
Chapter 3
A Certified Reduced Basis Approach
for Parametrized Optimal Control Problems
with Two-Sided Control Constraints

Eduard Bader, Martin A. Grepl, and Karen Veroy

Abstract In this paper, we employ the reduced basis method for the efficient and
reliable solution of parametrized optimal control problems governed by elliptic
partial differential equations. We consider the standard linear-quadratic problem
setting with distributed control and two-sided control constraints, which play an
important role in many industrial and economical applications. For this problem
class, we propose two different reduced basis approximations and associated error
estimation procedures. In our first approach, we directly consider the resulting
optimality system, introduce suitable reduced basis approximations for the state,
adjoint, control, and Lagrange multipliers, and use a projection approach to bound
the error in the reduced optimal control. For our second approach, we first
reformulate the optimal control problem using two slack variables, we then develop
a reduced basis approximation for both slack problems by suitably restricting the
solution space, and derive error bounds for the slack based optimal control. We
discuss benefits and drawbacks of both approaches and substantiate the comparison
by presenting numerical results for a model problem.

3.1 Introduction

Optimal control problems governed by partial differential equations (PDEs) appear
in a wide range of applications in science and engineering, such as heat phenomena,
crystal growth, and fluid flow (see, e.g., [4, 8]). Their solution using classical
discretization techniques such as finite elements (FE) or finite volumes can be
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computationally expensive and time-consuming. Often, additional parameters enter
the problem, e.g., material or geometry parameters in a design exercise.

Previous work on reduced order methods for optimal control problems con-
sidered distributed but unconstrained controls or constrained but scalar controls.
Elliptic optimal control problems with distributed control have been considered
recently by Negri et al. [10]. The proposed error bound is based on the Banach-
Nečas-Babuška (BNB) theory applied to the first order optimality system. The
approach thus provides a combined bound for the error in the state, adjoint, and
control variable, but it is only applicable to problems without control constraints.
Since the bound requires the very costly computation of a lower bound to the inf-
sup constant, Negri et al. [11] compute error estimates using a heuristic interpolant
surrogate of that constant.

Based on the ideas in Tröltzsch and Volkwein [13], Kärcher and Grepl [6]
proposed rigorous and online-efficient control error bounds for reduced basis (RB)
approximations of scalar elliptic optimal control problems. These ideas are extended
and improved in [7] to distributed control problems.

In a recent paper [1], we employed the RB method as a surrogate model for
the solution of distributed and one-sided constrained optimal control problems
governed by parametrized elliptic partial differential equations. In this paper we
extend this work to two-sided control constraints. After stating the problem in
Sect. 3.2 we present the following contributions:

• In Sect. 3.3 we extend previous work on reduced basis methods for variational
inequalities in [1, 3] to the optimal control setting with two-sided control
constraints. While we can derive an offline-online decomposable RB optimality
system, we are only able to derive a partially offline-online decomposable control
error bound that depends on the FE dimension of the control.

• In Sect. 3.4 we build on the recent work in [1, 14] and propose an RB slack
approach for optimal control. We introduce two slack formulations for the
optimal control problem, which we obtain by shifting the optimal control by
each constraint. We are thus able to derive an offline-online decomposable RB
optimality systems and control error bound. The evaluation of this bound is
independent of the FE dimension of the problem, but requires the solution of
three RB systems.

In Sect. 3.5 we propose a greedy sampling procedure to construct the RB spaces and
in Sect. 3.6 we assess the properties of our methods by presenting numerical results
for a Graetz flow problem.

3.2 General Problem Statement and Finite Element
Discretization

In this section we introduce the parametrized linear-quadratic optimal control
problem with elliptic PDE constraint and a constrained distributed control. We
introduce a finite element (FE) discretization for the continuous problem and
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recall the first-order necessary (and in the convex setting sufficient) optimality
conditions.

3.2.1 Preliminaries

Let Ye with H1
0.˝/ � Ye � H1.˝/ be a Hilbert space over the bounded Lipschitz

domain ˝ � R
d; d 2 f1; 2; 3g, with boundary � .1 The inner product and induced

norm associated with Ye are given by .�; �/Y and k�kY D p
.�; �/Y . We assume that

the norm k�kY is equivalent to the H1.˝/-norm and denote the dual space of Ye

by Ye
0. We also introduce the control Hilbert space Ue D L2.˝/, together with its

inner product .�; �/U, induced norm k�kU D p
.�; �/U, and associated dual space Ue

0.2
Furthermore, let D � R

P be a prescribed P-dimensional compact parameter set in
which the P-tuple (input) parameter � D .�1; : : : ; �P/ resides.

We directly consider a FE “truth” approximation for the exact infinite-
dimensional optimal control problem. To this end, we define two conforming
FE spaces Y � Ye and U � Ue and denote their dimensions by NY D dim.Y/ and
NU D dim.U/. We assume that the truth spaces Y and U are sufficiently rich such
that the FE solutions guarantee a desired accuracy over D .

We next introduce the �-dependent bilinear form a.�; �I�/ W Y � Y ! R, and
shall assume that a.�; �I�/ is (1) continuous for all � 2 D with continuity constant
�a.�/ < 1 and (2) coercive for all � 2 D with coercivity constant ˛a.�/ > 0.
Furthermore, we introduce the �-dependent continuous linear functional f .�I�/ W
Y ! R and the bilinear form b.�; �I�/ W U � Y ! R with continuity constant
�b.�/ < 1.

In anticipation of the optimal control problem, we introduce the parametrized
control constraints ua.�/; ub.�/ 2 U and a desired state yd 2 D. Here, D � L2. D̋/

is a suitable FE space for the observation subdomain D̋ � ˝ . Furthermore, we note
that the semi-norm j�jD for y 2 L2.˝/ is defined by j�jD D k�kL2.˝D/.

The involved bilinear and linear forms as well as the control constraint are
assumed to depend affinely on the parameter. For example we require for all
w; v 2 Y and all parameters � 2 D that a.w; vI�/ D PQa

qD1 �q
a.�/ a

q.w; v/ and

ua.xI�/ D PQua
qD1 �q

ua.�/ u
q
a.x/ for some (preferably) small integers Qa and Qua.

Here, the coefficient functions �q�.�/ W D ! R are continuous and depend on �,
whereas the continuous bilinear and linear forms, e.g., aq.�; �/ and uqa 2 U do not
depend on �. Although we choose yd.x/ to be parameter-independent, our approach
directly extends to an affinely parameter-dependent yd.xI�/ (see Kärcher et al. [7]).

1The subscript “e” denotes the “exact” infinite-dimensional continuous problem setting.
2The framework of this work directly extends to Neumann boundary controls Ue D L2.@˝/ or
finite dimensional controls Ue D R

m. Also distributed controls on a subdomain ˝U � ˝ or
Neumann boundary controls on a boundary segment �U � @˝ are possible.
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For the development of a posteriori error bounds we also require additional
ingredients. We assume that we are given a positive lower bound ˛LB

a .�/ W D ! RC
for the coercivity constant ˛a.�/ of a.�; �I�/ such that ˛LB

a .�/ � ˛a.�/ 8� 2 D .
Furthermore, we assume that we have upper bounds available for the constant
CUB
D � CD D supw2Ynf0g

jwjD
kwkY � 0 8� 2 D ; and the continuity constant of the

bilinear form b.�; �I�/: �UB
b .�/ � �b.�/ 8� 2 D : Here, the constant CD depends

on the parameter, since later we use j�jD D k�kL2.˝D.�// (see Sect. 3.6). In our setting,
it is possible to compute these constants (or their bounds) efficiently using an offline-
online procedure (see [7, 12]).

3.2.2 Abstract Formulation of Linear-Quadratic Optimal
Control Problems and the First-Order Optimality
Conditions

We consider the following FE optimal control problem in weak form with ua.�/ <
ub.�/

min
Oy;Ou

J.Oy; Ou/ D 1

2
jOy � ydj2D C �

2
kOuk2U ; � > 0 (P)

s.t. .Oy; Ou/ 2 Y � U solves a.Oy; �I�/ D b.Ou; �I�/C f .�I�/ 8� 2 Y;

.ua.�/; �/U � .Ou; �/U � .ub.�/; �/U 8� 2 UC;

where UC WD f� 2 UI � � 0 almost everywhereg and we dropped the
�-dependence of the state and control .Oy; Ou/ for the sake of readability. We note that
the last line of (P) is equivalent to Ou being in the convex admissible set

Uad D f 2 UI .ua.�/; �/U � . ; �/U � .ub.�/; �/U 8� 2 UCg: (3.1)

In the following we call problem (P) the “primal” problem, for which the existence
and uniqueness of the solution is standard (see, e.g., [4]). The derivation of the
necessary and sufficient first-order optimality system is straightforward: Given � 2
D , the optimal solution .y; p; u; 	; 	b/ 2 Y � Y � U � U � U satisfies

a.y; �I�/ D b.u; �I�/C f .�I�/ 8� 2 Y; (3.2a)

a.'; pI�/ D .yd � y; '/D 8' 2 Y; (3.2b)

.�u;  /U � b. ; pI�/ D .	;  /U � .	b;  /U 8 2 U; (3.2c)

.ua.�/� u; �/U � 0 8� 2 UC; .ua.�/ � u; 	/U D 0; 	 � 0; (3.2d)

.ub.�/� u; �/U � 0 8� 2 UC; .ub.�/ � u; 	b/U D 0; 	b � 0: (3.2e)
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Note that we follow a first-discretize-then-optimize approach here, for a more
detailed discussion see [4, Sect. 3.2.4]).

In the following we comment on the FE-setting in this paper. We assume that
the state variable is discretized by P1, i.e., continuous and piecewise linear, and the
control variable by P0, i.e., piecewise constant finite elements. Next, we introduce
two bases for the FE spaces Y and U, such that

Y D spanf �y
i ; i D 1; : : : ;NYg and U D spanf �u

i ; i D 1; : : : ;NUg;

where �y
i � 0; i D 1; : : : ;NY , and �u

i � 0; i D 1; : : : ;NU , are the usual hat
and bar basis functions. Using these basis functions we can express the functions
y; p 2 Y and u; 	; 	b 2 U as, e.g., y D PNY

iD1 yi�
y
i . The corresponding FE

coefficient vectors are given by, e.g., y D .y1; : : : ; yNY /
T 2 R

NY . Note that by
definition of UC and since �u

i � 0, the condition � 2 UC in (3.2d) and (3.2e)
translates into the condition � � 0 for the corresponding coefficient vector. Further,
we also introduce the control mass matrix MU with entries .MU/ij D .�u

i ; �
u
j /U ,

which is for a P0 control discretization a positive diagonal matrix. Hence the
point-wise and the ‘weak’ (averaged) constraint formulations are equivalent u.x/ �
ua.xI�/ , .u; �/U � .ua.�/; �/U 8� 2 UC. However, this is in general not true
for other control discretizations, e.g., P1.

Based on the truth FE primal problem (P) we derive an RB primal problem (PN)
and a rigorous a posteriori error bound for the error between the truth and RB control
approximation in Theorem 1.

3.3 Reduced Basis Method for the Primal Problem

3.3.1 Reduced Basis Approximation

To begin, we define the RB spaces YN � Y, UN ; ˙N ; ˙b;N � U as well as the
convex cones ˙CN � UC, ˙Cb;N � UC as follows: given N parameter samples
�1; : : : ; �N , we set

YN D spanf 
y1; : : : ; 
yNY
g D spanf y.�1/; p.�1/; : : : ; y.�N/; p.�N/ g; (3.3a)

UN D spanf
u1 ; : : : ; 
uNU
g D spanfu.�1/; 	.�1/; 	b.�1/;: : :; u.�N/; 	.�N/; 	b.�

N/g;
(3.3b)

˙N D spanf 
	1 ; : : : ; 
	N	 g D spanf 	.�1/; : : : ; 	.�N/ g; (3.3c)

˙b;N D spanf
	b1 ; : : : ; 
	bN	b g D spanf	b.�1/; : : : ; 	b.�N/g; (3.3d)

˙CN D spanCf 
	1 ; : : : ; 
	N	 g and ˙Cb;N D spanCf
	b1 ; : : : ; 
	bN	b g; (3.3e)
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where we assume that the basis functions, 
�1 ; : : : 
�N�

, are linearly independent and
spanCf�g indicates the cone spanned by non-negative combinations of the elements,
i.e.

spanCf
1; : : : ; 
Ng D
(

NX

iD1
˛i
i j˛i � 0

)

:

Note that we employ integrated spaces for the state and adjoint as well as for the
control (see Remarks 1 and 2). For the spaces YN and UN we additionally assume
that the basis functions are orthogonal, i.e., .
yi ; 


y
j /Y D ıij and .
ui ; 


u
j /U D ıij, where

ıij is the Kronecker delta. This orthogonality is favorable to keep the condition of
the RB algebraic linear systems small [12]. In addition, we do not orthogonalize
the basis 
	i ; 


	b
i of the cones ˙CN ; ˙

C
b;N � UC, because this non-negativity is

used in the definition of the reduced problem (PN) of (P).3 Although the conditions

	i 2 ˙CN and 
	bi 2 ˙Cb;N appear to be much more restrictive than 
	i ; 


	b
i 2 UC,

we observe in numerical tests (not shown) that the RB approximations converge to
the FE solutions with a similar rate as the control approximations. In addition, the
RB approximations are comparable to the best possible approximations derived by
projecting 	 to ˙N or ˙CN , analogously for 	b. We describe the greedy sampling
approach to construct the RB spaces in Sect. 3.5. Next, given the RB spaces in (3.3)
we derive the RB primal problem

min
OyN ;OuN

J.OyN ; OuN/ D 1

2
jOyN � ydj2D C �

2
kOuNk2U (PN)

s.t. .OyN ; OuN/ 2 YN � UN solves a.OyN ; �I�/Db.OuN ; �I�/Cf .�I�/ 8� 2 YN ;

.ua.�/; �/U � .OuN ; �/U 8� 2 ˙CN ; .ub.�/; �/U � .OuN ; �/U 8� 2 ˙Cb;N :

The last line of (PN) defines the admissible set for uN : Uad;N D f 2
UN I .ua.�/; �/U � . ; �/U 8� 2 ˙CN ; .ub.�/; �/U � . ; �/U 8� 2 ˙Cb;Ng,
which is in general not a subset of Uad in (3.1). Analogously to the primal
problem (P) we obtain the RB optimality system: Given � 2 D , the optimal
solution .yN ; pN ; uN ; 	N ; 	b;N/ 2 YN � YN � UN �˙N �˙b;N satisfies

a.yN ; �I�/ D b.uN ; �I�/C f .�I�/ 8� 2 YN ; (3.4a)

a.'; pN I�/ D .yd � yN ; '/D 8' 2 YN ; (3.4b)

.�uN ;  /U � b. ; pN I�/ D .	N ;  /U � .	b;N;  /U 8 2 UN ; (3.4c)

.ua.�/� uN ; �/U � 0 8� 2 ˙C

N ; .ua.�/� uN ; 	N/U D 0; 	N 2 ˙C

N ; (3.4d)

.ub.�/� uN ; �/U � 0 8� 2 ˙C

b;N ; .ub.�/� uN ; 	b;N/U D 0; 	b;N 2 ˙C

b;N : (3.4e)

3Alternative methods to deal with the non-negativity can be found in [2].
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Remark 1 (Existence, Uniqueness, Integrated Space YN) Since (PN) is a linear-
quadratic optimal control problem over the closed convex admissible set Uad;N ,
the existence and uniqueness of the RB optimal control uN follows from standard
arguments (see, e.g., [4, Theorem 1.43]). Also note that we use a single “integrated”
reduced basis trial and test space YN for the state and adjoint equations as one
ingredient to ensure stability of the system (3.4), see e.g. Kärcher [5].

Remark 2 (Stability, Integrated Space UN) For the stability of the RB solutions we
need to show that the RB inf-sup constants

ˇN WD inf
 	2˙N

sup
 u2UN

. 	 ;  u/U

k 	kUk ukU ; ˇb;N WD inf
 	b2˙b;N

sup
 u2UN

. 	b ;  u/U

k 	bkUk ukU

are bounded away from zero. We guarantee that ˇN ; ˇb;N � ˇ > 0 by enriching the
RB control space with suitable supremizers [9]. Here, these supremizers are just the
multiplier snapshots 	.�n/; 	b.�

n/; 1 � n � N; we thus have ˇN D ˇb;N D ˇ D 1.

3.3.2 Primal Error Bound

We next propose an a posteriori error bound for the optimal control. The bound
is based on [1], which uses an (1) RB approach for variational inequalities of the
first kind [3], and (2) an RB approach for optimal control problems with a PDE
constraint [7]. Before stating the main result, we define the following approximation
errors (omitting �-dependencies) of the RB primal system (3.4)

ey D y � yN ; ep D p � pN ; eu D u � uN ; e	 D 	 � 	N ; e	b D 	b � 	b;N ;

as well as the residuals in the next definition.

Definition 1 (Residuals) The residuals of the state equation, the adjoint equation
w.r.t. (3.2a)–(3.2c) are defined for all � 2 D by

ry.�I�/ D b.uN; �I�/C f .�I�/ � a.yN ; �I�/ 8� 2 Y;
(3.5a)

rp.'I�/ D .yd � yN ; '/D � a.'; pN I�/ 8' 2 Y;
(3.5b)

ru. I�/ D ��.uN ;  /U C b. ; pN I�/C .	N ;  /U � .	b;N ;  /U 8 2 U:
(3.5c)

Theorem 1 (Primal Error Bound) Let u and uN be the optimal controls of the FE
primal problem (P) and of the RB primal problem (PN), respectively. Then the error
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in the optimal control satisfies for any given parameter � 2 D

keukU � �
pr
N .�/;

where �pr
N .�/ WD c1.�/C p

c1.�/2 C c2.�/ with nonnegative coefficients

c1.�/ D 1

2�

�
krukU0 C �UB

b

˛LB
a

krpkY0 C �.ı1 C ı1b/

�
; (3.6a)

c2.�/ D 1

�

"
2

˛LB
a

krykY0krpkY0 C 1

4

�
CUB
D

˛LB
a

�krykY0 C �UB
b .ı1 C ı1b/

��2

(3.6b)

C
�

krukU0 C �UB
b

˛LB
a

krpkY0 Cp
2.	N ; 	b;N/U

�
.ı1 C ı1b/C ı2 C ı2b

#

;

and ı1 D kŒua � uN �CkU; ı2 D .Œua � uN �C; 	N/U; ı1b D kŒuN � ub�CkU; ı2b D
.ŒuN � ub�C; 	b;N/U.
Here Œ��C D max.�; 0/ denotes the positive part (a.e.). Note that we sometimes use
r� instead of r�.�I�/ and omit the �-dependencies on the r.h.s. of (3.6) for a better
readability.

Proof This proof follows the proof of the primal error bound from [1]. Since the FE
optimal solution .y; p; u; 	; 	b/ satisfies the optimality conditions (3.2), we obtain
the following error-residual equations:

a.ey; �I�/� b.eu; �I�/ D ry.�I�/ 8� 2 Y; (3.7a)

a.'; epI�/C .ey; '/D D rp.'I�/ 8' 2 Y; (3.7b)

�.eu;  /U � b. ; epI�/ � .e	 ;  /U C .e	b ;  /U D ru. I�/ 8 2 U: (3.7c)

From (3.7a) with � D ey, (3.7b) with ' D ep, and ˛LB
a .�/ � ˛a.�/ we infer that

keykY � 1

˛LB
a

�krykY0 C �UB
b keukU

�
; kepkY � 1

˛LB
a

�krpkY0 C CUB
D jeyjD

�
:

(3.8)

Choosing � D ep, ' D ey,  D eu in (3.7), adding (3.7b) and (3.7c), and
subtracting (3.7a) results in

�keuk2UCjeyj2D�krykY0 kepkYCkrpkY0 keykYCkrukU0keukUC.e	 �e	b ; eu/U: (3.9)
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Next, we bound .e	 ; eu/U and �.e	b ; eu/U. We first consider .e	 ; eu/U and note that

.e	 ; eu/U D .	 � 	N ; u � uN/U D .	; u � uN/U C .	N ; uN � u/U

D .	; u � ua.�//U C .	; ua.�/� uN/U C .	N ; uN � ua.�//U C .	N ; ua.�/ � u/U;

where, except for the second term, all terms are nonpositive, see (3.2d) and (3.4d).
Hence

.e	 ; eu/U � .	; ua.�/ � uN/U � .	; Œua.�/ � uN �C/U (3.10)

D .	 � 	N ; Œua.�/ � uN �C/U C .	N ; Œua.�/ � uN �C/U � ke	kU ı1 C ı2:

Analogously, we bound �.e	b ; eu/U � ke	bkU ı1b C ı2b. Most significantly, it
remains to bound the terms ke	kU and ke	bkU , which we achieve in two steps: First,
we relate ke	kU and ke	bkU with ke	 � e	bkU by

ke	k2UCke	bk2U Dke	 � e	bk2UC2�.	; 	b/U�.	N ; 	b/UC.	N ; 	b;N/U�.	; 	b;N/U
�

If we employ .	; 	b/U D 0, .	N ; 	b/U � 0, and .	; 	b;N/U � 0, we obtain

ke	kU ; ke	bkU � ke	 � e	bkU C p
2.	N; 	b;N/U: (3.11)

Second, we focus on the optimality residual (3.7c), use the inf-sup stability of

.�; �/U and (3.8) to derive ke	�e	bkU � krukU0 C�keukUC �UB
b
˛LB
a

�krpkY0 C CUB
D jeyjD

�
:

Next, we employ the inequalities (3.8) and (3.11) in (3.9) to obtain

�keuk2U C jeyj2D � keukU
�

krukU0 C �UB
b

˛LB
a

krpkY0 C �.ı1 C ı1b/

�
(3.12)

C 2

˛LB
a

krykY0krpkY0 C jeyjDC
UB
D

˛LB
a

�krykY0 C �UB
b .ı1 C ı1b/

�

C
�

krukU0 C �UB
b

˛LB
a

krpkY0 C p
2.	N ; 	b;N/U

�
.ı1 C ı1b/C ı2 C ı2b:

It thus follows from applying Young’s inequality to the jeyjD-terms in (3.12) that

keuk2U � 2c1.�/keukU � c2.�/ � 0;

where c1.�/ and c2.�/ are given in (3.6). Solving the last inequality for the larger
root yields keukU � c1.�/C p

c1.�/2 C c2.�/ D �
pr
N .�/.
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We note that most of the ingredients of the primal error bound�pr
N .�/ introduced

in Theorem 1 are standard, i.e., the dual norms of state, adjoint, and control
residuals, as well as coercivity and continuity constants or rather their lower and
upper bounds [7, 12]. The only non-standard terms are ı1; ı2; ı1b and ı2b, which
measure the constraint-violation of the RB optimal control uN . As a result, the online
computational cost to evaluate ı�—and hence the error bound�pr

N .�/—depends on
the FE control dimension NU , requiring O..NU C N	 C N	b/NU/ operations.

3.4 Slack Problem and the Primal-Slack Error Bound

In this section we introduce a reformulation of the original primal problem by
means of a slack variable. We extend the ideas presented for the one-sided control-
constrained problem in [1] to the two-sided control-constrained problem. First,
we reformulate the original optimization problem (P) by replacing the control
variable with a slack variable that depends on one of the two constraints ua.�/ or
ub.�/. Second, we use snapshots of the slack variable to construct an associated
convex cone, leading to strictly feasible approximations w.r.t. either the lower
or upper constraint. Third, we derive two RB slack problems by restricting the
RB-slack coefficients to a convex cone. And finally, we propose an a posteriori
N -independent error bound for RB slack approximation w.r.t. either the lower or
upper constraint in Theorem 2.

3.4.1 FE and RB Slack Problem

We consider the FE optimization problem (P) and introduce the slack variable s 2
UC given by

s D u � ua.�/ (3.13)

together with the corresponding FE coefficient vector s D u�ua.�/, where we state
the slack variable w.r.t. ua.�/. Here, we again omit the explicit dependence of u and
s on the parameter �. We note that, by construction, the feasibility of u w.r.t. ua.�/
is equivalent to MUs � 0, which in turn is equivalent to s � 0, if we are using P0
elements.

If we substitute u by sCua.�/ in (P), we obtain the “slack” optimization problem

min
Oy;Os

Js.Oy; Os/ D 1

2
jOy � ydj2D C �

2
kOs C ua.�/k2U (S)

s.t. .Oy; Os/ 2 Y � UC solves a.Oy; �I�/ D b.Os C ua.�/; �I�/C f .�I�/ 8� 2 Y;

.ub.�/; �/U � .Os C ua.�/; �/U 8� 2 UC:
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Analogously, we define a slack variable sb D ub.�/ � u w.r.t. ub.�/ and recast (P)
w.r.t. sb. We do not state this minimization problem explicitly since it is analogous
to (S).

In the following we derive two RB slack problems w.r.t. ua.�/ and ub.�/. We
start with the former and reuse the RB space YN , introduced in Sect. 3.3.1, for the
state and adjoint variables. Furthermore, for the RB approximation of the slack
variable s we simply introduce an RB slack space SN and a convex cone SCN by
shifting the control snapshots of (P) with the control constraint ua.�/

SN D spanf 
s1; : : : ; 
sNS
g D spanf u.�1/� ua.�

1/; : : : ; u.�N/ � ua.�
N/ g;

(3.14a)

SCN D spanCf 
s1; : : : ; 
sNS
g � UC: (3.14b)

We assume that the snapshots 
s1; : : : ; 

s
Ns

are linearly independent and not orthog-
onalized. Further, we need to consider a Lagrange multiplier 	 s

b 2 UC for the
constraint ub.�/ by incorporating the RB space ˙b;N � U, as well as the convex
cone˙Cb;N from (3.3d) and (3.3e). Overall, for an RB approximation sN 2 SCN � UC
of s, we have sN � 0. From the definition of the slack variable s D u � ua.�/,
see (3.13), we derive the control approximation us WD sN C ua.�/ that satisfies us �
ua.�/. However, we can not conclude us � ub.�/ since the slack approximation sN
is constructed—as the slack variable s in (3.13)—using information from ua.�/ but
not ub.�/.

Overall, employing the RB spaces in (S) results in the RB slack problem

min
OysN ;OsN

Js.OysN ; OsN/ D 1

2
jOysN � ydj2D C �

2
kOsN C ua.�/k2U (SN)

s.t. .OysN ; OsN/2YN�SC

N solves a.OysN ; �I�/ D b.OsNCua.�/; �I�/Cf .�I�/ 8� 2 YN ;

.ub.�/; �/U � .OsN C ua.�/; �/U 8� 2 ˙C

b;N ;

As in the RB primal problem (PN), the existence and uniqueness of the RB
optimal control follows from the same arguments as in the Remark 1. Next,
we derive the optimality conditions for sN ; however, we here follow the ‘first-
discretize-then-optimize’ approach that will eventually lead to a feasible—w.r.t.
ua.�/—approximation of the control. We perform two steps.

First, we use the RB-representations of ysN ; sN with their RB-coefficient vectors
ys
N
; sN to discretize (SN). Since the algebraic RB slack problem is simple to derive,

we only state the main crucial condition that sN � 0. Next, we derive the first-
order optimality conditions. We introduce a discrete Lagrange multiplier O!N 2
R

NS ; O!N � 0, ensuring the non-negativeness of OsN and derive the following
necessary (and here sufficient) first-order optimality system: Given � 2 D , the
optimal RB slack solution coefficients .ys

N
; sN ; p

s
N
; 	 s

b;N ; !N/ 2 R
NY � R

NY � R
NS �
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R
N	b � R

NS satisfy (omitting all �-dependencies)

ANy
s
N

D FN C Bs
NsN C Bs

a;N ; (3.15a)

AT
Np

s
N

D Yd;N � DNy
s
N
; (3.15b)

�Us
NsN C �Us

a;N � .Bs
N/

Tps
N

D !N � U	b;s
N 	 s

b;N ; (3.15c)

sN
T!N D 0; sN � 0; !N � 0; (3.15d)

.U	b
b;N � U	b

a;N � U	b;s
N sN/

T	 s
b;N D 0; U	b

b;N � U	b
a;N � U	b;s

N sN ; 	 s
b;N � 0:

(3.15e)

where the reduced basis matrices and vectors are given by

.AN/ijDa.
yi ; 

y
j /; .FN /iD f .
yi /; .Bs

N/ijDb.
sj ; 

y
i /; .B

s
a;N/iDb.ua; 


y
i /;

.Yd;N /iD .yd ; 
yi /D; .DN/ijD .
yi ; 
yj /D; .Us
N/ijD .
si ; 
sj /U ; .Us

a;N/iD .ua; 
si /U ;
.U	b ;s

N /ijD .
	bi ; 
sj /U ; .U	b
b;N/iD .ub; 
	bi /U ; .U	b

a;N/iD .ua; 
	bi /U
and 1 � i; j � N� [see (3.3) and (3.14)].

Second, by solving (3.15) we have sN � 0 and through the definition of s we
obtain a feasible—w.r.t. ua.�/—approximation for the control by us D sN C ua.�/:
In order to derive an error bound for ku � uskU we need, however, to analogously
repeat the RB reduction for the second RB slack problem with sb D ub.�/ � u.
There we likewise introduce the RB space Sb;N , as well as its convex cone SCb;N
and follow the previous steps to obtain sb;N � 0. Using this, we obtain a control
approximation usb D ub.�/ � sb;N that is feasible w.r.t. the constraint ub.�/.

3.4.2 Primal-Slack Error Bound

In the following we will focus on the primal-slack error bound for ku � uskU w.r.t.
ua.�/. Similarly to the primal error bound in Theorem 1 we use residuals and prop-
erties of the bilinear and linear forms to derive a quadratic inequality in ku � uskU .
We consider the following RB primal-slack approximation .ysN ; p

s
N ; u

s; 	N ; 	b;N/ 2
YN � YN � Uad � ˙CN � ˙Cb;N , which depends on the solutions of the RB primal
and slack problem. We define the corresponding errors esy D y � ysN ; esp D
p�psN ; esu D u�us: Further, we revisit Definition 1 and insert on the r.h.s. of (3.5)
the approximation .ysN ; p

s
N ; u

s; 	N ; 	b;N/ to obtain on the l.h.s. the residuals rsy; r
s
p; r

s
u.

We state the main result in the following theorem.

Theorem 2 (Primal-Slack Error Bound) Let u, sN, and sb;N be the optimal
solutions of the FE primal problem (P) and the RB slack problems (SN) and its
equivalent w.r.t. ub.�/, respectively. Then the error in the optimal control satisfies
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for all parameters � 2 D

kesukU � �
pr�sl
N .�/;

where �pr�sl
N .�/ WD cs1.�/C p

cs1.�/
2 C cs2.�/ with nonnegative coefficients

cs1.�/ D 1

2�

�
krsukU0 C �UB

b

˛LB
a

krspkY0 C �kus � usbkU
�
; (3.16a)

cs2.�/ D 1

�

"
2

˛LB
a

krsykY0krspkY0 C 1

4

�
CUB
D

˛LB
a

.krsykY0 C �UB
b kus � usbkU/

�2
C .	N ; sN/U

C kus � usbkU
�

krsukU0 C �UB
b

˛LB
a

krspkY0 C p
2.	N ; 	b;N/U

�
C .	b;N ; sb;N/U

#

(3.16b)

Proof Let the FE primal solution .y; p; u; 	; 	b/ satisfy the optimality condi-
tions (3.2). We follow the proof of Theorem 1, and derive analogously to (3.9) the
inequality

�kesuk2UCjesyj2D�krsykY0 kespkYCkrspkY0kesykYCkrsukU0kesukUC.e	�e	b ; e
s
u/U : (3.17)

We first focus on .e	 ; esu/U and exploit the feasibility of us w.r.t. ua.�/. Again we
have .e	 ; esu/U D �.	; ua.�/�u/U �.	; sN/U C.	N ; ua.�/�u/U C.	N ; sN/U, where
the first three terms are non-positive and hence .e	 ; esu/U � .	N ; sN/U . In order to
bound �.e	b ; esu/U , we need to solve the second RB slack problem for usb and derive

�.e	b ; esu/U D .e	b ; u
s � usb C usb � u/U � ke	bkUkus � usbkU C .	b;N ; sb;N/U :

We restate that ke	bkU � ke	 � e	bkU C p
2.	N ; 	b;N/U and ke	 � e	bkU is

bounded by ke	 � e	bkU � krsukU0 C�kesukU C �UB
b
˛LB
a

�krspkY0 C CUB
D jesyjD

�
: Using the

bounds for .e	 ; esu/U � .e	b ; e
s
u/U and the inequalities (3.8) in (3.17) we obtain

�kesuk2U C jesyj2D � kesukU
�

krsukU0 C �UB
b

˛LB
a

krspkY0 C �kus � usbkU
�

C .	N ; sN/U

C 2

˛LB
a

krsykY0 krspkY0 C jesyjD
CUB
D

˛LB
a

�krsykY0 C �UB
b kus � usbkU

�

C
�

krsukU0 C �UB
b

˛LB
a

krspkY0 C p
2.	N ; 	b;N/U

�
kus � usbkU C .	b;N ; sb;N/U :
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It thus follows from employing Young’s inequality to the jesyjD-term that kesuk2U �
2cs1.�/kesukU � cs2.�/ � 0, where cs1.�/ and cs2.�/ are given in (3.16). Solving the
last inequality for the larger root yields kesukU � cs1.�/ C p

cs1.�/
2 C cs2.�/ D

�
pr�sl
N .�/.

3.5 Greedy Sampling Procedure

The reduced basis spaces for the two-sided control-constrained optimal control
problem in Sects. 3.3.1, and 3.4.1 are constructed using the greedy sampling
procedure outlined in Algorithm 1. Suppose train � D is a finite but suitably
large parameter train sample, �1 2 train is the initial parameter value, Nmax the
maximum number of greedy iterations, "tol;min > 0 is a prescribed desired error
tolerance, and ��N.�/=ku�N.�/kU , � 2 fpr; pr�slg, is the primal or primal-slack
error bound from (3.6) or (3.16) with u�N 2 fuN; usg.

We make two remarks: First, by using the bounds ��N.�/, � 2 fpr; pr�slg we
only refer to the bounds derived for the primal error ku � uNkU and the slack error
ku � uskU w.r.t. to ua.�/. Therefore, using the primal-slack bound �pr�sl

N .�/ in
the greedy sampling procedure, we expect not only to construct an accurate RB
space SN for sN but also an accurate RB space Sb;N for sb;N . Second, we comment
on two special cases: (1) if one control constraint is fully active in each greedy
step, i.e. we have, e.g., u.�n/ D ua; n D 1; : : : ;N, we set SN D fg and sN D 0

(analogously for ub we set Sb;N D fg and sb;N D 0); and (2) if the control constraint
is never active, i.e., for all snapshots 	.�n/ D 	b.�

n/ D 0; n D 1; : : : ;N, we set
˙N D ˙CN D ˙b;N D ˙Cb;N D fg and 	N D 	b;N D 0.

Algorithm 1 Greedy sampling procedure
1: Choose train � D , �1 2 train (arbitrary), Nmax, and "tol;min > 0

2: Set N 1, Y0  f0g, U0 f0g, S0 f0g, Sb;0  f0g, ˙0  f0g, ˙b;0 f0g
3: Set ��

N.�
N/ 1

4: while��

N.�/=ku�

N .�
N/kU > "tol;min and N � Nmax do

5: YN  YN�1 ˚ spanf y.�N/; p.�N / g
6: UN  UN�1 ˚ spanf u.�N /; 	.�N/; 	b.�

N/ g
7: SN  SN�1 ˚ spanf s.�N / g
8: Sb;N  Sb;N�1 ˚ spanf sb.�N/ g
9: ˙N  ˙N�1 ˚ spanf 	.�N/ g

10: ˙b;N  ˙b;N�1 ˚ spanf 	b.�N/ g
11: �NC1  arg max

�2train

��

N.�/=ku�

N .�
N/kU

12: N N C 1
13: end while
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3.6 Numerical Results: Graetz Flow with Parametrized
Geometry and Lower and Upper Control Constraints

We consider a Graetz flow problem, which describes a heat convection and
conduction in a duct. The main goal of this example is to demonstrate the
different properties of the approximations and their error bounds. The problem is
parametrized by a varying Péclet number �1 2 Œ5; 18� and a geometry parameter
�2 2 Œ0:8; 1:2�. Hence, the parameter domain is D D Œ5; 18� � Œ0:8; 1:2�. The
parametrized geometry is given by ˝.�/ D Œ0; 1:5C �2� � Œ0; 1� and is subdivided
into three subdomains ˝1.�/ D Œ0:2�2; 0:8�2� � Œ0:3; 0:7�, ˝2.�/ D Œ�2 C
0:2; �2 C 1:5� � Œ0:3; 0:7�, and ˝3.�/ D ˝.�/ n f˝1.�/ [ ˝2.�/g. A sketch of
the domain is shown in Fig. 3.1. We impose boundary condition of homogeneous
Neumann and of non-homogeneous Dirichlet type: yn D 0 on �N.�/, and y D 1 on
�D.�/. Thus the trial space is given by Y.�/ � Ye.�/ D fv 2 H1.˝.�//I vj�D.�/ D
1g. The amount of heat supply in the whole domain ˝.�/ is regulated by the
distributed control u 2 U.�/ � Ue.�/ D L2.˝.�// and bounded by the lower
and upper constraints ua D �0:5 and ub D 1:25. The observation domain is

D̋.�/ D ˝1.�/ [ ˝2.�/ and the desired state is given by yd D 0:5 on ˝1.�/

and yd D 2 on ˝2.�/.
Overall, the parametrized optimal control problem is given by

min
Oy2Y.�/;Ou2U.�/

J.Oy; OuI�/ D 1

2
jOy � ydj2D.�/ C �

2
kOuk2L2.˝.�//

s.t.
1

�1

Z

˝.�/

rOy � r� dx C
Z

˝.�/

ˇ.x/ � rOy� dx D
Z

˝.�/

Ou� dx 8� 2 Y.�/;

.ua; �/U.�/ � .Ou; �/U.�/ � .ub; �/U.�/ 8� 2 U.�/C;

for the given parabolic velocity field ˇ.x/ D .x2.1 � x2/; 0/T . The regularization
parameter � is fixed to 0:01.

After recasting the problem to a reference domain ˝ D ˝.�ref/ D Œ0; 2:5� �
Œ0; 1� for �ref D .5; 1/, and introducing suitable lifting functions that take into
account the non-homogeneous Dirichlet boundary conditions, we can reformulate

Fig. 3.1 Domain ˝.�/ for
the Graetz flow problem with
distributed control
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the problem in terms of the parameter-independent FE space Y � Ye D H1
0.˝/

and U � Ue D L2.˝/ [12]. We then obtain the affine representation of all involved
quantities with Qa D Qf D 4, Qb D Qd D Qu D Qyd D 2, and Qua D 1. The details
of these calculations are very similar to the details presented by Rozza et al. [12] and
Kärcher [5], and are thus omitted. The inner product for the state space is given by
.w; v/Y D 1

�ref
1

R
˝

rw � rv dx C 1
2
.
R
˝
ˇ.x/ � rw v dx C R

˝
ˇ.x/ � rv w dx/ and we

obtain a lower bound ˛LB
a .�/ for the coercivity constant by the so-called min-theta

approach [12]. Note that for the control space we obtain a parameter-dependent
inner product .�; �/U.�/ from the affine geometry parametrization. Hence the control
error is measured in the parameter-dependent energy norm k�kU.�/. The derivations
of the primal and primal-slack error bounds remain the same in this case and they
bound the control error in the energy norm.

Although the introduction of a domain parametrization seems to add an entirely
new �-dependence to the primal and the slack problems (P) and (S), the reductions
and the error bound derivations can be analogously derived w.r.t. .�; �/U.�/ instead of
.�; �/U.�ref/. Also the definition of the integrated space UN in (3.3) remains, while in
the inf-sup condition of Remark 2 we use .�; �/U.�/ instead of .�; �/U.

We choose a P1 discretization for the state and adjoint, and a P0 discretization for
the control to obtain dim.Y/ D NY 	 11;000 and dim.U/ D NU 	 22;000. The
chosen discretization induces a discretization error of roughly 2%. In Fig. 3.2 we
present control snapshots and associated active sets for two different parameters
displayed on the reference domain ˝.�ref

2 D 1/. We observe strongly varying
control solutions and active sets.

We construct the RB spaces using the greedy procedure described in Algorithm 1
by employing an equidistant train sampletrain � D of size 30 �30 D 900 (log-scale
in �1 and lin-scale in �2) and stop the greedy enrichment after 30 steps. We also
introduce a test sample with 10 � 5 (log � lin) equidistant parameter points in
Œ5:2; 17:5� � Œ0:82; 1:17� � D .

(a) (b)

Fig. 3.2 Snapshots of active sets (upper row) and optimal control (lower row) on the reference
domain. The active (inactive) sets are displayed in light gray (gray). (a) � D .5; 0:8/. (b) � D
.18; 1:2/



3 A Certified RB Approach for Parametrized OCPs with Control Constraints 53

Fig. 3.3 Maximal relative
control errors and bounds
over the number of greedy
iterations. For each N the
maximal value over test is
displayed for both errors and
both bound

In Fig. 3.3 we present, as a function of N, the resulting energy norm errors and
bounds over test. Here, the errors and bounds are defined as follows: the primal-
slack bound is the maximum of �pr�sl

N .�/=ku.�/kU.�/ over test, the primal bound
is the maximum of �pr

N .�/=ku.�/kU.�/ over test, and the us and uN errors are the
maxima of ku.�/ � us.�/kU.�/=ku.�/kU.�/ and ku.�/ � uN.�/kU.�/=ku.�/kU.�/
over test, respectively. We observe that both errors and both bounds decay very
similarly. Quantitatively, the error bounds are comparable throughout all N, since the
dominating primal-slack terms krsukU0.�/ and �kus � usbkU.�/ are comparable to the

dominating primal terms krukU0.�/ and �.ı1Cı1b/, resulting in�pr
N .�/ 	 �

pr�sl
N .�/.

We briefly report the computational timings: the solution of the FE optimization
problem takes 	 4 s (for a discretization error of 2%). The RB primal problem,
for N D 25, is solved in 	 0:066 s and the RB slack problem is solved faster in
	 0:029 s, since dim.SN/ D 25. We turn to the evaluation of error bounds: the
primal bound takes 0:01 s, whereas the primal-slack bound, given 	N ; 	b;N , takes
0:0065 s. From this we can conclude that for N D 25 the overall cost for one primal
bound evaluation is roughly 0:076 s D 0:066 s C 0:01 s and for the primal-slack
bound evaluation is roughly 0:13 	 0:029 C 0:029 C 0:066 C 0:0065 s, since it
relies on three RB solutions.

3.7 Conclusions

In this paper we extended the ideas from [1] to propose two certified reduced
basis approaches for distributed elliptic optimal control problems with two-sided
control constraints: a primal and a primal-slack approach. Albeit the reduction
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for the primal approach was straightforward, the primal-slack approach needed
more consideration. We proposed for each constraint a corresponding RB slack
problem with an additional Lagrange multiplier. The primal a posteriori error bound
from [1] could be extended for the two-sided case by special properties of the
Lagrange multipliers of the two-sided problem. The primal-slack error bound also
relies on these properties and in addition uses three RB solutions to derive an
N -independent error bound. Both the primal and slack RB approximation can be
evaluated efficiently using the standard offline-online decomposition. However, on
the one hand the primal error bound depends on the FE control dimension and on the
other hand the primal-slack error bound relies on three reduced order optimization
problems.
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