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Chapter 4
The PDE4 cAMP-Specific Phosphodiesterases: 
Targets for Drugs with Antidepressant 
and Memory-Enhancing Action

Graeme B. Bolger

Abstract The PDE4 cyclic nucleotide phosphodiesterases are essential regulators 
of cAMP abundance in the CNS through their ability to regulate PKA activity, the 
phosphorylation of CREB, and other important elements of signal transduction. In 
pre-clinical models and in early-stage clinical trials, PDE4 inhibitors have been 
shown to have antidepressant and memory-enhancing activity. However, the devel-
opment of clinically-useful PDE4 inhibitors for CNS disorders has been limited by 
variable efficacy and significant side effects. Recent structural studies have greatly 
enhanced our understanding of the molecular configuration of PDE4 enzymes, 
especially the “long” PDE4 isoforms that are abundant in the CNS. The new struc-
tural data provide a rationale for the development of a new generation of PDE4 
inhibitors that specifically act on long PDE4 isoforms. These next generation PDE4 
inhibitors may also be capable of targeting the interactions of select long forms with 
their “partner” proteins, such as RACK1, β-arrestin, and DISC1. They would there-
fore have the ability to affect cAMP levels in specific cellular compartments and 
target localized cellular functions, such as synaptic plasticity. These new agents 
might also be able to target PDE4 populations in select regions of the CNS that are 
implicated in learning and memory, affect, and cognition. Potential therapeutic uses 
of these agents could include affective disorders, memory enhancement, and 
neurogenesis.
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4.1  Introduction

The cAMP-specific phosphodiesterases (PDE4) enzymes) hydrolyze the ubiquitous 
“second messenger” cAMP and thereby serve to regulate its abundance in specific 
sub-cellular compartments (Francis et  al. 2011; Conti and Beavo 2007; Houslay 
2010; Maurice et al. 2014; Baillie 2009; Menniti et al. 2006). They are an essential 
component of the cAMP signal transduction system, which also includes adenylyl 
cyclase, specific G-proteins, G-protein coupled receptors (GPCRs), the cAMP- 
dependent protein kinase (PKA) and the cAMP target, Epac (Beavo and Brunton 
2002). The PDE4 family is a member of the cyclic nucleotide PDE super-family, 
which consists of 11 distinct families (PDE1 through PDE11, respectively) that can 
be distinguished by their substrate specificity (cGMP and/or cAMP), molecular 
structure, and their ability to be inhibited by family-selective inhibitors (Bolger 
2007). Like all members of the PDE super-family, the PDE4s are important targets 
for drug discovery. Currently, three PDE4-selective inhibitors, roflumilast, apremi-
last and crisaborole, have been developed for clinical use, in COPD and inflamma-
tory disorders (Fabbri et al. 2009; Calverley et al. 2009; Hatzelmann et al. 2010; 
Page and Spina 2012; Schafer et al. 2014; Kavanaugh et al. 2015; Papp et al. 2015; 
Murrell et al. 2015), and additional PDE4 inhibitors are being tested in a wide vari-
ety of pre-clinical models and in clinical trials (Page and Spina 2012; Zhang et al. 
2005a; Bruno et al. 2011; Giembycz and Maurice 2014; Richter et al. 2013). PDE4s 
are expressed in many areas of the CNS and PDE4 inhibitors have been shown to 
have antidepressant, anti-psychotic, and memory-enhancing actions in both rodent 
models and in humans (Fleischhacker et  al. 1992; Scott et  al. 1991; Hebenstreit 
et al. 1989; Eckmann et al. 1988; Zeller et al. 1984; Bobon et al. 1988; Barad et al. 
1998; Bach et al. 1999; Titus et al. 2013; Mueller et al. 2010; Nibuya et al. 1996; 
O’Donnell and Zhang 2004; Kanes et al. 2007; Halene and Siegel 2008). However, 
the development of clinically-effective PDE4 inhibitors in CNS disorders has been 
hampered by lack of effectiveness and significant side effects, such as nausea (Higgs 
2010; Gavalda and Roberts 2013).

This review discusses recent advances in the PDE4 field that promise to greatly 
enhance our understanding of the biology of PDE4 isoforms and also to accelerate 
the development of PDE4-selective inhibitors with greater activity and selectivity in 
the CNS. It will first review the structure of PDE4 genes and their transcripts. It will 
then discuss recent advances in the structure and function of PDE4 proteins, with 
emphasis on dimerization of PDE4 isoforms, the role of phosphorylation, and the 
interactions of PDE4s with their “partner” proteins, such as DISC1, RACK1 and 
β-arrestin2. The focus will then change to the cellular functions of the PDE4s, with 
special emphasis on their differential effects on important PKA substrates in the 
CNS. It will then review briefly the functional roles of the PDE4s in the intact brain, 
with emphasis on both the CNS effects of PDE4-selective inhibitors and on the CNS 
phenotypes of PDE4-mutant mice, especially those of newer dominant-negative 
models. Finally, it will discuss the implications of all these developments for drug 
discovery, with special emphasis on the potential of PDE4-selective inhibitors for 
CNS disorders.
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4.2  The Structure of the PDE4 Genes and Their Transcripts

One of the most important aspects of PDE4 biology is the marked diversity of PDE4 
isoforms, with over 20 isoforms having been identified to date (Conti and Beavo 
2007; Houslay 2010; Maurice et al. 2014; Bolger 2007; Bolger et al. 1993; Swinnen 
et al. 1989). The PDE4s are encoded by four different genes in mammals (called 
PDE4A, PDE4B, PDE4C and PDE4D in humans), with additional diversity being 
produced by alternative mRNA splicing and the use of several isoform-specific pro-
moters within each gene (Conti and Beavo 2007; Houslay 2010; Maurice et  al. 
2014; Bolger 2007; Bolger et al. 1993; Swinnen et al. 1989). Each of the PDE4 
isoforms has a distinct pattern of expression in cells and tissues and the vast major-
ity of them has been demonstrated to have an isoform-specific pattern of expression 
in the CNS (Bolger et al. 1994; Cherry and Davis 1999; Miro et al. 2002; D’Sa et al. 
2005; D’Sa et al. 2002; Reyes-Irisarri et al. 2008; Nishi et al. 2008; Mori et al. 2010; 
Kuroiwa et  al. 2012; Ahmed and Frey 2003). These pronounced differences in 
regional expression in the CNS suggest that each isoform has a distinct function; a 
concept that will be discussed in more detail, below.

The PDE4 isoforms can be categorized into “long” forms, which possess both 
UCR1 and UCR2 regulatory domains, “short” forms that lack UCR1, and “super- 
short” forms that lack UCR1 and have a truncated UCR2 (Conti and Beavo 2007; 
Bolger 2007; Bolger et al. 1993). In addition, each isoform has a unique amino- 
terminal region, encoded by one or more exons specific to that isoform, that fre-
quently has unique properties. For example, the unique amino-terminus of the 
widely-found PDE4D5 isoform (Fig.  4.1) is essential for its interaction with its 
“partner” proteins (Bolger et al. 1997; Perry et al. 2002; Bolger et al. 2003; Baillie 
et al. 2003; Shukla et al. 2014; Yarwood et al. 1999; Bolger et al. 2002; Steele et al. 
2001; Li et al. 2009a; Bolger et al. 2006; Baillie et al. 2007; Smith et al. 2007). 
PDE4D5 interacts selectively with β-arrestin2, implicated in the regulation of 
GPCRs and other cell signaling components (Perry et al. 2002; Bolger et al. 2003; 
Baillie et al. 2003; Li et al. 2009a; Bolger et al. 2006; Baillie et al. 2007; Smith et al. 
2007; Bradaia et al. 2005; Lynch et al. 2005), and also with the β-propeller protein 
RACK1 (Yarwood et al. 1999; Bolger et al. 2002; Steele et al. 2001; Bolger et al. 
2006; Smith et al. 2007; Bird et al. 2010). In contrast, the PDE4B1 isoform, which 
has an amino-terminal region completely different from that of PDE4D5, interacts 
selectively with the DISC1 protein, implicated in affective disorders and schizo-
phrenia (Millar et al. 2005; Murdoch et al. 2007; Bradshaw et al. 2011; Hayashi- 
Takagi et al. 2010).

The catalytic regions of all PDE4 isoforms encoded by any individual PDE4 
gene are identical in amino acid sequence and, in general, the biochemical and phar-
macologic properties of each of the isoforms encoded by any individual PDE4 gene 
differ only modestly. For example, five different isoforms encoded by the PDE4D 
gene have differ less than fivefold in their Km for cAMP and in their IC50 for the 
prototypical PDE4-selective inhibitor rolipram (Bolger et al. 1997). The catalytic 
regions of the proteins encoded by the four different PDE4 genes are extremely 
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similar (approximately 90% sequence identity). As all PDE4-selective inhibitors 
act, at least in part, at the catalytic sites of the PDE4 enzymes (Lee et al. 2002; 
Zhang et al. 2004a; Card et al. 2004; Huai et al. 2004; Burgin et al. 2010; Wang et al. 
2007a; Kranz et al. 2009; Fox et al. 2014; Gurney et al. 2011), and therefore act, at 
least in part, as competitive inhibitors of cAMP hydrolysis, the similarity among the 
catalytic sites of the isoforms has greatly complicated the development of inhibitors 
selective for any individual isoform, or even for all the isoforms encoded by one 
PDE4 gene. Although some newer compounds may be more selective (Bruno et al. 
2011), most PDE4-selective inhibitors have less than a tenfold difference in potency 
(i.e., IC50) for isoforms encoded by different PDE4 genes (Hatzelmann et al. 2010; 
Burgin et al. 2010; Wang et al. 2007a).
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Fig. 4.1 Primary structures of PDE4D isoforms. (a) Schematic representation of the nine different 
isoforms encoded by the human PDE4D gene. The isoforms are divided into long isoforms, such 
as PDE4D5, that contain both UCR1 and UCR2, short isoforms, such as PDE4D1, that contain 
only UCR2, and super-short isoforms, such as PDE4D2, that contain only a truncated UCR2. Also 
shown is the C-terminal region, present in all PDE4D isoforms, but differing from the C-terminal 
regions of isoforms encoded by other PDE4 genes. (b) Schematic representation of human 
PDE4D5. PDE4D5 contains UCR1, UCR2, and catalytic domains, which are separated by the 
unstructured LR1 and LR2 regions. Also shown are the 88 amino acid unique N-terminal region 
(N-term), the C-terminus (C-term), and regions required for the interaction of PDE4D5 with 
RACK1 and β-arrestin2. The locations of PKA, ERK1/2, MK2, and oxidative stress kinase sites 
are also shown
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4.3  Dimerization of PDE4 Isoforms and Its Implication 
for Drug Discovery

Long PDE4 isoforms, such as PDE4B1 and PDE4D5, have been demonstrated by a 
variety of assays to form homodimers (Richter and Conti 2002; Richter and Conti 
2004; Xie et al. 2014; Bolger et al. 2015). Recently, the dimerization of long PDE4 
isoforms has been greatly illuminated by structural and enzymatic studies (Cedervall 
et al. 2015). The structural data built on prior interaction studies, including yeast 
2-hybrid and co-immunoprecipitation, and extensive mutagenesis studies, that sug-
gested an interaction between specific regions of UCR1 and UCR2, which appeared 
to form a module that in turn interacted with the catalytic domain (Bolger et al. 
1993; Richter and Conti 2002; Richter and Conti 2004; Xie et  al. 2014; Bolger 
et al. 2015; Lim et al. 1999; Beard et al. 2000). They have also demonstrated con-
clusively, consistent with previous data (Richter and Conti 2002; Richter and Conti 
2004; Xie et al. 2014; Bolger et al. 2015), that long PDE4 isoforms can form dimers, 
with UCR1 and UCR2 being essential components of the dimeric structure 
(Cedervall et al. 2015). Collectively, these approaches have shown that dimerization 
is mediated by an interaction of α-helical regions in the C-terminus of UCR1 with 
the N-terminus of UCR2, forming a tight 4-helix bundle (Richter and Conti 2002; 
Cedervall et al. 2015; Beard et al. 2000). Also present in the dimer is an interaction 
between UCR2 of one member of the dimer and the catalytic region of the other, 
providing a mechanism by which UCR2 serves as an auto-inhibitory domain 
(Cedervall et al. 2015). Finally, there is a smaller, but nonetheless biochemically 
significant, interface between the two catalytic domains, mediated by electrostatic 
interactions between Asp463 and Arg499 (PDE4D5 co-ordinates; Asp 471 and 
Arg507 in PDE4B1; refs. (Bolger et al. 2015; Cedervall et al. 2015)).

Dimerization provides many new insights into the enzymology and pharmacol-
ogy of long PDE4 isoforms. The enzymatic and pharmacologic characteristics of 
the dimeric form are markedly different from those of the corresponding monomer. 
The dimeric form appears to exist as a “closed” or less-active conformation of the 
enzyme, with a specific activity for cAMP hydrolysis of dimeric PDE4B1 being 
roughly 50-fold lower than the corresponding monomeric form (Cedervall et  al. 
2015). Dimerization also affects the ability of long PDE4 isoforms to be inhibited 
by many PDE4-selective inhibitors; the effect of dimerization has been best-studied 
with the prototypical PDE4 inhibitor rolipram (Cedervall et al. 2015). These differ-
ences are mediated by a specific α-helical domain in the C-terminal half of UCR2 
that, in the dimer, associates in trans with the catalytic domain (Cedervall et  al. 
2015), to create a high-affinity rolipram binding site (HARBS). In contrast, in the 
monomer, inhibitor binding is mediated exclusively by the catalytic region, to form 
a low-affinity rolipram-binding site (LARBS). The presence of a HARBS therefore 
reflects a conformational state unique to long PDE4 isoforms; short PDE4 isoforms, 
which lack UCR1 and therefore cannot dimerize, do not have a HARBS (Richter 
and Conti 2004; Huston et  al. 1996; Rocque et  al. 1997a; Rocque et  al. 1997b; 
Souness and Rao 1997). These insights expand and modify prior models of PDE4 
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active site conformation (Lee et  al. 2002; Zhang et  al. 2004a; Card et  al. 2004; 
Burgin et al. 2010; Wang et al. 2007a; Kranz et al. 2009; Fox et al. 2014; Gurney 
et al. 2011; Huai et al. 2006) and are highly likely to stimulate the identification of 
inhibitors that interact primarily with UCR2, with relatively less interaction with the 
catalytic domain (Fig. 4.2). These “long-isoform interactive” PDE4 inhibitors might 
therefore have a safety and/or efficacy profile distinct from the current generation of 
PDE4 inhibitors (Cedervall et al. 2015; Zhang et al. 2006; Zhao et al. 2003a).

Given these new findings, it is of interest to review the action of currently- 
approved PDE4 inhibitors. Roflumilast clearly acts similarly (i.e., with an IC50 less 
than fivefold different) on the long and short forms encoded by any individual PDE4 
gene (Hatzelmann et al. 2010). Similarly, the data on apremilast suggests that, like 
cilomilast (Giembycz 2001), it acts roughly equally on both long and short forms 
(Schafer et al. 2014). Another important characteristic of both roflumilast and apre-
milast is that their penetration into the CNS may be limited by the blood-brain 
barrier. There is little published pre-clinical data on crisaborole, which is designed 
for topical application. These characteristics of the currently-approved PDE4 
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Fig. 4.2 Structure of the drug-binding site in short and long PDE4 isoforms and the effects of vari-
ous classes of inhibitors. Schematic representations of the PDE4 short and long isoforms are 
shown in the left and right columns, respectively. Short isoforms form monomers with no UCR2- 
catalytic interaction; long isoforms form dimers with a specific UCR2-catalytic interaction. PDE4- 
selective inhibitors are represented by the intersecting black bars. Catalytic-only inhibitors (top 
row) interact primarily with the catalytic region and less avidly with UCR2; they would have 
activity against both long and short isoforms. Pan-interactive inhibitors (middle row) interact with 
both the catalytic regions and UCR2; when UCR2 is not present, the interaction site has the con-
formation of a LARBS; when UCR2 is present, the interaction site has the conformation of a 
HARBS. They would have activity against both long and short isoforms, but with different inhibi-
tory characteristics. Long-form inhibitors (lower row) interact primarily with UCR2 and less 
avidly with the catalytic region and therefore would have activity against only long isoforms
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inhibitors probably account for their improved tolerability in inflammatory and 
pulmonary disorders, compared to older agents, such as rolipram. However, it is 
clear that these clinically-useful characteristics of these three drugs actually reduces 
their potency in the CNS, indicating that further compound development work is 
essential to optimize the CNS-selectivity and effectiveness of PDE4-selective inhib-
itors. I present a potential pathway for these developmental activities below.

4.4  Dimerization and the Phosphorylation of PDE4s

The functions of PDE4 isoforms are dynamically regulated through phosphoryla-
tion by kinases such as PKA, ERK1/2, MK2, and AMPK, as well as modification 
by ubiquitination and sumoylation (Marchmont and Houslay 1980; Sette et  al. 
1994a; Sette et al. 1994b; Sette and Conti 1996; Hoffmann et al. 1998; MacKenzie 
et al. 2002; Collins et al. 2008; Baillie et al. 2001; Hoffmann et al. 1999; Baillie 
et al. 2000; MacKenzie et al. 2000; Mackenzie et al. 2011; Sheppard et al. 2014; 
Hill et al. 2006; Li et al. 2010). The activity of all long PDE4 isoforms is increased 
by two- to sixfold upon PKA phosphorylation, and PKA phosphorylation also 
changes the ability of the enzyme to be inhibited by PDE4-selective inhibitors, such 
as rolipram (Sette et al. 1994a; Sette et al. 1994b; Sette and Conti 1996; Hoffmann 
et al. 1998; MacKenzie et al. 2002). In contrast, ERK1/2 phosphorylation attenuates 
PDE activity (Hoffmann et al. 1999; Baillie et al. 2000; MacKenzie et al. 2000; 
Mackenzie et al. 2011). MK2 kinase serves to attenuate the degree of activation 
conferred by PKA phosphorylation and, in the case of PDE4D5, serves as a site for 
mono- ubiquitination by the β-arrestin-sequestered E3 ligase, Mdm3, which gates 
poly- ubiquitination of the PDE4D5 isoform-specific N-terminal region (Sheppard 
et al. 2014).

Recently, we have assessed the effects of phosphorylation on PDE4 dimeriza-
tion. PKA phosphorylates a site (S54 in PDE4D3, S126 in PDE4D5 and S133 in 
PDE4B1; Fig. 4.1) in the motif QRRES located at the N-terminus of UCR2 (Sette 
et  al. 1994a; Sette et  al. 1994b; Sette and Conti 1996; Hoffmann et  al. 1998; 
MacKenzie et al. 2002). ERK1/2 phosphorylates a site (S579 in PDE4D3, S651 in 
PDE4D5 and S659 in PDE4B1) located on the outer surface of the catalytic domain 
(Hoffmann et  al. 1999; MacKenzie et  al. 2000). MK2 phosphorylates a serine 
(S61 in PDE4D3, S133 in PDE4D5 and S140 in PDE4B1) close to the PKA site, 
within UCR1 (Sheppard et al. 2014).

Although all of these phosphorylation sites are located in highly flexible areas of 
the protein that are disordered in the crystal structure, suggesting that these regions 
are not essential for creation or maintenance of the dimer (Cedervall et al. 2015), we 
have shown recently that mutations of PKA, ERK1/2, MK2 and oxidative stress 
kinase phosphorylation sites can affect dimerization. Specifically, blocking 
phosphorylation at both the PKA and ERK1/2 phosphorylation sites diminished 
dimerization; mutations of each individual site had only modest effect (Bolger 
2016). The precise mechanism of how PKA-ERK1/2 phosphorylation might 
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promote dimerization is uncertain; however, it is likely that phosphorylation at these 
sites would affect the conformation of the dimer and thereby push the equilibrium 
towards the dimeric form. In contrast, our analysis of phospho-mimetic mutations 
at the MK2 and stress oxidation kinase sites suggests that their action would be to 
promote the monomeric form.

4.5  Dimerization and Interaction of PDE Isoforms 
with Their Protein “Partners”

Given the extensive surfaces on PDE4 long forms that are necessary for dimeriza-
tion (Cedervall et  al. 2015), we felt that it was highly possible that their protein 
partners would restrict access to these surfaces and thereby inhibit dimerization. 
Recently, we demonstrated that the dimerization of PDE4D5 was blocked by two 
well-characterized protein partners, specifically RACK1 and β-arrestin2 (Bolger 
2016). Given the high avidity and multiple sites of interaction between PDE4D5 
and both of these proteins (Perry et al. 2002; Bolger et al. 2003; Baillie et al. 2003; 
Yarwood et al. 1999; Bolger et al. 2002; Steele et al. 2001; Li et al. 2009a; Bolger 
et al. 2006; Baillie et al. 2007; Smith et al. 2007), it is perhaps not surprising that 
they would have such an effect. However, since our prior studies have shown that 
both RACK1 and β-arrestin2 largely interact with the unique N-terminal and 
C-terminal regions of PDE4D5 (Bolger et al. 2003; Yarwood et al. 1999; Bolger 
et al. 2002; Bolger et al. 2006; Smith et al. 2007), which are unstructured in the 
dimer (Cedervall et al. 2015), it is unlikely that they act to directly restrict interac-
tion at the UCR1/UCR2/catalytic or catalytic/catalytic interfaces that mediate 
dimerization. Instead, they presumably have indirect effects, possibly by sequester-
ing the monomeric protein and thereby preventing it from forming a dimer, or by 
affecting its conformation in other ways. Inhibiting the dimerization of PDE4D5 
could have multiple possible functional roles, such as increasing the enzymatic 
activity of PDE4D5 in certain cellular contexts, or targeting monomeric PDE4D5 to 
specific subcellular compartments.

RACK1 and β-arrestin2 have very different avidities for the “closed” or obligate- 
dimer conformation of PDE4D5. RACK1 interacts avidly with the “closed” confor-
mation of PDE4D5, which is not entirely surprising, given its high avidity and 
selectivity for PDE4D5 and the extensive regions on PDE4D5 that can interact with 
RACK1 (Bolger 2016). However, in contrast, β-arrestin2 did not detectably interact 
with the “closed” conformation (Bolger 2016). This observation could provide novel 
insight into the physiological mechanism of the PDE4D5-β-arrestin2 interaction, in 
which β-arrestin2 serves to recruit PDE4D5 to the ligand-occupied, GRK2- 
phosphorylated state of the β2-adrenergic receptor and thereby down-regulate cAMP 
signaling (Perry et al. 2002; Baillie et al. 2003). Since the major function of this 
recruitment is to move PDE4 enzymatic activity close to the β2-adrenergic receptor, 
it would be logical that β-arrestin2 preferentially recruit the monomeric, or “open,” 
form of PDE4D5, as this has much higher catalytic activity (50-fold greater, as 
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measured for PDE4B1; Cedervall et al. 2015). Therefore, the preferential interaction 
of β-arrestin2 with the monomeric form would maximize its physiologic function.

In summary, much has now been learned about the regulation of PDE4 isoforms 
by protein-protein interactions, including dimerization, and by phosphorylation. 
Since both of these processes require intimate contact between a PDE4 protein and 
its “partner” or kinase, these studies have also provided support for the concept that 
PDE4 regulation is highly spatially-dependent in cells, thereby providing a mecha-
nism for the regulation of cAMP abundance in specific sub-cellular compartments 
(Francis et al. 2011; Conti and Beavo 2007; Houslay 2010; Bolger et al. 2007). This 
concept is particularly attractive in neurons, where PDE4 action could be targeted to 
specific synapses, axons, or dendrites, or other sub-cellular structures, rather than 
modulating cAMP levels globally throughout the cell. This compartmentalization of 
cAMP signaling, and PDE4 action in particular, is in turn compatible with PKA hav-
ing different substrates in specific cellular compartments that are in turn regulated by 
different PDE4 isoforms. Selective targeting of these PDE4 isoforms could therefore 
produce highly specific pharmacologic effects, as discussed in the next section.

4.6  PKA Substrates as Mediators of PDE4 Action in the CNS

Key to understanding the cellular and organismal functions of the PDE4s is deter-
mining their downstream targets of action. Extensive research has demonstrated that 
cAMP binds to, and regulates the activity of, three effectors: (1) the regulatory sub-
unit of cAMP-dependent protein kinase (kinase A; PKA); (2) the exchange protein 
directly activated by cAMP (Epac; refs. (de Rooij et al. 1998; Kawasaki et al. 1998; 
Gloerich and Bos 2010)) and (3) cAMP-gated ion channels. The cAMP-binding 
domains of each of these targets show significant structural similarity, reflecting 
their common function in binding cAMP (Rehmann et al. 2003; Kim et al. 2005; 
Zagotta et al. 2003). Epac acts as a cAMP-regulated guanine nucleotide exchange 
factor for Rap1 and has a range of physiologic functions (Gloerich and Bos 2010; 
Munoz-Llancao et al. 2015; Consonni et al. 2012; Gloerich et al. 2011). In contrast 
to the unique downstream effector of Epac, PKA has numerous substrates, the phys-
iologic significance of which continues to evolve. In this section, we will focus on 
the following PKA substrates as being especially important in explaining PDE4 
functions in the CNS:

4.6.1  CREB

The loop-helix loop transcription factor cAMP-response element binding protein 
(CREB) is phosphorylated by PKA, ERK1/2 and several other kinases at a single 
serine (S133). CREB and phospho-CREB are expressed widely in the brain and 
their abundance changes in response to numerous neurotransmitters, drugs, and 
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stimuli, including those necessary for learning/memory and other behavioral pro-
cesses (Silva et al. 1998; Frank and Greenberg 1994). Knock-out and dominant- 
negative genetic approaches have demonstrated that CREB has an essential role in 
learning and memory in a wide range of organisms, from Aplysia californica, to 
Drosophila melanogaster, rodents, and humans (Bourtchuladze et  al. 1994; Yin 
et al. 1995; Cho et al. 1998; Kida et al. 2002; Ahn et al. 1999; Bartsch et al. 1998; 
Pittenger et al. 2002; Barco et al. 2002; Pittenger et al. 2006; Han et al. 2009; Lonze 
et al. 2002). CREB has been implicated in a variety of CNS phenotypes, including 
those implicated in affect (depression), reward (drug-seeking behavior and addic-
tion) and several others (Newton et al. 2002; Carlezon et al. 1998). Investigators 
using PDE4 mutant mice have implicated CREB as an important contributor to the 
phenotypes seen in these mice, as described in more detail below.

A number of gene-expression and proteomic studies have attempted to identify 
CREB-responsive genes. Whole-genome sequencing has identified cAMP-response 
elements (CREs) in the promoters of numerous genes, some of which have been 
determined experimentally to be of functional significance in the transcriptional 
regulation of those genes (Kim et al. 2010). mRNA expression studies have identi-
fied numerous genes that are differentially regulated upon phosphorylation of CREB 
in cells, many of which contribute to neuronal growth and differentiation and syn-
aptic plasticity (Casadio et al. 1999; Barco et al. 2005; Crino et al. 1998). However, 
the precise role of CREB phosphorylation in the regulation of many of these genes 
is not known. Collectively, however, these studies suggest strongly that many of the 
biochemical and cellular effects of PDE4 modulation in the CNS might be mediated 
through CREB, a hypothesis that has been tested extensively in the cellular and 
animal experiments reviewed below.

4.6.2  Cytoplasmic PKA Targets: LKB1 and GSK-3β Kinases

PKA phosphorylates a number of kinases implicated in neuron growth and differen-
tiation, especially in the hippocampus (Seino and Shibasaki 2005). Among the best- 
studied of these kinases are LKB1 and GSK-3β, both of which are essential for 
neuronal polarity during development and hippocampal neurogenesis (Song et al. 
1997; Shelly et al. 2007; Ming et al. 1997; Huang et al. 2014; Barnes et al. 2007; 
Jiang et al. 2005; Yoshimura et al. 2005; Shelly et al. 2010). Treatment of cultured 
cortical neurons with rolipram, or transfection with siRNA directed against PDE4D 
isoforms, increases phosphorylation of LKB1 by PKA and impairs the development 
of neural polarity and reduces neural migration (Shelly et al. 2010). A number of 
extracellular or cell-surface components implicated in neuronal growth and differ-
entiation, such as brain-derived neurotrophic factor (BNDF), NGF, netrin-1, lam-
inin, or Wnt, could modulate cAMP levels in these cells. Although the physiological 
mechanism of cAMP elevation remains uncertain, these experiments implicate 
LKB1 and GSK-3β as likely PDE4-regulated PKA substrates in cortical neurons. It 
is highly possible that additional kinases, some of which may also be PKA sub-
strates, contribute to these effects.
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4.6.3  Cytoplasmic PKA Targets: DARPP32

The primarily cytoplasmic protein DARPP32 is an important PKA substrate in the 
CNS (Svenningsson et al. 2004). It is a 32 kDa protein that is phosphorylated at T34 
by several kinases, including PKA, and at T75 by Cdk5. Phosphorylation of 
DARPP32 at T34 in turn depends on the phosphorylation state of S102 and S137, 
which are phosphorylated by CK2 and CK1, respectively (Svenningsson et  al. 
2004). Activation of the D1 dopamine receptor, a GPCR, by dopamine activates 
adenylyl cyclase and thereby PKA, increasing pT34-DARPP32 (Svenningsson 
et al. 2004; Stipanovich et al. 2008). Dopamine antagonists, such as haloperidol, 
and many drugs of abuse, such as cocaine, exert many of their effects through T34- 
DARPP32 phosphorylation (Bateup et  al. 2008; Volkow and Morales 2015). As 
pT34-DARPP32 is in turn a potent inhibitor of PPT1 and pT75-DARPP32 is a 
potent inhibitor of PKA (Svenningsson et al. 2004), phosphorylation of DARPP32 
produces profound changes in many cellular signaling pathways (Nishi et al. 2008; 
Svenningsson et al. 2004). pT34-DARPP32 can translocate to the nucleus, where it 
can inhibit nuclear PPT-1, enhance phosphorylation of histone H3, and regulate 
transcription (Stipanovich et al. 2008). Rolipram has been shown to enhance pT34- 
DARPP32 phosphorylation in striatopallidal neurons; this effect is accompanied by 
significant PKA-mediated phosphorylation of tyrosine hydroxylase (TH), essential 
for dopamine synthesis and turnover (Nishi et al. 2008). In contrast, PDE10 inhibi-
tion has no effect on TH phosphorylation, but substantially increases pT34- 
DARPP32 phosphorylation in striatal neurons (Nishi et al. 2008). The differential 
effects of these PDE4 inhibitors on dopamine signaling support investigation of 
PDE4-selective inhibitors as therapy in psychiatric and drug abuse disorders medi-
ated, at least in part, by dopamine neurotransmission.

4.6.4  Ion Channels

There are two mechanisms by which cAMP can regulate ion channel activity. In the 
first mechanism, cAMP binds directly to a conserved intracellular cyclic nucleotide- 
binding domain (CNBD); this mechanism is important in several classes of cyclic 
nucleotide-gated ion channels (CNGs and HCNs; refs. (Zagotta et al. 2003; Craven 
and Zagotta 2006; Puljung et al. 2014)) whose functions in the mammalian CNS are 
an active area of research (DiFrancesco and DiFrancesco 2015; Nolan et al. 2004; 
Wang et  al. 2007b; Kaupp and Seifert 2002). In the second mechanism, the ion 
channel is phosphorylated by PKA; a classical example of this mechanism is the 
cystic fibrosis transmembrane regulator (CFTR), which is a Cl− ion channel that is 
mutated in the disease cystic fibrosis and which has multiple PKA phosphorylation 
sites (Lambert et al. 2014; Baker et al. 2007).

PKA modulates the activity of a number of CNS-expressed ion channels, largely 
through the property of PKA to be tethered close to these ion channels by its interaction 
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with specific A-kinase anchoring proteins (AKAPs). For example, the strong 
inwardly rectifying potassium channel Kir2.1 forms a complex with AKAP79/150 
and the related channel Kir6.2 is PKA-phosphorylated in its regulatory region in 
response to GPCR activation (Dart and Leyland 2001; Light et al. 2002). AKAPs 
are likely to be involved in the PKA-mediated phosphorylation at S333 of the potas-
sium ion channel TREK-1, which is expressed widely in the CNS (Maingret et al. 
2000). PKA-mediated phosphorylation of the A-type potassium channel Kv4.2 sub-
unit occurs at two sites and requires the participation of a multi-protein regulatory 
complex (Schrader et al. 2002). The role of PDEs in the regulation of these channels 
remains to be determined.

AKAP79/150 also recruited into complexes at the postsynaptic membrane of 
excitatory synapses with N-methyl-d-aspartic acid (NMDA) or alpha-amino-3- 
hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA)-subtype glutamate GluA 
receptors, where it tethers PKA, protein kinase C, and protein phosphatase-2B 
(PP2B/calcineurin) into a dynamic regulatory complex (Westphal et  al. 1999; 
Greengard et al. 1991; Banke et al. 2000; Tavalin et al. 2002). Recent studies have 
implicated PDE4, most notably ERK1/2-mediated phosphorylation of PDE4, in the 
regulation of membrane insertion of GluA1 (Song et al. 2013). GluA1 is also PKA- 
phosphorylated at a specific site (S845), but this phosphorylation is increased by 
PDE10, rather than PDE4, inhibition (Nishi et al. 2008; Greengard et al. 1991).

Extensive work in models of cardiac function has demonstrated that PDE4D3, 
and possibly other PDE4 isoforms, forms a complex with, and regulates PKA phos-
phorylation of, the cardiac ryanodine receptor (Beca et al. 2011; Lehnart et al. 2005) 
and other structures involved in the generation of cardiac calcium currents (Kerfant 
et al. 2007; Weninger et al. 2013; Leroy et al. 2011; Sin et al. 2011). Since calcium 
currents are also essential for many aspects of neuronal function, it would seem 
reasonable to search for PDE4-dependent activity of neuronal calcium flux; to date, 
however, such attempts have been unsuccessful.

4.6.5  Synaptic Vesicle Proteins

The synaptic protein Rim1α is an important PKA target, being phosphorylated at 
two separate sites (Seino and Shibasaki 2005; Lonart et al. 2003; Park et al. 2014). 
However, Rim1α has also been shown to interact with Epac2 (Seino and Shibasaki 
2005). Mutant RIM1α lacking the N-terminal PKA phosphorylation site was unable 
to rescue LTP in RIM1α knockout neurons but selectively suppressed LTP in wild- 
type neurons, clearly implicating a role of PKA-mediated phosphorylation Rim1α 
on presynaptic LTP (Lonart et al. 2003). A number of other synaptic vesicle proteins 
also appear to be PKA substrates (Seino and Shibasaki 2005; Park et  al. 2014), 
although the exact physiological consequences of their PKA phosphorylation are 
not clear.
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4.6.6  Ubiquitin Ligases

The HECT domain E3 ubiquitin ligase UBE3A targets proteins to proteasome- 
mediated degradation (Yi et  al. 2015). Duplication or truncation mutations in 
UBE3A have been linked to autism, while numerous different single amino acid 
mutations in UBE3A have been linked to Angelman syndrome (AS), a multi- 
component CNS disorder (Kishino et al. 1997; Jiang et al. 1998). Deletion of Ube3a 
in mice impairs synapse development and plasticity and produces a number of neu-
robiological phenotypes that mimic human AS (Yi et al. 2015). UBE3A is phos-
phorylated at T485 by PKA, and PKA-mediated phosphorylation of T485 inhibits 
UBE3A activity. Pharmacologic agents that elevate cAMP in dissociated mouse 
cortical neurons, including rolipram, augment phosphorylation of UBE3A by 
PKA. An AS-associated single amino acid mutation, T485A, blocks PKA action (Yi 
et  al. 2015), thereby elevating UBE3A activity in cells, with enhanced substrate 
turnover and excessive dendritic spine development (Yi et al. 2015). These findings 
implicate a role for PDE4-mediated regulation of PKA activity in CNS develop-
ment, with potential implications in several genetic disorders, including acrodysos-
tosis, as discussed in greater detail in a section below.

4.7  Cellular Functions of PDE4 Action in the CNS

Given the diversity of PDE4 isoforms, and the large number of PKA substrates both 
in and outside of the CNS, it should not be surprising that numerous cellular func-
tions are influenced in some way by the actions of PDE4 isoforms (Conti and Beavo 
2007; Houslay 2010; Maurice et al. 2014; Bolger et al. 2007). Many of these func-
tions are specific to organs or tissues outside the CNS (e.g., cardiac function, refs. 
(Maurice et  al. 2014; Zaccolo 2009; Nikolaev et  al. 2010; Richter et  al. 2011; 
Eschenhagen 2013)) and are not discussed here. For this review, we will focus on 
two CNS-specific cellular functions: neurogenesis and synaptic plasticity.

4.7.1  PDE4s and Neurogenesis

Appropriate levels of hippocampal neurogenesis are essential for normal learning 
and memory, pattern and spatial recognition, and potentially other functions (Gage 
2000; Lie et al. 2004; Sahay et al. 2011; Zhao et al. 2008; Kitamura et al. 2009). 
Hippocampal neurogenesis occurs throughout human life, with a modest decline 
accompanying aging (Spalding et al. 2013). Neurogenesis appears to be essential 
for the anti-depressant effects of fluoxetine, a serotonin-selective re-uptake inhibitor 
(SSRI), in murine models of depression (Malberg et al. 2000; David et al. 2009; 
Santarelli et al. 2003). One study has shown that chronic fluoxetine can increased 
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dendritic arborization of newly-generated immature neurons (Wang et  al. 2008). 
This study also showed that chronic fluoxetine accelerated the maturation of imma-
ture neurons. The effects of fluoxetine on neurogenesis are generalizable to other 
anti-depressants, such as rolipram and other PDE4-selective inhibitors (Li et  al. 
2009b; Xiao et al. 2011). They are also consistent with the results from the study of 
genetically-altered PDE4 mice, as described in more detail below.

4.7.2  PDE4s, Neuronal Polarity and the Formation of Axons 
and Dendrites

As described above, the phosphorylation of LKB1 is dependent on a reciprocal 
interaction between cAMP and cGMP (Shelly et al. 2010). This reciprocal interac-
tion also has an important role in neuronal development. High local concentrations 
of cAMP stimulate the differentiation of neurites from embryonic hippocampal 
neurons into axons, while cGMP stimulates the development of dendrites (Shelly 
et al. 2010). As predicted, PDE4D siRNA impaired the migration of neural precur-
sor cells to the cortical plate and suppressed neuronal polarity during embryogene-
sis (Shelly et al. 2010). Although the functional implications of these processes in 
the intact brain remain uncertain, they may have important implications in a number 
of neurobiological processes, including cognition, learning and memory, and affect.

4.7.3  PDE4s and Synaptic Function

Modulation of synaptic plasticity underlies, or is influenced by, numerous CNS 
functions, including learning and memory (Kandel et al. 2014), addiction (Volkow 
and Morales 2015), and sleep (Yang et  al. 2014; Attardo et  al. 2015). Emerging 
evidence from several systems has suggested that select PDE4 isoforms are targeted 
to synapses, where they can regulate cAMP levels in the local synaptic environ-
ment, affect PKA activity, and modulate plasticity. Among the best-understood of 
these mechanisms is the interaction of PDE4B1 with DISC1 (Millar et al. 2005; 
Murdoch et al. 2007; Bradshaw et al. 2011; Hayashi-Takagi et al. 2010; Bradshaw 
and Porteous 2012; Brandon and Sawa 2011), in which PDE4B1 and DISC1 form a 
complex with several other proteins, including dynein, LIS1, NDE1, and NDEL1 
(Collins et al. 2008; Bradshaw et al. 2008). According to some models, DISC1 is 
felt to act as a scaffold for this complex and to recruit PDE4B1 to the synapse 
(Hayashi-Takagi et al. 2010; Bradshaw et al. 2008; Wang et al. 2011); other models 
have suggested that a major location of this complex is in the centrosome or nucleus, 
where it regulates gene expression (Bradshaw et  al. 2011; Sheppard et  al. 2014; 
Bradshaw and Porteous 2012; Soda et al. 2013; Ishizuka et al. 2011) and is active in 
early brain development (Greenhill et al. 2015; Mao et al. 2009; Niwa et al. 2010). 
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In both of these models, PDE4B1 is felt to regulate PKA’s ability to phosphorylate 
T131 of NDE1 (Bradshaw et al. 2011) and S58 of DISC1 (Soda et al. 2013). DISC1 
has been shown to interact with numerous proteins (Bradshaw and Porteous 2012), 
not all of which appear to be present in the complex under all physiologic circum-
stances, and the precise protein components of the PDE4B1-DISC1 complex, and 
its precise physiologic function(s), remain objects of intense investigation.

A number of PDE4 isoforms other than PDE4B1 have been implicated in synap-
tic function and, specifically, in hippocampal functions essential to learning and 
memory (see Sanderson and Sher 2013 for a review). For example, the PDE4B3 
isoform has been implicated in LTP, especially late-phase LTP, in rat hippocampal 
neurons, where it has been localized to cell bodies and dendrites of neurons in hip-
pocampal CA1 (Ahmed and Frey 2003). Another group has demonstrated that the 
anchoring protein gravin recruits a signaling complex containing PKA, PKC, 
calmodulin, and PDE4D isoforms to the β2-adrenergic receptor (Havekes et  al. 
2012). Mice lacking the alpha-isoform of gravin have deficits in PKA-dependent 
long-lasting forms of hippocampal synaptic plasticity, including β2-adrenergic 
receptor-mediated plasticity, and selective impairments of long-term memory stor-
age (Havekes et al. 2012). These studies have collectively implicated a number of 
different PDE4 isoforms in synaptic plasticity, and particularly in learning and 
memory, and provide an essential background to interpretation of studies on 
genetically- modified PDE4 mice, which will be described in detail below.

4.8  Regional Expression of PDE4 Isoforms in the CNS 
and Potential Functional Implications

Each of the PDE4 isoforms has a distinct pattern of expression in cells and tissues 
and the vast majority of them has been demonstrated to have an isoform-specific 
pattern of expression in the CNS (Bolger et al. 1994; Cherry and Davis 1999; Miro 
et al. 2002; D’Sa et al. 2005; D’Sa et al. 2002; Reyes-Irisarri et al. 2008; Nishi et al. 
2008; Mori et al. 2010; Kuroiwa et al. 2012; Ahmed and Frey 2003; Shakur et al. 
1995; Suda et al. 1998; Farooqui et  al. 2000; Zhang et al. 1999a; McPhee et al. 
2001; Mackenzie et  al. 2008; Perez-Torres et  al. 2000; Johansson et  al. 2012; 
Johansson et  al. 2011; Braun et  al. 2007). The regional expression of many iso-
forms, especially those identified recently, has yet to be determined. Unfortunately, 
there is little or no isoform-specific data in commonly-used CNS gene expression 
databases, such as the Allen Brain Atlas. Some isoforms, such as PDE4D5, are 
broadly-expressed in multiple CNS and non-CNS tissues (Miro et al. 2002; Bolger 
et al. 1997), while others, such as PDE4A1, are expressed strongly in a few tissues 
(e.g., cerebellum for PDE4A1) and expressed at much lower levels elsewhere 
(Shakur et al. 1995). These pronounced differences in regional expression in the 
CNS suggest strongly that each isoform has a distinct function; however, in most 
cases, the precise neurobiological function(s) of each isoform have only begun to be 
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appreciated. Better knowledge of the regional expression of PDE4 isoforms would 
in turn provide improved understanding of the phenotypes of genetically-altered 
PDE4 mice, as described in detail in a subsequent section.

4.8.1  Regional Distribution of PDE4 Isoforms in Brain 
Regions Involved in Dopaminergic Signaling: Addictive 
Behaviors, Depression and Schizophrenia

A major objective of PDE4 CNS research has been to identify the functional role(s) 
of PDE4s in additive behavior. Experimental studies of addiction in a variety of 
model systems have identified many of the neuronal circuit, behavioral, and synap-
tic mechanisms involving this process (Volkow and Morales 2015). These studies 
have identified and characterized a drug-reward neuronal pathway in the CNS, 
extending from dopaminergic neurons in the ventral tegmental area (VTA) to the 
nucleus accumbens (NAc). Many drugs of abuse, including opioids and cocaine, 
increase dopamine release in the shell subregion of the NAc (Di 2002) and else-
where. Dopaminergic D1 and D2 receptors increase cAMP levels and the phos-
phorylation of CREB (Bibb 2005; Dudman et  al. 2003; Antoine et  al. 2013). 
Rolipram administration given prior to drug administration substantially reduced 
morphine-, cocaine- and cannabinoid-induced conditioned place preference in mice 
(Thompson et al. 2004; Zhong et al. 2012; Janes et al. 2009). Additionally, rolipram 
and other PDE4-selective inhibitors blocked inhibitory LTD and acute depression of 
inhibitory postsynaptic currents induced by D2 receptor and cannabinoid receptor 
agonists in VTA dopamine neurons (Zhong et al. 2012).

A number of studies have also implicated PDE4 isoforms in the NAc shell in the 
pathogenesis of depression. PDE4B and PDE4D isoforms are present in the NAc 
shell and that their expression is increased upon chronic administration of antide-
pressants (Cherry and Davis 1999; Takahashi et al. 1999). These effects are likely to 
be mediated by CREB, as over-expression of dominant-negative CREB in the NAc 
had an antidepressant effect in the learned-helpless model, while over-expression of 
wild-type CREB had an opposite effect (Newton et  al. 2002). The specificity of 
these studies to depression is not clear, especially as chronic treatment with a num-
ber of antidepressants having different mechanisms of action (including tricyclics, 
SSRIs and PDE4 inhibitors) all increase levels of various PDE4 isoforms in a num-
ber of different areas of the brain (D’Sa et al. 2005; D’Sa et al. 2002; Ye et al. 1997; 
Ye et  al. 2000; Zhao et  al. 2003b; Dlaboga et  al. 2006). In contrast, diminished 
stimulation of beta-adrenergic receptors, either by loss of noradrenergic innervation 
or by receptor blockade, reduces PDE4 activity (Farooqui et  al. 2000; Ye and 
O’Donnell 1996; Zhang et al. 1999b).

Finally, immunohistochemical studies have demonstrated expression of PDE4A, 
PDE4B and PDE4D isoforms in frontal cortex, probably in D1-receptor-positive 
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neurons (Kuroiwa et al. 2012). Its location in these areas may contribute to the 
anti- schizophrenic effect of D1-receptor agonists.

Related to the role of PDE4 isoforms in depression and learning is the important 
influence of sleep and sleep disorders in these processes (Yang et al. 2014; Vecsey 
et al. 2009; Havekes et al. 2014); see refs. (Havekes et al. 2015; Meerlo et al. 2015) 
for a review. Normally, sleep promotes the development of dendritic spines after 
learning, implicating a beneficial role of sleep in memory consolidation (Yang et al. 
2014). In contrast, sleep deprivation has been shown to produce memory loss in a 
number of rodent models of learning and memory, which is associated with impair-
ment of cAMP- and PKA-dependent forms of hippocampal synaptic plasticity 
(Vecsey et al. 2009). Sleep deprivation increases PDE4 activity, possibly as a com-
pensatory process (Vecsey et al. 2009). Transiently elevating cAMP levels in hip-
pocampal excitatory neurons during sleep deprivation prevents memory 
consolidation deficits associated with sleep loss. These observations provide further 
evidence for the benefit of PDE4 inhibition on cognition and memory. The specific-
ity of the benefit of PDE4 inhibition to sleep-disordered memory loss is uncertain, 
however, as rolipram and other PDE4 inhibitors improve cognitive function gener-
ally in mice, as described in greater detail in the next section.

Chronic stress (modeled in mice by an acute and unpredictable tail-shock), like 
sleep deprivation, increases PDE4 activity in hippocampal CA3 neurons and is 
associated with a marked impairment of hippocampal LTP (Chen et al. 2010).

4.9  CNS Effects of PDE4 Inhibitors

The molecular, cellular and regional studies described in the preceding sections 
provide a perspective essential to studying the phenotypes of PDE4 inhibition or 
ablation in the intact organism. Therefore, we will now discuss the whole-organism 
pharmacology of PDE4 inhibitors and then move to genetic models.

The prototypical PDE4 inhibitor rolipram was first identified by virtue of its 
antidepressant-like activity in humans and rodents (Fleischhacker et al. 1992; Scott 
et al. 1991; Hebenstreit et al. 1989; Eckmann et al. 1988; Zeller et al. 1984; Bobon 
et al. 1988; Kehr et al. 1985; Wachtel 1983). Its activity as a highly-selective PDE4 
inhibitor was determined only after the publication of these early behavioral studies 
(Nemoz et  al. 1985). Extensive testing of rolipram and numerous other PDE4- 
selective inhibitors in behavioral assays in rodents has demonstrated that they have 
activity that is broadly similar to other antidepressant agents, such as tricyclic anti-
depressants, SSRIs and SNRIs. Specifically, PDE4-selective inhibitors have 
antidepressant- like activity in hypothermia assays and in the forced-swim and tail- 
suspension tests (Barad et al. 1998; Bach et al. 1999; Titus et al. 2013; Mueller et al. 
2010; Nibuya et al. 1996; O’Donnell and Zhang 2004; Zhang et al. 2006; Xiao et al. 
2011; Jindal et  al. 2012) and other assays (Wachtel 1983; O’Donnell 1993; 
O’Donnell and Frith 1999; Wachtel and Schneider 1986) used in the pre-clinical 
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testing of antidepressants. Numerous studies have also demonstrated that most 
classes of antidepressant drugs, although having disparate immediate targets, ulti-
mately have overlapping effects on cAMP signaling pathways (Zhang et al. 2005b). 
For example, in rodents, several different classes of antidepressants elevate PDE4 
levels, especially levels of PDE4D (Takahashi et al. 1999; Ye et al. 1997; Ye et al. 
2000; Zhao et al. 2003b; Dlaboga et al. 2006) and increases levels of CREB (Nibuya 
et al. 1996) and phospho-CREB (Li et al. 2009b).

In addition to their antidepressant effects, PDE4 inhibitors have cognitive and 
memory-enhancing effects in rodents and possibly in humans. The potential 
memory- enhancing effects of PDE inhibition have been investigated for decades 
(Villiger and Dunn 1981) and the effects of rolipram studied soon after it was first 
synthesized (Randt et al. 1982) and subsequently (Egawa et al. 1997; Imanishi et al. 
1997). The potential value of PDE4 inhibition in disorders of cognition and memory 
received support from two studies from the Kandel laboratory in 1999 that sug-
gested that PDE4-selective inhibitors have cognitive- and memory-enhancing activ-
ity in mice (Barad et al. 1998; Bach et al. 1999). These results have been confirmed 
by other groups, using a range of experimental conditions (Zhang et al. 2005a; Titus 
et al. 2013; Mueller et al. 2010; Kuroiwa et al. 2012; Ahmed and Frey 2003; Xiao 
et al. 2011; Zhang et al. 2000; Zhang et al. 2004b; Hajjhussein et al. 2007; Rutten 
et al. 2009; Rutten et al. 2007a; Rutten et al. 2007b; Cheng et al. 2010; Li et al. 
2011a; Rutten et al. 2008a; Rutten et al. 2006; Navakkode et al. 2005; Wang et al. 
2012; Wang et al. 2013; Guan et al. 2011; Werenicz et al. 2012; Hotte et al. 2012; 
Giralt et al. 2011; Li et al. 2011b). One distinct experimental approach has been the 
use of NMDA inhibitors as pre-treatment prior to PDE4 inhibition; PDE4 inhibition 
clearly can reverse, at least in part, memory loss produced by these inhibitors (Zhang 
et al. 2005a; Zhang et al. 2000; Hajjhussein et al. 2007; Suvarna and O’Donnell 
2002; Kato et al. 1997; Wiescholleck and Manahan-Vaughan 2012). These cogni-
tion/memory-enhancing effects have also been demonstrated in other rodent mod-
els, including the rat (Rutten et  al. 2007a; Wiescholleck and Manahan-Vaughan 
2012; Schaefer et al. 2012; Zhang and O’Donnell 2000). The effects of rolipram and 
other PDE4-selective inhibitors on cognition, learning and memory appear to be 
distinct from their antidepressant effects, as antidepressants of other classes do not 
seem to have these effects (Makhay et al. 2001). The results of all these studies have 
stimulated the development of PDE4 inhibitors specifically targeted at cognition 
and memory enhancement (Zhang et al. 2005a; Zhang et al. 2006); however, clinical 
trials of these compounds to date have proved to be disappointing.

Pre-clinical testing of PDE4-selective inhibitors in rodent models of emesis, 
such as in the ferret, have shown consistently that they have pro-emetic properties; 
this effect is mediated, at least in part, by central mechanisms (i.e., via the area pos-
trema; refs. (Mori et  al. 2010; Robichaud et  al. 1999; Robichaud et  al. 2002; 
Duplantier et  al. 1996)). PDE4-selective inhibitors also have significant class- 
specific effects on the GI tract, in that they increase gastric production and bowel 
chloride secretion, leading to emesis and diarrhea (Fabbri et  al. 2009; Calverley 
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et al. 2009; Schafer et al. 2014; Kavanaugh et al. 2015; Papp et al. 2015). These side 
effects of PDE4-selective inhibitors appear to be related to their pharmacologic 
mechanism of action, in that gastric acid production and secretory diarrhea are both 
caused by elevation of cAMP levels in GI epithelium (Hatzelmann et  al. 2010; 
Lambert et al. 2014; Barnette et al. 1995; Okuda et al. 2009). Studies of both the 
CNS and non-CNS side effects of PDE4 inhibitors have been complicated by the 
lack of selectivity of PDE4 inhibitors for any individual PDE4 isoform, or subset of 
PDE4 isoforms, thereby rendering it uncertain which PDE4 isoform(s) are respon-
sible for any specific side effect. However, experimental studies of emesis in Pde4d 
knockout mice have implicated the isoforms encoded by this gene as being most 
likely to be contributing to this effect (Robichaud et al. 2002).

4.10  Studies of PDE4 Function in the CNS Using 
Genetically-Modified Mice

Essential to the understanding of the functions of PDE4 isoforms in the CNS has 
been the development of mice with mutations or knockdowns in specific PDE4 
isoform(s). Three approaches have been employed: gene knockouts, lentiviral 
siRNA, and dominant-negative approaches, respectively.

4.10.1  PDE4 Gene Knockouts

The phenotypes of mice with knockouts in each of the Pde4a, Pde4b and Pde4d 
genes have been generated and studied extensively.

Pde4a−/− mice have been studied to date by a single group (Hansen et al. 2014). 
The knockout seems to have a beneficial effect on cognition and/or memory, based 
on one assay (the step-through-passive-avoidance test), but not in other assays, such 
as the Morris water maze. The mice also seem to have increased anxiety-like behav-
ior, based on the elevated-plus maze, holeboard, light-dark transition, and novelty 
suppressed feeding tests. Consistent with the anxiety profile, Pde4a−/− mice had 
elevated corticosterone levels. The knockout did not seem to produce any change on 
tests of depression, such as the forced swim or tail suspension tests. Therefore, 
Pde4a may be important in the regulation of emotional memory and anxiety-like 
behavior.

Pde4b−/− mice have been studied by a number of groups, with disparate results 
(Zhang et  al. 2008; Siuciak et  al. 2008; Siuciak et  al. 2007; Rutten et  al. 2011). 
Some studies of Pde4b−/− mice have shown them to have behavioral characteris-
tics that mimic the actions of antidepressants (Zhang et al. 2008; Siuciak et al. 2008; 
Zhang et  al. 2002); for example, decreased immobility in tail-suspension and 
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forced-swim tests. However, other studies of the same genotype show only weak or 
modest effects in what appear to be similar assays (Siuciak et al. 2007; Rutten 
et al. 2011). Increased activity was also noted by some groups. There was no con-
sistent effect on cognition or memory among the studies. These disparate findings 
are difficult to reconcile, although differences in genetic background, age at the time 
of study, or assay conditions could be responsible.

Pde4d−/− mice have also been studied by several groups. Some studies of 
Pde4d−/− mice have shown them to have augmented activity in tests of learning 
and memory (Li et al. 2011a; Zhang et al. 2002), while studies of the identical geno-
type by other groups do not show this effect (Rutten et al. 2008b). Almost all studies 
have shown increased levels of pCREB and increased hippocampal neurogenesis in 
these mice. Some groups also have shown that this knockout has an anti-depressant 
phenotype, consistent with the concept that PDE4D mediates antidepressant effects 
(Zhang 2009).

PDE4D−/− rats have also been generated recently (Kaname et  al. 2014), 
although detailed characterization of their CNS phenotype awaits further publica-
tion. Of interest, however, is that they have skeletal abnormalities reminiscent of 
those seen in the human PDE4D-mutant disorder, acrodysostosis (see below).

Study of all PDE4 mouse knockouts have been complicated by non-CNS effects 
(Jin et  al. 1999; Jin and Conti 2002), such as slow growth, small adult size and 
impaired fertility. In addition, assessment of the CNS phenotype of these knockouts 
has also been complicated by the fact that all of them have knocked out their respec-
tive gene in the entire organism, which, given the given the expression of isoforms 
from their respective genes in a number of brain areas (see section above), compli-
cates assessment of their phenotype in any one area of the brain, such as the striatum 
or forebrain/hippocampus. Region-specific knockouts would allow exploration of 
these phenotypes.

4.10.2  Lentiviral siRNA

Several groups have employed lentiviruses expressing siRNA to knock down a spe-
cific PDE4 isoform in the murine or rat CNS (Li et al. 2011a; Wang et al. 2013; 
Schaefer et al. 2012; Wang et al. 2015). The lentiviruses were injected into specific 
areas of the brain, typically the hippocampus, of wild-type or knockout mice. These 
experiments have the advantage of targeting both a specific PDE4 isoform and a 
specific region of the CNS. However, potential off-target effects of the siRNA and 
trauma related to the injection process remain legitimate concerns. These studies 
have confirmed and expanded the concept the Pde4d is essential to memory, hip-
pocampal neurogenesis and the regulation of pCREB. Pde4d siRNA also has a pro-
found effect on neuronal polarization, with potential implications for neural 
development and learning (Shelly et al. 2010).
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4.10.3  Dominant-Negative PDE4 Mutants

Two groups have now reported studies in which they used the over-expression of a 
dominant-negative PDE4B1 mutant as a transgene in the murine CNS (McGirr et al. 
2016). As a precedent for this approach, we and our collaborators have used 
dominant- negative PDE4 mutants successfully in cell-based studies (Perry et  al. 
2002; Baillie et  al. 2003; Bolger et  al. 2006). In these cell-based studies, the 
dominant- negative mutant protein has been shown to displace the corresponding 
endogenous PDE4 isoform from its protein partner(s) and therefore disrupt its cel-
lular function(s). The use of a dominant-negative mutant has the potential to be 
more isoform-selective than a gene knockout: The murine Pde4b and human PDE4B 
gene both encode five isoforms (Bolger et al. 1993; Bolger et al. 1994; Swinnen 
et al. 1991; Huston et al. 1997; Shepherd et al. 2003; Cheung et al. 2007; Johnson 
et al. 2010), each with a distinct protein structure and pattern of expression in tis-
sues. Therefore, the Pde4b−/− mice described above have a phenotype that reflects 
the combined deficiency of all five PDE4B isoforms, which greatly complicates 
analysis of the effect(s) of any individual isoform, such as PDE4B1. The generation 
of dominant-negative mutants as transgenes also follows a strategy used by other 
groups who have expressed a dominant-negative PKA RIα subunit (Abel et  al. 
1997), or a dominant-negative CREB mutant (Silva et al. 1998; Kida et al. 2002; 
Ahn et al. 1999; Pittenger et al. 2002; Barco et al. 2002; Pittenger et al. 2006; Lonze 
et al. 2002; Vecsey et al. 2009) in the CNS. In the vast majority of these studies, the 
dominant-negative transgene was expressed off the CaMKIIα promoter (Mayford 
et al. 1996a; Mayford et al. 1996b; Tsien et al. 1996). This promoter is active pref-
erentially in excitatory neurons of forebrain areas, including the hippocampus, 
amygdala, cortex and striatum (Mayford et al. 1996a; Mayford et al. 1996b). It is 
also silent until several days after birth (Burgin et al. 1990), when most neural cir-
cuits are already formed, thereby possibly minimizing any adverse effects of the 
transgene on the normal development of the brain (Tsien et al. 1996). The PDE4B1 
dominant-negative approach is designed to target just the PDE4B1 isoform and 
therefore has greater specificity than a Pde4b knockout. This specificity is the likely 
explanation for the differences in phenotype in PDE4B1 dominant-negative mice, 
compared to Pde4b−/− mice. The PDE4B1 dominant-negative transgene clearly 
produces increased activity, levels of pCREB and neurogenesis, and may produce 
antidepressant effects in several assays (McGirr et al. 2016). One potential draw-
back of this approach is that the PDE4B1 dominant-negative transgene might not 
fully block PDE4B1 function, or, alternatively, might have some action against 
other PDE4 isoforms, including those encoded by the Pde4a and Pde4d genes. 
Despite these potential issues, the dominant-negative approach has merit and indeed 
appears to be best available way to study the relationship of a PDE4 isoform with its 
specific interacting partners, such as the interaction of PDE4B1 and DISC1.
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4.10.4  What Have We Learned from the Mouse Models?

The mouse genetic models collectively appear to have phenotypes that are broadly 
similar to those that would be predicted on the basis of the known CNS actions of 
PDE4-selective inhibitors: there is activation of PKA and phosphorylation of CREB, 
with antidepressant-like activity being detected in most although certainly not all, of 
the models. There also appears to be some effect on learning and memory in many 
of the models. Augmented neurogenesis has been detected in almost all the models 
that have been assayed and provides a likely cellular mechanism for both the anti-
depressant and memory-augmentation phenotypes that have been observed. The 
antidepressant effects seem to be mediated more by pde4b isoforms, whereas the 
memory effects are mediated more by pde4d isoforms, although the relative contri-
butions of these two genes are likely to overlap substantially. These results are gen-
erally reassuring for drug development: they provide essential confirmation that the 
CNS effects of PDE4-selective inhibitors are indeed produced by their ability to 
inhibit PDE4 enzymatic activity, and not by some as-yet-unappreciated off-target 
effect. They are also compatible with generally-accepted theories of learning and 
memory (Silva et  al. 1998; Volkow and Morales 2015; Kandel et  al. 2014), and 
depression (Gage 2000; Lie et  al. 2004; Zhao et  al. 2008; Spalding et  al. 2013; 
Nestler and Hyman 2010), and thereby provide continued impetus for the develop-
ment of PDE4-selective inhibitors that can produce such effects therapeutically in 
humans.

A number of questions remain. One important question is determining the spe-
cific region(s) of the brain that are essential for PDE4-mediated phenotypes. The 
dominant-negative models that use the CamIIα promoter tend to confirm numerous 
prior observations that the hippocampus and forebrain are essential for the PDE4- 
related learning and memory phenotype; however, this conclusion is obviously 
dependent on the accuracy of prior observations on the tissue specificity of this 
widely-used promoter (Mayford et  al. 1996a; Mayford et  al. 1996b; Tsien et  al. 
1996; Mayford et al. 1995); see also (Hitti and Siegelbaum 2014). The models pro-
vide fewer insights into the regions essential for the antidepressant actions of PDE4- 
selective inhibitors. Further studies that employ tissue-specific or region-specific 
methods, such as cre/lox knock-out/knock-in methods, or optogenetic approaches, 
should provide additional insights.

4.11  Human PDE4D Mutations: Acrodysostosis Syndromes

The phenotypes of mice with PDE4 mutations contrast sharply with those identified 
to date in humans. Mutations in the gene encoding the PKA regulatory subunit Type 
1A (PRKAR1A) have been identified as the cause of Carney Complex, a multi- 
spectrum disorder with cutaneous, cardiac and endocrine features and a 
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predisposition to several cancers (Carney et al. 1985; Kirschner et al. 2000; Salpea 
and Stratakis 2014). Intriguingly, a different set of PRKAR1A mutations have been 
detected in patients with acrodysostosis, a complex disorder affecting bone forma-
tion, growth and the CNS (Linglart et al. 2011; Lee et al. 2012; Linglart et al. 2012; 
Michot et al. 2012; Nagasaki et al. 2012; Muhn et al. 2013; Lindstrand et al. 2014). 
More recently, PDE4D mutations have been identified in patients with acrodysosto-
sis that lack PRKAR1A mutations (Lee et al. 2012; Linglart et al. 2012; Michot 
et al. 2012; Lindstrand et al. 2014; Lynch et al. 2013). The skeletal dysplasia in 
patients with acrodysostosis with PRKAR1A mutations resembles the osteodystro-
phy seen in patients with pseudohypoparathyroidism Type 1a, in that they are resis-
tant to the action of the hormones PTH and TSH (Linglart et al. 2011; Linglart et al. 
2012), two hormones that activate adenylyl cyclase through GPCRs. However, 
patients with PDE4D mutations do not demonstrate resistance to these hormones 
(Linglart et al. 2011; Linglart et al. 2012), consistent with the gene defect being in 
a different portion (PDE4D v PKA) of the cAMP signaling pathway.

Of considerable interest to neurobiologists is that most patients with acrodysos-
tosis and PDE4D mutations have significant mental retardation (Lee et al. 2012; 
Linglart et al. 2012; Michot et al. 2012; Lindstrand et al. 2014; Lynch et al. 2013); 
this is not typically seen in patients with acrodysostosis and PRKAR1A mutations, 
although some of those individuals have behavioral disorders. The presence of intel-
lectual disorders in PDE4D acrodysostosis patients has led a number of investiga-
tors to test for PDE4D mutations in a broader population of patients with mental 
retardation and skeletal abnormalities. These efforts have led to the recent study of 
a mirror phenotype, involving intellectual disability and skeletal abnormalities dif-
ferent from acrodysostosis; genetic testing revealed PDE4D haploinsufficiency in 
these patients (Lindstrand et al. 2014). It seems quite likely that additional PDE4D- 
mutant syndromes affecting the CNS will be identified in the near future.

It is of considerable interest to compare the CNS phenotypes in the acrodysosto-
sis patients to those seen in the PDE4D knockout mice. It is clear that the human 
phenotype is considerably more severe and affects multiple aspects of cognition and 
memory. Whether this reflects a purely species difference, or a different mutation 
mechanism (the acrodysostosis mutants may have a dominant-negative effect, as 
discussed below) is uncertain. There are no murine models of the acrodysostosis 
mutations; the CNS phenotype of the rat PDE4D−/− rat, which has skeletal abnor-
malities reminiscent of acrodysostosis, has yet to be published (Kaname et al. 2014).

4.12  Dimerization and the PDE4D Acrodysostosis Mutations

The structural data on the PDE4 dimer also provide great insight into the possible 
functional effects of PDE4D mutations that have been implicated in acrodysostosis. 
Of the 16 different single amino acid acrodysostosis mutations that have been iden-
tified to date, 15 map to the interface between UCR1/2 and the catalytic domain, or 

4 The PDE4 cAMP-Specific Phosphodiesterases…



86

to the “hinge” region connecting the dimerization domain to UCR1/2 and the cata-
lytic domains (Cedervall et al. 2015). The 16th acrodysostosis mutation is at S133, 
the PKA catalytic site (Lindstrand et al. 2014); note that this and other genetic refer-
ences use GenBank NM_001104631.1 for the mutation co-ordinates, with S133 in 
PDE4D5 being S190 in the GenBank entry.

The structural model may provide insight into the profound disability seen in 
patients with acrodysostosis mutations. Given that one of the acrodysostosis muta-
tions is at the PKA phosphorylation site and completely blocks PKA phosphoryla-
tion of long PDE4D isoforms, and that all the PDE4D acrodysostosis mutations have 
a similar phenotype, it is quite possible that all PDE4D acrodysostosis mutations 
serve to inhibit PKA-mediated activation of PDE4D enzymatic activity, or lower 
PDE4D enzymatic activity in other ways (Kaname et al. 2014). Therefore, cAMP 
levels would be elevated in PDE4D acrodysostosis cells, activating PKA activity at 
its substrates and producing a potentially broad range of phenotypes. Consistent with 
this model is the observation of compensatory activation of other PDE4 isoforms 
(e.g., PDE4A and PDE4B) in acrodysostosis cells (Kaname et al. 2014).

Since acrodysostosis mutations lower PDE4D enzymatic activity, which is also 
the pharmacologic effect of rolipram and other PDE4-selective inhibitors, the severe 
bone and CNS manifestations of acrodysostosis provide a rationale for caution in 
the human use of PDE4-selective inhibitors. It is possible that disorders of bone (or 
of the CNS) might be unanticipated side effects of PDE4 inhibition. To date, bone 
abnormalities (e.g., osteoporosis) have not been reported as a side effect of adult use 
of PDE4 inhibitors, however, exposure earlier in development (e.g., in utero) might 
produce profound skeletal development effects and remains a legitimate concern.

4.13  Conclusion: Implications for Future PDE4 CNS Drug 
Development

There are now grounds for reasonable optimism for the development of PDE4- 
selective inhibitors that would target the CNS and thereby be potentially useful in 
the treatment of depression and other affective disorders, psychosis, cognitive and 
memory dysfunction, addictive disorders, and possibly other conditions. I propose 
that such agents should target the long PDE4 isoforms preferentially. Expression 
studies show that long forms are preferentially expressed in the CNS. Furthermore, 
only the long isoforms are capable of dimerization, with the corresponding change 
in enzymatic properties and the formation of a HARBS.  Indeed, it is generally 
agreed that CNS tissues are enriched in HARBS (Rocque et al. 1997a; Rocque et al. 
1997b; Souness and Rao 1997; Zhang et al. 2006; Zhao et al. 2003a; Zhao et al. 
2003b). To be effective therapeutically, these new inhibitors would also need to 
have low emetic potential; given our lack of knowledge of the exact targets for 
PDE4 inhibitors in the area postrema, this could remain a significant problem. 
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Finally, these PDE4 inhibitors would need to permeate the blood-brain barrier and 
have appropriate bioavailability. Despite these obstacles, there are grounds for 
optimism.
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