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Abstract. This paper analyzes the effect of the high-dimensional,
low-sample size problem in cancer classification using gene-expression
microarrays. Here the two key questions addressed are: (i) What is the
percentage of genes that can ensure highly accurate classification?, and
(ii) Does this percentage differ from one classifier to another? Both these
issues are investigated by developing a pool of experiments with two gene
ranking algorithms, five classifiers and four DNA microarray databases.
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1 Introduction

Conventional methods for cancer classification rely on a variety of morpholog-
ical, clinical and molecular variables, but they exhibit several limitations that
make difficult an accurate diagnosis. The rapid development of high-throughput
biotechnologies such as DNA microarray analysis allow to record and monitor
the expression levels of thousands of genes simultaneously from a few samples [8],
which has attracted the attention of scientists for its application in basic and
translational cancer research [5,14,15,18]. Many studies utilizing DNA microar-
rays have been directed to (i) distinguish between cancerous and non-cancerous
tissue samples, (ii) classify different types or subtypes of tumors, and (iii) predict
the response to a particular therapeutic drug and/or the risk of relapse.

Cancer classification using microarrays, which focuses on predicting the class
of a new sample based on its expression profile, poses two major challenges.
First, the gene-expression data are characterized by the so-called ‘large G,
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small n’ problem, that is, the number of genes (G) heavily exceeds the sample
size (n). And second, most genes are irrelevant to discriminate samples of differ-
ent types [6]. These issues may increase the complexity of the prediction problem,
degrade the generalization ability of classifiers and hinder the understanding of
the relationships between the genes and the tissue samples [4,19]. Under these
circumstances, feature selection plays a very important role in cancer classifica-
tion because it can alleviate (minimize) the effects of both those problems.

A particularly popular approach to feature selection using DNA microarrays
is gene ranking [9,13,17,20]. Gene ranking methods are filters that encompass
some scoring function to quantify how much more statistically significant each
gene is than the others [7], and as a result they rank genes in decreasing order of
the estimated scores under the assumption that the top-ranked genes correspond
to the most informative (or differentially expressed) ones.

The question the present study intends to answer is how the ‘large G, small n’
problem affects the classification performance using gene-expression microarrays.
In particular, this paper examines the impact of high-dimensional biological data
on several standard classifiers. To this end, two feature ranking algorithms are
applied to select a percentage of the top-ranked genes, which are further used to
classify new tissue samples and record the performance of classifiers in terms of
both overall accuracy and false-negative rate.

2 Gene Ranking Algorithms

Some well-established gene ranking strategies include t-test, information-
theoretic measures, symmetric uncertainty, correlation coefficient, χ2-statistic
and ReliefF, among others. In this section, the two feature ranking methods
used in the experiments are briefly described.

2.1 ReliefF

The basic idea of the ReliefF algorithm [12,16] lies on adjusting the weights of a
vector W = [w(1), w(2), . . . , w(G)] to give more relevance to features that better
discriminate the samples from neighbors of different class.

It randomly picks out a sample x and searches for k nearest neighbors of the
same class (hits, hi) and k nearest neighbors from each of the different classes
(misses, mi). If x and hi have different values on feature f , then the weight
w(f) is decreased because it is interpreted as a bad property of this feature.
In contrast, if x and mi have different values on the feature f , then w(f) is
increased. This process is repeated t times, updating the values of the weight
vector W as follows

w(f) = w(f) −
∑k

i=1 dist(f, x, hi)
t · k (1)

+
∑

c �=class(x)

P (c)
1 − P (class(x))

·
∑k

i=1 dist(f, x,mi)
t · k
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where P (c) is the prior probability of class c, P (class(x)) denotes the probability
for the class of x, and dist(f, x,mi) represents the absolute distance between
samples x and mi in the feature f .

2.2 Gain Ratio

The Gain ratio is an extension of information gain in order to overcome the
biased behavior of selecting the features with the largest number of values. Let
X be a set of n samples that belong to C distinct classes and let ni be the
number of samples in class i. The entropy of any subset can be calculated using
the following formula

H(X) = −
C∑

i=1

((ni/n) · log(ni/n)) (2)

To find the information gain of feature f , one has to sum the entropy for each
value fj (j = 1, . . . , v) of the feature:

H(X|f) =
v∑

j=1

((|fj |/n) · H(X|f = fj)) (3)

where H(X|f = fj) is the entropy calculated relative to the subset of instances
that have a value of fj for feature f .

The information gain of a feature is measured by the reduction in entropy as
IG(f) = H(X)−H(X|f). The greater the decrease in entropy when considering
feature f individually, the more significant this is for prediction.

In general, a feature will be most useful when maximizing the information
gain while simultaneously minimizing the number of feature values. Then the
intrinsic value of a feature f can be computed as:

IV (f) = −
v∑

i=1

((|fi|/n) · log(|fi|/n)) (4)

Thus the Gain ratio of f is defined as

Gain ratio(f) =
IG(f)
IV (f)

=
H(X) − H(X|f)

H(f)
(5)

3 Databases and Experimental Setting

We conducted a series of experiments on a collection of publicly available
microarray cancer data sets taken from the Kent Ridge Biomedical Data Set
Repository (http://datam.i2r.a-star.edu.sg/datasets/krbd). Table 1 summarizes
the main characteristics of these data sets, including the number of genes
(features), the number of tissue samples, and the size of the positive and negative
classes.

http://datam.i2r.a-star.edu.sg/datasets/krbd
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Table 1. Characteristics of the gene-expression microarray data sets.

#Genes #Samples Positive–Negative

Breast 24481 97 Relapse (46)–Non-relapse (51)

CNS 7129 60 Failure (39)–Survivor (21)

Colon 2000 62 Tumor (22)–Normal (40)

Prostate 12600 136 Tumor (77)–Normal (59)

The 5-fold cross-validation method was adopted for the experimental design
because it appears to be the best estimator of classification performance com-
pared to other methods, such as bootstrap with a high computational cost or
re-substitution with a biased behavior [1].

We focused our study on the ReliefF and Gain ratio feature ranking algo-
rithms and five classification models: the nearest neighbor rule (1-NN), a support
vector machine (SVM) using a linear kernel function with the soft-margin con-
stant C = 1.0 and a tolerance of 0.001, the C4.5 decision tree, the naive Bayes
(NBayes) classifier, the radial basis function neural network (RBF) with the K-
means clustering to provide the basis functions, and a hybrid associative memory
(HAM) with translation of the coordinate axes.

The experiments aim to analyze the classification accuracy when varying the
percentage of genes selected by ReliefF and Gain ratio from 5% to 100% with
a step size of 5%. For the purpose of this paper, the key question is how many
genes should be selected to perform the best with microarray gene-expression
data. Besides, we are interested in investigating whether or not the optimal
percentage of genes depends on the characteristics of each classifier.

Note that the classification accuracy is just the number of samples being
correctly classified, but this is not the most appropriate in the case of cancer
classification problems. To discriminate between normal and cancerous data, it is
especially important to take care of the false-positives and the false-negatives in
order to perform a thorough comparison on the performance of different methods.
False-positives are tolerable since further clinical experiments will be done to
confirm the initial cancer diagnosis, but false-negatives are extremely detrimental
because an ill patient might be misclassified as healthy.

4 Results and Discussion

Figure 1 shows the plot between accuracy rates and the percentage of the top-
ranked genes for each database. It is found that all classifiers provide the highest
accuracy using less than 20% of genes, irrespective of the feature selection algo-
rithm. Examination of this figure reveals that in general, the RBF neural network
and the naive Bayes classifier are the models most affected by the use of a large
number of genes. For instance, in the Breast database the accuracy of RBF
with the 5% top-ranked genes selected by ReliefF is 83.51%, but it significantly
drops down to 52.58% when using the whole set of genes. Similarly, in the Colon
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Fig. 1. Plots of the classification accuracy rates when varying the percentage of genes
selected by the ReliefF (left) and Gain ratio (right) ranking algorithms

database the NBayes accuracy goes down from 77.42% with the 5% top-ranked
genes selected by the Gain ratio to 58.06% with the total number of genes. It
is also interesting to remark that the SVM has shown superior performance in
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most cancer classification problems, probably because of its ability to deal with
high-dimensional data and its robustness to noise [3,11], and also because all
these data sets are linearly separable [2].

At this point, it could be especially interesting to show the relationship
between the number of genes and the amount of samples in order to better
understand how the ‘large G, small n’ problem affects the classification results
of gene-expression microarrays. To this end, the average number of samples per
dimension (genes) for each database has been plotted in Fig. 2. This corresponds
to the T2 data complexity measure [10], which describes the density of spatial
distributions of samples by comparing the number of samples in the data set to
the number of genes, (n/G). As can be seen, there exists a negative correlation
between the percentage of genes and the T2 measure, that is, higher values of X
(% genes) are associated with lower values of Y (T2). This shows that, although
the values of T2 are extremely small in all cases, the underlying difficulty of gene-
expression microarray classification increases as the number of genes increases,
which explains the decreasing tendency of accuracies presented in Fig. 1.

Fig. 2. Values of T2 when varying the percentage of genes

As already pointed out in Sect. 3, the false-negatives are even more relevant
than the classification accuracy when assessing the performance of models for
cancer classification based on gene-expression microarrays. Accordingly, Tables 2
and 3 report the false-negative rates given by each classifier both with the whole
set of genes (100% of genes available) and the subset of genes that performed
the best in terms of accuracy. The best result for each pair (database, classifier)
is highlighted in bold. It is observed that the false-negative rate achieved with
the best subset of genes is lower than that using 100% of genes in most cases:
22 out of 24 (4 data sets × 6 classifiers) with the ReliefF algorithm and 19 out
of 24 with the Gain ratio feature ranking approach. These results corroborate
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Table 2. False-negative rates with the ReliefF algorithm.

1-NN C4.5 SVM RBF NBayes HAM

Best 100% Best 100% Best 100% Best 100% Best 100% Best 100%

Breast 0.196 0.543 0.283 0.413 0.217 0.348 0.109 0.717 0.196 0.503 0.283 0.543

CNS 0.077 0.359 0.179 0.359 0.077 0.179 0.179 0.256 0.231 0.308 0.179 0.359

Colon 0.318 0.364 0.182 0.318 0.227 0.273 0.182 0.409 0.182 0.227 0.227 0.364

Prostate 0.065 0.130 0.143 0.156 0.052 0.078 0.273 0.143 0.571 0.675 0.256 0.143

Table 3. False-negative rates with the Gain ratio.

1-NN C4.5 SVM RBF NBayes HAM

Best 100% Best 100% Best 100% Best 100% Best 100% Best 100%

Breast 0.217 0.543 0.348 0.413 0.239 0.348 0.413 0.717 0.804 0.503 0.543 0.503

CNS 0.282 0.359 0.154 0.359 0.128 0.179 0.231 0.256 0.256 0.308 0.256 0.359

Colon 0.227 0.364 0.273 0.318 0.227 0.273 0.182 0.409 0.136 0.227 0.273 0.318

Prostate 0.117 0.130 0.104 0.156 0.039 0.078 0.299 0.143 0.675 0.675 0.503 0.227

the initial hypothesis that the removal of irrelevant (and redundant) genes leads
to very significant gains in performance when the number of samples is large
in comparison to the number of features, and it also produces a considerable
decrease in computational requirements.

5 Concluding Remarks

The present paper has analyzed the effect of the high-dimensional, low-sample
size problem for the classification of gene-expression microarrays. To this end,
two feature ranking methods and six classifiers have been applied over four
biomedical databases.

The experimental results have shown that the highest performance (as mea-
sured by the accuracy rate) was achieved by using a very small number of genes
(in general, less than 20% of the total amount of genes), independently of both
the gene ranking algorithm and the classifier. In addition, the T2 measure has
shown that the complexity of classifying gene-expression microarrays increases
as the amount of genes increases.

It has also been observed that RBF and naive Bayes appear to be the models
most affected by (sensitive to) the ‘large G, small n’ problem. On the other
hand, the SVM with a linear kernel has performed the best in nearly all cases,
probably because the experimental data sets are linearly separable. Finally, the
false-negative rates have highlighted the benefits of using a subset with the top-
ranked genes instead of the whole set because the presence of irrelevant genes
may distort the classification problem in hand.
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