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Phosphodiesterase 1: A Unique Drug Target
for Degenerative Diseases and Cognitive
Dysfunction
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Abstract The focus of this chapter is on the cyclic nucleotide phosphodiesterase 1
(PDE1) family. PDELI is one member of the 11 PDE families (PDE 1-11). It is the
only phosphodiesterase family that is calcium/calmodulin activated. As a result,
whereas other families of PDEs 2—11 play a dominant role controlling basal levels
of cyclic nucleotides, PDEI is involved when intra-cellular calcium levels are ele-
vated and, thus, has an “on demand” or activity-dependent involvement in the con-
trol of cyclic nucleotides in excitatory cells including neurons, cardiomyocytes and
smooth muscle. As a Class 1 phosphodiesterase, PDE1 hydrolyzes the 3’ bond of
3’-5'-cyclic nucleotides, cyclic adenosine monophosphate (cAMP) and cyclic gua-
nosine monophosphate (cGMP). Here, we review evidence for this family of
enzymes as drug targets for development of therapies aimed to address disorders of
the central nervous system (CNS) and of degenerative diseases. The chapter includes
sections on the potential for cognitive enhancement in mental disorders, as well as a
review of PDEI enzyme structure, enzymology, tissue distribution, genomics, inhib-
itors, pharmacology, clinical trials, and therapeutic indications. Information is taken
from public databases. A number of excellent reviews of the phosphodiesterase fam-
ily have been written as well as reviews of the PDE1 family. References cited here
are not comprehensive, rather pointing to major reviews and key publications.
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13.1 Introduction and Focus

The focus of this chapter is on the cyclic nucleotide phosphodiesterase 1 (PDE1)
family. PDEI is one member of the 11 PDE families (PDE 1-11). It is the only
phosphodiesterase family that is calcium/calmodulin activated. As a result, whereas
other families of PDEs 2—11 play a dominant role to control basal levels of cyclic
nucleotides, PDE] is involved when intra-cellular calcium levels are elevated and,
thus, has an “on demand” or activity-dependent involvement in the control of cyclic
nucleotides in excitatory cells including neurons, cardiomyocytes and smooth mus-
cle. As a Class 1 phosphodiesterase, PDE1 hydrolyzes the 3’ bond of 3’-5'-cyclic
nucleotides, cyclic adenosine monophosphate (cAMP) and cyclic guanosine mono-
phosphate (cGMP). Here, we review evidence for this family of enzymes as drug
targets for development of therapies aimed to address disorders of the central ner-
vous system (CNS) and of degenerative diseases. The chapter includes sections on
the potential for cognitive enhancement in mental disorders, as well as a review of
PDEl enzyme structure, enzymology, tissue distribution, genomics, inhibitors,
pharmacology, clinical trials, and therapeutic indications. Information is taken from
public databases. A number of excellent reviews of the phosphodiesterase family
have been written (Bender and Beavo 2006a) as well as reviews of the PDE1 family
(Goraya and Cooper 2005). References cited here are not comprehensive, rather
pointing to major reviews and key publications.

13.2 Structure

The PDEI family of enzymes includes three genes, PDE1A, PDEIB and PDEIC,
with the following human gene names:

PDE1A: NCBI Gene NP_001245241.1;
PDE1B: NCBI Gene NP_000915.1;
PDEI1C: NCBI Gene NP_001177987.1.

PDEI enzymes are globular, mainly cytosolic proteins. As is the rule in the PDE
superfamily, PDEl enzymes exist as dimers of identical subunit enzymes. The
human PDEI1B enzyme is depicted in Fig. 13.1 as a stick diagram showing a 536
amino acid protein with an N-terminal regulatory domain (aa 1-197) containing
two calmodulin binding sites, a catalytic domain (aa 198-496) containing an
H-loop, a dimerization domain, two helix and a M-loop, and a C-terminal extension.
The role of the C-terminal is not well understood. Sites of phosphorylation of PDE1
on the N-terminal have been proposed (Kakkar et al. 1999), and may influence
calmodulin binding affinity (Sharma et al. 2006), but in general the role of phos-
phorylation of PDE1 is poorly understood (Beltman et al. 1993). Details of the
N-terminal domain including calmodulin binding domains have been proposed
(Sonnenburg et al. 1995).
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Fig. 13.1 Stick diagram of the secondary structural details of hPDE1B

Several crystal structures of the catalytic core of PDE1 enzymes have been pub-
lished (Card et al. 2005), including structures with bound inhibitors (Humphrey
et al. 2014). An ITI-214 inhibitor-bound crystal structure from our work was
recently published (Li et al. 2016). Docking of a PDELI inhibitor, taken from the
patent literature, to a model enzyme catalytic core structure we developed is shown
in Fig.13.2. Inhibitors to this class of enzymes are generally competitive for the
cyclic nucleotide binding site. Since the publication of the first PDE catalytic
domain crystal structure of PDE4, the cyclic nucleotide binding site of this PDE
family has been well detailed. This site includes domains of a hydrophobic pocket,
a region referred to as a “lid region”, a metal binding site and a core pocket. For
PDEI enzymes the active site also includes the GIn421 “switch” (number from
hPDEI1B isoform) (Zhang et al. 2004). This GIln421amino acid accommodates both
cAMP and cGMP, hence referred to as a switch in the case of the PDEI1 family,
allowing for enzyme activity towards both cyclic nucleotides.

PDE] isoforms are highly conserved across species (Fig. 13.3). This high degree
of amino acid sequence conservation is greater than the sequence conservation seen
between human isoforms of PDE1 A, B and C, indicating a fundamental important
role of each distinct isoform. Similarly, the sequences of human PDEIA, B, and C
are highly homologous (Fig. 13.4). Sequence homology/identity between PDE1 A,
B and C can be used to predict potential selectivity of inhibitors. The ~85% homol-
ogy between these three isoform enzymes at the level of the catalytic domain sup-
ports the prediction that inhibitors selective to one PDEI isoform would be difficult
to discover. On the other hand, PDE1 enzymes are quite distinct from other PDE
families (2—11) as shown in Fig. 13.5, and PDE]1 inhibitors that are highly selective
for the PDELI class over all other classes are now available. This will be discussed
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Fig. 13.2 Structure of human PDEIB and inhibitor PF-04471141 (PDB ID: 4NPV). PDEIB is
shown in gray ribbon and PF-044711141 is shown in a space-filled model and colored by atom-
type. Amino acids participating in the binding of inhibitor are shown and labeled. Zinc and
Magnesium ions are shown in cyan and red balls. The molecular surface of the binding pocket is
shown in light blue. The core pocket is in green; the lid region is in dark cyan; the metal binding
pocket is in red, and the hydrophobic pocket is in yellow

later. With the most recent class of inhibitors being described below, the agents are
sufficiently specific to be suitable for target validation studies.

The possibility has been raised of a calcium-activated protease called calpain to
cleave PDE1 enzymes between the calmodulin domains and the catalytic domain
(Kakkar et al. 1999). This cleavage, if it occurs, would unleash the enzyme from
control by calcium and calmodulin and would be likely to further contribute to the
progression of degenerative diseases (Sharma et al. 2006). In Fig. 13.6, the cleavage
site for PDE1B is depicted as between amino acid (aa) 126 and 127 of the human
enzyme (Sharma et al. 2000).

PDEI N-terminal calmodulin binding domain structure has not been resolved in
high resolution, but structural information is included in Fig. 13.6. A conserved
potential phosphorylation site just C-terminal from the second calmodulin domain
at Threonine 148 of hPDEIB is present. Calcium-calmodulin activated kinase II
(CaMKII) is responsible for phosphorylation of PDE1B, while PKA is able to phos-
phorylate PDE1A and C (see Table 13.1) (Sharma et al. 2006; Florio et al. 1994;
Heredia et al. 2003). Phosphorylation results in a decreased affinity of the enzyme
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nPDELS DRTISTLVAQSQIGFIDFIVEPTFSVLTIDVAEKSVQP DSK 453
mkPDE1S DRISILVAQSQIGFIDFIVEPTESVLIDVAEKSVQP DSK 453
rFDELB DRISTLVAQSQIGFIDFIVEPTFSVLIDVAERSVQP DSK 452
mPDE1S DRTISTLVAQSQIGFIDFIVEPTESVLIDVAEKSVQP DSK 452
Identity percent of Identity percent of Similarity percent of
full sequence catalytic domains catalytic domains
human PDE1B human PDE1B human PDE1B
monkey PDE1B 97 98 99
rat PDE1B 96 97 99
mouse PDE1B 96 97 99

Fig. 13.3 Alignment of the amino acid sequence of the catalytic domain of PDE1B across species.
Sequence alignment of the catalytic domains of PDE1Bs from different species. 7 human, mk
rhesus monkey, r rat, m mouse. Blue non-conserved substitution, Dark Grey conserved substitu-
tion, and Light Grey identical amino acids. Alignment of sequences was performed with the
CLUSTAL W multiple sequence alignment program. Definitions for similarity and identity are

given in a manuscript by Higgins et al. (1996)

for calmodulin (Florio et al. 1994). In the first calmodulin binding domain there is a
basic nine amino acid insert in PDE1C versus 1A and 1B (Fig. 13.6 bottom). The

implication of this insertion is not understood.

13.3 Enzymology

As discussed above, the basic architecture of cyclic nucleotide phosphodiesterases
includes N-terminal regulatory domains attached to C-terminal catalytic domains.
Among the upstream regulatory motifs in different (non-PDE1) PDE families are
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See Figure 4 and Figure 2 for color codes.

hPDE1B
hFDE1A
hPDELC

NPYH ARD 230
ENPYH ARD 192
KNPYH ARD 235
LK AIHDYEHTGTINEFHIQ HNDRS 230
LETM W AIHDYEHTGTTNRFHIQT] NDRS 252
H' AIHDYEHTGITINFHIQ NDRS 295

hPFDE1B
hPDE1A
hFDELC

hPDE1B VL!&HR
hPDE1A WLENH
hPDEIC WEENH

appE1E LQoREEEEE
RPDE1A I.Q
REDELC

AELGLPFSPL 409
AELGLPFSPL 371

S AELGLEFSPL 415

RPDE1S s: aQsofGFIDFIVERT 453
hPDE1A AQS FIDFIVEPT 415
hPDELC SI AQS FIDFIVEPT 459
Identity percent of Identity percent of Similarity percent
full sequence catalytic domain of catalytic
alignment alignment domains
PDE1B PDE1B PDE1B
PDE1A 52 69 86
PDE1C 58 72 87

Fig. 13.4 Sequence alignment of the catalytic core of the three human PDE1 isoforms. The color
bars above the sequences indicate different motifs as shown in Fig. 13.1. See Fig. 13.3 and Fig. 13.1
for color codes

1A|1C|2A | 3A| 4B | 4D | 5A | 6A | 7A | 8A | 9A | 10A|11A

PDE1B |69 | 72 | 25 | 36 | 39 | 40 [ 24 | 25 | 31 | 32 | 28 |20 |28

PDE1B |52 | 58 |20 | 26 [ 24 | 25 | 15 | 18 [ 21 | 18 | 18 |12 |17

Fig. 13.5 Sequence identity comparison among PDE families. 7op row is for the sequence iden-
tity as a percent of catalytic domain amino acids. Bottom row is for the sequence identity as a
percent of full length alignments

nucleotide-binding (GAF) domains, ligand binding PAS domains, and UCRs (for
Upstream Conserved Region). There are no such domains in the PDE1 family.
Instead, unique to the PDEI family, are Calcium-Calmodulin (Ca*/CAM) binding
motifs (Bender and Beavo 2006a). Regulation in the PDE1 family occurs via tan-
dem upstream calcium-calmodulin binding motifs (Bender and Beavo 2006a). All
three PDE1 enzymes catalyze the hydrolysis of both cAMP and cGMP cyclic
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CaM 132-43
Seq MELSPRSPPEMLEESDCPSPLELKSAP SKKMAIKLRSLLRYMVKQLENGEINIEELKKNL 60
PROF HHHHHHHHHHHHHHHHHHHH HHHHHHHH
Seq EYTASLLEAVYIDETRQILDTEDELQELRSDAVPSEVRDWLASTFTQOARAKGRRAEEKP 120
PROF HHHHHHHHHHHH HHHHHHHHHHHHHHH HHHHHHHHHHHHHHH
CaM Il 122-135

Seq IVHAVQAGIFVERMFRRTYTSVGPTYSTAVLNCLKNLDLWCFDVFSLNQAADDHAL 180
PROF HHHHHHHH HHHHHHHHHH EEEE HH

Pest 73-94

Calpain 126-127

Inhibitory region 89-98
PDE1C ----MESPTKEIEEFESNSLKYLQPEQIEKIWLRLRGLRKYKKTSQRLRSLVKQLERGEA 56
PDE1A --=--MGSSATEIEELENTTFKYLTGEQTEKMWQRLKGI~~~~~~~---LRCLVKQLERGDV 47
PDE1B MELSPRSPPEMLEESDCPSPLELKSAPSKKMWIKLRSL~-~~-~~-~---LRYMVKQLENGEI 51

*,, ikk . . * shyk ke . wk o kkkkk .
PDE1C SVVDLKKNLEYAATVLESVYIDETRRLLDTEDELSDIQSDAVPSEVRDWLASTFTRQMGM 116
PDE1A NVVDLKKNIEYAASVLEAVY IDETRRLLDTEDELSDIQTDSVPSEVRDWLASTFTRKMGM 107
PDE1B NIEELKKNLEYTASLLEAVYIDETRQILDTEDELQELRSDAVPSEVRDWLASTFTQQARA 111
P T L R T P L
PDELC MLRRSDEKPRFKSIVHAVQAGIFVERMYRRTSNMVGLSYPPAVIEALKDVDKWSFDVFSL 176
PDE1A TKKKPEEKPKFRS IVHAVQAGI FVERMYRKTYHMVGLAYPAAVIVTLKDVDKWSFDVFAL 167
PDE1B KGRRAEEKPKFRSIVHAVQAGIFVERMFRRTYTSVGPTYSTAVLNCLKNLDLWCFDVFSL 171
prLrhEk R AR RRARR AR AR ARk dh sk kky kksok k AEEkk

Fig. 13.6 Diagram of the N-terminal regulatory region of hPDEIB. Top, diagram of N-terminal
region of hPDE1B. Data is derived from information derived by Sonnenburg et al. (1995). Bottom,
sequence alignment of hPDE1B N-terminal domains. * identical amino acids, : homologous amino
acids, . similar amino acid

nucleotides, though their relative affinities for cAMP and cGMP differs (Bender and
Beavo 2006a; Sharma et al. 2006). PDEIA and PDEIB are relatively cGMP-
specific, with a higher K,, (weaker affinity) for cAMP than cGMP, while PDE1C
hydrolyzes both nucleotides with similar affinity (Table 13.2).

Early purification of the PDEI isoforms was performed from bovine brain
(63 Kd and 60 Kd isoforms—referred to as PDE1B1 and PDE1A2 (Sharma et al.
2006)), heart and lung tissues (Sharma and Kalra 1994). This work revealed enzymes
of similar V,,, activity for cGMP from all tissues. A 63 Kd enzyme from bovine
brain was reported to have significantly lower V,,,, for cAMP versus cGMP. Heart
enzyme, was activated by significantly lower calcium concentrations in the presence
of maximal calmodulin concentration. However, the PDEI isoform identity of this
heart PDEI was not clearly determined. The issue of the identity of PDE enzyme
forms will be discussed further below, under Tissue Distribution.
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Table 13.2 K, and V,,,, data for PDE1 isoforms (Sharma and Kalra 1994; Yan et al. 1995)
Ko (uM)
cAMP cGMP Vinax Tatio cAMP/cGMP
Sharma Sharma Sharma
and Kalra | Yan et al. and Kalra | Yan et al. and Kalra | Yan et al.
Isoenzyme (1994) (1995) (1994) (1995) (1994) (1995)
Bovine 40.0 112.7 32 5.1 3.0 2.9
PDE1A2
Bovine 12.0 24.3 1.2 2.7 0.3 0.9
PDEI1BI1
Rat 1.2+0.1 1.1+0.2 1.2+0.1
PDEI1C2

In addition to control via binding of calmodulin, PDE1 activity is inhibited by
phosphorylation of the enzyme. Phosphorylation of PDEIA by protein kinase A
reduces its affinity for Ca**/CAM; the EC50 for half-maximal stimulation of cAMP
hydrolysis goes from 0.51 to 9.1 nM calmodulin (Sharma and Wang 1985). The
phosphorylation site for PKA was mapped to Serine 120 of PDE1A1 enzyme, a site
between the two calmodulin binding sites (Florio et al. 1994). PDEIC activity is
modulated by phosphorylation by PKA (Loughney et al. 1996; Yan et al. 1996).

The N-terminal control elements in PDEI have an inhibitory effect on enzyme
activity. Proteolytic removal of this region with m-calpain made the enzyme
calmodulin-independent, with a K,, and V., (as measured with cAMP) very close to
the fully stimulated full-length enzyme (Kakkar et al. 1998). Subsequent molecular
cloning and expression has confirmed that the PDE1 catalytic core is constitutively
active (Zhang et al. 2004). Specific inhibitors of the PDE1 family enzyme, devel-
oped in our laboratories, have equivalent potencies against the Ca?*/CAM-bound
holoenzyme and catalytic core.

Interestingly, control of the PDE1B isoform is modulated by phosphorylation by
calmodulin-dependent protein kinase (CamKII) (Kakkar et al. 1996). Given the
localization of CamKII in neurons to dendritic spines and post-synaptic densities,
this may reflect a calcium-dependent feedback loop that would dampen PDE1B
activity in this subcellular region.

13.4 Tissue Distribution of PDE1 Enzymes

The distribution of various PDE1 family members has been studied using a variety
of qualitative, semi-quantitative and quantitative methods including: isolation and
enzymatic characterization, immunohistochemistry, microarray expression profiling
and real-time polymerase chain reaction technology (RT-PCR). The literature on
PDE]1 tissue distribution is rather complicated as the nomenclature have evolved
over time. In addition, other factors should be taken into account to judge the impor-
tance of the various PDE1 isoforms in different tissues. First, the relation between
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Fig. 13.7 Distribution of PDEIB in mouse brain as revealed by the Allen brain atlas (/eff) and
GenSat (right) Technologies

mRNA levels quantitated by RT-PCR may not correlate with enzyme levels. Second,
tissues contain various cell types. In the heart, cardiomyoctes, endothelial, smooth
muscle and, particularly in disease populations, fibroblasts cell types all present dif-
ferent spectrum of PDE1 and other PDE enzymes. Furthermore, cellular compart-
ments undoubtedly exist, as is the case in cardiomyocytes, which may contain higher
levels of certain enzymes. Finally, the kinetics of different enzymes and isoforms
influence the importance of the various isoforms. PDE1C, with high mRNA levels
in the heart, has significantly higher affinity for cAMP versus PDE1A and PDEI1B.

Particularly informative information has been collected in human tissues by
RT-PCR (Lakics et al. 2010). PDE1B is highly expressed in the brain in the stria-
tum, hippocampus and pre-frontal cortex, where it is highly-co-localized with the
dopamine D1 receptor. PDE1B is richly expressed in dopamine-responsive neurons
of the caudate putamen and nucleus accumbens. It is also expressed in macrophage
cells (Bender and Beavo 2006b). PDE1C is more ubiquitous in the brain, present in
the olfactory tubercle, and found abundantly in the cardiomyocyte, lung and heart
tissue. PDEIC is a major PDE in the human and rat heart (Sonnenburg et al. 1998)
and the major cyclic nucleotide hydrolyzing activity in cardiomyocytes (Vandeput
et al. 2007), where PDES3 is also abundantly expressed (Murata et al. 2009). PDE1A
is enriched in the brain and, depending on the species (Miller et al. 2011), in the
heart. PDE1A is present in activated cardiac fibroblasts (Miller et al. 2011). An
interesting variant of PDE1A was described in sperm and kidney by Vasta et al.
(2005). Figure 13.7 depicts the localization of PDE-1B in the mouse brain as defined
in the Allen Brain Atlas (http://www.brain-map.org/) using in-situ-hybridization,
and in the GenSat Atlas (http://www.gensat.org/index.html) using a reporter gene.
Enrichment in the striatum of PDEIB implicates a potential role in Parkinson’s
disease and for use of PDEI inhibitors in disorders of motor control. The high
enrichment in the cardiomyocyte of PDE1C as well a substantial animal model vali-
dation reported in the literature, implicates PDEI inhibitors for heart failure indica-
tions (Miller and Yan 2010). There is an interesting literature describing cognitive
dysfunction associated with heart failure (Alosco et al. 2014; Feola et al. 2013;


http://www.brain-map.org
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Garcia et al. 2012; Knecht et al. 2012). Additionally, PDE1 enzymes have been
found in vascular endothelial cells, smooth muscle cells, fibroblasts and motor
neurons.

As mentioned above, the PDE1 enzyme class is known from biochemical isola-
tion studies to be a mainly cytosolic enzyme (Sonnenburg et al. 1998). According to
Pathway Studio knowledgebase from Elsevier, some 40 protein-protein interactions
of PDE1 isoforms have been documented in the literature (Table 13.1). PDE1A is
found in membrane fractions of bovine tracheal smooth muscle and associated with
muscarinic M2 acetylcholine receptors in that tissue (Mastromatteo-Alberga et al.
2015). This set of protein interactions is a rather small set, chiefly comprised of
calmodulin and relevant kinases, and indicates more work should be done to iden-
tify protein-protein interactions of the PDE1 enzyme family.

The subcellular localization of PDE1 enzymes inside neurons and other cells is
poorly researched (Beltman et al. 1993; Sonnenburg et al. 1998). The possibility
exists of high enrichment of this enzyme in particular microenvironments (Goraya
and Cooper 2005). Calcium calmodulin activated kinase II (CAMKII), as an exam-
ple, is heavily localized with calmodulin in dendritic spines (Lu et al. 2014), reach-
ing high local concentrations, where it plays an important role in synaptic plasticity
and memory formation. Calmodulin concentrations in dendritic spines has been
estimated to be very high, at around 100 micromolar (Faas et al. 2011). This com-
pares to a half-maximum activation by calmodulin for PDEI isoforms of approxi-
mately 10 nM (Sharma and Kalra 1994). As shown in Table 13.1, a clear interaction
is known to occur between calmodulin and PDEI enzymes, which could serve to
concentrate this enzyme family in this microenvironment, contributing to a critical
role for PDE1 enzyme in cognitive function.

The relative importance of various PDEs in the heart has been extensively stud-
ied (Lee and Kass 2012). This tissue has significant PDEL, 2, 3, 4 and 5 enzymes
present and levels vary upon aging and in disease states. Levels of PDE1A and
PDEIC vary across species. As mentioned above, in human heart, PDEIC is the
predominant PDE1 isoform as measured by RT-PCR. (Lakics et al. 2010) In iso-
lated human cardiomyocytes (as well as Guinea pig, but not rat) PDEI is the pre-
dominant cAMP and cGMP hydrolyzing activity, as reported by Johnson et al.
(2012) using a PDEI-selective inhibitor UK90234. Vandeput et al. characterized
PDEICI subcellular distribution in human myocardium and concluded it to be the
major cAMP and cGMP hydrolyzing activity in soluble compartments. PDE3 was
found to be the predominant cAMP hydrolyzing activity in microsomal fractions
(Vandeput et al. 2007).

13.5 Genomics

As mentioned earlier, catalytic and Ca**/CaM binding domains of the PDEI genes
are highly conserved between species (Zhang et al. 2000) and across the PDEI
subfamily (Zhao et al. 1997). The National Center for Biotechnology Information
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(NCBI) has a substantial and well-organized summary of each of the identified
human genes to date (http://www.ncbi.nlm.nih.gov/gene): PDE1A gene has 5
mRNA transcript variants as a result of alternative splicing (Michibata et al. 2001),
and they differ mostly in the 5" and 3’ untranslated regions (UTRs). The sequences
encoding the catalytic cores and metal binding sites are entirely conserved. Isoform
1 of PDEIA is encoded by transcript variant 1, represents the longest transcript, and
is also considered the “canonical” transcript. Of the species with genome sequences
available thus far, 148 organisms have an ortholog of the human PDE1A gene, and
slightly fewer organisms have an ortholog for human PDE1B or PDE1C. The human
PDEI1B gene has 2 transcript variants, with transcript variant 1 encoding isoform 1,
the canonical transcript. The human PDE1C gene has 5 transcript variants, and the
canonical transcript variant 3 encodes isoform 3. Based on the Genome Reference
Consortium’s current Human Build 28 patch release 2 (GRCh38.p2), the gene loca-
tions for each of the human PDE isoforms are as follows:

PDEI1A: Chromosome 2; 182,140,035...182,522,845; 382,811 base pair length
PDEIB: Chromosome 12; 54,549,393...54,579,239; 29,847 base pair length
PDEIC: Chromosome 7; 31,616,777...32,299,404; 682,628 base pair length

Splice variants of the human PDEIA transcript were identified using a cDNA
cloning and bioinformatics approach (Michibata et al. 2001). These variants dif-
fered in their N-terminal and C-terminal regions. Southern blot analysis of different
tissues revealed that certain variants were widely expressed throughout most of the
body, while others, such as a variant referred to PDE1A10, were confined to one
tissue type (Michibata et al. 2001). Variants all share exons 4—12 of the gene’s 17
exons, as exons 6—12 encode the catalytic domain.

A separate, 11.5 kb downstream first exon distinguishes PDE1B2 from PDE1B1
(Bender et al. 2004), and PDE1B2 and PDE1B1 have separate promoters. These
promoters are differentially regulated in monocytes versus other cell types.
Activation of transcription, rather than post-translational modulation, is primarily
responsible for PDEIB2 up-regulation in monocytes. Granulocyte-macrophage
colony-stimulating factor (GM-CSF) selectively stimulates transcription of PDE1B2
at a transcriptional start site unique to PDE1B2 (Bender et al. 2004).

Common human trans-acting factor AP-1 is reported to be involved in PDE1B
transcriptional regulation in monocytes and CHO cells (Spence et al. 1995). Two
specific protein kinase C (PKC) isoforms selectively induce production of PDE1B
mRNA as an early response to treatment of CHO cells with the tumor-promoting
compound phorbol 12-myristate 13-acetate (PMA). This compound is known to
signal via activation of PKC and subsequently AP-1 (Spence et al. 1997). Many
alterations in PDEI expression occur at a post-transcriptional stage, for instance, in
incidences of traumatic brain injury (TBI) (Oliva et al. 2012).

Transcriptional regulation of each of the PDE1 isoforms has been characterized
to some extent. The excitatory effects of cytokine release on PDE1A activity are
suppressed in mouse longitudinal smooth muscles. Inhibition of nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-kB), suggests that this protein
complex is involved in upregulation of PDE1A transcription in mouse smooth mus-
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cle (Rajagopal et al. 2014). Drug treatment with vasodilators induces PDE1A1
expression, which contributes to nitrate tolerance, as shown in rat aortic VSMSs
(Kim et al. 2001). GM-CSF stimulates transcription of PDEIB1 at a start site acti-
vated upon monocyte differentiation. Macrophage colony-stimulating factor
(M-CSF) stimulation, however, preferentially induces transcriptional upregulation
of PDE2 over PDEIB (Bender et al. 2004). Transcription of PDEIC is induced in
proliferative human smooth muscle cells (SMCs), and expression is down-regulated
upon cellular quiescence (Rybalkin et al. 2003), indicating that PDE1C plays a reg-
ulatory role in the cell cycle of SMCs. 7-oxo-prostacyclin treatment was found to
increase the transcriptional levels of PDE1C in the rat heart (Kostic et al. 1997).

The roles of PDEI isoforms in epigenetic mechanisms are unclear. Because
PDEI activity lowers cAMP, it may indirectly inhibit activation of the common
transcription factors cAMP/Ca*" response element-binding (CREB) protein and
serum response factor (SRF) (Paul et al. 2010). Furthermore, PDE1A is suggested
to be an epigenetic regulator of cell cycle growth and proliferation by targeting the
epigenetic integrator UHRF1 (Ubiquitin-like, PHD Ring Finger 1). Down-regulation
of PDEIA mRNA expression inhibits UHRF-1 and activates the p73 tumor-
suppressor protein (Alhosin et al. 2010). RNA-interference knock-down of PDEIA
expression in the acute lymphoblastic leukemia Jurkat cell line triggered cell cycle
arrest and apoptosis through regulation of these two proteins.

There is little evidence of PDE1 genetic links to CNS disease to date. PDEI has
few SNPs that have been shown conclusively to be linked to disease. However, a
recent human genome-wide association study found SNPs in PDEIA that were
associated with diastolic blood pressure and carotid intima-media thickness (Nino
et al. 2015). Elevated PDE1A and PDE1C mRNA levels were found to be linked
with markers of cellular senescence in vascular smooth muscle cells (Nino et al.
2015; Yan 2015). The term senescence refers to a concept of irreparable chromo-
somal breaks associated with extensive cell passages in culture or age-related vas-
cular disease and mimicked in mouse knockout models lacking nucleotide excision
repair genes. A posttranslational regulatory role of PDEIA localization in determin-
ing vascular smooth muscle growth has been described (Nagel et al. 2006).

Initially it was proposed that there may be a linkage between PDEs and Major
Depressive Disorder. A particular PDE1A variant, rs1549870, was reported to have
a significant effect on antidepressant drug response (Wong et al. 2006). Later stud-
ies failed to replicate these results (Cabanero et al. 2009; Perlis et al. 2010).

The recent influx of sequencing data regarding the human genome has made it
possible to search online databases and compile genetic risk variants within a popu-
lation. Table 13.3 describes the variants found among 60,706 sequenced human
genomes compiled by the Broad Institute’s Exome Aggregation Consortium (Lek
et al. 2016). The locations of mutations and their consequences are based on the
reference genome build GRCh37/hgl9. Of note, fewer variations in each of the
PDE1 genes have been observed than what would be expected from random muta-
tion rates. PDE1B in particular is predicted to be highly intolerant to loss of function
variations (Lek et al. 2016). The generally low frequency of SNPs for this class of
enzymes may reflect the vital roles they play. In summary, little information to date
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links PDE1 polymorphism to human disease, based on recent considerable human
genome-wide sequencing data. However, this issue is still under-studied. As more
information is obtained of this type is developed in disease-specific databases, such
as for Parkinson’s disease, schizophrenia, and heart failure, it will be interesting to
continue to track genetic variations and their potential indications for both disease
pathogenesis and drug response.

13.6 Inhibitors in the Public Domain

Until recently, research into PDEI had lagged behind other PDE families (2-11) in
part due the lack of potent and specific inhibitors. The literature on PDE1 was con-
fused by the improper identification of compounds, such as vinpocetine, as selective
PDEI inhibitors. In fact, vinpocetine is a non-selective agent that inhibits other
targets with higher affinity than PDEI. In spite of the confusion generated by early
studies, there is now a substantial and growing literature implicating selective PDE1
inhibitors as agents for the treatment of cognitive dysfunction, as therapies for neu-
rodegenerative diseases including Parkinson’s disease, as well as for disorders of
the cardiovascular system. In addition, PDE1B is involved in activation of mono-
cytes to macrophages, which is relevant to inflammatory responses associated with
degenerative diseases (Bender and Beavo; Bender et al. 2004; Bender et al. 2005).
This literature will be reviewed below. PDE] is present in activated fibroblasts and
contributes to fibrotic diseases as documented in heart failure (Miller and Yan 2010).
Recently, Intra-Cellular Therapies, Inc. announced completion of a series of Phase
1 human clinical studies with the clinical candidate ITI-214, a potent and selective
PDEI inhibitor. Manuscripts describing this agent’s chemistry (Li et al. 2016)
recently was published.

As mentioned, vinpocetine should not be considered a specific PDE1 inhibitor.
Curiously, this agent is sold in health food stores as a promoter of memory function.
The natural product has been evaluated in six human clinical trials and shown to
increase brain vascular blood flow (Patyar et al. 2011). It is not clear which of the
target activities of vinpocetine is responsible for this effect (Patyar et al. 2011;
Kemeny et al. 2005; Szilagyi et al. 2005; Szatmari and Whitehouse 2003). As shown
in Table 13.4 vinpocetine is a very weak PDEI inhibitor; it interacts with ion chan-
nels at nanomolar concentrations. A 2011 review of vinpocetine covers a list of vari-
ous targets including; voltage-sensitive sodium channels, mitochondrial transition
pores, antioxidant properties, and inhibition of the interaction between IkB and IkB
kinase (IKK) (Patyar et al. 2011).

Early potent and somewhat selective PDEI inhibitors were published from
efforts at Pfizer and Schering-Plough (Table 13.4). Later efforts at Galapagos and
Pfizer demonstrated more potent and more highly selective PDEI inhibitors. In the
2008 Galapagos patent (WO 2008071650) the authors claimed PDE1C selectivity
over PDEIA + B. Our efforts, which started in 2003, led to the discovery of ITI-214
as a potent and highly selective PDE1 enzyme inhibitor with picomolar inhibitory
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potency and selectivity of 2700-fold versus the first off-target system, PDE4. If one
considers a requirement of “greater than 10-fold selectivity” to define a specific
inhibitor for one PDE]1 isoform (for example PDE1C over PDE1A and PDE1B), we
have not seen PDEI isoform specificity with our proprietary agents, nor when we
synthesize and test the literature agents claiming selectivity. As mentioned above,
the close PDEI isoform sequence conservation leads to the prediction that isoform
selectivity will be a difficult goal. Importantly, we have seen no downside to hitting
all three PDEI isoforms. Rather, we consider hitting PDE1 A, B and C as beneficial
to therapeutic utility with our current PDEI inhibitors. The rationale for this consid-
eration is that there is no known undesirable effect of this redundancy, and by hitting
all three isoforms you can overcome redundancy of isoforms in certain cell types. In
human clinical trials, ITI-214 was safe and well tolerated, as described in the clini-
cal trials section below, and reached high plasma drug levels.

Table 13.4 Structures of PDEI inhibitors

C ilation of Literature PDE1 Inhibitors IC50 (nM)
PDE1 PDE4 PDE5 PDE6 Ratio 5/1 Reference
8-MeO-IBMX 1800
Vinpocetine 58900 >300,000 Ahn et al. 1997
UK-90234 35.4 >1000 1106 8650 31
SCH51866 70 60 1
1COS (1C2957?) 490 390000 154000 796
PF04822163 2-7 7620 >30,000 >29,000 Humphrey et al. 2114
SP31 0.07 700 305 4357 Ahn et al. 1997
SP33 0.6 200 200 333 Ahn et al. 1997
Galapagos 2008 16-83 Unpublished
ITI-214 0.058 158 632 324 10897 Lietal. 2016

SCH51866

o HN

)
> =

N
) <./
L

wi—{s

ITI-214 =

Galapagos 2010 Schering Plough 33 Schering Plough 31

The ICOS compound IC295 referred to in the literature was never identified, and so this structure
is a representative example from ICOS patent literature
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13.7 Pharmacology in Animal Models

Cyclic adenosine monophosphate (cCAMP) is the primary intracellular signaling
system for the D1 dopamine receptor (Mailman et al. 1986) (as well as for a number
of other receptor systems including beta-adrenergic receptors, histamine H2, and
various peptide hormone receptors (CGRP, CRF, Melanocortin, and VIP)). The
close co-localization in the brain of PDE1B with dopamine D1 receptor has driven
efforts to exploit PDE1 inhibitors as cognitive enhancing agents. Cyclic GMP and
cAMP are intimately involved in Long-Term potentiation (Kleppisch and Feil
2009), involved in memory consolidation. By amplification of cAMP second mes-
sengers, PDE1 inhibitors are likely to be neuroprotective, a subject researched
extensively by the Filbin Laboratory (Hannila and Filbin 2008). By amplification of
the second messenger signaling systems involving cGMP and cAMP, PDE] inhibi-
tors have positive effects on memory acquisition, consolidation and retrieval. Cyclic
GMP is the primary intracellular signaling system of the atrial natriuretic peptide
hormone receptors (Duda et al. 2014; Leitman and Murad 1987), and is also pro-
duced by soluble guanylate cyclase via activation of nitric oxide synthase in response
to elevated intracellular calcium. In contrast, cAMP is made by adenylate cyclases
in response to a number of G-protein coupled plasma membrane receptors.
Importantly, the temporal and special concentrations of cyclic nucleotides will vary
tremendously, depending on the cell type and stimulus.

PDEIA, B and C knockout mice have been produced and are healthy (Siuciak
et al. 2007; Cygnar and Zhao 2009; Ye et al. 2016). PDE1B knockout mice display
an interesting “on-demand” phenotype when challenged with a sub-optimal dose of
dopamine D1 agonist (Reed et al. 2002; Ehrman et al. 2006).

There are rather few reports in the literature of the use of potent and selective PDE1
inhibitors in animal models of CNS diseases. This is in large part due to the lack of
potent and selective inhibitors available in the public domain. In addition to the work
using novel object recognition (NOR) tests in rats, which we have done, we have inves-
tigated reversal of catalepsy induced by haloperidol, a potent dopamine D2 receptor
antagonist used as an antipsychotic. Haloperidol induces serious extra-pyramidal side
effects (EPS) and leads to tardive dyskinesia, a major downside of the potent D2 recep-
tors used to treat schizophrenics. While we have seen that PDE1 inhibitors reverse cata-
lepsy induced by haloperidol when tested in mouse models, PDE10 inhibitors actually
exacerbate catalepsy in this assay. This is a major distinction between PDE1 and
PDE10. We have generated data indicating wakefulness-promoting properties of
PDE] inhibitors in mouse models, as measured by EEG. Lastly, PDEI inhibitors are
able to potentiate the beneficial effects of sub-maximal L-DOPA when tested in a
unilateral 6-hydroxy dopamine lesion model that scores restoration of use of the
affected contralateral limb. This set of data has given us optimism that PDE1 inhibi-
tors will potentially treat CNS disorders involving cognitive function, Parkinson’s
disease and problems in wakefulness. Neurodegenerative diseases could theoreti-
cally be treated with PDEI inhibitors, but this area is under studied.

In contrast, a substantial validation for the use of PDEI inhibitors to treat heart
failure exists in the literature. This work comes mainly from work done by Chen
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Yan at Rochester University. It includes use of ICOS PDEI] inhibitors (no structure
revealed), PDE1C and PDE1A knock-out mice studies, cellular models, and RNA
interference studies (Miller et al. 2011; Miller and Yan 2010; Miller et al. 2009). In
addition to effects on cardiomyocyte hypertrophy, this laboratory has documented
reversal of fibrosis in heart failure models. Ahn and colleagues working at Schering
Plough, published small decreases of blood pressure after treating spontaneously
hypertensive rat models with their PDEI and dual PDE1-PDES inhibitors (1997).
While more work needs to be done in the areas of heart failure, this work holds
promise that PDEI inhibitors will be effective in heart failure.

13.8 Potential for Cognitive Enhancement in Mental
Diseases

Much of the research into cognitive dysfunction in mental disease has focused on
the involvement of the pre-frontal cortex (PFC) (Goldman-Rakic 1995; Goldman-
Rakic 1994; Goldman-Rakic 1987). In this brain area, well established circuits of
pyramidal neurons exist that signal via NMDA glutamate receptors. (Somewhat
similar circuits exist in hippocampal regions involved in working memory as
described by Tamminga and co-workers (Samudra et al. 2015; Tamminga et al.
2010)). The activity of pre-frontal cortical circuits is dampened by the action of
GABA interneurons. The activity of the pyramidal cells is dampened, particularly
under stressful conditions, by activation of voltage sensitive potassium channels
called hyperpolarization-activated cyclic nucleotide-gated (HCN) and KCNQ chan-
nels, both of which are activated by cAMP. These potassium channels, when acti-
vated in stressful conditions, can effectively shut down the pyramidal circuits and
severely impact memory, particularly in the schizophrenic brain (Arnsten and Jin
2014; Yang et al. 2013).

There is a large literature that indicates hypo-functionality of dopamine D1
receptor in the pre-frontal cortex in patients with schizophrenia (Slifstein et al.
2015; Thompson et al. 2014). As this dopamine receptor is intimately involved in
working memory, this hypo-functionality is felt to contribute to the cognitive dys-
function. Importantly, the dopamine D1 receptor plays a pivotal role in many aspects
of cognitive function including: speed of processing, attention, vigilance, working
memory, reasoning and problem solving (Goldman-Rakic 1996; Goldman-Rakic
1998; Goldman-Rakic 1999). A well supported theory of the etiology of
Schizophrenia has proposed cognitive dysfunction as a root cause (Nelson et al.
2009). Moreover, cognitive dysfunction is associated with multiple disorders of the
CNS and is well recognized as a component of the cardiovascular disease of heart
failure (Moraska et al. 2013). Cognitive dysfunction is compounded by excessive
awareness of sensory input, generally suppressed in normal individuals, resulting in
overwhelming noise in the PFC.

Over the past decades, substantial efforts have been made to treat schizophrenics
with direct-acting dopamine D1 receptors. These efforts have generally failed
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(Zhang et al. 2009). These failures are attributed to poor drug bioavailability of first
generation agonists such as dihydrexidine (Mottola et al. 1992). In other efforts, the
D1 receptor agonists A-86929 (Martin 201 1; Giardina and Williams 2001), dinapso-
line, dinoxyline, and doxanthrine, were discovered and tested clinically. However,
interactions of D1 receptor agonists with D1 receptors in the periphery often lead to
side effects resulting in hypotension and tachycardia (Huang et al. 2001). In addi-
tion, the failure of these drugs to achieve clinical efficacy may be associated with a
diminution of initial positive effects of direct D1 agonists due to receptor desensiti-
zation. Dopamine action in this brain area is well known to have an inverted U-shaped
activity/[dopamine agonist] relationship. It may be that a rather narrow U-shape
response curve contributes to the difficulty of this approach. Apomorphine is a non-
selective dopamine agonist with highest potency to D2 receptors, used in the treat-
ment of Parkinson’s disease. However, Apomorphine causes emesis, limiting its use.

PDEI receptor inhibitors act as indirect dopamine D1 receptor agonists and
should avoid the problems associated with directly acting D1 receptor agonists. The
interest in PDEI inhibitors revolves around the signal transduction pathway of the
D1 receptor (Boyd and Mailman 2012). Dopamine D1 receptors signal via activa-
tion of Gs G-proteins to stimulate adenylate cyclase to produce intracellular cAMP
(Mailman and Huang 2007). This fact and the co-localization of PDE1B enzyme
with the D1 receptor in the pre-frontal cortex indicates PDE1 as a major “turn off”
mechanism of the D1 receptor, via hydrolysis of cAMP. Therefore the use of PDEI
inhibitors, by preventing local dampening of cAMP signal transduction, represents
an indirectly-acting D1 receptor agonist.

Consistent with these hypotheses, a number of PDE inhibitors have been shown
effective in animal models of cognition. These models include the Novel Object
Recognition (NOR) model (Reneerkens et al. 2009). The NOR model has a number
of advantages as rodents are not perturbed by chemicals or pre-conditioning. This
test utilizes the inherent tendency of rodents to explore novel objects. In rats, the
recognition of such objects disappears in roughly 4 h. In our standard protocol, a
24 h delay is used and activity at this delay time indicates significant cognitive
enhancement. Enhancement of NOR has been demonstrated by a number of PDE
inhibitors which include PDE1, PDE2, PDE4, PDE9 and PDE10 (Reneerkens et al.
2009; Bollen and Prickaerts 2012; Reneerkens et al. 2013). Our work has focused on
PDEI] inhibitors and we have found a large number of excellent enhancers of NOR,
consistent with potency to inhibit PDE1 and to oral bioavailability. PDE inhibitory
activity influences multiple aspects of NOR, including cGMP influences on early
consolidation and cAMP influences on late consolidation (Bollen et al. 2015).

13.9 Diverse Therapeutic Indications

Based on the animal studies and theoretical arguments, there are a number of poten-
tial CNS and non-CNS disorders potentially treated by PDE1 inhibitors. Cognitive
dysfunction in Schizophrenia, as discussed above, is well supported by animal
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studies. Utility of PDE1 inhibitors as dose-sparing adjuncts to L-DOPA treatment in
Parkinson’s disease is a second very interesting indication, as is use of PDEI inhibi-
tors in motor disturbances of a variety of etiologies. More work will need to be done
to realize the full potential of these possibilities.

Degenerative disorders of the CNS and the periphery remain attractive potential
indications for PDEI inhibitors. The enormous unmet need for treatments of heart
failure justifies continued studies. PDE1 acts particularly in excitatory cellular sys-
tems such as neurons and cardiomyocytes where repeated cycles of calcium entry
occur during the inherent repetitive cellular excitation. Importantly, the role of
PDE1 enzyme during cell excitation is one integrated over the course of a lifetime
and so it is particularly relevant to degenerative diseases where excessive intracel-
lular calcium is felt to be responsible, in large part, with the progression of these
diseases. Mitochondrial ATP generation is known to be influenced by cAMP (Acin-
Perez et al. 2009). Indeed, motor neuron survival and regeneration is clearly bene-
fited by cAMP (Qiu et al. 2002). The important motor neuron survival gene (SMN)
has a cAMP-response element (CRE-II), giving further credence to the beneficial
role of cAMP to skeletal muscle motor neuron function and survival (Hannila and
Filbin 2008; Hannila et al. 2007). These properties of PDEI indicate that PDE]
inhibitors may additionally have use in motor neuronal survival in spinal muscular
atrophy (SMA) and more generally in degenerative disease treatments.

13.10 Clinical Trial Histories

A series of phase 1 human clinical trials with ITI-214, a potent and selective PDE]
inhibitor, were reported in a press release by Intra-Cellular Therapies, Inc. recently
(http://ir.intracellulartherapies.com/releasedetail.cfm?ReleaseID=932472). The
clinical candidate, ITI-214, was shown safe and well tolerated in normal healthy
volunteers over a wide range of doses and in repeat dose studies. High drug levels
were found in plasma after oral administration. This study serves to dispel any
notion that PDE]1 inhibitors will have any obvious liability. To our knowledge, no
other potent and selective PDE] inhibitor has been tested in humans.

In contrast, there are over 1000 clinical trials found in the “ClinicalTrials.gov”
database when searched using the keyword “phosphodiesterase”. Seventy-seven
percent were for cardiovascular indications and 20% for disorders of the CNS. Ten
percent of trials were for PDE3 inhibitors, 14% for PDE4 inhibitors, 46% for PDES
inhibitors and 1% for PDE10.

Clinical trials covering potential cognitive enhancing drugs is a large area, cover-
ing a diverse set of targets. Over 1891 trials are listed in clinicaltrials.gov when
searched with the term “cognitive dysfunction”. Target mechanisms include cholin-
ergic receptors, glutamatergic receptors, phosphodiesterase inhibitors (PDE9, 10, 5
and 4), serotonergic receptors, histaminergic H3 receptor agents and dopamine D1
agonists. However, the lack of new drug therapies to date for cognitive dysfunction
indicates this objective may be a difficult one to demonstrate.


http://ir.intracellulartherapies.com/releasedetail.cfm?ReleaseID=932472
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13.11 Summary

This review has focused on the potential use of PDEI inhibitors for various diseases
and has attempted to highlight the importance of this target for degenerative disor-
ders and disorders of cognition.

The authors wish to thank many colleagues who have helped assemble informa-
tion and commented on this review, including Drs. Anton Yuryev, Kristen Cibulskis,
Gretchen Snyder, and Sergei Rybalkin.
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