
Chapter 4
A Reduced Basis Method with an Exact Solution
Certificate and Spatio-Parameter Adaptivity:
Application to Linear Elasticity

Masayuki Yano

Abstract We present a reduced basis method for parametrized linear elasticity
equations with two objectives: providing an error bound with respect to the exact
weak solution of the PDE, as opposed to the typical finite-element “truth”, in the
online stage; providing automatic adaptivity in both physical and parameter spaces
in the offline stage. Our error bound builds on two ingredients: a minimum-residual
mixed formulation with a built-in bound for the dual norm of the residual with
respect to an infinite-dimensional function space; a combination of a minimum
eigenvalue bound technique and the successive constraint method which provides
a lower bound of the stability constant with respect to the infinite-dimensional
function space. The automatic adaptivity combines spatial mesh adaptation and
greedy parameter sampling for reduced bases and successive constraint method
to yield a reliable online system in an efficient manner. We demonstrate the
effectiveness of the approach for a parametrized linear elasticity problem with
geometry transformations and parameter-dependent singularities induced by cracks.

4.1 Introduction

Reduced basis (RB) methods provide rapid and reliable solution of parametrized
partial differential equations (PDEs), including linear elasticity equations, in real-
time and many-query applications; see, e.g., a review paper [13] and early appli-
cations to linear elasticity in [4, 7, 10, 14]. However, until recently, RB methods
have focused on approximating the high-fidelity “truth” solution—typically a finite
element (FE) solution on a prescribed mesh—and not the exact solution of the PDE,
which is of actual interest. Classical RB methods assume that the “truth” model
is sufficiently accurate to serve as an surrogate for the exact PDE. However, in
practice, satisfying the assumption requires a careful mesh construction especially

M. Yano (�)
University of Toronto Institute for Aerospace Studies, 4925 Dufferin St, Toronto, ON, Canada
M3H 5T6
e-mail: myano@utias.utoronto.ca

© Springer International Publishing AG 2017
P. Benner et al. (eds.), Model Reduction of Parametrized Systems,
MS&A 17, DOI 10.1007/978-3-319-58786-8_4

55

mailto:myano@utias.utoronto.ca


56 M. Yano

in the presence of sharp corners and cracks (as done in [4]), and in any event the
assumption is never rigorously verified for all parameter values. In this work, we
present a RB method which provides a certificate with respect to the exact solution
of the parametrized PDE and automatically produces a reducedmodel that meets the
desired tolerance through automatic adaptivity, eliminating the issue of the “truth”.

Specifically, we present a RB method for linear elasticity problems that pro-
vides

1. error bounds with respect to the exact solution in energy norm or for functional
outputs for any parameter value in the online stage;

2. automatic adaptivity in physical space and parameter space to control the error
with respect to the exact solution;

3. a strict offline-online computational decomposition such that the online compu-
tational cost is independent of the offline FE solves.

Item 3 provides rapidness, as in the case for the standard RB method. Items
1 and 2, which provide certification and adaptivity with respect to the exact solution,
distinguish our method from the standard RB method.

Recently, a number of RB methods has been proposed to provide error bounds
with respect to the exact solution. Ali et al. [1] consider a RB method based on
snapshots generated by an adaptive wavelet method. Ohlberger and Schindler [8]
considers a RB method for multiscale problems with an error bound with respect to
the exact solution.We have also introduced RBmethods which provide error bounds
with respect to the exact solution using the complementary variational principle [15]
and using a minimum-residual mixed formulation [16, 17]. This work shares a
common goal with the above recent works in the RB community.

The error certification and adaptation approach that we present in this paper is
an extension of the method we introduced in [17] for scalar equations to linear
elasticity equations with piecewise-affine geometry transformations. We provide
a solution approximation and an upper bound of the residual dual norm using a
minimum-residual mixed formulation. We provide a lower bound of the stability
constant using a version of the successive constraint method (SCM) [5], which
has been extended to provide bounds relative to an appropriate infinite-dimensional
function space by appealing to Weinstein’s method and a residual-based bounding
technique. In extending the approach to linear elasticity, special attention is paid to
the treatment of rigid-body rotation modes and the construction of the dual space in
the presence of geometry transformations.

The paper is organized as follows. Section 4.2 defines the problem of interest.
Section 4.3 presents our residual bound procedure. Section 4.4 presents our stability-
constant bound procedure. Section 4.5 presents the error bound. Section 4.6 presents
spatio-parameter adaptive algorithms. Section 4.7 presents numerical results.
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4.2 Preliminaries

4.2.1 Problem Statement

Notations In order to describe tensor operations that appear in linear elasticity, we
now fix the notations. Given a order-2 tensor w, we “reshape” it as a vector w 2 R

d2

with entries .w/i�dCj D wij. Similarly, given a order-4 tensor A, we “reshape” it as a

matrix A 2 R
d2�d2

with entries .A/i�dCj;k�dCl D Aijkl. These reshaped notations allow
us to precisely express operations on order-2 and -4 tensors using the standard linear
algebra notations without introducing explicit indices.

Using the convection, the derivative of a vector field v W ˝ ! R
d evaluated at

x is expressed as a vector v.x/ 2 R
d2

with entries .rv.x//i�dCj D @vi
@xj
. Similarly,

the divergence of a order-2 tensor field q W ˝ ! R
d2

evaluated at x is expressed
as a vector rq.x/ 2 R

d with entries .rq.x//i D Pd
jD1

@qij

@xj
; the evaluation of q at

x in the direction of n 2 R
d is expressed as a vector n � q.x/ 2 R

d with entries
.n � q.x//i D Pd

jD1 qij.x/nj.

Problem Description over a Parametrized Domain We first introduce a P-
dimensional parameter domain D � R

P. We next introduce a d-dimensional
parametrized physical domain Q̋ .�/ � R

d with a Lipchitz boundary @ Q̋ .�/. For
each component i D 1; : : : ; d, the boundary @ Q̋ .�/ is decomposed into a Dirichlet

part Q�D;i.�/ and a Neumann part Q�N;i.�/ such that @ Q̋ .�/ D Q� D;i.�/[ Q� N;i.�/. We
then introduce a Sobolev space V. Q̋ / D fQv 2 .H1. Q̋ //d j Qvij Q�D;i

D 0; i D 1; : : : ; dg,
where H1. Q̋ / is the standard H1 Sobolev space over Q̋ . (See, e.g., [2].)

We now introduce order-4 tensors, unwrapped as d2 � d2 matrices, associated
with our linear elasticity problem. We first introduce the strain tensor operator E 2
R

d2�d2
such that Er Qv.Qx/ 2 R

d2
is the reshaped strain tensor. We next introduce a

parametrized stiffness tensor field QK W D � Q̋ ! R
d2�d2

; by definition the stiffness
tensor is symmetric positive definite for all � 2 D and Qx 2 Q̋ . We also introduce the
associated parametrized compliance tensor field QC W D� Q̋ ! R

d2�d2
. The stiffness

and compliance tensor are related by QK.�I Qx/ QC.�I Qx/ D Id2 , where Id2 denotes the
d2 � d2 identity matrix.

We now consider the following weak formulation of linear elasticity: given � 2
D, find Qu.�/ 2 V. Q̋ .�// such that

a Q̋ .�/.Qu.�/; QvI �/ D ` Q̋ .�/. QvI �/ 8Qv 2 V. Q̋ / (4.1)

where

a Q̋ .�/. Qw; QvI �/ D
Z

Q̋ .�/

Qr QvTET QK.�/E Qr QwdQx; (4.2)

` Q̋ .�/. QvI �/ D
Z

Q̋ .�/

QvT Qf .�/dQx C
Z

Q�N .�/

QvT Qg.�/dQs:
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Here, Qf .�/ is the body force on the solid, Qg.�/ is the traction force on the Neumann
boundaries, and the subscript Q̋ .�/ on the forms emphasizes the problem is defined
over a parameterized physical domain.

Reference-Domain Formulation Following the standard approach to treat
parametrized geometric variations in the RB method (see, e.g., [13, 14]), we
recast the problem over the parametrized domain Q̋ .�/ to a parameter-independent
reference domain˝ . Specifically, we consider each point Qx 2 Q̋ .�/ to be associated
with a unique point x 2 ˝ by a piecewise affine map. We denote the Jacobian of
the parametrized map by J.�/ 2 R

d�d and the associated determinant by jJ.�/j.
Similarly, we denote the Jacobian associated with the mapping of a boundary
segment by j@J.�/j. We also introduce a block matrix Y D Id ˝ J.�/ 2 R

d2�d2
that

facilitates transformation of tensors; here ˝ is the Kronecker product.
We now introduce a Sobolev space over ˝ ,

V � V.˝/ � fv 2 .H1.˝//d j vij�Di
D 0; i D 1; : : : ; dg

endowed with an inner product

.w; v/V �
Z

˝

rvTrwdx C
Z

˝

vT wdx C
Z

�N

vT wds (4.3)

and the associated induced norm kvkV � p
.v; v/V . We then introduce a weak

formulation that is equivalent to (4.1) but is associated with the reference domain:
given � 2 D, find u.�/ 2 V such that

a.u.�/; vI �/ D `.vI �/ 8v 2 V ; (4.4)

where

a.w; vI �/ D
Z

˝

rvTY.�/�1EK.�/EY.�/�TrwjJ.�/jdx

`.vI �/ D
Z

˝

vT f .�/jJ.�/jdx C
Z

�N

vT g.�/j@J.�/jds:

Here the tensor fields in the physical and reference domains are related by Qv.Qx/ D
v.x/, QK.�I Qx/ D K.�I x/, Qf .�I Qx/ D f .�I x/, and Qg.�I Qx/ D g.�I x/. We readily
verify that a.�; �I �/ is symmetric and bounded in V . We also note that a.�; �I �/ is
coercive in V due to the Korn inequality and the trace theorem [2]; we denote the
associated energy norm by jjj � jjj� � p

a.�; �I �/.

Remark 1 In the standard RB formulation [13], we simply treat the elasticity
equation as a vector-valued equation with the stiffness matrix OK.�/ �
jJ.�/jY.�/�1EK.�/EY.�/�T . Unfortunately, our exact error-bound formulation
does not permit this simple treatment; our formulation [17] requires the inverse of
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the stiffness matrix, while the matrix OK.�/ is singular because EK.�/E is rank-
deficient. We will keep the explicit representation of the stiffness matrix to clearly
show how our bound formulation for linear elasticity circumvents the issue.

Assumptions We clarify the set of assumptions for our RB formulation. First, we
assume that the stiffness tensor K.�/, the compliance tensor C.�/, the body force
f .�/, and the boundary traction force g.�/ each admit a decomposition that is affine
in functions of parameter: K.�/ D PQK

qD1 �K
q .�/Kq, C.�/ D PQC

qD1 �C
q .�/Cq,

f .�/ D PQf

qD1 �f
q.�/fq, and g.�/ D PQg

qD1 �g
q.�/gq, where Kq W ˝ ! R

d2�d2
,

Cq W ˝ ! R
d2�d2

, fq W ˝ ! R
d, and gq W ˝ ! R

d are parameter-
independent fields, and �K

q W D ! R, �C
q W D ! R, �f

q W D ! R, and
�g

q W D ! R are parameter-dependent functions. Second, we assume that the

mapping from the reference domain ˝ to the physical domain Q̋ .�/ is piecewise
affine such that both the Jacobian J.�/ and the inverse Jacobian J.�/�1 admit a
decomposition that are affine in functions of parameter: J.�/ D PQJ

qD1 �J
q.�/Jq and

J.�/�1 D PQJinv

qD1 �Jinv
q .�/Jinvq . Finally, we assume that the fields K.�/, C.�/, f .�/,

and g.�/ are piecewise polynomials such that we can integrate the fields exactly
using standard quadrature rules.

4.2.2 Abstract Error Bounds: Energy Norm
and Compliance Output

To simplify the presentation of our formulation, we introduce a parametrized inner
product

.w; v/W.�Iı/ D a.w; v/ C ı.w; v/V

and the associated induced norm kwkW.�Iı/ � p
.w; w/W.�Iı/ for a parameter � 2

D and a weight ı 2 R>0. Here a.�; �I �/ is the bilinear form (4.2), and .�; �/V is
the inner product (4.3). The parametrized norm is related to the energy norm by
kvk2

W.�Iı/ D jjjvjjj2� C ıkvk2
V . For any ı 2 R>0, the norm k � kW.�Iı/ is equivalent to

the energy norm jjj � jjj�, which in turn is equivalent to k � kH1.˝/. The role of ı in our
formulation is discussed in Sect. 4.5.

In order to bound the error, we now introduce the residual form

r.vI wI �/ � `.vI �/ � a.w; vI �/ 8w; v 2 V (4.5)

and the associated dual norm kr.�I wI �/kW 0.�Iı/ � supv2V
r.vIwI�/

kvkW.�Iı/
. We also

introduce the stability constant

˛.�I ı/ � inf
v2V

jjjvjjj2�
kvk2

W.�Iı/

: (4.6)
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The following proposition bounds the energy norm of the error.

Proposition 2 Given � 2 D and an approximation w 2 V , the error is bounded by

jjju.�/ � wjjj� � 1

.˛.�I ı//1=2
kr.�I wI �/kW 0.�Iı/;

where r.�; �I �/ is the residual form (4.5), and ˛.�; �/ is the stability constant (4.6).

Proof See, e.g., Rozza et al. [13].
We can also construct an error bound for the compliance output s.�/ �

`.u.�/I �/.

Proposition 3 Let the compliance output associated with an approximation w 2 V
be Os.�/ � `.wI �/ C r.wI wI �/, where r.�I �I �/ is the residual form (4.5). Then, the
error in the compliance output is bounded by

js.�/ � Os.�/j � 1

˛.�I ı/
kr.�I wI �/k2

W 0.�Iı/:

Proof We suppress� for brevity. It follows s.�/�Os.�/ D `.u/�.`.w/Cr.wI w// D
`.u/�`.w/�`.w/Ca.w; w/ D `.u�w/�a.u�w; w/ D a.u�w; u�w/ D jjju�wjjj2�.
Proposition 2 then yields the desired result.

The energy-norm and compliance-output error bound both require the same
ingredients: an upper bound of the dual norm of the residual and a lower bound
of the stability constant. In the next two sections, we develop offline-online efficient
computational procedures for both of these quantities.

Remark 4 The output bound framework may be extended to any linear functional
output by introducing the adjoint equation; see, e.g., Rozza et al. [13].

4.3 Upper Bound of the Dual Norm of the Residual

4.3.1 Bound Form

Our bound formulation is based on a mixed formulation and requires a dual field [16,
17]. Our dual space over a physical domain is the H.div/-conforming space

Q. Q̋ .�// � fQq 2 .L2. Q̋ .�///d2 j Qr � Qq 2 .L2. Q̋ .�///dg:

The dual space over the reference domain is given by

Q � fq 2 .L2.˝//d2 j r � q 2 .L2.˝//dg:
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We relate a field in a physical domain Qq 2 Q. Q̋ .�// and a field in the reference
domain q 2 Q by the Piola transformation, Qq.Qx/ D jJ.�/j�1Yq.x/. The Piola
transformation has an important property that it preserves H.div/-conformity.

The following proposition introduces a version of the bound form introduced
in [17] extended to linear elasticity equations with geometry transformations.

Proposition 5 For any w 2 V , q 2 Q, � 2 D, and ı 2 R>0,

kr.�I wI �/kW 0.�Iı/ � .F.w; qI �I ı//1=2;

where the bound form is given by

F.w; qI �I ı/ D kjJ.�/j�1=2C.�/1=2Y.�/q � jJ.�/j1=2K.�/1=2EY.�/�T rwk2
L2.˝/

C ı�1kY.�/�1.I � E/Y.�/qk2
L2.˝/

C ı�1kr � q C f .�/jJ.�/jk2
L2.˝/

C ı�1kg.�/j@J.�/j � n � qk2
L2.�N /

(4.7)

Proof For notational simplicity, we suppress� from parameter-dependent operators
and forms in the proof. For all v 2 V , w 2 V , q 2 Q, and ı 2 R>0,

r.vI wI �I ı/

D
Z

˝

vT f jJjdx C
Z

�N

vTgj@Jjds �
Z

˝

rvT Y�1ETKEY�T rwjJjdx

C
Z

˝

vTr � qdx C
Z

˝

rvTqdx �
Z

�N

vTn � qds

D
Z

˝

rvTY�1ETKjJj.jJj�1CYq � EY�Trw/dx C
Z

˝

rvTY�1.I � E/Yqdx

C
Z

˝

vT.r � q C f jJj/dx C
Z

�N

vT.gj@Jj � n � q/ds

� .kjJj1=2K1=2EY�1rvk2
L2.˝/

C ıkrvk2
L2.˝/

C ıkvk2
L2.˝/

C ıkvk2
L2.�N /

/1=2

.kjJj�1=2C1=2Yq � jJj1=2K1=2EY�T rwk2
L2.˝/

C ı�1kY�1.I � E/Yqk2
L2.˝/

C ı�1kr � q C f jJjk2
L2.˝/

C ı�1kgj@Jj � n � qk2
L2.�N /

/1=2

D kvkW.�Iı/.F.w; qI �I ı//1=2:

Note, the second line of the first equality vanishes by the Green’s theorem. Hence,
kr.�I wI �I ı/kW 0.�Iı/ D supv2V r.vI wI �I ı/=kvkW.�Iı/ � .F.w; qI �I ı//1=2, 8q 2
Q, which is the desired inequality.

The bound form (4.7) for linear elasticity is similar to the bound form for scalar
equations introduced in [17]. However, the bound form differs in that it includes
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the “asymmetric penalty” term kY.�/�1.I � E/Y.�/qk2
L2.˝/

I this term penalizes

asymmetry in the dual tensor field in the physical domain, Qq 2 QQ.�/. In our
bounding procedure, this term arises because the linear elasticity equation has zero
energy with respect to not only translation but also rotation. In fact, the presence of
this term is closely related to the complementary variational principle for elasticity
equations requiring a symmetric dual field [9], as discussed in detail in Sect. 4.5.

The form (4.7) admits a decomposition into a quadratic, linear, and constant
forms:

F.w; pI �I ı/ D G..w; p/; .w; p/I �I ı/ � 2L..w; p/I �I ı/ C H.�I ı/:

We here omit the explicit expressions for brevity and refer to a similar decom-
position without the “asymmetric penalty” term in [17]. The forms G, L, and H
inherit the affine decomposition of the parametrized operators K.�/, C.�/, f .�/,
g.�/, J.�/ and J.�/�1, which makes the bound form F amenable to offline-online
computational decomposition. In addition, the form G.�; �I �I ı/ is coercive and
bounded in V � Q; the proof relies on Korn’s inequality and is omitted here for
brevity.

4.3.2 Minimum-Bound Solutions and Approximations

Exact Solution We consider the following minimum bound problem: given � 2 D
and ı 2 R>0, find .u.�/; p.�// 2 V � Q such that

.u.�/; p.�// D arg inf
w2V ; q2Q

F.w; qI �I ı/:

The associated Euler-Lagrange equation is the following: given � 2 D, find
.u.�/; p.�// 2 V � Q such that

G..u.�/; p.�//; .v; q/I �I ı/ D L..v; q/I �I ı/ 8v 2 V ; 8q 2 Q:

The problem is wellposed due to the coercivity and boundedness of G in V � Q.
We can readily show that the primal solution u.�/ is the weak solution of

the original problem (4.4), and the dual solution p.�/ in the reference domain is
related to the primal solution by jJ.�/j�1Y.�/p.�/ D K.�/EY�T.�/ru.�/. The
associated residual bound is 0 as expected. Equivalently, the dual solution and the
primal solution are related in the physical domain by Qp.�/ D QK.�/E Qr Qu.�/; the
dual solution in the physical domain is the stress field. The tensor associated with
the dual field Qp.�/ is symmetric in the physical domain, which is consistent with
the constitutive relation, but is not symmetric in the reference domain.
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FE For a FE approximation of the minimum bound problem, we first introduce
a primal FE space VN of H1-conforming Lagrange elements and a dual FE
space QN of H.div/-conforming Raviart-Thomas elements [11]. We then consider
the minimum-bound FE approximation: given � 2 D and ı 2 R>0, find
.uN .�/; pN .�// 2 VN � QN such that

G..uN .�/; pN .�//; .v; q/I �I ı/ D L..v; q/I �I ı/ 8v 2 VN ; 8q 2 QN :

(4.8)

The problem is wellposed due to the coercivity and boundedness of G and
L. The dual norm of the residual is bounded by kr.�I uN .�/I �/kW 0.�Iı/ �
F.uN .�/; pN .�/I �I ı/1=2.

RB For a RB approximation of the minimum bound problem, we first introduce
primal and dual RB spaces VN D spanf�igN

iD1 � V andQN D spanf�igN
iD1 � Q. We

then introduce a minimum-bound RB approximation: given � 2 D and ı 2 R>0,
find .uN.�/; pN.�// 2 VN � QN such that

G..uN.�/; pN.�//; .v; q/I �I ı/ D L..v; q/I �I ı/ 8v 2 VN ; 8q 2 QN :

The problem is again wellposed due to the coercivity and boundedness of G
and L. The dual norm of the residual is bounded by kr.�I uN.�/I �/kW 0.�Iı/ �
F.uN.�/; pN.�/I �I ı/1=2.

4.4 Stability Constant

4.4.1 Transformation of the Stability Constant

We recall that a lower bound of the stability constant ˛.�I ı/ is needed to bound
the energy norm of the error. In our approach, we do not compute a lower bound
of ˛.�I ı/ directly but rather consider a related problem associated with another
quantity �.�/. The following proposition relates the two quantities.

Proposition 6 For any � 2 D and ı 2 R>0, the stability constant ˛.�I ı/ is
bounded from the below by

˛.�I ı/ � inf
v2V

jjjvjjj2�
kvk2

W.�Iı/

�
�

1 C ı

�LB.�/

��1

� ˛LB.�I ı/;

where �LB.�/ satisfies �LB.�/ � �.�/ � infv2V jjjvjjj2�=kvk2
V .
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Proof We note that

1

˛.�I ı/
D sup

v2V

kvk2
W.�Iı/

jjjvjjj2�
D sup

v2V
jjjvjjj2� C ıkvk2

V
jjjvjjj2�

D 1Cı sup
v2V

kvk2
V

jjjvjjj2�
D 1C ı

�.�/
:

Appealing to �LB.�/ � �.�/ provides the desired inequality.
We make a few observations. First, if we can provide a lower bound of �.�/, then we
can provide a lower bound of ˛.�I ı/. Second, the stability constant is close to unity
if we choose ı 	 �LB.�/; in particular, the effectivity of ˛LB.�I ı/ is desensitized
from the effectivity of �LB.�/ as long as ı 	 �LB.�/. Third, in the limit of ı ! 0,
the stability constant is unity; this is closely related to the complementary variational
principle, as discussed in detail in Sect. 4.5. Fourth, the fraction that appears in
the definition of �.�/ admits an affine decomposition because jjjvjjj2� � a.v; vI �/

admits an affine decomposition and kvk2
V is parameter independent.

4.4.2 A Residual-Based Lower Bound of the Minimum
Eigenvalue

By the Rayleigh quotient, the constant �.�/ is related to the minimum eigenvalue
of the following eigenproblem: given � 2 D, find .zi.�/; �i.�// 2 V � R such that

a.zi.�/; vI �/ D �i.�/.zi.�/; v/V 8v 2 V and kzi.�/kV D 1I (4.9)

here the subscript i denotes the index of the eigenpair. We order the eigenpairs in
the ascending order of eigenvalues; hence �.�/ D mini �i.�/ D �1.�/.

To compute a lower bound of the minimum eigenvalue, we appeal to Weinstein’s
method. Towards this end, we introduce the eigenproblem residual associated with
any approximate eigenpair .w; 	/ 2 V � R,

reig.vI w; 	I �/ D a.w; vI �/ � 	.w; v/V ;

and the associated dual norm kreig.�I w; 	I �/kV 0 � supv2V
reig.vIw;	I�/

kvkV . The eigen-
problem residual is sometimes called the “defect” in the literature. We then
introduce the following proposition by Weinstein. (See [3, Chap. 6].)

Proposition 7 For any � 2 D and a pair .w; 	/ 2 V � R such that kwkV D 1, the
distance between 	 and the closest eigenvalue is bounded by

min
i

j�i.�/ � 	j � kreig.�I w; 	I �/kV 0 :

Proof See [3, Chap. 6] for a general case or [17] for the specific case.
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Corollary 8 Consider any � 2 D and a pair .w; 	/ 2 V � R such that kwkV D 1.
If j�1.�/ � 	j < j�2.�/ � 	j, then �1.�/ � 	 � kreig.�I w; 	I �/kV 0 .

In order to provide a lower bound of the minimum eigenvalue, the corollary
requires that the eigenvalue of the approximate eigenpair .	; w/ 2 V � R is closer
to �1.�/ than to �2.�/. Assuming this condition is satisfied, we can provide a
lower bound of the minimum eigenproblem by bounding the dual norm of the
eigenproblem residual, as shown in the following proposition.

Proposition 9 For any w 2 V , 	 2 R, q 2 Q, and � 2 D,

kreig.�I w; 	I �/kV 0 � .Feig.w; 	; qI �//1=2 8q 2 Q;

where the bound form is given by

Feig.w; 	; qI �/ � 	2.k	�1jJ.�/jY.�/�1EK.�/EY.�/�Trw � rw � qk2
L2.˝/

C kw C r � qk2
L2.˝/

C kw � n � qk2
L2.�N /

/: (4.10)

Proof The proof is omitted here for brevity. We refer to [17] for a complete proof;
unlike the proof of Proposition 5, rigid-body rotation modes do not introduce
additional difficulties relative to the scalar case in [17].

We can readily show that for an eigenpair .z1.�/; �1.�// 2 V � R of (4.9),
infq2Q Feig.z1.�/; �1.�/; qI �/ D 0. Hence, given the exact eigenvalue �1.�/, there
exists .w; q/ 2 V � Q such that the lower bound collapses to the exact eigenvalue.

4.4.3 FE Approximation of Bounds of �.�/

Upper Bound An upper bound of �.�/ is readily given by a FE approximation of
the eigenproblem (4.9): given � 2 D, find .zN1 .�/; �N

1 .�// 2 VN � R such that

a.zN1 .�/; vI �/ D �N
1 .�/.zN1 .�/; v/V 8v 2 V and kzNi .�/kV D 1:

(4.11)

Because �1.�/ � infv2V jjjvjjj2�=kvk2
V � infv2VN jjjvjjj2�=kvk2

V � �N
1 .�/, we

conclude �.�/ � �1.�/ � �N
1 .�/ � �N

UB.�/. We hence set �N
UB.�/ � �N

1 .�/.

Lower Bound To compute a lower bound of �.�/ using a FE approximation,
we first solve the Galerkin FE problem (4.11) to obtain an approximate eigenpair
.zN1 .�/; �N

1 .�// 2 VN �R. We then solve the minimum bound problem associated
with (4.10) for the dual field: given � 2 D, find yN .�/ 2 QN such that

yN .�/ D arg inf
q2QN

Feig.z
N
1 .�/; �N

1 .�/; qI �/:
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We then assume that j�1.�/ � �N
1 .�/j < j�2.�/ � �N

1 .�/j and set

�N
LB.�/ � �N

1 .�/ � .Feig.z
N
1 .�/; �N

1 .�/; yN .�/I �//1=2 � �.�/: (4.12)

We unfortunately have no means to verify whether the assumption j�1.�/ �
�N

1 .�/j < j�2.�/ � �N
1 .�/j is satisfied. However, in practice, we have found that

smaller eigenvalues of (4.9) are well separated, and the associated eigenfunctions
are well approximated even on very coarse meshes. Hence, �N

LB.�/ defined by (4.12)
provides a lower bound of the stability constant �.�/.

4.4.4 Offline-Online Efficient SCM and RB Bounds of �.�/

Lower Bound While the approach described in Sect. 4.4.3 provides a lower bound
of the stability constant �.�/ under a plausible assumption, the approach requires
FE approximations and is not suited for rapid online evaluation. To overcome the
difficultly, we appeal to a version of the successive constraint method (SCM) of
Huynh et al. [5] that has been extended to compute a lower bound of the stability
constant with respect to an infinite-dimensional function spaces [17]. We refer to [5,
17] for detailed discussion of the algorithm; we here simply present the mechanics
for completeness.

For notational simplicity, we first define an operator associated with the bilin-
ear form a.w; vI �/, A.�/ � jJ.�/jY.�/�1EK.�/EY.�/�T . Because K.�/ and
Y.�/�1 D Id ˝ J.�/�1 admit affine decompositions, A.�/ also admits an affine
decomposition, which we denote by A.�/ D PQA

qD1 �A
q .�/Aq: The number of terms

in the affine expansion QA is at most QJQ2
Jinv

QK .
The SCM computes the lower bound as follows. We first introduce a bounding

box BQA � QQA
qD1Œ O
�q ; O
Cq � � R

QA , where O
q̇ � k�max.Aq/kL1.˝/; we can
readily evaluate k�max.Aq/kL1.˝/ since Aq are known. We then define YLB;M �n
y 2 BQA j PQA

qD1 �A
q .�0/ � �N

LB.�0/; 8�0 2 �con

o
; here �con � D is a set of

judiciously chosen “SCM constraint points” (e.g., by a greedy algorithm) of
cardinality M, and �N

LB.�0/, �0 2 �con, are the FE approximations of lower bound
of eigenvalues in (4.12). The SCM lower bound of �.�/ is then given by

�LB;M.�/ D inf
y2YLB;M

QAX

qD1

�A
q .�/yq: (4.13)

We can readily show �LB;M.�/ � �.�/; we refer to [5] or [17] for a proof.
The SCM algorithm is online-offline efficient: in the offline stage, we evaluate

the constants f
q̇ g by taking the L1-norm of Aq and f�N
LB.�0/g�02�con by solving

M � j�conj FE problems (4.12); in the online stage, we solve a linear programming
problem (4.13) with QA variables and M inequality constraints.
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Upper Bound While bounding the error in the online stage requires only the lower
bound �LB;M.�/, our offline training algorithm also requires a rapidly computable
upper bound of �.�/ to select �con. Towards this end, we appeal to a Galerkin
RB approximation of �.�/ (c.f. [12]). We introduce a RB space spanned by the
eigenfunctions associated with M parameter values: Veig

M D spanfzN1 .�0/g�02�con .

We then solve a RB eigenproblem: given � 2 D, find .zM;1.�/; �M;1.�// 2 Veig
M �R

such that kzM;1.�/kV D 1 and

a.zM;1.�/; vI �/ D �M;1.�/.zM;1.�/; v/V 8v 2 Veig
M : (4.14)

Because �1.�/ � infv2V jjjvjjj2�=kvk2
V � inf

v2Veig
M

jjjvjjj2�=kvk2
V � �1;M.�/, we

conclude �.�/ � �1.�/ � �N
1 .�/ � �UB;M.�/. We hence set �UB;M.�/ �

�M;1.�/. The RB eigenproblem (4.14) is amenable to offline-online computational
decomposition because the form a.�; �I �/ admits an affine decomposition. In
addition, the basis Veig

M is generated as a biproduct of computing f�N
LB.�0/g�02�con

by FE eigenproblem (4.11) in the offline stage.

4.5 Error Bounds

Bounds Having devised offline-online efficient approach for computing an upper
bound of the dual norm of the residual and a lower bound of the stability constant,
we appeal to Proposition 2 to obtain a computable bound of an energy norm of the
error:

jjju.�/ � uN.�/jjj� � 
N.�/ � 1

.˛LB;M.�I ı//1=2
.F.uN.�/; pN.�/I �I ı//1=2:

Similarly, we appeal to Proposition 3 to define an approximate compliance output
sN.�/ D `.uN.�// C r.uN.�/; uN.�/I �/ and to provide an error bound

js.�/ � sN.�/j � 
s
N.�/ � 1

˛LB;M.�I ı/
F.uN.�/; pN.�/I �I ı/:

We note that the term r.uN.�/; uN.�/I �/ is nonzero because our approximation
uN.�/ is based on the minimum-bound formulation and not a Galerkin projection.

Complementary Variational Principle There exists a close relationship between
our error bound formulation and finite-element error bounds based on the comple-
mentary variational principle in, e.g., [6, 9]. If we consider the limit of ı ! 0 for
our norm k � kW.�Iı/, our bound form (4.7) expressed in the physical domain Q̋ .�/
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becomes

F.w; qI �I ı/ D
(

k QC.�/1=2 Qq � QK.�/1=2 Qr Qwk2

L2. Q̋ /; q 2 QQ?.�/;

1; q 62 Q?.�/;

where

QQ?.�/ D fQq 2 QQ.�/ j � Qr � Qq D Qf .�/; Qn � Qq D g.�/; Qq-tensor is symmetricg
(4.15)

The associated stability constant for ı ! 0 is limı!0 ˛.�I ı/ D 1.
The conditions that define QQ.�/ in (4.15) are the dual-feasibility conditions

associated with the complementary variational principle. The symmetry of the dual
field is a required condition for linear elasticity [9], which is not present for scalar
equations. In addition, for Qq 2 QQ.�/, the complementary variational principle yields
jjj Qwjjj2� � k QC.�/1=2 Qq � QK.�/1=2 Qr Qwk2

L2. Q̋ /, which implies that the stability constant

is unity. Hence, our bound formulation in the limit ı ! 0 is equivalent to the
complementary variational principle.

For ı > 0, our approach is a “relaxation” of the complementary variational
principle in the sense that it does not require the dual field to lie in the dual-
feasible space (4.15). This relaxation facilitates offline-online decomposition, as the
construction of the parameter-dependent dual-feasible space QQ?.�/ in an online-
efficient manner seems only possible for rather limited cases [15]. However, as a
consequence, our stability constant ˛.�I ı/ is not unity, and we require an explicit
computation of a lower bound of the stability constant.

4.6 Spatio-Parameter Adaptation

Our spatio-parameter adaptation algorithm for SCM and RB offline training are
presented in [17]; we here reproduce the algorithms for completeness.

SCM The SCM training algorithm is shown as Algorithm 1. The algorithm
leverages the offline-online efficient upper and lower bounds of � introduced in
Sect. 4.4. In short, the algorithm computes the relative bound gap for each� 2 �train,
identifies � with the largest bound gap, computes �N

UB and �N
UB to prescribed

accuracy �SCM;FE using the adaptive FE eigensolver, and updates the SCM constraint
set and reduced basis for the eigenproblem. The process is repeated until the bound
gap meets �SCM for all � 2 �train. The two threshold parameters must satisfy
�SCM;FE � �SCM < 1; in practice we set �SCM 
 0:8 and �SCM;FE � �SCM;FE=2.
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Algorithm 1 Spatio-parameter adaptive SCM training
input : �train � D: SCM training set

�SCM, �SCM;FE: greedy and finite-element bound-gap tolerances
output : f�N

LB.�0/g�0
2�con : SCM constraints

Veig
M D fzN1 .�0/g�0

2�con : RB eigenproblem space

1 for M D 1; 2; : : : do
2 Identify the maximum relative �.�/ gap parameter

�.M/ D arg sup�2�train
.�UB;M�1.�/� �LB;M�1.�//=�UB;M�1.�/.

3 If sup�2�train
.�UB;M.�/� �LB;M.�//=�UB;M.�/ < �SCM, terminate.

4 Solve (4.11) and (4.12) to obtain eigenpair .zN1 .�.M//; �N
1 .�.M// � �N

UB.�.M/// and
a lower bound �N

1;LB.�/; invoke mesh adaptivity as necessary such that
.�N

UB.�M/� �N
LB.�M//=�N

UB.�/ < �SCM;FE.
5 Augment the SCM constraint set, �con �con [ �.M/, and update

f�N
LB.�0/g�0

2�con and Veig
M D fzN1 .�0/g�0

2�con accordingly.
6 end

Algorithm 2 Spatio-parameter adaptive RB training
input : �train: RB training set

�RB, �RB;FE: greedy and finite-element error tolerance
output : VN , QN : RB spaces

1 for N D 1; 2; : : : do
2 Identify the maximum bound parameter �.N/ D arg sup�2�train


N�1.�/.
3 If sup�2�train


N�1.�/ � �RB, terminate.
4 Solve (4.8) to obtain FE approximations uN .�.N// and pN .�.N//; invoke mesh

adaptivity as necessary such that 
N .�/ � �RB;FE.
5 Update RB spaces: VN D spanfVN�1; uN .�.N//g and

QN D spanfQN�1; pN .�.N//g.
6 end

RB The RB training algorithm is shown as Algorithm 2. The algorithm leverages
the offline-online efficient error bound 
N . In short, the algorithm computes the
error bound for each � 2 �train, identifies � with the largest error bound,
approximate the solution to prescribed accuracy using the adaptive mixed FE solver,
and updates the reduced basis. The process is repeated until the error bound meets
�RB for all � 2 �train. The two threshold parameters must satisfy �RB;FE � �RB;
in practice we set �RB;FE � �RB=2. We set ı � min�2�train �LB;M.�/=10 throughout
the training (and in online evaluation); the choice ensures that the stability constant
satisfies 10=11 � ˛LB;M.�/ � 1 and in particular is close to unity.

The reduced model constructed by Algorithms 1 and 2 provides an RB approxi-
mation uN.�/ such that the error jjju.�/�uN.�/jjj� with respect to the exact solution
is guaranteed to be less than �RB for all � 2 �train; for � … �train, the model may
yield an approximation with an error greater than �RB, but the approximation is
nevertheless equipped with an error bound with respect to the exact solution.
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4.7 Numerical Results

4.7.1 Problem Description

We consider a linear elasticity problem associated with a cracked square patch of
unit-length edges shown in Fig. 4.1. We will refer to the crack embedded in the
domain as the “embedded crack” and crack in the center as the “primary crack.” Two
parameters characterize the embedded crack: the first parameter, �1 2 Œ0:25; 0:4�,
controls the vertical location of the crack; the second parameter, �2 2 Œ0:3; 0:7�,
controls the length of the crack. The patch is clamped along �D, is subjected to
vertical traction force along �T , and is traction-free on all other boundaries. The
output of interest is compliance.

4.7.2 Uniform Spatio-Parameter Refinement

We first solve the parametrized cracked patch problem using uniform refinement.
The spatial meshes are obtained by uniformly refining the initial mesh shown in
Fig. 4.2a. The snapshot locations are 22, 32, 42, and 52 equispaced points over D �
Œ0:25; 0:4� � Œ0:3; 0:7�. All mixed FE discretization is based on P

3 Lagrange and
RT

2 Raviart-Thomas elements. For the purpose of assessment, the error bounds are
computed on the sampling set � � D consisting of 31 � 41 D 1271 equidistributed
parameter points.

Figure 4.2b shows the result of the uniform refinement study. On the coarsest
mesh with N D 1008 degrees of freedom, the output error bound stagnates for
N � 9 and is ofO.1/ independent of the number of snapshots; the error is dominated
by the insufficient spatial resolution. Even on the finest mesh with N 
 220;000,
the convergence of the error bound is affected by the spatial resolution for N � 16.
This behavior is due to the relatively slow convergence of the FE method in the
presence of spatial singularity and a rapid convergence of the RB method for the
parametrically smooth problem.

Fig. 4.1 Geometry and
parametrization of the
cracked patch problem
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Fig. 4.2 Uniform refinement convergence study: (a) initial mesh with the cracks denoted in red;
(b) convergence with N for several FE meshes

4.7.3 Spatio-Parameter Adaptive SCM and RB Refinement

SCM We now apply the spatio-parameter adaptive SCM training, Algorithm 1,
using threshold parameters �SCM D 0:8 and �SCM;FE D 0:2. Figure 4.3 summarizes
the result of the training process. Figure 4.3a shows that the dimension of the
adaptive FE space varies from 
 3500 to 
 7500, depending on the configuration.
Figure 4.3b shows that the target maximum relative SCM bound gap of �SCM D 0:8

is achieved using M D 40 constraint points for all � 2 � � D. Figure 4.3c shows
that, similar to the original SCM [5], the SCM lower bound of the eigenvalue is
rather pessimistic away from the constraint points; as discussed earlier, we accept
the pessimistic estimate for the rigor it provides, and in any event the effectivity
of the stability constant ˛LB;M will be desensitized from the pessimistic estimate
�LB;M thanks to the transformation introduced in Sect. 4.4.1. Figure 4.3d shows
that the Galerkin approximation of the upper bound—which in fact approximates
very closely the true value of �—varies smoothly over the parameter domain. The
minimum �LB is bounded from the below by 0:0018; we hence set ı D 0:00018 to
ensure that ˛LB;M.�/ > 0:9.

In order to more closely analyze the adaptive FE approximation of the stability
eigenproblem, we show in Fig. 4.4 the adaptation behavior for two configurations
associated with the smallest and largest FE spaces. Figure 4.4a–c summarize the
behavior for �.6/, the configuration where the embedded crack is shortest and is
far from the primary crack; the final N D 3514 mesh exhibits strong refinement
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Fig. 4.3 Behavior of the spatio-parameter adaptive greedy method for SCM: (a) the dimension of
the FE spaces; (b) reduction in the bound gap with number of SCM constraints; (c) SCM lower
bound of � over D; (d) Galerkin reduced-basis upper bound of � over D

towards the primary crack tip, but relatively weak refinement towards the embedded
crack tips. Figure 4.4d–f summarize the behavior for �.3/, the configuration where
the embedded crack is longest and is closest to the primary crack; the final N D
7690 mesh exhibits much stronger refinement towards the embedded crack tips
compared to the mesh for �.6/. As shown in Fig. 4.4c and f, the lower bound is
not as effective as the upper bound in general, but we accept the ineffectiveness for
the rigor it provides.

RB We now train the RB model using the spatio-parameter adaptive method,
Algorithm 2, for threshold parameters �RB D 0:01 and �RB;FE D 0:005. Figure 4.5
summarizes the result of the greedy training. Figure 4.5a shows that the number
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Fig. 4.4 Adaptive FE eigenproblem approximation for (a)–(c) �.6/ D .0:29; 0:3/ and (d)–(f)
�.3/ D .0:4; 0:7/

of degrees of freedom varies from 
13;000 to 
21;000. Figure 4.5b shows the
exponential convergence of the compliance output error with the dimension of
the RB space; this is contrary to the behavior for uniform meshes for which the
convergence with respect to the parameter dimension is limited by the insufficient
spatial resolution. Figure 4.5c shows that reduced model produces an error less
than �RB D 10�2 for any parameter value in D (or more precisely at least �).
Figure 4.5d shows that the final common mesh which reflects refinement required
for all configurations over D exhibits strong refinement towards the crack tips and
some corners.

As we have done for the eigenproblem, we show in Fig. 4.6 the adaptive FE
solution for two configurations associated with the smallest and largest FE spaces.
Figure 4.6a–c summarize the behavior for �.17/, the configuration where the embed-
ded crack is shortest and far from the primary crack; the final N D 13;270 mesh
shows relatively weak refinement towards the embedded crack tips. Figure 4.6d–
f summarize the behavior for �.2/, the configuration where the embedded crack
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Fig. 4.5 Behavior of the spatio-parameter adaptive RB generation: (a) the dimension of the FE
spaces; (b) reduction in the error bound with the dimension of RB space; (c) output error bound
over D; (d) final common mesh

is longest and closest to the primary crack; we observe much stronger refinement
towards all crack tips. For both cases, the effectivity of the compliance output error
bound is less than 10, which is acceptable given that this is (rigorous) bounds of
the error in the outputs. For assessment purpose, the reference output is computed
using an adaptive FE method with an error tolerance that is ten times tighter than
the target tolerance.
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Fig. 4.6 Adaptive FE approximation for (a)–(c) �.17/ D .0:285; 0:35/ and for (d)–(f) �.2/ D
.0:4; 0:7/
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