedding.

Another important point apparent from inspection of Figs. 7 and 8 concerns a
key difference between the statistical equilibrium �t for ı D 0 in Fig. 7a, located
relatively far from the critical value ı� at which the dynamical crisis occurs, and
those shown for ı D 15 � 10�3 in Fig. 7b and ı D 15:707 � 10�3 in Fig. 8a,
located both closer to and still below ı�. The latter two statistical equilibria do
exhibit elongated filaments, like those in Fig. 7a, but these filaments are much less
populated by the nonlinear process than for the latter.

It follows that the statistical equilibrium �t supported by the PBA provides a
global statistical description of the dynamics that is perfectly consistent with the
observations reported at the end of Sect. 3.1 regarding the decrease in the rate of
occurrence of extreme events as ı approaches ı� from below. Indeed, the latter
decrease is manifested here by a reduction of the mass of �t that populates the
elongated filaments, until its total disappearance when ı� has been crossed, in
Fig. 8b.

In Fig. 8b, the bulk of �t survives the crossing of ı�, while the elongated
filaments have disappeared altogether, i.e., no more of the extreme class of events
survive. These numerical results confirm that the regions of the strange PBA that
survive the crisis are those that are populated by the system’s most probable states.
A closer look at these regions show that they correspond to regions in which the

10The “true” embedding dimension d given by the Takens embedding theorem may be greater than
2; see Robinson (2008) for a version of this theorem in the context of PBAs.
11With respect to the Lebesgue measure in R

d .



24 M.D. Chekroun et al.

PBA’s foldings—like those shown in the inset of Fig. 1—are the most robust to
perturbations.

3.3 Dynamical Interpretations

When the seasonal forcing is removed, i.e., c D 0 in Eq. (1), the ENSO model
dynamics is periodic with a period Tı , in years, that follows the empirical linear
dependence

Tı D 8:7989C 29:99.ı � ı0/; (30)

throughout the interval Œı0; 16 � 10�3� over which we performed the parameter-
dependence experiments reported in this chapter.

The characteristics of the underlying frequency-locked regimes between the
internal oscillatory frequency !i D T�1

ı and the driving annual frequency !a,
i.e., the integers p and q for which !i D !ap=q, depend thus on ı. Such a frequency-
locked behavior takes place—in parameter space—in a so-called p=q-Arnold tongue
(Jensen et al. 1984; Jin et al. 1994; Tziperman et al. 1994) whose ı-dependence
makes it a pı=qı-Arnold tongue.

The ENSO model of DDE (1), subject to seasonal forcing and over the entire
range of ı-values considered here, exhibits chaotic behavior, as described in
Sect. 2.3. One can thus infer that, for each ı, chaos results from overlapping of a
pı=qı-Arnold tongue with another, p0

ı=q0
ı-Arnold tongue (Arnold 1988; Jensen et al.

1984).
The bifurcation theory of one-dimensional circle maps (e.g., Mori and Kuramoto

2013, Chap. 7.4) provides a possible explanation of the transition shown in Fig. 8,
as ı is increased from ı D 15:7 � 10�3 to ı D 15:707 � 10�3. This theory
addresses crises that occur within the overlap of two Arnold tongues, a region in
which chaotic behavior occurs. Extrapolating to DDE models, such as the ENSO
model investigated herein, and adopting the language of PBAs, one could argue that
the transition observed in Figs. 3 and 8 results from the coexistence of two strange
PBAs at each fixed ı.

If such were the case, the two coexisting PBAs would correspond here to the
one that lies within the square Œ�1; 0�2 of the .h.t/; h.t C 1//-plane and is shown by
the red curve in Fig. 8b, along with the one that exhibits filament extending out of
this box and shown by the red curve in Fig. 8a. In the present setting, the former is
actually contained within the latter, but coexisting strange PBAs may, in general, be
disjoint. If so, a crisis may still occur and manifest itself by a dynamics that hops
between the two chaotic attractors, whether pullback or not, as one moves through
parameter space; see Horita et al. (1988, Fig. 6). This phenomenon occurs whenever
two Arnold tongues with nearby rotation numbers overlap, as certain crisis lines are
crossed within the overlapping region; see Horita et al. (1988, Fig. 2).
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A complementary explanation of the transition observed here is provided by the
theory of attractor widening (Grebogi et al. 1987): see Grebogi et al. (1987, Figs. 5
& 6) for a similar crisis in the case of the Ikeda map. Adopting again the language
of PBAs, a collision between the PBA shown in Fig. 8b and an unstable periodic
orbit would be responsible for initiating the crisis. To get the attractor widening, the
collision would have to occur as ı crosses ı� from above.

Whatever the exact explanation of the crisis, our study provides—to the best of
the authors’ knowledge—the first identification of such a crisis occurring in a delay
differential model, as well as its first characterization in terms of PBAs and the
statistical equilibria they support. We leave the more detailed and mathematically
rigorous dynamical characterization of this crisis for another investigation, and turn
next to a discussion of the impact of the noise on such a chaos-to-chaos crisis.

3.4 Crisis Removal by Small Additive Noise

One could argue that similar characterizations of the dynamical crisis discussed so
far could have been inferred from the system’s Poincaré map and the corresponding
forward attractor. This is actually a valid argument for periodically forced systems,
like the non-autonomous DDE at hand. For the case of a T-periodic system, a
relationship between PBAs and a notion of forward attractor is known to exist and
it does not even rely on Poincaré maps.

More precisely, the set eA D
S

t2Œ0;T� U.t; 0/A .0/, where A .0/ denotes the
global PBA at time t D 0, satisfies, for any bounded set B of X, the following
forward attraction property:

lim
t!C1

sup
�2R

distX.U.� C t; t/B/ D eA : (31)

We refer to Carvalho et al. (2013, Chap. 10.3) for a proof. The set eA is also known
as a uniform forward global attractor, a concept introduced in Haraux (1991), cf. also
Chepyzhov and Vishik (2002); it is the minimal compact set of X that attracts all the
trajectories—uniformly with respect to the initial time—that start from a bounded
set; see Haraux (1991, Chap. 8.3).

Nevertheless, the use of a standard Poincaré map or the concept of uniform
attractor may hide, in the presence of noise, certain dynamical features that are
revealed by a pullback approach that is not limited to the case of periodic or, more
generally, deterministic non-autonomous forcing; see Ghil et al. (2008b), Chekroun
et al. (2011b), Ghil (2017). We illustrate hereafter this point in the context of the
DDE model (1).

Let us thus consider the following stochastic modification of Eq. (1):

dh D
�

aR
h
h
�

t�
L

2CK

�i
�bR

h
h
�

t�
L

CK
�

L

2CR

�i
Cc cos.!atC'/

�
dtC dWt; (32)
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where Wt denotes a one-dimensional Brownian motion and  � 0. This noise term
in Eq. (32) is motivated by the presence of atmospheric high-frequency variability
in the coupled climate system (Blanke et al. 1997; Eckert and Latif 1997; Jin et al.
1996; Kleeman and Power 1994; Kleeman and Moore 1997; Roulston and Neelin
2000), a variability that is crudely represented herein by a white-noise process.
A rigorous proof of the existence of random PBAs for such a non-autonomous
stochastic DDE is beyond the scope of this chapter. We rely instead on numerical
experiments to analyze the effects of noise on the inferred random PBA, as the
parameter ı varies in a neighborhood of the critical value ı� at which the chaos-to-
chaos crisis occurs in the absence of noise.

Numerical results on the random PBA are shown in Fig. 9a, b for a noise intensity
of  D 10�3, and the visual inspection of both panels strongly indicates that the
chaos-to-chaos crisis did not survive the addition of small noise to the evolution
equation. The results in Fig. 10a, b show, furthermore, that the corresponding
pullback statistical equilibrium �t resembles the one obtained for ı D 0 in the
absence of noise, cf. Fig. 7a. Dynamically, the crisis in the deterministic version of
the model, for  D 0, was associated with the disappearance of extreme El Niño and
La Niña events as the critical parameter value ı� is crossed from below. The addition
of noise in the system triggers once again these extreme events, manifested by the
expansion of the PBA in the embedded phase space, as evident when comparing the
panels (b) of Figs. 8 and 10.

Complementary experiments performed for smaller values of the noise intensity
 have been conducted and have shown that this phenomenon is robust, while
reducing the noise does result in extreme events becoming less and less probable.
This is noticeable, for instance, by comparing the panels of Fig. 9 with those of
Fig. 10, in which the noise level is  D 10�4, while the same noise realization was
used in both figures.

The statistical equilibria shown in Figs. 10a, b resemble those in Fig. 7b for
ı D 15 � 10�3, in which the main bulk of the density �t is located near the point
.�0:5;�1/ in the .h.t/; h.t C 1//-plane, while the elongated PBA filaments—again
like in Fig. 7b—are less populated by the dynamics than for  D 10�3, i.e., the
extreme events are less likely to occur.

This removal of the crisis by the addition of a small additive noise is actually
consistent with noise effects, as shown for the fundamental circle map in Ghil
et al. (2008b). It was found there that a Devil’s staircase step that corresponds to
a rational rotation number can be “destroyed” by a sufficiently intense noise (Ghil
et al. 2008b, Appendix B). In fact, the narrower a Devil’s staircase steps is, the
less robust is it to noise perturbations, while the wider ones are the most robust.
Actually, the theory of topological equivalence in random dynamical systems—
as analyzed in Arnold (2013), Cong (1996, 1997) and as explained in Ghil et al.
(2008b, Appendix B)—implies that the elimination of a Devil’s staircase step, for
a sufficient amount of noise, is manifested by the disappearance of a p=q-Arnold
tongue. As a consequence, the corresponding asymptotic dynamics is no longer a
periodic random attractor but a random fixed point.

Given this understanding of the smoothing effect of noise on the circle map’s
fine-grained resonant landscape, and the universal character of the circle map, one
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Fig. 9 Same as Fig. 8 but for the stochastic DDE (32). The ı-values are again (a) ı D 15:7�10�3

and (b) ı D 15:707 � 10�3. The noise intensity  D 10�3 and the noise realization are the same
for the panels (a) and (b), while the initial histories are again drawn from the distribution m0 shown
in Fig. 6
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Fig. 10 Same as Fig. 9 but with much smaller noise,  D 10�4. (a) a D 0:00630944. (b)
a D 0:00630948

can deduce a heuristic result on the periodically forced DDE model considered here.
To do so, recall the discussion of Sect. 3.3 about the dynamical origin of the chaos-
to-chaos transition observed herein between ı D 15:7�10�3 and ı D 15:707�10�3,
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in the absence of noise; see again Figs. 3 and 8. Two dynamical mechanisms were
proposed as potential causes of this transition.

In the case of the crossing of a crisis line within an overlap of two Arnold tongues
(Mori and Kuramoto 2013), the removal of this crisis by the noise can be understood
as the elimination of a nearby p=q-Arnold tongue; this elimination, in turn, induces
the disappearance of the coexisting chaotic attractor, as discussed in Sect. 3.3. Such
an explanation is consistent, furthermore, with the resemblance between the PBAs
shown in Figs. 9 and 10, on the one hand, with those shown in Fig. 7, on the other.

In the case of an attractor widening scenario, according to Grebogi et al. (1987),
the noise would be responsible for jiggling an unstable periodic orbit that lies near
the PBA A .t/ so as to collide with the latter. Such a collision can cause an attractor
widening to occur even for parameter values for which this unstable periodic orbit
does not collide with A .t/ in the absence of noise.

Whatever the mechanisms behind the chaos-to-chaos crisis of interest here, the
way the noise enters the governing equations is crucial in causing the removal of
the crisis or not. Typically, certain state-dependent noises may preserve the ordering
between stationary solutions or between more complicated invariant sets (Chekroun
et al. 2016a). This ordering may, in turn, prevent the destruction of random periodic
orbits and thus of p=q-Arnold tongues, as already pointed out in Ghil et al. (2008b,
Appendix B); such is the case, for instance, in the circle map, if the noise enters
nonlinearly into the phase of the rotation. Likewise, a random unstable periodic
orbit may stay away from the PBA in the case of certain multiplicative noises, a
situation that may prevent an attractor widening scenario à la Grebogi et al. (1987)
to be realized. The rigorous reduction techniques of Chekroun et al. (2015a,b), along
with the approximation techniques of Chekroun et al. (2016b), provide a natural
framework for analyzing the effects of state-dependent noise on DDE models such
as Eq. (1) and they will be pursued elsewhere.

Acknowledgements This work has been partially supported by the Office of Naval Research
(ONR) Multidisciplinary University Research Initiative (MURI) grant N00014-12-1-0911 and
N00014-16-1-2073 (MDC & MG), by the National Science Foundation grants OCE-1243175
(MDC & MG), DMS-1616981(MDC), and AGS-1540518 grant (JDN).

References

Arnold, V.I. 1988. Geometrical methods in the theory of ordinary differential equations, 2nd ed.,
Grundlehren der mathematischen Wissenschaften, vol. 250. Berlin: Springer.

Arnold, L. 2013. Random dynamical systems. Berlin: Springer Science & Business Media.
Battisti, D.S., and A.C. Hirst. 1989. Interannual variability in a tropical atmosphere–ocean model:

Influence of the basic state, ocean geometry and nonlinearity. Journal of the Atmospheric
Sciences 46(12): 1687–1712.

Bjerknes, J. 1969. Atmospheric teleconnections from the equatorial Pacific. Monthly Weather
Review 97(3): 163–172.

Blanke, B., J.D. Neelin, and D. Gutzler. 1997. Estimating the effects of stochastic wind stress
forcing on ENSO irregularity. Journal of Climate 10: 1473–1486.



30 M.D. Chekroun et al.

Bódai, T., and T. Tél. 2012. Annual variability in a conceptual climate model: snapshot attractors,
hysteresis in extreme events, and climate sensitivity. Chaos: An Interdisciplinary Journal of
Nonlinear Science 22(2): 023110.

Bódai, T., G. Károlyi, and T. Tél. 2011. A chaotically driven model climate: extreme events and
snapshot attractors. Nonlinear Processes in Geophysics 18(5): 573–580.

Bódai, T., G. Károlyi, and T. Tél. 2013. Driving a conceptual model climate by different processes:
snapshot attractors and extreme events. Physical Review E 87(2): 022822.

Botev, Z.I., J.F. Grotowski, and D.P. Kroese. 2010. Kernel density estimation via diffusion. The
Annals of Statistics 38(5): 2916–2957.

Cane, M.A. 1986. Experimental forecasts of el Niño. Nature 321: 827–832.
Caraballo, T., J.A. Langa, and J.C. Robinson. 2001. Attractors for differential equations with

variable delays. Journal of Mathematical Analysis and Applications 260(2): 421–438.
Caraballo, T., P. Marın-Rubio, and J. Valero. 2005. Autonomous and non-autonomous attractors

for differential equations with delays. Journal of Differential Equations 208(1): 9–41.
Carvalho, A., J.A. Langa, and J. Robinson. 2013. Attractors for infinite-dimensional non-

autonomous dynamical systems In Applied mathematical sciences, vol. 182. Berlin: Springer.
Chekroun, M.D., and N.E. Glatt-Holtz. 2012. Invariant measures for dissipative dynamical

systems: Abstract results and applications. Communications in Mathematical Physics 316(3):
723–761.

Chekroun, M.D., D. Kondrashov, and M. Ghil. 2011a. Predicting stochastic systems by noise
sampling, and application to the El Niño-Southern Oscillation. Proceedings of the National
Academy of Sciences of the United States of America 108: 11766–11771.

Chekroun, M.D., E. Simonnet, and M. Ghil. 2011b. Stochastic climate dynamics: random attractors
and time-dependent invariant measures. Physica D 240(21): 1685–1700.

Chekroun, M.D., J.D. Neelin, D. Kondrashov, J.C. McWilliams, and M. Ghil. 2014. Rough
parameter dependence in climate models: the role of Ruelle-Pollicott resonances. Proceedings
of the National Academy of Sciences of the United States of America 111(5): 1684–1690.

Chekroun, M.D., H. Liu, and S. Wang. 2015a. Approximation of stochastic invariant manifolds:
stochastic manifolds for nonlinear SPDEs I. Springer briefs in mathematics. New York:
Springer.

Chekroun, M.D., H. Liu, and S. Wang. 2015b. Parameterizing manifolds and non-Markovian
reduced equations: stochastic manifolds for nonlinear SPDEs II. Springer briefs in mathe-
matics. New York: Springer.

Chekroun, M.D., E. Park, and R. Temam. 2016a. The Stampacchia maximum principle for
stochastic partial differential equations and applications. Journal of Differential Equations
260(3): 2926–2972.

Chekroun, M.D., M. Ghil, H. Liu, and S. Wang. 2016b. Low-dimensional Galerkin approximations
of nonlinear delay differential equations. Discrete and Continuous Dynamical System A 36(8):
4133–4177.

Chekroun, M.D., A. Tantet, H.A Dijkstra, and J.D. Neelin, Mixing Spectrum in reduced phase
spaces of stochastic differential equations. Part I: theory (submitted)

Chepyzhov, V.V., and M.I. Vishik. 2002. Attractors for equations of mathematical physics, vol. 49
of Colloquium publications. Providence, RI: American Mathematical Society.

Cong, N.D. 1996. Topological classification of linear hyperbolic cocycles. Journal of Dynamics
and Differential Equations 8(3): 427–467.

Cong, N.D. 1997. Topological dynamics of random dynamical systems. Oxford: Oxford University
Press.

Crauel, H., and F. Flandoli. 1994. Attractors for random dynamical systems. Probability Theory
and Related Fields 100(3): 365–393.

Crauel, H., A. Debussche, and F. Flandoli. 1997. Random attractors. Journal of Dynamics and
Differential Equations 9(2): 307–341.

Diekmann, O., S.A. van Gils, S.M. Verduyn Lunel, and H.-O. Walther. 1995. Delay equations:
functional, complex, and nonlinear analysis. Applied mathematical sciences, vol. 110. New
York: Springer.



Pullback Attractor Crisis in a Delay Differential ENSO Model 31

Drótos, G., T. Bódai, and T. Tél. 2015. Probabilistic concepts in a changing climate: a snapshot
attractor picture. Journal of Climate 28(8): 3275–3288.

Eckert, C., and M. Latif. 1997. Predictability of a stochastically forced hybrid coupled model of El
Niño. Journal of Climate 10(7): 1488–1504.

Eckmann, J.-P., and D. Ruelle. 1985. Ergodic theory of chaos and strange attractors. Reviews of
Modern Physics 57: 617–656.

Foias, C., O. Manley, R. Rosa, and R. Temam. 2001. Navier-Stokes equations and turbulence.
Encyclopedia of mathematics and its applications, vol. 83. Cambridge: Cambridge University
Press.

Galanti, E., and E. Tziperman. 2000. ENSO’s phase locking to the seasonal cycle in the fast-SST,
fast-wave, and mixed-mode regimes. Journal of the Atmospheric Sciences 57(17): 2936–2950.

Ghil, M. 2017. The wind-driven ocean circulation: applying dynamical systems theory to a climate
problem. Discrete and Continuous Dynamical Systems-A 37(1): 189–228.

Ghil, M., and N. Jiang. 1998. Recent forecast skill for the El Niño/Southern Oscillation.
Geophysical Research Letters 25(2): 171–174.

Ghil, M., and I. Zaliapin. 2015. Understanding ENSO variability and its extrema: a delay
differential equation approach. In Observations, modeling and economics of extreme events,
ed. M. Ghil, M. Chavez, and J. Urrutia-Fucugauchi. Geophysical monographs, vol. 214, 63–
78. Washington, DC: American Geophysical Union & Wiley.

Ghil, M., I. Zaliapin, and S. Thompson. 2008a. A delay differential model of ENSO variability:
parametric instability and the distribution of extremes. Nonlinear Processes in Geophysics
15(3): 417–433.

Ghil, M., M.D. Chekroun, and E. Simonnet. 2008b. Climate dynamics and fluid mechanics: natural
variability and related uncertainties. Physica D 237: 2111–2126.

Grassberger, P., and I. Procaccia. 1983. Characterization of strange attractors. Physical Review
Letters 505: 346.

Grassberger, P., and I. Procaccia. 2004. Measuring the strangeness of strange attractors. In The
theory of chaotic attractors, ed. B.R. Hunt, T.-Y. Tien-Yien Li, J.A. Kennedy, and H.E. Nusse,
170–189. Berlin: Springer.

Grebogi, C., E. Ott, F. Romeiras, and J.A. Yorke. 1987. Critical exponents for crisis-induced
intermittency. Physical Review A 36(11): 5365.

Hale, J.K., and S.M. Verduyn-Lunel. 1993. Introduction to functional-differential equations.
Applied mathematical sciences. vol. 99. New York: Springer.

Haraux, A. 1991. Systèmes Dynamiques Dissipatifs et applications, vol. 17. Paris: Masson.
Horita, T., H. Hata, H. Mori, T. Morita, K. Tomita, K. Shoichi, and H. Okamoto. 1988. Local

structures of chaotic attractors and q-phase transitions at attractor-merging crises in the sine-
circle maps. Progress of Theoretical Physics 80(5): 793–808.

Hunt, B.R., and V.Y. Kaloshin. 1997. How projections affect the dimension spectrum of fractal
measures. Nonlinearity 10(5): 1031–1046.

Jensen, M.H., P. Bak, and T. Bohr. 1984. Transition to chaos by interaction of resonances in
dissipative systems. I. Circle maps. Physical Review A 30(4): 1960.

Jiang, N., M. Ghil, and D. Neelin. 1995. Forecasts of equatorial Pacific SST anomalies by an
autoregressive process using singular spectrum analysis. Experimental Long-Lead Forecast
Bulletin 4(1): 24–27.

Jin, F.-F., and J.D. Neelin. 1993. Modes of interannual tropical ocean-atmosphere interaction-A
unified view. Part III: analytical results in fully coupled cases. Journal of the Atmospheric
Sciences 50(21): 3523–3540.

Jin, F.-F., J.D. Neelin, and M. Ghil. 1994. El Niño on the Devil’s Staircase: annual subharmonic
steps to chaos. Science 274: 70–72.

Jin, F.-F., J.D. Neelin, and M. Ghil. 1996. El Niño/Southern oscillation and the annual cycle:
Subharmonic frequency locking and aperiodicity. Physica D 98: 442–465.

Keane, A., Krauskopf, B., and C. Postlethwaite. 2015. Delayed feedback versus seasonal forcing:
resonance phenomena in an El Niño Southern Oscillation model. SIAM Journal on Applied
Dynamical Systems 14(3): 1229–1257.



32 M.D. Chekroun et al.

Keane, A., B. Krauskopf, and C. Postlethwaite. 2016. Investigating irregular behavior in a model
for the El Niño Southern Oscillation with positive and negative delayed feedback. SIAM
Journal on Applied Dynamical Systems 15(3): 1656–1689.

Kelley, J.L. 1975. General topology. Berlin: Springer Science & Business Media.
Kleeman, R., and S.B. Power. 1994. Limits to predictability in a coupled ocean-atmosphere model

due to atmospheric noise. Tellus A 46(4): 529–540.
Kleeman, R., and A.M. Moore. 1997. A theory for the limitation of ENSO predictability due to

stochastic atmospheric transients Journal of the Atmospheric Sciences 54(6): 753–767.
Kondrashov, D., M.D. Chekroun, A.W. Robertson, and M. Ghil. 2013. Low-order stochastic model

and “past-noise forecasting” of the Madden-Julian oscillation. Geophysical Research Letters
40: 5305–5310. doi:10.1002/grl.50991.

Kondrashov, D., M.D. Chekroun, and M. Ghil. 2015. Data-driven non-Markovian closure models.
Physica D: Nonlinear Phenomena 297: 33–55.

Kostelich, E.J., and H.L. Swinney. 1989. Practical considerations in estimating dimension from
time series data. Physica Scripta 40(3): 436

Krauskopf, B., and J. Sieber. 2014. Bifurcation analysis of delay-induced resonances of the El-Niño
Southern Oscillation. Proc R Soc A 470(2169). The Royal Society.

Lu, K., Q. Wang, and L.-S. Young. 2013. Strange attractors for periodically forced parabolic
equations, vol. 224. Memoirs of the American mathematical society, vol. 1054. Providence,
RI: American Mathematical Society.

Lukaszewicz, G., and J.C. Robinson. 2014. Invariant measures for non-autonomous dissipative
dynamical systems. Discrete and Continuous and Dynamical Systems A 34(10): 4211–4222.

Mechoso, C.R., J.D. Neelin, and J.-Y. Yu. 2003. Testing simple models of ENSO. Journal of the
Atmospheric Sciences 60: 305–318.

Mori, H., and Y. Kuramoto. 2013. Dissipative structures and chaos. New York: Springer.
Münnich, M., M.A. Cane, and S.E. Zebiak. 1991. A study of self-excited oscillations of the tropical

ocean-atmosphere system. Part II: nonlinear cases. Journal of the Atmospheric Sciences 48(10):
1238–1248.

Neelin, J.D., D.S. Battisti, A.C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S.E. Zebiak. 1998.
ENSO theory. Journal of Geophysical Research: Oceans (1978–2012) 103(C7): 14261–14290.

Neelin, J.D., F.-F. Jin, and H.-H. Syu. 2000. Variations in ENSO phase-locking. Journal of Climate
13: 2570–2590.

Philander, S.G.H. 1992. El Niño, La Niña, and the Southern oscillation. San Diego: Academic.
Pierini, S., M. Ghil, and M.D. Chekroun. 2016. Exploring the pullback attractors of a low-order

quasigeostrophic ocean model: the deterministic case. Journal of Climate 29(11): 4185–4202.
Robinson, J.C. 2008. A topological time-delay embedding theorem for infinite-dimensional

cocycle dynamical systems. Discrete and Continuous Dynamical Systems. Series B 9(3–4):
731–741.

Romeiras, F.J., C. Grebogi, and E. Ott. 1990. Multifractal properties of snapshot attractors of
random maps. Physical Review A 41(2): 784.

Roulston, M.S., and J.D. Neelin. 2000. The response of an ENSO model to climate noise, weather
noise and intraseasonal forcing. Geophysical Research Letters 27: 3723–3726.

Ruelle, D. 1999. Smooth dynamics and new theoretical ideas in nonequilibrium statistical
mechanics. Journal of Statistical Physics 95(1): 393–468.

Suarez, M.J., and P.S. Schopf. 1988. A delayed action oscillator for ENSO. Journal of the
Atmospheric Sciences 45(21): 3283–3287.

Takens, F. 1981. Detecting strange attractors in turbulence. In Dynamical systems and turbulence,
Warwick 1980, 366–381. New York: Springer.

Temam, R. 1997. Infinite-dimensional dynamical systems in mechanics and physics, 2nd ed.,
Applied Mathematical Sciences, vol. 68. New York: Springer.

Tziperman, E., L. Stone, M.A. Cane, and H. Jarosh. 1994. El Niño chaos: overlapping of
resonances between the seasonal cycle and the Pacific ocean-atmosphere oscillator. Science
264(5155): 72–74.



Pullback Attractor Crisis in a Delay Differential ENSO Model 33

Tziperman, E., M.A. Cane, and S.E. Zebiak. 1995. Irregularity and locking to the seasonal cycle
in an ENSO prediction model as explained by the quasi-periodicity route to chaos. Journal of
the Atmospheric Sciences 52(3): 293–306.

Wang, Q., and L.-S. Young. 2001. Strange attractors with one direction of instability. Communica-
tions in Mathematical Physics 218(1): 1–97.

Wang, Q., and L.-S. Young. 2003. Strange attractors in periodically-kicked limit cycles and Hopf
bifurcations. Communications in Mathematical Physics 240(3): 509–529.

Wang, Q., and L.-S. Young. 2008. Toward a theory of rank one attractors. Annals of Mathematics
167: 349–480.

Young, L.-S. 2016. Generalizations of SRB measures to nonautonomous, random, and infinite
dimensional systems. Journal of Statistical Physics 166: 494–515.



Shear-Wave Splitting Indicates Non-Linear
Dynamic Deformation in the Crust
and Upper Mantle

Stuart Crampin, Gulten Polat, Yuan Gao, David B. Taylor,
and Nurcan Meral Ozel

Abstract We demonstrate that non-linear dynamic deformation exists throughout
the crust and upper mantle of the Earth. Stress-aligned shear-wave splitting, seismic
birefringence, is widely observed in the Earth’s upper crust, lower-crust, and
uppermost 
400 km of the mantle. Attributed to the effects of pervasive distribu-
tions of stress-aligned fluid-saturated microcracks in the crust (and controversially
intergranular films of hydrated melt in the mantle), the degree splitting indicates
that ‘microcracks’ are so closely spaced that they verge on failure in fracturing and
earthquakes if there is any disturbance. Phenomena that verge on failure are critical
systems with non-linear dynamics that impose a range of new properties on conven-
tional sub-critical geophysics that we suggest is a New Geophysics. Consequently,
shear-wave splitting provides directly interpretable information about the progress
of non-linear dynamic deformation in the deep otherwise-inaccessible interior of
the microcracked Earth. Possibly uniquely for non-linear dynamic phenomena,
observation of shear-wave splitting allows the progress towards singularities to be
monitored in deep in situ rock, so that earthquakes and volcanic eruptions can
be predicted (we prefer stress-forecast). The response to other processes, such as
hydraulic fracking, can be monitored, and in some cases calculated and effects
predicted. Here, we review shear-wave splitting and demonstrate the prevalence of
non-linear dynamic deformation of the New Geophysics in the crust and uppermost
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1 Introduction

Since Crampin et al. (1980), shear-wave splitting (SWS) has been widely observed
with stress-aligned polarizations and 
1.5 to 
4.5% shear-wave velocity anisotropy
(SWVA) throughout the upper- and lower-crust (Crampin 1994), reviewed by
Crampin and Peacock (2008). Similarly, since Ando et al. (1980), SWS has been
widely observed with nearly identical stress-aligned polarizations and SWVA,
throughout the uppermost 
400 km of the mantle, reviewed by Silver (1996) and
Savage (1999).

The presence of SWS indicates some form of seismic anisotropy the effective
elastic constants. The only anisotropic symmetry system that has the observed
parallel SWS polarizations at a horizontal free-surface is hexagonal symmetry
(transverse isotropy) with a horizontal axis of cylindrical symmetry (aka HTI-
symmetry) (Crampin 1981; Crampin and Kirkwood 1981), and the only common
geological phenomenon with HTI-symmetry is parallel vertical fluid-saturated
microcracks. Hence the observed SWS at the surface indicates distributions of
stress-aligned vertical fluid-saturated microcracks along almost all ray paths in
the crust, and stress-aligned intergranular films of hydrated melt in the uppermost

400 km of the mantle (Crampin 2003). Figure 1 is a schematic dimensionless
illustration of SWS throughout the microcracked crust and upper mantle, where the
(realistically imaged) closely spaced microcracks indicate sufficient compliance for
non-linear dynamic (NLD) deformation.

Here, we briefly review SWS (and the evidence for extensive NLD deformation)
in the Earth’s interior, and demonstrate that, possibly uniquely for NLD studies, the
progress towards singularities (fracture criticality and earthquakes in geophysics)
can be monitored by analysing SWS time delays. We outline several applications of
NLD.

Fig. 1 Schematic illustration
of shear-wave splitting on
propagation through the
fluid-saturated stress-aligned
microcracks pervasive in
almost all rocks in the Earth’s
crust (after Crampin 1994)
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2 A Review of Shear-Wave Splitting

Azimuthally varying SWS is widely observed throughout the crust and uppermost

400 km of the mantle (Crampin et al. 1980; Crampin 1994; Silver 1996;
Savage 1999; Crampin and Peacock 2008; Crampin and Gao 2013). The SWS
is generally interpreted as propagation through distributions of stress-aligned
fluid-saturated microcracks in the upper- and lower-crust, where the fluid is
typically water (possibly supercritical at depth), and in the upper-mantle, where
the fluid is (more controversially) intergranular films of hydrated melt (Crampin
2003; Crampin and Gao 2016). Since crack density " � %SWVA/100 (Hudson
1981), the range of observed SWVA implies crack densities of " � 0.015–
0.045 (Crampin 1994). Percolation theory indicates through-going fluid pathways
at " � 0.055 (Crampin and Zatsepin 1997a, b; Crampin 1999). Associating
fracture-criticality with the percolation-threshold, if there is any disturbance micro-
cracks will fail at fracture-criticality of " � 0.055 (SWVA � 5.5%) (Crampin
et al. 1999, 2008). Since SWVA of 1.5–4.5% is close to 5.5%, this implies that
almost all in situ rocks throughout the crust and upper-mantle of the Earth verge
on failure.

Figure 2 is a schematic illustration of crack distributions for a range of crack
densities, where the two left-hand images are for observed SWS (Crampin 1994;
Crampin and Gao 2013). Since phenomena verging on failure are critical-systems
with NLD deformation. Observations of SWS indicate that much of the Earth above

450 km depth has NLD deformation.

Fig. 2 Schematic (dimensionless) illustration of the observed percentages of shear-wave velocity-
anisotropy interpreted as uniform distributions of equal-sized parallel penny-shaped cracks, where
" is crack density, and a is crack radius per unit cube. Images are 2D cross sections of 3D
crack distributions. Fracture criticality is at the percolation threshold " D 0.055 for stress-aligned
microcracks, where cracks are so closely spaced they verge on fracturing if there is any disturbance
(after Crampin 1994; Crampin and Zatsepin 1997a)
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2.1 APE-Modelling

The suggested mechanism for low-level deformation is fluid-displacement by flow
or dispersion between intergranular microcracks cracks at different orientations to
the stress field in a process known as anisotropic poro-elasticity (APE) illustrated
schematically in Fig. 3. Figure 3 shows APE-deformation of a dimensionless
initially random distribution stress-aligned vertical cracks for four values of dif-
ferential horizontal stress (sH D 0.0, 0.5, 1.0, 3.0). Hexagons are elastically
isotropic (Crampin and Kirkwood 1981) so that, under zero differential (horizontal)
stress (sH D sh D 0) (top left) microcracks have equal aspect ratios (equal crack
thicknesses), and the two solid hexagons are a small selection of randomly oriented
vertical-microcracks with zero SWVA. Following a small increase in stress to
sH D 0.5 (top right), cracks perpendicular to sH have greater pressure normal to
the cracks than cracks parallel to sH , and fluid migrates by flow or dispersion along
the pressure gradients between neighbouring microcracks at different orientations to
the stress field. Some cracks swell (increase in aspect-ratio) and some cracks thin,
but without crack closure there is no significant SWVA and the overall elasticity
is still essentially isotropic. As differential stress increases, there is a critical point

Fig. 3 Schematic
(dimensionless, but spatially
accurate), illustration of
anisotropic poro-elasticity
(APE) deformation of
fluid-saturated microcracks.
There is a more detailed
description of the behaviour
in Crampin (1999) (after
Crampin 1999)
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(normalized to sH D 1), when cracks normal to sH to first begin to close (bottom
left), and SWVA jumps from zero to a minimum of approximately 
1.5%SWVA.
This theoretical minimum is approximately the same as the minimum SWVA
observed in the Earth, imaged in the left-hand diagram in Fig. 2, validating APE-
deformation within the Earth (Crampin 1994). As sH increases to sH � 3, cracks
begin to align (Fig. 3, bottom right), and at the percolation threshold at sH � 5.5
(not modelled), fracture-criticality is reached and the rock fractures if there is any
disturbance (Crampin and Zatsepin 1997a, b).

Note that the NLD of APE-deformation as illustrated in Fig. 3 is dimensionless
and valid for any 3D distributions of crack and stress geometries. Figure 3 shows
APE-deformation illustrated only for vertical cracks because: (1) parallel cracks
can be drawn in orthogonal 2D planar diagrams as in Fig. 3; and (2), once below the
depth, where increasing vertical stress V equals the minimum horizontal stress h,
microcracks in the Earth do tend to be vertical, parallel and normal to h.

The key effect of APE-deformation in the NLD deformation imaged in Fig. 3
is that increasing differential stress increases the aspect ratio (makes cracks swell)
of cracks aligned perpendicular to the direction of minimum tectonic stress sh. The
NLD deformation of stress-accumulation before earthquakes, say, can be monitored
by measuring the increasing average SWS time-delay in Band-1 directions in the
shear-wave window (Crampin 1999; Crampin et al. 2008; Crampin and Gao 2016).
The shear-wave window and Band-1 and Band-2 directions are described in Fig. 5,
Appendix 1.

2.2 Measuring SWS Parameters on Seismograms

Various techniques have been used to automatically measure the polarizations
(˚) and time-delays (dt) of SWS on shear-wave seismograms. The results are
generally unsatisfactory. The problem is that SWS, although simple in principle,
in practice may be extremely complicated for seismograms in the crust, and it is
difficult to assess the reliability of fully automated techniques (Crampin 2006). The
preferred technique uses the semi-automatic Shear-Wave Analysis System (SWAS)
for measuring shear-wave splitting parameters, where reliability of the results for
each arrival displayed in 2D polarization diagrams is easy to visually assess (Hao
et al. 2008). We show a typical example in Fig. 4 where SWAS is applied to a small
M D 1.43 earthquake in SW Iceland.
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Fig. 4 (continued)
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2.3 Shear-Wave Splitting (SWS) and Non-Linear Dynamic
Deformation in the Earth

SWS is widely observed throughout the crust and uppermost 
400 km of the mantle
with the configuration of Fig. 2 (Crampin and Peacock 2008) with the implied
deformation of Fig. 3, which is clearly NLD deformation if there is any disturbance.
This means that NLD deformation is prevalent throughout the crust and upper
mantle of the Earth.

3 The New Geophysics

The NLD effects of APE-deformation are widely observed in extensive observations
if SWS and imply a New Geophysics of wave propagation in critically microcracked
rock with effects and properties that cannot be matched in conventional sub-critical
geophysics without innumerable special cases (Crampin and Gao 2013). Table 1
lists observations of 19 different phenomena some along thousands to millions of
shear-wave ray-paths (in industrial seismic-exploration), which match the effects of
APE and support the critical New Geophysics. The list could easily be extended.
This means that NLD deformation and New Geophysics are established throughout
the crust and uppermost 
400 km of the mantle. There are no contrary observations
known to us.

Seismic-wave propagation in such NLD critical-systems is necessarily different
from wave propagation in conventional sub-critical geophysics and imposes the
range of fundamentally new properties on sub-critical geophysics listed in Table 2.
These new properties allow several new applications.

NLD is confirmed by the new properties of the New Geophysics of critical-
systems of distributions of stress-aligned fluid-saturated microcracks that are not
available in conventional sub-critical geophysics. With one exception the new prop-
erties in Table 2 have all been recognized in the Earth in some cases, thousands to
millions of times, in oil company reflection seismics and other circumstances; how-
ever, these ideas are innovative and remain controversial (the Preamble is apposite).
The exception, controllability, has not yet been tested. Observations of these prop-

J
Fig. 4 Example of SWS measurements using SWAS (Hao et al. 2008). (a) Seismograms of small
M D 1.43 earthquake recorded at station BJA in SW Iceland in recording geometry East, North,
Vertical and rotated into orthogonal Fast and Slow shear-wave polarizations. Red lines mark the
Fast and Slow SWS arrivals—note ‘quiet’ segment (the SWS time-delay, dt) between the red lines
in the slow direction. (b) 3D polarization diagrams in the time intervals in (a) in directions (U)p,
(D)own, and (T)owards, (A)way, and (L)eft and (R)ight from the source, with enlarged diagram
showing semi-automated picks of fast (F) and slow (S) arrivals, where for illustration they are
identified by manually positioned arrows. The Fast polarization is automatically picked in green
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erties of SWS allow us to monitor the approach of singularities in the interior of the
medium to be monitored in detail. This property is believed to be unique in NLD and
leads to several important applications. Three definitive applications, verifying NLD
and New Geophysics, are briefly outlined in the Appendices: Appendix 2—stress-
forecasting (predicting) earthquakes; Appendix 3—stress-forecasting (predicting)
volcanic episodes; and Appendix 4—determining the response of a reservoir to
critical and sub-critical fluid CO2-injections (hydraulic fracking). These appendices
are brief summaries, and more complete discussions are in the references.

4 Conclusions

We have shown that seismic shear-wave splitting monitors the non-linear dynamic
deformation of the crust and uppermost 
400 km of the mantle. Deformation is
by fluid movement by flow or dispersion between critical-systems of neighbouring
‘microcracks’ in the crust, and intergranular films of hydrolyzed melt in the mantle
at different orientations to the stress-field. This can be imaged by anisotropic
poro-elastic (APE) deformation of the stress-aligned fluid-saturated microcracks
pervading almost all in situ rock. This behaviour has been classed as a New
Geophysics and imposes many fundamentally new properties on conventional sub-
critical geophysics and opens new applications for geophysics.

Table 3 lists proven and potential applications of NLD deformation. These
ideas are controversial (see Preamble) and difficult get funded; hence, only
three applications have currently been explored: stress-forecasting/predicting
earthquakes (Appendix 2); stress-forecasting/predicting volcanic eruptions/episodes
(Appendix 3); and modelling, calculating, and predicting the effects of fluid-
injections (aka hydraulic fracking) (Appendix 4). Table 3 also lists other potential
industrial and societal applications.

We conclude that the NLD deformation of New Geophysics exists throughout the
crust and uppermost 
400 km of the mantle and has a number of possibly important
proven and potential applications.
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Table 3 Potential applications of NLD and SWS in the New Geophysics

Proven applications

(1) Using SWS for stress-forecasting/predicting impending earthquakes (Appendix 2; Crampin
and Gao 2013)
(2) Using SWS for stress-forecasting/predicting impending volcanic eruptions (Appendix 2;
Volti and Crampin 2003b)
(3) Using APE to monitor, calculate, predict hydraulic injection (hydraulic fracking)
(Appendix 3; Angerer et al. 2002)
Potential applications in hydrocarbon recovery

(4) SWI: monitoring production with time-lapse seismics in Single-Well Imaging (Crampin
and Gao 2013)
(5) SMORE: Slower production for More Oil REcovery (Crampin and Gao 2013)
(6) OWF: optimizing water-flooding with APE-modelling and feedback (Crampin and Gao
2013)
Other potential applications

(7) Monitoring seismic security of vulnerable locations: cities, nuclear power stations, dams,
etc. (Crampin and Gao 2013)
(8) Monitoring, calculating and predicting the response of a reservoir to CO2 sequestration
(Crampin and Gao 2013)
(9) Monitoring nuclear waste deposition with an adjacent borehole stress-monitoring site
(SMSs) (Crampin and Gao 2013)
(10) Monitoring rock failure in mining, landsides, tunnelling, etc. by adjacent SMSs (Crampin
and Gao 2013)
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Appendix 1: Ray-Path Geometry for Observing Undisturbed
Shear Waves and SWS at the Shear-Wave Window
at a Horizontal Free-Surface, and Identification of Band-1
and Band-2 Directions in Distributions of Parallel Vertical
Fluid-Saturated Microcracks

Figure 5 shows ray-path geometry for observing undisturbed waveforms of SV-
waves and SWS in stress-aligned fluid-saturated microcracks in the effective
shear-wave window at a horizontal free-surface. (The wave-forms of SH-waves
are preserved for all angles of incidence at a horizontal free-surface.) ABSCD is
the crack-plane through distributions of parallel-vertical microcracks, and S is the
recorder on a horizontal free-surface. The exact shear-wave window in an isotropic
half-space is ray paths within the solid angle subtending sin�1(Vs/Vp) � 35ı

marking the critical angle for Vp reflection (Booth and Crampin 1985). The effective
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Fig. 5 Ray-path geometry
for observing undisturbed
waveforms of shear-waves
and SWS in stress-aligned
fluid-saturated microcracks in
the shear-wave window at a
horizontal free-surface (after
Crampin and Gao 2013)

shear-wave window is ray paths within the solid angle AGFED-to-S and similar ray
paths reflected in the crack-plane. However, near-surface low-velocity layers in the
Earth bend rays upwards so that the effective shear-wave window may often be taken
as straight-line ray paths out to 45ı as in Fig. 5.

Band-1 directions to the free-surface, where time-delays are sensitive to crack
aspect-ratio (Crampin 1999; Crampin and Gao 2016), are within the solid angle
EFGH-to-S subtending 15–45ı to the crack plane within the effective shear-wave
window. Band-2 directions to the free-surface, where time-delays are dominated
by crack-density (Crampin 1999), are within the solid angle ADEHG-to-S to the
crack plane. Both Band-1 and Band-2 directions include equivalent solid-angle
directions reflected in the far side of the imaged crack plane (After Crampin and
Gao 2013).

Appendix 2: Monitoring NLD Deformation to Stress-Forecast
Impending Earthquakes

The effects of changing stress on in situ rocks can be monitored by SWS imaging
NLD changes in microcrack geometry (Crampin 1999; Crampin and Peacock 2008;
Crampin and Gao 2016). Observations of SWS indicate that increases of stress in the
Earth (typically originate from magma generation and subduction, and interactions
at the margins of tectonic plates) can be monitored by measuring changes in SWS.
Initially, such NLD stress-accumulation is widespread throughout tectonic plates
and the stress-field does not initially identify the fault-planes where the stress will
eventually be released by slippage in earthquakes. The accumulating stress modifies
crack aspect ratios throughout the stressed rock-mass, until the microcrack geometry
approaches levels of fracture-criticality (Crampin 1999). Only then does the stress-
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field concentrate on envelopes of weakness surrounding the impending fault-planes,
and stress-relaxation occurs as microcracks coalesce onto the impending fault break
in NLD deformation (Gao and Crampin 2004; Wu et al. 2006; Crampin and Peacock
2008; Crampin and Gao 2013; Crampin et al. 2013).

The Earth is highly heterogeneous and stress accumulates irregularly. If stress
accumulates over a small rock volume, the increase will be rapid but the eventual
earthquake will be small. If stress accumulates over a larger volume, the increase
will be slower but the eventual earthquake will be larger. Consequently, durations of
the changes and the magnitudes possess self-similarity, so that monitoring NLD
changes in the surrounding rock mass allows the time, magnitude, and in some
cases fault break, of the impending earthquake to be stress-forecast. Note that we
refer to this phenomenon as earthquake stress-forecasting, rather than earthquake
forecasting or earthquake prediction, to emphasize the different methodology.

New Geophysics demonstrates that stress-accumulation before earthquakes can
be recognized by increasing average SWS time-delays in Band-1 directions in the
shear-wave window (Fig. 5), and corresponding decreases in average SWS time-
delays for stress-relaxation (Crampin 1999; Crampin and Peacock 2008; Crampin
and Gao 2013, 2016). NLD stress-accumulation was first positively identified in
changes in SWS before a M 5 earthquake in Iceland with similar changes in SWS
to those before a M 5.1 earthquake 6 months earlier (Fig. 6). A stress-forecast was
emailed (10th Nov., 1998) to the Iceland Meteorological Office (IMO) ‘ : : : an event
could occur any time between now (M � 5) and the end of February (M � 6)’ on a
specified fault with continuing seismic activity. Three days later (13th Nov., 1998),
a M D 5 earthquake occurred on the identified fault (Crampin et al. 1999, 2004a,
2008). We claim this as the first successful scientifically stress-forecast/predicted
earthquake, as opposed to less-specific probabilistic estimates. Similar characteristic
variations are seen retrospectively before 16 earthquakes elsewhere (Crampin and
Gao 2015).

Later, it was recognized that the observed stress-accumulation stops abruptly
before the impending earthquake occurs. There is stress-relaxation, average time-
delays decrease, and the earthquake occurs at a comparatively low value of implied
stress (Gao and Crampin 2004). Figure 7 shows stress-accumulation and stress-
relaxation, before six earthquakes (and two laboratory experiments) ranging in
magnitude from M 6 to M 1.7, in a normalized format convenient for displaying
such characteristic changes. The successfully stress-forecast earthquake is Fig. 7c.
All six earthquakes show similar behaviour despite orders of magnitude differences
in released energy and durations of stress-accumulation ranging from 6 years to a
few hours.

Logarithms of the durations of both the stress-accumulations and the stress-
relaxations are both linear (self-similar) with the impending magnitudes (Crampin
et al. 1999, 2008; Gao and Crampin 2004; Crampin and Peacock 2008). Stress-
relaxation is interpreted as microcracks coalescing onto the impending fault-plane
(Gao and Crampin 2004; Wu et al. 2006). Characteristic patterns of stress-
accumulation increases and stress-relaxation (crack-coalescent) decreases have been
recognized retrospectively before (currently) 15 earthquakes ranging from a M 1.7
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Fig. 6 Variations with time of SWS time-delays normalized to ms/km in Band-1 directions (middle
diagram) and Band-2 directions (Top diagram) for 5 years at station BJA in SW Iceland showing, in
Band-1, least-squares increases before larger earthquakes within 20 km of BJA in lower diagram.
The curves in the time-delays in the top and middle diagrams are nine-point moving averages.
The red line (Oct. 1996–Nov. 1998) marks a least-squares average of 2 ms/km/year relaxation
interpreted as the Mid-Atlantic Ridge responds to the large Gjàlp, Vatnajökull eruption of Oct.
1996. The vertical red bar in Nov. 1998 marks the time of the successfully stress-forecast M 5
(Crampin et al. 1999, 2008). (Modified after Volti and Crampin 2003b)

swarm event in Iceland (Crampin et al. 2008) to the M 9.2, 2004, Sumatra-Andaman
Earthquake (SAE), where changes in SWS were recognized in Iceland at the width
of the Eurasian Plate (
10,500 km) from Indonesia (Crampin and Gao 2012).
Before SAE, ten stress-forecasts were emailed to IMO (13th Sept., 2002 to 18th
Feb., 2005) updated every few months, warning of an impending large earthquake
(Crampin and Gao 2012). At that time the full NLD sensitivity of SWS had not been
recognized, and a M � 7 earthquake in Iceland was stress-forecast. It was only in
retrospect that it was recognized that the stress-forecasts were for the SAE (Crampin
and Gao 2012).

Stress-forecasting is possible whenever SWS can be routinely monitored.
Swarms of small earthquakes are generally far too scarce and irregular for routine
monitoring of SWS. Only in Iceland where two transform faults of the Mid-Atlantic
Ridge uniquely run onshore in SW Iceland and North-Central Iceland and provide
the persistent low-level seismicity necessary for reliable routine stress-forecasting
(Volti and Crampin 2003a, b).
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Note that New Geophysics implies that earthquakes cannot be predicted by
monitoring effects at the source. Earthquakes are singularities which lead to
deterministic chaos; thus, although the source effects may on occasions be mod-
elled explicitly, they are essentially unrepeatable as they are likely to depend
critically on otherwise negligible (butterfly effect) details of initial conditions.
The only mechanism for stress-forecasting/prediction is using SWS to monitor
stress-accumulation and stress-relaxation in the rock surrounding the impending
earthquake (or volcanic eruption) by the conventional effects of changing stress
on microcrack geometry in rocks surrounding the impending source (Crampin
1999; Crampin et al. 2008). The source of the shear-waves may either be the
irregular and unreliable swarms of small earthquakes, or controlled-source Stress-
Monitoring Sites (SMSs) (Crampin and Gao 2016). SMSs provide a mechanism
for routinely monitoring stress accumulating before impending earthquakes and
volcanic eruptions so that the earthquake or eruption can be stress-forecast.

Appendix 3: Monitoring NLD Deformation to Stress-Forecast
Impending Volcanic Eruptions

Monitoring SWS before impending volcanic eruptions shows similar characteristic
NLD deformation behaviour as that seen before earthquakes and can be similarly
interpreted as stress-accumulation and stress-relaxation before the event.

Figure 8 compares stress-accumulation and stress-relaxation, in the normalized
format of Fig. 7, before (a) the 2010 ash-cloud (flank) eruption of Eyjafjallajökull
Volcano in SW Iceland (Liu et al. 1997) with (b) the successfully stress-forecast
earthquake in Fig. 7c 90 km to the west (Gao and Crampin 2004). Both events
show stress-accumulation increases, of 7 months and 4 months, respectively, and
stress-relaxation decreases, of 
40 days and four days, respectively. Considering the
very different geophysical processes involved, the NLD behaviour of the variations
of SWS time-delays seems remarkably similar and supports the existence of New
Geophysics in the reservoir rock.

Appendix 4: Monitoring Fluid Injection (Aka Hydraulic
Fracking)

Angerer et al. (2002) use APE to model the response of a cracked carbonate
reservoir to critically high-pressure and low-pressure CO2 injections (hydraulic
fracking). Figure 9 shows seismograms of a multi-component 4-D (time-lapse 3-
D) 3C reflection survey in Vacuum Field, New Mexico, in 1995, by the Reservoir
Characterization Project (RCP), Colorado School of Mines (Roche et al. 1997).
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Fig. 8 Comparison of the behaviour of shear-wave splitting before (a) a volcanic eruption and
before (b) an earthquake. The eruption is the ash cloud eruption of Vatnajökull, Iceland, March
2010 and the earthquake is in SW Iceland in Fig. 7c. Both show similar stress-accumulation
increases and brief stress-relaxation (crack coalescence) decreases before both eruption and
earthquake occurs

The record sections headed S1 and S2 are in the same orthogonal azimuthal
directions. In (a) the pre-CO2 injection: the arrowed arrivals at the top and bottom of
the target zone are at 176 ms for S1 and 178 ms S2 so that S1 is the faster shear wave.
In (b) the post-CO2 injection, the target zone is at 204 ms for the S1-direction and
184 ms for S2. This means that the high-pore fluid pressure injection is critically
high and has induced a 90ı-flip in the orientation of the faster split shear-wave
arrivals for both observed and calculated seismograms for shear waves travelling
through the injection zone. Such 90ı-flips have since been observed elsewhere in
high-pressure reservoirs and near seismically active fault-planes where critically
high pore-fluid pressures are encountered on all seismically active fault-planes
(Crampin et al. 2002, 2004b).
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The 90ı-flip was not expected, and the match of observations with APE is strong
confirmation of the validity of APE and New Geophysics in crustal rock.
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Stochastic Parameterization of Subgrid-Scale
Processes: A Review of Recent Physically Based
Approaches

Jonathan Demaeyer and Stéphane Vannitsem

Abstract We review some recent methods of subgrid-scale parameterization used
in the context of climate modeling. These methods are developed to take into
account (subgrid) processes playing an important role in the correct representation
of the atmospheric and climate variability. We illustrate these methods on a simple
stochastic triad system relevant for the atmospheric and climate dynamics, and we
show in particular that the stability properties of the underlying dynamics of the
subgrid processes have a considerable impact on their performances.

Keywords Stochastic parameterization • Response theory • Multiscale system •
Homogenization • Subgrid processes

1 Introduction

From a global point of view, the Earth system is composed of a myriad of different
interacting components. These components can be regrouped in compartments
like the atmosphere, the hydrosphere, the lithosphere, the biosphere, and the
cryosphere (Olbers, 2001).1 Those compartments play a role on different timescales
from seconds to ice ages. In this perspective, the resulting Earth’s climate is a
“concert” at which each compartment seems to play its own partition with its
own tempo. Their respective contribution to the total variability of an observable,
say, e.g., the global temperature, is, however, the outcome of complex interactions
between the different components, leading to an emergent dynamics far from the
one that could be generated by a linear additive superposition principle (Nicolis and
Nicolis, 1981, 2012).

1More recently, a new compartment has appeared, whose effect is not negligible at all and which is
not predictable nor descriptive by evolution equations, namely the impact of the human activities.
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A paradigmatic example is provided in the work of Hasselmann, detailed in
his seminal paper of 1976, which states precisely that the slowly evolving com-
ponents of the climate system, besides their own dynamics due their own physical
processes, also integrate the impact of the faster components (Hasselmann, 1976).
Hasselmann describes this process using the analogy of the Brownian motion where
a macro-particle in a liquid integrates the effect of the collisions with the fluid’s
micro-particles, leading to the erratic trajectory of the former. The interest of this
framework is that it provides a natural description of the “red noise” spectral density
observed in most climatic records and observations (Ghil et al., 2002; Lovejoy and
Schertzer, 2013). Subsequently, during the following decade, stochastic modeling
for meteorology and climatology became an important research topic (Frankignoul,
1979; Frankignoul and Hasselmann, 1977; Frankignoul and Müller, 1979; Lemke,
1977; Lemke et al., 1980; Nicolis, 1981, 1982; Nicolis and Nicolis, 1981; Penland,
1989) before falling into disuse in what has been described as a “lull” of work
in this field (Arnold et al., 2003). However, during that period, the ideas that
correct parameterizations of subgrid processes are important to improve climate and
weather models gained popularity (Newman et al., 1997; Penland, 1996; Penland
and Matrosova, 1994). Stochastic parameterizations for the “turbulent” closure in
2-D large-eddy simulations on the sphere have also been considered (Frederiksen,
1999; Frederiksen and Davies, 1997). It led recently to the implementation of
stochastic schemes to correct the model errors (Nicolis, 2003, 2004) made in
large numerical weather prediction (NWP) models (Buizza et al., 1999; Shutts,
2005), improving the reliability of probabilistic forecasts and correcting partially
their variability (Doblas-Reyes et al., 2009; Nicolis, 2005). The relation between
multiplicative noise and the non-Gaussian character observed in some geophysical
variables has also been considered (Sardeshmukh and Penland, 2015; Sura et al.,
2005), as well as stochastic models for the climate extremes (Sura, 2013).

Since the beginning of the twenty-first century, a revival of the interest in
stochastic parameterization methods have occurred, due to the availability of new
mathematical methods to perform the stochastic reduction of ODEs systems. Almost
simultaneously, a rigorous mathematical framework for the Hasselmann “program”
was devised (Arnold, 2001; Kifer, 2001, 2003) and a new method based on the
singular perturbation theory of Markov processes (Majda et al., 2001) was proposed.
The latter approach is currently known as the Majda–Timofeyev–Vanden-Eijnden
(MTV) method. Both methods have been tested and implemented successfully in
geophysical models (Arnold et al., 2003; Culina et al., 2011; Franzke et al., 2005;
Vannitsem, 2014). The revival of the Hasselmann program has also stressed the
need to consider the occurrence of very rare events triggered by the noise that
allow for the solutions of the system to jump from one local attractor to another
one (Arnold, 2001). Such events display recurrence timescales that are few orders
greater than the timescale of the climate variables considered, and thus induce
transitions between different climatic states. The statistics of these transitions is
then given by the so-called Large Deviations theory (Freidlin and Wentzell, 1984)
[for recent developments on this matter, see Bouchet et al. (2016)]. In addition to
these two methods, the modeling of the effects of subgrid scale through conditional
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Markov chain has been considered (Crommelin and Vanden-Eijnden, 2008) and
recently, new stochastic parameterization techniques have been proposed, based on
an expansion of the backward Kolmogorov equation (Abramov, 2015) and on the
Ruelle response theory (Wouters and Lucarini, 2012). The latter has been tested on
a simple coupled ocean-atmosphere model (Demaeyer and Vannitsem, 2016), on
stochastic triads (Wouters et al., 2016), and on an adapted version of the Lorenz’96
model (Vissio and Lucarini, 2016).

This renewal of interest for stochastic modeling and reduction methods illustrates
how fruitful was the original idea of Hasselmann. However, in view of the
availability of several possible approaches, one might wonder about their efficiency
in different situations. Indeed, depending on the specific purpose that it needs
to fulfill, some parameterizations might perform better than others. The present
review aims to shed some light on these questions and to illustrate some of the
aforementioned parameterization methods on a simple model for which most of the
calculations can be made analytically.

In Sect. 2, we will present the general framework in which the problem of
stochastic parameterizations is posed. In Sect. 3, we present the different parame-
terizations that we shall consider for the analysis model. The stochastic triad model
used here and the comparison are presented in Sect. 4. Finally, the conclusions are
given in Sect. 5.

2 The Parameterization Problem

Consider the following system of ordinary differential equations (ODEs):

PZ D T.Z/ (1)

where Z 2 Rd is a set of variables relevant for the problem under interest for which
the tendencies T.Z/ are known. And suppose that one wants to separate this set
of variables into two different subset Z D .X;Y/, with X 2 Rm and Y 2 Rn. In
general, such a decomposition is made such that the subset X and Y have strongly
differing response times �Y 	 �X (Arnold et al., 2003), but we will assume here that
this constraint is not necessarily met. System (1) can then be expressed as:

(
PX D F.X;Y/
PY D H.X;Y/

(2)

The timescale of the X sub-system is typically (but not always) longer than the one
of the Y sub-system, and it is often materialized by a parameter ı D �Y=�X 	 1 in
front of the time derivative PY . The X and the Y variables represent, respectively, the
resolved and the unresolved sub-systems. The resolved sub-system is the part of the
full system that we would like to simulate, i.e., generate explicitly and numerically
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its time-evolution. The general problem of model reduction consists thus to approx-
imate the resolved component X as accurately as possible by obtaining a closed
equation for the system X alone (Arnold et al., 2003). The term “accurately” here
can have several meanings, depending on the kind of problem to solve. For instance,
we can ask that the closed system for X has statistics that are very close to the ones
of the X component of system (2). We can also ask that the closed system trajectories
remain as close as possible to the trajectories of the full system for long times.

In general a parameterization of the sub-system Y is a relation � between the
two sub-systems:

Y D �.X; t/ (3)

which allows to effectively close the equations for the sub-system X while retaining
the effect of the coupling to the Y sub-system.

The problem of the model reduction is not new, and was considered first in
celestial mechanics. Famous mathematicians have considered it and contributed
to what is known nowadays as the theory of averaging (Sanders and Verhulst,
1985) and which forms the first step of the Hasselmann program (Arnold, 2001).
The mathematical framework was set in the 1960s by the influential contribution
of Bogoliubov and Mitropolski (1961). However, this averaging technique is a
deterministic method which does not take into account the deviations from the
average. The proposition of Hasselmann was thus to take into account these
deviations by considering stochastic parameterization where the relation (3) can
be considered in a statistical sense. In that framework, the Y sub-system and its
effect on the sub-system X can be considered as a stochastic process, which possibly
depends upon the state of the X sub-system. Different methods to achieve this
program are now discussed in Sect. 3.

3 The Parameterization Methods

Let us now write system (2) as:

(
PX D FX.X/C �X.X;Y/
PY D FY.Y/C �Y.X;Y/

(4)

where the coupling and the intrinsic dynamics are explicitly specified. In the present
work, we shall focus on parameterizations that are defined in terms of stochastic
processes. We will consider methods based

• on the Ruelle response theory (Demaeyer and Vannitsem, 2016; Wouters and
Lucarini, 2012; Wouters et al., 2016).

• on the singular perturbation theory of Markov processes (Franzke et al., 2005;
Majda et al., 2001).
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• on the Hasselmann averaging methods (Arnold et al., 2003; Culina et al., 2011;
Kifer, 2003; Vannitsem, 2014).

• on empirical methods (Arnold et al., 2013).

All these parameterizations can be written in the following form:

PX D FX.X/C G.X; t/C .X/ � Q�.t/ (5)

where the matrix  , the deterministic function G, and the random processes Q�.t/
have to be determined. The mathematical definition of these quantities obtained
through averaging procedure and the measure being used to perform the averaging
are usually both differing between the methods. These different choices are rooted
in their different underlying hypothesis, as it will be discussed below. Specifically,
the response theory method uses the measure of the uncoupled unresolved sub-
system PY D FY.Y/, the singular perturbation method uses the measure of the
perturbation, and the averaging methods use the measure of the full unresolved sub-
system PY D H.X;Y/with X considered as “frozen” (constant). Finally, the empirical
methods use in general the output of the full unresolved Y sub-system, conditional
or unconditional on the state X.

In the rest of the section, we shall describe more precisely each of the above
methods.

3.1 The Method Based on Response Theory

This method is based on the Ruelle response theory (Ruelle, 1997, 2009) and was
proposed by Wouters and Lucarini (2012, 2013). In this context, system (4) must
be considered as two intrinsic sub-dynamics for X and Y that are weakly coupled.
The response theory quantifies the contribution of the “perturbation” �X , �Y to the
invariant measure2 Q	 of the fully coupled system (4) as:

Q	 D 	0 C ı�	
.1/ C ı�;�	

.2/ C O.�3/ (6)

where 	0 is the invariant measure of the uncoupled system which is also supposed
to be an existing, well-defined SRB measure. As shown in Wouters and Lucarini
(2012), this theory gives the framework to parameterize the effect of the coupling
on the component X. The parameterization is based on three different terms having
a response similar, up to order two, to the couplings �X and �Y :

PX D FX.X/C M1.X/C M2.X; t/C M3.X; t/ (7)

2The theory assumes that for the system under consideration, a SRB measure (Young, 2002) exists
(e.g., an Axiom-A system).
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where

M1.X/ D
D
�X.X;Y/

E
	0;Y

(8)

is an averaging term. 	0;Y is the measure of the uncoupled system PY D FY.Y/. The
term M2.X; t/ D R.X; t/ is a correlation term:

D
R.X; t/˝ R.X; t C s/

E
D g.X; s/ D

D
� 0

X.X;Y/˝ � 0
X

�
�s

X.X/; �
s
Y.Y/

�E
	0;Y

(9)

where ˝ is the outer product, � 0
X.X;Y/ D �X.X;Y/ � M1.X/ is the centered

perturbation, and �s
X , �s

Y . There are two flows and two systems PX D FX.X/ and
PY D FY.Y/. The process R is thus obtained by taking the square root of the matrix
g, which is here accomplished by a decomposition of � 0

X on a proper basis (Wouters
and Lucarini, 2012). The M3 term is a memory term:

M3.X; t/ D

Z 1

0

ds h.X.t � s/; s/: (10)

involving the memory kernel

h.X; s/ D
D
�Y.X;Y/ � rY�X

�
�s

X.X/; �
s
Y.Y/

�E
	0;Y

(11)

All the averages are thus taken with 	0;Y , the invariant measure of the unperturbed
system PY D FY.Y/. This particular choice of the measure is due to the perturbative
nature of the method and simplifies the averaging procedure in many cases.
The terms M1, M2 and M3, are derived (Wouters and Lucarini, 2012) such that
their responses up to order two match the response of the perturbation �X and
�Y . Consequently, this ensures that for a weak coupling, the response of the
parameterization (7) on the observables will be approximately the same as the
coupling.

The advantages of this simplified averaging procedure (by using 	0;Y ) should be
tempered by the additional cost induced by the computation of the memory term,
the latter implying that this parameterization is a non-Markovian one (Chekroun
et al., 2015). However, the integral (10) in this memory term must only be evaluated
from 0 up to the timescale �Y of the fast variable, due to the exponential decrease of
the integrand. Moreover, in some cases, this non-Markovian parameterization can
be effectively replaced by a Markovian one (Wouters et al., 2016).
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3.2 Singular Perturbation Theory Method

Singular perturbation methods were developed in the 1970s for the analysis of the
linear Boltzmann equation in some asymptotic limit (Ellis et al., 1975; Grad, 1969;
Majda et al., 2001; Papanicolaou, 1976). Here, these methods are applicable if the
problem can be cast into a Fokker–Planck equation. The procedure described in
Majda et al. (2001) requires assumptions on the timescales of the different terms
of system (4). In terms of the small parameter ı D �Y=�X defined in Sect. 2, the
fast variability of the unresolved component Y is considered of order O.ı�2/ and
modeled as an Ornstein–Uhlenbeck process. The Markovian nature of the process
defined by Eq. (4) and its singular behavior in the limit of an infinite timescale
separation (ı ! 0) allow then to apply the method.

More specifically, the parameter ı serves to distinguish terms with different
timescales and is then used as a small perturbation parameter. In this setting, the
backward Fokker–Planck equation reads (Majda et al., 2001):

�
@	ı

@s
D

�
1

ı2
L1 C

1

ı
L2 C L3

�
	ı (12)

where the function 	ı.s;X;Yjt/ is defined with the final value problem f .X/:
	ı.t;X;Yjt/ D f .X/. The function 	ı can be expanded in terms of ı and inserted
in Eq. (12). The zeroth order of this equation 	0 can be shown to be independent
of Y and its evolution given by a closed, averaged backward Fokker–Planck
equation (Kurtz, 1973):

�
@	0

@s
D NL 	0 (13)

This equation is obtained in the limit ı ! 0 and gives the sought limiting, averaged
process X.t/. Note that this procedure does not necessarily require the presence
of the explicit small parameter ı in the original Eq. (4). Since ı disappears from
Eq. (13), one can simply use the parameter to identify the fast terms to be considered,
and eventually consider ı D 1 (Franzke et al., 2005).

The parameterization obtained by this procedure is given by Franzke et al.
(2005):

PX D FX.X/C G.X/C
p
2 MTV.X/ � Q�.t/ (14)

with

G.X/ D

Z 1

0

ds
h˝
�Y.X;Y/ � rY�X.X; �

s
Y.Y//

˛
Q	

C
˝
�X.X;Y/ � rX�X.X; �

s
Y.Y//

˛
Q	

i
(15)
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MTV.X/ D

�Z 1

0

ds
˝
� 0

X.X;Y/ �
0
X.X; �

s
Y.Y//

˛
Q	

	1=2
(16)

with the same notation as in the previous subsection. The measure Q	 is the measure
of the O.ı�2/ perturbation, i.e., the source of the fast variability of the unresolved
Y component. This measure thus depends on which terms of the unresolved
component are considered as “fast,” and some assumptions should here be made.
For instance, it is customary to consider as the fast terms the quadratic terms in Y
and to replace them by Ornstein–Uhlenbeck processes whose measures are used to
compute the averages (Franzke et al., 2005; Majda et al., 2001).

Finally, if one assumes that the source of the fast variability in the sub-system is
given by the “intrinsic” term FY.Y/ (such that Q	 D 	0;Y ) and if the perturbation �X

only depends on Y , this parameterization is simply given by the integration of the
function g.s/ and h.X; s/ of the response theory parameterization given by Eqs. (9)
and (11). This can be interpreted as an averaging of the latter parameterization when
the timescale separation is infinite and X can thus be considered as constant over the
timescale of the integrand. Therefore, M2 can be modeled as a white noise and the
memory term is Markovian.

3.3 Hasselmann Averaging Method

Since the initial work of Hasselmann in the 1970s (Hasselmann, 1976), various
approaches have been considered to average directly the effects of the “fast”
evolving variables on the “slow” ones. These methods assume in general a sufficient
timescale separation between the resolved and unresolved components of the
systems, and a direct average can be performed as,

PX D NF.X/ D
˝
F.X;Y/

˛
	YjX

(17)

where 	YjX is the measure of the system

PY D H.X;Y/ (18)

conditional on the value of X. In this approach, X is thus viewed as a constant
parameter for the unresolved dynamics. In other words, this particular framework
assumes that since X is slowly evolving with respect to the typical timescale
of Y , it can be considered as “frozen” while Y evolves. With some rigorous
assumptions, this approach has been mathematically justified (Kifer, 2003) and
applied successfully to idealized geophysical models (Arnold et al., 2003) with non-
trivial invariant measures. In the same vein, an approximation has been proposed in
Abramov (2013) for the average (17), assuming that F is at most quadratic,
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˝
F.X;Y/

˛
	YjX

D F.X; NY.X//C
1

2

@2F

@Y2
.X; NY.X// W †.X/ (19)

where “:” means the element-wise matrix product with summation and where

NY.X/ D hYi	YjX (20)

†.X/ D h.Y � NY.X/˝ .Y � NY.X//i	YjX : (21)

The approximation to the second order is particularly well suited for the application
to atmospheric and climate flows for which the quadratic terms are usually the main
non-linearities associated with the advection in the system.

In Abramov (2013), an approach based on the fluctuation–dissipation theorem is
proposed to estimate the mean state NY.X/ and the covariance matrix †.X/.

The deterministic parameterization (17) can be recast in a stochastic parameter-
ization following the same principle. Such a parameterization is derived in Arnold
et al. (2003), Abramov (2015) and reads

PX D NF.X/C A.X/ � �.t/ (22)

with

A.X/ D

�
2

Z 1

0

ds
D�

F.X; �s
YjX.Y// � NF.X/

� �
F.X;Y/ � NF.X/

�E
	YjX

	1=2
(23)

where �s
YjX is the flow of the system (18) for X constant (“frozen”). A drawback

of such an approach is that it requires that the measure 	YjX exists and is well-
defined [ideally a SRB measure (Arnold et al., 2003)]. Such a requirement may
not be always fulfilled, for instance, if the fast system conditional on the state X is
unstable and does not possess any attractor (see Sect. 4 for an example).

3.4 Empirical Methods

The empirical methods are generally based on the statistical analysis of the
timeseries Y of the full system (4). Many procedures exist as discussed in Sect. 1 but
we will consider here a method based on state-dependent AR(1) processes proposed
in Arnold et al. (2013). In this case, a timeserie r.t/ of the coupling part �X of the X
tendency must first be computed with (4). The parameterization is then given by

PX D FX.X/C U .X/ (24)
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with

U .X/ D Udet.X/C e.X.t/; t/: (25)

The function Udet.X/ represents the deterministic part of the parameterization and is
obtained by a least-squares fit of the timeserie r.t/ versus the timeserie X.t/ with the
cubic function Udet.X/ D p0Cp1 X Cp2 X2Cp3 X3. The “stochastic” part e.X.t/; t/
is then given by the following state-dependent AR(1) process:

e.X.t/; t/ D �
e.X.t//

e.X.t ��t//
e.X.t ��t/; t ��t/C e.X.t// .1� �2/1=2 z.t/ (26)

where z.t/ is a standard Gaussian white noise process. The parameters of the
process e are determined by considering the residual timeserie r.t/ � Udet.X.t//
to compute the lag-1 autocorrelation � and the state-dependent standard deviation
e.X/ which is modeled as e.X/ D 0 C 1 jXj with the parameters 0 and 1
given by a binning procedure. The parameter �t is the time step of integration of
Eq. (24). Other empirical parameterizations have been proposed by Arnold et al.
(2013), notably one with the function U .X/ D .1C e.t//Udet.X/ which resembles
the SPPT3 parameterization used in the ECMWF4 Numerical Weather Prediction
model (Buizza et al., 1999). However, the study shows no substantial differences
with the parameterization (25).

4 Applications and Results

In this section, we will illustrate the various parameterizations described in Sect. 3
to the following example:

(
PX D �D X C q �.t/C "

ı
YT � C � Y

PY D 1
ı2

�
A � Y C ı BY � �Y.t/

�
C "

ı
X V � Y

(27)

where D > 0, q > 0 and

Y D

�
y1
y2

�
: (28)

The matrices involved are defined as

3Acronym for Stochastically Perturbed Parameterization Tendencies Scheme.
4Acronym for European Center for Medium-Range Weather Forecasts.
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C D

�
0 B
B 0

�
; A D

�
�a ˇ

�ˇ �a

�
; V D

�
0 B1

B2 0

�
and BY D

�
qY 0

0 qY

�

(29)

with a; ˇ; qY > 0. The process �.t/ and �Y.t/ are uncorrelated standard Gaussian
white noise processes.

The X and Y variables represent, respectively, the resolved and the unresolved
sub-systems. The parameter ı > 0 quantifies the timescale separation of the terms
of the tendencies of the two components, with the three timescales O.1/,O.ı�1/,
and O.ı�2/ as in Majda et al. (2001) (see also Sect. 3.2). Additionally, the parameter
" > 0 controls the coupling strength between the two sub-systems. In this setup the
coupling is thus proportional to the ratio "=ı, and therefore the characterization of
the coupling as “weak” depends directly on the timescale separation.

The deterministic part of Eq. (27) is a well-known model called a triad encoun-
tered in fluid dynamics (Ohkitani and Kida, 1992; Smith and Waleffe, 1999;
Waleffe, 1992), and in simplified geophysical flows, e.g. Majda et al. (2001),
Wouters et al. (2016). Due to the presence of invariant manifolds, its mathematical
structure can be found in higher-order model. See Demaeyer and Vannitsem (2016)
for an example of such structure in the framework of a coupled ocean-atmosphere
model. In the present study, the interest of the stochastic triad model (27) is that,
H.X;Y/ being linear in Y , the measure 	0;Y and 	YjX can be analytically computed
since both PY D FY.Y/ and PY D H.z;Y/jzDX are two-dimensional Ornstein–
Uhlenbeck processes. Therefore, for this simple case, the set of methods proposed in
the previous section can be applied exactly without resorting to a binning procedure
of the output of the Y sub-system.5

As energy conservation is a rule in physical systems in the absence of dissipation
and fluctuations, we will adopt this rule for the current system. System (27)
conserves the “energy” .X2 C y21 C y22/=2 if the coefficient B, B1, and B2 are chosen
such that (Majda et al., 2001; Smith and Waleffe, 1999)

2B C B1 C B2 D 0: (30)

It allows for the following configurations of their signs: .C;�;�/, .C;C;�/,
.C;�;C/, .�;C;C/, .�;C;�/, .�;�;C/. These different configurations are
associated with different kinds of energy exchange scenarios and different stability
properties (Waleffe, 1992).

We will focus on the two configurations .�;�;C/ and .�;C;C/, with parame-
ters

1. B D �0:0375, B1 D �0:025, B2 D 0:1

2. B D �0:0375, B1 D 0:025, B2 D 0:05

5Except for the empirical methods which by definition use this kind of procedures.
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and consider various values of the parameters ı and ". The other parameters are
fixed to a D 0:01, D D 0:01, and ˇ D 0:01=12. Once the parameterizations
have been developed, the different model versions have integrated over 4:5 � 105

timeunits with a timestep �t D 0:01 after a transient period of 5:0 � 104

timeunits to let the system relax to its stationary state. The state X has been
recorded every 0:1 timeunit, giving a dataset of 4:5 � 106 points for the analysis.
The parameterizations given by Eqs. (7), (14), and (22) have been integrated with
a second order Runge–Kutta (RK2) stochastic scheme which converges to the
Stratonovich calculus (Hansen and Penland, 2006; Rüemelin, 1982). Equation (24)
has been integrated with a deterministic RK2 scheme where the stochastic forcing
e.X; t/ is considered constant during the timestep. The memory term M3 appearing
in the parameterization (7) and given by the integral (10) over the past of X has
been computed numerically at each timestep. Although it increases considerably
the integration time, this method is adopted in order to clarify the memory effect
in Eq. (7). A Markovianization of this parameterization is possible (Wouters et al.,
2016) but in the present case it would have required some assumptions that would
blur the comparison of the methods.

The relative performances of the parameterizations can be tested in multiple
ways, by comparing the climatology (the average state) or the variability (variance)
of the systems (Nicolis, 2005). Another method is to look at the predictive skill
score of the models, that is the ability of the parameterizations to provide skillful
forecast compared to original system, as in Arnold et al. (2013), Wouters et al.
(2016). On longer term, the good representation of the “climate” of a model by the
parameterizations can be assessed by looking at the stationary probability densities
and comparing them using some score (Abramov, 2012, 2013, 2015; Crommelin
and Vanden-Eijnden, 2008; Franzke et al., 2005). The decorrelation properties of the
models and the parameterizations can also be tested, to provide information about
the correct representation of the timescales of the models. All those different aspects
can be significant, depending on the purpose of the parameterization scheme.
However, for the brevity of the present work, we shall focus on the probability
densities and whether or not they are correctly reproduced by the parameterizations.

We present now the results obtained by with the proposed methods and consider
first the different measures used for averaging in system (27).

4.1 Stability and Measures

All the ingredients needed to compute the parameterizations presented in Sect. 3 can
be derived with the help of the covariance and the correlation of the Y variables in
the framework of two different systems related to the unresolved dynamics, namely
the unperturbed dynamics PY D FY.Y/ and the unresolved dynamics PY D H.X;Y/
with X frozen. The measure of the former is necessary to derive the response theory
and the singular perturbation based parameterizations, while the latter is needed for
the Hasselmann averaging method. These two systems are both two-dimensional
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Ornstein–Uhlenbeck processes of the form

PY D T � Y C B � �Y.t/ (31)

for which, respectively, T D A=ı2 and T D A=ı2 C ."X=ı/ V � Y . In both cases, we
have B D BY=ı. Their measure is then given by Wouters et al. (2016)

	.Y/ D
1

Z
exp

�
�
1

2
YT �†�1 � Y

	
(32)

where Z is a normalization factor and where † is the covariance matrix solution of

T �†C† � TT D �B � BT: (33)

In order for theses processes to be stable, the real part of the eigenvalues of the
matrix T must be negative (Gardiner, 2009) for every state X that the full coupled
system (27) can possibly achieve. The eigenvalues of the system PY D FY.Y/ are
�˙ D .�a ˙ iˇ/=ı2 and it is thus always stable (since a > 0 and ˇ 2 R). On the
other hand, the system PY D H.X;Y/ has the eigenvalues �˙ D .�a ˙

p
�.X//=ı2

with

�.X/ D � .B1Xı� C ˇ/ .ˇ � B2Xı�/ (34)

Therefore, if

Re
�p

�.X/
�
> a (35)

for some X, the Ornstein–Uhlenbeck process is unstable, and it is then called an
explosive process. For any initial condition, the process diverges, and thus the
only possible stationary measure is the trivial one. Consequently, Eq. (33) gives
nonphysical solutions, the stationary covariance matrix does not exist, and the
parameterizations depending upon cannot be derived.

For the system (27), if sgn.B1 B2/ D �1, as in case 1, then the process is stable

for every X if a2 > �
.B1CB2/2ˇ2

4B1B2
. For case 1, this inequality is satisfied, and thus

the process (31) is stable for every X. Moreover, depending on the sign of �.X/,
the process for X fixed is a stochastic focus (if �.X/ > 0) or a stochastic damped
oscillator (if �.X/ < 0). Here, it is a focus if

X 2 Œmin.�ˇ=ı"B1; ˇ=ı"B2/;max.�ˇ=ı"B1; ˇ=ı"B2/� (36)

and an oscillator otherwise. That is, for the considered " and ı parameters value, the
system (27) is an oscillator for most of the X values.

If sgn.B1 B2/ D 1, as in case 2, then the condition (35) must be satisfied for every
state X. For case 2, this inequality was not satisfied for every state X for most of the
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values of the " and ı parameters considered (see Sect. 4.3 below). The stability is
therefore reversed as the system is non-oscillating for most of the X values.

To summarize, if B1 and B2 are of opposite sign, the dynamics of PY D H.X;Y/ is
stable and generally oscillatory. If B1 and B2 have the same sign, then the dynamics
is unstable in most cases and generally hyperbolic. This is a consequence of the
well-known difference of stability of the triads depending on their energy exchange
properties (Waleffe, 1992).

For the interested reader, the exact calculation of the parameterization of Sect. 3
using the covariance and correlation matrices is detailed in the Appendix (see
section “Appendix: Practical Computation of the Parameterizations”).

4.2 The .�; �; C/ Stochastic Triad (Case 1)

Let us now consider case 1 corresponding to the .�;�;C/ stochastic triad for two
different values of the timescale separation ı D 0:1 and 0:4. For each of these
timescale separation, we considered three values of the coupling strength ": 0:05,
0:125, and 0:4. The probability densities associated with these different systems
are represented in Figs. 1 and 2. For a timescale separation ı D 0:1, the fully
coupled dynamics given by Eq. (27) is quite well represented by all the proposed
parameterizations. Since it is hard to distinguish the different density curves, a score
such as the Hellinger distance (Arnold et al., 2013)

H.P;Q/ D
1

2

Z �p
dP �

p
dQ
�2

(37)

between the distribution P of the full coupled system and the distribution Q of the
parameterizations is worth computing to quantify the differences (the smaller the
better). It is depicted for ı D 0:1 on Fig. 3, and it shows that for a very small
coupling parameter " D 0:05, the best parameterization is the response theory given
by Eq. (7). For larger values of ", it is the Hasselmann averaging method which
performs best. The empirical method gives a good correction of the uncoupled
dynamics for " D 0:125 but diverges for " D 0:4. This may be due to instabilities
introduced by the cubic deterministic parameterization Udet.X/ or to the inadequacy
of the fitting function 0 C 1 jXj for the standard deviation e.X/ in the AR(1)
process (26). Indeed, in general, this model fits quite well the statistics in the
neighborhood of X D 0, but the standard deviation reaches a plateau for higher
values of X. A more complicated fitting function would thus be necessary to get
a stable dynamics. For a timescale separation ı D 0:4, the same conclusions are
reached, but the singular perturbation method performs not very well in all cases,
as illustrated in Fig. 4 that for " D 0:125 and 0:4. The response based and singular
perturbation methods are even less effective than the uncoupled dynamics. It is not
surprising for the latter since it is supposed to be valid in the limit ı ! 0.
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Fig. 1 Probability densities
of the full coupled
dynamics (27), the uncoupled
dynamics
PX D �D X C q �.t/, and the
parameterized model versions
for the timescale separation
ı D 0:1 and for the triad
parameters of case 1. The
empirical parameterization
density is not represented for
" D 0:4 due to its divergence



70 J. Demaeyer and S. Vannitsem

Fig. 2 Same as Fig. 1 but for
the timescale separation
ı D 0:4
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Fig. 3 Hellinger
distance (37) between the
densities of the different
parameterized models and the
full coupled system density
for case 1. A small distance
indicates that the two
densities concerned are very
similar. The Hellinger
distance between the full
coupled system and the
uncoupled system distribution
is depicted as reference. In
case " D 0:4, the empirical
parameterization is not
represented due to its
divergence
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Fig. 4 Same as Fig. 3 but for
the timescale separation
ı D 0:4
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Fig. 5 Probability densities
of the coupled full
dynamics (27), the uncoupled
dynamics
PX D �D X C q �.t/, and the
parameterized models for the
timescale separation ı D 0:1

and for the triad parameters
of case 2. The direct
averaging parameterization
density is only represented for
" D 0:05 because the system
diverges for the other values



74 J. Demaeyer and S. Vannitsem

Fig. 6 Same as Fig. 5 but for
the timescale separation
ı D 0:4
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Fig. 7 Hellinger
distance (37) between the
densities of the different
parameterized models and the
full coupled system density
for case 2. A small distance
indicates that the two
densities concerned are very
similar. The Hellinger
distance between the full
coupled system and the
uncoupled system distribution
is depicted as reference. In
case " D 0:4, the empirical
parameterization is not
represented due to its
divergence
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Fig. 8 Same as Fig. 7 but for
the timescale separation
ı D 0:4
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4.3 The .�; C; C/ Stochastic Triad (Case 2)

We now consider the parameters of case 2, for which the system (27) is a .�;C;C/
stochastic triad. The probability densities are depicted in Figs. 5 and 6, and the
Hellinger distances are shown in Figs. 7 and 8. First, we must remark that the
parameterization based on the Hasselmann’s averaging method is not defined for
most of the ı and " parameters values. It is due to the fact that the dynamics of the
unresolved component Y with X considered as a parameter is unstable, as shown in
Sect. 4.1. Indeed, this linear system undergoes a bifurcation at some value X? which
destabilizes the dynamics PY D H.X;Y/ with X frozen. Therefore, the measure 	YjX

is not defined for some ranges of the full X dynamics and the method fails. The
only case where this destabilization does not occur is for ı D 0:1 and " D 0:05,
but the parameterization does not perform well. For these parameter values, the
only parameterization that performs very well is the one based on response theory.
For the other values of the parameters ı and ", all the parameterizations have good
performances. A particularly unexpected result is the very good correction provided
by the response theory and singular perturbation based methods for the extreme case
ı D 0:4 and " D 0:4 (see the bottom panel of Fig. 8). This have to be contrasted
with their bad performances in the case of the other triad (see the bottom panel of
Fig. 4). Note that for this extreme case, the direct averaging method fails and the
empirical method is unstable and diverges.

4.4 Discussion

The results obtained so far with these two types of triads highlight the utility of
the parameterization schemes discussed here. First, the empirical parameterization
gives usually good results when it does not destabilize the dynamics. However,
this method requires a case by case time-consuming statistical analysis whose
complexity increases with the dimensionality of the problem considered. Physically
based parameterizations do not require such an analysis, and the best approach in the
present system is the Hasselmann averaging one, but it requires that the dynamics of
the unresolved system be stable. It was thus very effective to correct the dynamics
of the .�;�;C/ triad, but not the other triad .�;C;C/. In this latter case, the
perturbative methods like the singular perturbation method or the response theory
method give very good results. This difference is quite intriguing and interesting.
It indicates that different physically-based parameterizations should be considered
depending on the kind of problems encountered. In particular, the stability properties
of the system considered seem to play an important role. This conclusion holds
whatever the timescale separation and for the most realistic values of the coupling
strength between the components (" D 0:125 and 0:4). However, for very small
values of the coupling strength, the response based method seems to be the best
approach in all cases.
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A question that is left open in the present work is to determine precisely which
stability property is giving the contrasting observed result. More specifically, is it the
hyperbolic instability of the .�;C;C/ triad which makes the perturbative approach
and the response based parameterization perform so well, or is it simply the fact
that it is unstable? On the other hand, is it the damped oscillatory behavior of the
.�;�;C/ triad which makes the Hasselmann’s method works well, or is it simply
the fact that it is stable? Such questions should be addressed in the case of a more
complex, globally stable system, which allows to have locally stable and unstable
fast dynamics.

5 Conclusions

The parameterization of subgrid-scale processes is an important tool in model
reduction, in order to improve the statistical properties of the forecasting systems.
The variety of approaches available bear witness of the richness of the field but at
the same time can also lead to questions on the best choice for the problem at hand.
The purpose of the present review was to describe briefly some of the most recent
methods and to illustrate them on a simple stochastic triad example. The methods
covered include perturbative methods like the Ruelle response theory (Wouters and
Lucarini, 2012), the singular perturbation theory (Majda et al., 2001), averaging
methods like the Hasselmann method (Arnold et al., 2003; Hasselmann, 1976) and
an empirical method (Arnold et al., 2013). As expected, these parameterizations
provided contrasting results depending on the timescale separation and on the
coupling between the resolved variables and the subgrid one. But more importantly,
our results in the context of this simple triad stress the importance of the underlying
stability properties of the unresolved system. It thus confirms a known result that the
structure of the Jacobian and of the Hessian of a given system controls the behavior
and performance of model error parameterizations (Nicolis, 2005).

Further comparisons of the different methods are needed in the context of more
sophisticated systems in order to analyze the role of the stability properties of the
subgrid scale processes on their performances. This type of analysis is currently
under way in the context of a coupled ocean-atmosphere system (De Cruz et al.,
2016).

Appendix: Practical Computation of the Parameterizations

In the following section, for illustrative purposes, we detail the computation that we
have made to obtain the result of the present review. We start with the method based
on response theory.
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Response Theory Method

We consider the system (27) with the form (4) in mind. In this case, the influence of
the Y sub-system on the X sub-system is parameterized as:

PX D �D X C q �.t/C M1.X/C M2.X; t/C M3.X; t/ (38)

where then terms M1, M2, and M3 are, respectively, given by Eqs. (8), (9, and (10).
The average in these formula are performed with the measure 	0;Y of the unperturbed
Y dynamics PY D FY.Y/. Since this latter is an Ornstein–Uhlenbeck process, its
measure is the Wiener measure

	0;Y.Y/ D
1

Z
exp

�
�
1

2
YT �†�1 � Y

	
(39)

where † is the covariance matrix solution of

A �†C† � AT D �BY � BT
Y (40)

and Z is a normalization factor.
The covariance and correlation of the stationary process PY D FY.Y/ are thus

straightforward to compute (Gardiner, 2009):

† D
˝
Y ˝ Y

˛
D

q2Y
2a

I (41)

˝
� t

Y.Y/˝ �s
Y.Y/

˛
D E.t � s/ �†; t > s (42)

˝
� t

Y.Y/˝ �s
Y.Y/

˛
D † � E.s � t/T; t < s (43)

where I is the identity matrix, � t
Y is the flow of PY D FY.Y/, and the matrix E.t/ is

the exponential

E.t/ D exp.At=ı2/ D e�at=ı2
�

cos.ˇt=ı2/ sin.ˇt=ı2/
� sin.ˇt=ı2/ cos.ˇt=ı2/

�
(44)

The various terms Mi are then computed as follows.

The Term M1

It is the average term:

M1.X/ D
˝
�X.X;Y/

˛
(45)
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We have thus

M1.X/ D 2B
"

ı
hy1 y2i D 2B

"

ı
†12 D 0 (46)

by using Eq. (41).

The Term M2

It is the noise/correlation term which is defined here as:

M2.t/ D R.t/ (47)

with

hR.t/R.t
0/i D g.t � t0/ (48)

and the correlation function

g.s/ D
˝
� 0

X.Y/�
0
X.�

s
Y.Y//

˛
(49)

where � 0
X.Y/ D �X.Y/ � M1. The result in the present case is given by the formula

[see Demaeyer and Vannitsem (2016)]:

g.s/ D
"2

ı2
Tr
��

C C CT� �† � E.s/T � CT � E.s/ �†
�

D
"2

ı2
q4Y
a2

B2e�2as=ı2 cos.2ˇs=ı2/

(50)
The term M2 must thus be devised as a process with the same correlation.

The Term M3

This is the memory term, defined by

M3.X; t/ D

Z 1

0

ds h.X.t � s/; s/ (51)

with the memory kernel

h.X; s/ D h�Y.X;Y/ � rY�X.�
s
Y.Y//i (52)

which in the present case is given by the formula [see Demaeyer and Vannitsem
(2016)]
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h.X; s/ D
"2

ı2
Tr
�
.X V �†/ �

�
E.s/T �

�
C C CT� � E.s/

��
(53)

D
"2

ı2
q2Y
a

XB.B1 C B2/e
�2as=ı2 cos.2ˇs=ı2/ (54)

The fact that the memory kernel (54) and the correlation function (50) present the
same form implies that a Markovian parameterization is available (Wouters et al.,
2016) even if by definition, Eq. (38) is a non-Markovian parameterization.

The Singular Perturbation Method

With this parameterization, the parameter ı serves to distinguish terms with different
timescale and is then used as a small perturbation parameter (Franzke et al., 2005;
Majda et al., 2001). The parameterization is given by:

PX D �D X C q �.t/C G.X/C
p
2 MTV.X/ � Q�.t/ (55)

with notably h�.t/ Q�.t0/i D 0 and

G.X/ D

Z 1

0

ds
˝
�Y.X;Y/ � rY�X.X; �

s
Y.Y//

˛
Q	

(56)

MTV.X/ D

�Z 1

0

ds
˝
� 0

X.X;Y/ �
0
X.X; �

s
Y.Y//

˛
Q	

	1=2
(57)

We see that the quantities appearing in this parameterization can easily be obtained
from the functions h and g of section “Response Theory Method”. Indeed we have

G.X/ D

Z 1

0

ds h.X; s/ D "2Xq2Y
B.B1 C B2/

2.a2 C ˇ2/
(58)

SMTV.X/ D

Z 1

0

ds g.s/ D "2
q4YB2

2a.a2 C ˇ2/
(59)

where we notice that the parameter ı has disappeared, since this parameterization is
valid in the limit ı ! 0.

Averaging Method

In this approach, we consider the system (2) and the parameterization (Abramov,
2013):

PX D NF.X/ (60)
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with

NF.X/ D
˝
F.X;Y/

˛
	YjX

D F.X; NY.X//C
1

2

@2F

@Y2
.X; NY.X// W †.X/ (61)

and

NY.X/ D hYi	YjX (62)

†.X/ D h.Y � NY.X/˝ .Y � NY.X//i	YjX (63)

where 	YjX is the measure of the system PY D H.X;Y/ with X “frozen.” It is the
measure of an Ornstein–Uhlenbeck process

	0;Y.Y/ D
1

Z
exp

�
�
1

2
YT �†�1.X/ � Y

	
(64)

where Z is a normalization factor and †.X/ is the stationary covariance matrix
solution of

T.X/ �†C† � T.X/T D �
1

ı2
BY � BT

Y (65)

with

T.X/ D A=ı2 C "X V=ı: (66)

With the help of NY.X/ D 0 and †.X/, we can now rewrite Eq. (61) as

NF.X/ D F.X; 0/C
"

ı
C W †.X/

D �D X C q�.t/C
B .B1 C B2/ q2YX�2

2 .a2 C ˇ2 � Xˇı"B2 C Xı"B1 .ˇ � Xı"B2//
(67)

This forms a deterministic averaging parameterization. It can be extended into a
stochastic parameterization (Abramov, 2015) as follows:

PX D NF.X/C A.X/ � �.t/ (68)

with

A.X/ D
p

S.X/ (69)

and
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S.X/ D 2

Z 1 �
2

Z 1

0

ds
D�

F.X; �s
YjX.Y// � NF.X/

� �
F.X;Y/ � NF.X/

�E
	YjX

	1=2

(70)
We thus have

S.X/ D 2
"2

ı2

Z 1

0

ds Tr
��

C C CT� �†.X/ � exp


T.X/Ts

�
� CT � exp ŒT.X/s� �†.X/

�

where we have extended the result of Eq. (50) to the stationary Ornstein–Uhlenbeck
process PY D H.X;Y/ for X “frozen”. The function S.X/ can be computed
analytically using mathematical software but is a very complicate function that is
not worth displaying in this review. This can, however, be provided upon query to
the authors.
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Large-Scale Atmospheric Phenomena Under
the Lens of Ordinal Time-Series Analysis
and Information Theory Measures

J.I. Deza, G. Tirabassi, M. Barreiro, and C. Masoller

Abstract This review presents a synthesis of our work done in the framework
of the European project Learning about Interacting Networks in Climate (LINC,
climatelinc.eu). We have applied tools of information theory and ordinal time series
analysis to investigate large scale atmospheric phenomena from climatological
datasets. Specifically, we considered monthly and daily Surface Air Temperature
(SAT) time series (NCEP reanalysis) and used the climate network approach to
represent statistical similarities and interdependencies between SAT time series
in different geographical regions. Ordinal analysis uncovers how the structure of
the climate network changes in different time scales (intra-season, intra-annual,
and longer). We have also analyzed the directionally of the links of the network,
and we have proposed novel approaches for uncovering communities formed by
geographical regions with similar SAT properties.

Keywords Climate networks • Nonlinear time series analysis • Climate commu-
nities • Information transfer

1 Introduction

Complex networks constitute the huge revolution in nonlinear science in the
twentieth century because it provides a unified framework for the study of a wide
range of real-world complex systems, such as the Internet, social networks, transport
networks, ecological and metabolic networks, and even the human brain (Albert and
Barabasi 2002; Newman 2003; Boccaletti et al. 2006).

For understanding and extracting information from observed data, various meth-
ods for mapping statistical interdependencies between time series into “functional”
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networks have been proposed. These methods for constructing complex networks
from data are complemented by a careful analysis of the inferred network, in order
to detect fake links, missing links, hidden nodes, etc. (Timme 2007; Serrano et
al. 2009; Shandilya and Timme 2011; Yu and Parlitz 2011; Rubido et al. 2014;
Tirabassi et al. 2015a, b).

Considering the complexity of the inter-relations between the different elements
that constitute the climate system, it is clear that the analysis of observed clima-
tological data from a complex network perspective has great potential for yielding
light into relevant, previously unknown features of our climate.

Indeed, in the last two decades the research field of climate networks has
provided important insight into complex phenomena in our climate (Tsonis and
Roebber 2004; Tsonis and Swanson 2008; Yamasaki et al. 2008; Donges et al. 2009;
Barreiro et al. 2011; Fountalis et al. 2014; Hlinka et al. 2014; Tirabassi et al. 2015a,
b). Nowadays climate networks are a research field located at the triple intersection
of three active areas in nonlinear science: network theory, time series analysis, and
climate dynamics.

The European project Learning about Interacting Networks in Climate (LINC,
climatelinc.eu) brought together researchers from these communities with the goals
of training the new generation of researchers, developing cutting-edge science, and
promoting new collaborations. Here we present a summary of some of our results
developed within the LINC project.

2 Time-Scale Analysis of Climate Interactions

The work by Barreiro et al. (2011) was a first approach to characterize the climate
network by means of recurrent oscillatory patterns, with various time scales, as
described by using symbolic ordinal analysis (Bandt and Pompe 2002). By mapping
these processes into a climate network, we found that the structure of the network
changes drastically at different time scales.

The symbolic method of ordinal analysis first divides a time series x(t) of length
M into M � D overlapping vectors of dimension D. Then, each element of a vector
is replaced by a number from 0 to D � 1, in accordance with its relative magnitude
in the ordered sequence (0 corresponding to the smallest and D � 1 to the largest
value in each vector). For example, with D D 3, the vector (v0, v1, v2) D (6.8, 11.5,
11) gives the “ordinal pattern” (OP) 201 because v2 < v0 < v1. In this way, each
vector has associated an OP composed by D symbols, and the symbol sequence
comes from the comparison of neighboring values. With D D 3 the 3! D 6 different
patterns are (012, 021, 102, 120, 201, and 210). Last, the presence of recurrent
oscillatory patterns in the time series is characterized by means of the probabilities
of the ordinal patterns, computed from their frequency of occurrence in the time
series.

A classical measure to investigate mutual interdependencies between time series
is the mutual information (MI), which is computed from the probability distribution
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functions (PDFs) associated to the two time series, and the joint probability
distribution. When using the ordinal probabilities to compute the MI, the PDF is
computed with D! bins, and the joint probability, with D! � D! bins. Therefore,
to have a good statistics one must have enough data points in the time series, i.e.,
M � D! � D!

A main advantage of ordinal analysis is that it allows selecting the time scale of
the analysis by comparing L-lagged data points instead of consecutive data points.
For example, in SAT reanalysis with monthly resolution, by comparing four data
points separated by twelve months (i.e., (v0, v12, v24, v36)) we can investigate
recurrent oscillatory patterns with a characteristic time scale of 4 years.

When using an interdependency statistical measure, such as the MI, to define the
links of the climate network, one must use an appropriate criterion to define which
MI values are considered significant and represented as network links. Performing
such significance analysis is a challenging task. A particularly important problem for
climate networks is the fact that, due to physical proximity (i.e., due to the spatial
embedding of the network), the strongest links are those between neighboring
regions. Therefore, by using a high significance threshold, one ends up with a
network in which long-distance links are scarce. On the other hand, by choosing
a low significance threshold, a lot of “noise” is included in the network as fake
links. Therefore, the challenge is how to select the threshold that provides the best
compromise between the need to include relevant long-distance links that represent
genuine atmospheric teleconnections, and the need to limit the proliferation of noisy
links.

The networks obtained from Surface Air Temperature (SAT, NCEP/NCAR
monthly reanalysis covering the period January 1949 to December 2006) with
ordinal patterns formed by comparing SAT anomalies in the same month during
four consecutive years (i.e., D D 4 and L D 12) are shown in Fig. 1 (Barreiro
et al. 2011). In this figure, the networks obtained with different MI significance
thresholds are shown. One can notice that in this “inter-annual” time scale the
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dominant atmospheric connections are located in the tropical Pacific and Indian
Ocean areas, mainly associated with El Niño phenomenon. One can also notice
that, as expected, the connectivity of the network decreases as the MI significance
threshold is increased. For the highest threshold considered (shown in the right
panel, here the threshold is selected such that the density of the network is 0.1% of
the total possible links) the El Niño—Indian Ocean teleconnection is significantly
weakened with respect to the lower threshold network (shown in the left panel, here
the threshold is chosen equal to the maximum MI value obtained from surrogated
data, which gives a network with 2.7% of the total links).

Figure 2 summarizes the effect of the lag L used to define the ordinal patterns
(Deza et al. 2013). When the OPs are defined in terms of consecutive months (top
row) the network links are mainly local. In the seasonal time scale (middle row)
the tropical region becomes connected. Clearly, the extra-tropics become connected
to the equatorial Pacific through atmospheric teleconnection processes only when
considering inter-annual time scales (bottom row).

Figure 3 displays the climate network when the mutual information is computed
with the classical approach, i.e., computing the PDFs from the histograms of values
in the time series (i.e., without taking into account the ordering of the data points).
We note that the network looks as a “superposition” of spatial structures which
are present only in some of the maps shown in Fig. 2. See, for example, the highly
connected green spot in the Labrador Sea, which is also seen in Fig. 2a and to a lesser
extent in Fig. 2b; but is not present in Fig. 2c. The Labrador Sea is one of the most
important regions of deep water formation in the north Atlantic. The formation of
this water occurs in wintertime and depends on the passage of extratropical storms
that cool the surface. The passage of storms is in turn related to the state of the
North Atlantic Oscillation. As a result, there is a clear connection of the Labrador
Sea with the rest of the north Atlantic mainly on seasonal time scales and is mostly
independent of ENSO activity.

3 Climate Communities

Many natural systems can be represented by networks with modular structure in
the form of communities of densely interconnected nodes. In the context of climate
networks, climate communities can be understood as a set of geographical regions
that share some common property (dynamical or statistical) of the climate in those
regions.

The existence of such regions is expected because of the physical processes that
govern our climate (ocean and atmospheric processes, solar forcing, vegetation,
human activity, etc.), act in a similar way in distant regions (having similar effects),
and therefore, distant regions can have similar climate. Examples include tropical
rainforests, dry and arid regions, maritime regions, etc.

The methodology for constructing climate networks described in the previous
section is not appropriate for detecting such community structure (i.e., regions
which have similar climatic properties) because, as seen in Figs. 2 and 3, the short-
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Fig. 2 Area weighted connectivity (left column) and connectivity maps (mutual information
values of the significant links of the node indicated by an x, right column) using D D 3 OPs formed
with three consecutive months (L D 1, top row), OPs formed with three equally spaced months
covering a one-year period (L D 3, middle row); and OPs formed with 3 months in consecutive
years (L D 12, bottom row). Adapted from Deza et al. (2013)

distance links between neighboring nodes dominate, and the northern and southern
hemispheres are only indirectly or weakly connected. Therefore, in this network,
areas of tropical rainforests, for example, which are located in different hemispheres
won’t be identified as belonging to the same community, because there won’t be
links that interconnect them.
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Fig. 3 As Fig. 2 but when the mutual information is computed from the PDFs of SAT anomaly
data values. Adapted from Deza et al. (2013)

Recently we proposed a novel methodology to construct the network that allows
overcoming this problem (Tirabassi and Masoller 2016). The methodology, based
on ordinal analysis, allows to group together regions that share similar properties of
the symbolic dynamics.

The main idea is to assign a high (low) weight to the link between two regions, if
the ordinal transition probabilities (TPs) that describe the statistics of the symbolic
sequence are very similar (very different) in the two regions. In other words, the
symbolic sequences are mutually compared in terms of the probability of pattern
“A” being followed by pattern “B.” Then, a significance threshold is used to keep
only the regions that have very similar transition probabilities. The third step was to
run the Infomap community detection algorithm (Rosvall and Bergstrom 2007) in
order to identify the groups of densely interconnected regions.

Figure 4 summarizes the results of the analysis. Panel a displays the communities
uncovered when the network is constructed with the classical approach (in this case,
the similarity measure used is the Pearson cross-correlation coefficient) and panel b
displays the communities uncovered by means of the novel approach, based on the
similarity of the ordinal transition probabilities.

By using the classical approach with a threshold W D 0.5 (Tsonis and Roebber
2004), Infomap algorithm uncovers 8604 communities, but only 20 are composed
by more than two nodes. Figure 4a displays the largest 16 communities. The
detected communities include the central-east equatorial Pacific dominated by El
Niño, the tropical western Pacific, Indian Ocean, and tropical north Atlantic regions
controlled mainly by the exchange of heat fluxes with the atmosphere, and the
equatorial Atlantic cold tongue dominated by dynamical air–sea interaction. The
other communities are small and some may be just noise.

In contrast, with the ordinal approach the community structure inferred, shown
in Fig. 4b, divides the world in eight areas that share similar climatic properties,
as measured by similar symbolic transition probabilities. There are five macro-
communities: extratropical continents and southern ocean characterized by large
SAT variability (indicated with number 0), northern oceans (2), regions of tropical
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Fig. 4 Community structure uncovered by Infomap algorithm. The different communities are
indicated with different colors. (a) The network is constructed by using the Pearson cross-
correlation coefficient as a measure of dynamical similarity. (b) The network is constructed by
calculating the similarity of the ordinal transition probabilities. In panel (a), for clarity, only the
largest 16 communities are shown. Adapted from Tirabassi and Masoller (2016)

deep convection such as the western Pacific warm pool, Amazon and Congo basins
(3), tropical oceans dominated air–sea heat fluxes (4) and ENSO basin (5). Then,
there are also two boundary communities, indicated with numbers 1 and 6, which
are placed at the communities interfaces.

Both methodologies identify the region dominated by the El Niño dynamics as
a community, but there are differences in the rest. Compared to the communities
calculated with the classical approach the new methodology is able to separate
better in terms of processes dominating the SAT variability. For example, the
new methodology (1) identifies the central equatorial Atlantic as having a similar
behavior to El Niño, which is consistent with the literature (Zebiak 1993); (2)
separates the behavior of SAT over the maritime continent from that of the Indian
and tropical Atlantic oceans, consistent with a different rainfall regime, (3) considers
the tropical north and south Atlantic as belonging to the same community, which is
consistent because temperature is strongly controlled by air–sea heat fluxes.
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Fig. 5 Network average degree and number of communities vs. the threshold used to construct
the network, W. In panel (a) the network is constructed by using the Pearson cross-correlation
coefficient. For the community structure shown in Fig. 4a, the threshold used was W D 0.5 (as in
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As discussed before, in order to construct a climate network, the links weights
have to be pruned by using an adequate threshold. Decreasing the threshold leads
to a more connected network, while increasing it results in a sparser one. The
number of communities depends on the number of connections, which in turn
depends on the threshold. In order to uncover a coherent, well-defined community
structure, the threshold has to be carefully chosen. Figure 5 displays the number
of communities and the average degree as a function of the threshold. It can be
seen that there is a negative correlation between them. The fragmentation of the
network into smaller communities (as community seven in Fig. 4b) can be due to the
removal of relevant links that keep the bigger communities together. Thus, to obtain
a meaningful community structure, we selected ad hoc a threshold that provided the
best compromise between the need to limit the small-communities-proliferation and
the need to include in the network only the relevant links.

4 Net Direction of Climate Interactions

A main drawback of the methodology discussed in the previous sections for
inferring the climate network is that it uses a symmetric similarity measure (the
mutual information or the Pearson correlation coefficient) that yield non-directed
networks. In these networks the presence of a link indicates inter-dependency
but the direction of the underlying interaction is not inferred. For improving
the understanding of climate phenomena and its predictability, it is of foremost
importance not only to be able to infer the presence of a link between two nodes
but also to infer the direction of this interaction.

Deza et al. (2015) used a methodology that allows inferring directed interactions
via an analysis of the net direction of information transfer. A measure was used—
based on conditional mutual information—that quantifies the amount of information
in a time-series x(t), contained in � time units in the past of another time series
y(t). The resulting network was found to be in full agreement with state-of-the-art
knowledge in climate phenomena, validating in this way the methodology used.
No assumptions about physical processes were made, except for the appropriate
setting of the parameter � .

J
Fig. 5 (continued) Tsonis and Roebber 2004). In panel (b) the network is constructed by
calculating the similarity of the ordinal transition probabilities. For uncovering the communities
shown in Fig. 4b, the threshold used was W D 30. It can be observed that with the first approach,
a very low threshold needs to be used to uncover a small set of communities. However, using
a low threshold has the strong disadvantage of including in the network many links which are
not significant. In contrast, with the novel approach (by constructing the network considering the
similarities of the transition probabilities), the variation of the number of communities with the
threshold is more gradual, which allows uncovering a small set of communities by using a threshold
that is not too low. Adapted from Tirabassi and Masoller (2016)
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Fig. 6 Directionality of the links in a node in the central pacific (a) and in a node in the Indian
Ocean (b) indicated with a triangle. The color code indicates the directionality index: outgoing
links are shown in red while incoming links are shown in blue. The time scale of information
transfer is � D 30 days. Adapted from Deza et al (2015)

The directionality measure and the statistical significance analysis are discussed
in detail in Deza et al. (2015). Here we present two examples that illustrate the
directional structure of the network. Figure 6 displays the directionality of the links
of two nodes in the tropics (indicated with triangles) computed from SAT reanalysis
data with daily resolution and parameter � D 30 days. The color code in this figure
indicates the Directionality Index (DI): outgoing links are shown in red, while the
incoming links are shown in blue.

Figure 6a shows, as expected, the central Pacific influenced by the eastern Pacific
(in blue) and influencing the global network, with many regions in the tropics and
in the extra-tropics in red. Reciprocally, Fig. 6b shows that the blue links come
to the node in the Indian Ocean from a well-defined region in the central Pacific
Ocean. In addition, few red outgoing links connect the node in the Indian Ocean
to other regions. A main drawback of the directionality index used is that it does
not distinguish indirect from direct information transfer. Therefore, the red areas
influenced by the node in the Indian Ocean can be an artifact in the sense that these
regions might be directly influenced by El Niño region.

Figure 7 displays the influence of the parameter � that characterizes the time
scale of the information transfer from one node to another. As an example, a
region in southeastern South America is considered (indicated with a triangle). For
synoptic time scales of a few days, the directionality index uncovers the existence
of a wave train propagating with a southwest-northeast direction. Moreover, there
is a clear separation line between regions with incoming and outgoing links. This
configuration is characteristic of the progression of a front through the reference
point. As the parameter � increases, the extratropical wave train associated with
synoptic time scales fades and only blue links to the tropics remain, consistent with
an influence of the equatorial Pacific on the region on longer time scales, likely
related to ENSO.
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Fig. 7 Directionality of the links in a node in southeastern South America, indicated with a
triangle. The color code indicates the directionality index: outgoing links are shown in red while
incoming links are shown in blue. The time scale of information transfer � is (a) 1 day, (b) 3 days,
(c) 7 days, and (d) 30 days. Adapted from Deza (2015)

5 Conclusions

We have shown that symbolic time series analysis based on ordinal patterns
and information theory measures, applied to surface air temperature anomalies
(reanalysis data with monthly or daily resolution) are powerful tools for uncovering
the large-scale structure of the climate network.

A main advantage of the ordinal methodology is that, by varying the dimension
of the pattern and the year–month comparison, one can uncover memory processes
with different time scales, and depending on the time scale considered, the climate
network can change completely. Overall we found that on seasonal time scales the
extra-tropical regions, mainly over Asia and North America, present strong connec-
tivity, while in inter-annual time scales, the tropical Pacific clearly dominates.

A novel methodology for inferring the community structure of the climate
network was proposed. Constructing the climate network by taking into account
the similarity of the ordinal transition probabilities in different regions allowed
to identify communities formed by geographical regions where the climate
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variability displays similar statistics of ordinal patterns. Five macro-communities
were identified: extratropical continents, northern oceans, tropical convective
regions, tropical oceans, and ENSO basin.

The analysis of the net directionality of the links revealed variability patterns
consistent with well-known features of the global climate dynamics. For example,
in the extra-tropics, the link direction revealed wave trains propagating from west to
east, in both hemispheres. A drawback of the directionality index employed is that
it does not distinguish direct from indirect interactions.

Ongoing and future work is aimed at exploring the suitability of other techniques
of time series analysis, such as Hilbert analysis (Zappalà et al. 2016), other
directionality measures (partial directed coherence and directed partial correlation,
Tirabassi et al. 2017), and measures of distances between time series and entropy
measures (Arizmendi et al. 2017) for gaining additional information from climato-
logical datasets.
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Supermodeling: Synchronization of Alternative
Dynamical Models of a Single Objective Process

Gregory S. Duane, Wim Wiegerinck, Frank Selten, Mao-Lin Shen,
and Noel Keenlyside

Abstract Imperfect models of the same objective process give an improved
representation of that process, from which they assimilate data, if they are also
coupled to one another. Inter-model coupling, through nudging, or more strongly
through averaging of dynamical tendencies, typically gives synchronization or par-
tial synchronization of models and hence formation of consensus. Previous studies
of supermodels of interest for weather and climate prediction are here reviewed.
The scheme has been applied to a hierarchy of models, ranging from simple
systems of ordinary differential equations, to models based on the quasigeostrophic
approximation to geophysical fluid dynamics, to primitive-equation fluid dynamical
models, and finally to state-of-the-art climate models. Evidence is reviewed to test
the claim that, in nonlinear systems, the synchronized-model scheme surpasses the
usual procedure of averaging model outputs.

Keywords Synchronization • Data assimilation • Supermodel

1 Introduction

It has been established that a computational model that runs in parallel to the
objective process being modeled can be conceived as synchronizing with that
process through a one-way truth-model coupling (Duane et al. 2006; Yang et al.
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2004). In numerical weather prediction, the repeated updates of the model based on
new observations constitute the enterprise of data assimilation, methods for which
are well developed in meteorology (Kalnay 2003). It can indeed be shown that
Kalman filtering, the algorithm that provides the basis for the most common data
assimilation methods, is also optimal for synchronization of truth and model under
weak assumptions of local linearity (Duane et al. 2006).

Similarly, a biological organism perceives reality through a stream of incoming
data and forms a prognostically useful perception that synchronizes with, but is
distinct from objective reality. A conscious organism exhibits an additional feature:
it perceives itself, focusing on its own thoughts in the same manner as it does the
objective world. In this view, there must be semi-autonomous parts of a “conscious”
mind that perceive one another. These components of the mind synchronize with
one another, or in alternative language, they perform “data assimilation” from one
another, with a limited exchange of information, lending an additional degree of
objectivity to a conscious organism.

Such a scheme has actually been proposed in a computational science context,
for the fusion of alternative computational models of the same objective process
(Duane et al. 2009; Mirchev et al. 2012; van den Berge et al. 2011): different
numerical models used to predict climate change in the twenty-first century differ
by as much as a factor of two in the amount of globally averaged warming and differ
completely in their projections for specific regions of the globe. Current practice is
just to average the results of the different models. By synchronizing a small set of
alternative models with each other, a more reliable and detailed consensus could be
obtained.

The supermodel strategy is schematized in Fig. 1, for three constituent models.
The three models perform data assimilation from (synchronization with) reality,
through diffusive coupling with coefficient matrices Ki (“Kalman gains” in the
language of data assimilation).

The lth variable in Model i is nudged to the lth variable in Model j with
connection coefficient Cij

l . The connections Cij linking the three model systems
can be chosen using yet a further extension of the synchronization paradigm: if

Fig. 1 In a supermodel,
models are linked to each
other, generally in both
directions and to “reality” in
one direction. Separate links
between models, with distinct
values of the connection
coefficients Cij

l , are
introduced for different
variables and for each
direction of possible influence
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two systems synchronize when their parameters match, then under some weak
assumptions, as was proven in Duane et al. (2006), it is possible to prescribe a
dynamical evolution law for general parameters in one of the systems, so that
the parameters of the two systems, as well as the states will converge. In the
present case, the tunable parameters are taken to be the connection coefficients
(not the parameters of the separate models), and they are tuned under the peculiar
assumption that reality itself is a similar suite of connected systems.

In the following sections, we present the results of the supermodeling approach
in a hierarchy of increasingly complex models. Details of the learning algorithm
are reviewed in the next section, for simple examples where the models are sets
of a few ordinary differential equations. In Sect. 3, the strategy is applied to a
partial differential equation model, the quasigeostrophic channel model, where the
advantages of supermodeling can be clearly compared to ex post facto averaging.
In Sect. 4 it is shown that the scheme can be applied to a fluid dynamical
model capturing realistic features of the climate system. Preliminary efforts with
state-of-the-art climate models are reviewed in Sect. 5, and the overall status of
supermodeling is summarized in Sect. 6.

2 Supermodeling with Low-Order Models

A simple supermodel is constructed from a collection of Lorenz systems (Lorenz
1963) that each imperfectly represent a “true” Lorenz system. Three imperfect
“model” Lorenz systems were generated by perturbing parameters in the differential
equations for a given “real” Lorenz system and adding extra terms. The resulting
suite is: dx/dt D  (y � z), dy/dt D 	x – y � xz, dz/dt D �ˇz C xy, and

dxi=dt D i .yi � zi/C†j¤i Cx
ij

�
xj � xi

�
C Kx .x � xi/

dyi=dt D 	xi � yi � xizi C �i C†j¤iC
y
ij

�
yj � yi

�
C Ky .y � yi/

dzi=dt D �ˇizi C xiyi C†j¤iC
z
ij

�
zj � zi

�
C Kz .z � zi/

(1)

where (x, y, z) is the real Lorenz system and (xi, yi, zi) i D 1, 2, 3 are the three
models. An extra term � is present in the models, but not in the real system. Because
of the relatively small number of variables available in this toy system, all possible
directional couplings among corresponding variables in the three Lorenz systems
were considered, giving 18 connection coefficients CA

ij A D x, y, z; i, j D 1, 2, 3, i ¤ j.
The constants KA A D x, y, z are chosen arbitrarily so as to effect “data assimilation”
from the “real” Lorenz system into the three coupled “model” systems.

It remains to determine connection coefficients CA
ij that will define an optimal

supermodel. The general method for parameter adaptation in any imperfect replica
of any dynamical system with which the imperfect replica synchronizes (Duane
et al. 2007), to be applied here, is the following: Consider a “real system” given
by ODE’s: dx/dt D f(x, p), dp/dt D 0, where x 2 RN , f: RN ! RN , and p 2 Rm
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is the vector of (unknown, constant) parameters of the system. Further assume that
s D h(x), where h: RN ! Rn, n � N, is an n dimensional vector representing the
experimental measurement output of the system. A “computational model” of the
system is given by dy/dt D f(y,q) C u(y,s), dq/dt D N (y, x � y) where N (y, 0) D 0,
and u is the control signal. Generally, the real system and its model are chaotic; for
u D 0 the simulation quickly diverges from the real system behavior. The problem
is to find a parameter estimation law N, so that q ! p, if we are given a control law
u such that y ! x. Let e  y � x and r  q � p. Consider a Lyapunov function
L0(e)jq D p that is positive definite and monotonically decreasing after some time,
e.g., L0(e) D e2. The recipe for the desired N, as proved in (Duane et al. 2007), is

Nj D �ıj†i


.@L0=@ei/

�
@hi=@rj

��
(2)

where the ıj are arbitrary positive constants, and h  f(y,r C p) � f(y � e,p).
Typically, the first factor in brackets is simply ei and the second factor is the cofactor
of parameter pj in the dynamical equation for xi.

Letting the parameters to be estimated be the connection coefficients themselves
(not the parameters of the separate models), the dynamical equation for these
coefficients was chosen as:

dCX
ij=dt D a

�
xj � xi

� �
x �

1

3
†kxk

	
� "=

�
CX

ij � Cmax
�2

C "=
�
CX

ij C ı
�2

(3)

with analogous equations for CY and CZ , where the adaptation rate a is an arbitrary
constant and the extra terms with coefficient " dynamically constrain all couplings
CA to remain in the range (�ı,Cmax) for some small number ı. The rule (3) has
a simple interpretation: time integrals of the first terms on the right-hand side
of each equation give the covariance between truth-model synchronization error,
x � 1/3†kxk, and inter-model “nudging”, xj � xi. We indeed want to increase or
decrease the inter-model nudging, for a given pair of corresponding variables,
depending on the sign and magnitude of this covariance. The procedure will produce
a set of values for the connection coefficients that is at least locally optimal in the
multidimensional space of connection values.

Figure 2a shows the results for a simple case in which each of the three model
systems contains the “correct” equation for only one of the three variables and
“incorrect” equations for the other two (Duane 2013; Duane et al. 2009). The cou-
plings did not converge, but the coupled suite of “models” rapidly synchronized with
the “real” system, even with the adaptation process turned off half-way through the
simulation, so that the coupling coefficients CA

ij subsequently held fixed values. (The
three models also synchronized among themselves nearly identically.) The inter-
model connections are needed, despite efforts, common in the modeling community
(Tebaldi and Knutti 2007), to combine only the outputs of independently run models
using Bayesian reasoning. The difference between corresponding variables in the
“real” and coupled “model” systems was significantly less than the difference using
the average outputs of the same suite of models, not coupled among themselves (Fig.
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Fig. 2 Difference zm � z between “model” and “real” z vs. time for a Lorenz system with 	 D 28,
ˇ D 8/3,  D 10.0 and an interconnected suite of models with 	1,2,3 D 	, ˇ1 D ˇ, 1 D 15.0,
�1 D 30.0, ˇ2 D 1.0, 2 D  , �2 D �30.0, ˇ3 D 4.0, 3 D 5.0, �3 D 0. The synchronization
error is shown for (a) the average of the coupled suite zm D (z1 C z2 Cz3)/3 with couplings CA

ij
adapted according to (3) for 0 < t < 500 and held constant for 500 < t < 1000; (b) the same average
zm, but with all CA

ij D 0; (c) zm D z1, the output of the model with the best z equation, with CA
ij D 0;

(d) as in (a), but with ˇ1 D 7/3, 2 D 13.0, and �3 D 8.0, so that no equation in any model is
“correct”

2b). Further, without the model–model coupling, the output of the single model with
the best equation for the given variable (in this case, z, modeled best by z1 in Model
1) differed even more from “reality” than the average output of the three models
(Fig. 2c). Therefore, it is unlikely that any ex post facto weighting scheme applied to
the three outputs would give results equaling those of the synchronized suite. Inter-
nal synchronization within the multi-model “mind” is essential. The choice of semi-
autonomous models to be combined is not essential—in a case where no model had
the “correct” equation for any variable, results deteriorated only slightly (Fig. 2d).

The synchronization-based method for adapting the inter-model connections
is only guaranteed to find a supermodel that is locally optimal in the space of
connection coefficients. It is not yet known whether local optima are an impediment
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when such a space is high dimensional. However, Mirchev et al. (2012) obtained
some improvement in another supermodel constructed from Lorenz systems by
introducing stochasticity in the training procedure, a commonly used way to escape
local optima.

Synchronization-based adaptation of coefficients is a form of machine learning
on-the-fly, in which the coefficients typically oscillate wildly. A more stable
procedure is to match entire segments of the supermodel trajectory to the real
trajectory. One can introduce a cost function for mismatch, such as the one used
by van den Berge et al. (2011):

F .C/ D
1

K�

XK

iD1

Z tiC�

ti

jxs .C; t/ � x0.t/j
2� tdt (4)

for a vector C of connection coefficients, defined as normalized sum over K short
integrations of length �, with initial times ti, of the squared error between the true
trajectory x0 and the supermodel trajectory xs. The integration segments were chosen
to overlap, so that �> ti C 1 � ti. The factor � t with 0 < � � 1 is introduced to give
stronger weight to the errors close to the initial conditions and discount the chaotic
internal error growth that is not a result of model imperfections.

Results of trajectory-matching by minimizing (4) for a supermodel formed from
imperfect replicas of a “true” Lorenz system are shown in Fig. 3. The algorithm
is seen to be particularly useful for reproducing the true attractor, even where the
attractors of the imperfect models are very different from truth.

3 Supermodeling vs. Output Averaging in Quasigeostrophic
Models

3.1 Weighted Supermodeling

To investigate supermodeling with more complex models it is useful to consider a
generalization arising from a limiting case of the connected supermodeling scheme
described above. A class of supermodels is defined by defining the tendency for
a given variable as a weighted average of the tendencies for that variable in the
different models. That is, the parameters of the supermodel are weights wl

i, with
wl

i � 0 and
P

iw
l
i D 1, and the dynamics for the lth variable are given by:

dxl=dt D †i wl
if

l
i .x/ (5)

Weighted supermodels can be considered as connected supermodels with
infinitely strong connections, i.e., connections of the form �Ci

ij with Ci
ij > 0 and
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Fig. 3 (a–c) Trajectories for
three unconnected imperfect
models (black) and for the
“true” Lorenz system (grey).
The trajectories include an
initial transient as well as the
attractor. (d) Trajectories for
supermodel (black) trained by
minimizing the cost function
(4), and for the true Lorenz
system (grey)

� ! 1. Thus the ratios of the large connections remain constant in the limit. In the
limit it can be shown that all model states are completely synchronized xl

i D xl
j, and

that the synchronized state follows the weighted averaged dynamics (5) (Wiegerinck
et al. 2013).
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3.2 Weighted Supermodels from Quasigeostrophic Models

The question of whether supermodels can exceed the performance of model output
averages can now be addressed with models of more realistic complexity. If
nonlinearities are strong enough so as to cause bifurcations in the climate systems
as GHGs increase, it can be argued that output averaging will be insufficient to
capture the effects and that supermodeling would be beneficial. However, there
is little evidence for bifurcations of this type in model studies. But even without
bifurcations, simple nonlinearity can still make the supermodel superior to an
average of model outputs. This is perhaps most easily seen in the case where
diagnostic properties depend non-monotonically on system parameters. Suppose we
have two models of the form:

dx=dt D F .x; p1/
dx=dt D F .x; p2/

(6)

where F is linear in the parameter p, and consider some diagnostic P(p), e.g., mean
temperature. Further suppose that P(p1) D P(p2), but that for some intermediate
value pi, p1 < pi < p2, P(pi) > P(p1) D P(p2). Then any weighted average of
model outputs will only give the first value P(p1). A weighted supermodel, on the
other hand, could readily reproduce the correct dynamics, that is F(x, pi) D w1F(x,
p1) C w2F(x, p2) for appropriately chosen weights w1 and w2, since F is linear in p.
It is hypothesized that a connected supermodel could also give the correct result.

Consider specifically a quasigeostrophic model of a re-entrant channel on a ˇ-
plane given by:

Dqi=Dt  @qi=@t C J . i; qi/ D Fi C Di (7)

where the layer i D 1,2,  is streamfunction, and the Jacobian J( i,qi) gives the
advective contribution to the Lagrangian derivative D/Dt (Vautard and Legras 1988;
Vautard et al. 1988). The forcing F is a relaxation term designed to induce a jet-like
flow near the beginning of the channel:

Fi D �0
�
q�

i � qi
�

(8)

for q�
i corresponding to a streamfunction §� that defines a jet. The dissipation terms

D, boundary conditions, and other parameter values are given in Duane and Tribbia
(2004).

The QG channel model vacillates between two dynamical regimes corresponding
to “blocked” and “zonal” flow, as illustrated in Fig. 4. The response of the blocking
activity to the forcing parameter �0 in (8) provides a simple example of non-
monotonic behavior. For zero forcing, blocking frequency is zero due to damping
by the dissipative terms. For large forcing, the flow is consistently jet-like, and again
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Fig. 4 Streamfunction (in dimensional units of 1.48 � 109m2s�1) describing a typical zonal flow
state (a), and a typical blocked flow state (b) in the two-layer quasigeostrophic channel model.
Parameter values are as in Duane and Tribbia (2004). An average streamfunction for the two
vertical layers i D 1,2 is shown

Fig. 5 Typical flows in the QG channel model with very small forcing coefficient (�0 D 0) (a),
and very large forcing coefficient (�0 D 3.0) (b). (The spatial domain in each panel includes two
channels with flows in opposite directions)

there is no blocking. Typical flow fields for these two cases are shown in Fig. 5a, b.
(The zero-forcing flow in Fig. 5a is turbulent, but of low amplitude, and includes no
blocks.)

A weighted supermodel formed from the two individual models illustrated
in Fig. 5 can reproduce the true dynamics exactly for any value of the forcing
coefficient �0 between �0 D 0 and �0 D 3, because �0 appears linearly in the
tendency and so averaging tendencies effectively averages the �0 values (Duane
2015a). For the typical value �0 D 0.3 used previously, the behavior is as illustrated
in Fig. 6. The supermodel flow spends much time in the blocked regime, unlike the
flows in the individual models or any weighted average thereof. (If the actual flow
fields of the individual models are averaged, instead of the blocking frequencies, the
same conclusion is reached.)

The learning task for the weights is equivalent to that for determining the single
parameter �0 directly. The algorithm described in the previous section for parameter
learning in models that synchronize with identical parameters (Duane et al. 2007),
for instance, is effective in the present context. While the argument applies exactly
to a weighted supermodel, it seems likely that a connected supermodel could also be
formed from the two individual models illustrated in Fig. 5 that would approximate
the “true” behavior for arbitrary forcing coefficient.

While a supermodel is clearly superior to an output average in the example given
above, and in extreme cases generally, more linear behavior is expected for smaller
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Fig. 6 Typical flow in the QG channel model with a “realistic” forcing coefficient (�0 D 0.3)
(a), and the history of vacillation of the flow in the bottom half of the domain between zonal and
blocked regimes, sampled at low temporal resolution over the course of a simulation (b), using
the blocking diagnostic defined in Duane and Tribbia (2004). The typical flow is also the exact
solution to an appropriately weighted supermodel

inter-model differences as might occur in a realistic suite of models, such as the
IPCC set. To construct a realistic experiment with toy models, a correspondence was
established between parameter differences among the toy models, on the one hand,
and differences among models or parameters used in actual climate projection, on
the other. It was argued in Duane (2015a) that differences in the forcing coefficient
�0 in the QG models are analogous to differences in climate model sensitivities
to increased greenhouse gas levels. The latter sensitivities are known to vary
among IPCC models by about ˙1/3 of the average value. Considering proportional
variations in�0 in the range 0.2 <�0 < 0.4, instead of the extreme range 0 <�0 < 3.0
used above, it was found that a weighted average of their blocking frequencies
could reproduce the “true” behavior. At least in regard to blocking frequency, the
advantage of supermodeling is lost in this less extreme case.

If one pays more attention to the detailed modes of variability, a subtle advantage
remains. It is known that there is a very weak anticorrelation between blocking
activity in the Atlantic and in the Pacific (Duane and Tribbia 2004). That effect could
not possibly occur in an output average of models with Atlantic and Pacific forcing
separately. It is thought that supermodeling will give improved predictions of other
global multi-variable patterns of variability, where the relationships are stronger, as
well.

4 Supermodeling with Primitive-Equation Models

A supermodel containing the main dynamical ingredients or real climate model was
constructed from several versions of the intermediate complexity model SPEEDO
(Severijns and Hazeleger 2009). The atmospheric component is the SPEEDY model
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that solves the primitive equations on a sphere using a spectral method. The spectral
expansion is truncated at total wavenumber 30 which corresponds to a spatial reso-
lution at the equator of about 500 km. It has eight vertical levels and simple param-
eterizations for radiation, convection, clouds, and precipitation. The solar radiation
follows the seasonal cycle but the diurnal cycle is not imposed. Instead daily mean
solar radiation fluxes are prescribed. The total number of degrees of freedom is
38,025:31,680 for the spectral coefficients of divergence, vorticity, temperature,
specific humidity, and log of surface pressure plus 6345 to describe the land temper-
ature, land moisture, and snow cover in the 2115 land points. The land component
uses a simple bucket model to close the hydrological cycle over land and a heat
budget equation that controls the land temperatures. The ocean component is the
CLIO model (Goosse and Fichefet 1999). The CLIO model is a primitive-equation,
free-surface ocean general circulation model coupled to a thermodynamic–dynamic
sea-ice model. The ocean component includes a relatively sophisticated parameter-
ization of vertical mixing. A three-layer sea-ice model, which takes into account
sensible and latent heat storage in the snow-ice system, simulates the changes
of snow and ice thickness in response to surface and bottom heat fluxes. In the
computation of ice-dynamics, sea ice is considered to behave as a viscous-plastic
continuum. The horizontal resolution of CLIO is 3ı in latitude and longitude and
there are 20 unevenly spaced vertical layers in the ocean. The CLIO model has a
rotated grid over the North Atlantic Ocean in order to circumvent the singularity at
the pole. The total number of degrees of freedom is on the order of 200,000.

Three SPEEDY atmospheres, with different parameters chosen to reflect the
typical range of behavior of different atmospheric models, were coupled to the same
ocean and the same land (see Fig. 7), and also to one another, by adding inter-
atmosphere coupling terms to the dynamical equations for each atmosphere. The
modified equation for the temperature field for model i (i D 1 : : : 3), for instance, is

@Ti=@t D
�
RTi=cp

�
. Pi=i � @ Pi=@i � r� Vi/C†j



Cij

s

�
Tj � Ti

�
ı .x � xs/

�
(9)

Fig. 7 Schematic representation of SPEEDO supermodel. The Ocean and Land models are the
“true” Ocean and Land, respectively
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where all variables are evaluated at position x and fxsg is a set of discrete coupling
points. In (9), R is the gas constant, cp is the specific heat at constant pressure, 
is a vertical pressure coordinate scaled with surface pressure, P its time-derivative,
V is the horizontal wind velocity, and Cij

s is a connection coefficient linking the
temperature fields between models i and j at position xs. Dynamical equations for
the other independent variables, u (east–west velocity), v (north–south velocity), and
q (humidity) are similarly modified to include coupling terms linking the different
models.

In the present situation, regarding the PDE as a very high-order ODE, the general
rule for adaptation of parameters (2), as applied to the connection coefficients Cij,
gives

dCij=dt D a
Z

dx
�
Tj.x/ � Ti.x/

� �
Tt.x/ �

1

3
†k Tk.x/

	
(10)

where Tt is the true value of T, and a is an arbitrarily chosen learning rate.
We assume spatially uniform connections Cij that are independent of position s.
Analogous rules are written to adapt the connections linking the other dynamical
variables, with learning rates appropriate for their dynamics. The algorithm was
tested by choosing one of the models to be a perfect replica of the “true” system;
appropriate binary values for the connections did indeed result. All models are
nudged to truth as the learning progresses; for the configuration studied, it was found
that nudging to truth in the u field gave truth-model synchronization error rates that
were useful in discriminating between good and bad models, so that the learning
algorithm was effective.

Note that the last term in (9), connecting the models, tends to vanish as the
models synchronize. This is desirable, so that each model satisfies its own physically
motivated dynamical equation, without the influence of artificial coupling terms.
Of, course, for each i, the parameters and hence the equations are different, so
that the models cannot possibly synchronize completely. Typically, the differences
in behavior are in small-scale processes that are not important for the large-scale
behavior of interest.

The system was tested with the three arbitrarily chosen imperfect models of a
“true” SPEEDO system, assuming ongoing nudging of the models to the “true”
system, as if doing weather prediction with continuous data assimilation (Duane
and Selten 2016). The “true” system also provided the land and ocean components
for each of the imperfect models. Results are shown for the simple case of two
identical models and a different third model in Fig. 8. It is seen that after 3 months,
the truth-supermodel error, with adapted coefficients, is less than the error for each
of the individual models, and less than the error for the supermodel with a choice of
uniform connection coefficients that are not adapted.

Then the coefficients were frozen and atmospheric CO2 was doubled in the
“true” system and in each of the models. Other parameters were also varied slightly.
Results are shown in Fig. 9. It is seen that the supermodel gives reduced error
after three months as compared to the weighted averages of the separate models,
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Fig. 8 Truth-model synchronization error in surface temperature (in ıC) for (a) three SPEEDO
models with parameters perturbed away from their values in a “true” SPEEDO model to which
the imperfect models are nudged via the u variable (with two of the models identically perturbed)
and various weighted combinations of their outputs; (b) a supermodel formed by connecting the
three SPEEDO models through their dynamical equations according to Eq. (5) (for temperature)
and analogous equations for u, v, and q, with constant and uniform connection coefficients Cij; and
(c) the same supermodel but with connections adapted according to (6) with analogous equations
for the u, v, and q connections. (2 of the 3 constituent models in the supermodel were chosen to be
the same, so there are only 2 dintinct lines in (b) and in (c))

but the coefficients learned from the single-CO2 runs are less than optimal. That
is, a simple choice of uniform coefficients gives slightly better results than the
learned coefficients (in this artificially constructed case where the imperfect models
were about equally spaced around the true models), but the model with learned
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Fig. 9 Truth-model synchronization error in surface temperature (in ıC) (a) for three SPEEDO
models as in Fig. 8, but with doubled CO2 in both truth and models, for various weighted
combinations of model outputs (colored lines), a supermodel with uniform connections (thick black
line), and a supermodel using the connection strengths from the present-CO2 run (Fig. 8c) at final
time (dashed). Correspondingly for error in zonal wind u at 850 mb (b), error in meridional wind
v at 850 mb (c), and error in humidity q (d)
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coefficients was still effective. Thus the supermodel is not only useful for exploring
state space, but also for exploring an enlarged model space defined by variations in
ancillary parameters.

5 A Weakly Connected Supermodel Formed From Full
Climate Models Connected Only
at the Ocean–Atmosphere Interface

Investigations with full climate models have thus far reached a stage in which
different atmosphere models are connected to a common ocean, as in the early
work of Kirtman et al. (2003) but not directly connected to each other. Yet even
without the direct connections, the supermodel has been shown to be superior to
any weighted combination of outputs of the individual models (Shen et al. 2016).

A climate model was built based on COSMOS (ECHAM5/MPIOM), developed
at the Max-Planck Institut fur Meteorologie, Germany (Jungclaus et al. 2006),
and involved two atmospheric general circulation models (AGCMs). The two
models differed in their cumulus parameterization schemes, Nordeng (1994) and
Tiedtke (1989), to represent typical model diversity because cumulus convection
schemes normally have a strong impact on the climate state (Kim et al. 2011;
Klocke et al. 2011; Mauritsen et al. 2012). The ocean model continuously interacts
with the Nordeng atmosphere and Tiedtke atmosphere. AGCMs are problematic
in representing real air-sea fluxes to different degrees of accuracy. Some may be
better in representing momentum flux (i.e., wind stress on the ocean) and some in
energy (heat) flux (Kirtman et al. 2003). Different weights were used for the energy,
momentum, and mass (i.e., precipitation) fluxes felt by the common ocean, with the
sum of the weights over the two models, for each type of flux, equal to unity. Each
atmosphere feels only its own fluxes.

A machine learning technique, the Nelder–Mead method (Nelder and Mead
1965) was applied to optimize the weights for each of the fluxes. The Nelder–
Mead method is also known as the simplex method, which is used to find a local
minimum in multidimensional domain without having to compute gradients of a
cost function. A performance index (Reichler and Kim 2008) computed over the
Pacific region (160ıE�90ıW, 10ıS�10ıN) was used as a metric because there is
partial synchronization over the tropical Pacific in this configuration; hence it is
reasonable to expect that improvement can only be achieved over this area. The
assessment was started from equal weights and followed the weights suggested
by the simplex method. Each case was spun up for ten years and run for another
30 years to get a reasonable climatology. Over 300 cases were tested along the path
to optimal weights, for which the performance index (error) was reduced and the
correlation between zonal wind stress anomaly of two AGCMs is increased. Note
that the variability of AGCMs tends to cancel over non-synchronized areas, thus
reducing the ocean variability as well.



116 G.S. Duane et al.

The behavior predicted by the supermodel was dramatically improved as shown
in Fig. 10, in which both the SST and precipitation have better agreement with
observations. The cold tongue is stopped around the International Date Line, which
suggests that a west-Pacific warm pool was formed in the supermodel, unlike the
situation in COSMOS(N), COSMOS(T), or their averaged output, COSMOS(E), in
all of which the cold tongue crossed the International Date Line to the western
Pacific and the variability of SST is much larger (not shown). The supermodel
largely mitigates the double ITCZ error found in both COSMOS models and in
most climate models.

The reduction of the SST bias in the supermodel implies that the whole dynamic
is more realistic, suggesting that a much more realistic low level wind system
exists in the supermodel, leading to a better latitudinal position of the Inter-tropical
Convergence Zone (ITCZ). But it is still too wet in the South Pacific convergence
zone.

The key to improved supermodel performance in this case appears to be in better
representation of the air-sea feedbacks. In Fig. 11, we show the Bjerknes feedback
and the thermodynamic feedback for the supermodel (SUMO), the individual
models, and observations. The Bjerknes feedback in the supermodel is almost
perfect and the thermodynamic feedback is much improved.

It can be shown that the supermodel is superior to any weighted combination
of the two model outputs. In Fig. 12, we present a Taylor diagram that shows the
correlation between model and observations, as well as the normalized standard
deviation of the model field, for the various models. It is seen that the supermodel
has almost the same standard deviation of SST as in the observed data, unlike any
of the models, and the correlation coefficient is higher.

An objection to supermodeling in the meteorological community is that ensem-
bles of model runs (where the models are the same or different) are usually
used to estimate spread as an indication of error. One loses this information with
supermodeling if the models synchronize nearly completely. However, the ensemble
of models in the usual practice can be replaced by an ensemble of weights. One can
examine the learning history, or simply look at the performance metric for a random
sample of weights, to infer a plateau in weight space along which the performance is
close to optimal. Then weights on that plateau can be used to define an ensemble of
supermodels. Results of this procedure, shown in Fig. 13, give a plausible ensemble
of SST fields. The models effectively “agree to disagree.”

6 Conclusions

The supermodel scheme for the fusion of imperfect computational models is
not limited to climate models. Supermodeling only requires that the constituent
models come equipped with a procedure to assimilate new measurements from
an objective process in real time and, hence, from one another. The scheme
could thus also be applied to financial, physiological, or ecological models. It
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Fig. 10 The climatology sea-surface temperature (SST) (left panel, scale in ıC) and precipitation
(right panel, scale in mm/day) in the Tropical Pacific from observations, the trained supermodel
(SUMO), the untrained, equal-weighted supermodel (COSMOS(E)), and the two constituent
models, COSMOS(N) and COSMOS(T). Observed SST is from HadISST (1948–1979, the period
used as a training set) while observed precipitation is from GPCP (1979–2012). Because the SST
state over the equator is improved in the supermodel (SUMO), there is one ITCZ in SUMO
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Fig. 11 (a) The Bjerknes feedback (left panel), describing the relationship between the east Pacific
SST anomaly (over 5ıS–5ıN, 150ıW–90ıW, Niño 3 region) and the remote wind stress over the
west Pacific (5ıS–5ıN, 160ıE–150ıW, Niño 4 region); (b) the thermodynamic damping (right
panel) over the Niño 3 area.

Fig. 12 Taylor diagram
showing the correlation
between observed and
modeled SST over the
Tropical Pacific, as well as
the normalized standard
deviation, for COSMOS(N),
COSMOS(T), their
equal-weighted combination
COSMOS(E), all other
weighted combinations (thick
line), and the supermodel
(SUMO). SUMO is clearly
closer to observations (Ref)
than any weighted average

has been speculated that the mind could also be conceived fundamentally as a
supermodel, perceiving/synchronizing with the objective world, but also with a
capacity for interaction among semi-autonomous components and resulting self-
perception commonly experienced as consciousness (Duane 2015b).

Specific studies demonstrated that a wide range of coupling schemes and
connection strengths will lead to inter-model synchronization and hence consensus.
Conversely, in situations with a high degree of nonlinearity in the dynamics,
synchronization is essential—the inter-model connections are needed to give results
surpassing those of output averaging. Indeed the fact that a supermodel, in which the
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Fig. 13 SST fields for an ensemble of supermodels defined by examining the learning history
to select combinations of weights that give near optimal performance, each of which defines a
different supermodel, giving a plausible spread in results

constituent models are themselves synchronized, will in turn readily synchronize
with an objective process, is an instance of a more general hypothesis about the
relationship between internal and external synchronization (Duane 2009; Duane
2015b). The choice of semi-autonomous models to be combined is not essential,
as long as the “gene pool” of models is diverse.

It is interesting that in both the quasigeostrophic supermodel described in Sect. 3
and the COSMOS supermodel described in Sect. 5, the constituent models err
on the same side of reality, with an absence of blocking in the former case and
an anomalous cold tongue in the latter one. Where there is such non-monotonic
behavior, some type of weighted supermodel, and probably a connected super-
model, is guaranteed to outperform an output average. The commonality of such
non-monotonic behavior is not yet clear. But perhaps a principle akin to that of self-
organized criticality (Bak et al. 1987) is at work—when all scales are represented
dynamically, the model naturally gravitates to some kind of critical state, a behavior
that must be manually inserted in parameterized models or learned. The supermodel
reduces the dimensionality of the learning problem by exploiting human experience
to isolate the dimensions along which arbitrary choices tend to be made.

Synchronization, to whatever degree it is present, implies that the supermodel
can be viewed more as a single model than as an ensemble of models. Thus detailed
features will survive that would be washed out in an output average. However, in
many applications one is only interested in statistical properties of these features,
many of which are adequately represented by an average of the statistics of the
separate systems. The degree of model nonlinearity in realistic situations will
determine the advantage of supermodeling for capturing the structures of interest,
or higher-order statistical properties thereof.
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Are We Measuring the Right Things
for Climate?

Christopher Essex and Bjarne Andresen

Abstract If one could exist on climate scales would it make any more sense to
measure laboratory-scale quantities to capture climate conditions than it does for
us on the laboratory scale to compute wave functions to understand the weather?
Clearly the quantum mechanical and the laboratory regime are constructed in terms
of different physical variables. Why do we presume, then, that laboratory regime
quantities like temperature continue to be the appropriate physical variables to
measure in a climate regime? This paper suggests why we may not be measuring the
right things and it will broach some alternatives in the context of a reformulation for
relevant physics more natural to long timescales: slow time. Specifically it shows
that fluctuating velocities can be “thermalized” in suitable averages suggesting that
one might imagine climate in terms of a generalization of wind which may include
persistent meteorological winds, or none at all. But it also shows that temperature
cannot be “thermalized” on long time and space scales, making the notion of local
equilibrium and simple generalizations of temperature problematic for climate.

Keywords Climate • Fundamental theory • Timescale • Thermodynamic
variables • Closure

1 Introduction

We measure thermodynamic quantities like temperature, pressure, and humidity
for weather—all strictly local and transient properties of a physical system out of
global thermodynamic equilibrium. Should we measure the same things for climate?
It is taken for granted that these things continue to have meaning for climate.
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Fig. 1 Two images of the same Niagara Falls downstream flow. The left image is an exposure of
0.4 s, while the right-hand image is exposed for 50 s. Note the flow features visible in the right-
hand image (streamlines, bow waves, standing waves, vortices, etc.) that are not clearly visible or
invisible in the left image

Moreover, the physical climate system is often viewed, to the contrary, as a stable
thermodynamic system, only changeable through external influences, even though
there is no physical reason to view it in that way. But perhaps there is something
thermodynamic-like on large enough space and timescales. If climate can actually
prove to have such a property, it must emerge from an unstable dynamical system
where any direct thermodynamical connections are strictly local. Showing such a
thing exists, if it even does, is a most challenging scientific problem.

In terms of thermodynamical quantities, there are few good analogs on the
gravity-irrelevant, jiggling, and sticky kinetic-atomic scales, despite some interest-
ing efforts to find thermodynamic-like analogues for those microscopic scales. Such
conventional quantities remain tied to the laboratory regime. But studying climate
is not unlike atomic physics upside down, where we are the atoms. While it is
easy to mistake the appearance of, say, snow or palm trees for climate, these are
only indirect manifestations of a grander physics. Trying to imagine that physics
from a laboratory-scale perspective is like viruses trying to theorize about what the
laboratory they are in looks like. This paper suggests that we may not be measuring
the right things for climate, and it will broach some alternatives in the context of a
reformulation for relevant physics more natural to long timescales: slow time.

To fix ideas, consider the images of Fig. 1. The left-hand image of Fig. 1 shows
the turbulent water of the Niagara River downstream from Niagara Falls as the
human eye sees it. The water flow is complex and turbulent as it self-interacts,
and interacts with the shore and river bottom, not to mention surface interactions
with the air. In contrast the right-hand image of the same scene shows phenomena
previously only visible to the most educated eye, if visible at all. Streamlines, bow
and standing waves, or downstream vortices are all plain in the right-hand image,
which is a 50 s time exposure.

On the 50-s timescale physical phenomena reveal themselves that are invisible to
the unaided eye. The reverse is also true. Things are visible to the eye that do not
show up on the 50-s timescale. There is an old trick of architectural photographers
that eliminates all traffic from an image by the use of long lenses, slow film, and
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time exposures. Some of what is visible to the human eye is thus made to disappear
in the resulting images, not unlike the case of some turbulent water in the Niagara
River images.

We have a sense of the appearance and disappearance of different physical
phenomena between different physical regimes through the relationship between
physics on the atomic and laboratory scales. But in that we also understand the
physics of the laboratory scales stands independent of that of the atomic scales
too, even though they are physically consistent and compatible (Essex 2011).
We can in that sense “ignore” the atomic regime in studying laboratory-scale
physics. That is we can make predictions of laboratory-scale phenomena in terms
of laboratory-scale variables only, without explicitly referring directly to specific
kinetic-scale variables.

Can we do this with the 50-s timescale fluid flow from Fig. 1? This is far from
clear. Just because we see structure does not mean that there is a stand-alone physics,
let alone dynamics for that regime. To see if there is dynamics one could generate
a sequence of 50-s time exposures and then run the result as a video. Perhaps the
streamlines and standing waves, etc., change and move in the resulting slow-time
video, perhaps they do not. But if there is a dynamics of the 50-s regime that
stands independent of the laboratory regime, one needs to be able to forecast what
happens on the 50-s timescale video without requiring data from the laboratory
regime. The resulting theory and its associated variables must be able to ignore
the laboratory regime.

The closure problem of fluid mechanics is the famous failure to achieve
independence for the physics of turbulent flows from the laboratory regime. Of
course the theory, as realized in the Navier–Stokes differential equation, can be
integrated to generate integrated variables, which (it was hoped) would stand as
the measurables of a putative theory for turbulent flow, independent of the usual
laboratory regime. But it failed.

Thus to this day not only can we not always accurately predict the flow in a pipe
from first principles but we cannot accurately predict the lowest order statistic either
from first principles. It failed because the integration of the equation creates more
independent integrals over combinations of variables than original variables in the
parent regime. Thus not all values are determined by the integrated equation within
the integrated regime. It is always necessary to refer to the parent regime to evaluate
them, and thus the integrated equation cannot forecast anything, except in (at best)
an empirical manner. The integrated variables are not part of a stand-alone theory,
but are subordinate to the laboratory regime. They do not represent the measurables
of a stand-alone theory for turbulent flow.

The 50-s regime defined through Fig. 1 does not imply that there is anything
special in comparison to, say, a 200-s regime, or a 4-h regime for that matter. All
the issues of structure appearing and disappearing can still be in play between them,
but none need to represent a regime with a stand-alone physical theory independent
of the laboratory regime. The climate problem is simply a version of this problem,
but on a much grander scale. But while there is no established on-going discussion
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of the 50-s regime, there is one for climate. While there are no putative variables for
a putative 50-s theory being regularly measured, putative variables for climate have
boldly been advanced without proof of their merit.

We do not yet know whether climate is simply a phenomenon subordinate to the
meteorological regime (which only differs slightly from the laboratory regime as the
parent regime for climate conceptualization), or a physically distinct regime with its
own governing equations in terms of variables assembled in an as yet unknown
manner from meteorological or kinetic primaries. If the answer to the existence
question is yes, it is an open question as to whether what we measure or assemble
from meteorological measurements today in the name of studying climate actually
represents true climate measurables emerging from a stand-alone theory for climate.

While we cannot answer this question definitively we can use thinking from the
beginnings of slow-time theory to look at aspects of this issue, assuming such a
stand-alone climate regime exists. We can say that certain variables are not likely
to help us with insight into a stand-alone theory for climate. In particular with
previous work on the “slow-time Maxwellian” (Essex and Andresen 2015) we will
show that local equilibrium will not likely survive in a climate regime, which makes
any suppositions about an analog to meteorological local equilibrium problematic,
suggesting that climatological measurables will not be simple averages over local
thermodynamic states.

First we will address this by discussing how one might envision the thermal-
ization of wind. We will find that the kinetic energy of wind is easily thermalized
under particular conditions, making wind something that fits naturally into a climate
picture where systematic winds survive averaging and random fluctuations can be
envisioned as contributing to a long timescale version of temperature. Second we
show that unlike wind, fluctuations in temperature cannot be thermalized, because
they typically produce a distribution that does not have a Maxwellian shape.

This suggests that local thermodynamic states normal for meteorology cannot
exist for a putative climate regime, and raises the question as to whether averages
over local temperature will provide insight into climate.

2 No Wind

Let’s start with a simple example and consider the effect of fluctuations in rest
velocity, u, of a small volume of gas, i.e., wind. Without loss of generality we
proceed in terms of fluctuations in one space dimension. Then the molecular velocity
profile is the Maxwellian,

p.vI u;T/ D
� m

2kT

�1=2 1
p
�

e� m
2kT .v�u/2 : (1)

Imagine that on a large timescale, e.g., the timescale of climate, winds experience
reversals and ranges of magnitudes so that we may plausibly assume a normally
distributed rest velocity u about u D 0 with u being its standard deviation. If
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over the long timescale there is a prevalent velocity u0, it is easy to translate this
distribution to be around that u0. Assuming that the central limit theorem holds, this
convolution of the v and u distributions is itself a Gaussian,

p.vI �/ D
� m

2k�

�1=2 1
p
�

e� m
2k� v

2

(2)

but now with a revised effective temperature, � ,

� D
2u m

k
C T (3)

that contains the fluctuations of wind u. Suppose u 
 5m=s, then for air at
T D 300K, 2u m=k 
 0:1K. This change of temperature of 0:1K is for most
practical purposes negligible. However, for other flows than the material wind, e.g.,
radiation, the ensuing revised effective temperature may be markedly changed. In
any event, what is wind on the laboratory (meteorological) scale is still wind on the
long timescale. But it has changed what is perceived as temperature.

The new temperature here, � is an emergent feature of a well-defined underlying
(small-scale) mechanism, not just a generalization. It is in all respects a legitimate
temperature. As long as u is fluctuating in a Gaussian manner, all of the ideal gas
relationships re-emerge, but in the temperature � instead of T . For example, energy
E along one axis is simply, E D Nk�=2, just as it is in T for the laboratory regime.
Coarsening the timescale for fluctuations in u amounts to thermalizing the wind.

3 No Local Temperature

Next we turn to fluctuations in, temperature, over our long timescale as a more
relevant quantity for climate predictions. Like before for u, we will assume
that fluctuations in T , or some function of T , are normally distributed. This is
speculation, but the aim is only to find a plausible slow-time scenario. Meanwhile
we will not be working with T but � defined in Eq. (3), where wind, u, has
been thermalized. Actually, for mathematical convenience we will be working in
the precision of a distribution rather than its standard deviation. The precision is
1/(standard deviation). For a Maxwellian velocity distribution like Eq. (1) we have
that the standard deviation u /

p
T while the precision  /

p
ˇ where ˇ D

1=kT . However, we will still refer to fluctuations in the precision as “temperature
fluctuations.” Thus larger precision means a tighter distribution.

Now the Gaussian precision,  , is defined by

� m

2k�
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�
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2k� v

2

D
 

p
�

e� 2v2 ; (4)

where  D 1=.
p
2� / D

p
m=.2k�/ D

p
mˇ�=2 and has units of 1/velocity for

the Maxwellian.
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Let us now suppose that this precision itself is not constant but is normally
distributed in a variable � about some reference value  0 such that  D  0 C � .
Then Eq. (4) becomes

 
p
�

e� 2v2 D
 0 C �

p
�

e�. 0C�/
2v2  pv� : (5)

Since  D
p

m=2k� > 0 for finite � , � 2 .� 0;1/ so that the normal distribution
ought to be truncated. However, in typical statistical applications infinite domains
are commonly used instead of semi-infinite ones. For example, the convention of
spectroscopy is to integrate over spectral lines for frequencies, 
 2 .�1;1/, even
though negative frequency makes little physical sense. In this case the inadmissible
values contribute little to relevant integrals as well (Essex and Andresen 2015).

Taking this position we allow � 2 .�1;1/ instead. The corresponding
probability distribution function in � is

p� D
w

p
�

e�w2�2 ; (6)

where w is the Gaussian precision for this � distribution with units of velocity. We
will see that the resulting structure is such that w appears naturally in the expressions
as a velocity, aiding interpretation of molecular velocity v regimes:

p.vI w;  0/ D
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�1

pv�p�d� D
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�
�

w2 2
0 v

2

v2 C w2

	
: (7)

This equation is the temperature counterpart of Eq. (2) for the wind average.
Two distinctive features emerge: This probability distribution function has

polynomial (heavy) tails and a Gaussian core. The shift between these is controlled
by the remarkable argument of the exponential, �w2 2

0 v
2=.v2 C w2/. Notice that

Eq. (7) is almost symmetrical in v and w. For small velocities, when v 	 w, it
becomes the classical Gaussian form exp .� 2

0v
2/ since the denominator in the

pre-factor, .v2 C w2/3=2, behaves like a constant. For large velocities, v � w the
argument of the exponential approaches a constant leaving an asymptotic behavior
of 
 v�3. Figure 2 illustrates this mixed behavior.

Thus near the center of the probability distribution function it behaves like
a Maxwellian with temperature � while far from the core the simple notion of
temperature is not sustainable. This Maxwellian is invalid for jvj > jwj, thus �
has no usable role in the sense of thermodynamics in that moments of the integral
will not produce the traditional simple functions in terms of � .

This is quite different from the result of letting the velocity u fluctuate, where
the result was another Gaussian probability distribution function, but with a revised
temperature, � . The u fluctuations were naturally incorporated into the microscopic
ones. This does not happen with the fluctuations in � since the microscopic quantity
temperature or precision also appears in the normalization factor multiplying the
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Fig. 2 The velocity distribution p.vI w;  0/ of Eq. (7) for w D 2:5 and center precision  0 D 1

(red). A pure Gaussian thermal distribution is shown in green for comparison. The left frame is
a normal linear plot, the right frame a semilog plot where the agreement between the slow-time
distribution (red) and a thermal distribution (green) for small velocities but large discrepancy at
large velocities is even more evident

exponential in Eq. (1). Thus knowledge of short time quantities is needed for
calculation of the longtime average of temperature. In other words, temperature
cannot be part of a self-contained set of variables at long times.

4 Other Winds

The preceding makes two key points clear:

1. For finite w temperature cannot be thermalized like wind. Thus local equilibrium
and all that it implies is tied to the laboratory regime, and not a property of large
space and timescales.

2. Properties like wind can be formally thermalized as above, and mechanical
pressure (distinct from thermodynamic pressure) continue to have meaning.
Persistent winds on long timescales can be captured in the preceding by not
assuming wind fluctuations are centered on zero.

Local equilibrium is tied entirely to the practical existence of intensive ther-
modynamic variables (Essex and Andresen 2013). Local conditions must then be
characterized in a different manner in a putative climate regime. Unlike intensities,
extensive thermodynamic variables can exist in such a regime. Thus we can still
speak, for example, of energy and numbers of molecules. We can still imagine
boundaries that such properties traverse, therefore fluxes still make sense. Vector
flux densities divided by the corresponding volume densities of any extensive
thermodynamic quantity of that slow regime will thus induce a local vector velocity
field. This provides a way to distinguish between fixed conditions and evolution.
When all vector velocity fields become identical, all processes stop. There is a
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rest frame in which there are no flows. The need for local equilibrium is thus
circumvented. The various vector velocity fields are referred to as generalized winds
(Essex 2013). Furthermore, all flows are put onto a common scale: velocity. A
departure in velocities from each other is a measure of the vigor of processes.

5 Conclusion

This paper has contemplated the perspective of an observer who would regard
the laboratory regime as jiggly and microscopic, much as we see the kinetic or
nanoscales. We aimed to get beyond pure speculation by focusing on how the
Maxwellian distribution might be seen by such a slow-time observer. The window
of observation for this observer would be bounded by events that are too close in
time to distinguish from his point of view (fast time), which would include our
regime. We would regard the putative observer as experiencing slow time. Hence
the resulting distribution is described as the slow-time Maxwellian.

The technique was to form compound distributions by fluctuating the wind, u,
and temperature, T . Temperature and velocity emerge with a conjugate quality,
which occurs explicitly in the case of thermalizing of wind. But it also appears in
a more subtle manner in the precision picture of the Gaussian distribution because
fluctuating precision led to a normal distribution with its own precision (i.e., the
precision of the precision). The latter has units of velocity, and this velocity, w, plays
a decisive role in the structure and behavior of the resulting compounded densities.
It acts like a reference velocity separating regimes. It divides Gaussian-like structure
from polynomial, heavy-tail structure.

An unusual hybrid of Gaussians with heavy tails emerges in this paper as a
key feature. Heavy tails clearly can be expected to be a feature of the slow-time
regime. This has some consequences. First, the notion of local equilibrium ceases
to be strictly valid. There is no straightforward temperature, as there is in the
Maxwellian case. There could be other qualities that might play such a role in
the slow-time regime, but they would not be temperature strictly speaking. If w is
large enough, the core would still behave Maxwellian, which would permit a limited
return to temperature as long as the core of the probability distribution function is
of importance. Second, the wings of the distribution need to be considered from a
physical standpoint to avoid divergent moment integrals.

The slow-time observer is left with a rather different behavior for the ideal gas.
There are heavy tails and a nearly Gaussian core, becoming more Gaussian with
increasing w. But as the tails are heavy, we observe divergent second moments.
Does this mean that energy becomes infinite? Not if there are only a finite number of
particles and finite energy in the underlying system to begin with. The composition
of probability distribution functions changes nothing in this regard.

The fundamental finding of this study is that while wind persists in slow time
(the climate perspective), temperature does not. Hence any conclusions based on an
extrapolation of short laboratory time measurements of temperature are ill founded:
We are not measuring the right things.
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What Have Complex Network Approaches
Learned Us About El Niño?

Qing Yi Feng and Henk A. Dijkstra

Contribution to Nonlinear Advances in Geosciences

Abstract A short overview is given of recent work on the application of network
techniques to the El Niño/Southern Oscillation phenomenon in the Tropical Pacific.
Although several new and useful diagnostics have been developed, progress regard-
ing the understanding of El Niño dynamics has been rather limited. Success has been
claimed to forecast El Niño events 1 year ahead using network-based predictors, but
tests are limited and the reason for this skill is still unclear.

Keywords Network approaches • El Niño • Diagnostics • Dynamics •
Predictability

1 Introduction

Over the last decade, complex network-based approaches have been applied to
tackle problems in climate dynamics (Tsonis et al., 2006). This is far from trivial
as network theory deals with properties of graphs, while climate variability is asso-
ciated with continuous fields (e.g. temperature) that evolve in time. A conversion
from a continuous description to a discrete one can be easily made by considering
the dependent quantities only on a grid (consisting either of observation locations
or of model grid points), which define the ‘nodes’ of the graph. However, there are
many ways to define the ‘edges’ or ‘links’ and, as will be discussed below, several
suggestions for such a network ‘inference’ have been proposed.

In this short review, we will provide an overview what complex network
approaches have learned us about the variability known as El Niño/Southern Oscil-
lation (ENSO). The El Niño phase of this phenomenon appears about every 4 years
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Fig. 1 (a) NINO3.4 index over the period 1950–2015. (b) First EOF of SST determined from
HadISST data over the period 1950–2000. Data from the Climate Explorer (climexp.knmi.nl)

in the equatorial Pacific leading to a warming of the surface waters in the eastern
equatorial Pacific up to 5 ıC. The last El Niño had its maximum around December
2015 and was, in several measures, one of the strongest of the instrumental records.
An often used ENSO index is NINO3.4, which is the area-averaged sea surface
temperature (SST) anomaly over the region 120ıW–170ıW � 5ıS–5ıN (Fig. 1a).
ENSO variability is traditionally analysed with linear, stationary statistical methods,
such as principle component analysis. The first Empirical Orthogonal Function
(EOF) of SST anomalies, for example, the Hadley Centre Sea Ice and Sea Surface
Temperature (HadISST) data set, shows a pattern with largest amplitudes in the
eastern Pacific (Fig. 1b) and strongly confined to the equatorial region.

As every El Niño event has substantial impact on climate worldwide, with
typically droughts on the western part of the Pacific and flooding on the eastern
part, it is important to develop skillful forecasts of the events, preferably with a
1 year lead time. Before such forecasts can be made, the system itself has to be
well understood and the latter requires models that adequately capture the processes
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behind the phenomena. To test the output of these models, meaningful diagnostics
from observations are required. In the results below, we address these three issues
(diagnostics, dynamics, forecasting) and discuss how complex network theory has
contributed to progress over the last decade.

2 Results

2.1 ENSO Diagnostics

Network methods have added several new diagnostics to the traditional statistical
analyses techniques. The most straightforward diagnostic is the degree field of
an unweighted network which arises by thresholding zero-lag cross (Pearson)
correlations of SST time series at different locations in the equatorial Pacific (Feng
and Dijkstra, 2016) over the whole period 1945–2010. This degree field shows very
similar features as the first EOF (cf. Fig. 1b) that is determined directly from the
eigenvectors of the covariance matrix. Indeed, there is a close relationship between
principle component analysis and Pearson Correlation Climate Network (PCCN)
analysis, with additional information on the higher-order statistical interrelation-
ships provided by the network analysis (Donges et al., 2016).

More sophisticated network-based diagnostics were developed from surface
atmospheric temperature (SAT) data by Gozolchiani et al. (2011) using optimal lag-
� correlations between different locations on the sphere. Using such link strengths
leads to a weighted network, for which the in-degree (negative lag optimum) and
out-degree (positive lag optimum) can be determined. Gozolchiani et al. (2011)
identify a set of nodes, which they refer to as the El Niño Basin (ENB) nodes
(Fig. 2a), that have a relatively low link strength during an El Niño event. The main
result in Gozolchiani et al. (2011) is that the in- (out-) degree of these ENB nodes
decreases (increases) substantially during an El Niño event and makes this set of
nodes more autonomous (Fig. 2b). The same network reconstruction and analysis
methods have been used in Wang et al. (2016) to detect equatorial Kelvin and
Rossby waves in sea surface height data.

Community detection algorithms have also been applied to networks constructed
from global data of SST, precipitation and SAT (Fountalis et al., 2015; Tantet
and Dijkstra, 2014; Tsonis et al., 2010). Communities are groups of nodes tightly
connected together and weakly connected to the rest of the network. As such, they
can be regarded as subsystems which operate relatively independently of the other
communities. An example of communities as deduced from a PCCN determined
from SST data using the Infomap algorithm (Rosvall and Bergstrom, 2007) is shown
in Fig. 3. Community #1 is by far the dominant community in terms of PageRank
(69%) and size. Most of the nodes are located in the tropical Pacific (and related to
ENSO) but remote patches, for example, in the extratropical Pacific and tropical
Indian Ocean, are also part of this community. This shows the teleconnections
that exist between the ENSO variability and remote regions over the globe (Tantet
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Fig. 2 (a) Nodes of the network within the El Niño Basin (ENB) indicated in solid red symbols,
and the red rectangle denotes the NINO3.4 index area. (b) In and out-out links of the ENB nodes
(the ENB nodes are indicated as group C). Figure from Gozolchiani et al. (2011) reproduced with
permission from the American Physical Society (APS)

and Dijkstra, 2014). The community detection methods allow to bypass some
shortcomings of EOF analysis (e.g. orthogonality) and hence provide additional
information on global patterns of SST variability with respect to these classical
analysis tools. The community analysis also gives new insight into the relationship
between patterns of ENSO variability and the global mean surface temperature
(Tantet and Dijkstra, 2014).

The disadvantages in using the thresholding in the network inference method
have been shown in Fountalis et al. (2015) who use a cluster method to
define connectedness in SST observational and model data. They also presented
techniques, such as the Adjusted Rand Index (ARI) and the network distance
D, to compare networks and efficiently used these to compare model results of
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Fig. 3 Communities from a PCCN of SST, ordered by the total PageRank (Brin and Page, 1998) of
their nodes. Figure from Tantet and Dijkstra (2014) reproduced with permission from the European
Geosciences Union (EGU)

ENSO variability and those of observations. Network community techniques have
also been applied to output of Global Climate Models (GCMs). For example, by
analysing GCM output from CMIP5 models under the RCP8.5 forcing scenario,
Fountalis et al. (2015) find the ENSO intensity will decrease after 2100 due to
increase in greenhouse gas forcing.

2.2 ENSO Dynamics

The theory of ENSO has been developed through the Zebiak and Cane (ZC)
model (Zebiak and Cane, 1987). The leading recharge–discharge oscillator view
of ENSO consists (Jin, 1997) of the action of positive (Bjerknes’) feedbacks that
are responsible for the amplification of SST anomalies and ocean adjustment (i.e.
through equatorial waves) providing a negative delayed feedback (Neelin et al.,
1998). The strength of these feedbacks is measured by a coupling strength, usually
indicated by �, which is proportional to the change in wind stress due to a change
in SST. The parameter � also captures the strength of the ocean surface circulation
response to changes in the surface wind stress.

In the ZC model, the (steady or seasonal) background Pacific climate, e.g.,
provided by observations, becomes unstable when the strength of the coupled
processes exceeds a critical value. When � > �c, oscillatory motion develops
spontaneously (Fedorov and Philander, 2000) and the spatial pattern of the resulting
variability is usually referred to as the ENSO mode. When conditions are such that
� < �c, the ENSO mode is damped and can only be excited by noise (Burgers,
1999; Penland, 1996). Hence, although the noise driven and sustained ENSO
variability views are sometimes considered to be two different ENSO mechanisms,
both are easily reconcilable (Dijkstra, 2013): it just depends on whether the
background climate is stable (� < �c) or unstable (� > �c).

Both the background state and the growth/decay of the ENSO mode are
controlled by similar coupled processes (Van der Vaart et al., 2000). In addition,
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Fig. 4 The 10-year sliding window degree skewness index Sd (black curve), the 3-month running
mean NINO3.4 index (green curve) from the observed SST, and the second principal component
(PC2) of the wind-stress residual (magenta curve) from NCEP zonal wind-stress data of the same
period. Figure from Feng and Dijkstra (2016) reproduced with permission from the American
Physical Society (APS)

the background climate is also affected by processes outside of the Pacific basin
such as those at midlatitudes and in the equatorial Indian Ocean and Atlantic
Ocean (Wieners et al., 2016). Caused also by slow changes in the external radiative
forcing, the background state has a strong non-stationary component on decadal-
to-interdecadal time scales. The main challenging problem is whether one can
determine if the feedbacks will amplify or damp SST anomalies in such a slow
transient background state.

In Feng and Dijkstra (2016), this problem has been addressed using PCCNs and
recurrence networks, both reconstructed from SST observations and SST output
from the ZC model. From the ZC model results, the skewness of the degree
distribution Sd of the PCCN was found to be a good indicator of the stability of
the Pacific background state. Indeed, Sd is well anti-correlated with the Bjerknes
stability (BJ) index (Kim and Jin, 2011) in several GCMs, an often used metric
used to quantify the stability of the Pacific climate. The variation of Sd shown in
Fig. 4 indicates periods of high background stability (high values of Sd) and ones
with low background stability. For example, the relatively high value of Sd in early
1968 indicates that the Pacific background climate in 1968 was quite stable and
the noise must have had a large influence on the development of the 1968 El Niño
event. Indeed, the principle component of the wind stress residual from the National
Centers for Environmental Prediction (NCEP) wind stress data (Kalnay et al., 1996)
shows that high-noise variability occurred during early 1968 (the magenta curve in
Fig. 4). On the contrary, the 1992 El Niño event would be considered as a sustained
case, because of the relatively low value of Sd and low noise variability in early
1992. Actually, the value of Sd was overall low (less stable Pacific background state)
during the early 1990s with a global minimum just before 1997.
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Fig. 5 Forecasting results in Ludescher et al. (2013) where the average link strength of the climate
network S is plotted versus time. The value of ‚ is the decision threshold. Green arrows indicate
correct predictions and dashed arrows indicate false alarms. Figure from Ludescher et al. (2013)
reproduced with permission from the US National Academy of Sciences (NAS)

2.3 ENSO Forecasting

The link strength concept proposed in Gozolchiani et al. (2011) was used in
Ludescher et al. (2013) to use the average link strength as a predictor for El Niño
events. The idea is that when the average link strength S of the ENB nodes (cf.
Fig. 2) crosses a threshold while monotonically increasing, an El Niño will develop
about 1 year later. A training SAT data set for the period 1950–1980 was used to
determine the threshold ‚ and then the period 1980–2011 was used as test data
to evaluate the predictor (Fig. 5). The skill of the predictor over this test period is
indeed remarkable (green arrows in Fig. 5 are correct predictions). Ludescher et al.
(2014) used this method also to make a successful prediction of the onset of the
weak El Niño in 2014 and a strong El Niño appeared at the end of 2015.

In Feng et al. (2016), machine learning techniques are used to predict the
occurrence of El Niño events. As attributes, several network quantities as in
Gozolchiani et al. (2011) are used. The method used for supervised learning is an
Artificial Neural Network with a 3 � 3 layer structure (three neurons per layer). The
training set is from May 1949 to June 2001, the test set is from June 2001 to March
2014, and the prediction time � is 12 months. Figure 6 shows the classification
results on the test set, where 1 stands for the occurrence of an El Niño event and
0 means no event. By applying a specific time-series filter, which eliminates the
isolated and transient events, and joins the adjacent events, Fig. 6 shows that this
forecasting scheme gives accurate alarms 12 months ahead for the El Niño events at
least in 2002 and 2006, without a false alarm in 2004. Hence, the machine learning
toolbox also appears to provide skillful 1-year ahead predictions for the occurrence
of El Niño events.
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Fig. 6 Prediction results on the test set from June 2001 to March 2014. Figure from Feng et al.
(2016) reproduced with permission from the European Geosciences Union (EGU)

3 Summary and Discussion

Through the example of the El Niño/Southern Oscillation (ENSO) variability, we
have given a brief review of what complex network approaches have to offer
regarding diagnostics, dynamics, and forecasting of this important phenomenon
in climate research. Considering the amount of effort put into the application of
network techniques to ENSO variability, the results are slightly disappointing as
no real breakthroughs in either El Niño diagnostics, El Niño dynamics, or El Niño
forecasting has occurred.

Network approaches definitely have led to new interesting diagnostics, in
particular the average link strength of a weighted SAT network (Gozolchiani et al.,
2011). The fact that the ENB nodes become more autonomous during the start of
an El Niño can indeed be understood from ENSO theory. During the start of an El
Niño, the SAT over the ENB region becomes more and more controlled by SST and
hence the in-degree of these nodes is expected to decrease. On the other hand, SST
is more and more controlling the winds over the equatorial Pacific and hence the
out-degree of the ENB nodes increases.

Considering patterns of SST variability, information on higher-order statistical
interrelations is provided by network analysis (Donges et al., 2016), compared to the
traditional statistical analysis, such as EOFs analysis. In addition, with community
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analysis techniques one can isolate global SST patterns of variability, including
ENSO teleconnections, much more clearly (Tantet and Dijkstra, 2014) than with
EOF methods.

The results on determining properties of ENSO dynamics, such as the stability
boundary, have been less successful. Certainly, there is a nice anti-correlation
between the index Sd in Feng and Dijkstra (2016) and the Bjerknes stability index
in Kim and Jin (2011), but Sd is only a nominal measure of stability and cannot
solely determine the stability boundary from observations. The recurrence network
measures used in Feng and Dijkstra (2016) indicate that there are different classes
of El Niño’s but give little connection to the underlying feedback processes causing
these differences.

One of the more attractive results has been the claim that network- based pre-
dictors can provide skillful 1-year lead time forecasts of El Niño events (Ludescher
et al., 2013). Indeed, it is not impossible that this could occur, as also the machine
learning-based forecasts (Feng et al., 2016) indicate. However, the connection to the
underlying physics is still lacking and needs to be clarified to put some confidence
on these forecasts.
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Late Quaternary Climate Response at 100 kyr:
A Noise-Induced Cycle Suppression Mechanism

Ivan L’Heureux

Abstract Late quaternary climate proxies suggest the presence of a strong cycle at
a period of about 100 kyr. It is thought that this cycle could be due to variations in
the eccentricity of the Earth’s orbit, as part of the Milankovitch forcing. However,
based on simple energy balance arguments, the eccentricity variations are too small
to explain the strength of the climatic response. Some amplification mechanisms
based on ice sheet dynamics or ocean circulation models have been suggested to
explain this paradox. But recently (Wallmann 2014), a different explanation was
proposed. There, a non-linear biogeochemical model coupling seawater alkalinity,
dissolved phosphate, dissolved inorganic carbon, and atmospheric carbon dioxide
without any orbital forcing was developed. As the parameters vary, the system may
undergo a Hopf bifurcation and exhibits self-organized oscillations with a period
that has the appropriate order of magnitude but remains larger than 100 kyr. In
this contribution, I revisit Wallmann’s model by adding a weak stochastic periodic
Milankovitch forcing at 100 kyr in the spirit of stochastic resonance phenomena. It
is seen that for sufficiently high noise intensity, a noise-induced cycle suppression
occurs, whereby the self-sustained oscillation of biogeochemical origin is destroyed
and a strong signal persists at 100 kyr. This mechanism could thus provide an
amplification mechanism for the presence of a strong response under the influence
of a weak Milankovitch forcing.

Keywords Biogeochemical cycle • 100 kyr cycle • Milankovitch forcing •
Noise-induced transitions • Stochastic resonance

1 Introduction

In the last million years, the Earth’s climate has shown variations typically
characterized by cycles of gradual cooling and glaciation followed by a sudden
transition to a warm interglacial period. The climate proxies show strong signals
at periods near 23, 41, and 100 kyr (Imbrie and Imbrie 1980; Petit et al. 1999).

I. L’Heureux (�)
Department of Physics, University of Ottawa, Ottawa, ON, K1N6N5, Canada
e-mail: ilheureu@uottawa.ca

© Springer International Publishing AG 2018
A.A. Tsonis (ed.), Advances in Nonlinear Geosciences,
DOI 10.1007/978-3-319-58895-7_8

143

mailto:ilheureu@uottawa.ca


144 I. L’Heureux

The first two periods can be linked to the precession cycle of the Earth’s orbit and
the change in the obliquity of the Earth’s axis (Milankovitch forcing). Although
the variation of the eccentricity of the Earth’s orbit exhibits a 100 kyr period, the
resulting difference in insolation appears to be too small to have a direct effect on
the climate. The cause of the strong signal at 100 kyr in climate proxies remains
unclear.

Non-linear amplification mechanisms of the weak eccentricity forcing have been
proposed to explain the 100 kyr cycle. For instance, ice sheet dynamics coupled
with ocean circulation (Imbrie et al. 1993) could act as a non-linear amplifier of
the precession and obliquity forcing terms. When the ice sheet becomes too large,
internal dynamics would drive the climate in the 100 kyr spectral band. Other
researchers have proposed that the 100 kyr signal is rather the manifestation of a
self-organized limit-cycle solution in a non-linear climate system that is otherwise
not forced by eccentricity variations. For instance, Gildor and Tziperman (2001)
proposed an unforced non-linear box model coupling sea-ice and land-ice volume,
air and sea-surface temperatures, and ocean salinity, in which limit-cycle solutions
are obtained with a period of the order of 100 kyr. Saltzman and Maasch (1988)
presented a three-variable model coupling global ice mass, North Atlantic Ocean
circulation, and atmospheric CO2 content. In that autonomous dynamical system,
limit-cycle solutions with a period of the order of 100 kyr are also obtained.
However, in his analysis of the Vostok ice core, Shackleton (2000) proposed that
the 100 kyr signal does not arise from ice sheet dynamics, but that the global CO2

cycle plays a determining role. Recently, Wallmann (2014) proposed an interesting
biogeochemical model coupling the total ocean alkalinity, the dissolved phosphorus,
the dissolved inorganic carbon, and the atmospheric CO2 concentration, without any
orbital forcing. In his model, the atmospheric CO2 is the main driver of climate
change. His model thus generates limit-cycle solutions in climate proxies that are
broadly consistent with the sedimentary record. However, although the cycle period
is of the order of 100 kyr, it remains slightly higher.

Another class of models considers the effect of randomness (noise) on a non-
linear system (Horsthemke and Lefever 1984; Ridolfi et al. 2011). In Benzi et al.
(1982), a simple bistable energy-balance climate model is considered, with a weak
orbital forcing signal and an additive noise term. This forced bistable system may be
thought of as double-well potential with a barrier height that is slightly modulated
by the forcing. In the presence of noise, the system undergoes transitions from one
stable state to the other. Another time scale appears in the problem: the inverse of
the mean transition rate. This transition rate depends exponentially on the ratio of
the barrier height to the noise intensity. Transitions are favorable when the noise
intensity is such that the mean transition time is equal to the semi-period of the
forcing. This signal amplification mechanism by the noise is termed “stochastic
resonance.” Another interesting effect of noise is “coherence resonance,” whereas
noise perturbs an unforced system in the neighborhood of a Hopf bifurcation point.
In this case, noise-induced transitions occur between a stable point and a limit-cycle,
without the need of any external forcing. Pelletier (2003) has applied this concept to
a simple bistable energy-balance climate model subjected to a time-delay feedback
due to lithospheric subsidence and ice sheet rebound.
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In this contribution, I explore yet another effect of noise as it applies to
Wallmann’s biogeochemical climate model (Wallmann 2014). Parameter values are
chosen such that—in absence of noise and orbital forcing—a limit-cycle solution is
generated, with a period slightly larger than 100 kyr. I then add to the temperature
a weak orbital forcing term at 100 kyr and a noise term. It is seen that, as the
noise intensity increases, the stochastic limit-cycle becomes suppressed, so that
only the orbital forcing signal survives. Yet, the dynamics feels the presence of
the underlying deterministic limit-cycle and large variations in the climate proxies
result. I call this mechanism “noise-induced cycle suppression.”

The text is organized as follows. In Sect. 2, I offer a review of Wallmann’s
deterministic biogeochemical climate model. In Sect. 3, I illustrate the basic noise-
induced cycle suppression mechanism by investigating a simple abstract model for
a supercritical Hopf bifurcation subjected to a weak forcing and to multiplicative
Gaussian white noise. In the next section, I present the numerical results pertaining
to the weakly forced, noisy Wallmann’s model. Section 5 offers concluding remarks.

2 Wallmann’s Model: A Brief Review

In this section, I present a brief description of the Wallmann’s deterministic model.
The reader will find the details in Wallmann (2014). In this box model, the biosphere
is reduced to one atmospheric compartment and three oceanic compartments: the
shallow ocean s (depth smaller than 50 m), the intermediate thermocline region
i (depth between 50 and 1200 m), and the deep ocean d (deeper than 1200 m).
For each oceanic compartment, three dynamical variables are considered: the total
alkalinity TA, the dissolved phosphorus concentration DP, and the dissolved inor-
ganic carbon concentration DIC. In the atmospheric compartment, the dynamical
variable of interest is the partial pressure of CO2, pCO2. Thus, ten variables are
coupled together. In his approach, the solar forcing does not vary in time. The
periodic behavior of the system rather results from biogeochemical self-organization
coupled with sea-level changes parameterized by air temperature. Table 1 lists
the ten ordinary differential equations defining the model. The various processes
involved are listed in Table 2 and are now briefly introduced.

I first mention the biogeochemical and burial processes. Photosynthetic pri-
mary export production of particulate inorganic carbon (PIC), particulate organic
phosphorus (POP), and particulate organic carbon (POC) is modeled by phosphorus-
limited first-order kinetics in the shallow ocean. Microbial degradation of POP and
POC in the thermocline and the deep oceans occurs at a rate proportional to the
POP and POC production rate, the coefficient of proportionality being determined
by mass balance between production, degradation, and burial. The kinetics of TA
and DIC in the shallow ocean compartment is also directly affected by deposition of
neritic carbonate shells (which represents a PIC burial term). In the deep oceans, PIC
undergoes microbial degradation as well but is also affected by calcite dissolution
or precipitation, characterized by the degree of saturation � D [CaC2][CO3

�2]/Kcal
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Table 1 Wallmann’s model: deterministic dynamical equations

Name of variable Differential equation

DPs (shallow ocean—�M): d.DPs/

dt D V�1
s .�FEPOP C FIS C FRDP/ :

DPi (thermocline—�M): d.DPi/

dt D V�1
i .FDPOPI C FDI � FIS/ :

DPd (deep ocean—�M): d.DPd/

dt D V�1
d .FDPOPD � FDI � FHY/ :

DICs (shallow ocean—�M): d.DICs/

dt DV�1
s .�FEPOC�FEPIC�FBPICS�FCO2SACFISCFRTA/ :

DICi (thermocline—�M): d.DICi/

dt DV�1
i .FDPOCI C FDI � FIS/ :

DICd (deep ocean—�M): d.DICd/

dt D V�1
d .FDPOCD C FDPICD � FDI � FALT C FSP/ :

TAs (shallow ocean—�M): d.TAs/

dt D V�1
s .�2FEPIC � 2FBPICS C FIS C FRTA/ :

TAi (thermocline—�M): d.TAi/

dt D V�1
i .FDI � FIS/ :

TAd (deep ocean—�M): d.TAd/

dt D V�1
d .2FDPICD � FDI � FALT/ :

pCO2 (�atm): d.pCO2/
dt D M�1

a .FCO2SA � FWC � FWS C FVO C FMC C FWO/ :

with respect to calcite, where Kcal is the solubility of calcite in seawater. The
calcium concentration [CaC2] is considered constant, whereas Kcal is determined
by using the thermodynamic expressions of Zeebe and Wolf-Gladrow (2001) from
the knowledge of the deep ocean pH (which is a function of DIC and TA), deep
ocean salinity, pressure, and temperature. The latter three parameters are considered
constant.

Next, I mention the inter-compartment exchange processes. TA, DIC, and DP are
affected by vertical eddy mixing from one oceanic compartment to the adjacent one.
The mixing kinetics between two compartments is modeled as being proportional
to their concentration difference. The CO2 exchanged between the shallow ocean
and the atmosphere is modeled as a term proportional to the CO2 partial pressure
difference between the sea surface and air, with a proportionality constant that
depends on the gas transfer piston velocity and the solubility of CO2 in seawater.
The latter depends on sea-surface temperature.

I now list the external source and sink processes. Sources of atmospheric CO2

include continental releases of CO2 by volcanic activity, metamorphism, and organic
carbon weathering. Continental weathering of carbonates and silicates constitutes
sinks of atmospheric CO2. The rate of these weathering processes is a function of
air temperature. DP, TA, and DIC in the shallow oceans are affected by riverine
inputs. Riverine input of DP is the result of apatite weathering. As such, it is equal
to the sum of the weathering rates of carbonates, silicates, and organic carbon.
Similarly, riverine inputs of TA and DIC depend on the weathering rates of silicates
and continental carbonates. As far as the deep ocean is concerned, hydrothermal
uptake of phosphorus constitutes a sink of DP with a rate proportional to its
concentration, whereas hydrothermal release of H2CO3 at submarine spreading
centers and carbonate formation resulting from the alteration of basaltic oceanic
crust influence the dynamics of TA and DIC. The latter two processes are assumed
to occur at a constant rate.
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Table 2 Notation used in Table 1

Acronyms for the dynamical variables:
DIC: Dissolved inorganic carbon
DP: Dissolved phosphorus
pCO2: Partial pressure of CO2 in the atmosphere
PIC: Particulate inorganic carbon
POC: Particulate organic carbon
POP: Particulate organic phosphorus
t: Time
TA: Total alkalinity
Mass currents (in Tmol/year) (Note: a subscript H refers to a modern Holocene value):
FALT: Uptake of dissolved carbon by alteration of basaltic oceanic crust
FBPICS: Burial of PIC in the shallow ocean by neritic shell deposits
FCO2SA: Exchange of CO2 between the atmosphere and the shallow ocean
FDI: Transport of dissolved species by mixing from the deep ocean to the thermocline
FDPICD: Degradation of PIC in the deep ocean
FDPOCD: Degradation of POC in the deep ocean
FDPOCI: Degradation of POC in the thermocline
FDPOPD: Degradation of POP in the deep ocean
FDPOPI: Degradation of POP in the thermocline
FEPIC: Export production of PIC
FEPOC: Export production of POC
FEPOP: Export production of POP
FHY: Uptake of DP by hydrothermal activity
FIS: Transport of dissolved species by mixing from the thermocline to the shallow ocean
FMC: Source of atmospheric CO2 from continental metamorphism
FRDP: Riverine DP input
FRTA: Riverine TA input
FSP: Source of dissolved carbon submarine spreading centers
FVO: Source of atmospheric CO2 from continental volcanic activity
FWC: Sink of atmospheric CO2 from weathering of continental carbonates
FWO: Source of atmospheric CO2 from weathering of continental organic carbon
FWS: Sink of atmospheric CO2 from weathering of continental silicates
Extensive parameters:
Ma: Number of moles in the atmosphere (1.773 � 108 Tmol)
Vd: Volume of the deep ocean compartment (94.4 � 1016 m3)
Vi: Volume of the thermocline compartment (37.39 � 1016 m3)
Vs: Volume of the shallow ocean compartment (1.81 � 1016 m3)

In the model, air temperature directly affects the silicates and continental
carbonates weathering rates. Air temperature TA is obtained by using a standard
expression that relates global temperature to changes in the atmospheric CO2

content:
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TA D � log .pCO2=280/C TAH (1)

where pCO2 is in �atm, � D 7.2ıC and TAH D 15ıC (H refers to “Holocene,” the
modern epoch). Similarly, the solubility of CO2 in the shallow ocean depends on
ocean surface pH (hence on its DIC and TA), salinity (considered constant), and
sea-surface temperature, TSS. By analogy with Eq. (1), the latter is taken as

TSS D �SS log .pCO2=280/C TSSH (2)

where �SS D 4.1 ıC and TSSH D 17.88ıC. An equilibrium thermodynamic
calculation of the solubility is then performed using the expression of Zeebe and
Wolf-Gladrow (2001).

Finally, an important feature of Wallmann’s model is the consideration of sea-
level falls SLF. As pCO2 changes, air temperature changes, and sea-level is affected.
The lower is the air temperature, the higher the sea-level fall. Reports by Grant et al.
(2012) and Foster and Rohling (2013) suggest a linear correlation between sea-level
falls and air temperature:

SLF D SLFLGM
TAH � TA

TAH � TALGM
(3)

where the calibration is taken at the last glacial maximum (LGM) with
SLFLGM D 120 m and TALGM D 12ıC. From hypsographic data (Eakins and
Sharman 2012), the sea-level changes are then used to calculate the change in
exposed shelf area AEX, the seafloor area covered by the shallow oceans ASS, and
the margin (depth < 1200 m) seafloor area AM . These changes in areas directly
affect some rate processes. Thus, the total rates of organic carbon and continental
carbonates weathering are proportional to the exposed shelf area AEX. The total
burial rate of PIC in the shallow ocean (neritic carbonate deposition) is proportional
to seafloor area under the shallow oceans, ASS. The total burial rates of POC and
POP in the shallow and thermocline ocean compartments are proportional to the
margin seafloor area, AM . And the burial of POC in the deep ocean is inversely
proportional to AM . The latter effect reflects the fact that, for high sea-level falls
(low AM), larger volumes of fine-grained terrigenous sediments from the exposed
continental shelf are deposited, which in turn enhances the burial rates of POC.

In fact, Wallmann explored various amended versions of his base model. In the
first one, the rate coefficients for ocean ventilation (mixing terms) are no longer
constant but change linearly with sea-surface temperature TSS. This reflects the fact
that mixing is not as efficient under glacial conditions, when TSS is smaller. This
version of the model generates limit-cycle solutions for a significantly larger range
of parameter values. This is the version that I have adopted here.

Other model versions proposed by Wallmann include (1) an increase in phos-
phorus utilization due to dust-driven iron fertilization under glacial conditions; (2)
a decrease in the rate of POP and POC microbial degradation in the thermocline
resulting from the increase in sinking velocity of particulate matter as more dust
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provides more ballast material under glacial conditions; and (3) a stepwise change
in the mixing rate between the thermocline and the deep ocean during cooling
trends while keeping the mixing rate between the thermocline and the shallow ocean
unchanged. These models produce response curves that are more asymmetric and
(in the third version) a limit-cycle period closer to 100 kyr. However, they use a
large number of fitting parameters. I will not consider these variants here.

Using reasonable estimates of the modern parameters, Wallmann was able to
reproduce a steady-state solution consistent with modern values of the TA, DIC, PD,
and pCO2. Some parameters are less well constrained, however. So, it is estimated
that the riverine phosphorus input current FRDPH varies from 0.1 to 0.18 Tmol/year
and the total atmospheric carbon source current FVO C FMC C FWOH can vary
between 10 and 16 Tmol/year.

Typically, the actual riverine inputs of phosphorus and carbon are smaller than
their steady-state burial rates, so that DP, TA, and DIC initially decline. At a
very early stage, the decrease in DP decreases photosynthetic production and the
atmospheric CO2 increases briefly. But, soon, the decline in TA and DIC generates
a decrease in atmospheric CO2 and a temperature decrease. As a result, the sea-level
falls. Many positive feedback mechanisms then enhance the decrease in atmospheric
CO2. (1) As the exposed shelf area increases, the total weathering of continental
carbonates increases, thus removing more CO2 from the atmosphere. (2) As the
submerged ocean area decreases, the total burial of particulate matter decreases,
thus leaving more DP in the ocean, which enhances photosynthetic production
and decreases atmospheric CO2. (3) As the sea-surface temperature decreases, the
CO2 solubility in seawater increases, thus contributing to a further decrease in
atmospheric CO2. However, there are negative feedbacks that limit the decrease
in CO2. (1) As temperature decreases, the margin oceanic area decreases and less
dissolved carbon is removed by burial of neritic shells. Thus, DIC and TA increase,
contributing to an increase in atmospheric CO2. (2) As temperature decreases, the
weathering of continental silicates (an atmospheric CO2 sink) is not as efficient.
(3) As the sea-level falls, the exposed shelf area increases and the total weathering
of organic carbon increases, directly contributing to atmospheric CO2. (4) As the
submerged area decreases, the total burial of organic carbon decreases, removing
less CO2 from the ocean, which contributes to an increase in atmospheric CO2.
Thus, the potential exists for self-oscillatory solutions. The balance between these
mechanisms (modulated by a temperature-dependent mixing when ventilation is
included) will determine whether a fixed point or a limit-cycle solution is obtained.

To illustrate the model, Fig. 1 shows the air temperature, the sea-surface tem-
perature, the CO2 atmospheric concentration, the sea-level and the oceanic pH as a
function of time using FRDPH D 0.15 Tmol/year, FVO C FMC C FWOH D 11.15 Tmol/
year, and reasonable values of the other parameters. This solution clearly exhibits a
limit-cycle behavior with a cycle period equal to 162 kyr. Figure 2 shows the phase
diagram in (FVO, FRDPH) space with FMC D 3 Tmol/year and FWOH D 7 Tmol/year.
It demonstrates the existence of a stable limit-cycle solution between two stable
fixed points regions. Figure 3 shows the bifurcation diagram corresponding to
the vertical dashed line at FRDPH D 0.15 Tmol/year in Fig. 2 (the value used in
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Fig. 1 Time series for the deterministic Wallmann’s model with ocean ventilation.
FVO D 1.15 Tmol/year, FMC D 3 Tmol/year, FWOH D 7 Tmol/year, FRDPH D 0.15 Tmol/year. The
other parameter values are taken from Wallmann (2014). (a) Atmospheric CO2 partial pressure;
(b) air and sea-surface temperatures; (c) sea-level fall; (d) shallow and deep oceans pH

Fig. 2 Phase diagram in
(FVO, FRDPH) space for the
deterministic Wallmann’s
model with ocean ventilation.
FMC D 3 Tmol/year,
FWOH D 7 Tmol/year. The
other parameter values are
taken from Wallmann (2014).
The vertical dashed line is a
cut at
FRDPH D 0.15 Tmol/year
corresponding to Fig. 1

Fig. 1). It shows that the limit-cycle solution issues from a stable focus through a
supercritical Hopf bifurcation at a high value of FVO. On the other hand, at a lower
value of FVO, the system undergoes a subcritical Hopf bifurcation, generating an
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Fig. 3 Bifurcation diagram as FVO varies for the deterministic Wallmann’s model with ocean
ventilation. FMC D 3 Tmol/year, FWOH D 7 Tmol/year, FRDPH D 0.15 Tmol/year (vertical dashed
line in Fig. 2). The other parameter values are taken from Wallmann (2014). SF stable focus, SLC
stable limit-cycle, UF unstable focus, ULC unstable limit-cycle. The two black dots indicate the
position of the Hopf bifurcations, subcritical (SbH) and supercritical (SH)

unstable limit-cycle that coexists with the stable one. Eventually, at a smaller value
of FVO, the two limit-cycles collide and cease to exist. Only a stable focus remains.
Thus, there exists a small bistability window where a stable focus coexists with a
stable limit-cycle.

3 Noise-Induced Cycle Suppression: A Toy Model

Before considering a stochastic version of the Wallmann’s biogeochemical model,
I wish to explore the dynamics of a simple system that undergoes a Hopf bifur-
cation from a stable focus to a stable limit-cycle solution under the influence of
multiplicative parametric noise and of a weak external periodic driving term. This
simple but relevant toy model will illustrate the main features of a “noise-induced
cycle suppression” mechanism whereby only a relatively strong signal at the driving
frequency persists for sufficiently high noise intensity.

The toy model is described by two coupled dimensionless dynamical variables x
and y as follows.

Px D �x � y �
�
x2 C y2

�
x C x�.t/C A sin .2� fext/ I

Py D �y C x �
�
x2 C y2

�
y C y�.t/C A sin .2� fext/ :

(4)

Here, � is a bifurcation parameter and �(t) is a Gaussian white noise term
characterized by

< �.t/ >D 0I < �.t/�
�
t0
�
>D 2ı

�
t � t0

�
(5)
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where the average <> is taken over the realizations of the process and  is the
noise intensity. The noise term in Eq. (4) can be interpreted as rendering the
bifurcation parameter stochastic � ! � C �(t). The external driving force in Eq.
(4) is characterized by an amplitude A and a frequency fex.

In the deterministic ( D 0) undriven (A D 0) case, the system exhibits a
supercritical Hopf bifurcation at � D 0. For � < 0, only a stable focus (x D 0,
y D 0) exists, whereas for � > 0 the focus loses its stability but a stable limit-cycle

solution of radius RLC D
q

x2LC C y2LC D
p
� and period 2� develops.

The stochastic but undriven case was previously investigated (Bashkirtseva et al.
2007). It is easier to describe the system in terms of the radius in dynamical space,
R D (x2 C y2)1/2, and the angle ®D tan�1(y/x) between the direction of the vector
(x,y) and the x-axis. The dynamical system reduces to

PR D �R � R3 C R�.t/I P� D 1: (6)

The dynamics of R and P� is uncoupled, and only the former is driven by a
random term. Let p(R, t) be the radial distribution, defined such that p(R,t)dR is the
probability of finding the system with a value of R between R and R C dR at time t,
for any angle. It obeys the following Fokker–Planck equation with the Stratonovich
interpretation (Horsthemke and Lefever 1984; Gardiner 1983):

@p

@t
D �

@

@R

�
�R � R3

�
p C 

@

@R

�
R
@

@R
Rp

	
: (7)

The steady-state solution ps reads:

ps D CR�=�1 exp
�
�R2=2

�
(8)

where C is a normalization constant. For a fixed value of the control parameter
� > 0, the shape of the distribution changes as the noise intensity  varies (Fig.
4). For  D 0, the system is deterministic and the distribution reduces to a Dirac
delta-function at R D RLC. For 0 <  < �, the distribution exhibits a maximum
at Rmax D (� �  )1/2. Noise-induced states are defined by the position of the
maxima in the steady-state distribution (Horsthemke and Lefever 1984). Thus, Rmax

corresponds to a stochastic limit-cycle whose radius is smaller than its deterministic
counterpart

p
�. For  D �, the maximum reaches Rmax D 0 with a distribution

that stays finite there. Finally, for  > �, the maximum is at Rmax D 0 but the
distribution diverges there (while remaining integrable). Thus, as the noise intensity
increases, the stochastic limit-cycle becomes smaller and eventually disappears at
the critical value * D �. One can say that the noise suppresses the stochastic
limit-cycle at *. In terms of the variables x or y, the distribution ps(x) and ps(y)
will be bimodal for  < * with a maximum in x (and y) at ˙A and monomodal
for  � *, with a maximum at 0. These regimes are illustrated in Fig. 4.
Here, normalized simulated distributions ps(R) are shown, using a first-order Euler
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Fig. 4 Steady-state distribution ps(R) for the undriven (A D 0) stochastic toy model of Sect.
3 with � D 0.25 and various values of  . The curves show normalized simulation results
obtained from the numerical solution of Eqs. (4) and (5). The analytical solutions of Eq. (8)
are virtually undistinguishable from these curves. For  D 0.1, the maximum in ps is at
Rmax D (� � )1/2 D 0.387 in agreement with the simulation result

stochastic numerical algorithm (Sancho et al. 1982). The analytical curves (not
shown) are practically undistinguishable from the simulations.

I now consider the deterministic ( D 0) driven (A ¤ 0) case. Figure 5a illustrates
the power spectrum P associated with the variable x as a function of frequency f, for
�D 0.25, A D 0.1, and fex D 0.1. The peak PLC at f D 1/(2�) � 0.16 corresponds to
the limit-cycle signal, whereas the peak Pex at f D 0.1 is associated with the external
signal. The amplitude A is chosen small enough so that the limit-cycle signal
dominates over the external one. The power spectrum ratio r  Pex/PLC D 0.09.
I now switch on the noise intensity. Figure 5b and c illustrate the power spectra for
 D 0.1 (r D 0.34) and  D 1.0 (r D 2.14), respectively. It is seen that, as the noise
intensity becomes larger, the ratio r increases and, for  > 0.37, it becomes larger
than one. In summary, for a sufficiently large noise intensity, the dominant signal
is rather associated with the external driving frequency. As the stochastic limit-
cycle ceases to exist through the noise-induced suppression mechanism, the external
signal persists as the dominant organizing clock. Yet, the variance in R remains
comparable to the deterministic limit-cycle case. Actually, the same qualitative
behavior is observed when a colored Ornstein–Uhlenbeck noise is used instead of a
Gaussian white noise (results not shown).

In fact, this mechanism could be applied to a wide range of situations in which
a system exhibiting a deterministic limit-cycle is subjected to multiplicative noise
and a weak forcing. I will now apply this approach to the Wallmann’s model.
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Fig. 5 Power spectrum associated with the variable x of the toy model of Sect. 3 as a function of
frequency f for the driven case with A D 0.1, fex D 0.1, and � D 0.25. (a) Deterministic case,
 D 0. The small signal at f � 0.21 is due to non-linear coupling between the external driving and
the limit-cycle. (b)  D 0.1. (c)  D 1.0

4 Forced Stochastic Wallmann’s Model

I consider an analogous stochastic, weakly driven version of the Wallmann’s model.
The weak forcing results from the Milankovitch orbital eccentricity variation. The
so-called climate sensitivity factor k describes the amplitude of the temperature
change �T resulting from a change in solar insolation �Q in the spirit of linear
response theory (Douglass and Clader 2002). In this case, the relative variation in
solar insolation due to the eccentricity variations is small, a D 5 � 10�4 (Berger
1978; Benzi et al. 1983). One can write

�T D k�Q D kQa (9)

where Q is the solar constant (1367 W/m2). Using simple energy balance equation
(Benzi et al. 1983), it is possible to relate k to other climate parameters with the
result

k D E�0=CQ (10)
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where E is the energy flux re-emitted in the infrared, �0 is a relaxation time to
equilibrium, and C is an effective heat capacity per area. Many authors have used
estimates for these factors or have estimated k from the observations (Ghil 1976;
Douglass and Clader 2002; Schwartz 2007; Schwartz et al. 2010) with the result
that �T may vary from 0.02 K to 0.12 K. I have adopted the conservative value
A D 0.04 K for the forcing amplitude here. The following contribution from the
solar forcing is thus added to the air temperature equation, Eq. (1):

�Tf D A sin .2� ft/ (11)

where, for simplicity, I use a driving frequency f D (100 kyr)�1. The sea-surface
temperature TSS (Eq. (2)) will also have a similar contribution. For simplicity, I
have assumed a forcing amplitude in proportion to the CO2 warming response
coefficients:

�Tf SS D A .�SS=�/ sin .2� ft/  Ae sin .2� ft/ (12)

where e D �SS/� .
So far, the air temperature is determined by the CO2 concentration with the

addition of a small forcing term due to the eccentricity variations of the Earth’s
orbit. To these, in the spirit of Benzi et al. (1981, 1983), I add to TA a random
term �(t) that represents the various unknown other factors that may influence the
global temperature. A similar term is added to the sea-surface temperature in which
the effect of the noise is also modulated by the factor e D �SS/� . The dynamics
of the non-linear system is then described by a set of forced, stochastic ordinary
differential equations in which the noise is multiplicative and non-linear.

For simplicity, I choose an Ornstein–Uhlenbeck colored noise characterized by a
correlation time � . It is itself described by the following dynamics:

d�

dt
D �

�

�
C
�.t/

�
: (13)

Here, Ÿ(t) is a Gaussian white noise of intensity  , which is in turn characterized
by

< �.t/ >D 0I < �.t/�
�
t0
�
>D 2ı

�
t � t0

�
(14)

in which the average <> is taken over the realizations of the stochastic process. It
turns out that the system (13) and (14) can be solved exactly through the recurrence
relation:

� .t C�t/ D �.t/ exp .��t=�/C ˛.t/
p
=�Œ1 � exp .�2�t=�/�1=2I (15)

�.0/ D ˛.0/
p
=�:
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Here,�t is an arbitrary time increment and ˛(t) is a random number chosen from
a normal Gaussian distribution of zero average and unit variance. A straightforward
numerical algorithm then ensues. The statistical properties of the � noise are

h�.t/i D 0I h� .t C�t/ �.t/i D .=�/ exp .��t=�/ : (16)

Schwartz (2007) has estimated the current correlation time of air temperature
from observed time series. He obtains � D 5 ˙ 1 year. I will fix � at 5 year. In
their simulations of the 100 kyr climate cycle undergoing stochastic resonance,
Benzi et al. (1981, 1982, 1983) considered noise intensities from 0 to 0.22 K2/year.
However, they added the stochastic term on an equation for dT/dt, not on T itself. To
compare the noise intensities, I need to multiply their noise intensities by �2. With
� D 5 year, this corresponds to a range 0 <  < 5.5 K2 year. I will actually consider
 < 6 K2 year here.

Including all terms, the air temperature (Eq. (1)) becomes

TA D � log .pCO2=280/C TAH C A sin .2� ft/C �.t/; (17)

whereas the sea-surface temperature (Eq. (2)) is amended to

TSS D �SS log .pCO2=280/C TSSH C e .A sin .2� ft/C �.t// : (18)

The graphs in Fig. 6 illustrate the pCO2 steady-state distribution obtained from
numerical simulations of the stochastic Wallmann’s model without orbital forcing
(A D 0). The parameter values are the same as in Fig. 1 except that  ¤ 0. In the
deterministic case, there is a limit-cycle solution and the distribution is bimodal
with sharp peaks at the turning points of the cycle. For small  ( < 1.5 K2 year),
the distribution remains bimodal. However, for  > 1.5 K2 year, the stochastic limit-

Fig. 6 Steady-state ps of the CO2 distribution for the unforced (A D 0) stochastic Wallmann’s
model with � D 5 year. The other parameter values are as in Fig. 1. (a)  D 0.1 K2 year; (b)
 D 4 K2 year
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Fig. 7 Wallmann’s model for the orbital forcing case (A D 0.04 K). pCO2 times series and power
spectrum in the deterministic case,  D 0 (a, b) and for  D 4 K2 year and � D 5 year (c, d).
The other parameter values are as in Fig. 1. LC indicates the power spectrum peak at the limit-
cycle frequency and its first harmonic; OF shows the power spectrum peak at the orbiting forcing
frequency

cycle is suppressed by the noise and the distribution becomes monomodal. There is
a noise-induced cycle suppression at  � 1.5 K2 year analogous to what happens in
the toy model (Fig. 4).

Figure 7 illustrates the pCO2 time series and its power spectrum for the same
situation as Fig. 1, except that the orbital forcing is active with A D 0.04 K, for the
deterministic case ( D 0) and a stochastically driven example ( D 4 K2 year). In
the deterministic case, the power spectrum exhibits a main peak at the limit-cycle
frequency, as well as some of its harmonics. The peak corresponding to the orbital
forcing frequency is also present, but remains small compared to the limit-cycle
signal. In the stochastic case of Fig. 7d, the situation is reversed: it is the orbital
forcing signal that dominates. This is analogous to what happens in the toy model
through the noise-induced cycle suppression mechanism (Fig. 5).

Figure 8 shows various properties of the stochastic Wallmann’s model with
fixed orbital forcing as the noise intensity varies. The deterministic unforced case
corresponds to that of Fig. 1. Figure 8a shows the ratio POF/PLC of the peak POF in
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Fig. 8 Various statistical properties of the forced (A D 0.04 K) stochastic Wallmann’s model as a
function of the noise intensity  with � D 5 year. The other parameters are as in Fig. 1. (a) Ratio
POF/PLC of the OF power spectrum peak first to the first LC power spectrum peak. (b) Ratio POF/Pn

of the OF power spectrum peak to the background power spectrum value at the OF frequency (noise
signal). (c) Ensemble average of pCO2 (dotted line) ˙ its standard deviation (continuous lines).
(d) Ensemble average of the air temperature TA (dotted line) ˙ its standard deviation (continuous
lines)

the power spectrum at the orbital forcing frequency to the peak PLC at the limit-
cycle frequency. The ratio varies monotonously with  and reaches a value of
one at a critical  � 2.7 K2 year. In other words, as the noise intensity increases
from 0, the signal is first stronger at the deterministic limit-cycle frequency. At
 � 1.5 K2 year, the system undergoes a noise-induced cycle suppression. The
signal is still dominating at the limit-cycle frequency but the contribution from the
orbital forcing frequency becomes non-negligible. At  > 2.7 K2 year, the latter
dominates the overall signal. Figure 8b shows the ratio POF/Pn where Pn is the
noise signal at the orbital forcing frequency, defined as the interpolated background
level. For smaller value of  , POF is too small, whereas the background noise level
becomes larger for large  . Thus, the plot of Fig. 8b exhibits a stochastic-resonance-
like peak at  � 0.5 K2 year. Figure 8c, d shows the ensemble average and the
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statistical standard deviation for pCO2 and the air temperature TA for various  .
For small  , the standard deviation reflects nothing more than the amplitude of the
deterministic limit-cycle. Although the average value of these variables does not
change much with  , the standard deviations remain significant as the limit-cycle
gets suppressed by the noise. For example, the overall air temperature variation has
a minimum value of 1.3 ıC and becomes even larger as the noise intensity increases.

In summary, the model indicates that, as the noise intensity becomes sufficiently
large, the climatic signal is stronger at the orbital forcing frequency than at the limit-
cycle frequency, whereas the temperature variations (and other climatic variables)
remain significantly large. In contrast, the deterministic system would also exhibit
large temperature variations but at a different frequency.

5 Conclusion

In this contribution, the starting point was Wallmann’s model (Wallmann 2014),
a simple box model of the biogeochemical cycling of phosphorus, alkalinity, and
dissolved inorganic carbon in the ocean, coupled with sea-level changes, without
orbital forcing. In that model, self-organized oscillating solutions are found for
a wide range of parameter values. (Interestingly, there is also a narrow range of
parameter values for which the model exhibits bistability between a limit-cycle and
a fixed point, but this feature is not exploited here.) I have then extended Wallmann’s
model by driving the system with a weak orbital forcing and with a non-linear
multiplicative colored noise process. For sufficiently large noise intensities, the
signal at the orbital forcing frequency dominates over the limit-cycle signal. In spite
of the smallness of the orbital forcing amplitude, the fluctuations in the dynamical
variables about their averages remain significant. On the basis of a comparison with
a simple “toy” model of a noisy, weakly forced, Hopf-bifurcating system, I propose
that this new orbital forcing signal amplification mechanism results from a noise-
induced cycle suppression.

Of course, a more complete model should include the precession and obliquity
effects of the orbital forcing, and a more detailed physics of the ocean circulation
and ice dynamics. But the biogeochemical feedback mechanism explored here
should not be ignored.
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Role of Nonlinear Eddy Forcing in the Dynamics
of Multiple Zonal Jets

Igor Kamenkovich and Pavel Berloff

Abstract Turbulent oceanic and atmospheric flows are characterized by persistent
nearly zonal alternating currents, referred to as multiple zonal jets. These jets
emerge from self-organization of the flow, and are maintained by persistent action
of transient fluctuations (“eddies”). The action of these eddies takes a form of
internally generated eddy forcing that can either resist the jets or support them
against dissipation and other processes. This review chapter is concerned with the
role of the eddy forcing in the dynamics of the multiple zonal jets in the ocean, but
the results are also applicable to atmospheric flows and some isolated jets in the
ocean.

Keywords Zonal Jets • Mesoscale Eddies • Eddy Forcing • Nonlinear Dynamics

1 Introduction

Motions in the atmospheres and oceans have strong preference for the zonal
direction, that is, along the latitude circles. This preference can be understood
through conservation of angular momentum: purely zonal motions can conserve
this quantity without changing their velocity, whereas any displacement in the
meridional (north–south) direction results in changes in the zonal velocity and
vorticity. The associated ““-effect” can act as a restoring force, resulting in
the westward-propagating planetary waves (Rossby waves) and a fundamental
asymmetry between the south–north and west–east directions. These fundamental
properties explain the existence of persistent multiple, alternating zonal currents
(Rhines 1975), often simply referred to as zonal jets.

The most striking example of zonal jets can be observed in the atmospheres of
giant gaseous planets, Jupiter and Saturn, where they are manifested by alternating
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bands of high and low albedo (Sanchez-Lavega et al. in press). In the Earth’s
troposphere, nearly zonal jets are found in mid-latitudes (around 45ıN and 50ıS)
and subtropics (30ıN–35ıN and 30ıS); the stratospheric circulation is characterized
by polar vortices in both hemispheres with strong westward jets (e.g., Wallace
and Hobbs 2006). Similar westerly jets are found in the atmospheres of other
terrestrial planets, such as Mars, Venus, and Titan (Mitchell et al. in press). Well-
pronounced zonal jets are also observed at the Equator and in the tropics in all
Earth’s oceans (e.g., Godfrey et al. 2001). The existence of stationary oceanic
jets in subtropics and mid-latitudes is more controversial, because the magnitudes
of transient velocity anomalies (so-called mesoscale eddies) often exceed the
magnitude of the jets. In other words, the oceanic zonal jets are “latent” (Berloff
et al. 2009; Kamenkovich et al. 2009), and some spatio-temporal filtering is usually
required for their detection. These latent zonal jets have been observed in the
time-averaged anomalies of the geostrophic velocity estimated from altimeter data
(Maximenko et al. 2005, 2008; Sokolov and Rintoul 2009; Huang et al. 2007;
Buckingham et al. 2014). Identification of these jets with in situ observations is
challenging due to often poor horizontal resolution and extent in time; narrow zonal
currents, with direction alternating in latitude, were nevertheless detected in float
measurements in the Brazil basin of the deep South Atlantic (Treguier et al. 2003;
Hogg and Owens 1999); North Atlantic (van Sebille et al. 2011; who combined
altimetry with data from profiling Argo floats), and in the Southern Ocean (Nowlin
and Klinck 1986; Orsi et al. 1995).

The typical meridional width of these jets is several Rossby deformation radii;
outside the tropics, the latter length scale varies between approximately 10 and
50 km in the oceans, but is considerably longer in the atmosphere. For this reason,
Earth’s atmosphere is simply not large enough to “fit” multiple zonal jets, and
this phenomenon is mostly characteristic for the oceans and giant planets. The
discussion in this chapter is concerned primarily with oceanic jets, although results
are expected to be applicable to atmospheric jets, on both terrestrial and giant gas
planets. The mechanisms of emergence of the jets in various turbulent flows are still
under debate, and various theories have been proposed (see Zonal Jets, eds. Galperin
and Read, in press). This review chapter focuses instead on how stationary zonal
currents can persist despite dissipation and other processes that draw energy away
from them. Nonlinear jet dynamics is explored using a concept of the eddy forcing,
first in an idealized quasi-geostrophic model and then in General Circulation Models
(GCMs).

2 Quasi-Geostrophic Dynamics

Under the assumptions of quasi-geostrophic (QG) dynamics, the evolution of the
flow is described by conservation of the potential vorticity (PV) (Pedlosky 1987);
if the ocean or atmosphere is described by a set of N stacked moving isopycnal
(constant density) layers, the conservation law takes the following form:
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C J . n;Qn/ D �r4 n C ınNkbotr

2 N ; n D 1; : : : ;N; (1)

where subscript “n” denotes the nth layer, J is the Jacobian operator, ¤ is the lateral
viscosity, kbot is the bottom friction coefficient, and ınN is the Kronecker delta.  is
the streamfunction that determines circulation in each layer:
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PV in each layer is given by

Qn D ˇy C r2 n � .1 � ın1/
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R2n2
. n �  nC1/ (3)

where Rn1 and Rn2 are the stratification parameters and ˇ is the Coriolis parameter.
We next consider the flow in a periodic zonal domain, most relevant to the

atmospheres and the Antarctic Circumpolar Current, and assume a persistent source
of available potential energy (Haidvogel and Held 1980), due to, for example,
differential heating from the sun; this external energy source sustains a broad
background zonal flow Un. Evolution of eddies in this system is then described
by the following set of equations:
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where we took  n D � Uny C®n, and the eddy PV is

qn D r2'n � .1 � ın1/
1

R2n1
.'n � 'n�1/ � .1 � ınN/

1

R2n2
.'n � 'nC1/ (5)

If the vertical shear in the background flow is sufficiently strong, the associated
meridional tilt of the mean isopycnals enables baroclinic instability and growing
linear disturbances, which later reach finite amplitudes and decay due to dissipation
and nonlinear interactions. This constantly evolving flow can reach a statistically
steady state, with stationary zonal jets and residual “eddy” field:

'n D 'n .y/C '0
n .x; y; t/ (6)

where the overbar represents time- and zonal averaging. Williams (1979) was the
first to discuss QG simulations of QG jets in Jupiter, by using a two-layer (N D 2)
model. An example of stationary oceanic jets is shown in Fig. 1 for a two-layer
model and an eastward flow with U D 0.05 ms�1.
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Fig. 1 Flow with multiple zonal jets in a two-layer QG simulation with an eastward background
flow. Streamfunction in the top layer: left panel—instantaneous; right panel—time averaged

2.1 Eddy Forcing

Substitution of (6) into (4)–(5) and zonally and time-averaging the results lead to
the dynamical balance for the jets in each isopycnal layer:
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Equations (7) and (8) describe a balance between dissipation and two nonlinear
terms: convergence of the meridional flux of relative vorticity (“Reynolds Stress
Term,” or RST) and convergence of the meridional flux of buoyancy anomalies
(“Form Stress Term,” or FST). Both terms represent correlation between eddy
velocities and components of q, and can be interpreted as internally generated “eddy
forcing.” The eddy forcing is the result of self-organization of the turbulent flow,
leading to systematic input (removal) of relative vorticity and buoyancy into (from)
zonal jets.

2.2 Analysis of the Role of Eddy Forcing in QG Flows

Useful insights into the jet dynamics can be derived from the meridional structure of
various terms in (7–8). For example, positive spatial correlation of the eddy forcing

with the zonal-mean relative vorticity @
2'ı
@y2 implies negative correlation with the
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viscous term (second term on the right-hand side of Eq. (7)), and can be interpreted
as the tendency to balance dissipation and support the jets. More generally, positive
correlation of the eddy forcing with the PV of the jets implies that the forcing
supports the jets, because a sudden reduction in the forcing magnitude would induce
PV time tendency that acts to destroy the jets (Kamenkovich et al. 2009).

Panetta (1993) analyzed PV balance for jets in the simplest version of a baroclinic
system—a two-layer version of Eq. (1) (N D 2) with the eastward background flow
U in the upper layer only. His analysis demonstrated that RST acts to sustain the
jets, because their meridional structure is out of phase with the dissipation terms
in Eq. (7). Similarly, Lee (1997) reported the importance of RST in the formation,
splitting, and maintenance of multiple atmospheric jets. These results imply that
the action of eddies can be interpreted as “negative viscosity”—upgradient fluxes
of relative vorticity and momentum. In contrast, Panetta (1993) found FST resisting
the jets, because their meridional structure is in-phase with the dissipation terms.
This property is apparently consistent with baroclinic instability of the jets, since in
the linear regime FST is expected to draw energy from the mean currents (Pedlosky
1987), but, as we will see below, is not universal for all flows with jets.

Further insights into the jest dynamics can be gained from the decomposing
of the streamfunction into its barotropic (vertically averaged, angle brackets) and
baroclinic (depth-dependent residual, stars) components, for example:

h'i D
1

H

Z 0

�H
'dz; '� D ' � h'i ; (9)

where H is the total depth of the fluid. The barotropic component of the eddy
forcing can then be split into two terms, one due to the advection of the barotropic
component of PV by the barotropic meridional velocity (the “BRT-BRT” term),
and another—the advection of the baroclinic component of PV by the baroclinic
meridional velocity. Similarly, the baroclinic components of the eddy forcing can
be written as a sum of two barotropic–baroclinic (BRT-BCL) and one baroclinic–
baroclinic (BCL-BCL) terms:
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Berloff et al. (2009) analyzed the dynamical balances for the barotropic and
baroclinic components of the jets, extending the analysis by Panetta (1993) to both
eastward and westward background flows and to both the two-layer (N D 2) and
the three-layer (N D 3) systems. They concluded that the BRT-BRT and BCL-
BCL components act to support barotropic jets, and this is true in both the eastward
and westward background flows (Fig. 2); barotropic and first baroclinic component
of the eddy fields play the leading roles in the process. This result demonstrates
the importance of the baroclinic eddies for the barotropic jets and suggests that
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Fig. 2 Barotropic eddy forcing and its components. (a) BRT-BRT (solid line) and BCL-BCL
(dashed line) eddy forcing components of the two-layer flow in the eastward background flow.
(b) Full eddy forcing (thin) is shown along with the time-mean barotropic PV component (thick
line). The eddy forcing itself and its components are normalized by the maximum value of the
eddy forcing; the barotropic PV is shown with arbitrary units. Adapted from Berloff et al. (2009).
©American Meteorological Society. Used with permission

purely barotropic models will inadequately describe barotropic nonlinear processes.
Similarly, barotropic components of the eddy field are important for the dynamics
of the baroclinic jets, and their interactions with barotropic eddies act to maintain
the jets via the BRT-BCL eddy forcing (Fig. 3). In agreement with Panetta (1993),
FST acts to destroy the baroclinic jets whereas RST maintains them, but only when
the background flow is eastward. For the westward flow, the roles are reversed, and
the jets are resisted by RST (“positive viscosity”) and supported by FST.

The value of the correlation between the eddy forcing and PV can be interpreted
as the efficiency of the eddy forcing in supporting/resisting the jets and used
to understand jet dynamics. Berloff et al. (2011) demonstrated that the decrease
in the eddy forcing efficiency can be associated with weakening of the jets and
strengthening of eddies. The resulting increased latency is typically associated with
higher bottom friction (kbot); see also Panetta (1993). The authors further speculate
that this property can potentially explain the difference between latent jets in the
Earth’s oceans and manifest jets in Jupiter’s atmosphere. Berloff and Kamenkovich
(2013a, b) used the eddy forcing and its efficiency to gain insights into the relative
importance of the eddy–eddy and eddy–jet interactions in the dynamics of the
flow. They demonstrated that normal modes that are derived from a reduced model
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Fig. 3 Baroclinic eddy forcing and its components in the two-layer eastward background flow:
(a) BRT-BCL (solid line) and BCL-BCL (dashed line); (b) RST (solid line) and FST (dashed
line); (c) full eddy forcing (thin line) and the time-mean baroclinic PV component (thick line).
The eddy forcing itself and its components are normalized by the maximum value of the eddy
forcing; the baroclinic PV is shown with arbitrary units. (d–f) The same quantities as in (a–c), but
for the westward background flow. Adapted from Berloff et al. (2009). ©American Meteorological
Society. Used with permission

linearized around the mean state with zonal jets can explain several properties of
the spectrum and eddy forcing in the full nonlinear solution. For example, several
distinct parts of the full nonlinear spectrum can be associated with these normal
modes, which signifies the importance of the eddy–jet interactions in determining
the eddy field; the authors refer to this property as the “linear control.” These linear
modes also differ in the efficiency of their eddy forcing, which helps to classify
these modes according to their contribution to the jet dynamics.
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from Kamenkovich et al. (2009). ©American Meteorological Society. Used with permission

3 Jets and Eddy Forcing in GCMs

General Circulation Models (GCMs) aim to provide the most realistic simulations
of the ocean circulation. Unlike the QG system whose dynamics is determined
by a single variable (PV), primitive equations in a GCM describe evolution of
momentum, temperature, and salinity. The discussion here is focused on properties
that can be diagnosed from these three variables: relative vorticity, potential density,
and PV.

At high spatial resolution (grid size less than approximately 25 km), GCM
simulations exhibit latent zonal jets in most of the World Ocean (e.g., Nakano and
Hasumi 2005; Richards et al. 2006; Melnichenko et al. 2010). Kamenkovich et al.
(2009) studied these jets in a regional GCM of the North Atlantic. The jets are
visible in time-averaged fields at all depth levels and dominate zonal circulation in
most of the deep ocean; they are most pronounced in the subpolar region (north of
the Gulf Stream) and in the western part of the subtropical region (south of the Gulf
Stream; Fig. 4). The analysis in Kamenkovich et al. (2009) is focused on the gyre
interior (box regions A, B, and C) where the large-scale background flow is nearly
zonal and comparison with QG-channel studies is more appropriate. Melnichenko
et al. (2010) analyzed quasi-zonal jets in the Eastern Pacific (Fig. 5), both in
satellite altimetry data (at the surface) and high-resolution GCM simulations (at
the surface and 600 m depth). In these regions, the background flow is nonzonal—
south-eastward in the Northern Hemisphere and north-westward in the Southern
Hemisphere, which complicates the direct comparison with studies in a QG channel,
but introduces additional interesting dynamical features.



Role of Nonlinear Eddy Forcing in the Dynamics of Multiple Zonal Jets 169

40°N

35°N

30°N

25°N

20°S

25°S

30°S

35°S

40°S

150°W 140°W 130°W 120°W

115°W 105°W 95°W 85°W 75°W

1.5

0.5

–0.5

–1

–1.5

0

1

0.5

(b)

(a)

–0.5

–1

0

1

Fig. 5 Quasi-zonal jets in the eastern North Pacific (a) and South Pacific (b) from a GCM
simulation. Contours of the 1993–2002 mean sea surface height (gray solid lines, contour interval
is 5 cm) are shown in gray solid lines. Red dashed lines approximate crests of the selected jets.
Adapted from Melnichenko et al. (2010). ©Springer. Used with permission

3.1 Relative Vorticity

Kamenkovich et al. (2009) analyzed the balance for the relative vorticity, � D @v
@x �

@u
@y , for simplicity written here in Cartesian coordinates (e.g., Vallis 2006):
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@t
D �r � .u�/ � ˇv C f
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@z
CˆSTR CˆBCL CˆDIS (11)

where the first three terms on the right-hand side of Eq. (11) are, from left to right,
the advection of the relative vorticity by the three-dimensional velocity u D (u.v.w),
advection of the planetary vorticity, and the linear stretching term. In the QG
dynamics, the latter term is closely related to FST in the PV equation, through
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the buoyancy equation (Pedlosky 1987). The remaining terms are the nonlinear
stretching term, vertical component of the baroclinic vector, and dissipation:
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where P is pressure, 	—density, and F D (Fx, Fy)—the dissipative term. Since the
first two terms were verified to be small, the dynamics can be expected to be similar
to a QG flow. After decomposition (6), with the mean defined as an average in time
and in the zonal direction within each of the box regions in Fig. 4, the nonlinear
advection term splits into the two components:

r � .u�/ D r �
�
u0�0

�
C r �

�
u�
�

(13)

The first term on the right-hand side of Eq. (13) is RST of the previous section.
Unlike the QG channel flow, the second term on the right-hand side of Eq. (13)
and the planetary vorticity term �ˇv in Eq. (11) do not vanish. As a result, the
relative vorticity balance involves eddy forcing, terms due to the mean circulation
and dissipation. In particular, the eddy forcing acts to support the barotropic jets
in regions A and C, against the resisting action of the mean advection of relative
vorticity, linear terms �ˇv C f @w

@z ; and dissipation.
As in the previous section, decomposition (9) can be used to separate the

effects of the barotropic and baroclinic currents. The BCL-BCL component of
the RST supports the barotropic jets everywhere in the domain (Fig. 6a). This
supporting role of the eddy forcing and its BCL-BCL component is in agreement
with the results from the QG channel flow. In contrast, the BRT-BRT term has
a weak resisting effect in the subtropical gyre, but supports barotropic jets in
the subpolar region; only the latter conclusion is in agreement with QG results.
The dynamical balance for the first baroclinic mode in the subpolar gyre is
consistent with conclusions from Berloff et al. (2009): RST, BCL-BCL, and
BRT-BCL eddy forcing all acting to support the jets (Fig. 6b). Subtropical
region is more complicated, and the correlation of the BCL-BCL eddy forcing
is low. The misalignment of the eddy forcing and relative vorticity profiles can
be interpreted as a tendency of the eddy forcing to shift the jets; and the jets
indeed tend to drift in the meridional direction. Similarly, Melnichenko et al. (2010)
demonstrated that RST acts to resist and shift jets in the upper ocean of the eastern
Pacific.

3.2 Density

The effects of eddies on potential density  are analyzed within the framework of the
Transformed Eulerian Mean (Andrews and McIntire 1976), where the eddy density
fluxes are expressed in terms of the eddy-induced velocities (ue, ve, we). Taking
the time average and ignoring the time evolution term in the approximate density
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equation, one can derive a balance between the advection of the density flux by the
residual (mean plus eddy-induced) circulation, divergence of the projection of the
eddy density flux on the cross-isopycnal direction G, and diffusion ˚DIFF:

r � f.u C ue/ g D �
@G

@z
CˆDIFF (14)

where the eddy-induced velocities are defined through the eddy density fluxes and
the mean stratification:
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To infer the role each term in Eq. (14) in supporting the density anomalies
associated with the jets, Kamenkovich et al. (2009) calculated spatial correlations
between the zonal-means of these terms and isopycnal height anomalies. The latter
quantity is defined as the difference between the actual isopycnal height Z( ) and
its value smoothed with the 5-degree running-mean filter. Since the convergence
of the eddy-induced density flux (eddy forcing) acts to shoal isopycnals, a positive
correlation between the eddy forcing and height anomalies implies that the eddies
act to maintain the “banded” structure in density. The density balance is dominated
by the mean and eddy-induced advection, whereas the cross-isopycnal term (first
term on the right-hand side of Eq. (14)) plays a secondary role. The eddy-induced
advection term acts to support isopycnal height anomalies on most isopycnals in the
subtropical gyre (Fig. 7), which is in disagreement with the common assumption
that mesoscale eddies act to “iron out” isopycnals and to remove the mean available
potential energy from the flow. On the other hand, the eddy forcing acts to destroy
the banded structure in the subpolar region (Box C). The convergence of the cross-
isopycnal eddy forcing resists the jets almost everywhere.

3.3 Potential Vorticity

The equation for PV, q D (r � u C f k) � r	, can be written as (Pedlosky 1987):
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Fig. 7 Role of eddies in the potential density balance. Spatial correlation between zonally
averaged isopycnal height anomalies and eddy density evolution terms: along-isopycnal eddy-
induced advection term (black) and cross-isopycnal eddy advection (white). The correlation is
computed separately in each of the three regions: region A (left panel), B (middle panel), and
C (right panel), and on ten isopycnal surfaces. Positive correlation implies that a corresponding
density evolution term acts to sustain the banded structure in the isopycnal height. Adapted from
Kamenkovich et al. (2009). ©American Meteorological Society. Used with permission

where k is the unit vector in the vertical direction. The two terms on the right-
hand side of Eq. (16) represent sources/sinks of the PV: the diabatic term and the
dissipation term. Both terms are of the same order of magnitude as the advection
on the left-hand side. After transformation (6) and collection of only the leading
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order terms, the time-mean Eq. (16) reduces to the balance between the group of
terms that depend on the time-mean fields, the dissipative term, and the eddy forcing
(Kamenkovich et al. 2009), written here in the flux divergence form:
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The eddy forcing (the right-hand side of Eq. (17)) consists of three terms,
from left to right: (1) generalized RST, which is advection of relative vorticity
multiplied by the mean stratification term; (2) generalized FST, which is advection
of stratification anomalies multiplied by the planetary vorticity; and (3) “density
flux term” (DFT). Note that the generalized FST and DFT tend to compensate each
other because the geostrophic components of velocities are in thermal wind balance.
Furthermore, the sum of the second term on the left-hand side of Eq. (16) (mean
density flux term) and DST is balanced by the explicit diffusion and sources/sinks
in the density balance.

The mean PV anomalies, defined as the difference between the full and large-
scale mean PV field, exhibit banded structure reflecting the presence of the jets (not
shown). The spatial correlation between the zonal average of these PV anomalies
and the three different components of the eddy forcing is reported in Fig. 8. On most
isopycnal surfaces, the banded PV anomalies are supported by the DFT and resisted
by the generalized RST and FST. This result is consistent with the supporting role
of eddy forcing in the density balance (previous section), because PV anomalies in
this study are dominated by density fluctuations, rather than relative vorticity.

Melnichenko et al. (2010) demonstrated that the eastern Pacific jets cross the
mean PV contours, which implies divergence of the mean PV advection. The eddy
forcing balances the mean PV divergence, which can be interpreted as a tendency
of eddies to drive zonal jets across the mean PV contours (Fig. 9). The dominant
component of the PV eddy forcing is the generalized FST.

4 Summary and Discussion

This review chapter discusses nonlinear dynamics of multiple zonal jets that result
from self-organization of turbulent atmospheric and oceanic flows. Transient eddies
in these flows grow because of an external input of energy and, upon reaching finite
amplitudes, play a key role in the dynamics by transporting density, and relative and
potential vorticity. Convergence of the corresponding eddy fluxes can correspond
to a systematic source of these properties, or internally generated, nonlinear eddy
forcing. Time-averaged eddy forcing plays a key role in the dynamics of the
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Fig. 8 Role of eddy forcing in PV balance. Spatial correlation between zonally averaged PV
anomaly and eddy forcings: generalized RST (white), generalized FST (black), and DFT (gray).
The correlation is computed separately in each of the three regions: region A (left panel), B (middle
panel), and C (right panel) and on ten isopycnal surfaces. Positive correlation implies that the
corresponding eddy forcing acts to sustain the banded structure in PV. Adapted from Kamenkovich
et al. (2009). ©American Meteorological Society. Used with permission
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Fig. 9 Time-mean PV balance on a selected isopycnal in the Northeastern (left) and Southeastern
(right) Pacific, from a high-resolution GCM. Thick blue curves show the total mean PV advection;
thick gray curves—total eddy forcing, thick dashed gray curves—generalized FST. Thin dashed
curves show components of the mean PV advection term. All terms are averaged along the quasi-
zonal jets in Fig. 5. Adapted from Melnichenko et al. (2010). ©Springer. Used with permission

stationary zonal jets, by balancing dissipation and advection of the time-mean
properties by the mean currents. The nonlinear nature of the process implies that
the description of jet dynamics cannot be complete unless all flow components are
accounted for in the analysis. First, numerical simulations that do not resolve eddies
cannot simulate these jets, despite their relatively large size. Second, nonlinear
coupling between barotropic and baroclinic components of the eddy fields is critical
for the jet dynamics. For example, barotropic–barotropic and baroclinic–baroclinic
interactions are equally important in the dynamics of the barotropic jets, which
implies that purely barotropic models of jets are incomplete.

Jets in a flat-bottom QG channel flow are aligned with the mean PV contours and
the mean circulation conserves PV in the absence of dissipation. In contrast, quasi-
zonal jets in two-dimensional oceanic flows cross nonzonal-mean PV contours,
which leads to convergence/divergence of the mean PV fluxes, which is in turn
balanced by the eddy forcing. In this case, jets are often non-stationary and drift
in the meridional direction (Boland et al. 2012; Chen et al. 2015, 2016), and the
drift can be caused by a systematic meridional shift of the eddy forcing relative to
the jets. The reason for the jets crossing the PV contours is not clear. The mean
PV contours change their orientation with depth; the barotropic PV gradient is
nearly zonal over the regions with flat bottom. Given the importance of interaction
between the barotropic and baroclinic components of the eddies, it is possible that
the direction of the jets is determined by the barotropic dynamics, but this hypothesis
needs to be verified by additional analysis.

This chapter discusses multiple zonal jets, but eddy forcing also plays a similarly
important role in the dynamics of oceanic isolated jets, such as the Gulf Stream
and Kuroshio extensions (e.g., Waterman et al. 2011; Shevchenko and Berloff
2015). This property explains why ocean models that do not resolve eddies cannot
simulate a path of these western boundary currents after their separation from
the coast. Momentum diffusion used in these models to parameterize the effects
of eddies cannot represent upgradient momentum and PV fluxes associated with
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eddy forcing. Different approaches to parameterization of these effects have been
suggested (Berloff 2015, 2016), but their universal applicability still needs to be
demonstrated.

This review was concerned with only the time-averaged eddy forcing in the
dynamical balances for the stationary jets. Time dependence in the eddy forcing
is significant, and fluctuations often exceed the time-mean value by several orders
of magnitude (Berloff 2016); these fluctuations can have an indirect impact on the
mean circulation and lead to rectified flows. Multiple zonal jets are clearly a non-
linear phenomenon, but the importance of the nonlinear dynamics in maintaining
the jets does not imply that linear arguments cannot be used to interpret other
components of the flow. For example, properties of eddies can in some cases be
determined by eddy–jet interactions, in a linearized system with the background
flow that includes jets. Accurate assessment of the importance of nonlinearity in
oceanic processes is a challenging task, but is essential for our understanding of
ocean dynamics.
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Data-Adaptive Harmonic Decomposition
and Stochastic Modeling of Arctic Sea Ice

Dmitri Kondrashov, Mickaël D. Chekroun, Xiaojun Yuan, and Michael Ghil

Abstract We present and apply a novel method of describing and modeling
complex multivariate datasets in the geosciences and elsewhere. Data-adaptive
harmonic (DAH) decomposition identifies narrow-banded, spatio-temporal modes
(DAHMs) whose frequencies are not necessarily integer multiples of each other.
The evolution in time of the DAH coefficients (DAHCs) of these modes can be
modeled using a set of coupled Stuart-Landau stochastic differential equations
that capture the modes’ frequencies and amplitude modulation in time and space.
This methodology is applied first to a challenging synthetic dataset and then to
Arctic sea ice concentration (SIC) data from the US National Snow and Ice Data
Center (NSIDC). The 36-year (1979–2014) dataset is parsimoniously and accurately
described by our DAHMs. Preliminary results indicate that simulations using our
multilayer Stuart-Landau model (MSLM) of SICs are stable for much longer
time intervals, beyond the end of the twenty-first century, and exhibit interdecadal
variability consistent with past historical records. Preliminary results indicate that
this MSLM is quite skillful in predicting September sea ice extent.
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1 Data-Adaptive Harmonic Decomposition

The data-adaptive harmonic (DAH) decomposition introduced in Chekroun and
Kondrashov (2017) is a signal processing methodology that allows for a data-
adaptive decomposition of power and phase spectra by adapting the time embedding
approach to the study of time series introduced in Broomhead and King (1986),
Vautard and Ghil (1989), Elsner and Tsonis (1996), and its multivariate exten-
sions. However, unlike other methodologies that rely on time embedding—such
as Multichannel Singular Spectrum Analysis (M-SSA) (Ghil et al., 2002) or
Laplacian spectral analysis (Giannakis and Majda, 2012)—DAH uses integral-
operator techniques that help decompose the original signal into narrow-banded
signals; while data-adaptive, these elementary signals remain narrow-banded for
each separate, discrete Fourier frequency.

At a practical level, the key feature of the DAH method is that it relies on
the construction of matrices that exploit cross-correlations in a different way than
found in standard statistical methods, such as in Principal Component Analysis
(PCA) (Preisendorfer, 1988). As explained in Chekroun and Kondrashov (2017)
and discussed below, the eigenmodes associated with the matrices constructed by
DAH exhibit a data-adaptive feature that shows up in their phase rather than in their
shape. To wit, these modes form an orthogonal set of oscillating functions within
the embedding window that is characterized by an interlacing of their zeros, as is
the case for the eigenfunctions of Sturm–Liouville boundary-value problems for
ordinary differential equations (e.g., Hartman 1986). While this interlacing property
is intrinsic to the modes obtained by the DAH approach, the location of their zeros
depends on the dataset at hand.

It is for this reason, that these modes are referred hereafter as data-adaptive
harmonic modes (DAHMs). As a result, the elementary signals come in pairs, which
are composed—as far as permitted by the available information and resolution—
by such modes in exact phase quadrature. This property allows one to extract
the aforementioned narrow-banded but amplitude-modulated time series, whose
sum represents the original signal, as time series of DAH coefficients (DAHCs)
obtained by projecting the input dataset onto the DAHMs. These features are at
the core of identifying spatio-temporal oscillatory modes in the noisy synthetic
dataset introduced in Sect. 2, as well as in the DAH analysis of a dataset of Arctic
Sea Ice extent (Fetterer et al., 2010) performed in Sect. 3; finally they permit the
DAH-enabled nonlinear stochastic modeling of Sect. 4. Numerical details appear in
Appendices 1 and 2.
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2 DAH Identification of Spatio-Temporal Oscillatory Modes

Here we evaluate our DAH methodology by applying it to a synthetic dataset
designed as a testbed for the classical Prony problem of identifying “hidden
periodicities” in a noisy environment (e.g., Marple 1987). Pisarenko harmonic
decomposition (Pisarenko, 1973) is a well-known method of frequency estimation
by using time-lagged correlations, and it assumes that a signal x.n/ consists of
p complex exponentials superimposed on white noise. However, the algorithm is
restricted to the univariate case, and its practical usefulness is somewhat limited due
to the white-noise assumption and to the fact that p must be known a priori.

The M-SSA methodology (Ghil et al., 2002) also relies on time-lagged correla-
tions, and it can be applied for identifying oscillatory modes without the limitations
inherent in Pisarenko (1973). A challenge for M-SSA, however, is the degeneracy
problem in discriminating between oscillatory modes having similar energy but
distinct temporal frequencies and spatial patterns; Groth and Ghil (2011) introduced
a suitably modified varimax rotation of the M-SSA modes that helps to deal with this
shortcoming. To demonstrate the DAH capabilities for mode identification, we will
rely on the synthetic dataset provided at http://www.atmos.ucla.edu/tcd/ssa/guide/
mssa/mssarot.html, as part of the SSA-MTM Toolkit for time series analysis, https://
dept.atmos.ucla.edu/tcd/ssa-mtm-toolkit; this dataset is used in the freeware Toolkit
to illustrate the varimax-rotated M-SSA algorithm introduced in Groth and Ghil
(2011).

We thus consider a short and noisy spatio-temporal dataset describing the time
evolution of a d-dimensional vector y.tn/ WD .y1.tn/; : : : ; yd.tn// over the interval
n D 1; : : : ;N; here d D 6 and N D 130. The full dataset shown in Fig. 1f consists
of a coherent component s.t/ embedded into temporally correlated, albeit spatially
uncorrelated noise r.t/:

y.tn/ D .1 � 
/1=2 s.tn/C 
1=2 r.tn/ : (1)

The coherent component s.t/ in Fig. 1e is the sum of the four oscillatory modes
xi

k.t/ with varying amplitude and phase across the six spatial channels, as shown in
Fig. 1a–d:

sk.tn/ D

4X
iD1

xi
k.tn/; k D 1; : : : ; 6 I (2)

these modes are given by

xi
k.t/ D

�˛i
k

2

�1=2
sin.2� fit C ˚ i

k/; k D 1; : : : ; 6; i D 1; : : : ; 4; (3)

and each phase ˚ i
k is obtained independently as a random variable uniformly

distributed in Œ0; 2��:

http://www.atmos.ucla.edu/tcd/ssa/guide/mssa/mssarot.html
http://www.atmos.ucla.edu/tcd/ssa/guide/mssa/mssarot.html
https://dept.atmos.ucla.edu/tcd/ssa-mtm-toolkit
https://dept.atmos.ucla.edu/tcd/ssa-mtm-toolkit
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Fig. 1 Multivariate spatio-temporal dataset representing six channels in space and 130 points in
time: (a–d) four harmonic modes fxi.t/ W i D 1; : : : ; 4} having fixed temporal frequencies but
different amplitudes and phases in each of the six channels; see Eq. (3). Their sum s.t/ defines the
coherent component given by Eq. (2) shown in panel (e); (f) total dataset representing the sum of
the coherent component s.t/ and of the temporal red noise rk.t/ in each of the fk D 1; : : : ; dg
channels; see text for details

The periodicities of the four oscillatory modes are not integer multiples of the
sampling time nor of each other, while the respective frequencies f1 D 1=7:5; f2 D

1=6; f3 D 1=2:8 and f4 D 1=2:3 (in sampling units) are located in both the low-
frequency and high-frequency part of the power spectrum. The amplitudes ˛j

i are
prescribed across the spatial channels so that 3 distinct modes contribute to each
channel, albeit with different amplitudes; see Table 1. The random choice of the
phases ˚ i

k in Eq. (3) results in arbitrary phase shifts across the spatial channels;
see Fig. 1. The coefficient 
 D 0:7 in Eq. (1) guarantees that the noise component
has larger variance than the signal; this fact is obvious from a comparison of the
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Table 1 Amplitude
modulation of the four
oscillatory modes across six
spatial channels; see Eq. (3)

˛i
k i D 1 i D 2 i D 3 i D 4

k D 1 0:4 0:0 0:3 0:3

k D 2 0:4 0:2 0:4 0:0

k D 3 0:3 0:3 0:0 0:4

k D 4 0:0 0:4 0:4 0:2

k D 5 0:2 0:4 0:0 0:4

k D 6 0:3 0:0 0:4 0:3

The index k is for the channels, while the
index i is for the modes

“clean” (Fig. 1e) with the “noisy” (Fig. 1f), and it makes the identification problem
that much more challenging.

The block-Hankel matrix C of the DAH decomposition (see Appendix 1) has
d D 6 blocks of dimension M0 � M0, where M0 is the embedding dimension. The
choice of M0 is based on two competing goals: (1) to obtain reliable estimates
of autocorrelations from noisy and short datasets; and (2) to resolve the dataset’s
frequency domain for identification purposes with sufficient accuracy. We chose
M0 D 119, which results in a total number dM0 D 714 of DAH eigenvalues �j and
eigenvectors Ej, i.e., 1 � j � dM0.

Each of the DAH eigenvectors represents a data-adaptive spatio-temporal pattern
associated with a fixed temporal frequency; the latter are equally spaced at intervals
of 1=.M0 � 1/ in the Nyquist interval Œ0; 0:5�. Moreover, each temporal frequency
is associated with d pairs of DAH eigenvalues that are opposite in sign but equal in
absolute value, except at f D 0, where there is only one eigenvector per eigenvalue.

Figure 2 shows the DAH spectrum composed of the values j�jj (red full circles),
and obtained here for the synthetic dataset in Fig. 1f. The frequencies of the
oscillatory modes that make up the coherent component are identified by eigenpairs
located above the noisy background, and marked by the black arrows.

The time-embedded structure of these eigenvectors is shown in Fig. 3, with each
pair .Ej;E0

j/ plotted by red and blue lines, respectively. This structure conveys
information about the amplitude modulation across spatial channels, and the figure
demonstrates that indeed the eigenvectors for each pair, except at zero frequency,
are in phase quadrature, i.e., shifted by one quarter of the associated period.

The latter property is reminiscent of Fourier decomposition, based on sine
and cosine pairs with the same periodicity, as well as of the similar property of
oscillatory SSA eigenpairs (Ghil et al., 2002). The kth spatial channel Ej

k of a
particular multivariate DAHM—i.e., for a DAH with d � 2—that is associated
with a frequency

!` D
2�.` � 1/

M0 � 1
; ` D 1; : : : ;

M0 C 1

2
: (4)

can be analytically expressed—for each 1 � j � dM0—as an oscillatory function in
the embedding time-window variable � as follows:
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Fig. 2 DAH spectrum of the noisy dataset in Fig. 1f. Each red full circle corresponds to a
pair ˙j�jj with distinct eigenvectors .Ej;E0

j/; the latter represent the same temporal frequency
fj but are time-shifted so as to be in phase quadrature, cf. Fig. 3 below. Arrows point to the
temporal frequencies of four oscillatory modes that do correspond to those shown in Fig. 1a–d. The
frequencies of the DAH eigenvectors are equally spaced between 0 and 0.5, and the total number of
DAH pairs in each frequency bin is equal to the number of channels d D 6 in the dataset. The data-
adaptive DAH modes describe amplitude and phase modulation between the spatial channels and
are shown in Fig. 3; they do permit the faithful reconstruction of the reference modes in Fig. 1a–d,
as shown in Fig. 4a–d below

Ej
k.�/ D Bj

k.!`/ sin.!`� C �
j
k.!`//; 1 � k � d; 1 � � � M0 I (5)

here both amplitudes Bj
k.!`/ and phases � j

k.!`/ are data-adaptive (Chekroun and
Kondrashov, 2017).

Moreover, the theory shows that the phases � j
k.!l/ for the modes in each pair

are shifted by one fourth of the period, i.e., DAHMs are in exact phase quadrature,
as for sine–cosine pairs, but in a data-adaptive fashion, encapsulated into the phase.
Indeed, as proved in Chekroun and Kondrashov (2017), in the case of univariate time
series, the DAH modes provide the phase spectrum contained in each frequency !`
[given in (4)] via the analytical formula:

˚.!`/ D arg.�jbEj.!`// � arg.bEj.!`//; 1 � j � dM0; (6)

where bEj and bEj denote, respectively, the Fourier transform of Ej and its complex
conjugate.
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Fig. 3 (a-d): Eigenvectors
.Ej;E0

j/ of the leading
spectral DAH pairs for the
four frequencies that are
closest to those of the four
spatio-temporal oscillatory
modes in Fig. 1a–d, i.e.,
f1; f2; f3, and f4, respectively;
see Eq. (3). The x-axis
represents the embedding
dimension dM0, while the
vertical dashed lines mark six
M0-long segments that
correspond to d D 6 spatial
channels. For each spatial
channel, the eigenvectors of a
given frequency convey
different phases and are
shifted by a quarter of the
associated period, i.e., they
are in exact phase quadrature
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The precise information about amplitude and phase modulation of the oscillatory
modes captured by the DAHMs allows one to perform highly accurate reconstruc-
tions in the space-time domain, cf. Eq. (14) in Appendix 1 below. Figure 4 shows
the space-time patterns of the harmonic reconstruction components (HRCs) given
by Eq. (15); these patterns are obtained using all the DAH pairs in the frequency bins
that contain the target periodicities f1; f2; f3, and f4. These patterns match quite well
in frequency and phase those of the reference coherent components in Fig. 1a–d,
although they do underestimate their amplitude as a consequence of the large noise
level. In fact, the normalized root-mean-square (rmse) error, averaged over time and
space, is roughly 0:5 for all four modes.
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Fig. 4 DAH reconstruction associated with the frequencies of the four dominant oscillatory DAH
pairs, as marked by the arrows in Fig. 2, and obtained by using the DAH pairs in the corresponding
frequency bins. The resulting patterns match reasonably well the reference patterns shown in
Fig. 1a–d. (a) Mode 1. (b) Mode 2. (c) Mode 3. (d) Mode 4

These results show that DAH does correctly detect the temporal frequencies of
distinct oscillatory modes in a very noisy multichannel dataset. Moreover, it also
captures fairly well their distinct phase and amplitude across the spatial channels.

3 DAH Decomposition of Arctic Sea Ice Concentrations

Decline in Arctic Sea ice extent is an area of active scientific research with
profound climatic and socio-economic implications, both negative—on global
temperatures—and positive—by facilitating navigation in polar waters (Sigmond
et al., 2016). The key variable of interest to study Arctic Sea ice dynamics is the so-
called sea ice concentration (SIC), which measures the relative amount of reference
area covered by ice at a given location; SIC is given in percentage points (0–100%).
An important indicator of Arctic sea ice conditions is the so-called Sea Ice Extent
(SIE), defined as the total surface area of the Arctic region having SIC greater
than 15%.
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The widely used Sea Ice Index (SII) from the National Snow and Ice Data
Center (NSIDC) relies exclusively on passive microwave measurements, which
provide a 35-year-long dataset of daily SICs from 1979 to the present. The satellite
observations are automatically processed by the National Aeronautics and Space
Administration (NASA) Team (Cavalieri et al., 1996) and Bootstrap (Comiso, 2014)
algorithms to create daily SIC maps; both algorithms have their own biases and
limitations.

We have used the monthly NSIDC dataset for SIC over the January 1979–
December 2014 interval, available on a 25 km � 25 km polar stereographic grid;
this dataset is based on the Bootstrap algorithm (Comiso, 2014). The data version
used has been coarse-grained onto a 2ı�0:5ı grid, representing 7400 spatial degrees
of freedom each month and N D 432 monthly maps.

First, we removed the seasonal cycle by computing SIC anomalies with respect
to each calendar month. Figure 5 shows that the dynamics of SIC anomalies is very
different in key Arctic regions, namely the Bering Sea, Baffin Bay, Barents Sea,
and Chuckhi Sea. In particular, SIC anomalies in the Baffin Bay and Chuckhi Sea
are dominated by the seasonal cycle and a strong downward trend, while internal
dynamics is more prominent in the Bering and Barents Seas.

Figure 6a shows that the variability of SIC anomalies is mostly concentrated in
the marginal seas of the Arctic Ocean, while it is very small over the North Pole,
where the sea remains ice-covered at all times. To extract the dominant modes of
SIC variability, empirical orthogonal function (EOF) decomposition (Preisendorfer,
1988) was applied to the dataset. The 12 leading EOFs account for 82% of SIC
anomaly variance: excluding the Bering Sea, which is only in very limited contact
with the Arctic Ocean, these EOFs capture most of the variance in the marginal
seas, cf. Fig. 6b.

Figure 7 shows the corresponding time series of principal components (PCs). The
trend component is most prominent in the leading pair of PCs, although it is present,
to a lesser extent, in other PCs as well. Moreover, the trend component strongly
depends on the calendar month, being more pronounced in fall than in winter;
hence there is also strong annual variability in the 1st and 2nd PC, superimposed
on the trend. To summarize, SIC PCs exhibit a complex mixture of annual cycle,
intraseasonal, interannual, and long-term time scales; this complexity represents
a serious challenge for data-driven analysis and modeling techniques, but will be
successfully addressed by DAH decomposition.

Figure 8 shows the multivariate DAH spectrum of d D 12 PCs for the SIC
dataset, with an embedding dimension of M0 D 59 months. Each full circle in this
figure is associated with a pair of DAHMs, except at zero frequency, where the
modes are not paired, cf. Eq. (5). The seasonally dependent trend is clearly isolated
by the pairs associated with annual-cycle harmonics and located well above the
continuous background.

The spatio-temporal patterns of the DAH modes shown in the left and center
panels of Fig. 9 reveal useful dynamical information on the combined evolution
and mutual influence of SIC’s PCs in particular frequency bands. For example,
the dominant variability patterns—i.e., those corresponding to the pair having the
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Fig. 5 Monthly time series for sea ice concentration (SIC) anomalies in key Arctic regions; see
text for details. (a–d) Bering Sea (182ıE–192ıE, 58ıN–62ıN); Baffin Bay (298ıE–304ıE, 61ıN–
66ıN); Barents Sea (34ıE–54ıE, 76ıN–80ıN); and Chuckhi Sea (190ıE–210ıE, 72ıN–76ıN)

largest j�jj at a particular frequency—convey in-phase, out-of-phase, and time-
lagged influences between different PCs. The DAHMs associated with the same
frequency and ranked top-to-bottom by their DAH spectral value behave in a similar
fashion, as shown in Fig. 10 for the 12-month periodicity. Note that the DAHMs are
always in phase quadrature, except at zero frequency.
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Fig. 6 Spatial distribution of SIC variability. (a) Standard deviation of SIC anomalies; and (b)
fraction of SIC variance captured by the 12 leading EOFs of SIC anomalies. Color bars are in
percentage units and nondimensional, in (a) and (b), respectively

On the other hand, although the DAH coefficients Aj are not formally orthogonal
in time—see Eq. (13) and its discussion in Appendix 1—they also exhibit a certain
phase–quadrature relationship that depends on whether the window M is sufficiently
large to resolve the decay of temporal correlations of a given dataset. Typically,
the larger M (subject to the length of the record), the more apparent is the phase
quadrature between a pair of DAHCs associated with the same frequency.

Shown in the right panels of Figs. 9 and 10, the DAHCs constituting a given Aj-
pair account for narrow-band temporal information contained at the characteristic
frequency associated with the respective Ej-pair. The latter pairs are shown in the
left and center panels of these two figures, respectively, and they reflect differences
in amplitude and a shift of, approximately, a quarter of a period. As we can see, the
phase-quadrature property of the DAHCs is satisfied to a reasonable degree, which
bodes well for the success of the stochastic-modeling approach described in the
next section.

4 Stochastic Modeling of Arctic SICs

The recent Multilayer Stochastic Model (MSM) framework introduced in Kon-
drashov et al. (2015) emphasizes the key role of nonlinear, stochastic, and non-
Markovian effects in deriving data-driven closure models. Such models have been
shown to posses considerable skill in simulating and predicting the main dynamical
features of a targeted spatio-temporal field, given either as the output of a high-
end geophysical model or as a set of observations. The MSM approach generalizes
various multilevel inverse models, including Empirical Model Reduction (EMR)
(Kravtsov et al., 2005, 2009): it allows for greater flexibility in the choice of
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Fig. 7 Time series of the 12 leading principal components (PCs) of SIC anomalies. The seasonally
dependent trend component is very prominent in the 1st and 2nd PC

the nonlinear predictors, while ensuring stable asymptotic behavior, such as the
existence of a global random attractor (Chekroun et al., 2011); see Theorem 3.1
and Corollary 3.2 in Kondrashov et al. (2015).
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Fig. 8 DAH spectrum of the 12 leading PCs of the SIC dataset, using an embedding window of
M0 D 59 months

However, if the input dataset is not large enough and exhibits a mixture of several
time scales, this approach may propose numerous predictors that require one to
estimate too many model coefficients, a situation that makes accurate and stable
estimates quite difficult. Alternative algorithms are thus called for, and DAH decom-
position provides such an alternative. We show here, in the context of Arctic sea ice
modeling, that an appropriate change of the basis—in a data-adaptive manner—
reduces the data-driven modeling effort to elemental MSMs stacked by frequency,
and requires only estimating a fixed and much smaller number of coefficients.

These elemental models fall into the class of networks of linearly coupled Stuart-
Landau oscillators (Zakharova et al., 2016), which may include memory terms
(Selivanov et al., 2012) and are described below. Given a sequence of partial
observations of a dynamical-model simulation, the DAHCs allow one to recast these
observations so that they can be reproduced by a simple stochastic model. Such
a model can be inferred within a universal parametric family, provided, roughly
speaking, that the window whether the window M is sufficiently large to resolve the
decay of temporal correlations of a given dataset, as discussed in Appendix 1.

Stuart-Landau (SL) models with additive noise form a generic class of models
that capture (1) the frequency f and (2) the amplitude modulations of the Aj’s
corresponding to a given narrow-band DAHC pair, denoted by (x.t/; y.t/):

Pz D .�C i�/z � .1C iˇ/jzj2z C "t; z 2 C I (7)
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Fig. 9 Left and center columns: Spatio-temporal DAH modes (DAHMs) that correspond to the
leading DAH pair (1,2) in the SIC dataset’s spectrum at selected frequencies: x-axis—embedding
dimension, y-axis—PC index. Right column: Corresponding temporal DAH coefficients (DAHCs).
The four selected frequencies, f D 0:0; 0:052; 0:103 and f D 0:155, appear in the caption of each
panel
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Fig. 10 Same as Fig. 9, except for showing the four leading pairs at the 12-month periodicity,
f D 0:086: The DAHMs (1,2), (3,4), (5,6), and (7,8) appear in the caption of each panel
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here z.t/ D x.t/ C iy.t/ (i2 D �1) and the real parameters �; � , and ˇ, as well
as the properties of the driving noise "t D ."x

j ; "
y
j /, are estimated from the time

history of z.t/ by the aforementioned MSM approach. To reproduce the global
phase coherence of the collective behavior of d DAH pairs .xj.t/; yj.t//, at a given
frequency f ¤ 0, requires an appropriate dynamical coupling between individual
SL oscillators, along with taking into account the temporal and spatial cross-pair
correlations in the driving noise "t; see Appendix 2 and Eq. (MSLM) there.

Thus, for each frequency f , the 12 associated pairs of temporal DAHCs are mod-
eled by Eq. (MSLM). First, the model coefficients can be estimated in parallel for
each frequency, i.e., by successive pairwise regressions, subject to linear constraints
on ˇj.f /; ˛j.f /, and j.f / that impose the necessary model structure in Eq. (MSLM)
for each .xj; yj/ pair; these constraints entail antisymmetry for the linear part,
without the coupling terms, as well as equal and nonpositive values j.f / � 0 to
ensure asymptotic stability. Hence the overall number of independent coefficients
to estimate is fixed and relatively small for each .xj; yj/ pair; e.g., the main layer of
Eq. (MSLM) involves estimation of 3C 4.d � 1/ D 47 coefficients from the 2N0 D

748DAH-processed Arctic SIC observations, over the full time interval 1979–2014;
see Appendix 1 for the definition of N0 D N � M0 C 1, with the window width
M0 D 59 months. Extra layers are added as needed until the regression residuals
for the last layer can be approximated by white noise, according to the stopping test
described in Kondrashov et al. (2015, Appendix A); these layers convey temporal
correlations in the stochastic forcing "t on the main layer of the model for .xj; yj/.

Second, the DAH-MSLMs are run in parallel across the frequencies by the same
white-noise realization in the last layer of the model, which represents a dynamical
mechanism for coupling between different frequencies. Finally, the simulated time
series of the temporal DAHCs are converted back to the phase space of the SIC
dataset’s PCs, by convolution with the spatio-temporal DAHM’s.

Despite the limited amount of available data and their nonstationarity, Figs. 11
and 12 show very good modeling skill in reproducing the complex structure of
the autocorrelation functions (ACFs) of the SIC dataset’s PCs, as simulated by the
optimal DAH-MSLM model with M0 D 59 and having three additional layers in
Eq. (MSLM) to model the noise "t. The model also captures sufficiently well skew-
ness and kurtosis of the probability density functions (PDFs), although it is more
challenging to capture the bumps in the PDFs’ “tails,” due to the record’s shortness.

Figures 13 and 14 show the evolution in time of the leading PCs of two stochastic
ensemble members, as simulated by our DAH-MSLM model and initialized in
January 1979. These extended, 129-year-long simulations demonstrate that our
optimized stochastic-dynamic model agrees well with the existing 36-year-long
SIC record, is numerically stable for much longer times, and displays interesting
dynamical behavior such as multidecadal variability in PC-1. Such variability has
been documented by Walsh and Chapman (2015) in their reconstruction of sea ice
extent anomalies from historical records.

One reason for the success of our model’s simulations relies on the ability of the
DAH approach to extract modulated time series of DAHCs that are narrow-banded
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Fig. 11 The autocorrelation functions (ACFs) of the SIC dataset’s PCs: red—observations,
black—ensemble mean of stochastic-dynamic simulations by the DAH-MSLM approach; blue—
standard deviation of the ensemble
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Fig. 12 Same as Fig. 11, except for the probability density functions (PDFs): the blue lines now
represent individual ensemble members
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Fig. 13 Extended simulation of the Arctic SIC conditions. Red—observational dataset of the 12
leading PCs for 1979–2014 (36 years); blue—129-year-long stochastic simulation by the DAH-
MSLM approach



198 D. Kondrashov et al.

Fig. 14 Same as in Fig. 13, but for another stochastic realization

in the frequency domain and exhibit phase quadrature in the time domain. Another
important reason is that the class of MSLMs introduced herein is intrinsically well
adapted to the modeling of such time series.

It is worth mentioning that the less narrow-banded the DAHCs, the worse their
modeling using MSLM. For the Arctic Sea Ice dataset of Comiso (2014), as repre-
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Fig. 15 Simulations of September SICs by using our DAH-MSLM approach. Left—observed
September SIC anomalies; right—hindcast of the DAH-MSLM model, initialized in January 1979.
Caption of each panel indicates the particular September being compared, OBS vs. MSLM, for
1979, 1980, 1981, and 1982
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sented by the SIC PCs, the DAH decomposition provides just the right time series
of DAHCs for the MSLM modeling approach to be efficient; see Figs. 9 and 10.

Our DAH-MSLM model is able to produce a remarkable near-synchronization
of the simulations with observations during the first 4 years that start with January
1979. This approximate synchronization holds for almost every noise realization,
as shown, for instance, in Fig. 15 for one ensemble member, using a particular
noise realization: plotted in the figure are September SIC anomalies for 1979–
1982 in gridded physical space, with the maps of the observations in the left
column and the simulations in the right one. The match between simulation and
observation is visually excellent and only starts deteriorating in September 1982.
The potential predictive skill of our DAH-MSLM model suggested by these plots
implies highly promising potential of developed approach for real-time forecasting
of September SIE.

Indeed, this potential forecast skill has been tentatively confirmed by the present
authors by using the Multisensor Analyzed Sea Ice Extent (MASIE) dataset
(Fetterer et al., 2010) for the Sea Ice Prediction Network (SIPN, http://www.
arcus.org/sipn). Our DAH-MSLM model’s real-time SIE forecast for September
2016 (Hamilton and Stroeve, 2016; Stroeve et al., 2015) outperformed most other
statistical models and physics-based models in the SIPN network. In 2016, the
multimodel-median September SIPN estimate in August was 4:4 � 106 km2, with a
quartile range of 4.2–4:7�106 km2, vs. the actual observed value of 4:72�106 km2.
The real-time DAH-MSLM August prediction for SIPN’s 2016 September Outlook
was 4:79 � 106 km2.
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Appendix 1: Details on the DAH Decomposition

The DAH modes (DAHMs) are obtained as follows. First, we estimate from a
given d-channel time series X.tn/ D .X1.tn/; : : : ;Xd.tn//, n D 1; : : : ;N, the cross-
correlation coefficient (CCF) 	.p;q/� at lag � between channels p and q, where
�M C 1 � � � M � 1. In spectral analysis, it is common to refer to M as the
window width.

http://www.arcus.org/sipn
http://www.arcus.org/sipn
http://www.atmos.ucla.edu/tcd/ssa/guide/mssa/mssarot.html
http://www.atmos.ucla.edu/tcd/ssa/guide/mssa/mssarot.html
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Next, we form the following Hankel matrix:
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: (8)

Equivalently, this matrix can be viewed as a left circulant matrix formed from the
.2M � 1/-dimensional row r D .	

.p;q/
�MC1; : : : ; 	

.p;q/
0 ; : : : ; 	

.p;q/
M�1/, i.e.:

H.p;q/ D l-circ.	.p;q/�MC1; : : : ; 	
k;k0/
�1 ; 	

.p;q/
0 ; 	

.p;q/
1 : : : ; 	

.p;q/
M�1/ I (9)

in other words, the rows of H.p;q/ are obtained by successive shifts to the left by one
position, starting from r as a first row. Finally, we consider the block-Hankel matrix
C formed by d2 blocks of size .2M � 1/ � .2M � 1/, each given according to

C.p;q/ D H.p;q/; if 1 � p � q � d;

C.p;q/ D
�

H.q;p/
�
; otherwise:

(10)

Note that C is symmetric by construction due to symmetry of its building blocks
H.p;q/, i.e., C.p;q/ D C.q;p/, and hereafter we use M0 D 2M � 1 for concision,
reindexing the string f�M C 1; : : : ;M � 1g from 1 to M0 as necessary.

The DAH eigenpairs (�j;Ej), with 1 � j � dM0, reveal useful information
about the variability contained in the multivariate time series. In contrast to other
data-adaptive methods built from cross-correlations, each of the DAH eigenvectors
Ej represents a data-adaptive spatio-temporal pattern naturally associated with a
Fourier frequency !l given by

!` D
2�.` � 1/

M0 � 1
; ` D 1; : : : ;

M0 C 1

2
: (11)

These frequencies are equally spaced within the Nyquist interval Œ0; 0:5� with a
resolution of 1=.M0 � 1/, essentially given by the embedding dimension M.

Each temporal frequency !` is associated with d pairs of DAH eigenvalues ˙�j

that are opposite in sign but equal in absolute value, except at zero frequency, where
there is only one eigenvector per eigenvalue, for a total of 2d.M�1/Cd eigenvalues.
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The association between a particular frequency and a given DAHM is obtained by
counting zero-crossings ıj across the window width M for all channels:

ıj D

dX
kD1

M0�1X
�D1

�
1 � sign.Ej

k.�/E
j
k.� C 1//

�
; 1 � j � dM0 : (12)

One can thus assign a frequency that is in one-to-one correspondence to ıj. In
Eq. (12), Ej

k denotes the kth spatial component of the DAHM, Ej. One can then
rank the DAHMs from the lowest to the highest frequency by simply looking at
their number of sign changes. As shown in Chekroun and Kondrashov (2017), the
corresponding fraction of the energy they capture is given by j�jj, up to a scaling
factor.

By analogy with M-SSA (Ghil et al., 2002), the multivariate dataset X can be
projected onto the orthogonal set formed by the Ej’s, to obtain the DAH expansion
coefficients (DAHCs):

Aj.t/ D

M0X
�D1

dX
kD1

Xk.t C � � 1/Ej
k.�/; (13)

where t varies from 1 to N0 D N � M0 C 1.
Although the DAHCs are not formally orthogonal in time, they also exhibit a

phase–quadrature relationship that depends on whether the window M is sufficiently
large to resolve the decay of temporal correlations of a given dataset. Typically,
the larger M (subject to the length of the record), the more apparent is the phase
quadrature between a pair of DAHCs associated with the same frequency.

Furthermore, any subset B � A of DAHCs, as well as the full set A, can be
convolved with associated Ej’s, for partial or full reconstruction of the original data,
respectively. The transformation between X and A is unitary, i.e., there is no loss of
variance. Thus, the jth RC at time t for channel k is given by:

Rj
k.t/ D

1

Mt

UtX
�DLt

Aj.t � � C 1/Ej
k.�/: (14)

The normalization factor Mt equals M0, except near the ends of the time series (Ghil
et al., 2002), and the sum of all the RCs recovers the original time series.

It is also useful to consider harmonic reconstruction components (HRCs), namely
a sum of d RC pairs corresponding to a particular frequency !` ¤ 0:

R!`k .t/ D
X

j2J`

Rj
k.t/; (15)

where J` denotes the set of all the indices j associated with the frequency !`: By
construction, for each nonzero frequency, this set is constituted by 2d elements.
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Appendix 2: Details on the MSLM Modeling

As discussed in Sect. 4, the DAHMs extract harmonic components of variability
that allow for a reduction of the data-driven modeling effort to a simple class of
elemental multilayer stochastic models [MSMs: Kondrashov et al. (2015)]; these
MSMs are stacked by frequency and only coupled at different frequencies by the
same noise realization.

In the simplest case of one layer for the modeled noise, this construction leads to
stochastic models of the form:

Pxj D ˇj.f /xj � ˛j.f /yj C j.f /xj.x
2
j C y2j /C

dX
i¤j

bx
ij.f /xi C

dX
i¤j

ax
ij.f /yi C "x

j ;

Pyj D ˛j.f /xj C ˇj.f /yj C j.f /yj.x
2
j C y2j /C

dX
i¤j

ay
ij.f /xi C

dX
i¤j

by
ij.f /yi C "

y
j ;

P"x
j D Lj

11.f /xj C Lj
12.f /yj C Mj

11.f /"
x
j C Mj

12.f /"
y
j C Qj

11.f / PWj
1

C Qj
12.f / PWj

2 C

dX
i¤j

2X
kD1

Qi
1k.f / PWi

k;

P"
y
j D Lj

21.f /xj C Lj
22.f /yj C Mj

21.f /"
x
j C Mj

22.f /"
y
j C Qj

21.f / PWj
1

C Qj
22.f / PWj

2 C

dX
i¤j

2X
kD1

Qi
2k.f / PWi

k:

(MSLM)
In (MSLM), the index j varies in the set of indices Jf associated with a single
frequency f , determined by the zero-crossings of the corresponding Ej’s. When f ¤

0, this set consists of d elements. In practice f D !`=.2�/ is determined by a Fourier
frequency !` given in Eq. (11). The Wj

k’s with k in f1; 2g and j in f1; : : : ; dg form 2d
independent Brownian motions.

We call these models multilayer stochastic Stuart-Landau models (MSLM). At a
given frequency f , the d pairs are linearly coupled as indicated by the terms in the
sums apparent in the xj- and yj-equations. In (MSLM) and for a given pair indexed
by j, the noise term ."x

j ; "
y
j / is modeled by means of linear dependencies involving

only ."x
j ; "

y
j /, on the one hand, and the jth pair .xj; yj/, on the other.

Obviously, for a given pair, and following Kondrashov et al. (2015), more layers
can be added as needed to (MSLM), when the noise term ."x

j ; "
y
j / at the first level is

not white. In this case, the extra layers will depend linearly on the jth pair .xj; yj/,
and on the noise residuals from the previous layers. The sums in the "x

j - and "y
j -

equations take into account “spatial” correlations between the pairs, at the level of
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the noise. Note that for the null frequency, f  0, there are exactly d modes that
are not paired, and they are modeled by a linear multilayer stochastic model as in
Kondrashov et al. (2015).

Note that Eq. (MSLM) can be generalized further by allowing coupling of .xj; yj/

pairs at neighboring frequencies, which can be useful for certain applications where
cross-frequency interactions are important. Equations (MSLM) are discretized in
time and integrated numerically forward from initial conditions that respect the
initialization procedure described in Kondrashov et al. (2015, Appendix B).
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Cautionary Remarks on the Auto-Correlation
Analysis of Self-Similar Time Series

Sung Yong Kim

Abstract As the time-domain analysis of non-linear time series in geosciences, the
auto-correlations of the self-similar time series are examined to identify spurious
decorrelation structures in terms of the number of independent pulses and the
shape of decay patterns. The self-similar time series is defined as a continuous
time series having similar shapes of disturbance or amplitudes of which statistics
is non-Gaussian, such as records of river flows, rainfall, wind speed, concentration
of Chlorophyll, and inertial amplitudes in geosciences. In this chapter, the auto-
correlations of the modeled self-similar time series are evaluated and the relevant
cautionary remarks are discussed.

Keywords Self-similar time series • Correlation • Decorrelation scale • Non-
gaussian data

1 Introduction

Signals and noise in nature are considered as Gaussian random processes, which
are typically represented by their mean and standard deviation. In particular, a
covariance function (called as “kernels”) has a primary role to determine the shape
of prior and posterior of Gaussian random processes (e.g., Rasmussen and Williams
2006). Moreover, a correlation function is the covariance function normalized by
standard deviation and maintains the de-correlated structure and characteristics
in the domain where the process is defined. In the time-domain analysis, auto-
correlations of time series under Gaussian statistics have been used to identify
the decorrelation time scale. Similarly, the auto-correlations of the spatial data
quantify the de-correlated structures (e.g., Bendat and Piersol 2000; Priestley 1981).
For instance, the cross-correlation of the ambient noise field received from two
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points can recover the time-domain Green’s function (or empirical noise function),
between two locations (e.g., Courtland 2008; Roux et al. 2005).

However, since non-Gaussian variables can be described with chi-squared or
Poisson statistics, the classic correlation analysis may not be applicable to data
under non-Gaussian statistics. As an example of non-Gaussian variables, a self-
similar time series is considered as a continuous time series having similar shapes
of disturbance or amplitudes of which statistics is non-Gaussian, such as records
of river flows, rainfall, wind speed, concentration of Chlorophyll, and inertial
amplitudes in geosciences. In characterizing the non-Gaussian variable, a careful
treatment may be required, which is different from typical data analysis techniques
used in the data under Gaussian statistics. For instance, Park et al. (2009) estimated
the decorrelation time scales of the pure-inertial amplitude using an auto-correlation
analysis of their time series as a self-similar time series (e.g., a series of saw-
teeth). They concluded that the estimate of the decorrelation scales depends on the
decay pattern of individual pulses (e.g., exponential or Gaussian shape) and the
decorrelation scale of a self-similar time series decaying with a Gaussian shape is
equal to

p
2 times of the actual length scale [see Appendix of Park et al. (2009) for

more details].
In this chapter, experiments to quantify the decorrelation scales of a self-similar

series are conducted with an evaluation of whether the decorrelation scales depend
on the decay patterns and the number of individual pulses. Some portion of
descriptions is excerpted from Kim et al. (2014).

2 Data Analysis

Three sets of synthetic self-similar time series [d.t/] having multiple double-sided
pulses that decay in the exponential, Gaussian, and linear manner, respectively
[Eqs. (1)–(4)] are generated. Primary parameters [e.g., amplitudes (an), decorrela-
tion time scales (�n), and timings of individual pulses (tn)] in each time series are
chosen as random variables:

de.t/ D

NX
nD1

ae
nbe

n.t/ D

NX
nD1

ae
n exp

�
�

jt � tnj

�n

�
; (1)

dg.t/ D

NX
nD1

ag
nbg

n.t/ D

NX
nD1

ag
n exp

"
�
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2

�2n

#
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dl.t/ D

NX
nD1
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nbl

n.t/ D
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n

�
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C 1

	
; (3)
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where an, �n, and ˇ denote the independent amplitude at each tn. the decorrelation
scale, and the slope parameter of the linear, respectively. Superscripts of e, g, and l
indicate the exponential, Gaussian, and linear functions, respectively.

Moreover, the self-similar time series having multiple single-sided pulses (posi-
tive only) can be simulated with a constraint of

dn.t/ D

(
dn.t/; if t � tn

0; if t < tn
: (4)

The auto-correlations (	) of self-similar time series are evaluated with

	.�t/ D
hd.t C�t/d.t/�ip

hd.t C�t/2i
p

hd.t/2i
; (5)

where �t denotes the time lag.
The auto-correlations of three sets of time series show the exponentially decaying

shape regardless of the decaying pattern of the original time series (Fig. 1).
Moreover, the number of pulses, the resolution of the time axis, decorrelation
time scales, timings of pulses, and amplitudes did not change the shape of auto-
correlation. The decorrelation time scale obtained from the auto-correlation does
not have any relevance with decay scales of individual pulses. Thus, the decay scale
of the inertial amplitudes is nothing to do with

p
2 times of the actual length scale as

described in Park et al. (2009). In addition, the auto-correlation of the double-sided
pulses shows a Gaussian shape regardless of the decay pattern of the time series
(Fig. 2).

3 Conclusion

The self-similar time series requires careful analysis because its auto-correlations
may have spuriously de-correlated structures as they are independent of the decay
patterns (e.g., exponential, Gaussian, and linear), the number of pulses, the types
of pulses (e.g., single- and double-sided pluses), and the number of realizations.
Thus, it would be more appropriate that a set of the self-similar time series is
considered individually or averaged, then, is approximated with any functions
with a decay pattern. The individuals or the composite mean of self-similar time
series be fitted with any functions having a decay pattern in order to quantify
the decorrelation (time) scales is suggested. If other dynamic variables (e.g., wind
stress) are available, the statistically computed response function can provide the
decorrelation scales as presented in Kim and Kosro (2013).
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Fig. 1 (a)–(c): Three sets of self-similar time series with multiple single-sided pulses which
decay with the exponential, Gaussian, and linear shapes. The amplitude, decay coefficients, and
timings are chosen randomly [Eqs. (1)–(3)]. (d) Auto-correlations of self-similar time series given
in (a)–(c)
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Fig. 2 (a)–(c): Three sets of self-similar time series with multiple double-sided pulses which
decay with exponential, Gaussian, and linear shapes, respectively. The amplitude, decay coeffi-
cients, and timings are chosen as randomly [Eqs. (1)–(3)]. (d) Auto-correlations of self-similar
time series given in (a)–(c)
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Emergence of Coherent Clusters in the Ocean

A.D. Kirwan Jr., H.S. Huntley, and H. Chang

Abstract Why does material tend to congregate in long coherent clusters at the
surface of the ocean when it is well known that the ocean is dispersive? Here we
review some recent research that addresses this question. A standard diagnostic
for discerning transport pathways in incompressible 2D flows is the finite time
Lyapunov exponent (FTLE). The FTLE can be expressed as the average of two
rarely evaluated Lagrangian objects: the dilation and stretch rates. The stretch
rate accounts for the ability of fluid shear to change the shape of fluid blobs,
and for incompressible fluids it is the FTLE. However, in the real ocean and
especially at submesoscales, the horizontal divergence is not negligible. This is
quantified by the dilation rate, which is identically zero in 2D incompressible
flow. Our analysis demonstrates that the combination of fluid dilation and stretch
enhances accumulation of buoyant material along thin clusters in an otherwise
dispersing ocean.

Keywords Lyapunov exponents • Clustering • Dilation • Stretch • Singular
value decomposition • Deformation • Mixing • Transport boundaries

1 Introduction

Dispersive mechanisms operating in the world’s oceans span six or seven orders
of magnitude in space and time scales. For mesoscale and large-scale phenomena
these range from the Rossby deformation radius to basin scales and weeks to
years, respectively. Submesoscale processes operate in the range of meters to a few
kilometers and hours to a few days. The low-end extreme is given by turbulent
processes that act on centimeter and minute scales. Two noteworthy examples of
dispersion at the largest scales are cargo falling off freighters and being transported
across ocean basins (Ebbesmeyer and Ingraham, 1992, 1994) and radioactive
isotopes released from the 2011 Fukushima Daiichi nuclear reactor accident in
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Japan making their way to the North American continental shelf (Smith et al., 2015).
On smaller scales, dye experiments and drifter releases in various parts of the world
have shown dispersive characteristics (Okubo, 1971; Poje et al., 2014, 2016).

These and many other observations demonstrate that the ocean is, on average,
dispersive at virtually all scales. In view of this, it seems somewhat paradoxical
that material also is observed to form coherent clusters in certain regions. The two
phenomena are clearly related, yet call for separate diagnostics. Here we review
some recent results relevant to the distinction between dispersion and clustering
patterns.

The discussion is organized as follows. Section 2 reviews some examples of
coherent clusters in geophysical fluid settings. Section 3 summarizes recent theo-
retical results that bear on the issue of formation of coherent clusters in otherwise
dispersive fluids. Section 4 reviews recent numerical experiments exhibiting both
dispersion and clustering of material at the ocean surface. Section 5 summarizes the
principal findings and offers some speculations about future research.

2 Examples of the Emergence of Coherent Clusters

One of the earliest examples of the formation of coherent clusters in fluid flow
was provided by Aref (1984). He considered the 2D flow of an incompressible
and barotropic fluid in a cylinder with stirring provided by two vortices. Steady
rotation of the vortices produces a simple stream function (Fig. 1, reproduced
from his paper). However, when the vortices oscillate in their positions, the flow
becomes chaotic. This was illustrated by following the evolution of a rectangular
blob of particles, initially located approximately midway and slightly off the
axis connecting the two stirrers, as shown in panel Fig. 1b. Instead of dispersing
isotropically, the blob evolves into intricate thin structures before reaching the final
state of near uniform distribution.

What about natural flows? Images of a variety of floating substances on the
ocean surface show strikingly similar patterns of concentrated clustering. Satellite
images of chlorophyll have documented intricate interwoven lines reminiscent of
Aref’s simple mixing model (Fig. 2a). Distinctive lines of sargassum have also been
observed from ships; Fig. 2b shows drifting buoys having congregated in the same
convergence zone as the seaweed.

Clustering was also observed in the aftermath of the Deepwater Horizon oil spill
in the northeastern Gulf of Mexico in 2010. The oil slick displayed sharp fronts
and lengthy striations, both on small scales observable from ships (Fig. 3a, b) and
on large scales as seen from satellites (Fig. 3c, d). Figure 3c, d was taken just over
2 weeks apart. Note the huge increase in the elongation of the cluster over this
relatively short time.

A striking aspect of these images is the vast range of spatial scales over which
string-like clusters of material are observed. Such accumulations are well docu-
mented in virtually all parts of the world ocean. Figure 4a shows a concentration
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Fig. 1 (a) Streamlines when the fluid in a cylinder is stirred by two fixed vortices located at the
crosses rotating at a constant rate. (b) The evolution of a grid of particles when stirred by vortices
oscillating with a period of 1 and amplitude 0.5 [see Aref (1984) for more details]. Snapshots are
taken at times 1, 2, 3, 4, 5, 6, 9, and 12. [Reproduced from Aref (1984)]

of debris floating in the Pacific Ocean originating from the tsunami that hit the east
coast of Japan in 2011. Figure 4b illustrates that such clusters are even observed in
the Arctic Ocean, in this case made up of ice floes.



216 A.D. Kirwan Jr. et al.

Fig. 2 (a) Chlorophyll in the western Gulf of Mexico, as observed by MERIS. (Image courtesy
of ESA.) (b) Surface drifters and sargassum clustering along a front in the northeastern Gulf of
Mexico. (Image courtesy of Tamay Özgöomen)

3 Theory

The flow fields producing the structures shown in Figs. 2, 3, and 4 differ in important
ways from those responsible for Fig. 1. The ocean flows are not necessarily 2D
incompressible. Moreover, they are governed by geophysical fluid dynamics and
so include rotation and stratification along with turbulent dispersive processes. The
theory we review here sheds some light on how to quantify the effects of the 2D
compressibility and separate them from the deformation that is common to both
types of flows.

Although our analysis is restricted to 2D velocity fields, this is not unduly restric-
tive as the clustered material depicted in Figs. 2, 3, and 4 is buoyant and thus con-
fined to the ocean surface. Even though horizontal divergence there is generally not
zero, the vertical velocities typically are negligible relative to horizontal velocities.

Any material blob in a 2D compressible flow is subject to two types of
deformations, those that change its area—which we will call dilation—and those
that change shape while preserving area—which we will refer to as stretch. Non-
linear combinations of these mechanisms can result in complex shapes. The cartoon
in Fig. 5 illustrates these concepts.

The first order approximation to the map taking a blob in its initial state to a later
state is given by the deformation tensor:

F D
@x
@x0

D

2
664

@x

@x0

@x

@y0
@y

@x0

@y

@y0

3
775 : (1)

Here x is the current position of a particle as a function of its initial position x0 and
time t.
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Fig. 3 Aerial (top) and satellite (bottom) images of the 2010 Deepwater Horizon oil spill in the
Gulf of Mexico. (a) A sharp front has developed in the oil slick, 12 May 2010. (Image courtesy of
NOAA.) (b) Striations are visible with oil sheen near the clean up activities, 1 June 2010. (Image
courtesy of Green Fire Productions.) (c) MODIS image of the oil slick on 29 April 2010. (Image
courtesy of NASA.) (d) MODIS image of the oil slick on 17 May 2010. (Image courtesy of NASA)

The deformation tensor quantifies both stretch and dilation through its singular
value decomposition (SVD):

F D U˙V� D U
�
�1 0

0 �2

�
V�: (2)

The singular values of F are �1 � �2; U and V are real unitary matrices.
The � superscript is the transpose operator. In theoretical mechanics, F is often
decomposed into a right stretch tensor R or a left stretch tensor L. Their relationship
to the SVD is as follows:

RR D V˙2V�

LL D U˙2U�: (3)
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Fig. 4 (a) Debris off the east coast of Japan, a few days after the nation was struck by a tsunami.
(Image courtesy of the US Navy.) (b) MODIS image of sea ice off eastern Greenland, 16 October
2012. (Image courtesy of NASA)

As shown by Huntley et al. (2015), the �i have useful physical interpretations.
Their product �1�2 characterizes the change in area of an incremental blob, while
the ratio �1��1

2 characterizes the blob’s stretch or change in aspect ratio.
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Fig. 5 Cartoon depicting
types of deformation for a
blob of fluid, including
dilation and stretch effects

For integration time T , the rates of dilation and stretch are given by

� D
log.�1�2/

T

˙ D
log.�1��1

2 /

T
: (4)

Here T is the integration time. These can be nicely related to the finite time
Lyapunov exponent (FTLE), which is the classic tool for identifying coherent
Lagrangian structures. The FTLE is defined as # D log.�1/=T . From (4) it follows
that this is simply the average of � and ˙ :

# D
log�1

T
D
�C˙

2
: (5)

In the dynamical systems literature, ridges in the FTLE field evaluated over the
interval Œt0; t0 C T� are associated with stable or inflowing manifolds, while those in
the FTLE field evaluated over the interval Œt0 � T; t0� are associated with unstable or
outflowing manifolds.

Figure 6 is an example of the application of traditional FTLE methodology to
a current field from the Gulf of Mexico. In this figure the red and blue curves are,
respectively, the backward and forward in time #. Each is a transport boundary
over the time period it was calculated. Their intersection is at a critical trajectory.
See Kirwan (2006) for a discussion of the connection between FTLE intersections
and critical trajectories. Panel (a), on 11 October, shows the intersection of two
strong inflowing and outflowing # ridges near 24N, 93:5W. Also seen in the figure
are several circular blobs: three green, one yellow, one black, and one orange. Over
the next 20 days the yellow and orange blobs flow along the inflowing manifold
and collapse onto the outflowing manifold. The black blob, initially centered on
the intersection, simply collapses along the outflowing curve. In contrast, the green
blobs, initially located at the centers of eddies, are merely distorted by the shears
within the eddies. A purple blob is initialized as a string-like feature along the
inflowing manifold. It collapses onto the manifold intersection. This example shows
the potential power of FTLE to identify transport boundaries.
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Fig. 6 Example of the inflowing (blue) and outflowing (red) FTLE ridges from a simulation of cur-
rents in the Gulf of Mexico at 50 m depth. Strategically placed blobs illustrate the impact of these
structures on nearby material. Green blobs are initialized inside eddies. The black blob is positioned
over the intersection of the inflowing and outflowing manifolds at the initial time, whereas the
purple blob ends up centered at the intersection. Yellow and orange blobs begin on opposite sides
of the outflowing manifold, centered on the inflowing one. (a) 11 October 1998. (b) 15 October
1998. (c) 19 October 1998. (d) 23 October 1998. (e) 27 October 1998. (f) 31 October 1998

4 Results

Not all transport boundaries are associated with clustering behavior, however. To
tease out what relative separation is due to dilation—and hence indicative of clus-
tering or dispersion—and what is due to stretch—and hence not related to clustering
phenomena, it is necessary to split the FTLE into its components of dilation and
stretch rates. To address this issue we now present some results from the application
of the theory outlined in Sect. 3 to flows in the Gulf of Mexico. Further details of
related applications are given in Huntley et al. (2015) and Jacobs et al. (2016).

How important is the horizontal divergence at the surface of the ocean in the
formation of clusters? Huntley et al. (2015) considered the full model velocity
field and its geostrophic approximation from a fully non-linear data-assimilating
high resolution hydrostatic model hindcast near a Loop Current Ring in the Gulf
of Mexico. The two velocity fields for this flow were nearly indistinguishable, yet
the resulting particle distributions differed wildly. Here we repeat this experiment
with a flow in the northeastern Gulf of Mexico that has a somewhat greater non-
geostrophic contribution. Figure 7 compares the congregation of surface material
from the full and divergence-free geostrophic velocity fields. The top left panel (a)
shows the sea surface height anomaly field and the model hindcast of the velocity
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Fig. 7 Illustration of the role of horizontal divergence in the formation of clusters. Panel (a) shows
the full model surface velocity field, while panel (b) shows the surface velocity field calculated
from the sea surface height field using the geostrophic assumption on 16 December 2013. The
colored field in the background is the sea surface height anomaly in the model. Panels (c) and (d)
show the end positions of an initially uniform grid of particles for the respective velocity fields
after 3 days

field on 16 December 2013. See Jacobs et al. (2016) for model details. The top
right panel (b) shows the same sea surface height anomaly field and the geostrophic
velocity calculated from that height field. Particles were started on a regular grid
with approximately 0.0022-deg spacing, and their trajectories were evaluated from
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the respective velocity fields. The lower two panels of Fig. 7 show the particle distri-
butions after 3 days. Panel (c) indicates significant clustering of particles along long
thin lines, whereas there is no such effect in the geostrophic flow distribution shown
in panel (d), although that plot does show organized deformation of the uniform grid.

What can the difference in particle distributions be attributed to? Figure 8 shows
�,˙ , and# for the full velocity field over the same 3-day time period used in Fig. 7.
All three fields show similar features. Dilation and stretch rates are similarly strong,
with fine-scale structure. Since the features are slightly offset, the FTLE field, being
their average, appears generally smoother with softer ridges.

The dilation rate field in Fig. 8a illustrates the competing roles of dispersion and
cluster formation. Much of this field is red, which indicates regions where particles
are dispersing. In contrast the blue cluster regions are restricted to long filaments.

For the geostrophic velocity field, as shown in Fig. 7, the dilation rate vanishes, of
course, since there is no divergence. The stretch rate is shown in Fig. 8d. The FTLE
would simply be half of this field. Note that the geostrophic stretch rate shows some
similarities with that of the full velocity field, but the structures generally have a
larger scale, and the distinct eddies have a much more dominant signature in ridges
wrapping around them. (The scatter at the northern end of the domain should be
ignored as unreliable due to its proximity to the coastline.)

In the case analyzed by Huntley et al. (2015), where the ageostrophic velocity
component is weaker, the FTLE fields for the two sets of velocities are much more
similar, indicating that it is not the divergence per se that leads to the distinction in
the case presented in Fig. 8.

5 Discussion

We have summarized a theory that decomposes the FTLE into dilation and stretch
components. In purely geostrophic flow the dilation is 0, and there is no bunching of
particles along thin curves (Fig. 7). Although the full model velocity field is similar,
the particles tend to congregate along curves of strong negative dilation. The dilation
rate � alone, however, does not fully account for the deformation of the patch of
particles: Transport pathways are delineated by #.

The distinction between regions of buoyant particle accumulation characterized
by � and transport boundaries characterized by # seems important to us. As
shown by Poje et al. (2014, 2016) this region of the Gulf of Mexico obeys classic
turbulent dispersive scaling. At the same time horizontal convergence produced
by submesoscale dynamics will cause some particles to accumulate along lines.
Averaged separation behavior, thus, is only part of the picture.

The complete story is still evolving. In a related study, Jacobs et al. (2016)
analyzed the horizontal divergence along trajectories in a series of numerical
experiments in both a deep portion of the Gulf of Mexico and the adjacent
continental shelf. The clustering patterns between these regions were generally
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Fig. 8 The (a) dilation rate, (b) stretch rate, and (c) the FTLE for the full velocity field and the
same period shown in Fig. 7. (d) The stretch rate for the geostrophic velocity field over the same
time

similar, but with different characteristic temporal and spatial scales. Initially, small-
scale ocean processes were found to produce small-scale cluster patterns. Over time,
the small clusters broke up but larger scale clusters arose from lower-frequency flow
phenomena. This suggests that clustering phenomena and the diagnostics developed
here are critically dependent on phenomenological scales and consequently on
model resolution.
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Two recent field experiments in the Gulf of Mexico should shed more light on
the matter. The LAgrangian Submesoscale ExpeRiment (LASER) was conducted
in the DeSoto Canyon, near the Deepwater Horizon spill site, in January–February
2016. This experiment monitored Lagrangian properties down to scales of meters.
A forthcoming experiment, Submesoscale Processes and Lagrangian Analysis on
the SHelf (SPLASH), scheduled for spring 2017, will acquire similar data on the
continental shelf off Port Fourchon. A primary goal of these experiments is to
quantify the competition between dispersion and clustering down to these scales,
complementing the model results.

Acknowledgements This work was funded in part by grant N00014-11-1-0087 from the Office
of Naval Research for MURI OCEAN 3D+1 and in part by a grant from The Gulf of Mexico
Research Initiative to the Consortium for Advanced Research on Transport of Hydrocarbon in
the Environment. The authors thank Karal Gregory for technical assistance in preparation of the
manuscript.

References

Aref, H. 1984. Stirring by chaotic advection. Journal of Fluid Mechanics 143(1–21).
doi:10.1017/S0022112084001233.

Ebbesmeyer, C.C., and W.J. Ingraham. 1992. Shoe spill in the north pacific. Eos 73(34): 361–365.
Ebbesmeyer, C.C., and W.J. Ingraham. 1994. Pacific toy spill fuels ocean current pathways

research. Eos 75(37): 425–430.
Huntley, H.S., B.L. Lipphardt Jr., G. Jacobs, and A.D. Kirwan Jr. 2015. Clusters, deformation,

and dilation: Diagnostics for material accumulation regions. Journal of Geophysical Research,
Oceans 120: 6622–6636. doi:10.1002/2015JC011036.

Jacobs, G.A., H.S. Huntley, A.D. Kirwan Jr., B.L. Lipphardt Jr., T. Campbell, T. Smith, K.
Edwards, and B. Bartels. 2016. Ocean processes underlying surface clustering. Journal of
Geophysical Research, Oceans 121: 180–197. doi:10.1002/2015JC011140.

Kirwan, A.D. Jr. 2006. Dynamics of “critical” trajectories. Progress in Oceanography 70: 448–
465.

Okubo, A. 1971. Oceanic diffusion diagrams. Deep Sea Research 18(8): 789–802.
doi:10.1016/0011-7471(71)90046-5.

Poje, A.C., T.M. Özgökmen, B.L. Lipphardt Jr., B.K. Haus, E.H. Ryan, A.C. Haza, G.A. Jacobs,
A.J.H.M. Reniers, M.J. Olascoaga, G. Novelli, A. Griffa, F.J. Beron-Vera, S.S. Chen, E. Coelho,
P.J. Jogan, A.D. Kirwan Jr., H.S. Huntley, and A.J. Mariano. 2014. Submesoscale dispersion in
the vicinity of the deepwater horizon spill. Proceedings of the National Academy of Sciences
of the United States of America 111(35): 12693–12698.

Poje, A.C., T.M. Özgökmen, D.J. Bogucki, and A.D. Kirwan Jr. 2016. Evidence of a forward
energy cascade and Kolmogorov self-similarity in submesoscale ocean surface drifter observa-
tions. Physics of Fluids: 020701-1–020701-10. Special issue for Prof. John Lumley

Smith, J.N., R.M. Brown, W.J. Williams, M. Robert, R. Nelson, and S.B. Moran. 2015. Arrival
of the Fukushima radioactivity plume in North American continental waters. Proceedings
of the National Academy of Sciences of the United States of America 112(5): 1310–1315.
doi:10.1073/pnas.1412814112.



The Rise and Fall of Thermodynamic
Complexity and the Arrow of Time

A.D. Kirwan Jr. and William Seitz

Abstract Complexity Theory is an eclectic collection of theoretical approaches
to a wide variety of nonlinear problems that typically involve many degrees of
freedom. Despite numerous claims, there does not appear to be a universal basis for
the various approaches. Here we report on recent attempts to provide such a basis.
Our approach is based on the partial order of Boltzmann states under majorization
and thus is grounded in the Second Law of Thermodynamics. However, here we
do not appeal to any energetic constraints. By majorizing the Boltzmann states we
identify a new statistical mechanical entity, namely a multivalued function that maps
Boltzmann entropy to the size or order of sets of incomparable Boltzmann entropy
states. We call this thermodynamic complexity. This is a concave function of entropy,
peaking near mid-entropy and falling to zero at maximum and minimum entropies.
It remains to be seen if this approach can be rigorously applied to other areas, but
heuristic arguments given here indicate broad applicability.

Keywords Boltzmann entropy • Second law of thermodynamics • Majorization •
Thermodynamic complexity • Incomparability • Posets • Young diagram lattice •
Arrow of time

1 Introduction

The notion that all things evolve irreversibly towards equilibrium is deeply imbed-
ded in science and experience. This is codified in the Second Law of Thermody-
namics, where the final equilibrium state achieves maximum entropy; this state
in turn is often characterized as being maximally disordered or chaotic. Although
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this principle was originally formulated for inanimate thermodynamic systems, it
is generally accepted as a universal truth. Recent developments in the nonlinear
sciences have shown that the evolution to a final equilibrium of maximum entropy
is not simple. In fluid dynamics, for example, considerable effort is directed towards
understanding the dynamics of “coherent structures” in otherwise turbulent flows.
See Haller (2015) for a recent topical review. The reaction–diffusion equations
and subsequent laboratory studies have shown that intricate patterns can arise from
complex chemical reactions. Nonlinear models with many degrees of freedom also
arise in the biological sciences and economics. There too, identifiable structures
appear to emerge from seemingly incoherent backgrounds far from equilibrium. The
proceedings of a conference on coherent structures in complex systems (Reguera
et al., 2001) beautifully document the huge variety of disciplines in which the notion
of coherent structures plays a fundamental role.

These developments have led to the concept that complex structures can emerge
far from equilibrium. At the risk of fomenting confusion we shall use the term com-
plex to describe such structures. Although widely recognized in many disciplines,
there seems to be no universal quantitative definition of complexity. Weaver (1948)
posited two types of complexity. In this categorization disorganized complexity is
characterized randomness while organized complexity referred to large systems
with many interacting components. Lloyd (2001) listed 31 measures. Johnson
(2009) defined complexity science as “the study of the phenomena which emerge
from a collection of interacting objects.” Starting in 1971 with Ruelle and Takens’
work on turbulence (Ruelle and Takens, 1971) a number of investigators May
(1975), Feigenbaum (1978, 1979), Feigenbaum et al. (1982), and Rand et al. (1982)
have attempted to relate complexity to the onset of chaos.

These approaches have provided useful and important insight into many disci-
plines. But we are struck by an apparent lack of universality. For example, the
“universality" of the approach to chaos advocated in Feigenbaum (1978, 1979),
Feigenbaum et al. (1982), and Rand et al. (1982) is specific to their definition of
“chaos.” Nor is it clear to us what the final equilibrium state should be for these
systems. The approach taken here is different. Our hypothesis is that complex
systems typically undergo a systematic evolution from simple configurations to
those that exhibit considerable complexity, with noticeable structure, before reach-
ing some final equilibrium configuration typically characterized by total loss of
coherence. We attempt to quantify this evolution using standard, but somewhat
obscure, mathematical tools.

A critical question is what standard should be used for the evolution of a complex
system. Here we select Boltzmann entropy, as this is the “mother” entropy for
nearly all scientific applications. Variants are used in quantum statistical mechanics,
economics, and diversity studies in ecology and sociology. Because of this we
expect the analysis below may have significant impact in a number of disciplines.

Our report is organized as follows. Section 2 gives a short review of Boltzmann
entropy. In Sect. 3 we review recent work relevant to our thesis about the evolution
of systems. Section 4 introduces the notion of majorization and incomparability and
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applies this to a Boltzmann system of modest dimension. In Sect. 5 we speculate
how our approach might fit into a general view of the evolution of many complex
systems.

2 The Mother of All Entropies: Boltzmann

The Boltzmann entropy, S D k ln˝, was the original statistical mechanical model
of a gas. It was developed by the Austrian physicist L. Boltzmann in the early
1870s. In this equation k is the Boltzmann constant and ˝ is the number of ways N
distinguishable particles can be distributed among N states with �j particles in state
j. From elementary considerations this is

˝ D
NŠQN

jD1 �jŠ
: (1)

It is appropriate here to introduce some special notation. We characterize entropy
configurations by the partition notation

S.�I N/ $ Œ�1; : : : ; �N �: (2)

We will refer to Œ�j� as a partition of S. In this notation the ordering of the partition is
such that �j � �jC1. By way of illustration consider the state N D 5. The minimum
and maximum entropy partitions are simply denoted by Œ5� and Œ15�, respectively.
Two possible intermediate partitions are Œ3; 2� and Œ3; 12�.

Clearly the minimum entropy occurs when all the particles are in one state and
the maximum entropy is when each particle occupies its own unique state. The
minimum entropy configuration is often regarded as the most organized condition
while the maximum entropy configuration characterizes total randomness or chaos
since it represents the maximum number of ways the particles can be distributed
amongst all the states. We argue that the minimum and maximum entropy states are
uninteresting. In the former everything is the same while in the latter state everything
is different. It is much more interesting to ponder what happens when there is a
mixture of sameness and differentness.

To illustrate how this works consider a configuration of N particles given by
specific values of Œ�j�. S characterizes the macrostate while ˝ gives the number of
ways that value of S can be achieved by rearrangements of the particles between
the Œ�j�, keeping the value of each Œ�j� fixed. For example, for three particles one
might have a distribution of particles 1 and 2 in state �1, particle 3 in state �2, and
no particles in state �3. The same value of entropy would be achieved if particle
1 swapped positions with particle 3. The different combinations of particles are
called microstates. Generally microstates are unobservable while macrostates are
observables.
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We will be concerned with the number of partitions available for a given state
size N. It is well known that for the Boltzmann system this is exactly the number of
integer partitions of N. Hardy and Ramanujan (1918) showed that for large N this
was approximately

P.N/ �

�
1

4N
p
3

	
exp

r
2N

3
: (3)

Evidently for even modest state sizes the number of available entropy partitions is
huge.

3 Surprising Properties of S

Because of its long history in science, mathematical properties of the Boltzmann
entropy are generally taken for granted. Here we review some recent research that
reveal new facets of this marvelous function.

We start with an example of the complete evolution of a Boltzmann system with
ten particles from its minimum to maximum entropy configurations. That is we start
with a configuration Œ10� and follow its evolution to the configuration Œ110�. This is
conveniently illustrated by a Young Diagram Lattice (YDL) as shown in Fig. 1.

For N D 10 there are 42 entropy states. They are indicated in the YDL by the
rows and columns in the diagram. The lowest entropy state is at the top when all
ten objects are in one row. The first evolutionary step is to move one object to the
adjacent row. Now there are two choices for the second step. One can either move
a second object to the second row or move that object to a third row. The former
move produces a partition Œ8; 2� while the latter produces Œ8; 12�. This situation
illustrates two possible strategies. The “diversity” strategy has no constraint to
what row a particle can be moved. The “mixing” strategy requires that objects
move the minimum number of rows. So in this example the partition Œ8; 2� resulted
from the mixing paradigm while the partition Œ8; 12� was a possible example of the
diversity paradigm. Obviously the mixing paradigm is a special case of the diversity
paradigm.

Casual inspection of Fig. 1 reveals that there are many possible routes to the final
equilibrium partition Œ110� at the bottom of the ladder where there is one object in
every row for either paradigm. Hence the question: Are there preferred routes to
equilibrium? Seitz and Kirwan (2014) ran Monte Carlo simulations for a variety
of state sizes N for both the mixing and diversity paradigms. Figure 2, taken from
that paper, summarizes the results. The diversity paradigm path length scales nearly
linearly with N for over two decades while the mixing paradigm scales as N1:375.
These results are close to limiting asymptotic values for these two paradigms. It is
straightforward to show that for the diversity paradigm the shortest route is simply
the state size N. The longest route for the mixing paradigm is a bit more complicated
to analyze but it approaches N4=3 for large N. Shorter routes go down the sides of
the YDL in Fig. 1 while longer routes are those that run through the middle of the



The Rise and Fall of Thermodynamic Complexity and the Arrow of Time 229

Fig. 1 Young Diagram
Lattice for N D 10 showing
partitions incomparable to
Œ6; 1; 1; 1; 1�

lattice. It is noteworthy that both paradigms are much different from the classic
thermodynamic paradigm, which requires that the route to equilibrium pass through
every partition.

Since the routes scale close to the asymptotic limits for both cases the question
arises whether some partitions are visited more frequently than others. As noted
by Seitz and Kirwan (2014), the Monte Carlo simulations revealed a surprising
variation in partition visitations. For example, rectangular shaped partitions such
as Œ64; : : :� for N D 36 are rarely visited by either paradigm. Such partitions tend to
be located on the extreme left side of YDLs. Partitions located on the extreme right
side such as Œ5; 2; 13� are visited more frequently by the diversity paradigm. The
large variation in visitation frequencies as reported by Seitz and Kirwan (2014) was
unexpected and is counter to the notion in classical thermodynamics regarding the
approach to equilibrium. Surely further inquiry is warranted into this phenomenon.

The most surprising property of S was the preponderance of degenerate or
doppelgänger entropy partitions reported by Kirwan and Seitz (2016). The first
example was found at N D 7 where it is easy to see that the partitions Œ4; 13� and
Œ3; 22� have the same entropies. Previously doppelgänger entropy partitions were
reported in Seitz and Kirwan (2014), but were regarded as pathological since the
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Fig. 2 Log-log plots of the average path length vs. N. The top curve is for the mixing lattice. Note
slope is 1 for diversity but fractional for mixing

number of states grows as the integer partition of N. However, this proved not to be
the case. For a modest state size of N D 50 where there are 204;226 states only 5%
were not doppelgängers.

Motivated by this finding Kirwan and Seitz (2016) developed a theory for
doppelgänger entropies. They noted that doppelgänger entropies occurred when
the number of objects in a row in the YDL could be expressed as the product of
two or more factorials. The case N D 7 is the simplest example. Since 4 D 2 � 2

then 4Š D 3Š2Š2Š, thus the partitions Œ4; 13� and Œ3; 22� have the same entropy. This
seed occurs first at N D 7 but the combination will be repeated for increasing
values of N. In fact they showed that this seed grows as the integer partition of
N � 7. Of course for N > 7 more seeds are available which also grow as integer
partitions. For sufficiently large N the first seeds can intersect to produce vielgänger
entropy states. The first occurrence of this is at N D 12 where the 4Š D 3Š2Š2Š

seed intersects the 6Š D 5Š3Š seed to produce the isoentropy partitions Œ5; 4; 13�,
Œ5; 3; 22�, and Œ6; 22; 12�. At N D 50 Kirwan and Seitz (2016) found one entropy
value produced by 86 partitions. On the other hand, there were over 5000 examples
of just doppelgänger entropy partitions. Figure 3, taken from their paper, shows the
frequency of the degenerate entropy partitions.

What does this mean for state systems of large N? The theory developed in
Kirwan and Seitz (2016) shows that the fraction of unique entropy partitions relative
to the state size goes as N�1=2. Thus for even modest state sizes typical in many
applications there are very few unique entropy states.
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4 Majorization, Partial Orders, and Incomparability

The concept of partially ordering partitions was introduced in combinatorics by
Muirhead (1903). The partial order is determined by a mathematical operation called
majorization. This is a way of comparing different multidimensional vectors whose
elements are positive numbers. The convention used here is that the vector elements
are arranged in descending order. More specifically consider two entropy partitions,
both of size N given by Œ�i� and Œ�i�. If

mX
i

�i �

mX
i

�i for m D 1; : : : ;N

NX
i

�i D

NX
i

�i (4)

then Œ�i�majorizes Œ�i�. If Œ�i� neither Œ�i� majorize each other, then these partitions
are said to be incomparable. When applied to the evolution of entropy incompara-
bility has a physical consequence. If a lower entropy partition is incomparable with
a higher entropy partition, then any path from the lower partition to equilibrium
cannot pass through the higher partition. In other words incomparability is a
powerful diagnostic for identifying forbidden states.

As an example consider YDL in Fig. 1 and the sequence of partitions arranged in
order of increasing entropy Œ8; 2�, Œ8; 12�, Œ7; 3�, and Œ7; 2; 1�. Clearly Œ8; 2�majorizes
the other three partitions and both Œ8; 12� and Œ7; 3�majorize Œ7; 2; 1�. But Œ8; 12� does
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not majorize Œ7; 3�! Hence the state Œ8; 12� cannot evolve to the next higher entropy
state, which is Œ7; 3�. Even in this small state size the number of incomparable
partitions can be quite large. The blue partition Œ5; 15� in that figure is incomparable
with the 12 red partitions.

A curious feature of the partitions of degenerate entropy states is that they are
mutually incomparable (Kirwan and Seitz, 2016). Apparently there is no isentropic
trajectory that will connect two partitions with the same entropy.

For these reasons incomparable entropy partitions seem important to us. It is
the mechanism that produced the huge disparity in partition visitations noted in
Sect. 3. It is a distinctive feature of degenerate entropy states. It also runs counter to
the classical thermodynamic view that as a system evolves to equilibrium it passes
through a continuum of all possible intermediate states.

Can this be used to quantify incomparability for the Boltzmann system? Here
is a synopsis of the approach used by Seitz and Kirwan (2016). Suppose there is a
set X with a partial order P. They defined CP of any element of X as the number
of elements of X that it is incomparable with. CP is readily computed for modest
state sizes but the calculation is exponentially hard as

p
N increases because of the

exponential increase in the number of states. We call CP thermodynamic complexity.
Seitz and Kirwan (2016) calculated CP for N D 50. This is shown in Fig. 4.

In this figure the entropy was normalized by the maximum entropy 50Š and the
incomparability by the maximum value of CP.

Fig. 4 Normalized incomparability/IP.N/ vs. normalized entropy for N D 50
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We note three intriguing features of this figure. One is the spines of nearly
constant incomparability but rapidly increasing entropy. The outermost points on
the spines are states with partitions Œ50 � m; 1m�. In the YDL shown in Fig. 1 these
states arise from evolutionary paths that go down the right side. The states that make
up the minimum CP arise from paths that favor the left side. The partition with the
maximum CP is Œ25; 125�. The second feature is the asymmetry of the maximum CP

relative to the normalized entropy. This partition occurs at a normalized entropy of

NS.25; 125/ D
S.25; 125/

S.150/
�

�
1

2

	�
1C

�
ln 2

ln 25 � 1

	�
� 0:619017 (5)

and not at NS D 0:5 as one might expect. As Seitz and Kirwan (2016) show, the
offset from NS D 0:5 is simply a finite state size effect. They show that as N ! 1,
NS ! 0:5. The third feature is the remarkable absence of ’“simple” states for
intermediate normalized entropy values. Except for the tails near the minimum
and maximum entropies, all entropy partitions have significant incomparability,
or are thermodynamically complex. Evidentially incomparability is a fundamental
characteristic of entropy partitions.

5 Discussion

What might be the broader significance of these results? First we emphasize that
all results presented here are quantitative. They are based just on fundamental
classical thermodynamics and statistical mechanics concepts and the mathematical
operation of majorization. Moreover the results are independent of any energetic
considerations. Since incomparability or thermodynamic complexity is distinct from
entropy and yet consistent with the evolution of complex systems one might expect
from the Second Law, it should be considered as a new thermodynamic state
variable.

Since classical thermodynamic and statistical mechanics concepts have been
adapted by many other disciplines it is tempting to speculate about the impact
thermodynamic complexity might have on complexity studies in other disciplines.
As discussed in Sect. 1 other complexity paradigms are concerned with an abrupt
transition to chaos through period doubling or metrics arising from Johnson’s (2009)
definition of complexity. Thermodynamic complexity is not compatible with either
paradigm. It is a measure of systems that are inaccessible and hence do not interact
directly. Moreover as seen in Fig. 4 there is a distinct rise and fall of thermodynamic
complexity as the Boltzmann system evolves towards final equilibrium.

Finally consider one of the cherished views of entropy as the “arrow of time." It is
often used in qualitative arguments as to why complex systems such as individuals
and civilizations age and die. Figures 5 and 6 show two examples. Figure 5 is an
image of a famous woodcutting by Baltasar Talamantes depicting the life span of
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Fig. 5 The complexity of individuals is greatest at middle age and less at birth and death. (The
female Steps of Life, a woodcut by Baltasar Talamantes, late eighteenth century)
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a medieval woman. Figure 6 is a cartoon of the rise and fall of the Roman empire.
The abscissa in both figures is time but the ordinates are unspecified. It has been
argued that both individuals and empires ultimately die and that this process is a
consequence of the Second Law. However, the unstated ordinates in both figures
indicate that the artists sensed that something else was going on during the evolution.
Near the mid-life period in both cases there is a maximum in “complexity." The
woman’s life is complicated by family commitments and likely too many other
factors too numerous to be depicted. In Fig. 6 life at the apex of the Roman empire
involved many factors not present during the warrior dominant phase. The similarity
of these figures with Fig. 4 is striking. Were the artists attempting to portray in the
ordinates the complexity of systems far from final equilibrium?

Thermodynamic complexity as developed here is completely consistent with
the arrow of time property of entropy. It qualitatively depicts the rise and fall
of complexity in the lifetime of any organism and also societal structures. The
other complexity metrics noted previously do not. It will be both stimulating
and challenging to apply majorization and incomparability to non-thermodynamic
complex systems.

Acknowledgements We thank Karal Gregory for technical assistance in preparation of this
manuscript.

References

Feigenbaum, M.J. 1978. Quantitative universality for a class of nonlinear transformations. Journal
of Statistical Physics 19: 25–52.

Feigenbaum, M.J. 1979. The universal metric properties of nonlinear transformations. Journal of
Statistical Physics 21: 669–702.

Feigenbaum, M.J., L.P. Kadanoff, and S.J. Shenker. 1982. Quasiperiodicity in dissipative systems:
A renormalization group analysis. Physica D 5: 370–386.

Haller, G. 2015. Lagrangian coherent structures. Annual Review of Fluid Mechanics 47: 137–162.
Hardy, G., and S. Ramanujan. 1918. Asymptotic formulae in combinatory analysis. Proceedings

of the London Mathematical Society 17: 75–115.
Johnson, N.F. 2009. Simply complexity: a clear guide to complexity theory. Oxford: Oneworld

Publications.
Kirwan, A.D. Jr., and W. Seitz. 2016. Doppelgänger entropies. Journal of Mathematical

Chemistry 54: 1942–1951. doi:10.1007/s10910-016-0658-z. http://dx.doi.org/10.1007/s10910-
016-0658-z

Lloyd, S. 2001. Measures of complexity: a nonexhaustive list. IEEE Control Systems 21(4): 7–8.
May, R.M. 1975. Deterministic models with chaotic dynamics. Nature 356(55141): 165–166.
Muirhead, R. 1903. Some methods applicable to identities and inequalities of symmetric algebraic

functions of n letters. Proceedings of the Edinburgh Mathematical Society 21: 144–157.
Rand, D., S. Ostlund, J. Sethna, and E.D. Siggia. 1982. Universal transition from quasiperiodicity

to chaos in dissipative systems. Physica D 49: 132–135.
Reguera, D., J.M. Rubí, and L.L. Bonilla, eds. 2001. Coherent structures in complex systems.

Lecture Notes in Physics, vol. 567. Berlin: Springer.
Ruelle, D., and F. Takens. 1971. On the nature of turbulence. Communications in Mathematical

Physics Addendum 23, 343–344.

http://dx.doi.org/10.1007/s10910-016-0658-z
http://dx.doi.org/10.1007/s10910-016-0658-z


236 A.D. Kirwan Jr. and W. Seitz

Seitz, W., and A.D. Kirwan Jr. 2014. Entropy vs. majorization: What determines complexity?
Entropy 16(7): 3793–3807. doi:10.3390/e16073793. http://www.mdpi.com/1099-4300/16/7/
3793

Seitz, W., and A.D. Kirwan Jr. 2016. Boltzmann complexity: An emergent property of the
majorization partial order. Entropy 18(10): 347. doi:10.3390/e18100347. http://www.mdpi.
com/1099-4300/18/10/347

Weaver, W. 1948. Science and complexity. American Scientist 36: 536–544.

http://www.mdpi.com/1099-4300/16/7/3793
http://www.mdpi.com/1099-4300/16/7/3793
http://www.mdpi.com/1099-4300/18/10/347
http://www.mdpi.com/1099-4300/18/10/347


From Fractals to Stochastics: Seeking
Theoretical Consistency in Analysis
of Geophysical Data

Demetris Koutsoyiannis, Panayiotis Dimitriadis, Federico Lombardo,
and Spencer Stevens

Abstract Fractal-based techniques have opened new avenues in the analysis of
geophysical data. On the other hand, there is often a lack of appreciation of both the
statistical uncertainty in the results and the theoretical properties of the stochastic
concepts associated with these techniques. Several examples are presented which
illustrate suspect results of fractal techniques. It is proposed that concepts used in
fractal analyses are stochastic concepts and the fractal techniques can readily be
incorporated into the theory of stochastic processes. This would be beneficial in
studying biases and uncertainties of results in a theoretically consistent framework,
and in avoiding unfounded conclusions. In this respect, a general methodology
for theoretically justified stochastic processes, which evolve in continuous time
and stem from maximum entropy production considerations, is proposed. Some
important modelling issues are discussed with focus on model identification and
fitting often made using inappropriate methods. The theoretical framework is
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I regard intuition and imagination as immensely important: we need them to invent a theory.
But intuition, just because it may persuade and convince us of the truth of what we have
intuited, may badly mislead us: it is an invaluable helper, but also a dangerous helper, for
it tends to make us uncritical. We must always meet it with respect, with gratitude, and
with an effort to be severely critical of it. (Karl Popper, preface to “The Open Universe: An
Argument for Indeterminism”, 1982).

1 Introduction

Over the past 30 years or more, considerable literature highlighted the fractal
(self-similar, self-affine, multifractal) characteristics of many complex patterns that
characterize geophysical processes. Fractal literature provides a framework in which
a simple process, involving a basic operation repeated many times, can represent
natural patterns that can be of extraordinary complexity (Falconer 2014; Scholz
and Mandelbrot 1989). In a variety of applications, geophysical systems are viewed
as fractals that follow certain scaling rules over a broad (even unlimited) range of
scales, implying that the degree of their irregularity and/or fragmentation is identical
at all those scales. Mathematically, these rules are power laws with exponents being
related to a fractal dimension. Roughly speaking, the fractal dimension is a measure
of the prominence of complexity of a pattern when viewed at very small scales.
Therefore, the fractal dimension is originally a local property, notwithstanding the
fact that in fractal literature the local properties are reflected in the global ones
(Mandelbrot 1982).

Finding that a complex system is characterized by fractal (or multifractal)
behaviour with particular scaling exponents represents a desideratum for many
practicing geophysicists and engineers (von Kármán 1940), because this finding
will help in describing the system dynamics with very simple formulae and few
parameters, in order to obtain predictions on the future behaviour of the system.
Such dynamics is usually denoted as fractal or multifractal, depending on whether
it is characterized by one scaling exponent or by a multitude of scaling exponents.

However, if we agree that scientific theories are mental constructs rather than
the physical reality per se, then we should also agree that there are no true fractals
in nature. Although there are natural phenomena that have been explained in terms
of fractal mathematics, “natural fractals” (such as coastlines, turbulence in fluids,
cloud boundaries, etc.) can usefully be regarded as such only over an appropriate
range of scales, with the fractal description inevitably ceasing to be valid if they are
viewed out of this range of scales.

Since asymptotic properties of geophysical processes are crucial for the quan-
tification of future uncertainty, as well as for planning and design purposes, many
applications of fractal theory tend to be descriptive rather than predictive (Falconer
2014; Kantelhardt 2009). In the foundational treatise on fractals, Mandelbrot (1982)
made such a distinction clear, but it has become somewhat blurred in recent
literature.
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We maintain and show in the following that careful use of stochastics (which
includes probability theory, statistics and stochastic processes) can deal with all
problems about complex geophysical processes in a more rigorous manner and more
effectively than fractals can do.

2 Why not to Prefer Fractals over Stochastics

In spite of the difficulty even mathematicians have in formally defining fractals
(Falconer 2014; Mandelbrot 1982), their wide popularity stems from the concept
of symmetry—in particular, expanding symmetry. From the birth of science and
philosophy, symmetry has been closely related to harmony and beauty, and this was
to prove decisive for its role in theories of nature. Both ancients and moderns often
believed indeed that there is a close association in mathematics between beauty and
truth.

A common research theme in the study of complex systems is the pursuit of
universal properties that transcend specific system details. In this way, fractal-based
techniques have opened new avenues in the analysis of geophysical data. According
to Scholz and Mandelbrot (1989):

One possible broad explanation of the role of fractals in geophysics may be found in
probabilistic limit theorems, and in the existence of classical “universality classes” related
to them. The reason is illustrated by the following fact. Wiener’s scalar Brownian motion
process W(t) is the limit of the linearly rescaled random processes that belong to its very
wide domain of attraction. Therefore, it is itself the fixed point of the rescaling process. That
is, its graph is a self-affine fractal set, a curve. The argument suggests that geometric shapes
relative to probabilistic limit theorems can be expected to be fractal sets.

On the other hand, the concept of fractals has been closely associated from
the outset with mathematical constructions involving infinite operations on simple,
deterministically defined, objects. Simple nonlinear dynamical systems were also
enrolled in illustrating the emergence of fractal structures. This association with
determinism and simplicity has been prominent and shaped the evolution of the
fractal literature.

Even when studying more complex systems, such as the evolution of geophysical
processes, the intuitive zeal was to make them comply with the simplicity of
the archetypal fractal mathematical objects. Thus, several studies attempted to
demonstrate that irregular fluctuations observed in natural processes are au fond
manifestations of underlying deterministic dynamics with low dimensionality, hence
rendering probabilistic descriptions unnecessary. If we assume, for example, that
the evolutions of all temporal and spatial patterns of geophysics result from
deterministic chaos, then we may derive the underlying deterministic rules on
the basis of their strange attractors, which have a fractal structure (Grassberger
and Procaccia 1983). However, such an approach is questionable in geophysics
(Koutsoyiannis 2006).
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The opposite reading of the same finding would be more sensible, in our view.
Specifically, if simple underlying dynamics can produce irregular fluctuations and
eventually, unpredictable trajectories, then, a fortiori, more complex systems are
even more unpredictable. In this line of thought, Koutsoyiannis (2010b) used a
caricature geophysical system, which is low dimensional deterministic by construc-
tion, and showed that we cannot get rid of uncertainty. Hence, probability theory
and its extension, stochastics, become absolutely necessary even for the simplest
systems. This argument may also be used in order to criticize the determinist point
of view that probability considerations enter into science only if our knowledge is
insufficient to enable us to make predictions with certainty (Popper 1982).

Stochastics has its own rules of calculations and estimations, which go far beyond
classical calculus in order to deal with uncertain quantities represented as random
variables and stochastic processes. Fractal studies often fail to appreciate this
and apply algorithms referring to uncertain quantities with standard mathematical
calculations. They do so even when using stochastic concepts, such as statistical
moments, (auto)correlations and power spectra. Thus, they produce results which
not only fail to recognize the statistical uncertainty but may be fundamentally
flawed, i.e., inconsistent with theory. In the subsections below, we summarize some
of the problems often characterizing fractal studies which make us advocate the
dedication to proper theoretical concepts, offered by the theory of stochastics.

2.1 Ambiguity

Even the very terms fractal and multifractal remain without an agreed mathematical
definition. This is a severe drawback, as without proper definitions we cannot build
a scientific theory. The importance of definitions in science has been emphasized in
the following philosophical note by the great Russian mathematician Nikolai Luzin:

Each definition is a piece of secret ripped from Nature by the human spirit. I insist on
this: any complicated thing, being illumined by definitions, being laid out in them, being
broken up into pieces, will be separated into pieces completely transparent even to a child,
excluding foggy and dark parts that our intuition whispers to us while acting, separating
into logical pieces, then only can we move further, towards new successes due to definitions
(from Graham and Kantor 2009).

This is not the case with fractals. Instead, fractals are usually identified intu-
itively; for example, Falconer (2014) refers to a set F as a fractal, when:

1. F has a fine structure, i.e., detail on arbitrary small scales;
2. F is too irregular to be described in traditional geometrical language, both locally

and globally;
3. F has some form of self-similarity, perhaps approximate or statistical;
4. usually, the “fractal dimension” of F (defined in some way) is greater than its

topological dimension;
5. in most cases of interest, F is defined in a very simple way, perhaps recursively.
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Mandelbrot, who coined the term fractal in 1975, tried to theorize about the
absence of a definition, arguing just opposite of Luzin:

Let me argue that this situation ought not create concern and steal time from useful work.
Entire fields of mathematics thrive for centuries with a clear but evolving self-image, and
nothing resembling a definition (Mandelbrot 1999, p. 14).

One may indeed recall cases where mathematical concepts did not have proper
definitions for centuries; probability is a characteristic example. However, the
expression “nothing resembling a definition” may be a gross exaggeration. In the
example of probability there never was lack of definitions; the problem was that
the definitions were problematic (e.g., suffering from circular logic, like in the
previous sentence). Once Kolmogorov (1933) gave a proper definition to probability,
he opened new avenues. Certainly, absence of a definition entails domination of
intuition over logic, dark over light, or uncritical acting over critical thinking (cf.
the excerpt by Luzin above and that by Popper in the opening motto of the paper).

Nevertheless, Mandelbrot’s aversion from defining concepts, which he does not
regard as “useful work” to do, has influenced the entire field of fractals. Even in
cases where clear definitions exist, Mandelbrot encourages neglecting them and
preferring intuitive notions. The following excerpt provides an example for the well-
defined concept of stationarity, which is central in stochastics (see Koutsoyiannis
and Montanari 2015):

[Mandelbrot 1982] observes that “Ordinary words used in scientific discourse combine
(a) diverse intuitive meanings, dependent on the user, and (b) formal definitions, each of
which singles out one special meaning and enshrines it mathematically. The terms stationary
and ergodic are fortunate in that mathematicians agree on them. However, experience
indicates that many engineers, physicists, and practical statisticians pay lip service to
the mathematical definition, but hold narrower views.“ That is, many mathematically
stationary processes are not intuitively stationary. By and large, those processes exemplify
wild randomness, a circumstance that provides genuine justification for distinguishing a
narrower and a wider view of stationarity (Mandelbrot 1999, p. 7).

Even when Mandelbrot attempts to provide a definition for the central concept
of a multifractal, he bases that definition on the intuitive concept of a “multibox
cartoon”:

Definition. The term multifractal denotes the most general category of multibox cartoons. It
allows the generator to combine axial boxes and diagonal boxes with non-identical values
of Hi from Hmin > 0 to Hmax < 1 (Mandelbrot 1999, p. 45; see Sect. 3 below about the
meaning of H).

The ambiguity does not concern merely definitions. “Peaceful coexistence”
of different numerical values for the same mathematical concept has also been
advocated:

We are done now with explaining the peaceful coexistence of two values of D: the dimension
D D 1/H D 2 applies to that three-dimensional curve, as well as to the trail obtained by
projecting on the plane (X, Y). However, the projections of the three dimensional curve on
the planes (t, X) and (t, Y) are of dimension D D 2 � H D 1.5 (Mandelbrot 1999, p. 45).
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In fact, when dealing with geophysical processes, one can easily get rid of
ambiguity through stochastics. Careful use of stochastics can deal with all problems
involving fractals of non-deterministic type in a more rigorous manner and more
effectively.

2.2 Confusion Between Local and Global Properties
of Processes

Indeed, attempts to remove ambiguity based on stochastics are not rare, as indicated
by the following excerpt:

There is no “official” consensus on the definition of a fractal. However, what is generally
agreed on is that the Hausdorff measure and Hausdorff dimension play a key role. One
possible definition of a fractal is then for example that it is a set A 	 Rk whose Hausdorff
dimension dimHaus A is not an integer (Beran et al. 2013, p. 178).

Other researchers who seek for clarity also agree on this; for example, Veneziano
and Langousis (2010, p. 4) state that the most general and mathematically satisfac-
tory definition of fractal dimension is the Hausdorff dimension. Here it is important
to note that the Hausdorff dimension expresses a local property, an asymptotic
measure as a radius ı for covering the set A tends to zero. This is more evident
in the so-called box-counting dimension, which is an upper bound for DHaus (Beran
et al. 2013, p. 181–182) and is defined as dimBoxA D lim

ı!0
log Nı= log ıwhere Nı is

the minimal number of sets Ui needed for a ı-cover of A.
However, as in the fractal literature it is intuitively believed that the local

properties repeat themselves at bigger and bigger scales, and given the general frame
of ambiguity, the local properties have been confused with global ones, such as the
long-range dependence. Indeed:

In the context of time series analysis, fractal behaviour is often mentioned as synonym for
long-range dependence. Though there are strong connections between the two notions, they
are also in some sense completely different (Beran et al. 2013, p. 178).

Even Mandelbrot (1999, p. 3) referred to the difference of locality and globality,
but in a rather obscure way:

The importance of the contrast between mildness and wildness is in part due to its links with
a contrast between locality and globality.

However, this was not enough to hinder the fractal literature from confusing
fractal behaviour with long-range dependence.

Gneiting and Schlather (2004) were perhaps the first to clarify the issue and
highlight the fact that fractal properties and long-range dependence are independent
of each other. They used a process with Cauchy-type autocovariance function, which
was first proposed by Yaglom (1987, p. 365) and also referred to by Wackernagel
(1995, p. 219; 1998, p. 246), while a similar one was used by Koutsoyiannis (2000)
in discrete time. Using this process, they demonstrated that the fractal and Hurst
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properties (long-range dependence) are two different things, independent to each
other: The fractal parameter determines the local properties (the roughness) of the
process (as time t ! 0) while the Hurst parameter determines the global properties
of the process (as t ! 1).

2.3 Use of the Abstract Mathematical Objects as if They are
Natural Objects

In mathematical processes the local and global properties can be the same. The
obvious example is the Hurst-Kolmogorov (HK) process (see below), also known
as fractional Gaussian noise (Mandelbrot and Van Ness 1968), which is described
by a single scaling exponent applicable to all scales. Scale independence or
absence of characteristic scales in a process or a phenomenon is mathematically
and intuitively attractive. Indeed, it would imply that simple physical dynamics
could produce complex phenomena that exhibit startling similarities over all scales.
However, in Nature complex phenomena are influenced by different mechanisms
and agents, each one acting at a different characteristic scale, and therefore absence
of characteristic scales is only a dream. Besides, the assumption of absence of
characteristic time scales would have consequences that would be absurd. Some
examples follow:

• The speculation that rivers are fractals with fractal dimension >1 (e.g., 1.2) has
been very popular. However, if that were the case, it would mean that the number
of sets of its ı-cover would be a power law of ı with exponent >1 for arbitrary
low ı. As a direct consequence, the geometrical length of the river would be
infinite (a curve with dimension >1 has infinite length; Falconer 2014) and any
particle of water would take infinite time to reach the sea.

• If a Hurst-Kolmogorov process (whose variance is a power law of time scale;
Eq. (16) below) were applicable for arbitrary short time scales, it would entail
infinite variance of the instantaneous, continuous-time process which would
imply infinite energy.

• If an antipersistent Hurst-Kolmogorov process (with Hurst exponent H < 0.5; see
below) were applicable for arbitrary short time scales, it would entail negative
autocovariance (anti-correlation) for arbitrary small lags which is absurd. For in
a natural process, the autocorrelation should tend to 1 as lag tends to 0.

All these paradoxes are easily resolved if we abandon the idea of absence of
characteristic scales and admit that below (or above) a certain characteristic scale
the respective power laws cease to hold.
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2.4 Hasty Use of Stochastic Concepts

Stochastic concepts such as statistical moments (marginal or joint, e.g., covari-
ances), and spectral densities have been widely used in the fractal literature, usually
by making calculations using data and at the same time ignoring the theoretical
properties of those concepts. A typical example is the power spectrum, s(w), where
w denotes frequency (inverse time scale), and its log-log slope s#(w). The latter
represents the log�log derivative, which for any function f (x) is defined as:

f #.x/ ´
d .ln f .x//

d .ln x/
D

xf 0.x/

f .x/
(1)

The HK process is used as a benchmark as it has a power spectrum with constant
slope, i.e., s(w) / wˇ , where the constant slope ˇD s#(w) is related to the Hurst
parameter H (Eq. (16) below) by ˇD 1 � 2H. The special case H D 0.5, which
signifies the white noise, corresponds to ˇ D 0, thus complying with the fact that
the white noise spectrum is flat (s(w) D constant). As H ! 1, which is the highest
possible value, ˇ ! �1, which is the lowest possible value for a stationary and
ergodic process.

However, a huge number of studies exploring several data sets have reported
steeper constant slopes, i.e., ˇ < �1, also suggesting H > 1, which is absurd. Other
studies assume that slopes ˇ < �1 are theoretically consistent, also claiming that
the particular value ˇ D �2 corresponds to the power spectrum of the Brownian
motion (the integral over time of white noise), which is a nonstationary process.
This line of thought is extended further, in the characterization of processes.
Specifically, the power spectrum has been often regarded as a tool to identify
whether a process is stationary or nonstationary: values ˇ > �1 are thought to
suggest a stationary process while values ˇ < �1 are thought to confirm the
nonstationarity of the process. The fact is, however, that the entire line of thought is
theoretically inconsistent and such numerical results, usually reported, are artefacts
due to insufficient data or inadequate estimation algorithms.

Before we describe the details for recovering from the incorrect application of the
power spectrum, it would be informative to trace how incorrect results can appear.In
the example of Fig. 1, 1024 data points have been generated from a stationary
stochastic process and the empirical power spectrum, calculated from these data,
has been plotted. To apply some smoothing (as per Bartlett’s (1948) method), the
empirical power spectrum was constructed by averaging from 8 segments, in which
the data were separated (since without smoothing the power spectrum would be
exceptionally rough). The stochastic process has the theoretical power spectrum
with the indicated varying slope (specifically, it is an HHK process, defined in Eq.
(17) below, with parameters M D 0.5, H D 0.8, ˛ D � D 1; see also Koutsoyiannis
2014). On its right tail the power spectrum has an asymptotic slope of �2, which
is not inconsistent nor does it indicate nonstationarity (actually, a right-tail slope of
�2 is precisely the slope of a stationary Markov model; see below). In contrast, on
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Fig. 1 Illustration of inconsistent results derived by hasty use of the power spectrum

its left tail the power spectrum has an asymptotic slope of �0.6, which is strictly
>�1 (were it not, it would be inconsistent with theory, as will be detailed below).

From the shape of the theoretical power spectrum it can be imagined that if the
time step and length of the data set were such that we could “see” only at frequencies
>0.1, then we would conclude that we have a constant slope of �2 and, if we
followed the standard fractal line of thought, we would claim that the process is
(nonstationary) Brownian motion. Of course, all these would be incorrect as the
model is purely stationary and not at all related to Brownian motion.

Even with the given data set, which allows us to “see” frequencies much lower
than 0.1 (by an order of magnitude or more), the empirical power spectrum may
again mislead us. For, even after the aforementioned smoothing, the empirical
power spectrum is too rough to recover the underlying model and its parameters.
Furthermore, it involves high bias and it suggests a misleading constant slope of
�1.5. Just knowing the theoretical properties, as well as the uncertainty and bias of
the power spectrum as a stochastic tool, we would avoid making erroneous claims,
even though it is doubtful if this would help us to identify the correct model (see
Dimitriadis and Koutsoyiannis 2015). Nonetheless, identifying the model from data
and recovering the theoretically consistent asymptotic slopes (�0.6 and �2) are
possible but need other methods (CS—see below).

The theoretical properties of the power spectrum which we need to know to avoid
false claims include the following:

• Once we make the power spectrum of a process as a function of frequency,
we have tacitly assumed a stationary process. In a nonstationary process, both
the autocovariance and the spectral density, i.e., the Fourier transform of the
autocovariance, are functions of two variables, one being related to “absolute”
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time (see, e.g., Dechant and Lutz 2015). Thus, there is no meaning in using a
stationary representation (setting the power spectrum as a function of frequency
only) and, at the same time, claiming nonstationarity. Even though this tactic has
been very common, it is inconsistent. Furthermore, we should be aware that the
customary Wiener-Khinchin theorem relating autocovariance and power spec-
trum pertains to stationary processes. This theoretical knowledge will prevent
us from making claims of nonstationarity while using formulations and tools
pertaining to stationary stochastic processes. In addition, we should be aware
that claiming nonstationarity based solely on inductive reasoning is inconsistent
(Koutsoyiannis and Montanari 2015).

• Once we use the power spectrum of a process for inference, as we always do,
we should be aware that inference from data is only possible when the process is
ergodic. As shown in Appendix 1, in an ergodic process, the asymptotic slope on
the left tail of the power spectrum cannot be steeper than �1. Thus, there is no
meaning in reporting slopes in empirical power spectra s# < �1 (e.g., s# D �1.5,
as in the example of Fig. 1) and at the same time making any claim about
the process properties (e.g., of nonstationarity) based on the power spectrum.
Actually, such a steep slope, when emerging from processing of data, does not
suggest that a process is non-ergodic, it rather identifies inconsistent estimation.

• We should be aware of the close relationship of ergodicity and stationarity
(Koutsoyiannis and Montanari 2015). In particular, a nonstationary process is
nonergodic and thus any estimates from data (including those of the power
spectrum) are meaningless when we claim nonstationarity.

• As a result of the above listed theoretical points, constant slopes ˇ < �1 of
the power spectrum are invalid and indicate either inadequate length of data
or inconsistent estimation algorithm. Likewise, non-constant slopes of power
spectrum steeper than �1 (s#(w) < � 1) for small frequencies (w ! 0) are
equally invalid. We note that steep slopes (s#(w) < � 1) are mathematically and
physically possible for medium and large w—actually they are quite frequent
in geophysical processes (see also Koutsoyiannis 2013a, b; Koutsoyiannis et al.
2013; Dimitriadis and Koutsoyiannis 2015).

2.5 Misspecification/Misinterpretation of Scaling Laws

The applicability of fractal analyses to complex phenomena of the real world
essentially relies on the empirical detection of power-law relationships in obser-
vational data. Therefore, such analyses heavily rely on available data series and
their statistical processing; and since they ask statistical questions, they must rely
on probability theory (Stumpf and Porter 2012).

However, as the inference from data obeys statistical laws and is affected by
statistical uncertainty and bias, we should respect these laws in making inference.
Some examples can demonstrate that such respect is often not paid in fractal studies.
The interested reader could perform a Google search with related terms (e.g.,
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Fig. 2 Illustration of spurious scaling laws between raw moments and inverse time scale

universal multifractal rainfall—see also Koutsoyiannis 2010a) and several studies
will be listed that identify multifractal behaviour of rainfall. This is usually done
in terms of scaling relationships between raw moments of the averaged process x(k)

at time scale k, i.e., E[(x(k))q] (or inverse time scale � :D 1/k), for several orders of
moments q. Such scaling relationships are graphically identified on log-log plots and
then the relationship of the scaling exponent (slope) K as a function q (the function
K(q)) is empirically constructed (even though, according to universal multifractals,
there exists a theoretical model for K(q) that one can fit to empirical data; cf. Eq.
(2.12) in Tessier et al. 1993).

A graphical example is provided in Fig. 2 to illustrate that the entire procedure
is problematic from the outset. A time series with length N D 213 D 8192 was
generated from the HK process with Hurst parameter H D 0.8 and Gaussian
distribution N(1,1). Some scaling laws seem to appear at a range of time scales.
One could be led to assume a multifractal behaviour and specify a K(q) function. All
these, however, are spurious. The truth is that there is no multifractal behaviour here.
As shown theoretically by Lombardo et al. (2014) for q D 2, there is no constant
slope K but, as � ! 0 (or k ! 1), the slope decreases to K(q) D 0. Also the slope
empirically estimated for small k (large �) is too low compared to its theoretical
value.
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Fig. 3 Illustration of the statistical distribution of the estimate
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Pareto distribution (pdf stands for probability density function)

2.6 Neglect of Statistical Bias and Variation

The above example illustrates a symptom of a more general tendency in the fractal
literature to treat observations (time series) deterministically, confusing random
variables with their realizations and ignoring statistical bias and variation. In the
example of Fig. 2, high-order moments up to q D 7 have been used, as actually
happens is several multifractal studies (this can be verified in studies that could be
located with the Google search mentioned above).

However, high-order moments, which have been popular in multifractal studies,
are well known in statistics to have minimal information content and therefore
are avoided. This is further illustrated in Fig. 3, constructed after Monte Carlo
simulation of the fifth moment of a Pareto distribution with shape parameter 0.15
and for sample size n D 100 (Papalexiou et al. 2010; see also Lombardo et al. 2014).

Here the theory guarantees that there is no estimation bias, but the distribution
function is enormously skewed. The mode is nearly two orders of magnitude less
than the mean and the probability that a calculation, based on data, will reach the
mean is two orders of magnitude lower than the probability of obtaining the mode.
Therefore, there is no meaning in using such uncertain quantity, with so skewed
distribution, in any type of inference.
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2.7 Confusion Between Different Scaling Behaviours

Scaling relationships, expressed as power laws between involved quantities, have
been central in fractal studies. Yet their meaning has been obscure, while quite
different scaling laws with different meanings are confused and regarded to be of
the same nature. This is like regarding the different physical laws that involve the
product of two quantities (e.g., F D m a, W D F s, m D 	 V, where F, m, a, W, s,
	 and V denote force, mass, acceleration, work, displacement, density and volume,
respectively) as a manifestation of the same magical law of multiplicative quantities.

It is thus important to differentiate the unlike types of scaling met in geophysical
processes and clarify their meaning. We can distinguish the following types of
scaling (where the formal definitions of the various terms are given in Sect. 3):

• Temporal scaling indicates dependence in time and is expressed as a power law
of some second-order property (marginal or joint second central moment) of
a process with respect to a quantity related to time. We can further subdivide
temporal scaling into:

– Hurst behaviour, which is expressed as a power function of autocorrelation vs.
time lag or climacogram vs. time scale;

– fractal (local) behaviour, which is expressed as a power function of structure
function vs. time lag or climacogram-based structure function (see below) vs.
time scale.

• Spatial scaling is similar to temporal scaling but indicating dependence in space.
• State scaling is totally irrelevant to temporal and spatial scaling; it is related to

the marginal distribution of the process and indicates a heavy-tailed distribution
(a power law of probability of exceedance vs. state).

• Scaling of (high-order) moments with time scale; while in theory this cannot
be excluded, in most empirical studies it perhaps is an artefact related to other
types of scaling and, as explained above, it is usually spurious because high-
order moments are not reliably estimated from data.

As already mentioned, in real world systems scaling laws never extend to the
entire range of scales. Usually they are asymptotic laws, with different exponents
at each edge. Asymptotic scaling laws abound because, in our view, they are a
mathematical necessity (Koutsoyiannis 2014). The asymptotic behaviour of stochas-
tic properties of processes (such as survival function, autocovariance, structure
function, climacogram, etc.) should necessarily tend to zero at one edge (e.g., at
infinity) and the decay to zero can be exponential (fast decay) or of power-type
(slow decay). In the latter case, the emergence of an asymptotic power law is
obvious, whether it holds in the form of scaling in state (heavy-tailed distributions)
or in time (long-term persistence). Both cases have been verified in geophysical
time series (e.g., O’Connell et al. 2016; Markonis and Koutsoyiannis 2016, 2013;
Dimitriadis and Koutsoyiannis 2017). According to this view, scaling behaviours are
just manifestations of enhanced uncertainty and are consistent with the principle of
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maximum entropy (Koutsoyiannis 2011; see also below). The connection of scaling
with maximum entropy constitutes also a connection of stochastic representations
of natural processes with statistical physics.

3 Fundamentals of Stochastics for Geophysics

In this section, we give a very brief presentation of the most fundamental concepts
of stochastics. Later, in Sect. 5 we will show that these concepts suffice to model
complex phenomena without making any use of the fractal nomenclature, even
though some of these phenomena are thought to belong to the preferential domain
of the fractal literature (e.g., turbulence).

3.1 The Meaning of Randomness and Stochastics

A deterministic world view is founded on a concept of sharp exactness. A
deterministic mathematical description of a system uses regular variables (e.g., x)
which are represented as numbers. The change of the system state is represented as
a trajectory x(t), which is the sequence of a system’s states x as time t changes.

In an indeterministic world view there is uncertainty or randomness, where
the latter term does not mean anything more than unpredictability or intrinsic
uncertainty. A system’s description is done in terms of random variables. A random
variable x is an abstract mathematical entity whose realizations x belong to a set
of possible numerical values. A random variable x is associated with a probability
density (or mass) function f (x). Notice the different notation of random variables
(underlined, according to the Dutch notation; Hemelrijk 1966) from regular ones.
The evolution of a system over time is no longer sufficient to be represented as a
trajectory but as a stochastic process x(t), which is a collection of (usually infinitely
many) random variables x indexed by t (typically representing time). A realization
(sample) x(t) of x(t) is a trajectory; if it is known at certain points ti, i D 1, 2, : : : , it
is a time series.

The mathematics of random variables and stochastic processes is termed stochas-
tics, and is composed of probability theory, statistics and stochastic processes. Most
natural processes evolve in continuous time but they are observed in discrete time,
instantaneously or by averaging. Accordingly, the stochastic processes devised to
represent the natural processes should evolve in continuous time and be converted
into discrete time, as illustrated in Fig. 4.

While a stochastic process denotes, by conception, change (process D change),
there should be some properties that are unchanged in time. This implies the concept
of stationarity (Koutsoyiannis and Montanari 2015), which is central in stochastics.
For the remaining part of this article, the processes are assumed to be stationary,
noting that nonstationary processes should be converted to stationary before their
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X(t) :=
(cumulative, nonstationary)

x(t) (instantaneous, 
continuous-time process)

t

xi := x(iD)
(instantaneous process
sampled at spacing D)

0 D 2D … (i – 1)D iD

Xi:=

t
(cumulative sampled at
spacing D, nonstationary)

=

0 D 2D … (i – 1)D iD

= (X(iD) – Χ((i–1)D)

t (averaged at time scale D)

Fig. 4 Explanatory sketch for a stochastic process in continuous time and two different represen-
tations in discrete time. Note that the graphs display a realization of the process (it is impossible to
display the process as such) while the notation is for the process per se

study (for example, the cumulative process X(t) in Fig. 4 is nonstationary, but by
differentiating it in time we obtain the stationary process x(t)). The most customary
properties of a stationary stochastic process are its second-order properties:

• Autocovariance function, c(h) :D Cov[x(t), x(t C h)].
• Power spectrum (also known as spectral density), s(w); it is defined as the Fourier

transform of the autocovariance function, i.e., by Eq. (2).
• Structure function (also known as semivariogram or variogram), v.h/ ´

.1=2/Var Œx.t/ � x .t C h/�.
• Climacogram, � (k) :D Var[x.k/i ], where x.k/i is the averaged process over time

scale k (see Fig. 4 and substitute a varying time scale k for the constant time
interval D).

For time-related quantities, in the above notation and in the next part of this
article, we use the following symbols, where Latin letters denote dimensional
quantities and Greek letters dimensionless ones, where the latter are convenient
when using the discrete-time variants of a process:

• Time unit (time step in case of sampling or time scale in case of aggregating or
averaging), D.
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• Time, t D � D (alternatively for strictly integer i D 1, 2, : : : , t D i D where t is
continuous time and i discrete time).

• Time lag, h D � D.
• Time scale k D � D.
• Frequency, w D !/D, related to time scale by w D 1/k, ! D 1/�.

All these properties are transformations of one another, i.e.:

s.w/ D 4

1Z

0

c.h/ cos .2�wh/ dh; c.h/ D

1Z

0

s.w/ cos .2�wh/ dw (2)

v.h/ D c.0/ � c.h/; c.h/ D c.0/ � v.h/ (3)

�.k/ D 2

1Z

0

.1 � �/ c .�k/ d�; c.h/ D
1

2

d2
�
h2�.h/

�

dh2
(4)

where Eq. (3) is valid when the variance of the instantaneous process is finite (�0

:D � (0)  c(0) ¤ 1).
The climacogram is not as popular as the other tools but it has several good

properties due to its simplicity, close relationship to entropy (see below) and more
stable behaviour, which is an advantage in model identification and fitting from
data. In particular, when estimated from data, the climacogram behaves better than
all other tools, which involve high bias and statistical variation (Dimitriadis and
Koutsoyiannis 2015; Koutsoyiannis 2016). The climacogram involves bias too, but
this can be determined analytically and included in the estimation. Furthermore, it
enables the definition of additional useful tools as shown in Table 1.

The CSF, �(k), behaves like the structure function v(h) and is related to the latter
by the same way as the climacogram � (k) is related to the autocovariance function
c(h):

Table 1 Climacogram-based metrics of stochastic processes

Metric/usefulness Definition Comments

Climacogram
Useful for the global asymptotic
behaviour (k ! 1)

�(k) ´ Var[xi
(k)] For an ergodic process for k

! 1, �(k) ! 0 necessarily

Climacogram-based structure
function (CSF)
Useful for the local asymptotic
behaviour (k ! 0)

�(k) ´ �0 � �(k) The definition presupposes
that the variance �0 is finite

Climacogram-based spectrum (CS)
Useful for both the global and local
asymptotic behaviour

 .w/ ´
2

w�0
� .1=w/ � .1=w/D

2 �.1=w/
w

�
1�

�.1=w/
�0

	
It combines the climacogram
and the CSF; valid even for
infinite variance
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c.h/ D
1

2

d2
�
h2�.h/

�

dh2
; v.h/ D

1

2

d2
�
h2�.h/

�

dh2
(5)

The CS,  (w), behaves like the power spectrum; it has same dimensions, and in
most cases has precisely the same asymptotic behaviour as the power spectrum, but
it is smoother and more convenient in model identification and fitting (see Sect. 5).

3.2 Second-Order Properties at Discrete Time

Once the continuous-time properties are known, the discrete-time ones can be
readily calculated. For example, and assuming a time interval D for discretization,
as in Fig. 4, the autocovariance of the averaged process is:

c.D/� D Cov
h
x.D/� ; x.D/�C�

i
D

1

D2

�
% .j�C 1jD/C % ..j� � 1 jD/

2
� % .j�jD/

	

(6)

where % (D) ´ Var[X(D)] D D2� (D). Also, the power spectrum of the averaged
process can be calculated from:

s.D/d .!/ D 2c.D/0 C 4

1X
�D1

c.D/� cos .2 �!/ (7)

where s.D/d .!/ ´ s.D/.w/=D (nondimensionalized spectral density), whereas the
discrete-time power spectrum s(D)(w) is related to the continuous-time one by
(Koutsoyiannis 2016)

s.D/ .!/ D

1X
jD�1

s

�
w C

j

D

	
sin c2

�
�
�

wD C j
� �

(8)

More details and additional cases can be found in Koutsoyiannis (2013b, 2016).

3.3 Cautionary Notes for Model Fitting

Model identification and fitting is much more important than commonly thought.
Even the statistical literature has paid little attention to the fact that direct estimation
of any statistic of a process (except perhaps for the mean) is not possible merely
from the data. We always need to assume a model to estimate statistics.
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Any statistical estimatorbs of a true parameter s is biased either strictly (meaning:
E Œbs � ¤ s) or loosely (meaning: mode Œbs � ¤ s). Model fitting is necessarily based
on discrete-time data and needs to consider the effects of (a) discretization and (b)
bias.

It is commonly thought that the standard estimator of the variance from a sample
of size n is unbiased if we divide the sum of squared deviations from mean by n �

1 instead of n (Eq. 9). This is correct only if the assumed model is the white noise.
Otherwise, the estimation is biased and, if the process has long-range dependence,
the bias can be substantial. The climacogram, which is none other than the variance,
needs to consider this bias. Actually, it is easy to analytically estimate the bias and
the effect of discretization, once a model has been assumed in continuous time.

Let us consider a process with climacogram � (k), from which we have a time
series for an observation period T (multiple of the time step D), each one giving
the averaged process x.D/i at a time step D. We form time series for scales that are
multiples of D, i.e., k D �D, � D 1, 2, : : : , and we wish to estimate the variance at
any such scale (including that at scale D, for � D1). The standard estimatorb�.k/ of
the variance � (k) is

b�.k/ ´
1

n � 1

nX
iD1

�
x.k/i � x.T/1

�2
D

1

T=k � 1

T=kX
iD1

�
x.k/i � x.T/1

�2
(9)

where by inspection it is seen that x.T/1 is the sample mean, while it was assumed
that T is a multiple of k so that the sample size is n D T/D (if not, we should replace
T with bT/kck, where b.c denotes the floor of a real number). It can be then shown
(Koutsoyiannis 2011, 2016) that the bias can be calculated from

E
h
b�.k/

i
D ) .k;T/ �.k/; ) .k;T/ D

1 � �.T/=�.k/

1 � k=T
D
1 � .k=T/2% .T/=% .k/

1 � k=T
(10)

3.4 Entropy and Entropy Production

As already mentioned, the emergence of scaling from maximum entropy consid-
erations may provide the theoretical background in modelling complex natural
processes by scaling laws.

The Boltzmann-Gibbs-Shannon entropy of a cumulative process X(t) with
probability density function f (X; t) is a dimensionless quantity defined as:

ˆ ŒX.t/� ´ E

�
� ln

f .XI t/

m .X/

�
D �

1Z

�1

ln
f .XI t/

m.X/
f .XI t/ dX (11)
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where m(X) is the density of a background measure (typically Lebesgue). The
entropy production in logarithmic time (EPLT) is a dimensionless quantity, the
derivative of entropy in logarithmic time (Koutsoyiannis 2011):

� .t/  � ŒX .t/� ´ ˆ0 ŒX .t/� t  dˆ ŒX .t/� =d .ln t/ (12)

For a Gaussian process with constant density of background measure, m(X) 

m, the entropy depends on its variance % (t) only and is:

ˆ ŒX .t/� D .1=2/ ln
�
2ne% .t/ =m2

�
; � .t/ D % 0 .t/ t=2% .t/ (13)

When the past (t < 0) and the present (t D 0) are observed, instead of the
unconditional variance % (t) we should use a variance % C(t) conditional on the past
and present:

%C.t/ � 2% .t/ �
% .2t/

2
; 'C.t/ D

% 0
C.t/t

2%C.t/
�

�
2% 0.t/ � % 0.2t/

�
t

4% .t/ � % .2t/
(14)

3.5 Resulting Processes from Maximizing Entropy Production

Koutsoyiannis (2011) assumed that the behaviour seen in natural processes is
consistent with extremization of entropy production and provided a framework
to derive processes maximizing entropy production. Using simple constraints in
maximization, such as known variance at the scale k D D D 1, and lag one
autocovariance for the same time scale, the following processes extremizing the
EPLT ®(t) and ®C(t) can be derived, which are also depicted in Fig. 5 in terms of
their EPLT and climacograms.

• A Markov process:

c.h/ D �e�h=˛; �.k/ D
2�

k=˛

�
1 �

1 � e�k=˛

k=˛

	
(15)

maximizes entropy production for small times but minimizes it for large times.
• A Hurst-Kolmogorov (HK) process:

�.k/ D �.˛=k/2�2H (16)

maximizes entropy production for large times but minimizes it for small times.
• A Hybrid Hurst-Kolmogorov (HHK) process:

�.k/ D �
�
1C .k=˛/2M

� H�1
M

(17)

maximizes entropy production both at small and large time scales.
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Fig. 5 EPLTs (upper) and climacograms (lower) of the three processes extremizing entropy
production. At time scale k D 1 all three processes have the same variance, �(1) D 1, and the
same autocovariance for lag 1, c.1/1 D 0.5. Their parameters are (see text for their definitions): for
the Markov process ˛ D 0.8686, � D 1.4176; for the HK process a D 0.0013539, � D 15.5032,
H D 0.7925; for the HHK process a D 0.0013539, � D 15.5093, M D 0.5, H D 0.7925 (adapted
from Koutsoyiannis 2016).

In these definitions ˛ and � are scale parameters with dimensions of [t] and [x2],
respectively. The parameter H (in honour of Hurst) is the Hurst parameter which
determines the global properties of the process (as k ! 1). The parameter M (in
honour of Mandelbrot) is the fractal parameter which determines the local properties
(as k ! 0). Both H and M are dimensionless numbers in the interval (0, 1). In the
HHK process, locality and globality are clearly independent of each other, each one
characterized by an asymptotic power law. Hence, it allows explicit control of both
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asymptotic logarithmic slopes of the CS  #(k) and the power spectrum s#(w). In
the special case where H D M D 0.5, HHK is practically indistinguishable from a
Markov process, even though not precisely identical. Furthermore, as ˛ ! 0, the
process tends to a pure HK process with the same Hurst parameter H. Also, for any
specific parameter set, HHK exhibits Markov behaviour for small time scales (if M
D 0.5, or similar to Markov if M ¤ 0.5) and Hurst behaviour for large time scales,
as seen in Fig. 5.

The HHK process is consistent with natural behaviours and remedies known
inconsistencies of the HK process (discussed in subsection “2.3”), while retaining
the persistence or antipersistence properties. Specifically, the variance of the
instantaneous process is always finite (�0 D � (0) D �), while even for 0 < H
< 0.5 the initial part of the autocovariance function for small lags is positive for all
variants of the process (continuous time, discrete time, either sampled or averaged,
for a small time interval D).

4 Simulation of Stochastic Processes Respecting Their
Fractal Properties

Monte Carlo (stochastic) simulation is an important numerical method for resolving
problems that have no analytical solution. Obviously, simulation is performed in
discrete time, at a convenient discretization step. The following method based
on the so-called symmetric moving average (SMA) scheme (Koutsoyiannis 2000,
2016) can be used to exactly simulate any Gaussian process, with any arbitrary
autocovariance function (provided that it is mathematically feasible). It can also
approximate, with controlled accuracy, any non-Gaussian process with any arbitrary
autocovariance function and any marginal distribution function.

4.1 The Symmetric Moving Average Scheme

The SMA scheme can directly generate time series xi (where for simplicity we have
omitted the time interval D in the notation) from any process xi with any type of
dependence by:

xi D

1X
lD�1

ajljviCl (18)

where al are coefficients calculated from the autocovariance function and vi is white
noise averaged in discrete time. Assuming that the power spectrum s.D/d .!/ of the
averaged discrete-time process is known (from the equations listed above), it has
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been shown (Koutsoyiannis 2000) that the Fourier transform sa
d .!/ of the al series

of coefficients is related to the power spectrum of the discrete time process as

sa
d .!/ D

q
2s.D/d .!/ (19)

Thus, to calculate al we first determine sa
d .!/ from the power spectrum of the

process and then we invert the Fourier transform to estimate all al.

4.2 Handling of Truncation Error

It is expected that the coefficients al will decrease with increasing l and will be
negligible beyond some q (l > q), so that we can truncate (18) to

xi D

qX
lD�q

ajljviCl (20)

This introduces some truncation error in the resulting autocovariance function.
To adjust for this on the variance, we calculate the al from

al D a0
l C a00 (21)

where the coefficients a0
l are calculated from inverting the Fourier transform of either

sa
d .!/ or sa

d .!/ .1 � sinc .2 !q// (two options; Koutsoyiannis 2016).
The constant a

00

is determined so that the variance is exactly preserved:

�.D/ D

qX
lD�q

a2jlj D

qX
lD�q

�
a0

jlj C a00
�2

(22)

Solving for a
00

, this yields:

a00 D

s
�.D/ �†a02

2q C 1
C

�
†a0

2q C 1

	2
�

†a0

2q C 1
(23)

where †a0 ´
Pq

lD�q a0
jlj and †a02 ´

Pq
lD�q a02

jlj.

4.3 Handling of Moments Higher than Second-Order

In addition to being general for any second-order properties (autocovariance
function), the SMA method can explicitly preserve higher order marginal moments.
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Here it should be made clear that, while, as already mentioned, high-order moments
cannot be estimated reliably from data, non-Gaussianity is very commonly verified
empirically and also derived by theoretical reasoning (Koutsoyiannis 2014, 2005).
An easy manner to simulate non-Gaussian (e.g., skewed) distributions is to calculate
theoretically (not from the data) their moments and then explicitly preserve these
moments in simulation. Preservation of three or four central moments usually
provides good approximations to the theoretical distributions. Apparently, by pre-
serving four moments, a non-Gaussian distribution is not precisely preserved. What
can be assumed to be preserved is a Maximum Entropy (ME) approximation of the
distribution constrained by the known moments. For four known moments of the
variable x this approximation should be an exponentiated fourth-order polynomial
of x (Jaynes 1957; Papoulis 1991), which can be written as

f .x/ ´
1

�0
e

�

�
x
�1

Csign.�2/
�

x
�2

�2
C
�

x
�3

�3
C
�

x
�4

�4	

(24)

where �i are parameters, all with dimensions [x] (with �4 � 0).

The third and fourth moments are more conveniently expressed in terms of
the coefficients of skewness and kurtosis, respectively. To produce a discrete-time
process xi with coefficient of skewness Cs , x we need to use a white-noise process vi

with coefficient of skewness (Koutsoyiannis 2000):

Cs;v D Cs;x

�Pq
lD�q a2

jlj

�3=2
Pq

lD�q a3
jlj

(25)

Likewise, to produce a process xi with coefficient of kurtosis Ck , x the process vi

should have coefficient of kurtosis (Dimitriadis and Koutsoyiannis 2017):

Ck;v D
Ck;x

�Pq
lD�q a2

jlj

�2
� 6

Pq�1
lD�q

Pq
kDlC1 a2

jlja
2
jkjPq

lD�q a4
jlj

(26)

Four-parameter distributions are needed to preserve skewness and kurtosis;
details are provided by Dimitriadis and Koutsoyiannis (2017). Illustration of the
very good performance of the method in the generation of non-Gaussian white noise
is provided in Fig. 6 for popular distribution functions such as Weibull, gamma,
lognormal and Pareto.

It is finally noted that the method can also be used in multivariate processes,
represented by vectors of random variables (Koutsoyiannis 2000).
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Fig. 6 Various two-parameter probability density functions along with their fitted ME approxima-
tions and the empirical probability density from a single synthetic time series with n D 105 (from
Dimitriadis and Koutsoyiannis 2017)

5 Applications

5.1 Application 1: Turbulence

Estimation of high-order moments involves large uncertainty and cannot be reliable
in the typically short time series of geophysical processes. However, in laboratory
experiments at sampling intervals of �s, very large samples can be formed which
can support the reliable estimation of high-order moments. Here we use grid-
turbulence data made available on the Internet by the Johns Hopkins University
(http://www.me.jhu.edu/meneveau/datasets/datamap.html). This dataset consists of
40 time series with n D 36 � 106 data points of longitudinal wind velocity along the
flow direction, all measured at a sampling time interval of 25 �s by X-wire probes
placed downstream of the grid (Kang et al. 2003).

By standardizing all series (see Dimitriadis et al. 2016; Dimitriadis and Kout-
soyiannis 2017) we formed a sample of 40 � 36 � 106 D 1.44 � 109 values to
estimate the marginal distribution, and an ensemble of 40 series, each with 36 �

106 values to estimate the dependence structure through the climacogram. Based on
this dataset we built a stochastic model of turbulence, which to verify we performed

http://www.me.jhu.edu/meneveau/datasets/datamap.html
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Fig. 7 Probability density function of the measured turbulent velocity w standardized, in each
time series, by the mean wm and standard deviation ws, compared to that of a single simulation
using the SMA scheme preserving the first four moments; the standard normal distribution N(0,1)
and the skew normal (both not used in simulation) are also shown. The ME approximation, also
shown in the figure, is the one used in simulations

stochastic simulation using the SMA framework with n D 106 values and compared
the synthetic data with the measurements using several tools.

In terms of the marginal distribution, the time series are nearly Gaussian but
not exactly Gaussian. There are slight deviations from normality toward positive
skewness, as indicated by the coefficient of skewness, which is 0.2 instead of 0,
and that of kurtosis, which is 3.1 instead of 3, as well as from the plot of the
probability function shown in Fig. 7. This divergence of fully developed turbulent
processes from normality has been also justified theoretically (Wilczek et al. 2011).
Interestingly, these slight differences from normality result in highly non-normal
distribution of the white noise vi of the SMA model (skewness Cs,v D 3.26; kurtosis
Ck,v D 12.30!); this should have substantial effects in some aspects of turbulence.

For the stochastic dependence of the turbulent velocity process, after some
exploratory analysis, we assumed a model consisting of the sum of two equally
weighted processes, an HHK and a Markovian:

�.k/ D
�

2

�
1C .k=˛/2M

� H�1
M

C
�

k=˛

�
1 �

1 � e�k=˛

k=˛

	
(27)

We fitted the model to the climacogram, the structure function, the CS and the
power spectrum, calculated as the average of the 40 series. The fitting is shown
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Fig. 8 Empirical, true and expected values of the climacogram (upper left), CSF (upper right),
CS (lower left) and power spectrum (lower right). The “observed” is the average from the 40 time
series

in Fig. 8; the four parameters of the model are estimated as: � D 1, ˛ D 14 ms,
M D 1/3, H D 5/6. As seen in Fig. 8, the model is indistinguishable from the data,
measured or synthesized, when the climacogram or its derivatives CSF and CS are
used. Note that the comparison of the empirical quantities is not made with the true
ones but with the expected, in order to take account of the bias.

The power spectrum is much rougher than the other tools, yet a good model fit
can be clearly seen. Kolmogorov’s “5/3” law of turbulence (K41 self-similar model;
Kolmogorov 1941) is also evident in the power spectrum for w > 10 Hz. Steepening
of the power spectrum slope for even larger frequencies (w > 1000 Hz), which has
also reported in several studies, is also apparent in Fig. 8. This, however, seems to
be a numerical effect (resulting from discretization and bias), as the same behaviour
appears also in the simulated data from a model whose structure (Eq. 27) does not
include anything that would justify steepening of the slope.

It is extremely insightful to investigate the high-order properties of the velocity
increments, i.e., differences of velocities at adjacent times with a certain time
distance (lag) h. In particular, the variation of high-order moments of the velocity
increments with increasing h (i.e., the moments vp ´ E Œjx.t/ � x .t C h/jp� for
p > 2) has been associated with the intermittent behaviour of turbulence and has
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Fig. 9 Empirical and simulated coefficients of skewness (left) and kurtosis (right) of the velocity
increments vs. lag

been mentioned as the intermittent effect (Frisch 2006, Sect. 8.3), first discovered in
turbulence by Batchelor and Townsend (1949). Therefore it is important to preserve
this variation. The model in Eq. (27) does not make any effort for such preservation.
However, as seen in Fig. 9, these are preserved well and effortless. Therefore, it is
no longer puzzling to have large kurtosis (even > 5) in velocity increments, even
though the velocity is almost normal. No additional assumption, model component,
or even model parameter is necessary. Similar good preservation appears also for
the skewness of velocity increments (Fig. 9).

The huge data size in this application allows evaluation of even higher moments
and construction of a plot (Fig. 10) of the exponent �p vs. moment order p of an
assumed scaling relationship

vp ´ E Œjx.t/ � x .t C h/jp� � h�p (28)

which has been very common in the literature. Again the agreement between the
simulated and measured data is impressive, particularly if we bear in mind the fact
that no provision has been made to this aim. Some more simulations have been used
to investigate this further and a number of additional curves have been plotted in Fig.
10. It is thus seen that the HHK model alone fails to preserve this actual behaviour if
a Gaussian distribution is assumed; it rather approached the K41 self-similar model
(Kolmogorov 1941) as reproduced by Frisch (2006, Fig. 8.8). Similar results are
obtained if a Markov dependence structure is assumed along with the modelled
marginal distribution based on the empirical moments (Fig. 7). Interestingly, if we
combine the modelled distribution (Fig. 7) and the modelled climacogram (Eq. 27),
then we adequately preserve the intermittent effect without the need for any other
mono-fractal (such as the “-model) nor multifractal models (cf. Frisch 2006, Sect.
8.5) and not even the She–Leveque model (She and Leveque 1994), which is also
plotted in Fig. 10 (Frisch 2006, Sects. 8.6.4 and 8.6.5) and behaves also well against
the empirical data.



264 D. Koutsoyiannis et al.

0

1

2

3

4

5

0 5 10 15

ζ p

p

observed

She-Leveque (1994)

simulated

HHK-N(0,1): ~ K41

Markov-ΜΕ

Fig. 10 Empirical values of the scaling exponent �p vs. moment order p of the scaling relationship
(28)

In conclusion, this application shows that all important properties of turbulence,
including its short- and long-term characteristics, as well as intermittency, can
be very well modelled without any mystery but using a parsimonious stochastic
model, theoretically justified on the basis of the maximization of entropy production
(Koutsoyiannis 2011), with both Hurst and fractal behaviours and slightly non-
Gaussian distribution (with skewness of 0.2 and kurtosis of just 3.1).

5.2 Application 2: Wind

Understanding atmospheric motion in the form of wind is essential to many
fields in geophysics. Wind is considered one of the most important processes
in hydrometeorology since, along with temperature, it drives climate dynamics.
Currently, the interest for modelling and forecasting of wind has increased due to the
importance of wind power production in the frame of renewable energy resources
development.

For the investigation of the large scale of atmospheric wind speed, we use over
15000 meteorological stations around the globe (Fig. 11, upper) recorded mostly
by anemometers and with hourly resolution (www.noaa.gov; GHCN database). In
total, we analyse almost 4000 stations from different sites and climatic regimes by
selecting time series that are still operational, with at least one year length of data,
at least one non-zero measurement per three hours on average and at least 80% of
non-zero values for the whole time series (Fig. 11, middle). This data set is referred
to below as “global”.

http://www.nooa.gov
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Fig. 11 (Upper) Distribution of the wind speed stations over the globe; (middle) sketch about the
selection of the stations in the analysis; (lower) evolution of the frequency of measured extremes
in the stations (where the ‘start’ year denotes the first operational year of the station and the ‘first’
and ‘last’ year denote the first and last year that an extreme value was recorded, respectively)
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By standardizing all series we formed a sample of
0.5 � 109 values to estimate
the marginal distribution, and an ensemble of 3886 series, each with 
105 values on
average, to estimate the dependence structure through the climacogram. A known
problem of field measurements of wind (particularly those originating from over 70
years ago) is that the technology of measuring devices has been rapidly changed
(Manwell et al. 2010, Sect. 2.8.3). For example, in Fig. 11 (lower) we illustrate
a rather virtual increase of extreme wind events after the 1970s which is mainly
due to the inability of older devices to properly measure wind speeds over 30 m/s
(i.e., category I of Saffir�Simpson hurricane wind scale). Furthermore, in common
anemometer instrumentation there is a lower threshold of speed that could be
measured, usually within the range 0.1–0.5 m/s (e.g., www.pce-instruments.com). It
should be noted that, as the recorded wind speed decreases, so does the instrumental
accuracy and it may be a good practice to always set the minimum threshold to 0.5
m/s to avoid measuring the errors of the instrument (e.g., zero or extremely low
values) in place of the actual wind speed that can never reach an exact zero value.

In an attempt to incorporate smaller scales, starting from the microscale of
turbulence, we include again the dataset of the previous application of turbulence,
using it as an indicator of the similar statistical properties of small scale wind
(Castaing et al. 1990). In addition to the 40 time series of the longitudinal turbulent
velocity, here we also use another 40 time series of transverse velocity, measured
at the same points with the longitudinal one; again each time series has n D

36 � 106 data points with a sampling interval of 25 �s. The coefficients of
skewness and kurtosis are estimated as 0.1 and 3.1 for the transverse velocity,
respectively. Stochastic similarities between small-scale atmospheric wind and
turbulent processes abound in the literature as, for example, in terms of the marginal
distribution (Monahan 2013 and the references therein), of the distribution of
fluctuations (Bottcher et al. 2007 and the references therein), of the second-order
dependence structure (Dimitriadis et al. 2016 and the references therein) and of
higher-order behaviour such as intermittency (e.g., Mahrt 1989).

Finally, to link the large and small scale of atmospheric wind we analyse an
additional time series, referred to as “medium”, provided by NCAR/EOL of one-
month length and with a 10 Hz resolution. This time series has been recorded
by a sonic anemometer on a meteorological tower located at Beaumont KS and
it includes over 25 � 106 longitudinal and transverse wind speed measurements
(http://data.eol.ucar.edu/; Doran 2011).

The statistical characteristics based on moments up to fourth order are shown in
Fig. 12; interestingly, there appears to be a rather well-defined relationship between
mean and standard deviation. The plot of coefficient of kurtosis vs. coefficient of
skewness indicates that Weibull distribution falls close to the lower bound of the
scatter of empirical points.

Numerous works have been conducted for the distribution of the surface wind
speed (see Appendix 2 for a sample of recent studies). The Weibull distribution
has proven very useful in describing the wind magnitude distribution for over three
decades (Monahan 2006 and the references therein). However, various studies illus-

http://www.pce-instruments.com
http://data.eol.ucar.edu
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Fig. 12 Standard deviation vs. mean (upper) and coefficient of kurtosis vs. coefficient of skewness
of all time series used in Application 2

trate empirical as well as physically based deviations from the Weibull distribution
(Drobinski and Coulais 2012 and the references therein). Due to the discussed
limitations of properly measuring wind speed most studies have focused on a local
or small scale. In such cases where there is limited empirical evidence, we could
search for a physical justification for the left and right tail of the probability function.

It can easily be proven that the length of a vector of uncorrelated Gaussian
distributions with zero mean and equal variance follows the Rayleigh distribution.
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Fig. 13 Probability density
function of the medium scale
time series along with
theoretical and Monte Carlo
generated distributions

However, there is empirical and theoretical evidence (Application 1) that the
small-scale distribution of turbulence is not Gaussian and it is expected that this
should also be the case for the components of wind speed. Through Monte Carlo
experiments we illustrate that correlated non-Gaussian components result in a
distribution close to Weibull and are in agreement with small and medium scale
observations (an example is shown in Fig. 13).

The distribution of the “global” time series appears to deviate from Weibull,
gamma, and lognormal distributions, and is closer to a distribution with a much
heavier tail:

F.v/ D 1 �

 
1C

�
v

˛vs

	b
!�c=b

(29)

where v > 0 is the wind speed, vs is the standard deviation of the wind speed process;
˛ is a scale parameter, and b and c are the shape parameters of the marginal
distribution, all three dimensionless. For this distribution we use the name Pareto-
Burr-Feller (PBF) to give credit to the engineer V. Pareto, who discovered a family
of power-type distributions for the investigation of the size distribution of incomes
in a society (Singh and Maddala 1976), to Burr (1942) who identified and analysed
(but without giving a justification) a function first proposed as an algebraic form
by Bierens de Haan, and to Feller (1970) who linked it to the Beta function and
distribution. Other names such as Pareto type IV or Burr type VII are also in
use for the same distribution. Interestingly, the PBF distribution has two different
asymptotic properties, i.e., the Weibull distribution for low wind speeds and the
Pareto distribution for large ones. The derivation of PBF from maximum entropy
has been studied in Yari and Borzadaran (2010). The PBF has been used in a variety
of independent fields (see Brouers 2015). Therefore, it seems that there is a strong
physical as well as empirical justification for applying the PBF to the analysis of the
wind process.



From Fractals to Stochastics: Seeking Theoretical Consistency in Analysis. . . 269

f(x
) 

1.E+00

1.E-01 

1.E-02

1.E-03 

v/vs 

0 5 10 15 

global 

medium 

small 

PBF 

Weibull 

Pareto1.E-04 

1.E-05 

1.E-06 
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Fig. 15 Climacogram of the wind speed process estimated from the medium and global series

The distribution fitted to all data sets is shown in Fig. 14 and the fitted parameters
are ˛ D 3.5, b D 1.9, c D 8.5. The mean estimated climacograms from the data
(Fig. 15) indicate that the model of Eq. (27) is also applicable for the wind speed at
all scales with parameters estimated as � � 1, M D 1/3, H D 5/6 and ˛ D 6 h.
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Fig. 16 Locations of the selected hourly time series of air temperature

5.3 Application 3: Temperature

In this last application we analyse the dependence structure of the air temperature
process close to surface. For the microscale structure, we use a 10 Hz resolution time
series recorded for a two-month period via a sonic anemometer at Beaumont, USA
(https://data.eol.ucar.edu/dataset/45.910). For the macro-scale structure, we use a
global database of hourly air temperature (https://www.ncdc.noaa.gov/data-access/
land-based-station-data). In total, we analyse over 5000 stations from different sites
and climatic regimes by selecting time series with at least 1 year length and at least
one measurement per three hours (Fig. 16).

It can be assumed that the air temperature process follows a Gaussian distribution
(Koutsoyiannis 2005). Indeed, Fig. 17 shows that the 90% of the time series have
skewness around 0 ˙ 1 and kurtosis around 3 ˙ 1. We normalize all time series and
we estimate the dependence structure through the climacogram, autocovariance, and
power spectrum.

https://data.eol.ucar.edu/dataset/45.910
https://www.ncdc.noaa.gov/data-access/land-based-station-data
https://www.ncdc.noaa.gov/data-access/land-based-station-data
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Fig. 17 Coefficient of
skewness vs. coefficient of
kurtosis for �90% of the
macro-scale temperature time
series
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The mean estimated climacograms from the data (Fig. 18) and the CS (Fig.
19) indicate that, interestingly, the model of Eq. (27) is also applicable here with
parameters estimated as � � 1, M D 1/3, H D 5/6 and ˛ D 3.3 d.

6 Concluding Remarks

Stochastics offers a strong basis for modelling and interpretation of natural
behaviours and can directly incorporate, in a rigorous manner, useful concepts from
the fractal literature, removing the ambiguity characterizing many fractal studies.
Stochastics offers all tools for data analysis, inductive inference and prediction with
quantified uncertainty, but above all it offers the basis for a logical world view.

We owe the well-founded and rigorous mathematical theory of stochastics to
Kolmogorov (1931, 1933, 1938), including the foundation of scaling processes
(Kolmogorov 1940). This theory has often been distorted but there exist textbooks
consistent with it (e.g., Papoulis 1991).

Calculating values of sample statistics without considering their statistical prop-
erties (bias and statistical variation) can yield misleading results. Without proper
attention to the underlying stochastics, we can even “identify” phenomena that do
not exist and take statistical sampling effects as natural behaviours.

A general methodology for data analysis and construction of synthetic time series
is possible provided that we have a good understanding of stochastics. In particular,
the applications presented here suggest a promising characterization of different
geophysical processes in a unified manner and with a simple and parsimonious
stochastic model, appropriate for a range of scales spanning several orders of
magnitude.
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Fig. 18 Climacogram of the normalized temperature for the micro-scale time series (small)
and the set of hourly air temperature time series (global; upper: average climacogram; lower:
climacograms of 100 different time series), compared to the fitted model of Eq. (27) (true and
expected)

Appendix A: Proof of Infeasibility of Too Steep Slopes
in Power Spectrum at Low Frequencies

This proof is summarized here from Koutsoyiannis (2013b) and Koutsoyiannis et
al. (2013).

Let us assume the contrary, i.e., that for frequency range 0 � w � " (with "
however small) the log-log derivative is s#(w) Dˇ, or else s(w) D ˛ wˇ where ˛ and
ˇ are constants, with ˇ < � 1. As a result of (2) and (4) the climacogram is related
to power spectrum by:
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Fig. 19 CS of the
normalized temperature for
the micro-scale time series
(small) and the set of hourly
air temperature time series
(global; average from all time
series), compared to the fitted
model of Eq. (27) (true)
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The sinc2 function within the integral takes significant values only for w < 1/k
(cf. Papoulis 1991, p. 433). Assuming a scale k � 1/",

�.k/ D

1Z

0

s.w/sinc2 . wk/ dw �

"Z

0

˛wˇ sinc2 . wk/ dw (31)

On the other hand, it can be easily seen that, for 0 < w < 1/k, the following
inequality holds:

sinc . wk/ � 1 � wk � 0 (32)

Since " � 1/k, while the function in the integral (31) is nonnegative,

�.k/ �

"Z

0

˛wˇsinc2 . wk/ dw �

1=kZ

0

˛wˇsinc2 . wk/ dw �

1=kZ

0

˛wˇ.1 � wk/2dw

(33)

By substituting ! D wk into Eq. (33), we find:

�.k/ � ak�ˇ�1

1Z

0

!ˇ.1 � !/2d! (34)
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To evaluate the integral in (34) we take the limit for q ! 1 of the integral:

B.q/ ´

1Z

1=q

!ˇ.1 � !/2d� D
1 � q�1�ˇ

1C ˇ
� 2

1 � q�2�ˇ

2C ˇ
C
1 � q�3�ˇ

3C ˇ
(35)

Clearly, the limit of B(q) as q ! 1 depends on that of the term with the highest
exponent, i.e., q�1 –ˇ . For ˇ < �1 this term diverges and thus, B(0) D C1. Then, by
virtue of the inequality (34), � (k)D 1. For a (mean) ergodic processes � (k) should
necessary tend to 0 for k ! 1 (Papoulis 1991, p. 429). Therefore, the process is
nonergodic.

It is interesting to note here that, when jˇj < 1, the integral in (31) can be
evaluated to give:

�.k/ � ˛

1Z

0

wˇ sinc2 . w�/ dw D
˛% .1C ˇ/ sinc . ˇ=2/

2 .1 � ˇ/ .2 /ˇk1Cˇ
(36)

Clearly, for k ! 1, the last expression gives � (k) ! 0 and thus for jˇj < 1 the
process is mean ergodic.

This analysis for ˇ < �1 generalizes a result by Papoulis (1991, p. 434) who
shows that an impulse at w D 0 corresponds to a non-ergodic process.

Appendix B: Literature Review on the Distribution Function
of Wind Speed

A large variety of distributions in the literature (with the most common to be
Gaussian, gamma, Weibull, lognormal, Pareto and generalizations thereof as well
as mixtures with each other) show equally good agreement with atmospheric wind
measurements recorded at different sites around the globe with different climatic
conditions.

A sample of recent publications is listed in Table 2 along with the proposed
distributions. However, some distributions seem to exhibit good agreement with
data at the left or right tail mostly due to different lengths of the examined time
series, while arguably most distributions do not exhibit good agreement for the
whole range.
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Table 2 Recent publications on the distribution function of wind speed

Reference General characteristics Proposed distribution Comments

Aksoy et al. (2004) 1 station; 4 years Weibull Markov chain
Monahan (2006) Global; sea-surface;

wind speed
Weibull Non Rayleigh

Bottcher et al. (2007) Laboratory; 4
atmospheric stations;
wind components

Castaing et al. (1990) Standard deviation with
a lognormal model for
intermittency

Kiss and Janosi
(2008)

Reanalysis data over
Europe

Generalized gamma Non-Rayleigh;
non-Weibull

Morgan et al. (2011) 178 offshore time
series; 10-min wind
speed

Kappa 14 distribution tested;
non-Weibull; non
Rayleigh

Lo Brano et al.
(2011)

Wind speed over
Palermo

Burr Tested: Weibull,
Rayleigh, lognormal,
gamma,
inverse-Gaussian,
Pearson V

Drobinski and
Coulais (2012)

3 stations; high
altitude; wind
components

Rayleigh-Rice Non-Weibull, Elliptical
distribution to model
skewness

Wu et al. (2013) Inner Mongolia region Lognormal Weibull; logistic
Ouarda et al. (2015) 9 stations in United

Arab Emirates
Kappa, generalized
gamma

18 distributions tested
with mixture properties
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Role of Nonlinear Dynamics in Accelerated
Warming of Great Lakes

Sergey Kravtsov, Noriyuki Sugiyama, and Paul Roebber

Abstract In recent decades, the Laurentian Great Lakes have undergone rapid
surface warming with the summertime trends substantially exceeding the warming
rates of surrounding land. Warming of the deepest Lake Superior was the strongest,
and that of the shallowest Lake Erie—the weakest of all lakes. We investigate
the dynamics of accelerated lake warming in idealized coupled thermodynamic
lake–ice–atmosphere models. These models are shown to exhibit, under identical
seasonally varying forcing, multiple possible stable equilibrium cycles, or regimes,
with different maximum summertime temperatures and varying degrees of winter-
time ice cover. The simulated lake response to linear climate change in the presence
of the atmospheric noise rationalizes the observed accelerated warming of the
lakes, the correlation between wintertime ice cover and next summer’s lake-surface
temperature, as well as higher warming trends of the (occasionally wintertime
ice-covered) deep-lake vs. shallow-lake regions, in terms of the corresponding
characteristics of the forced transitions between colder and warmer lake regimes.
Since the regime behavior in the models considered arises due to nonlinear
dynamics rooted in the ice–albedo feedback, this feedback is also the root cause
of the accelerated lake warming simulated by these models.

Keywords Great Lakes • Regional warming trends • Multiple climate regimes •
Ice–albedo feedback

1 Introduction

In recent decades, a large number of lakes all over the globe have been undergoing
rapid increase in surface water temperature (Schneider et al. 2009; Schneider
and Hook 2010; O’Reilly et al. 2015). Furthermore, many of the lakes exhibited
summertime warming trends exceeding the globally averaged surface temperature
trend over land. This is in sharp contrast with the observed oceanic surface warming,
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Fig. 1 The 1995–2012 warming trend in the annual-mean surface water temperature versus water
depth for Great Lakes. The trends were spatially averaged over the areas of a given depth within
each lake (see panel captions). These results are based on the satellite observations of surface
temperature from the Great Lakes Surface Environmental Analysis (GLSEA) operated by NOAA’s
Great Lakes Environmental Research Laboratory (GLERL)

which was generally smaller than the warming over land (see, for example, Manabe
et al. 1991; Sutton et al. 2007; Joshi et al. 2008; Joshi and Gregory 2008; Byrne and
O’Gorman 2012, among others).

Despite that some of the ice-free lakes were exhibiting rapid warming (Schneider
et al. 2009), the wintertime ice-covered lakes were found, on average, to warm
significantly faster than the ice-free lakes (O’Reilly et al. 2015), at the rates also
exceeding those of ambient air temperatures. This accelerated warming appears
to be associated with a variety of climatic drivers and, interestingly, depends on
the lakes morphology, with the deepest lakes exhibiting the largest warming trends
(Austin and Colman 2007; Hampton et al. 2008; Zhong et al. 2016). Among Great
Lakes, for example, Lake Superior (the deepest) has the strongest, and Lake Erie
(the shallowest)—the weakest surface warming trend (Austin and Colman 2007).
This dependence of the warming rates on depth is also found within individual lakes
(Fig. 1). Yet another interesting aspect of the Great Lakes’ recent evolution, which
also appears to depend on the depth of the lake, is an apparent discontinuous jump
in the time series of their summertime surface temperature, lake’s heat content, and
some other lake properties at around 1997–1998. This discontinuity was, once again,
most pronounced in Lake Superior, and least pronounced in Lake Erie (Van Cleave
et al. 2014; Gronewold et al. 2015; Zhong et al. 2016).

The dynamical causes of the accelerated warming of mid-latitude lakes are still
a subject of debate. A combination of explanatory factors have been considered,
such as increases in incoming shortwave radiation and air temperature (Arvola
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et al. 2010; Ackerman et al. 2013; Foster and Heidinger 2013; Fink et al. 2014;
Gronewold et al. 2015), shorter lake-ice durations (Magnuson 2000), as well as an
earlier onset and longer duration of the summer stratification (Austin and Colman
2007; Austin and Allen 2011; Piccolroaz et al. 2015; Zhong et al. 2016). Of the
processes mentioned above, the direct response to surface air temperature trends
appears to dominate the surface warming of small, shallow lakes (Toffolon et al.
2014), but other processes may be equally or more important in determining the
response of deeper, larger lakes (Zhong et al. 2016).

Since the seasonal presence of lake ice is clearly a factor characterizing the
majority of the most rapidly warming lakes, the ice–albedo feedback has been
suggested as a root dynamical cause of accelerated lake warming (Austin and
Colman 2007). In support of this idea, Hanrahan et al. (2010) found a correlation
between the amount of winter ice cover and the summer surface water temperature
of Lake Michigan. By contrast, Vavrus et al. (1996), Gerbush et al. (2008), and
Zhong et al. (2016) argue that the net influence of lake ice on the lake’s response to
ambient warming is limited due to compensation between ice–albedo and insulating
effects of the ice.

Here we address the multi-faceted problem of the accelerated lake warming
using an idealized lake–ice–atmosphere coupled model. The central result of this
study is an identification of multiple stable equilibrium seasonal cycles of the
lakes (hereafter, the lakes’ regional climate regimes) in our coupled model. These
nonlinear regimes occur throughout the range of model geometries we considered,
from one-column lakes of uniform depth to three-column lakes mimicking the
geometry of individual Great Lakes, and derive their existence from the lake–ice–
albedo feedback. Global-warming experiments with our coupled model rationalize
many qualitative and quantitative aspects of the observed accelerated lake warming,
including the dependence of the warming trends on lake depth, the association
between wintertime ice cover and next summer’s surface temperatures, and abrupt
regional climate change associated with transitions between warm and cold lake-
climate regimes.

2 Coupled Lake–Ice–Atmosphere Model

Adequately addressing dynamics of the Great Lakes’ regional climate variability
requires faithful simulation of the lake/lake-ice seasonal cycle. Typically, lake
temperatures remain vertically homogenous throughout a substantial portion of the
spring and fall seasons, and the lakes become stratified in winter and summer
(Fig. 2); the lake ice appears when lake-surface temperatures cool below 0ıC.
The previous formulations of the one-dimensional lake models (e.g., Hostetler and
Bartlein 1990) exhibited substantial biases in the duration of both the stratified and
lake-ice seasons of deep lakes (Martynov et al. 2010). We introduced improvements
in the lake-model vertical mixing scheme to alleviate these biases and developed a
coupled configuration of the model with an interactive atmosphere to address lakes’
regional climate change.
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Fig. 2 A simulation of temperature (ıC) below buoy station 45,002 in northern Lake Michigan, for
the year 1996. The purple stripes correspond to the regions where temperature is 3.98 ˙ 0.05ıC.
The vertical grid spacing is 5 m

a. Model geometry and experimental setup. We considered an idealized lake that
has n lake columns characterized by a variable time- and depth-dependent
temperature. If n D 1, the lake has a uniform depth; we also considered the case
with n D 3 to model the lakes with non-trivial bathymetry. The lake is surrounded
by land and overlaid by two atmospheric layers (Fig. 3). Lake columns do not
exchange heat horizontally, and we assume no heat transport through the bottom
of the lake. The lake absorbs and emits radiation and exchanges heat with the
lower atmospheric layer at the surface. The lower atmospheric layer, nominally
the atmospheric boundary layer, is divided into parts whose boundaries coincide
with those of lake columns or land; each part has a distinct variable temperature
predicted by the coupled model equations, and we allow lateral heat transport
between adjacent parts of this layer. On the other hand, the uppermost layer
represents the lower free atmosphere and has a specified variable temperature
Ta , u, which enters the formulation of the model’s forcing in both stationary and
global-warming experiments (see below). The model behavior is a function of
a number of free parameters. Two such parameters are the relative size of land
surrounding the lake and the efficiency of heat transport within the atmospheric
boundary layer; both parameters affect the magnitude of the lake’s simulated
warming trend.

b. Lake model. The individual columns of the lake model are governed by the one-
dimensional model formulation of Hostetler and Bartlein (1990), with empirical
improvements in its so-called enhanced minimum diffusion scheme on top of
the modifications suggested by Fang and Stefan (1998) and Bennington et al.
(2014). These further modifications were designed to achieve better modeling of
the lakes’ seasonal cycle, in particular in conjunction with the correct simulation
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Fig. 3 Geometry of the coupled model with three-column lake component. Top panel: cross-
section; bottom panel: plan view

of the onset date and duration of the summer stratification season, which
is notoriously difficult to simulate in one-dimensional deep-lake models (see
Martynov et al. 2010; Subin et al. 2012; Bennington et al. 2014; Zhong et al.
2016). Simulations with our modified uncoupled lake–lake–ice model driven
by the observed variable atmospheric radiation, surface temperature, and wind
result in a fairly good match between the simulated lake temperatures (Fig. 2)
and observations thereof (not shown here).

c. Ice model. The lake ice is simulated using one-dimensional thermodynamic sea-
ice model of Semtner (1976) modified to exclude the effects of brine pockets and
explicit representation of the snow cover. To account for the latter, we instead
set the surface albedo of the ice exceeding the 10 cm thickness to 0.45, which is
between the typical ice and snow albedo; the surface albedo for the ice thickness
h between 0 and 10 cm in our model changes linearly from 0.05 (open water
value) to 0.45. For simplicity, we ignore the insulating effects of snow. The type
of the ice model we used was also different depending on the ice thickness.
In particular, we used what Semtner (1976) called the 0-layer model for the
thin ice (h � 10 cm), and the four-layer ice model otherwise. We find that the
multi-layer ice model leads to simulating a more realistic—shorter—ice-season
duration compared to the 0-layer models described in Hostetler and Bartlein
(1990), especially for deep lakes.
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d. Atmospheric component, coupling, and external forcing. An active atmospheric
boundary layer is assumed to have zero heat capacity and is thus always balanced
in terms of the incoming and outgoing heat fluxes, which include long-wave and
short-wave radiation, sensible and latent heat exchange with the lake or ice—
parameterized via bulk formulas—as well as lateral diffusive heat transports
between adjacent atmospheric columns. The external forcing in the model
reflects the periodic seasonal dependence in the shortwave radiation SW (which
is all transmitted through the atmosphere and absorbed by the lake or land), free-
atmosphere temperature Ta , u, and surface wind speed u:

SW.t/ D SW C 125 cos .2� .t � 172/ =365/ ; (1)

Ta;u.t/ D T C 16 cos .2� .t � 180/ =365/ ; (2)

u.t/ D 7:5 � 2:5 cos .2� .t � 195/ =365/ : (3)

The units here are Wm�2 for heat fluxes, ıC for temperatures, and ms�2 for wind
speeds; time t is measured in days. The SW and T denote the annual-mean values of
short-wave radiation and free-atmosphere temperature. The amplitude of Ta , u(t) was
chosen so that the simulated surface water temperature seasonal variation roughly
matched that of Great Lakes. The seasonal variation of u(t) was chosen based on
the fact that the climatological surface wind speed over land surrounding the Great
Lakes is roughly 5 or 6 ms�1 in winter and 3 or 4 ms�1 in summer, and that surface
wind speed is generally greater over the Great Lakes than over land. For the single-
column lake experiments, we set SW D 175 Wm�2, which is comparable to the
amount of downward shortwave radiation in the Great Lakes region. The phase shift
in the formula of downward shortwave radiation was chosen so that the radiation
reaches its maximum value on June 21st, but the phase shifts in the formulas of
the other two quantities are somewhat arbitrary, except to ensure that the free-
atmosphere temperature reaches its maximum value in summer and surface wind
speed in winter.

Below, we will extensively analyze the numerical experiments in which the free-
atmosphere annual-mean temperature T exhibits a linear trend of ˙0.04ıC per year
and/or quasi-periodic or stochastic interannual variability.

3 Multiple Regimes in Lakes of Uniform Depth

a. Hysteresis behavior. To identify multiple stable equilibrium seasonal cycles of
the lakes, we computed the hysteresis curves in the phase plane of the lake’s
maximum (summertime) surface water temperature and the concurrent annual-
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Fig. 4 The hysteresis diagrams in the phase plane of maximum (summertime) surface water
temperature for the lakes of different depths (see panel captions) and the concurrent annual-mean
lower free atmosphere’s temperature forcing T . The blue curves indicate the evolution of maximum
surface water temperature when T slowly warms at the rate of C0.04ıC per year. The red curves
indicate the evolution of maximum surface water temperature when T slowly cools at the rate of
C0.04ıC per year. The ice albedo is at the default value of 0.45. For comparison, the green curves
show the results of simulations with the ice albedo set to the water albedo of 0.05, which exhibit
no difference between the slow warming and slow cooling results. Units are ıC

mean free-atmosphere temperature (Fig. 4). We first used a steady (seasonally
periodic) forcing with the low value of the annual-mean free-atmosphere temper-
ature T to reach a seasonally varying lake equilibrium characterized by abundant
wintertime ice cover and low summertime surface temperatures. We then added
a linear trend of C0.04ıC per year to T and followed the evolution of the lake’s
seasonal cycle (red curves in Fig. 4). This trend is slow enough that the resulting
forcing is essentially quasi-stationary, and leads to the lake seasonal cycle
initially exhibiting gradual changes, with progressively less wintertime ice cover
(not shown) and progressively warmer summertime temperature. This behavior
ends when the lake abruptly transitions, at some value of the free-atmosphere
temperature Tmax, to the wintertime ice-free state (not shown), which has a
higher maximum (summertime) lake-surface temperature. Upon this transition,
the ice-free warm state resumes gradual linear changes under a continued free-
atmosphere temperature trend. Starting from the rightmost part of the hysteresis
diagrams in Fig. 4, we now reverse the sign of the annual-mean free-atmosphere
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temperature trend, making it equal to �0.04ıC per year (blue curves). The
ice-free state gradually cools down until it reaches another threshold value of
the free-atmosphere temperature Tmin and transitions abruptly back to the cold
regime with substantial wintertime lake-ice cover. Further slow decrease of the T
forcing results in the quasi-stationary and linear lake-temperature changes along
the original line of the experiment with the warming trend.

In the range of the annual-mean upper air temperature forcing between Tmin

and Tmax, the seasonally varying warm and cold climate regimes described above
coexist. The occurrence of multiple equilibrium seasonal cycles of the lakes
crucially depends on the lake-ice–albedo feedback—we obtained no evidence of
multiple regimes in any simulations in which the ice-surface albedo was made equal
to that of water (green curves).

b. Multiple regimes in one-column lakes of different depths. Different panels of
Fig. 6 correspond to the hysteresis diagrams computed for the one-column
coupled lake models of different depths. We observe that: (i) the multiple regimes
of deeper lakes occur at colder values of T forcing compared to the multiple
regimes of shallower lakes; (ii) the range Tmax—Tmin of T in which the two
regimes exist simultaneously is larger for deeper lakes; and (iii) the difference
in the maximum summertime temperature between the two regimes is also larger
for deeper lakes.

All of these properties can be rationalized by studying seasonal cycles of the
shallow and deep lakes in their cold and warm regimes (Fig. 5). Throughout most
of the cold season, the lake water remains vertically mixed throughout the whole
column for shallower lakes and over the depths exceeding 100 m or more for deeper
lakes (see, for example, Assel 1986). Hence, a deeper lake has a larger thermal
inertia and it takes more forcing (and colder free-atmosphere temperatures) to cool
it down to freezing temperature and form ice in winter, explaining the property (i)
above.

Properties (ii) and (iii) also have to do with a larger effective thermal inertia of
deep lakes vs. that of the shallow lakes, albeit not quite as directly as the property
(i). The ultimate reason behind (ii) and (iii) is that shallower lakes exhibit a longer
stratified season in summer than deeper lakes (see Fig. 5). This is due, in turn, to
an earlier onset of the spring overturn (which happens when the surface temperature
reaches the value of 3.98ıC corresponding to the largest density of water) in shallow
regions of the lakes. By contrast, deeper lake columns have more water to mix, so the
vertical density profile of a deeper lake remains nearly homogeneous and its surface
temperature remains just below the maximum density threshold of 3.98ıC longer
than that of a shallower lake. An earlier spring overturn and an earlier formation of
the summertime surface mixed layer in shallow-lake areas is also a feature of the
observed seasonal cycles of the lakes (not shown).

A typical depth of the summertime surface mixed layer of the Great Lakes is
10–20 m, so this layer’s thermal inertia is really small (see, for example, Assel
1986; McCormick and Meadows 1988), and it responds to the atmospheric forcing
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Fig. 5 Seasonal cycle of lake temperature in ıC for the 100-m-deep lake (left column) and 50-
m-deep lake (right column). Top row: cold regime; bottom row: warm regime. The purple stripes
correspond to the regions where temperature is 3.98 ˙ 0.05ıC

fairly quickly. A longer duration of the summertime stratified season in shallower
lakes thus translates to a longer time to efficiently alleviate the differences in the
maximum summertime temperature between the cold and warm regimes—which
dynamically originate earlier, in the cold season, due to workings of the ice–albedo
feedback—via radiation and sensible/latent heat loss to the atmosphere [property
(iii)]. Property (ii) is a byproduct of property (iii): the smaller the temperature “gap”
between the two regimes is, the smaller is the range of free-atmosphere temperature
Tmax�Tmin is in which these regimes coexist.

The consequence of properties (ii) and (iii) is that shallower lakes transition
from one regime to the other more easily than deeper lakes in response to forcing.
In particular, under the action of atmospheric noise with amplitude between the
temperature “gap” values Tmax�Tmin characterizing a shallow lake and a deep lake,
the regime behavior of the shallow lake may not be immediately apparent as the
temperature “trajectory” would wander chaotically between the two regimes. On the
other hand, the deep lake in this case would be characterized by quasi-stable regime
behavior, possibly with occasional and easily identifiable transitions between the
two regimes. These properties help explain amplification of the surface warming
trends of deeper lakes vs. shallower lakes in the presence of global warming and
atmospheric noise (see Sect. 5).
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4 Multiple Regimes in Three-Column Lakes

In this section, we study the behavior of three-column lakes (Fig. 3) whose
bathymetry characteristics are chosen to approximate some of the Great Lakes
(Table 1). Lake 1 is the deepest lake whose average depth approximates that of
Lake Superior, Lake 3 (“Erie”) is the shallowest, and Lake 2 (“Michigan”) has
an intermediate depth. The SW forcing parameters [see Eq. (1)] for these lakes—
175 Wm�2 (Lake 1), 190 Wm�2 (Lake 2), and 195 Wm�2 (Lake 3)—are also
roughly comparable to the amounts of long-term mean shortwave radiation over
Lakes Superior, Michigan, and Erie.

Figure 6 (left) presents the hysteresis curves or the deepest column of Lake 2
computed in the same way as for the one-column lake of Sect. 3 (Fig. 4). Similar to
the case of single-column lakes in Fig. 4, the Lake-2 three-column model without
the ice–albedo effect does not have multiple climate regimes. By contrast, the
full version of three-column model in which the ice albedo is much higher than
that of the open water can have up to three different climate regimes for certain
values of T: the cold regime in which ice covers the entire lake surface during
winter, the intermediate regime with ice covering only the intermediate-depth and
the shallowest lake columns during winter, and the warm regime with only the
shallowest lake column covered with ice in winter. The three sets of hysteresis
curves in Fig. 6 (right) show the maximum (summertime) temperature for the three
columns: the deepest (black), intermediate-depth (cyan), and the shallowest column
(red), as a function of T .

Table 1 Geometry of
three-column lake models

Depth (m) Fractional area

Lake 1

Column 1 50 0.1
Column 2 150 0.5
Column 3 225 0.3
Land – 0.1
Lake 2

Column 1 30 0.2
Column 2 80 0.5
Column 3 140 0.2
Land – 0.1
Lake 3

Column 1 15 0.4
Column 2 20 0.4
Column 3 40 0.1
Land – 0.1

Lake 1 mimics Lake Superior, Lake 2—
Michigan, and Lake 3—Erie
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Fig. 6 Left: The hysteresis diagram in the phase plane of maximum (summertime) surface water
temperature for the deepest column of Lake 2 and the concurrent annual-mean free-atmosphere
temperature forcing T . We consider two cases: simulations with the ice albedo at the default value
of 0.45 (black) and simulations with the ice albedo set to the water albedo of 0.05 (green). Units
are ıC. This figure is analogous to Fig. 4 for the one-column lake model. Right: The hysteresis
diagrams of maximum (summertime) surface water temperature for Lake-2 model’s deep (black),
intermediate (cyan), and shallow (red) columns, shown together. The ice albedo here is at the
default value of 0.45

Fig. 7 Top: The hysteresis diagrams of maximum (summertime) surface water temperature for
Lake-3 model’s deep (black), intermediate (cyan), and shallow (red) columns. This figure is
analogous to Fig. 6 (right)
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The bifurcation diagram for the shallowest Lake-3 model (Fig. 7) is qualitatively
different from that for Lake 2 in that the regime transitions are spread out along the
T axis, and we do not find a range of T in which more than two regimes coexist.
The three sets of regime transitions in this case correspond to the transitions of
the deepest, intermediate-depth, and shallowest lake columns from their respective
wintertime ice-covered to perennially ice-free states, respectively. The T thresholds
for this transition are the lowest (�0.4ıC, �0.2ıC) for the deepest lake column,
intermediate (1.4ıC, 2.4ıC) for the intermediate-depth column, and the highest
(2.4ıC, 2.6ıC) for the shallowest lake column; this is consistent with the property
(i) of Sect. 3. Furthermore, the gaps between maximum (summertime) temperature
of warmer-vs.-colder regimes within each regime pair are in general much smaller
than for the Lake-2 regimes, in accord with property (iii) of the one-column models
in Sect. 3. Note, however, that the relative sizes of these gaps are not merely the
function of the lake depth, as in one-column models, but also depend on the relative
areas of the lake columns (Table 1) and the efficiency of the horizontal atmospheric
heat transport (not shown).

In summary, while the regime structure of the three-column lakes is more
complex than that of flat-bottom lakes, the properties of the regimes and, in
particular, their dependence on the lake depth in the two cases, are consistent.

5 Response of Lakes to Global Warming

a. Lacustrine regional amplification of global warming. The bifurcation diagrams
of the previous section were obtained by adding linear trends to the annual-mean
free-atmosphere temperature T . We now examine the evolution of three-column
lake models under such warming trend (of 0.04ıC per year) to gain insight into
how the lake dynamics may amplify global warming on a regional scale. In the
experiments of this section, we also added an idealized interannual variability on
top of the linear global-warming signal in T , by introducing alternating biennial
anomalies of ˙2ıC to the T time series. The standard deviation of the resulting
interannual variability is similar to the observed variations (not shown).

For each of our three idealized lake models, we started with atmospheric
conditions cold enough to freeze the entire lake in winter, and followed the evolution
of the lakes’ seasonal cycle in a long global-warming simulation setup as described
above. We then computed the slopes of linear trends in the annual-mean lake-
surface temperature for each lake column over the 20 years sliding window. The
resulting values of the maximum warming rates are listed in Table 2. Note that
these warming trends all exceed the global-warming rate of 0.04ıC per year, are
largest for the deepest Lake 1 and smallest for the shallowest Lake 3, in accordance
with observations (Sect. 1). We also recover the observed correlation between lake-
column depth and surface warming rates within each lake, with the deepest lake
columns exhibiting the largest warming rates.
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Table 2 The peak warming trends (ıC per year) in the annual-mean surface-water temperature
for the three idealized lake models from Table 1 subjected to the linear trend of 0.04ıC per year
plus a periodic interannual variability: see text for details

Warming-trend Shallow column Intermediate column Deep column Overall

Lake 1 0.137 0.171 0.183 0.171
Lake 2 0.090 0.119 0.129 0.116
Lake 3 0.063 0.085 0.092 0.076

The warming trends were computed using the 20 years moving-window linear least-square trends
of lake-surface temperature

The latter properties in our global-warming experiments stem from the fact
that the peak warming rates of the lakes arise due to transitions between the lake
regimes, as cold regimes are gradually becoming less and less likely under the global
warming. The peak differences between cold and warm regimes of deep lakes are
larger than those between the regimes of shallow lakes (see Sects. 3 and 4); hence,
deep lakes tend to exhibit larger warming rates. Furthermore, since the dynamical
inertia of the shallow lakes is smaller, they are more likely to transition back and
forth between their cold and warm regimes due interannual atmospheric variability
compared to the deep lakes. These multiple transitions smear out the peak warming
rates of shallow lakes even further.

b. Discontinuous behavior of deep lakes. Finally, we present, in Fig. 8, an example
of simulation with our Lake 2 forced by a combination of linear global warming
trend in T and random Gaussian noise in both T and SW, with the standard
deviations of 2ıC and 6 Wm�2, respectively; these values are consistent with
observations of atmospheric interannual variability. The lake starts from the
cold regime at low values of T and. As T gradually warms, the lake starts to
transition back and forth between its colder and warmer regimes before arriving
permanently to its final warm state. In the first half of the time series, the lake’s
cold regime is preferred, with the lake only experiencing occasional transitions to
the warm regime for 1 or 2 years (where the minimum temperature remains above
freezing throughout the year). In the second half of the time series though, the
situation is completely reversed, with the warm regime being clearly dominant
(ice only reappears in this column twice after the simulation year 90). This
simulation qualitatively mimics the behavior of Lake Superior. Prior to 1997,
this lake’s climate was dominated by cold regime with an extensive wintertime
ice cover (maximum >80%) and low summertime temperatures. After 1998, the
lakes switched to the warm regime with maximum ice cover <60% and warm
lake temperature in summer: during this period, the lake’s cold regime appeared
three times, in years 2003, 2009, and 2014–2015, but neither of these occurrences
lasted more than 2 years.

The multiple stochastically forced transitions introduce an apparent decadal
variability in the lake-temperature time series, consistent with the interannual
memory of deep lakes, and “diffuse” the lake warming to occupy a longer time
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Fig. 8 A realization of the “global warming” experiment (forced by the steady 0.04ıC per year

trend in the upper-air annual-mean temperature
�

T) with superimposed atmospheric stochastic
forcing for Lake 2. Shown are the time series of the maximum (green) and minimum (blue) surface
water temperatures of the deepest column of Lake 2

interval. Still, note the jump-like character of the lake-temperature time series in
Fig. 8, with a clear step-like increase in maximum summertime water temperature
around year 88 of simulation (equivalent to year 1998 in the case of the observed
Lake Superior transition to its warm regime). By contrast, the time series of surface-
water temperatures of shallower lakes exhibit less clear regime transitions (not
shown), due to their smaller thermal and dynamical inertia. Hence, we expect the
discontinuous regime behavior to be most pronounced for the deepest lakes like
Lake Superior, and less so for shallower lakes.

6 Conclusions

The main result of the present study is that nonlinear dynamics operating in
our coupled lake-ice–atmosphere model allows us to faithfully simulate large
amplification of the global-warming signal in deep-lake areas, as was observed
in the Great Lake region during recent decades. These dynamics manifest in the
existence of multiple regional climate regimes of the lakes—that is, distinct seasonal
cycles of the lakes, with warmer or colder summertime temperatures and less or
more extensive wintertime ice cover—arising under the identical seasonally varying
forcing. The persistence characteristics and sheer differences between the regimes
depend on the depth of the lake. Deep lakes, which have a large thermal/dynamical
inertia, exhibit large differences between the regimes and are resilient to external
perturbations, whereas the differences between shallow-lake regimes are less pro-
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nounced, and the transitions between them under interannual atmospheric variability
are easier to achieve. Hence, the deep lakes exhibit a stronger—often jump-like—
response to global warming forcing as they undergo changes toward a state in which
their warmer regimes gradually become progressively more likely, consistent with
observations.

The regimes in our model only occur in the presence of the ice–albedo feedback
nonlinearity; therefore, our results corroborate Austin and Colman’s (2007) original
hypothesis about the central role of this feedback in the accelerated warming of
Lake Superior. Our hypothesis of nonlinear regime dynamics behind the lacustrine
regional amplification of global warming is, however, novel, and complements a
rich spectrum of existing theories (see Sect. 1). Sorting out relative contributions to
the lake warming from a large suite of possible linear and nonlinear mechanisms
will require further work.

Nonlinear regimes due to ice–albedo feedback have been studied before in a
variety of climatic problems, including that of glacial-to-interglacial transitions
which involve land-ice and sea-ice feedbacks, as well as in addressing a possibility
of abrupt changes in Arctic sea ice under climate change (see Merryfield et al.
2008 for a review). Our present study revisits this concept in a novel context
of the regional climate change and provides a new framework for assessing and
understanding climatic effects of mid-latitude lakes.
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The Prediction of Nonlinear Polar Motion Based
on Artificial Neural Network (ANN) and Fuzzy
Inference System (FIS)

Ramazan Alper Kuçak, Raşit Uluğ, and Orhan Akyılmaz

Abstract The Earth rotation movement characterizes the situation of the whole
Earth movement, as well as the interaction between the Earth’s various layers
such as the Earth’s core, mantle, crust, and atmosphere. Prediction of the Earth
rotation parameters (ERPs) is important for near real-time applications including
navigation, precise positioning, remote sensing and landslide monitoring, etc. In
such studies, the analysis of time series is also important for highly accurate and
reliable predictions. Therefore, prediction of ERPs at least over a few days in
the future is necessary. At present, there are two major forecasting methods for
ERP: linear and nonlinear models. The nonlinear models include: sequence of
artificial neural network (ANN), fuzzy inference system, and other methods. Fuzzy
inference system (FIS) and traditional artificial neural networks (ANN) provide
good predictions of polar motion (PM). In this study, for the prediction of Earth
rotation parameters, International Earth Rotation and Reference System Service
(IERS) C04 daily time series data from 1990 to 2015 was used for training. From
1 to 120 days in future of ERPs values were predicted by using the data of 5,
15, and 25 years in ANN. The results of ANN and ANFIS were compared with
observed values. The results indicate that the longer training data are used in ANN
and ANFIS, the more accurate prediction can be obtained.

Keywords Polar motion • Artificial neural network • Fuzzy inference system •
Earth rotation parameters

1 Introduction

With the development of high precision space geodetic techniques, Earth Orienta-
tion Parameters (EOPs) which is very important for many geodetic applications can
accurately be enhanced. Their exact values are very important for many investiga-
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Faculty of Civil Engineering, Department of Geomatics Engineering, Istanbul Technical
University, Maslak, 34469, Istanbul, Turkey
e-mail: kucak15@itu.edu.tr

© Springer International Publishing AG 2018
A.A. Tsonis (ed.), Advances in Nonlinear Geosciences,
DOI 10.1007/978-3-319-58895-7_16

297

mailto:kucak15@itu.edu.tr


298 R.A. Kuçak et al.

tions in geodesy and astronomy, e.g., for high precision terrestrial navigation by use
of the Global Navigation Satellite System (GNSS), for navigation of Earth satellites
and interplanetary spacecrafts, and for laser ranging to satellites and to the Moon
(Schuh et al. 2002).

As these parameters are determined by space geodetic techniques such as GNSS,
Very Long Baseline Interferometry (VLBI), and Satellite Laser Ranging (SLR), they
are not available in real time (Akyilmaz and Kutterer 2004). For many geodetic
application, it is necessary to predict this value at least over a few days. Until
now, various algorithms and prediction methods have been used by Akyilmaz and
Kutterer (2004), McCarthy and Luzum (1991), Freedman et al. (1994), Ulrich
(2000), Schuh et al. (2002). In this study, by using data with different temporal
lengths (5, 15, 25 years), polar motion components were predicted by using artificial
neural network (ANN) and adaptive network based fuzzy inference system (ANFIS)
for 120 days in future and differences between predicted values and real values were
compared.

ANN and ANFIS have already been successfully applied in many scientific
applications however; they have different algorithms for analyzing time series. ANN
used here was examined by Egger (1992) for prediction of EOPs, simply it is
a computational model based on the structure and functions of biological neural
networks and it will be briefly explained in Sect. 2. Information that flows through
the network affects the structure of the ANN because a neural network learns from
data. On the other hand, ANFIS used here is primarily based on fuzzy set theory
which was introduced by Zadeh (1965) (Akyilmaz and Kutterer 2004) and it will be
briefly explained in Sect. 3.

2 Artificial Neural Network

An ANN is a mathematical model that tries to simulate the structure and function-
alities of biological neural networks (Krenker et al. 2009). Warren McCulloch and
Walter Pitts (1943) created a computational model for neural networks based on
mathematics and algorithms called threshold logic. This model paved the way for
neural network research to split into two distinct approaches. One approach focused
on biological processes in the brain and the other focused on the application of
neural networks to artificial intelligence. ANN composes of three simple rules:
multiplication, summation, and activation. At the first stage inputs are weighted
what means that every input value is multiplied with individual weight. The second
section is a summation of function that sums all weighted inputs and bias (Krenker
et al. 2009). In the third and the last section of ANN, the sum of the previously
weighted inputs and bias is passing through an activation function that is also called
transfer function.

Neural networks are typically organized in layers. Layers are consisting of a
number of interconnected nodes which contain an activation function. Patterns
are presented to the network via the input layer, which communicates to one or

https://en.wikipedia.org/wiki/Warren_McCulloch
https://en.wikipedia.org/wiki/Walter_Pitts
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/w/index.php?title=Threshold_logic&action=edit&redlink=1
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more hidden layers, where the actual processing is done via a system of weighted
connections. The hidden layers link to output layer, where final answer is delivered.
Although there are many different kinds of learning rules used by neural network,
feed forward back propagation method was used in this study. In feed forward back
propagation method information moves only in one direction, forward, from the
input nodes through the hidden nodes and to the output nodes. There are no cycles
or loops in the network (Auer et al. 2008).

3 Fuzzy Inference System

Fuzzy inference system transforms fuzzy information from an input space
(“premises”) to an output space (“consequents”) by means of fuzzy if-then rules
(Akyilmaz and Kutterer 2004). These if-then rule statements are used to formulate
the conditional statements that comprise fuzzy logic. A single fuzzy if-then rule
assumes the form “if x is A then y is B,” where A and B are linguistic values defined
by fuzzy sets on the variable spaces X and Y, respectively. They may differ only in
the types of membership functions in the consequent parts (Akyilmaz and Kutterer
2004).

Adaptive network based fuzzy inference system (ANFIS) has been developed by
Jang (1993). ANFIS is a type of neural network that is focused on Takagi–Sugeno
fuzzy inference system. ANFIS is a well-known artificial intelligence technique
(Bisht and Jangid 2011). In our study first-order Takagi and Sugeno (1983) ANFIS
was used in which the consequent part is linear function of the input variables and
supervised learning algorithm is based on a hybrid algorithm. The advantage of
ANFIS is that it is not complicated as much as ANN, and hybrid algorithm provides
fast convergence time.

4 Data Reduction and Generation of Training Patterns

Daily values of PM were obtained from International Earth Rotation and Reference
System Service (IERS), daily time series between 1990 and 2015 were used
for training and validation of two different model. In order to clearly detect the
differences between ANN and ANFIS, data were divided into three parts as 5,
15, and 25 years. For all three cases, 80% of the data were used for training and
remaining 20% were used for validation. In order to make a prediction, validation
set to be covered by the range of training set. Therefore, a linear trend using training
data was estimated and removed from the original polar motion series (including
both training and validation data). The residual data after linear trend reduction were
used in predictions. To generate training patterns following formulation was adopted
for both x and y components:
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Fig. 1 Polar motion components and reduction process

fx .t � 5k/ ; x .t � 4k/ ; x .t � 3k/ ; x .t � 2k/ ; x .t � k/g ! fx.t/g

where x(t) is values of the time series which is predicted, and k is the number
indicating the day in future to be predicted (Fig. 1 middle panel).

These patterns are shifted along the whole time series of both reduced polar
motion components. After the generation of the training patterns, data were divided
into two parts as input and output. To make a good prediction Levenberg–Marquardt
learning algorithm (LMA) which is also known as damped least square method
(DLM) was used in ANN. This learning algorithm provides a numerical solution to
the problem of minimizing a nonlinear function. It is fast and has stable convergence
but can be preferred as long as the ANN has a single output which is the case in our
PM prediction models. In ANN applications, this algorithm is suitable for training
small- and medium-sized problems (Yu and Wilamowski 2011). On the other hand,
the number of fuzzy if-then rule is directly related to the number of membership
functions in each variable space. For example, in this study five variables in input
space and each one is represented by three membership function were used; this
means that the number of fuzzy if-then rules is equal to 35 D 243. Membership
function type was chosen triangular membership function (trimf) and supervised
learning algorithm is based on a hybrid algorithm, which is a combination of
gradient descent and Kalman filter. The advantage of this update algorithm is the
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very fast convergence and guarantee for reaching the global optimum (Akyilmaz
and Kutterer 2005) of the objective/cost function of the problem.

For predictions, each ANN and ANFIS model were composed for prediction of
1 day in future and afterwards the predicted values were used as inputs for already
existing models to calculate the corresponding values for the day 2, 3, : : : 30.
Because of RMS errors increased rapidly after 30 days with a linear trend, prediction
was not extrapolated. To calculate RMS error following equation was used:

RMSd D

vuut1

n

nX
iD1

�bi i

d � { id

�2

where bi i

d is the predicted value of ANN and ANFIS network for day d, { id is
the corresponding actual value from IERS C04 series, and n is the number of
predictions.

5 Prediction Results and Comparison

The results predicted from 5, 15, and 25 years of data by ANN and ANFIS were
compared in Tables 1 and 2.

As seen from Tables 1 and 2, there is a big difference between the RMS
errors of x and y components; RMS errors of x components are much higher than
y components. This is because the x component has different character from y
components and possibly more sensitive to the geophysical phenomena. Because

Table 1 RMS error values of ANN prediction

RMSE of ANN (mas)
5 years 15 years 25 years

Prediction day x y x y x y

1 0,75 0,04 0,67 0,03 0,67 0,02
2 1,69 0,18 1,50 0,17 1,50 0,15
3 2,54 0,59 2,19 0,56 1,87 0,53
4 3,13 1,04 2,61 0,98 2,20 0,93
5 3,53 1,47 2,82 1,39 2,63 1,30
10 4,83 2,46 2,89 2,19 2,85 1,88
15 5,21 3,13 2,45 2,57 2,99 1,93
30 12,00 7,01 1,94 4,84 2,51 2,15
60 37,75 22,18 8,26 16,08 3,88 5,64
90 68,08 35,32 26,69 27,68 11,00 7,42
120 99,01 39,52 53,74 34,60 23,65 8,37

mas milliarcsecond
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Table 2 RMS error values of ANFIS prediction

RMSE of ANFIS (mas)
5 years 15 years 25 years

Prediction day x y x y x y

1 0,71 0,02 0,70 0,01 0,69 0,01
2 1,59 0,22 1,58 0,21 1,55 0,22
3 2,36 0,63 2,33 0,62 2,29 0,64
4 2,86 1,08 2,81 1,07 2,76 1,10
5 3,18 1,51 3,10 1,50 3,03 1,53
10 3,92 2,53 3,62 2,46 3,47 2,45
15 3,72 3,19 3,19 3,02 3,01 2,90
30 7,25 6,58 4,87 5,71 4,13 4,75
60 24,34 19,03 17,62 15,29 14,93 10,83
90 47,45 29,20 36,65 21,88 31,36 12,85
120 73,70 33,31 58,98 23,79 51,53 13,57

mas milliarcsecond
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Fig. 2 RMS errors of prediction obtained from ANN

of predicted values were used as inputs for the next day, RMS error increases
rapidly after the 30th day in future predictions. The values in the table clearly show
that more input data can provide more accuracy, however, more data also contain
disruptive values. In such a case, more complicated process of data reduction and
generating training patterns may help to reduce the effect of disruptive values, but
this is beyond the scope of this paper and left for a future study.

A graphical comparison of RMS errors using 5, 15, and 25 years of data for ANN
and ANFIS prediction models is given in Figs. 2 and 3, respectively. The first 5 days
in future predictions both by ANN and ANFIS is interesting. In particular, the x
component from ANN predictions look very close each other, however, after the 5th
day, the RMS errors improve with the increasing number of input data. Although
first 5 days seem very close each other for all cases, the RMS error which uses
25 years of input C04 data is lower (Figs. 2 and 3 middle panel).
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6 Conclusions

In this study, to predict polar motion component with different time span inputs,
artificial neural network and adaptive neuro fuzzy inference system were used. The
results clearly indicate that ANN and ANFIS are appropriate tools to predict polar
motion components. ANFIS provides more accurate predictions using as short as
5 years of observation data; however, RMS errors of ANN using 15 and 25 years
of observation data are lower than ANFIS. This does not mean ANN is better than
ANFIS because some researchers, e.g., Akyilmaz and Kutterer (2004) found out
total opposite results. This is due to different time span data, different learning
algorithm, number of membership functions etc. can change the results. On the other
hand, ANN offers very good prediction but it is very complex to handle. In addition,
one has to calculate a refined a priori model before training network. However,
ANFIS is less complex than ANN and depending on our experience, training of
ANN takes much longer time than that of ANFIS. Although we think that older data
could contain disruptive values, the results also indicate that more input data can
provide better prediction for polar motion component. This is because either ANN
or ANFIS can thus learn low frequency behavior of the PM and use this information
during the prediction processes.
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Harnessing Butterflies: Theory and Practice
of the Stochastic Seasonal to Interannual
Prediction System (StocSIPS)

S. Lovejoy, L. Del Rio Amador, and R. Hébert

Abstract The atmosphere is governed by continuum mechanics and thermodynam-
ics yet simultaneously obeys statistical turbulence laws. Up until its deterministic
predictability limit (�w � 10 days), only general circulation models (GCMs) have
been used for prediction; the turbulent laws being still too difficult to exploit.
However, beyond �w—in macroweather—the GCMs effectively become stochastic
with internal variability fluctuating about the model—not the real world—climate
and their predictions are poor. In contrast, the turbulent macroweather laws become
advantageously notable due to (a) low macroweather intermittency that allows for
a Gaussian approximation, and (b) thanks to a statistical space-time factorization
symmetry that (for predictions) allows much decoupling of the strongly correlated
spatial degrees of freedom. The laws imply new stochastic predictability limits. We
show that pure macroweather—such as in GCMs without external forcings (control
runs)—can be forecast nearly to these limits by the ScaLIng Macroweather Model
(SLIMM) that exploits huge system memory that forces the forecasts to converge to
the real world climate.

To apply SLIMM to the real world requires pre-processing to take into account
anthropogenic and other low frequency external forcings. We compare the overall
Stochastic Seasonal to Interannual Prediction System (StocSIPS, operational since
April 2016) with a classical GCM (CanSIPS) showing that StocSIPS is superior for
forecasts 2 months and further in the future, particularly over land. In addition, the
relative advantage of StocSIPS increases with forecast lead time.

In this chapter we review the science behind StocSIPS and give some details of
its implementation and we evaluate its skill both absolute and relative to CanSIPS.
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1 Introduction

1.1 Deterministic, Stochastic, Low Level, High Level Laws

L. F. Richardson’s “Weather forecasting by numerical process” (1922) opened the
era numerical weather prediction. Richardson not only wrote down the modern
equations of atmospheric dynamics, but he also pioneered numerical techniques
for their solution and even laboriously attempted a manual integration. Yet this
work also contained the seed of an alternative: buried in the middle of a paragraph,
he slyly inserted the now iconic poem: “Big whirls have little whirls that feed
on their velocity, little whirls have smaller whirls and so on to viscosity (in the
molecular sense)”. Soon afterwards, this was followed by the Richardson 4/3 law
of turbulent diffusion (Richardson 1926), which today is celebrated as the starting
point for modern theories of turbulence including the key idea of cascades and
scale invariance. Unencumbered by later notions of meso-scale, with remarkable
prescience, he even proposed that his scaling law could hold from dissipation up
to planetary scales, a hypothesis that has been increasingly confirmed in recent
years. Today, he is simultaneously honoured by the Royal Meteorological Society’s
Richardson prize as the father of numerical weather prediction, and by the Nonlinear
Processes division the European Geosciences Union’s Richardson medal as the
grandfather of turbulence approaches.

Richardson was not alone in believing that in the limit of strong nonlinearity
(high Reynolds number, Re), that fluids would obey new high level turbulent
laws. Since then, Kolmogorov, Corrsin, Obhukhov, Bolgiano and others proposed
analogous laws, the most famous of which is the Kolmogorov law for velocity
fluctuations (it is nearly equivalent to Richardson’s law). While the laws of
continuum mechanics and thermodynamics are deterministic, the classical turbulent
laws characterize the statistics of fluctuations as a function of space-time scale;
they are stochastic. Just as the laws of statistical mechanics are presumed to
be compatible with those of continuum mechanics—and even though no proof
(yet) exists—the latter are also presumed to be compatible with the higher level
turbulence laws, see the comprehensive review (Lovejoy and Schertzer 2013).

If both continuum mechanics and turbulent laws are valid, then both are
potentially exploitable for making forecasts. Yet for reasons that we describe below,
for forecasting, only the brute force integration of the equations of continuum
mechanics—general circulation models (GCMs)—have been developed to any
degree. In this paper we review an early attempt to directly exploit the turbulent
laws for macroweather forecasting, i.e. for forecasts beyond the deterministic
predictability limit (�10 days).
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1.2 The Status of the Turbulent Laws

The classical turbulent laws are of the scaling form: fluctuation � (turbulent
flux) � (scale)H where H is the fluctuation exponent (for the Kolmogorov law,
H D 1/3, see below). The scaling form is a consequence of the scale invariance
of the governing laws; symbolically, (laws) �! (scale change by factor �) �!

�H (laws), (note that the scale change must be anisotropic, see Schertzer et al.
(2012)). The atmosphere has structures spanning the range of scales from planetary
to submillimetric with Re � 1012: making it in principle an ideal place to test
such high Re theories. However, the classical laws were based on very restrictive
assumptions, they used unrealistic notions of turbulent flux and scale. In particular,
the fluxes (which are actually in Fourier space and typically go from small to
large wavenumbers) were assumed to be homogeneous or at least quasi-Gaussian.
However a basic feature of atmospheric dynamics is that almost all of the energy
and other fluxes are sparsely distributed in storms—and in their centres—and
this enormous turbulent intermittency was not taken into account. In addition, the
classical notion of scale was naïve: it was taken to be the usual Euclidean distance
between two points, i.e. it was isotropic, the same in all directions.

To be realistic, Schertzer and Lovejoy (1985) argued that the classical laws
needed to be generalized precisely to take into account intermittency and anisotropy
(especially stratification) and they introduced the main tools: multifractal cascade
processes and Generalized Scale Invariance. Profiting from the golden age of
geophysical data (remotely sensed, in situ and airborne), models and reanalyses
(model–data hybrids), a growing body of work has largely vindicated this view, and
has resulted in a quantitative characterization of the relevant multifractal hierarchy
of exponents over wide ranges of space and time scales. While the laws are indeed
of the (generalized) scaling form indicated above, with only a few exceptions
the values of the exponents still have not been derived theoretically. They are
nevertheless robust with quite similar values being found in diverse empirical data
sets as well as in GCM outputs.

While large scale boundary conditions clearly affect the largest scales of flows,
at small enough scales, the latter become unimportant so that, for example, in the
atmosphere for scales below about 5000 km, the predictions of turbulent cascade
theories are accurate to within typically ˙0.5% (see, e.g., Chap. 4 of Lovejoy and
Schertzer (2013), although at larger scales, deviations are important. If the turbulent
laws are insensitive to driving mechanisms and boundary conditions, then they
should be “universal”, operating, for example, in other planetary atmospheres. This
prediction was largely confirmed in a quantitative comparison of turbulent laws on
Earth and on Mars. It turns out with the exception of the largest factor of five or so
in scale that statistically, we are twins with our sister planet (Chen et al. 2016), see
Fig. 1a, b!

http://dx.doi.org/10.1007/978-3-319-58895-7_4
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Fig. 1 (a) (Top row): The zonal spectra of Earth (top left) and Mars (top right) as functions of the
nondimensional wave numbers for the pressure (p, purple), meridional wind (v, green), zonal wind
(u, blue) and temperature (T, red) lines. The data for Earth were taken at 69% atmospheric pressure
for 2006 between latitudes ˙45ı. The data for Mars were taken at 83% atmospheric pressure for
Martian Year 24 to 26 between latitudes ˙45ı. The reference lines (top left, Earth) have absolute
slopes, from top to bottom: 3.00, 2.40, 2.40, and 2.75 (for p, v, u, and T, respectively). Top right
(Mars) have reference lines with absolute slopes, from top to bottom: 3.00, 2.05, 2.35 and 2.35
(for p, v, u and T, respectively). The spectra have been rescaled to add a vertical offset for clarity
and wavenumber k D 1 corresponds to the half circumference of the respective planets. (Bottom
row): The same as top row except for the meridional spectra of Earth (left) and Mars (right). The
reference lines (left, Earth) have absolute slopes, from top to bottom: 3.00, 2.75, 2.75 and 2.40
(for p, v, u and T, respectively). The reference lines (right, Mars) have absolute slopes, from top to
bottom: 3.00, 2.40, 2.80 and 2.80 (for p, v, u and T, respectively). The spectra have been rescaled
to add a vertical offset for clarity. Adapted from (Chen et al. 2016). (b) The three known weather–
macroweather transitions: air over the Earth (black and upper purple), the Sea Surface Temperature
(SST, ocean) at 5ı resolution (lower blue) and air over Mars (Green and orange). The air over earth
curve is from 30 years of daily data from a French station (Macon, black) and from air temps for
last 100 years (5ı � 5ı resolution NOAA NCDC), the spectrum of monthly averaged SST is from
the same database (blue, bottom). The Mars spectra are from Viking lander data (orange) as well
as MACDA Mars reanalysis data (Green) based on thermal infrared retrievals from the Thermal
Emission Spectrometer (TES) for the Mars Global Surveyor satellite. The strong green and orange
“spikes” at the right are the Martian diurnal cycle and its harmonics. Adapted from Lovejoy et al.
(2014). (c) Spectra from the 20CR reanalysis (1871–2008) at 45ıN for temperature (T), zonal
and meridional wind (u, v) and specific humidity (hs). The reference lines have correspond to
ˇmw D 0.2, ˇw D 2 left to right, respectively. Adapted from Lovejoy and Schertzer (2013)
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Fig. 1 (continued)
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1.3 Status of Forecasts Based on the Classical Laws
and their Prospects with Turbulence Laws

Over the last decades, conventional numerical approaches have developed to the
point where they are now skilful up until nearly their theoretical (deterministic)
predictability limits—itself close to the lifetimes of planetary structures (about
10 days, see below). Actually—due to stochastic parametrizations—state of the
art ensemble GCM forecasts are stochastic–deterministic hybrids, but this limit is
still fundamental. At the same time, the strong intermittency (multifractality) over
this range has meant that stochastic forecasts based on the turbulent laws must be
mathematically treated as (state) vector anisotropic multifractal cascade processes,
the mathematical understanding of which is still in its infancy (see, e.g., Schertzer
and Lovejoy (1995)), GCMs are the only alternative. However, if we consider scales
of many lifetimes of planetary structures—the macroweather regime—then the
situation is quite different. On the one hand, because of the butterfly effect (sensitive
dependence on initial conditions), in macroweather even fully deterministic GCMs
become stochastic. On the other hand, as pointed out in Lovejoy and Schertzer
(2013) (Lovejoy and de Lima 2015; Lovejoy et al. 2015) in their macroweather limit,
the turbulence laws become much simpler and—as we review below—can already
be used to yield monthly, seasonal, annual and decadal forecasts that are comparable
or better than the GCM alternatives. The stochastic forecasts that we describe here
thus effectively harness the butterfly effect. Significantly, their forecasts already
appear to be close to new—stochastic—predictability limits.

As we review below, there are two principal reasons that macroweather turbulent
laws are tractable for forecasts. The first is that macroweather intermittency is
generally low enough that a Gaussian model is a workable approximation (although
not for the extremes)—and the corresponding prediction problem has been mathe-
matically solved. This is the basis of the ScaLIng Macroweather Model (SLIMM
(Lovejoy et al. 2015)) that is the core of the Stochastic Seasonal and Annual
Prediction System (StocSIPS) that we describe in this review paper. The second
macroweather simplification is that the usual size-lifetime relations breakdown,
being replaced by new ones and an important new property called “statistical
space-time factorization” (SSTF) holds (at least approximately). It turns out that
the SSTF effectively transforms the forecast problem from a familiar deterministic
nonlinear PDE initial value problem into a stochastic, fractional order linear ODE
past value problem. In contrast at macroweather time scales, a fundamental GCM
limitation comes to the fore: each GCM converges to its own model climate,
not to the real world climate. While this was not important at shorter weather
scales, now it becomes a fundamental obstacle. We conclude that for macroweather
forecasting, the turbulent approach becomes attractive while the GCM approach
becomes unattractive. Below, we compare the skills of the two different approaches
and underline the advantages of exploiting the turbulent laws.
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This review is structured as follows: we first discuss and summarize
macroweather statistics (Sect. 2). In Sect. 3, we describe the forecast model and its
skill, and in Sect. 4, we compare stochastic hindcasts with GCMs both with and
without external forcings. In Sect. 5 we conclude.

2 Macroweather Statistics

2.1 The Transition from Weather to Macroweather

Ever since the first atmospheric spectra (Panofsky and Van der Hoven 1955; Van
der Hoven 1957), it has been known that there is a drastic change in atmospheric
statistics at time scales of several days. At first ascribed to “migratory pressure
systems”, termed a “synoptic maximum” (Kolesnikov and Monin 1965), it was
eventually theorized as baroclinic instability (Vallis 2010). However, its presence in
all the atmospheric fields (Fig. 1c), its true origin and its fundamental implications
could not be appreciated until the turbulent laws were extended to planetary scales.

The key point is that the horizontal dynamics are controlled by the energy flux "
to smaller scales (units W/Kg, also known as the “energy rate density”). Although
this is the same dimensional quantity upon which the Kolmogorov law is based
(�v D "1/3L1/3 for the velocity difference �v across a distance L), it had not been
suggested that it hold up to planetary scales; Kolmogorov himself believed that it
would not hold to more than several hundred metres (Fig. 2). Indeed as pointed out
in Lovejoy et al. (2007) on the basis of state-of-the-art dropsonde data, the original
Kolmogorov law is isotropic and doesn’t appear to hold anywhere in the atmosphere
(at least at scales above �5 m)! However, the recognition that an anisotropic
generalization of the Kolmogorov law could account for the horizontal statistics
(with the vertical being controlled by buoyancy force variance fluxes and Bolgiano–
Obhukhov statistics) explains how it is possible for the horizontal Kolmogorov law
to hold up to planetary scales (see Fig. 1a, for the space-time scaling up to planetary
scales, see also Fig. 3 for IR radiances). The classical lifetime–size (L) relation is
then obtained by using dimensional analysis on ": � � "�1/3L2/3 where L is the
horizontal extent of a structure (no longer an isotropic 3D estimate of its size). This
law has been validated in both Lagrangian and Eulerian frames, see Radkevitch et al.
(2008) (Pinel et al. 2014, Fig. 3).

If one estimates " by dividing the total tropospheric mass by the total solar
power that is transformed into mechanical energy (about 4% of the total this is the
thermodynamic efficiency of the atmospheric heat engine; see e.g. Pauluis (2011)),
then one finds " � 1 mW/Kg which is close to the directly estimated empirical
value (it even explains regional variations, see Fig. 2). Using " � 1 mW/Kg,
L D 20,000 km (the largest great circle distance) this value implies that the lifetime
of planetary structures and hence the weather–macroweather transition is �w � 5–
10 days. When the theory is applied to the ocean (which is similarly turbulent
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Fig. 2 The weather–macroweather transition scale �w estimated directly from break points in
the spectra for the temperature (red) and precipitation (green) as a function of latitude with the
longitudinal variations determining the dashed one standard deviation limits. The data are from the
138-year long Twentieth Century reanalyses (20CR (Compo et al. 2011)), the �w estimates were
made by performing bilinear log–log regressions on spectra from 180-day long segments averaged
over 280 segments per grid point. The blue curve is the theoretical �w obtained by estimating the
distribution of " from the ECMWF reanalyses for the year 2006 (using �w D "�1/3L2/3 where
L D half earth circumference), it agrees very well with the temperature �w. �w is particularly high
near the equator since the winds tend to be lower, hence lower ". Similarly, �w is particularly
low for precipitation since it is usually associated with high turbulence (high "). Reproduced from
Lovejoy and Schertzer (2013)

Fig. 3 The zonal, meridional and temporal spectra of 1386 images ( 2 months of data, September
and October 2007) of radiances fields measured by a thermal infrared channel (10.3–11.3 �m)
on the geostationary satellite MTSAT over south-west Pacific at resolutions 30 km and 1 h. over
latitudes 40ıS—30ıN and longitudes 80ıE—200ıE. With the exception of the (small) diurnal
peak (and harmonics), the rescaled spectra are nearly identical and are also nearly perfectly scaling
(the black line shows exact power law scaling after taking into account the finite image geometry.
Reproduced from Pinel et al. (2014)
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Fig. 4 A comparison of temperature spectra from a grid point of the 20CR data (bottom, orange
line) and from a turbulence cascade model (top, blue line) showing that it well reproduces the
weather–macroweather transition. Reproduced from Lovejoy and Schertzer (2013)

with " � 10�8 W/Kg), one obtains a transition at about 1–2 years (also observed,
Lovejoy and Schertzer (2010), Fig. 1b). Finally, it can be used to accurately estimate
" � 40 mW/Kg on Mars and hence the corresponding Martian transition scale at
about 1.8 sols (Fig. 1b, Lovejoy et al. 2014).

From the point of view of turbulent laws, the transition from weather to
macroweather is a “dimensional transition” since at time scales longer than �w,
the spatial degrees of freedom are essentially “quenched” so that the system’s
dimension is effectively reduced from 1 C 3 to 1 (Lovejoy and Schertzer 2010).
Using spectral analysis Fig. 4 shows that simple multifractal turbulence models
reproduce the transition. GCM control runs, i.e. with constant external forcings (see
Sect. 2.2 and Fig. 5c)—also reproduce realistic macroweather variability, justifying
the term “macroweather”. However in forced GCMs—as with instrumental and
multiproxy data beyond a critical time scale � c, the variability starts to increase again
(as in the weather regime) and the true climate regime begins; � c � 10 years in the
anthropocene, and � c & 100 years in the pre-industrial epoch, (see Sect. 2.2, Fig. 5).

In order to understand the key difference between weather, macroweather and the
climate, rather than spectra, it is useful to consider typical fluctuations. Classically—
for example, in the Kolmogorov law—fluctuations were taken to be differences, i.e.
�T(�t):

.�T .�t//diff D T.t/ � T .t ��t/ (1)

While this is fine for weather fluctuations—these typically increase with scale
�t—it is not adequate for those that typically decrease with �t, and as we shall see
this includes macroweather fluctuations. For these, we often consider “anomalies”;
for example, for the temperature anomaly T(t) is the temperature with both the
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a

b

Fig. 5 (a) The RMS difference structure function estimated from local (Central England)
temperatures since 1659 (open circles, upper left), northern hemisphere temperature (black
circles), and from paleo-temperatures from Vostok (Antarctic, solid triangles), Camp Century
(Greenland, open triangles) and from an ocean core (asterixes). For the northern hemisphere
temperatures, the (power law, linear on this plot) climate regime starts at about 10 years.
The rectangle (upper right) is the “glacial-interglacial window” through which the structure
function must pass in order to account for typical variations of ˙2 to ˙3 K for cycles with
half periods �50 kyrs. Reproduced from Lovejoy and Schertzer 1986). (b) A composite RMS
Haar structure function from (daily and annually detrended) hourly station temperatures (left),
20CR temperatures (1871–2008 averaged over 2ı pixels at 75ıN) and paleo-temperatures from
EPICA ice cores (right) over the last 800 kyrs. The glacial–interglacial window is shown upper
right rectangle. Adapted from Lovejoy (2015a). (c) Haar fluctuation analysis of globally, annually
averaged outputs of past Millenium simulations over the pre-industrial period (1500–1900) using
the NASA GISS E2R model with various forcing reconstructions. Also shown (thick, black) are
the fluctuations of the pre-industrial multiproxies showing that they have stronger multi centennial
variability. Finally, (bottom, thin black) are the results of the control run (no forcings), showing that
macroweather (slope < 0) continues to millennial scales. Reproduced from Lovejoy et al. (2013).
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c

d

Fig. 5 (continued) (d) Haar fluctuation analysis of Climate Research Unit (CRU, HadCRUtemp3
temperature fluctuations), and globally, annually averaged outputs of past Millenium simulations
over the same period (1880–2008) using the NASA GISS model with various forcing reconstruc-
tions (dashed). Also shown are the fluctuations of the pre-industrial multiproxies showing the
much smaller centennial and millennial scale variability that holds in the pre-industrial epoch.
Reproduced from (Lovejoy et al. 2013)

annual cycle and the overall mean of the series removed so that hTi D 0 where
“h.i” indicates averaging. For such zero mean anomaly series T(t), define the �t
resolution anomaly fluctuation by:
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.�T .�t//anom �
1

�t

tZ

t��t

T
�
t0
�

dt0 (2)

(as for differences, in �T(�t) we suppressed the t dependence since we assume
that the fluctuations are statistically stationary). Since T(t) fluctuates around zero,
averaging it at larger and larger �t tends to decrease the fluctuations so that the
decreasing classical anomaly fluctuations and the increasing difference fluctuations
will each have restricted and incompatible ranges of validity.

In general, average fluctuations may either increase or decrease depending on the
range of �t considered so that we must define fluctuations in a more general way;
wavelets provide a fairly general framework for this. A simple expedient combines
averaging and differencing while overcoming many of the limitations of each: the
Haar fluctuation (from the Haar wavelet). It is simply the difference of the mean
over the first and second halves of an interval:

.�T .�t//Haar D
2

�t

tZ

t��t=2

T
�
t0
�

dt0 �
2

�t

t��t=2Z

t��t

T
�
t0
�

dt0 (3)

(see Lovejoy and Schertzer (2012) for these fluctuations in a wavelet formalism). In
words, the Haar fluctuation is the difference fluctuation of the anomaly fluctuation,
it is also equal to the anomaly fluctuation of the difference fluctuation. In regions
where the fluctuations decrease with scale we have:

.�T .�t//Haar � .�T .�t//anom .decreasing with �t/

.�T .�t//Haar � .�T .�t//diff .increasing with �t/
(4)

In order for Eq. (4) to be reasonably accurate, the Haar fluctuations in Eq. (3)
need to be multiplied by a calibration factor; here, we use the canonical value 2
although a more optimal value could be tailored to individual series.

Over ranges where the dynamics have no characteristic time scale, the statistics
of the fluctuations are power laws so that:

hj�T .�t/jqi / �t�.q/ (5)

the left-hand side is the qth order structure function and �(q) is the structure function
exponent. “< >” indicates ensemble averaging; for individual series this is estimated
by temporal averaging (over the disjoint fluctuations in the series). The first order
(q D 1) case defines the “fluctuation exponent” �(1) D H:

hj�T .�t/ji / �tH (6)
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In the special case where the fluctuations are quasi-Gaussian, �(q) D qH and the
Gaussian white noise case corresponds to H D �1/2. More generally, there will be
“intermittency corrections” so that:

K.q/ D qH � �.q/ (7)

where K(q) is a convex function with K(1) D 0. K(q) characterizes the multifractal-
ity associated with the intermittency.

Equation (6) shows that the distinction between increasing and decreasing mean
fluctuations corresponds to the sign of H. It turns out that the anomaly fluctuations
are adequate when �1 < H < 0 whereas the difference fluctuations are adequate
when 0 < H < 1. In contrast, the Haar fluctuations are useful over the range
�1 < H < 1 which encompasses virtually all geoprocesses, hence its more general
utility. When H is outside the indicated ranges, then the corresponding statistical
behaviour depends spuriously on either the extreme low or extreme high frequency
limits of the data.

2.2 The low Frequency Macroweather Limit and the Transition
to the Climate

We have argued that there is a drastic statistical transition in all the atmospheric
fields at time scales of 5–10 days, and that the basic equations have no characteristic
time scale. However, it was noted since (Lovejoy and Schertzer 1986) (Fig. 5a) that
global temperature differences tend to increase in a scaling manner right up to the
ice age scales: the glacial-interglacial “window” at about 50 kyrs (a half cycle) over
which fluctuations are typically of the order ˙2 to ˙4 K.

Figure 5a shows the root mean square second order structure function defined by

difference fluctuations
D
�T.�t/2diff

E1=2
for both local and hemispherically averaged

temperatures. From the above discussion, we anticipate that it will give spurious
results in the regions where the true fluctuations decrease with scale; indeed,
the local (central England) series (upper left in Fig. 5a and ocean cores beyond
�100 kyrs, upper right) are spuriously flat (i.e., the differences do not reflect the
underlying scaling of the fluctuations that are in fact decreasing over these ranges).
This is confirmed using more modern data as well as Haar rather than difference
fluctuations, in Fig. 5b that shows a composite of temperature variability over the
range of scales of hours to nearly a million years. From Fig. 5b, it can be seen
that the drastic weather–macroweather spectral transition corresponds to a change
in the sign of H for H > 0 to H < 0, i.e. from fluctuations increasing to fluctuations
decreasing with scale. The bottom of the figure shows extracts of typical data at
the corresponding resolutions, when H > 0, the signal “wanders” like a drunkard’s
walk, when H < 0, successive fluctuations tend to cancel out.
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Fig. 6 Variation of �w (bottom) and � c (top) as a function of latitude as estimated from the 138-
year long 20CR reanalyses, 700 mb temperature field (the � c estimates are only valid in the
anthropocene). The bottom red and thick blue curves for �w are from Fig. 2; also shown at the
bottom is the effective external scale (� eff ) of the temperature cascade estimated from the European
Centre for Medium-Range Weather Forecasts interim reanalysis for 2006 (thin blue). The top � c

curves were estimated by bilinear log–log fits on the Haar structure functions applied to the same
20CR temperature data. The macroweather regime is the regime between the top and bottom curves

Moving to the longer time scales, one may also note that beyond a decade or two,
the fluctuations again increase with scale. In reality, as one averages from weeks to
months to years, the temperature fluctuations are indeed averaged out, appearing to
converge to a fixed climate. However, starting at decades, this apparent fixed climate
actually starts to fluctuate, varying up to ice age scales in much the same way as the
weather varies (with nearly the same exponent H � 0.4, see Fig. 5b). While the
adage says “The climate is what you expect, the weather is what you get”, the actual
data indicate that “Macroweather is what you expect, the climate is what you get”.

The annual and decadal scales in Fig. 5a, b are from the anthropocene, it is
important to compare this with the pre-industrial variability. This comparison is
shown in detail in Fig. 5c, d that includes comparisons with GCM outputs. From the
figures we see that in the anthropocene, macroweather ends (scale � c) at around a
decade or so; Fig. 6 gives estimates of � c averaged over fixed latitudes showing that
it is a little shorter in the low latitudes. We have seen (Fig. 4) that without external
forcing, turbulence models when taken to their low frequency limit reproduce
macroweather statistics; the same is true of GCMs in their “control run” mode (Fig.
5c). These results are important for macroweather forecasting since they represent a
potential calculable climate perturbation to the otherwise (pure internal variability)
macroweather behaviour.

In order to reproduce the low frequency climate regime characterized by
increasing fluctuations, we therefore need something new: either a new source
of internal variability or external forcings. Figure 5d shows that whereas in the
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anthropocene, the GCMs with Green House Gas (GHG) forcings do a good job
of reproducing the variability, in the pre-industrial period (Fig. 5c), their centennial
and millennial scale variability seems to be too weak (at least when using current
estimates of “reconstructed” solar and volcanic forcings (Lovejoy et al. 2013)).

The usual way to understand the low frequencies is to consider them as responses
to small perturbations, indeed, even the strong anthropogenic forcing is less than
1% of the mean solar flux and may be considered this way. This smallness is the
usual justification for making the approximation that the external forcings (whether
of natural or anthropogenic origin) yield a roughly linear response, indeed, this is
the basis of linearized energy balance models and it can also be supported from a
dynamical systems point of view (Ragone et al. 2015).

In order to avoid confusion, it is worth making these notions more precise. For
simplicity, consider the atmosphere with fixed external radiative forcing F(r) at
location r, (e.g. corresponding to GCM control runs). For this fixed forcing, the
(stochastic) temperature field is:

TF .r; t/ D hTF .r/i C T 0
F .r; t/ (8)

where the ensemble average is independent of time (since the past forcing is fixed)
and T’ (with hT’i D 0) is the random deviation. If we identify hTF .r/i with the
climate and T 0

F .r; t/ with the internal variability, then:

TF;int ernal .r; t/ D TF .r; t/ � TF;clim .r/ I TF;clim .r/ D hTF .r; t/i I

TF;internal .r; t/ D T 0
F .r; t/ (9a)

For simplicity, we have ignored the annual cycle, the internal variability is
somewhat different than the notion of temperature anomalies discussed in Sect. 4.

Now increase the forcing from F .r/ ! F .r/C�F .r; t/ so that the climate part
increases from hTF .r/i ! hTFC�F .r; t/i i.e. TF;clim .r/ ! TFC�F;clim .r; t/ and:

�T�F;clim .r; t/ D TFC�F;clim .r; t/ � TF;clim .r/ (9b)

is the change in the climate response to the changed forcing. The generalized climate
sensitivity � can then be defined as:

� .r; t/ D
@TF;clim .r; t/

@F .r; t/
�
�TF;clim .r; t/

�F .r; t/
(10)

GCMs make many realizations (sometimes from many models—“multimodel
ensembles”) and this equation may be used to determine the climate response
and generalized sensitivity (the more common equilibrium and transient climate
sensitivities are discussed momentarily). If t is a future time, then TFC�F .r; t/ is
a prediction of the future state of the atmosphere including the internal variability
and the changed forcing, whereas TFC�F;clim .r; t/ is called a climate “projection”.
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Sometimes climate projections and sensitivities are estimated from single GCM
model runs by estimating the ensemble averages by temporal averages over decadal
time scales.

We can now state the linear response assumption:

�Tclim .r; t/ D G .r; t/ ��F .r; t/ (11)

where G(r,t) is the system Green’s function, in this context, it is also known as
the Climate Response Function (CRF), “*” means convolution. Equation (11) is the
most general statement of linearity for systems whose physics is the same at all times
and locations (it assumes that only the differences in times and locations between
the forcing and the responses are important). To date, applications of CRFs have
been limited to globally averaged temperatures and forcings so that the spatial (r)
dependence is averaged out; for simplicity, below we drop the spatial dependence.

The CRF is only meaningful if the system is linear, in which case it is the
response of the system to a Dirac function forcing. The simplest CRF is itself
a Dirac function possibly with a lag �t � 0, i.e. G(t) D�ı(t ��t), (sensitivity
�). Such CRFs have been used with some success by Lean and Rind (2008) and
Lovejoy (2014a) to account for both anthropogenic and natural forcings. Rather
than characterize the system by a response to Dirac forcing, it is more usual to
characterize it by its responses to a step function F(t) (the Equilibrium Climate
Sensitivities, ECS) or to a linearly increasing F(t) (“ramps”; Transient Climate
Responses, TCR). Since step functions and ramps are simply the first and second
integrals of the Dirac function, if the response is linear (Eq. 11), then knowledge
of these responses as functions of time is equivalent to the CRF (note that usually
the ECS is defined as the response after an infinite time, and TCR after a finite
conventional period of 70 years).

Traditionally, Green’s functions are deduced from linear differential operators
arising from linear differential equations. For example, by treating the ocean as a
homogeneous slab, the linearized energy balance equation may be used to determine
the CRF, but the latter is an integer ordered ordinary differential equation for the
mean global temperature which leads to exponential CRFs (e.g. Schwartz 2012;
Zeng and Geil 2017). Such CRFs are unphysical since they break the scaling
symmetry of the dynamics; the dynamical ocean is better modelled as a hierarchy
of slabs each with its own time constant (rather than a unique slab with a unique
constant). To model this in the linear energy balance framework requires introducing
differential terms of fractional order; these generally lead to the required scaling
CRFs (SCRF) and will be investigated elsewhere.

Rather than determine the CRF from differential operators, they can be deter-
mined directly from the symmetries of the problem. In this case (considering only
the temporal CRF, G(t)), the three relevant symmetries are: (a) that the physics is
stationary in time, (b) that the system is causal, (c) that there is no characteristic
time scale. From these three symmetries we obtain G.t/ / tHR�1‚.t/ where HR is
the SCRF response exponent and ‚(t) is the Heaviside function (D0 for t < 0, D1
for t � 0), necessary to ensure causality of the response.
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Before continuing, we must note that such pure power law SCRFs are unusable
due to either high or low frequency divergences; in this context, the divergences
are aptly called “runaway Green’s function effect” (Hébert and Lovejoy 2015)
so that truncations are needed. For forcings that have infinite “impulses” (such
as step functions or ramps whose temporal integrals diverge), when HR > 0 low
frequency temperature divergences will occur, unless G(t) has a low frequency
cutoff whereas whenever HR < 0, the cutoff must be at high frequencies. For
example, Rypdal (2015) and Rypdal and Rypdal (2014) use an SCRF with exponent
HR > 0 (without cutoff) so that low frequency temperature divergences occur unless
all the forcings return to zero quickly enough. This is why Hebert et al. (2017) use
HR < 0 but introduce a high frequency cutoff � in order to avoid the divergences:
G.t/ D �H.t=� C 1/HR�1‚.t/; �H is a generalized sensitivity. In this case, the cutoff
should correspond to the smallest time scale over which the linear approximation
is valid. While the most general (space-time) linear approximation (i.e. with G(r,t))
may be valid at shorter time scales, if we reduce the problem to a “zero dimensional”
(globally averaged) series T(t), then clearly a linear response is only possible at
scales over which the ocean and atmosphere are strongly coupled. The breakthrough
in understanding and quantifying this was to use Haar fluctuations to show that the
coupling of air temperature fluctuations over land and SST fluctuations abruptly
change from very low to very high at the ocean weather-ocean macroweather
transition scale of � D 1–2 years (see Fig. 7). A truncated SCRF with this � and with
HR � �0.5 allows (Hebert et al. 2017) to make future projections based on historical
forcings as well as to accurately project the forced response of GCM models.

Fig. 7 The correlations quantifying the coupling of global, land and ocean temperature fluctu-
ations. At each scale �t, the correlation coefficient 	 of the corresponding Haar fluctuations was
calculated for each pair of the monthly resolution series. The key curve is the correlation coefficient
of globally averaged air over land with globally averaged sea surface temperature (SST, bottom,
red). One can see that there is a sharp transition at � � 1–2 years from very low correlations,
to very high correlations corresponding to uncoupled and coupled fluctuations. Reproduced from
Hebert et al. (2017)
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top is spatial fluctuations, bottom temporal at equator

Fig. 8 (a) A comparison of temporal and spatial macroweather series at 2o resolution. The top are
the absolute first differences of a temperature time series at monthly resolution (from 80ıE, 10ıN,
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2.3 Climate Zones and Intermittency: In Space and Time

We have argued that macroweather is the dynamical regime of fluctuations with
time scales between the lifetimes of planetary structures (�w) and the climate
regime where either new (slow) internal processes or external forcings begin to
dominate (� c). We have seen that a key characteristic is that mean fluctuations tend
to decrease with time scale so that the macroweather fluctuation exponent H < 0.
However in general, fluctuations require an infinite hierarchy of exponents for their
characterization (the entire function K(q) in Eq. (7)). In particular, when K(q) is
large, the process is typically “spikey” with the spikes distributed in a hierarchical
manner over various fractal sets.

To see this, consider the data shown in Fig. 8a (macroweather time series and
spatial transects, top and bottom, respectively). Fig. 8b compares the root mean
square (RMS, exponent �(2)/2) and mean fluctuation (exponent H D �(1)) of
macroweather temperature temporal data (bottom) and for the transect (top). When
the system is Gaussian, �(q) D qH so that K(q) D 0) and we obtain �(2)/2 D �(1)
so that the lines in the figure will be parallel. We see that to a good approximation
this is indeed true of the nonspikey temporal series (Fig. 8a, top). However, the
spatial transect is highly spikey (Fig. 8a, bottom) and the corresponding statistics
(the top lines in Fig. 8b) tend to converge at large �t. To a first approximation, it
turns out that �(2)/2 – �(1) � K0(1) D C1 which characterizes the intermittency near
the mean. However, there is a slightly better characterization of C1 (described in
Lovejoy and Schertzer (2013), Chap. 11), using the intermittency function (see Fig.
8c and caption) whose theoretical slope (for ensemble averaged statistics) is exactly
K0(1) D C1. As a point of comparison, recall that fully developed turbulence in the
weather regime typically has C1 � 0.09, (see Lovejoy and Schertzer (2013), Table
4.5). The temporal macroweather intermittency (C1 � 0.01) is indeed small whereas
the spatial intermittency is large (C1 � 0.12).

The strong spatial intermittency is the statistical expression of the existence of
climate zones (Lovejoy and Schertzer 2013). However we shall see that due to
space-time statistical factorization (next subsection), each region may be forecast
separately. In addition, a low intermittency (Gaussian) approximation can be made

J
Fig. 8 (continued) 1880–1996, displaced by 4 K for clarity), and the bottom is the series of
absolute first differences of a spatial latitudinal transect (annually averaged, 1990 from 60ıN),
as a function of longitude. Both use data from the 20CR. One can see that while the top is noisy,
it is not very “spikey”. (b) The first order and RMS Haar fluctuations of the series and transect
from (a). One can see that in the spikey transect, the fluctuation statistics converge at large lags
(time scale �t), the rate of the converge is quantified by the intermittency parameter C1. The
series (bottom) is less spikey, converges very little and has low C1 (see (c)). (c) A comparison of
the intermittency function F D hj�Tji(hj�Tj1 C�qi)/(hj�Tj1 ��qi)1/�q (more accurate than the
approximation indicated in the figure) for the series and transect in the (a) and (b), quantifying the
difference in intermittencies: in time C1 � 0.01, in space, C1 � 0.12. Since K0(1) D C1, when�q
is small enough (here, �q D 0.1 was used), we have F .�t/ D �tC1 . The break in the temporal
scaling at about 20–30 years is due to anthropogenic forcings

http://dx.doi.org/10.1007/978-3-319-58895-7_11
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for the temporal statistics. Note that in spite of this Gaussian approximation for
forecasts, there is evidence that the 5th and higher moments of the temperature
fluctuations diverge (i.e. power probability distributions) so that the Gaussian
approximation fails badly for the extreme 3% or so of the fluctuations (see Lovejoy
and Schertzer (1986) and Lovejoy (2014a)).

2.4 Scaling, Space-Time Statistical Factorization
and Size-Lifetime Relations

In the previous section we saw that there was evidence for scaling separately both
in space and in time with the former being highly intermittent (multifractal) and
the latter being nearly Gaussian (Fig. 8). However, in order to make stochastic
macroweather forecasts, we need to understand the joint space-time macroweather
statistics and these turn out to be quite different from those in the weather regime.
For the latter, recall that there exist well-defined statistical relations between weather
structures (“meso-scale complexes”, “storms”, “turbulence”, etc.) of a given size
L and their lifetimes � . Indeed, the textbook space-time “Stommel” diagrams
that adorn introductory meteorology textbooks show log spatial scale versus log
temporal scale plots with boxes or circles corresponding to different morphologies
and phenomenologies and these typically occupy the diagonals. These diagrams
are usually interpreted as implying that each factor of two or so in spatial scale
corresponds to fundamentally different dynamical processes, each with its own
typical spatial extent and corresponding lifetime. However, as pointed out in
Schertzer et al. (1997), the part of the diagram occupied by realistic structures
and processes are typically not only on diagonals (implying a scaling space-time
relation), but are on the precise diagonal whose slope has the value 2/3, theoretically
predicted by the (Lagrangian, co-moving) size-lifetime relation discussed above:
� D "�1/3L2/3. The usual interpretation is an example of the “phenomenological
fallacy” (Lovejoy and Schertzer 2007): rather than refute the scaling hypothesis, the
Stommel diagrams support it.

As usual, the Eulerian (fixed frame) space-time relations are much easier to
determine empirically, although theoretically their relation to Lagrangian statistics is
not trivial. In a series of papers based on high resolution lidar data (Lilley et al. 2008;
Lovejoy et al. 2008; Radkevitch et al. 2008) and then geostationary IR data (Fig. 3,
Pinel et al. (2014)), an argument by Tennekes (1975) about the small structures
being “swept” by larger ones was extended to the (atmospheric) case assuming
that there was no scale separation between small and large horizontal scales. It
was concluded that the corresponding Eulerian (i.e. fixed frame) space-time relation
generally had space-time spectra of the form:

Pxyt
�
kx; ky; !

�
D


Œ
�
kx; ky; !

��
�
�s

(12)
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where Pxyt is the space-time spectra density:

Pxyt
�
kx; ky; !

�
/
Dˇ̌

QT
�
kx; ky; !

�ˇ̌2E
(13)

and �(kx, ky,!)� is the wavenumber (kx,ky)–frequency (¨) scale function nondimen-
sionalized by the large scale turbulent velocities (i.e. using " and the size of the
earth). The analogous (real space) second order joint space-time structure function
statistics:

Sxyt .�x; �y; �t/ D
D
�T.�x; �y; �t/2

E
(14)

were of the form:

Sxyt .�x; �y; �t/ D ŒŒ.�x; �y; �t/���.2/ (15)

where �(�x,�y,�t)� is the real space (nondimensional) scale function for
horizontal lag (�x,�y) and temporal lag �t. The scale functions relevant
here satisfy the isotropic scaling: ���1(�x,�y,�t)� D��1�(�x,�y,�t)� and
��(kx, ky,!)� D��(kx, ky,!)� where � is a scale reduction factor. This is directly
confirmed in Fig. 3 for IR radiances.

In the simplest cases (with no mean advection and ignoring weak scaling
singularities associated with waves (Pinel and Lovejoy 2014)), and retaining only
a single spatial lag �x, and wavenumber kx, the nondimensional scale functions
reduce to the usual vector norms, i.e. they are of the form:

ŒŒ.�x; �t/�� D
�
�x2 C�t2

�1=2
(16)

ŒŒ.kx; !/�� D
�
k2x C !2

�1=2
(17)

With s D d C �(2) with d D the dimension of space-time, in this example d D 2.
In order to define a relationship between a structure of extent L with the lifetime

� , we can use Sxt. For example, if we wait at a fixed location (�x D 0) for a time
� , we may ask what distance L must we go at a given instant (�t D 0) in order to
expect the same typical fluctuation? This gives us an implicit relation between L and
� : Sxt(0, � ) D Sxt(L, 0); in this simple case (Eqs. 15 and 16) this implies � D L for the
nondimensional variables so that the dimensional relationship would correspond to
a constant speed relating space and time. A similar relation would be obtained by
using the same argument in Fourier space on the spectral density P.

What is the space-time relation in macroweather where we consider temporal
averages over periods >�w, typically months or longer? In this case, we average
over many lifetimes of structures of all sizes, so clearly size-lifetime relations valid
in the weather regime must break down. Lovejoy and Schertzer (2013) and Lovejoy
and de Lima (2015) argued on theoretical, numerical and empirical grounds that—
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at least to a good approximation—the result is statistical space-time factorization
(SSTF). The application of the SSTF to the second order statistics means:

Pxt .kx; !/ D Px .kx/Pt .!/

Rxt .�x; �t/ D Rx .�x/Rt .�t/ I
(18)

Note that in real space we have used correlation functions Rxt(�x,�t) D hT(t, x)
T(t ��t, x ��x)i rather than Haar structure functions S; in macroweather (H < 0),
they are essentially equivalent. However for small lags in time, one effectively goes
outside the macroweather regime and�t D 0 is problematic. When both Ht < 0 and
Hx < 0 we can avoid issues that arise at small �t, �x by using correlation functions
(Fig. 9a) (for the case Ht < 0, Hx > 0, see Sect. 10.3 of Lovejoy and Schertzer
(2013)).

Using the autocorrelations to obtain space-time macroweather relations, we
obtain Rxt(0, � ) D Rxt(L, 0) so that using factorization and the identity Rt(0) D Rx(0)
the implicit � -L relation is:

Rt .�/ D Rx.L/ (19)

This is valid if both space and time have H < 0; if there is scaling, we have
Rt .�/ / �Ht and Rx.L/ / LHx with exponents Ht < 0, Hx < 0. The lifetime of a
macroweather structure of size L is thus:

� / LHx=Ht (20)

which—unless Hx D Ht —is quite different from the lifetime-size relationship in
the weather regime; Fig. 9a shows that � / L0.65, for macroweather temperature and
precipitation. Fig. 9a, shows that empirically the factorization works well for both
temperature and precipitation data, and Fig. 9b shows that it is also (even better)
obeyed by the GISS E2R GCM; Del Rio Amador 2017 shows that it holds very
accurately for 36 CMIP5 control runs.

It turns out that the SSTF is important for macroweather forecasting. This is
because, using means square estimators, it implies that no matter how strong the
correlations (teleconnections), if one has long time series at each point, pixel or
region, that no further improvement can be made in the forecast by adding co-
predictors such as the temperature data at other locations (Del Rio Amador 2017).
This effectively means that the original nonlinear initial value PDE problem has
been effectively transformed into a linear but fractional ordered ODE “past value”
problem, we pursue this in the next sections.
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a

Fig. 9 (a) The joint space (�™ i.e. angle subtended) time (�t) RMS fluctuations of temperature
(top, adapted from (Lovejoy 2017)) and precipitation (bottom, adapted from (Lovejoy and de Lima
2015)). In both cases, zonal spatial anomaly fluctuations are given for data averaged over 1, 2, 4,
: : : , 1024 months (since the temporal H < 0 this is an anomaly fluctuation). The temperature data
are from the HadCRUtemp3 database and the precipitation data from the Global Historical Climate
Network, both at 5ı, monthly resolutions and spanning the twentieth century. On this log–log
plot, SSTF implies S� t(�� ,�t) D S� (�� )St(�t) so that the curves will be parallel. If in addition
they respect spatial scaling, then they will be linear, and if they respect the temporal scaling, then
as we double the temporal resolution (top to bottom), they will be equally spaced (separated by
log 2H). Eventually (red), the temporal scaling breaks down (at � c � 256 months). Over the
regimes where both SSTF and scaling hold we have for temperature, S� , t(�� ,�t) ����0.2�t�0.3

and for precipitation S� , t(�� ,�t) ����0.3�t�0.4. The double headed red arrows show the
corresponding total predicted range over macroweather time scales. (b) The same as (a), but for
temperature fluctuations from GISS-E2R historical simulations from 1850. In this case, rather than
using anomalies (which were the only data available for (a)), we used the difference between two
realizations of the same historical simulation (i.e. with identical external boundary conditions)
obtained by slightly varying the initial conditions. The temporal behaviour of this plot shows
rapidly the model climate is approached under temporal averaging, and how it varies as a
function of angular scale. Again we see that the joint fluctuations have nearly exactly the same
shapes (confirming SSTF); over the ranges where the scaling holds, the joint structure function
is:S� , t(�� ,�t) ���0.3�t�0.4. This plot shows that GCMs obey the SSTF very accurately, a fact
confirmed in Sect. 4 by the success by which they can be predicted by SLIMM
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b

Fig. 9 (continued)

3 Macroweather Forecasting

3.1 The Fractional Gaussian Noise Model and some
of Its Characteristics

We have argued that macroweather is scaling but with low intermittency, so that
a Gaussian forecasting model may be an acceptable approximation. The simplest
such model is fractional Gaussian noise (fGn). We now give a brief summary of
some useful properties of fGn; for a longer review, see Lovejoy et al. (2015) and for
an extensive mathematical treatment see (Biagini et al. 2008).

Over the parameter range of interest �1/2 < H < 0, fGn is essentially a smoothed
Gaussian white noise and its mathematical definition raises similar issues. For our
purposes, it is most straightforward to use the framework of generalized functions
and start with the unit Gaussian white noise � (t) which has h�i D 0 and is “•
correlated”:

˝
�.t/�

�
t0
�˛

D ı
�
t � t0

�
(21)

where “•” is the Dirac function. The H parameter fGn GH(t) is thus:

GH.t/ D cH
�.1=2CH/

tR
�1

.t � t0/�.1=2�H/
� .t0/ dt0I �1 < H < 0 (22)

The constant cH is a constant chosen so as to make the expression for the
statistics particularly simple, see below. Mathematically � (t) is thus the density of
the Wiener process W(t), often written � (t)dt D dW: just as the Dirac function is
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only meaningful when integrated, the same is true of � (t). For fGn, we shall see
below that GH(t)dt D dBH’ where BH’ is a generalization of the Wiener process,
fractional Brownian motion (fBm, parameter H0 D 1 C H) and BH’ reduces to a
Wiener process when H0 D 1/2. GH(t) is thus the (singular) density of an fBm
measure. In practice, we will always consider GH(t) smoothed over finite resolutions
so that whether we define GH(t) indirectly via fBm or directly as a smoothing of
Eq. (22) the result is equivalent.

We can see by inspection of Eq. (22) that GH(t) is statistically stationary and by
taking ensemble averages of both sides of Eq. (22) we see that the mean vanishes:
hGH(t)i D 0. When H D �1/2, the process G�1/2(t) itself is simply a Gaussian white
noise. Although we justified the use of fGn as the simplest scaling process, it could
also be introduced as the solution of a stochastic fractional ordered differential
equation:

dHC1=2T

dtHC1=2
D �.t/ (23)

the solution of which is T(t) / GH(t).
Now, take the average of GH over � , the “� resolution anomaly fluctuation”:

GH;� .t/ D
1

�

tZ

t��

GH
�
t0
�

dt0 (24)

If cH is now chosen such that:

cH D

�
�

2 cos .�H/ � .�2H � 2/

	1=2
(25)

then we have:
D
GH;� .t/

2
E

D �2HI �1 < H < 0 (26)

This shows that a fundamental property of fGn is that in the small scale limit
(� ! 0), the variance diverges and H is scaling exponent of the root mean square
(RMS) value. This singular small scale behaviour is responsible for the strong power
law resolution effects in fGn. Since hGH(t)i D 0, sample functions GH,� (t) fluctuate
about zero with successive fluctuations tending to cancel each other out; this is the
hallmark of macroweather.

Anomalies

An anomaly is the average deviation from the long-term average and since
hGH(t)i D 0, the anomaly fluctuation over interval �t is simply GH at resolution
�t rather than � :
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.�GH;� .�t//anom D 1
�t

tR
t��t

GH;� .t0/ dt0 D 1
�t

tR
t��t

GH .t0/ dt0 D GH;�t.t/I �t > �

(27)

Hence using Eq. (26):

D
.�GH;� .�t//2anom

E
D �t2HI �1 < H < 0 (28)

Differences

In the large �t limit we have:

D
.�GH;� .�t//2diff

E
� 2�2H

 
1 � .H C 1/ .2H C 1/

�
�t

�

	2H
!

(29)

Since H < 0, the differences asymptote to the value 2�2H (double the variance).
Notice that since H < 0, the differences are not scaling with �t.

Haar Fluctuations

For the Haar fluctuation we obtain:
D
.�GH;� .�t//2Haar

E
D 4�t2H

�
2�2H � 1

�
I �t � 2� (30)

this scales as �t2H and does not depend on the resolution � . This relation can be
used to estimate the spatial variation of H, Fig. 10 gives the spatial distribution
using 20CR data. It can be seen that H is near zero over the oceans and is lower
over land, typical values being �0.1 and �0.3, respectively. Below, we see that
this corresponds to large memory (and hence forecast skill) over oceans and lower
memory and skill over land.

Autocorrelations

hG�;H.t/G�;H .t��t/iDR
�c�t

�

D
�2H

2

��c�tC1
�2HC2

C
�c�t�1

�2HC2

�2c�t
2HC2

�
I c�tD

�t

�

(31)
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Fig. 10 The spatial distribution of the exponent H estimated at 5
ı

� 5
ı

resolution using monthly
resolution data from the NCEP reanalyses (1948–2010) and estimated by a maximum liklihood
method. The mean was �0.11 ˙ 0.09

Spectra

Since fGn is stationary, its spectrum is given by the Fourier transform of the
autocorrelation function. Note that in the above, �t > 0; since the autocorrelation is
symmetric for the Fourier transform with respect to �t, we use the absolute value
of �t. We obtain:

E .!/ D �.3C2H/ sin�Hp
2�

j!j�ˇI ˇ D 1C 2H (32)

Relation to fBm

It is more common to treat fBm whose differential dBH’(t) is given by:

dBH0 D GH.t/dtI H0 D H C 1I 0 < H0 < 1 (33)

so that:

�BH0 .�/ D BH0.t/ � BH0 .t � �/ D

tZ

t��

GH0

�
t0
�

dt0 D �GH0;� .t/ (34)

with the property:

D
�BH0.�t/2

E
D �t2H0

(35)
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While this defines the increments of BH’(t) and shows that they are stationary,
it does not completely define the process. For this, one conventionally imposes
BH’(0) D 0, and this leads to the usual definition:

BH0.t/ D
cH0

� .H0 C 1=2/

0Z

�1

�
.t � s/H

0�1=2 � .�s/H
0�1=2

�
�.s/ds

C
cH0

� .H0 C 1=2/

tZ

0

.t � s/H
0�1=2�.s/ds (36)

(Mandelbrot and Van Ness 1968). Whereas fGn has a small scale divergence
that can be eliminated by averaging over a finite resolution � , the fGn integral

tR
�1

GH .t0/ dt0 on the contrary has a low frequency divergence. This is the reason

for the introduction of the second term in the first integral in Eq. (36): it eliminates
this divergence at the price of imposing BH0 (0) D 0 so that fBm is nonstationary
(although its increments are stationary, Eq. (34)).

A comment on the parameter H is now in order. In treatments of fBm, it is
usual to use the parameter H confined to the unit interval, i.e. to characterize the
scaling of the increments of fBm. However, fBm (and fGn) are very special scaling
processes, and even in low intermittency regimes such as macroweather—they are
at best approximate models of reality. Therefore, it is better to define H more
generally as the fluctuation exponent (Eq. 6); with this definition, H is also useful for
more general (multifractal) scaling processes although the interpretation of H as the
“Hurst exponent” is only valid for fBm). When �1 < H < 0, the mean at resolution
� (Eq. 24) defines the anomaly fluctuation, so that H is equal to the fluctuation
exponent for fGn, in contrast, for processes with 0 < H < 1, the fluctuations scale
as the mean differences and Eq. (35) shows that H0 is the fluctuation exponent for
fBm. In other words, as long as an appropriate definition of fluctuation is used, H
and H0 D 1 C H are fluctuation exponents of fGn, fBm, respectively. The relation
H0 D H C 1 follows because fBm is an integral order 1 of fGn. Therefore, since
the macroweather fields of interest have fluctuations with mean scaling exponent
�1/2 < H < 0, we use H for the fGn exponent and ½ < H0 < 1 for the corresponding
integrated fBm process.

We can therefore define the resolution � temperature as:

T� .t/ D TGH;� .t/ D T
BH0.t/ � BH0 .t � �/

�
(37)

Using Eq. (26), the � resolution temperature variance is thus:
˝
T2�
˛
D 2T�

2H (38)

From this and the relation T� (t) D TGH , � (t), we can trivially obtain the statistics
of T� (t) from those of GH , � (t).
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3.2 Mean Square (MS) Estimators for fGn and the ScaLIng
Macroweather Model (SLIMM)

The Mean Square (MS) estimator framework is a general framework for predicting
stochastic processes, it determines predictors that minimize the prediction error
variance, see, e.g., Papoulis (1965). Since Gaussian processes are completely
determined by their second order statistics, the MS framework therefore gives
optimum forecasts for fGn.

Our problem is to use data T� (s) at times s < 0 (or equivalently, the innovations
� (s)) to predict the future temperature T� (t) at times t > 0. Denoting this predictor
by bT� .t/ MS theory then shows that the latter is given by a linear combination of
data, i.e. either the T� (s) or equivalently by a linear combination of past white noise
“innovations” � (s):

bT� .t/ D
R

��0<s�0
MT .t; s/T� .s/ds

bT� .t/ D
R

��0<s�0
M� .t; s/ �.s/ds

(39)

where MT , M� are the predictor kernels based on past temperatures and past
innovations, respectively, and the range of integration is over all available data, the
range –�0 < s � 0. The simplest problems are those where the range extends to the
infinite past (�0 ! 1), but practical predictions require the solution for finite �0.

The prediction error is thus:

ET.t/ D T� .t/ �bT� .t/ (40)

and from MS theory, the basic condition imposed by minimizing the error variance˝
E2T.t/

˛
is:

D
ET.t/bT� .t/

E
D hET.t/T� .s/i D hET.t/�.s/i D 0I t > 0I s � 0 (41)

This equation states that the (future) prediction error ET (t) is statistically
independent of the predictorbT� .t/ or, equivalently, it is independent of the past data
T� (s), � (s) upon which the predictor is based. This makes intuitive sense: if there
was a nonzero correlation between the available data and the prediction error, then
there would still information in the data that could be used to improve the predictor
and reduce the error. Since GCM forecasts are not MS, they do not satisfy this
orthogonality condition. On the one hand, this explains how they can have negative
skill (see below), on the other, it justifies complex GCM post-processing that exploit
past data to reduce the errors. Indeed, a condition used to optimize post-processing
corrections is actually close to the orthogonality condition.

In Lovejoy et al. (2015), the mathematically simplest predictor was given in the
case of infinite past data but using the innovations � (s):
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bT� .t/ D
0R

�1

M� .t; s/ �.s/ds

M� .t; s/ D cHT
��.HC3=2/

h
.t � s/HC1=2 � .t � � � s/HC1=2

i (42)

The error is:

ET D T� .t/ �bT� .t/

D
cHT

�� .H C 3=2/

2
4

tZ

0

.t � s/HC1=2�.s/ds �

t��Z

0

.t � � � s/HC1=2�.s/ds

3
5 (43)

Since bT.t/ depends only on � (s) for s < 0 and ET on � (s) for s > 0, it can be
seen by inspection that the orthogonality condition (Eq. 41) holds. Using this MS
predictor, we can define the Mean Square Skill Score (MSSS) or “skill” for short:

MSSS D Sk.t/ D 1 �

D
ET.t/

2
E

D
T� .t/

2
E (44)

For MS forecasts, we can use the orthogonality condition to obtain equivalently;

Sk.t/ D

DbT2� .t/
E

hT2� .t/i
(45)

which shows that for MS forecasts, the skill is the same as the fraction of the
variance explained by the predictor.

Using the predictor (Eq. 42) we can easily obtain the skill for fGn forecasts:

Sk .�/ D

�
FH.1/�FH.�/

FH.1/C 1
2HC2

�
I � D t=� I � � 1 (46)

where the auxiliary function FH is given by:

FH .�/ D
��1R
0

�
.1C u/HC1=2 � uHC1=2

�2
duI � � 1 (47)

with:

FH .1/ D ��1=22�.2HC2/� .�1 � H/ � .3=2C H/ (48)

and the asymptotic expression:

FH .�/ D FH .1/ �
.H C 1=2/2

�2H
�2H C : : : (49)
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(Lovejoy et al. 2015). For any system that has quasi-Gaussian statistics and scaling
fluctuations with �1/2 < H < 0 the theoretical skill, Eq. (46) represents a stochastic
predictability limit, of similar fundamental significance to the usual deterministic
predictability limits arising from sensitive dependence on initial conditions. In Sect.
4.2, we show that CMIP5 GCMs can indeed be predicted to nearly this limit using
the MS approach outlined here.

Although the MSSS is commonly used for evaluating forecasts, the correlation
coefficient between the hindcast and the temperature is occasionally used:

	_
T ;T
.t; �/ D

D_
T � .t/T� .t/

E
�
D_
T � .t/

E
hT� .t/i

D_
T � .t/

2
E1=2D

T� .t/
2
E1=2 (50)

Since hTi D 0, the upper right cross term vanishes and using orthogonalityD
T� .t/

_

T � .t/
E

D
D_
T � .t/

2
E

we obtain:

	_
T ;T
.t; �/ D Sk.t; �/

1=2 (51)

Therefore, MS forecast skill can equivalently be quantified using either correla-
tions or MSSS.

Figure 11a shows the theoretical skill as a function of H for different forecast
horizons. To underscore the huge memory implied by the power law kernel M� ,
we can compare the fGn kernel with that of the exponential kernels that arise in
auto-regressive (AR) type processes. This is relevant here since the main existing
stochastic macroweather forecasts techniques (“Linear Inverse Modelling”, LIM,
see the next subsection) are vector AR processes that reduce to scalar AR processes
in an appropriately (diagonalized) frame. If for simplicity we consider only forecasts
one time step into the future (i.e. horizon � , for a process resolution � ), then the
fraction f (�) of the predictor variance that is due to innovations at times �� or further
in the past can be written in the same form as for fGn:

f .�/ D I.�/
I.0/ I I .�/ D

��R
�1

.g.s/ � g .s � 1//2ds (52)

where g(s) D (�s)1/2 C H for fGn (for SLIMM predictions) and g(s) D es for AR
processes. The comparison is shown in Fig. 11b, it can be seen that almost all the
information needed to forecast an AR process is in the most recent three steps,
whereas for SLIMM, with H D �0.1 (appropriate for forecasting the globally
averaged temperature), roughly 20% comes from innovations more than 1000 steps
in the past. Significantly, we will see that this does not mean that we need such
long series to make good forecast; this is because even relatively short series with
H D �0.1 have information from the distant past; this is discussed below.
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a

b

Fig. 11 (a) Forecast skill for nondimensional forecast horizons � D (horizon/resolution) D 1, 2,
4, 8, : : : , 64 (left to right) as functions of H. For reference, the rough empirical values for land,
ocean and the entire globe (the value used here, see below) are indicated by dashed vertical lines.
The horizontal lines show the fraction of the variance explained (the skill, Sk, Eq. (46)) in the case
of a forecast of resolution � data at a forecast horizon t D � (� D 1; corresponding to forecasting
the anomaly fluctuation one time unit ahead). (b) The fraction of the prediction variance of a
forecast one time step ahead that is due to innovations further in the past than � time units (one
unit D resolution �). The right four curves are for SLIMM (H D �0.1, �0.2, �0.3, �0.4), and
the far left curve is for an auto-regressive process F D f (�) D Fraction of total memory used in
forecasts one step into the future
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3.3 SLIMM Prediction Skill and Alternative Stochastic
Macroweather Prediction Systems

Following Hasselmann (1976) who proposed the use of stochastic differential
equations to understand low frequency weather (i.e. macroweather), attempts have
been made to use this for monthly, Seasonal to Interannual forecasts. The basic idea
is to model the atmosphere as an Ornstein-Uhlenbeck process, i.e. the solution of
dT
dt C T=� D �.t/ where � is the basic time scale and � is a white noise forcing. The
idea is that the weather acts essentially as a random white noise perturbation to the
temperature T. Fourier analysis shows that the spectrum is E(!) / 1/(!2 C ��2) so
that at high frequencies, E(!) /!�2 whereas at low frequencies, E(¨) � constant.
The process is thus an (unpredictable) white noise; this can be seen directly by
taking the low frequency limit dT/dt � 0 in the equation. From an empirical point
of view, there are two scaling regimes (exponents ˇ D 0, 2), corresponding to
H D (ˇ�1)/2 D �1/2 and H D ½, respectively, but neither is realistic: for example,
the true values for the temperature are closer to ��0.1, �0.4 for macroweather,
weather respectively with the former showing significant spatial variations, see
Fig. 10. The key point is that models based on integer order differential equations
implicitly assume that the low frequencies are unpredictable whereas on the
contrary, the temporal scaling implies long range dependencies, a large memory.
From the point of view of differential equations, we thus require terms of fractional
order (see Eq. (22)).

Over the decades, the Hasselman inspired approach has been significantly
developed, in the framework of “Linear Inverse Modelling” (LIM), sometimes also
called the “Stochastic Linear Framework” (SLF), although the latter is somewhat
a misnomer since it restrictively excludes fractional ordered (but still linear)
terms (for LIM, SLF see, e.g., Penland (1996), Penland and Sardeshmuhk (1995),
Sardeshmukh et al. (2000), and Newman (2013)). The essential development is
the extension of scalar Ornstein-Uhlenbeck processes to vector processes with
each component being a significant macroweather variable (e.g. an El Nino index,
an ocean temperature at a particular grid point, etc.). Typical implementations
such as described in Newman (2013) involve 20 components (implying hundreds
of empirical parameters). When diagonalized, the system reduces to decoupled
Ornstein-Uhlenbeck processes whose longest characteristic times are about 1 year,
and beyond this, the system has little skill, see Fig. 12a.

Because its theoretical basis is weak and it involves a large number of empirical
parameters, LIM is an example of what is commonly termed an “empirically based”
approach. Other such approaches have been proposed, notably by Suckling et al.
(2016) and they have had some success by using carefully chosen climate indices
that are linearly related to macroweather variables of interest and using empirically
determined time delays. In contrast, SLIMM is based on fundamental space-time
scale symmetries that we argue are respected by the dynamical equations.

In order to use SLIMM for forecasts, it is important to first remove the low
frequency responses to anthropogenic forcings, failure to do so (Baillie and Chung



338 S. Lovejoy et al.

2002) leads to poor results. For annually, globally averaged temperatures, it turns out
that reasonable results can be obtained using the CO2 radiative forcing (proportional
to logCO2 concentration) as a linear surrogate for all anthropogenic forcings
(Fig. 12b). SLIMM then forecasts the internal variability: the residuals. The reason
that this works so well is presumably that all anthropogenic effects are linked
through the economy and the economy is well characterized by energy use and
hence by CO2 emissions.

a

Fig. 12 (a) A comparison of Root Mean Square Error (RMSE) of hindcasts of various global
annual temperatures for horizons of 1–9 years: the (GCMbased) ENSEMBLES experiment (from
(Garcıa-Serrano and Doblas-Reyes 2012), LIM (Newman 2013) and SLIMM (Lovejoy et al.
2015). The light lines are from individual members of the ENSEMBLE experiment; the heavy
line is the multimodel ensemble. This shows the RMSE comparisons for the global mean surface
temperatures compared to NCEP/NCAR (2 m air temperatures). Horizontal reference lines indicate
the standard deviations of Tnat (bottom horizontal line, the RMS of the residuals after removing
the anthropogenic forcing using the CO2 as a linear surrogate, itself nearly equivalent to the pre-
industrial variability (Lovejoy 2014a)) and of the RMS of the residuals of the linearly detrended
temperatures (top horizontal line). Also shown are the RMSE for the LIM model and the SLIMM.
Adapted from Lovejoy et al. (2015). (b) The NASA GISS globally, annually averaged temperature
series from 1880–2013 plotted as a function of CO2 radiative forcing. The regression slope
indicated corresponds to 2.33 ˙ 0.22 K/CO2 doubling. The internal variability forecast by SLIMM
are the residuals (see (c)). Adapted from Lovejoy (2014b). (c) (Top): The residuals temperature of
(b) after the low frequency anthropogenic rise has been removed (blue) with the hindcast from
1998 (red). (Bottom left): The anomaly defined as the average natural temperature (i.e., residual)
over the hindcast horizon (blue), red is the hindcast. (Bottom right): The temperature since 1998
(blue) with hindcast (red), a blowup of the hindcast part of the top right. Adapted from Lovejoy
(2015b). (d) This shows the kernel MT (t,s) (Eq. (39), the discrete case) when the data extends to
s0 D �0 in the past with parameter H D �0.1. Note the strong weighting on both the most recent
(right) and the most ancient available data (left). Reproduced from Del Rio Amador (2017)
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b

c

Fig. 12 (continued)
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Fig. 12 (continued)

When SLIMM hindcasts are made for hemispheric and global scales (Lovejoy
et al. 2015), they are generally better than LIM and GCM forecasts (Fig. 12a). In
addition, Lovejoy (2015b) made global scale SLIMM forecasts and showed that
they could accurately (to within about ˙0.05 ıC for three year anomalies) forecast
the so-called “pause” in the warming (1998–2015). In comparison, CMIP3 GCM
predictions were about 0.2 ıC too high. While the cause of the GCM over-prediction
is currently debated (e.g., Schmidt et al. 2014; Guemas et al. 2013; Steinman et al.
2015), the SLIMM prediction was successful large because as Fig. 12b shows, the
pause was simply a natural cooling event that followed the enormous “pre-pause”
1992–1998 warming, with all of this superposed on a rising anthropogenic warming
trend.

The SLIMM forecast technique showed that the fGn model was worth pursuing.
However, the original technique was based on M� , i.e. finding the optimum predictor
using the innovations � (s) directly (obtained by numerically inverting Eq. (22)) and
assuming that the available data extended into the infinite past. It is much more
convenient to use the past data T(s) and to take into account the fact that the past
data are only finite in extent. Since an fGn process at resolution � is the average
of the increments of an fBm, process, it suffices to forecast fBm so that in the
operational version of SLIMM described below, we therefore availed ourselves of
the mathematical solution of the prediction problem of finding the kernel MT (t,s)
in Eq. (39) for both finite and infinite past data. Gripenberg and Norros (1996)
mathematically solved the fBm solution with ½ < H0 < 1 and this was numerically
investigated by Hirchoren and D’attellis (1998).

We saw that the (infinite past) innovation kernel M� (Eq. 42) gave a strong
(even singular) weight to the recent past, forecasting AR processes has an analogous
strong weighting of the recent data. However, Gripenberg and Norros (1996) found
something radically new in the case of finite data: the most ancient available data
also had a singular weighting! In their words, this was because “the closest witnesses
to the unobserved past have special weight”, see Fig. 12d for a graphical example.
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4 Stochastic Predictability Limits and Forecast Skill

4.1 Stochastic Predictability Limits: StocSIPS Hindcasting
Skill Demonstrated on CMIP5 Control Runs

We are used to the deterministic predictability limits that arise from the “butterfly
effect”—sensitive dependence on initial conditions—we argued that this limit (the
inverse Lyapunov exponent of the largest structures) was roughly given by the
lifetime of planetary structures: �w D "�1/3L2/3 (Schertzer and Lovejoy 2004).
However, we also argued that when taken way beyond this limit, that both the GCMs
and the atmosphere should be considered stochastic. More precisely, we argued that
fGn provides a good approximation for the temporal variability, and that due to
SSTF, attempting to use spatial correlations for co-predictors may not lead to an
improvement when compared to direct predictions that exploit the huge memory of
the system. However, SSTF does not necessarily extend from temperatures to other
series such as climate indices. It is possible that use of the latter as co-predictors
may yield larger skills.

Since fGn has stochastic predictability limits that determine its skill, Eq. (46),
these should therefore be relevant in both GCMs and in real macroweather. How-
ever, in the latter and in externally forced GCMs, as discussed in Sect. 4.2 there are
low frequency responses to climate forcings, and these must be forecast separately
(using linearity Eq. (11)) from the internal macroweather variability modelled by
fGn processes. This means that the best place to test our predictors is on unforced
GCMs, i.e. on control runs. For this purpose we used 36 globally and monthly
averaged CMIP5 model control runs. For each, we estimated the relevant exponent
H by determining the value that made the predictor best satisfy the orthogonality
condition (Eq. 41); this was slightly more accurate than using either spectra or
Haar fluctuation analysis (Del Rio Amador 2017). While each model had somewhat
different exponents, we found a mean H D �0.11 ˙ 0.09 theoretically implying
a huge memory (see, e.g., Fig. 11a, b). We used the discrete MT kernel (following
(Hirchoren and Arantes 1998)) and produced 12-month hindcasts comparing both
the theoretical skill and the actual hindcast skill, see Fig. 13a. Figure 13b shows
that the control runs were hindcast very nearly to their theoretical limits. It is thus
quite plausible that the theoretical stochastic predictability limit Eq. (46) really is an
upper bound on the skill of macroweather forecasts.

4.2 Regional Forecasting

In the previous section, we saw that without external forcings, we can make global
scale macroweather forecasts that nearly attain their theoretical limits, and in Sect.
3.3 (the pause), we already indicated that by appropriately removing the low
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Fig. 13 (a) The MSSS for hindcasting 36 CMIP5 GCM control runs, each at least 2400 months
long. Each GCM had a slightly different H and hence different theoretical predictability. The graph
shows that both the means and the spreads of theory and practice (SLIMM hindcasts) agree very
well. Reproduced from Del Rio Amador (2017). (b) The ratio of the actual MSSS hindcast skill to
theortical MSSS skill evaluated for the CMIP5 control runs used in (a). Reproduced from Del Rio
Amador (2017)

frequencies (in that case, the anthropogenic forcings), we could also make accurate
global scale real world forecasts. Due to SSTF, we argued that if at a given location
long series were available, they could be forecast directly, that using information at
other locations as co-predictors would not increase the overall skill. In this section,
we therefore discuss regional forecasts at 5ı resolution. This resolution was chosen
because it is the smallest that is available from both historical data and reanalysis
data sets that we used.

The various steps in the forecast are illustrated in Fig. 14 using the pixel over
Montreal as an example. The first step is to remove the low frequencies that are
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Fig. 14 An example of forecasting the temperature at Montreal using the National Centers for
Environmental Prediction (NCEP) reanalysis (at 5

ı

� 5
ı

resolution). The top left shows the raw
monthly data, the bottom left shows the mean annual cycle as deduced using a (causal) 30-year
running estimate, the upper right shows the low frequency (a causal 30-year running average) trend
and the bottom right shows the resulting anomalies that were forecast by SLIMM. Reproduced
from Del Rio Amador (2017)

not due to internal macroweather variability; failure to remove them will lead to
serious biases since the SLIMM forecast assumes a long-term mean equal to 0 and
the ensemble forecast is always towards this mean. The low frequencies have both
a mean component (mostly anthropogenic in origin but also one due to internal
variability) and a strong annual cycle that slowly evolves from one year to the
next. Using the knowledge (Fig. 5d) that the scaling is broken at decadal scales,
we can use a high pass filter to separate out these from the internal variability.
Similarly, the annual cycle can be forecast by using the past thirty years of data in
order to make running estimates of the relevant Fourier coefficients (only keeping
those for the annual cycle and 6, 4 and 3 month harmonics). The various steps are
shown in Fig. 14. Finally the anomalies (lower right) were forecast using SLIMM.
The regional variation of the skill of the resulting StocSIPS hindcasts is shown in
Fig. 15a, we can see that it is close to the theoretical maximum.
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4.3 StocSIPS-CanSIPS Comparison

The previous section reminded us that real world forecasts must estimate, remove
and separately forecast the nonmacroweather low frequencies, the higher frequency
internal fGn-like component. The overall model, including this “pre-processing”
is called the Stochastic Seasonal to Interannual Prediction System (StocSIPS, see
the website: http://www.physics.mcgill.ca/StocSIPS/), it is comparable in scope to
the Canadian Seasonal to Interannual Prediction System (CanSIPS (Merryfield
et al. 2011)) and the European Seasonal to Interannual Prediction System
(EuroSIPS, http://www.ecmwf.int/en/forecasts/documentation-and-support/long-
range/seasonal-forecast-documentation/eurosip-user-guide/multi-model), but of
course is based directly on a stochastic rather than a deterministic-stochastic

Fig. 15 (a) Theoretical (top) versus empirical (bottom) hindcast skill for 1 month hindcasts using
Period Sep, 1980–Dec, 2015. Reference: NCEP Reanalysis. The theory and practice are very close.
Reproduced from Del Rio Amador (2017). (b) The MSSS, shown for the actuals and estimated
from hindcasts from six of the 12 “producing centres”, adapted from the WMO web site (accessed
in April 2016). To aid in the interpretation, an example is given by the black arrow: when the
MSSS D �5, the Mean Square Error (MSE) is 5 times the amplitude of the anomaly variance. It
can be seen that actuals’ error variances are typically several times the anomaly variances leading
to significant negative skill over most of the earth. Reproduced from Del Rio Amador (2017)

http://www.physics.mcgill.ca/StocSIPS
http://www.ecmwf.int/en/forecasts/documentation-and-support/long-range/seasonal-forecast-documentation/eurosip-user-guide/multi-model
http://www.ecmwf.int/en/forecasts/documentation-and-support/long-range/seasonal-forecast-documentation/eurosip-user-guide/multi-model
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Fig. 15 (continued)

(GCM) model. Indeed, according to the World Meteorological Organization
(WMO) site (http://www.wmo.int/pages/prog/wcp/wcasp/gpc/gpc.php), there are
12 international “producing” centres; StocSIPS based at McGill would be the
13th. Although completely unfunded, since April 2016, it has provided operational
monthly, seasonal and annual temperature forecasts at 5ı resolution.

As the previous section showed, SLIMM can forecast GCM control runs to nearly
their theoretical stochastic predictability limits. However, we must evaluate the full
StocSIPS system (pre-processing plus SLIMM) and compare it with conventional
approaches. We singled out CanSIPS, which since 2010 is the institutional product
of Environment Canada, for particularly close comparisons. Every month, CanSIPS
makes monthly through annual temperature and precipitation forecasts; the publi-
cally available maps are only over Canada, but we accessed the global products and
made global hindcast comparisons since 1980. The CanSIPS products are based
on “multimodel ensemble” consisting of 10 realizations of the CanCM3 and 10
realizations of the CanCM4 GCM.

Before continuing, recall the method by which GCMs currently produce
macroweather forecasts. The first step is the initialization; when CanSIPS is
initialized it uses reanalyses from the European Centre for Medium-range Weather
Forecasts (ECMWF) and these are data-model “hybrids” obtained by assimilating
meteorological observations into the ECMWF GCM. The problem is that both

http://www.wmo.int/pages/prog/wcp/wcasp/gpc/gpc.php
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the reanalyses and CanSIPS have their own different climatologies so that the
latter cannot directly ingest the ECMWF reanalyses, instead, the ECMWF initial
values must be converted into ECMWF anomalies. These anomalies are used to
determine the CanSIPS initial values, the “actuals”. The process can be symbolically
written as:

TCanSIPS .r; t/ D Ti.t/;CanSIPS .r/C T 0
CanSIPS .r; t/

TECMWF .r; t/ D Ti.t/;ECMWF .r/C T 0
ECMWF .r; t/

(53)

where the overbar represents the climatological temperature Ti .r/ at position r, for
the month number i D 1, 2, : : : , 12 and the primes indicate the anomalies which
are functions of both position and time (i(t) denotes the month number of time t).
The conventional way to define Ti .r/ is to use the averages over the previous 30 ith

months (at each location/pixel r). Aside from the annual cycle (that was deliberately
ignored in Sect. 2.2), the anomalies differ from the internal variability because they
are based on temporal rather than ensemble averages and they have contributions
from external forcings.

CanSIPS is thus initialized TCanSIPS .r; 0/ using the ECMWF anomaly at time
t D 0:

TCanSIPS .r; 0/ D Ti.0/;CanSIPS .r/C T 0
ECMWF .r; 0/ (54)

The forecasts bTCanSIPS .r; t/ (at t > 0, indicated with circonflex) are then made
using the 20 member CanSIPS ensemble followed by complex (and time consum-
ing) post-processing that primarily correct for the “model drift” and poor climate
sensitivity. “Model drift” refers to the tendency of model temperatures (even in
control runs) to display low frequency variations that are usually attributed to slow
(mostly ocean) processes, artefacts that are not fully “balanced” when the model is
initialized. Since the model does not have perfect representation of the sensitivity to
anthropogenic effects, the corresponding systematic errors also contribute a further
low frequency “drift”. Both are removed (to some extent) using hindcasts over the
previous 5-year period in an attempt to estimate (and remove) spurious linear trends
(Merryfield et al. 2011). Unfortunately, 5 years is too short to properly estimate the
trend (the true trends are buried in the macroweather noise until a decade or so in
scale, see Fig. 5d) so that the internal 5-year variability is thus spuriously removed
in the post-processing.

In spite of these manipulations, the final resultbTCanSIPS .r; t/—i.e. an “actual”—
is seriously in error as can be seen in Fig. 15b: which shows that the actuals’ error
variance is typically several times larger than the anomaly variance. Due to this, the

publically available macroweather forecasts are of the anomalies bT 0

CanSIPS .r; t/ D
bTCanSIPS .r; t/�Ti.t/;CanSIPS .r; t/. For these anomalies, the comparison with StocSIPS
is much closer, see Fig. 16. The figure shows that even for anomalies over most of
the globe, for 2 months and longer, StocSIPS has higher skill. StocSIPS’ increased
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Fig. 16 The differences in MSSS for CanSIPS and StocSIPS anomaly hindcasts over the period
1980–2010 for lead times of 1, 2, 6, 9 months, red indicates regions over which StocSIPS has
higher skill. It may be seen that for 2 months and longer, this is over most of the globe. StocSIPS’
increased skill is particularly noticeable over land, probably due to the fact that the CanSIPS ocean
model is still within its deterministic predictability limit of 1–2 years. Reproduced from Del Rio
Amador (2017)

skill is particularly noticeable over land, probably due to the fact that the CanSIPS
ocean model is still within its deterministic predictability limit of 1–2 years making
its ocean forecast reasonably accurate. This impression is bolstered in Fig. 17 which
compares CanSIPS at 6 months and StocSIPS at 2 years (the skill is comparable),
and also in Fig. 18 that shows that StocSIPS’ relative advantage grows with lead
time and is particularly strong over land.

Although we have not discussed it in this review, StocSIPS actually provides
forecasts of the probability distributions (both mean, discussed up until now, and
the standard deviation about the mean). This can be used for various probabilistic
forecasts. For example, Fig. 19a, b shows a typical seasonal forecast and its
validation. In Fig. 19a we see that the StocSIPS anomaly forecasts generally follow
the data better than CanSIPS. In Fig. 19b, we see that for this location and date, that
the StocSIPS forecast was both more accurate and less uncertain than the CanSIPS
forecast. This was true for both the actuals and the anomalies. This can be seen
since not only is the dashed red StocSIPS mean closer to the NCEP validation
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Fig. 17 A comparison of the MSSS for StocSIPS at 2 year lead times (top left) and CanSIPS at
6 months (bottom left). The map of their differences (top right) and histogram of the differences
lower right using both the ECMWF interim reanalyses (ERA-I, red) and NCEP reanalyses (blue)
show that the 2 year StocSIPS forecast is somewhat better than the CanSIPS 6 month forecast.
Reproduced from Del Rio Amador (2017)

Fig. 18 The relative skill of StocSIPS and CanSIPS anomaly hindcasts (1980–2010) over the
globe and over land only showing that StocSIPS’ relative advantage increase systematically with
lead time and is particularly strong over land. Reproduced from Del Rio Amador (2017)
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(dashed black) than the CanSIPS dashed blue, but the uncertainties (the spreads in
the probability densities) is narrower for the StochSIPS forecast. Other probabilistic
forecasts that can readily be produced by StocSIPS include tercile forecasts: i.e. the
probabilities of the forecast temperature being below, above or equal to the local
climatology; see the StocSIPS site for examples.

a

Fig. 19 (a) StocSIPS (top, red) and CanSIPS (bottom, blue) seasonal forecasts, two seasons ahead
for temperature anomalies at 97.5 W, 77.5 N (see blue point on the map at right). The forecasts
are compared with the NCEP reanalysis anomalies (black) that are calculated with respect to the
period 1980–2010. It can be seen that StocSIPS is much closer to the data (see also (b)). (b)
The histograms of seasonal forecasts, two seasons ahead for DJF (2009–2010) using data up to
t D 0 D JJA 2009, location the same as in (a) (top actuals, bottom, anomalies, StocSIPS in red,
CanSIPS in blue, NCEP data in black). The dashed black lines are the NCEP validation data
for DJF, the black probability density curves show the spread of the climatological variations
based on past NCEP reanalyses (1981–2010), the variability is thus placed around the observed
DJF temperature. The StocSIPS and CanSIPS dashed lines (red and blue) are their respective
forecasts for DJF, the curves represent the estimated uncertainties in the forecast. For both actuals
and anomalies StocSIPSs forecasts are sharper—their probability density functions (PDFs) are
narrower and more peaked; they are also more accurate since the red dashed lines (the StocSIPS
forecasts) are closer to validation data (the black dashed lines)
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b

Fig. 19 (continued)

5 Conclusions

Over the last decades, it has become increasingly clear that at weather scales,
atmospheric dynamics are governed by both deterministic laws of continuum
mechanics and by stochastic turbulence laws. Although the GCM equations do not
acknowledge the existence of atoms or molecules, they are nevertheless compatible
with statistical mechanics. Similarly they are also believed to be compatible with
the turbulence laws and indeed, they obey them quite accurately. Over the same
period, the GCM approach has—with the development of ensemble forecasting and
stochastic parametrizations—itself evolved into a stochastic one, making it tempting
to make weather forecasts directly using the turbulence laws. However the weather
regime is highly intermittent, and it involves vector multifractal processes, whose
corresponding mathematical prediction problem has yet to be solved. The GCM
approach to weather prediction is thus the only one currently available.

The situation is radically different at time scales beyond the GCM deterministic
predictability limit—in macroweather. On the one hand, GCMs have large errors
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associated with unrealistic model climatologies, especially poor representations of
the annual cycle, and they also display model drift and unrealistic sensitivities to
anthropogenic effects. On the other hand, macroweather “turbulence” (the extension
of turbulence models to the macroweather regime) has low intermittency so that
Gaussian models are useable approximations (fractional Gaussian noise, fGn). In
addition, a new symmetry: statistical space-time factorization essentially decouples
space and time so that mean square predictions can conveniently be made for each
spatial location independently. Physically this means that even though strong spatial
correlations exist (including “teleconnections”), if one has a long enough history at
a given point, this spatial information is also implicit in the series so that using data
at other spatial locations as co-predictors does not necessarily improve the forecast.
The factorization is not exact and does not necessarily apply to other series such
as climate indices so that there may be future scope for finding co-predictors and
improve the skill.

The ideal testing ground for this approach is in GCM control runs since this is
closest to pure fGn. We found that the ScaLIng Macroweather Model (SLIMM)
based on an fGn model applied to temperatures from GCM control runs (i.e. pure
macroweather processes, no changes in external forcings) is nearly able to attain
the maximum theoretical stochastic predictability limit, verifying that GCMs well
obey the macroweather laws upon which SLIMM is based and raising the possibility
that these stochastic predictability limits are true GCM limits. With respect to usual
stochastic forecasts based on exponential correlations (Auto Regressive, or Linear
Inverse Modelling), the radically new feature of SLIMM is its exploitation of the
huge long range memory. The SLIMM prediction kernel thus has singular weighting
to both the most recent data and the most ancient data since the latter contain the
maximum information of the distant past.

Applying SLIMM to real data requires pre-processing to remove non-
macroweather processes in particular to remove low frequency anthropogenic
effects and—for regional forecasts—the annual cycle. The overall resulting system
(i.e. pre-processing plus SLIMM) is the STOChastic Seasonal to Interannual
Prediction System (StocSIPS). We compared StocSIPS with one of the leading
GCM macroweather products: CanSIPS. Even without any co-predictors or other
use of spatial correlations, we showed that StocSIPS was much superior to CanSIPS
for forecasting “actuals”: this was due to StocSIPS’ ability to essentially forecast
the climatology (especially the annual cycle). However, even for anomaly forecasts,
StoSIPS was superior to CanSIPS for lead times of 2 months or longer and its
relative advantage grew with the forecast lead time, the advantage was particularly
important over land where for 2 months and longer StocSIPS was superior over
more than �80% the earth’s land surface.

Aside from its increased skill, StocSIPS has other advantages. For example,
at the moment, seasonal forecasts for the city of Montreal (or other localized
region) are highly indirect. First data from all atmospheric fields from all over the
world must be assimilated. Then the model—on grids typically several hundred
kilometres across—is integrated forward in time. Anomalies are calculated, and
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post-processing is performed to make low frequency corrections for some of
the known biases. Finally, the Montreal temperature anomaly is estimated by
“downscaling” from the large pixel scale to the local city scale. This can be
done either using sophisticated (but complex) nested regional models (of GCM
type) or via ad hoc statistical methods based on local climatology. In contrast,
if long enough (preferably several decades) of monthly or seasonal data are
available, StocSIPS simply removes the low frequencies (including the annual
cycle), separately forecasts the anomalies and low frequencies and adds them to
produce the forecast. The overall saving in computational speed is estimated to be
of the order of 107 (about 105 to 106 for global forecasts on 5o � 5o grids). Finally,
StocSIPS directly forecasts the conditional ensemble average, i.e. effectively the
results of an infinite ensemble whereas CanSIPS uses only 20 members.

StocSIPS can be directly extended to other fields such as wind or precipitation
which instead are known to have macroweather statistics roughly satisfying the
SLIMM requirements (low intermittency temporal macroweather scaling with
�1/2 < H < 0 and space-time statistical factorization (SSTF), Lovejoy and de
Lima (2015) and Fig. 9a). But StocSIPS’ main advantage may be its ability to
directly forecast other fields, such as insolation, wind power or degree-days, that
can currently only be very indirectly forecast by GCMs. Other future extensions of
StocSIPS could include drought indices and the prediction of extremes.
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propose a method that provides regularly sampled time series and at the same time
a difference filtering of the data. The differences between successive time instances
are derived by a transformation costs procedure. A subsequent recurrence analysis is
used to investigate regime transitions. This approach is applied on speleothem-based
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1 Introduction

In the last decades, palaeoclimate research has experienced an exciting progress
with ever-higher resolution and better age control high-resolution records, inno-
vative technologies and types of proxies, as well as new data series analysis
approaches, such as speleothem-based proxies, fluid inclusion analysis and laser
ablation techniques, and complex network-based data analysis. (Dennis et al., 2001;
Kennett et al., 2012; McDermott, 2001; McRobie et al., 2015; Rehfeld et al., 2013).
This progress helps greatly to increase our understanding of past climate variation
and the mechanisms behind the climate system, but also to assess future climate-
related vulnerability of our society. Of particular interest are critical transitions, such
as tipping points or regime shifts, because they can bring the climate system into
another mode of operation (Lenton et al., 2008; Scheffer et al., 2012). Identifying
tipping points from measurements is no simple task. Several approaches have been
proposed, such as testing for slowing down and increase of the autocorrelation
(Scheffer et al., 2009), reconstructing potentials of the dynamics by using the
modality of the data distribution (Livina et al., 2010), using a modified detrended
fluctuation analysis (DFA) (Livina and Lenton, 2007), or the concept of stochastic
resonance (Braun et al., 2011). While dynamical transitions are rather obvious when
they appear in the first two moments (i.e. in mean or variance), they can be hidden
when superimposed by signals of different time scales or by noise, issues frequently
observed in palaeoclimate time series. For such problems, the application of
methods from nonlinear time series analysis is a well-accepted perspective, e.g., by
using the fluctuation of similarity (FLUS) (Malik et al., 2012). Another promising
tool for the identification of subtle transitions is the framework of recurrence
plots (Marwan et al., 2007). Recurrence plots and their quantification consider the
evolution of neighbouring states in a phase space. Besides characterizing different
classes of dynamics or testing for synchronization and nonlinear interrelationships
and couplings of multiple systems, it allows to test for dynamical regime changes
with respect to different properties, such as changes in the geometry of the attractor,
in the predictability of states, or in the intermittency behaviour (Donner et al.,
2011; Eroglu et al., 2014; Marwan et al., 2007). The recurrence plot framework has
been successfully applied to investigate past transitions, e.g., in the Asian monsoon
system (Marwan et al., 2013) and in the East African climate (Donges et al., 2011),
and to uncover a seesaw effect within the East Asian and Indonesian–Australian
summer monsoon system (Eroglu et al., 2016).

However, most palaeoclimate proxy records (independent of the actual archive)
come with the challenge of irregular sampling. While sampling in the field or
in the lab is often done on a regular depth/length axis, varying sedimentation or
growth rates result in variable time–depth relationships and in time series with
non-equidistant sampling points in the time-domain (Breitenbach et al., 2012). The
most common procedure is data preprocessing using linear interpolation. However,
interpolation can lead to a positive bias in autocorrelation estimation (and, thus,
an overestimation of the persistence time) and a negative bias in cross correlation
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analysis (Rehfeld et al., 2011). Therefore, several approaches have been suggested
for analysing irregularly sampled time series (Ozken et al., 2015; Rehfeld and
Kurths, 2014; Rehfeld et al., 2011; Scargle, 1982; Stoica and Sandgren, 2006).

In the following we will focus on a recently proposed technique that is based on
a measure that compares spike trains by quantifying the effort it needs to transform
one spike train to the other one (Hirata and Aihara, 2009; Victor and Purpura, 1997).
This measure corresponds to a modified difference filter (a common practice to
remove low-frequency variation and trends), where we determine the differences
by a criterion of how close subsequent short segments of an unevenly sampled
time series are by determining the cost needed to transform one segment into
the following one (Ozken et al., 2015). Such comparison of successive segments
has some similarity with the FLUS method (Malik et al., 2012), but instead uses
the transformation cost as the similarity measure, and is thus directly applicable
on irregularly sampled time series. We illustrate this approach by analysing a
speleothem-based palaeoclimate record with respect to regime transitions.

2 Methods

2.1 Transformation Costs Time Series

Cumulative trends or low-frequency variations are common in palaeoclimate proxy
records, but are often undesirable and can cause difficulties in the analysis. One
frequently used solution is the difference filter, where the values of the proxy record
are replaced by the differences of subsequent values, y.t ��t=2/ D x.t/�x.t ��t/,
with �t the sampling time of a regularly sampled time series. Another, even more
challenging problem is the irregular sampling frequently occurring in palaeoclimate
proxy records. The transformation costs time series (TACTS) approach tries to
overcome both problems by transforming irregularly sampled time series to regular
ones and simultaneously using the transformation cost as the difference value. This
procedure induces less loss of information compared to traditional interpolation
procedures.

The core of the TACTS method is to measure the shortest distance (transforma-
tion cost) between two data segments by using two different processes: (1) shifting
points in time which causes changes in the amplitude for marked data and (2)
adding–deleting operations. The process starts with dividing the data into small
and equally sized segments. These segments can have different number of points,
because the points are not equally sampled. The transformation costs between all
sequence windows are then calculated by

p.Sa; Sb/ D

shifting‚ …„ ƒX
.˛;ˇ/2C

f�0jta.˛/ � tb.ˇ/j C �kjLa.˛/ � Lb.ˇ/jg C�S.jIj C jJj � 2jCj/„ ƒ‚ …
adding=deleting

:

(1)
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The equation states two distinct operations for two essential processes. If the
operation is shifting, then the first part of the equation involves, otherwise the
adding–deleting operation involves as the second part. In the first part, the sum-
mation is over the pairs .˛; ˇ/ 2 C, where C is the set of points that will be shifted
in time and changed in amplitude. ˛ and ˇ are the ˛th event in the first segment (Sa)
and the ˇth event in the second segment (Sb). The amplitude of points which are ˛th
and ˇth elements of Sa and Sb are denoted by La.˛/ and Lb.ˇ/, respectively. The
data-adapted constants �0 and �k are given by

�0 D
M

total time
(2a)

�k D
M � 1PM�1

i jxi � xiC1j
: (2b)

where M is the total number of events, and xi is the amplitude of ith element in the
time series.

In the second part of Eq. (1), I and J are sets of indices of the events in Sa and Sb,
respectively. The parameter �S is the cost of deleting or adding processes and is used
as an optimization parameter. The selection of optimum �S is the following: first we
calculate total cost time series for the entire range of �S 2 Œ0; 4� with step size
��S D 0:01. Then we examine frequency distributions for each cost time series.
Since each cost value is independent of the others, we expect to have a normal
distributed histogram and choose the optimal �S according to the best fit on normal
distribution.

Equation (1) is a metric distance function, satisfying the following three condi-
tions:

• p.Sa; Sb/ � 0 (positive)
• p.Sa; Sb/ D p.Sb; Sa/ (symmetric)
• p.Sa; Sc/ � p.Sa; Sb/C p.Sb; Sc/ (triangle inequality).

Now we illustrate the method for two consecutive segments. Irregularly sampled
data is equally spaced into small windows which are given as state a (Sa D fa˛g4˛D1)
and state b (Sb D fbˇg3ˇD1). The costs computed between the states and all details
are given in Fig. 1 step by step.

Note that the decision of which operation process to minimize costs is important.
The transformation by shifting costs �0jta.˛/ � tb.ˇ/j C �1jLa.1/ � Lb.1/j and
deleting and adding a point costs 2�S. Here we chose the least cost operation
to either shift or delete/add. Therefore, in the algorithm, we consider all these
possibilities and chose the operation carefully.

The final appearance of the cost time series is as follows: assume that we have an
irregularly sampled time series fuig

N
iD1, where N is the number of points. The data

is divided into a set of W-sized n segments and each segment has a minimum of a
certain number of points, therefore,
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TACTS D fp.Wi;Wi C 1/gn�1
iD1

for all sequence windows. This leads to an equally sampled and detrended time
series. The resulting cost values series can be considered as the difference filtered
time series with a regularly sampled time axis and can be further analysed with
standard or advanced time series analysis tools, e.g., in order to detect regime
shifts (Fig. 1).

{ {state a

state b

time (t)

x(
t)

×

state a

state b

step 1

step 2

step 3

step 4

step 5

Initial state
cost(0) = 0

Shifting
cost(1) = λ0|ta(4)-tb(3)|+λk|La(4)-Lb(3)|

Shifting
cost(2) = cost(1) +  λ0|ta(3)-tb(2)|+λk|La(3)-Lb(2)|

Deleting
cost(3) = cost(2) +  λs

Deleting
cost(4) = cost(3) +  λs

Final state
total cost = cost(5)

Adding
cost(5) = cost(4) +  λs

a1
a2

a3

a4

b1

b2 b3

×

Fig. 1 Illustration of the transformation cost time series method, which finds the minimum
transformation cost between two data segments such as state a and state b in the top panel. In five
steps state a is transformed into state b. At steps 1 and 2, we apply shifting a point in time and, as
a consequence of shifting, changing the amplitude of the point. These operations cost regarding to
first part of Eq. (1). Steps 3 and 4 are deleting and step 5 is adding a point; each of these operations
costs a constant �s. The costs are written next to the related processes according to Eq. (1)
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2.2 Recurrence Analysis

Recurrence is a ubiquitous property of many dynamical systems. Slight changes in
observed recurrence behaviour allow to infer changes in the dynamics (Marwan,
2011; Marwan et al., 2007). In order to investigate recurrence properties, recurrence
plots and recurrence quantification analysis have been developed (Marwan, 2008;
Marwan et al., 2007). A recurrence plot is the graphical representation of those
times j at which a system recurs to a previous state xi:

Ri;j D *." � kxi � xjk/; i; j D 1; : : : ;N (3)

with * the Heaviside function, " a recurrence threshold, kxi � xjk the Euclidean
distance between two states xi and xj in the phase space, and N the number of
observations (or time series length). Such a recurrence plot consists of typical large-
scale and small-scale features that can be used to interpret the dynamics visually.
Important features are diagonal lines: similar evolving epochs of the phase space
trajectory cause diagonal structures parallel to the main diagonal in the recurrence
plot. The length l of such diagonal line structures of at least length lmin depends
on the dynamics of the system (periodic, chaotic, stochastic) (Fig. 2) and can be
directly related with dynamically invariant properties, like K2 entropy (Marwan
et al., 2007). Therefore, recurrence quantification analysis (RQA) uses the features

Fig. 2 Example of a
recurrence plot for changing
dynamics from chaotic via
periodic to stochastic
dynamics, each lasting 50
time steps. In the periodic
region, continuous long
diagonal lines are observed,
in the chaotic region, shorter
diagonals and single points
appear, and in the stochastic
part, we find almost only
single points

periodic

stochasticchaotic

Time

T
im

e
x(

t)
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within the recurrence plots for defining measures of complexity. For example, the
distribution P.l/ of line lengths l is used by several measures of complexity in
order to characterize the system’s dynamics in terms of predictability/determinism
or laminarity. The measure determinism DET is the fraction of recurrence points
(i.e. Ri;j D 1) that form diagonal lines and can be computed by

DET D

PN
lmin

l � P.l/
PN

i;jD1 Ri;j

: (4)

In order to study the time-dependent behaviour of a system or time series, RQA
measures can be computed within a moving window, applied on the time series. The
window has size w and is moved with a step size s over the data in such a way that
succeeding windows overlap with w�s. This technique can detect chaos-period and
also more subtle chaos–chaos transitions (Marwan et al., 2007), or different kinds
of transitions between strange non-chaotic behaviour and period or chaos (Ngamga
et al., 2007). Moreover, the reliability of several RQA measures was investigated by
their scaling properties with respect to critical points in the dynamics (Afsar et al.,
2015).

3 Palaeoclimate Regime Transition

To illustrate the power of the techniques we advocate here, we choose as illustrating
example a speleothem ı18O record from the Secret Cave at Gunung Mulu in Borneo/
Indonesia (Carolin et al., 2013). This particular record has been interpreted as
a time series of the dynamics of the East Asian–Indonesian–northwest Australia
monsoon. This monsoon regime provides a circulation regime that strongly links
both hemispheres and serves as a major heat source, playing a significant role at
planetary scale (Chang et al., 2006; McBride, 1987). Central to its geography is the
Maritime Continent which provides a core region of monsoon activity (Chang et al.,
2004; Ramage, 1968). A transect in regional precipitation patterns from the northern
part of the Maritime Continent to the northern margin of Australia coincides with a
change from the dominance of the boreal summer monsoon to the austral summer
monsoon (Chang et al., 2004, 2006; Robertson et al., 2011). The transect captures
key palaeoproxy monsoon records and has the potential to provide details of the
function of the monsoon regime over Quaternary time scales (Ayliffe et al., 2013;
Carolin et al., 2013; Denniston et al., 2013; Partin et al., 2007). Imbedded in some
of these records are short-lived millennial and centennial scale events, and, more
general, relatively short-lived phases of climate instability.

While the full proxy record is around 100,000 years, we only analyse the last
62,000 years of the ı18O record (Fig. 3a). Before the 62,000 years many gaps appear
and the data become too sparse to give any useful information about. The record
used for the analysis contains about 1200 data points. Time intervals between
measurements are irregular and follow a Gamma distribution with a skewness of
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Fig. 3 (a) ı18O record of Secrete Cave, Borneo. (b) RQA-determinism DET , Eq. (4), time series
resulting from the transformation cost time series. The light orange band of the DET indicates the
90% confidence interval. The vertical lines H1–H6 give the six Heinrich events as well as H0, the
Younger-Dryas

4.9. In our analysis we use a window length of �210 years to calculate the TACTS.
While the parameters �0;k are determined by Eq. (2), we optimize �S D 1:07.

The next step is to analyse the regularly sampled TACTS with RQA using a
sliding window method. We consider 30 data points (or 6200 years) of the TACTS
as our window size. Given the average number of points in the proxy record, 30 data
points of the TACTS correspond to approximately 100–140 points in the original
proxy. Using an overlap of 90% of consecutive windows, we determine the DET
[Eq. (4)] for each window with length of 6200 years (Fig. 3b). The recurrence
threshold is selected to be � D 20% of the standard deviation of the data in the
particular window. The advantage of this � selection scheme is that it allows us
to analyse proxy records with inherent non-stationarity. In addition, we determine
the statistical significance of DET using the bootstrapping method as outlined
in Marwan et al. (2013) (light red band in Fig. 3b).

The determinism DET indicates several distinct regime changes in the time series
from less to more predictable (and vice versa) dynamics (Fig. 3b). Most minima of
DET , signified as periods of decreased predictability, coincide with the so-called
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Heinrich events (H1 to H6). Heinrich events are identified in the North Atlantic
sediments as layers of ice-rafted debris, associated with the coldest phase just before
the Dansgaard–Oeschger events, and result from episodic discharge of icebergs in
the Hudson Bay region (Clement and Peterson, 2008; McNeall et al., 2011).

Heinrich events are well represented in the Chinese speleothem and loess record
as periods of weakened summer monsoon and intensified winter monsoon (An,
2014). In their interactions with the Siberian Mongolian High of the East Asian
Winter Monsoon they can be expected to trigger cold surges which leave their
imprint in the proxy palaeoclimate record (Wyrwoll et al., 2016). During the
East-Asian Winter Monsoon (EAWM), the Siberian High with its central pressure
reaching in excess of 1035 hPa dominates much of the Eurasian continent. Strong
northwesterly flows occur at its eastern margins, where one branch of the flow
separates and first is directed eastward into the subtropical western Pacific and then
tends southward in the direction of the South China Sea. These cold air ‘excursions’,
also described as ‘cold surges’, are channeled by the trough southwards and are
a characteristic feature of the EAWM (Lau and Chang, 1987). Their path is in
part related to relief controls of the Tibetan Plateau. Cold surges transport absolute
vorticity and water vapour up-stream of the South China Sea to the Equator (Koseki
et al., 2013) and lead to the flare-up of convective activity over the Maritime
Continent (Chan and Li, 2004). In the Borneo region, cold surges enhance surface
cyclonic circulation triggering the Borneo Vortex, which leads to deep convection
giving rise to heavy rainfall events (Koseki et al., 2013; Ooi et al., 2011).

It is noteworthy that in raw ı18O record from the Secret Cave the Heinrich events
are almost indistinguishable from other variations in the time series. In the original
work by Carolin et al., H1 to H6 were detected by visual comparison of the record to
others (e.g. NGRIP), but the Younger Dryas (coinciding with the H0 event) was not
detected (Carolin et al., 2013). However, our method clearly extracts these events,
including the previously not detected Younger Dryas, and highlights the hidden
impact of such distal forcing. Moreover, it allows an objective, quantitative analysis,
while Carolin et al. rely on the subjective method of matching extreme proxy values
with specific dates. At present, the Borneo Vortex leaves a strong climate signal on
the regional precipitation patterns (Ooi et al., 2011). We propose that the prominence
of the ‘instability climate phases’, coincident with the timing of Heinrich events
in the Borneo record, is an expression of regional controls that are linked to the
operation of the Borneo Vortex. The claim draws attention to the need to give more
consideration to specific regional controls in explaining the palaeoclimate proxy
record rather than simply appeal to global or hemispheric controls.

4 Conclusion

We have used the Secret Cave ı18O record from Borneo to illustrate the usefulness
of the novel TACTS method for analysing palaeoclimate records. TACTS can
transform irregularly sampled time series into a regularly sampled cost time series.
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This is an important step, since most modern time series analysis methods—like the
RQA used here—require a regular sampled time series as an input. Furthermore,
the TACTS method is less biased than interpolation methods frequently used to
transform irregularly sampled into regularly sampled data sets. This transformation
only requires three parameters. The two parameters �0;k are given by the average
amplitude and frequency of the record [see Eq. (2)], while �S needs to be optimized.
Being a difference filter, the TACTS method lends itself naturally for palaeoclimate
investigations, where proxy records often have some non-stationarity and usually
need to be detrended. As we have shown the detrending is build into the TACTS
method, therefore we do not need this additional step in our time series analysis.

Applying the TACTS and RQA approach on palaeoclimate data from the Secret
Cave speleothem, we were able to identify regime changes in the monsoon activity
during the last 62,000 years. We report on several distinct regime changes coinciding
with the Heinrich events H1 to H6 and therefore add quantitative evidence of these
impacts to previous, more qualitative studies (Carolin et al., 2013). Moreover, our
analysis clearly unveils that also the Younger Dryas had an impact on the monsoon
activity over the Maritime Continent.

Given that irregular sampling of proxy records is quite common in Earth science,
the TACTS method has large potential in quantitative Earth science without prior
modification or preprocessing the data.
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Topological Data Analysis: Developments
and Applications

Francis C. Motta

Abstract Topological Data Analysis (TDA) and its mainstay computational device,
persistent homology (PH), has established a strong track record of providing
researchers across the data-driven sciences with new insights and methodolo-
gies by characterizing low-dimensional geometric structures in high-dimensional
data. When combined with machine learning (ML) methods, PH is valued as a
discriminating-feature extraction tool. This work highlights many of the recent
successes at the intersection of TDA and ML, introduces some of the foundational
mathematics underpinning TDA, and summarizes the efforts to strengthen the
bridge between TDA and ML. Thus, this document is a launching point for
experimentalists and theoreticians to consider what can be learned from the shape
of their data.

Keywords Topological data analysis • Persistent homology • Machine learning

1 Introduction

When first encountering ideas in topology it can be instructive to view a topological
space as a generalization of a metric space. The quantitative dissimilarity between
points defined by a metric function, which gives geometric form to the space,
is replaced by the set-theoretic condition of mutual membership in the so-called
open subsets—the collection of which is only required to contain the whole space,
the empty set, and be closed under arbitrary unions and finite intersections. This
relaxation allows the geometry of a space to be quite radically deformed without
altering the topology. Topologies ignore the gamut of transformations that rotate,
stretch, shrink, grow, and twist so long as they don’t tear. Among the qualities which
cannot be altered, if the topology is to be preserved, is the number of holes in a
space.

There was a time when mathematicians jokingly referred to topology as a
branch of mathematics so pure it would never be applied—after all, what use is
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a subject that can’t distinguish between a coffee cup and a doughnut? Recently, a
computational paradigm known as Topological Data Analysis (TDA) has emerged
as an applied branch of topology.

TDA represents a set of computational methods aimed at extracting, quantifying,
and characterizing latent geometric structure in data. These tools are being widely
used by researchers across the scientific disciplines, and are being adapted to a
variety of applications. For example, topological methods for quantifying period-
icity in time-series data (Perea and Harer, 2015) are valued by systems biologists
who collect and study gene expression time series in the hopes of identifying
genes participating in periodic processes (Perea et al., 2015). Also, TDA is proving
relevant to the study of neuronal activity data (Chung et al., 2009b; Dabaghian et al.,
2012; Singh et al., 2008), and characterizing the intrinsic geometry of neuron firing
correlation matrices has suggested geometric organization of place neurons in the
mouse hippocampus (Giusti et al., 2015). Furthermore, TDA has proven useful for
characterizing defects in patterned surfaces and crystal structure (Hiraoka et al.,
2016; Pearson et al., 2015), which is of interest to condensed matter physicists and
important to manufacturing processes at the nanoscale.

The focus of many researchers is the use of TDA tools to extract robust and
discriminating features, useful for data classification and other machine-learning
(ML) tasks. Included in the growing number of medical classification tasks, TDA
methods have helped reveal a new subgroup of breast cancer (Nicolau et al., 2011),
and have revealed shape-based data features associated with brain disorders such as
autism (Chung et al., 2009a), epilepsy (Wang et al., 2014), and Alzheimer’s disease
(Pachauri et al., 2011). Recently a growing interest in developing and applying
TDA methods to time-varying data has emerged: Topological features of driver
behavior have been shown to enhance multi-target tracking technologies used by
government and law enforcement agencies (Rouse et al., 2015), while TDA methods
were combined with classic approaches in nonlinear dynamical systems analysis to
attack the ML problem of human action recognition (Venkataraman et al., 2016).

The predominant tool used by researchers to extract informative topological
features from data is persistent homology (PH) (Edelsbrunner and Harer, 2008;
Zomorodian and Carlsson, 2005). PH may be regarded as a far-reaching gener-
alization of (single-linkage) hierarchical clustering (Florek et al., 1951), taking a
multiscale approach to characterizing topological structure in data and encoding this
information in a compact representation. What follows is introduction to persistent
homology (PH) and the significant results needed to justify its use as a data analysis
device. By way of examples, Sect. 2 more precisely defines the types of structures
in data that PH can reveal. Section 3 motivates PH’s multiscale philosophy, while
Sect. 4 formally defines PH and discusses some of the mathematical foundation
on which the tool is based. Section 5 describes the output of PH calculations,
the persistence diagram (PD), and discusses its virtues as a representative of
shape-based data features. Finally, Sect. 6 highlights numerous efforts to map
persistence diagrams into spaces with additional structure to make the homological
features extracted by PH more powerful and flexible when combined with statistical
approaches and ML.
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The goal of this work is to introduce researchers, especially those working in
geosciences, to TDA to encourage greater access to this burgeoning data analysis
field. What follows assumes only a familiarity with basic set and vector space
operations and softens many formalities, electing for a more intuitive approach.
The hope is that a careful reading will provide a foundation for anyone interested
in applying PH or in pursuing the references herein, which give more complete
treatments of the mathematics.

2 Homological Structures in Data

Collectors and analysts of data, from every branch of science, often ask the same
fundamental question: How dissimilar is this data set from that data set? This
question takes many forms: In what ways do disease survivors differ from those
who succumb? How well does simulated data from a model match real data from an
experiment? Can we compare the present state of a system to its past states to predict
its future state? PH is a lens through which to view a data set, a stable transformation
of data that empowers us to answer the question of data proximity by measuring
(dis)similarity in terms of topological structures.

A first type of topological structure, one which is fundamental to classification
problems, is the number of clusters, groups, or components into which a data set
is divided. However, number of components is a very coarse description of shape,
and may not be the most important or defining characteristic of a data set; from a
topologist’s perspective it is just the first—in a sense made precise in Sect. 4—of
an infinite sequence of topological invariants1 which characterize the shape of a
space. These invariants are known as the homology groups and the properties they
capture are, loosely speaking, the number of n-dimensional holes in a topological
space. Slightly more precisely, an n-dimensional hole in a space is formed by the
absence of an n-dimensional object whose .n � 1/-dimensional boundary remains.
Homology is the algebraic language that defines these notions of boundary and hole,
and enables the computation of such objects.

Figures 1, 2, and 3 offer three data sets which exemplify homological structure
in two forms of data: scalar fields and data point clouds. Both data types are
ubiquitous in experimental and computational sciences and are appropriate and
well-represented in the many studies which exploit PH. Consider first Fig. 1 (left)
showing a time series of daily maximum temperature in degrees Celsius, computed
as an average of the maximum daily temperatures gathered by land surface stations
from around the globe and reported in the Daily Global Historical Climatology
Network (Menne et al., 2017). The right panel gives the corresponding point
cloud generated by a coordinate-delay reconstruction of the time series (Kantz and

1Properties preserved under homeomorphism: a continuous bijective function with continuous
inverse.
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Fig. 1 Average daily maximum temperature in degrees Celsius between January 1, 2012 and
December 31, 2015 shown as a time series (left) and a two-dimensional point cloud (right). The
point cloud was derived by a delay-coordinate embedding of the time series, x.t/, t D 1; : : : ; 1461,
where each data point is of the form .x.t/; x.t C 50//

Schreiber, 1997, Chap. 3.2) into R
2, computed by pairing time series values lagged

approximately 7 weeks apart. The point cloud forms an apparent loop and noisily
encloses a one-dimensional hole, showcasing the fact that periodic phenomena are
inherently circular.

Figure 2 represents a distinct, but equally common form of data: a scalar field
defined over an equally spaced grid. Figure 2 (top) shows brightness temperature
fields derived from hyperspectral data collected by the GOES-13 satellite imaging
radiometer (Munro et al., 2005), as it captured Hurricane Danny on the twenty-
first of August, 2015 at two times near the storm’s peak intensity. At both times,
the coldest cloud tops are seen to be punctured by the eye of the storm, offering a
partially obscured view of warmer surfaces below. Danny’s eye introduces a hole in
some of the sublevel sets2 of the temperature surface (Fig. 2, bottom). At the time
Hurricane Danny is nearing its maximum intensity the range of temperatures over
which this hole in the sublevel sets persists is significantly larger than at the earlier
time, when the storm was less intense and the eye less distinct. In other words,
there is a difference in the prominence of the peaks forming the inverted caldera in
the temperature surfaces near the eye. The number of connected components in the
sublevel sets is also a distinguishing feature.

Finally, Fig. 3 shows examples of higher dimensional holes (two-dimensional
voids) in data. Shown are level sets3 of pressure and wind speed at a snapshot
of a highly spatially resolved Weather Research and Forecasting (WRF) model
simulation of Hurricane Isabel (Kuo et al., 2017) as she made landfall off the Eastern
coast of the United States. The level sets of low pressure form the boundaries

2The sublevel sets of a real-valued function, f W X ! R, are the subsets f �1..�1; a�/ D fx 2
Xjf .x/ � ag 
 X.
3The level sets of a real-valued function, f W X ! R, are the subsets f �1.fag/ D fx 2 Xjf .x/ D
ag 
 X.
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Fig. 2 Brightness temperature surfaces captured by infrared channel 3 of the GOES-13 satellite
imager showing Hurricane Danny on August 21, 2015 as the storm approached its peak intensity
(top) as well as sublevel sets of the corresponding surfaces (bottom). Sublevels are indicated by the
height of the regions, e.g., the highest region indicates longitude and latitude coordinates where
the brightness temperature is less than or equal to �40. The eye of the storm is shown as a
one-dimensional hole in the sublevel sets, and persists over a range of levels depending on its
prominence

Fig. 3 Approximate level sets of several meteorological variables from a WRF simulation of
Hurricane Isabel, showing examples of two-dimensional holes in point cloud data. Level sets of
low pressure enclose spherical voids (left) while level sets of high wind speed enclose toroidal
voids (right)
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of concentric, spherical voids, while the strongest winds around Isabel’s eye are
strikingly toroidal.

A careful consideration of these examples might reveal that even readily apparent
components, holes, and voids are, strictly speaking, not represented by real data:
A point cloud is merely a finite subset of a metric space and contains no holes or
voids. PH is a framework that resolves this inconsistency and provides robust and
quantified descriptions of the homology of data by adopting a multiscale approach.

3 Multiscale Philosophy

Figure 4 illustrates a planar point regarded as collection of data points whose
dissimilarity is measured by the usual Euclidean metric, d W R

2 � R
2 ! R. It is

evident that within this data set there are three groups of points whose intragroup
similarity is far greater than their intergroup similarity. If one blurs their eyes the
points become less distinct and eventually some clump together to form the apparent
groups. More precisely, imagine disks, D.r; x/  fy jd.x; y/ � rg, of radius r
centered on each data point, and consider the number of connected groups formed by
the union of these disks (Fig. 4b). In a sense, this is a relaxation of the requirement
of a metric that the distance between distinct points be strictly greater than 0, as
points at small, non-zero distance become indistinguishable members of the same
group. This illustrates a hallmark of data science: the process of clustering in the
hopes of separating a data set into meaningful groups.

For the cartoon data there is an ostensible choice of connectivity threshold
(Fig. 4c), but this is almost never the case with real data which may be high-
dimensional and not so easily visualized, or may exist only as a data cloud in
an abstract metric space. So, in order to avoid the unpleasantness of choosing a
threshold at which to declare two points belonging to the same group, it is common
to instead consider the evolution of clusters as the threshold is increased from zero to

Fig. 4 (a) Cartoon data point cloud in the plane with distance measured by the usual Euclidean
metric along with disks of radius (b) r1 > 0 and (c) r2 > r1 centered on the data points. Disk
darkness range of radii of data point membership in a cluster
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the maximum pairwise dissimilarity between points, with two groups merging if the
minimum distance between any of their members is less than the current threshold.
This multiscale approach is known as single-linkage hierarchical clustering (Florek
et al., 1951). From this perspective, it is the observation that the union of disks
of radius r form exactly three groups over a large range of radii that justifies the
impression that the data consists of three clusters.

Generalizing the cartoon example, often data is in the form of a finite subset of a
metric space, X � .M; d/, where the metric d W M � M ! Œ0;1/ defines a notion
of dissimilarity. Thinking this way, at each threshold radii r, the union of disks

Br.X/ 
[
x2X

D.r; x/ � M

forms a subspace of M. An alternative but equivalent view is that the family Br.X/
is defined by sublevel sets of the function which measures the distance in M to X:

Br.X/ D d�1
X ..�1; r�/;

where dX.y/ D infx2Xfd.x; y/g, for each y 2 M. Either perspective yields a
one-parameter, nested family of topological spaces such that if r1 < r2, then
BX.r1/ � BX.r2/. In this way, agglomerative clustering is equivalent to tracking the
evolution and merging of the connected components of the one-parameter family
of topological spaces. PH generalizes multiscale clustering by not only tracking the
evolution of the components of the one-parameter family of spaces across scales,
but also the evolution of the higher-dimensional structures, such as holes and voids.

The two characterizations of Br.X/ are suggestive of the two types of data to
which PH is commonly applied: (1) point clouds, given structure by a measure of
data point dissimilarity that can be used to parameterize a nested family of spaces,
and (2) real-valued functions defined on a topological space whose sublevel sets
form the nested family of subspaces of the domain. In both cases it is common to
build a sequence of topological spaces known as a simplicial complexes that are
easily stored and analyzed by a computer and may be viewed as approximations of
Br.X/ (de Silva and Ghrist, 2007). Since many forms of image data as well as scalar
functions are often represented as a data-cube defined over a grid of equally spaced
domain values, an analog of a simplicial complex known as a cubical complex (Allili
et al., 2001; Wood et al., 2011) is also commonly used to approximate a sequence
of sublevel sets.

4 Complexes, Homology, and Persistence

Simplicial homology is not only the most theoretically accessible homology theory,
since it makes the notion of an n-dimensional hole both precise and transparent, it is
also the practical computational framework for PH as a data analysis tool because it
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makes homology entirely computable. For a more complete treatment of homology
theory, consult a text on algebraic topology such as Hatcher’s Algebraic Topology
(Hatcher, 2002).

4.1 Simplicial Complexes

Figure 5 (left) shows a finite collection of data points X D fa;b; c;d;e; f;g;h; ig
and the corresponding space

Br.X/ D
[
x2X

D.r; x/

for some fixed r > 0. Although it is plainly clear that Br.X/ is a space with a two
connected component, getting a computer to store, manipulate, and compute with
such an indiscrete object is unnecessarily difficult, to say nothing of tracking the
entire family Br.X/ as r is varied. For the task of tracking connected components,
it is sufficient to instead consider the nested family of graphs Gr.X/ D .X;Er/,
where vertices are data points and where an edge fx; yg 2 Er exists if and only
if d.x; y/ � 2r. The components in Br.X/ are exactly described by the connected
subgraphs in Gr.X/. Indeed, Gr.X/—which has been superimposed on Br.X/ in
Fig. 5 (center)—consists of two connected subgraphs. Increasing r from 0 to the
diameter of the point cloud gives rise to a finite sequence of graphs that change
only when edges are introduced at the finitely many pairwise distances between

Fig. 5 Union of disks surrounding cartoon data point cloud in the plane with distance measured
by the usual Euclidean metric (left) along with a geometric realization of the graph determined
by pairwise intersections of disks (center) and the geometric Čech simplicial complex realized by
mutual intersections of disks (right)



Topological Data Analysis: Developments and Applications 377

points in X. By representing a family of topological spaces by a list of combinatorial
objects (graphs) the problem of tracking the merging of components is made
computable (Sibson, 1973).

In light of our discussion of holes, it is also plainly clear that Br.X/ has some! In
particular, the disks centered on a, b, c, d and f, g, i each, respectively, enclose
a one-dimensional vacancy in the space. Correspondingly, there are cycles a-b-
c-d-a and f-g-h-f in Gr.X/. Realizing that g-h-i-g also forms a cycle, despite the
fact that the radius is large enough that there is a point of triple-intersection of
the corresponding disks, shows that a graph structure alone is insufficient to capture
the higher-dimensional holes in Br.X/. This inadequacy is remedied by generalizing
a graph to a simplicial complex by allowing “edges” (henceforth called simplices)
with more than two elements.

Definition An abstract simplicial complex S is a collection of sets which is closed
under taking subsets. In other words, if S is a simplicial complex and  2 S is a
simplex, then all subsets of  , which we’ll call its faces, are also simplices in S.
If the largest set in S has m C 1 elements, we say S is a simplicial complex of
dimension jSj  m.

Just as the graph Gr.X/ is represented geometrically in Fig. 5 (center)—with the
data points being vertices and edges being line segments between data points—there
is a natural geometric realization of an abstract simplicial complex as a subspace of
a Euclidean space by further taking triples to be faces of triangles, e.g., fg;h; ig
is the triangle bounded by the three edges fg;hg, fg; ig, and fh; ig. Likewise, 4-
element subsets can be realized as filled tetrahedra whose boundary consists of
the 4 triangles defined by its 3-elements subsets, and so on. Some care must be
taken to ensure that only abstract simplices which have non-empty intersection, i.e.,
which share a face, intersect in the geometric realization and that the intersection is
along the corresponding geometric face. This can be achieved by representing the
singleton sets in the abstract simplicial complex as affinely independent vectors4 in
some Euclidean space R

M , for sufficiently large M, and mapping abstract simplices
to the convex hulls of the corresponding subsets of vectors. Observe that the convex
hull of three affinely independent vectors is a triangle, of four such vectors is a
tetrahedra, etc.

The disks surrounding f;g; and h only intersect in pairs. This is reflected by
inclusion of the edges fb; cg, fc;dg, and fb;dg in Gr.X/. On the other hand, it is the
fact that all three disks, D.r;g/;D.r;h/; and D.r; i/, overlap that ensures they do not
form a hole. This observation justifies the inclusion of the triangular face bounded
by the cycle e-f-g-e in the geometric simplicial complex representation of Br.X/.
The triple-intersection therefore adds the triple fe; f;gg to the abstract simplicial
complex representation of Br.X/. Figure 5 (right) shows the geometric realization
of the abstract simplicial complex containing subsets  if and only if the intersection
of all the disks centered at the elements of  are non-empty. This is known as the
Čech complex.

4A set of vectors fv0; : : : ; vng 
 R
M is affinely independent if the set fvi � v0ji D 1; : : : ; ng is

linearly independent.
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Definition Let X D fx1; : : : ; xng 2 .M; d/ be a finite collection of points drawn
from the metric space M with dissimilarity function d W M � M ! Œ0;1/. Then for
r � 0, the Čech complex of X with connectivity parameter r is the abstract simplicial
complex

LCr.X/ D

(
 � X

ˇ̌
ˇ̌
ˇ
\
x2

D.r; x/ ¤ ;

)
:

Notably, LCr.X/ is a better representation of Br.X/ than Gr.X/ as it properly
encodes the number of connected components and the number of holes. More
generally and more formally, the so-called Nerve Lemma (Borsuk 1948; Hatcher
2002, Sect. 4.G) guarantees that the geometric realization of LCr.X/ is homotopy
equivalent to Br.X/, and thus faithfully represents much of the topology of the
union of disks. Visualizing the continuous contraction of the union of disks onto
the geometric realization of its Čech complex is suggestive of why this result holds
true in general.

While the Nerve Lemma endows the Čech complex with a very attractive
property, in practice LCr.X/ is difficult to store and compute as a search through
all subsets of size n becomes quickly intractable as n grows. An alternative to
the theoretically appealing Čech complex is the more computable Vietoris–Rips
complex, or simply the Rips complex that benefits from only requiring storage of
the graph Gr.X/.

Definition Let X D fx1; : : : ; xng be a finite collection of data and d W X � X !

Œ0;1/ be a measure of dissimilarity between data points in X. Then for r � 0, the
Vietoris–Rips complex of X with connectivity parameter r is the abstract simplicial
complex

Rr.X/ D
˚
 � X

ˇ̌
d.xi; xj/ � r; for all xi; xj 2 

�
:

The distinguishing feature of the Rips complex is that all higher-dimensional
simplices are completely determined by the 1-simplices,5 the graph structure deter-
mined by pairwise dissimilarities. This also suggests the reason for the carefully
chosen language in the definition of the Rips complex: Rr.X/ is not determined by
the data X being a subset of an ambient metric space. In this way, a Rips complex
may be built on any set of discrete objects endowed with pairwise dissimilarities,
and thus is a reflection of the intrinsic geometry of data.

No matter which simplicial complex construction is chosen, it is a general
property that a nested family of simplicial complexes,

S0 � S1 � � � � � Sm;

5Often called the 1-skeleton.
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may be regarded as the sublevel sets of a real-valued function, f W Sm ! R

defined on simplices, with the property that if 1 � 2 then f .1/ � f .2/.
This monotonicity condition on f ensures that its sublevel sets are themselves
simplicial complexes. Said another way, if we imagine varying the parameter r,
the monotonicity of f guarantees that an n-simplex does not appear before any
of its faces. To illustrate, let X be a data point cloud, d W X � X ! Œ0;1/ the
measure of pairwise dissimilarities, and S the simplicial complex consisting of all
subsets X. Define f W S ! R by f ./ D max

x;y2
fd.x; y/g. Then the nested family of

Rips complexes Rr.X/ is given by sublevel sets of f . In particular,

Rr.X/ D f �1..�1; r�/:

4.2 Persistent Homology

The preceding section introduced a one-dimensional hole in a simplicial complex
as a graph cycle (a loop of 1-simplices) that is not the boundary of two-dimensional
simplices in the complex. By formalizing the notions of cycles, boundaries, and
holes in simplicial complexes, simplicial homology extends these ideas to all
dimensions. The strategy employed is algebraic: one constructs vector spaces
that encode collections of n-simplices and then relates them via natural maps to
collections of .n�1/-simplices representing their boundary. This is done by treating
each n-simplex as an independent basis vector of a finite-dimensional vector space
over a field F.

Definition Let S be a simplicial complex of dimension m. For each n D 0; : : : ;m
define the set of n-chains to be

Cn.S/ D f˛0x0 C � � � C ˛nxn j fx0; : : : ; xng 2 S; ˛i 2 Fg :

By choosing Cn.S/ D f0g6 for n < 0 and n > m, further define the boundary maps
@n W Cn.S/ ! Cn�1.S/,

@n.fx0; : : : ; xng/ D

nX
jD0

.�1/jfx0; : : : ;bxj; : : : ; xng

D

nX
jD0

.�1/jfx0; : : : ; xj�1; xjC1; : : : ; xng;

on simplices, and extend to all n-chains in Cn.S/ by linearity.

6The trivial vector space over F consisting only of the 0 vector.
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The notion of an oriented simplex (Hatcher, 2002, Sect. 2.1) provides a proper
explanation for the coefficient, ˙1, in the definition of @n. That said, F is often taken
to be the field with two elements, F2  Z=2Z Š f0; 1g, in which case �1  1 and
an n-chain 1 C � � � C k 2 Cn.S/ may be regarded as simply the subset of the n
simplices represented in the formal sum, without needing to define orientation on
the simplices. Choosing F Š Z=pZ for small prime p is also a reasonable choice
and can yield additional information about the orientability of a complex.7

The linear boundary maps are endowed with the desirable property that @n�1 ı

@n D 0 for each n, which intuitively reflects the property that the boundary of a
simplex does not itself have a boundary. Said another way, this property ensures that
the image of @n is contained in the kernel of @n�1, or that those collections of .n �

1/-simplices which could form the boundary of a collection of n-simplices do not
themselves have a boundary. With these ingredients we can formalize what is meant
by a hole in a simplicial complex: a boundaryless collection of (n-1)-simplices for
which the collection of n-simplices it could enclose is absent from the complex.

Definition Given the chain complex of vector spaces

� � � ! CnC1.S/
@nC1

���! Cn.S/
@n
�! Cn�1.S/ ! � � � ;

define the subspace of n-cycles (chains without boundary) to be Zn  ker.@n/ and
the subspace of n-boundaries to be Bn  im.@nC1/ D @nC1.CnC1.S//. Further
define the n-th order homology group of S to be the quotient of vector spaces
Hn.S/  Zn.S/=Bn.S/.8

The elements of Hn.S/ are equivalence classes of n-cycles that are not boundaries
of .n C 1/-chains. Two n-cycles are in the same class (called homologous) if they
differ by a boundary. More formally, if � 2 Zn.S/ is an n-cycle, then Œ��  � C

Bn.S/ 2 Hn.S/. Importantly, boundaries are in the same class as the 0 cycle. So,
filling an n-dimensional hole amounts to eliminating a class Œ�� 2 Hn.S/ by making
the cycle � into the boundary of an .n C 1/-chain so that Œ�� D Œ0� 2 Hn.S/ since 0
and � differ by a boundary, namely � .

Of course Hn.S/ is also a vector space over F by defining the vector sum
Œ�� C Œ˛�  Œ� C ˛�. The dimension of Hn.S/ is known as the n-th Betti number
of S, denoted ˇn.S/  dim.Hn.S//, and thus represents the number of linearly
independent n-dimensional holes. This suggests an important fact about homology
as it applies to the computation of PH and the extraction of topological structure
from data: a hole may be represented by more than one cycle. For example, consider
the subcomplex S D ffg;h; ig; ff;gg; fg;hg; fh; ig; ff; ig; fg; ig; f;g;h; ig in Fig. 5

7More generally, the sets of n-chains may be defined to be the free abelian groups with coefficients
taken from a commutative ring. In this setting the boundary maps are homomorphisms (Hatcher,
2002).
8If F is chosen to be a commutative ring, the boundaries and cycles form subgroups which explains
the terminology homology groups.
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(right), consisting of one filled and one empty triangle connected along an edge
fg; ig. Taking F D f0; 1g, the cycle �  fg; ig C ff; ig C ff;gg enclosing the hole is
homologous to ˛  ff; igCff;ggCfg;hgCfh; ig since ��˛ D fg; igCfg;hgCfh; ig,
which is a boundary. Geometrically this is realized by the continuous collapse of the
filled triangle onto the edge fg; ig.

The goal to track the evolution of geometric structure of a data set across scales
can now be formalized in the language of homology. Let X be a data point cloud and
for each r � 0 consider the Rips simplicial complex, Rr.X/, built on X. If s � t, then
Rs.X/ � Rt.X/. Therefore, if Œ�� 2 Hn.Rs.X//, then Œ�� 2 Hn.Rt.X//, although
the cycles which are homologous to � may have changed, i.e., the homology will be
altered as components merge or as holes disappear.

Definition Let Sx be a nested family of simplicial complexes. The n-th order
persistent homology groups of the family of complexes are the quotients

Hx;y
n  Zn.Sx/=.Bn.Sy/ \ Zn.Sx//;

for x � y. The dimension of Hx;y
n is the n-th persistent Betti number, denoted ˇx;y

n .
In particular, ˇx;x

n D ˇn.Sx/ accounts for the n-holes in the complex Sx built at
the parameter value x 2 R. Furthermore, for each ordered pair .x; y/ with x � y, the
number ˇx;y

n counts the number of linearly independent n-th order homology classes
which appeared (were born) in a complex Sr, with r � x and which have not merged
with a class that was born in an earlier homology group, i.e., are still present in Sy

(have not died) (Edelsbrunner and Harer, 2010, Chap. VII.1).
Practically speaking, if X has N elements, then there are only finitely many

different Rips complexes, parameterized by the unique pairwise distances, rj,
between points in the cloud. Between these critical connectivity thresholds the
homology remains the same, but increasing the scale from rj to the scale rk, the
homology will change and so too might the Betti numbers. For example, assuming
unique pairwise distances there are 82 simplicial complexes, S0 � � � � � S81, in the
nested family of Rips simplicial complexes built by varying the connectivity radius
on data points in Fig. 5. A subset of these are shown in Fig. 6, highlighting the
appearance and disappearance of zero- and one-dimensional homological features.
The chain complex of S0 is

! 0
@1
�! C0.S0/

@0
�! 0 !;

which implies that H0.S0/ Š F
9 since ker.@0/ D C0.S0/ Š F

9 with basis consisting
of the nine 0-simplices, while im.@1/ Š f0g. On the other hand, the chain complex
of S1 is

! 0 ! C1.S1/
@1
�! C0.S1/

@0
�! 0 !
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Fig. 6 From left to right, geometric realizations of abstract Rips complexes S1;S8;S9, S13

and C1.S1/ Š F with basis consisting of the single 1-simplex fg;hg. Taking F D

Z=2Z, @1.fg;hg/ D fgg C fhg, and so im.@1/ is a one-dimensional subspace of
C0.S1/, spanned by the 0-chain fgg C fhg. Now fgg and fhg differ by the boundary
fggCfhg, since fgg�fhg D fggCfhg over the field with two elements. Thus Œg� D

Œh� 2 H0.S1/ and the dimension of the 0-th order homology group has decreased
by one.

Still working with Z=2Z coefficients, the appearance of a one-dimensional hole
in simplicial complex S9 will be realized by the fact that the 1-cycle, �  fa;bg C

fa;dg C fb; cg C fc;dg 2 Z.S9/ may be taken as a representative of the nontrivial
class, Œ�� ¤ Œ0�, which is contained in H1.S9/ but not in H8;9

1 D Z1.S8/=.B1.S9/ \

Z1.S8//. Thus Œ�� is born at connectivity parameter r9. This hole disappears in S13
with the introduction of the edge fb;dg because the Rips construction insists on the
addition of the 2-simplices fa;b;dg and fb; c;dg. Explicitly,

@2.fa;b;dg C fb; c;dg/ D fa;bg C fa;dg C fb; cg C fc;dg C 2fb;dg D �;

is now a boundary and so Œ�� D Œ0� in the quotient H1.S13/ D Z1.S13/=B1.S13/.
The class Œ�� merges with a class born before it, and so it dies at the connectivity
parameter r13.

5 Persistence Diagrams and the Shape of Data

The preceding section demonstrated how PH captures the character of the intrinsic
geometry of a point cloud by the scales at which homological features are born and
the scales at which they die. Moreover, a multiscale homological description of a
scalar function may be encoded in the pairings of critical levels between which the
homology of sublevel sets remain unchanged. For each dimension n D 0; 1; : : :,
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Fig. 7 Example H1 PD of (a) Rips family of simplicial complexes built on cartoon data set from
Fig. 5 and (b) H0 PD of nested family of sublevel sets of the given univariate real-valued function.
Sublevel sets are drawn as solid lines at the corresponding levels. Sublevel set numbers delineate
connected components and match the numbers of the persistence pairs computed by PH. Connected
components are born at local minima and die when they merge at a local maximum. Component 1
is observed to die when it merges with component 0 born at some lower level not shown

the PH calculation generates a finite collection of ordered pairs, .bi; di/, specifying
the birth and death parameters of each n-dimensional homological feature. Plotting
these ordered pairs as a multiset of points in the plane associates to some data its
persistence diagrams (PDs). Necessarily di � bi and so points in a PD appear above
the diagonal. The persistence of a feature is taken to be its death value minus its
birth value.

Figure 7a shows the H1 PD of the Rips family of simplicial complexes built
on the point cloud given in Fig. 5. The point .x; y/ captures only one persistence
pair, .r9; r13/, (i.e., ˇx;y

1 D 1) showing that there is only one hole born at a smaller
connectivity parameter than x which persists at connectivity parameter y. As shown,
this feature dies at connectivity parameter r13. Figure 7b shows the H0 PD for the
family of sublevel sets of a simple function. New connected components in the
sublevel sets are born at local minima and die when the components merge at a
local maximum, with the component born earlier persisting.

TDA folklore says that highly persistent pairs in a PD are real topological fea-
tures, while short-lived pairs may be regarded as “topological noise.” For instance,
component 3 in Fig. 7b is spawned from a mere wrinkle in the function, compared
with the prominent overall dip in the function characterized by component 1.
Features near the diagonal may exist only because of the finiteness of the data
and the topological approximations made by constructing complexes (Ghrist, 2008).
This philosophy is partially rooted in the notion that data represents a finite sampling
of a topological space and that given enough data (a dense enough sampling of this
space) the topological noise would be eliminated and the true homology of the space
would be revealed by the persistence calculation. However, in the view that PH is
transformation that can illuminate important differences in data, all regions of a
diagram may be relevant, except perhaps those points whose persistence cannot be
validated due to finite precision in the acquisition of data. In fact, several studies
have found that for classification problems it need not be the regions of highest
persistence that are most discriminating (Adams et al., 2016; Bendich et al., 2016;
Rouse et al., 2015).
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Fig. 8 Brightness temperature surfaces, interpolated to a 400 � 400 grid, captured by infrared
channel 3 of the GOES-13 satellite imager showing from left to right the temporal evolution of
Hurricane Danny between August 20 and August 21, 2015 (top) with corresponding persistence
diagrams of the families of cubical complexes defined by sublevel sets (bottom). The star in the
PDs corresponds to the hole in the sublevel sets formed by the eye

Consider in Fig. 8 the persistence diagrams encoding the evolution of one-
dimensional holes in the sublevel sets of four snapshots of the brightness tempera-
ture field of Hurricane Danny over the 18 h preceding its peak intensity. Because the
birth and death coordinates in these PDs reflect levels of the brightness temperature
surface, they are in the units of degrees Celsius for this example. For clarity,
the diagrams have been restricted to low temperature birth and death values. H1

PH classes with large birth values will correspond to topological circles first formed
in sublevel sets near the highest temperatures in the images, i.e., the sea surface,
while the features born at low levels reflect structures in the colder cloud tops.

The corresponding images (Fig. 8, top) capture the storm as it rapidly intensified
from a category 1 (75 knots) to a category 3 (110 knots). Naturally, as the images
change in time, so too do the persistence diagrams. An important question is,
how are changes in the underlying data reflected in changes in the PDs? If PH
is to be useful as a lens through which to view data, it cannot be too sensitive to
perturbations, since data is commonly corrupted by noise.

As Hurricane Danny intensifies its eye becomes more prominent, carving a one-
dimensional hole across a larger range of sublevel sets. Correspondingly a feature
emerges from the diagonal of the PD and its persistence steadily grows (Fig. 8,
bottom). This observation highlights two distinct but related facts: (1) introducing a
small perturbation in a function may give rise to a new homological feature but, if
so, it will be short-lived and thus appear as a point near the diagonal in the sublevel
set PD and (2) as a function is continuously varied, so too are the features in the
corresponding PD.
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To make the notion of stability of PDs precise, a measure of dissimilarity between
diagrams must be defined. Let the space of persistence diagrams, denoted Per, be
the collection of all finite multisets of points above the diagonal, each augmented
with countably infinitely many copies of the diagonal. Now Per may be given the
structure of a metric space in several ways.

Definition Given two diagrams P;Q 2 Per, define the bottleneck distance between
P and Q to be

W1.P;Q/  inf
� WP!Q

sup
p2P

kp � �.p/k1;

where � W P ! Q is a bijection from P to Q. Also, for each q > 0 define the
q-Wasserstein distance between P and Q to be

Wq.P;Q/  inf
� WP!Q

0
@X

p2P

kp � �.p/kq
1

1
A
1=q

:

Both measures of distance between diagrams depend on an optimal matching
between the pairs they contain. This explains the need to add countably infinitely
many copies of the diagonal to each multiset of above-diagonal points since two
diagrams may represent data sets with distinct numbers of multiscale homological
features, and including the diagonals ensures that a matching between features
will exist—although it may assign (perhaps short-lived) features to a point of zero
persistence on the diagonal. Although this requirement is technical, it is well-
motivated by the fact that small perturbations in the data may add homological
features, but they will be near the diagonal, as shown in Fig. 8 and alluded to with
the wrinkle in Fig. 7b.

Giving a metric structure to Per gives a precise way to relate measures of distance
between data to the measures of distance between diagrams and shows, under some
mild assumptions, that the association of a function to its sublevel set PD is a
continuous transformation. More precisely, given some technical hypotheses about
f ; g and X, if Df and Dg are persistence diagrams of the nested family of sublevel
sets of functions f ; g W X ! R, then

W1.Df ;Dg/ � Ckf � gk1

and

Wq.Df ;Dg/ � Ckf � gk1�k=q
1 ;

for some C > 0 and k > 1 that depends on properties of X, for each q � k; q <
1 (Edelsbrunner and Harer 2010, Chap. VIII.2; Cohen-Steiner et al. 2007). The
implication is that the persistence transformation can be made into an ˛-Hölder
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continuous function .0 � ˛ � 1/ between metric spaces if Per is endowed with
the metric Wq for sufficiently large q, and is in fact Lipschitz for the bottleneck
metric. A similar stability statement holds for data point clouds: the bottleneck
distance between the PDs of the families of Rips complexes built on two point
clouds—thought of as finite metric spaces—is bounded by twice the (Edwards,
1975) distance between the clouds (Chazal et al., 2009). Thus, a smoothly varying
point cloud will have continuously varying persistence diagrams, and PDs will be
insensitive to noise. These results establish PH as a stable measurement, capturing
shape-based differences in data, and justify the use of certain statistical and ML
methods in conjunction with PDs.

Although numerous studies have explored the statistics of persistence diagrams
(Mileyko et al., 2011; Munch et al., 2015; Turner et al., 2014), there are some
peculiarities of Per as a metric-measure space that should give pause. For instance,
the average of two diagrams need not be unique if the optimal matching between
points in those diagrams is not unique (Mileyko et al., 2011). Also, the calculation
of both the bottleneck and the q-Wasserstein distances relies on finding optimal
matchings between points in the two diagrams by solving a bipartite graph matching
problem (Edelsbrunner and Harer, 2010, Chap. VIII.4). Classical algorithms to
do this (Hopcroft and Karp, 1971; Kuhn, 1955) quickly become impractical as
the number of points in the diagrams grows. However, recent work toward faster
algorithms is promising to lower this computational hurdle (Kerber et al., 2016).

6 Coordinatizing Diagrams

In addition to the limitations imposed by the computational complexity of comput-
ing the bottleneck and Wasserstein distances, many well-established modern ML
protocols rely on structure that Per doesn’t have. For instance, common implemen-
tations of support vector machines (Burges, 1998), neural networks (Zhang, 2000),
and decision tree classifiers (Safavian and Landgrebe, 1991) all rely on vector space
and/or inner product structure. Thus, much effort has been made to “coordinatize”
persistence diagrams and map them into spaces with additional structure (Adams
et al., 2016; Adcock et al., 2016; Bubenik, 2015; Carrière et al., 2015; Di Fabio
and Ferri, 2015; Reininghaus et al., 2015). Figure 9 shows illustrations of several of
these “homological feature vector” transformations of PDs. Some comparisons of
the potential advantages and disadvantages between these methods have been made
in the literature (Adams et al., 2016) and so this section highlights some of the
concerns relevant to any approach that aims to strengthen the connection between
ML and PH by adding structure to PDs.

One simple but effective way to generate a vector from a PD is to superimpose
a grid over a region above the diagonal and to each grid element assign the
number of homological features it contains (Fig. 9a). Despite its simplicity, this
binning procedure was successfully exploited to perform regression analysis on
collections of PDs derived from brain artery structure data (Bendich et al., 2016),
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Fig. 9 Illustrations of coordinatizations of PDs. (a) Original PD with superimposed grid rep-
resenting coordinates of an integer valued vector. (b) Persistence surface derived by summing
Gaussians centered on persistence points and negative Gaussians centered on pairs mirrored over
the diagonal. (c) Persistence images gotten by integrating a weighted sum of Gaussians centered
on persistence pairs over grid elements in the birth-persistence plane. (d) Persistence landscapes
essentially summarizing for each .x; y/ above the diagonal, the number of homological features
.b; d/ with b � x and d � y, i.e., persistence pairs which are above and the to left of the point
.x; y/ counted by ˇx;y

n

and thereby gave new insights into structural changes associated with arterial aging.
That said, the stability enjoyed by PDs is lost by the binning vectorization: An
arbitrarily small perturbation of the underlying data may alter the birth or death of a
homological feature so that the corresponding point in the PD moves from one bin
to another. Moreover, in light of the discussion in Sect. 5 regarding the emergence of
points from the diagonal, it is apparent that perturbations creating new homological
features will also introduce a discontinuity.

A solution to the discontinuity introduced by finite-persistence points moving
between bins, which has been explored by a number of authors (Adams et al.,
2016; Donatini et al., 1998; Ferri et al., 1997; Reininghaus et al., 2015), is to
replace points in a persistence diagram with continuous functions defined on the
plane. By summing these functions over the points of finite-persistence, a PD is
transformed into a surface. For example, several studies have proposed replacing
each persistence pair, .b; d/, with a 2D Gaussian function

G.x; y/  exp..�.b � x/2 � .d � y/2/=/;

centered at .b; d/, with spread controlled by  . The resulting surface may be viewed
as a point in a function space (Reininghaus et al., 2015), or may be further converted
into a finite-dimensional vector by assigning to each element of a superimposed grid
the integral of the surface over that grid element (Adams et al., 2016).

Without further modification these transformations into vector spaces still lack
stability because of the emergence of points from the diagonal. Several approaches
to restore stability have been proposed. For example, in Reininghaus et al. (2015)
PDs are stably mapped to a kernel, which can then be fed to a number of different
ML methods such as kernel SVM (Hofmann et al., 2008), by considering inner
products between smooth surfaces which vary continuously with persistence pairs
and which vanish along the diagonal. These surfaces are constructed by taking the
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sum of Gaussians centered on persistence pairs along with negative Gaussians on
persistence pairs that have been mirrored across the diagonal (Fig. 9b). Similarly, in
Adams et al. (2016), a transformation to a finite-dimensional vector referred to as a
persistence image was shown to maintain stability for certain measures of distance
between diagrams provided that the sum of Guassians is weighted by a function that
vanishes along the diagonal (Fig. 9c). Finally, a functional summary of a PD called
a persistence landscape was proposed, and its stability and statistical properties
were analyzed, in Bubenik (2015) (Fig. 9d). This transformation maps a PD into
the normed vector space of functions f W ZC � R ! Œ�1;1�, which has many
desirable properties favorable to statistical analysis.

Each of the methods discussed in this section has been applied to both toy
and real data sets in conjunction with statistical and ML methods requiring more
structure than a measure of dissimilarity between diagrams. That said, the value of
PH and the effectiveness of the various PD transformations is decidedly problem
specific. Because the range of data-driven sciences gaining new insights by using
topological analysis methods is already broad and growing, it would be beneficial
to have a comparison study of the strengths, weaknesses, and appropriateness of
each method.
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Nonlinear Dynamical Approach to Atmospheric
Predictability

C. Nicolis

Abstract The principal properties of initial condition and of model errors along
with their repercussions on atmospheric predictability are reviewed. A general
nonlinear dynamics-inspired approach is developed, from which generic trends are
derived. The main ideas are illustrated on selected low-order models capturing the
principal qualitative aspects of the phenomena of interest.

Keywords Nonlinear dynamics • Stochastic processes • Predictability • Error
growth

1 Introduction

The variability of atmospheric and climate dynamics over a wide range of time
and space scales are well-established facts (Lorenz, 1984; Nicolis and Nicolis,
1987). A typical example is provided by the daily evolution of air temperature at
a particular location (Fig. 1). One observes small scale irregular fluctuations that are
never reproduced in an identical fashion, superimposed on the large-scale regular
seasonal cycle of solar radiation. A second illustration of variability pertains to the
much larger scale of global climate. All elements at our disposal show indeed that
the earth’s climate has undergone spectacular changes in the past, like the succession
of glacial–interglacial periods. Figure 2 represents the variation of the volume of
continental ice over the last million years as inferred from the evolution of the
composition of marine sediments in oxygen 16 and 18 isotopes. Again, one is struck
by the intermittent character of the evolution, as witnessed by a marked aperiodic
component masking to a great extent an average time scale of 100,000 years that is
sometimes qualified as the Quaternary glaciation “cycle.” An unexpected corollary
is that the earth’s climate can switch between quite different modes over a short time
(in the geological scale), of the order of a few thousand years.

A fundamental consequence of the aperiodicity of the atmospheric and climate
dynamics is the well-known difficulty to make reliable predictions. Contrary to
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Fig. 2 Evolution of the global ice volume on earth during the last million years as inferred from
oxygen isotope data

simple periodic or multiperiodic phenomena for which a long-term prediction is
possible, predictions in meteorology are limited in time. The most plausible (and
currently admitted) explanation is based on the realization that the atmosphere
displays sensitivity to the initial conditions: a small uncertainty in the initial data
used in a prediction model (usually referred as “error”) is amplified in the course of
the evolution (Lorenz, 1969). Such uncertainties are inherent in the very process of
experimental measurement. A great deal of effort is devoted in atmospheric sciences
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in the development of data assimilation techniques aiming to reduce them as much
as possible (Kalnay, 2003), but it is part of the laws of nature that they will never be
fully eliminated. Now, sensitivity to the initial conditions happens to be the principal
signature of deterministic chaos. The chaotic character of atmospheric dynamics is
by now a widely accepted fact, compatible both with the analysis of the available
data and the modeling of atmospheric phenomena. It is often referred as the butterfly
effect and is epitomized in the provocative and by now famous Lorenz’s statement
“Predictability: Does the flap of a butterfly’s wing in Brazil set a tornado in Texas?”
(Lorenz, 1993; Nicolis and Nicolis, 2009; Tsonis, 1992).

It is important to realize that much like experiment, modeling is also limited
in practice by a finite resolution (of the order of several kilometers) and the
concomitant omission of “subgrid” processes, e.g., local turbulence. Furthermore,
many of the parameters present are not known to a great precision. In addition to
initial errors prediction must thus cope with model errors, reflecting the fact that
a model is only an approximate representation of nature (Schubert and Schang,
1996; Tribbia and Baumhefner, 1988). This raises the problem of sensitivity of
atmospheric dynamics to the parameters present in the description of the different
processes.

If the dynamics were simple neither of these two types of errors would matter.
But this is manifestly not the case in the atmosphere, where nonlinear couplings,
bifurcations, and abrupt transitions are part of everyday reality. Initial and model
errors can thus be regarded as probes revealing the fundamental instability and
complexity underlying the atmosphere.

In this chapter the principal properties of initial condition and of model errors
are analyzed from a nonlinear dynamics perspective and their repercussions on pre-
dictability are assessed. We set up a general formulation applicable to wide classes
of situations, from which some generic trends can be derived. We subsequently
illustrate the main ideas on selected low-order models, i.e., models involving a
limited number of key variables aimed to capture the principal qualitative aspects of
the phenomena of interest.

2 Formulation: Minimal Case

As stated in the Introduction, modeling captures only a part of reality. We may
thus expect (Fig. 3) that if a model “lives” in a certain phase space spanned by a
set of variables which we will denote as x-variables and involves a certain set of
parameters �, then the full system we want to describe (to which we may refer as
“nature”) will

(a) “live” in an extended phase space spanned not only by x-type variables but
also by additional, y-variables not expressible straightforwardly in terms of the
x-variables;

(b) involve parameters �N whose values are different from those of the model
parameters �.
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Fig. 3 Schematic representation of phase spaces of the model and of the reference system
(“nature”)

Let us write the evolution laws of the model variables x D .x1; : : : ; xn/ in the
form

dx
dt

D f.x; �/ (1)

where f D .f1; : : : ; fn/ are, typically, nonlinear functions of x1; : : : ; xn. “Nature” will
then be described by an amended form of (1), in which some extra terms associated
with physical processes not accounted for by the model are incorporated. We first
limit ourselves for clarity to the case where model and “nature” span the same phase
space (i.e., they involve the same number of variables). We arrive then at evolution
equations for nature’s variables xN D .xN1 ; : : : ; xNn/ in the form (Nicolis, 2003)

dxN

dt
D fN.xN ; �N/

D f.xN ; �N/C �G.xN ; �N/ (2a)

where �G stands for the difference between the form of the full .fN/ and of the
model .f/ evolution laws.

The task of prediction consists in inferring from Eqs. (1)–(2a) the behavior of the
error u,

u.t/ D x.t/ � xN.t/ (2b)
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Clearly, a full answer to this problem for arbitrary values of the parameters � and
�N and for the most general forms of f and fN constitutes an impossible task. We
therefore focus on a more restricted version of the problem for which generic results
can be obtained, in which:

– The magnitude of initial error ju0j is small.
– The values of model and nature parameters are close,

� D �N C ı�; jı�=�N j 	 1

– The evolution laws fN and f are close, in the sense that

� D �ı�; � being finite

Subtracting Eq. (2a) from (1), expanding fN , �N around f, � and keeping only linear
terms on the grounds of the above assumptions one arrives then at a closed equation
for the linearized evolution of the error in the form

du
dt

D J � u C ˚ı� (3)

where J is the Jacobian matrix

J D .@f=@x/N (4a)

and ˚ is the model error source term,

˚ D .@f=@�/N � �GN (4b)

To solve Eq. (3) we first write the formal solution of Eq. (1) as

x.t/ D Ft.x0; �/ (5)

where x0 is the initial state and Ft a smooth function such that for finite t and for
each given x0 (and �) there exists only one x.t/. Decomposing x0 and x.t/ as in
Eq. (2b), expanding Ft around x0 and neglecting terms beyond the linear ones in
ju0j one is led to

u.t/ D
@Ft.x0; �/
@x0

� u0

D M.t; x0/ � u0 (6)

Here M has the structure of an n � n matrix and is referred to as the fundamental
matrix (Nicolis, 2003; Nicolis and Nicolis, 2012). An analysis of this equation
in systems giving rise to chaotic dynamics shows that in the limit of long times
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ju.t/j increases exponentially along certain phase space directions, and decreases
exponentially or follows a power law in t along the remaining ones. To express
the privileged status of this exponential dependence it is natural to consider the
logarithm of ju.t/j=ju0j divided by the time t (Eckmann and Ruelle, 1985),

.x0/ D
1

t
ln

ju.t/j
ju0j

(7)

in the double limit where ju0j tends to zero and t tends to infinity. A more detailed
description consists in considering perturbations along the different phase space
directions and evaluating the quantities j.x0/ i; j D 1 : : : n corresponding to them.
We refer to these quantities as the Lyapunov exponents . They can be ordered in size,
1 � � � � � n and for a generic initial perturbation .x0/ in (7) coincides with 1.
It can be shown that the j’s are intrinsic properties of the dynamical system at hand,
in the sense that they are independent of the way one measures distances in phase
space.
One can now check straightforwardly that the formal solution of Eq. (3) is given by

u.t/ D M.t; 0/ � u0 C ı�

Z t

0

dt0M.t; t0/˚.t0/ (8)

The first part of this expression features the fundamental matrix M, introduced
in Eq. (6), which governs the propagation of the initial error up to the running
time t. The second part arises entirely from model deficiencies. It is the sum total of
contributions in which deficiencies arising at a time t0 between 0 and t (which may
be thought of as “effective” errors) are propagated from t0 to the running time t by,
once again, the fundamental matrix M.

The principal quantity to be evaluated using the above formalism is the mean
error ju.t/j or, more conveniently the mean quadratic error u2.t/, averaged over
both the attractor of the reference system and the initial errors. Different cases may
be envisaged as discussed below.

3 Growth of Initial Errors in Absence of Model Error

In absence of model error the right-hand side of Eq. (8) reduces to its first term.
Figure 4 depicts the resulting evolution of the mean instantaneous error for the
logistic map

xnC1 D 4�xn.1 � xn/ (9)

a prototypical discrete-time dynamical system giving rise to chaotic dynamics, to
which large classes of continuous-time dynamical systems can be mapped under an
appropriate transformation (Schuster, 1988).
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Fig. 4 Time dependence of
the mean error for the logistic
map at � D 1 starting from
100,000 initial conditions
scattered on the attractor. The
mean value of the initial error
is � � 10�4

This type of evolution actually turns out to be universal, shared by all systems
giving rise to deterministic chaos. Three different stages may be distinguished
(Nicolis, 1992): an initial (short time) “induction” stage during which errors grow
exponentially while remaining small; an intermediate “explosive” stage displaying
an inflexion point situated at a value t� of t depending logarithmically on the norm
� of the initial error, t� � ln.1="/ where errors suddenly attain appreciable values;
and a final stage, where the mean error reaches a saturation level of the order of
the size of the attractor and remains constant thereafter. The mechanism ensuring
this saturation is the reinjection of the trajectories that would first tend to escape
owing to the instability of motion, back to a subset of phase space that is part of the
attractor.

The first stage reflects local properties driven by the largest Lyapunov exponent
max [cf. Eq. (7)] and is fully accounted for by the linearized approach [first term
in Eq. (8)]. In contrast, the remaining two stages depend on global properties. In
particular, in the second stage, the linear dependence of mean quadratic error in time
indicates diffusive propagation of the error on the attractor. Finally, in the saturation
stage errors scan the structure of the attractor as a whole. Clearly, beyond a time
horizon of the order of �1

max and, a fortiori, beyond the time t� of the inflexion point
in Fig. 4 errors attain a macroscopic level and predictions become random.

In actual fact, when confronted with the problem of predicting the evolution of a
concrete system, the observer is led to follow the growth of a (at best) small but finite
error over a transient, usually limited period of time. In this context the quantity of
interest is a finite time version of Eq. (7) which now depends on both t and x0, and
the averaged error becomes

hu2t .�/i D �2
Z

dx0 	s.x0/ expf2tmax.t; x0/g (10)
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where 	s.x0/ is the invariant probability distribution on the attractor, showing that
error growth amounts to studying, for finite times, the average over the attractor
of an exponential function h expf2tmax.t; x0/gi. To recover for such t’s the picture
of a Lyapunov exponent-driven exponential amplification of the error one needs
to identify (10) with the exponential of the average of max.t; x0/, which is the
conventional Lyapunov exponent max. In a typical attractor this is not legitimate
since the expansion rates are position-dependent, in which case the average of
a nonlinear function like the exponential in Eq. (10) cannot be reduced to the
exponential of an averaged argument. This property reflects the fluctuations to which
the local Lyapunov exponents are subjected.

Writing, in analogy with (10),

hu2t .�/i D �2 expf2teffg (11)

one shows that eff is t-dependent, starting at t D 0 with a value significantly larger
than max . This entails that error growth is neither driven by the Lyapunov exponent
nor follows an exponential law but behaves, actually, in a superexponential fashion.
This property further complicates the problem of prediction of complex systems
(Nicolis et al., 1995).

In a multivariate system, in addition to the norm ju.t/j of the error vector it is
important to have information on the directions along which error is likely to grow
most rapidly. In general the directions corresponding to the different expansion
and contraction rates are not orthogonal to each other. As it turns out this non-
orthogonality provides an additional mechanism of superexponential error growth
beyond the one due to the variability of the local Lyapunov exponents, related to
the fact that certain linear combinations of perturbations or errors may grow more
rapidly than perturbations or errors along a particular direction. In a different vein,
a multivariate dynamical system possesses several Lyapunov exponents, some of
which are negative. For short times all these exponents are expected to take part
in the error dynamics. Since a typical attractor associated with a chaotic system is
fractal, a small error displacing the system from an initial state on the attractor may
well place it outside the attractor. Error dynamics might then involve a transient
prior to the re-establishment of the attractor, during which errors would decay in
time.

An important class of multivariate systems are spatially extended systems. Here
it is often convenient to expand the quantities of interest in series of appropriate
basis functions the members of which represent the different spatial scales along
which the phenomenon of interest can develop and, in particular, the different scales
along which an initial error can occur. The ideas outlined above imply, then, that the
predictability properties of a phenomenon depend in general on its spatial scale.

In summary, error growth dynamics is itself subjected to strong variability since
not all initial errors grow at the same rate. As a result the different predictability
indexes such as max or eff, the saturation level, and the time t� to reach the
inflexion point provide only a partial picture, since in reality the detailed evolution
depends upon the way the different possible error locations and directions are
weighted. This variability is illustrated in Fig. 5 depicting the transient evolution
of the probability distribution of the error in a model system.
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Fig. 5 Snapshots of the probability density of the error in a three-variable model system for six
different stages of the evolution, (a) to (f). Time is normalized to the value corresponding to the
inflexion point t� of the mean error curve (t� � 20 time units)

4 Growth of Model Errors

We start with the case where initial errors are absent. The right-hand side of Eq. (8)
reduces then to its second term. For smooth functions ˚.t/ as encountered in
typical situations the integral over time should behave proportionally to t for short
times, entailing that the mean square error should vary as t2 (Nicolis, 2003). The
proportionality factor multiplying this dependence is just the average of ˚ at t D 0

over the invariant distribution of the attractor of the reference system (the “nature”),
multiplied by the error in the parameter ı�. Since the action of the fundamental
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matrix M.t; t0/ is not manifested in this time limit, instability of motion and the
largest Lyapunov exponent in particular do not play here a crucial role. This is to
be contrasted with what happens in the growth of initial errors considered in the
previous section.

To analyze the later stages of model error growth one needs to augment Eq. (2a)
by nonlinear terms in u and ı�. Simulations on model systems show that error
growth follows then, much like initial error, a curve similar to that of Fig. 4.
Interestingly, the saturation level attained is finite, practically independent of the
smallness of ı�, as it reflects the average of typical quadratic distances between any
two points of the reference attractor: as time grows the representative points of the
reference and approximate systems become increasingly phase shifted, even though
the attractors on which they lie may be quite close. We have here a signature of
the zero Lyapunov exponent, associated with the borderline between asymptotic
stability and instability. Notice that similarly to initial error, the dynamics of
individual (non-averaged) model errors are subject to high variability in the form
of intermittent bursts interrupted by periods of low error values, giving rise to error
probability distributions similar to those of Fig. 5.

Let us finally consider the behavior of the error when both initial and model
errors are present (Nicolis et al., 2009). We notice that the two terms in the right-
hand side of Eq. (8) vary according to different time dependencies (essentially,
exponential and linear) and start with different initial values (u0 and zero). One
may thus legitimately expect that there should typically be a crossover time where
the two contributions, reflecting the role of initial and of model error, respectively,
will match each other. Furthermore, since neither of these terms has a definite sign
an extremum on ju2.t/j versus time is not to be excluded.

We now illustrate the validity of these conjectures on Lorenz’s three-mode
truncation model of the Boussinesq equations of thermal convection in a horizontal
fluid layer heated from below (Lorenz, 1963), historically one of the very first
examples of nonlinear dynamical systems generating deterministic chaos:

dx

dt
D .�x C y/

dy

dt
D rx � y � xz

dz

dt
D xy � bz

Here x, y, z are normalized Fourier mode amplitudes of temperature and bulk
velocity. Model error is accounted here by slight variations of parameter r, while
an initial error of 10�4 sampled from a uniform distribution is applied to each
of the three variables. Figure 6 summarizes the main results. Since model errors
are initially zero, the initial stage of the dynamics of global (initial plus model)
error is bound to be dominated by the growth of initial condition errors. For long
times both initial and model errors attain a finite level, depending, as mentioned
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Fig. 6 Time dependence of the mean quadratic error of the Lorenz model (Lorenz, 1963) for
parameter values giving rise to deterministic chaos, starting from 105 initial conditions scattered
on the attractor in the presence of initial condition errors (dashed line), model errors (dotted line),
and both initial condition and model errors (full line). t denotes the crossover time whereby both
sources of errors attain equal magnitudes. The initial error � D 10�4, sampled from a uniform
probability distribution, is applied to each of the three variables. Parameter values are b D 8=3,
 D 10, r D 28, and the model error in r is 1:5� 10�4

earlier, on the characteristics of the attractor of the reference system. Between these
two extremes one witnesses a crossover between the growth of the two types of
error occurring at some intermediate time t. Beyond this time the classical butterfly
effect is then superseded by an effect reflecting the sensitivity of the evolution laws
themselves toward small errors. This constitutes an additional irreducible limitation
in the prediction of complex systems.

5 The Role of Unresolved Scales

We next outline an extension of the formulation developed in the preceding
sections accounting for the role of the unresolved scales. We suppose that a more
comprehensive and satisfactory description of the processes to be modeled, to which
we already referred in Sect. 2 as “nature,” is afforded by an enlarged form of Eq. (1)
displaying two types of variables: a set xN D fxN1 : : : xNng spanning the same phase
space %n as the model variables x, as well as an extra set yN D fyN1 : : : yNmg spanning
an m-dimensional phase space %m. Furthermore, in addition to the parameters
�, which now take (generally unknown) values �N , there exists an extra set of
parameters �. Nature’s phase space velocity is thus a vector in the nCm dimensional
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space %n ˝ %m consisting of a part vN 2 %n and a part wN 2 %m, such that (Nicolis,
2004)

dxN

dt
D vN.xN ; yN ; �N ; �/ (12a)

and

dyN

dt
D wN.xN ; yN ; �N ; �/ (12b)

It will be assumed that the solutions of Eqs. (12a) and (12b) satisfy sufficiently
strong ergodic properties entailing, in particular, that in the limit of long times
they remain confined in certain attracting invariant sets of the corresponding phase
spaces.

We first derive from the above equations an expression for the behavior of the
mean quadratic error in %n subspace, defined by the Euclidean norm

hu2it D h.x � xN/
2i (13)

Here the brackets denote the average over an ensemble of initial conditions, taken
to be identical for both x and xN spanning nature’s attractor. To this end we write
the formal solution of (1) and (12a) as

x.t/ D x.0/C

Z t

0

d� fŒx.�/; ��

xN.t/ D xN.0/C

Z t

0

d�vN ŒxN.�/; yN.�/; �N ; �� (14)

Subtracting these relations and assuming that there is no error arising from
uncertainties in the initial conditions, x.0/ D xN.0/, we get from (14),

hu2it D

Z t

0

d�
Z t

0

d� 0hŒvN.�/ � f.�/�ihŒvN.�
0/ � f.� 0/�i (15)

This equation features the time correlation function of the excess phase velocity of
the system compared to nature in the %n subspace. If this quantity is not proportional
to a delta function in � � � 0—and this will be so as long as one keeps track of
the deterministic origin of the quantities concerned—a Taylor series expansion in t
can be performed straightforwardly in Eq. (15) in the regime of short times. To the
dominant order this leads to

hu2it D t2
Z

dxN.0/dyN.0/	Ns ŒxN.0/; yN.0/�

�fvN ŒxN.0/; yN.0/; �N ; �� � fŒxN.0/; ��g
2 (16)
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where 	Ns is the invariant density on nature’s attractor. Since the factor multiplying
t2 in (16) is nonvanishing we conclude that the mean quadratic error exhibits a
universal t2 behavior, found already in Sect. 4 in the case where the model and nature
span the same phase space. This behavior would be transformed to a proportionality
in t if the vN � f’s are delta correlated as it is often assumed in dealing with certain
types of model error. This point is taken up in more detail in Sect. 7.

We emphasize that our formulation holds beyond the t2 regime. In particular,
Eq. (15) is an exact expression valid for all times. Since the projection of nature’s
attractor in %n is different from the model attractor, the behavior described in
Eq. (15) corresponds actually to a transient evolution prior to reaching the model
attractor. On the other hand, vN is the %n projection of the tangential velocity on
nature’s attractor. When both model and nature span the same phase space, x,
�, and f can be developed around xN , �N , and vN . Then the difference f � vN

gives rise to the model’s Jacobian matrix evaluated on nature’s attractor acting
on the error vector u, plus an inhomogeneous term. This introduces a coupling
between error dynamics and the Lyapunov exponents as in Sects. 2 and 3. Now,
as seen clearly from Eq. (16), hu2i depends for short times on the structure of the
support of the invariant density 	Ns . This depends, in turn, explicitly on the attractor
dimensionality, but only weakly on the Lyapunov exponents. To identify a more
direct connection with Lyapunov exponents one needs to specify the way the yN

variables are coupled to the xNs. This problem will be addressed below. Specifically,
we analyze a form of Eqs. (12) where yN represents a set of variables evolving on
a fast time scale compared to xN . As the model equations are limited solely to the
slow variables, the model error is expected to depend on the way the elimination of
the fast variables is carried out. Examples of the situation just described include the
parameterization of radiative properties of clouds or of the pressure field by suitable
diagnostic relations.

To formulate the above idea quantitatively we write Eqs. (12a)–(12b) in the form

dxN

dt
D vN.xN ; yN ; �N/ (17a)

and

�
dyN

dt
D wN.xN ; yN ; �N ; �/ � << 1 (17b)

Under certain conditions of smoothness of vN and wN , a classical theorem of
nonlinear analysis due to Tikhonov (Wasow, 1965) asserts that to the dominant order
in � one can set the left-hand side of (17b) to zero. Then the right-hand side reduces
to an algebraic equation (the “diagnostic” relation):

wN.xN ; yN ; �N ; �/ D 0 (18a)
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which defines the “slow manifold” S in %n ˝%m. Using this relation one can express
yN as a function of xN provided that certain suitable invertibility conditions are
satisfied:

yN D h.xN ; �N/ (18b)

Substituting into Eq. (17a) one obtains
�

dxN

dt

	

S

D vN ŒxN ;h.xN ; �N/; �N �  f.xN ; �N/ (19)

where the subscript S stands for the projection on the slow manifold and f will play
the role of the phase space velocity of the model equations:

dx
dt

D f.x; �/ (20)

We are interested in the error generated in the %n subspace. Setting

x D xN C u; h.xN/ D yN C e; � D �N C ı�

we write

du
dt

D �vN.xN ; yN ; �N/C f.xN C u; �N C ı�/ (21)

The next step is to expand f in Taylor series in u and ı�, vN in yN �hN.xN ; �N/, and
keep first order terms. This is legitimate as long as these excess quantities remain
small. While this is so for the u and ı� expansions—at least in the short time
regime—it may break down for the yN expansion if the inversion of the diagnostic
relation (18a) produces turning points in the function h of Eq. (18b) (Wasow, 1965).
The excess of yN over h can then become large during a short time interval whose
duration is determined by �, owing to the discontinuous jumps that the phase space
trajectory is bound to undergo once it reaches these turning points. It can be shown
(Andronov et al., 1966) that this phenomenon is a generic mechanism giving rise
to relaxation oscillations. Barring for the time being such deviations we obtain
from Eq. (21)

du
dt

D

�
@f
@x

	

N

u C

�
@f
@�

	

N

ı�

�
@vN

@yN
ŒyN � h.xN ; �N/� (22)

where the last term in the right-hand side accounts for the deviations of the full
trajectories from the slow manifold. If the evolution is started on nature’s attractor,
the sum of the last two terms in Eq. (22) can be regarded as a well-defined function
of time,
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˚.t/ D

�
@

@�
fŒxN.t/; ��



�N

ı�

�
@vN ŒxN.t/; yN.t/�

@yN
fyN.t/ � hŒxN.t/; �N �g (23)

Only the first term of this function is accessible on the basis of information
available from the model equations. Nevertheless, on inspecting the second term
of Eq. (23) one recognizes one of the off-diagonal blocks of nature’s Jacobian
matrix. This suggests that, for the class of systems considered, there is a non-trivial
interference between error dynamics in x space and the extra variables not retained
in the model equations.

Equation (22) can be formally solved by using the fundamental matrix M.t; t0/,
introduced in Sect. 2, associated here with the model Jacobian matrix @f=@x
evaluated on nature’s attractor. Remembering that u.0/ D 0 we obtain,

hu2it D

Z t

0

d� 0

Z t

0

d� 00M.t; � 0/M.t; � 00/ � h˚.� 0/˚.� 00/i (24)

This expression is reminiscent of the formulation of model error when the model
and nature span the same phase space (see Sect. 4). To determine the short time
behavior the right-hand side can be expanded in powers of t. If the ˚’s are not delta
correlated, this will yield

hu2i � t2h˚2.0/i (25)

where the average is taken over the invariant probability density on nature’s attractor.
To this order the model’s Lyapunov exponents are not intervening, since M is set
equal to unity. They will start playing at order t3. We also notice that if ˚.t/ is
modeled as a Gaussian white noise process, the presence of a delta function in
Eq. (24) will remove one t factor and one will obtain instead of Eq. (25) a mean
quadratic error proportional to time. From the standpoint of our approach, this
limit appears legitimate if the y variables induce a very weakly correlated chaos
in nature’s evolution. There is evidence that this happens in high-dimensional phase
spaces descriptive of spatially extended systems.

As an illustration of the general setting summarized above we consider a generic
atmospheric model of a scalar meteorological variable z around a latitude circle
(Lorenz and Emmanuel, 1998),

dzi

dt
D .ziC1 � zi�2/zi�1 � zi C F .i D 1; : : : ; 2k/ (26a)

where i are equidistant grid points along the circle and F is a forcing parameter. We
define coarse variables xj as averages of zi’s over two adjacent grid points, and fine
scale variables as differences of such zi’s. Introducing a new, coarser grid by lumping
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two successive initial grid points into a single new one and neglecting variability
within this grid leads then to the model equations for the x (coarse) variables

dxi

dt
D
�xiC1

2
� 1

�
xi �

x2i�1
2

C F .i D 1; : : : ; k/ (26b)

We take k D 8 and F D 10 or F D 12. In both cases the full, as well as the
model, systems possess chaotic solutions. Furthermore, the spectrum of Lyapunov
exponents of the reference system (“nature”) for F D 10 is bounded, both from
below and from above, by the one for F D 12. Finally, the model’s largest and
smallest Lyapunov exponents are less (in absolute value) that the corresponding
exponents of nature by more than a factor three.

Figure 7a depicts the global behavior of the mean quadratic error, Eq. (24), as
evaluated numerically using the reference and model equations (26). Following an
initial increase, an inflexion point is rapidly reached and subsequently the error
saturates after about one time unit at a plateau whose value is higher the larger
the parameter F.

A more detailed view of the early stages of the increase is provided in Fig. 7b.
The full and dashed lines stand, respectively, for the results of the full numerical
evaluation and for those of the evaluation of the initial t2 regime given by the
approximate expression of Eq. (25). We see that the lifetime of this latter regime
becomes shorter in the case of F D 12, for which the most negative Lyapunov
exponent of nature exceeds in absolute value the corresponding exponent obtained
in the case F D 10. This confirms the existence of connections between the behavior
of the model error and the indicators of the underlying dynamics. Finally, the dotted
lines represent the contribution combining the t2 and t3 terms.

6 Error Dynamics in Extended-Range Forecasts

The possibility to produce reliable atmospheric forecasts not only for short lead
times but also for time periods up to a season or a year is of obvious fundamental
interest and practical concern. An early attempt at addressing the problem and
exploring the physics behind was reported in an important paper by Shukla (1981)
in which extended-range forecasts were formulated in terms of time averages. This
author raised then the issue of the predictability of time averages and stressed
its differences with classical predictability involved in ordinary weather forecasts,
noticing that they are determined by different physical processes. He carried out
60-day integrations of a general circulation model starting with different initial
conditions and evaluated the variance of the errors among the first 30-day averages,



Nonlinear Dynamical Approach to Atmospheric Predictability 409

a

b

Fig. 7 (a) Global behavior of the mean quadratic error between the solutions of Eqs. (26a)
and (26b) with k D 8, F D 10 (full line), and F D 12 (dashed line). (b) Short time behavior
of hu2i (full lines), the initial t2 regime (dashed line), and the combination of both t2 and t3 (dotted
line). The number of realizations used for the averaging is 104
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concluding that predictability was sufficiently secured up to such periods. An open
question left in these investigations was, what determines the most appropriate
averaging periods for time-averaged predictions.

More recently, thanks to advances in data observing and processing and to
increasing computer power long-lead forecasts of certain properties such as tem-
perature and precipitation are routinely issued (Molteni et al., 2011). In this context
the relative roles of time averaging and ensemble forecasting in the quality of a
seasonal forecast have been studied (Smith et al., 2014). Intrinsic limitations arising
from widely varying local predictability and from the occurrence of transitions have
also been pointed out and analyzed using a low-order model (Palmer, 1993).

In the present section a nonlinear dynamics perspective of time averaging
associated with extended-range forecasts is proposed (Nicolis, 2016). We start
with the laws governing the evolution of small errors arising from incomplete
specification of the initial conditions or from imperfect modeling as outlined in
the preceding sections. We derive general expressions for the corresponding errors
at the level of the time averages and analyze them in a number of representative
situations, with emphasis on the role of the complexity of the underlying dynamics.
The results will reveal some unexpected connections between the averaging period
and the magnitude of the associated error, suggesting optimal strategies for the
choice of this period depending on the intrinsic properties of the system of interest
and the values of the parameters involved.

Let x D .x1; : : : ; xn/ be a set of variables describing the state of the atmosphere
at a certain level of resolution. Their instantaneous values x.t/ will depend on
the structure of the evolution laws, on the initial state x0 and a set of parameters
�1 : : : ; �m which, depending on the case, may account for environmental forcings
or for the effect of unresolved scales. In a deterministic setting one expects a
dependence of the form of Eq. (5), where Ft is a smooth, one-valued mapping of
x0 on x.t/.

As stressed throughout the preceding sections, the growth of small errors arising
from the finite precision in the initial state or from imperfections inherent in
modeling is responsible for intrinsic limitations in the predictability of the future
states of a system. To formulate this problem for the purposes of the present section
at the level of description afforded by Eq. (5) we introduce the perturbed trajectory

y.t/ D Ft.x0 C �; �C ı�/ (27)

assuming for the time being that both the reference and the perturbed systems span
the same phase space. The task of “ordinary” prediction consists then in inferring
from Eqs. (5) and (27) the behavior of the error u.t/,

u.t/ D y.t/ � x.t/ .u0 D �/ (28)

under the choice of an appropriate norm as, e.g., the Euclidean norm ju.t/j of the
vector u.t/.



Nonlinear Dynamical Approach to Atmospheric Predictability 411

As stated in the beginning of this section, in many instances one is led to inquire
about the predictability of the average value of an observable over a time interval T ,

xT D
1

T

Z T

0

dtx.t/ (29)

Clearly, the predictability properties of xT will depend on the behavior of the
quantity

jujT D
1

T

ˇ̌
ˇ̌
Z T

0

dt.y.t/ � x.t//

ˇ̌
ˇ̌ (30)

An expression for the short time behavior of u.t/ and jujT in the limit of small
initial errors and small deviations ı� of parameter values can be obtained by
expanding in � and ı� and retaining the first non-trivial terms:

u.t/ D
@Ft.x0; �/
@x0

� � C
@Ft.x0; �/

@�
ı� (31)

where the quantity

M.t; x0/ D
@Ft.x0; �/
@x0

is the fundamental matrix of the system introduced in Sect. 2. As seen in Sects. 2
and 3, in the limit of long times ju.t/j increases exponentially along the unstable
directions of the tangent manifold of the reference trajectory xt on x0 and decreases
exponentially or follows a power law along the stable directions. These directions
are related, in turn, to the eigenvalues and eigenfunctions of time-ordered prod-
ucts of M over the interval .0; t/.
Combining (30) and (31) we obtain the short time behavior of the time average error,

jujT D
1

T

ˇ̌
ˇ̌
Z T

0

dtf.M.t; x0/ � � C
@Ft.x0; �/

@�
ı�g

ˇ̌
ˇ̌ (32)

Expressions (29)–(32) invite the following comments:

A. In Absence of Parametric Model Error .ı� D 0/

(i) If the dynamics displays sensitivity to the initial conditions, then in the short
time regime [Eq. (32)] jujT averaged over an ensemble of trajectories on the
attractor is expected to increase. Its growth is, however, slower than the one of
the instantaneous error (Buizza and Leutbecher, 2015; Nicolis, 2016).

(ii) In the limit T ! 1 the linearized approach fails. On the other hand,
Eq. (30), which remains valid, shows that the long time average error is just the
difference of the statistical averages of two trajectories of a dynamical system
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emanating from two different initial conditions. In an ergodic system where all
trajectories span the full phase space available—as expected to be the case for
the atmospheric dynamics—this difference is bound to tend to zero,

jujT ! 0 as T ! 1 (33)

Combining with point (i) above, we conclude that there is bound to exist
then an averaging time T� at which jujT becomes maximum. This is at first
sight counter-intuitive, as one would tend to believe that increasing T’s lead to
smoother and hence more predictable records.

(iii) For stable dynamical systems jujT is expected to decay in a basically mono-
tonic fashion, possibly with a slight modulation around a mean envelope.

B. In Presence of Parametric Model Error .ı� ¤ 0/

Owing to the contribution in ı� in Eq. (32), jujT is expected to grow for short T’s.
On the other hand, in the limit T ! 1 juj1, as deduced from Eq. (30), will
typically settle at a value of O.jı�j/, as the reference and the perturbed trajectories
will span two different attractors. The existence or not of a maximum of jujT at
some value T� will depend then on the initial slope of the ı�-part of Eq. (32), the
value of initial error j�j and the value of jı�j. As we saw in Sect. 4, in a continuous-
time system model error due to parametric uncertainty grows linearly with time t
in the short time regime (Nicolis, 2003). At the level of the averages this linear
t-dependence which we write as ˛t will give rise to a T-dependence in the form
.1=T/.˛T2=2/ D ˛T=2. In other words, averaging reduces the initial growth rate of
model errors by a factor of 2.

We now illustrate the approach to the predictability of time averages summarized
above on two representative low-order models:

– Lorenz’s 3-mode truncation of the Boussinesq equations of thermal convection
(Lorenz, 1963) introduced already in Sect. 4,

dx

dt
D .�x C y/

dy

dt
D rx � y � xz

dz

dt
D xy � bz .model I/

– Lorenz’s low-order atmospheric model (Lorenz, 1984).

dx

dt
D �ax � y2 � z2 C aF

dy

dt
D �y C xy � bxz C G

dz

dt
D bxy C xz � z .model II/
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Fig. 8 Dependence of the
Euclidean norm of the mean
error (full lines) and its
standard deviation (dashed
lines) on the averaging period
T for the Lorenz models (a)
I and (b) II. An initial error
� D 0:001 sampled from a
uniform probability
distribution varying between
�0:5 and 0:5 is applied to the
x component. Parameters are
b D 8=3,  D 10, r D 28

(model I) and a D 0:25,
b D 6, F D 16, G D 3

(model II). The number of
ensembles is 104

where x, y, z refer now to the average wind velocity and its spatial variability and
F, G are forcing parameters.

Figure 8a, b depicts the dependence of the Euclidean norm of the mean error
uT (full lines) and its standard deviation (dashed lines) on the averaging time T
for models I(a) and II(b), averaged over 10,000 ensembles, for an initial error in
the x component of � D 0:001 multiplied by a random number sampled from a
uniform distribution in the interval Œ�0:5;C0:5�. We use standard parameter values
(see caption) for which the values of the positive Lyapunov exponent max are 0.92
for model I and 0.56 for model II. In both cases a maximum is observed at some
value of averaging time, illustrating the ubiquity of this property in unstable systems
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giving rise to deterministic chaos as argued on very general grounds in this section.
The high variability around the mean already encountered in connection with Fig. 5
is also confirmed. Notice that the value of T at maximum is larger for model II
compared to model I, owing presumably to the relative magnitudes of the positive
Lyapunov exponents as a result of which in model II the takeoff time of the error is
longer than in model I.

7 Can Prediction Errors Be Controlled?

Prediction is one of the main objectives of scientific endeavor. As seen in the preced-
ing sections, the possibility to accomplish this task properly may be compromised
by the presence of irreducible sources of errors. A natural question to be raised
is, then, to what extent a predictive model can be augmented by an appropriate
control algorithm allowing one to keep in check, to the extent of the possible, the
development of errors that would tend to reach an unacceptable level.

There exists as yet no comprehensive answer to this question. A growing trend
is to model error source terms by stochastic forcings of different kinds, to be added
to the model equations. This procedure is especially tempting when error source
terms arise from the generally poor accounting of processes not directly expressible
in terms of the model variables, as is the case of phenomena evolving on short
time and space scales that are not resolved by the model at hand.

As pointed out earlier there exist actually two kinds of predictability indices,
pertaining to the short time behavior and to the saturation level of the error.
Furthermore, in a complex system one should not limit the predictability analysis to
the mean error but should address the variability around the mean as well. Typically,
a control in the form of a stochastic forcing tends to enhance the variability of the
processes involved as compared to that predicted by the model and thus to bring
it closer to the natural variability. On the other hand, in the short time regime it
enhances mean error and hence deteriorates the model performance. As regards the
saturation level, we will see in this section that its action is system dependent. There
exists a range of parameters where both mean error and variability can be corrected
in the desired sense, but this is only one out of many possibilities. In short, the trends
are not only non-universal but are also in many cases conflicting about the desired
goals (Nicolis, 2005).

Our stating point are Eqs. (12a)–(12b). The forecasting model is a projected
version of these equations whereby the yN variables are expressed in terms of the xN

ones by the diagnostic relations (18b),

y0N D h.xN ; �N/ (34)

The evolution of the remaining x variables is given by

dx0

dt
D f.x0; �/ (35a)
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where the phase space velocity vector f

f D vN.x;h.x/; �/ (35b)

and, in addition, the parameter � is given a value generally different from �N . This
implies, in particular, that the model variables are not necessary in a one-to-one
correspondence with the xN “nature” variables but may be complex combinations
of them.

In what follows it will be assumed that vN and f differ (in norm) by a small
quantity:

vN.xN ; yN ; �N/ D f.x; �/C �G.xN ; yN ; �N/ j�j << 1 (36)

where vector G is a certain function of the full set of nature’s variables. The
smallness of � reflects the proximity of � to �N and of the actual yN , generally
a complex function of time and parameters, to the function featured in Eq. (34).

Throughout this section we will be interested in the model and nature’s clima-
tologies. These are associated with the ensemble averages of xN and x type variables
over the invariant probability densities pN and p, respectively, attained by the system
in the limit of long times,

mN  hxNi D

Z
dxNdyNxNpN.xN ; yN/ (37)

m  hxi D

Z
dxxp.x/ (38a)

Angle brackets denote ensemble averages over the realizations of the process. In a
similar vein one may define higher order moments associated with the variability
around mN and m:

mkl D

Z
dxxkxlp.x/ (38b)

etc. The error associated with a climatological forecast will be given by a suitably
normalized difference m � mN . The question we address here is whether this error
can be minimized by replacing the model evolution laws (35) by the augmented set
of equations

dx
dt

D f.x; �/C g.x/ � R.t/ (39a)

where g is an n � n matrix and R a vector whose components are uncorrelated white
noises

< Ri.t/Rj.t
0/ D q2i ı

kr
ij ı.t � t0/ (39b)
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where q2i are the variances of the noise. In Eq. (39a) the term g.x/ �R.t/ accounts for
the variability associated with the extra term (in �G/ present in Eq. (36) in which
as mentioned already the excess of yN over h exhibits a complex time dependence,
here assimilated to an uncorrelated Markov noise. It is understood that g is of order
1 and q2j are of the order �2 in order to match the strength of the term in � in Eq. (36).

As well known from the theory of stochastic differential equations (Gardiner,
1983) when white noise is coupled multiplicatively to the system’s state variables
(i.e., when g in (39) depends non-trivially on x) the evolution can be mapped
into a Fokker–Planck type equation. This equation can be written in two different
ways according to whether the Itô or the Stratonovich interpretation is adopted.
We here choose the first alternative, known to be the most appropriate one when a
continuous-time stochastic process is obtained as the limit of an underlying discrete-
time process. Under these conditions one has (Gardiner, 1983):

@p.x; t/
@t

D �

nX
iD1

@

@xi
fi.x; �/p C

1

2

nX
ijk

q2k
@

@xi

@

@xj
gik.x/gjk.x/p (40)

7.1 Moment Equations

Multiplying both sides of Eq. (40) by x and integrating over x we obtain the
evolution equation of model’s climatology m [Eq. (38a)],

dmi

dt
D hfi.x; �/i i D 1; : : : ; n (41a)

Notice the absence of an explicit contribution of noise at that level. Equation (41a)
is not closed, as the average of a nonlinear function like f differs from the function
itself evaluated at the average value of the state variable. One may, however, expand
x around m,

x D m C ıx (41b)

The first order terms of (41a) in ıx vanish identically by definition. The first non-
trivial term accounting for the variability is therefore provided by the second order
terms of the expansion which involve the matrix of second order derivatives of
fi. If f is a quadratic function of its variables as in typical problems of interest in
atmospheric dynamics, expansion of f around m will yield the exact result:

dmi

dt
D fi.fmjg; �/C

1

2

X
jk

@2fi
@xj@xk

Vjk (42a)

where Vjk is the covariance matrix,

Vjk D hıxjıxki (42b)
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and the second derivative factors are x-independent. In the presence of higher order
nonlinearities (42a) would still make sense as the dominant part of an expansion
around the mean state, assuming (as is indeed the case at least in the long time
limit) a small variability around the climatological mean.

Equation (42a) shows that in the steady-state regime the climatological mean
is related to the variability around it. The connection is mediated by the matrix of
second derivatives of the successive components, fi, of the phase space velocity
f, referred as the Hessian matrix. This quantity is both system and parameter
dependent. One may therefore anticipate that noise corrections need not act in the
same way for the mean state and for the variability.

To evaluate mi and Vjk we now multiply both sides of (40) by xjxk and integrate
over x. We obtain

d

dt
mjk D hxjfk C xkfji C

X
q2l hgjlgkli (43)

To proceed further we introduce the decomposition (41b) and expand, as before,
f around m. We also perform a similar expansion for gjl. For a quadratic function f, a
generic case in atmospheric dynamics at least at the level of the primitive equations,
g will be at most linear in x, otherwise the stochastic evolution equations will exhibit
divergent behavior. Furthermore we switch from the higher order moments mjk etc.
to the associated variances Vjk etc. [Eq. (42b)] by subtracting from Eq. (43) Eq. (42a)
applied to k and l, after multiplying them by ml and mk respectively and summing
over. One obtains in this way after some algebra

d

dt
Vjk D

X
l

.JklVlj C VklJ
C
lj /C

X
lpq

q2l
@gjl

@xq

@gkl

@xq
Vpq C

X
l

q2l gjlgkl

C
1

2

X
pq

�
@2fk
@xp@xq

Vjpq C
@2fj
@xp@xq

Vkpq

	
(44a)

The first sum in the right-hand side of this equation displays the Jacobian matrix J
associated with the deterministic part of the evolution, and its adjoint JC. The last
term contains the contributions from the third order variances

Vjpq D hıxjıxpıxqi (44b)

All coefficients multiplying variances are either to be evaluated at the average state
m (this is the case of J; JC and gjlgkl) or are x-independent (this is the case of the
first g derivatives and the second f derivatives).

Equations (42a) and (44a) are the first main result of our formulation. In this first
form, however, they contain information on both the model’s intrinsic variability
through the terms obtained by setting q2l D 0, and on the extra variability introduced
by the noise through the q2l terms. It is this latter variability that is our main concern
here. Let �k, �kl, etc., be the corrections to the moments when q2l ¤ 0. In order to
disentangle them from the intrinsic variability we set



418 C. Nicolis

mk D m.0/
k C �k

Vkl D V.0/
kl C �kl

etc., and expand Eqs. (42a) and (44a) to the first order in � , assumed to be of the
order of q2 and of the smallness parameter � in Eq. (36). The steady-state version of
the resulting equations reads

X
j

J.0/lj �j D �
1

2

X
jk

�
@2fi
@xj@xk

	.0/
�jk (45)

X
l

.J.0/kl �lj C �klJ
C.0/
lj / D �

X
l

q2l g.0/jl g.0/kl �
X
lpq

q2l
@gjl

@xp

@gkl

@xp
V.0/

pq

�
X

lp

8<
:
�
@Jkl

@mp

	.0/
V.0/

jl C

 
@JC

lj

@mp

!.0/
V.0/

kl

9=
; �p (46)

The superscript zero in these equations denotes evaluation of the corresponding
quantity at mean and variance values corresponding to the model’s intrinsic
variability.

Equations (45)–(46) are exact first order versions of Eqs. (42a) and (44a), with
the sole exception that the noise correction to the third order variance in (44a) has
been considered to be a higher order effect. They constitute our second main result.
Their interest is that for any given model they allow for an explicit evaluation of
�j and �kl in terms of the noise variances fq2l g, as they constitute a system of linear
inhomogeneous equations with respect to these variables. The evaluation procedure
may be summarized as follows.

(i) Express the noise correction to the climatological mean �j from (45) by
inverting the Jacobian matrix evaluated at m.0/

�j D �
1

2
f.J.0//�1gji

X
kl

�
@2fi
@xk@xl

	.0/
�kl (47)

(ii) Substitute �j from this expression into the last term of Eq. (46), combine the
resulting terms in �klwith those of the left-hand side in the general form

.A� C �AC/ D D (48)

where � D f�klg and A, D are n � n matrices.



Nonlinear Dynamical Approach to Atmospheric Predictability 419

(iii) Invert Eq. (48) to obtain �kl in the form

�kl D
X

m

aklmq2m (49)

and finally substitute into Eq. (47) to obtain �j in terms of the variances of the
noise and the indicators of the intrinsic dynamics of the model.

(iv) Evaluate nature’s means mN from Eq. (37) and the associated variances.
Express the (suitably normalized) differences m � mN , etc., in terms of the
model structure and the properties of the correcting noise using Eqs. (47)–(49).
Determine the extent to which these differences can be minimized by suitable
tuning of the variance of the noise and/or the way it is coupled to the model
variables.

7.2 Illustration on a Simple Example

We illustrate the procedure outlined in the preceding section on the simple case
where both the model and nature span a one-dimensional phase space. We emulate
intrinsic variability by an additive white noise, both for the model and for nature, and
introduce in the model equation an extra correcting noise term aiming to counteract
the model error. The principal interest of this example is that calculations can be
carried out systematically and in all detail. We also notice that in some situations
this setting may have some elements of reality as, for instance, in the analysis of the
effect of sea surface temperature anomalies in global energy balance (Frankignoul
and Hasselmann, 1977). The model equation is written as [cf. Eq. (39a)]

dx

dt
D f .x/C Rm.t/C �xRc.t/ (50)

where the intrinsic, Rm, and correcting, Rc, noises are uncorrelated white noises of
variance q2m and q2c , respectively. The correcting noise was taken to be multiplicative.
As for nature’s equation, it contains a first part in the form of Eqs. (12a) and (36),
augmented by a white noise RN.t/ of variance q2N emulating natural variability

dxN

dt
D f .xN/C �G.xN/C RN.t/ (51)

The Fokker–Planck equations associated with (50) and (51) are

@p

@t
D �

@

@x
f .x/p C

q2m
2

@2p

@x2
C

q2c
2
�2
@2

@x2
x2p (52)

@pN

@t
D �

@

@xN
ff .xN/p C �G.xN/gpN C

q2N
2

@2pN

@x2N
(53)
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Since there is no intrinsic variability in the absence of noise the natural reference
value is here the steady-state solution, x of the noise-free model equation

f .x/ D 0 (54)

The Jacobian J.0/ reduces to f 0.x/ and the model climatology as deduced from the
procedure outlined earlier reads

m D x C

�
q2m
4

C
q2c�

2

4
x2
	

f 00.x/

.f 0.x//2
(55)

where the prime denotes derivation with respect to x. Nature’s climatology is
likewise given by

mN D x �
�G.x/

f 0.x/
C

q2N
4

f 00.x/

.f 0.x//2
(56)

where the corrections to x are again limited to the first order in � and q2. Compar-
ing (55) and (56) we see that the climatological model error can be counteracted
provided the variance of the correcting noise satisfies

q2c D
1

�2x2

�
�4�

f 0.x/

f 00.x/
G.x/C .q2N � q2m/


(57a)

This condition is to be fulfilled as long as q2c remains positive. Now the stability of
the reference state x entails that f 0.x/ < 0. The positivity of the right-hand side of
Eq. (57a) imposes, therefore, the condition

4�jf 0.x/j
G.x/

f 00.x/
> q2m � q2N (57b)

For completeness we also compile the expressions of the model and nature’s
variabilities around their climatological means under the same conditions as above:

V D hıx2mi D �
q2m C q2c�

2x2

2f 0.x/
(58a)

VN D hıx2Ni D �
q2N
2f 0.x/

(58b)

To fix ideas, consider the specific example

vN D kxN

�
1 �

xN

N

�
C �G.xN/I �G.xN/ D �

k

N
�x2N (59a)

f D kx
�
1 �

x

N

�
I � D k (59b)
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Fig. 9 State diagram of the
variances of correcting noise
q2c , versus the model error
amplitude, �, between nature
Eq. (59a) and the model
Eq. (59b) as obtained from
the theoretical expression,
Eq. (60). Pluses and minuses
in the sectors delimited by the
two lines q2c;m and q2c;V refer to
the signs of the resulting error
committed in the mean and
variance of the model,
respectively. Parameter values
are q2N D 0:05, q2m D 0:005,
N D 2, and k D 0:5

where N is a parameter. We have

x D N; m D N �
q2m
2Nk

�
q2c
2

Nk; V D
q2m
2k

C
q2c
2

N2k (59c)

mN D N.1 � �/ �
q2N
2Nk

; VN D
q2N
2k

(59d)

The condition given by Eq. (57a) and the analogous condition for the variances,
expressing that the correcting noise counteracts the model error for the climatologi-
cal means and the variability around them, read, respectively,

q2c;m D
1

k2N2
.q2N � q2m/C

2�

k

q2c;V D
1

k2N2
.q2N � q2m/ (60)

Figure 9 summarizes the information contained in these relations in the form of
a “state diagram” where q2c is plotted against � . The pluses and minuses in the
sectors delimited by the resulting two lines refer, from left to right, to m being
larger .C/ or smaller .�/ than mN and to V being larger .C/ or smaller .�/ than
VN . As can be seen for any nonvanishing model error � ¤ 0 it is impossible to
counteract simultaneously the error in both the means and in the variability, since
the two lines q2c;m and q2c;V cross only at � D 0. This is further illustrated in
Fig. 10, where the relative errors for the means, .m � mN/=mN and the variances,
.V � VN/=VN are plotted against q2c for a range of values traversing regions ŒC��,
ŒCC� and Œ�C� of Fig. 9, keeping other parameters fixed. The dashed lines stand for
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Fig. 10 Relative error in: (a) the mean, and (b) the variance obtained from the model, Eqs. (59b),
versus the amplitude of a correcting multiplicative white noise forcing. In each case the dashed
line refers to the theoretical expressions of Eqs. [(59c), (59d)], and the full line to the numerical
stochastic simulation of the reference, Eq. (59a), and model, Eq. (59b), after averaging over 50,000
time units. Parameter values as in Fig. 9 with smallness parameter � D 0:01

the analytic relations (59c)–(59d), whereas the full lines refer to the results obtained
by solving the Langevin equations (50) and (51) corresponding to the particular
model considered. The agreement is quite satisfactory.
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8 Conclusions

Sensitivity to the initial conditions as symbolized by the butterfly effect and
sensitivity to the parameters as well as to the representation of subgrid processes
are deeply rooted into the physics of the atmosphere. They impose irreducible
limitations to prediction in that the measured or computed values of the different
observables are contaminated by errors that tend to grow, from the regime of short
lead times to the asymptotic one of the long-term predictions.

In this chapter we outlined a systematic approach to the dynamics of prediction
errors. We addressed, successively, short time behavior (Sects. 2–5), extended-
range forecasts (Sect. 6) and, finally, asymptotic behavior in connection with
climatological properties (Sect. 7). In each case emphasis was placed on the
fundamental mechanisms governing error growth and on the possibility to sort out
generic features and trends, thanks to systematic analytical evaluations based on
the presence of well-defined smallness parameters. This allowed us to disentangle
processes governed essentially by linearized laws such as the early stages of
initial condition and model errors from those in which nonlinear effects were
playing an essential role, such as the existence of a maximum value of the error
in extended-range forecasts as a function of the averaging time (Sect. 6), or the
compromise in achieving a correct variability versus correct averages (Sect. 7).
These approaches were illustrated on prototypical model systems capturing salient
features of atmospheric and climate dynamics. On the grounds of their generality
they also provide insights on detailed numerical prediction models and on problems
of practical concern, such as optimal choices of averaging periods in extended-range
forecasts or of the characteristics of the correcting noises in the representation of
subscale processes.

A distinctive feature of our formulation is the intertwining of deterministic
and probabilistic concepts and tools. The rationale for this is that, owing to the
growth of errors, a single deterministic trajectory loses rapidly its operational
significance. One is led then to consider ensembles of trajectories and to evaluate
averages over the individual realizations. In the context of atmospheric dynamics
this procedure is referred to as ensemble forecasts (Wilks, 2011). Its merit is
to sort out systematic quantitative trends in relation with the indicators of the
intrinsic dynamics, that would remain masked in a purely deterministic setting
based on individual trajectories. This view was especially crucial in the analysis
of Sect. 7, where the problem of error control was mapped into a probabilistic
problem governed by the Fokker–Planck equation. The nonlinearity and instability
inherent in the deterministic description were substituted here by a description based
on a linear evolution law (the Fokker–Planck equation) possessing strong stability
properties and leading to a unique steady-state solution in the long-time regime.

Despite spectacular recent improvements in operational forecasting, our under-
standing of the fundamentals of predictability and error growth remains incomplete.
A field in which this limitation is especially apparent is the prediction of extreme
values. Contrary to traditional prediction averaging is here to a large extent
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irrelevant, as the fine structure of both the trajectories and of the probability
distributions begins to matter. In a different vein, in many instances of interest some
of the parameters present in a problem are subjected to variations in space and time
in connection, for instance, with anthropogenic effects or the well-known variability
of solar influx. Systematic, dynamics-driven approaches like the one outlined in this
chapter are likely to be at the origin of progress in addressing such challenging
problems from a new angle.
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Linked by Dynamics: Wavelet-Based Mutual
Information Rate as a Connectivity Measure
and Scale-Specific Networks

Milan Paluš

Abstract Experimentally observed networks of interacting dynamical systems are
inferred from recorded multivariate time series by evaluating a statistical measure
of dependence, usually the cross-correlation coefficient, or mutual information.
These measures reflect dependence in static probability distributions, generated by
systems’ evolution, rather than coherence of systems’ dynamics. Moreover, these
“static” measures of dependence can be biased due to properties of dynamics under-
lying the analyzed time series. Consequently, properties of local dynamics can be
misinterpreted as properties of connectivity or long-range interactions. We propose
the mutual information rate as a measure reflecting coherence or synchronization
of dynamics of two systems and not suffering by the bias typical for the “static”
measures. We demonstrate that a computationally accessible estimation method,
derived for Gaussian processes and adapted by using the wavelet transform, can
be effective for nonlinear, nonstationary, and multiscale processes. The discussed
problem and the proposed method are illustrated using numerically generated data
of coupled dynamical systems as well as gridded reanalysis data of surface air
temperature as the source for the construction of climate networks. In particular,
scale-specific climate networks are introduced.

Keywords Complex networks • Dynamical systems • Entropy rate • Mutual
information rate • Wavelet transform • Climate networks • Scale-specific
networks

1 Introduction

“More is different,” the simple sentence of the most creative (Soler, 2017) physicist
P. W. Anderson (1972) reflects the complex reality in which the behavior of complex
systems, consisting of many interacting elements, cannot be explained by a simple
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extrapolation of the laws describing the behavior of a few elements. Studying
systems of many interacting elements as complex networks (Albert and Barabási,
2002; Boccaletti et al., 2006; Havlin et al., 2012; Newman et al., 2006) is an
intensively developing paradigm in which statistical physics embraced the graph
theory. In the graph-theoretical characterization of complex networks, a network is
considered as a graph G D .V;E/, where V is a set of nodes (or vertices) and E is a
set of edges (or links) where each edge represents a connection between two nodes.
In the case of weighted graphs a weight wi;j is assigned to each edge ei;j, connecting
the vertices vi and vj, by the weight function W W E ! R. The graph G D .V;E/
is characterized by the adjacency matrix A whose elements ai;j D wi;j; and ai;i D 0

by definition. We will consider undirected graphs, i.e. ai;j D aj;i. A special case
of graphs are unweighted graphs, also known as binary graphs, since ai;j can attain
either the value 1 if ei;j 2 E, or the value 0 otherwise.

In this study we will consider networks of interacting, possibly stochastic,
dynamical systems. In the network paradigm, each system represents a node of
the network. Consider that the interactions among the nodes (dynamical systems)
are not known. However, we can observe and record evolution of each dynamical
system. A series of measurements done on such a system in consecutive instants
of time t D 1; 2; : : : is usually called a time series fx.t/g. In order to infer a
network from a multivariate time series fxi.t/g usually some measure of statistical
dependence between components fxi.t/g and fxj.t/g, recorded from the nodes vi

and vj, respectively, is estimated. This measure, or a transformation thereof, is
considered as a weight wi;j assigned to the edge ei;j. The networks of this type
are known as interaction networks (Bialonski et al., 2010) or functional networks.
The latter term have been spread from neurophysiology where the statistical
association of neural activities in two distinct parts of the brain is called the
functional connectivity (Friston, 1994), as opposed to a structural, anatomical
connectivity given by an existence of a physical link (Bullmore and Sporns,
2009). Neurophysiology is probably the most active and influential scientific field
where the functional networks are constructed and studied; making use of a huge
amount of multivariate data recording various modes of brain activity (Achard
et al., 2006; Bullmore and Sporns, 2009; Reijneveld et al., 2007). The interaction
networks, however, are studied also in different areas such as climatology (Donges
et al., 2009a,b; Steinhaeuser et al., 2012; Tsonis and Roebber, 2004; Tsonis et al.,
2006; Yamasaki et al., 2008, 2009) or economy and finance (Onnela et al., 2004;
Schweitzer et al., 2009). Since the existence of a link in an interaction network
is inferred from an estimate of a statistical dependence measure, the strength
and even the existence of a link bear some level of uncertainty. Kramer et al.
(2009) propose a systematic statistical procedure for the inference of functional
connectivity networks from multivariate time series yielding as the output both the
inferred network and a quantification of uncertainty of the number of edges. Paluš
et al. (2011) present differences in the topology of interaction networks with edges
derived either from the largest absolute correlations or from the statistically most
significant absolute correlations. Bialonski et al. (2010) demonstrate that a spatial
sampling can lead to an occurrence of spurious structures in interaction networks
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constructed from time series sampled in spatially extended systems and propose
tailored random networks as a suitable null hypothesis to be tested (Bialonski et al.,
2011). Hlinka et al. (2012) observed that a spurious small-world topology emerged
in interaction networks constructed using correlations of time series generated by
randomly connected dynamical systems. While Bialonski et al. (2010) attribute
spurious topologies to sampling problems and finite-precision, finite-length time
series, Hlinka et al. (2012) see the problem in partial transitivity—an inherent
property of the correlation coefficient. Also Zalesky et al. (2012) observed that the
networks in which connectivity was measured using the correlation coefficient were
inherently more clustered than random networks, while partial correlation networks
were inherently less clustered than random networks. Therefore, in a similar line
with Bialonski et al. (2011), also Zalesky et al. (2012) propose to use a sort of null
networks in order to explicitly normalize for the inherent topological structure found
in the correlation networks.

In this study we will focus on the dynamics underlying time series used for
the construction of interaction networks. We will demonstrate how “dynamical
memory” influences the bias in estimations of “static” dependence measures such
as the absolute correlation coefficient or the mutual information. We will propose
the mutual information rate as a measure reflecting dependence of dynamics of two
systems or processes. We will introduce a computationally accessible algorithm that
can be effective for quantification of the coherence or synchronization of nonlinear,
nonstationary, and multiscale processes and thus can be used for the construction
of interaction networks from experimental time series recorded in natural complex
systems.

2 Dependence

Consider two discrete random variables X and Y with sets of values � and ‡ ,
respectively. The probability distribution function (PDF) pX.x/ for the variable X,
for simplicity denoted as p.x/, is p.x/ D PrfX D xg, x 2 � . The probability
distribution function p.y/ for the variable Y is defined in the full analogy; and the
joint PDF p.x; y/ is Prf.X;Y/ D .x; y/g, x 2 � , y 2 ‡ . Uncertainty in a random
variable, say X, is characterized by its entropy

H.X/ D �
X
x2�

p.x/ log p.x/: (1)

The joint entropy H.X;Y/ of X and Y is

H.X;Y/ D �
X
x2�

X
y2‡

p.x; y/ log p.x; y/: (2)

The two variables X and Y are independent if and only if p.x; y/ D p.x/p.y/, i.e.
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log
p.x; y/

p.x/p.y/
D 0:

The average digression from independence, i.e., the averaged value of log p.x;y/
p.x/p.y/ is

known as mutual information

I.XI Y/ D
X
x2�

X
y2‡

p.x; y/ log
p.x; y/

p.x/p.y/
: (3)

The mutual information can be expressed using the entropies (1), (2) as

I.XI Y/ D H.X/C H.Y/ � H.X;Y/: (4)

Thus the mutual information I.XI Y/ quantifies the decrease of uncertainty in
H.X;Y/ due to the dependence between X and Y , i.e., it measures the average
amount of common information, contained in the variables X and Y . The mutual
information is a measure of general statistical dependence for which the following
statements hold:

• I.XI Y/ � 0,
• I.XI Y/ D 0 iff X and Y are independent.

In practice, however, the PDF’s are not known and we only have a set of mea-
surements fx1; x2; : : : ; xNg for the variable X and fy1; y2; : : : ; yNg for the variable Y .
Estimation of the entropies (1), (2) and the mutual information (3) can be done using
some of suitable estimators, for review see Hlaváčková-Schindler et al. (2007).

A common measure of linear dependence is the (Pearson’s) correlation coeffi-
cient. First, we compute the mean of all measurements fx1; x2; : : : ; xNg as

Nx D
1

N

NX
iD1

xi

and the variance

2 D
1

N � 1

NX
iD1

.xi � Nx/2

and transform the measurements into a data with a zero mean and a unit variance

exi D
xi � Nx


: (5)

After the same procedure with the measurements of the variable Y , the correlation
coefficient of X and Y is
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C.X;Y/ D
1

N

NX
iD1

exieyi: (6)

Without loss of generality, in the following we will suppose that considered data or
time series have (or have been transformed in order to have) a zero mean and a unit
variance.

Suppose that the variables X and Y have a bivariate Gaussian distribution. Then
their mutual information I.XI Y/ can be expressed using their correlation coefficient
C.X;Y/ (see, e.g. Paluš et al. (1993) and references therein)

I.XI Y/ D �
1

2
log

�
1 � C2.X;Y/

�
: (7)

The correlation coefficient (6) and the mutual information (3) are the measures of
dependence which reflect the digression of the “static” bivariate distribution p.x; y/
from the product p.x/p.y/. We use the term “static” in order to stress that both
the correlation coefficient (6) and the bivariate PDF p.x; y/ which determines the
mutual information (3) are given by the set of pairs f.x1; y1/; .x2; y2/; : : : ; .xN ; yN/g

irrespectively of the order of the pairs. Any permutation of the pairs .xi; yi/ yields
the same result.

3 Dynamics

Let us consider n discrete random variables X1; : : : ;Xn with values .x1; : : : ; xn/ 2

�1 � � � � � �n. The PDF for an individual Xi is p.xi/ D PrfXi D xig, xi 2 �i,
the joint PDF for the n variables X1; : : : ;Xn is p.x1; : : : ; xn/ D Prf.X1; : : : ;Xn/ D

.x1; : : : ; xn/g. The joint entropy of the n variables X1,: : : , Xn with the joint PDF
p.x1; : : : ; xn/ is

H.X1; : : : ;Xn/

D �
X

x12�1

� � �
X

xn2�n

p.x1; : : : ; xn/ log p.x1; : : : ; xn/: (8)

A stochastic process fXig is an indexed sequence of random variables X1; : : : ;Xn,
characterized by the joint PDF p.x1; : : : ; xn/. Uncertainty in a variable Xi is char-
acterized by its entropy H.Xi/. The rate at which a stochastic process “produces”
uncertainty is measured by its entropy rate

h D lim
n!1

1

n
H.X1; : : : ;Xn/: (9)
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In practice we will deal with a time series fx.t/g, t D 1; 2; : : : ;N. While
considering measurements fx1; x2; : : : ; xNg of a random variable X, its values xi are
typically considered mutually independent, i.e., obtained by independent, random
draws from a PDF p.x/. On the other hand, a time series fx.t/g reflects a temporal
evolution of a process or a system, and typically the values x.t/ and x.tC�/, where �
is a time lag, are not independent. The level of dependence between x.t/ and x.tC�/
reflects a “dynamical memory” of the temporal evolution of an underlying process
or system. The decrease of the dependence between x.t/ and x.tC�/, with increasing
� , i.e., the rate at which a process “forgets” its history depends on complexity of the
temporal evolution of a process or a system and we will refer to this complexity as
“temporal dynamics,” or shortly as “dynamics.”

Since a time series fx.t/g reflects the dynamics of an underlying process or
system, a stochastic process fXig characterized by the joint PDF p.x1; x2 : : : ; xn/

which typically differs from the product p.x1/p.x2/ : : : p.xn/, is an appropriate
theoretical concept for the study of time series. Thus a time series is considered
as a realization of a stochastic process fXig and should not be equated with a set
of measurements of a single variable X with a PDF p.x/. The entropy rate (9) is a
useful characterization of the dynamics of a system or a process underlying the time
series fx.t/g. In information theory the entropy rate (9) is considered as a measure
of production of information of an information source (Cover and Thomas, 1991).

Alternatively, a time series fx.t/g can be considered as a projection of a
trajectory of a dynamical system, evolving in a measurable state space. Kolmogorov,
who introduced the theoretical concept of classification of dynamical systems by
information rates, was inspired by information theory and generalized the notion
of the entropy of an information source. The Kolmogorov–Sinai entropy (KSE
thereafter) or metric entropy (Petersen, 1989) is a topological invariant, suitable
for the classification of dynamical systems or their states, and is related to the
sum of the system’s positive Lyapunov exponents (Pesin, 1977). The concept of
entropy rates is common to theories based on philosophically opposite assumptions
(randomness vs. determinism) and is ideally applicable for the characterization of
complex processes, where possibly deterministic rules are always accompanied by
random influences.

As a potentially useful quantitative characterization of the dynamics, the entropy
rate has become a target of many numerical algorithms using experimental time
series as their input. Particularly intensive development, focused on the estimation of
the metric entropy, has started with the advent of the methods for the reconstruction
of chaotic dynamics in the 1980s. Grassberger and Procaccia (1983a) used the
concept of Rényi entropy (Cover and Thomas, 1991) to redefine the KSE in terms
of the Rényi entropy of order two and proposed an estimator of the metric entropy
K2 using their celebrated correlation integral (Grassberger and Procaccia, 1983b).
The method has been extended into numerous version, e.g. by Cohen and Procaccia
(1985). Schouten et al. (1994) treated the correlation integral as a probability
distribution and derived a maximum-likelihood estimator of the KSE. Pawelzik
and Schuster (1987) consider the full spectrum of generalized metric entropies Kq.
Fraser (1989) pointed to an interesting relation between an n-dimensional version of
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the mutual information and the KSE of a dynamical system underlying studied time
series. Paluš (1997a) studied this relation in detail and confirmed its validity by com-
paring the KSE estimates with the values of the positive Lyapunov exponents of the
studied chaotic systems. Reliable KSE estimates, however, require large amounts of
data. Therefore Paluš (1996a) proposed “coarse-grained entropy rates” which relate
the KSE to the rate of the decrease of a finite-precision mutual information of a time
series and its time-lagged twins. Also bounded by a finite precision and a limited
amount of real data, Pincus (1991) introduced an approximate entropy based on a
difference of the correlation integrals.

The entropy rate reflects how quickly a system “forgets” its history. In the case
of chaotic dynamical systems the metric entropy is related to a time interval which
a dynamical system takes to return to a close vicinity of some of its previous states.
Baptista et al. (2010) propose two formulas to estimate the KSE and its lower bound
from the recurrence times of chaotic systems. The recurrence plots (Marwan et al.,
2007) give a number of useful dynamical quantities including the KSE.

A time series of measurements of a finite precision can be conveniently converted
into a sequence of symbols from a finite set of values. Bandt and Pompe (2002)
introduced the concept of permutation entropy for symbolic sequences and demon-
strate its relations to the KSE. Lesne et al. (2009) studied entropy rate estimators
for short symbolic sequences based on block entropies and Lempel–Ziv complexity
(Ziv and Lempel, 1978). Kennel et al. (2005) developed an algorithm for estimating
the entropy rate of Markov models using weighted context trees. The entropy rates
can also be computed using the causal state machine-based estimator (Crutchfield
and Young, 1989; Haslinger et al., 2010; Shalizi et al., 2001).

Let us return from symbolic sequences to continuous stochastic processes. Let
a stochastic process fXig is a zero mean, stationary, Gaussian process with power
spectral density ˚.!/, where ! is a normalized frequency. Then its entropy rate hG,
apart from a constant term, is (Paluš, 1997b; Pinsker, 1964)

hG D
1

2�

Z 2�

0

log˚.!/d!: (10)

4 Dynamics and Connectivity

In order to understand the notion of temporal dynamics of a process and its charac-
terization using the entropy rate, let us consider the autoregressive process (ARP)

x.t/ D c
10X

kD1

akx.t � k/C e.t/; (11)

where akD1;:::;10 D 0; 0; 0; 0; 0; 0:19; 0:2; 0:2; 0:2; 0:2,  D 0:01 and e.t/ is a
Gaussian noise with a zero mean and a unit variance. The parameter c modulates
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Fig. 1 Autocorrelation function for the autoregressive process (11) for different values of the
coefficient c: c D 0:7 (the dotted black line), c D 0:8 (the dashed red line), and c D 0:9 (the
solid blue line). Time lags 1–400 samples (right panel), the detail for time lags 1–50 samples (left
panel)

the proportion of the deterministic part of the process which is a function of the
history of the process, to the noise part of the process. The greater the coefficient
c, the stronger the memory, i.e., the dependence between x.t/ and x.t C �/. This
effect is demonstrated in Fig. 1, where the autocorrelation function C.x.t/; x.t C �//

as a function of the time lag � is plotted for different values of the coefficient c. For
c D 0:7 (the dotted black line) the autocorrelation function (ACF) has the lowest
values and vanishes (fluctuates with values close to zero) for time lags around 100
samples; for c D 0:8 (the dashed red line) the ACF has higher values and vanishes
about the time lag equal to 150 samples, while for c D 0:9 (the solid blue line) the
ACF has the largest values and requires more than 400 samples of the time lag to
vanish. The ACF reflects the fact that increasing c the dynamical memory of the
process (11) is stronger and longer lasting.

How these differences in the dynamical memory or in the dynamics are reflected
in the entropy rate? We generate realizations of the ARP (11) with different c and
compute the entropy rates hG according to Eq. (10). Figure 2a presents the entropy
rate hG for 100 realizations of the ARP (11) with c increasing from 0.5 to 0.9. The
entropy rate of such ARP’s monotonically decreases with increasing c. A higher
entropy rate means that the process generates uncertainty at a higher rate so that it
forgets its history more quickly. Predictability of a process with a higher entropy
rate is worse and possible for a shorter prediction horizon than predictability of a
process with a lower entropy rate.

Time series fxi.t/g recording temporal evolution of different systems or sub-
systems of a complex system might reflect different dynamics yielding different
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Fig. 2 (a) Entropy rate hG for the autoregressive process (11) as a function of the parameter c.
(b) Dependence of the mean absolute cross-correlation between independent realizations of the
autoregressive process (11) on the parameter c

entropy rates. As we have noted in the Introduction, the connectivity in complex
networks constructed from multivariate time series, i.e., the existence and the
strength of links between nodes are inferred using dependence measures such as
the mutual information (3) and the correlation (6). The absolute value of the latter is
typically used, while the mutual information is always non-negative. Applying the
definitions (3) and (6) to time series fx.t/g and fy.t/g, they are treated as sets fxig

and fyig of measurements of random variables X and Y . The computed C.X;Y/ or
I.XI Y/ do not reflect the dynamics of fx.t/g and fy.t/g. Indeed, the pairs .x.t/; y.t//
would yield the same values of C.X;Y/ or I.XI Y/ independently of their temporal
order. The computed values of C.X;Y/ or I.XI Y/ are, however, only estimates of
the true dependence between processes generating the datasets fx.t/g and fy.t/g.
The estimates have some bias, giving a mean digression from the true value, and a
variance giving the range of fluctuations of the estimates around their mean value.

Using the above defined ARP (11) we can study the behavior of the correlation
estimates for time series with different dynamics. In particular, we can generate
realizations of the ARP (11) with different c’s and thus with different entropy rates.
Now, let us study the distribution of the cross-correlations between independent
realizations of the process (11) for different values of the parameter c. For each c we
generate 8192 process realizations, each realization consisting of 16,384 samples.
Figure 3 presents histograms of cross-correlations between independent realizations
of ARP (11) for two different c’s. The mean value is always correctly equal to zero;
however, the variance increases with increasing c, i.e., with decreasing the entropy
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Fig. 3 Histograms of
cross-correlations between
independent realizations of
the autoregressive
process (11) for two different
values of the parameter c

rate. As a consequence, when considering the absolute correlations, or a non-
negative dependence measure such as the mutual information, its mean value has an
increasing upward bias with the decreasing entropy rate. This effect is illustrated in
Fig. 2b. In this example the bias in the absolute correlations reaches relatively small
values 0.01–0.02. These values, however, are obtained for time series of 16,384
samples. In Sect. 8 we will show that in real time series of 512 samples the bias can
reach such values as 0.4. For even shorter and/or more regular (lower entropy rate)
time series the bias can be even higher (Paluš, 2007).

5 Mutual Information Rate

Instead of treating time series fx.t/g and fy.t/g as sets fxig and fyig of measurements
of random variables X and Y , now let us consider the time series fx.t/g and
fy.t/g as realizations of stochastic processes fXig and fYig, characterized by PDF’s
p.x1; : : : ; xn/ and p.y1; : : : ; yn/, respectively. In the analogy of generalization of the
entropy (1) to the entropy rate (9) in order to characterize dynamics of a process,
now we generalize the mutual information (3) to the mutual information rate (MIR)
(Cover and Thomas, 1991) as

i.XiI Yi/ D lim
n!1

1

n
I.X1; : : : ;XnI Y1; : : : ;Yn/: (12)

While the mutual information I.XI Y/ evaluates the difference between the bivariate
PDF p.x; y/ and the product of the univariate PDF’s p.x/p.y/, the MIR (12) is
the limit value of the mutual information I.X1; : : : ;XnI Y1; : : : ;Yn/ evaluating the
difference between the 2n-variate PDF p.x1; : : : ; xn; y1; : : : ; yn/ and the product
of the two n-variate PDF’s p.x1; : : : ; xn/p.y1; : : : ; yn/. The MIR quantifies the
dependence between the sequences of states X1; : : : ;Xn of the process fXig and states
Y1; : : : ;Yn of the process fYig. In the case of dynamical systems the MIR reflects
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coherent dynamics or a common evolution of two systems whose trajectories are
projected onto the time series fx.t/g and fy.t/g.

For pairs of dynamical systems that are either mixing, or exhibit fast decay
of correlations, or have sensitivity to initial conditions, Baptista et al. (2012)
have proposed a way how to calculate MIR and its upper and lower bounds in
terms of Lyapunov exponents, expansion rates, and capacity dimension. In general,
estimators of MIR are well elaborated for symbolic dynamics, extending the
estimators of the entropy rates. Shlens et al. (2007) further develop the estimator
of Kennel et al. (2005) and applied it in order to estimate the information transfer
between a stimulus and neural spike trains. Blanc et al. (2011) extended the entropy
rate estimator for symbolic sequences (Lesne et al., 2009) and compared several
estimators adapted for the estimation of the MIR between coupled dynamical
systems in a symbolic representation, including the Lempel–Ziv (Ziv and Lempel,
1978) and the causal state machine-based estimator (Crutchfield and Young, 1989;
Haslinger et al., 2010; Shalizi et al., 2001).

Considering continuous stochastic processes, for zero mean, Gaussian stochastic
processes fXig, fYig, characterized by power spectral densities (PSD)˚X.!/,˚Y.!/

and cross-PSD ˚X;Y.!/, the MIR can be expressed (see Pinsker 1964) as

iG.XiI Yi/ D �
1

4�

Z 2�

0

log.1 � j%X;Y.!/j
2/d!; (13)

using the magnitude-squared coherence

j%X;Y.!/j
2 D

j˚X;Y.!/j
2

˚X.!/˚Y.!/
: (14)

Now we can return to the ARP (11) and use its independent realizations
generated with different values of the parameter c and thus characterized by different
entropy rates, in order to study the bias of dependence measures in relation to
dynamics (entropy rate). In Fig. 4a we study again the absolute cross-correlations
of independent realizations the ARP (11) as a function of the parameter c. The
mean values are the same as in Fig. 2b; however, here we illustrate also the variance
as the bars mean ˙  . We can see that with increasing c (decreasing the entropy
rate) both the mean and variance of the absolute cross-correlations increase. Using
the computationally feasible formula (13) for the mutual information rate, in Fig. 4b
we present means and variances for the MIR estimates for independent realizations
the ARP (11) as a function of the parameter c. There is some positive bias,
represented by the mean MIR, which is low, randomly fluctuating and independent
of the dynamics of the evaluated time series, i.e., independent of the parameter c.
Also the variances of MIR are independent of c, they are practically the same for
all values of c—the positions of bars ˙ in Fig. 4b are given by the fluctuations in
the mean value. The mutual information rate is a measure of dependence between
dynamics of systems or processes, and unlike the static measures, its bias does not
depend on the complexity of dynamics.
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Fig. 4 (a) Mean (solid line) and variance (bars ˙ above and below the mean value) of the
absolute cross-correlation between independent realizations of the autoregressive process (11) as a
function of the parameter c. (b) The same as (a) but for the mutual information rate (13). Note that
scales in (a) and (b) are different

6 Information Rates of Gaussian Processes
and Dynamical Systems

The formulas (10) for the entropy rate and (13) for the mutual information rate
of Gaussian processes can be efficiently evaluated using the fast Fourier transform
(FFT). The question is, however, how applicable are these formulas for real-world
time series recorded from complex, possibly nonlinear systems. Using a number of
paradigmatic chaotic dynamical systems, Paluš (1997b) inquired a relation between
the Kolmogorov–Sinai entropy of a dynamical system and the entropy rate of a
Gaussian process with the same spectrum as the sample spectrum of the time series
generated by the dynamical system. An extensive numerical study suggests that such
a relation as a nonlinear one-to-one function exists when the Kolmogorov–Sinai
entropy varies smoothly with variations of system’s parameters, but is broken near
bifurcation points. Although the formula (10) does not give values numerically close
to the true values of the Kolmogorov–Sinai entropy of studied dynamical systems,
it allows a relative quantification and distinction of different states of nonlinear
systems. In a practical application, the formula (10) was used in order to characterize
changing complexity of dynamics of neuronal oscillations on route to an epileptic
seizure (Jiruska et al., 2010). A strongly nonlinear character of the neuronal activity
of epileptogenic brain regions has been confirmed, e.g., by Casdagli et al. (1996).

In order to demonstrate how the formula (13) for the mutual information rate of
Gaussian processes reflects changes in the dependence of dynamics of two coupled
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Fig. 5 Top three panels: bifurcation diagrams of two coupled logistic maps (from the top: x, y, and
x�y), for the control parameter value a D 4, corresponding to fully chaotic maps when uncoupled,
as a function of the coupling coefficient � . Bottom panel: the mutual information rate (13) between
fXg and fYg, computed using the FFT, as a function of the coupling coefficient �

nonlinear dynamical systems on their route to synchronization we will use two well-
known dynamical systems with chaotic behavior. As an example of a discrete-time
system let us borrow the symmetrically coupled logistic maps from Blanc et al.
(2011) where the system fXg is represented by the time series fxng and the system
fYg by the time series fyng:

xnC1 D � fa.xn/C .1 � �/fa.yn/ (15)

ynC1 D .1 � �/fa.xn/C � fa.yn/ (16)

where � is the coupling coefficient and varies between 0 and 1. The function
fa.xn/  axn.1 � xn/. It is known that, in the uncoupled case, a D 4 gives a
chaotic behavior. The latter is demonstrated in the bifurcation diagrams in Fig. 5
where for small � both the system fXg and fYg are chaotic and not synchronized. For
0:13 < � < 0:2 a zone of periodic behavior appears, followed by the fully chaotic
regime from � approaching 0:2. The two systems become fully synchronized from
� � 0:25—in the bifurcation diagram the difference x � y stays on the zero
value, i.e., the trajectories of the systems fXg and fYg are identical. Then we
observe a quasi-symmetry about � D 0:5, i.e., the synchronized behavior ends for
� > 0:75 and we observe the chaotic, periodic, and again chaotic behavior of the
unsynchronized systems. This development is reflected in the mutual information
rate (13), depicted in the bottom of Fig. 5. With � increasing from zero also the
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MIR gradually increases; however, it falls down to zero for the interval of periodic
dynamics. Thus the MIR is not simply a measure of dependence of dynamics, it
rather quantifies an information transfer between systems and processes. In the
case of periodic systems with the zero entropy rate (KSE), also the MIR is zero.
In the subsequent chaotic regimes the MIR quickly increases with � approaching
the synchronization threshold. During the fully synchronized regime the MIR stays
on its maximum value. It is interesting to compare Fig. 5 with Fig. 4 in Blanc et al.
(2011) where the authors present results of their four MIR estimators, stating that
the Lempel–Ziv estimator (Ziv and Lempel, 1978) and the causal state machine-
based estimator (Crutchfield and Young, 1989; Haslinger et al., 2010; Shalizi et al.,
2001) gave the most faithful results. The latter are qualitatively equivalent to the
results obtained using the formula (13) for the MIR of Gaussian processes, estimated
using the FFT (the bottom graph of Fig. 5). The qualitative equivalence means that
although the values of the MIR estimates are different, the shapes of the MIR
dependence on the coupling parameter � are very similar.

As an example of a continuous-time system we will consider the unidirectionally
coupled Rössler systems, studied also by Paluš and Vejmelka (2007), given by the
equations

Px1 D �!1x2 � x3

Px2 D !1x1 C a1 x2 (17)

Px3 D b1 C x3.x1 � c1/

for the autonomous system fXg, and

Py1 D �!2y2 � y3 C ".x1 � y1/

Py2 D !2y1 C a2 y2 (18)

Py3 D b2 C y3.y1 � c2/

for the response system fYg. We will use the parameters a1 D a2 D 0:15, b1 D

b2 D 0:2, c1 D c2 D 10:0, and frequencies !1 D 1:015 and !2 D 0:985, i.e., the
two systems are similar, but not identical.

Figure 6a presents four Lyapunov exponents (LE) of the coupled systems (the
two negative LE’s are not shown) as functions of the coupling strength ". One
positive and one zero LE of the driving system fXg are constant, while the LE’s of
the driven system fYg which are positive and zero without a coupling or with a weak
coupling decrease with increasing ". The two systems can enter a synchronized
regime when the originally positive LE of the response system becomes negative.
After a transient negativity and a return to zero, the originally positive LE of
the driven system fYg becomes decreasing and negative for " > 0:15 (Fig. 6a).
The mutual information rate (13) between fXg and fYg computed using the FFT (the
solid blue line in Fig. 6b) gradually increases with the increasing coupling strength
0 < " < 0:15, however, shows a steep increase at or after the synchronization



Linked by Dynamics 441

Fig. 6 (a) Two largest Lyapunov exponents of the drive fXg (the constant lines) and the response
fYg (the decreasing lines), (b) the entropy rates (10) for the drive fXg (the dotted black line) and
the response fYg (the dashed red line) and the mutual information rate (13) between fXg and fYg
(the solid blue line) computed using the FFT; (c) the same as in (b), but computed using the CCWT;
for the unidirectionally coupled Rössler systems (17), (18), as functions of the coupling strength ".
The Lyapunov exponents are measured in nats per a time unit; the entropy and information rates
are measured in units of nats per sample

threshold at " � 0:15. Then it again increases slowly to its asymptotic value in the
synchronized state. At the coupling strength " � 0:15 also the entropy rate (10)
of the driven system fYg (the dashed red line in Fig. 6b) steeply increases and
then continues in a gradual increase and asymptotically approaches the entropy
rate (10) of the autonomous system fXg (the dotted black line in Fig. 6b). Due
to this behavior Paluš et al. (2001) described the route to synchronization as an
adjustment of information rates. It is important that even the mutual information
rate (13) of Gaussian processes, computed using the FFT of time series generated
by the studied systems, reflects both the gradual increase of coupling as well as the
sudden transient into synchronization.

7 MIR and Networks of Dynamical Systems

In Sect. 5 we have introduced the mutual information rate as a quantity measuring
the dependence between dynamics of two systems or processes. Unlike the static
measures such as the correlation coefficient or the mutual information of random
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variables, the estimates of the MIR do not suffer by a bias dependent on the
character of dynamics underlying analyzed time series. Blanc et al. (2011) also
show that the MIR is independent of time lag between time evolutions of studied
systems. Together with Blanc et al. (2011) and Baptista et al. (2012) we propose
the MIR as an association measure suitable for inferring interaction networks
from multivariate time series generated by coupled dynamical systems. Specifically
in this paper we propose to use the formula (13) for the mutual information
rate of Gaussian processes. Although Gaussian processes are inherently linear,
in Sect. 6 we have demonstrated that the MIR (13) computed using the FFT of
time series generated by the studied nonlinear dynamical system was able to
distinguish not only synchronized from unsynchronized states, but also different
levels of dependence between dynamics of the studied systems due to different
strengths of their coupling. These observations, however, cannot assure a general
applicability of the MIR (13) for natural nonlinear systems. Before constructing
networks from experimental multivariate time series it is necessary to test for a
presence of nonlinearity in studied time series and assess its actual effect on the
inference and quantification of dependence relations present in the data. It is not
surprising that such studies have been done in the same areas where the research
based on the complex networks paradigm is very active.

Functional brain networks are frequently constructed using time series from
sequences of functional magnetic resonance imaging (fMRI) (Achard et al., 2006;
Bullmore and Sporns, 2009). Hlinka et al. (2011) demonstrate that the linear
correlation coefficient is a sufficient measure of functional connectivity in resting-
state fMRI data. Potential new information brought by nonlinear measures such
as the mutual information is relatively minor and negligible in comparison with
natural intra- and inter-subject variability. Hartman et al. (2011) confirm this finding
in specific computations of graph-theoretical measures from fMRI brain networks.
Also spatio-temporal dependence structures in electrophysiological data such as
the electroencephalogram (EEG) are characterized within the complex networks
paradigm (Bullmore and Sporns, 2009; Reijneveld et al., 2007). Nonlinear character
of the EEG in epilepsy is known (Casdagli et al., 1996), some level of nonlinearity
can be detected also in normal human EEG recordings (Paluš, 1996b). Distinction
of different physiological and/or pathological brain states observed using nonlinear
measures can successfully be reproduced by a proper application of standard tools
derived from the theory of linear stochastic processes (Theiler and Rapp, 1996).
While the latter findings characterized single-channel EEG signals, the character
of dependence between EEG signals from different parts of the scalp are relevant
for the construction of the EEG brain networks. Nonlinear measures have been
applied in order to distinguish different consciousness states using the so-called
multichannel attractor embedding (Matousek et al., 1995). Changes in dependence
structures in multichannel EEG data which have been described by a nonlinear
measure such as the correlation dimension from the multichannel embedding
(Matousek et al., 1995), however, can be equivalently captured by a linear measure
extracted from a correlation matrix (Paluš et al., 1992).
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Using an equivalent approach, climate networks (Donges et al., 2009a,b; Stein-
haeuser et al., 2012; Tsonis and Roebber, 2004; Tsonis et al., 2006; Yamasaki et al.,
2008, 2009) are constructed using multivariate time series of long-term records of
meteorological variables such as the air temperature or pressure. Already in the
1980s a number of researchers attempted to infer nonlinear dynamical mechanisms
from meteorological data and claimed detections of a weather or climate attractor
of a low dimension (Fraedrich, 1986; Nicolis and Nicolis, 1984; Tsonis and
Elsner, 1988). Other authors pointed to a limited reliability of chaos-identification
algorithms and considered the observed low-dimensional weather/climate attractors
as spurious (Grassberger, 1986; Lorenz, 1991). Paluš and Novotná (1994) even
found the air temperature data well-explained by a linear stochastic process,
when the dependence between a temperature time series fx.t/g and its lagged
twin fx.t C �/g was considered. Hlinka et al. (2014) extended the later result to
the dependence between the monthly time series of the gridded whole-Earth air
temperature reanalysis data. These results do not mean that the dynamics underlying
records of meteorological data is linear. For instance, a search for repetitive patterns
on specific temporal scales in the air temperature and other meteorological data has
led to an identification of oscillatory phenomena possibly possessing a nonlinear
origin and exhibiting phase synchronization between oscillatory modes extracted
either from different types of climate-related data or data recorded at different
locations on the Earth (Feliks et al., 2010; Paluš and Novotná, 2004, 2006, 2009,
2011). The studies of Hlinka et al. (2013, 2014) merely state that for inferring
general dependence and causal relations, the approaches derived for Gaussian
processes perform very well and nonlinear approaches do not bring substantial new
information.

These arguments and the fact that the mutual information rate estimator, com-
puted using the FFT and the formula (13) for the MIR of Gaussian processes is
computationally less demanding that estimators for general nonlinear processes,
form the basis for our recommendation of the MIR (13) as a measure suitable
for inference of networks from experimental multivariate time series recorded
from complex systems of various origins. There is still a serious demand for the
amount and stationary character of the analyzed data, since the computation of the
magnitude-squared coherence (14) is based on dividing the time series into a number
of segments over which the complex cross-spectrum (the numerator in Eq. (14)
right-hand side) is averaged. In many cases time series from natural complex
systems are relatively short and nonstationary. Nonstationarity in the sense of
changing relationships between time series with time leads to changes in the strength
and even the existence of links in interaction networks during some time intervals.
The complex network paradigm copes with this phenomenon using the concept of
temporal networks (Holme and J. Saramäki, 2012) or evolving networks. The latter
approach assumes approximate step-wise stationarity of the analyzed time series,
and a standard “static” network is inferred in a relatively short time window which
is “sliding” over the whole time interval spanned by the available experimental time
series. The time evolution of graph-theoretical characteristics is then studied with
respect to a time evolution and/or an occurrence of marked events in the studied
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complex system. This approach has been successfully applied in the EEG brain
networks (Bialonski et al., 2013; Kuhnert et al., 2010; Lehnertz et al., 2014), as well
as in the climate networks (Radebach et al., 2013). An alternative approach, applied
in the field of climate networks, is “picking-up” a number of unequal-length subsets
of the whole time series, tight to an occurrence of some phenomenon (e.g. El Niño)
and performing the summation in the formula (6) for the correlation coefficient only
using the selected subsets of the data (Tsonis and Swanson, 2008). Neither the latter
approach, nor the evolving network strategy can be applied when using the standard
FFT-based evaluation of the MIR (13).

In order to cope with nonstationarity we propose to use a wavelet transform
instead of the Fourier transform. In particular, the complex continuous wavelet
transform (CCWT) is applied in order to convert a time series x.t/ into a set of
complex wavelet coefficients W.t; f /:

W.t; f / D

Z 1

�1

 .t0/x.t � t0/dt0 (19)

using the complex Morlet wavelet (Torrence and Compo, 1998):

 .t/ D
1p
2�2t

exp

�
�

t2

22t

	
exp.2� if0/; (20)

where t is the bandwidth parameter, and f0 is the central frequency of the wavelet.
t determines the rate of the decay of the Gauss function, its reciprocal value
f D 1=�t determines the spectral bandwidth. In order to keep the wavelet
representation close to the original MIR (13) evaluation based on the FFT, we use a
set of equidistantly spaced central wavelet frequencies in the relevant frequency
range given by the time series length and its sampling frequency, instead of
the power-law pyramidal scheme, usually used in the wavelet context. Then the
product of the complex wavelet coefficients WX.t; f /W�

Y .t; f /, as well as the norms
jWX.t; f /j, jWY.t; f /j are averaged over time t. Finally, the wavelet magnitude-
squared coherence

j% W
X;Y.f /j

2 D
jWX;Y.f /j2

jWX.f /jjWY.f /j
(21)

is used in the summation over the set of the central wavelet frequencies according
to Eq. (13). Here WX;Y.f /, jWX.f /j, and jWY.f /j stand for the time averages of
WX.t; f /W�

Y .t; f /, jWX.t; f /j, and jWY.t; f /j, respectively.
Let us return to the unidirectionally coupled Rössler systems (17), (18). Using

the wavelet representation we can recompute both the mutual information rate (13)
and the entropy rate (10) as functions of the coupling strength " (Fig. 6c). While
the CCWT-based estimators give different values than the FFT-based estimators,
they agree in the qualitative sense that the curves of the "-dependence of the MIR
in Fig. 6b, c (solid/blue curves) are the same. The two estimators also give a good
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agreement in the "-dependence of the entropy rates (dashed/red curves in Fig. 6b,
c), there is just a small difference in the entropy rates of the driven system for very
small values of ".

It is important that the wavelet-based estimator of the MIR (13) gives a
relative distinction of coupling regimes with different coupling strengths. This is
a property which we expect from an association measure suitable for the inference
of interaction networks from multivariate time series. It will assign proper weights
to network edges, an edge of two more strongly coupled nodes (dynamical systems)
will obtain a greater weight than edges connecting nodes with a weaker coupling.
For the construction of the binary networks, a greater value of MIR for strongly
coupled nodes assure an existence of an edge by exceeding a chosen threshold or a
critical value given by a statistical test. For establishing statistically significant links
we propose to use the surrogate data strategy as described in Paluš (2007) and Paluš
and Vejmelka (2007). The temporal averaging of the product of the complex wavelet
coefficients WX.t; f /W�

Y .t; f / might evoke a temptation to randomize the phases '
of the complex wavelet coefficients W.t; f /  A.t; f / exp.i'.t; f //. Generating the
FFT-based surrogate data (Theiler et al., 1992), the set of the original phases of
the Fourier coefficient is substituted by a set of independent, identically distributed
(IID) phases randomly sampled from a uniform distribution on the interval .0; 2�/.
However, the phase differences of the wavelet coefficients of two signals are not
IID, even if the underlying processes are independent. Using random IID phases
in the summation of WX.t; f /W�

Y .t; f / would underestimate the critical values in
the test for independence and false edges would be inferred. The character of the
(long-range) dependence of the phase differences in WX.t; f /W�

Y .t; f / of independent
processes depends on the central wavelet frequency. Therefore, it is more convenient
to generate surrogate data and estimate the MIR from them as in the usual surrogate
data test strategy (Paluš, 2007; Paluš and Vejmelka, 2007).

Unlike in the FFT-based MIR estimation, we apply the CCWT on the whole
time interval of available data. Then we either average the product of the complex
wavelet coefficients WX.t; f /W�

Y .t; f /, as well as the norms jWX.t; f /j, jWY.t; f /j,
over the whole time interval or apply the sliding-window strategy of the evolving
networks (Radebach et al., 2013) or the strategy of Tsonis and Swanson (2008) of
the averaging over time intervals selected according to an occurrence of a specific
phenomenon. Using the strategies that cope with nonstationarity, however, one
should consider a smoothing effect of the wavelet coefficients for low frequencies
(large time scales). Since time series from natural complex systems frequently
reflect processes with a 1=f spectrum, the wavelet coefficients for low frequencies
have much greater weights than the coefficients for high frequencies and effects of
short-living phenomena can be masked in the resulted MIR estimates. Therefore
we recommend to limit the final summation in the MIR formula (13) to higher
frequencies or shorter time scales in which the effect of short-living phenomena is
not attenuated. The latter idea can be generalized and even for stationary time series
one can restrict the MIR evaluation to a specific range of time scales, i.e. to a specific
spectral band. Then a scale-specific or frequency-specific connectivity is evaluated
and scale-specific or frequency-specific interaction networks can be studied.
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Until now we have considered the MIR i.XiI Yi/ of two stochastic processes fXig,
fYig. Constructing a network of n nodes, i.e., n dynamical systems, we will consider
n time series as realizations of n stochastic processes fXk

i g, k D 1; : : : ; n. (For
simplicity we consider n univariate time series/stochastic processes, an equivalent
of a multivariate stochastic process with n components. The considerations here can
be generalized to n multivariate stochastic processes with various numbers ni of
components.) Then we can evaluate the standard bivariate MIR i.Xk

i I Xl
i/ for each

pair of components. In order to distinguish direct from indirect interactions we can
also consider conditional (partial) MIR i.Xk

i I Xl
i jX

j
i I j D 1; : : : ; n; j ¤ k; j ¤ l/ which

quantifies the “net” dependence between the two processes without an influence of
the remaining n � 2 processes.

For the evaluation of the conditional MIR, in the framework of Gaussian
processes, we will follow the work of Schelter et al. (2006) who extended the notion
of partial correlations to the partial mean phase coherence.

For each pair of processes fXk
i g, fXl

ig and each central wavelet frequency f 2

ff1; f2; : : : ; fNf g we evaluate the time-averaged complex wavelet coherence

% W
k;l .f / D

Wk;l.f /p
jWk.f /jjWl.f /j

: (22)

Thus for each f we obtain a complex n � n matrix % W.f /. This complex matrix
is inverted, ˝.f / D .% W.f //�1. Using the entries of the inverted complex matrix
˝.f / we evaluate the conditional wavelet coherence as

‡k;l.f / D
˝k;l.f /p

j˝k;k.f /jj˝l;l.f /j
: (23)

Finally, the magnitude-squared conditional wavelet coherence is used in the
summation according to Eq. (13) in order to obtain the conditional MIR

iG.X
k
i I Xl

i jX
j
i I j D 1; : : : ; n; j ¤ k; j ¤ l/

D �
1

2Nf

fNfX
f Df1

log.1 � j‡k;l.f /j
2/: (24)

8 Climate Networks

Understanding the complex dynamics of the Earth atmosphere and climate is a
great scientific challenge with a potentially high societal impact. In their seminal
paper, Tsonis and Roebber (2004) have proposed to study the climate system as a
complex network. Since then the field of climate networks is rapidly developing
and expanding in the scope of methodology as well as applications. The spatio-
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temporal dynamics of the atmosphere is captured by multivariate time series of
long-term recordings of meteorological variables. Typically, such instrumental data
are preprocessed and interpolated in order to assign a time series of a variable to
each node of a regular angular grid covering the Earth surface, as well as slices of
the atmosphere at various altitude or air pressure levels. Such gridded time series of
meteorological variables, available due to, e.g., the NCEP/NCAR reanalysis project
(Kalnay et al., 1996) are usually, although not exclusively, used for the construction
of climate networks. Monthly (Donges et al., 2009b; Tsonis and Swanson, 2008)
or daily (Gozolchiani et al., 2008; Yamasaki et al., 2008) surface air temperature
data are frequently used, however, equipotential heights (Donges et al., 2011;
Tsonis et al., 2008), sea surface temperature, humidity, precipitation and related
data (Malik et al., 2012; Steinhaeuser et al., 2012) and other meteorological data
are also analyzed. Individual grid-points, characterized by time series of a chosen
meteorological variable, are considered as nodes (vertices) of a climate network,
while links (edges) are inferred from some, mostly statistical association between
the time series related to the two nodes at the edge’s end-points. The most common
association measure is the Pearson’s correlation coefficient (Tsonis and Roebber,
2004; Tsonis and Swanson, 2008), however, also the Spearman’s rank correlation
coefficient is used (Carpi et al., 2012), and more general, nonlinear measures are
tested, e.g., the bivariate mutual information (Donges et al., 2009a,b), and the
mutual information of ordinal time series (Barreiro et al., 2011; Deza et al., 2013) or
measures from the phase synchronization analysis (Yamasaki et al., 2009) and the
event synchronization analysis (Malik et al., 2012).

In the following study we use monthly mean values of the near-Surface Air
Temperature (SAT) from the NCEP/NCAR reanalysis (Kalnay et al., 1996). We
include the data up to the latitudes 87:5ı in the grid of 2:5ı � 2:5ı which leads to
10,224 grid-points or network nodes. The temporal interval of 624 months starting
in January 1958 and ending in December 2009 is used for the inference of the
network using the correlation coefficient and the CCWT-based MIR estimator. For
the FFT-based estimator the temporal interval is extended backward by 16 months
(starting in September 1956) in order to have 5 segments of 128 monthly samples.

In order to avoid trivial correlations due to seasonal temperature variability, the
annual cycle has been removed from each SAT time series. The SAT anomalies
(SATA thereafter) have been computed by subtracting the averages for each month
from related samples, e.g., the average January temperature was subtracted from all
January samples, etc.

As the first step of the network analysis we compute the correlation coefficients
ci;j for each pair of nodes i; j D 1; : : : ;NN D 10;224. We use the matrix of the
absolute correlations Ci;j D jci;jj in order to obtain the adjacency matrix Ai;j of the
binary network, defined as: Ai;j D 1 iff Ci;j > cT , otherwise Ai;j D 0. Ai;i D 0 by
definition. The total number of existing edges divided by the number of all possible
edges in known as the network density (or edge density) %. Following Donges et al.
(2009a,b) we choose the threshold cT such that the resulting network density is
% D 0:005.
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The basic characterization of connectivity of a node i is its degree, or degree
centrality ki

ki D

NNX
jD1

Ai;j; (25)

giving the number of nodes to which the node i is connected. Since the reanalysis
data are defined on a grid which is regular in the angular coordinates, the geographic
distances of the grid-points depend on the latitude �i. In order to correct for this
dependence, for the climate networks defined on the regular angular grid the area
weighted connectivity (Tsonis et al., 2006) is defined as

AWCi D

PNN
jD1 Ai;j cos.�j/PNN

jD1 cos.�j/
: (26)

The AWC can be interpreted as the fraction of the Earth’s surface area a vertex is
connected to.

The AWC computed for each node of the SATA network based on the absolute
correlations with % D 0:005 (AC-network in the following) is mapped in Fig. 7a.
According to this analysis the most connected nodes (“hubs”) of the climate network
lie in the tropical areas of the Pacific and Indian Oceans. The hub in the tropical
Pacific include the so-called El Niño areas. The El Niño/Southern Oscillation
(ENSO) is a dominant mode of the global atmospheric circulation variability which
quasiperiodically causes shift in winds and ocean currents centered in the Tropical
Pacific region and is linked to anomalous weather/climate patterns worldwide
(Sarachik et al., 2010). The global influence of the El Niño phenomenon is used
to explain the observation that the El Niño area constitutes the principal hub of the
climate network.

Let us characterize the dynamics of the SATA time series using the entropy
rate (10). The FFT-based estimator assign an entropy rate value to each grid-point,
i.e. to each node of the network, so they can be mapped in the same way as the
AWC. The entropy rate map is presented in Fig. 7b. The correspondence between
the lowest entropy rates and the highest AWC of the AC-network is indisputable.
In order to assess a bias in the correlation estimator we need time series which are
independent, but have the same dynamics (the same entropy rate) as the original
SATA time series. Such time series can be generated using the FFT-based surrogate
data algorithm (Paluš, 2007; Theiler et al., 1992). The fast Fourier transform is
applied to a time series, the magnitudes of the complex Fourier coefficients are
preserved, but their phases are randomized. Using different sets of random phases
the inverse FFT generates a number of independent realizations of a Gaussian
process with the same spectrum [and thus with the same entropy rate (10)] as that
of the original time series. A potential digression from the Gaussian distribution is
solved by a histogram transformation known as the amplitude adjustment. We use
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Fig. 7 (a) Area weighted connectivity for the SATA climate network with the density % D 0:005

obtained by the uniform thresholding of the absolute correlations. (b) Complexity of each node
SATA time series measured by the Gaussian process entropy rate hG. Note the reversed gray scales,
the black color corresponds to the largest AWC in (a), while in (b) it corresponds to the lowest
entropy rates

both the FT surrogate data and the amplitude-adjusted FT (AAFT) surrogate data;
however, they give equivalent results. Generating a large number of realizations of
the FT (AAFT) surrogate data for the SATA time series we can estimate distributions
of the correlations of independent surrogates of the SATA series from various
grid-points. Figure 8 compares such histogram for SATA-surrogates for a pair
of grid-points from a low entropy rate area (the El Niño area) and from a high
entropy rate area (an Euro-Asian area on 60ıN). While in the Northern hemisphere
high entropy rate area the correlation bias (the cross-correlation of realizations of
independent processes) scarcely reaches over ˙0:1, in the tropical Pacific areas the
cross-correlation bias can reach values close to ˙0:4.

As an alternative we construct a climate network using the MIR (13) and again
we threshold the MIR values in order to obtain the network density % D 0:005.
The area weighted connectivity for the MIR-networks is mapped in Fig. 9, where
we can compare the results for both the FFT- and CCWT-based estimators. The
results are quite similar. A few small differences can be caused by the fact that
the FFT-based estimator used segments of 128 samples and thus cannot include the
connectivity on large time scales as the CCWT estimator which utilizes 624 samples
in one whole segment. The differences between the MIR-network (Fig. 9) and the
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Fig. 8 Histograms of cross-correlations of independent FT (solid lines) and amplitude-adjusted
FT (dotted lines) surrogate data for the SATA of a pair of nodes from the low entropy rate area (the
thin lines, the nodes with the latitude 0ı, the longitude 90ıW and 10ıS, 120ıW) and a pair from
the high entropy rate area (the thick lines, the nodes 60ıN, 25ıE and 60ıN, 75ıE)

Fig. 9 (a) Area weighted connectivity for the SATA climate network with the density % D 0:005

obtained by the uniform thresholding of the mutual information rate (13) estimated using the
Fourier transform (a) and the continuous complex wavelet transform (b). Note that the scale is
different from that in Fig. 7a
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Fig. 10 Histograms (64 bins) of the area weighted connectivity (AWC*100) for the SATA climate
network with the density % D 0:005 obtained by the uniform thresholding of the absolute
correlations (solid black line), and of the mutual information rate (13) (dashed red line)

AC-network (Fig. 7a) are much larger and more important. In the comparison with
the AC-network, the very connected hub in the Indian Ocean almost disappears in
the MIR network. The hub in the El Niño area survives; however, it is weaker and
confined to a smaller area. The connectivity in the continental areas of the Northern
hemisphere increases in the MIR-network. This comparison, however, cannot give
an answer which network representation is closer to the physical reality.

In the analogy with degree distributions, studied in the complex network theory,
in Fig. 10 we present histograms estimating the distributions of the area weighted
connectivity. The AWC distribution for the AC-network (the solid black line) shows
a heavy irregular tail of extreme AWC values, while the AWC distribution for
the MIR-network (the dashed red line) shows a distribution bounded by a fast
probability decay for large AWC values, well captured by a Poisson distribution.
Scholz (2010) obtained such distributions using a node-similarity network model.
Each node has a set of features, quantified as coordinates in an Euclidean space.
Based on a random data set, two nodes are defined as connected (similar) when their
Euclidean distance is below a certain threshold. Using a small threshold only very
similar (close) nodes are connected. This represents a sparsely connected network
showing typically scale-free power-law like distributions. Increasing the threshold,
more densely connected networks are modelled with node degree distributions very
similar to that of the MIR-network (the dashed red line in Fig. 10).

Bivariate histograms estimating the joint probability distribution of the SATA
entropy rate and the AWC for the studied climate networks are presented in Fig. 11.
In the AC-network the extremely high AWC values are tight to the nodes with the
low entropy rate of the SATA time series (Fig. 11a). Together with the histograms



452 M. Paluš

Fig. 11 (a) Gray-coded bivariate histograms (32 � 32 bins) reflecting the joint probability
distribution of the SATA entropy rate (10), cf. Fig. 7b, and the area weighted connectivity
(AWC*100) for the SATA climate network with the density % D 0:005 obtained by the uniform
thresholding of the absolute correlations, cf. Fig. 7a. (b) The same as in (a), but considering the
area weighted connectivity for the SATA climate network with the density % D 0:005 obtained by
the uniform thresholding of the mutual information rate (13), cf. Fig. 9b

in Fig. 10 this picture supports the conclusion that the very high AWC values of
the nodes characterized by low entropy rates are probably consequences of the
bias in the absolute correlation estimations. The MIR-network lacks extreme AWC
values; however, some tendency for the preference of higher AWC values in the
nodes with low entropy rates remains (Fig. 11b). Since the MIR should not be biased
upward by the low entropy rate, this dependence reflects the physical reality: The
nodes in the El Niño area are the hub of the climate networks. Their increased
connectivity reflects distant influences of the ENSO phenomenon. On the other
hand, the quasiperiodic ENSO behavior in certain frequency ranges increases the
dynamical memory/decreases the entropy rate of the SATA time series in the El Niño
area. We will demonstrate these phenomena using the scale-specific connectivity in
the next Section.
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9 Scale-Specific Climate Networks

Using the idea of the scale-specific connectivity reflected by the CCWT-based
MIR estimates in which the summation over the wavelet scales (central wavelet
frequencies) is restricted to a chosen scale range (Sect. 7) we will study scale-
specific SATA climate networks. Starting with the MIR estimate restricted to the
wavelet time scales corresponding to the periods 4–6 years, in Fig. 12a we map
the AWC for the scale-specific SATA climate network for the time scales 4–6
years (SSCN(4–6yr) thereafter). As in the previous cases we consider the binary
network with % D 0:005. The hub of this network, i.e., the highest scale-specific
connectivity in the time scales 4–6 years is located in the tropical Pacific area. It is
not surprising since the oscillatory modes in the range of quasi-biennial oscillations
(QBO, periods 2–3 years) and quasi-quadrennial oscillations (QQO, the periods
fluctuating between 3 and 7 years) have been detected in the quasi-periodic ENSO
dynamics (Jiang et al., 1995; Kondrashov et al., 2005). The scale-specific MIR-
network for the QBO scale 2–3 years (not presented) has practically the same AWC
geographical distribution as the MIR-network for the used QQO range 4–6 years
(Fig. 12a). It is interesting to note that the SATA oscillatory mode with the periods
2–3 years is not simply a higher harmonic (Sheppard et al., 2011) of the mode

Fig. 12 (a) Area weighted connectivity for the scale-specific SATA climate network with the
density % D 0:005 obtained by the uniform thresholding of the mutual information rate (13)
estimated using the continuous complex wavelet transform within the scales related to the periods
4–6 years. (b) Dependence of the SATA time series on the Southern Oscillation index measured
by MIR (13) estimated using the CCWT within the scales related to the periods 4–6 years
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with the periods 4–6 years, since the test for the 1:2 phase coherence between these
modes did not reject the null hypothesis of phase independence of these oscillatory
modes.

The ENSO is characterized by several indices derived from the sea surface
temperature and the Southern Oscillation index (SOI, see http://www.cru.uea.ac.uk/
cru/data/soi/ for the data and their description) which is defined as the normalized
air pressure difference between Tahiti and Darwin. The MIR quantifying the
dependence within the time scales 4–6 years between the SOI and the SATA time
series in each grid-point is illustrated in Fig. 12b. The hubs of the SSCN(4–6yr) in
the tropical Pacific and Indian Oceans (Fig. 12a) are parts of the areas connected
to the ENSO within this time scale (Fig. 12b). However, the areas connected to the
ENSO are quite more extended in the Pacific Ocean, tropical Atlantic Ocean and
in the Indian and Southern Ocean. Also large continental areas in the Central and
Southern America, areas in Africa and some areas in Asia and Northern America
have the SATA variability in the time scale 4–6 years connected to the ENSO. This
extended ENSO scale-specific connectivity is apparently reflected also in the broad-
band connectivity and confirms the role of the hub of the global climate networks
for the ENSO tropical Pacific area, as we have observed in the previous Section.
The quasi-periodic dynamics plays an important role in the ENSO area temperature
variability, e.g. the QQO mode explains almost 40% of the variability of the sea
surface temperature anomalies (Jiang et al., 1995). This fact explains the low entropy
rate of the SATA time series in this area and the dependence between the AWC and
the entropy rate in Fig. 11b.

Oscillatory phenomena with the period around 7–8 years have been observed
in the air temperature and other meteorological data by many authors (see Paluš
and Novotná (2009, 2011) and references therein). Therefore, in the following we
will focus on the scale-specific climate network with the connectivity given by the
CCWT-based MIR estimate with the wavelet coherence summation restricted to
the wavelet scales corresponding to the periods 7–8 years (SSCN(7–8yr) thereafter).
Again we consider the binary network with % D 0:005. The AWC of the
SSCN(7–8yr) is mapped in Fig. 13a. Consistently with the observation of the 7–
8 year cycle in a number of European locations (Paluš and Novotná, 2004, 2007),
the SSCN(7–8yr) has a hub in a large area in Europe, but also in Western Asia and
Greenland. A strong hub of the SSCN(7–8yr) lies in the tropical Atlantic and also in
the Pacific areas different from the ENSO area. The 7–8 year cycle in the European
SAT is connected with the North Atlantic Oscillation (Paluš and Novotná, 2009,
2011).

The North Atlantic Oscillation (NAO) is a dominant pattern of the atmospheric
circulation variability in the extratropical Northern Hemisphere. On the global scale,
the NAO has a climate significance that rivals the Pacific ENSO (Marshall et al.,
2001) since it influences the air temperature, precipitation, occurrence of storms,
wind strength and direction in the Atlantic sector and surrounding continents. The
NAO is characterized by the NAO index (NAOI, see http://www.cru.uea.ac.uk/cru/
data/nao/ for the data and their description). While the quasi-periodic dynamics of
the ENSO is apparent in the SOI, the NAOI has rather a red-noise-like character

http://www.cru.uea.ac.uk/cru /data/soi/
http://www.cru.uea.ac.uk/cru /data/soi/
http://www.cru.uea.ac.uk/cru/data/nao/
http://www.cru.uea.ac.uk/cru/data/nao/
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Fig. 13 (a) Area weighted connectivity for the scale-specific SATA climate network with the
density % D 0:005 obtained by the uniform thresholding of the MIR (13) estimated using the
CCWT within the scales related to the periods 7–8 years. (b) Dependence of the SATA time series
on the North Atlantic Oscillation index measured by MIR (13) estimated using the CCWT within
the scales related to the periods 7–8 years

(Fernandez et al., 2003). However, sensitive detection methods such as the Monte-
Carlo singular system analysis (Paluš and Novotná, 2004) uncovered in the NAO
dynamics several oscillatory components from which the cycle with the period
around 7–8 years is the most prominent (Feliks et al., 2010; Paluš and Novotná,
2007, 2009, 2011). The NAO 7- to 8-year oscillatory mode is phase synchronized
with related modes in the SAT in large areas of Europe (Paluš and Novotná, 2011)
as well as with other weather- and climate-related variables in various areas through
the Earth (Feliks et al., 2010, 2013).

The MIR quantifying the dependence within the time scales 7–8 years between
the NAOI and the SATA time series in each grid-point is illustrated in Fig. 13b. We
can see that all the hubs in Fig. 13a lie in the areas where the SATA time series are
dependent on the NAOI in this scale, with the exception of the Pacific tropical area
between 125ı and 180ıW (Fig. 13b). For the better understanding of the topology
of the SSCN(7–8yr) we quantify the dependence between the SATA time series in
the node 150ıW, 5ıN, using the MIR estimated within the wavelet scales related
to the periods 7–8 years, see Fig. 14a. Apparently this hub (the Pacific tropical area
between 125ı and 180ıW) is connected just with other areas in the Pacific Ocean
and disconnected from the rest of the SSCN(7–8yr).

Using the same scale-specific connectivity, we can see that the node at 50ıW,
7.5ıN in the tropical Atlantic hub is connected to other hubs of the SSCN(7–8yr),
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Fig. 14 (a) Dependence of the SATA time series from each node with the SATA time series in
the node with the longitude 150ıW and the latitude 5ıN, measured by MIR (13) estimated using
the CCWT within the scales related to periods 7–8 years. (b) The same as in (a), but for the node
50ıW, 7:5ıN. The reference node can be seen as a white pixel in the black background

but not to the hub in Europe, see Fig. 14b. (And, of course, the Pacific tropical hub
is not connected to any other hub.) The map of the scale-specific connectivity of a
node in the European hub (the node 22:5ıE, 60ıN lying close to the SW Finland
Baltic coast, see Fig. 15a) confirms the disconnection between the tropical Atlantic
and the European hubs; however, the latter is connected to many areas all over the
world.

The above-mentioned phase synchrony between the 7- to 8-year oscillatory mode
in the NAO and in the European SAT time series evokes the hypothesis that, at
least a part of, the connectivity in the SSCN(7–8yr) is induced by the NAO and
its worldwide influence. In order to test this hypothesis we construct a version of
the scale-specific SSCN(7–8yr) in which, however, the connectivity is given by the
scale-specific MIR conditioned on the NAO index. In particular, for each pair of
nodes the two SATA time series and the NAOI time series are used to construct
the 3 � 3 wavelet coherence matrix % W.f / which is then inverted and the MIR
conditioned on the NAOI is evaluated according to Eqs. (23) and (24). This measure
quantifies the scale-specific dependence between the two SATA series without a
possible influence of the NAO 7- to 8-year oscillatory mode. The AWC map for
this conditional SSCN(7–8yr) in Fig. 15b shows that the hub in Europe and W
Asia disappears. It means that the scale 7–8 year-specific mutual connectivity of
the SATA time series in the areas in Europe and W Asia and their connections to
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Fig. 15 (a) Dependence of the SATA time series from each node with the SATA time series in
the node 22:5ıE, 60ıN, measured by MIR (13) estimated using the CCWT within the scales
related to periods 7–8 years. (b) Area weighted connectivity for the conditional scale-specific
SATA climate network with the density % D 0:005 obtained by the uniform thresholding of the
MIR (13) estimated using the CCWT within the scales related to the periods 7–8 years. The MIR
between each two nodes is taken conditionally on the NAO index

other areas in the world (see Fig. 15a) is induced by the NAO. It is interesting that
the hub in the tropical Atlantic survived the conditioning on the NAO, since Feliks
et al. (2010, 2013) track the NAO 7- to 8-year oscillatory mode to an oscillation
of a similar period in the position and strength of the Gulf Stream’s sea surface
temperature front in the North Atlantic. The position of the tropical Atlantic hub
coincides with the sink region and a warm loop of the Gulf stream. So it seems that
the tropical Atlantic area plays a role in the emergence of the 7–8 year oscillations
in nonlinear atmosphere–ocean interactions in the Northern Atlantic, in particular
in the dynamics of the NAO. Then the NAO induces this oscillatory mode in
temperature variability in large areas in Europe, Asia as well as in other regions
in the world (Fig. 13b). These observations concur with some findings of Feliks
et al. (2013) and need further study and understanding. Detailed insight into the
related atmospheric circulation phenomena is, however, out of the scope of this
paper. Here we wanted to demonstrate the potential of the MIR estimated using
the CCWT which gives the possibility to study either the total, or scale-specific or
conditional connectivity in networks of interacting dynamical systems or spatio-
temporal phenomena in a discrete approximation within the complex networks
paradigm.
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10 Conclusion

Using a simple example of the autoregressive process we have demonstrated how
increasing dynamical memory, reflected, e.g., in stronger autocorrelations, leads to
increasing bias in estimating dependence measures such as the absolute value of
the correlation coefficient. Similar behavior can be observed also in estimates of the
mutual information (Paluš and Vejmelka, 2007), or the mean phase coherence (Xu
et al., 2006). We have observed how this phenomenon can bias the connectivity
in climate networks since the time evolution of the air temperature anomalies,
recorded in different geographical areas, has different dynamics. Also in other
research fields where interaction/functional networks are inferred from experimental
time series this problem can influence the results and skew their interpretation. For
instance, many studies of EEG functional networks reported a changed network
connectivity in different conscious states, however, changed EEG dynamics had
been reported earlier in similar experimental conditions. The mutual information
rate can be the dependence measure which can help to distinguish changes in
connectivity and long-range synchrony from changes in the dynamics of network
nodes. Also other authors (Baptista et al., 2012; Blanc et al., 2011) propose the
MIR as an association measure suitable for inferring interaction networks from
multivariate time series generated by coupled dynamical systems. Blanc et al. (2011)
stress the independence of the MIR of the time lag which can occur between the
time evolutions of two interacting systems or processes. This property might be
particularly important considering the observation of Martin et al. (2013) regarding
the construction of the climate networks from daily air temperature and geopotential
height data. Inference of time lags in which the maximum cross-correlation occurs is
unreliable and can lead to physically unrealistic large lags and even to the inclusion
of non-existing links to the network.

In this paper we have proposed a computationally accessible algorithm based on
the MIR of Gaussian processes, adapted by using the wavelet transform. We have
demonstrated that this algorithm can be effective for nonlinear, nonstationary, and
multiscale processes. Using the examples of the climate networks we have presented
the ability of the scale-specific and conditional MIR to attribute different hubs of the
climate network to different atmospheric circulation phenomena. We believe that
the introduced approach can help in further understanding of complex systems and
their dynamics which can be observed and recorded in the form of multivariate time
series.
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Non-Extensive Statistical Mechanics: Overview
of Theory and Applications in Seismogenesis,
Climate, and Space Plasma

G.P. Pavlos, L.P. Karakatsanis, A.C. Iliopoulos, E.G. Pavlos, and A.A. Tsonis

Abstract In this small review, the theoretical framework of non-extensive statis-
tical theory, introduced by Constantino Tsallis in 1988, is presented in relation
with the q-triplet estimation concerning experimental time series from climate,
seismogenesis, and space plasmas systems. These physical systems reveal common
dynamical, geometrical, or statistical characteristics. Such characteristics are low
dimensionality, typical intermittent turbulence multifractality, temporal or spatial
multiscale correlations, power law scale invariance, non-Gaussian statistics, and
others. The aforementioned phenomenology has been attributed in the past to
chaotic or self-organized critical (SOC) universal dynamics. However, after two
or three decades of theoretical development of the complexity theory, a more
compact theoretical description can be given for the underlying universal physical
processes which produce the experimental time series complexity. In this picture,
the old reductionist view of universality of particles and forces is extended to the
modern universality of multiscale complex processes from the microscopic to the
macroscopic level of different physical systems. In addition, it can be stated that
a basic and universal organizing principle exists creating complex spatio-temporal
and multiscale different physical structures or different dynamical scenarios at every
physical scale level. The best physical representation of the underline universal
organizing principle is the well-known entropy principle. Tsallis introduced a q-
entropy (Sq) as a non-extensive (q-extension) of the Boltzmann–Gibbs (BG) entropy
(for q D 1, the BG entropy is restored) and statistics in order to describe efficiently
the rich phenomenology that complex systems exhibit. Tsallis q-entropy could
be a strong candidate for entropy principle according to which nature creates
complex structures everywhere, from the microscopic to the macroscopic level,
trying to succeed the extremization of the Tsallis entropy. In addition, this Sq
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entropy principle is harmonized with the q extension of the classic and Gaussian
central limit theorem (q-CLT). The q-extension of CLT corresponds to the Levy
a-stable extension of the Gaussian attractor of the classic statistical theory. The
q-CLT is related to the Tsallis q-triplet theory of random time series with non-
Gaussian statistical profile. Moreover Tsallis q-extended entropy principle can be
used as the theoretical framework for the unification of some new dynamical
characteristics of complex systems such as the spatio-temporal fractional dynamics,
the anomalous diffusion processes and the strange dynamics of Hamiltonian and
dissipative dynamical systems, the intermittent turbulence theory, the fractional
topological and percolation phase transition processes according to Zelenyi and
Milovanov non-equilibrium and non-stationary states (NESS) theory, as well as the
non-equilibrium renormalization group theory(RNGT) of distributed dynamics and
the reduction of dynamical degrees of freedom.

Keywords Non-extensive statistics • Tsallis q-triplet • Complexity • Climate •
Space plasmas • Magnetosphere • Solar wind • Sunspot • Solar flares

1 Introduction

The last 20 years, complexity theory advances rapidly giving emphasis to nonlinear
dynamics, fractal theory, and the fractional calculus and statistical physics. The
basic tool for the comparison of complexity theory with the physical reality
is the nonlinear time series analysis. Near thermodynamic equilibrium statistics
and dynamics are two separated but fundamental elements of the physical the-
ory. Also, at thermodynamical equilibrium, nature reveals itself as a Gaussian
and macroscopically uncorrelated process simultaneously with unavoidable or
inevitable and objective deterministic character. However, modern evolution of the
scientific knowledge reveals the equilibrium characteristics of the physical theory
as an approximation or the limit of a more synthetic physical theory which is
characterized as complexity theory. The new physical characteristics of complexity
theory can be manifested as a physical system is driven in far from equilibrium
states.

At 1988, Constantino Tsallis for describing complex systems introduced the q-
generalization of Boltzmann–Gibbs (BG) entropy and statistical mechanics (Tsallis
1988). In particular, Tsallis non-extensive statistical mechanics (Tsallis 2004a)
includes the generalization of BG statistical mechanics, inspired by multifractal
theory, extending BG entropy principle to the Tsallis q-entropy principle where the
BG statistical theory is a special case corresponding to the value q D 1.

Tsallis theory indicates that Nature works at every level creating physical states
corresponding to q-entropy extremes, or more general types of entropy in contrast
with the historical Gaussian thermodynamical equilibrium states. Non-equilibrium
critical phenomena and phase transition processes exhibit a rich phenomenology
which includes, among others, heavy tailed power laws, scale invariance and
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multiscale correlations, long-range spatio-temporal correlations, multifractal and
hierarchical structures, anomalous diffusion, anomalous transports, self-organized
percolations states, coherent states with memory, topological phase transition and
fractal topology-fracton states, etc. All these characteristics, which can be observed
in almost every complex system, can be understood as a general local–non-local
ordering principle of Nature included in the q-entropy principle of Tsallis non-
extensive statistical mechanics.

Moreover, as usually happens with any novel physical theory, new mathematical
concepts are used. Examples are non-Euclidian geometry and Riemannian smooth
manifolds for relativity theory, Hilbert spaces and operators for quantum theory,
etc. Similarly, q-mathematics and fractional calculus are used for the mathematical
formulation of Tsallis statistical mechanics theory and Tsallis q-entropy principle.
The importance of the generalized principle of Tsallis q-entropy is proportional to
that of the famous time arrow. Time being irreversible means that every natural
process is associated with entropy production. Thus, Nature generates novelty,
information, ordered structures, and long-range correlations. Mathematically, based
on the fractional calculus, integration–derivation, the well-known Langevin and
Fokker–Planck (FP) equations are generalized to fractional ones, the solutions
of which correspond to multifractal spatio-temporal structures. These structures
are described by singular and fractional functions and correspond to q-entropy
extremes. Thus, the q-entropy principle is related to the holistic, multiscale, and
globally correlated spatio-temporal structures.

The Tsallis q-entropy is also related to strange kinetics and fractal–multifractal
profile of the phase space, which causes long-range spatio-temporal correlations
and non-Gaussian probability distribution functions of the dynamical fluctuations
as well as non-Poisson temporal distributions (Zaslavsky 2002). These charac-
teristics, along with critical exponents, power laws or heavy tails of probability
distribution functions, as well as singularities and spatial–temporal fractality of
non-differentiable distribution of the physical functions and physical properties–
quantities, are related to the strange topology of phase space caused by the q-entropy
principles of Tsallis theory as the dynamical system tries to achieve extremization
of q-entropy states (Alemany and Zanette 1994).

Therefore, far from equilibrium statistics and dynamics can be unified through
the Tsallis non-extensive statistics included in Tsallis q-entropy theory (Tsallis
2009) and the fractal generalization of dynamics included in theories developed
by Ord (1983), Nottale (2006), Castro (2005), Zaslavsky (2002), Shlesinger et al.
(1993), Tarasov (2005), El-Nabulsi (2005), Goldfain (2007)), and others.

For the last 6 years and in a series of papers, we applied tools from nonlinear
time series analysis and new concepts included in Tsallis theory in various complex
systems, such as space plasmas, earthquakes, climate, brain dynamics, and recently
in DNA and material dynamics. The results verified the presence of non-extensive
statistical mechanics characteristics in all the aforementioned complex systems
(Karakatsanis and Pavlos 2008; Karakatsanis et al. 2012; Karakatsanis et al. 2013;
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Pavlos et al. 2011, 2012a, b, 2014, 2015, 2016; Iliopoulos et al. 2012, 2015a,
b, 2016a; Iliopoulos 2016b). The paper is organized as follows: In Sect. 2 we
present the basic theoretical framework of Tsallis non-extensive statistics in Sect. 3
a brief summary of results concerning the estimation of Tsallis q-triplet for various
geophysical systems is given, and finally in Sects. 4 and 5 we present the theoretical
interpretations of the q-triplet results and the closing remarks of this study.

2 The General Framework of Tsallis Statistics

Non-extensive Tsallis statistical theory is connected to the q-extension of expo-
nential and logarithmic functions and the q-extension of a Fourier transform (FT),
(Tsallis 2009). The q-extension of mathematics underlying the q-extension of
statistics is presented under the solution of the nonlinear equation

dy

dx
D yq; .y.0/ D 1; q 2 R/ (1)

Its solution is the q-exponential function ex
q

ex
q  Œ1C .1 � q/ x�1=.1�q/ (2)

The q-extension of logarithmic function is the reverse of ex
q

lnqx 
x1�q � 1

1 � q
(3)

The q-logarithm satisfies the property

lnq .xAxB/ D lnqxA C lnqxB C .1 � q/
�
lnqxA

� �
lnqxB

�
(4)

According to the pseudo-additive property of the q-logarithm, a generalization of
the product and sum as the q-product and q-sum can be introduced in (1)

x˝qy  e
lnqxClnqy
q (5)

x˚qy  x C y C .1 � q/ xy (6)

Moreover, in the context of the q-generalization of the Central Limit Theorem
(CLT) the q-extension of FT can be introduced in Eq. (1)

Fq Œp� .�/ 

C1Z

�1

dxeix�Œp.x/�q�1

q p.x/; .q � 1/ (7)
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Tsallis, inspired by multifractal analysis (Tsallis 2009), proposed that the BG
entropy

SBG D �k
X

pi ln pi D k < ln .1=pi/ > (8)

cannot describe all the rich phenomenology of nonlinear dynamic systems, since BG
statistical theory presupposes ergodicity of the underlying dynamics in the system
phase space. However, the complexity of dynamics is far beyond from simple
ergodic, therefore Tsallis introduced a generalization of BG entropy based on the
extended concept of q-entropy:

Sq D k

 
1 �

NX
iD1

pq
i

!
= .q � 1/ D k < lnq .1=pi/ > (9)

For a continuous state space, we have

Sq D k

�
1 �

Z
Œp.x/�qdx

�
= .q � 1/ (10)

For a system of particles and fields with short-range correlations in their
immediate neighborhoods, the Tsallis q-entropy Sq asymptotically leads to BG
entropy (SBG) corresponding to q D 1. For probabilistically dependent or correlated
system A and B, it can be proven that

Sq .A C B/ D Sq.A/C Sq .B=A/C .1 � q/ Sq.A/Sq .B=A/
D Sq.B/C Sq .A=B/C .1 � q/ Sq.B/Sq .A=B/

(11)

where Sq.A/  Sq
�˚

pA
i

��
,Sq.B/  Sq

�˚
pB

i

��
, Sq(B/A), and Sq(A/B) are the

conditional entropies of systems A , B. When the systems are probabilistically
independent, then relation (11) changes to

Sq .A C B/ D Sq.A/C Sq.B/C .1 � q/ Sq.A/Sq.B/ (12)

The first part of Sq(A C B) is additive (Sq(A) C Sq(B)) while the second part
is multiplicative including long-range correlations supporting the macroscopic
ordering phenomena.

2.1 Intermittent Turbulence and Multifractality Via
Non-Extensive Statistics

The fractal–multifractal structuring of phase space, caused by the nonlinear dynam-
ics includes islands, cantori, and stickiness and is related to singular measures,
singular (irregular) functions of space and time (fractal functions), as well as to scale
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invariance properties and multiscale interaction causing long-range correlations and
hierarchical structures (Shlesinger et al. 1987; Shlesinger 1988; Shlesinger et al.
1993; Zaslavsky 2002).

The q-extended statistical mechanics and the Tsallis q-distributions correspond
to general power law probability functions in phase space with local singularities
(˛) related to the singularity spectrum functions f(˛) and the generalized fractal
dimension spectrum functions Dq (Theiler 1990; Arneodo et al. 1995). The multi-
fractal structure of the phase space can be described by the generalized Rényi fractal
dimensions

Dq D
1

q � 1
lim
�!0

log
PN

iD1 pq
i

log�
; (13)

where pi 
�˛(i) is the local probability at location (i) in the phase space, � is the
local size of phase space, and a(i) is the local singularity (r) point wise dimension of
the dynamics. The Rényi q numbers (different from the q-index of Tsallis statistics)
take values in the entire region (� 1 , C 1) of real numbers. The spectrum of
distinct local point wise dimensions ˛(i) is given by the estimation of the function
f (˛) defined by the scaling of the density n(a,�) ��f (a), where n(a,�)da is the
number of local regions that have a scaling index between a and a C da. This
reveals f (a) as the fractal dimension of points with scaling index a. The fractal
dimension f (a) which varies with a shows the multifractal character of the phase
space dynamics which includes interwoven sets of singularity of strength a, by their
own fractal measure f (a) of dimension (Halsey et al. 1986; Theiler 1990).

The multifractal spectrum Dq of the Renyi dimensions can be related to the
spectrum f (a) of local singularities using the following:

X
pq

i D

Z
d˛0p

�
˛0
�
��f .˛0/d˛0 (14)

� .q/  .q � 1/Dq
min
a
D q˛ � f .˛/ (15)

a .q/ D
d Œ� .q/�

dq
(16)

f .˛/ D q˛ � � .q/ (17)

2.2 Tsallis Central Limit Theorem Extension and q-Triplet

According to the Tsallis q-extension of the entropy principle, any stationary random
variable can be described as the stationary solution of a generalized fractional
diffusion equation. For metastable stationary solutions of a stochastic process, the
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maximum entropy principle of BG statistical theory can faithfully be described by
the maximum (extreme) of the Tsallis q-entropy function. Extremization of Tsallis
q-entropy corresponds to the q-generalized form of the normal distribution function

pq.x/ D Aq

p
ˇe

�ˇ.x<x>q/
2

q (18)

where Aq D
p
.q � 1/ =�� .1= .q � 1// =� ..3 � q/ = Œ2= .q � 1/�/ for q > 1,

and Aq D
p
.1 � q/ =�� ..5 � 3q/ = Œ2 .1 � q/�/ =� ..2 � q/ = .1 � q// for q < 1,

�(z) being the Riemann function.
The q-extension of statistics also includes q-extension of the CLT, which can

faithfully describe non-equilibrium long-range correlations in a complex system.
The normal CLT concerns Gaussian random variables (xi) for which the sum Z DPN

iD1xi gradually tends to a Gaussian process as N ! 1, while its fluctuations tend
to zero, in contrast to the possibility of non-equilibrium fluctuations with long-range
correlations. Using the FT q-extension, we can prove that q-independence means
independence for q D 1 (normal CLT), but for q ¤ 1 it means strong correlation
(q-extended CLT). In this case (q ¤ 1), the number of allowed states WA1CA2C���CAN

in a system composed of (A1, A2, : : : , AN) subsystems is expected to be less than
WA1CA2C���CAN D …N

iD1WAi where WA1 ;WA2 ; : : : ;WAN are the possible states of the
subsystems. This means self-organization of dynamics for q ¤ 1 and development
of long-range correlations in space and time.

The deeper theoretical foundation of Tsallis q-triplet is included in the extended
q-extended CLT (Umarov et al. 2008). In particular, the extended q-CLT states that
an appropriately scaled limit of sums of qk correlated random variables is a qk � 1-
Gaussian, which is the q�

k -Fourier image of a q�
k -Gaussian. The qk, q�

k are sequences

qk D
2q C k .1 � q/

2C k .1 � q/
and q�

k D qk�1 for k D 0;˙1;˙2; : : : (19)

including the triplet (Patt, Pcor, Pscl), where Patt, Pcor, and Pscl are parameters of
attractor, correlation, and scaling rate, respectively, and corresponds to the q-triplet
(qsens, qrel, qstat) according to the relations.

.Patt;Pcor;Pscl/  .qk�1; qk; qkC1/  .qsens; qrel; qstat/ (20)

The parameter Patt  qsens  qk � 1 describes the non-ergodic q-entropy pro-
duction of the multiscale correlated process as the system shifts to the state
of the qatt-Gaussian, where the q-entropy is extremized in accordance with the
generalization of the Pesin’s theorem (Tsallis 2004b)

Kqsen  lim
t!1

lim
W!1

lim
M!1

Sq .Pi.t// =k

t
D �qsen (21)
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The parameter Pcor  qrel  qk describes the q-correlated random variables par-
ticipating to the dynamical process of the q-entropy production and the relaxation
process towards the stationary state. The parameter Pslc  qstat  qk C 1 describes the
scale invariance profile of the stationary state corresponding to the scale invariant
q-Gaussian attractor as well as to an anomalous diffusion process mirrored at the
variance scaling according to general, asymptotically scaling, from

NDPx.x/ 
 G
� x

ND

�
(22)

where Px(x) is the probability function of the self-similar statistical attractor G and
D is the scaling exponent characterizing the anomalous diffusion process (Baldovin
and Stella 2007)?

˝
x2
˛

 t2D (23)

The non-Gaussian multiscale correlation can create the intermittent multifractal
structure of the phase space mirrored also in the physical space multifractal distribu-
tion of the turbulent dissipation field. The multiscale interaction at non-equilibrium
critical NESS creates the heavy tail and power law probability distribution function
obeying the q-entropy principle. The singularity spectrum of a critical NESS
corresponds to extremized Tsallis q-entropy.

The qstat Index and Non-Extensive Physical States

A long-range-correlated meta-equilibrium non-extensive physical process can be
described by the nonlinear differential equation (Tsallis 2009)

d
�
piZqstat

�

dEi
D �ˇqstat

�
piZqstat

�qstat (24)

The solution of this equation corresponds to the probability distribution

pi D e�ˇstatEi
qstat

=Zqstat (25)

where ˇqstat D 1
KTstat

,and Zqstat D
P

j e
�ˇqstatEj
qstat . Then the probability distribution is

given by

pi /


1 � .1 � q/ ˇqstat Ei

�1=1�qstat (26)

for discrete energy states fEig and by

p.x/ /


1 � .1 � q/ ˇqstat x

2
�1=1�qstat (27)
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for continuous x states of fXg, where the values of the magnitude X correspond to
the state points of the phase space. Distributions functions (26) and (27) correspond
to the attracting stationary solution of the extended (anomalous) diffusion equation
related to the nonlinear dynamics of the system. The stationary solutions p(x)
describe the probabilistic character of the dynamics on the attractor set of the
phase space. The non-equilibrium dynamics can evolve on distinct attractor sets,
depending upon the control parameters, while the qstat exponent can change as the
attractor set of the dynamics changes.

The qsen Index and the Entropy Production Process

Entropy production is related to the general profile of the attractor set of the
dynamics. The profile of the attractor can be described by its multifractality as well
as by its sensitivity to initial conditions. The sensitivity to initial conditions can be
expressed as

d�

dt
D �1� C

�
�qsen � �1

�
�qsen (28)

where � is the trajectory deviation in the phase space: � lim�(x) ! 0f�x(t)/�x(0)g
and �x(t) is the distance between neighboring trajectories (Tsallis 2002). The
solution of Eq. (28) is given by

� D

�
1 �

�qsen

�1
C
�qsen

�1
e.1�qsen/�1t

� 1
1�qsen

(29)

The qsen exponent is related to the multifractal profile of the attractor set
according to

1

qsen
D

1

amin
�

1

amax
(30)

where amin(amax) corresponds to zero points of the multifractal exponent spectrum
f (a), that is f (amin) D f (amax) D 0.

The deviations of neighboring trajectories and the multifractality of the dynamic
attractor set are related to the chaotic phenomenon of entropy production according
to Kolmogorov–Sinai entropy production theory and the Pesin’s theorem. The
q-entropy production can be expressed as

Kq  lim
t!1

lim
W!1

lim
N!1

< Sq > .t/

t
(31)
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where W is the number of non-overlapping windows in the phase space and N the
state points in the windows according to

PW
iD1Ni D N. Sq is estimated using the

probability Pi(t)  Ni(t)/N. According to Tsallis, Kq is finite only for q D qsen

The qrel Index and the Relaxation Process

Thermodynamic fluctuation–dissipation theory (Chame and De Mello 1994) is
based on the Einstein original diffusion theory (Brownian motion theory). Diffusion
is a physical mechanism for extremization of entropy. If �S denote the deviation of
entropy from its equilibrium value S0, then the probability of a proposed fluctuation
is given by

P 
 exp .�S=k/ (32)

The Einstein–Smoluchowski theory of Brownian motion was extended to the
general FP diffusion theory of non-equilibrium processes. The potential of FP
equation may include many meta-equilibrium stationary states near or far away
from thermodynamical equilibrium. Macroscopically, relaxation to the equilibrium
stationary state of some dynamical observable O(t) related to system evolution in
the phase space can be described by the form of general form

d�

dt
' �

1

�
� (33)

where �(t)  [O(t) � O(1)]/[O(0) � O(1)] describes relaxation of the macro-
scopic observable O(t) towards its stationary state value. The non-extensive gen-
eralization of fluctuation–dissipation theory is related to the general correlated
anomalous diffusion processes (Tsallis 2009). The equilibrium relaxation process is
transformed to the meta-equilibrium non-extensive relaxation process according to

d�

dt
D �

1

Tqrel

�qrel (34)

the solution of this equation is given by:

�.t/ ' e�t=�rel
qrel

(35)

The autocorrelation function C(� ) or the mutual information I(� ) can be used as
candidate observables �(t) for estimation of qrel. However, in contrast to the linear
profile of the correlation function, the mutual information includes the nonlinearity
of the underlying dynamics and it is proposed as a more faithful index of the
relaxation process and the estimation of the Tsallis exponent qrel.
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3 Applications of Tsallis Statistics in Various Geophysical
Systems

In this section, we presented the q-triplet estimation of Tsallis statistics concerning
experimental time series from climate, seismogenesis, and space plasmas systems.

3.1 Seismogenesis

In Iliopoulos et al. (2012) and Pavlos et al. (2014) seismogenesis of Greece and
adjacent areas was studied using Tsallis statistics. Time series considered were
interevent times and moment magnitude. The results revealed the efficiency of
Tsallis statistics in describing the non-Gaussian statistics of the time series. In the
following we present results (as an example) concerning the estimation of Tsallis q-
triplet for Hellenic seismogenesis (Pavlos et al. 2014). Figure 1a–f presents the time
series of magnitude data (Fig. 1a), the Tsallis q-Gaussian distribution (Fig. 1b) along
with the fitting (Fig. 1c), the multifractal spectrum (Fig. 1d), the generalized dimen-
sion function (Fig. 1e), and finally the auto-mutual information function in log–log

Fig. 1 (a) Time series of Seismic Moment (Mw) time series (b) PDF P(zi) (blue dots) vs. ziq
Gaussian function (red line) that fits P(zi) for the seismic moment (c) Linear Correlation between
lnqP(zi) and (zi)2 where qstat D 1.43 ˙ 0.123 for the seismic moment (d) Multifractal spectrum
of seismic moment time series (blue dots) with solid line a sixth-degree polynomial. We calculate
the qsen D �0.6957 ˙ 0.0052. (e) D(q) vs. q of the seismic moment time series (blue dots) (f)
Log–log plot of the self-correlation coefficient C(�) vs. time delay � for the seismic moment time
series. We obtain the best fit with qrel D 17.418 ˙ 1.514
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plot correspondingly. The Tsallis q-triplet values were found to be different from
unity and to satisfy the relation: qsen < 1 < qstat < qrel : � 0.6957 < 1 < 1.43 < 17.418
(for more details concerning the specific results, see Pavlos et al. 2014).

3.2 Climate

Geopotential Height Spatial Series

In this paragraph, we present new results concerning spatial series corresponding
to Geopotential Height index. The data are taken from the website of National
Oceanic and Atmospheric Administration (NOAA) (https://www.esrl.noaa.gov/psd/
data/gridded/data.ncep.reanalysis.pressure.html). They include the global distribu-
tion of the Geopotential Height (GH) (Kalnay et al. 1996) index of month average
values in 1000 mb pressure level, during the period (1948–2012) measured in
meters. The spatial coverage of the measurement consists by 2.5 � 2.5 degree global
grids (144 � 73) from 0.0E to 357.5E, 90.0N to 90.0S. We constructed the spatial
distribution of the GH index for the month January of specific years 1948 (shown
as an example in Fig. 2a), 1960, 1970, 1980, 1990, 2000, and 2012 and for different
regions, namely: (a) all planet, (b) north hemisphere, and (c) south hemisphere,
respectively.

In order to proceed statistical analysis, we apply the first difference filter (an
example is shown in Fig. 2c) at the spatial series of GH index in order to exclude
the low periodicity component. In this way, we focus on the rapid fluctuations of the
raw data.

In Fig. 3a–f we presented the PDF P(zi) vs. zi q Gaussian function that fits P(zi),
the multifractal spectrum, and the log–log plot of the self-correlation coefficient
I(� ) vs. time delay � for the GH spatial series (JAN, 1960) for north and south
hemisphere. In both cases we observed clearly non-Gaussian statistics. The results
showed that the q-triplet values were found to satisfy the relation qsen < 1 < qstat < qrel.

Furthermore, in Fig. 4a–c, we show the estimation of the q-triplet indices (qstat,
qsen, qrel) for the spatial distribution of the GH index for the areas: globally, north
hemisphere and south hemisphere over decades. Moreover, in Fig. 4a, we present
the values of Tsallis qstat index estimated for the spatial distribution of the GH
comparing in three different areas and in almost decennial cycle for the month Jan-
uary. In all cases, the value qstat > 1 reveals the presence of long-range correlations
with underlying dynamics characterized by non-Gaussian (q-Gaussian) distributions
and a strong non-extensive character, attaining values between 1.38 ˙ 0.01 and
1.75 ˙ 0.02 globally, 1.26 ˙ 0.02 and 1.48 ˙ 0.02 for north hemisphere, and
1.41 ˙ 0.02 and 1.80 ˙ 0.02 for south hemisphere. The comparison of Tsallis
qstat values revealed that the spatial series of GH in these areas can be described

https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.pressure.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.pressure.html
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Fig. 2 (a) The GH spatial series for all planet by grid 2.5 � 2.5ı the time of January of 1948. (b)
The mutual information of the corresponding GH index. (c) The filtering signal of GH index (filter
of first differences) (d) The mutual information of the filtering GH index

by Tsallis q-Gaussian distributions with similar qstat indices, indicating similar
statistical complexity.

The most interesting finding reported in Fig. 4a is the spatial distribution of
the qstat values which showed a downward slope, especially in globally and south
hemisphere and in January of 2012 the qstat values are almost identical for all
regions. Similar, in Fig. 4b we showed the qsen index estimated for the same
spatial series and regions. In all cases estimated the qsen < 1 for all signals and
for all regions, a result which indicates a power law character for sensitivity of
initial conditions, attaining values between �0.39 ˙ 0.08 and 0.89 ˙ 0.13 globally,
�0.36 ˙ 0.01 and �0.70 ˙ 0.05 for north hemisphere, and �0.52 ˙ 0.03 and
1.30 ˙ 0.10 for south hemisphere. It seems that the profile of the qsen values of the
planet and the north hemisphere is the same, but the profile of the south hemisphere
showed wide fluctuations between the decades.
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Finally, in Fig. 4c we present the results for the qrel index. It provides a
description on how fast the system relaxes on the metastable state. In all cases,
the results showed that qrel > 1 with a similar profile, attaining values between
1.62 ˙ 0.01 and 1.91 ˙ 0.01 globally, 1.79 ˙ 0.02 and 2.11 ˙ 0.01 for north
hemisphere, and 1.64 ˙ 0.01 and 2.11 ˙ 0.01 for south hemisphere. In particular,
the profile of qrel values is similar at the regions of globally and south hemisphere
with a downward slope.

Moreover, noticeable differences of the q-triplet estimated at distinct local
or temporal regions were found. The analysis is giving significant information
identifying and characterizing the dynamical characteristics of the earth’s climate
and the ability of complexity and self-organization. Specifically, the results of
the q stationary reveals that the GH sequences are characterized by long-range
correlations and “memory character” or “persistent behavior” or patterns of GH
raw data. The evolution of q stationary over decades and specific areas showed
specific patterns with analogous trends. Similar behavior showed the results from
the values variation of q sensitivity and q relaxation at the spatial of GH index.
Clearly, although all temporal or spatial regions include information and exhibit a
complex character, there are differences in the degree of complexity and therefore in
the time needed for the transition to a new state of equilibrium, after being disturbed.

Temperature and Rainfall

In Pavlos et al. (2014) we presented results concerning the q-triplet Tsallis statistics
for the air temperature and rainfall experimental data sets from the weather station
20046 Polar GMO in E.T. Krenkelja for the period 1/1/1960–31/12/1960, shown
in Fig. 5a–l correspondingly. In both cases, we observed clearly non-Gaussian
statistics. The q-triplet values were found to satisfy the relation qsen < 1 < qstat < qrel

for the two data sets from atmospheric dynamics.

3.3 Space Plasma

Magnetosphere

In this paragraph, we present results concerning data “following” a shock event
from near Earth IP plasma at L1 to the Earth’s magnetosphere and magnetotail. We
used the data of four spacecraft, ACE, Cluster 4 (Tango), Themis-E, and Themis-
C. The results are summarized in Fig. 6a–c (for extended information concerning
the results, see Pavlos et al. 2016). In Fig. 6 we show the Tsallis q-triplet results,
namely Tsallis qstat (Fig. 6a), Tsallis qsen (Fig. 6b), and Tsallis qrel (Fig. 6c) indices.
In all cases, the results showed qstat > 1, qsen < 1, and qrel > 1 suggesting that the
underlying dynamics characterized by non-Gaussian (q-Gaussian) distributions,
with a power law behavior for sensitivity of initial conditions and a qrel-exponential
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Fig. 5 (a) Time series of Temperature. (b) PDF P(zi) vs. ziq Guassian function that fits P(zi)
for the Temperature. (c) Linear Correlation between lnqP(zi) and (zi)2 where qstat D 1.89 ˙ 0.08
for the Temperature. (d) Multifractal spectrum of Temperature time series with solid line a 8ı

polynomial. We calculate the qsen D 0.407 ˙ 0.013. (e)D(q) vs. q of the Temperature time series.
(f) Log–log plot of the self-correlation coefficient C(�) vs. time delay � for the Temperature time
series. We obtain the best fit with qrel D 8.87 ˙ 0.62. (g) Time series of Rainfall. (h) PDF P(zi)
vs. ziq Gaussian function that fits P(zi) for the Rainfall. (i) Linear Correlation between lnqP(zi) and
(zi)2 where qstat D 2.21 ˙ 0.06 for the Rainfall. (j) Multifractal spectrum of Rainfall time series
with solid line a 8ı polynomial. We calculate the qsen D 0.444 ˙ 0.007. (k) D(q) vs. q of the
Rainfall time series. (l) Log–log plot of the self-correlation coefficient C(�) vs. time delay � for
the Rainfall time series. We obtain the best fit with qrel D 6.04 ˙ 0.47
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index

decay relaxation of the system to meta-equilibrium non-extensive stationary states,
for all regions. In addition, the comparison of the results presented in Fig. 6 reveals
similar physical character of the plasma at the distant magnetotail (THEMIS-C) and
at the interplanetary medium (ACE). Both spacecraft observe strong non-extensive
and intermittent (multifractal) profile of the plasma system in comparison with the
other spacecraft (CLUSTER-4, THEMIS-E) which are located near the front side of
the bowshock and the Earth magnetopause. This observational result indicates weak
self-organization of the space plasma near the Earth (CLUSTER-4, THEMIS-E)
in comparison with the distant plasma in the Earth magnetotail (THEMIS-C) or
the interplanetary medium (ACE). This difference in plasma behavior could be
due to the strong interaction of space plasma with the near Earth environment
which destroys or doesn’t permit the development of strong extensivity and self-
organization.
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Solar Wind

In this paragraph, we present results (for more details, see Pavlos et al. 2015)
concerning the evolution and the gradual phase transition of the dynamics of solar
wind from calm to shock. In order to achieve this, we divided an ion flux time
series, consisting of 604.510 counts, into five segments, as shown in Fig. 7. The first
three segments (x1calm, x2calm, x3calm) correspond to the calm period time series
(previous to shock), while the other two to the main shock period (x1shock) and its
relaxation (x2shock).

The results concerning Tsallis q-triplet as the solar wind dynamics evolves
towards the shock event and its relaxation are summarized in Fig. 8a–c which
presents the index qstat, along with the bar errors (Fig. 8a), the valuation of qsen

index values, along with the bar errors (Fig. 8b), and qrel indexes values, along
with error estimation (Fig. 8c). As it can be seen all indices are different from
unity, while differences in triplet values concerning calm and shock period show
a gradual development of non-Gaussian, non-extensive solar wind dynamics, which
reach its peak in the main shock event (x1shock), characterized with of low entropy
production and a fastest speed approach to metastable stationary state(s).

Sunspot Time Series

In this study Pavlos et al. (2014) present the q-triplet of the sunspot index by
using data of Wolf number. Especially, we use the Wolf number, known as the
international sunspot number measures the number of sunspots and group of
sunspots on the surface of the sun computed by the formula RDk*(10gCs) where
s is the number of individual spots, g is the number of sunspot groups, and k is a
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factor that varies with location known as the observatory factor. We analyze a period
of 184 years. We clearly observe non-Gaussian statistics to the system of sunspot
index. The q-triplet values satisfy the relation qsen < 1 < qstat < qrel (Fig. 9) for the
sunspot time series (see Table 1).

Solar Flares Time Series

Similarly, in this study Pavlos et al. (2014) present the q-triplet of the daily solar
flares index. Moreover, we analyze the daily Flare Index of the solar activity that was
determined using the final grouped solar flares obtained by National Geophysical
Data Center (NGDC). It is calculated for each flare using the formula: Q D (i� t),
where “i” is the importance coefficient of the flare and “t” is the duration of the
flare in minutes. To obtain final daily values, the daily sums of the index for the
total surface are divided by the total time of observation of that day. The data
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Fig. 9 (a) Time series of Sunspot Index concerning the period of 184 years. (b) PDF P(zi) vs. ziq
Guassian function that fits P(zi) for the Sunspot Index. (c) Linear Correlation between lnqP(zi) and
(zi)2 where qstat D 1.53 ˙ 0.04 for the Sunspot Index. (d) Multifractal spectrum of Sunspot Index
time series with solid line a sixth-degree polynomial. We calculate the qsen D 0.368 ˙ 0.005. (e)
D(q) vs. q of the Sunspot Index time series. (f) Log–log plot of the self-correlation coefficient C(�)
vs. time delay � for the Sunspot Index time series. We obtain the best fit with qrel D 5.67 ˙ 0.13.
(g) Time series of Solar Flares concerning the period of 184 years. (h) PDF P(zi) vs. ziq Guassian
function that fits P(zi) for the Solar Flares. (i) Linear Correlation between lnqP(zi) and (zi)2 where
qstat D 1.90 ˙ 0.05 for the Solar Flares. (j) Multifractal spectrum of Solar Flares time series with
solid line a sixth-degree polynomial. We calculate the qsen D 0.308 ˙ 0.005. (k) D(q) vs. q of the
Solar Flares time series. (l) Log–log plot of the self-correlation coefficient C(�) vs. time delay �
for the Solar Flares time series. We obtain the best fit with qrel D 5.33 ˙ 0.22
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Table 1 Summarize parameter values of solar dynamics including the sunspot and the solar flare
dynamics: The q-triplet (qsen , qstat , qrel) of Tsallis

System q_sen q_stat q_rel (C(�))

Solar (sunspot index) 0.368 ˙ 0.005 1.53 ˙ 0.04 5.672 ˙ 0.127
Solar (flares index) 0.308 ˙ 0.005 1.870 ˙ 0.005 5.33 ˙ 0.22

covers time period from 1/1/1996 to 31/12/2007. We clearly observe non-Gaussian
statistics for solar flares time series, but the non-Gaussianity of solar flares was
found much stronger than the sunspot index. The q-triplet values satisfy the relation
qsen < 1 < qstat < qrel (Fig. 9) for the solar flares time series (see Table 1).

4 Theoretical Interpretations of q-Triplet Results

The Tsallis q-triplet of the non-extensive statistical theory is related to the non-
Gaussian dynamics of the system when qsen ¤ qstat ¤ qrel ¤ 1. In this direction, we
present some interested theoretical concepts which help to understand the physical
meaning of the observational results of this study.

Earthquakes, climate, and space plasma systems are typical cases of
stochastic spatio-temporal distribution of physical magnitudes such as force–
fluids fields and matter fields. However, the classical Hydrodynamical (HD) and
Magnetohydrodynamical (MHD) description for climate and space plasmas or
the Boltzmann–Maxwell statistical mechanics are inefficient to describe the non-
equilibrium state of the complex system as they include smooth and differentiable
spatial–temporal functions (HD–MHD theory) or Gaussian statistical processes
(Boltzmann–Maxwell statistical mechanics), correspondingly.

The results of this study are related also to modern theoretical concepts such
as fractal topology (Zelenyi and Milovanov 2004), turbulence theory (Frisch
1996), strange dynamics (Zaslavsky 2002), percolation theory (Milovanov 1997),
anomalous diffusion theory and anomalous transport theory (Shlesinger et al. 1993;
Milovanov 2001), fractional dynamics (Zaslavsky 2002; Tarasov 2005, 2006, 2013),
and non-equilibrium RG theory (Chang 1992).

4.1 Fractional Calculus

The differentiable nature of magnitudes with smooth distributions of the macro-
scopic picture of physical processes is a natural consequence of the Gaussian
microscopic randomness which, through the classical CLT, is transformed to the
macroscopic, smooth, and differentiable processes. The classical CLT is related to
the condition of microscopic and macroscopic time-scale separation, where at the
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long-time limit the memory of the microscopic non-differentiable character is lost.
On the other hand, the q-extension of CLT induces the nonexistence of time-scale
separation between microscopic and macroscopic scales as the result of multiscale
global correlations which produce fractional dynamics and singular functions of
spatio-temporal dynamical physical variables.

The non-local character is evident in both cases of fractional derivative and
integral on a fractal set. The non-local character of fractional calculus is related to
multiscale and self-similar character of the fractal structure. The fractional extension
of integral and differential calculus can be used for the description of the non-local
multiscale phenomena described by fractional Maxwell’s Equations (fME), or the
fractional Magnetohydrodynamics (fMHD) of fractal plasma states, or the fractional
Fokker–Planck Equation (fFPE) of fractal media (Tarasov 2005, 2013). The solution
of the fractional equations corresponds to fractional non-differentiable singular self-
similar functions as we can observe at the experimental data. Generally, fractional
differential integral equations have as solutions non-differentiable (singular) spatio-
temporal distribution functions of physical magnitudes.

4.2 Anomalous Diffusion and Strange Dynamics

Nonlinear dynamics can create fractal structuring of the phase space and global
correlations in the nonlinear system. For non-extensive systems the entire phase
space is dynamically not entirely occupied (the system is not ergodic), but only
a scale-free-like part of it is visited yielding a long-standing (multi)-fractal-like
occupation. According to Milovanov and Zelenyi (2000), Tsallis entropy can be
rigorously obtained as the solution of a nonlinear functional equation referred to
the spatial entropies of the subsystems involved including two principal parts. The
first part is linear (additive) and leads to the extensive Boltzmann–Gibbs entropy.
The second part is multiplicative corresponding to the non-extensive Tsallis entropy
referred to the long-range correlations. The fractal–multifractal structuring of the
phase space makes the effective number Weff of possible states, namely those whose
probability is non-zero, to be smaller (Weff < W) than the total number of states.
This is the statistical manifestation of self-organization process.

The dynamics in the topologically anomalous phase space corresponds to a
random walk process which is scale invariant in spatial and temporal self-similarity
transform

bR W t0 ! �tt; �
0 D ��� (36)

The spatial–temporal scale invariance causes strong spatial and temporal corre-
lations mirrored in singular self-similar temporal and spatial distribution functions
which satisfy the fractional generalization of classical Fokker–Planck–Kolmogorov
equation (FFPK-equation) (Zaslavsky 2002):
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where P  P(� , t) is the probability density of the state (�) at the time (t). The critical
components (˛, ˇ) correspond to the fractal dimensions of the spatial–temporal non-
Gaussian distributions of the spatial–temporal functions–processes or probability
distributions. The quantities A, B are given by

A D lim
�t!0

hhj��˛jii
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where 	 : : :� denotes a generalized convolution operator (Zaslavsky 2002).
The FFPK equation is an archetype fractional equation of fractional stochastic

dynamics in a (multi)-fractal phase space with fractal temporal evolution caused
by the self-similar and multiscale structure of islands around islands, responsible
for the flights and trappings of the dynamics. The “spatial” random variable can
be any physical variable, such as position in physical space, velocity in the velocity
space or a dynamic field space (magnetic or electric) at a certain position in physical
space, etc., underlying to the nonlinear chaotic dynamics. The fractional dynamics
of plasma includes fractal distribution of field and currents, as well as fractal
distribution of energy dissipation field.

The fractional temporal derivative @ˇ/@tˇ in kinetic equations allows one to
take fractal-time random walks into account, as the temporal component of the
strange dynamics in fractal-turbulent media. The waiting times follow the power
law distribution P(� ) ��(1 Cˇ) since the “Levy flights” of the dynamics also follow
the power law of distribution.

The asymptotic (root mean square of the displacement) of the transport process is
given by hj�j2i D 2Dt�, while the generalized transport coefficient � depends on the
values of the fractal coefficients (˛,ˇ), according to the relation � D ˇ

˛
(Shlesinger

et al. 1993). The parameter (ˇ) has the meaning of the fractal dimension of an
“active” time while the parameter (˛) is related to the spatial fractal dimension in
the percolating fractal plasma system.

The solution of the fractal kinetic equation corresponds to Levy distributions
and asymptotically to Tsallis q-Gaussians. According to Alemany and Zanette
(1994), the set of points visited by the random walker can reveal a self-similar
fractal structure produced by the extremization of Tsallis q-entropy. The q-Gaussian
distribution of the fractal structure created by the strange dynamics and the extrem-
ized q-entropy asymptotically corresponds to the Levy distribution P(�) ��1 � �

where the q-exponent is related to the Levy exponent � by q D 3C�
1C�

. The Levy
exponent � corresponds to the fractal structure of the points visited by the random
walker. According to Alemany and Zanette (1994) and Tsallis (2009), the fractal
extension of dynamics includes simultaneously the q-extension of statistics as well
as the fractal extension RNG theory in the fractional Fokker–Planck–Kolmogorov
Equation (FFPK).
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The q-statistics of Tsallis corresponds to the meta-equilibrium solutions of the
FFPK equation (Tarasov 2005; Tsallis 2009). Also, the meta-equilibrium states
of FFPK equation correspond to the fixed points of Chang non-equilibrium RNG
theory for space plasmas (Chang 1992; Zaslavsky 2002). The anomalous topology
of phase space dynamics includes inherently the statistics as a consequence of its
multiscale and multifractal character. From this point of view the non-extensive
character of thermodynamics constitutes a kind of unification between statistics and
dynamics. From a wider point of view the FFPK equation is a partial manifestation
of a general fractal extension of dynamics. According to Tarasov (2005), the
Zaslavsky’s equation can be derived from a fractional generalization of the Liouville
and BBGKI equations. According also to Tarasov (2005, 2006), the fractal extension
of dynamics including the dynamics of particles or fields is based on the fact that the
fractal structure of the spatially distributed matter (particles, fluids, and fields) can
be replaced by a fractional continuous model. In this generalization the fractional
integrals can be considered as approximations of integrals on fractals. Also, the
fractional derivatives are related with the development of long-range correlations
and localized fractal structures.

4.3 Fractal Topology, Critical Percolation, and Stochastic
Dynamics

In this section, we follow Milovanov (2012) and present some basic concepts
concerning topological aspects of percolating random fields, which can explain the
complex and non-extensive character of various complex systems.

For any random field distribution  
��!x � in the n-dimensional space (En)

there exists a critical percolation threshold which divides the space En into two
topological distinct parts: Regions where  

��!x � < hc marked as “empty” and
regions where  

��!x � > hc, marked as “filled.” When  
��!x � ¤ hc, one of

these parts will include an infinite connected set which is said to percolate. As the
threshold h changes, we can find the critical threshold hc where the topological
phase transition occurs, namely the non-percolating part starts to percolate. The
random field may be a spatial distribution of physical random magnitudes or it can
correspond to the random distribution of physical properties in the phase space of
the underlying dynamics.

The geometry of the percolating set at the critical state (h ! hc) is a typical fractal
set for length scales between microscopic distances and percolation correlation
length which diverges. The statistically self-similar geometry includes power law
behavior of the “mass” density of the fractal set such as “fractal mass density” xD-n

, where x is the length scale, D is the Hausdorff fractal dimension which must be
smaller than the dimensionality (n) of the embedding Euclidean space. In addition
to the parameter D of the fractal dimension, there is the index of connectivity �
which describes the “shape” of the fractal set and may be different for fractals even
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with equal values of the fractal dimension D. The index of connectivity � is defined
as characterizing the shortest (geodesic) line connecting two different points on
the fractal set by the relation d� D (2 C � )/2, where d� is the minimal Hausdorff
dimension of the minimal (geodesic) line for all possible homeomorphisms that
transform the fractal F into a fractal F0. The geodesic line on a self-similar fractal
set (F) is a self-affine fractal curve whose own Hausdorff fractal dimension is equal
to (2 C � )/2. The index of connectivity plays an essential role in many dynamical
phenomena on fractals, while it is a topological invariant of the fractal set F.

From the fractal dimension D and the connectivity index � we can define a hybrid
parameter ds D 2D

2C�
which is known as the spectral or the fracton dimension which

represents the density of states for vibrational excitations in fractal network termed
as fractons (Milovanov 2012). The root mean square displacement of the random
walker on the fractal set is given by

D
j�j2

E

 t2=2Cd� D t1=d� (39)

where d� is the fractal dimension of the self-affine trajectory on the fractal set.
Also, the spectral dimension which measures the probability of the random walker
to return to the origin is given by

P.t/ 
 t�
ds
2 (40)

while the Hausdorff fractal dimension D is a structural characteristic of the fractal
structure F, the spectral dimension ds mirrors the dynamical properties such as
wave excitation and diffusion. The fractal dimension df of the fractal structure
F of a percolating random field distributed in the En Euclidian space is given
by df D n �ˇ/
, where ˇ, 
 are the universal critical exponents of the critical
percolation state (Milovanov 2012).

4.4 Renormalization Group (RNG) Theory and Phase Space
Transition

The multifractal and multiscale intermittent turbulent character of the complex
dynamics in the various physical systems justifies the application of RNG theory for
the description of the scale invariance and the development of long-range correlation
of the complex systems’ intermittent turbulence state. Generally, and according
to Chang (1992) a complex system can be described by generalized Langevin
stochastic equations of the general type:

@'i

@t
D fi

�
�!' ;�!x ; t

�
C ni

��!x ; t� i D 1; 2; : : : (41)
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where fi corresponds to the deterministic process as concerns the dynamical
variables �

��!x ; t� and ni to the stochastic components (fluctuations). Generally, fi
are nonrandom forces corresponding to the functional derivative of the free energy
functional of the system. According to Chang (1992) the behavior of a nonlinear
stochastic system far from equilibrium can be described by the density functional P,
defined by path integration of the system’s stochastic Lagrangian:

P
�
�!'

��!x ; t� D

Z
D
��!x � exp

�
�i �

Z
L
��!

P' ;�!' ;�!x
�

d�!x


dt (42)

where L
��!

P' ;�!' ; x
�

is the stochastic Lagrangian of the system, which describes

the full dynamics of the stochastic system. Moreover, the far from equilibrium
renormalization group theory applied to the stochastic Lagrangian L generates
the singular points (fixed points) in the affine space of the stochastic distributed
system. At fixed points the system reveals the character of criticality, as near
criticality the correlations among the fluctuations of the random dynamic field
are extremely long-ranged and there exist many correlation scales. Also, close to
dynamic criticality certain linear combinations of the parameters, characterizing
the stochastic Lagrangian of the system, correlate with each other in the form
of power laws and the stochastic system can be described by a small number of
relevant parameters characterizing the truncated system of equations with low or
high dimensionality and strong self-organization ordering process.

According to these theoretical results of Chang’s theory, the stochastic dis-
tributed system can exhibit low dimensional chaotic or high dimensional SOC like
behavior, including fractal or multifractal structures with power law profiles. The
power laws are connected to the near criticality phase transition process which
creates spatial and temporal correlations as well as strong or weak reduction (self-
organization) of the infinite dimensionality corresponding to a spatially distributed
system. First and second phase transition processes can be related to discrete fixed
points in the affine dynamical (Lagrangian) space of the stochastic dynamics. The
SOC like behavior of plasma dynamics corresponds to the second phase transition
process as a high dimensional process at the edge of chaos. The process of strong
and low dimensional chaos can be related to a first order phase transition process.
The probabilistic solution (42) of the Eq. (41) of the generalized Langevin equations
may include Gaussian or non-Gaussian processes as well as normal or anomalous
diffusion processes depending upon the critical state of the system.

From this point of view, a SOC or low dimensional intermittent chaos or distinct
non-extensive q-statistical states with different values of the Tsallis q-triplet depends
upon the type of the critical fixed (singular) point in the functional solution space
of the system. When the stochastic system is externally driven or perturbed, it can
be moved from a particular state of criticality to another characterized by a different
fixed point and different dimensionality or scaling laws. Thus, a SOC state could
be a special kind of critical dynamics of an externally driven stochastic system,
while SOC and low dimensional chaos can coexist in the same dynamical system
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as processes manifested by different kinds of fixed (critical) points in its solution
space. Due to this fact, a complex systems’ dynamics may include high dimensional
SOC process or low dimensional chaos or other more general dynamical process
corresponding to various q-statistical states.

5 Closing Remarks

In this review, we presented results concerning non-extensive statistics in distributed
systems complex dynamics corresponding to earthquakes, climate, and space
plasma systems. The results of this study show clearly the non-Gaussian character
of the above systems and the existence of multiscale strong correlations from the
microscopic to the macroscopic level. In particular, the estimation of Tsallis q-triplet
statistics revealed the possibility of dynamical non-equilibrium phase transition
processes and percolation topological phase transition related to the space plasma
and climate systems (Zelenyi and Milovanov 2004).

The aforementioned results indicate the inefficiency of classical HD—MHD or
classical statistical theories based on the classical central limit theorem to explain
the complexity of the distributed systems dynamics, since these theories include
smooth and differentiable spatial–temporal functions (HD-MHD theories) or Gaus-
sian statistics (Boltzmann–Maxwell statistical mechanics). The differentiable nature
of smooth distribution of the macroscopic picture of physical processes is a natural
consequence of the Gaussian microscopic randomness which, through the classical
CLT, is transformed to the macroscopic, smooth, and differentiable processes. The
classical CLT is related to the condition of time-scale separation, where at the long-
time limit the memory of the microscopic non-differentiable character is lost. On
the contrary, the results of this study indicate the presence of non-Gaussian non-
extensive statistics with heavy tails probability distribution functions, which are
related to the q-extension of central limit theorem. The q-extension of CLT induces
the non-existence of time-scale separation between microscopic and macroscopic
scales as the result of multiscale global correlations.

These multiscale global correlations are the basis for the fractal, multifractal
structure of the distributed systems, producing fractional dynamics which can
be described by the singular character of the spatio-temporal dynamical physical
variables. Thus, a generalization from the classical field-particle dynamics of
classical continues mechanical systems or flow dynamical systems towards the
fractional dynamics. The fractional extension of integral and differential calculus
can be used for the description of the non-local multiscale phenomena described
by the corresponding nonlinear equations of fractal media. Therefore, according
to the experimental data analysis of this study and the theoretical framework of
fractional dynamics, we can conclude that the nonlinear distributed dynamical
systems in study are globally hierarchical, self-similar, and scale invariant physical
systems which are characterized by nonlinear and non-local internal fractional
dynamics, maintaining the hierarchical structure of the intermittent turbulence. In
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this direction, the nonlinear distributed dynamical systems can include fracton
excitations and fracton dynamics where fracton formations are waves on fractal
structures. Fracton dynamics can cause the oscillations of statistical parameters
observed during phase transition events.

In addition, the physical interpretation of our results indicates the possibility
for the existence of phase transitions events from a weak non-equilibrium (quasi)-
stationary state (NESS) to a strong NESS as the outcome of cluster interaction in
the distributed nonlinear dynamical systems. These states (NESS) can have the
topology of a percolating fractal set, including multiscale interactions of fields
and particles and can be related to the simultaneous development of numerous
instabilities interfering with each other. The structural stability of the NESS as a
symmetric turbulent phase is maintained due to multiscale correlations creating the
existence of local extremes of the free energy.

Summarizing, Tsallis q-entropy principle can reliably explain the self-similar
hierarchical turbulent structuring and phase transition processes presented in this
study for different types of distributed nonlinear dynamical systems. These systems
that live far from equilibrium can reveal meta-equilibrium stationary states (NESS)
as critical percolation states. These non-equilibrium states, similar to Boltzmann–
Gibbs thermodynamical meta-equilibrium states, can be produced as the system
tends to obtain extremization of Tsallis q-entropy (Sq). The quantitative change of
the non-extensive Tsallis statistics can be related to the renormalization group theory
(RGT) change of the fixed points (NESS) in the dynamical parameter space of the
dynamics. The internal mechanism for this is the anomalous diffusion process in
the physical space or the anomalous random walk in a hierarchical and multifractal
structured phase space. The dynamics in the multifractal phase space or physical
space is described by the fractional equations (e.g., Langevin and the corresponding
FFPK equations). Moreover, we conjecture that the meta-equilibrium stationary
states can be obtained also as the fixed points of a fractional renormalization
flow equation in a fractal parameter space. Also, the hierarchical, self-similar,
multiscale, and multifractal structure of the distributed system at critical percolation
and intermittent turbulent states can be described by the solution of the fractional
Langevin equations, as the N-point correlation functions related to the functional
derivative of the q-partition function Zq defined in the framework of non-extensive
Tsallis statistical mechanics-thermodynamics.
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Spatial Patterns of Peak Flow Quantiles Based
on Power-Law Scaling in the Mississippi
River Basin
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Abstract This study explores the spatial variability of peak flows for different
drainage area sizes in the Mississippi River Basin (MRB) based on the power-
law relation between flood quantiles (Qp) and drainage areas (A) expressed as
Qp D ’pA™p . The aim is to reveal consistent regional flood patterns within the MRB.
The authors use 5137 streamflow gauges with peak flow records and the USGS
Hydrologic Unit Code (HUC) catchment organization framework to estimate the
scaling parameters (˛p and �p) at multiple spatial disaggregation levels, including
the complete Mississippi River Basin (MRB), six major MRB sub-regions (HUC-2),
and finally 84 medium-scale catchments (HUC-4). The analysis at the HUC-4 level
exposes remarkable regional flood patterns in �p and ˛p, which are used to estimate
peak flows at 2.33 and 100 years of return periods at multiple spatial scales including
1, 100, 1000, and 10,000 km2 drainage areas. The results expose a peak flow quantile
relation that varies as a function of region and drainage area, demonstrating that
the regions with the higher peak flows quantiles are varying with respect to the
watershed size along the MRB. Mainly, we found that the cluster of higher floods
extends from the center to the eastern MRB for drainage areas from 1 to 10,000 km2.
Conversely, the clusters of lower 2.33-year floods are preserved in the western MRB
for the same range of drainage areas. The results presented in this study demonstrate
that the flood-producing mechanisms are varying with respect to the drainage area
size and regions, providing a starting point for a quantitative description of physical
processes that dominate the variability of flood-producing mechanisms, a critical
step in the design of parsimonious continental scale hydrological models.
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1 Introduction

Engineering design and various aspects of water resources management rely on the
empirical methodology of Regional Flood Frequency Analysis (RFFA) to estimate
flood quantiles at ungauged sites. This methodology depends on observations of
annual maximum flows over homogeneous regions (e.g., Smith et al. 2015; Srinivas
et al. 2008; Haddad et al. 2012; Wan Jaafar and Han 2012). However, many regions
in the world remain poorly gauged or have experienced dramatic changes in land
use or climate that make past observations less useful. To remedy this situation,
we need methodologies for the estimation of flood frequencies that are based on
physical principles of water movement and general knowledge of the geographic
and geomorphologic setting of the upstream catchment at the location of interest.

An important step in taking the leap from RFFA to physics-based estimations
of flood frequencies is the identification of scaling patterns revealed by data in
the physical system in which floods occur (i.e., watersheds and river networks).
Fuller (1914) was the first to connect the power scaling structure to a statistical
framework for peak flow data from the United States; however, significant questions
have emerged and many remain unanswered in terms of the physical controls and
hydrologic variables that are governing the power-law scaling structure in peak
flows. More recently, several studies (Ogden and Dawdy 2003; Gupta 2004; Gupta
et al. 2010; Ayalew et al. 2015; Gupta et al. 2015) have presented evidence that
the power-law relation between flood quantiles and drainage area is not a regional
feature but instead emerges in nested basins. The power-law structure in peak flows
see Eq. (1) represents the systematic increase in the maximum discharge (Q) for a
specific quantile (p) as a function of the drainage area (A) as,

Qp D ˛pA�p (1)

The rate of increase is controlled by two scaling parameters: the intercept (˛p)
and the scaling exponent (�p). A detailed explanation of the origins and early
developments of the flood scaling methods have been summarized by Dawdy et al.
(2012).

A diversity of studies have explored different approaches to quantifying the
variables that control the value of ˛ and � . A number of researchers have quantified
the role of rainfall properties such as intensity, duration, and spatial coverage
as key players in determining the scaling parameter values (e.g., Gupta et al.
1996; Jothityangkoon and Sivapalan 2001; Mandapaka et al. 2009; Robinson and
Sivapalan 1997). Mantilla et al. (2006) studied the flood scaling in real river
networks, generalizing results from previous studies (Gupta and Waymire 1998;
Menabde and Sivapalan 2001; Morrison and Smith 2001). Furey and Gupta (2007)
evaluated the flood scaling dynamic for 148 rainfall-runoff events, demonstrating
the strong influence of depth, duration, and spatial variability of excess rainfall
on the scaling parameters. These results encouraged new studies to more deeply
explore the scaling structure vis-à-vis rainfall properties. Ayalew et al. (2014a,
b, 2015) demonstrated clear connections between rainfall properties and scaling
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parameters at different spatial scales. Ayalew et al. (2014a) used rainfall-runoff
model simulation results to study how the rainfall intensity, duration, hillslope
overland velocity, and channel flow velocity affect the scaling parameters in three
small basins of 252, 520, and 1082 km2 in a spatial scale study of the Cedar River
Basin with drainage area of 17,000 km2. In a subsequent study, Ayalew et al. (2015)
analyzed actual data and showed the interplay between duration and depth of excess
runoff with the scaling parameters for 51 rainfall-runoff events at the mesoscale
Iowa River basin with a drainage area of 32,400 km2, demonstrating that even at
this large scale, flood scaling still dominates. In a more extensive recognition of
the scaling parameters structure, Kroll (2014) shows the scaling exponent structure
in the United States, defining 18 water regions. In this same direction Medhi
and Tripathi (2015) explain the connections between basin attributes and scaling
exponents, defining homogenous regions based on the region-of-influence method,
showing evidence of simple-scaling for regions in which snowfall dominates the
total precipitation. In addition, their results suggest small flood scaling exponents
for regions with large soil moisture storages and high evapotranspiration losses,
and large fractions of overland flow compared to base flow. These studies represent
an outstanding advance in the understanding of the flood scaling structure for
several spatial domains, range of basin sizes, and their connection with rainfall and
catchment properties. However, none of these studies have demonstrated how the
differences of scaling parameters are controlling the flood magnitude for different
drainage size areas in a specific large spatial domain such as the Mississippi River
Basin (MRB).

We organize this research in three specific aspects: (1) characterizing the spatial
structure in ˛ and � for different scales within the MRB; (2) evaluating changes
in ˛ and � for different quantiles and spatial regions; and (3) unmasking regional
differences in flood magnitudes and flood frequency signatures for specific drainage
areas.

Regarding (1) researchers have explored in depth the existence of flood scaling
for flood quantiles and flood events in different basin sizes (Furey and Gupta 2007;
Ayalew et al. 2014a, b, 2015; Medhi and Tripathi 2015), but the power-law structure
for flood quantiles in a large domain such as the MRB is still unknown. Therefore,
research is needed to determine the upper bound, if one exists, in the spatial limit
over the watershed domain.

Regarding (2) we need to improve our understanding of the characterization
of ˛ and � across space. Although we know that scaling parameters change
across different hydrologic conditions (Medhi and Tripathi 2015), we want to
determine if these changes exhibit gradual or abrupt shifts in space thus enabling
possible connections between scaling parameters and spatial patterns in hydrologic
signatures.

Regarding (3), the flood scaling framework allows us to analyze floods in specific
drainage areas; therefore, we will use the different values of ˛ and � across the
spatial domain to compare the flood changes among spatial locations, drainage
areas, and flood quantiles, representing at the same time the different hydrologic
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conditions behind flood processes. These results should help to identify the spatial
locations and drainage area magnitudes in which flood quantiles are high.

This document is organized as follows. In Sect. 2 we describe the study area
and peak flow data, including the hydrologic variability in the region, watershed
boundaries and spatial units of analysis, number of peak flow gauges, and the type
of regression analysis to estimate the scaling parameters. In Sect. 3, we present
procedures used to reveal the different flood patterns for diverse drainage areas and
flood quantiles. Subsequently, we report and discuss results in Sect. 4, emphasizing
characteristics of flood scaling across scales for different sub-regions, and provide
insights into regional homogeneity based on flood scaling, and flood patterns for
different watershed sizes. In Sect. 5, we conclude by addressing the importance
and consequences of the main findings of this research, proposing future work
around the connections between scaling parameters and mechanistic processes
behind floods. Finally, we include two appendices describing the procedure to test
the regional homogeneity (Appendix 1), and the identification of simple-scaling or
multi-scaling in the different analysis units in the MRB (Appendix 2).

2 Peak Flow Data in the Mississippi River Basin

One of the largest continental basins in the world, the Mississippi River Basin is
characterized by diverse hydrologic, climatic, and geomorphologic settings. The
MRB drains an area of almost 3 million km2 and is significantly impacted by human
activity due to industrial and agricultural practices. From a hydroclimatological
perspective, there are strong gradients in rainfall, snowfall, evapotranspiration, and
temperature across the watershed at multiple temporal scales. These geophysical
properties make the MRB a good candidate to understand the spatial variability in
the scaling structure of floods. Our study includes only those stream gauge locations
that drain watersheds smaller than 10,000 km2 to guarantee that the information
represents the flood diversity inside a particular HUC partition, avoiding biases
introduced by gauges in large rivers that flow through a HUC (e.g., the Mississippi
River) that may be influenced by large-scale regulation and with flow regimes that
result from integrating multiple climate regimes.

Streamflow in the MRB is routinely estimated at 7587 gauged locations that
record peak flows, managed by the US Geological Survey (USGS), facilitating our
analyses. The USGS peak flow data is easily accessible by web services (http://nwis.
waterdata.usgs.gov/usa/nwis/peak). The USGS records maximum annual floods at
specific gauge sites, which are the inputs for the quantile estimation related to
different probabilities of exceedance (also expressed as the “return period”). We
used the guidelines for determining peak flow frequency outlined in the USGS
Bulletin 17B. This procedure uses the probability distribution Log Pearson Type
3 with the incorporation of outlier treatments, flows affected by regulation in dams,
estimation of the regional skew, and historical flood information. The complete
method is incorporated in the software PeakFQ (Flynn et al. 2006). We used the

http://nwis.waterdata.usgs.gov/usa/nwis/peak
http://nwis.waterdata.usgs.gov/usa/nwis/peak
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Fig. 1 Division of the complete Mississippi River Basin into six HUC2 regions and 84 HUC4
sub-regions. HUC2 region 05 and HUC4 region 0531 are highlighted in solid colors

PeakFQ software to estimate the peak flow quantiles for each location. We did not
include peak flow data affected by dams or gauges with annual peak flow records
reported as zero. This last condition arose because some gauges present long records
of annual floods, but some have values equal to zero. These could be a consequence
of long dry periods in small basins or instrument errors. For the regression analysis
section we only considered the gauges with more than 10 years of record period, a
total of 5137 gauges.

In order to analyze the variability of scaling parameters ˛ and � over different
spatial scales and quantiles, we segmented the Mississippi River Basin. For this pur-
pose, we used three levels of spatial discretization. We use the spatial hydrological
units (HUC), defined by the USGS (Seaber et al. 1987). The largest spatial unit
is the complete Mississippi River Basin. The second is the HUC-2 level with six
sub-regions, and finally the HUC-4 level which partitions the MRB into 84 sub-
regions. Figure 1 shows the spatial definition of the three levels of analysis and Fig.
2 illustrates an example of the spatial segmentation in the flood scaling from Level
1 to Level 3.

3 Scaling Patterns of Flood Data

We selected two methods to describe spatial patterns of scaling in peak flows in the
MRB. First, we calculated a Flood Severity Index (SI), defined as the ratio between
the peak flows with a return period of 100 years and the mean annual flood. In this
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Fig. 2 Disaggregation in the flood scaling from the complete MRB to HUC-2 level (HUC 05) and
to HUC-4 level (HUC 0531) which are shown in Fig. 1. The models are based on 5136, 1029, and
110 peak flow gauges and are characterized by R2 values of 0.27, 0.88, and 0.93, respectively

calculation, the mean annual flood is represented as the peak flow with a return
period of 2.33 years. We used these results as the starting point in creating the
relationship between the spatial pattern of floods, physical controls, and hydrologic
conditions across space.

Second, we fitted a power-law function between peak flows and drainage using
a Weighted Least Square (WLS) regression in each of the regions defined by the
HUC partitions of the MRB. The WLS reduced the uncertainty in the estimation of
the scaling parameters, because peak flow gauges with few records will have larger
uncertainty in the estimation of peak flow quantiles in comparison with peak flow
gauges with larger records. Therefore, the length of the peak flow record is used
as weight in the WLS regression. To illustrate the effect of considering the WLR
rather than a standard Ordinary Least Square (OLS) regression, Fig. 3 shows the
comparison of scaling parameters (˛ and � ) for the 84 sub-regions at HUC-4 level
for the 2.33 and 100 years of return periods. Although Fig. 3 shows small changes in
˛ and � between WLS and OLS, these could be translated as important differences
in the estimation of the peak flow quantiles along the MRB. For this reason, it is
important to use the WLS regression to reduce the uncertainty introduced by peak
flow gauges with few records. The regression for the entire MRB included all 5137
gauges. The number of gauges in the HUC-2 decomposition, which defines six sub-
regions of the MRB, ranges from 338 to 1601. Finally, the number of gauges defined
by the HUC-4 decomposition with 84 sub-regions ranges from 6 to 195, with 90%
of the sub-regions containing more than 20 gauges.

We conducted a separate analysis to explore the variability of peak flows and
regional homogeneity across space. We calculated the residuals from the power-
law function for the three analysis levels and displayed them spatially. These
residuals were organized according to their signs (positive or negative residuals).
This approach helped us recognize the existence of spatial clusters in the distribution
of peak flows, caused by regions with higher or lower floods. This procedure
provides a qualitative method to assess the regional homogeneity of floods in which
the flood scaling is described only by drainage area (Gupta and Dawdy 1995).
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Fig. 3 Comparison of scaling parameters between WLS and OLS regressions

We mapped the values of �p and ˛p for the 84 sub-regions to reveal the spatial
patterns behind the scaling parameters for the 2.33- and 100-year return periods.
These plots represent the spatial signatures of floods synthetized in two parameters
(� and ˛) across the drainage areas and return periods. In particular, we used
the estimated power-law formulas for each HUC-4 partition to estimate peak flow
quantiles of 2.33- and 100-year return periods for drainage areas of 1, 100, 1000,
and 10,000 km2. Finally, we estimated the flood SI for the same range of drainage
area based on the power-law formulas. These results allow us to analyze the spatial
shifts of floods for different flood quantiles and spatial scales.

4 Discussion and Analysis of Results

4.1 First Insights into Spatial Patterns of Peak Flows

Figure 4 shows the SI for all 5137 peak flow gauges. The map shows a spatial pattern
over the MRB that reveals strong differences between the eastern and western
parts of the basin. This variability is attributed to the differences in precipitation
and runoff generation mechanisms across the large spatial domain. Western areas
present SIs between 6 and 10, with a cluster in the northwest border with values
around 2.

Although the current study focuses on identifying flood patterns across the spatial
scales and flood quantiles rather than explaining the processes that govern these
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Fig. 4 Flood Severity Index for the 5,137 peak flow gauges

patterns, we discuss some insights behind the spatial structure of the SI. Higher
SI values in the west are connected to differences in flood mechanisms behind
the frequent floods (i.e., the 2.33-year flood) and the infrequent ones (i.e., 100-
year flood). In general, floods in this region are described with a combination
of snowmelt in the winter season and higher precipitation in the spring season.
We can assume that the occurrence of periodic floods is more connected to one
of these processes rather than both simultaneously. However, the 100-year flood
(low probability of occurrence) could be connected to combinations of extreme
conditions of these processes. An example of this dynamic are the floods in
Montana, in which the periodic floods are related to only heavy rainfall in the spring;
the higher floods (with a return period greater than 50 years) are a result of a long
period of snow accumulation without intermediate melting time, in conjunction with
a high soil moisture content and a high rainfall in the region (Parrett et al. 1984).
We could link the western cluster with SI values of 2 by the strong orographic
controls in the southwest region of Montana. This control incentivizes convection
of moisture, generating more rainfall in the area; becoming the dominant flood
generation process. Consequently, the magnitude in the mean annual flood and the
100-year flood in this region is not very different (a Flood Severity Index from 1
to 2). Quantification of the relative role of these mechanisms would require the
implementation of physics-based models to confirm or reject the hypothesis.

In contrast, eastern Mississippi presents index values around 2 and 3; moving
toward the center of the basin the dispersion increases, showing values between 2
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and 5. This increase in SI allows us to speculate about a mix of processes behind
the mean annual flood and the 100-year flood in the eastern region. Some findings
reported by Lavers and Villarini (2013) and Villarini et al. (2014) have shown that
climatological signatures from tropical cyclones and atmospheric rivers play an
important role in the flood structure in the east and central part of the basin. Note
that the central region of the MRB presents a high variance in SI values, with a
transition between low values in the eastern region to high values in the western
region.

The results from examining the SI show a certain degree of spatial structure.
Nevertheless, the analysis mixes peak flow gauges draining different watershed
drainage areas, which can conceal scale-dependent differences in a region. To reveal
those differences, we analyze the power-law structure between drainage area and
flood quantiles described by power-law scaling (see Sect. 4.2) to expose the spatial
structure of floods across watershed scales (see Sect. 4.3).

4.2 Representations of Patterns in Flood Scaling

The results for the 2.33-year flood at the MRB level show ˛2.33 equal to 1.97 and
�2.33 equal to 0.60. On the other hand, at the HUC-2 level, the ˛2.33 ranges from 0.85
to 5.13, and the �2.33 ranges from 0.53 to 0.71 (see Fig. 5). At the HUC-4 level, the
˛2.33 and �2.33 values vary in the ranges of 0.11–8.83, and 0.18–0.91, respectively.

Figure 6 shows the distribution of the scaling parameters for the 2.33- and 100-
year return periods, which leads us to use simple-scaling as our null hypothesis for

Fig. 5 Power-law regression at spatial domain of HUC-2 level (six sub-regions)
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Fig. 6 Histogram of scaling exponents and intercepts for the peak flow of 2.33-year and 100-year
return period at the HUC-4 level

Fig. 7 Adjusted coefficient of determination (R2) for the power law with 2.33-year floods (left)
and 100-year floods (right) at the HUC-4 level

scaling in peak flow quantiles in the MRB for the HUC-4 level. Gupta and Dawdy
(1995) defines simple-scaling when the scaling exponent remains constant through
the quantiles, and multi-scaling when the scaling exponents change for different
quantiles. In general, we could presume that the simple-scaling dominates in the
MRB, by the similarity of distribution of the scaling exponents presented in Fig. 6.
A rigorous statistic test must be performed to evaluate the statistically significant
difference between the scaling exponents of the 2.33- and 100-year return periods.
For this purpose the Appendix 1 describes the use of the statistic test known as the
Potthoff analysis (Potthoff 1966) in order to identify the type of scaling in each
sub-region at HUC-4 level in the MRB testing the null hypothesis H0 : �2.33 D �100

We assessed the performance of the power-law function for the three levels of
analysis using the adjusted coefficient of determination (R2) (see Fig. 2 for the MRB,
Fig. 5 for the HUC-2 level, and Fig. 7 for the HUC-4 level). For the 2.33-year floods
in the MRB we obtained an R2 of 0.58; at the HUC-2 level (six sub-regions), the
R2 varies from 0.53 to 0.88; and at the HUC-4 level (84 watersheds), the R2 shows
a range from 0.15 to 0.98, with a mean and standard deviation of 0.79 and 0.16,



Spatial Patterns of Peak Flow Quantiles Based on Power-Law Scaling in the. . . 507

Fig. 8 Power law in six HUC-4 sub-regions (0512, 0513, 0601, 0507, 1007, and 0510)

respectively. On the other hand, for the 100-year floods in the MRB the model
has an R2 of 0.61; at the HUC-2 level the R2 varies from 0.50 to 0.84; and at
the HUC-4 level (84 watersheds), the R2 shows a range from 0.17 to 0.95, with
a mean and standard deviation of 0.74 and 0.17, respectively. In general, the HUC-4
decomposition provides a better performance of the power laws in explaining the
scaling structure of floods. Figure 8 shows six of the 84 regressions obtained for
the 84 sub-regions at the HUC-4 level for the 2.33-year flood. We found that only
11 of the 84 sub-regions show an R2 less than 0.3. We hypothesize that the poor
values of R2 (less than 0.3) presented at the HUC-4 level were caused by different
hydrologic conditions generating flood in the sub-regions. We explore this further
in the following sub-section.

Spatial Clustering of Residuals from Power-Law Functions for Different
Decomposition Levels

The determination (or lack) of regional homogeneity is essential to characterize
flood-producing mechanisms. In this study, we propose a strategy to determine
homogeneity that follows the fundamental idea given by Over and Gupta (1994), in
which catchment size is the only variable needed to describe the flood scaling. We
use the power-law function between flood quantiles and drainage area to group the
peak flow residuals as HOT (peak flow above the linear regression) and COLD (peak
flow below the linear regression). This notation is associated with overestimation
or underestimation of flood values by the regression. We hypothesize that, if the
watershed is homogeneous with respect to the flood-producing mechanism, the HOT
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Fig. 9 HOT-COLD plot of the power law with the 5137 peak flow gauges located in the complete
MRB. Red points identify the peak flow values above the regression and blue points identify the
peak flow values below the regression

Fig. 10 Spatial pattern for the HOT-COLD analysis in the complete MRB, HUC-2 level, and
HUC-4 level. Red points identify the peak flow values above the regression and blue points identify
the peak flow values below the regression

and COLD gauges should be randomly distributed in the watershed, showing that
all floods are correctly represented by the parameter of drainage area in the power-
law function. By contrast, if there is a strong difference in flood responses inside
the watershed, HOT and COLD clusters will be apparent, representing different
hydrologic conditions inside the watershed. Figure 9 shows the scaling plot where
gauges are classified as having HOT or COLD residuals for the regression analysis
at the full MRB level.

We mapped the HOT-COLD classification in the three levels of analysis in the
Fig. 10. In the spatial structure at the MRB level, essentially the eastern region
has higher floods than the western regions in any range of drainage area. Clearly,
this pattern exists because of the strong difference in hydrologic conditions in the
two regions. The HOT-COLD results at HUC-2 level display more mixed HOT and
COLD patterns than at the full MRB; however, there are still strong clusters of HOT
and COLD floods in each of the six sub-regions. Finally, the HUC-4 level, with 84
sub-regions, shows a more evenly spread pattern in the spatial distribution of HOT
and COLD sites; however, a close inspection of patterns in the HUC-4 units reveals
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some units with significant HOT-COLD clusters. Even if at HUC-4 level basins are
still presenting a degree of non-homogeneity, the number of gauges inside the basins
is limited, therefore it is not possible to go to a more refined level of analysis. To
make more evident the existence (or non-existence) of HOT-COLD clusters, we
present in the Appendix 2 the testing of the homogeneity assumption based on
the spatial autocorrelation Moran in the randomness evaluation of the power-law
residuals in the space for each of the sub-regions HUC-4 level at the MRB.

4.3 Spatial Flood Patterns Based on Power-Law Formulas

In this section, we use the scaling parameters to explore regional flood differences
and similarities as these values synthesize the flood processes in a scale-dependent
quantity. The spatial structure in the ˛ and � values for the return periods of 2.33
and 100 years for each HUC-4 level is shown in Fig. 11. Assuming a drainage area
equal to 1 km2, Eq. (1) gives Qp values equal to ˛p. Therefore, the ˛p value can be
interpreted as the flood quantile for the unitary drainage area (1 km2). Consequently,

Fig. 11 Scaling exponent and intercept at HUC-4 level for peak flows with return periods of 2.33-
and 100-year
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these values describe the pattern of floods for small watersheds with 1 km2 of
drainage area along the Mississippi watershed. The ’ patterns in the west and central
part of the Mississippi watershed show strong differences, with ˛2.33 values closer to
1 and 5, respectively, and ˛100 values closer to 10 and 55 in the west and central part,
respectively. These results suggest that the 2.33-year floods for a watershed with a
size of 1 km2 in the central region of the Mississippi River Basin are five times
stronger in magnitude than the floods in the western part of the basin. The question
that remains is if this spatial pattern is preserved for different watershed sizes; this
will be addressed in section “Flood Patterns for Different Watershed Sizes”.

The � values represent the slope between drainage areas and floods in the log
space, connecting the power rate in the flood increments across drainage areas. As
we mentioned earlier, ˛ is controlling floods with a unitary drainage area, however,
changes in the ˛ values are also impacting the other spatial scales. This means that
a displacement in the intercept will modify the flood magnitude in direct proportion
to the A� value. By contrast, the � magnitude affects the flood magnitude differently
across the scales, with a potential relation. The spatial patterns in ’ are completely
different from the spatial structure of � . An example are clusters of high � values
found in the west, east, and north of the basin. These values show a transition to
lower values toward the center of the basin, locating finally the lowest cluster of
� in the Midwest with � values close to 0.2. With the spatial structures in � and
˛ identified, we proceed to reveal the flood structure in ranges of drainage area
governed by the � and ˛ values.

Flood Patterns for Different Watershed Sizes

Our final step in exploring regional flood patterns is combining � and ˛. To reveal
regional flood patterns along the Mississippi River Basin, we normalized the peak
discharges at the HUC-4 level, with the highest peak discharge over the 84 sub-
regions for each quantile analyzed. Figure 12 shows the regional flood pattern
for drainage areas of 1, 100, 1000, and 10,000 km2 for the 2.33-, and 100-year
floods. The maps reveal different regional flood patterns for different watershed
sizes and flood frequencies. Note the regional flood patterns revealed at the 2.33-
year flood and different values of drainage area (see Fig. 12): the western floods
remain stable across the range of drainage areas; however, the cluster of larger
floods expands from the center to the eastern MRB for the drainage area from 1 to
10,000 km2. These results confirm the differences in flood-producing mechanisms
across drainage areas and across regions in the Mississippi River Basin. In the 100-
year flood, we find similar spatial patterns with a cluster of maximum values in the
center of the basin for drainage areas of 100, 1000, and 10,000 km2. At the same
time, in the eastern part of the MRB, a cluster of high floods emerges in the transition
from 1 to 10,000 km2.
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Fig. 12 Normalized peak flows estimated with the power-law model for different return periods
(rows) and magnitudes of drainage area (columns) at the HUC-4 level of analysis

Fig. 13 Top 20 sub-regions with higher (orange) and lower (green) peak flows for specific
drainage area sizes and return period of 2.33 and 100 years at the HUC-4 level of analysis

To highlight the variability of these regional flood patterns with respect to the
drainage area, we grouped the HUC-4 level in the Top 20 sub-regions with higher
floods and the Top 20 sub-regions with lower floods. Figure 13 shows the transition
in space of the Top 20 sub-regions with higher 2.33- and 100-year floods respect to
the watershed size, with a displacement from the center to the eastern Mississippi
from 1 to 10,000 km2. Looking at the Top 20 of the lower 2.33-year floods the cluster
in the northwestern Mississippi is preserved in the different ranges of watershed
sizes. However, the spatial pattern exhibited by the Top 20 of lower 100-year
floods is more dispersed with respect to the 2.33-year flood pattern. These results
demonstrate that the flood-producing mechanisms change not only in region, but
also in drainage area magnitudes.
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Fig. 14 Flood Severity Index generated with the power-law model for different magnitudes of
drainage area at the HUC-4 level of analysis

Severity Index with Flood Scaling.

To improve our description of regional flood patterns for different frequencies and
drainage areas, we calculated the severity index using the power-law formulas
calculated for each one of the 84 HUC-4 sub-regions. The severity index is defined
as the ratio between the 100-year flood and the 2.33-year flood. Figure 14 presents
the SI variability in the drainage area across the Mississippi River Basin described
by the scaling parameters. Examining the results, we find that for a watershed size
of 1 km2 there is a clear pattern of the index over space, with higher values of
around 10 in the west, with a transition moving toward the center of the basin with
index values of 4 and 7, and finally decreasing to values of 2 and 5 in the east.
In addition, the increasing drainage area begins to transform the cluster of higher
severity index values found in the west, showing more dispersion in this region. In
contrast, the eastern cluster is more consolidated with the increasing of the drainage
area, structuring a cluster with values around 2 and 3. This result summarizes
the analysis of severity index calculated for each gauge in Fig. 4 by presenting
patterns in flood ratios across sizes of drainage area. These results highlight the
importance of discerning the watershed size from the smallest (1 km2), to medium-
sized (100 < A <1000 km2), to largest (>10,000 km2) watersheds in flood estimation.

5 Conclusions

The flood scaling analysis performed in this study reveals a diversity of regional
flood patterns using scaling parameters (� and ˛) of the 2.33- and 100-year floods
for different drainage area values. We show that at HUC-4 level of decomposition
the power laws represent a satisfactory representation of peak; although the HOT-
COLD pattern suggests that in some sub-regions the analysis can be improved with
a refined level of analysis (e.g., HUC-6 Level). The number of gauges inside the
basins is a limitation to evaluate a more refined scale.

A remarkable result is the shift of regional flood patterns for different drainage
sizes and for the 2.33- and 100- year floods at HUC-4 level, in which the relative
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flood magnitude depends of the catchment size, showing a dynamic dependence
of floods related to drainage area and spatial location. This result is especially
strong in the spatial transition of the Top 20 regions with higher 2.33- and 100-year
from the center to the eastern Mississippi. The results of this analysis provide clear
signatures in flood-producing mechanisms that should be explained from physical
considerations.

We recognize several caveats in our study. We presented spatial patterns only up
to watersheds smaller than 10,000 km2. This threshold was defined to guarantee the
flood diversity inside of a HUC-4, eliminating the influence of gauges over large
rivers that integrate different climate regimes and are more likely to be affected by
regulation. In addition, we are aware that using a different probability distribution
(e.g., heavy tail distributions) could change the outcome of the flood quantile
estimations. We decided on using the standard methodology proposed by the USGS
in the Bulletin 17B based on the probability distribution Log Pearson Type 3 as the
best option for the flood quantile estimation because it is easily replicable, thanks to
the USGS PeakFQ software.

Our research represents an effort to quantify the structure of flood scaling
in a range of drainage areas and flood quantiles. We report notable regional
flood patterns that should relate to physical variables to explain the underlying
mechanisms behind flood dynamics across scales.

Acknowledgements The authors thank the Iowa Flood Center for supporting this study. This
study builds on the framework presented at the conference Twenty Years of Nonlinear Geophysics
and discussed in Gupta et al. (2007).

Appendix 1: Identifying the Scaling Type

Gupta and Dawdy (1995) defines simple-scaling as when the scaling exponent in the
power-law regression between flood quantiles and upstream area remains constant
for all flood quantiles, and multi-scaling as when the scaling exponents change.
We use the Potthoff analysis (Potthoff 1966) in order to test the null hypothesis
H0 : �2.33 D �100. The Potthoff analysis identifies if there is a significant difference
in the regression exponents when data are separated in different groups. This
analysis requires performing a multiple linear regression to compare the regression
coefficients for different peak flow quantiles.

With a significance level of 5%, we can conclude that if the p-value is less
than 0.05 the null hypothesis of simple-scaling should be rejected. However, if the
p-value is greater than 0.05 we cannot reject the null hypothesis, leaving open the
possibility of simple-scaling in the data. The test relies on three equations,

Y Œi� D ln .Q2:33/ D ln .˛2:33/C �2:33 ln.A/ (2)
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Fig. 15 Spatial pattern of the
p-value to test the null
hypothesis H0 : �2.33 D �100

in the 84 sub-watershed

Y Œj� D ln .Q100/ D ln .˛100/C �100 ln.A/ (3)

Y Œi;j� D a C bXŒi;j� C cGŒi� C dGŒi�XŒi;j� (4)

X is the vector of drainage area repeated twice, since the drainage area is the
same for Eqs. (2) and (3). G is the dichotomous grouping variable (dummy variable)
coding one for the region i and zero for the region j. The coefficients in Eq. (4)
evaluate the difference in coefficients for Eqs. (2) and (3). For our purposes the
coefficient d determines differences between �2.33 and �100, therefore we estimate
the p-value for the coefficient d to test the null hypothesis H0 : �2.33 D �100.

Figure 15 presents the estimated p-value for the 84 sub-regions at HUC-4 level.
Based on this result we report 17 sub-watersheds with multi-scaling with clusters
on the western and eastern Mississippi; and 67 sub-watershed with possible simple-
scaling with a predominance in the center of the Mississippi River Basin.

Appendix 2: Testing Regional Homogeneity

We assessed regional homogeneity using the Moran spatial autocorrelation (Moran
1950) for the residuals of the scaling power law in space. We group the residuals
of the power-law regression as HOT: Positive residuals, and COLD: Negative
residuals. The Moran spatial autocorrelation evaluates if a pattern of a spatial
variable is clustered, dispersed, or random based on the null hypothesis that the
variable (residuals in our case) is randomly distributed in space.

We hypothesize that, if there is regional homogeneity over the scaling of peak
flows the groups HOT-COLD should be randomly distributed in the watershed,
showing that the floods in the region have a similar hydrologic response. However,
if there are strong differences of flood responses along the watershed, HOT and
COLD clusters will start to arise, breaking the regional homogeneity assumption
in the flood scaling theory. The significance of the test can be evaluated with a
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Fig. 16 Map of the Z-score in the 84 sub-watersheds for the 2.33- and 100-year return period

Z-score in which a Z-score of 1.96 rejects the null hypothesis with a significance
level of 5%, in such case, we infer the existence of a clustering pattern of residuals
in the space and therefore the regional homogeneity is not obtained. The Moran
statistic is based on neighboring elements that are defined with a specific buffer
distance. We evaluate the Z-score for a search distance between 100 and 200 km as
this range seems sufficient to consider the inclusion of different peak flow gauges
at the watershed level of HUC-4. The spatial structure of the Z-score presented in
Fig. 16 demonstrates that the regional homogeneity is independent of frequency in
some regions, showing watersheds with Z-scores higher than 1.96 for the 2.33-year
floods, but lower than 1.96 for the 100-year floods. Also, the results show a dominant
pattern of non-homogeneity in the MRB at the HUC-4 level, suggesting that a more
refined spatial scale is necessary to obtain a more accurate representation of peak
flows through scaling of floods. Figure 17 shows 6 examples of the classification
of regional homogeneity based on the Z-score. Notice that the HUCs 1010, 1029,
and 510 have Z-scores less than 1.96 which is related to a regional homogeneity
feature (randomness in the HOT-COLD residuals), leading to conclusion that the
flood scaling on these watersheds is well represented. However, the HUCs 1027,
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Fig. 17 Examples of regional homogeneity and non-homogeneity based on the Z-score in six
sub-watersheds in the MRB

508, and 1114 have Z-scores higher than 1.96 in which the clustering of the HOT-
COLD residuals in the space is obvious. Therefore, these watersheds must be refined
based on the HOT-COLD clusters to properly capture the regional signature of
floods across the scales.
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Studying the Complexity of Rainfall
Within California Via a Fractal Geometric
Method
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Abstract A deterministic geometric approach, the fractal–multifractal (FM)
method, useful in modeling storm events and recently adapted in order to encode
highly intermittent daily rainfall records, is employed to study the complexity of
rainfall sets within California. Specifically, sets—from south to north—at Cherry
Valley, Merced, Sacramento and Shasta Dam and containing, respectively 59, 116,
115, and 72 years, all ending at water year 2015, are studied. The analysis reveals
that: (a) the FM approach provides faithful encodings of all records, by years, with
mean square and maximum errors in accumulated rain that are less than a mere 2
and 10%, respectively; (b) the evolution of the corresponding “best” FM parameters,
allowing visualization of the inter-annual rainfall dynamics from a reduced vantage
point, exhibit a highly entropic variation that prevents discriminating between sites
and extrapolating to the future; and (c) the rain signals at all sites may be termed
“equally complex,” as usage of k-means clustering and conventional phase-space
analysis of FM parameters yields comparable results for all sites.
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Notation

"ac Root mean square error in accumulated set
"mac Maximum error in accumulated set

j Nash–Sutcliffe efficiency on records at j-day scale
�j Nash–Sutcliffe efficiency on accumulated sets at j-day scale
—j Number of zeros present in the sets at j-day scale
� j Percent of zeros matched in the FM set at j-day scale
Hc Entropy of class distribution
OLc Average orbit length by classes

1 Introduction

As rainfall is a fundamental input to the hydrologic system, quantifying its temporal
and spatial complexity is paramount for the proper planning, design, and imple-
mentation of water resource infrastructure. As the process often exhibits complex
nonlinear behavior and high-intermittency, it is desirable to develop improved
techniques that may allow further understanding of its structure.

With the development of stochastic and fractal notions and the advent of
modern computation, a substantial effort has been made in the past few decades
at conceptualizing numerous rainfall models. Attempting to capture the erratic,
intermittent, random, and, in short, complex nature of rainfall, various frameworks
have been proposed. Such include attempts to quantify complexity based on: (a)
chaotic features of the records (e.g., Rodríguez-Iturbe et al. 1989; Sharifi et al.
1990; Ghilardi and Rosso 1990; Rodríguez-Iturbe 1991; Jayawardena and Lai 1994;
Koutsoyiannis and Pachakis 1996; Sivakumar et al. 1999, 2001a; Peters et al. 2001;
Men et al. 2004; Dhanya and Kumar 2010; Jothiprakash and Fathima 2013), (b)
nonlinear time series models (e.g., French et al. 1992; Luk et al. 2000; Jin et al.
2005; Ramirez et al. 2005; Nasseri et al. 2008; Kim et al. 2009; Sivakumar 2009;
Sivakumar and Singh 2012; Sivakumar et al. 2014), and (c) representations aiming at
preserving statistical and fractal and multifractal rainfall properties (e.g., Rodríguez-
Iturbe 1986; Gupta and Waymire 1990; Tessier et al. 1993; Lovejoy and Schertzer
2013; Puente and Obregón 1996; Sivakumar 2000, 2004; Sivakumar et al. 2001b;
Maskey et al. 2015).

Relevant to this research, Puente (1996) developed a simple geometric proce-
dure, the so-called fractal–multifractal (FM) method, which generates “seemingly
random” sets as fractal transformation of multifractal measures without requiring
any statistical assumptions. This method, which fits within the modern notion of a
fourth paradigm in data-intensive scientific discovery (Hey et al. 2009), produces a
vast class of patterns defined over one and higher dimensions that not only preserves
key statistical indicators, viz. moments, autocorrelation function, power spectrum,
multifractal spectrum, but also captures intricate details and the textures present
in the data sets, something which is quite difficult to accomplish using (physical)
stochastic models (Puente 2004; Cortis et al. 2009).
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While the FM approach has already been used to model: (a) rainfall events (e.g.,
Puente 1996; Obregón et al. 2002a, b; Huang et al. 2012a, b), (b) daily rainfall
sets gathered over a year (Maskey et al. 2015, 2016b; Puente et al. 2017), (c) daily
streamflow records over a year (Puente et al. 2017; Maskey et al. 2016a), (d) daily
temperature measurements (Puente et al. 2017), and (e) even spatial contaminant
plumes (Puente et al. 2001a, b), this article represents the first effort in using the
FM method as a tool to quantify rainfall complexity, using for the purpose data sets
collected within California.

The organization of the paper is as follows. Given first is an introduction to the
FM notions and, in particular, the specific adaptation used to model intermittent
rainfall records. This is followed by the methodology employed in fitting specific
data sets via a numerical optimization exercise and an explanation of how FM
geometric parameters will be used to quantify complexity. Then, the analysis
of the records’ complexity at four stations, from south to north, Cherry Valley,
Merced, Sacramento and Shasta Dam, is advanced, including a study of the inter-
annual dynamics and data-mining classifications at each site and a comparison
of complexity features in space among the sites. The article concludes with its
conclusions and recommendations.

2 The Fractal–Multifractal Method

The transformation of multifractal measures via fractal interpolating functions,
leading to the fractal–multifractal (FM) method (Puente 1996), is reviewed here.

A fractal interpolating function f : x ! y, passing through N C 1 ordered points
in plane f(xn, yn)j x0 < x1 < : : : < xNg and having a graph G D f(x, f (x)jx 2 [x0, xN] D

[0, 1]g, is defined as the unique fixed point of N affine maps (Barnsley 1988):
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; n D 1; : : : ;N; (1)

such that, G D w1(G) [ w2(G) [ : : : [ wN(G). While the vertical scalings dn are
free parameters satisfying ÍdnÍ < 1, the other coefficients in Eq. (1), an, cn, en,and fn
are evaluated via the contracting initial conditions:
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which guarantee the existence of a stable attractor and yield N systems of linear
equations that may be easily solved in terms of the interpolating points and the
vertical scalings. Upon successive iterations of the maps, a convoluted “wire”
function f, whose graph has a fractal dimension 1 � D < 2, is found.
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The notions may be generalized so that a more general attractor, other than a
function, is obtained. Such is easily accomplished replacing the contractile initial
conditions (Eq. (2)) by more general contractions:

wn

�
x0
y0

	
D

�
x2n

y2n

	
; wn

�
x2N�1

y2N�1

	
D

�
x2nC1

y2nC1

	
; n D 1; : : : ;N; (3)

such that the range in x of map wn becomes the interval [x2n, x2n C 1]. Notwithstand-
ing the need of additional end-point parameters y2n, y2n C 1, a disperse attractor, over
a Cantor set (Mandelbrot 1982), is defined whenever the domain of the attractor
contains gaps (Huang et al. 2013; Maskey et al. 2015).

Figure 1 illustrates how a disperse attractor is constructed iterating two affine
maps whose end-points are f(0, 0), (0.41,1.08)g and f(0.80,4.02), (1, �0.35)g,
namely:
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; (5)

and when such are iterated following independent outcomes of a 33–67% biased
coin.

As seen, the Monte Carlo procedure, known as the “chaos game” (Barnsley
1988), defines (say after 214 iterations) a Cantorian function from x to y, and
also ultimately induces stable projections (histograms) dx and dy, which are hence
functionally related and deterministic. While the former is clearly defined over
a Cantor set (as there is a gap of 0.39 in end-points over x) and exhibits a
multifractal structure containing noticeable repetition, the latter, which exhibits
ample intermittency, is the derived measure over y found transforming the input
measure dx via the fractal function from x to y, hence explaining the notation
fractal–multifractal approach. For the sake of rainfall modeling, Fig. 1 also includes
an adaptation of the notions via set dyv so that additional zero values may be defined.
Such a pattern is simply found trimming dy below a threshold �, in a manner that
evokes removing “traces” of rain.

By varying the parameters associated with the construction, the ideas herein
yield indeed a host of rainfall-looking sets that shall be used later on to encode
rainfall measurements via an inverse problem that uses recorded information (duly
normalized) as the target of an FM optimization exercise that depend on the
following parameters: (a) the end-points that define where the attractor would pass,
(b) the scalings dn, (c) the frequencies used to carry the iterations p, and (d) the
threshold � used to trim the original output. Without a lack of generality, the first
member of the first end-point and the second member of the second end-point have
been set, respectively, to (0,0) and (1, y2N C 1). This implies a total of nine geometric
FM parameters when iterating two maps.
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Fig. 1 A generalized FM approach: from a Cantorian texture dx, to a projection dy, via a disperse
attractor from x to y. The set dyv is found pruning dy below a threshold �

Although, as mentioned earlier, the FM approach do fit within the modern notion
of data-intensive scientific discovery (Hey et al. 2009), it is worth remarking that
the notions have been assigned a physical interpretation, as the FM sets produced
are deterministic realizations of non-trivial stochastic conservative multiplicative
cascades, ultimately belonging to the class of “universal multifractals” (Cortis et
al. 2013). Although no physical meaning may be assigned to the specific FM
parameters nor such may be measured in any obvious way given a pattern (hence
requiring an optimization exercise), the collective representations provided by the
FM notions are part of a family of sensible physical entities and members of
a collection of pertinent geometries with which to attempt to represent rainfall
patterns and others (Puente et al. 2017). Certainly, it is not easy to capture the overall
geometries of rainfall sets parsimoniously, but the FM approach does hold promise
for such a desirable task that also aims at finding a suitable language for describing
complexity (Maskey et al. 2015).

3 Methodology

This section explains how the FM approach is used to study the inter-annual and
spatial variability of rainfall sets. First, the methodology used to find suitable
encodings, for a year of data at a time, is introduced. Second, the validation statistics
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employed to quantify performance are given. Then, the analysis carried out to
classify and quantify rainfall complexity is advanced.

3.1 FM Encodings

Even though the FM methodology is ultimately rather simple and computationally
efficient—once a set of parameters is known—the finding of an appropriate
representation for a given set is challenging. As there are neither analytical formulas
for the attractors nor for the derived measures dy, only a numerical solution is
possible. Also, alternative parameter sets may exist, i.e., equifinality (Beven 2006;
Huang et al. 2013).

Following previous efforts (e.g., Maskey et al. 2015; Puente et al. 2017), a
generalized particle swarm optimization (GPSO) algorithm, with swarm members
having dynamic capabilities, is used in the study. Specifically, the GPSO procedure
is run 200 times to find that many plausible solutions using swarms made of
500 randomly defined elements—FM parameter values defined uniformly between
bounds—and allowing them to evolve following 100 successive iterations. The best
parameter values for the 200 runs, even if local optima, are recorded for further
study.

In trying to account for the inherent complexity in daily rainfall (Obregón et al.
2002a, b; Huang et al. 2013; Maskey et al. 2015), the objective function to minimize
is defined adding three L2 norms, i.e., root mean square errors, of accumulated
rainfall vs. accumulated FM fitted values, at the daily, "1, three-day, "3, and seven-
day, "7, scales, over the period of consideration (i.e., a year) plus a few penalties
aimed at discarding unacceptable renderings. This gives for the objective function:

" D "1 C "3 C "7 C "p; (6)

"j D

vuut 1

Mj

MjX
iD1

�
ci;j �bci;j

�2
; j D 1; 3; 7; (7)

where Mj is the number of data points at scale j, i.e., M1 D 365(366), M3 D 123,
and M7 D 53(54), ci , j is the accumulated measured rainfall up to period i for scale
j, bci;j is the corresponding value obtained via an FM representation, and "p are
penalties dealing with the maximum allowable deviations between ci , j andbci;j and
information regarding their distribution of zero values. Although GPSO calculations
may not always keep the penalty restrictions all the time, the results reported herein
do fulfill such constraints.
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3.2 Model Performance

To assess the quality of individual FM approximations, various qualifiers are
computed at the aforementioned scales. Such include:

(a) Nash–Sutcliffe efficiencies for, accumulated, rainfall vs. FM sets:

�j D 1 �

PMj

iD1

�
ci;j �bci;j

�2
PMj

iD1

�
ci;j �

�
cj

�2 ; j D 1; 3; 7; (8)

where the notation is as in Eq. (7) and
�
cj is the accumulated rainfall mean for scale j;

(b) Nash–Sutcliffe efficiencies of rainfall vs. FM sets (all duly normalized):


j D 1 �

PMj

iD1

�
ri;j �bri;j

�2
PMj

iD1

�
ri;j �

�
r j

�2 ; j D 1; 3; 7; (9)

where ri , j is the measured rainfall at period i for scale j,bri;j is the corresponding FM
value, and

�
r j is the rainfall mean for scale j;

(c) The number of zero values at the three scales, —j in real vs. FM representations;
and

(d) The percent of zero values matched by an FM encoding, � j.

3.3 Complexity Analysis

The encoding of a host of rainfall sets, by year and at various sites, allows
visualizing, beyond the annual depth, the dynamics of the process from the
vantage point of geometry, i.e., from the perspective of the parameters of the
FM representations employed. As shall be illustrated, such FM parameters permit
performing more complete inter-annual and spatial comparisons, which enable
quantifying the complexity of the records, as follows: (a) yearly patterns may
be classified by parameters via data-mining techniques, e.g., k-means clustering
(Arthur and Sergi 2007), such that rainfall dynamics may be studied by classes,
and (b) parameter values may be studied following a “classical” complexity study,
computing correlations of them all and building phase-space diagrams to identify
the presence or lack of geometric trends.
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4 Rainfall Encodings in California

The FM notions are tested next for daily rainfall sets gathered over water years
(October 1st–September 30th) in four sites in California, from south to north:
Cheery Valley, Merced, Sacramento, and Shasta Dam, as summarized in Table A1 in
the Online Appendix http://puente.lawr.ucdavis.edu/pdf/nag_puente_appendix.pdf.
As seen, all sites contain at least 59 years of contiguous sets gathered by NOAA’s
National Climate Data Center (NCDC) and the average annual rains (from south
to north) are 46.7, 12.9, 17.6, and 63.7 in. Prior to FM encoding, all data sets are
normalized so that the accumulated depth (over a given year) becomes unity.

Given the geometric intricacies of the records that contain substantial number
of zero values, the FM representations used are associated with the Cantorian
construction based on the iteration of two maps as highlighted in Fig. 1. As
they rely on nine FM geometric parameters, the computed sets have associated
compression ratios of about 40:1 (365/9). Since encoding over 360 years of records
(see Table A1) takes a substantial amount of time for solving the associated inverse
problems (over 12 h per year on a personal computer) and in order to study distinct
possible solutions for the optimization exercises, the results reported here not only
correspond to the “best” objective functions (over all 200 cases, as explained in Sect.
3) but also include, for sensitivity reasons, up to the best twenty solutions. In what
follows and for clarity purposes, the quantity "1 is renamed as "ac (see Eq. (7)), the
root mean square error in daily accumulated sets over a year, and the results also
report on the maximum daily deviation in accumulated rain over a year, "mac.

4.1 Examples of FM Encodings

To demonstrate the capability of the FM notions, encodings of four distinct rainfall
sets, with varied geometries and for each location, are reported here together with an
extensive statistical evaluation of their performance. As an example, Fig. 2 contains
rainfall sets (black), best FM encodings (gray), and comparisons of accumulated
sets at Cherry Valley for water years ending at 1970, 1980, 1990, and 2000. As
readily seen, all the FM sets do capture very well the overall “rough” distribution of
rain and, although the rainfall intensities themselves are not perfectly captured—for
the locations of all peaks do not necessarily match—the accumulated profiles of FM
sets are indeed close to their targets.

The goodness of the best FM representations is further illustrated in Table 1
that contains, by blocks, a host of statistical information at various scales, as in
the objective function Eq. (6). As seen in the top block, average and maximum
errors in accumulated sets at the daily scale, "ac and "mac, are rather small, with
magnitudes that do not exceed 2.2 and 9.8%, respectively. As noticed on the second
and third blocks, while the Nash–Sutcliffe indices on the accumulated sets, �j, for a
day, 3 days, and 7 days are all close to perfection, the Nash–Sutcliffe indices on the

http://puente.lawr.ucdavis.edu/pdf/nag_puente_appendix.pdf
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Fig. 2 Examples of daily rainfall records in Cherry Valley for years 1970, 1980, 1990, and 2000
(black) and best FM representations (gray), followed by their accumulated sets

records themselves, 
j, exhibit low values at the daily and 3 day scales (due to non-
matching rainfall intensities) but reasonable values—above 60%—at the weekly
scale. As reported on the last two blocks, the numbers of zeros, —j, in data and FM
sets (in parenthesis) are close for all scales and the actual percent of zeros matched
by the FM representations, � j, is consistently higher than 75%, for all scales.

Similar analyses for the other three sites reveal comparably good performance,
which, due to space limitations, have been included in the aforementioned Online
Appendix. There, the interested reader shall find, for the Merced, Sacramento, and
Shasta Dam locations, four examples each of FM fits similar to those in Fig. 2 (Figs.
A1, A2 and A3) followed by corresponding statistical information as in Table 1
(Tables A2, A3, and A4). As may be verified, such information supports the usage
of the FM method to encode highly intermittent rainfall sets, as follows: (a) all FM
representations, for the 12 examples, do resemble the real sets both in texture and
overall locations of peaks and cannot be taken apart from data sets by the naked eye,
as they do all look reasonable and “real,” (b) all FM fits are excellent in accumulated
sets as the encoding errors "ac and "mac are rather low, always less than merely 2.1
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Table 1 Performance of the best FM models for Cherry Valley in Fig. 2 ("ac, "mac, �’s, 
’s, and
�’s are in percent, —’s are for data followed by FM fit in parenthesis)

Period
Statistics 1970 1980 1990 2000

"ac 1.8 1.4 2.2 1.8
"mac 8.0 7.0 8.4 9.8
�1 99.8 99.9 99.5 99.8
�3 99.8 99.9 99.5 99.8
�7 99.8 99.9 99.6 99.8

1 1.0 17.9 �40.0 �40.0

3 36.4 67.9 14.5 29.9

7 65.2 87.1 61.9 71.4
—1 295(300) 276(288) 300(319) 291(320)
—3 85(85) 73(80) 84(91) 81(89)
—7 27(30) 18(26) 26(32) 23(29)
�1 86.1 85.2 90.7 91.8
�3 78.8 78.1 80.6 84.0
�7 77.8 88.9 76.9 78.3

and 9.0%, respectively, (c) all Nash–Sutcliffe indices for accumulated sets, at the
scales of 1, 3 and 7 days, �’s, remain close to 100%, (d) Nash–Sutcliffe values for
the records, 
’s, increase with aggregation scale and the numbers at the 7 day scale
are typically larger than 65%, as with Cherry Valley, (e) the number of zeros in the
records and those in the FM representations, —’s, are close to each other, and (f) the
FM fits do preserve well the location of zeroes in data, with �’s that always exceed
54% but that could be, sometimes, as high as 96%.

4.2 Overall Performance

Having studied in detail a few examples of rainfall patterns, this section includes
the best FM representations over the whole records available: 59 years for Cherry
Valley, 116 for Merced, 115 for Sacramento, and 72 for Shasta Dam. In such spirit,
Fig. 3 for Cherry Valley and Figs. A4, A5, and A6 on the Online Appendix for the
other sites include the observed rainfall set (top), the corresponding FM fit (middle)
obtained by upgrading annual volumes (depths), and their implied accumulated sets
over the whole period (bottom).

As readily seen, the textures of FM sets associated with the best solutions (year
by year) are indistinguishable from measured sets, not only by the naked eye,
but also statistically as illustrated in the previous section. As such, the FM fitted
accumulated sets turn out to be excellent renderings of the “real” sets, now over
much longer periods of time. The goodness of such overall representations is further
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Fig. 3 Rainfall records in Cherry Valley for water years 1956–57 to 2014–15 (top—black) and
best FM representations (year by year—gray) followed by their accumulated sets. The scales of
the rain sets are in inches/day

reflected in Table 2, which contains, for all sites, encoding errors and some of the
statistical information used earlier at three aggregation scales, but averaged over all
years and together with their plus and minus standard deviations. As seen, encoding
errors are consistently low, for all sites, with "ac values that are on the average less
than 1.8% and with standard deviations less than 0.3%, and with "mac values lower
than 8% and standard deviations less than 2.1%. Such behavior translates into almost
perfect Nash–Sutcliffe values for accumulated sets at all sites, reasonable Nash–
Sutcliffe indices for the records at the 7 day aggregation scale, 
7, with averages
above 65% and standard deviations less than 22%, and a large percent of zeroes
matched by the FM representations for all scales, as mean values of �’s are greater
than 65% on the average and as the values for 1 day, �1, are all greater than 83%
with a standard deviation less than 8%.

These results illustrate that the Cantorian-based FM notions are useful to model
highly intermittent rainfall sets containing a notorious amount of no-rain activity,
with small errors that are within the accuracy of rainfall measurements (Lanza and
Vuerich 2009). These results, even if only at four sites, do suggest that the FM
geometric parameters of successive sets, year by year, may be used to study the
evolution and complexity of rainfall patterns.
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Table 2 Overall performance of best FM encoding in all locations ("ac, "mac, �’s, 
’s, and �’s are
in percent)

Site
Statistics Cherry Valley Merced Sacramento Shasta Dam

"ac 1.6 ˙ 0.2 1.6 ˙ 0.2 1.6 ˙ 0.2 1.8 ˙ 0.3
"mac 7.1 ˙ 1.5 7.0 ˙ 1.3 7.1 ˙ 1.2 7.9 ˙ 2.1
�1 99.8 ˙ 0.1 99.8 ˙ 0.1 99.8 ˙ 0.1 99.7 ˙ 0.1
�3 99.8 ˙ 0.1 99.8 ˙ 0.1 99.8 ˙ 0.1 99.7 ˙ 0.1
�7 99.8 ˙ 0.1 99.8 ˙ 0.1 99.8 ˙ 0.1 99.7 ˙ 0.1

1 �11 ˙ 38 �7 ˙ 32 �9 ˙ 28 �18 ˙ 29

3 34 ˙ 31 34 ˙ 27 43 ˙ 23 32 ˙ 20

7 65 ˙ 22 68 ˙ 16 74 ˙ 13 66 ˙ 17
�1 85 ˙ 8 88 ˙ 7 91 ˙ 5 83 ˙ 8
�3 76 ˙ 11 81 ˙ 10 85 ˙ 8 75 ˙ 12
�7 68 ˙ 16 76 ˙ 14 80 ˙ 10 65 ˙ 16

Fig. 4 Evolution of best FM parameters for Cherry Valley (black) and averages over 5 years (gray)

4.3 Rainfall Dynamics

Having sensible approximations of rainfall sets at all sites leads us to hypothesize
that the time evolution of the best FM parameters, as defined in Sect. 3, may help
elucidate the inter-annual dynamics of rainfall. As such, Fig. 4 and Figs. A7, A8,
and A9 (the latter on the Online Appendix) include the time evolution of the best
FM parameters for Cherry Valley and the three other sites: the coordinates of the
right end-point of the first map, (x1, y1), the coordinates of the left end-point of
the second map, (x2, y2), the y-value of the right end-point of the second map, y3,
the vertical scalings of the two maps, d1 and d2, the frequency used to carry the
iterations, p, and a rain-trace threshold �. While the xi values are bounded from the
first and last end-points, i.e., from 0 to 1, the yi values ranged from �5 to 5, and
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the di’s between �1 and 1. All of such values are shown normalized in the figures
between 0 and 1, superimposing on them local parameter averages computed over
5 years.

As seen for all sites, the FM geometric parameters vary wildly and often swing
from high to low values and vice-versa. Such variability is also seen in the averages
every 5 years as reported in the graphs. Consistently with the early figures year
by year (e.g., Fig. 2), the geometries of successive years do vary significantly, a
feature that has already been reported not only for yearly rainfall sets but also for
streamflow records (Maskey et al. 2015, 2016a, b). This is corroborated in Table A5
on the Online Appendix, which includes entropy calculations for all parameters at
all sites based on histograms containing eight bins resulting in maximum entropies
of 3 (based on log 2 calculations for a purely uniform case). As seen and as hinted
from the evolutions, all entropy values (except for the iteration frequency p and the
threshold � that a bit more orderly) reflect near uniformity, as all are between 2.75
and 2.98.

At the end, there are no noticeable trends in the best FM parameters (not even
when averaged every 5 years) and such a fact clearly precludes the possibility of
readily finding rainfall forecasts from such geometric information or discerning
effects due to climate change. As seen, all sites, irrespective of their variable average
annual volumes, exhibit a high degree of complexity, a trait that shall be further
elaborated later on.

4.4 Sensitivity

In order to further understand the overall effectiveness of the FM method at all
sites and in an attempt to find “sub-optimal” solutions that may exhibit parameter
trends, Fig. 5 shows the evolution of the encoding errors "ac and "mac, but not only
for the best solution every year, but also for the best three. As seen, while the
three root mean square errors (left) remain close to each other and at values that
do not exceed small quantities of 2.4, 2.5, 2.8, and 2.6% from top to bottom (for
sites from south to north), the three maximum errors—not explicitly optimized—
(right) exhibit an increased variability that is bounded, from top to bottom, by 9.9,
10.0, 10.0, and 14.0%. Noticeably, few years at Shasta Dam exhibit large maximum
errors and such may be interpreted as saying that from the point of view of the FM
approach such a site is a bit more complex than the others. Although not shown
here, a similar analysis of the best 20 solutions confirms the nature of the results.
In terms of the employed objective function, the four sites within California may be
considered comparable, but in terms of the maximum error in accumulated records
(not explicitly accounted for), rainfall at Shasta Dam remains a bit more difficult to
encode than in the other sites.
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Fig. 5 Evolution of encoding errors "ac and "mac at all sites for best three FM solutions: first
(black), second (gray), and third (dashed)

Figure 5 suggests that the FM encodings do not possess a single best solution
but that there are other close solutions. As such, it becomes natural to inspect how
the parameter evolution of such alternative FM representations may look. Figure 6,
for Cherry Valley, and Figs. A10, A11, and A12 on the Online Appendix, for the
other sites, present such information for the three best FM parameter values. As
seen, those solutions that have close encoding errors as reported in Fig. 5 evolve
wildly in time, implying solutions in various regions of FM parameter space that
reveal the presence of equifinality (Beven 2006). There are indeed distinct parameter
configurations yielding close solutions (Hill and Tiedeman 2007), a common feature
regarding the solution of inverse problems dealing with complex processes. This
fact, and their implied evolutions of parameters, further elaborates the intrinsic
complexity of rainfall, as comparisons of this block of figures exhibit rather similar
degrees of variability. Certainly, a similar comparison of various solutions in the
inherently complex and nonlinear rainfall process may allow further quantifying
climate complexity around the globe.

As there is no perceptible trend in the best parameters and as there are several
close solutions, a set of alternative parameter values was defined for each site
based on fixed lower bounds over time, as included in Table A6 (for un-normalized
parameters) on the Online Appendix. Such “filtered” representations resulted in
slightly worse performance as reflected in Table 3 when compared to Table 2. Still,
however, such new FM parameters led to ample variation in parameters (albeit a bit
less), as reflected in Fig. 7 for Cherry Valley and Figs. A13, A14, and A15 (on the
Online Appendix) for Merced, Sacramento, and Shasta Dam and as corroborated in



Studying the Complexity of Rainfall Within California Via a Fractal Geometric Method 533

Fig. 6 Evolution of three best FM parameters for Cherry Valley: first (black), second (gray), and
third (dashed)

Table 3 Overall performance of filtered FM encoding in all locations ("ac, "mac, �’s, 
’s, and �’s
are in percent)

Site
Statistics Cherry Valley Merced Sacramento Shasta Dam

"ac 1.9 ˙ 0.3 1.8 ˙ 0.3 1.8 ˙ 0.3 2.0 ˙ 0.3
"mac 7.4 ˙ 1.4 7.4 ˙ 1.4 7.5 ˙ 1.2 8.5 ˙ 2.6
�1 99.7 ˙ 0.1 99.7 ˙ 0.1 99.7 ˙ 0.1 99.7 ˙ 0.2
�3 99.7 ˙ 0.1 99.8 ˙ 0.1 99.8 ˙ 0.1 99.7 ˙ 0.2
�7 99.7 ˙ 0.1 99.8 ˙ 0.1 99.8 ˙ 0.1 99.7 ˙ 0.2

1 �23 ˙ 44 �23 ˙ 40 �13 ˙ 32 �27 ˙ 35

3 24 ˙ 36 24 ˙ 33 38 ˙ 25 27 ˙ 23

7 59 ˙ 26 60 ˙ 22 69 ˙ 16 62 ˙ 20
�1 85 ˙ 7 89 ˙ 6 90 ˙ 5 85 ˙ 7
�3 76 ˙ 10 82 ˙ 9 83 ˙ 7 76 ˙ 10
�7 68 ˙ 13 77 ˙ 13 78 ˙ 9 68 ˙ 14

the entropy analysis reported in Table A7 on the Online Appendix. Such filtered
representations shall be used next together with the best parameters in order to
classify rainfall patterns and further assess the inherent complexity of the rainfall
records.

5 Classification and Complexity Analysis

5.1 Geometric and Data Classification

As there is ample variation in FM dynamics at all sites, both for best and filtered
parameters, this section presents a discretized analysis of the rainfall records via
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Fig. 7 Evolution of filtered FM parameters for Cherry Valley (black) and averages over 5 years
(gray)

Fig. 8 Evolution of best (left) and filtered (right) FM rainfall classes obtained via k-means
clustering of FM parameters for all sites, and their corresponding Markov matrices

FM parameter classifications (for both best and filtered solutions) yielding eight
distinct classes using k-means clustering, as described in Sect. 3.3.

Figure 8 shows the time evolution of the aforesaid eight classes for all sites
(all starting at “class 1” for the initial year), based on best solutions (on the left)
and filtered solutions (on the right), together with their implied Markovian matrices
summarizing transitions from time to time (to be read from right to left). As seen
and as expected, the classification based on filtered parameters differs from that
obtained from best parameters and all evolutions, at all sites, exhibit notable swings
from low to high classes and vice-versa and broad Markovian matrices.

In order to further qualify the results just discussed, Fig. 9 includes a similar
classification into eight classes obtained by using the deciles of the yearly records,
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Fig. 9 Evolution of rainfall classes obtained via k-means clustering of rainfall deciles and their
corresponding Markov matrices, followed by scatterplots comparing decile classes with best and
filtered FM classes. Sizes of circles are proportional to class repetitions

that is, the same number of parameters as the FM representations in Fig. 8. As
seen, the rainfall class evolutions based on deciles exhibit yet similar swings as
those based on FM parameters and the corresponding Markov matrices remain fairly
broad, except for two noticeable transitions for Cherry Valley and Shasta Dam. As
reported in Table A8 on the Online Appendix, the class evolutions for all sites turn
out to be, at the end, rather similar in terms of their class entropies, Hc (ranging
from 2.71 to 2.96 and hence close to uniformity) and average class orbit lengths,
�

OLc, measured, in an absolute sense, over the evolving classes (spanning from 1.98
to 2.77 classes). Although the records for Sacramento may be termed a bit more
complex based on these two attributes, there is not enough separation to conclude
that sets are not similarly complex nor that any effects due to climate change may
be identified.

Figure 9 also includes an inter-comparison between the classes implied by the
decile classification and those obtained via best and filtered FM parameters, in the
form of scatterplots having a larger circle depending on multiple occurrences of a
given combination of classes. As seen, both for best and filtered FM classifications,
there is no salient visible patterns that emerge from the analysis but rather very
broad diagrams, which give credence to the notion that the three distinct classifi-
cations represent different (“orthogonal”) views of the records (as other “equifinal”
FM solutions would likely produce), which altogether exhibit similar degrees of
complexity.



536 C.E. Puente et al.

Fig. 10 Pairwise site-comparison of best FM rainfall class evolutions and their scatterplots. The
evolutions use black for the set in the x-axis and gray for the one in the y-axis. Sizes of circles are
proportional to class repetitions

5.2 Comparative Analysis in Space

Having explained that rainfall may be considered equally complex from a geometric
point of view at the four sites under study, it becomes sensible to compare the class
evolutions in space, one site against another. For this purpose, Fig. 10 includes
pairwise comparisons associated with the best FM solutions, and Figs. A16 and
A17 (on the Online Appendix) do so for the filtered FM and decile classifications,
respectively. As exemplified in Fig. 10, such graphs include a visual comparison of
the class evolutions for concurrent years and the corresponding scatterplots.

As seen, the rather erratic class evolutions result in fairly uncorrelated scatter-
plots, which, although having instances where class combinations do not exist (as
high classes for Cherry Valley vs. low classes for Sacramento in Fig. 10), do not
exhibit noticeable trends. There are no clear correlations among the classes for all
pairs of stations for any of the three classifications employed, hence emphasizing
the complexity of the rainfall records, not only in time, but also in space, at least for
a distance of about 550 miles within California.

5.3 Additional Complexity Analysis

Having obtained “best” FM solutions for every site allows computing autocorre-
lation functions and phase diagrams for such individual parameters, as usually
performed when trying to identify chaotic properties of records, e.g., Sivakumar
and Berndtsson (2010). In that spirit, Fig. 11 includes such an analysis for the nine
FM parameters at Merced together with the total rainfall depth over the years (in
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inches) and Figs. A18, A19, and A20 on the Online Appendix do so, in order, for
Cherry Valley, Sacramento, and Shasta Dam.

As seen, Fig. 11 is divided into two parts, with the first one including the end-
point FM parameters x1, x2, y1, y2, y3, and the second comprising the other FM
parameters d1, d2, p, and �, and the aforementioned total rainfall depth. As observed,
for each attribute there are shown five features: (a) the time series itself, (b) the
autocorrelation function, (c) the two-dimensional phase diagram with a lag equal
to 1 year, (d) the two-dimensional phase diagram with a lag equal to half the total
number of years in the records (58 for Merced), and (e) the three-dimensional phase
diagram obtained using lags 0, 1, and 2.

As observed in Fig. 11, the annual rainfall depths for Merced, as well as the best
FM parameters there, exhibit noticeable swings from high to low and vice-versa and,

Fig. 11 Complexity analysis of FM parameters for rainfall records in Merced, in order, parameter
evolution, � (t), parameter autocorrelation, ACF, and three phase-space diagrams, focusing on: (a)
end-points of affine maps, and (b) vertical scalings, iterations proportion, vertical thresholds, and
total rainfall depth (in inches)
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Fig. 11 (continued)

as expected, their corresponding autocorrelations decay rather quickly and remain
almost always, within the shown ˙1:96=

p
n (where n is the length of records) bands

for up to 58 lags. As seen, all phase diagrams for all FM parameters and total
rainfall depth exhibit noticeable scattering at the scales considered. The diagrams
shown, and others for additional scales not included here, confirm the complexity
of the rainfall records, as there is no obvious attractor that may be discerned for
any of the geometric attributes of the daily rainfall patterns. As the analysis for the
other sites, shown in the corresponding figures on the Online Appendix, reveals
rather similar results, it may indeed be surmised that the studied sets lack a low-
dimensional structure that may define different degrees of (geometric) complexity
for rainfall in space.
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6 Conclusions and Further Research

This research illustrates how a Cantorian variant of the fractal–multifractal, FM,
approach, which relies on the iteration of two simple maps and uses eight geometric
parameters, may be adapted adding a rain-trace threshold parameter to closely
encode highly intermittent daily rainfall sets in California. By studying over 360
combined years at (from south to north) Cherry Valley, Merced, Sacramento, and
Shasta Dam, it is shown that it is possible to nicely approximate the geometry of
individual years at the daily scale (i.e., optimizing their mass functions) with root
mean square errors that are less than a mere 1.8 ˙ 0.3% and maximum errors in
accumulated sets that are less than 7.9 ˙ 2.1%, both well within measurement errors
reported for the rainfall process, Lanza and Vuerich (2009). As the FM encodings
also reasonably preserve information pertaining to the distribution of zero rainfall
values and Nash–Sutcliffe attributes for rainfall at the weekly scale, the results
support the notion that hidden determinism may lie at the root of natural complexity
(Puente 1996; Puente and Sivakumar 2007).

Once FM representations are established, the dynamics of the aforementioned
nine parameters are used in an attempt to study the inter-annual dynamics of
rainfall at the four sites, aiming also at a spatial comparison. The analysis revealed,
however, that the evolutions of “best” FM parameters, obtained via an optimization
exercise, fail to exhibit any noticeable trends but rather ample variations, for all
sites, in a manner that does not reflect any variations due to climate change. As
the optimization process revealed the presence of other FM parameter combinations
having close objective functions, i.e., equifinality, “filtered” FM sets, narrowing the
range of parameter variations, were also defined, but such evolutions also ultimately
resulted in non-trivial and highly entropic behaviors, for all sites.

As the evolutions of FM parameters were not useful in discerning differences in
the complexity of rainfall among the chosen locations, a more complete analysis of
such geometric parameters was carried via classifications (using k-means clustering)
and conventional phase-space diagrams. This investigation resulted in further
understanding of the rather erratic signals and confirmed that the geometries of the
rainfall sets at the four sites, and irrespective of distinct annual rainfall averages,
cannot be distinguished from one another, as they all may be termed as “equally
complex.”

The results of this work emphasize the “deterministic complexity” of the rainfall
process, i.e., deterministic, as the individual sets may be represented by the FM
method, but complex, as there are no obvious trends in FM parameters over time.
The fact that there are equifinal FM solutions certainly suggests further investigating
within the space of parameters, using explicit bounds in the numerical search aiming
at defining trends. Although the results herein suggest that such may be unlikely,
there may still be solutions that could allow discriminating rainfall complexity
between sites. Certainly, the analysis should be extended further north to include
rainfall sets with less numbers of zero values.

The quantification of rainfall complexity in time and space, as attempted in this
work, is certainly a scientifically relevant problem, especially in relation to climate
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change studies. If trends in dynamics may be discerned, such would have obvious
benefits, and if such trends do not exist, that would also be relevant information.
Although several questions remain regarding the FM approach, for instance, finding
a physical explanation for each of its parameters, it is envisioned that similar
analysis may also be carried to assess the complexity of other (less complex) hydro-
meteorological attributes such as streamflow and temperature records. Such an
avenue of research, with less variable geometric patterns, is also being investigated
and will be reported in the future.
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Pandora Box of Multifractals: Barely Open?

Daniel Schertzer and Ioulia Tchiguirinskaia

Abstract Three decades ago, multifractals were a major breakthrough in nonlinear
geophysics by providing a general framework to understand, analyze, and simulate
fields that are extremely inhomogeneous over a wide range of space-time scales.
They have remained on the forefront of nonlinear methodologies, but they are still
far from being used or even developed to their full extent. Indeed, they have been
too often limited to scalar-valued fields, whereas the relevant geophysical fields are
vector fields. This chapter therefore gives new insights on current developments
to overcome this limitation. This is done in an inductive manner. For instance, it
takes hold on simple considerations on “spherical” and “hyperbolic” rotations to
introduce step by step the Clifford algebra of Lévy stable generators of multifractal
vectors that have both universal statistical and robust algebraic properties.

Keywords Multifractals • Intermittency • Spatial chaos Symmetry groups •
Clifford algebra • Stable Lévy laws • Hyperbolic geometry • Mandelbrot set

1 Introduction

There have been many attempts to analyze and simulate the fluctuations of chaotic
systems whose spatial extension is of prime importance, such as turbulence,
weather, and climate, therefore to go beyond the dynamical systems with only few
degrees of freedom, which were so useful to initiate the “chaos revolution,” but
cannot help to explore the “spatial chaos” (Lorenz 1991; Tsonis 1992; Schertzer
et al. 2002).

This was done at first with the help of mono/uni-scaling approaches, e.g.,
with the help of spectral analyses or structure functions, and with corresponding
simulations of fractional Gaussian noises and motions (Mandelbrot and Van Ness
1968; Mandelbrot 1983). However, multifractal concepts and techniques were
needed and developed to grasp the fundamental features of intermittency, which can
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be loosely defined as the property that more and more “active” regions of the field
are concentrated on smaller and smaller regions of the space-time domain (Benzi
et al. 1984; Schertzer and Lovejoy 1984; Parisi and Frisch 1985; Halsey et al. 1986).
The level of activity is usually easy to define for scalar fields, but already more
involved for vector fields, e.g., a given norm of its gradient (or other type of vector
derivatives, e.g., its curl). This loose definition already points out that the definition
of a multifractal field is rather independent of the domain dimension, whereas it
can be very sensitive to the dimension of the codomain, i.e., the set into which
the field values are constrained to fall (Bourbaki 2004). As discussed below, this is
even worse for simulations, so that multifractals have been rather limited to scalar-
valued fields, therefore to 1D codomains. This unbalance between the dimensions
of the domain and codomain has had many unfortunate consequences. At first,
this has prevented to deal with key question of complex component interactions
of vector fields whereas this was done for dynamical systems (with 1D domain, but
with a larger codomain dimension, although rather low). Second, this was achieved
by assuming many unrealistic symmetries (isotropy and mirror invariance) instead
of studying the nontrivial symmetries corresponding to these interactions. More
fundamentally, not only the vector nature of the field is ignored, but also the same
is done for the scale change operator.

This vector nature is unfortunately indispensable to answer to challenging
questions such as the climatology of (exo-) planets based on first principles (Pierre-
humbert 2013) or to fully address the question of the relevance of quasi-geostrophic
turbulence and to define an effective, fractal dimension of the atmospheric motions
(Schertzer et al. 2012).

This is not only unfortunate, but also more fundamentally unreasonable and
illogical to first restrict multifractals to scalar-valued fields then to use the later to
try to analyze and simulate vector-valued fields.

In this chapter we present in an inductive manner the neat example of multifractal
vector fields generated by a stochastic Clifford algebra, which was on the contrary
deduced by Schertzer and Tchiguirinskaia (2015) from the much more general case
of Lie cascades (Schertzer and Lovejoy 1995; Chigirinskaya and Schertzer 1996;
Chigirinskaya et al. 1998). Here we start from simple and powerful properties of
orthogonal rotations and mirror symmetries, such as the spherical and hyperbolic
geometries they, respectively, define. Both geometries have been in fact often
invoked in fluid dynamics (e.g., elliptic points vs. hyperbolic points) in relation with
the long lasting question which of the rotation and the strain is dominant in a given
flow (Okubo 1970; Weiss 1991; Haller 2005). It has a much more general scope in
this chapter: not only because it concerns a much larger class of processes, but also
because it concerns across scale properties. These geometrical features are used in
this chapter to introduce almost intuitively the fundamentals of a Clifford algebra,
in particular its quadratic form that is in general indefinite, i.e., having a nonunique
sign.

Overall, we hope that this chapter will help to open much more widely the
Pandora box of multifractals, which seems to us barely open until now.
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2 Symmetries and Geometries

2.1 Orthogonal Rotations vs. Mirror Symmetries

Geometric transforms can be added and composed, generating therefore algebras,
where the multiplication corresponds to the composition. Figure 1 presents three
simple, linear, plane symmetries (I, J, K) and their iterated applications (I2, J2,
K2): I is the orthogonal rotation (with respect to the axes origin), J and K are the
axial/mirror symmetries, respectively, with respect to the first bissectrix and abscissa
axis. The iterated applications of these symmetries show that (1 denoting the identity
application):

I2 D �J2 D �K2 D IJK D �1 (1)

In other words, I squares to minus identity (�1), whereas J and K square to
plus identity (1). Obviously, the action of i corresponds in the complex plane to a
multiplication by the imaginary number i, and that of K corresponds to the complex
conjugation. Both preserve angles, but only the former preserves their orientation, a
property required by the strict definition of conformal transforms. Indeed, a mirror
symmetry does inverse the angle orientation. This is related to the fact that the
former transform is holomorphic, contrary to the latter.

Figure 1 also shows that (I, J, K) are not fully independent in the sense that the
composition of two of them yield the third one, preceded by a sign that depends
on the order of the composition. This change of sign means that (I, J, K) are anti-
commutating:

fI; Jg D fJ;Kg D fK; Ig D 0 (2)

x1

x0

x2=-x1

I=rot(p/2)

a b

I2=-1

x

y

I

J, K =mirror symmetries

x1

x1

x0=x2

J

K
K2 =J2 = 1

x

y

Fig. 1 (a) I is the orthogonal rotation (with respect to the origin of axes), (b) J and K are the
axial/mirror symmetries with respect to the first bissectrix and abscissa axis, respectively. It is easy
to check that I2 D �J2 D �K2 D �1, where 1 denotes the identity, as well as J D IK D �KI and
IJK D �1, therefore Eq. (1)
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where f.,.g denotes the anti-commutator

fX;Yg D XY C YX (3)

Whereas [.,.] denotes the commutator,

ŒX;Y� D XY � YX (4)

which is zero for commutating operators, but in the present case:

2I D ŒJ;K� I 2J D ŒI;K� I 2K D ŒJ; I� (5)

The commutator is a particular case of the celebrated Lie bracket of a Lie algebra.
The previously highlighted properties of (I, J, K) show that:

• Two of them are sufficient to generate the basis (1, I, J, K) of a larger algebra
often called the algebra of “quasi-quaternions” for reasons discussed below1

• Repeated compositions of these operators do not yield any new operator
• The anti-commutator defines a kind of scalar product for which (I, J, K) is

orthogonal (with the notation (I, J, K) D (e1, e2, e3)

< ei; ej >
˚
ei; ej

�
=2 D ıi;j1 (6)

• And therefore a quadratic form Q(v) D <v, v>

Although not needed until now, the matrices corresponding to the symmetries (1,
I, J, K) are

1 D

�
1 0

0 1

�
I I D

�
0 �1

1 0

�
I J D

�
0 1

1 0

�
I K D

�
1 0

0 �1

�
(7)

2.2 Quaternions

Equation (1), which summarizes the pseudo-quaternion properties, is very similar
to the celebrated “quaternion equation” (Hamilton 1844)2:

I22 D J22 D K2
2 D I2J2K2 D �1 (8)

1One may note that they were originally called “coquaternions” (Cookie, 1849) and more recently
“split quaternions” (Rosenfeld 1988) or “pseudo-quateriions” (Yaglom, 1968), whreas the name
quasi-quaternions was used by Okubo (1978) for a more involved non associative algebra.
2The choice of sub-index 2 to distinguish the quaternions from the pseudo-quaternions is due to the
fact that their matrix representation corresponds to 2 � 2 block matrices of the latter (see Eq. 9).
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The main difference is that all three I2, J2, and K2 are square roots of minus
unity (�1), therefore behaves like the orthogonal rotation I. This cannot be achieved
neither in the 2D (real) plane, nor in the 3D (real) space. In fact, it requires a 4D
(real) hyper-space so that one can conjugate two 2D rotations or two 2D mirror
symmetries to obtain new squares of minus unity. This can be easily seen on the
classical matrix representation of the quaternions:

12 D

�
1 0

0 1

�
I I2 D

�
0 �1

1 0

�
I J2 D

�
0 �K

� K 0

�
I K2 D

�
�I 0
0 I

�
(9)

2.3 Spherical vs. Hyperbolic Geometries

An operator u is said to be a (unitary) direction if it squares to positive or
negative identity. Figure 2 illustrates the strong dependence on the sign of u2 of
the exponential transform of a usual geodesic, which is a straight line along a
(unitary) direction u. Although this transform is always a geodesic, this occurs for
completely different geometries. This difference is easily shown with the help of a
broad generalization of the Euler–Moivre identity3 in the complex plane that states
that for any (spherical) angle � and any real exponent ˛:

.exp .u�//˛  cos .˛�/C i sin .˛�/ (10)

which merely results from the identity i2 D �1 in the series expansion of the
exponential. Similarly, if the unitary direction u is a square root of plus unity
(u2 D 1), it is straightforward to obtain:

.exp .u�//˛  cosh .˛�/ 1C sinh .˛�/ u (11)

where � and ˛� are now “hyperbolic” angles. The angle ˛� remains a curvilinear
coordinate along a geodesic, but in a hyperbolic geometry framework (Milnor
1982), instead of the spherical geometry corresponding to Eq. (10): spherical
geodesics are replaced by hyperbolic geodesics, as illustrated in Fig. 2. When the
direction u is a square root of minus unity (u2 D �1), we are back to spherical
geometry, with an equation similar to Eq. (10):

.exp .u�//˛  cos .˛�/ 1C sin .˛�/ u (12)

3Euler is known for introducing the complex exponential notation (˛ D 1) and Moivre for the
identity corresponding to integer ˛’s. Equation (10) summarizes both contributions.
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Fig. 2 (a) Spherical geodesics, respectively, in the linear spans fK2, I2g and f12, K2, I2g, (b)
hyperbolic geodesics, respectively, in the linear spans fK, Ig and f1, I, K2g

The two geometries are separated by the light cone4 defined by the isotropic (or
nipotent) operators that square to zero (u2 D 0). The exponential series expansion is
then limited to its first two terms:

.exp .u�//˛  1C ˛� u (13)

4Similar to that defined in special and general relativity, i.e. the path of a light flash emanating from
a single event.
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3 Mandelbrot Set in Spherical and Hyperbolic Geometries

3.1 The Classical M-set

The Mandelbrot set, originally called the M-set (Mandelbrot 1979), has been
celebrated for many reasons, including the fact that it is an emblematic link between
precursor works of Julia and Fatou on dynamical systems and the more recent
concepts of fractals and multifractals. Therefore, it can be used to illustrate the
drastic consequences of change from spherical to hyperbolic geometry. The original
Mandelbrot set M, called hereafter “the classical M-set” corresponds to the set of
complex numbers c’s that generate bounded orbits O(c) D fc, fc(c), fc2(c), : : : ,
fcn(c), : : : g of the simple mapping fc of the complex plane C with the exponent
˛ D 2:

fc W z ! z˛ C c (14)

M is therefore defined by:

M D

�
c 2 C

ˇ̌
ˇ̌sup
n2N

ˇ̌
f n
c .c/

ˇ̌
< 1


(15)

and is consequently the repeller of infinity for the map fc. Numerically, the M-set is
approached with the help of the classical escape algorithm, i.e., with the help of the
sets:

Mm;R D

�
c 2 C

ˇ̌
ˇ̌sup
n�m

ˇ̌
f n
c .c/

ˇ̌
< R


Mm;R D

�
c 2 C

ˇ̌
ˇ̌sup
n�m

jf n.c/j < R


(16)

It is easily shown (Mandelbrot 1979) that R D 2 is sufficient for Mm,R to converge
to M (M1 , 1) for m ! 1.

3.2 M-set on Quaternions

With the help of the generalization of the Euler–Moivre identity, there is no difficulty
to extend the M-set definition on quaternions, as already done by several authors
(Peitgen and Saupe 1988; Gomatam et al. 1995). Figure 3a, b displays two 3D
sections of the 4D M-set obtained on quaternions with the help of the classical
escape algorithm, more precisely M50,2.
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Fig. 3 Intersections of the set M defined on quaternions (a) with the 3D linear span f12, I2, J2g,
(b) with fI2, J2, K2g, which is a sphere (surrounded by a kind of haze, see text). Both figures show
that M corresponds to (spherical) rotation of the classical M-set around the real/scalar axis f12g

Figure 3a corresponds to the intersection of M50,2 with the 3D linear span5 f12,
I2, J2g and therefore displays its real/scalar component (along 12) and two imagi-
nary/vector components (along I2 and J2). This figure confirms that M \ f12, I2, J2g

is invariant by rotation along the real axis f12g. Therefore, without any surprise, any
2D cut M \ f12, aI2 C bJ2 C cK2g is identical to the classical M-set for any real a,
b, and c, therefore the intersection with the subspace generated by the real axis and
any imaginary axis (aI2 C bJ2 C cK2). This is fundamentally due to the fact that I2,
J2, and K2 have an identical role in the quaternion equation [Eq. (8)] and define a
spherical geometry. The latter yields, and explains in fact, Fig. 3b that is astonishing
at a first glance, but not at the second one: the intersection M \ fI2, J2, K2g of a set
as complex as M with the quaternion imaginary space fI2, J2, K2g is as simple as a
sphere! One may note that this sphere is surrounded by a kind of haze, presumably
due to a limited numerical representation of the M-set filaments and their rotation.

3.3 M-set on Pseudo-Quaternions

Now, we consider M-sets on pseudo-quaternions still with the help of the gener-
alized Euler–Moivre identity [Eqs. (11) and (12)]. Figure 4a, b is obtained with
the help of the same classical escape algorithm [Eq. (16)] and they are analogs
of Fig. 3a, b, but with striking, qualitative differences. More precisely, Fig. 4a

5Due to common usage, we are compelled to use curly brackets both for anti-commutators and
linear spans, but this should not introduce any confusion.
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Fig. 4 Intersections of the set M defined on quasi-quaternions (a) with the 3D linear span f1, I,
Jg, (b) with fI, J, Kg that is a hyperboloid of revolution. Both figures show that M corresponds to
hyperbolic rotation of the classical M-set around the real/scalar axis f1g

corresponds to M50 , 2 \ f1, I, Jg and Fig. 4b to M50 , 2 \ fI, J, Kg. Contrary to Figs.
3a and 4a does not point out a rotational symmetry with respect to the real axis f1g.
Indeed, J and K generate hyperbolic rotations contrary to I, 12, I2, J2, and K2 that
all generate spherical rotations. This explains that Fig. 4b is no longer a sphere like
Fig. 3b, but a hyperboloid of revolution. M seems therefore strongly different from
the classical M-set, contrary to the quaternion case. In particular, M is no longer
compact (contrary to complex and quaternion case) and the limitation to the distance
R D 2 in fact truncates M to this distance. Although M \ f1, Ig remains identical to
the classical M-set, it is spread over hyperbolic geodesics by hyperbolic rotations
generated by elements of the pseudo-imaginary space fJ, Kg, which again explain
that M is no longer bounded. Because of this, the classical definition of the M-set is
no longer fully satisfying.

4 From (Pseudo-) Quaternions to Clifford Algebra

Previous sections have pointed out common and distinct properties of the algebra
quaternions H (classical notation) and pseudo-quaternions H’. They are in fact
both Clifford algebra (Hagen and Scheuermann 2001; Baylis 2004; Trautman and
Warszawski 2006), their only difference, but with important consequences, is that
their quadratic form, a basic feature of Clifford algebra, has a different signature.
A Clifford algebra Cl(V,Q) is indeed defined as being generated by a given vector
space V on a field K (in what follows: K D R) of operators that can be composed
(therefore “upgraded” to operators of higher levels), but are also square roots of
the identity times a given quadratic form Q (therefore “downgraded” to scalar
operators):
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8v 2 V W v2 D Q.v/1 (17)

For V D Rn the quadratic form Q can be put under the canonical diagonal form:

Q.v/ D v21 C v22 C � � � C v2p � v2pC1 � � � � � v2pCq (18)

like for every non-degenerate quadratic form on a real vector space, where vi are
the coordinates of v with respect to a given orthogonal basis feig. The pair (p,q)
is the signature of the quadratic form, with p C q D n. The corresponding Clifford
algebra is classically denoted Clp,q(R) and is generated by p vectors that square to the
positive identity C1 and q that square to its negative counterpart �1. The algebra of
the pseudo-quaternions H0, which is isomorphic to the linear algebra l(2,R) of 2 � 2
real matrices spanned by 1, I, J, and K [Eq. (7)], can be generated by V D fI, Jg

or fK, Ig and therefore can be denoted by Cl2,0(R), as well as by Cl1,1(R) because
it can also be generated by fJ, Kg. This shows that distinct vector spaces V’s can
generate the same Clifford algebra, i.e., the notation Cl(V,Q) is not one-to-one. On
the contrary, the algebra of the quaternions H, spanned by 12, I2, J2, and K2 [Eq.
(9)], univocally corresponds to Cl0,2(R), although it can be generated by V D fI2,
J2g, fJ2, K2gor fK2, I2g, but all these spaces have the same signature (0,2). One may
note the simpler examples: Cl0,0(R) is isomorphic to R (V D ¿, no vector, only
scalars), Cl0,1(R) to C (a unique generating vector I, which squares to �1, V D fIg),
Cl0,1(R) seems to be nonclassical (with V D fJg or fKg).

Let us mention that two properties are extended in a straightforward manner from
V to Cl(V,Q):

• Let fe1, e2, : : : , eng be an orthogonal basis of V, then Cl(V, Q) admits the basis

fei1ei2 : : : ei2k j1 � i1 < i2 < � � � < ik � n and 0 � k � ng (19)

where the empty product (k D 0) corresponds to the identity. The dimension of Cl(V,
Q) is therefore:

dim ŒCl .V;Q/� D
X

kD0;n

�
n
k

	
D 2n (20)

• The quadratic form Q, initially defined only over V, is in fact defined on the
aforementioned basis of Cl(V, Q) [Eq.(19)], and therefore over the whole algebra
Cl(V, Q). Indeed, the anticommutation of the eij together with the fact they square
to the scalar Q(eij ) [Eq.(17)] yields

Q .ei1ei2 : : : ei2k/ D .1 � 2ık;2/Q .ei1 /Q .ei2 / : : :Q .ei2k/ (21)
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where the prefactor corresponds to (�1)(k�1)! that merely results from the (k � 1)!
permutations to be done to obtain a product of squares e2ij .

In what follows, Qv denotes the extension of the initial Q over the whole vector
part Vect(Cl(V, Q)) of Cl(V, Q), whose signature is denoted by (pv, qv), with, as
before, pv and qv vectors that square to the positive and negative unity, respectively.
This signature is not only univocal, contrary to the initial signature (p, q) of the
generating vector space V, but also it defines the relevant geometries and geodesics,
i.e., spherical or hyperbolic, for the different eigensubspaces of Qv.

5 A Short Recapitulation of Scalar-Valued Multifractals

In this section we briefly recapitulate the main features of scalar-valued multifractals
with the help of a 4-step procedure to simulate continuous in scale, universal
multifractals u�, where �D L/l is the scale ratio of the outer L and inner l scales, and
is therefore the resolution of the process. These continuous in scale processes are
obtained with the help of exponentials of additive processes (Schertzer and Lovejoy
1987), whereas the pioneering works on multiplicative cascades (Yaglom 1966;
Mandelbrot 1974), whose generic outcome was later on recognized as multifractal,
were obtained by products of identically independently distributed variables along
a dyadic (more generally a p-adic) tree, i.e., these cascades were discrete in scale
and were limited to generate a conservative flux. This procedure corresponds to (see
Fig. 5 for illustration):

a. Create a stable sub-generator �.˛/0 , i.e., an extremely asymmetric Lévy white
noise of Lévy stability index ˛

b. Perform a fractional integration on the sub-generator �.˛/0 to obtain a stable
generator �� whose exponential is scaling

c. Take the exponential of the generator �� to obtain the (conservative) flux "� of
given universal multifractal parameters C1 and ˛

d. Perform a fractional integration of the forcing f� D "a
� to obtain a smoother, but

non-conservative field u� that responds to this forcing.

Combining these features together with those of Clifford algebra (Sect. 4) will
enable us to define similar vector-valued multifractals. Some comments are in order
and are displayed for each stage in the following sub-sections (more details are
available in Schertzer and Tchiguirinskaia (2015)), however, they can be skipped in
a first reading.

5.1 Creating a Sub-Generator

Let us recall that a random variable X is said to be a Lévy stable variable (Lévy 1937,
1965; Gnedenko and Kolmogorov 1954; Feller 1971; Kahane 1974, 1985; Zolotarev
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Fig. 5 Illustration of the four steps to generate a scalar-valued multifractal field (see text). The
left column corresponds to the Gaussian case (˛ D 2), the right for a Lévy case with ˛ D 1.2,
both for C1 D 0.2, a D 1, H D 1/9, and � D 512. The horizontal axis is the time t 2 [0,�].
From top to bottom, (a) sub-generators �.˛/0 , respectively, symmetric (˛ D 2) and extremely
asymmetric (˛ D 1.2) with huge negative fluctuations, (b) generator �� obtained by a fractional
integration of the sub-generator, so that it is Log(œ) divergent, (c) (conservative) flux "� obtained
by exponentiation of the generator ��, (d) multifractal field u� by fractional integration of order H
of "� (adapted from Schertzer and Tchiguirinskaia 2015)
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1986) if and only if it is stable under renormalized sums, i.e., it is a fixed point,
with the rescaling factor a(n) and centering term b(n), of any n of its independent

realizations Xi (i D 1, n). This corresponds to (
d
D denotes equality in distribution):

8n 2 N; 9a.n/; b.n/ 2 R W
X
iD1;n

Xi
d
D a.n/X C b.n/ (22)

Furthermore, any Lévy stable variable X is attractive for renormalized sum
of independent realizations Yi (i D 1, n) of a random variable Y having similar
distribution tails:

lim
n!1

P
iD1;n Yi � b.n/

a.n/
d
D X (23)

i.e., it has a power-law tail whose exponent is the Lévy stability index ˛ 2 ]0 , 2]:

8s >> 1 W Pr .jXj > s/ � s�˛ (24)

which is also the critical order6 of divergence of statistical moments (E[.] denotes
the mathematical expectation):

8q � ˛ W E ŒjXjq� D 1 (25)

The Gaussian case (˛ D 2) is the exceptional case whose all statistical moments
converge.

5.2 Creating a Stable Generator

A “coloration” of the sub-generator �.˛/0 is required to obtain a generator �� such
that its exponential (exp(��)) is scaling, i.e.:

E Œ.exp .��//
q� D E Œexp .q��/� � �K.q/ (26)

which means that the generator �� is log-divergent with the resolution �. This can
be achieved with the help of a fractional integration of order D/˛

0

, where D is the
domain dimension and 1/˛C 1/˛

0

D 1 (Schertzer and Lovejoy (1991) for details).
The resulting generator �� is also stable, because the linear stability and attractivity
of Lévy sub-generators are preserved by fractional integration that is linear as
are the definition of stability and attractivity. These properties are transformed by

6The moment order q and the index q of a Clifford algebra have nothing else in common, except
to be the same alphabetical letter due to respective usages.
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exponentiation into a multiplicative stability and attractivity (Schertzer and Lovejoy
1987; Fan 1989; Brax and Pechanski 1991; Schertzer and Lovejoy 1997a, b), if this
exponentiation preserves some finite statistics. This is not always granted due to the
following inequality:

8n 2 N;8X 2 RC; q > 0 W exp.qX/ � .qX/n=nŠ (27)

which shows that the E[exp(qX)] D 1 for any positive variable X with a finite
power-law tail exponent ˛ [Eq. (24)] and any order q > 0. It is therefore required to
only use Lévy stable white noise �.˛/0 that are fully asymmetrical, in the sense that
they have a power-law tail only for negative values.

5.3 Creating a Conservative Flux

The exponentiation of the generator �� is usually called a flux:

"� D exp .��/ (28)

which can be normalized so that it is “conservative,” i.e., its average is strictly scale
invariant, i.e., conserved for any resolution �:

8� � 1 W E Œ"�� D E Œ"1� (29)

More generally [in agreement with Eq. (26)]:

8q 2 R W E


"

q
�

�
D exp .Log .�/K.q// � �K.q/ (30)

i.e., the statistical moment of order q of the flux is the (Laplace) characteristic
function of the generator and the corresponding cumulant generating function (or
second Laplace characteristic function) is K�(q) D K(q)Log(�). K(q) is called the
“scaling moment function,” it satisfies K(1) D 0 and has for general expression
(Schertzer and Lovejoy 1987):

q � 0 W K.q/ D
C1
˛ � 1

.q˛ � q/ I q < 0 W K.q/ D 1 (31)

where C1 is the codimension of the mean field, which satisfies with the index ˛:

C1 D
dK.q/

dq

ˇ̌
ˇ̌
qD1

I C1˛ D
d2K.q/

dq2

ˇ̌
ˇ̌
qD1

(32)

both relations are useful for determining these parameters. Because of the (mul-
tiplicative) attractivity for other multifractals, these multifractals are often called
“universal multifractals” (Schertzer and Lovejoy 1997a, b).
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5.4 Creating a Non-Conservative Field

The last stage corresponds to a fractional integration of the flux raised to a given
power a, which can be thus seen as a forcing f� D "a

� of a fractional differential
equation for the non-conservative field u� that is smoother (i.e., with stronger auto-
correlations) than the forcing f�. It has been argued that the overall procedure, often
called Fractionally Integrated Flux model (Schertzer et al. 1997), has strong links
with various attempts to “renomalize” nonlinear differential equations, particularly
the Navier–Stokes equations: the forcing f� being the analogue of the renormalized
forcing term and the fractional operator that of the renormalized Green function or
propagator (Kraichnan 1959a, b; Wilson 1971; Schertzer et al. 1998).

6 Vector-Valued Multifractals

6.1 Lie/Clifford Algebra of Generators

The substitution of the products of identically independently distributed variables
(Yaglom 1966; Mandelbrot 1974) by exponentials of additive processes (Schertzer
and Lovejoy 1987) opens the road to broad generalizations needed to obtain
multifractals that are not only continuous in scale (Sect. 5), but also to vector
or manifold valued multifractals (Schertzer and Lovejoy 1995; Schertzer and
Tchiguirinskaia 2015). In fact the case where the domain and codomain are both
scalar already points out in this direction: the (usual) exponential maps the additive
group R into the multiplicative group RC of positive real numbers and it corresponds
to the simplest case of a mapping of a Lie algebra into an associated Lie group
(Fig. 6 for illustration). The latter defines in fact the (generalized) exponential
transform. The main interest of this transform is that its domain (the Lie algebra) is
a vector space, whereas its codomain (the Lie group) has in general a more complex
structure being a manifold. More precisely, the Lie algebra is the tangent vector

Fig. 6 Schematic of the
exponential mapping
geodesics of a Lie algebra
into geodesics of an
associated Lie group

Lie algebra

Lie group 
(manifold)

X

exp(X) 
=geodesic
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space to the Lie group at its unity (Gilmore 1941; Sattinger and Weaver 1986),
is thus the vector space of the generators of the group and maps geodesics (e.g.,
straight lines of the vector space) into geodesics of the manifold. Following Sect. 4,
we proceed like in Sect. 5, but with sub-generators and generators belonging to a real
Clifford algebra Clp , q(R). However, to obtain a similar statistical universality (i.e.,
stability and attractivity of the generators) with finite statistics requires some further
analysis. Indeed, as pointed out in Sects. 2.3 and 3.3, large hyperbolic angles yield
very extreme values by exponentiation, whereas this is not the case for spherical
angles, and therefore possible divergence of all statistical moments, similar to that
of scalar generators that are not fully asymmetric.

Before addressing the general case, it is worthwhile to note that two cases
obviously escape from this type of problem:

• Spherical geometry: the signature of the quadratic form Qv over the vector part
of the Clifford algebra is purely negative, i.e., it is (0, qv)

• Gaussian sub-generators and generators (˛ D 2): the signature (pv, qv) of Qv is
no longer relevant.

Figure 7 displays 3D snapshots of simulation of a multifractal quaternion velocity
field, i.e., the 3D arrows represent the three first components of a field whose space-
time domain is 3D C 1 and its codomain is H D Cl0,2. This simulation was obtained
by generalizing the 4-step procedure for scalar-valued fields (Sect. 5) to (spherical)
vector-valued fields.

6.2 Clifford–Laplace Transform and Finite Statistics

To obtain a more systematic assessment on the finiteness of the statistics of the
flux, we need to generalize the property for scalar multifractals that the moments
of the flux are the Laplace characteristic function of the generators [Eq. (30)]. We
therefore need to define a Laplace transform over a Clifford algebra, and at first a
scalar product over it. As for any quadratic space, this scalar product is conveniently
defined with the help of a polarization identity:

hX;Yi D
1

2
.Qv .X C Y/ � Qv.X/ � Qv.Y// (33)

and Eq. (30) generalizes into:

8q 2 Cp;q.R/ W E


"

q
�

�
D E Œexp .< q; �� >/� � �K.q/ (34)

where the moment order q is no longer a scalar, but a vector of the Clifford algebra.
Let us mention that behind the similarity between Eqs. (30) and (34), there are

important differences due to the involved definitions of Lévy stable vectors, which
are furthermore not univocal. These definitions are discussed with some details
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Fig. 7 (a–h) Snapshots (time steps t2i, i D 1:8) of a multifractal simulation of a 3D C 1
intermittent vector field obtained by a quaternion cascade, i.e., with values on Cl0, 2, see text for
details on the numerical simulation (adapted from Schertzer and Tchiguirinskaia 2015)

by Schertzer and Tchiguirinskaia (2015), but it was shown that, in spite of these
important technical difficulties, the definition of fully asymmetrical stable Levy
variables can be extended to stable Levy vectors to obtain finite statistics (i.e.,
K(q) < 1) over a hyperbolic subspace of a Clifford algebra Cp , q(R). This can be
achieved for all “positive” vectors q’s, i.e., all their coordinates qi with respect to
the algebra orthogonal basis feig are positive (see Fig. 8 for illustration). This is
basically due to the fact that, for each i and any positive qi, the vector q D qiei

(no summation over i) is the normal vector of the (hyper-) plane <q ,�� > D 0 that
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Fig. 7 (continued)

splits into two halves the considered hyperbolic subspace. The fluctuations of the
generator should be moderate to avoid divergences on the half subspace defined
by <q ,�� > > 0, which contains the vector q. On the contrary, there is no such
restriction for the other half subspace defined by <q ,�� > � 0.

We can therefore complete the previous list of multifractal vectors with finite
statistics (Sect. 6.1) by:

• Hyperbolic geometry: the stable Levy generators should be extremely asym-
metrical on hyperbolic eigensubspaces of the quadratic form Qv (over which
the signature of Qv is positive), whereas this is not required for spherical
eigensubspaces.
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e2

e3

e1

Fig. 8 Schematic of the subspace corresponding to non-negative coordinates (e.g., qi � 0) with
respect to the orthogonal basis feig, where statistics are necessarily finite (jK(q)j < 1) and the
fluctuations of the generators are moderate (i.e., the probability tail of the extremes falling faster
than a power-law)

7 Conclusions and Prospects

The goal of this chapter was to give in an inductive manner new insights on current
developments to define stochastic, multifractal vector fields having both universal
statistical and robust algebraic properties. It began with simple considerations on
orthogonal rotations and mirror symmetries leading to the concept of Clifford alge-
bra. Based on the examples of quaternions and pseudo-quaternions, it emphasized
the roles of spherical and hyperbolic geometries, their respective geodesics and
the rotations they generate with the help of the exponential transform from the
Clifford algebra of group generators to the group itself. This was first illustrated with
the help of the generalization of the Mandelbrot set over a Clifford algebra. This
demonstrates that a special attention should be paid to hyperbolic rotations. This is
particularly useful to define multifractal vector fields having extreme fluctuations,
but nevertheless finite statistics. This can be understood by the fact that fields can
be seen as flows of particles.

Overall this enables to define vector multifractals with given universality and
robustness, based on a stochastic algebra of generators that can be tentatively called
a Lévy–Clifford algebra. Due to its generality and its relative simplicity, this algebra
should help to resolve many problems encountered on complex systems having
nontrivial symmetries and multiscale behavior, and to deeply change our perception
of nonlinear processes in geophysics.
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Complex Networks and Hydrologic Applications

Bellie Sivakumar, Carlos E. Puente, and Mahesh L. Maskey

Abstract Connections are ubiquitous in hydrology. However, understanding the
nature and extent of connections in hydrologic systems has and continues to be
a tremendous challenge. In recent years, applications of the concepts of complex
networks to study connections in hydrologic systems have started to emerge. This
chapter aims to offer an overview of the science of complex networks and its
applications in hydrology. First, the basic concept of a network, the history of
development of network theory, and some important measures of network properties
are presented. Next, applications of complex networks in hydrology are reviewed,
including studies on spatial connections, temporal connections, and catchment
classification. Finally, some remarks on future directions are made.

Keywords Hydrologic systems • Connections • Complex networks • Clustering
coefficient • Degree distribution • Rainfall • Streamflow • River networks

1 Introduction

Connections are everywhere in hydrologic systems, and geophysical systems at
large. Arguably, the hydrologic cycle is the best example of connections, as
every component of this cycle is connected to every other component, directly or
indirectly and strongly or weakly. Unraveling the nature and extent of connections
in hydrologic systems, as well as their interactions with other geophysical systems,
has and continues to be a tremendous challenge.

The last century witnessed the development and application of numerous sci-
entific concepts and methods for studying the nature and extent of connections in
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hydrologic systems; see, for example, Gupta et al. (1986), Salas et al. (1995), Mishra
and Coulibaly (2009), and Sivakumar (2017) for some accounts. Such studies have
certainly resulted in notable progress in identifying and modeling connections in
hydrologic systems. Nevertheless, accurate representations of such connections
continue to be elusive. While many factors contribute to this situation (e.g., inherent
complexity of hydrologic systems, natural and anthropogenic influences, data and
computational constraints), a key reason is the absence of a strong scientific theory
that is suitable for representing all types of connections encountered in hydrology.
This has also led to calls for a general framework in hydrology (e.g., Dooge 1986;
Paola et al. 2006; Sivakumar 2008; Young and Ratto 2009), especially in the face of
new challenges, including climate change impacts, water conflicts, and interactions
between hydrology and society (e.g., Sivakumar 2011a, b; Montanari et al. 2013).

In the context of connections, network theory or graph theory can offer useful
ideas. Although the concept of networks originated in the mid-eighteenth century
(Euler 1741) and advanced over the subsequent centuries (Listing 1848; Cayley
1857; Erdös and Rényi 1959, 1960), developments since the late 1990s (Watts and
Strogatz 1998; Barabási and Albert 1999; Girvan and Newman 2002) have offered a
whole new dimension for studying connections in large, complex, and dynamically
evolving systems. These recent developments are put under the broad umbrella of
“complex networks.”

Applications of the concepts of complex networks in hydrology are just starting
to emerge. Thus far, such applications include studies on rainfall monitoring net-
works (e.g., Malik et al. 2012; Boers et al. 2013; Scarsoglio et al. 2013; Sivakumar
and Woldemeskel 2015; Jha et al. 2015), streamflow monitoring networks (e.g.,
Sivakumar and Woldemeskel 2014; Halverson and Fleming 2015; Braga et al. 2016;
Serinaldi and Kilsby 2016; Fang et al. 2017), and river networks (Rinaldo et al.
2006; Zaliapin et al. 2010; Czuba and Foufoula-Georgiou 2014, 2015), among
others. Such studies have addressed spatial connections, temporal connections,
and catchment classification, among others. In light of recent calls for a general
framework in hydrology, the suitability of network theory for such has also been
highlighted (Sivakumar 2015).

This chapter aims to offer an overview of the science of complex networks and its
applications in hydrology. Section 2 reviews the basic concept of a network and the
history of development of network theory. Section 3 describes some of the popular
measures for identifying the properties of complex networks. Section 4 reviews
the applications of complex networks in hydrology. Section 5 offers some remarks
towards the future.

2 Network: Concept and Development

A network or a graph is a set of points connected together by a set of lines, as shown
in Fig. 1. The points are referred to as vertices or nodes and the lines are referred
to as edges or links. Therefore, mathematically, a network can be represented as
G D fV, Eg, where V is a set of N nodes (V1,V2, : : : ,VN) and E is a set of n links. The
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Fig. 1 Concept of a network

network shown in Fig. 1, consisting of a set of identical nodes connected by identical
links, is perhaps the simplest form of network. This kind of network, however, is
rarely seen in nature and society, since natural and social networks are often far
more complex.

The origin of the concept of networks goes back to the works of Leonhard
Euler, during the first half of the eighteenth century, on one of the most famous
problems in mathematics, the Seven Bridges of Königsberg (Euler 1741), which
laid the foundations of the now-popular graph theory. Since then, graph theory has
seen many key theoretical developments, including topology (Listing 1848), trees
(Cayley 1857), and random graph theory (Erdös and Rényi 1959), until the new
science of complex networks emerged in the 1990s (Watts and Strogatz 1998).

While the concepts of topology, trees, and random graph theory have and
continue to be applied for a wide range of networks, including those encountered
in hydrology (especially river/channel networks), they have some important limi-
tations. For example, the random graph theory, the most recent among the above
three, assumes that all networks are wired randomly together. Such an assumption,
however, is questionable for real networks, since order and determinism are inherent
in real systems and networks. Advances in some other areas of complex systems
science, which had revealed nonlinear deterministic dynamics, self-organization,
and scale-invariance as inherent properties of complex systems (e.g., Lorenz 1963;
Mandelbrot 1982; Bak 1996), also led to reconsideration of the assumption of
random connections in complex networks. In addition, such concepts are also often
not suitable to represent highly irregular, complex, large, and dynamically evolving
networks, which are commonplace in reality.

All these led to a renewed and fresh perspective of the study of complex
networks in the late 1990s (Watts and Strogatz 1998; Barabási and Albert 1999),
under the new science of networks. Such studies also led to new discoveries about
complex networks, such as small-world networks (Watts and Strogatz 1998), scale-
free networks (Barabási and Albert 1999), network motifs (Milo et al. 2002),
and community structure (Girvan and Newman 2002). Since then, the science of
complex networks has found applications in many different fields. Further details
about the science of complex networks and its applications can be found in, for
example, Watts (1999), Barabási (2002), and Estrada (2012), among others.
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3 Measures of Complex Networks

Within the context of complex networks, a large number of measures have been
developed to study the network properties. Such measures include centrality,
clustering, adjacency, distance, community structure, bipartivity, fragments, com-
municability, and global invariants, among others. There are also different sub-
measures and methods. A brief description of some of these measures, especially
those that have found applications in hydrology, is presented below.

3.1 Degree Centrality

Centrality is one of the most basic measures of a network. While the concept of
centrality goes back to the studies of Bavelas (1948) and Leavitt (1951), Jeong et al.
(2001) and Newman (2001a) were among the first to use it in the context of complex
networks. Several centrality-based measures exist in the literature, including degree
centrality, Katz centrality, eigenvector centrality, subgraph centrality, pagerank
centrality, vibrational centrality, closeness centrality, betweenness centrality, and
information centrality. However, the degree centrality has been one of the most
widely used measures.

Degree centrality identifies whether a given node, say i in a network, is more
central or more influential than another node in the network. The degree centrality
of node i in a network of N nodes is defined as the number of first neighbors (or
simply neighbors) of node i divided by the total number of possible neighbors (N–1)
in the network. Let us consider a selected node i in a network of N nodes, having
ki links which connect it to ki other nodes. In the network shown in Fig. 2 (left),
for example, there are nine nodes (i.e., N D 9), with the node i having four links.
Therefore, the four nodes corresponding to the four links are the neighbors of node

Fig. 2 Network connections and clustering coefficient calculation
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i, while the total number of possible neighbors for node i is eight (i.e., N–1). The
procedure is repeated for each and every node of the network.

3.2 Clustering Coefficient

One of the most fundamental properties of networks is their tendency to cluster.
The concept of clustering has its origin in sociology (Wasserman and Faust 1994),
but Watts and Strogatz (1998) were the first to use the concept in the context
of complex networks. The tendency of a network to cluster is quantified by the
clustering coefficient. There exist several definitions of clustering coefficient (e.g.,
Watts and Strogatz 1998; Barrat and Weigt 2000; Newman 2001b). However, the
method proposed by Watts and Strogatz (1998), which measures the local density,
is very widely used.

Let us consider first a selected node i in the network, having ki links which
connect it to ki other nodes (Fig. 2, left). If the neighbors of the original node i
were part of a cluster, there would be ki(ki–1)/2 links between them. Therefore, with
four neighbors of the node i part of the cluster, there are 4(4–1)/2 D 6 links in the
cluster of node i (Fig. 2, right). The clustering coefficient of node i is then given by
the ratio between the number Ei of links that actually exist between these ki nodes
(solid lines) and the total number ki(ki–1)/2 (all lines),

Ci D
2Ei

ki .ki � 1/
(1)

The procedure is repeated for each and every node. The average of the clustering
coefficients Ci’s of all the individual nodes is the clustering coefficient of the whole
network C.

The clustering coefficient of the individual nodes and of the entire network can
be used to obtain important information about the type of network. For instance, a
high clustering coefficient (close to 1.0) indicates a regular network, while a very
low clustering coefficient (close to zero), with C D p (where p is the probability
of a pair of nodes being connected), indicates a random network. The clustering
coefficient of a small-world network and a scale-free network is not only generally
smaller than that of the regular network but also considerably larger than that of a
comparable random network (i.e., having the same number of nodes and links).

3.3 Degree Distribution

In a network, several structural properties are related to adjacency relationships
between nodes. There are many ways to measure the adjacency relations in a
network. Some of these are node adjacency, degree distribution, degree–degree cor-
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relation, and link adjacency. Among these, the degree distribution is a particularly
useful measure (e.g., Barabási and Albert 1999), especially for the identification of
the type of network. A brief description is below.

Different nodes in a network may have different number of links. The number of
links (k) of a node is called as node degree. The degree is an important characteristic
of a node, as it allows one to derive many measurements for the network. The spread
in the node degrees is characterized by a distribution function p(k), which expresses
the fraction of nodes in a network with degree k. This distribution, called degree
distribution, is often a reliable indicator of the type of network. In a random graph,
since the links are placed randomly, a majority of nodes have approximately the
same degree, and close to the average degree hki of the network. Therefore, the
degree distribution of a completely random graph is a Poisson distribution with
a peak at P(hki). Similarly, depending upon the properties of networks, degree
distribution can be Gaussian, exponential, or power-law (scale-free) or other.

Among these distributions, the power-law or scale-free distribution has attracted
the most attention, as it has been found in many natural and social networks (e.g.,
Barabási and Albert 1999; Kim et al. 2004; Keller 2005; Clauset et al. 2010). The
fractal or scale-free nature of natural and social systems and their ability to also
self-organize themselves (e.g., Mandelbrot 1982; Bak 1996; Barnsley 2012) provide
further credence to scale-free networks.

3.4 Average Shortest Path Length

A number of distance-based metrics have been developed for studying the topology
of networks. These include the average shortest path length, resistance length, and
generalized network length, among others. The average path length is considered as
one of the most robust measures of network topology. The shortest path length of a
node pair i and j is the number of links on the shortest path connecting the node pair.
If the node pair is unconnected, then the value of the shortest path length is set to
infinite. The average path length (L) of a network with N nodes is the average over
all nodes of the shortest path between every combination of node pairs, and is given
by:

L D
1

N .N � 1/

X
dij (2)

where dij is the distance between pair i and j.
This definition for average shortest path length, however, diverges if there are

unconnected nodes in the network, since the distance between such nodes is set to
infinite (Costa et al. 2007). Consideration of only the connected node pairs avoids
this divergence problem, but such also introduces a distortion for networks with
many unconnected node pairs. The consequence of this is a small value of the
average path length, which is expected only for networks with a high number of
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connections. A closely related measurement is the global efficiency (E) (Latora and
Marchiori 2001):

E D
1

N .N � 1/

X 1

dij
(3)

where the sum takes all pairs of nodes into account.
The average shortest path length provides important information about the

type of network. For example, regular networks, with their high clustering (i.e.,
stable), have long average path lengths (i.e., inefficient). On the other hand, random
networks have short average path lengths (i.e., efficient) but have low clustering (i.e.,
unstable). Small-world networks have short path lengths and have high clustering
and, therefore, are both stable and efficient.

3.5 Community Structure

In many complex networks, nodes cluster together into distinct groups. The prop-
erties of these groups are more or less independent of the properties of individual
nodes and of the network as a whole. These groups are known as communities, and
this kind of network structure is known as community structure. Identification of
communities in a network is particularly useful, since nodes belonging to the same
community are more likely to share properties and dynamics.

Many methods have been developed for community detection in networks. These
methods include edge betweenness centrality (e.g., Newman and Girvan 2004),
greedy optimization (Clauset et al. 2004), leading eigenvector (Newman 2006),
walktrap (Pons and Latapy 2006), label propagation (Raghavan et al. 2007), and
multilevel modularity optimization (Blondel et al. 2008), among others. Some of
these methods rely on the modularity, Q, which quantifies the quality or strength of
a community, defined as:

Q D
X

i

�
eii � a2i

�
(5)

where ai is the fraction of links in the network which connect to community i and
eii is the fraction of links that exist within the community. A high modularity com-
munity will have dense inter-community connections while the intra-community
connections are sparse.
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4 Hydrologic Applications

Applications of network-based concepts in hydrology started many decades ago,
with studies dealing with the earlier concepts of topology, trees, and random graph
theory, especially for river/channel networks; see Horton (1945), Strahler (1957),
Shreve (1966, 1967, 1969), Scheidegger (1967), Smart (1970), Coffman and Turner
(1971), Kirkby (1976), Smart and Werner (1976), Tokunaga (1978), Moon (1980),
and Werner (1982) for some earlier studies. However, applications of the new
concepts of complex networks have started only recently, and have thus far been
limited to rainfall monitoring networks, streamflow monitoring networks, and river
networks (e.g., Rinaldo et al. 2006; Zaliapin et al. 2010; Scarsoglio et al. 2013;
Sivakumar and Woldemeskel 2014, 2015). Sivakumar (2015) has discussed, with
some examples, the general relevance of the concepts of complex networks in
hydrology, and also argued for the suitability of complex networks to serve as a
generic theory for hydrology.

In what follows, a brief overview of the applications of network theory in
hydrology is presented. Details on the applications of complex networks in closely
related fields are available elsewhere and, therefore, are not reported here. For
instance, there have been a number of applications to climate networks (e.g., Tsonis
and Roebber 2004; Tsonis et al. 2006, 2008, 2011; Tsonis and Swanson 2008;
Yamasaki et al. 2008; Donges et al. 2009; Donner et al. 2010, 2011; Paluš et al.
2011; Steinhaeuser et al. 2011, 2012; Donner and Donges 2012; Steinhaeuser and
Tsonis 2014) and to virtual water networks (e.g., Konar et al. 2011, 2013; Suweis
et al. 2011; Carr et al. 2012; Dalin et al. 2012, 2014; D’Odorico et al. 2012; Konar
and Caylor 2013; Tamea et al. 2013, 2014; O’Bannon et al. 2014). A much broader
overview of the applications of complex networks in geosciences is available in
Phillips et al. (2015).

4.1 Connections in Rainfall Data

Malik et al. (2012) examined the spatial and temporal characteristics of extreme
(summer) monsoonal rainfall over South Asia. They analyzed the daily gridded
rainfall data (1951–2007) from the APHRODITE (Asian Rainfall Highly Resolved
Observational Data Integration Towards the Evaluation of Water Resources) project.
They employed several complex networks methods, including degree centrality,
degree distribution, clustering coefficient, and closeness centrality. Subsequently,
Boers et al. (2013) applied network concepts to investigate the spatial characteristics
of extreme rainfall synchronicity of the South American Monsoon System (SAMS).
They analyzed gridded daily rainfall (1998–2012) obtained from the Tropical
Rainfall Measuring Mission (TRMM) 3B42 V7 satellite product. Scarsoglio et al.
(2013) applied the complex networks-based methods to study the spatial dynamics
of annual precipitation around the globe. They analyzed a 70-year long (January
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1941–December 2010) gridded precipitation data from the Global Precipitation
Climatology Center (GPCC) Database using several methods, including degree
centrality, clustering coefficient, degree distribution, and shortest path length.

Sivakumar and Woldemeskel (2015) examined the spatial connections in rainfall
in Australia using concepts of complex networks. They employed the clustering
coefficient method and the degree distribution method to monthly rainfall observed
over a period of 68 years (1940–2007) at 230 raingage stations across Australia.
Their study was the first study that employed complex networks concepts to ground-
measured rainfall data, as opposed to the above studies that used gridded rainfall
data. They also considered the influence of rainfall correlation threshold (T) on
network properties, by carrying out the analysis for seven different thresholds: 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, and 0.8.

Figure 3a, for instance, shows the clustering coefficient results for T D 0.5.
In these results, a clustering coefficient of 0.0 indicates that there are no actual
connections (i.e., no link among the neighbors has correlation exceeding T), while
NA indicates that there are no neighbors at all. The results indicate that even
nearest stations have very different connectivity properties as part of a network
and even distant stations have very similar connectivity properties. A comparison
of the results obtained for different threshold values indicates significant changes
in connectivity properties with respect to thresholds (figures not shown here; see
Sivakumar and Woldemeskel (2015)). Figure 3b shows the actual connections for
four selected stations (red circles) from four different regions in Australia, for
T D 0.5. In these plots, for the station of interest (red circle), a blue circle indicates
a station that has a correlation value exceeding the threshold, and a black circle
indicates a station that has a correlation value smaller than the threshold. The lines

Fig. 3 Network analysis of
monthly rainfall data from
230 stations in Australia: (a)
clustering coefficient values;
and (b) actual network
connections for four selected
rainfall stations. The results
are for rainfall correlation
threshold T D 0.5 (Adapted
from Sivakumar and
Woldemeskel 2015)
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Fig. 3 (continued)

are the actual links among all the links available for the cluster of neighbors (blue
circles only). The plots make it abundantly clear that geographic proximity alone
does not always result in greater connectivity and that the actual connections can go
for very large distances. The connections also reflect the distance and direction of
the influencing factors, such as wind. These results are useful in identifying actual
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neighbors for the purpose of interpolation and other problems associated with spatial
rainfall variability, and also have important implications for identifying optimal
raingage density and locations. The results from the degree distribution method (see
Sivakumar and Woldemeskel (2015)) suggest that the rainfall monitoring network
is not a classical random network but more likely an exponentially truncated power-
law network.

Jha et al. (2015) attempted to offer hydrologic explanation for the outcomes
of network-based methods. They applied the clustering coefficient method to two
different raingage networks in Australia: (1) monthly rainfall data over a period of
67 years (1937–2003) from 57 stations in Western Australia; and (2) daily rainfall
over a period of 114 years (1890–2003) from 47 stations in the Sydney region.
They interpreted the results in terms of topographic properties of raingage stations
(latitude, longitude, and elevation) and statistical characteristics of rainfall data
(mean, standard deviation, and coefficient of variation).

4.2 Connections in Streamflow Data

Sivakumar and Woldemeskel (2014) employed the concepts of complex networks
to study the spatial connections in a streamflow monitoring network in the United
States. They applied the degree centrality method and the clustering coefficient
method to examine spatial connections in monthly streamflow observed over a
period of 52 years (1951–2002) at 639 streamflow gaging stations. The study also
investigated the influence of streamflow correlation threshold (T) on these network
properties, by considering eight different thresholds: 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8,
and 0.85.

Figure 4a, for instance, shows the degree centrality results for T D 0.75. The
results indicate that all stations have connections with less than 10% of the stations
in the network, and more than one-fourth of the stations have connections to less
than just 1% of the other stations. This suggests that only a small proportion
of stations has considerable influence in the network, while a large proportion
of stations has only very little or almost no influence. The threshold value has
significant influence on degree centrality (results not shown here). Figure 4b shows
the clustering coefficient results for T D 0.75. The results suggest that even
nearest stations have significantly different connections and even distant stations
have significantly similar connections. The results for the different thresholds
(not shown here) suggest that the threshold value has significant influence on
clustering coefficient. Figure 4c shows the actual connections for four selected
stations (red circles), for T D 0.75. The plots clearly indicate that geographic
proximity alone does not always result in greater connectivity and that the actual
connections can go for very large distances. They also offer some other interesting
observations. For instance, despite being in the same region, the two stations in
the northwest exhibit significantly different connectivity characteristics, with one
showing actual connections mainly within its geographic neighborhood, while the
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Fig. 4 Network analysis of monthly streamflow data from 639 stations in the United States: (a)
degree centrality values; (b) clustering coefficient values; and (c) actual network connections for
four selected streamflow stations. The results are for streamflow correlation threshold T D 0.75
(Adapted from Sivakumar and Woldemeskel 2014)
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Fig. 4 (continued)

actual connections for the other station exist even, and indeed mainly only, well
beyond its geographic neighborhood. These results have important implications
for streamflow modeling, including interpolation and extrapolation of data and for
predictions in ungaged basins.

Halverson and Fleming (2015) applied the concepts of complex networks to a
network of 127 streamflow monitoring stations along the west coast of Canada.
In addition to the investigation of whether regional streamflow hydrology might
be quantitatively represented as a formal network, their study aimed at assessing
whether the results from the network-based methods might offer important informa-
tion as to the optimal design of streamflow monitoring systems. They employed a
host of network-based methods, including clustering coefficient, degree distribution,
average shortest path length, and betweenness.

Braga et al. (2016) employed the concepts of complex networks to study
temporal dynamics of river flows. Their study involved mapping of the river
flow time series into networks using the horizontal visibility graph (HVG). They
analyzed daily river flow series over the period 1931–2012 from 141 different
stations covering 53 Brazilian rivers. They then employed the degree distribution
and clustering coefficient methods as well as their evolutive features to characterize
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the nature of the networks. They reported that the river discharges in several stations
had evolved to become more or less correlated (displaying more or less complex
internal network structures) over the years and attributed that behavior to changes in
the climate system and other man-made phenomena. Serinaldi and Kilsby (2016)
used the directed horizontal visibility graph (DHVG) to study the dynamics of
streamflow fluctuations. The DHVG allows a clear visualization and quantification
of persistence and irreversibility in flow series. They analyzed daily streamflow time
series from 699 streamflow stations in the continental United States. They explored
irreversibility by mapping the time series into ingoing, outgoing, and undirected
graphs and comparing the corresponding degree distributions. They showed that the
degree distributions do not decay exponentially, but tend to follow a subexponential
behavior. They reported that the complexity of streamflow dynamics goes beyond
a linear representation involving, for instance, the combination of linear processes
with short and long range dependence.

4.3 River Networks and Processes

River networks were the first to be studied in hydrology using the concepts of
complex networks. Rinaldo et al. (2006) introduced the concepts through a review
of theoretical and observational developments on the form and function of natural
networks in different contexts in different fields and their relevance in hydrology.
They discussed the properties and dynamic origin of the scale-invariant structure
of river patterns and its relation to optimal network selection. They argued that
purely random or deterministic constructs are unsuitable for a proper description
of river networks and other natural network forms. Applying degree distribution,
clustering coefficient, and average path length methods, they reported the emergence
of nontrivial phase transitions with increasing links-to-nodes ratios with different
features like scale-free or small-world networks found for particular cases (Colizza
et al. 2004).

Zaliapin et al. (2010) applied the concepts of network theory to study environ-
mental transport problems in river networks, in particular the dynamic topology of
directed trees. They described the static geometric structure of a drainage network
by a tree (i.e., static tree) and introduced an associated dynamic tree that describes
the transport along the static tree. Through application of connectivity concepts
(e.g., hierarchical aggregation, clustering), they showed that dynamic trees are also
self-similar just as their corresponding static trees, but that their properties differ
systematically from those of the corresponding static trees. They also reported an
unexpected phase transition in the dynamics of river networks (one from California
and two from Italy) and demonstrated universal features of this transition.

Czuba and Foufoula-Georgiou (2014) proposed a simplified network-based pre-
dictive framework of sedimentological response in a basin. This framework incor-
porated network topology, channel characteristics, and transport-process dynamics
to perform a nonlinear process-based scaling of the river-network width function
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to a time-response function. They developed the process-scaling formulation for
transport of mud, sand, and gravel, using simplifying assumptions including
neglecting long-term storage. They applied the methodology to the Minnesota
River basin in the USA. They reported that the network topology and sediment-
transport dynamics combined to produce a double-peaked response function for
sand, suggesting that there exists a resonant frequency of sediment supply that could
lead to an unexpected downstream amplification of sedimentological response.
Czuba and Foufoula-Georgiou (2015) extended the above framework to study the
internal dynamics of the basin for sediment transport. In particular, they examined
how sediment is organized and where sediment accumulates due to the combined
effects of river-network structure (topology and associated geometry) and transport
dynamics (accounting for slopes, channel morphology, bed shear stress, grain
size, etc.). They developed a dynamic connectivity framework and applied it to
understand sand transport in the Greater Blue Earth River Network in the Minnesota
River basin.

Other complex networks-based studies on river/delta networks include those by
Rinaldo et al. (2014), Tejedor et al. (2015a, b, 2016), Masselink et al. (2017), and
Passalacqua (2017), among others.

4.4 Catchment Classification Studies

Halverson and Fleming (2015) used the concept of community structure for classifi-
cation of catchments along the west coast of Canada. They applied eight community
structure methods (walk trap, fast greedy, leading eigenvector, edge betweenness,
multilevel, label propagation, info map, and optimal) to daily streamflow data
from a network of 127 monitoring stations. They also used the normalized mutual
information (NMI) index to identify the consistency of these methods in classifying
catchments. Their study yielded ten communities, each of which was defined by
the combination of its median seasonal flow regime and geographic proximity to
other communities. They found three of these communities holding 90% of the 127
stations considered. They also presented the representative unit hydrographs for the
ten groups, and discussed the classification of stations in terms of elevation and
drainage area. They proposed that an idealized sampling network should sample
high-betweenness stations as well as small-membership communities which are, by
definition, rare or undersampled relative to other communities, while at the same
time retaining some degree of redundancy to maintain network robustness.

Fang et al. (2017) introduced the concept of complex networks and community
structure to classify catchments in large-scale river basins. Considering the Missis-
sippi River basin as a representative basin, they applied six community detection
methods (edge betweenness, greedy algorithm, multilevel modularity optimization,
leading eigenvector, label propagation, and walktrap) to daily streamflow data from
a network of 1663 stations for catchment classification. They also examined the
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Fig. 5 Community structure concept for classification of catchments in the Mississippi River
Basin: Results from multilevel optimization method for streamflow correlation threshold T D 0.75.
A colored circle represents any particular community with at least ten stations, while an open circle
represents any community with less than ten stations (From Fang et al. 2017, with permission)

influence of correlation threshold on classification. They also assessed the consis-
tency among the methods in classifying catchments using the NMI index. They also
attempted to explain the community formation in terms of river network/branching
and some important catchment/flow properties (drainage area, elevation, mean flow,
and flow coefficient of variation).

Figure 5 shows, for instance, the communities identified from the multilevel
optimization method when T D 0.75, for all the 1663 stations. For better visualiza-
tion, communities with at least ten stations are shown in colors, while communities
with less than ten stations are presented as open circles. Among the important
observations are: (1) there is a total of 245 communities among these 1663 stations;
(2) 25 communities have at least ten stations (shown in colors and numbered in
Fig. 5)—five of these have at least 100 stations and 11 have at least 50 stations;
and (3) 172 communities have only one station. As seen, there is a great level of
correspondence between the organization of the river network (both in terms of
main stems of rivers and in terms of their further branchings) and the catchment
communities across almost the entire region of the MRB studied. Similar results are
also observed in the case of the other five methods.

The threshold value also has some notable influence in the formation of
communities, i.e., size and number. The NMI index values for the six methods for
different thresholds indicate a high degree of consistency in the performance among
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the methods, except for the leading eigenvector method at lower thresholds. Overall,
the multilevel optimization method provides the greatest similarity in classification
with the rest of the methods, while the leading eigenvector provides the greatest
difference against the others. The results also reveal that only a few communities
combine to represent a majority of the catchments, with the ten largest communities
(roughly 4% of the total number of communities) representing almost two-thirds of
the catchments.

5 Final Remarks

The new science of complex networks, a modern development in network theory,
offers a new dimension for studying the structure, connections, and dynamics of
large, complex, and dynamically evolving systems. The relevance and potential
of the concepts of complex networks in hydrologic systems (see Sivakumar 2015)
have resulted in some key early applications, including for studying connections in
rainfall monitoring networks, streamflow monitoring networks, and river networks.
With our improving knowledge, applications of the concepts of complex networks
for catchment classification, and some other issues that are currently dominating
hydrologic research, have also started to emerge. Despite their preliminary nature,
these studies and their outcomes are certainly encouraging, both in advancing the
science of complex systems and in studying hydrologic systems.

Looking at the relevance and potential of the concepts of complex networks
in hydrology, there is no question that their applications will go a long way,
both in breadth and depth. For instance, such concepts are highly useful for
prediction of hydrologic systems, interpolation and extrapolation of hydrologic data,
identification of optimal (density and locations of) hydrologic monitoring networks,
downscaling outputs from global climate models for catchment-scale hydrologic
analysis, study of water-energy-food-climate nexus, describing connections in
human–water interactions, and formulation of an integrated framework for water
planning and management. Therefore, as has been rightly argued (Sivakumar 2015),
the science of complex networks has the potential to serve as a generic theory for
hydrology. Indeed, it can go even further, to more accurately explain the interactions
among all sub-systems of our Earth system. Such will be an immense contribution
to the field of geosciences.
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Convergent Cross Mapping: Theory
and an Example

Anastasios A. Tsonis, Ethan R. Deyle, Hao Ye, and George Sugihara

Abstract In this review paper we present the basic principles behind convergent
cross mapping, a new causality detection method, as well as an example to
demonstrate it.

Keywords Causality • Nonlinearity • Dynamical systems

1 Convergent Cross Mapping

Convergent cross mapping (CCM) is a powerful new methodological approach
that can help distinguish causality from spurious correlation in time series from
dynamical systems (Sugihara et al. 2012). The technique is based on the idea that
causation can be established if states of the causal variable can be recovered from
time series of the affected variable. For example, if past sea surface temperatures can
be estimated from time series of sardine abundance, temperature had a measurable
and recoverable influence on the population dynamics of sardines (Sugihara et al.
2012). The idea is based on empirical dynamics (EDM) (Sugihara et al. 2012;
Sugihara and May 1990; Sugihara 1994) and a theorem proven by Takens (1981) for
manifolds and generalized by Sauer et al. (1991) for general non-euclidean attractors
and extended to accommodate stochasticity by Stark et al. (2003). The result is
generic and broadly states that the essential information of a multidimensional
dynamical system is retained in the times series of any single variable of that system.

Thus, CCM uses Takens’ idea to detect if two variables belong to the same
dynamical system. A brief video introduction is available at http://tinyurl.com/
EDM-intro.
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Consider two time series of length L, fXg D fX(1), X(2), : : : , X(L)g and fYg

D fY(1), Y(2), : : : , Y(L)g. We begin by forming the lagged-coordinate vectors
x(t) D <X(t), X(t�� ), X(t�2� ), : : : , X(t�(E�1)� )> for t D 1C(E�1) £ to t D L. This
set of vectors is the “reconstructed manifold” or “shadow manifold” MX. Note that
the term “shadow manifold” includes attractors defined on fractal sets. To generate
a cross-mapped estimate of Y(t), denoted by Ŷ(t)jMX, we begin by locating the
contemporaneous lagged-coordinate vector on MX, x(t), and find its E C 1 nearest
neighbors. Note that E C 1 is the minimum number of points needed for a bounding
simplex in an E-dimensional space (see note on simplex projection below). Next,
denote the time indices (from closest to farthest) of the E C 1 nearest neighbors of
x(t) by t1, : : : tE C 1. These time indices corresponding to nearest neighbors to x(t)
on MX are used to identify points (neighbors) in Y (a putative local neighborhood
on MY) to estimate Y(t) from a locally weighted mean of the E C 1 Y(ti) values.

_

Y.t/
ˇ̌
ˇMX D

X
wiY .ti/ i D 1 : : :E C 1

where wi is a weighting based on the distance between x(t) and its ith nearest
neighbor on MX and Y(ti) are the contemporaneous values of Y. The weights are
determined by

wi D ui=
X

uj j D 1 : : :E C 1

where

ui D exp
n
�d
h
x.t/; x .ti/

i
=d
h
x.t/; x .t1/

o

and d[x(s), x(t)] is the Euclidean distance between two vectors. Cross mapping from
Y to X is defined analogously.

Effectively, if variable X is influencing Y, then causality is established if states
of the causal variable X can be recovered from the time series history of Y. Simply
put, CCM measures the extent to which the historical record of the affected variable
Y (or its proxies) reliably estimates states of a causal variable X (or its proxies),
which is quantified by calculating the correlation coefficient 	 between predicted
and observed X. If the skill of cross mapping increases with the length of the time
series, a direct or indirect causal effect of X on Y can be inferred. The relative level
to which predictive skill converges (“CCM skill” hereafter) can be viewed as an
estimator of the strength of the causal link. Convergence occurs with additional
data as the underlying attractor manifold becomes denser, and nearest neighbors get
closer. Figure 1 shows schematically the above procedure.

Significance of CCM is most easily evaluated by looking at the CCM skill
with the largest possible library. Although CCM skill is often quantified using
Pearson’s correlation coefficient, there are a number of problems that can arise
from interpreting the significance of CCM predictions using the standard (linearly
derived) critical values of r. Notably, the traditional confidence intervals make
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Fig. 1 Convergent cross mapping (CCM) tests for correspondence between shadow manifolds.
This example based on the canonical Lorenz system (a coupled system in X, Y, and Z; Eq. S7
without V) shows the attractor manifold for the original system (M) and two shadow manifolds,
MX and MY , constructed using lagged-coordinate embeddings of X and Y, respectively (lag D �).
Because X and Y are dynamically coupled, points that are nearby on MX (e.g., within the red
ellipse) will correspond temporally to points that are nearby on MY (e.g., within the green circle).
That is, the points inside the red ellipse and green circle will have corresponding time indices
(values for t). This enables us to estimate states across manifolds using Y to estimate the state of
X and vice versa using nearest neighbors. With longer time series, the shadow manifolds become
denser and the neighborhoods (ellipses of nearest neighbors) shrink, allowing more precise cross
map estimates

assumptions about independence of observations and normally distributed values
that are unlikely to be met when studying time series with nonlinear dynamics. The
more rigorous approach to determining significance of CCM is to use surrogate
time series to simulate null distributions. The simplest approach is to create null
time series by randomly permuting the time indices of predictee time series X. The
distribution generated encapsulates the likelihood that a random variable (with the
same distribution of values as X) would produce a CCM skill of a given amount.

Different surrogate approaches can be useful in testing null hypotheses of specific
relevance to the application at hand. In the case below, phase randomized surrogates
(Ebisuzaki 1997) are used due to the relatively strong spectral character of the time
series. If there is strong linear correlation between variables, then the surrogate
time series can be randomized together so that the pairwise linear correlation is
preserved but the dynamics of the time series are destroyed. Finally, if there is a
strong periodicity, e.g., due to the annual cycle in climate, then surrogates can be
designed to distinguish true CCM predictability from shared periodic forcing.



590 A.A. Tsonis et al.

CCM can identify bidirectional causality when variables are mutually coupled
(the primary case covered by Takens (1981)), as well as unidirectional causality
when X influences Y but Y has no effect on X–as occurs when X is an external
forcing variable. As explained in reference (Sugihara et al. 2012), CCM applies
in dynamic systems, in contrast to the celebrated Granger causality (Granger
1969) framework (see Appendix 1) which is aimed at purely stochastic systems
that exhibit linear “separability” (independence between variables) in which case
Taken’s theorem does not apply. Specifically, CCM addresses cases not covered by
Granger involving interdependent (nonlinear) dynamic systems–i.e., cases where
Granger’s assumption of separable piece-wise independence is explicitly violated.

2 The S-Map Test for Nonlinear Dynamics

It is a good practice to establish presence of nonlinear dynamics in the time series
that are tested for causality. To determine whether a time series reflects linear or
nonlinear processes we compare the out-of-sample forecast skill of a linear model
versus an equivalent nonlinear model. To do this, we apply a two-step procedure: (1)
we use simplex projection (Sugihara and May 1990) to identify the best embedding
dimension, and (2) we use this embedding in the S-map procedure (Sugihara 1994)
to assess the nonlinearity of the time series.

S-maps are an extension of standard linear autoregressive models, however,
with S-maps the jacobian coefficients depend on the location of the predictee
yt in an E-dimensional embedding. Here, new linear autoregressive coefficients
(the jacobian elements) are recalculated (from the library of a predictant set X)
by singular value decomposition (SVD) for each new prediction. Thus, “S”-maps
involve “sequentially” recalculated jacobians (linear approximations) as the system
travels along its attractor. In this calculation, the weight given to each vector in the
library depends on how close that vector xt is to the predictee yt. The extent of this
weighting is determined by the parameter � .

As above, we generate an E-dimensional embedding from points in the library
using lagged coordinates to obtain an embedded time series with vectors xt 2 R

E C 1,
where xt(1) D 1 is the constant term in the solution of Eq. (2) below. Let the time
series observation in the prediction set Tp time steps forward be YtCTp(1) D Y(t).

Then the forecast for Yt is

_

Y t D

EX
jD0

Ct.j/Xt.j/ (1)

For our analysis, we chose TP D 1. For each E-dimensional predictee vector yt,
C is the jacobian matrix solved by SVD using the library set as follows:

B D AC; (2)
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where Bi D w(kxi � ytk)yi, Aij D w(kxi � ytk)xi(j), and w.d/ D e��dit=d, � � 0, dit is
the distance between yt and the ith neighbor vector xi in the library embedding, and
the scale vector, d, is the average distance between neighbors in the library. Note that
A has dimension n � (E C 1), where n D size of the library. Again, a different map
is generated for each forecast, with the weightings in each map depending on the
location of the predictee in the E-dimensional state-space. This weighting procedure
is governed by the tuning parameter � , where � D 0 gives a global linear map,
and increasing values of � give increasingly local or nonlinear mappings. When
� D 0, all vectors are more or less weighted equally so a single (global) linear
map can be used for all predictions. In the case where � > 0, vectors closest to
the predictee in state-space are weighted more heavily in the SVD solution. Such
forecasts emphasize local information in the library set, and are therefore nonlinear.

A note on simplex projection and on determining embedding dimension: Simplex
projection is a nearest-neighbor forecasting algorithm (Stark et al. 2003) that
involves tracking the forward trajectory of nearby points in a lag coordinate
embedding. To determine E for computing MX and for the S-map analysis, an
exploratory series of embedding dimensions (E) are used to discover the value of E
that best unfolds the attractor and minimizes the trajectory crossings or singularities.
Thus, the best E is the dimension that gives the best prediction skill, and is the value
used in the S-map procedure as well as in cross mapping.

3 An Example

The example deals with causality between galactic cosmic rays (CR) and global
temperature. The basic principles behind a possible connection between galactic
cosmic rays and global temperature are as follows: It has been known since the
invention of the cloud chamber in 1911 by Charles Thomson Rees Wilson that
ionizing radiation leads to atmospheric cloud nucleation. While the prime source
of ionizing radiation in the global troposphere is CR, the flux of CR reaching the
troposphere depends on the solar wind. The solar wind is a stream of ionized gases
that blows outward from the Sun, and its intensity varies strongly with the level of
surface activity on the Sun. The Earth’s magnetic field shields the planet from much
of the solar wind, deflecting that wind like water around the bow of a ship. When
the solar activity is great, solar wind is strong, swiping away cosmic rays arriving
at the top of the atmosphere. These cosmic rays are hypothesized to impact cloud
formation, cloudiness, and therefore global temperature. The net radiative effect of
cloudiness depends on the difference between incoming solar radiation and outgoing
longwave radiation (OLR). Increased cloudiness in the upper troposphere reduces
OLR thereby resulting in warming of the planet. Increased cloudiness in the lower
troposphere causes less incoming radiation and therefore cooling of the planet. Data
suggest (Stark et al. 2003) that the amount of CR is positively correlated with
the amount of low-level clouds, but has no effect on middle- or high-level clouds.
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While this is still an open question (see also references Granger 1969; Marsh and
Svensmark 2000; Rawal et al. 2013), the reduction in CR flux in times of high solar
activity is hypothesized to result in less cloud nucleation, fewer cloud condensation
nuclei (CCN), and consequently reduced low-level cloud amounts. This, in turn,
leads to a higher solar radiation flux at the Earth’s surface, and warmer temperatures.
Conversely, weaker solar wind results in cooler temperatures. The actual chemical
processes and reactions involved in this problem are complex, but a growing body
of experimental and theoretical work has uncovered a chemical pathway by which
CR ionization may increase nucleation rates to levels appropriate for CCN (see
references Harrison et al. 2011; Kikby et al. 2011; Svensmark et al. 2007; Enghoff
et al. 2011; Svesmark et al. 2013; Zhang et al. 2012; Yu 2005; Duplissy et al. 2010,
and the references therein). This suggests a superficially simple network linking the
Sun, CR, and global climate, with the interaction between the Sun and CR having
a potential influence on the climate system. However, reasonable this may be, as
described in a 2006 review (Foukal et al. 2006), “The suggested mechanisms are,
however, too complex to evaluate meaningfully at present.”

To date, attempts at finding observational evidence for the link between solar
activity/CR and climate have relied on simple linear cross-correlation or spectral
coherence analysis (Stark et al. 2003; Neff et al. 2001; Bond et al. 2001; Svensmark
1998; Usoskin et al. 2004; Shaviv 2003). Although suggestive, it is well known
that such statistical analyses cannot actually establish causation and indeed can be
highly misleading in moderate to weakly coupled nonlinear dynamic systems, where
“mirage correlations” (spurious correlations that come and go and even change sign)
are common (Sugihara et al. 2012). Indeed, the singular case where correlation is
valid in nonlinear dynamic systems would require strong coupling (the so-called
synchrony) between the solar-mediated CR forcing and the climate system, which
is unlikely on decadal time scales due to embedded nonlinearities in the climate
system. Thus, in order to test for causal linkage between cosmic rays and global
temperature, we apply CCM.

For this analysis we use the aa index (Nayaud 1972) as the cosmic rays proxy.
This index is a well-documented proxy that characterizes magnetic activity resulting
from the interaction between solar wind and Earth’s magnetic field (stronger solar
wind ➔ stronger magnetic disturbances ➔ higher aa index). More discussion on this
issue follows later. The global temperature (GT) record we used is HadCRUT3 set of
UK’s Met Office. There is increasing uncertainty prior to 1900 in both data series, so
we confine our analysis to the post-1900 period and use yearly averages. The chosen
interval represents a compromise between noise in the data and sample size. Both
time series exhibit a positive trend, however, the GT warming trend is more distinct
and dominates the much smaller superimposed interannual fluctuations (Fig. 2a).
This is in contrast to the CR record where large interannual variation dominates the
twentieth century signal.

To verify that we are dealing with a nonlinear dynamic system rather than
a purely stochastic one, we analyze each time series separately using S-maps
presented above. Evidence for nonlinear dynamics is demonstrated if forecast
performance improves as the S-map model is tuned toward nonlinear solutions
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Fig. 2 (a) Annual values for the aa index (CR proxy) and normalized GT, and (b) annual variations
(first-differences) in GT (�GT) and CR. Despite a correlation between the CR and raw GT
time series (	 D 0.38), there is no measureable dynamic causality on the century-long time
scale (Fig. 7). However, on the annual time scale, even though CR and �GT are not correlated
(	 D 0.02), evidence suggests that are dynamically coupled (Figs. 4 and 5)

(� > 0, where � is the nonlinear tuning parameter). The results presented in Fig. 3
show that while CR and �GT both exhibit evidence for nonlinear dynamics, the
raw GT time series does not. It is likely that evidence for nonlinearity is masked
by the strong linear trend dominating the raw GT record over the twentieth century.
However, bottom Fig. 3 shows that the nonlinear dynamics in temperature variability
for this period can be unmasked by taking first differences of GT. That is, while
the strong overall twentieth century warming trend (linear trend 	 D 0.8) lacks the
signature of nonlinear dynamics, year-to-year temperature variability (�GT) shows
evidence of nonlinear dynamics operating on the annual time scale. The S-map test
also demonstrates nonlinear dynamics in the CR (aa) record where the relatively
rapid non-trend fluctuations are large compared to the secular increase. Thus the best
result with CCM (tests for nonlinear dynamic coupling between variables) should
be expected when testing for causality between first differenced GT (year-to-year
temperature variability or �GT) and the raw CR time series.
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Fig. 3 The S-map analysis of
(a) the CR time series (aa
proxy), (b) the GT time
series, and (c) the
first-differenced �GT time
series. �	 is the difference in
the correlation between actual
and predicted values between
a linear model (global linear
map) and an equivalent
nonlinear model (local or
nonlinear mappings). In a
sense, it is a measure of the
curvature of the manifold.
Evidence for nonlinear
dynamics is demonstrated if
predictability improves as the
S-map model parameter � is
tuned toward nonlinear
solutions (� > 0). The shaded
area is the 5th/95th and the
dashed blue line the 10th/90th
percentile confidence
intervals using surrogate data
(see text for details on
surrogate data). The figure
shows that while CR and
�GT both show statistical
nonlinear state dependent
dynamics, the raw GT time
series does not
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Figure 4 shows the CCM results. More specifically, it shows the correlation
coefficient between actual and predicted values (	) as a function of sample size
L when CR cross maps �GT (red) and when �GT cross maps CR (blue). Here the
optimum embedding dimension is E D 5, and the optimal time lags used for CR
cross mapping �GT and for �GT cross mapping CR are 3 and �2, respectively.
These lags are based on maximizing cross map signal strength (i.e., maximizing
cross map correlations). Clearly, there is no evidence for a causal effect of �GT
on CR, as witnessed by the lack of convergence (no cross map improvement as the
sample size increases) when cross mapping from CR to �GT. This indicates (as
one should expect!) that information about global temperature is not present in the
cosmic rays time series. However, cross mapping from �GT to CR succeeds. We
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Fig. 4 Results of CCM analysis between the CR time series and the annual variations in GT
(�GT). Although there is no correlation between these variables (	 D 0.02), convergence
(increasing and significant ¡ with longer time series; blue line) suggests that year-to-year changes
in GT are causally forced by galactic CR (i.e., �GT cross maps CR, information about CR is
encoded in �GT). As explained in the text, a comparison with phase randomized surrogate data
(shaded areas) shows that this result is significant at the 5% level. Lack of convergence (red line)
confirms, as expected, that �GT has no causal influence on CR

observe convergence as L increases indicating that information about cosmic rays
is recoverable in the �GT record. Thus CCM shows that there is a modest causal
effect of cosmic rays on annual global temperature fluctuations.

These results are qualitatively robust to choice of embedding dimension and are
statistically significant (p < 0.05). The first surrogate data analysis shown in Fig. 4
involves standard phase randomized surrogates (n D 1000) generated by inverting
the spectra for �GT and CR and randomizing the phases (Ebisuzaki 1997). The
blue shaded area depicts the 0.05 and 0.95 intervals of CCM results for observed
�GT cross mapping surrogate CR, and the red shaded area shows the actual CR
cross mapping surrogate �GT. Again this result is robust, providing independent
verification when surrogates are generated as best-fit AR1 time series (Fig. 5).
Finally, as a null check, we applied CCM analysis to the CR time series and
model generated annual variations in global temperature (�GT) generated by the
CCSM4 NCAR model—an IPCC AR5 model lacking any mechanism for cosmic
rays to affect temperature. As expected (Fig. 6) there is no significant cross mapping
between the historical cosmic rays time series and �GT from the model.

As might be expected from the S-map analysis there is no detectable convergence
with the raw GT data containing the twentieth century warming trend (Fig. 7).
The non-convergent cross map signal is consistent with a statistical association
that is non-causal in terms of dynamic coupling (Sugihara et al. 2012). Indeed, the
cross map estimates contain less information than is contained in the linear trend
of GT (	 D 0.8), reflecting little beyond the incidental cross-correlation between
CR and GT (	 D 0.38). Lack of convergence combined with a failure to manifest



596 A.A. Tsonis et al.

20
0.

0
0.

1
0.

2

ΔGT xmap CR
CR xmap ΔGT 

0.
3

0.
4

40

L

ρ

60 80 100

Fig. 5 As in Fig. 3 but with AR1 surrogates. Results of CCM analysis between the CR time series
and the annual variations in global temperature (�GT). Convergence (increasing and significant
¡ with longer time series) (blue line) shows that year-to-year changes in global temperature are
causally forced by galactic cosmic rays. Lack of convergence (red line) shows, as expected, that
�GT has no causal influence on CR. Results of the AR1 surrogates are nearly identical to those
obtained by the Ebisuzaki method in the main text
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Fig. 6 Results of CCM analysis between the CR time series and the annual variations in global
temperature (�GT) generated by the CCSM4 NCAR model (an IPCC AR5 model). As expected,
because this model does not include any mechanism for cosmic rays to affect temperature,
CCM shows there is no identifiable causality—there is no significant cross mapping between the
historical cosmic rays time series using �GT from the model

significance beyond the surrogates demonstrates that CR has no discernable causal
effect on the overall warming pattern for the twentieth century. The analysis shows
definitively that the dominant warming signal on this century-long time scale is not
a measurable consequence of dynamic forcing by CR.

Some comments on the choice of the aa index as a proxy for cosmic rays: An
argument can be made that the aa index may not be the best proxy for cosmic
rays. However, ground measurements of cosmic rays flux are significantly correlated
with the a index (Perry 2007; Cliver et al. 1998; Stuive and Quay 1980 to mention
a few). The reason we don’t use the actual ground flux data here is that ground
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Fig. 7 CCM analysis
between CR and raw GT time
series with the secular
warming trend shows no
convergence and no
significance with surrogates
generated as in Fig. 3. Thus,
although CR is statistically
correlated with GT
(	 D 0.38), it shows no
measurable causal effect on
the twentieth-century
warming trend
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measurements of cosmic rays flux did not begin but after 1950. This makes the
sample size too small. Indeed, we have repeated CCM between global temperature
and actual measurements of cosmic rays flux in Climax Colorado. We find the same
evidence for causality but the statistical significance is lower (0.15 < p < 0.1). In
addition, we have applied CCM to all possible pairs in the aa index-sunspot number
(ISN)—Climax cosmic rays flux network. We find significant causality between all
pairs, which will indicate synchrony in the network. This is indeed a very interesting
but preliminary result, which will be further explored elsewhere.

For completeness, a traditional Granger causality (Sauer et al. 1991) analysis
was implemented. Because the S-map test demonstrated the CR time series is from
a nonlinear dynamic system and not a purely stochastic one, Granger’s test should
not apply (Sugihara et al. 2012). Granger causality requires separability (dynamic
independence of system parts) and is therefore not defined for interdependent
dynamic systems. Thus it is not surprising that the Granger test fails to detect any
meaningful association (though the non-sensible case for temperature affecting CR
is slightly stronger by Granger’s test; see method and results in Appendix 1).

4 Conclusions

In this review paper we present the basic principles behind the convergent cross
mapping method to detect causality and we provided an example with the proper
steps to establish statistical significance for causality between two time series. For
more information the reader is directed to the references. The R package with
the codes for the various calculations is available at https://CRAN.R-project.org/
package=rEDM.

https://cran.r-project.org/package=rEDM
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Appendix 1

Notes on Granger Causality

According to Granger causality, given two simultaneously recorded time series Xt

and Yt where t D 1, N denotes sampling times, we say that Y has causal influence on
X if the variance of the prediction error of X given Y is less than the variance of the
prediction of X not given Y. This means that if prediction of some output improves
with the addition of an input, then the input Granger causes the output. In its original
formulation Granger causality is based on linear prediction of stochastic time series.

There are several ways to test for Granger causality. The approach used here uses
the autoregressive specification of a bivariate vector autoregression. For a given lag
m, we estimate the following unrestricted equation by ordinary least squares:

Xt D c C

mX
iD1

aiXt�i C

mX
iD1

biYt�i C et

where a, b, and c are coefficients and e is a residual. The null hypothesis that “Y
does not Granger-cause X” is then constructed as

Ho: b1 D b2 D : : : D bm D 0
We also estimate the equation

Xt D c C

mX
iD1

aiXt�i C wt

and compare the sum of squared residuals

RSS1 D

NX
tD1

be2t

and

RSS2 D

NX
tD1

bw2t

The statistic S D .RSS2�RSS1/
RSS1

.T�2m�1/
m is approximately equal to Fm,T�2m�1, and

it is statistically significant at a p level of

p D 1 � prob .Fm;T�2m�1/

In our case if X is �GT and Y is CR the p value assuming an AR-1 (AR-2)
process is 0.82 (0.97). If X is CR and Y is�GT, the respective p values are 0.81 and
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0.64. Thus neither X nor Y Granger-causes the other. In fact, the variance explained
in the prediction error is less than 1% regardless which variable is used to predict
the other. Considering higher order AR processes does not improve these results.
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Randomnicity: Randomness as a Property
of the Universe

Anastasios A. Tsonis

Abstract This paper is a concept paper, which discusses the definition of ran-
domness, and the sources of randomness in the mathematical system as well as
in the physical system (the Universe). We document that randomness is an inherited
property of mathematics and of the physical world, shaping all observed forms and
structures, and we discuss its role.

Keywords Determinism • Randomness • Natural processes • Fractals • Chaos •
Nonlinear processes

1 Prologue

It is dawn and the battlefield is waiting. It is sometime in the twelfth century B.C.
and a critical moment in the Trojan War must be decided. Paris seduced and ran
away with Helen, the wife of the king of Sparta, and now Menelaus, the king, and a
unified Greek army has invaded the Trojan land and is asking for revenge. The war
has been dragging on for years, and Troy is not falling. In fact, it appears that the
Trojans, led by Hector, are gaining the upper hand. Somebody from the Greek army
has to step in and fight man-to-man with Hector. Who will it be? The decision will
be left to chance. Each of the volunteers marks his own lot, then the lots are put in
a helmet and are shaken. A lot is drawn from the helmet and identifies the soldier
who will fight Hector. It is Ajax.

In Homer’s Iliad and in many other early epics such decisions were often left
to chance. The concept of randomness appears to have been an integral part of
the actions and feelings of early cultures. At the same time they believed that the
gods controlled every little detail (determinism) and therefore nothing was left to
chance. This, however, is not a paradox. Randomness in early civilizations emerges
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as part of God. It is controlled only by God thus eliminating human intervention and
allows the will of God to apply. Thus, randomness cannot be separated from God
(determinism). Randomness and determinism are established early in the human
mind as being interconnected and associated with something bigger, like God, who
is boundless and everywhere at any time all the time.

2 Introduction

Others there are who believe that chance is a cause but that it is inscrutable to human
intelligence as being a divine thing and full of mystery.

Aristotle, Physics Book II, 4

Over 2500 years ago Aristotle ponders on what many other philosophers have
pondered throughout time. Exactly what is randomness and why is it there? This
paper presents a synthesis of facts from the mathematical and physical systems,
which clearly establish randomness as a property of nature and that what we see
and experience around us emerges from the interplay of rules and randomness. This
paper is arranged in four parts. Part 1 deals with randomness in the mathematical
system. Part 2 deals with randomness in the physical system (the Universe). In Part
3 the connections between the sources of randomness in these two systems will be
discussed. In part 4 we will discuss the role of randomness in the physical world.
More details and discussions can be found in my book Randomnicity: Rules and
Randomness in the Realm of the Infinite (Tsonis 2008).

3 Some Introductory Examples

Consider an equilateral triangle of side size L and the following iteration: Take the
middle third of each side and replace it with two L/3 length sides forming a smaller
equilateral triangle on each original side. We now have a “star” with 12 sides. Repeat
the process for each of the 12 sides, and keep on repeating for the new sides ad
infinitum. This process will result in a closed boundary, which is called the Koch
island or Koch snowflake (Fig. 1a). This boundary is an exact fractal (Mandelbrot
1983), but a far cry for real boundaries such as coastlines. We can “improve” on that
boundary by introducing randomization of the iteration process, for example, rather
than forming the equilateral triangle with the same orientation at each step, we may
choose the orientation at random. This leads to a boundary that is an improvement in
the right direction (Fig. 1b), but still it’s a far cry from the actual coastline. However,
we only need to be a little more creative with our randomization technique (Peitgen
and Saupe 1988; Peitgen et al. 1992) before we can generate a random fractal whose
details will be indistinguishable from natural coastlines. One such example is shown
in Fig. 1c. Comparison with the coast of England shows striking similarities at all
scales (Mandelbrot 1983).

Now let us consider the case of lightning. Lightning is the result of dielectric
breakdown of gases, which occurs when some region of the atmosphere attains
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Fig. 1 (a) Constructing a Koch island or snowflake. (b) A randomized Koch island. Figure
courtesy of Professor Heinz-Otto Peitgen. (c) A simulation of a random fractal coastline. Figure
courtesy of Professor Benoit Mandelbrot

a sufficiently large electric charge. Basically, a strong concentration of negative
charge at the cloud base induces through friction a positive charge at the surface.
Once this is in place, if the electrical potential between the cloud base and the
ground reaches a sufficiently high value, then some negative charge is propelled
toward the ground. This cloud-to-ground discharge is called the stepped leader
because it appears to move downward in steps. When the stepped leader has
lowered a high negative potential near the ground, the electric field at the ground is
sufficient to cause an upward-moving discharge, which carries ground potential up
the path previously forged by the stepped leader. By doing so, the return discharge
illuminates and drains the branches formed by the stepped leader. This luminous
part of lightning is called the return stroke. Therefore, both the stepped leader and
the return stroke are usually strongly branched downward. The branching character
of lightning exhibits a striking presence of structure at many different length scales.
Every branch, for example, looks like a lightning itself and so does every branch of
a branch. Indeed lightning has been documented to be a random fractal (Tsonis and
Elsner 1987).

The dielectric breakdown on the atmosphere can be modeled by considering that
the driving force is the electrical potential, which satisfies the Laplace equation. We
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Fig. 2 Illustration of the model used to generate lightning (see text for more details)

start with a two-dimensional lattice in which the potential, �, of the top and bottom
row is fixed at the values 0 and 1, respectively. Only the middle point of the top
row (A1) is capable of growth (Fig. 2). Given this arrangement the Laplace equation
r2®D 0, where r2 D @2/@x2 C @2/@y2, is solved. In a two-dimensional lattice (i,j)
the solution of this equation is obtained by iterating the following equation using
successive over-relaxation

'i;j D
1

4

�
'iC1;j C 'i�1;j C 'i;jC1 C 'i;j�1

�
:

All the immediate non-zero potential neighbors of A1 are then considered as
possible candidates, one of which will be added to the evolving pattern. In Fig. 2,
the possible candidates are shown by the open circles and the evolving pattern is
shown by the connected black dots. In step 1 there is only one possible candidate.
Therefore, point A2 will be added to the discharge pattern. Since the discharge
attempts to neutralize the difference in potential between the top and bottom row
(like the discharge in the atmosphere neutralizes the negative and positive charges
at the cloud base and ground, respectively), the discharge pattern is assumed to
have zero potential. With point A2 in the picture, the Laplace equation is solved
again. This produces new values for the potential at each point. Now there are



Randomnicity: Randomness as a Property of the Universe 605

Fig. 3 Simulated (left) and actual (right) lightning

three possible candidates (N D 3). Each one of these candidates is then assigned
a probability, which depends on the value of the potential at each point, m. Once
each point of the lattice has been assigned a solution each of the m D 1,N possible
candidates is given this probability of selection, Pm

Pm D �2m=

NX
mD1

�2m

Given these probabilities a point is chosen randomly and is added to the evolving
pattern. The above procedure is then repeated until a point of the bottom row is
added to the discharge pattern. The patterns generated from such a procedure not
only look similar to real lightning but they also have the same fractal dimension
(Fig. 3). The actual (right) and computer generated (left) structural properties of
lightning are identical.

In addition, the model is suggesting that no two lightning are alike. Since
each step is associated with a probability, if we multiply the probabilities of all
chosen points we will get the probability that the resulted structure will occur.



606 A.A. Tsonis

The probability of the above computer-generated lightning is a staggering ten to
the power of minus one thousand (Tsonis and Elsner 1987; Tsonis 1987). This
incredibly small number suggests that even if there were one million lightning bolts
at every location on Earth every 1 s it would take the age of the universe to see the
same lightning again.

Exact fractals, like Euclidean structures (straight lines spheres, cubes, etc.), are
almost never observed in nature. Randomness eliminates such possibilities. This
is also supported by the study of cellular automata. Cellular automata (Wolfram
2002) are systems whose evolution is described not by equations but by very
simple, computer-program-like rules. They can provide an alternative to more
complicated systems described by differential equations. By studying thousands
of completely deterministic cellular automata, Wolfram identified five types of
evolution: steady states, periodic structures, exact fractals, chaotic evolutions, and
evolutions characterized by a mixture of regular and irregular structures (often
referred to as the edge of chaos). When, however, randomness is introduced to
the automata, the exact fractals class does not emerge (see also Tsonis 1996).
Clearly then, unless randomness is combined with rules, no realistic forms of natural
phenomena will emerge. Numerous other examples can be given from all areas
of science to support this statement. Then the obvious question arises: What is
randomness and where is it coming from?

4 Randomness in the Mathematical System

In a seminal paper in 1931, Gödel proved that there are mathematical statements
that cannot be proved within the current mathematical system. Gödel proved that
if all mathematical statements could be proved (which will indicate that the formal
mathematical system is complete) then the system will be an inconsistent system.
This self-reference about the mathematical system also proves that consistent
mathematics is an incomplete system. This means that in a consistent mathematical
system there will always be uncertainty about certain statements. This uncertainty
introduces a form of randomness into the formal mathematical system. Formally,
Gödel’s Incompleteness Theorem, is expressed as:

For every consistent formalization of arithmetic, no matter how complex, there exist
arithmetic truths improvable within that formal system,

or in a somewhat simpler form:

In today’s mathematics there are true statements about numbers that cannot be proved.

A nice everyday example of the principle underlying Gödel’s theorem is given
by Douglas Hofstadter in his monumental book Gödel, Escher, Bach: an Eternal
Golden Braid (Hofstadter 1979). Consider a phonograph, which is playing a
record in a room. The phonograph produces sounds, which are sent out to its
surrounding environment. A sound is a vibration. These vibrations, as well as other



Randomnicity: Randomness as a Property of the Universe 607

vibrations from other sources, are reflected by the walls and propagate back to
the phonograph. In this way the reflected vibrations may affect the phonograph’s
operation. Obviously, the stronger the vibrations a record produces the greater the
effect they have on the phonograph. As such for any record player there may be
records, which cannot be played because they may cause its indirect self-destruction.

The system of mathematics can become less incomplete by adding more rules.
There are numerous cases where mathematical statements were proven only after
new insights (new rules) were discovered. The Fermat Conjecture is the most
celebrated such example. Proposed by Pierre Fermat in 1665, it states that the
equation xn Cy n D zn (a Diophantine equation) does not have a positive integer
solution when n is an integer greater than 2. Thousands of mathematicians wrestled
with this problem unsuccessfully until Andrew Wiles finally proved it in 1995. Why
did it take 330 years before anyone could prove the conjecture? Because there were
areas of mathematics, specifically the theory of elliptic curves, which had to be
discovered before anyone could prove the conjecture.

However, unless an infinite number of rules are added one cannot be certain
that the system will not be incomplete. What that means is that there is no finite
set of rules that can be consistently added to the system to make it complete.
A consequence of this is that a procedure, which decides that any mathematical
statement is true in a finite number of steps, does not exist. Think of the system as a
photograph. Many years ago photographs were black and white and blurry. As such
there were “truths” (for example, the color of the sky) that could not be “proven”
by them. As technology improved (read: more rules were added), photographs
became more realistic (or more complete). Still, however, unless we have an infinite
resolution, the details in a scene that is being photographed cannot be known exactly
(for example, individual molecules cannot be seen).

Since the time of Euclid, the dream of mathematicians was to reduce mathematics
to a set of basic axioms from which, through inference, all theorems could be
proven. Gödel’s theorem shook the foundations of mathematics by showing that
this is not possible. The implications are startling. Apart from philosophical issues
such as “can we ever know the truth from reasoning?,” it implies that whether a
mathematical statement is true or false may not be known. Moreover, since there
can be an infinity of such statements, Gödel’s theorem implies that the element of
uncertainty, and thus randomness, is interweaved with axioms, theorems, and the
whole structure of mathematics. This naturally brings up the following question:
What exactly is randomness?

4.1 Randomness of the First Kind

Imagine that we are given or we observe a pattern-less sequence that has been
generated by some rule. If we are not able to extract the rule, what is the difference
between such a sequence and a truly random sequence? Many will argue that
for all practical purposes there is no difference. Thus, our inability to extract the
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rules makes predicting future digits impossible and thus constitutes a source of
randomness. Here, however, we have to be careful with what we mean by “our
inability to extract the rules.” Do we mean that in principle we could get to the
rules but we do not have the knowledge to get to them, or that there is no possible
way to get to the rules? If the former is true then strictly speaking the sequence is
not random. It is just waiting to be “debugged.” In this case the rules are actually
reversible and thus in principle we can go backwards and find the rules from
the sequence. If the later is true then the procedure to construct the sequence is
irreversible, and thus, while we can go from the rules to the sequence, we cannot
ever go from the sequence to the rules. It is this inability to recover the rules that
will generate truly random sequences. But how such irreversibility occurs?

Consider again the first mathematical operation, which for simplicity we call
it operation O1: Start with a number. If this number is even, multiply it by 3/2;
otherwise add 1 and then multiply by 3/2. This generates the second number. Repeat
the above step to produce the third number and so on. Operation O1 results in a
sequence of odd and even numbers, which we will denote by S1. Once we have S1

we apply the second operation, which we will call operation O2, according to which
an odd number is replaced with 1 and an even number with 0. This leaves us with a
sequence of 0’s and 1’s, which we will denote as sequence S2. If the starting number
was the number 1, then operation O1 produces the following sequence S1 of odd and
even numbers.

S1: 1, 3, 6, 9, 15, 24, 36, 54, 81, 123, 186, 279, 630, 945, 1419, 2130, 3195,
4794 : : :

Subsequently, operation O2 produces the following sequence S2

S2: 1101100011010110101 : : :
The above two operations define a mathematical system, which is isolated from

external influences and in which the initial condition is simple and well defined.
Sequence S2 does not appear to have a coherent pattern (this becomes even more
apparent if we continue the process for many steps). However, since it is generated
according to a set of rules it is not random. Given the rules, any future value can be
calculated or predicted. There is, however, a catch here. If you were given part of S2

but not the rules that generated it, would you be able to predict the next digit? The
answer to this question is no, and Fig. 4 explains why.

Given sequence S1, a patient person might at some point figure out operation
O1. In this case we can go from operation O1 to sequence S1 and vice versa
(this reversibility is indicated by the bidirectional arrow between operation O1 and
sequence S1). Similarly, one might speculate that the zero’s and ones represent
even and odd numbers, respectively. This will allow us to go from operation O2

to sequence S2 and vice versa.
However, once we have figured out operation O2 there is no possible way to

go to sequence S1 because for each zero there is an infinite even numbers and
for each one there is an infinite odd numbers to choose from and the initial
number can be anything. This irreversibility is indicated by the unidirectional arrow
between sequence S1 and operation O2. We thus see that operation O2 injects an
uncertainty that inhibits us from recovering the rules of the construction and makes
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Fig. 4 A diagram of an
irreversible set of
mathematical operations (see
text for details)

S2 maximally random. While not all sequence constructions may be irreversible, the
above example clearly demonstrates that extracting underlying rules may not always
be attainable.

The loss of information, which results from this irreversibility, is not just a well
thought mathematical trick. Information initially contained in a system could indeed
get lost during its evolution. Imagine two compartments separated by a diaphragm
one filled with water at 40 F and the other with water at 90 F. If the diaphragm is
removed the two water samples mix and produce a sample, which is at a uniform
temperature throughout. In this final sample all the information about the initial
temperatures is lost and cannot possibly recovered no matter how knowledgeable
we are.

Order and predictability arise from rules. Randomness and unpredictability arise
from the absence of rules. This source of randomness is, however, ideal if not trivial.
In the mathematical system and in the physical world there is always some kind of
an underlying rule(s). Here we see that unpredictability and thus randomness may
arise from irreversible programs or procedures, which inhibit us from getting to the
rules not just from the absence of rules. We will call this randomness, randomness
of the first kind.
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Fig. 5 Solution of the logistic equation from the initial condition 0.4

4.2 Randomness of the Second Kind

Consider an iterative process where the same operation is repeated using every time
the result of the previous step as the starting point. The most famous such process
is given by the logistic equation xnC1 D 4xn (1�xn), which has been used to study
population dynamics. The number 4 is the only parameter of this equation. Since
this system is described by only one equation it is obviously a very simple system.
For x D 0 or x D 1 all subsequent values become zero and for x greater than 1 or
less than �1 the population becomes negative. Thus, for nontrivial dynamics (i.e.
requiring that the population does not become extinct or negative) the values of x
must range between 0 and 1. Iterating the logistic equation from an initial value of
0.4 results in the evolution shown in Fig. 5

What we observe is that x goes up and down in an apparently irregular way.
No apparent pattern is evident. For all practical purposes this signal is random.
Nevertheless, it was generated from a well-defined initial condition (0.4) and a very
simple rule.

Figure 6 shows x as a function of the time step for initial condition 0.4 as well
as for initial condition 0.7. We observe that the two evolutions are different. They
are aperiodic and they do not converge to the same result. Somehow the system
remembers its initial condition forever. The evolution of this simple system is clearly
dependent on the initial condition. It gets even more interesting. Let us assume that
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Fig. 6 Solution of the logistic equation from the initial conditions 0.4 and 0.7

the second initial condition was not 0.7 but was 0.405 (about 1% different from
the first initial condition). If we compare the two evolutions again (Fig. 7), we see
that they start very close to each other, but they soon diverge and follow completely
different paths. Not only is the system sensitive to the initial condition, it is sensitive
to even the tiniest of fluctuations. And not only does the system not forget a tiny
fluctuation, it actually amplifies it and soon the two evolutions diverge significantly.

As we have seen earlier, aperiodicity does not necessarily mean unpredictability.
For example, the   digits are aperiodic but we can predict any digit we want. But
how about sensitivity to the initial conditions? Could sensitivity to initial conditions
create randomness and make a system unpredictable? From the above example one
can forcefully argue that the initial condition can be specified exactly. For example,
we may specify 0.4 as our initial condition. Then the equation will produce all future
values. Thus, one may argue, sensitivity to the initial conditions is not a condition
for unpredictability. This is a strong argument but there is a little problem with it.

The five first values of the evolution of the equation xn C 1 D 4xn(1 � xn) from the
initial condition x0 D 0.4 are:

x0 D 0.4
x1 D 0.96
x2 D 0.1536
x3 D 0.52002816
x4 D 0.9983954912280576
x5 D 0.00640773729417263956570612432896
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Fig. 7 Solution of the logistic equation from the initial conditions 0.4 and 0.405

What do you observe? The digits after the decimal point increase (in fact double)
with every iteration. After seven iterations the result carries 128 digits. After twelve
iterations there are 2048 digits! The number of digits is actually given by 2n, where
n is the number of iterations. Calculating exactly out to only 100 steps will require
a computer that will carry calculations with 2100 decimal points. This number is
approximately equal to 1030, which is one trillion times greater than the age of the
universe in seconds. Computers do not routinely handle more than a hundred digits.
So what does the computer do when the iteration reaches the point where the digits
are more than the digits the computer can carry? It simply rounds off the result or it
chops off the extra digits. That in effect makes the result an approximation to what
the result would have been if the computer had the ability to carry calculations
with unlimited number of digits. This approximation will now play the role of
a fluctuation, which will be amplified and soon lead to an evolution that will be
completely different than the actual one. Thus, only if we had infinite precision and
infinite power we will be able to predict such systems accurately. Because we do not
have that, for systems that are sensitive to the initial conditions, the exact state of
the system after a short time cannot be known. The outcome of such systems after
that time is simply random as small fluctuations amplify enough to dominate the
evolution of the system. Thus, a future state is unpredictable. Note that the logistic
equation is what we call a nonlinear equation.

We thus see that randomness is created even if we know the rules. In this case
the source for the randomness is not rule irreversibility or our inability to find the
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rules but our inability to have infinite precision and infinite power. This kind of
randomness has been termed chaos and it is distinctly different from the first kind.
Chaos is strictly a property of nonlinear systems.

4.3 Randomness of the Third Kind

Now let us consider the following example. The distance between your home and
the shopping mall is fixed. It is always the same, never varies. We all know that if
the speed of an object is constant, then the time that it will take to go from A to B
is equal to the distance between A and B divided by the speed. It follows that as
long as the speed does not change, the time that it takes to travel the distance AB
will always be the same. Now assume that you travel with your car (our “system”
in this example) from your home (A) to the mall (B). You know that the distance
is five miles so you figure that at a constant speed of 50 miles per hour it will take
you one tenth of an hour or 6 min to reach the mall. Would you bet money on such
a prediction? I hope not, because it will never be exactly 6 min. A slower driver in
front of you, a driver that suddenly decides to “cut” in front of you, a yellow traffic
light that forces you to decide whether to stop or accelerate, the presence of a police
car, the sound of a honk, and many other “external” factors will cause you to depart
from the constant speed of 50 miles per hour. Since the number of these factors is
not fixed, each time you go to the mall it will take a different length of time. This
makes the actual length of the trip very unpredictable, which means that the duration
of the trip is a random number. Thus, even though we know the rules of the system
(so there is no randomness of the first kind) and we can assume that our system is
not chaotic (which excludes randomness due to sensitivity to the initial conditions)
we still end up with randomness.

The above example introduces us to a mechanism for randomness, where
randomness is explicitly introduced into the underlying rules of the system. It
corresponds to saying that there is some kind of external environmental component
whose essentially uncountable “agents” continually affect the system with their
actions. Such processes are called stochastic processes. The word stochastic comes
from the Greek word ¢£o¦’¢£˜−, which refers to the person who learns about
future events or hidden things by means not based on reason.

Our “system” here may be thought of as a mathematical system described by a
set of simple rules or equations whose evolution can in principle be computed by
solving the equations. When the system is exposed to external influences, however,
its behavior is modified. But what is this external “noise?” Where is it coming from?
In our example, the environment is represented by the other drivers and the traffic
lights system, which can also be thought of as simple systems. In this case then,
what we have is many simple systems interacting. Each system is very simple but
the collective behavior of many interacting systems may be very complicated.

It is then logical to assume that in our example the “system” is a subsystem of a
grand system (possibly the universe) where many subsystems operate according to



614 A.A. Tsonis

their rules and interact between each other. As subsystems interact they exchange
information. Information received by one subsystem from another may interfere
with its rules, thus producing an unexpected result. Such interactions, especially
in a large number of subsystems, create an extremely complex behavior that can
only be studied using probability theory. This “stochasticity” is our third kind of
randomness: Randomness generated by the continuing effects of the environment.

It is interesting to note here that under this scenario very complicated behavior
and randomness can be generated even if we start with no randomness of any kind.
The theory of nonlinear dynamical systems has clearly established, for example, that
many systems, which exhibit a very regular (periodic) behavior, become irregular
and aperiodic when they are coupled with an external force, which is also very
regular. This may also lead to randomness of the first kind or to chaos. Whatever
the case might be one thing is certain. Very simple rules can either alone or in
combination with other simple rules create randomness and unpredictability. And
because we often are dealing with an infinite number of interacting “agents,”
the only way to study and predict their collective behavior may only be done
stochastically.

It is also interesting to make some connections with real life at this point. In
life, accidents (randomness) happen (1) when we do not know how things work (we
do not know the rules), (2) when we do not pay full attention (we do not compute
accurately), and (3) when we interact with people who affect our lives. Doesn’t this
look like randomness of the first, of the second, and of the third kind, respectively?

Finally, we should keep in mind that behind all mechanisms of randomness lurks
the notion of infinity. Whether it is the absence of infinite knowledge or infinite
power or the interplay of infinite agents, one cannot avoid infinity. It is the arena
where the interplay of rules and randomness takes place. If this arena disappears all
evolutions are doomed to repeat. For example, it has been shown that because the
computer can only carry a finite number of digits in its calculations, the round-off
error will force a non-periodic trajectory to coincide with a point in the past rather
than simply coming very close to it. Once this occurs the evolution has no choice
but to repeat (Tsonis 1991). Consider again the first five exact values resulted when
we start iterating the logistic equation from an initial condition of 0.4.

x0 D 0.4
x1 D 0.96
x2 D 0.1536
x3 D 0.52002816
x4 D 0.9983954912280576
x5 D 0.00640773729417263956570612432896

If we assume that the calculator or computer used to perform these calculations
can only carry one decimal point then the first value will be truncated to 0.9. If the
value of 0.9 is used rather than the actual value of 0.96 to calculate the second iterate
we get a new value of 0.36 which will be truncated to 0.3. Continuing like this we
will find that the fifth iterate is truncated to 0.9, which is the value of the first iterate.
From this point on we simply start over and the evolution becomes periodic.
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5 Randomness in the Universe

5.1 Quantum Mechanics

The fact that light has properties of waves was known since the time of the British
physicist Thomas Young who, as early as 1801, performed the two-slit experiment
demonstrating that light like waves in the sea creates diffraction and interference
patterns. However, almost a hundred years later Einstein observed that when light
falls on a metal plate, the plate ejects a shower of electrons. He further observed
that the shorter (the more energetic) the wave, the higher the speed with which the
electrons are ejected. This is not what would happen if light were a wave. This is
more like what happens when two particles collide.

Then, light appears to behave as both particle and wave. This establishes the
wave-particle duality of light and proves that electromagnetic waves can behave
as particles. But can particles behave as waves? This question was posed by the
French physicist de Broglie who suggested that electrons, particles of a certain
mass, could be treated as systems of superposed waves or as wave packets. Wave
packets do not just describe pure waves or just pure particles but a combination of
both. With such a description, de Broglie was able to study the quantum-mechanical
motion of a particle and to predict the magnitude of the wavelength of an electron.
And here lies the beauty of scientific ingenuity and reality. Scientists can always
propose a theory, which based on mathematics will make predictions. But it is not
until the predictions are verified that a theory becomes accepted. In the case of
de Broglie’s hypothesis, it was not long before experiments not only verified that
electrons have characteristics of waves (they create interference patterns) but also
recovered the predicted wavelength of the electron. Subsequent experiment went
even further to show that even larger particles, such as molecules, behave as waves
and that their wavelengths are exactly those predicted by de Broglie’s theory. Soon
after that the Viennese physicist Schrödinger developed the equation of motion of
a particle whose solutions were the de Broglie waves. Before long, in 1927 the
German physicist Werner Heisenberg starting from the hypothesis that an electron
is a wave packet obeying a wave function proved his famous uncertainty principle,
which ever since has made quantum mechanics as a mystic science as we will ever
have.

In classical mechanics what specifies the complete state of a particle is its
velocity and position. If we know these two variables we can solve the equations
of motion and predict the position of the particle at any time in the future. Such
complete determinism is the most fundamental aspect of classical mechanics.
The uncertainty principle states that when it comes to subatomic particles, such
as photons and electrons, one cannot measure exactly the position and velocity
of a particle. More specifically it says that measuring the position with high
accuracy results in a great uncertainty in the value of the velocity and vice versa.
Consequently, we cannot ascertain the exact position of a particle without losing
information about the velocity and vice versa. In quantum mechanics we cannot
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have well-defined states for the position and velocity; we can only have a quantum
state, which is a combination of position and velocity. Since the position and
velocity can only be known approximately, this state is defined by probabilities of
the position and velocity. For example, “the particle’s position is most probably
somewhere there and its velocity is most probably around that value.” Thus,
quantum mechanics introduces an element of unpredictability or randomness in the
scientific description of subatomic particles. Our universe emerges as intrinsically
non-deterministic and unpredictable.

5.2 Chaos

Above, when we discussed randomness of the second kind, we demonstrated the
sensitivity to the initial conditions and the definition of chaos using a simple
mathematical equation that does not have a direct relation to a physical problem.
This property, however, is not just the property of a mathematical system. It is
found in natural systems as well. Back in the early seventeenth century, the German
astronomer Johannes Kepler published his first law, which stated that the orbit of
an object around an attracting body is an ellipse with the attracting body located
at one of the foci. The ellipse remains constant in space, the speed, however, of the
orbiting body varies. According to Newton’s gravitational law, the force of attraction
is proportional to the product of the masses of the two objects and inversely
proportional to the square of their distance. Since the orbit is an ellipse the distance
between the two bodies is not the same at all times. As such the gravitational pull
varies; it is greatest at the pericenter and smallest at the apocenter. From Newton’s
second law it then follows that the speed of the orbiting object varies accordingly.
Nevertheless, the position and speed of the orbiting object are determined at any
time and they are regular. They repeat exactly after a fixed time interval.

The situation, however, becomes a bit more complicated when there are more
than two bodies in the picture. For example, Earth attracts the moon while both are
attracted by the Sun. What is the motion of the moon in this case? The problem can
be exactly described by a set of nonlinear equations. However, the problem has no
analytic solution. In other words we are not yet able to find a solution using standard
mathematical approaches. The only way to solve such problems is numerically.
If the calculations are done with sufficient numerical accuracy and for short time
intervals, we can track the motion of the objects for a long time. This procedure
can today be done efficiently with a computer. At the time of Kepler and Newton,
however, this was not possible and both of them, while aware of the problem, saw
this irregularity as a nuisance. It was not until the early twentieth century when
the French multi-scientist Henri Poincare showed that the numerical solution to
the three-body problem is very irregular and very sensitive to the initial condition.
In fact Poincare discovered chaos but due to the unavailability of computers he
could not study this problem in detail. In 1925 a glimpse into the complexity of
this problem was provided by a computation carried out by 56 scientists under Elis
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Stromgren at the Observatory of Copenhagen, which showed a solution to the so-
called restricted three-body problem, which deals with the orbit of a moon under the
gravitational influence of two planets. This work, which was published in 1925, took
15 years to complete (due to lack of computers). Today such a computation will take
a few hours in a desktop computer. Nevertheless, for the first time it was realized that
irregular behavior can be observed in a very simple systems that describes a natural
phenomenon and that sensitivity to the initial conditions will make the behavior of
the system practically unpredictable. This is the same property we discussed with
the logistic equation, which we termed chaos.

The theory of chaos had to wait several decades until the development of
fast computers allowed such calculations. Then, in 1963, Edward Lorenz, an
atmospheric scientist at MIT, who was trying to explain why weather is unpre-
dictable, reduced the complicated physics of the atmospheric circulation into three
simple nonlinear differential equations (a differential equation describes changes
of a variable in time), which modeled the behavior of a fluid layer heated from
below. This is an approximation of what happens basically every day in the lower
atmosphere in our planet. The Sun rises, and the surface of planet absorbs solar
radiation and gets warm. Subsequently, the air gets warm by contact with the
warmer surface and rises. This rising motion leads to turbulent motion. When
Lorenz solved the equations and plotted the results he was surprised to see that
this turbulent motion was behaving quite randomly and never repeating exactly.
In addition, Lorenz found that this system is sensitive to the initial conditions. As
with the logistic equation, evolutions from two slightly different initial conditions
soon diverge and follow different evolutions. If we think of these two slightly
different initial conditions as the true state of the atmosphere and what we actually
measure (measurements always include some error, so we never really measure
the true state), then their divergence indicates loss of predictability. This was the
first time that somebody provided a scientific reason for why weather cannot be
predicted with accuracy after a few days. Lorenz published his results in the highly
respectable Journal of Atmospheric Sciences (Lorenz 1963). At that time, however,
meteorologists were occupied with other problems and did not pay attention to this
remarkable paper. It took more than a decade before mathematicians and physicists
discovered the paper for the theory of chaos to take of and develop to one of the
most important scientific theories of the twentieth century.

Does this mean that chaos is a major property of our universe? The problem
with answering this question is that while individual systems might be chaotic,
observations are often the result of many systems (some of which are chaotic
some of which regular) interacting and affecting each other. For example, when
we measure the vertical speed of the air inside a cloud, what system do we probe?
Is our system the cloud itself? Or is it the atmosphere or maybe the earth or even the
solar system? As we discussed above, in this case the actual chaos may be masked
and what we get is stochasticity. Nevertheless, in the last three decades laboratory
experiments as well as measurements of natural processes have shown that many
phenomena in many areas of science are chaotic. This evidence makes sensitivity to
the initial conditions a fundamental property of nature.
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Chaos has been called by the late American physicist Joseph Ford “Gödel’s
child.” Just as Gödel’s theorem tells us that there will always be questions in any
particular logical system that cannot be answered, chaos tells us that there are
physical questions that cannot be answered like, what the weather is going to be
in New York on November 19, 2021 (or some other date far in the future). For such
a prediction, the initial state of each molecule in the atmosphere worldwide should
be available to a precision that exceeds the limits imposed by quantum theory.

We should mention here that the unpredictability associated with chaos in natural
systems, like weather for example, is more complicated than that of an abstract
mathematical system, like the logistic equations, where the initial condition can
be specified exactly. In natural systems we have to measure the initial condition.
For example, to make a weather prediction we measure the temperature, pressure,
moisture, and other variables, and then, we set the system (equations) in motion
and see what happens. Measurements as we all know are subject to error. Every
time I travel to my office I pass places where digital thermometers show the
temperature. Somehow they all differ. This may be due to the natural variability
of the temperature field, but I have noticed that the two thermometers in my house
also never agree. Instruments are simply not exact. This will cause an uncertainty in
the measurements used to specify the initial condition of the atmosphere. In this case
we will start with an error. That error will couple with the round-off error introduced
by the computer and things will go bad even faster. Not to mention that the initial
state of the atmosphere is measured only at certain locations, thereby missing a lot
of information in between. This results not only in an inexact initial condition but
also in an incomplete one.

5.3 The Supreme Law

Imagine a container with two compartments, A and B, separated by a partition.
Also imagine that A is full of air while B is empty. If we remove the partition
what will happen? Obviously the air will expand to occupy both compartments. The
opposite phenomenon where the air in a room suddenly accumulates in one half
leaving the other half empty never happens. The impossibility of such events is due
to the second law of thermodynamics, often hailed as the supreme law of nature.

Let us consider in more detail the example with the two compartments. Before the
partition is removed the particles that make up the air are all in compartment A. This
picture actually represents an ordered state, simply because there are restrictions
for the particles. When the partition is removed the particles have no restrictions
and they can move anywhere they wish. Eventually they uniformly occupy both
compartments.

This is a state of equilibrium and from that point on, even though the particles
are free to move all over, chances are that the same number of particles will be
found in A and in B. This equilibrium state represents a state of lower order or
higher disorder. Now would you call this process a reversible process? In other
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words would you expect that the particles would just by themselves return to the
original ordered state? Some will argue that based on probability theory there is
always a chance that somehow all the particles will be found in compartment A
again, but I would not bet money on this. Even with a limited number of particles
this may take the age of the universe before it happens. We can, therefore, safely
assume that this process is irreversible. This irreversibility is directly related to
the increase of disorder. Physically, this expresses the second law, which says that
during an irreversible process the entropy of a system increases. Here, just to be
on the safe side, we must mention that our system of the two compartments is
considered isolated. In other words, it is alone and not interacting with anything
else. In this case we cannot argue that an external force can be invoked, which
will physically move all particles back to compartment A, thereby decreasing the
entropy. By the way, entropy comes from the Greek word "-£¡o š’, which means
the “inner behavior.”

In nature processes tend to be irreversible. In fact, unless a process is very much
controlled by an experiment it is always an irreversible one. A cloud forms, it rains,
and then dies out. You never see the opposite. A cup falls and breaks. You never
see broken fragments rising and forming a cup. The interpretation of this law for
the fate of our universe is fairly straightforward. Assuming that our universe is
an isolated system, all the transformations that happen within it result in a steady
increase of entropy with time. As such the universe is evolving toward a state
of maximum entropy. Therefore, once the maximum entropy has been reached it
cannot be increased any further. That simply means that there cannot be any changes
anymore. Thus, the maximum entropy corresponds to equilibrium and the second
law describes the general tendency of the universe to reach equilibrium.

All this sounds very matter of fact. Unlike quantum mechanics, nothing is weird
about our discussion in this section. You may be wondering that in this case there
is no place for randomness. Let us consider that we are dealing with four particles
all of them being initially in compartment A. In how many different ways can we
arrange four particles in A and no particles in B? The answer is obviously in one
way. Four particles in A and zero in B. Now we know that if we remove the partition
the particles will move around and will occupy both compartments uniformly (i.e.
without a preference in either compartment). Thus, we would expect that at any time
two particles will be in A and two in B. In this case, in how many different ways
can we have two particles in A and two particles in B? The answer to this question
is six.

The number of different ways to arrange particles in the two compartments is
called the number of complexions. Thus, we see that during our irreversible process
of particle dispersion, where the entropy is increasing, the number of complexions is
also increasing. In the late 1800s the Austrian physicist Ludwig Boltzmann proved
that this number of complexions is directly related to the entropy of the system and
indeed as the number of complexions increases entropy increases proportionally.

Are the above possibilities the only ones? Could we not have three particles in A
and one in B or vice versa? Of course we can. In this case the number of complexions
is four.
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Thus, altogether (including the possibility that all particles are in B) there are
12 possible particle configurations. Six out of those 12 configurations correspond to
maximum disorder, or maximum entropy, two correspond to minimum entropy and
four to some intermediate value.

It follows that the most probable state is the state of maximum entropy. It also
follows that the irreversibility of natural changes does not result from certainty but
from probability. There is a higher probability to tend toward the state of maximum
entropy than otherwise. We have thus discovered that the essential way in which
systems evolve is statistical and that in nature irreversibility is associated with
randomness. And since from the small-scale order we go to the large-scale disorder,
unlike in quantum mechanics where randomness defines the micro-cosmos, the
second law tells us that probability rules the macro cosmos. For completeness,
Boltzmann’s mathematical relationship between entropy (S) and the number of
complexions (P) is

S D k ln P C constant

where

P D NŠ=N1ŠN2Š

and N1 is the number of particles in A and N2 the number of particles in B.
Finally we should mention that since all subatomic particles obey quantum

mechanics and all matter is made out of these particles, quantum mechanics is
considered the most fundamental theory of nature. The rules of classical mechanics,
which are followed by large objects (regular or chaotic), should somehow emerge
from quantum mechanics. It is like an impressionist painting, which though fuzzy
when viewed close-up, produces a coherent picture when viewed from afar. The
connection between quantum mechanics and the macro-scale has not been achieved
yet. This may be because quantum theory is not complete. Or it may be that we
don’t understand it completely. Nevertheless, quantum mechanics has seen many
successes and applications in many areas. These include the prediction of the
existence and subsequent discovery of the particle positron, the explanation of the
formation of a positron and an electron when electromagnetic energy interacts with
matter, the operation of transistors, and the development of lasers. Due to that, while
it may be that it needs refining, quantum mechanics and its randomness is here to
stay. Quantum mechanics, chaos, and the second law are prime examples that our
universe in its infinite space does not just obey rules but that it is also inherently
random. Here again, as with the mathematical system, we find the concepts of
infinity, randomness, and rules, interweaved and working together.
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5.4 Randomness of the Fourth Kind?

Consider the game of chess. In chess 32 agents interact according to specific rules.
For the masters, the game evolves according to a plan but there may be moments
where for the next move more than one possibility may exist. Because of the
limited time between moves, the player cannot possibly go through all the possible
configurations and often has to use an “educated guess” or his free will. Based
on the choice, the outcome may be different. This uncertainty in the final result
is randomness introduced by free will. A high-speed computer, on the other hand,
could run all possible configurations and possibilities in the allotted time. In this
case the computation is faster than the evolution of the game and there is perfect
predictability: the computer will beat a human opponent all the time. As another
example, imagine a soccer player leading an attack toward the opponents’ net.
During his run, he often has to pass the ball to one of his teammates. The outcome of
the attack depends on which teammate will get the ball. Our player can pass the ball
to several of his teammates, but as he is advancing toward the opponents’ net he has
little time to compute all the possibilities open to him. Here again the computation is
slower than the evolution of the game and hence the player cannot make an accurate
prediction. As is often the case, our player makes a choice, which even though he
may be using his best judgment may not be the best choice. He simply uses his free
will.

The issue of free will is rather controversial. By definition, free will is the
conviction that humans have the capacity to choose their actions. It is a very divisive
issue among philosophers, and this author is the last scientist who will argue with
philosophers.

However, in the scientific realm (which is of interest here), free will implies that
decision making is not completely and necessarily determined by a physical prior
cause(s). If we accept the view of a completely deterministic universe then there is
simply no free will or randomness whatsoever. Everything has a cause, and the only
reason we don’t understand or cannot predict is absence of complete knowledge. If
on the other hand we reject determinism all together, then everything that happens
is independent of what happened before. What modern science and mathematics
pointing, however, is that both these two extremes are just extremes. The discussion
in this paper presents plenty of evidence that in our universe and in the mathematical
system that describes it, determinism and randomness coexist. I personally cannot
but accept the fact that free will exists in humans and that free will choices do not
necessarily require prior causes. In this case free will actions may through humans
introduce randomness in the universe. I will not go into the “weird” topic of whether
an electron has free will (I will leave this to philosophers) but it is easy to explain
how free will emerges in a deterministic universe.

We can thus see that there could be instances when humans would inject
randomness into their environment. The open question is whether or not it is only
humans that have free will or that it is also a property of the universe as a whole.
Could it be, for example, that the universe is a cellular automaton (as Stephen
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Fig. 8 Possible connections between the mathematical and physical systems

Wolfram contents,) and that it is impossible to devise a simulator that runs faster
than it, thereby, causing free will to emerge? I will not attempt to get myself into
such an abstract and philosophical issue but I will quote Ray Kurzweil from his
“Reflections on Stephen Wolfram’s A New Kind of Science”: “ : : : it should be
noted that it is difficult to explore concepts such as free will and consciousness
in a strictly scientific context because these are inherently first-person subjective
phenomena, whereas science is inherently a third person objective enterprise. There
is no such thing as the first person in science, so inevitably concepts such as free
will and consciousness end up being meaningless. We can either view these first
person concepts as mere illusions, as many scientists do, or we can view them as
the appropriate province of philosophy, which seeks to expand beyond the objective
framework of science” (Kurzweil 2003).

After all the discussion so far, you may wonder why nature chooses to be
irregular and unpredictable. Why is our universe not simple and regular? Well, this
is indeed an interesting question, which would be answered soon, but first we have
to make connections between the sources of randomness in the mathematical system
and those in the physical system.

6 Connections

Figure 8 summarizes the possible connections between the mathematical and
physical systems. First, let us take quantum mechanics. The randomness introduced
by the uncertainty principle results from assuming that a photon or an electron is
a system of superposed states or a wave packet. These wave packets make use
of the particle-wave duality. We know that the duality is a fact. But we are still
unable to explain why the duality exists. In this regard one may argue that we
simply cannot recover at this point the rules and as such randomness of the first
kind is generated. One might also conjecture that due to the inherited uncertainty
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in quantum mechanics, it will be subject to chaos. The area of quantum chaos is
of great interest in science today. Indeed, there have been many indications that
quantum systems display chaotic characteristics. This links quantum mechanics
with randomness of the second kind. Now suppose that, as is implied by modern
developments in theoretical physics, the universe began as a ten-dimensional bubble
of space out of which only four (time and the three spatial) dimensions expanded
to form the universe we live in. The other six dimensions simply compacted to
form what we call subatomic particles. In a sense then these particles live in a
ten-dimensional space, whereas they are observed in a four-dimensional space.
Then, what we observe is a projection of an object in a lower dimension. Such
a projection may result in observations that cannot be explained. For illustration
purposes consider the trajectory on the top Fig. 9. This trajectory is embedded in a
three-dimensional space. If we project this trajectory onto a two-dimensional space
we will obtain the result shown on the bottom of the Fig. 9. Now the trajectory
appears to intersect itself at one point. Every point in the two-dimensional picture
corresponds to a point in the three-dimensional picture except for the intersection
point, which represents two points in the three-dimensional picture. Thus, in a
lower dimension those two separate states appear superposed. If something like
this applies to our universe, then we simply do not have the complete picture
right. This in turn implies that we either do not know all the rules or we do not
have enough information about the initial state. These possibilities create again

Fig. 9 A three-dimensional trajectory projected onto a two-dimensional plane



624 A.A. Tsonis

randomness of the first and second kind. Finally, let us ponder on the many-words
interpretation of quantum mechanics. According to this interpretation the random
quantum processes cause the universe to split to as many copies as the possible
outcomes. Thus, when our soccer player is ready to pass the ball, quantum effects
at his brain lead to a superposition of many possibilities. All possibilities happen,
but they happen at different universes. In our universe what the player chooses (free
will) appears as a slight randomness. The splitting of the universes can then be seen
as a computationally irreducible process producing randomness from free will.

6.1 On Now to the Second Law

Recall that the second law dictates that for irreversible processes the entropy
increases. As we discussed earlier, this leads to the inevitable introduction of
probability and randomness in the macro-scale. Imagine you have a cup of warm
water and a cup of cold water. To start with, you have an amount of information
that specifies the difference in temperature between the two cups. You then pour
the water from both cups into a pan. What do you get? Simply, you get lukewarm
water. This is an irreversible process in which the entropy increases. Does this
lukewarm water retain any of the original information? Apparently, not. You cannot
say anything about the original temperatures anymore. This demonstrates that
irreversible process and entropy increase are associated with loss of information.
The same phenomenon occurs in chaotic systems. When we measure an initial
condition we may measure it with some uncertainty. Nevertheless, we do have
some information about the initial condition. For example, we may measure the
outside temperature with some error but we will have a pretty good idea of how
warm or cold it is. Whatever information we have in the measurement of the
initial condition is, however, lost in the future through the amplification of the
uncertainty we have in that measurement. This is the same as saying that the
system loses whatever information was supplied to it. It will then appear that the
second law may be connected with randomness of the first and of the second kind.
Alternatively, assuming that the system undergoing an irreversible transformation
is an assembly of many, many individual particles, each one obeying some simple
rules and interacting with every other particle, leads to stochasticity, the third kind
of randomness.

Compelling arguments can therefore be made that the same ways for generating
randomness suggested by pure mathematical systems may apply to real physical
systems.

As we mentioned before a key ingredient in all mechanisms of randomness
is infinity. In that regard randomness may be thought as an infinite-dimensional
(unrestricted) system, whereas rules can be thought as representing relatively
low-dimensional (restricted) systems. Thus, while rules confine the dynamics,
randomness acts without limits. This interplay creates most of the time “something”
in between. This “something” in between is often referred to as complexity, and it is
the major characteristic of our universe.
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7 The Role of Randomness

Imagine a group of small children in a playground. Small children have no fear of
having an accident. They have not yet developed this feeling. As such they tend to
move around irregularly changing activities and bumping into each other constantly.
Such a setup is always vulnerable to accidents. The question is how do we minimize
the chance for an accident? One way to eliminate accidents is to have one caretaker
per child. In this case, the caretaker is on constant alert guiding each child in all
its activities and making sure that no harm will come to it. This scenario amounts
to complete determinism with no randomness allowed in the system. This solves
the problem, but then all of us would have to become professional babysitters.
Simply, this solution is not efficient. It requires too much effort. A more efficient
solution would be to limit the area of activity (say, by putting a fence around the
playground) and have a few caretakers supervise the children. In this case accidents
may happen (and they do) but they will be much less frequent compared to the
number of accident when there are no rules or limits (randomness only).

Now imagine a parcel of air near the surface that is a perfect cube. As this cube
begins to rise it expands, its relative humidity increases, and eventually becomes
saturated. After that, as the parcel continues to rise, a cloud begins to form. But,
what happened to our initial parcel during this process? As we all know the shape of
a cloud is complex and no two clouds are alike. Given the fact that cubic clouds have
never been observed, the initial cube simply gives away to some irregular structure.
But why? One could imagine a process whereby each molecule in the original cube
moves in such a way as to always form a cube. We could actually devise artificial
rules that will have every molecule follow such an evolution. But can you imagine
the effort that our atmosphere will have to make in order to achieve this? Nature
will have nothing to do with processes like that. Instead, like the example with the
children, the rules are set and within these rules the molecules are left to move
randomly thus generating irregular cloud shapes.

Let’s now consider different examples. Languages were one of the first neces-
sities for humans. We simply had to communicate. But how do you think that
languages evolved? Take a little baby that begins to learn how to speak. What are the
first words? If there is something universal in our cultures it is that babies all over the
world begin muttering simple repetitive syllables like ba-ba, ma-ma, or something
similar. They then proceed by becoming more elaborate. There is evidence that
human language evolved similarly. In very primitive language words were made of
very repetitive basic sounds. In fact, successful decipherment of ancient languages
was based on finding repetitive units (Robinson 2002). This is true for music as well.
The organization of music normally involves basic material that may repeat exactly
or with variations, may alternate with other material, or may proceed continually to
present new material. Composers strike a balance between unity and variety, and all
pieces contain a certain amount of repetition. As with languages, music may also
have evolved from very simple repetitive musical blocks. In fact, early music was
very repetitive.
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The same has happened to the blueprint of life. Gene evolution is one of the
most important aspects of evolutionary and molecular biology. Early in the 1970s
the Japanese-American biologist Susumu Ohno advanced his ideas about a possible
mechanism of evolution by gene duplication (Ohno 1970). In short, Ohno suggested
that modern sequences arose from small pieces of genetic material (often called
primordial blocks), which found a way to duplicate. Once this was possible, further
duplication generated longer and longer sequences that led to the construction of
genes. The same mechanism resulted in the generation of novel genes, by gene
duplication, and new species by whole genome duplication. However, duplication
alone does not produce any novelty. Because of that, another mechanism was at
work together with the simple duplication. This mechanism is random mutation.
As the primordial blocks duplicated they also mutated, meaning that they made
slight changes in the repetition pattern. These random mutations are the key
ingredient of one of the most powerful theories in the history; Darwin’s theory
of evolution. In short, according to Darwin, life evolved by natural selection and
random mutations. Natural selection is the idea that individual species possess some
variation that gives them an advantage over other species when it comes to survival.
For example, imagine that in an isolated island populated by different species of
birds an environmental fluctuation has caused plants that produce small seeds to
die, but plants baring large seeds to survive. Because of some random mutation
in their past some of these birds have developed big beaks. Those birds have an
advantage in picking up the large seeds compared to those birds that did not have this
variation and remained with small beaks. Thus, the birds with the big beaks survive
and the birds with small beaks get extinct. Environmental fluctuations and random
mutations determined which species lived and which species died. The actual
mechanism for this randomness in mutations is still an open question. It is widely
believed that mutations arise from pure environmental factors. In this case the
randomness may be due to stochasticity. Recent analysis of DNA sequences has also
suggested that within this stochasticity some evidence can be identified suggesting
that a component of this randomness may be connected to chaotic processes (Tsonis
et al. 2002). Whatever the source of randomness, however, the point is that life with
its entire splendor is the result of a very simple rule (duplication) plus randomness.

The similarities in the properties of languages, music, and DNA may indicate
that all of them have employed a similar construction process in their evolution:
repetition and mutations (randomness). And apparently, this process does not apply
only to languages, music, and DNA. Given the plethora of self-similar structures in
nature (which are created by repeating a certain operation over and over again),
it would appear that there is something fundamental in evolving by copying or
repeating an operation and modifying it at random, and that this process was adopted
by both nature and humans in the early stages of evolution.

And why, you may ask, such a procedure became the favored one? The study
of languages, music, and DNA provides an interesting insight into this question. All
three of them share a common property. They all transmit information. Furthermore,
it is reasonable to assume that they all transmit information effectively and
efficiently. Something that is effective and efficient uses the least amount of effort to
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do what is supposed to do. There is no reason, for example, for nature to adopt a very
complex and expensive mechanism to transmit information or to do an operation.
A simple and economical procedure would be much more desirable. And what
can be simpler than repetition? It may not, thus, be surprising that once the art of
repetition or copying was “learned” it become a fundamental mechanism in nature
and in human dynamics. But, since pure repetition does not create innovations,
randomness was introduced to “spice” things up. I do not mean to imply that this
is the only mode operanti in the universe or that other more complicated rules
were not introduced later, but clearly simple rules and randomness do not just
coexist but they synchronize to produce an efficient and economic universe. It is
interesting to note here that many mathematical systems obeying simple rules (such
as cellular automata) have been reported, which copy or replicate themselves and
which through replication construct more complex structures (Langton 1986). The
period doubling observed in the dynamics of the logistic equation is also an example
of how duplication leads to complex behavior.

The above can be summed up by what Zipf called the principle of least effort or
what I call the principle of minimum energy consumption (Zipf 1949). Mathematical
and physical support for the minimum energy consumption of minimum dissipation
principle is provided by the work of Ilya Prigogine. Ilya Prigogine was born in
Moscow a few months before the revolution. His family left Russia in 1921 and
after spending a few years in Germany settled for good in Belgium. His work in
non-equilibrium thermodynamics (Prigogine 1980) won him the Nobel prize in
chemistry in 1977. Part of this work is the famous theorem of minimum entropy
production, which states that when a system cannot reach equilibrium, but operates
near equilibrium, the system settles to a state of minimum dissipation. Natural
systems (and for that matter social economic and other systems) can operate at
equilibrium, near equilibrium, and far from equilibrium. From all these sates we
can argue reasonably that the most preferred state is the near equilibrium state (far
from equilibrium represents extreme situations and complete equilibrium means no
more ability for changes). Accordingly, while the minimum energy consumption
or minimum dissipation principle is not a universal principle it does apply to most
phenomena observed in nature.

As Howard L. Resnikoff puts it in his book The Fusion of Reality “Fermat’s
classical variational principle of ‘least time’ and Maupertuis and Hamilton’s
principle of ‘least action’ express the parsimony of nature in a mathematical
form: the evolution of a physical system follows that path amongst all conceivable
alternatives that extremizes, i.e. maximizes or minimizes, a suitable cost function
such as time, action, or energy. Thus, the path of a ray of light through an
optically inhomogeneous medium minimizes the time required to pass from the
initial position to its emergent point” (Resnikoff 1989). In the same issue he argues
that since the final state of an irreversible process is rather unpredictable (due to
so many numbers of possible configurations), the final state of maximum entropy
is a priori quite unknown. In this case, any measurement of that state yields the
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maximum information possible about the system (simply because before that there
is no available information). In a sense this represents a minimum effort to know
something about the system. Therefore, maximization of entropy (and thus the
second law) is consistent with the principle of the least effort.

8 Summary

We started our adventure into randomness by looking exclusively at our formal
mathematical system and we saw that even in this pure and strictly logical system
one cannot do away with randomness. Rules and randomness are blended together
and are engulfed in the notion of infinity. Staying within the mathematical system
and employing simple mathematical models, we then discussed the three possible
sources of randomness: randomness due to inability to find the rules, randomness
due to inability to have infinite power (chaos), and randomness due to stochastic
processes. Subsequently we expanded from the mathematical system to our physical
world and we found out that randomness, through the quantum mechanical character
of small scales, through chaos, and because of the second law of thermodynamics, is
an intrinsic property of nature as well. We subsequently argued that the randomness
in the physical world is consistent with the three sources of randomness suggested
from the study of simple mathematical systems. Finally we suggested the principle
of least effort or the principle of minimum energy consumption as the underlying
principle behind this combination.

We can thus conclude that no matter how randomness comes about, randomness
and rules are bound together. They operate together. They synchronize together.
They shape our Universe and produce the reality we see and feel everyday in our
lives. Randomness emerges as a property of the Universe. This synergy between
rules and randomness makes them both equally important in the Universe. One
cannot exist without the other. While rules impose boundaries randomness acts
between boundaries. They interweave together like facts and fiction in a historical
novel. And overlooking this weaving is infinity, the one ingredient behind all
mechanisms generating randomness. Possibly, it is what may make them one and
the same thing.

I started with a quote by Aristotle, which I found appropriate to introduce the
discussion. I would like to end it by another quote by Aristotle, which I find
appropriate to the paper’s summary.

Since nothing accidental is prior to the essential neither are accidental causes prior. If, then,
luck or spontaneity is a cause of the material universe, reason and nature are causes before
it.

Aristotle, Metaphysics, Book XI, 8
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Insights in Climate Dynamics from Climate
Networks

Anastasios A. Tsonis

Abstract This review is a synthesis of work spanning the last 25 years. It is
largely based on the use of climate networks to identify climate subsystems/major
modes and to subsequently study how their collective behavior explains decadal
variability. The central point is that a network of coupled nonlinear subsystems
may at times begin to synchronize. If during synchronization the coupling between
the subsystems increases the synchronous state may, at some coupling strength
threshold, be destroyed shifting climate to a new regime. This climate shift manifests
itself as a change in global temperature trend. This mechanism, which is consistent
with the theory of synchronized chaos, appears to be a very robust mechanism of
the climate system. It is found in the instrumental records, in forced and unforced
climate simulations, as well as in proxy records spanning several centuries.

Keywords Networks • Climate subsystems • Synchronization • Climate
networks

1 Introduction

The flowchart in Fig. 1 provides the outline of this review. The story starts in
the mid-1980s when new and exciting approaches to nonlinearly analyze time
series made their appearance in atmospheric sciences. At that time very few in the
atmospheric sciences community had heard terminology such as “fractals,” “chaos
theory,” “strange attractors,” and the like. Soon, reports of “fractality” and “low
dimensionality” in climate records and other geophysical data begun to surface.
These climate records represented dynamics over different time scales ranging from
very long (thousands of years; Nicolis and Nicolis 1984) to very short (hours;
Tsonis and Elsner 1988). Virtually every report suggested underlying attractors of
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Fig. 1 Flowchart of the
outline of this review Low dimensional chaos

Notion of subsystems

Climate communities/
Teleconnections

Major climate modes

Interaction between modes

Climate shifts

Decadal variability

dimensions between 3 and 8. These early results suggested that climate variability
might indeed be described by relatively a few differential equations. This resulted
in both enthusiasm and hope that climate variability may be tamed after all, and in
fierce opposition. Fortunately, this “tug of war” did not eliminate interest in this new
theory; rather it led to a deeper understanding of the nonlinear character of nature
and to new insights about the properties of the climate system. This review is a
small part of what we have learned so far and it largely draws from our work over
the years.

The initial opposition to those dimension estimates seemed to be that in all these
studies the sample size was simply too small. While this issue has been debated
extensively (Smith 1988; Nerenberg and Essex 1990; Tsonis 1992; Tsonis et al.
1994), it still remains contentious. In a sense, it is naïve to imagine that our climate
system (a spatially extended system of infinite dimensional state space) is described
by a grand attractor, let alone a low dimensional attractor. If that were true, then
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all observables representing different processes should have the same dimension,
which is not likely the case based on the myriad of reported dimensions. In Tsonis
and Elsner (1989), it was suggested that if low dimensional attractors exist they
are associated with subsystems each operating at different space and/or time scales.
In his study on dimension estimates, Lorenz (1991) concurs with the suggestion
of Tsonis and Elsner (1989). These subsystems may be nonlinear and exhibit a
variety of complex behaviors. All subsystems are connected with each other, as
in a web, with various degrees of connectivity. Accordingly, any subsystem may
transmit “information” to another subsystem thereby perturbing its behavior. This
“information” plays the role of an ever-present external noise, which perturbs the
subsystem, and, depending on the connectivity of a subsystem to another subsystem,
the effect can be dramatic or negligible. Subsystems with weak connectivities will
be approximately “independent” and as such they may exhibit low dimensional
chaos. It is also possible that the connectivity between subsystems may vary in time
and this effect may dictate the variability of the climate system.

Thus, evidence of low dimensional chaos leads to the notion of climate subsys-
tems. Given this, the question arises. If subsystems exist in the climate system what
are they and what physics can we infer from them?

2 Searching for Subsystems

Answers on the nature, geographical basis, and physical mechanisms underlying
these subsystems are provided by recent developments in graph theory and net-
works. Networks relate to the underlying topology of complex systems with many
interacting parts. They have found many applications in many fields of sciences. In
the interest of completeness short introduction to networks is offered next.

A network is a system of interacting agents. In the literature an agent is called a
node. The nodes in a network can be anything. For example, in the network of actors,
the nodes are actors that are connected to other actors if they have appeared together
in a movie. In a network of species the nodes are species that are connected to other
species they interact with. In the network of scientists, the nodes are scientists that
are connected to other scientists if they have collaborated. In the grand network of
humans each node is an individual, which is connected to people he or she knows.
There are four basic types of networks.

a. Regular (ordered) networks. These networks are networks with a fixed number
of nodes, each node having the same number of links connecting it in a specific
way to a number of neighboring nodes (Fig. 2, left panel). If each node is linked
to all other nodes in the network, then the network is a fully connected network.
When the number of links per node is high, regular networks have a high (local)
clustering coefficient. In this case loss of a number of links does not break the
network into non-communicating parts. In this case the network is stable, which
may not be the case for regular networks with small local clustering. Also, unless
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Fig. 2 Illustration of a regular, a small-world, and a random network (after Watts and Strogatz
1998)

networks are fully connected, they have a large diameter. The diameter of a
network is defined as the maximum shortest path between any pair of its nodes.
It relates to the characteristic path length, which is the average number of links
in the shortest path between two nodes. The smaller the diameter, the easier is
the communication in the network.

b. Classical random networks. In these networks the nodes are connected at random
(Fig. 2, right panel). In this case the degree distribution is a Poisson distribution
(the degree distribution, pk, gives the probability that a node in the network
is connected to k other nodes). The problem with these networks is that they
have very small clustering coefficient and thus are not very stable. Removal of
a number of nodes at random may fracture the network to non-communicating
parts. On the other hand, they are characterized by a small diameter. Far away
nodes can be connected as easily as nearby nodes. In this case information may be
transported all over the network much more efficiently than in ordered networks.
Thus, random networks exhibit efficient information transfer but they are not
stable.

c. Small-world networks. In nature we should not expect to find either very regular
or completely random networks. Rather we should find networks that are efficient
in processing information and at the same time are stable. Work in this direction
led to a new type of network, which was proposed twelve years ago by the Amer-
ican mathematicians Duncan Watts and Steven Strogatz and is called small-world
network (Watts and Strogatz 1998). A “small-world” network is a superposition
of regular and classical random graphs. Such networks exhibit a high degree
of local clustering but a small number of long-range connections make them
as efficient in transferring information as random networks. Those long-range
connections do not have to be designed. A few long-range connections added
at random will do the trick (Fig. 2, middle panel). The degree distribution of
small-world networks is also a Poisson distribution.

d. Networks with a given degree distribution. The “small-world” architecture can
explain phenomena such as the six-degrees of separation (most people are friends
with their immediate neighbors but we all have one or two friends a long way
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away), but it really is not a model found often in the real world. In the real
world the architecture of a network is neither random nor small-world but it
comes in a variety of distributions such as truncated power-law distributions,
Gaussian distributions, power-law distributions, and distributions consisting of
two power-laws separated by a cutoff value (for a review see Strogatz 2001).
The most interesting and common of such networks are the so-called scale-free
networks. Consider a map showing an airline’s routes. This map has a few hubs
connecting with many other points (super nodes) and many points connected to
only a few other points, a property associated with power-law distributions. Such
a map is highly clustered, yet it allows motion from a point to another far away
point with just a few connections. As such, this network has the property of small-
world networks, but this property is not achieved by local clustering and a few
random connections. It is achieved by having a few elements with large number
of links and many elements having very few links. Thus, even though they share
the same property, the architecture of scale-free networks is different than that
of “small-world” networks. Such inhomogeneous networks have been found
to pervade biological, social, ecological, and economic systems, the internet,
and other systems (Albert et al. 1999; Liljeros et al. 2001; Jeong et al. 2001;
Pastor-Satorras and Vespignani 2001; Bouchaud and Mezard 2000; Barabasi and
Bonabeau 2003). These networks are referred to as scale-free because they show
a power-law distribution of the number of links per node. Lately, it was also
shown that, in addition to the power-law degree distribution, many real scale-
free networks consist of self-repeating patterns on all length scales (Song et al.
2005). These properties are very important because they imply some kind of
self-organization within the network. Scale-free networks are not only efficient
in transferring information, but due to the high degree of local clustering they
are also very stable (Barabasi and Bonabeau 2003). Because there are only a few
super nodes, chances are that accidental removal of some nodes will not include
the super nodes. In this case the network would not become disconnected. This
is not the case with weakly connected regular or random networks (and to a
lesser degree with small-world networks), where accidental removal of the same
percentage of nodes makes them more prone to failure (Barabasi and Bonabeau
2003).

The topology of the network can reveal important and novel features of the
system it represents (Albert and Barabasi 2002; Strogatz 2001; da F. Costa et al.
2007). One such feature is communities (Newman and Girvan 2004). Communities
represent groups of densely connected nodes with only a few connections between
groups. It has been conjectured that each community represents a subsystem,
which operates relatively independent of the other communities (Arenas et al.
2006). Thus, identification of these communities can offer useful insights about
dynamics. In addition, communities can be associated with network functions
such as in metabolic networks where certain groups of genes have been identified
that perform specific functions (Holme et al. 2003; Guimera and Amaral 2005).



636 A.A. Tsonis

Recently, concepts from network theory have been applied to climate data organized
as networks with impressive results (Tsonis et al. 2006, 2007, 2008; Tsonis and
Swanson 2008; Yamasaki et al. 2008; Gozolchiani et al. 2008; Swanson and Tsonis
2009, Elsner et al. 2009; Tsonis et al. 2011).

Figure 3 is an example of a climate network showing the area-weighted connec-
tivity (number of edges) at each geographic location for the 500 Hpa height field.
More accurately it shows the fraction of the total global area that a point is connected
to. This is a more appropriate way to show the architecture of the network because
the network is a continuous network defined on a sphere [see Tsonis et al. 2006 for
details]. These data are derived from the global National Center for Environmental
Prediction/National Center for Atmospheric Research (NCEP/NCAR) atmospheric
reanalysis data set (Kistler et al. 2001). In Fig. 3 we observe two very interesting
features. In the tropics it appears that all nodes possess more or less the same (and
high) number of connections, which is a characteristic of fully connected networks.
In the extratropics it appears that certain nodes possess more connections than the
rest, which is a characteristic of scale-free networks. In the northern hemisphere we
clearly see the presence of regions where such super nodes exist in China, North
America, and Northeast Pacific Ocean. Similarly several super nodes are visible in
the southern hemisphere. These differences between tropics and extratropics have
been delineated in the corresponding degree distributions, which suggest that indeed
the extratropical network is a scale-free network characterized by a power-law
degree distribution (Tsonis et al. 2006). As is the case with all scale-free networks,
the extratropical network is also a small-world network (Tsonis et al. 2006).

An interesting observation in Fig. 3 is that super nodes may be associated with
major teleconnection patterns. For example, the super nodes in North America and
Northeast Pacific Ocean are located where the well-known Pacific North America
(PNA) pattern (Wallace and Gutzler 1981) is found. In the southern hemisphere
we also see super nodes over the southern tip of South America, Antarctica, and
South Indian Ocean that are consistent with some of the features of the Pacific South
America (PSA) pattern (Mo and Higgins 1998). Interestingly, no such super nodes
are evident where the other major pattern, the North Atlantic Oscillation (NAO)
(Thompson and Wallace 1998; Pozo-Vazquez et al. 2001; Huang et al. 1998), is
found. This, however, does not indicate that NAO is an insignificant feature of
the climate system. Since NAO is not strongly connected to the tropics, the high
connectivity of the tropics with other regions is masking NAO out (Tsonis et al.
2008). Indeed if we consider only the extratropics the resulted network is dominated
by NAO (Fig. 4).

This is also indicated by the community structure of the 500 HPa network (Fig. 3)
shown in Fig. 5 (for details, see Tsonis et al. 2011). The total number of communities
is 47. Many of these communities, however, consist of very few points in the
boundaries between a small number of dominant communities (think of a country
whose population is not only dominated by two races but also includes small groups
of other races). Evidently the effective number of communities is, arguably, four
(delineated as purple, blue, green, and yellow-red areas). We observe that three
of the effective four communities correspond to a latitudinal division 90 S–30 S,
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Fig. 3 Total number of links (connections) at each geographic location. More accurately it shows
the fraction of the total global area that a point is connected to. This is a more appropriate way
to show the architecture of the network because the network is a continuous network defined on a
sphere. The uniformity observed in the tropics indicates that each node possesses the same number
of connections. This is not the case in the extratropics where certain nodes possess more links
than the rest. The definition of a link is based on cross-correlations at lag zero (r) between the
time series of any pair of points (nodes). Note that since the values are monthly anomalies there
is very little autocorrelation in the time series. A pair is considered as connected if the absolute
value of their cross-correlation jrj � 0.5. This criterion is based on parametric and non-parametric
significance tests. According to the t-test, a value of r D 0.5 is statistically significant above the
99% level. In addition, randomization experiments where the values of the time series of one node
in a pair are scrambled and then are correlated to the unscrambled values of the time series of
the other node indicate that a value of r D 0.5 will not arise by chance. The choice of r D 0.5
while it guarantees statistical significance is somewhat arbitrary. We find that while other values
might affect the connectivity structure of the network, the effect of different correlation thresholds
(between 0.4 and 0.6) does not affect the conclusions. Obviously, as the threshold r ! 1 we
end up with a random network and as r ! 0 we remain with just one fully connected community.
The use of the correlation coefficient to define links in networks is not new. Correlation coefficients
have been used to successfully derive the topology of gene expression networks (Farkas et al.
2003) and to study financial markets (Mantegna 1999). Other ways to define a link exist. Donges
et al. (2009a, b), for example, have used the mutual information instead when they construct the
networks. We believe that any way to define a link is adequate if it delineates features of the system.
In our case it is consistent with the known features in the climate systems such as ENSO, NAO,
and PNA
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Fig. 4 Same as Fig. 3 but only for the extratropics (north of 30ı)

30 S–30 N, and 30 N–90 N. This three-zone separation is not a trivial separation
into northern hemisphere winter, southern hemisphere summer, and the rest of
the world, because when we repeat the analysis with yearly averages rather than
seasonal values we also see evidence of this three-zone separation. This separation
is consistent with the transition from a barotropic atmosphere (where pressure
depends on density only; appropriate for the tropics–subtropics) to a baroclinic
atmosphere (where pressure depends on both density and temperature; appropriate
for higher latitudes). Another possibility is that it reflects the well-known three-zone
distribution of variance of the surface pressure field. Within the third community
(green area) another community (yellow-red) is embedded. This community is
consistent with the presence of major atmospheric teleconnection patterns such
as the Pacific North America (PNA) pattern and the North Atlantic Oscillation
(NAO) (Wallace and Gutzler 1981; Barnston and Livezey 1987). We note here that
NAO (which has been lately suggested of being a three-pole pattern rather than
a dipole; Tsonis et al. 2008) and AO (Arctic Oscillation; Thompson and Wallace
1998) are often interpreted as manifestations of the same dynamical mode, even
though in some cases more physical meaning is given to NAO (Ambaum et al.
2001). In any case, here we do not make a distinction between NAO and AO. We
note that similar results are obtained for other observed fields (such as the surface
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Fig. 5 Community structure of the network in Fig. 3. The number below the shading key indicates
the total number of communities (see text for more details)

air temperature and sea level pressure, where influences of ENSO and PDO are
present), as well as in model-simulated fields (Tsonis et al. 2011). We note that
in spatially extended systems it is possible that spatial correlation may produce
spurious ‘small-world’ networks (Bialonski et al. 2010; Hlinka et al. 2012; Palus
et al. 2011). For our climate networks we have shown (Tsonis et al. 2011) that the
network structure derived from spatio-temporal surrogate data on a sphere, which
are spatially correlated with a de-correlation distance of 3000 Km, is not consistent
with the network structure of the observed fields. This provides confidence that our
networks and their structures are not an artifact of spatial correlations.

It is interesting to compare Figs. 3 and 5. Apparently there are similarities
(the three-zone separation, for example), but the community algorithm identifies
NAO clearly whereas in Fig. 3 as we mentioned earlier NAO is masked. Due
to barotropic conditions in the tropical areas communication via gravity waves
is fast and as result the information flows very efficiently resulting in a fully
connected network in the tropics. In the extratropics super nodes are found in
locations where major teleconnection patterns are found, which in turn define
distinct communities in the network. It may be that in spatially extended systems
with spatial correlations extending over a characteristic scale, the connectivity
pattern is related to community structure. In any case since the presence of super
nodes makes the network stable and efficient in transferring information, it has
speculated and shown that indeed teleconnection patterns act as climate stabilizers.
Tsonis et al. (2008) have shown that removal of teleconnection patterns from the
climate system result in less stable networks, which makes an existing climate
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Fig. 6 Summary of synchronization events, coupling between the modes during these events, and
climate shifts. See text for details

regime unstable and more likely to shift to a new regime. Indeed they showed
that this process may be behind the climate shift of the 1970s, and related to the
dynamical mechanism for major climate shifts discussed above. Figure 7 shows
500 HPa anomaly composites for three 5-year periods in the 1970s and early 1980s.
In the early 1970s (top panel) the 500 HPa anomaly field is dominated by the
presence of a wave-3 pattern with both the PNA and NAO (in its negative phase)
being very pronounced. In the mid-1970s (middle panel) this field is very weak
and both NAO and PNA have for all practical purposes disappeared. After that
(lower panel), the field becomes strong again but a new wave-2 pattern with a very
pronounced positive NAO has emerged. This shift is known as the climate shift of
the 1970s. According to the Tsonis et al. (2007) mechanism for major climate shifts
climate modes may synchronize. Once in place, the synchronized state may become
unstable and shift to a new state. The results of Tsonis et al. (2008) and those in
Fig. 6 suggest a connection between stability, synchronization, coupling of major
climate modes, and climate shifts. This point is the subject of our continuing work
in this area and more results will be forthcoming in the future.

In summary, the results outlined in this section suggest that climate networks are
characterized by super nodes and a small number of communities, which relate to
major teleconnection patterns/climate modes. Having established this, we proceed
with our discovery of a mechanism for climate shifts based on the interaction of
major climate modes.
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Fig. 7 Five hundred HPa
anomaly field composites for
the period 1969–1974 (top),
1973–1978 (middle), and
1977–1982 (bottom). On the
top a wave-3 pattern is visible
with PNA and NAO in its
negative phase being present.
In the middle, both NAO and
PNA have for all practical
purposes disappeared. In the
bottom the field emerges as a
wave-2 pattern with NAO in
its positive phase. As we
explain in the text this
transition (known as the
climate shift of the 1970s) is
consistent with our conjecture
that removal of super nodes
makes the (climate) network
unstable and more prone to
failure (breakdown of a
regime and emergence of
another regime)
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3 Interaction Between Subsystems

One of the most important events in recent climate history is the climate shift in
the mid-1970s (Graham 1994). In the northern hemisphere 500-HPa atmospheric
flow the shift manifested itself as a collapse of a persistent wave-3 anomaly pattern
and the emergence of a strong wave-2 pattern. The shift was accompanied by sea-
surface temperature (SST) cooling in the central Pacific and warming off the coast
of western North America (Miller et al. 1994). The shift brought sweeping long-
range changes in the climate of the northern hemisphere. Incidentally, after “the dust
settled,” a new long era of frequent El Niño events superimposed on a sharp global
temperature increase begun. While several possible triggers for the shift have been
suggested and investigated (Graham 1994; Miller et al. 1994; Graham et al. 1994),
the actual physical mechanism that led to this shift is not clear. Understanding the
dynamics of such phenomena is essential for our ability to make useful prediction of
climate change. A major obstacle to this understanding is the extreme complexity
of the climate system, which makes it difficult to disentangle causal connections
leading to the observed climate behavior.

First a network from four major climate indices was constructed. The indices
represent the Pacific Decadal Oscillation (PDO), the North Atlantic Oscillation
(NAO), the El Niño/Southern Oscillation (ENSO), and the North Pacific Index
(NPI) (Barnston and Livezey 1987; Hurrell 1995; Mantua et al. 1997; Trenberth
and Hurrell 1994). These indices represent regional but dominant modes of climate
variability, with time scales ranging from months to decades. NAO and NPI are
the leading modes of surface pressure variability in northern Atlantic and Pacific
Oceans, respectively, the PDO is the leading mode of SST variability in the northern
Pacific and ENSO is a major signal in the tropics. Together these four modes
capture the essence of climate variability in the northern hemisphere. Each of
these modes is assumed to represent a subsystem involving different mechanisms
over different geographical regions. Indeed, some of their dynamics have been
adequately explored and explained by simplified models, which represent subsets of
the complete climate system and which are governed by their own dynamics (Elsner
and Tsonis 1993; Schneider et al. 2002; Marshall et al. 2001; Suarez and Schopf
1998). For example, ENSO has been modeled by a simplified delayed oscillator
in which the slower adjustment time scales of the ocean supply the system with
the memory essential to oscillation. Monthly mean values in the interval 1900–
2000 are available for all indices (http://jisao.washington.edu/data sets, for NAO,
PDO, and El Nino, http://climatedataguide.ucar.edu/guidance/north-pacific-index-
npi-trenberth-and-hurrell-monthly-and-winter, for NPI).

An important aspect in the collective behavior of coupled nonlinear oscillators is
synchronization and coupling strength. The theory of synchronized chaos predicts
that in many cases when such systems synchronize, an increase in coupling between
the oscillators may destroy the synchronous state and alter the system’s behavior
(Heagy et al. 1995; Pecora et al. 1997). It should be noted that in those studies
coupling strength is determined by a parameter which is allowed to increase and

http://jisao.washington.edu/data
http://climatedataguide.ucar.edu/guidance/north-pacific-index-npi-trenberth-and-hurrell-monthly-and-winter
http://climatedataguide.ucar.edu/guidance/north-pacific-index-npi-trenberth-and-hurrell-monthly-and-winter
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the focus is in the perfect synchronization among the modes (i.e., the cross-
correlation between outputs of the synchronized coupled systems is one), rather than
weaker types of synchronization, such as phase synchronization (Boccaletti et al.
2002; Maraun and Kurths 2005) or clustered synchronization (Zhou and Kurths
2006), which are also important in climate interactions. In view of this theory
we investigated whether our climate modes synchronize and when they do how
synchronization relates to coupling strength between the modes. It is vital to note
that synchronization and coupling are not interchangeable; for example, it is trivial
to construct a pair of coupled simple harmonic oscillators whose displacements are
in quadrature (and hence perfectly uncorrelated), but whose phases are strongly
coupled (Vanassche et al. 2003). In our case, synchronization is defined from the
sum of cross-correlations of all pairs in the network over a sliding time window,
and coupling is measured by how well the phase between pairs of climate modes
is predicted using information about the current phase (Tsonis et al. 2007). Note
that according to our definition of coupling strength, if the modes are perfectly
synchronized, their states are equivalent and thus coupling strength cannot increase
further. Since our network of modes represents signals of a complex physical system
where noise is also present, synchronization cannot be perfect but statistically
significant (for details, see Tsonis et al. 2007). As such it is possible for the modes to
enter into a synchronized state in a period when the coupling strength is decreasing
and that de-synchronization may not happen when coupling strength is maximum.

The results from the observations are summarized in Fig. 6. This figure shows the
yearly anomaly values of global temperature (blue negative anomalies, red positive
anomalies). The black solid line is a smoothed version of this record. It is evident
from the smoothed version that on decadal time scales there are times when the
global temperature trend is shifting from negative to positive and vice-versa. These
“shifts” are superimposed on a low frequency signal known as “global warming.”
Here we are not interested on the origins of the low frequency signal. Rather we
are interested in the departures from this signal over decadal time scales. The part
of the black line that is colored yellow indicates that the four climate modes are
synchronized during a period when the coupling between the modes is not increas-
ing. The part colored green indicates periods when the modes are synchronized and
the coupling is increasing. Thus, we see that the network synchronized six times.
In the periods 1908–1913, 1921–1925, 1932–1943, 1952–1957, 1975–1979, and
1998–2003. In the periods 1921–1925, 1932–1938, 1952–1957 synchronization is
not associated with an increasing coupling strength and no change in the temperature
trend is taking place. However, in the periods 1908–1913, 1939–1943, 1975–1979,
and 1998–2003, synchronization is associated with an increase in coupling strength.
As the modes keep on synchronizing and the coupling strength keeps on increasing,
at some coupling threshold the synchronized state is destroyed and climate shifts
into a new state characterized by a reversal in global temperature trend. This
mechanism appears to be an intrinsic mechanism of the climate system as it is
found in both control and forced climate simulation (Tsonis et al. 2007; Wang et al.
2009). It also appears to be a very robust mechanism. In all 13 synchronization
events found in the observations and model simulations, once the modes begin to
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synchronize while the coupling is increasing, de-synchronization and the impeding
shift happen at some coupling strength threshold. Due to noise/uncertainties in the
data, synchronization cannot be perfect and this threshold is not always the same or
always maximum at de-synchronization. Once the modes are de-synchronized the
coupling may continue to increase as the modes may fall into phase with each other.
This is consistent with the general theory of synchronized chaos where coupling
strength may keep on increasing after de-synchronization. No shift ever occurred
when during the synchronous state the coupling strength was decreasing. Lately
Tsonis and Swanson (2011) extended their analysis to consider proxy data for
climate modes going back several centuries. While noise in the proxy data in some
cases masks the mechanism, it was found that significant coherence between both
synchronization and coupling and global temperature exists. These results provide
further support that the discussed here mechanism for climate shifts is a robust
feature of the climate system.

The above results refer to the collective behavior of the four major modes
used in the network. As such they do not offer insights on the specific details of
the mechanism. For example, do small distance values (strong synchronization)
result from all modes synchronizing or from a subset of them? When the network
is synchronized, does the coupling increase require that all modes must become
coupled with each other? To answer these questions Wang et al. (2009) split the
network of four modes into its six pair components and investigated the contribution
of each pair in each synchronization event and in the overall coupling of the network.
It was found that one mode is behind all climate shifts. This mode is the NAO. This
north Atlantic mode is without exception the common ingredient in all shifts and
when it is not coupled with any of the Pacific modes no shift ensues. In addition, in
all cases where a shift occurs NAO is necessarily coupled to north Pacific. In some
cases it may also be coupled to the tropical Pacific (ENSO) as well, but in none
of the cases NAO is only coupled to ENSO. Thus, results indicate that not only
NAO is the instigator of climate shifts but that the likely evolution of a shifts has a
path where the north Atlantic couples to north Pacific, which in turn couples to the
tropics. Solid dynamical arguments and past work offer a concrete picture of how
the physics may play out. NAO with its huge mass re-arrangement in north Atlantic
affects the strength of the westerly flow across mid-latitudes. At the same time
through its “twin,” the arctic Oscillation (AO), it impacts sea level pressure patterns
in the northern Pacific. This process is part of the so-called intrinsic mid-latitude
northern hemisphere variability (Vimont et al. 2001, 2003). Then this intrinsic
variability through the seasonal footprinting mechanism (Vimont et al. 2001, 2003)
couples with equatorial wind stress anomalies, thereby acting as a stochastic
forcing of ENSO. This view is also consistent with a recent studies showing that
PDO modulates ENSO (Gershunov and Barnett 1998; Verdon and Franks 2006).
Another possibility of how NAO couples to north Pacific may be through the
five-lobe circumglobal waveguide pattern (Branstator 2002). It has been shown
that this waveguide pattern projects onto NAO indices and its features contribute
to variability at locations throughout northern hemisphere. Finally, north Atlantic
variations have been linked to northern hemisphere mean surface temperature
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multidecadal variability through redistribution of heat within the northern Atlantic
with the other oceans left free to adjust to these Atlantic variations (Zhang et al.
2007).1 Thus, NAO, being the major mode of variability in the northern Atlantic,
impacts both ENSO variability and global temperature variability. Recently a study
has shown how ENSO with its effects on PNA can, through vertical propagation of
Rossby waves, influence the lower stratosphere and how in turn the stratosphere can
influence NAO through downward progression of Rossby wave (Ineson and Scaife
2009). These results coupled with our results suggest the following 3-D super-loop:
NAO ! PDO ! ENSO ! PNA ! stratosphere ! NAO, which captures the
essence of decadal variability in the northern hemisphere and possibly the globe.

This co-variability of climate modes and its influence on global temperature has
recently been confirmed by a different approach. Wyatt et al. (2011) analyzed the
lagged covariance structure of a network of climate indices and discovered the so-
called stadium wave; a sequence of lagged atmospheric and oceanic teleconnections
leading to northern hemisphere temperature reversals every about 30 years. Lately,
Wang et al. (2012) investigate whether the collective role of these modes is extended
within a regime, i.e., to shorter time scales. They applied nonlinear prediction in
order to assess directional influences in the climate system. They showed evidence
that input from four major climate modes from the Atlantic and Pacific improves
the prediction of global temperature and thus these modes Granger cause global
temperature. Moreover, they found that this causality is not a result of a particular
mode dominating but a result of the nonlinear collective behavior in the network of
the four modes.

4 Conclusions

The above synthesis describes some new approaches that have been applied lately to
climate data. The findings presented here and in the references may settle the issue
of dimensionality of climate variability over decadal scales, as they support the view
that over these scales climate collapses into distinct subsystems whose interplay
dictates decadal variability. At the same time these results provide clues as to what
these subsystems might be. As such, while ‘weather’ may be complicated, ‘climate’
may be complex but not complicated. Moreover, it appears that the interaction
between these subsystems may be largely responsible for the observed decadal
climate variability. A consequence of these results is that a dynamical reconstruction
directly from a small number of climate modes/subsystems may be attempted to
extract differential equations which model the network of major modes. Such an

1In (Elsner 2007) it is shown that global temperature Granger causes (leads) North Atlantic SST.
It may be that the discrepancy between these two studies lies in the bi-directionality between the
two variables, which is often the case in Granger causes.
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approach may provide an alternative and direct window to study decadal variability
in climate. Work in this area is in progress and will be reported in the future
elsewhere.
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On the Range of Frequencies of Intrinsic
Climate Oscillations

Anastasios A. Tsonis and Michael D. Madsen

Abstract The purpose of this work is to establish the limits of natural oscillations
in the climate system, i.e., not attributed to alleged anthropogenic effects. To this
end we considered many proxy climate records representing the state of climate in
the past when human activity was not a factor.

Keywords Climate oscillations • Natural variability

1 Introduction and Data

Twenty different reconstructed short-length proxy temperature records, six instru-
mental temperature records as well as five long-length proxy temperature records
(four of which are ice-core reconstructed temperature records and the other recon-
structed temperature record being from marine benthic oxygen isotopes) were
analyzed in this study. The twenty reconstructed proxy temperature records rep-
resent annual means and range in length, location, and type. The six instrumental
temperature records are monthly mean records and were all located in central
Europe. They range in length from 231 to 247 years. Four of the long proxies are ice
cores and one is a global marine benthic oxygen isotope record. Three of them have
uneven time interval, while in two of them the values are spaced 500 years apart.

The details of the records used in this paper are as follows: Laguna Aculeo, Chile,
summer mean sediment pigments, (856–1997 AD) (Von Gunten et al. 2009); Baffin
Island, Canada, summer mean sediment thickness, (752–1992 AD) (Moore et al.
2003); Canadian Rockies, Canada, summer mea tree-ring thickness, (950–1994
AD) (Luckman and Wilson 2006); Firth, Alaska, summer mean tree-ring thickness,
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(1073–2002 AD) (Anchukaitis et al. 2013); Canadian Rockies, tree-ring thickness
(950–1994 AD) (Luckman and Wilson 2006); Iceberg Lake, Alaska, annually varve
thickness, (442–1998 AD) (Loso 2008); Gulf of Alaska, summer mean tree-ring
thickness, (724–1999 AD) (Wilson et al. 2007); Idaho, USA, annually July mean
tree-ring thickness, (1135–1992 AD) (Biondi et al. 2006); North Andes, South
America, annual mean tree-ring thickness, 1640–1987 AD), South Andes, South
America, annual mean tree-ring thickness, (1640–1993 AD) (Villalba et al. 2006);
Beijing, China, summer mean stalagmite thickness, (�665–1985 AD) (Tan et al.
2003); Central Europe, annual mean documentary data, (1005–2001 AD) (Glaser
and Riemann 2009); China, annual multi-proxy reconstruction, (1000–1950 AD)
(Shi et al. 2012); Cold Air Cave, South Africa, 5-year smoothed annual stalagmite
isotope, (1635–1993 AD) (Sundqvist et al. 2013); European Alps, summer mean
tree-ring and sediment thickness, (1053–1996 AD) (Trachsel et al. 2012); Lake
Silvaplana, Switzerland, summer mean visible reflectance spectroscopy of lake
sediment, (1175–1949 AD) (Trachsel et al. 2010); Slovakia, Europe, summer
mean tree-ring, (1040–2011 AD) (Büntgen et al. 2013); Sweden, Europe, summer
mean tree-ring, (1107–2007 AD) (Gunnarson et al. 2011); Tornetrask, Sweden,
annual tree-ring, (500–2004 AD) (Grudd 2008); West Qinling Mts., China, annual
tree-ring, (1500–1995 AD) (Yang et al. 2013); Spannagel Cave, Europe, stalagmite
thickness, (-9–1935 AD) (Mangini et al. 2005); Paris, France, monthly mean
instrumental, (1764–2000 AD) (Météo France 2012); Hohenpeißenberg, Germany,
monthly mean instrumental, (1781–2013 AD) (Climate Research Unit CRU 2012);
Kremsmunster, Austria, monthly mean instrumental, (1767–2013 AD) (Auer et al.
2007); Munich, Germany, monthly mean instrumental, (1781–2011 AD) (Deutscher
Wetterdienst DWD 2012); Prague, Austria, monthly mean instrumental, (1771–
2013 AD) (Czech Hydrometeorological Institute CHMI 2012); Vienna, Austria,
monthly mean instrumental, (1775–2013 AD) (Climate Research Unit CRU 2012);
Dome Fuji, Antarctica, ice core, (�339500–750 AD) (Kawamura et al. 2007);
EPICA Dome C, Antarctica, ice core, (�800,000–1900 AD) (Jouzel et al. 2007);
GISP2 ice core, central Greenland, ice core, (�48000–1850 AD) (Alley 2004);
Global 1Ma Temperature, marine benthic oxygen isotopes, (�1067900–2000 AD)
(Bintanja et al. 2005); Vostok, Antarctica, ice core, (�470766–2000 AD) (Petit et al.
1999).

For the analysis here, all six instrumental monthly records were converted
to yearly mean records. The uneven records were interpolated to fill in missing
values and to create 500-year-interval records. For interpolation we employed the
piecewise cubic spline interpolation function in Matlab

®
(interp1).

2 Method and Results

In this study, we used the simple method of discrete Fourier transform (DFT) as our
method for spectral analysis. DFT converts finite, equal spaced time domain sam-
ples, temperature records, into a finite combination of complex sinusoids ordered by
their frequencies. Note that interpolation can result in enhancing lower frequencies
and reducing higher frequency components (Schulz and Mudelsee 2002). To verify
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that our interpolation has little to no effect on the frequency components, our
interpolated temperature records’ DFT spectral analyses are compared to the
spectral analysis using the Lomb–Scargle periodogram method. We found that both
peak frequency and intensity are comparable between the two methods.

Each temperature record used in this study was first detrended using the Matlab
®

function (detrend). In order to obtain more frequency steps in the DFT spectral
analysis, zero padding was applied to both ends of the temperature records to
create temperature records of equal length of N D 10000 time steps. Then for
each temperature record we employed the discrete Fourier transform using the
fast Fourier transform function in Matlab

®
(fft). The output of this function was

a combination of complex sinusoids in the form A C Bi, where A and B are a pair of
harmonic predictors which can be found using:

Ak D
2

N

NX
iD1

yi cos
2�ki�t

T

Bk D
2

N

NX
iD1

yi sin
2�ki�t

T

for W k D 1;
N

2
� 1

A N
2

D
1

N

NX
iD1

yi cos
�Ni�t

T

A0 D
1

N

X
yi

B0 D B N
2

D 0

where �t is the time interval, yn D y(tn) n D 1 , N , and T D N�t. To find the variance
associated with a given pair of harmonic predictors (Ck):

Ck D
Ak
2 C Bk

2

2

Ck gives us the power values for the power spectrum. The power values for each
spectrum were then normalized by dividing by the area comprised by the whole
spectrum. For this to happen it first must be pointed out that by using this method,
only half of the spectrum is retrieved as the second half is just a mirror image of
the first half. Therefore, in order to be able to normalize each spectrum by dividing
by the area of the whole spectrum, we must double the area of the first half of the
spectrum. Since the focus of this study is on climate periodicities, each graph has
an upper frequency limit of 0.04 year�1 or periodicity of 25 years.

In order to obtain significant peaks within the DFT power spectra, we must
estimate an appropriate 95% confidence level. For this study the 95% confidence
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level was established by using 1000 Monte Carlo synthetic runs using fractional
Brownian motions (fBms). It has been shown in the past (Koscielny-Bunde et al.
1998), and was verified here for all records, that temperature records do indeed have
properties of fractional Brownian motions with an exponent (also referred to as the
Hurst exponent) greater than 0.5. This is statistically desired because in this case
surrogate data can be generated to assist in the statistical significance of the results.
The Hurst Exponent can vary between 0.0 and 1.0. The range between 0.5 and 1.0
corresponds to persistence while the range between 0.0 and 0.5 corresponds to anti-
persistence. First, in order to use fBms as surrogates, each temperature record must
be examined to verify that it is indeed an fBm. To calculate the Hurst exponent
(Feder 1988) of a time series:

yn D y .tn/nD1;N

First, find the mean of the time series:

M D
1

N

NX
iD1

yi

Then calculate the deviations from the mean:

x1 D y1 � M
x2 D y2 � M

� � �

xn D n � M

Next, calculate the cumulative sums:

Z1 D x1
Z2 D x1 C x2

� � �

Zn D
Pn

iD1 xi

Compute the range:

Rn D max ŒZn� � min ŒZn�

Compute the standard deviation:

Sn D

vuut1

n

nX
iD1

.yi � M/2

The rescaling range Rn
Sn

can be used to estimate the Hurst exponent (H).
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Fig. 1 Proxy record from Baffin Island, Canada (top) and its Hurst analysis (bottom). The results
indicate that this record has properties of a fractional Brownian motion with an exponent of about
0.72

Rn

Sn
D CnH

where C is a constant. From here:

log

�
Rn

Sn

	
D log.C/C H log.n/

Then the slope of the linear regression line between log
�

Rn
Sn

�
vs log.n/ gives the

Hurst exponent H.
Figure 1 shows an example of the data used. It is from Baffin Island, Canada

and it is a proxy sediment thickness record (top). The bottom graph shows the
results of a Hurst analysis, which indicates that this record is indeed a fractional
Brownian motion with an exponent of about 0.72 indicating persistence. We found
that all the records used here are fBms with an exponent greater than 0.5. As was
mentioned above, this result is consistent with earlier results base on temperature
records (Koscielny-Bunde et al. 1998).

Figure 2 shows the statistical procedure used here to produce statistically
significant periodicities in the data. First, the spectra of the proxy record were
produced (blue line). Then we produced 1000 surrogate Brownian motion with
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Fig. 2 Spectra of the proxy record in Fig. 2

the same exponent as the proxy data and calculated their spectra. Any peak in the
original proxy data above the 95% percentile of these 1000 surrogates (black line)
was then considered as a significant oscillation. In this case we have three significant
oscillations at about frequencies 0.0075, 0.014, and 0.025 years�1 (or periodicities
130, 70, and 40 years). Figure 3 shows all the significant periodicities of all record
but the last 5 (long interpolated records) and Fig. 4 shows all of the records (in red
the last five very long records indicating astronomical Milankovitch forcing).

The important conclusion from this study is that there seems to exist two
types of natural oscillations in the climate system. Those internal to the climate
system ranging up to 1000 years and those of much longer period attributed to
the Milankovitch cycles. There may still be oscillations in between but the data
available here cannot resolve them. Yet the major conclusion is that long time-scale
oscillations that cannot be attributed to human activity are present in proxy climate
records.

This study is consistent with a much earlier study (Zhuang 1991), which used 13
different isotope records from the SPECMAP project http://gcmd.nasa.gov/records/
GCMD_EARTH_LAND_NGDC_PALEOCL_SPECMAP.html (Fig. 5). The simi-
larity between our results and those independent results is striking.

http://gcmd.nasa.gov/records/GCMD_EARTH_LAND_NGDC_PALEOCL_SPECMAP.html
http://gcmd.nasa.gov/records/GCMD_EARTH_LAND_NGDC_PALEOCL_SPECMAP.html
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The Prediction of Nonstationary Climate Series
by Incorporating External Forces

Geli Wang, Peicai Yang, and Anastasios A. Tsonis

Abstract Almost all climate time series have some degree of nonstationarity due
to external forces of the observed system. Therefore, these external forces should be
taken into account when reconstructing the climate dynamics. This paper presents a
novel technique in predicting nonstationary time series. The main difference of this
new technique from some previous methods is that it incorporates the driving forces
in the prediction model. To appraise its effectiveness, some prediction experiments
were carried out using the data generated from some known classical dynamical
models and climate data. Experimental results indicate that this technique is able to
improve the prediction skill effectively.

Keywords Spatio-temporal series • Nonstationarity • Driving force • Climate
prediction

1 Introduction

Most real-world time series have some degree of nonstationarity due to external
perturbations of the observed system. Recent studies have pointed out the non-
stationarity character of the climate system. For instance, Tsonis (1996) analyzed
low-frequency (decadal to multi-decadal) variability of global precipitation over the
past century and found that the fluctuations about the global mean have increased
significantly, while the mean values have not changed. Their results imply that the
second-order moment of the precipitation has changed on those scales, and that the
global precipitation process was nonstationary over the past century. In another case,
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Trenberth (1990) found that the observed winter Pacific mean sea-level pressure
underwent an abrupt change from year 1976 to year 1977.

In recent years, increasing effort has been devoted to devising methods to
analyze and predict nonstationary time series, which were often addressed by either
identifying some local stationary segments or applying particular techniques to
transform the nonstationary signal into a stationary one. For example, Wang and
Yang (2005) and Yang et al. (2010) presented two differential techniques, which
are called as “compound reconstruction modeling” and “segregation modeling,”
respectively, to predict nonstationary time series. The first technique was applicable
to multi-variable time series consisting of a predicted nonstationary time series
and its control time series. This method relied upon extracting some stationary (or
approximately stationary) segments from the predicted time series by using state
similarity in the reconstructed space of the control time series, and, then, building
the prediction model based on these separated segments. The second method was
applicable to single-variable time series. This method functioned by decomposing
the predicted nonstationary time series into a finite number of mode components by
the empirical mode decomposition method and then making and accumulating the
predictions of each mode component for one of the original time series.

Though the above techniques used some new procedures to cope with non-
stationarity, the basic idea used in all these studies was to remove or reduce
the nonstationarity of the predicted system using some mathematical techniques,
thereby improving the prediction. In fact, the essential cause of nonstationarity
is the time-dependent changes in the external forces (Manuca and Savit 1996).
Thus, the most effective way to remove the nonstationarity may be to incorporate
all the driving forces in the reconstructed dynamical system considering them as the
state variables of that system. Based on this principle, we present an algorithm to
incorporate driving forces to predict the nonstationary climate time series.

Following is a brief introduction of the algorithm for establishing the prediction
model. To test its effectiveness, we carried out several prediction experiments on
the given time series generated from some known classical dynamical systems and
climate data, which are discussed next. Finally, a brief discussion is provided.

2 Method

In the field of nonlinear time series analysis, the most important aspects are the
state space reconstruction theory (Packard et al. 1980) and the embedding theorem.
According to the latter, developed by Takens (1981), for a given single-variable time
series, one can use a couple of appropriate values of the embedding dimension and
the delay time to convert the series into a phase trajectory in state space. Takens’
theorem holds only for an autonomous dynamical system. For the nonstationary
case, however, we could still embed the external force components in the same state
space (Stark 1999). The dynamics on the reconstructed trajectory is equivalent to
that of the original system that generated the time series, based on this trajectory,
we can use this time series and its lags to establish a prediction model to predict the
future state of the system.
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Assuming a nonstationary process composed of two series fxigi D 1 , 2 , : : : , n and
f˛igi D 1 , 2 , : : : , n, the former being the state variable and the latter for an external
forcing. With a selected time lag � , we embed the time series in an m1 C m2

dimensional phase space and express the reconstructed state trajectory as

*
y .i/ D

˚
xi; xi�� ; : : : ; xi�.m1�1/� I˛i; ˛i�� ; : : : ; ˛i�.m2�1/�

�
iD1;2;:::;N ; (1)

or simply as

*
y .i/ D

n
*
x iI

*
˛
o

iD1;2;:::;N
: (2)

Here m1 and m2 are the given embedding dimensions for fxigi D 1 , 2 , : : : , n and
f˛igi D 1 , 2 , : : : , n, respectively, N D n � (max (m1, m2) � 1)� is the number of phase
points on the trajectory. Based on this trajectory, we built a model to predict the
above process. The model is expressed as a map:

X .t C P/ D fP .X.t// (3)

where the prediction step p, which was considered as 1 in this study, and fP is a
desired mapping assumed to be a quadratic polynomial; now, the task is to find the

cost function � D
PN

kD1

h
f
�
*
x k;

*
˛ k

�
�xkC1

i2
, which is reached its minimum value.

For more details, one can refer to the studies of Farmer and Sidorowich (1987) and
Casdagli (1989).

3 Experiments

We applied the approach referred above to perform some prediction experiments
using several given nonstationary time series. We begin with time series from ideal
nonstationary systems, since the data length and precision can be controlled and
guaranteed.

3.1 Modified Logistic Map

The first group consisted of three ideal time series from the following logistic map:

xtC1 D �txt .1 � xt/ (4)

where �t is a parameter that changes with time. As we know for the logistic
model, when the value of �t varies between 3.57 and 4.0, it should exhibit chaotic
behaviors. If we let �t change within the following three cases (see Fig. 1):

�
.1/
t D 3:95 � 0:4e�2:5t (5)
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Fig. 1 Three different driving forces

Table 1 RMSE comparison
of the prediction experiments

m2 m1 S(1) S(2) S(3)

0 1 2.12 2.89 0.70
0 2 1.39 1.69 0.41
0 Meana 1.76 2.29 0.56
1 1 0.61 0.63 0.32
1 2 0.63 0.62 0.29
1 Mean 0.62 0.63 0.31

aIndicates the averaged values for
m1 D 1 and m1 D 2

�
.2/
t D 3:45C 0:5e�1:5t (6)

�
.3/
t D 3:7C 0:22e�2t cos .3 t/ (7)

then we should obtain three different nonstationary time series with chaotic
behaviors written as S1, S2, and S3, respectively.

The following prediction experiments are based on 2000 data points from Eqs.
(4)–(7). The first 1900 data points are used to build the prediction model, while the
last 100 data points are used to test the predictions by using the root mean square
error (RMSE). In all of the experiments, the lag � equal to one, while the embedding
dimensions of the observations fxtg, m1, and of the external force f�tg, m2, were set
at 1, 2, 0, and 1, respectively. The case of m2 equal to zero means that the external
force was not taken into account in the prediction model, or, in other words, the
predictions were based on stationarity. Table 1 shows cases of RMSE resulting from
the experiments. From Table 1, we can see that RMSE is improved when the external
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force is considered. This indicates that introducing external forces into the predictive
model can provide an effective way to predict nonstationary processes.

3.2 Modified Lorenz System

The second experiment was performed with data from Lorenz system:

dx
dt D �x C y

dy
dt D r.t/x � y � xz

dz
dt D xy � bz

(8)

 was taken as 10 and b as 8/3 in this model, while the Rayleigh number
r(t) was regarded as a time-varying driving force factor given by the logistic
map r(t C 1) D �r(t)(1 � r(t)), where the value of � was taken as 3.9, which
implied chaotic behavior. We multiplied r(t) by 32 to get a time series whose
values ranged from 3.2 to 29.3, and assumed this time series to be the time-varying
Rayleigh number to force the Lorenz system. Under the present case, the modified
Lorenz system could obey the states varying from state points to chaotic regimes
(see Fig. 2); therefore, one nonstationary time series was obtained. The data set
consisted of 8000 values of the variable x, the preceding 7200 data were applied to
establish the predictive model, while the subsequent 800 points were used to test the
prediction. We assumed that m1 took values from 3 to 5 and m2 either 0 or 1 (which
corresponded to the stationary or forcing model). The experimental results for this

Fig. 2 Projection of the trajectory of Lorenz system in state plane (x, z) for the given time-varying
Rayleigh number
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Table 2 RMSE comparisons
of the prediction experiments

m2 "T D 1 "T D 2 "T D 3 "T D 4 "T D 5 "T D 6

0 1.21 1.66 5.52 2.47 5.64 12.22
1 0.58 0.88 0.99 2.29 2.44 2.79
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Fig. 3 Predictions of the stationary model and forcing model; all the results are averaged over the
three appointed values of m1

case are listed in Table 2 and Fig. 3. From Table 2, it can be seen that: (1) all RMSE
values given by the forcing model were much lower than those by the stationary
one, and (2) the growth in error rate with prediction steps for the forcing model was
lower than that the stationary one. It can also be concluded that, in comparison with
the stationary model, the forcing model had not only higher prediction accuracy,
but also better predictability. Figure 3 presents the correlation coefficients between
the actual and prediction values. Results show that the forcing model excelled the
stationary model, indicating that introducing the driving force into the prediction
model could improve the predictive skill effectively.

3.3 Global Temperature Prediction

The above approach is successful in improving prediction when inputs are included
in “ideal” nonstationary systems. Motivated by this, we examine here whether such
approaches are successful when we only have measurements from systems whose
formulation is unknown. It has been demonstrated that the collective behavior of
the network of four major climate modes (namely the Pacific Decadal Oscillation
(PDO), the North Atlantic Oscillation (NAO), the El Niño/Southern Oscillation
(ENSO), and the North Pacific Index (NPI)) can account for the decadal climate
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variability and all climate shifts observed in the instrumental record. More specifi-
cally we consider whether the above-mentioned four major climate modes influence
global mean temperature in the sense of Granger (1969). Each of these modes
involves different mechanisms over different geographical regions. Thus, we treat
them as low-order nonlinear sub-systems of the grand climate system exhibiting
complex dynamics. Indeed, some of their dynamics have been adequately explored
and explained by simplified models, which represent subsets of the complete climate
system and which are governed by their own dynamics.

Monthly mean values in the interval 1900–2007 are available for the global
mean temperature and all four modes. We first considered the values of the global
temperature and embedded it in dimensions 3–5 using � D 1 month. For each
embedding we used the first 103 years (1236 data points) to build the predictive
model. The last 4 years (48 data points) were used for predictions and to estimate
the correlation coefficient between actual and predicted values as a function of
prediction time step. Figure 4 shows, for each embedding dimension, the prediction
skill with and without the influence of the inputs of the four climate modes. The
results using the non-skill method of persistence are also shown. Note that for five
variables and for a range of M possible embeddings for each variable, there exist
M 5 combinations. Thus, to keep things simple, the embedding dimensions were
set for all variables to either 3, or 4, or 5. Clearly, when the input of the four major

Fig. 4 This figure shows, for each embedding dimension, the correlation between predicted and
actual values as a function of the prediction time step (in months) with (blue lines) and without
(black lines) the influence of the inputs. The results using the non-skill method of persistence are
also shown (red line). The results using all four inputs are superior as the results without inputs are
basically the same as persistence
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modes is included prediction is dramatically improved. In fact, without the input,
the predictive model is only as accurate as persistence. The average correlation
over the prediction time step range 1–9 months is improved 125–150% when the
inputs are included. The improvement is also observed at embeddings 6 and 7,
but due to sample limitations is not as good. In order to address possible effects
of nonstationarities in the data we repeated the analysis with detrended data. The
conclusions do not change significantly. These results establish for the first time
Granger causality between major climate modes and global temperature variability
over seasonal time scales.

We then repeated the above analysis but now we used each mode alone as an
input. Figure 5 shows the average correlation coefficient as a function of prediction
time step over the three embeddings. The solid black line is the average of the black
lines in Fig. 4 (not any input considered), the red line represents again persistence,
and the broken blue line is the average of the blue lines in Fig. 4 (all four inputs
are considered). The green line is the average over the three embeddings and over
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Fig. 5 This figure shows the average correlation coefficient as a function of prediction time step
over the three embeddings. The black line is the average of the black lines in Fig. 1 (not any input
considered), the red line represents again persistence, and the broken blue line is the average of
the blue lines in Fig. 4 (all four inputs are considered). The green line is the average over the
three embeddings and over the four modes acting individually. The bars on the green line indicate
the one standard deviation. Clearly, the blue line stands above all other lines indicating that the
improvement in predicting global temperature is the result of the collective behavior of the modes
in the network and not a result of an individual dominant mode (see text for more details)
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the four modes acting individually. The vertical green bars indicate the one standard
deviation. While any individual input improves prediction compared to no input
or to persistence, the blue line stands above all other lines indicating that the
improvement in predicting global temperature is the result of the collective behavior
of the modes in the network and not a result of an individual dominant mode.

3.4 Establishing a Prediction Model of 500 hPa Geopotential
High Anomaly with ENSO and Spatio-Temporal Structure

The above experiments were carried for one single time series, here we extend the
approach to the spatio-temporal time series (the global monthly mean geopotential
height anomaly at 500 hPa). The 500 hPa geopotential height is one of the
most fundamental and widely used meteorological variables for characterizing
the general atmospheric circulation. Through short-term climate prediction of
500 hPa geopotential high anomaly has been made some progress in recent decades
based on GCMs and statistical techniques, the predictive skill is still not very
satisfactory. Uncertainties are still associated with GCMs. For statistical techniques,
improvement of prediction skill is still continuing to be hindered partly by the issue
of insufficient in observational data.

Observed time series for climate processes are generally too short to satisfy the
length requirement, which was referred to as the “data bottleneck” problem in the
time series theory. In order to solve this problem, spatio-temporal series have been
utilized to reconstruct the dynamical system since late 1980s. This main idea was to
consist of the observation data from different locations in physical space, which was
applied to estimate the dimensionality of climate attractor and the prediction of the
observational field (Essex et al. 1987; Keppenne and Nicolis 1989; Yang et al. 1994;
Yang et al. 2000; Wang and Yang 2005). The spatio-temporal series are supposed to
be controlled by the same physical law, in other words, the subsequences observed
at the different locations are considered to describe an identical dynamical system.
That is, by studying this sub-trajectory family, we can obtain the statistical behaviors
of the attractor, and thereby predict the dynamics of the spatio-temporal series (Yang
et al. 2000; Wang and Yang 2005). Comparing with the method of the single point
time series, the spatio-temporal series analysis can efficiently improve the ergodicity
of time series.

In this part, we will take advantage of spatio-temporal idea and incorporate
El Nino-SOI (ENSO) as the driving force to establish a predictive model for the
geopotential height. ENSO was incorporated in the predictive model since it has
been widely suggested to be the dominant driving force of inter-annual variability
of climate (McPhaden et al. 2006). The effect of ENSO on global climate change
has been studied intensively using both models and observational data (e.g., Diaz
et al. 2001; Bengtsson et al. 2006; Latif and Keenlyside 2009).
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We now proceed with the method based on Eqs. (1)–(3). Suppose that a nonlinear
and nonstationary process is composed of two time series

xij .tk/ D fxk .i; j/g
ˇ̌
iD1;2;:::;mIjD1;2;:::;nIkD1;2;:::l

and f˛kgk D 1 , 2 , : : : l

where former is the spatio-temporal series that we are interested in (global monthly
mean geopotential height anomaly at 500 hPa in this study), and the latter is for the
assumed acting external forcing (SOI index in this study).

Every phase points of a time series is assumed to be embedded into m-dimension
space, in such way those trajectories can describe dynamics of the established
system. If they are embedded into an m1 C m2 dimensional phase space with a
selected time lag� , then we can obtain a family of trajectory twining on an identical
attractor to shed light on the dynamics of the spatio-temporal system, in which the
factor of external force plays a similar role as state variables (Wang et al. 2012). A
delay reconstruction with embedding theorem of Takens (1981) is as follows:

�!
E .t/ D

fxij.t/; xij .t � �/ ; : : : ; xij .t � .m1 � 1/ �/ I˛.t/; ˛ .t � �/ ; : : : ; ˛ .t � .m2 � 1/ �/g

tD1;2;:::;N (1)

or simply as

�!
E .t/ D

˚
xijI˛

�
tD1;2;:::;N (10)

Here, m1 and m2 represent the given embedding dimensions for fx(t)g and f˛(t)g,
respectively, and N D l � (max(m1,m2) � 1) � � is the number of state points on the
trajectory.

Considering to introduce those information of the state points which are around
the predicted state point, the purpose is trying to use the data from physical space to
build a larger state set to ravel “data bottleneck” problem described before. Based
on this trajectory for each of the time series at the spatio-temporal state, a predictive
model to predict the future state of the system can be established as follows:

x.i;j/tCp Dbf p
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t ;�!x
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*
˛ t
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where p is the prediction time step, "(t) is the fitting error, andbf is a desired function
that was assumed to be a quadratic polynomial here. The following task is to find the

cost function � D
PN

tD1

�
^

f
�
x.i;j/.t/; ˛.t/

�
� x.i;j/ .t C p/

�2
. The coefficients of the

established prediction equation will be obtained by minimizing the cost function.



The Prediction of Nonstationary Climate Series by Incorporating External Forces 671

The global monthly mean geopotential height anomaly at 500 hPa of
NCEP/NCAR reanalysis data set was taken as the predicted objects here. The
spatial resolution of data is 2.5 � 2.5ı, its data length and SOI index length are all
720 months (from January of year 1951 to December of year 2010). SOI is one of
the traditional ENSO indices, which can address the activity of ENSO and reflect
successfully strengthen or weakness of the surface pressure in eastern or western of
Pacific. Studies have shown that the sufficient relationship between SOI index and
500 hPa geopotential height by means of wavelet analysis. In the following experi-
ment the SOI index is assumed as the external forcing to establish predicted models
for global monthly mean geopotential height anomaly at 500 hPa. In this study
we establish three kinds of predicted models. The first is named as the stationary
model in which SOI is not included. The second is the forcing model in which SOI
is included. The third is as the spatial forcing model in which both SOI index and
spatial–temporal information are included. The predictive effectiveness on global
500 hPa monthly anomaly geopotential height is compared between three models.

For each of the 144 � 73 global points in length of 720 months, data were divided
into two parts: the preceding 660 months were applied to construct the predictive
model and the following 60 months for testing the prediction accuracy. The 500 hPa
monthly mean geopotential height field was predicted for the period from January of
2006 to December of 2010. For establishing the model, parameters used here were
assigned as the following values: the time lag � was taken for 1; the embedding
dimensions of 500 hPa monthly mean geopotential height field of m1 varied from 3
to 7; the embedding dimensions of SOI index of m2 were set to be 0 as the stationary
model, m2 was set to be in the range from 3 to 5 for both the forcing model and the
spatial forcing model. All results were averaged over the embedding dimensions.

Depending on the prediction leading time step, the average correlation coefficient
between observed and prediction with the change of prediction steps is shown in
Fig. 6, where the dash-dot line represents the result from the stationary model, the
broken line is from the forcing model over SOI forcing acting, and the solid line is
from the spatial forcing model over the SOI forcing and spatial information which
considered act collectively. Clearly, the position of solid line is above the other two
lines indicates again that predictability is increased attributed to the ergodicity of
time series improved efficiently through the reconstruction of external force by SOI
and spatial information into the prediction model.

Since time dependency of the driving forces is the essential cause for nonstation-
arity and “data bottleneck” problem in time series theory, it is necessary to consider
both influences on the prediction of time series. Extension of previous works, the
objective of this study is to evaluate the two influence factors that may make a
collective role in establishing a predictive model. In essence, the driving forces
were regarded as state variables and reconstruct them into the prediction model.
Therefore, the reconstructed system becomes to be an autonomous system, and
thereby, the prediction is carried out under the frame of the stationary theory.

It is noted that ENSO is as a sole test external forcing and incorporate it into the
prediction model in this study, also mechanism and prediction of ENSO itself is on
the rise as a challenging topic in atmospheric science due to the special relationship
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Fig. 6 Dependency of the prediction errors on the leading time step

between El Nino and extreme weather events. Other external forcings should be con-
sidered and different external forcings for different partitions in the global need to be
taken into account. The experimental results obtained from global 500 hPa monthly
geopotential height anomaly and ENSO confirmed the effectiveness of the predictive
model, which also shown that the Granger causality (Granger 1969) retains between
ENSO and global 500 hPa monthly geopotential height anomaly field.

4 Discussion

Because time dependency of driving forces is the essential cause of nonstationarity,
it is necessary to consider its influence on the prediction of time series. However,
due to the lack of a complete theory to predict nonstationary process, no general and
effective method has yet been developed. One can only choose from some available
techniques to remove its nonstationarity for resetting it under the framework of
stationary theory. As an attempt to improve the situation, we proposed a new
technique and applied it to predict several nonstationary time series with known
external forces. The prediction results given by these experiments showed its
effectiveness. In essence, the main idea of this technique was to consider all the
driving forces as state variables and incorporate them into the prediction model.
Therefore, the reconstructed system was changed to be an autonomous system, and
thereby, the prediction returned to within the framework of the stationary theory. For
the prediction of nonstationary time series with known driving forces, this technique
can be used.
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Nonlinear prediction is generally successful in identifying chaos and nonlinearity
in data because it uses all available points, unlike other methods that exploit only a
subset of available points in the attractor (Sugihara and May 1990). Predictions of
global mean temperature over a long timescale are very uncertain, both because the
climate possesses significant internal variability, and also because the sensitivity of
the climate system to natural and anthropogenic effects is difficult to predict. Such
an approach as that presented here may provide a compatible and direct window
to study external forcings of the climate. Construction of external forcings can be
extracted with the technique, for example, convergent cross mapping by Sugihara
et al. (2012) to analyze the causality in nonlinear dynamic systems, progress for
climate causal relations will be reported.
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The Impact of Nonlinearity on the Targeted
Observations for Tropical Cyclone Prediction

Feifan Zhou and He Zhang

Abstract This study examines the impact of nonlinearity on the targeted observa-
tions for tropical cyclone prediction. The nonlinearity of the typhoon is determined
by comparing the first singular vector (FSV) and the conditional nonlinear optimal
perturbation (CNOP), which is the nonlinear extension of FSV. If the similarity
between the CNOP and FSV is larger than 0.5, then the typhoon is categorized
as weak nonlinearity, otherwise, the typhoon is categorized as strong nonlinearity.
First, the impact of nonlinearity on the typhoon targeted observations due to
different resolutions is studied. Two typhoons, Meari (2004) and Matsa (2005), with
24 h forecast length are chosen, with 120-, 60-, and 30-km resolutions, respectively.
It is found that the nonlinearity of both cases becomes stronger as the resolution
increases. However, the sensitive areas identified with lower resolutions are more
similar to each other than those identified with finer resolutions. This means that
when the motion of typhoon has been described as linear or weakly nonlinear, the
sensitive area may be easier to determine. Then, the impact of nonlinearity on the
typhoon targeted observations due to different forecast length is investigated. In this
part, typhoons Meari (2004) and Matsa (2005) with 60 km resolution are considered
with 12-, 24-, and 36-h forecast lengths. We further studied two issues. In the first the
initial time is fixed, while in the second the forecast time is fixed. Results show that
no matter which issue is considered, typhoon Matsa exhibits stronger nonlinearity
than typhoon Meari. Accordingly, Meari is categorized as a linear case, while Matsa
as a nonlinear case. In the linear case, the sensitive areas identified for special
forecast times (when the initial time is fixed) resemble those identified for other
forecast times. Targeted observations deployed to improve a specific time forecast
would thus also benefit forecasts at other times. In the nonlinear case, the similarities
among the sensitive areas identified for different forecast times were more limited.
The deployment of targeted observations in the nonlinear case would therefore need
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to be adapted to achieve large improvements for different targeted forecasts. For
both cases, the closer the forecast time, the higher the similarities of the sensitive
areas. When the forecast time is fixed, the sensitive areas in the linear case diverge
continuously from the verification area as the forecast period lengthens due to the
determination of the subtropical high in the movement of the typhoon, while those
in the nonlinear case are always located around the initial cyclone indicating that the
main factors affecting the typhoon movements are located within the typhoon. The
deployment of targeted observations to improve a special forecast depends strongly
on the time of deployment. Generally, it seems that the sensitive areas are easy to be
determined in the linear case and more beneficial for the forecast. In the nonlinear
case, the identification of sensitive areas is more difficult, which results in harder
deployments in targeted observations.

Keywords Nonlinearity • Targeted observation • Tropical cyclone • Prediction

1 Introduction

A targeted observation, which is also called adaptive observation, is aimed to largely
improve the forecast skills of the targeted area by placing additional observations in
some special areas at some special times. The key point for targeted observation
is to determine the observation places which we called sensitive areas. Scientists
have proposed many methods to identify the sensitive areas, such as the singular
vectors (SV, Palmer et al. 1998; Buizza and Montani 1999), the conditional
nonlinear optimal perturbations (CNOP, Mu et al. 2007; Mu et al. 2009), the adjoint
sensitivities (ADS, Kim et al. 2004; Wu et al. 2007; Ancell and Mass 2006),
the ensemble transform (ET, Bishop and Toth 1999), the ensemble Kalman Filter
(EnKF, Hamill and Snyder 2002), the ensemble transform Kalman filter (ETKF,
Bishop et al. 2001), and the piece by piece data assimilation method (PBPDA,
Huang and Meng 2014). Among these methods, the SV, ADS, ET, and ETKF
are in essence linear methods (Rivier et al. 2008), while the CNOP and PBPDA
are nonlinear methods. It has been known in several studies that all methods
are effective in searching the sensitive areas to improve the targeted forecasts.
Some studies also have compared the efficiency of the sensitive areas identified
by different methods. Majumdar et al. (2006) found that for strong hurricanes, the
sensitive areas identified by ETKF and SV are almost the same, while for weak
tropical cyclones, the sensitive areas are different. However, much work about the
efficiency in identifying the sensitive areas for weak tropical cyclones remains to be
done. Zhou and Mu (2011), Qin and Mu (2011a), Chen and Mu (2012) and Chen
et al. (2013) found that CNOP-sensitive areas are more effective than SV-sensitive
areas in improving the tropical cyclones’ forecasts. The ETKF-sensitive areas and
CNOP-sensitive areas have comparable efficiencies in improving tropical cyclones’
forecasts (Qin and Mu 2011b). Generally, it is hard to determine which method is
the best, as the efficiency varies from case to case, and from time to time.
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Since the CNOP method is an extension of first SV (FSV) into the nonlinear
region (Mu and Duan 2003; Duan and Mu 2006; Mu and Jiang 2008; Terwisscha van
Scheltinga and Dijkstra 2008), and since CNOP-sensitive areas are more effective
than SV-sensitive areas, it seems that the impact of nonlinearity is very important
in sensitive area identification. In this paper, we will investigate the impact of the
nonlinearity on targeted observations by summarizing some previous studies from
the viewpoint of nonlinearity. Since the tropical cyclone targeted observations have
been widely studied, this paper will focus on the impact of nonlinearity on tropical
cyclone targeted observations. The structure of the paper is as follows. Section 2
discusses how to determine the nonlinearity of tropical cyclone. Section 3 describes
the tropical cyclone cases and the experimental designs. Section 4 investigates
the impact of nonlinearity on tropical cyclone targeted observations with different
resolution, while Sect. 5 investigates the impact of nonlinearity on tropical cyclone
targeted observations with different forecast time periods. A brief summary and
discussion are provided in the final section.

2 Definition of Nonlinearity

In this paper, we define the nonlinearity of the tropical cyclone by comparing the
patterns of CNOP and FSV.

2.1 The CNOP Method

A thorough description of the CNOP approach to tropical cyclone targeted observa-
tion can be found in Zhou and Mu (2012a) and is summarized here.

An initial perturbation •X�
0 of vector X0 is called CNOP if and only if

J
�
•X�

0

�
D max

•XT
0 C1•X0�ˇ

J .•X0/ (1)

where

J .•X0/ D ŒPM .X0C•X0/ � PM .X0/�
TC2 ŒPM .X0C•X0/ � PM .X0/� (2)

and ıX0
TC1ıX0 �ˇ is a constraint condition of the initial perturbation ıX0

with the presumed positive constant ˇ representing the magnitude of the initial
uncertainty. C1 and C2 are appropriate norms that measure ıX0 and its development,
respectively. In the discrete form, they can be presented as symmetric positive
definite matrices. M is a nonlinear propagator, which propagates initial state X0

to the state vector at time t Xt. Xt can be taken as the solution of the nonlinear
model @X

@t C F .X/ D 0, where F is a nonlinear partial differential operator. P is a
local projection operator and takes the value of 1(0) inside (outside) the verification
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region. The superscript “T” denotes the transpose of the vectors or matrices. It is
clear that the CNOPs depend on the nonlinear model M, the initial state vector X0,
and the choice of ˇ, P, C1, and C2. Sensitivity studies of the CNOP with respect to
ˇ, C1, C2, P, and M(X0) have been investigated in Mu et al. (2009), Zhou and Mu
(2011, 2012a, b), and Tan et al. (2010).

2.2 The FSV Method

As above, a detailed description of the FSV approach can be found in the work of
Zhou and Mu (2012a) and is summarized here.

Similar to the definition of CNOP, the ıX�
0 can be defined as FSV (Ehrendorfer

and Errico 1995) from

J
�
ıX�

0

�
D max

ıXT
0C1ıX0�ˇ

J .ıX0/ (3)

where

J .ıX0/ D ŒPL .ıX0/�
TC2 ŒPL .ıX0/� (4)

where L is the forward tangent propagator corresponding to M. That is, we have

ıXt D M .X0C•X0/ � M .X0/ � L .ıX0/

It can be seen that the FSV is the linear approximation of CNOP, and both
CNOP and FSV can be obtained using the same optimization algorithm to facilitate
comparison. In this study, the optimization algorithm employed is the spectral
projected gradient 2 (SPG2) (Birgin et al. 2001).

2.3 Definition of Sensitive Areas and Nonlinearity

The definition of a sensitive area in this work is similar to that stated in the papers
of Buizza et al. (2007) and Zhou and Zhang (2014). A vertically integrated total dry
energy function f (i, j) is used:

f .i; j/ D

Z 1

0

Ed .i; j; / d (5)

where Ed(i, j,  ) is the total dry energy (the sum of kinetic energy, available relative
potential energy, and available surface potential energy) of the CNOP at grid point
(i, j,  ).
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The horizontal grid points where the function f (i, j) is higher than a certain value
c are defined as the sensitive areas. In this paper, the value c is chosen to be 1/6
percent of the maximum f (i, j).

The similarity between two vectors X and Y by using the following formula:

Sxy D
< X;Y >

p
< X;X >

p
< Y;Y >

(6)

The nonlinearity of the tropical cyclones is defined according to the similarity
SCF between CNOP and FSV. If the similarity SCF is larger than 0.5, we categorize
the tropical cyclone as weak nonlinearity and if the similarity SCF is smaller than
0.5, as strong nonlinearity.

3 Experimental Setup

3.1 The Model and the Cases

The fifth generation Pennsylvania State University–National Center for Atmo-
spheric Research (PSU–NCAR) Mesoscale Model (MM5; Dudhia 1993) is then
employed. The initial and boundary conditions are supplied by the National Centers
for Environment Predictions (NCEP) FNL (Final) Operational Global Analysis
(1ı � 1ı) interpolated into the MM5 grids. The corresponding adjoint system
of MM5 (Zou et al. 1997) is also used, with the following physical parame-
terizations: dry convective adjustment, grid-resolved large-scale precipitation, the
high-resolution PBL scheme, and the Kuo cumulus parameterization scheme.

Two tropical cyclones, Matsa (2005) and Meari (2004) were investigated. For
each case, the forecasts were run at 120-, 60-, and 30-km horizontal resolutions
with 11 vertical levels. For TC Matsa, the model domain covered 28 � 28, 55 � 55,
109 � 109 (y-direction by x-direction) grids, respectively, for 120- 60-, and 30-km
horizontal resolutions. For TC Meari, there were 26 � 28, 51 � 55, and 101 � 109
grids for each horizontal resolution. For each case with the chosen grids, the real
physical domain was the same at all resolutions, thus the verification area was
chosen to be the same.

To study the time-dependence issues, a set of experiments were designed in
which all the parameters were held constant except for the studied time period. In
the first issue, the initial time is fixed, and the forecasts have been carried out with
12, 24, and 36 h, respectively. For the Matsa case, the initial time has been set as
1200 UTC 4 Aug 2005 (Fig. 1a), while for Meari case, it has been set as 1200 UTC
25 Sep 2004. In the second issue, the forecast time is fixed as 0000 UTC 6 Aug 2005
for Matsa case, while 0000 UTC 27 Sep 2004 for Meari case. Therefore, the initial
times were 1200 UTC 5 Aug 2005, 0000 UTC 5 Aug 2005, and 1200 UTC 4 Aug
2005, respectively, corresponding to 12, 24, and 36 h forecasts for Matsa case (Fig.
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(a)

(b)

36h

24h

12h

12h

24h

36h

2005.8.4:12

2005.8.4:12 2005.8.5:00

2005.8.5:12

2005.8.5:00 2005.8.5:12 2005.8.6:00

2005.8.6:00

Fig. 1 The design of the optimization time periods for typhoon Matsa (2005) (a) for the first
approach and (b) for the second approach

1b), and 1200 UTC 26 Sep 2004, 0000 UTC 26 Sep 2004, and 1200 UTC 25 Sep
2004, respectively, for Meari.

In this study, the optimization time periods are same as the forecast time periods.

3.2 Initial Constraint and Cost Function

The metric used in the initial constraint condition was the same as that used in the
cost function, and both were chosen as the total dry energy. That is, in a continuous
expression, we have

.ıX0/
TC1 .ıX0/ D

1

D1

Z

D1

Z 1

0

"
u02
0 Cv02

0 C
cp

Tr
T02
0 C RaTr

�
ps0

0

pr

	2#
ddD1 (7)
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where the initial perturbation ıX0 is composed of u0
0

, v0
0

, T0
0

, and ps0
0

, which are
the perturbed zonal and meridional wind components, temperature, and surface
pressure at the initial time, respectively. D1 is the horizontal model domain, and
 represents the vertical coordinate. J is the cost function defined as the total dry
energy over the verification area D2. Here, ut

0

, vt
0

, Tt
0

, pst
0

are components of ıXt,
which represents the linear (or nonlinear) development of ıX0 at time t. The terms
cp and Ra are the specific heat at constant pressure and the gas constant of dry
air, respectively (with numerical values of 1005.7 and 287.04 J kg�1 K�1). The
reference parameters were the following: Tr D 270 K, pr D 1000 hPa.

The initial constraint value ˇ is chosen as 0.03 J/kg for all cases. With this
constraint value, the CNOP magnitudes are comparable with the current analysis
errors, thus it can be taken as a kind of initial errors. It is noticed that the verification
area has been designed the same for one case regardless of the optimization time
period to facilitate comparison.

4 The Impact of Nonlinearity on the Typhoon Targeted
Observations Due to Different Resolutions

It is easier to understand that an event represents weak nonlinearity when it
is described with a low resolution, since in a low resolution many small-scale
phenomena have been filtered out. However, if an event is described with a high
resolution, small-scale phenomena are present, and their impact on the event
becomes important, which would make the event strongly nonlinear. Next, the
nonlinearity of the typhoons with different resolutions will be examined.

4.1 Nonlinearity of the Typhoons at Different Resolutions

Figure 2 shows CNOPs and FSVs calculated with different resolutions for Matsa
case. We can see that with a low resolution of 120 km, the pattern of CNOP is similar
to that of FSV, while with a resolution of 60 or 30 km, the CNOP is much different
with FSV. The difference is largest when using 30 km resolution. This means that
at a low resolution the motion of typhoon Matsa is basically a linear behavior.
However, at finer resolutions the motion of Matsa, is increasingly nonlinear. The
similarities are shown in Table 1, where we see that when using 120 km resolution,
the similarity between CNOP and FSV is 0.8, which according to the definition in
Sect. 2.3 is a weak nonlinear case. However, if we use the 60 or 30 km resolution,
the similarities reduce to 0.3 and 0.2, indicating an increasingly nonlinear case.

For Meari case, the result is similar. That is, the lower the resolution, the more
similar the pattern of CNOP is to that of FSV. However, in this case with a resolution
of 60 km, the CNOP is also much similar to FSV (Fig. 3). This means that the motion
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Fig. 2 Typhoon Matsa. The temperature (shaded, units: K) and wind (vector, units: m s�1)
components of CNOP (the first line) and FSV (the second line) at  D 0.7. The boxes indicate
the verification areas. The circle and the cross signs indicate the initial position of the cyclone. The
first column is at the resolution of 30 km, the second column is at a resolution of 60 km, and the
third column is at a resolution of 120 km

Table 1 The similarities
between CNOP and FSV

30 km 60 km 120 km

Matsa 0.2 0.3 0.8
Meari 0.2 0.7 0.8

of typhoon Meari can be described as linear when the resolution is 60 km or lower.
The results shown in Table 1 also confirm the results shown in the figures.

In general, comparison among the three resolutions for both cases indicates
that the nonlinearity of both cases becomes increasingly stronger as the resolution
increases.

4.2 The Sensitive Areas Identified with Different Horizontal
Resolutions

Because the CNOP method is a fully nonlinear method, while FSV has adopted
linear approximation, and it is demonstrated that reducing initial errors in the
CNOP-sensitive areas are more beneficial for improving the typhoon forecast than
reducing the initial errors in the FSV-sensitive areas (Zhou and Mu 2011; Qin
and Mu 2011a; Chen et al. 2013). In this section, we will focus on the CNOP-
sensitive areas, and we will discuss to what extend the CNOP-sensitive areas has
been influenced by the nonlinearity of the case.
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Fig. 3 Same as Fig. 2, but for typhoon Meari

Table 2 The similarities between the sensitive areas obtained at 30-, 60-, and 120-km resolutions
for TC Matsa (2005) and TC Meari (2004)

30 km and 60 km 60 km and 120 km

Matsa 0.70 0.8
Meari 0.55 0.75

For both cases, the CNOP-sensitive areas identified using different resolutions
were different from each other (Fig. 4), and the sensitive areas become more
localized as the resolution increases; however, common areas occurred at the three
resolutions, and the sizes of the common areas were different for different case. In
general, the sizes of the common areas are larger between sensitive areas at the lower
resolution (Table 2). For both cases, the similarities between the lower resolutions
(60 and 120 km) were greater than those between the finer resolutions (30 and
60 km), which simply illustrates that more small-scale activity can be resolved
at higher resolutions. It also means that when the motion of typhoon is linear or
weakly nonlinear, the sensitive area may be easier to determined, as the sensitive
area looks like more stable. From the analysis of the similarities (Table 2), it can
be concluded that the sensitive areas identified at lower resolutions are also helpful
for improving the forecast at finer resolution. This is a favorable feature of CNOP-
sensitive areas as the calculation of CNOP with a high resolution would usually
require a long time and a large amount of computer resources. Therefore, when
computation conditions are limited, we can use low resolution to calculate CNOP-
sensitive areas, which would also be useful for typhoon targeted observations. The
above results also illustrate that the linear approximation may be to some extend
useful.
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Fig. 4 Sensitive areas identified with different resolutions for Matsa and Meari case for 24 h
prediction
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Fig. 5 Sensitive areas identified with different horizontal and vertical resolutions for Matsa case
for 24 h prediction

4.3 The Sensitive Areas Identified with Different Vertical
Resolutions

It is also interested to study the variations of the sensitive areas with respect to
different vertical resolutions. Here, we just focused on the TC Matsa. First, we
calculated the CNOPs with 20 vertical levels at 30-, 60-, 120-km resolutions,
and then we obtained the CNOP-sensitive areas. Interestingly, we found that the
variation of sensitive areas between different horizontal resolutions with 20 levels is
similar to those with 11 levels. See Fig. 5. Besides, it is found that at high horizontal
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Table 3 The similarities between the sensitive areas obtained with 11 vertical levels and 20
vertical levels, respectively, at 30-, 60-, and 120-km resolutions for TC Matsa (2005)

30 km 11 l and 30 km 20 l 60 km 11 l and 60 km 20 l 120 km 11 l and 120 km 20 l

Similarity 0.89 0.85 0.80
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Fig. 6 Sensitive areas identified with different vertical resolutions for Matsa case with 120 km
horizontal resolution for 24 h prediction

Table 4 The similarities between the sensitive areas obtained with different horizontal and vertical
resolutions, respectively for TC Matsa (2005)

120 km 11 l and 60 km 11 l 120 km 20 l and 60 km 11 l 120 km 30 l and 60 km 11 l

Similarity 0.782 0.788 0.802

resolutions, the increment of the vertical resolution has little impact on the results,
while the increment of the vertical resolution at low horizontal resolutions would
cause the result much different. This indicates that with a high horizontal resolution,
it is hard to increase the nonlinearity just by increasing the vertical levels, but it
is easy to increase the nonlinearity simply by increasing the vertical levels. For
example, the sensitive areas identified by the CNOP at 30 km resolution with 20
levels and 11 levels are similar (Fig. 5a, d), and the sensitive areas identified at
120 km resolution with 20 levels and 11 levels present notable difference (Fig. 5c,
f). This also can be obtained from Table 3.

Besides, we calculated the CNOPs at 120 km with 11, 20, and 30 vertical levels.
Figure 6 shows the results. It is found that when the vertical resolution increases,
the pattern of the sensitive areas would become more similar to the sensitive areas
identified by the high horizontal resolution (Table 4). This is interesting and sense
to us since the increment of vertical resolution cost less than the increment of
horizontal resolution as far as the computation cost is considered. Generally, the
similarities between different sensitive areas with different horizontal or vertical
resolutions are high. This result further confirms that the linear approximation may
be to some extend useful.
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5 The Impact of Nonlinearity on the Typhoon Targeted
Observations Due to Different Forecast Length

In this section, we also studied typhoons Matsa and Meari, but the resolution is
fixed at 60 km. As has been showed in Sect. 4.1, when using 60 km resolution and
a 24 h forecast length, the motion of Matsa is strongly nonlinear, while the motion
of Meari is weakly nonlinear. What is the nonlinearity of the two typhoons when
the forecast length is different? Of course, when the forecast time period is short,
the linear approximation may be easier to be adopted than the longtime forecast.
That is, a weak nonlinearity for a short time forecast while a strong nonlinearity for
a longtime forecast. In this section, we will examine to what extend the sensitive
areas will be affected by different nonlinearity due to different forecast length in
cases with different nonlinearity. Besides, we will study two kinds of issues. The
first is the initial time is fixed, while the second the forecast time is fixed (Fig. 1).

5.1 The Approach with Fixed Initial Time

First, we check the nonlinearity of the typhoon forecast with different forecast
lengths. Figure 7 presents CNOPs and FSVs for the Matsa (2005) case based on the
first approach. The CNOPs became progressively more different than the FSVs as
the forecast time extended further from the initial time. This result suggests that the
nonlinearity becomes strong, especially at longer forecast integrations. Although the
difference between the patterns of CNOPs and FSVs for Meari (2004) case (Fig. 8)
also becomes larger when the forecast length increases, generally, they are more

Fig. 7 Typhoon Matsa (2005). The temperature (shaded, units: K) and wind (vector, units: m s�1)
components of CNOP and FSV at  D 0.7. The boxes indicate the verification areas. The circled
plus indicates the position of the cyclone at 1200 UTC 4 August 2005
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Fig. 8 Same as Fig. 7, but for Meari

Fig. 9 TC Meari. Same as Fig. 8, but for sensitive areas

similar to each other compared to Matsa case. This suggests that nonlinearity is
weak regardless of the optimization time period. In Meari (2004) case, the linear
approximation is adoptable (Fig. 8).

Similarly, we only consider the CNOP-sensitive areas next. For Meari (2004)
case, the sensitive areas are uniformly located at the northeast boundary of the initial
cyclone, regardless of the forecast time (Fig. 9). For Matsa (2005) case, however, the
location of the sensitive areas changes significantly as the forecast time extends from
12 to 36 h, with the main part of the sensitive areas shifting from southeast side of the
initial cyclone to the northwest side of the initial cyclone (Fig. 10). In addition, for
both cases, the closer the forecast times, the higher the similarities of the sensitive
areas. Comparison of the sensitive areas identified for Matsa (2005) and Meari
(2004) cases revealed several interesting features. In the linear case, the sensitive
areas identified for a special forecast time were consistent with those identified for
other forecast times when the initial time was fixed. This result means that targeted
observations deployed to improve a special time forecast would also favorably
affect the forecasts at other times. In the nonlinear case, however, although there
were some similarities in the sensitive areas identified for different forecast times,
these similarities are limited. This indicates that although the targeted observations
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Fig. 10 TC Matsa. Same as Fig. 7, but for sensitive areas

Fig. 11 TC Matsa. Same as Fig. 7, but for the fixed forecast time

deployed for a special time forecast are also beneficial for other times’ forecasts, the
forecast improvements for other times are limited. In the nonlinear case, therefore,
the deployment of targeted observations should be adaptive to obtain the largest
improvement for different targeted forecasts, and they should be more widespread
in order to achieve the greatest improvement in multiple time forecasts.

5.2 The Approach with Fixed Forecast Time

The investigation of the nonlinearity of the two typhoons with different forecast
lengths showed that Matsa (2005) case also presented strong nonlinearity during the
studied time period when the second approach was used (Fig. 11). The CNOPs and
FSVs differed regardless of when the forecasts were initialized. Same as the first
approach, Meari (2004) case maintained its linear features (Fig. 12).

The sensitive areas of Meari case moved to the verification areas as the initial
time shifted closer to the forecast time (i.e., as the optimization time period
shortened; Fig. 13). The sensitive areas in this case were typically located along
the southwestern fringe of the subtropical high at the periphery of the typhoon
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Fig. 12 TC Meari. Same as Fig. 8, but for the fixed forecast time

Fig. 13 Sensitive areas of Meari at different initials. The forecast time is fixed

Fig. 14 Same as Fig. 13, but for Matsa case

circulation, especially for the forecasts from initial conditions 24 and 36 h prior
to the forecast time (Fig. 13). This proximity suggests that the subtropical high
plays an important part in the corresponding targeted forecasts. In the Matsa (2005)
case, the sensitive areas fell in disrupted-ring patterns around the initial typhoon
centers, and were mainly located inside the typhoon circulation (Fig. 14). This
indicates that the targeted forecasts in this case were affected primarily by conditions
within the typhoon, while the background fields played a relatively smaller role.
The results of these two cases suggest that the deployment of targeted observations
intended to improve the forecast at a special time may depend strongly on the time
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of deployment. The times at which the targeted observations were deployed are thus
of crucial importance.

6 Summary and Discussion

This paper investigates the impact of the nonlinearity on tropical cyclone targeted
observations by summarizing some previous studies from the viewpoint of non-
linearity. The nonlinearity of the tropical cyclone with different resolutions and
different forecast lengths was determined by comparing the first singular vector
(FSV) and the conditional nonlinear optimal perturbation (CNOP), which is the
nonlinear extension of FSV.

First, the impact of nonlinearity on the typhoon targeted observations due to
different resolutions was studied. Two typhoons, Meari (2004) and Matsa (2005),
with 24 h forecast length were chosen to be studied with 120-, 60-, and 30-
km resolutions, respectively. It was found the nonlinearity of both cases becomes
stronger as the resolution increases. However, the sensitive areas identified at lower
resolutions were more similar to each other than those identified at finer resolutions.
This means that when the motion of typhoon is linear or weaker nonlinear, the
sensitive area may be easier to be determined.

Then, the impact of nonlinearity on the typhoon targeted observations due to
different forecast length was investigated. In this part, typhoons Meari (2004) and
Matsa (2005) at a fixed 60 km resolution were considered with 12-, 24-, and 36-
h forecast lengths. We further studied two kinds of issues. The first is the initial
time is fixed, while the second is the forecast time is fixed. Results showed that no
matter which issue is considered, typhoon Matsa exhibits stronger nonlinearity than
typhoon Meari. Thus Meari was assumed to represent a linear case, while the Matsa
a nonlinear case.

In the linear case, the sensitive areas identified for a special forecast time
were consistent with those identified for other forecast times when the initial time
was fixed. This result means that targeted observations deployed to improve a
special time forecast would also favorably affect the forecasts at other times. In the
nonlinear case, however, although there were some similarities in the sensitive areas
identified for different forecast times, these similarities are limited. This indicates
that although the targeted observations deployed for a special time forecast are also
beneficial for other times’ forecasts, the forecast improvements for other times are
limited. In the nonlinear case, therefore, the deployment of targeted observations
should be adaptive to obtain the largest improvement for different targeted forecasts,
and they should be more widespread as to achieve the greatest improvement in
multiple time forecasts.

The sensitive areas of Meari case moved to the verification areas as the initial
time shifted closer to the forecast time. In the Matsa (2005) case, the sensitive areas
fell in disrupted-ring patterns around the initial typhoon centers and were mainly
located inside the typhoon circulation.
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In general, it appears that the sensitive area is easy to be determined in the linear
case and more beneficial for the forecast. In the nonlinear case, the identification of
sensitive areas is more difficult, which results in difficult deployments in targeted
observations. We conclude that identifying the sensitive areas in strong nonlinear
cases is challenging, and more studies are necessary.
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affinely independent vectors, 377
geometric realization, 376, 377

Adaptive network based fuzzy inference
system (ANFIS), 298, 299,
301–303

Adding–deleting operation, 360
Adjoint sensitivities (ADS), 676
Adjusted Rand Index (ARI), 136
Affinely independent vectors, 377
Air temperature, 270–271
Algebraic topology, 376
Anisotropic poro-elasticity (APE), 38–39, 44,

50, 53
Antarctic Circumpolar Current, 163
Arctic sea ice concentration (SIC), DAH

decomposition
anomalies, 188
DAHMs, 188, 193
EOFs, 187
narrow-band temporal information, 189
principal components, 187
Sea Ice Extent, 186
spatial distribution, SIC variability, 189
stochastic modeling

ACFs, 195
DAH-MSLM model, 194, 199, 200
EMR, 189
extended simulation of, 197
global random attractor, 190
inverse models, 189
MSM approach, 189, 194

PDFs, 194, 196
SIPN network, 200
spatio-temporal DAH modes, 192
stochastic realization, 198
Stuart-Landau oscillators, 191

Area weighted connectivity (AWC)
SATA climate network, 448–452
scale-specific SATA climate network,

453–455, 457
Aref’s simple mixing model, 214
Arnold tongues, 6, 24, 29
ARP. See Autoregressive process (ARP)
Arrow of time, 233, 235
Artificial intelligence technique, 299
Artificial neural network (ANN), 139,

298–303
Asian Rainfall Highly Resolved Observational

Data Integration Towards the
Evaluation ofWater Resources
(APHRODITE) project, 572

Atmosphere models, 115–116
Atmospheric general circulation models

(AGCMs), 115
Atmospheric predictability, nonlinear

dynamics of
butterfly effect, 395
data assimilation techniques, 395
error control, 414–423
extended-range forecasts, time averaging,

408, 410–414, 423
formulation, 395–398
global ice volume, evolution of, 393,

394
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Atmospheric predictability, nonlinear
dynamics of (cont.)

initial error growth
chaotic dynamics, 399
finite error, 399–400
logistic map, mean error for, 398, 399
Lyapunov exponents, 399–400
spatially extended systems, 400
superexponential error growth, 400
three-variable model system, probability

density, 400, 401
mean daily temperature at Uccle, 393, 394
model error growth, 395, 401–403
quaternary glaciation cycle, 393
sensitivity to initial conditions, 394, 395
unresolved scales, role of, 403–409

Auto-correlation, analysis of self-similar time
series

covariance function, 207
data analysis, 208–209
decorrelation time scales, 208, 209
Gaussian random processes, 207
non-Gaussian variables, 208
time-domain analysis, 207

Autocorrelation functions (ACFs), 195, 434
Autoregressive process (ARP), 335, 433–434

autocorrelation function for, 434
entropy rate, 434–435
independent realization of

absolute cross-correlations, 435–438
cross-correlations, histograms of,

435–436
MIR estimates, 437, 438

Averaging technique, 58
AWC. See Area weighted connectivity (AWC)

B
Banach limit, 13
Baroclinic system, 165
Bifurcation theory, 24
Binning procedure, 64
Bivariate Gaussian distribution, 431
Bjerknes feedbacks, 116, 118, 137
Bjerknes stability (BJ) index, 138
Boltzmann entropy, 227–228
Boltzmann equation, 61
Boltzmann–Gibbs (BG) entropy, 466, 469
Boltzmann-Gibbs-Shannon entropy, 254
Boltzmann’s mathematical relationship, 620
Bootstrap algorithm, 187
Borel probability, 23
Box-counting dimension, 242
Brownian motion, 26

Buoyancy equation, 170
Butterfly effect, 395, 403

C
Canadian Seasonal to Interannual Prediction

System (CanSIPS)
ECMWF, 345, 346
model drift, 346
ocean model, 347
pre-processing, 344
probabilistic forecasts, 347
SLIMM, 345
tercile forecasts, 349

Cantorian-based FM notions, 529
Cauchy-type autocovariance function, 242
Causality

detection method (see Convergent cross
mapping (CCM))

Granger causality, 590, 597–599
CCSM4 NCAR model, 595
CCWT. See Complex continuous wavelet

transform (CCWT)
Cech simplicial complex, 376–378 (Insert

symbol)
Cellular automata, 606
Chaos, 226, 227, 233, 616–618
Chaotic dynamical systems, 432, 433
Classical random networks, 634
Climacogram, 251, 252, 254, 256, 260–263,

266, 269–272
Climate

fluid mechanics, closure problem of, 125
integrated equation, 125
laboratory-scale phenomena, 125
meteorological measurements, 126
“slow-time Maxwellian,” 126
stand-alone theory, 125
50-s timescale physical phenomena, 124
temperature, 127–129
thermodynamical quantities, 123, 124
Tsallis q-triplet values

GH spatial series, 476–480
temperature and rainfall, 480, 481

wind
central limit theorem, 127
extensive thermodynamic variables, 129
Gaussian distribution, 127
generalized winds, 130
intensive thermodynamic variables, 129
Maxwellian molecular velocity, 126
timescale, 126

Climate communities
definition, 90
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Infomap algorithm, 92–93
network average degree and number of

communities vs. threshold, 94, 95
ordinal transition probabilities, similarity

of, 92–93
Pearson cross-correlation coefficient,

92–94
physical processes, 90

Climate networks
area-weighted connectivity, 636
“chaos theory,” 631
classical random networks, 634
climate communities

definition, 90
Infomap algorithm, 92–93
network average degree and number of

communities vs. threshold, 94, 95
ordinal transition probabilities,

similarity of, 92–93
Pearson cross-correlation coefficient,

92–94
physical processes, 90

climate indices, 642
clustered synchronization, 643
communities, 635
community structure, 637, 639
complex phenomena, 88
coupled nonlinear oscillators, 642
co-variability of, 645
degree distribution, 634–635
de-synchronization, 644
directionality of links, information transfer,

95
in central pacific and Indian Ocean, 96
in southeastern South America, 96, 97

ENSO and PDO, 639, 644
500 HPa anomaly composites, 640–641
flowchart, 631–632
“fractals,” 631
global warming, 643
low dimensional attractors, 632–633
mutual information rate, 444, 446–447

air temperature/pressure, 443
AWC values, 448–452
FFT-based estimator, 448–450
low-dimensional weather/climate

attractors, 443
scale-specific SATA climate network,

453–457
NAO, 636
nodes, 633
non-directed networks, 95
ordinal patterns, mutual information, 88–92
PNA, 636

regular (ordered) networks, 633–634
small-world networks, 634
stability and synchronization, 640
“strange attractors,” 631
subsystems, 633
3-D super-loop, 645
three-zone separation, 638, 639

Climate Response Function (CRF), 320
Cloud condensation nuclei (CCN), 592
Coarse-grained entropy rates, 433
Coherent clusters, ocean

aerial and satellite images, 217
ageostrophic velocity, 222
Aref’s simple mixing model, 214
concentrated clustering, 214
2D compressible flow, 216
deformation tensor, 216, 217
dilation and stretch rates, 216, 217, 219,

222
FTLE, 219, 220, 222
full and divergence-free geostrophic

velocity fields, 220
full model velocity field and geostrophic

approximation, 220
geostrophic velocity field, 222
horizontal divergence, cluster formation,

221
physical interpretations, 218
small-scale cluster patterns, 223
spatial scales, 214
submesoscale dynamics, 222
submesoscale processes, 213
SVD, 217
transport boundaries, 219, 220
turbulent processes, 213

Coherent structures, 226
Community detection algorithms, 135
Community structure, 571
Complex continuous wavelet transform

(CCWT), 444–446
Complexity, 226, 234
Complexity theory, 466
Complex networks, 87–88

average shortest path length, 570–571
climate dynamics, 133
clustering coefficient, 569
community structure, 571
degree centrality, 568–569
degree distribution, 569–570
ENSO

diagnostics, 135–137
dynamics, 137–138
forecasting, 139–140

graph-theoretical characterization of, 428
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Conceptual numerical modeling, 2
Conditional nonlinear optimal perturbations

(CNOP), 676
Connections, 565
Continuous-time stochastic process, 416
Convergent cross mapping (CCM)

aa index, 592
AR1 time series, 595–596
CCN, 592
CCSM4 NCAR model, 595
CR time series, 593–594
galactic cosmic rays, 591
global temperature, 591
Granger causality, 590, 597–599
GT time series, 593–594
IPCC AR5 model, 595–596
lagged-coordinate vectors, 588
OLR, 591
phase randomized surrogates, 589
reconstructed manifold, 588
secular warming trend, 595, 597
shadow manifold, 588, 589
significance of, 588
S-maps test, 590–591
solar-mediated CR, 592
superimposed interannual fluctuations,

592–593
Taken’s theorem, 590

Correlation coefficient, 430–431
Cosmic rays (CR), 591
COSMOS (ECHAM5/MPIOM), 115, 116,

119
Coupled lake-ice–atmosphere model, 281–284,

292
Cracked carbonate reservoir, 50
Cubical complex, 375
Cumulative distribution function (CDF), 15, 16
Cylindrical symmetry (aka HTI-symmetry), 36

D
Damped least square method (DLM), 300
Dansgaard–Oeschger events, 365
Data-adaptive harmonic (DAH) decomposition

Arctic sea ice concentrations
anomalies, 188
DAHMs, 188
EOFs, 187
narrow-band temporal information,

189
principal components, 187
Sea Ice Extent, 186
spatial distribution, SIC variability,

189

cross-correlations, 180
DAHCs, 202
Hankel matrix, 201
identification, spatio-temporal oscillatory

modes
amplitude modulation, 183
block-Hankel matrix, 183
eigenvectors, 183, 185
Fourier decomposition, 183
“hidden periodicities,” 181
HRCs, 185, 202
M-SSA methodology, 181
multivariate spatio-temporal dataset,

182
noisy dataset, 184

integral operator techniques, 180
MSLM modeling, 203–204
power and phase spectra, 180
spectral analysis, 200

Data-adaptive harmonic modes (DAHMs),
180

Data-mining techniques, 525
Decorrelation time scales, 208, 209
Degenerate entropy partitions, 230–231
Degree distribution, 569–570
Delay differential equation (DDE), 2, 3, 6, 7,

10, 24, 26–28
Delayed oscillator, 2
Density flux term (DFT), 174
Determinism, 601–602
Detrended fluctuation analysis (DFA), 358
Devil’s staircase steps, 26
Directed horizontal visibility graph (DHVG),

578
Directionality index (DI), 96, 97
Discrete Fourier transform (DFT), 652
Disorganized complexity, 226
Doppelgänger entropies, 230
Dynamical memory, 432, 434
Dynamical systems, 428, 587

autoregressive process (see Autoregressive
process (ARP))

chaotic dynamics, 432, 433
coarse-grained entropy rates, 433
dynamical memory, 432
information rates, 432
KSE estimates, 432–433
Markov models, entropy rate of, 433
mutual information rate (see Mutual

information rate (MIR), dynamical
systems)

Rényi entropy, 432
stochastic process, 431–433
symbolic sequences, entropy rates of, 433
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E
Earth Orientation Parameters (EOPs), 297
Earthquake stress-forecasting phenomenon, 47
East-Asian Winter Monsoon (EAWM), 365
ECMWF Numerical Weather Prediction

model, 64
Electroencephalogram (EEG), 442
El Niño Basin (ENB) nodes, 135, 136
El Niño/Southern Oscillation (ENSO), 133,

136, 137, 666. See also Pullback
attractors (PBAs), delay differential
ENSO model

Complex network approaches
diagnostics, 135–137
dynamics, 137–138
forecasting, 139–140

Empirical Model Reduction (EMR), 189
Empirical orthogonal function (EOF), 134,

136, 140, 141
decomposition, 187

Ensemble Kalman Filter (EnKF), 676
Ensemble transform (ET), 676
Ensemble transform Kalman filter (ETKF),

676
Entropy production in logarithmic time

(EPLT), 255
Equilibrium Climate Sensitivities (ECS), 320
Error growth

initial error
chaotic dynamics, 399
finite error, 399–400
logistic map, mean error for, 398, 399
Lyapunov exponents, 399–400
spatially extended systems, 400
superexponential error growth, 400
three-variable model system, probability

density, 400, 401
model errors, 395, 401–403

Euclidean space, 489, 490
Eulerian frame, 311
European Centre for Medium-range Weather

Forecasts (ECMWF), 345, 346
Exact fractal, 602
Extreme events, 17, 23, 26

F
Fast Fourier transform (FFT), 438–441
Feed forward back propagation method, 299
Finite time Lyapunov exponent (FTLE), 219
500 hPa geopotential height

“data bottleneck” problem, 670
ENSO, 669
nonlinear and nonstationary process, 670

prediction errors, 671–672
SOI index, 671
spatio-temporal time series, 669

Flood severity index (SI), 501
Fluctuation–dissipation theorem, 63
Fluctuation of similarity (FLUS), 358
Fokker–Planck equations, 61, 416, 419, 423
Fokker–Planck–Kolmogorov equation

(FFPK-equation), 487
Form Stress Term (FST), 164, 165, 174
Fourier transform (FT), 468, 471
Fractal mass density, 489
Fractal–multifractal (FM) method

California, rainfall encodings
encodings, 526–528
FM parameters, Cherry Valley, 534
performance, 528–530
rainfall dynamics, 530–531
sensitivity, 531–533

Cantor set, 522
chaos game, 522
classification and complexity analysis

additional complexity analysis,
536–538

geometric and data classification,
533–535

in space, 536
daily rainfall sets, 521
daily streamflow, 521
daily temperature measurements, 521
fractal interpolating functions, 521
methodology

complexity analysis, 525
encodings, 524
model performance, 525

rainfall events, 521
universal multifractals, 523

Fractal techniques, 239–240
Fractional calculus, 486–487
Fractional Fokker–Planck–Kolmogorov

equation (FFPK-equation), 487–489
Fractional Gaussian noise model

anomalies, 329–330
autocorrelations, 330
Brownian motion, 329
differences, 330
Dirac function, 328
fBm, 331–332
Haar fluctuations, 330
spectrum, 331
Wiener process, 328, 329

Fractionally Integrated Flux model, 557
Fractional magnetohydrodynamics (fMHD),

487
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Fractional Maxwell’s equations (fME), 487
Functional connectivity networks, 428
Functional magnetic resonance imaging

(fMRI), 442
Fundamental matrix, 397–398, 401–402

G
Gamma distribution, 363
Gaussian central limit theorem (q-CLT), 471
Gaussian distribution, 127, 128
Gaussian model, 310
Gaussian process, 471
Gaussian white noise process, 407
Gene evolution, 626
General circulation models (GCMs), 162, 306,

307, 310, 313, 318–321, 333, 341
Generalized particle swarm optimization

(GPSO) algorithm, 524
Generalized Scale Invariance, 307
Generalized winds, 130
Geometry, 525
Geophysical data analysis

fractals, 238
mathematical definition, ambiguity of,

240–242
scaling relationships, 249–250

stochastics, 239–240, 244–246
model fitting, 253–254
randomness, 250–253

Geopotential height (GH) spatial series,
476–480

Global Climate Models (GCMs), 137
Global Navigation Satellite System (GNSS),

298
Global Precipitation Climatology Center

(GPCC) database, 573
Gödel’s incompleteness theorem, 606, 618
Granger causality, 590, 597–599
Graph theory, 428, 566, 567
Green House Gas (GHG), 319

H
Haar fluctuation analysis, 315, 316, 341
Hadley Centre Sea Ice and Sea Surface

Temperature (HadISST) data set,
134

Harmonic predictors, 653
Harmonic reconstruction components (HRCs),

185, 202
Hasselmann averaging method, 68, 77
Hasselmann program, 56, 58
Hausdorff fractal dimension, 242, 489–490

Heinrich events, 365
Hellinger distance, 68, 71, 75, 77
Hessian matrix, 417
Hexagonal symmetry (transverse isotropy), 36
Horizontal visibility graph (HVG), 577
HUC-2 decomposition, 502
HUC-4 decomposition, 502
100 kyr cycle, late quaternary climate response

bistable energy-balance climate model, 144
coherence resonance, 144
forced stochasticWallmann’s model

deterministic limit-cycle frequency,
158, 159

Gaussian distribution, 156
Milankovitch orbital eccentricity

variation, 154
noise intensities, 156
non-linear system, 155
orbital forcing frequency, 157–159
Ornstein–Uhlenbeck colored noise, 155
simple energy balance equation, 154
solar forcing, 155
solar insolation, 154

limit-cycle solutions, 144, 148
Milankovitch forcing, 144
noise-induced cycle suppression

mechanism, toy model, 151–154
non-linear amplification mechanisms, 144
Wallmann’s deterministic model

biogeochemical and burial processes,
145

external source and sink processes, 146
inter-compartment exchange processes,

146
limit-cycle solution, 148–150
microbial degradation, 145
notation, 147
ocean ventilation
bifurcation diagram, 151
phase diagram, 150
time series, 150
POP and POC production rate, 145
sea-level falls, 148
TA and DIC, 148, 149
weathering processes, 146

Hurricane Danny, 372, 373, 384
Hurricane Isabel, 372–374
Hurst-Kolmogorov (HK) process, 243, 244,

255, 257
Hybrid algorithm, 299
Hybrid Hurst-Kolmogorov (HHK) process,

255–257
Hydrologic applications

catchment classification, 579–581
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rainfall data, connections in, 572–575
river networks and processes, 578–579
streamflow data, connections in, 575–578

Hyperbolic geometry, 560

I
Ice–albedo feedback, 281, 287, 288, 293
Iceland Meteorological Office (IMO), 47
Ice volume, 393, 394
Incomparability, 231–233
Infomap community detection algorithm,

92–93, 135
Interaction networks, 428–429
Intermittency, 543
International Earth Rotation and Reference

System Service (IERS), 299, 301
Inter-tropical Convergence Zone (ITCZ), 116
Intrinsic climate oscillations

DFT spectral analyses, 652–653
Hurst exponent, 654
long interpolated records, 656–657
Milankovitch forcing, 656–657
proxy record, 655
record details, 651–652
SPECMAP project, 656, 658
statistical procedure, 655–656

Irregularly sampled time series
methods

recurrence analysis, 362–363
transformation costs time series,

359–361
nonlinear time series analysis, 358
palaeoclimate proxy records, 358
palaeoclimate regime transition,

363–365
recurrence plot framework, 358
tipping points/regime shifts, 358

J
Jacobian matrix, 397, 405, 407, 418

K
Kalman filter, 300
Kelvin waves, 135
k-means clustering, 534
Koch snowflake, 602–603
Kolmogorov equation, 57
Kolmogorov law, 306, 307, 311, 313
Kolmogorov–Sinai entropy (KSE), 432–433,

438, 440
Kolmogorov–Smirnov (KS) metric, 15–19

L
Lagrangian frame, 311
LAgrangian Submesoscale ExpeRiment

(LASER), 224
Laplace equation, 603–604
Laplacian spectral analysis, 180
Large Deviations theory, 56
Last glacial maximum (LGM), 148
Learning about Interacting Networks in

Climate (LINC) project, 88. See also
Climate networks

Lebesgue measure, 14, 23
Lempel–Ziv complexity, 433
Level sets, 372–374
Levenberg–Marquardt learning algorithm

(LMA), 300
Levy distributions, 488
Lévy stable vectors, 558
Linear Inverse Modelling (LIM), 335, 337
Lomb–Scargle periodogram method, 653
Lorenz’s low-order atmospheric model,

412–414
Lorenz’s three-mode truncation model, 402,

403, 412–414
Lorenz systems, 103
Lyapunov exponents (LE), 398–400, 402, 405,

407, 408, 440–441

M
Machine learning (ML), 139, 386–388
Macro cosmos, 620
Macroweather turbulent laws, 310
Magnetosphere, 480, 482
Majda–Timofeyev–Vanden-Eijnden (MTV)

method, 56
Majorization, 231–232
Markovian matrices, 534
Markov process, 255
Martian transition scale, 313
Matlab®, 653
Maximum entropy (ME) approximation,

255–257, 259
Maxwellian velocity distribution, 127, 130
Mean Square Skill Score (MSSS), 334, 335
Mesoscale eddies, 162, 172
Micro-cosmos, 620
Microstates, 227
Mississippi River Basin (MRB), 499

adjusted coefficient of determination (R2/,
506

HUC-4 sub-regions, 507
peak flow data, 500–501
physics-based models, 504
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Mississippi River Basin (MRB), 499 (cont.)
power-law formulas, 509–510
power-law regression, 505
regional homogeneity determination,

507–509
scaling exponents and intercepts, 506
scaling patterns, 501–503
severity index, 512
watershed sizes, 510–511

Model drift, 346
Monotonicity, 379
Monte Carlo simulations

singular system analysis, 455
thermodynamic complexity, 228, 229

Multichannel Singular Spectrum Analysis
(M-SSA), 180

Multifractals, 238, 240, 241, 247, 248, 263
cascade processes, 307

Multilayer Stochastic Model (MSM), 189,
203

Multilayer stochastic Stuart-Landau models
(MSLM), 203

Multiple climate regimes, 288–290
Multisensor Analyzed Sea Ice Extent (MASIE)

dataset, 200
Mutual information (MI), 88–92, 430, 431
Mutual information rate (MIR), dynamical

systems
ARP, independent realization of, 437, 438
CCWT, 444–446
climate networks, 444, 446–447

air temperature/pressure, 443
AWC values, 448–452
FFT-based estimator, 448–450
low-dimensional weather/climate

attractors, 443
scale-specific SATA climate network,

453–457
coupled dynamical systems, 437, 442
EEG brain networks, 442, 444
fMRI brain networks, 442
of Gaussian processes, FFT, 438–441, 443
multichannel attractor embedding, 442
PDF’s, 436
static network, 443
symbolic dynamics, 437
temporal networks, 443

N
NAOI. See North Atlantic Oscillation index

(NAOI)
Nash–Sutcliffe efficiencies, 525
Nash–Sutcliffe indices, 526

National Aeronautics and Space
Administration (NASA), 187

National Centers for Environmental Prediction
(NCEP), 138, 679

National Climate Data Center (NCDC), 526
National Snow and Ice Data Center (NSIDC),

187
Natural fractals, 238
Navier–Stokes equations, 125, 557
Nelder–Mead method, 115
Nerve Lemma, 378
Network, concept and development of,

566–567
Network inference method, 136
Network theory, 566
NINO3.4 index, 134
Node degree, 570
Nodes, 633
Noise-induced cycle suppression mechanism

Fokker–Planck equation, 152
Hopf bifurcation, 151, 152
Ornstein–Uhlenbeck noise, 153
power spectrum, 154
steady-state distribution, 152, 153
stochastic limit-cycle, 152

Non-autonomous dynamical systems (NDSs),
7

Non-extensive physical process, 472–473
Non-extensive statistics

BG entropy and statistical mechanics, 466,
469

exponential function, q-extension of, 468
FT q-extension, 468, 471
logarithmic function, q-extension of, 468
phase space, fractal–multifractal structuring

of, 469–470
q-entropy, 466–467, 469
Tsallis q-triplet, 492–493

anomalous diffusion and strange
dynamics, 487–489

critical percolation, 489–490
fractional calculus, 486–487
GH spatial series, 476–480
magnetosphere, 480, 482
Pesin’s theorem, 471
q-extended CLT, 471
qrel index and relaxation process, 474
qsen index and entropy production,

473–474
qstat index and non-extensive physical

process, 472–473
RNG theory and phase space transition,

490–491
seismogenesis, 475–476
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solar flares time series, 484–486
solar wind, 483, 484
sunspot time series, 483–486
temperature and rainfall, 480, 481

Non-linear dynamics (NLD)
atmospheric predictability (see

Atmospheric predictability)
deformation, 36
thermodynamic complexity, 226

Nonlinear eddy forcing, multiple zonal jets
jets and eddy forcing, GCMs

background flow, 168
density, 170, 172
high spatial resolution, 168
potential vorticity, 172–174
quasi-zonal jets, 169
relative vorticity, 169–171
time-averaged fields, 168

quasi-geostrophic (QG) dynamics
barotropic and baroclinic components,

165
buoyancy anomalies, meridional flux

of, 164
eddy–eddy and eddy–jet interactions,

166
FST, 165, 166
jet dynamics, 164
“linear control,” 167
periodic zonal domain, 163
potential vorticity, 162
PV balance, 165
relative vorticity, meridional flux of,

164
RST, 165, 166
time-and zonal averaging, 163
transient velocity anomalies, 162

Nonlinearity impact on targeted observations
CNOP and PBPDA, 676
CNOP method, 677–678
CNOP-sensitive areas, 676–677
ETKF-sensitive areas, 676
experimental setup

adjoint system, 679
high-resolution PBL scheme, 679
initial constraint condition, 680–681
Kuo cumulus parameterization scheme,

679
Matsa and Meari tropical cyclones,

679
FSV method, 678
sensitive areas, 676, 678–679
SV-sensitive areas, 676–677
typhoon Matsa and Meari

CNOPs and FSVs, 681–682

fixed forecast time, 688–690
fixed initial time, 686–688
sensitive areas, horizontal resolutions,

682–683
sensitive areas, vertical resolutions,

684–685
Nonlinear polar motion

ANN, 298–299
data reduction and training patterns

generation, 299–301
fuzzy inference system, 299
prediction results and comparison,

301–303
space geodetic techniques, 297, 298

Nonlinear time series analysis, 358, 466, 662
Infomap community detection algorithm,

92–93
ordinal time-series analysis, 88–92

Nonstationary climate series
classical dynamical systems, 662
compound reconstruction modeling, 662
ideal nonstationary systems

global temperature prediction, 666–669
500 hPa geopotential height (see 500

hPa geopotential height)
logistic map, 663–665
Lorenz system, 665–666

method, 662–663
Pacific mean sea-level pressure, 661
segregation modeling, 662

Nordeng atmosphere, 115
Normalized mutual information (NMI) index,

579
North Atlantic Oscillation (NAO), 454–457,

636, 666
North Atlantic Oscillation index (NAOI),

454–457
North Pacific Index (NPI)), 666

O
Ocean-atmosphere model, 57
Ocean model, 111, 115
Ordinal pattern (OP), 88–91
Ordinal time-series analysis, 88–92
Ordinal transition probabilities, 92–93
Ordinary differential equations (ODEs), 2, 7,

57
Ordinary Least Square (OLS) regression,

502–503
Organized complexity, 226
Ornstein–Uhlenbeck process, 61, 62, 65, 79,

82, 83, 337
Outgoing longwave radiation (OLR), 591
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P
Pacific Decadal Oscillation (PDO), 666
Pacific North America (PNA), 636
Pandora box of multifractals

chaos revolution, 543
Clifford algebra, 551–553
Mandelbrot set

classical M-set, 549
pseudo-quaternions, 550–551
quaternions, 549–550

mono/uni-scaling approaches, 543
scalar-valued multifractals

conservative flux, 556
non-conservative field, 557
stable generator, 555–556
sub-generator, 553–555

stochastic Clifford algebra, 544
symmetries and geometries

orthogonal rotations vs. mirror
symmetries, 545–546

pseudo-quaternion properties, 546–547
spherical vs. hyperbolic geometries,

547–548
vector-valued multifractals

Clifford–Laplace transform, 558–561
Lie/Clifford algebra, 557–558

Pareto-Burr-Feller (PBF) distribution, 268
Partial correlation networks, 429
Partial differential equations (PDEs), 9
Partially ordering partitions, 231
Particulate inorganic carbon (PIC), 145, 148
Particulate organic carbon (POC), 145, 148
Particulate organic phosphorus (POP), 145,

148
PDFs. See Probability distribution functions

(PDFs)
PeakFQ software, 500–501
Pearson Correlation Climate Network (PCCN),

135, 137, 138
Pearson cross-correlation coefficient, 92–94,

430, 447
Persistence diagram (PD), 370

bottleneck distance, 385, 386
brightness temperature surfaces, 384
ML methods, 386–388
Rips complexes, 383
sublevel sets, nested family of, 383, 385
topological noise, 383
q-Wasserstein distance, 385, 386

Persistence image, 388
Persistence landscape, 388
Persistent homology (PH), 370

algebraic topology, 376

brightness temperature, sublevel sets, 372,
373

cartoon data point cloud, 374–375
cubical complex, 375
homology groups, 371
Hurricane Isabel, level sets, 372–374
persistence diagram, 370

bottleneck distance, 385, 386
brightness temperature surfaces, 384
ML methods, 386–388
Rips complexes, 383
sublevel sets, nested family of, 383, 385
topological noise, 383
q-Wasserstein distance, 385, 386

point cloud, 371–374
simplicial complexes, 375

abstract simplicial complex, 376–377
cartoon data point cloud, 376–377
Cech complex, 376–378 (Insert symbol)
chain complex, 380–382
n-chains, 379–380
oriented simplex, 380
Vietoris–Rips complex, 378–379,

381–382
single-linkage hierarchical clustering, 375
time series, 371–372
topological invariants, 371
topological spaces, one-parameter, nested

family of, 375
Pesin’s theorem, 471, 473
Phase-space diagrams, 525, 537
Phenomenological fallacy, 324
Piece data assimilation method (PBPDA), 676
Poincaré map, 25
Potthoff analysis, 513
Power spectral densities (PSDs), 17, 437
Power spectrum, 244–246, 251, 253, 257, 261,

262, 272–274
Predictability. see Atmospheric predictability
Principal component analysis (PCA), 135, 180
Principal components (PCs), 187
Principle of minimum energy consumption,

627
Probability density functions (PDFs), 194, 196
Probability distribution functions (PDFs),

88–90, 92, 429–432, 436
Pullback attractors (PBAs), delay differential

ENSO model
chaos-to-chaos crisis

dynamical interpretations, 24–25
Kolmogorov–Smirnov metric, 15–19
pullback symptoms, 17, 20–24
small additive noise, 25–29
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motivation, 2–4
and statistical equilibria

Arnold tongues, 6
frequency-locked dynamics, 6
irregular quasi-periodic dynamics, 6
Kelvin waves, 4, 5
model’s parameter, 5
nonlinear delay oscillator mechanism, 4
overlapping of resonances, chaotic

behavior, 7
periodically forced systems, 13–15
Rossby waves, 4, 5
strangeness, 10–11
time-dependent forcing, 7–10
time evolution, 11–13

Q
Quasi-biennial oscillations (QBO), 453
Quasi-geostrophic (QG) dynamics, eddy

forcing
barotropic and baroclinic components, 165
buoyancy anomalies, meridional flux of,

164
eddy–eddy and eddy–jet interactions, 166
FST, 165, 166
jet dynamics, 164
“linear control,” 167
periodic zonal domain, 163
potential vorticity, 162
PV balance, 165
relative vorticity, meridional flux of, 164
RST, 165, 166
time-and zonal averaging, 163
transient velocity anomalies, 162

Quasi-quadrennial oscillations (QQO), 453,
454

Quaternary glaciation cycle, 393

R
Random fractal, 602
Randomnicity

cellular automata, 606
computer-generated lightning, 606
Koch snowflake, 602–603
Laplace equation, 603–604
lightning, 602–603
mathematical system

gödel’s incompleteness theorem, 606
randomness of first kind, 607–609
randomness of second kind, 610–613
randomness of third kind, 613–614

quantum chaos, 623

role of, 625–628
second law, 624
three-dimensional trajectory, 623
Trojan War, 601
in universe

chaos, 616–618
quantum mechanics, 615–616
randomness of fourth kind, 621–622
supreme law, 618–620

wave packets, 622
Recurrence quantification analysis (RQA),

362–364
Regional homogeneity, 514–516
Regular (ordered) networks, 633–634
Relaxation process, 474
Renormalization group (RNG) theory, 490–491
Rényi entropy, 432
Rényi fractal dimensions, 470
Reservoir Characterization Project (RCP), 50
Retarded functional differential equation

(RFDE), 7, 8
Reynolds Stress Term (RST), 164, 165, 174
Richardson’s law, 306
Riemann function, 471
Riemannian measure, 15
Rips complex. See Vietoris–Rips complex
Root mean square error (RMSE), 338, 664
Rossby waves, 135
Ruelle response theory, 57, 59–60
Runge–Kutta (RK2) stochastic scheme, 66

S
Satellite Laser Ranging (SLR), 298
Scale-specific climate network, 453–457
ScaLIng Macroweather Model (SLIMM), 310,

333–336
Sea ice concentration (SIC). See Arctic sea

ice concentration (SIC), DAH
decomposition

Sea Ice Extent (SIE), 186
Sea Ice Index (SII), 187
Sea Ice Prediction Network (SIPN), 200
Sea-level falls (SLF), 148
Seasonal forcing, 2, 24
Sea surface temperature (SST), 2, 5, 116, 117,

119, 134–138, 140, 141
Second law of thermodynamics, 225
Secret Cave ı18O record, 363, 365
Seismic moment time series, 475–476
Seismogenesis, 475–476
Seismograms, 39–40, 50
Self-organized critical (SOC) process, 491–492
Shasta Dam, 531
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Shear-Wave Analysis System (SWAS), 39
Shear-wave splitting (SWS)

APE-modelling, 38–39
crack distributions, 37
New Geophysics

NLD and SWS, 45
NLD supporting APE-deformation, 42
properties of, 43
seismic-wave propagation, 41
sub-critical geophysics, 41

NLD deformation, 41
NLD stress-accumulation

earthquakes, 46–50
fluid injection, 50–53
volcanic eruptions, 50

percolation theory, 37
ray-path geometry, observing undisturbed

waveforms, 45–46
seismograms, 39–40

Shear-wave velocity anisotropy (SWVA), 36
Simple-scaling, 513–514
Simplex method, 115
Simplicial complex, 375

abstract simplicial complex
affinely independent vectors, 377
geometric realization, 376, 377

cartoon data point cloud, 376–377
Cech complex, 376–378 (Insert symbol)
chain complex, 380–382
n-chains, 379–380
oriented simplex, 380
Vietoris–Rips complex, 378–379, 381–382

Simplified averaging procedure, 60
Sinai–Ruelle–Bowen (SRB) measure, 14
Single-linkage hierarchical clustering, 375
Singular value decomposition (SVD), 217, 590
Small-world networks, 567, 634
S-map analysis, 590–591, 594
Snapshot attractor, 9
Solar flares, 484–486
Solar wind, 483, 484
South American Monsoon System (SAMS),

572
Southern Oscillation index (SOI), 453, 454
Space plasmas, Tsallis q-triplet values

magnetosphere, 480, 482
solar flares time series, 484–486
solar wind, 483, 484
sunspot time series, 483–486

Spatial patterns of peak flow quantiles
MRB

adjusted coefficient of determination
(R2/, 506

HUC-4 sub-regions, 507

peak flow data, 500–501
physics-based models, 504
power-law formulas, 509–510
power-law regression, 505
regional homogeneity determination,

507–509
scaling exponents and intercepts, 506
scaling patterns, 501–503
severity index, 512
watershed sizes, 510–511

rainfall properties, 498
rainfall-runoff model, 499
region-of-influence method, 499
RFFA, 498

Spatio-temporal series, 669–670
Standard Gaussian white noise process, 64
State University–National Center for

Atmospheric Research (PSU–
NCAR) Mesoscale Model,
679

Static bivariate distribution, 431
Statistical space-time factorization (SSTF),

310, 326
Stochastic Linear Framework (SLF), 337
Stochastic modeling, Arctic sea ice

concentration (SIC)
ACFs, 195
DAH-MSLM model, 194, 199, 200
EMR, 189
extended simulation of, 197
global random attractor, 190
inverse models, 189
MSM approach, 189, 194
PDFs, 194, 196
SIPN network, 200
spatio-temporal DAH modes, 192
stochastic realization, 198
Stuart-Landau oscillators, 191

Stochastic parameterization, subgrid-scale
process

Brownian motion, 56
climate and weather models, 56
2-D large-eddy simulations, 56
empirical parameterization, 77
global temperature, 55
hyperbolic instability, (-, +, +) triad, 78
parameterization methods

empirical methods, 63–64
Hasselmann averaging method, 62–63
Ruelle response theory, 59–60
singular perturbation theory method,

61–62
stochastic processes, 58

parameterization problem, 57–58
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perturbative methods, 77
practical computation, parameterizations

averaging method, 81–83
response theory method, 79–81
singular perturbation method, 81

stability and measures, 66–68
.�;C;C/ stochastic triad, 77
.�;�;C/ stochastic triad

Hasselmann averaging method, 68
Hellinger distance, 68, 71, 75
probability densities, 69, 73
singular perturbation method, 68
timescale separation, 68, 70, 72, 74, 76

Stochastics, 239–240, 244–246, 431–433, 613
model fitting, 253–254
randomness, 250–253

Stochastic Seasonal to Interannual Prediction
System (StocSIPS)

atmospheric dynamics, 306
vs. CanSIPS comparison, 344–350
continuum mechanics and thermodynamics,

306
forecasts, classical laws and turbulence

laws, 310–311
macroweather forecasting

fractional Gaussian noise model,
328–332

mean square (MS) estimator framework,
333–336

SLIMM, 333–336
SLIMM prediction skill and stochastic

macroweather prediction systems,
337–340

macroweather statistics
climate zones and intermittency,

322–324
low frequency macroweather limit and

climate transition, 317–321
scaling, space-time statistical

factorization and size-lifetime
relations, 324–328

weather–macroweather transition,
311–317

regional forecasting, 341–343
stochastic predictability limits, 341
turbulent laws, 306–309

Stommel diagrams, 324
Stress-forecasting, 48
Stress-Monitoring Sites (SMSs), 50
Stress-relaxation, 49, 50
Stuart-Landau (SL) models, 191
Subgrid-scale process

Brownian motion, 56
climate and weather models, 56

2-D large-eddy simulations, 56
empirical parameterization, 77
global temperature, 55
hyperbolic instability, (-, +, +) triad, 78
parameterization methods

empirical methods, 63–64
Hasselmann averaging method, 62–63
Ruelle response theory, 59–60
singular perturbation theory method,

61–62
stochastic processes, 58

parameterization problem, 57–58
perturbative methods, 77
practical computation, parameterizations

averaging method, 81–83
response theory method, 79–81
singular perturbation method, 81

stability and measures, 66–68
.�;C;C/ stochastic triad, 77
.�;�;C/ stochastic triad

Hasselmann averaging method, 68
Hellinger distance, 68, 71, 75
probability densities, 69, 73
singular perturbation method, 68
timescale separation, 68, 70, 72, 74, 76

Sublevel sets, 372, 373
Submesoscale Processes and Lagrangian

Analysis on the SHelf (SPLASH),
224

Sumatra-Andaman Earthquake (SAE), 48
Sunspot time series, 483–486
Superexponential error growth, 400
Supermodel (SUMO)

climate models, 115–116
data assimilation, 102
dynamical evolution law, 103
Kalman filtering, 102
low-order models

Bayesian reasoning, 104
computational model, 104
ex post facto weighting scheme, 105
inter-model nudging, 104
Lyapunov function, 104
model–model coupling, 105
perturbing parameters, 103
“real” and coupled “model” systems,

104, 105
real Lorenz systems, 103
stochasticity, 106
synchronization-based method, 105
trajectory-matching, minimizing, 106,

107
truth-model synchronization error, 104

one-way truth-model coupling, 101
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Supermodel (SUMO) (cont.)
primitive-equation models

analogous rules, 112
CLIO model, 111
dynamical equations, 112
land model, 111
ocean model, 111
SPEEDY model, 110
truth-model synchronization error,

112–114
semi-autonomous models, 119
synchronization paradigm, 102
tunable parameters, 103
weighted supermodels

connected supermodels, 106
quasigeostrophic models, 108–110
weighted averaged dynamics, 107

Supervised learning algorithm, 139, 299, 300
Surface air temperature (SAT), 89–90, 92,

135
Symmetric moving average (SMA) scheme,

257–258

T
Takens’ theorem, 662–663
Taylor diagram, 116, 118
Thermodynamic complexity

arrow of time
medieval woman, life span of, 233–234
Roman empire, rise and fall of, 234–235

Boltzmann system, complete evolution of
degenerate entropy partitions, 230–231
doppelgänger entropies, 230
incomparability, 231–233
majorization, 231–232

nonlinear models, 226
systematic evolution, 226

Thermodynamic feedback, 116
Thermodynamic fluctuation–dissipation

theory, 474
Three-column lake models

geometry, 288
global-warming experiments, 290–292
hysteresis diagrams, 288–290

Three-dimensional trajectory, 623
Tiedtke atmosphere, 115
Time embedding approach, 180
Topological data analysis (TDA)

applications, 370
persistent homology, 370

algebraic topology, 376

brightness temperature, sublevel sets,
372, 373

cartoon data point cloud, 374–375
cubical complex, 375
homology groups, 371
Hurricane Isabel, level sets, 372–374
persistence diagram (see Persistence

diagram (PD))
point cloud, 371–374
simplicial complexes (see Simplicial

complex)
single-linkage hierarchical clustering,

375
time series, 371–372
topological invariants, 371
topological spaces, one-parameter,

nested family of, 375
Topological invariants, 371
Topological noise, 383
Topology, 369
Transformation costs time series (TACTS)

approach, 359, 361, 364–366
Transformed Eulerian Mean, 170
Transient Climate Responses (TCR), 320
Trojan War, 601
Tropical Rainfall Measuring Mission (TRMM),

572
Truncation error, 258
Tsallis non-extensive statistics. See Non-

extensive statistics
Tsallis q-triplet, 492–493

anomalous diffusion and strange dynamics,
487–489

climate
GH spatial series, 476–480
temperature and rainfall, 480, 481

critical percolation, 489–490
fractional calculus, 486–487
Pesin’s theorem, 471
q-extended CLT, 471
qrel index and relaxation process, 474
qsen index and entropy production, 473–474
qstat index and non-extensive physical

process, 472–473
RNG theory and phase space transition,

490–491
seismogenesis, 475–476
space plasmas

magnetosphere, 480, 482
solar flares time series, 484–486
solar wind, 483, 484
sunspot time series, 483–486
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V
Very Long Baseline Interferometry (VLBI),

298
Vietoris–Rips complex, 378–379, 381–383

W
Wallmann’s model

deterministic model, 100 kyr cycle
biogeochemical and burial processes,

145
dynamical equations, 146
external source and sink processes,

146
inter-compartment exchange processes,

146
limit-cycle solution, 148–150
microbial degradation, 145
notation, 147
ocean ventilation
bifurcation diagram, 151
phase diagram, 150
time series, 150
POP and POC production rate, 145
sea-level falls, 148
TA and DIC, 148, 149
weathering processes, 146

forced stochastic resonance, 100 kyr cycle
deterministic limit-cycle frequency,

158, 159
Gaussian distribution, 156

Milankovitch orbital eccentricity
variation, 154

noise intensities, 156
non-linear system, 155
orbital forcing frequency, 157–159
Ornstein–Uhlenbeck colored noise, 155
simple energy balance equation, 154
solar forcing, 155
solar insolation, 154

q-Wasserstein distance, 385, 386
Weak coupling, 60
Weather Research and Forecasting (WRF)

model, 372, 373
Weibull distribution, 266–267
Weighted Least Square (WLS) regression,

502–503
Wind speed, distribution function of, 274–275
World Meteorological Organization (WMO),

345

Y
Young diagram lattice (YDL), 228–230
Younger Dryas, 365, 366

Z
Zaslavsky’s equation, 489
Zebiak and Cane (ZC) model, 137, 138
Zero forcing flow, 108, 109
Z-scores, 515
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