
Chapter 6
Reduced Basis Isogeometric Mortar
Approximations for Eigenvalue Problems
in Vibroacoustics

Thomas Horger, Barbara Wohlmuth, and Linus Wunderlich

Abstract We simulate the vibration of a violin bridge in a multi-query context
using reduced basis techniques. The mathematical model is based on an eigenvalue
problem for the orthotropic linear elasticity equation. In addition to the nine material
parameters, a geometrical thickness parameter is considered. This parameter enters
as a 10th material parameter into the system by a mapping onto a parameter
independent reference domain. The detailed simulation is carried out by isogeomet-
ric mortar methods. Weakly coupled patch-wise tensorial structured isogeometric
elements are of special interest for complex geometries with piecewise smooth but
curvilinear boundaries. To obtain locality in the detailed system, we use the saddle
point approach and do not apply static condensation techniques. However within
the reduced basis context, it is natural to eliminate the Lagrange multiplier and
formulate a reduced eigenvalue problem for a symmetric positive definite matrix.
The selection of the snapshots is controlled by a multi-query greedy strategy taking
into account an error indicator allowing for multiple eigenvalues.

6.1 Introduction

Eigenvalue problems in the context of vibroacoustics often depend on several
parameters. In this work, we consider a geometry and material dependent violin
bridge. For a fast and reliable evaluation in the real-time and multi-query context,
reduced basis methods have proven to be a powerful tool.

For a comprehensive review on reduced basis methods, see, e. g., [29, 33]
or [28, Chap. 19] and the references therein. The methodology has been applied
successfully to many different problem classes, among others Stokes problems [20,
22, 32, 34], variational inequalities [13, 15] and linear elasticity [24]. Recently,
reduced basis methods for parameterized elliptic eigenvalue problems (�EVPs)
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gained attention. Early work on a residual based a posteriori estimator for the first
eigenvalue can be found in [23] and has been generalized in [26, 27] to the case of
several single eigenvalues with special focus to applications in electronic structure
problems in solids. Furthermore, the very simple and special case of a single
eigenvalue where only the mass matrix and not the stiffness matrix of a generalized
eigenvalue problem is parameter dependent has been discussed in [11]. Alternatively
to the classical reduced basis approach, component based reduction strategies are
considered in [36]. Here, we follow the ideas of [17] where rigorous bounds in the
case of multi-query and multiple eigenvalues are given. More precisely, a single
reduced basis is built for all eigenvalues of interest. The construction is based on a
greedy strategy using an error estimator which can be decomposed into offline and
online components.

The eigenvalues of a violin bridge play a crucial role in transmitting the vibration
of the strings to the violin body and hence influence the sound of the instrument,
see [10, 37]. Due to the complicated curved domain and improved eigenvalue
approximations compared to finite element methods, see [19], we consider an
isogeometric discretization. Flexibility for the tensor product spline spaces are
gained by a weak domain decomposition of the non-convex domain.

Isogeometric analysis, introduced in 2005 by Hughes et al. in [18], is a family
of methods that uses B-splines and non-uniform rational B-splines (NURBS)
as basis functions to construct numerical approximations of partial differential
equations, see also [1, 5]. Mortar methods are a popular tool for the weak coupling
of non-matching meshes, originally introduced for spectral and finite element
methods [2, 3]. An early contribution to isogeometric elements in combination with
domain decomposition techniques can be found in [16]. A rigorous mathematical
analysis of uniform inf-sup stability and reproduction properties for different
Lagrange multiplier spaces is given in [4]. Applications of isogeometric mortar
methods can be found in [7, 8, 35]. The weak form of a discrete mortar approach
can be either stated as a positive definite system on a constrained primal space
or alternatively as an indefinite saddle point system in terms of a primal and dual
variable. Both formulations are equivalent in the sense that they do yield the same
primal solution. From the computational point of view, quite often the saddle point
formulation is preferred since it allows the use of locally defined basis functions
and yields sparse systems. The elimination of the dual variable involves the inverse
of a mass matrix and, unless biorthogonal basis functions are used, significantly
reduces the sparsity pattern of the stiffness matrix. In general, the constrained
primal basis functions have a global support on the slave side of the interface.
This observation motivates us to use for the computation of the detailed solution
the saddle point mortar formulation and work with locally defined unconstrained
basis functions yielding sparse systems. However, typically a reduced system is
automatically dense. If the constraint is parameter independent we obtain a positive
definite system for the reduced setting. Here we show that even in the situation of a
parameter dependent geometry, we can reformulate the weak continuity constraint
in a parameter independent way.
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The rest of this contribution is structured as follows. In Sect. 6.2, we introduce
the model problem and briefly discuss the assumed orthotropic material law and
the applied isogeometric mortar discretization for the violin bridge. The geometric
setup includes a thickness parameter which is transformed to a material parameter.
Here, we also comment on the fact that although the geometry transformation
formally brings in a parameter into the weak mortar coupling, we can recast the
problem formulation as a parameter independent coupling condition across the
interfaces. The reduced basis approach is given in Sect. 6.3. Finally numerical
results illustrating the accuracy and flexibility of the presented approach are given
in Sect. 6.4. We point out that our parameter space is possibly non-convex due to the
non-linear constraints of the material parameters.

6.2 Problem Setting

The numerical simulation of vibroacoustic applications involves quite often com-
plex domains. Typical examples are large structures, such as, e.g., bridges, technical
devices such as, e.g., loudspeakers but also parts of string instruments such as,
e.g. violin bridges see Fig. 6.1. Within the abstract framework of modal analysis,
the fully bi-directional mechanical-acoustic coupled system can be reduced to a
generalized eigenvalue problem.

For the three dimensional geometry of a violin bridge, we consider the eigenvalue
problem of elasticity

� div�.u/ D ��u;

where � > 0 is the mass density, and �.u/ depends on the material law of
the structure under consideration. In our case, linear orthotropic materials are
appropriate since as depicted in Fig. 6.2 wood consists of three different axes and
only small deformations are considered. Note that besides the cylindrical structure
of a tree trunk, we consider Cartesian coordinates due to the small size of the violin
bridge compared to the diameter of a tree trunk.

Fig. 6.1 Example of a violin
bridge
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Fig. 6.2 Illustration of the
orthotropic structure of wood
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6.2.1 Orthotropic Material Law

The three axes are given by the fiber direction y, the in plane orthogonal direction z
and the radial direction x. By Hooke’s law, the stress strain relation can be stated in
its usual form as �.u/ D C".u/ with ".u/ D .ru C ru>/=2. Due to the alignment
of the coordinate system with the orthotropic structure, the stiffness tensor is given
as

C D

0
BBBBBBB@

A11 A12 A13 0 0 0

A21 A22 A23 0 0 0

A31 A32 A33 0 0 0

0 0 0 Gyz 0 0

0 0 0 0 Gzx 0

0 0 0 0 0 Gxy

1
CCCCCCCA

; (6.1)

with the shear moduli Gxy;Gyz;Gzx and the entries Aij depending on the elastic
moduli Ex;Ey;Ez and the Poisson’s ratios �xy; �yz; �zx. The exact formula for Aij can
be found in [30, Chap. 2.4].

Some important differences compared to isotropic material laws are worth
pointing out. While in the isotropic case, all Poisson’s ratios share the same value,
for orthotropic materials they represent three independent material parameters. The
only relation between the ratios is �ijEj D �jiEi. Also the possible range of the
material parameters, i.e., �1 < � < 1=2 for the isotropic case, is different.
A positive definite stiffness tensor and thus a coercive energy functional is only
guaranteed if 1 > �2

yzEz=Ey C �2
xyEy=Ex C 2�xy�yz�zxEz=Ex C �2

zxEz=Ex and Ex=Ey >

�2
xy. Note that Poisson’s ratios larger than 1=2 are permitted, but this does not
imply unphysical behavior as in the isotropic case, see, e.g., [31]. The conditions
Ei;Gij > 0 hold both in the isotropic and orthotropic case.

The curved domain of the violin bridge can be very precisely described by a
spline volume. Since it is not suitable for a single-patch description, we decompose
it into 16 three-dimensional spline patches shown in Fig. 6.3. While the description
of the geometry could also be done with fewer patches, the number of 16 patches
˝l gives us regular geometry mappings and a reasonable flexibility of the individual
meshes.
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Fig. 6.3 Decomposition of
the three-dimensional
geometry into 16 patches ˝l

and 16 interfaces �k

The decomposed geometry is solved using an equal-order isogeometric mortar
method as described in [4]. A trivariate B-spline space Vl is considered on each
patch ˝l. The broken ansatz space Vh D Q

l Vl is weakly coupled on each of the 16
interfaces. For each interface �k the two adjacent domains are labeled as one slave
and one master domain (i.e. �k D @˝s.k/ \ @˝m.k/) and the coupling space Mk is
set as a reduced trace space of the spline spaces on the slave domain, i.e., Mh DQ

k Mk. Several crosspoints and wirebasket lines exist in the decomposition where
an appropriate local degree reduction has to be performed to guarantee uniform
stability, see [4, Sect. 4.3].

We use the standard bilinear forms for mortar techniques in linear elasticity

a.u; v/ D
X
l

Z
˝l

�.u/ W ".v/; m.u; v/ D
X
l

Z
˝l

�uv; b.v;b�/ D
X
k

Z
�k

Œv	kb� ;

where Œv	k D vs.k/
ˇ̌
�k

�vm.k/

ˇ̌
�k
denotes the jump across the interface �k. We note that

no additional variational crime by different non-matching geometrical resolutions of
�k enters. The detailed eigenvalue problem is defined as .u; �/ 2 Vh � Mh, � 2 R,
such that

a.u; v/ C b.v; �/ D �m.u; v/; v 2 Vh; (6.2a)

b.u;b�/ D 0; b� 2 Mh: (6.2b)

We note that the constraint (6.2b) reflects the weak continuity condition of the
displacement across the interface with respect to the standard two-dimensional
Lebesgue measure. Only in very special situations strong point-wise continuity is
granted from (6.2b).
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6.2.2 Transforming Geometrical Parameters to Material
Parameters

Additional to the nine material parameters Ei, Gij, �ij, we consider a geometry
parameter �10 related to the thickness of the violin bridge. Transforming the
geometry to a reference domain, we can interpret the thickness parameter as
extra material parameter. Let the parameter dependent geometry ˝.�/ be a
uni-directional scaling of a reference domain b̋ , i.e., a transformation by
F.�I �/ W b̋ ! ˝.�/, x D F.bxI �/ D .bx;by; �10bz/, with bx D .bx;by;bz/ 2
b̋ . Transforming the unknown displacement and rescaling it as bu.bx/ D
DF.bxI �/

>u.F.bxI �// allows us to define a symmetric strain variable on the
reference domain

b".bu.bx// D DF.bxI �/
>

".u.F.bxI �///DF.bxI �/:

The orthotropic stiffness tensor (6.1) is then transformed to

bC.�/ D

0
BBBBBBB@

A11 A12 ��2
10 A13

A21 A22 ��2
10 A23

��2
10 A31 ��2

10 A32 ��4
10 A33

��2
10 Gyz

��2
10 Gzx

Gxy

1
CCCCCCCA

:

In terms of this coordinate transformation, the eigenvalue problem in the continuous
H1-setting reads, since detDF.bxI �/ D ��1

10 is constant, as

Z
b̋b".bu/ bC.�/b".bv/ dbx D �

Z
b̋ �bu>

0
@

1

1

��2
10

1
Abv dbx:

In the mortar case, the coupling conditions across the interfaces have to be
transformed as well. Here we assume that the meshes on the physical domain are
obtained from the same mesh on the reference domain by the mapping F.

Z
�.�/

Œu.x/	�.x/ d�.x/ D
Z
b� ŒDF.bxI �/

�>bu.bx/	�.F.bxI �//�10 db�.bx/

D �10

Z
b� Œbu.bx/	

0
@

1

1

��1
10

1
A �.F.bxI �// db�.bx/:
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We note thatb� WD �ıF is in the parameter independent Lagrangemultiplier space on
the reference domain if � is in the parameter dependent one on the physical domain.
The remaining parameter dependence is a pure scaling of the Lagrange multiplier,
which does not influence the constrained primal space. These considerations show
us that the standard mortar coupling which is due to the geometry variation
parameter dependent can be transformed to a parameter independent one.

While these lines use the special structure of the geometry variation F, the
coupling can be transformed to a parameter independent one even in more general
situations. Then, the coupling on ˝.�/ must be posed in a suitable weighted
L2-space, which is adapted such that the transformed coupling is parameter inde-
pendent.

Another material parameter is the constant mass density �. However it does
not influence the eigenvectors. Only the eigenvalue is rescaled, yielding a trivial
parameter dependence. For this reason, the density is kept constant in the reduced
basis computations and can be varied in a post-process by rescaling the eigenvalues.

The described material parameters allow for an affine parameter dependence of
the mass and the stiffness, with Qa D 10, Qm D 2,

a.�; �I �/ D
QaX
qD1


q
a .�/aq.�; �/; m.�; �I �/ D

QmX
qD1


q
m.�/mq.�; �/;

where 
1
m.�/ D 1 can be chosen parameter independent.

6.3 Reduced Basis

We now apply reduced basis (RB) methods for the approximation of the parameter
dependent eigenvalue problem on the reference domain. By abuse of notation,
we denote the spaces and bilinear forms transformed to the reference domain as
before. RB techniques where the detailed problem is in saddle point form, in
general, require the construction of RB for both the primal and the dual space,
see, e.g., variational inequalities or when the coupling is parameter dependent, see
[12, 14, 15, 25]. To ensure the inf-sup stability of the discrete saddle point problem,
supremizers can be added to the primal space, additionally increasing the size of
the reduced system, see [32, 34]. Here it is sufficient to define a RB for the primal
space. For the simultaneous approximation of possible multiple eigenvalues and
eigenvectors, we follow the approach given and analyzed in [17].

Due to the parameter independence of b.�; �/ and the dual space, obtained by
the transformation described above, we can reformulate the detailed saddle point
problem (6.2) in a purely primal form posed on the constrained space

Xh D fv 2 Vh; b.v;b�/ D 0;b� 2 Mhg:
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We recall that this formulation is not suitable for solving the detailed solution, since,
in general, it is costly to construct explicitly a basis of Xh and severely disturbs the
sparsity of the detailed matrices.

The construction of the RB functions is done in two steps. Firstly, an initial
basis is built by a small POD from detailed solutions. This basis is then enlarged
by a greedy algorithm using an asymptotically reliable error estimator. All detailed
solutions do satisfy the weak coupling property and by definition the RB functions
do as well. Thus the saddle-point problem is reduced to a positive definite one.
The eigenvalue problem on the reduced space XN D f�n 2 Xh; n D 1; : : : ;Ng, for
the first K eigenpairs is then given by: Find the eigenvalues �red; i.�/ 2 R and the
eigenfunctions ured; i.�/ 2 XN , i D 1; : : : ;K, such that

a.ured; i.�/; vI �/ D �red; i.�/ m.ured; i.�/; vI �/; v 2 XN :

The error estimator presented in [17, Corollary 3.3] can directly be applied, but
the online-offline decomposition needs to be modified. In the original setting, a
parameter independent mass was considered, so we need to additionally include
the affine decomposition of the mass matrix.

The definition of the estimator is based on the residual

ri.�I �/ D a.ured; i.�/; �I �/ � �red; i.�/m.ured; i.�/; �I �/

measured in the dual norm k�k O�IX0

h
, with kgk O�IX0

h
D supv2Xh

g.v/=Oa.v; v/
1=2 for g 2

X0
h, where Oa.u; v/ WD a.u; vIb�/, and b� 2 P is a reference parameter. We define

Oei.�/ 2 Xh by

Oa.Oei.�/; v/ D ri.vI �/; v 2 Xh:

To adapt the online-offline decomposition, we follow [17, 23] and add additional
terms corresponding to the mass components mq.�; �/. The decomposition of the
mass can be related to the already known decomposition of the stiffness matrix,
by formally defining a bilinear form a.u; vI �/ � �red; i.�/m.u; vI �/. For the
convenience of the reader we recall the main steps. Let .�n/1�n�N be a orthonormal
basis (w. r. t. m.�; �Ib�/) of XN and let us define �qn 2 XN and �m;q

n 2 XN by

Oa.�qn ; v/ D aq.�n; v/; v 2 Xh; 1 � n � N; 1 � q � Qa;

Oa.�m;q
n ; v/ D mq.�n; v/; v 2 Xh; 1 � n � N; 1 � q � Qm:

In the following, we identify the function ured; i.�/ 2 VN and its vector represen-
tation w. r. t. the basis .�n/1�n�N such that .ured; i.�//n denotes the nth coefficient.
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Then, given a reduced eigenpair .ured; i.�/; �red; i.�//, we have the error representa-
tion

Oei.�/ D
NX

nD1

QaX
qD1


q
a .�/ .ured; i.�//n �qn � �red; i.�/

NX
nD1

QmX
qD1


q
m.�/ .ured; i.�//n �m;q

n :

Consequently, using kri.�I �/k2
O�IX0

h
D Oa.Oei.�/; Oei.�//, the computational cost intense

part of the error estimator can be performed in the offline phase, see [17, Sect. 3.3]
for a more detailed discussion.

6.4 Numerical Simulation

In this section, the performance of the proposed algorithm is illustrated by numer-
ical examples. The detailed computations were performed using geoPDEs [6], a
Matlab toolbox for isogeometric analysis, the reduced computations are based on
RBmatlab [9].

For the detailed problem, we use an anisotropic discretization. In plane, we use
splines of degree p D 3 on the non-matching mesh shown in Fig. 6.4. The mesh has
been adapted locally to better resolve possible corner singularities of the solution.
In the z-direction a single element of degree p D 4 is used. The resulting equation
system has 45;960 degrees of freedom for the displacement whereas the surface
traction on the interfaces is approximated by 2025 degrees of freedom.

We consider the ten parameters, described in Sect. 6.2, � D .�1; : : : ; �10/ with
the elastic modulii �1 D Ex, �2 D Ey, �3 D Ez, the shear modulii �4 D Gyz,
�5 D Gxz, �6 D Gxy, Poisson’s ratios �7 D �yz, �8 D �xz, �9 D �xy and the scaling
of the thickness �10.

Fig. 6.4 Non-matching
isogeometric mesh of the
violin bridge
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The considered parameter values were chosen according to real parameter data
given in [31, Table 7-1]. We consider two different scenarios. In the first setting,
we fix the wood type and take into account only natural variations, see [31,
Sect. 7.10]. To capture the sensitivity of the violin bridge with respect to uncertainty
in the material parameter one can chose a rather small parameter range around the
reference parameter. We chose the reference data of Fagus sylvatica, the common
beech, as given in Table 6.1, as well as the parameter range P1. The mass density
is fixed in all cases as 720 kg=m3.

In our second test setting, we also consider different wood types. Hence we have
to consider a larger parameter set, including the parameters for several types of
wood, resulting in a larger parameter set P2, see Table 6.1. We note, that not all
parameters in this large range are admissible for the orthotropic elasticity as they do
not fulfill the conditions for the positive definiteness of the elastic tensor, stated in
Sect. 6.2.1. Thus, we constrain the tensorial parameter space by

1 � �2
yzEz=Ey C �2

xyEy=Ex C 2�xy�yz�zxEz=Ex C �2
zxEz=Ex � c0;

as well as Ex=Ey � �2
xy � c1 where the tolerances c0 D 0:01 and c1 D 0:01 were

chosen, such that the wood types given in [31, Sect. 7.10] satisfy these conditions.
Exemplary, in Fig. 6.5 we depict an lower-dimensional sub-manifold of P2 which
includes non-admissible parameter values.

Table 6.1 Reference parameter and considered parameter ranges

Gyz Gzx Gxy

Ex [MPa] Ey [MPa] Ez [MPa] [MPa] [MPa] [MPa] �yz �zx �xy

b� 14;000 2280 1160 465 1080 1640 0:36 0:0429 0:448

P1 13;000 1500 750 100 500 1000 0:3 0:03 0:4

�15;000 �3000 �1500 �1000 �1500 �2000 �0:4 �0:06 �0:5

P2 1000 100 100 10 100 100 0:1 0:01 0:3

�20;000 �5000 �2000 �5000 �2500 �5000 �0:5 �0:1 �0:5

Fig. 6.5 Illustration of
non-admissible parameter
values in a lower-dimensional
sub-manifold of P2, varying
�zx 2 .0:01; 0:1/; �xy 2
.0:3; 0:5/;Ey 2 .100; 5000/

and fixing Ex D 1000;

Ez D 2000 and �yz D 0:5
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Table 6.2 The ten smallest eigenvalues for different thickness parameters, with the other parame-
ters fixed to the reference value

Eigenvalue �10 D 0:5 �10 D 1:0 �10 D 2:0 Ratio 0:5/1:0 Ratio 1:0=2:0

1 0:4057 1:3238 3:6954 0:3065 0:3582

2 1:1613 3:8870 10:8071 0:2988 0:3597

3 4:4096 12:9562 26:5621 0:3403 0:4878

4 6:1371 19:3254 30:0050 0:3176 0:6441

5 13:5564 27:3642 53:2657 0:4954 0:5137

6 19:2229 46:2521 93:9939 0:4156 0:4921

7 27:6118 65:0940 111:6075 0:4242 0:5832

8 39:3674 96:8069 129:3406 0:4067 0:7485

9 57:8266 107:6749 189:6090 0:5370 0:5679

10 68:0131 130:8876 241:7695 0:5196 0:5414

The thickness parameters is chosen to vary between 1/2 and 2 with the reference value set to 1

First, we consider the effect of the varying thickness parameter on the
solution of our model problem. In Table 6.2 the first eigenvalues are listed for
different values of the thickness, where we observe a notable and nonlinear
parameter dependency. A selection of the corresponding eigenfunctions is
depicted in Fig. 6.6, where the strong influence becomes even more evident,
since in some cases the shape of the eigenmode changes when varying the
thickness.

In the following RB tests, the relative error values are computed as the mean
value over a large amount of random parameters. The L2-error of the normed eigen-
functions is evaluated as the residual of the L2-projection onto the corresponding
detailed eigenspace. This takes into account possible multiple eigenvalues and the
invariance with respect to a scaling by .�1/.

The first test is the simultaneous approximation of the first five eigenpairs on both
parameter sets P1 and P2. We use an initial basis of size 25 computed by a POD,
which is enriched by the greedy algorithm up to a basis size of 250. In Fig. 6.7,
the error decay for the different eigenvalues and eigenfunctions is presented. We
observe very good convergence, with a similar rate in all cases. As expected the
magnitude of the error grows with the dimension and range of the parameter
set.

At this point, for the sake of completeness, we also consider the effectivities of
the error estimator and the resulting speed-up. For example using the parameter
rangeP1 varying the thickness, effectivities are around 4–16. Using the largest RB
of dimension 250, the computational speedup of the eigenvalue solver in Matlab is
a factor of 552.

Also an approximation of a larger number of eigenpairs does not pose any
unexpected difficulties. Error values for the eigenvalue and eigenfunction are shown
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first eigenvalue: 0.4057 first eigenvalue: 1.3238 first eigenvalue: 3.6954

third eigenvalue: 4.4096 third eigenvalue: 12.9562 third eigenvalue: 26.5621

fourth eigenvalue: 6.1371 fourth eigenvalue: 19.3254 fourth eigenvalue: 30.0050

Fig. 6.6 Influence of the thickness of the bridge on several eigenfunctions

in Fig. 6.8 for an approximation of the first 15 eigenpairs in the parameter set
P1, showing a good convergence behavior. The RB size necessary for a given
accuracy increases compared to the previous cases of 5 eigenpairs, due to the
higher amount of eigenfunctions which are, for a fixed parameter, orthogonal to
each other.

When considering the relative error for the eigenvalues, see Figs. 6.7 and 6.8,
we note that for a fixed basis size, the higher eigenvalues have a better relative
approximation than the lower ones. In contrast, considering the eigenfunctions, the
error of the ones associated with the lower eigenvalues are smaller compared to the
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Fig. 6.7 Convergence of the relative error of the eigenvalues (top) and eigenfunctions (bottom).
Parameter range P1 with a fixed thickness (left), with varying thickness (middle) and parameter
range P2 with varying thickness (right)
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Fig. 6.8 Convergence of the relative (left), absolute (middle) error of the eigenvalues and
eigenfunctions (right). Parameter range P1 with varying thickness, simultaneous approximating
15 eigenpairs

ones associated with the higher eigenvalues. This observation also holds true for the
absolute error in the eigenvalues. This is related to the fact that eigenvalues depend
sensitively on the parameters. In Fig. 6.9, we illustrate the distribution of the first
and 15th eigenvalue.
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Fig. 6.9 Sampling of the first
and 15th eigenvalue within
the parameter set P1 as used
in the test set. Extremal
values: min�1 D 0:29,
max�1 D 4:24,
min�15 D 100:19,
max�15 D 593:65

0 200 400 600 800 1000
test set parameter
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6.5 Conclusion

We have considered generalized eigenvalue problems to approximate the vibrations
of parameter dependent violin bridges. The model reduction is carried out in terms
of a RB method where the detailed solutions are obtained by isogeometric mortar
finite elements. In all considered test scenarios, highly accurate approximations for
both eigenvalues and eigenmodes are obtained. At the same time the complexity and
thus the run-time is significantly reduced. Instead of a detailed saddle point system
with 47;985 degrees of freedom, we have only to solve eigenvalue problems on
positive-definite systems with less than 300 degrees of freedom. Of special interest
is not only the variation in the material parameter but also to take into account
possible changes in the thickness of the violin bridge. In terms of a mapping to
a reference domain, we can reinterpret the geometry parameter as an additional
material parameter and avoid the indefinite saddlepoint problem.
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