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Abstract  Phosphorus (P) is an essential plant nutrient required for sustainable pro-
duction of food and bioenergy crops. A sufficient supply of P to the crop plants is 
necessary in order to meet global and regional food security challenges. However, 
limited mobility of P in the soil and its high fixation capabilities within the soil matrix 
necessitate the use of P fertilizers, which are again prone to fixation, thereby reducing 
the availability of this crucial element for plant nutrition. Rhizosphere is an intricate 
zone under the influence of plant roots and harbours variety of microbial species 
which confer growth and nutrition benefits to the crop plants. Phosphate solubilizing 
bacteria (PSB) play a crucial role in solubilizing various forms of phosphorus in soil 
and making them available for plant uptake. The bacterial phosphate solubilization 
process is mainly triggered by the secretions of organic acids, siderophores, exopoly-
saccharides, and enzyme (phytase-phosphatase) activities. The bacterial metabolites 
either solubilize the inorganic forms of phosphorus or mobilize the organic sources of 
phosphorus through enhanced enzyme activities. In this chapter, we attempt to provide 
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an overview about the potential contribution of PSB in improving plant P nutrition. 
Moreover, we also discussed the action mechanism involving PSB and key features 
that make it a useful value-added product for sustainable agriculture.

Keywords  Phosphorus aquaisition • Bacteria • Fertilizers • Alkaline soils

21.1  �Introduction

Phosphorus (P) is a fundamental and non-substitutable nutrient element in food pro-
duction system. Plant phosphorus uptake can be a difficult proposition and thus often 
considered an important yield limiting factor in most agriculture systems of the 
world (Ringeval et al. 2017). Even though phosphorus is abundant in soils (organic 
and inorganic forms), its availability to plant is often restricted due to the formation 
of insoluble phosphate complexes in soil (Adesemoye and Kloepper 2009). The 
application of P fertilizer is the most sought out option to counteract phosphorus 
limitation in crop plants. However, about 80% of applied P fertilizer can be lost due 
to the fixation and adsorption processes (Lopez-Bucio et al. 2000), either in the form 
of Fe/Al phosphate in acidic soils or in the form of Ca phosphate in neutral to alka-
line soils (Bertrand et al. 2003). Therefore, most of the applied P fertilizer rapidly 
becomes unavailable to plants that led to reduced production potential of crop plants.

The phosphorus fertilizers are primarily produced from mined rock phosphate; a 
nonrenewable and geographically restricted resource. The majority of rock phos-
phate reserves ~85% are found in Morocco, which is the leading world phosphorus 
producer. Though estimated amounts are not likely running out in the short term, 
rock phosphate will become scarce, at least in terms of pricing due to increased 
demand (van de Wiel et  al. 2016). In addition, anthropogenic influences such as 
excessive mining, growing demand, increasing price, geopolitical constraints, 
excessive wastage, and high discharge to water bodies tend to hinder the sustainable 
management of the global P resource (Chowdhury et al. 2017).

These arising concerns have led to look for other viable options of phosphorus nutri-
tion in crop plants. One of the alternatives and emerging solution to solve this problem 
is to exploit the microhabitat of plant under the influence of root (rhizosphere). 
Rhizosphere is characterized as nutrient-rich niche of immense microbial activity. 
Certain culturable root zone bacteria have intrinsic ability to aggressively colonize the 
host plant and improve plant growth and development (plant growth-promoting rhizo-
bacteria (PGPR)). There are number of reports that entail promising effect of these 
PGPR on crop productivity under various soil conditions (Arif et al. 2016a, b; da Silva 
et al. 2017). Among these PGPR inoculants, several bacteria are able to mobilize and/
or solubilize insoluble P into soluble form by releasing acidic metabolites, chelation, 
and ion exchange reaction which makes P available for crop plants (Chung et al. 2005; 
Jorquera et al. 2008). These naturally occurring phosphate-solubilizing bacteria (PSB) 
are unique environmentally friendly alternative that could offer a sustainable P nutri-
tion for various crop plants. In addition, the application of these P bioinoculant could 
also negate the depressing effect of P fertilizer on ecosystem health.
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21.2  �Rock Phosphate-P Fertilizer-Food Security: A Crucial 
Nexus

The main source of phosphorus fertilizer is the geological deposits of phosphate 
rock. Morocco holds the phosphate monopoly with approximately 85% of global 
rock phosphate reserves. Other important rock phosphate-producing countries are 
China, the USA, Russia, Brazil, and Canada. Global fertilizer sector has seen a 
dramatic rise (about 430%) of P fertilizer production during the past 50  years 
(Fig. 21.1a). Extensive population growth and diversified food demand are chief 
contributors behind this mammoth increase of P fertilizer production. Currently 
>80% of extracted rock phosphate is being utilized to manufacture P fertilizer for 
agriculture, which raised questions and concerns about the depletion timeline of 
these reserves (Ibrahim et al. 2010).

The world food production system need to produce 70 more food (FAO 2009), and 
securing food sufficiency by 2050 is one of the top most priority to meet the global 
future food demand of approximately 9.1 billion people. Increased food production 
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Fig. 21.1  (a) Global 
phosphorus fertilizer 
consumption between 1961 
and 2006 (in million tons 
P). The figure indicates 
that while demand in the 
developed world reached a 
plateau and then declined 
around 1990, fertilizer 
demand has been steadily 
increasing in the 
developing world (IFA 
2009). (b) Peak 
phosphorus curve 
indicating a peak in 
production by 2033, 
derived from the US 
Geological Survey and 
industry data (Cordell et al. 
2009)
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will come from higher crop yields and an expansion in harvested land, both of which 
will necessitate greater fertilizer use. At a time when intensive cultivation practices are 
depleting soil fertility, crop yield improvements continue to decelerate. Considering 
population growth and rising food demand, it is anticipated that the use of phosphate 
fertilizer will soar up manifold to achieve higher yield and quality crop product. Based 
on these trends, the International Fertilizer Industry Association (IFA) is projecting 
medium-term growth in fertilizer demand of about 1.7% per year, with total fertilizer 
demand exceeding 200 million metric tons of N, P2O5, and K2O by 2020.

Phosphorus has received only limited attention compared to other important agri-
cultural inputs such as nitrogen and water. Because of the vital role of phosphorus in 
food production, any consideration of food security needs to include an informed 
discussion concerning more sustainable use of P due to its limited resource base. 
Keeping in view the increasing global demand for phosphorus fertilizers, the ongoing 
debate over the long-term availability of phosphate rock, lack of adequate phosphorus 
accessibility by many of the world’s poor farmers from developing world, shortage of 
P recycling system, and injudicious phosphorus fertilization warrant careful planning 
and consideration for P in sustainable agriculture. Moreover, detailed exploratory 
research is also required to provide reliable, global-scale quantification of the amount 
of phosphorus available for food production. A global phosphorus assessment, includ-
ing further insights from scientists and other experts, policy-makers, and other stake-
holders, could contribute to improving fertilizer accessibility, waste management in 
urban settings, and recycling of phosphorus from food waste products.

The long-term availability of phosphorus for global food production is of funda-
mental importance to the world population. Given the diversity of issues surrounding 
phosphorus, only an integrated set of policy options and technical measures can 
ensure its efficient and sustainable use. Environmental solutions that improve nutrient 
management and recycling minimize phosphorus losses due to soil erosion, and foster 
sustainable production and consumption also promote wise use of a finite resource. 
This could be the basis for fostering environmental innovation and other actions at 
local, national, regional, and international levels to improve phosphorus management. 
The future of this resource will also depend on governance with regard to its extrac-
tion and distribution around the world. There is a need for accurate information about 
the extent of global reserves, new technologies, infrastructure, institutions, attitudes, 
and policies to meet the challenge of sustainably feeding a rapidly growing global 
population while maintaining a healthy and productive environment.

21.2.1  �Phosphorus in Soil-Plant System

21.2.1.1  �Significance of Phosphorus for Plant

Phosphorus (P) is an essential element to all life forms of the earth ecosystem. In 
particular, phosphorus is key primary macronutrient necessary for plant growth and 
development along with nitrogen and potassium. P entry into plant is facilitated by 
root hairs, root tips, and the outermost layer of root cells. Plants typically take up P 
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in inorganic form either as primary orthophosphates (H2PO4
−) or secondary ortho-

phosphates (HPO4
2−) ion from soil solution. The dynamic balance of P availability 

and its absorption in soil plant system is tightly coupled with its pH. Once P sur-
passed the plant roots, absorbed inorganic P is either stored in the root or transported 
into the aerial plant parts through various mechanisms (Schachtman et al. 1998). 
Phosphorus is the structural component of several fundamental macromolecules 
and mainly involved in genetic, regulatory, signal transduction, and metabolic pro-
cesses. In certain conditions, P can get incorporated into multitude of organic com-
pounds ranging from smaller macromolecule (nucleotide, phospholipid, sugar 
phosphates) to larger macromolecule (DNA, RNA, phosphoprotein, ADP/ATP) of 
phosphorus (Turner et al. 2002; Condron et al. 2005). High energy phosphate forms 
that constitute adenosine diphosphate (ADP) and triphosphate (ATP) molecules 
drive several biochemical process within the plant. Energy transfer through phos-
phate carrier ADP and ATP to other molecular component of the cell (phosphoryla-
tion) controls many key biochemical process in plants (Baginsky 2016). Phosphorus 
also exists as phytin, a major P reserve of seeds and fruits, required for seed forma-
tion and early developmental stages of embryonic plant. Nearly half of total P in 
legumes seed and two-third in cereal grain are synthesized in the form of phytin. 
Hence, P deficiency appeared to reduce seed size, seed number, and viability. 
Moreover, inorganic and organic phosphates in plants also serve as buffers in the 
maintenance of cellular pH.

21.2.1.2  �Soil Phosphorus Cycle

Unlike carbon, oxygen, and nitrogen, global P cycle is a sedimentary cycle that origi-
nates from phosphate-bearing mineral deposit and crustal rock sediments. The global 
occurrence of P cycle in soil followed a dynamic flow of different P forms involving 
soil, plants, and microorganisms. P enters into the biosphere almost entirely from soil 
through numerous ways. In natural system, various soil processes control different 
pools and fluxes of P and subsequently drive soil P cycle in the ecosystem.

21.2.1.3  �Forms of Soil Phosphorus

Soil phosphorus forms can be broadly categorized into “sorbed P,” “mineral P,” and 
“organic P,” and all these P forms diffused into solution P collectively as orthophos-
phate for plant uptake. Sorbed P matrix is comprised of P adsorbed onto the surface 
of iron and aluminum oxyhydroxides and CaCO3 by electrostatic and covalent 
bonding (Moody et al. 2013). Phosphorus also exists in mineral form as a part of the 
structure of a wide variety of soil minerals, such as rock phosphate, present as flu-
orapatite [Ca5(PO4)3F] or hydroxyapatite [Ca5(PO4)3OH]. Soil inorganic P forms are 
not found in any typical ratios and pattern; they can be formed by sorbed/precipi-
tated P on amorphous Fe and Al oxides and hydrous oxides. In addition, soil pedo-
logical processes and/or the reaction products of added P fertilizers also favored the 
formation of mineral P matrix.
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Phosphorus fertilizers are the major inorganic P pool in agricultural soils and 
contribute approximately 70–80% of inorganic P share in these soils. In agriculture 
system, typical P fertilizer granule soon after its application predominantly dis-
solved into soluble inorganic P (H2PO4

−, HPO4
2−) forms by available soil moisture. 

Most of soluble phosphates may not be readily available for plant as they are nega-
tively charged and rapidly immobilized by sorption onto the positively charged soil 
mineral surfaces (Fe3+, Al3+, Ca2+), or fixation into soil organic matter complexes 
(Frossard et al. 2000; Shen et al. 2013). Organic P largely exists as an inositol poly-
phosphate fraction and accounts for ~50% of the total organic P in soil (Koopmans 
et al. 2003) Additionally, phospholipids (~1%) and nucleic acid (5–10%) and their 
degradation products make up the remaining organic P fraction. Phospholipids and 
nucleic acids that enter the soil are degraded rapidly by soil microorganisms. Inositol 
polyphosphates are usually associated with high molecular weight molecules 
extracted from the soil, suggesting that they are an important component of humus 
(Dao 2004).

A wide range of soil microorganisms are capable of mineralizing organic phos-
phates into inorganic orthophosphate via phosphate-specific enzyme activity 
(Dobbelaere et al. 2003). The enzymes involved in the hydrolysis of phosphate from 
organic P resources are collectively called as phosphatases. Microorganisms have 
tendency to produce both acid and alkaline phosphatases, but plant can solely 
secrete acid phosphatase (Tarafdar 1989). Mineralized pool of inorganic P from 
organic fraction enters the soil solution phase and might be taken by microbes and 
plants, adsorbed onto the solid matrix or rarely lost by leaching and run off. 
Phosphorus released from organic P fraction is highly dependent on soil moisture 
and temperature conditions (Adhya et al. 2015).

21.2.1.4  �Phosphorus Equilibrium in Soil

Soil solution P is the ultimate source of P supply to the plant, primarily through the 
process of root diffusion, influenced by many factors, i.e., P concentration gradient 
between the root surface and the bulk soil solution, rate of P re-supply to solution P 
after its withdrawal, soil water content, soil P buffer capacity (change in the quantity 
of soil P for a change in solution P concentration), and the connectivity of water 
films in soil pores (tortuosity factor) (Nye 1980). Both biotic and abiotic factors 
control the ultimate fate of P in soil solution. Weathering of sedimentary rocks (rock 
phosphate) containing P minerals primarily apatite [(Ca5 (PO4)3(F, Cl, OH)] is the 
principle source of P to the soil. In general, apatite deposits are distributed across 
the globe. Individual mineral P (apatite) deposits are mostly of sedimentary origin, 
but some igneous reserves also exist in lesser amount (Cisse and Mrabet 2004). The 
dissolution of these P-bearing minerals is synergistically driven by both biotic and 
abiotic processes which ultimately lead to the release of mineral phosphate. The 
main mechanism underlying P mineral dissolution involves the release of acidic 
metabolites usually from microbial activity (e.g., Frossard et al. 1995; Welch et al. 
2002). Solubilized phosphate is bioavailable P pool that is taken up by plants and 
assimilated into different plant parts and potentially can be recycled back to soil by 
plant residue (Damon et al. 2014).
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Soil microorganisms act as sink and source of phosphorus (P) and mediate key 
processes in the soil P cycle, e.g., P mineralization and immobilization (Oberson 
and Joner 2005). P released into the soil solution from the mineralization of organic 
compounds might be taken up by soil microbial population, taken up by growing 
plants, and transferred to soil inorganic pool (Fig. 21.1). Over time, some P fraction 
that undergo microbial immobilization can affect P availability by removing inor-
ganic P from the soil solution (Olander and Vitousek 2004). Most of inorganic P 
pool entering soil solution, either by mineralization or P fertilizer addition, is rap-
idly converted into insoluble P due to sorption and precipitation reactions. The sorp-
tion of inorganic P from solution is closely related to the presence of iron and 
aluminum oxides and hydrous oxides (Tian et al. 2016) and CaCO3 (Pizzeghello 
et al. 2011). The P concentration of the soil solution at equilibrium state will provide 
maximum P for plant uptake, highest at the slightly acidic to neutral pH range and 
are reduced considerably in strongly acidic or alkaline soil conditions (Fig. 21.2).

In calcareous soil, the amount of CaCO3 affects soil solution P equilibrium as 
reduced P solubility is often associated with the presence of excessive lime (CaCO3) 
(Mahdi et al. 2011). The reaction of phosphorus with CaCO3 was initially favored P 
sorption on these surfaces followed by rapid precipitation of soil solution P as Ca–P 
minerals (Sharpley et al. 1989). The formation and precipitation of these low solubil-
ity calcium phosphate compounds depressed P mobility and availability in these soils. 
In acidic soil, P sorption to Al and Fe oxides may be of equal or greater consideration 
than P sorption to CaCO3 and other similar compounds. In organic P may adsorb on 
hydrous oxides and oxides of aluminum and iron of clay mineral surfaces (Syers et al. 
2008a, b), and P is precipitated as insoluble Fe and Al phosphate complexes.

Fig. 21.2  An overview phosphorus cycle
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The balance between P adsorption and desorption maintains the equilibrium 
between solid phase and P in solution phase. The amount of P adsorbing or desorbing 
from surfaces depends on the number of sorption sites and the energy of adsorption 
(Moody et al. 2013). This equilibrium is termed P buffer capacity and is measured 
as the quantity of P that is adsorbed or desorbed for a unit change in solution P 
concentration. All of these P pools are in equilibrium with orthophosphate (H2PO4

−, 
HPO4

2−) in the soil solution and govern soil P cycle by the processes of desorption-
sorption (in the case of adsorbed P), dissolution-precipitation (in the case of mineral 
P), and mineralization-immobilization (in the case of organic P).

21.3  �Rhizosphere: Ecological Hot Spot of Soil Microbiota

A narrow interfacial region between plant roots and surrounding soil, and character-
ized by intense biochemical and microbial activities, is called rhizosphere. Hiltner 
(1904) described rhizosphere as soil compartment influenced by plant growth that 
harbors microbial activity more than that of its surrounding soil. Rhizosphere, as a 
unique site of interaction between host plant and its biotic component, is mainly 
driven by the release of organic resources in the form of plant metabolites (root exu-
dates) and plant debris (dead cells, mucilage). These organic resources served as 
food reserves for the microbes and support the growth and development of microbial 
population. These rhizodeposits represent a substantial part of photosynthetically 
fixed carbon (20–40%) and total plant nitrogen (10–16%) allocated to the under-
ground root system, largely depending on plant species and plant age (Jones et al. 
2009). The net sequestration of organic carbon and nitrogen by roots is thought to 
stimulate soil microbial multiplication in the vicinity of root tissues, because (a) 
most known soil bacteria are organotrophs, i.e., they derive the energy for growth 
from organic substrates, and (b) the accessibility and availability of organic com-
pounds are limited in most soils (Alden et al. 2001; Demoling et al. 2007).

Rhizosphere microbiota is attracted by these organic resources and exerts numer-
ous effects on plant growth and soil fertility (Antoun and Prevost 2005). As distinct 
microbial activity is usually associated with intense biochemical changes close to 
soil-root interface, therefore, it is also characterized as “microbial hot spot” 
(Reinhold-Hurek et  al. 2015). These interactions are part of complex exchanges 
between roots and microorganisms and establish either beneficial, detrimental, or 
neutral relationships regulated by complex molecular signaling (Dardanelli et al. 
2010). The beneficial interaction may favor plant growth, protect them from patho-
gens, and consequently have positive influence on crop productivity.

The rhizosphere, which is the narrow soil zone of soil that is influenced by plant 
roots and its released metabolites, can contain up to 1011 microbial cells per gram 
root (Egamberdiyeva et al. 2008) and more than 30,000 prokaryotic species (Mendes 
et al. 2011). In general, the microbial population densities in the rhizosphere are 
10–100 higher than in the surrounding bulk soil (Spaepen et al. 2009). As microbial 
activity dwell on to the close proximity (~50 μm) of root surface, plant rhizodeposi-
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tion of (approx. 50–100 mg per g root) is sufficient to support the growth of 2 × 1010 
bacterial cells (Foster 1983).

An increasing body of evidence signifies the importance of this root microbiome, 
which consists of the entire complex of rhizosphere-associated microbes, their 
genetic elements and complex interactions in determining plant growth and health. 
The rhizosphere microbial population are usually characterized by rapid growth rate 
and utilize available substrates (chitin, mucilage, dead cells, and root exudates) that 
helps in maintaining the dynamic equilibrium of rhizosphere and controls its associ-
ated competition (Dessaux et al. 2016). Rhizosphere microbial populations are the 
most vibrant, highly competitive, and aggressive colonizer of the plant roots 
(Bouizgarne 2013; Mommer et al. 2016).

21.3.1  �Plant Growth-Promoting Rhizobacteria (PGPR)

Rhizosphere microbial communities are increasingly understood to interact exten-
sively with plants, and this association is very crucial to the overall plant health and 
development. A group of bacteria (PGPR) are known to establish an active synergy 
with plants through aggressive root colonization that subsequently confer plant 
growth-promoting benefits to the plants (Hartman et al. 2008; Shahzad et al. 2013). 
These bacteria can be found within and on roots and in soil associated with roots. 
The role of PGPR in promoting plant growth depends strongly on their survival and 
growth under variable field conditions (Rivera et al. 2008). Concerning soil hetero-
geneity, PGPR potency to compete, proliferate, and improve plant growth is pre-
dominantly fueled by root exudates and other organic substrates (Khalid et al. 2006; 
Yuan et al. 2015). Additionally, PGPR traits such as motility, chemotaxis, attach-
ment, growth, and stress resistance also contribute to the overall competence of 
bacteria to survive in the rhizosphere and successfully colonize plant tissues.

A more feasible classification of PGPR is their separation as extracellular 
(e-PGPR) to denote those existing in the rhizosphere, on the rhizoplane, and intra-
cellular (i-PGPR) and to denote bacteria that exist in the spaces between the cells of 
the root cortex or in specialized nodular structures (Gray and Smith 2005). On simi-
lar lines, Ambrosini et al. (2016) also classified soil beneficial bacteria and their 
association with plant roots, i.e., symbiotic (inside leguminous nodules), endophytic 
(intercellular spaces), associative (root surface adhered), and rhizospheric (root-soil 
interface associated). Unlike PGPR, certain free living soil bacteria are opportunis-
tic in their association with plants, as they have loosely bound acclimation to the 
rhizosphere. These bacterial communities dwell around rhizosphere only in the 
presence of substantial organic substrate availability and in turn benefit plant in 
numerous ways. In another study, Bulgarelli and his colleagues (Bulgarelli et al. 
2013) explored aboveground plant exterior surfaces as a habitat for microbes. 
According to their view, aerial plant parts (leave and stem surfaces) are thought to 
represent one of the largest but less explored microbial habitats called as phyllo-
sphere. Compared with fungi and archaea, bacteria are the most prevalent 
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phyllosphere-colonizing microbes, with bacterial titers averaging approximately 
106–107 microbial cells per square centimeter of leaf area (Lindow and Brandl 
2003). A benefiting plant-microbe interaction always involved several molecular 
signaling events that establish growth-promoting association with plant (Weiland-
Bräuer et al. 2015). Such relationships vary according to plant genotypes and bacte-
rial strains and with respect to the degree of proximity between the roots and 
surrounding soil as well as with the abilities of bacteria to improve plant growth.

There are several mechanisms by which PGPR can promote plant growth and 
development. Lugtenberg and Kamilova (2009) outlined tripartite contribution of 
PGPR toward plant growth, i.e., biofertilizer, phytostimulators, and stress control-
lers (Pereira and Castro 2014; Kurepin et al. 2014; Shahzad et al. 2014). PGPR use 
various mechanisms which may take place simultaneously or sequentially at differ-
ent plant growth stages. The action mechanisms of plant growth promotion by 
PGPR can be grouped into two major categories, i.e., direct and indirect mode of 
plant growth promotion (Lugtenberg and Kamilova 2009; Bhattacharyya and Jha 
2012; Ashraf et al. 2013). Direct plant growth-promoting activities mainly involve 
an improvement of nutrient availability to the plant by the fixation of atmospheric 
nitrogen, production of iron-chelating sideroaphores, organic matter mineralization 
(thereby meeting the nitrogen, sulfur, phosphorus nutrition of plants), and solubili-
zation of insoluble phosphates (Martinez-Viveros et al. 2010; Chauhan et al. 2015; 
Etesami and Alikhani 2016). Another important direct mechanism involves the pro-
duction of plant growth hormones and growth-regulating enzyme 1-aminocyclopro
pane-1-carboxylate (ACC) deaminase (Shahzad et al. 2013). PGPR can also pro-
mote plant growth indirectly by inhibiting plant pathogen growth. This can also be 
achieved by the synthesis of enzymes that hydrolyze fungal cell walls, production 
of HCN, and lytic enzymes and induced systemic resistance by producing various 
antibiotic metabolites (Yuttavanichakul et al. 2012; Pieterse et al. 2014; Bensidhoum 
et al. 2016).

21.3.1.1  �Phosphate-Solubilizing Bacteria (PSB)

Phosphorus is the most important nutrient after N that affects growth and metabo-
lism processes of plant (Widawati and Suliasih 2006). The mobility of phosphate 
ions (H2PO4

− and HPO4
2−) in soil is very low because of their high retention in soil. 

But as a result of adsorption, precipitation and conversion to organic forms, only 
10–30% of the applied phosphate mineral fertilizer can be recovered by the crops 
grown after the fertilization (Holford 1997; Syers et al. 2008a, b). The remaining 
70–90% is accumulated in soil or in the form of immobile that is bound by Al or Fe 
in acid soils, or Ca and Mg in alkaline calcareous soils (Prochnow et al. 2006; Yang 
et al. 2010). While plants cannot absorb P in bound form, the P must be converted 
into available form. Phosphate-solubilizing bacteria (PSB) can play an important 
role in dissolving both of fertilizer P and bound P in the soil that is environmentally 
friendly and sustainable (Khan et  al. 2007). The exploration of phosphate-
solubilizing bacteria has been conducted by many researchers from soils  
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(Chen et  al. 2006; Widawati and Rahmansyah 2009; Gupta et  al. 2013) and 
rhizosphere (Poonguzhali et al. 2008; Khan et al. 2013).

Some bacterial species have mineralization and solubilization potential for 
organic and inorganic phosphorus, respectively (Hilda and Fraga 2000; Khiari 
and Parent 2005). Phosphorus-solubilizing activity is determined by the ability 
of microbes to release metabolites, such as organic acids, which through their 
hydroxyl and carboxyl groups chelate the cation bound to phosphate, the latter 
being converted to soluble forms (Khan et  al. 2013; Sharma et  al. 2013a, b). 
Phosphate solubilization takes place through various mechanisms including 
organic acid production and proton extrusion (Nahas 1996; Khan et  al. 2009; 
Marra et al. 2011). A wide range of microbial P solubilization mechanisms exist 
in nature, and much of the global cycling of insoluble organic and inorganic soil 
phosphates is attributed to bacteria and fungi (Banik and Dey, 1982). Phosphorus 
solubilization is carried out by a large number of rhizobacteria acting on spar-
ingly soluble soil phosphates, mainly by chelation-mediated mechanisms 
(Whitelaw, 2000; Reyes et al. 2001). Inorganic P is solubilized by the action of 
organic and inorganic acids secreted by PSB in which hydroxyl and carboxyl 
groups of acids chelate cations (Al, Fe, Ca) and decrease the pH in basic soils 
(Kpomblekou and Tabatabai 1994; Stevenson 2005). The PSB dissolve the soil P 
through the production of low molecular weight organic acids mainly gluconic 
and keto gluconic acids (Goldstein 1995; Deubel et al. 2000), in addition to low-
ering the pH of rhizosphere. The pH of rhizosphere is lowered through biotical 
production of proton/bicarbonate release (anion/cation balance) and gaseous 
(O2/CO2) exchanges. The phosphorus solubilization ability of PSB has direct 
correlation with pH of the medium. The release of root exudates such as organic 
ligands can also alter the concentration of P in the soil solution (Hinsinger 2001). 
Organic acids produced by PSB solubilize insoluble phosphates by lowering the 
pH, chelation of cations, and competing with phosphate for adsorption sites in 
the soil (Nahas, 1996). Inorganic acids, e.g., hydrochloric acid can also solubi-
lize phosphate, but they are less effective compared to organic acids at the same 
pH (Kim et al. 1997). In certain cases, phosphate solubilization is induced by 
phosphate starvation (Gyaneshwar et al. 1999; Khan et al. 2007).

The mineralization of soil organic P (Po) plays an imperious role in P cycling 
of a farming system. Organic P may constitute 4–90% of the total soil P. Almost 
half of the microorganisms in soil and plant roots possess P mineralization poten-
tial under the action of phosphatases. Alkaline and acid phosphatases use organic 
phosphate as a substrate to convert it into inorganic form (Beech et  al. 2001). 
Principal mechanism for mineralization of soil organic P is the production of acid 
phosphatases (Hilda and Fraga 2000). The release of organic anions and produc-
tion of siderophores and acid phosphatase by plant roots/microbes (Yadaf and 
Tarafdar, 2001) or alkaline phosphatase (Tarafdar and Claasen 1988) enzymes 
hydrolyze the soil organic P or split P from organic residues. The largest portion 
of extracellular soil phosphatases is derived from the microbial population (Dodor 
and Tabatabai 2003).
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21.4  �Methodological Advancement for the Isolation of PSB

A diversity of growth mediums are being used in laboratories for cultivation, 
isolation, characterization, and subsequently selection of P-solubilizing bacteria. 
Most of the PSB growth media have differential chemical composition and also 
characterized with varied growth efficiency both on liquid and solid cultures 
(Table 21.1). Biological phosphate solubilization activity of root zone microbe was 
first described by Gerretsen (1948), who explained microbial mediated solubiliza-
tion of insoluble inorganic P and its resultant effects on plant growth promotion. In 
the beginning, PSB isolation was primarily administered by plate screening assay 
and based on visual detection of clear halo zone formation as PSB colony niche in 
the presence of insoluble mineral P source (tricalcium phosphate/hydroxyapatite) 
(Pikovskaya 1948; Katznelson et al. 1962; Gupta et al. 1994). The selected method 
was adopted and generally considered a reliable approach for preliminary isolation 
and characterization of PSB (Katznelson et al. 1962; Goldstein and Liu 1987; Illmer 
and Schinner 1995).

However, Gupta et al. (1994) developed some modifications for PSB isolation 
using a Pikovskaya’s medium with bromophenol blue supplementation. These mod-
ifications were primarily designed to improve the visibility of halo zone, which 
were formed by acidic metabolites of PSB and associated pH changes. In some 
cases, it appears that there was quite a distinct functional mismatch between plate 
halo detection and P solubilization activity in liquid culture of these so-called 
PSB. Several workers reported no visible clear halo zone formation on inorganic P 
supplement could still go on to solubilize various types of insoluble inorganic phos-
phate in liquid medium (Louw and Webley 1959; Das 1963). This may be because 
of varying diffusion rates of different organic acids secreted by an organism 
(Johnson 1959). Nautiyal (1999) emphasized the importance of defined media for 
screening-efficient PSB and associated P solubilization activity. He formulated 
National Botanical Research Institute’s Phosphate (NBRIP) growth medium con-
taining bromophenol blue as a pH indicator. Once the efficient PSB are selected, 
they are tested for their ability to solubilize insoluble P under liquid culture medium. 
Finally, the efficient P-solubilizing bacteria are selected and used for the advance-
ment of inoculants whose efficacy is tested under natural environment against vari-
ous crops. Similarly, Bashan et al. (2013) argued the vitality of Pikovskaya medium 
containing tricalcium phosphate (TCP) as the sole P source is used for screening of 
P-solubilizing bacteria. However, the lack of reliable evidence of TCP-P solubilizer, 
absence of metal-P source, and increase in the use of rock phosphate as P fertilizer 
emphasized the need to design a novel medium that could support the growth of 
P-solubilizing bacteria. They also raised halos zone-based selection concerns for 
screening P solubilizer as PSB colony growth is often without halos even after the 
media is replaced several times. They also suggested the adoption of modified liquid 
broth for the isolation and screening of efficient PSB solubilizer in different soil and 
culture conditions.
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Table 21.1  Plant association and growth-promoting characteristics of PGPR in agriculture

Vegetation 
type Host plant Dominant exudation Identified microbiota References

Legumes Soybean 
[Glycine max 
(L.) Merr.]

Phosphate 
solubilization, 
N-fixation, 
siderophores 
production, protease 
production

Bacillus 
amyloliquefaciens 
LL2012, Bradyrhizobium 
japonicum

Masciarelli 
et al. (2014)

Chickpea (Cicer 
arietinum L.)

Siderophores 
production, chitinase 
activity, ACC-
deaminase activity, 
exopolysaccharide 
production, phosphate 
solubilization, HCN 
production

Serratia marcescens 
(SF3) and Serratia spp. 
(ST9) + M. ciceri

Shahzad et al. 
(2014)

Mung bean 
(Vigna radiata 
L.)

ACC-deaminase 
activity, Auxin 
production, phosphate 
solubilization antibiotic 
resistance

Pseudomonas fragi P5, 
Pseudomonas jesseni 
P10 and Rhizobium 
leguminosarum Z22

Iqbal et al. 
(2012)

Cereals Wheat (Triticum 
aestivum L.),

IAA, HCN, 
siderophores

Serratia marcescens Selvakumar 
et al. (2008)

maize (Zea 
mays L)

Acid phosphatase, 
alkaline phosphatase, 
IAA production

Azospirillum brasilense 
CNPSo 2083, Rhizobium 
tropici CIAT 899

Marks et al. 
(2015)

Rice (Oryza 
sativa L.)

IAA production, 
gibberellic acid 
production

Enterobacter spp. and 
Azospirillium spp.

Hasan et al. 
(2014)

Oat (Avena 
sativa L.) and 
barley 
(Hordeum 
vulgare L.)

IAA production, 
siderophores 
production, phosphate 
solubilization

Sinorhizobium meliloti 
L3Si, Pseudomonas sp. 
LG Azotobacter 
chroococcum AV, 
Enterobacter sp. E1,

Stajković-
Srbinović 
et al. (2014)

Oat (Avena 
sativa L.)

ACC deaminase, HCN, 
IAA production, 
phosphate 
solubilization

Sinorhizobium meliloti, 
Azotobacter sp., 
Pseudomonas sp.

Delić et al. 
(2012)

Sugarcane 
(Saccharum 
officinarum L.)

Production of IAA, 
phosphate 
solubilization, Induced 
systemic resistance,

Azospirillum sp. Moutia et al. 
(2010)

Sugarcane 
(Saccharum 
officinarum L.)

Phosphate 
solubilization, HCN 
production, IAA 
production

Bacillus megaterium Sundara et al. 
(2002)

(continued)
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Table 21.1  (continued)

Vegetation 
type Host plant Dominant exudation Identified microbiota References

Oil seed Turnip mustard 
(Brassica rapa 
L.)

IAA, ACC deaminase, 
Siderophores

Pseudomonas sp. Poonguzhali 
et al. (2008)

Mustard 
(Brassica 
campestris L.)

HCN production, IAA 
production

Mesorhizobium loti MP6 Chandra et al. 
(2007)

Canola 
(Brassica napus 
L.)

Siderophores, IAA, 
salicylic acid, ACC 
deaminase

Dyella ginsengisoli, 
Burkholderia kururiensis, 
Pandoraea sp. ATSB30

Anandham 
et al. (2008)

Sunflower 
(Helianthus 
annuus L.)

Siderophores 
production and IAA 
production

Pseudomonas fluorescens 
biotype F and 
Pseudomonas fluorescens 
CECT 378T

Shilev et al. 
(2012)

Trees Pinus 
roxburghii

Siderophores 
production and IAA 
production

Bacillus subtilis Singh et al. 
(2008)

Italian stone 
pine (Pinus 
pinea L.)

Phosphate 
solubilization, IAA, 
exopolysaccharide 
production, organic 
acid production

Bacillus licheniformis 
CECT 5106 and Bacillus 
pumilus CECT 5105

Probanza et al. 
(2001)

Teak (Tectona 
Grandis) and 
Indian redwood 
(Chukrasia 
Tabularis)

Nitrogen fixation, 
phosphate 
solubilization, 
siderophores 
production

Azotobacter sp. DCU26 
and Bacillus megaterium 
A3.3

Aditya et al. 
(2009)

Grasses Canary grass 
(Phalaris minor 
L.)

IAA production, 
Nitrogen fixation, HCN 
production

Azotobacter and 
Azospirillum

Zaefarian 
et al. (2012)

Bermuda grass 
(Cynodon 
dactylon L.)

Phosphate 
solubilization, 
Exopolysaccharide 
production, ACC-
deaminase activity, 
HCN production,

Serratia sp.—TRY2 and 
Bacillus sp.—TRY4

Sarathambal 
and Ilamurugu 
(2013)

Barnyard grass 
(Echinochloa 
crus-galli L.), 
Italian ryegrass 
(Lolium 
multiflorum L.)

Phosphate 
solubilization, HCN 
production, IAA 
production, antifungal, 
HCN production,

Bacillus, Arthrobacter, 
Stenotrophomonas, 
Acinetobacter, and 
Pseudomonas

Sturz et al. 
(2001)

Nut grass 
(Cyperus 
rotundus L.)

Phosphate 
solubilization, Organic 
acids production, 
siderophores 
production, HCN 
production

Enterobacter sp. Arh 1, 
Pseudomonas sp. Bro 5

Diogo et al. 
(2010)

(continued)
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Table 21.1  (continued)

Vegetation 
type Host plant Dominant exudation Identified microbiota References

Vegetables Red pepper 
(Capsicum 
annuum L.)

Gibberellic acid, IAA 
production

Bacillus cereus MJ-1 Joo et al. 
(2005)

Mint (Mentha 
piperita L.)

Phosphate 
solubilization, 
siderophores 
production, IAA 
production

Agrobacterium rubi A16, 
Burkholderia gladii BA7, 
P. putida BA8, B. subtilis 
OSU142, B. megaterium 
M3

Kaymak et al. 
(2008)

Cabbage 
(Brassica 
oleracea L.)

IAA production, 
Phosphate 
solubilization, HCN 
production, Organic 
production

Bacillus megaterium 
TV-91C, Pantoea 
agglomerans RK-92 and 
B. subtilis TV-17C

Turan et al. 
(2014)

Tomato 
(Solanum 
lycopersicum 
L.)

IAA production, 
antagonistic behavior, 
HCN production, 
siderophores 
production, Gibberellic 
acid production

Pseudomonas putida, P. 
fluorescens, Serratia 
marcescens, Bacillus 
subtilis, B. 
amyloliquefaciens, and 
Bacillus cereus

Almaghrabi 
et al. (2013)

Cucumber Antagonistic effect, 
HCN production, 
siderophores 
production, Phosphate 
solubilization,

Bacillus sp. Stout et al. 
(2002)

Bitter gourd 
(Momordica 
charantia L.)

Phosphate 
solubilization, Nitrogen 
fixation, siderophores 
production, HCN 
production, ACC 
deaminase activity

Azospirillum, 
Pseudomonas 
fluorescens, and Bacillus 
subtilis

Kumar et al. 
(2012)

Quantitative estimation of biologically solubilized P as dissolved reactive 
phosphorus (most readily available P) is usually measured by molybdate colori-
metric test (Murphy and Riely, 1962). This method was based on the observa-
tion that ammonium heptamolybdate and antimony potassium tartrate react with 
dilute orthophosphate solution in an acidic medium to form an antimony-
phospho-molybdate complex. The reduction of the complex by ascorbic acid 
gives it an intense blue color that is proportional to the orthophosphate 
concentration.
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21.4.1  �Mechanisms of P Solubilization

21.4.1.1  �Organic Acid Production

Phosphorus-solubilizing bacteria have characteristics ability to release acidic metabo-
lites such as organic acids. These acidic secretions have the tendency to enhance 
mobility and/or solubility of inorganic P compounds (Son et al. 2006). On quantitative 
basis, the ability of PSB to solubilize insoluble phosphate in liquid culture medium is 
investigated by a number of researchers (Narula et al. 2000; Whitelaw, 2000). The 
solubilization of soil P in liquid medium by PSB has often been resulted due to the 
excretion of organic acids. In general, PSB produce variety of organic acids, i.e., ace-
tic acid, gluconic acid, oxalic acid, citric acid, and lactic acid in liquid culture filtrates, 
and usually analyzed by thin layer chromatography or by high-performance liquid 
chromatography (HPLC). In addition, certain enzymatic methods are also employed 
for an accurate identification of unknown organic acids (Gyaneshwar et al. 1998).

These organic acids can either directly dissolve the mineral phosphate as a result 
of anion exchange of PO4

2− by acid anion or can chelate both iron and aluminum 
ions associated with phosphate (Omar, 1998). In certain cases phosphate solubiliza-
tion is induced by phosphate starvation (Gyaneshwar et  al. 1999). The role of 
organic acids produced by PSB in solubilizing insoluble phosphate mainly attrib-
uted to the lowering of pH, chelating of cations, and competing with phosphate for 
adsorption sites in soil (Nahas 1996). Some inorganic acids, i.e., hydrochloric acid 
and sulfuric acid can also solubilize phosphate, but they are less effective compared 
with organic acids at the same pH (Kim et al. 1997). Effective P mobilization and/
or solubilization by organic acid metabolites is related to the number and structure 
of the carboxyl groups, general order of carboxyl group effectiveness: tricarboxyl-
ate (e.g., citrate3−) > dicarboxylate (e.g., malate2−) > monocarboxylates (e.g., ace-
tate 1−) (Ryan et  al. 2001, 2012). The ability of organic acid secretions is 
gene-regulated mechanism but can also be influenced by prevailing environmental 
conditions. Soil nutrient content, i.e., C, N could affect the nature of organic acid 
secretions and P solubilizer (Narsian and Patel, 2000). Moreover, chelating ability 
of various organic acids has also been shown as an efficient mechanism of P solubil-
ity in P-deficient environment (Chapin et al. 2012).

21.4.1.2  �Siderophores Production

It is well known that certain microbes secrete organic ligand to solubilize Fe from 
poorly available sources. Microbial siderophores are low molecular weight organic 
ligand produced as a scavenging agent to combat iron limitation. Siderophores pro-
duction is usually not a widely investigated mechanism for phosphate solubiliza-
tion. Many PSB have the ability to forage Fe from mineral complex into soluble 
Fe3+ form that is taken up by active transport carrier mechanism (Collavino et al. 
2010). Siderophores production by PSB has indirect potential to improve P avail-
ability as these ligands can also extract Fe from ferric citrate and ferric phosphate 
(Zaidi et al. 2009). Approximately, 500 different siderophores structure are known 
to be produced by several gram-positive and gram-negative bacteria.
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Very few works have been carried out to evaluate siderophores production as a 
method of P solubilization. Reid et al. (1985) showed 13-fold increments in P diffusion 
when compared with water. In view of mineral dissolution ascendency over ligand 
exchange by organic acids as a P-solubilizing mechanism, the probable siderophores 
contribution to improve P availability should be more pronounced.

21.4.1.3  �Exopolysaccharides Production

The role of low molecular weight organic acids in the solubilization of mineral P 
is well documented. However, the knowledge on the role of high molecular weight 
microbial exudates (nonenzymatic mucilage) on P solubilization is limited. 
Exopolysaccharide (EPS) and biosurfactants are produced by bacteria largely in 
response to biofilm formation and stress. Microbial exopolysaccharides are poly-
mers of carbohydrates excreted by bacteria on the outer side of their cell walls. 
The structural composition of exopolysaccharides is quite heterogenous (homo- 
or heteropolysaccharides) and may possess various organic and inorganic sub-
stituents (Sutherland, 2001). Some earlier studies have shown that the 
exopolysaccharides have the ability to form complexes with metals in soil (order 
of affinity to form complexes Al3+ > Cu2+ > Zn2+ > Fe3+ > Mg2+ > K+) (Ochoa-Loza 
et al. 2001) that implicates their role of P solubilization in soil. Microbial exo-
polysaccharides have shown to stimulate the dissolution of tricalcium phosphate 
(TCP) in synergy with organic anions (Yi et al. 2008). Further the rate of dissolu-
tion was showed dependent on microbial source and concentration of 
EPS.  Recently, Taktek et  al. (2017) showed that exopolysaccharide-producing 
rhizobacteria solubilized igneous phosphate rock through secretions of viable bio-
film cells and release of organic acids. They also found concomitant effect on 
plant P nutrition and yield of maize.

Phosphorus also releases from complex organic P compounds in soil by enzymatic 
activities; (a) phosphatases (Bandick and Dick 1999), which perform dephosphoryla-
tion of phospho-ester or phosphoanhydride bonds in organic matter; (b) phytases 
(Maougal et al. 2014), which particularly cause P release from phytic acid; (c) phos-
phonatases and C–P lyases, enzymes that exhibit C–P cleavage in organophosphonates.

21.4.1.4  �Phosphatases Activity

Phosphatases are broad range of hydrolytic enzymes which showed strong affinity 
to catalyze the hydrolysis of both organic phosphate esters and anhydrides of H3PO4. 
Organic P is an important component of global phosphorus cycle. The P enzyme 
activities drive the mineralization of organic P into available inorganic form of P 
that easily assimilable by plants (Nannipieri 2011).

Interest in soil enzymes activity has increased manifold during the last decade 
because of their significance in P cycling (Beech et al. 2001; Rodríguez et al. 2006). 
Many bacteria having phosphatases release inorganic phosphate from organophos-
phate complexes. However, activities of these P-cycling enzymes largely depend upon 
their pH and are classified as either alkaline (pH > 7) or acid (pH < 6) phosphatase. 
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These enzymes catalyze the hydrolysis of many different phosphate systems including 
those of primary, secondary, cyclic, and sugar alcohols as well as phenols and amines.

Acid phosphatases are widely distributed hydrolase and primarily a plant origin 
enzyme exhibiting minimal substrate specificity (Duff et  al. 1994). Several acid 
phosphatase genes from gram-negative bacteria have been isolated and character-
ized (Rossolini et al. 1998). Some of them code for acid phosphatase enzymes that 
are capable of performing well in soil. For example, the acpA gene isolated from 
Francisella tularensis expresses an acid phosphatase with optimum action at pH 6 
with a wide range of substrate specificity (Reilly et al. 1996; Beech et al. 2001).

Alkaline phosphatases are group of hydrolases originally released by microbes 
under alkaline and neutral soil conditions. They can potentially hydrolyze up to 
90% of total organic P into available P source in soil (Jarosch et al. 2015). This 
enzyme catalyzes the hydrolysis of a wide variety of phosphomonoesters and dies-
ters excluding inositol phosphate (Kageyama et al. 2011). According to previous 
studies, PSB inoculation acts as an orderly stimulus with higher alkaline phospha-
tase activity that eventually lead to improve soil P status and plant P nutrition 
(Shahzad et al. 2014; Kaur and Reddy 2014).

21.4.1.5  �Phytases Activity

Mostly phytases (myoinositol hexakisphosphate phosphohydrolases) belong to high 
molecular weight acid phosphatases. In its basic form, phytate is the primary source 
of inositol and the major stored form of phosphate in plant seeds and pollen. Most 
genetic engineering studies have focused on the search for phytases that are optimal 
for improving animal nutrition. Another attractive application of these enzymes that 
is not currently exploited is solubilization of soil organic phosphorus through phytate 
degradation. Phytate is the major component of organics forms of P in soil (Rodríguez 
et al. 2006). The ability of plants to obtain P directly from phytate is very limited. 
However, the growth and P nutrition of Arabidopsis plants supplied with phytate 
were improved significantly when they were genetically transformed with the phy-
tase gene (phyA) (Richardson et al. 2001). This resulted in improved P nutrition, 
such that the growth and P content of the plant were equivalent to control plants sup-
plied with inorganic phosphate. In relation to plant P availability, inoculation with 
phytate-mineralizing rhizobacteria improved P nutrition in cereals crop without P 
fertilization under Chilean Andisol (Martínez et  al. 2015). Extracellular phytase-
producing rhizobacteria have also been identified (Kumar et al. 2013; Li et al. 2013).

21.5  �Recent Advances and Future Prospects of PSB

Based on above discussions, it is explicitly concluded that limited plant available P 
as well as low solubility of applied P fertilizer in soil are the major constraint in 
most agroecosystem. P deficiency can cause some serious concerns for overall 
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growth, development, and yield of crop plants. However, the impediment caused by 
P limitation on plant growth can be dispelled and/or minimized by naturally occur-
ring microorganisms capable of solubilizing P such as PSB.

Recently, proteomic-based techniques have emerged as an effective tool to dis-
close genotypic adaptation mechanisms involved in various crop plants under P defi-
ciency. Various phosphate starvation responsive proteins have been identified in plant 
using these approaches, and using these proteins and their corresponding genes, it is 
now possible to improve plant P acquisition capacity by an upregulation of plant 
system for an efficient P uptake in the near future. The identification of metabolic 
genes regulating bioacidulation (principle mode of P solubilization) mechanism and 
its linked traits in PSB would advance our understanding about the underlying 
molecular basis of solubilized P fraction in soil. So far most of the studies involving 
PSB are originally in vitro which lack rigor and reliability to select an efficient PSB 
as a deliverable product for field trials. Thus, the work will further bridge the existing 
knowledge gap related to unclear role of PSB inoculant under varied soil environ-
ment. Another potential option is to develop transgenic plants encoding the genes of 
particular traits related to bacterial P solubilization. The literature shows that these 
transgenic plants have the adaptive capacity to counteract limited nutritional reserves. 
However, such studies are very limited in number and are at very early stage which 
warrants some elaborative validations before performing extensive experimentation. 
Moreover, information about the molecular mechanisms regulating P deficiency in 
crop plants is also scarce. Overall, future research should be focused (1) to mediate 
PSB-based metabolite engineering under P-deficient environments, (2) to explore 
multiple mechanistic traits of P solubilization in PSB, (3) to identify target P respon-
sive genes for promoting growth under P starvation, and (4) the transference of tar-
geted genes for efficient P utilization in plants through biotechnology.

21.6  �Conclusion

Various modern agro-biotechnological interventions are being used to boost up 
plant P acquisition under P-limited conditions. One of the most emerging tools to 
negate P solubility and availability concerns for crop plant is the use of PSB as P 
bioinoculant. PSB play an important role in phosphorus nutrition by enhancing its 
availability to plants through solubilization and mineralization of inorganic and 
organic phosphates in soil. Therefore, plant beneficial microbes (including 
phosphate-solubilizing bacteria, i.e., PSB) and their associative interaction with 
host plant are key determinant of overall plant growth, development, and yield of 
crops under P-limited conditions. However, efficiency of PSB as a value-added P 
biofertilization approach further necessitates a more rigorous selection criteria for 
quality PSB formulation, which requires considerable attention of the scientists to 
overcome such challenges (Tables 21.2, 21.3, 21.4, 21.5 and 21.6).
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Table 21.3  Culture media and their chemical composition used for P-solubilizing bacteria

Chemical composition of media PVK NBRIP NBRIY YEM Ashby’s

Ammonium sulfate 0.50 0.10 0.50
Bromophenol blue (BPB) 0.03
Calcium carbonate 2.00 5.00
Dipotassium hydrogen phosphate 0.50 0.20
Ferrous sulfate 0.00
Glucose 10.00 10.00 10.00
Iron(III) chloride 0.002
Magnesium chloride hexahydrate 5.00
Magnesium sulfate heptahydrate 0.10 0.10 0.20 0.20
Manganese sulfate 0.25 0.25 0.00
Mannitol 10.00 20.00
Potassium chloride 0.20 0.20 0.20
Potassium sulfate 0.10
Sodium chloride 0.20 0.20

PVK Pikovskaya’s medium (Pikovskaya, 1948), NBRIP National Botanical Research Institute’s 
phosphate growth medium (Nautiyal 1999), NBRIY National Botanical Research Institute’s phos-
phate growth medium devoid of yeast extract medium (Nautiyal 1999), YEM yeast extract manni-
tol broth (Holt et al. 1994), Ashby’s medium (SubbaRao 1977)
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Table 21.5  P-solubilizing bacterial metabolites and plant growth promotion

Bacterial name Activity
Host plant 
growth

Botanical 
name References

Pseudomonas putida Organic acids Enhanced 
chlorophyll 
content and P 
uptake in plants

Hordeum 
vulgare L.

Mehrvarz 
et al. (2008)

Paenibacillus lentimorbus 
B-30488

Organic acids Enhanced plant 
growth due to 
biofilm 
formation and 
phosphate 
solubilization

Zea mays 
L.

Khan et al. 
(2011)

Pseudomonas striata Phosphatase Increased the 
number of 
nodules, fresh 
and dry weights 
of nodules, and 
grain yield and 
improve the P 
uptake in grain

Cicer 
arietinum 
L. and 
Glycine 
max L.

Son et al. 
(2006)

Pseudomonas 
fluorescence + Bacillus 
megaterium

Phosphatase Enhanced 
seedling growth 
and phosphorus 
content in 
plants in 
comparison to 
uninoculated 
plants

Cicer 
arietinum 
L.

Sharma et al. 
(2013a, b)

Enterobacterium with 
Sinorhizobium meliloti

Phosphatase Increased P 
uptake, fresh 
biomass and 
grain yield than 
uninoculated 
plants

Cicer 
arietinum 
L. and 
Pisum 
sativum 
L.

Hynes et al. 
(2008)

Bacillus sp. with Rhizobium Phytase Co-inoculation 
improved pod 
and straw yield; 
increased the 
root length, root 
mass, and 
number of 
nodule and 
mass; and 
enhanced the 
nutrient 
concentration in 
mash plant and 
grains

Vigna 
mungo L.

Qureshi et al. 
(2012)

(continued)
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Table 21.5  (continued)

Bacterial name Activity
Host plant 
growth

Botanical 
name References

A. chroococcum Phytase Enhanced plant 
growth due to 
phosphate 
solubilization, 
auxin 
production, and 
catalase activity

Zea mays 
L.

Rojas-Tapias 
et al. (2012)

Acinetobacter sp. (PSGB04), 
Pseudomonas (PRGBB06)

Exopolysaccharide Increased root 
length, shoot 
length, seedling 
vigor, dry mass/
IAA, salicylic 
acid, N-fixation, 
and P uptake in 
seedlings

Brassica 
napus, 
Tomato

Indiragandhi 
et al. (2008)

Pseudomonas aeruginosa Siderophores Improving root 
and shoot 
growth of plant 
under water 
stress and 
increase P 
uptake in plant 
as compared to 
untreated plants

Black 
gram

Ganesan 
(2008)

Enterobacter sp. Siderophores Increasing 
chlorophyll 
content and iron 
and phosphorus 
content in 
leaves than 
uninoculated 
plants

Brassica 
juncea

Kumar et al. 
(2008)
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Table 21.6  Types and functional expression of P-solubilizing genes in plant beneficial bacteria

Identified Gene Source
Function/mineral P 
solubilized References

pKG3791 Serratia marcescens PQQ biosynthesis, produce 
gluconic acid, and 
solubilizes P mineral/TCP

Krishnaraj and 
Goldstein (2001)

gabY Pseudomonas 
cepacia

Produces gluconic acid and 
also having phosphatase 
activity/TCP

Babu-Khan et al. 
(1995)

pqqE Erwinia herbicola Produces gluconic acid and 
solubilizes P mineral/TCP

Vikram et al. 
(2007)

pqqED genes Rahnella aquatilis Produces gluconic acid and 
acetic acid and solubilizes 
P mineral/HAP

Kim et al. (1998)

Unknown Enterobacter 
agglomerans

Produces gluconic acid and 
solubilizes P mineral/DCP

Kim et al. (1997)

pqqABCDEF genes Enterobacter 
intermedium

Produces citric acid, 
gluconic acid, and 
solubilizes P mineral/HAP

Kim et al. (2003)

Ppts-gcd, P 
gnlA-gcd

E. coli Produces gluconic acid and 
solubilizes P mineral/TCP

Sashidhar and 
Podile (2009)

gabY putative PQQ 
transporter

Pseudomonas 
cepacia

Produces gluconic acid Babu-Khan et al. 
(1995)

gltA/citrate synthase E. coli K12 Produces citric acid and 
solubilizes P mineral/DCP

Buchet et al. 
(1999)

Unknown Synechocystis PCC 
6803

Produces gluconic and 
acetic acids and solubilizes 
P mineral/RP

Gyaneshwar et al. 
(2002)

gad/gluconate 
dehydrogenase

P. putida KT2440 Produces gluconic and 
2-Ketobutyric acids and 
solubilizes P mineral/RP

Kumar et al. (2013)

nap A Burkholderia 
cepacia IS-16

Increased extracellular 
alkaline phosphatases and 
solubilizes P mineral/CP

Fraga et al. (2001)
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