
Chapter 29
Model Reduction for Coupled Near-Well
and Reservoir Models Using Multiple
Space-Time Discretizations

Walid Kheriji, Yalchin Efendiev, Victor Manuel Calo, and Eduardo Gildin

Abstract In reservoir simulations, fine fully-resolved grids deliver accurate model
representations, but lead to large systems of nonlinear equations to solve every
time step. Numerous techniques are applied in porous media flow simulations to
reduce the computational effort associated with solving the underlying coupled
nonlinear partial differential equations. Many models treat the reservoir as a whole.
In other cases, the near-well accuracy is important as it controls the production
rate. Near-well modeling requires finer space and time resolution compared with
the remaining of the reservoir domain. To address these needs, we combine Model
Order Reduction (MOR) with local grid refinement and local time stepping for
reservoir simulations in highly heterogeneous porous media. We present a domain
decomposition algorithm for a gas flow model in porous media coupling near-well
regions, which are locally well-resolved in space and time with a coarser reservoir
discretization. We use a full resolution for the near-well regions and apply MOR in
the remainder of the domain. We illustrate our findings with numerical results on a
gas flow model through porous media in a heterogeneous reservoir.
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29.1 Introduction

Proper reservoir management often is challenging to perform due to the intrinsic
uncertainties and complexities associated with the reservoir properties (see [31]).
To this end, accurate results for reservoirs are obtained if a fully-resolved, fine
grid discretization is used in the model. At every time step, this requires the
solution of large systems of nonlinear equations. The importance of obtaining a
simpler model that can represent the physics of the full system is paramount to
speed up the workflows that require many (from dozens to thousands) calls of the
forward model. This is usually the case in history matching (see [1, 27]), production
optimization problems (see [10]) and uncertainty quantifications (see [23]). Also,
the computational time of such large-scale models become the bottleneck of fast
turnarounds in the decision-making process and assimilation of real-time data into
reservoir models (see [16, 21]). Over the past decade, numerous techniques have
been applied in porous media flow simulation to reduce the computational effort
associated with the solution of the underlying coupled nonlinear partial differential
equations. These techniques range from heuristic approaches (see [25, 29]), to more
elegant mathematical techniques (see [3, 22]), explore the idea of reducing the
complexity of a model that can approximate the full nonlinear system of equations
with controlled accuracy. In many cases, reduced-order modeling techniques are a
viable way of mitigating computational cost when simulating a large scale model,
while they maintain high accuracy when compared with high fidelity models.
Reduced order modeling by projection has been used in systems/controls, frame-
work, such as the balanced truncation (see [22]), proper orthogonal decomposition
(POD) (see [11]), the trajectory piecewise linear (TPWL) techniques of Cardoso
and Durlofsky [6], empirical interpolation methods (see [12, 19]), bilinear Krylov
subspacemethods (see [17]) and quadratic bilinear model order reduction (see [20]).
Many of these simulation models treat the reservoir as a whole model, while near-
well regions in reservoir simulations usually require Local Grid Refinement (LGR)
and Local Time Stepping (LTS) due to several physical processes that occur in these
regions such as higher Darcy velocities, the coupling of the stationary well model
with the transient reservoir model, high non-linearities due to phase segregation
(typically gas separates) and complex physics such as formation damage models.
In addition the near-well geological model is usually finer in the near-well region
due to the higher availability of reliable data. Different approaches combining
LTS and LGR have been studied for reservoir simulation applications. The first
class of algorithms belongs to Domain Decomposition Methods (DDM). Matching
conditions are defined at the near-well reservoir interface with possible overlap, and
a Schwarz algorithm is used to compute the solution (see [13, 26]). A second class
of methods uses both a coarse grid on the full domain and a LGR in the near-well
grid (usually called windowing). These grids communicate both at the near-well
reservoir interface and also between the perforated fine and coarse cells. In [24],
Walid et al. combined these two latter approaches. An efficient iterative algorithm
is obtained using at the near-well reservoir interface, optimized Robin conditions
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for the pressure. DDM and MOR has been combined and applied in different multi-
physics problems (see [2, 4, 5, 8, 9], and [30]).

In this chapter, we combine the DDM algorithm developed in [24] with the
MOR technique developed in [18]. We describe model reduction techniques that
consider near-well and reservoir regions separately and use different spatial and
temporal resolutions to achieve efficient and accurate reduced order models. We
use full resolution to solve the near-well discretization and apply MOR (POD-
DEIM) in the rest of the domain. We use POD to construct a low-order model using
snapshots formed from a forward simulation with the original high-order model. In
the presence of a general nonlinearity, the computational complexity of the reduced
model still depends to the original fully-resolved discretization. By employing the
Discrete Empirical Interpolation Method (DEIM), we reduce the computational
complexity of the nonlinear term of the reduced model to a cost proportional to
the number of reduced variables obtained by POD.

This chapter is organized as follows.We first present in Sect. 29.2 a compressible
flow model in porous media. Then, in Sect. 29.3 we describe the local space and
time refinement discretization coupled with model order reduction using POD and
DEIM. Finally in Sect. 29.4 we illustrate the efficiency of our MOR-DDM algorithm
on 2D test cases both in terms of accuracy and CPU time compared with the
reference solution obtained using the LGR grid with global fine time stepping and
full resolution.

29.2 Compressible Flow Model in Porous Media

In this section we consider compressible phase flow in a porous media. The model
describes the injection of gas through a injector well in a 2D reservoir initially
saturated with gas. The velocity is given by the Darcy laws

V D � 1
�

K rp; (29.1)

where p is the pressure and � is the gas viscosity assumed to be constant. The rock
permeability is denoted by K and the rock porosity by �. Then, the pressure p is
solution of the following mass conservation equation.

8
ˆ̂
<

ˆ̂
:

� @t�. p/C r � .�. p/ V/ D 0; in ˝r � .0;T/;
�Krp � n D 0; on �r � .0;T/;

p D pbhp; on �w � .0;T/;
p D pinit; in ˝r � f0g;

(29.2)

where �. p/ is the mass density (assumed linear) and pbhp.t/ is the imposed bottom
hole pressure at the well boundary. To simplify notation, we assume that the
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Fig. 29.1 Example of
reservoir domain ˝r and
near-well subdomain ˝w with
the near-well reservoir
interface �rw, and the well
boundaries �w

r

well

w
w rw r

injection pressure pbhp.t/ is chosen such that �Krp � nw < 0 at the well boundaries
�w, where nw is the unit normal vector at the well boundaries outward to ˝r. The
case of producer wells could also be dealt without additional difficulties. The near-
well accuracy controls the injection (production) rate which motivates the use of a
near-well refinement of the spatial and temporal resolution for the simulation of this
model.

Let us denote by ˝w � ˝r the near-well region. In the following, the outer
boundary of the near-well region ˝w is denoted by �rw (see Fig. 29.1). We use
a model order reduction-domain decomposition method (MOR-DDM) to solve
Eqs. (29.1)–(29.2) with a coarse discretization in space and time in the reservoir
domain˝r and a locally refined space and time discretization in the near-well region
˝w. These discretizations are coupled by solving iteratively both subproblems on a
given time interval .tn�1; tn/ using appropriate interface conditions at �w and �rw.
A Robin condition for the pressure is used at the boundary �rw of the subdomain
˝w. At the well boundary �w of the domain ˝r, a total flux Neumann condition is
imposed.

29.3 Model Order Reduction Using Local Space and Time
Refinement

Instead of using a local grid refinement and a global fine time step size with full
resolution to solve Eqs. (29.1)–(29.2), we use a domain decomposition method
coupling the coarse discretization in space and time in the reservoir domain using
POD-DEIM with a fine discretization in space and time in the near-well domain
using full resolution. In the following, first the coarse and fine finite volume
discretizations of ˝r and ˝w are introduced, then we describe the MOR-DDM
algorithm with a single time step, and finally the extension taking into account local
time stepping schemes in the near-well domain is explained.
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29.3.1 Two Level Finite Volume Discretization

The discretization (see Fig. 29.2) starts from a coarse finite volume mesh of the full
reservoir domain˝r defined by

�
Mr;F

int
r ;Pw

�
;

whereMr is the set of coarse cells K, F int
r the set of coarse inner faces � , and Pw

the set of well perforations. The mesh is assumed to be conforming in the sense that
the set of neighbouring cells M� � Mr of an inner face � 2 F int

r contains exactly
two cells K and L. The inner face � is denoted by � D KjL. Considering that the
size of the cells is very large compared with the well radius, the wells are discretized
using Peaceman’s indices in each perforated cell [28]. For the sake of simplicity, the
well is assumed to be vertical with consequently, in our horizontal 2D case, a single
perforation. Let us denote by Pw the set of perforations � and by Kr

� 2 Mr the
corresponding perforated coarse cells.

A set of near-well coarse cells is assumed to be refined (coarse cells inside the
red boundary in Fig. 29.2) and the near-well mesh is obtained by adding a layer of

LGR: lgr

r

w rw

Fig. 29.2 Left: LGR meshM lgr. Top right: reservoir coarse meshMr. Bottom right: near-well fine
mesh Mw and near-well reservoir interfaces Frw
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coarse cells at the boundary of the union of the refined cells. The resulting near-well
mesh is defined by

�
Mw;F

int
w ;Frw;Pw

�
;

where Mw is the set of cells K, F int
w is the set of inner faces � , Pw is the set of

well perforations, and Frw � F int
r is the set of boundary faces corresponding by

construction to coarse faces. The fine perforated cells are denoted by Kw
� for all

perforations � 2 Pw as Fig. 29.2 displays. We assume that the near-well mesh is
conforming in the sense that the set of neighboring cellsM� � Mw of an inner face
� 2 F int

w contains exactly two cells K and L, and the inner face � is denoted by � D
KjL. At the near-well reservoir interface, for each face � 2 Frw, we assume that the
set of the two neighboring cells M� D fK;Lg is ordered such that K 2 Mw \ Mr

and L 2 Mr n Mw.
A cell centre finite volume discretization is used for the discretization of the

compressible flow model. We will denote by Pr (resp. Pw) the vector of cell
pressures Pr;K , K 2 Mr (resp. Pw;K , K 2 Mw). Let � D KjL be an inner coarse or
fine face, and nK;� the unit normal vector at the face � outward to the cell K. Let P
be the reservoir or near-well discrete pressure Pr or Pw. Assuming the orthogonality

of the mesh w.r.t. the permeability field K, the Darcy flux
Z

�

�Krp � nK;�d� is

approximated by the following conservative Two Point Flux Approximation (TPFA)
[14]

FK;� .P/ D T� .PK � PL/;

where T� is the transmissivity of the face � 2 F int
r or � 2 F int

w . A Two Point flux
approximation of the Darcy flux is also assumed at the near-well reservoir interface
� D KjL 2 Frw. It is denoted by

FK;� .Pw;K ;Pr;L/ D T� .Pw;K � Pr;L/;

where T� is the transmissivity of the face � . In the following DDM algorithm,
Pr;L represents the pressure interface value viewed by the near-well subdomain
in order to obtain the same finite volume discretization than the one obtained on
the single LGR mesh M lgr shown in Fig. 29.2. For each � 2 Pw, the Darcy fluxZ

�

�Krp � nK;�d� at the well perforation boundary is defined by the two point flux

approximation

Fs
K;� .Ps;K ;P� / D PIs� .Ps;K � P� /;

where P� denotes the pressure inside the perforation, K D Ks
� is the coarse (s D r)

or fine (s D w) perforated cell, and PIs� for s D r or s D w is the modified
transmissivity of the perforation � in the cell K obtained using the Peaceman
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formula which takes into account the singularity of the pressure solution at the well
(see [28]).

29.3.2 Model Order Reduction: Domain Decomposition
Method

At the near-well reservoir interface Frw, a Robin optimized interface condition is
used.

� pw C ˛ K rpw � nw D � pr C ˛ K rpr � nw; (29.3)

where nw is the normal at �rw outward˝w, and � and ˛ are two positive optimized
parameters (see [24]). The parameter ˛ is set to 1 and the parameter � is chosen
to optimize the convergence rate leading to an optimized DD algorithm. The
optimization of the coefficient� is done using existing theory for optimized Schwarz
methods (see [15]), the optimal parameter can be computed analytically in such a
way that the DDM algorithm converges in two iterations after time integration on
one coarse time step, without taking into account the local time stepping. On the
well boundary �w, a Neumann total flux condition is used. In our injection well
example, we obtain the following condition

��. pr/ 1
�
Krpr D ��. pbhp/ 1

�
Krpw; (29.4)

Let us consider, on the reservoir and near-well meshes, the same time discretiza-
tion t0; t1; � � � ; tN of the interval .0;T/ with t0 D 0, tN D T, and�tn D tn�tn�1 > 0,
n D 1; � � � ;N. The gas flowmodel in porousmedia is integrated by an implicit Euler
scheme. The discretization in space uses the TPFA discretization of the Darcy flow
together with an upwinding of the mass density with respect to the sign of the Darcy
flow. Let the reservoir and near-well solutions at time t n�1 be given. Let us denote
by xC D max.x; 0/ and x� D min.x; 0/. Then, knowing the near-well solution
Pw at time tn, the reservoir subproblem computes the solution Pr at time tn of the
conservation equations is given by:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

For each cell K 2 Mr;

�K
jKj
�tn

�
�.Pr;K/� �.Pn�1

r;K /
�

C
X

�DKjL2F int
r

�.Pr;K/

�
FK;� .Pr/

C C
X

�DKjL2F int
r

�.Pr;L/

�
FK;� .Pr/

�

C
X

�2Pw jKr
�DK

�. pbhp/

�
Fr
K;� .Pr;K ; pbhp/ D 0;

(29.5)
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coupled with the well perforations interface conditions for all � 2 Pw

�.pbhp/

�
Fr
K;� .Pr;K ; pbhp/ D �.pbhp/

�
Fw
K;� .Pw;Kw

�
; pbhp/: (29.6)

Knowing the solution Pr, the near-well subproblem computes the solution Pw, of
the conservation equations is given by:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

For each cell K 2 Mw;

�K

�
�.Pw;K/� �.Pn�1

w;K /
� jKj
�tn

C
X

�DKjL2F int
w

�.Pw;K/

�
FK;� .Pw/

C C
X

�DKjL2F int
w

�.Pw;L/

�
FK;� .Pw/

�

C
X

�DKjL2Frw

�.Pw;K/

�
FK;� .Pw;K ;Pw;� /

C C
X

�DKjL2Frw

�.Pw;� /

�
FK;� .Pw;K ;Pw;� /

�

C
X

�2Pw jKw
� DK

�. pbhp/

�
Fw
K;� .Pw;K ; pbhp/ D 0;

(29.7)

coupled with the following near-well reservoir interface conditions for all � D KjL

j� j��Pw;� � ˛�FK;� .Pw;K ;Pw;� / D j� j��Pr;� � ˛�FK;� .Pr;K ;Pr;� /; (29.8)

where j� j the lengh of the face � .
Model reduction is performed using POD and DEIM, to solve the reservoir

subproblem (29.5)–(29.6) coupled with a fully-resolved of the near-well subprob-
lem (29.7)–(29.8). POD constructs a low-order model using snapshots from a
forward simulation with the original high-ordermodel using fine time step and LGR
meshM lgr.

Let us denote by nr the number of cells in the mesh Mr located into the
subdomain˝r n˝w, by nw the number of cells in the mesh Mr located in the near-
well domain ˝w, and by np � nr the reduced pressure dimensional space. Given

a set of snapshots SP D
h
Pr.t1/;Pr.t2/; : : : :;Pr.tN/

i
2 R

nr�N , we apply a singular

value decomposition (SVD) on the matrix SP. The POD basis matrix ' 2 R
nr�np ;

corresponds to the first np left singular vectors. To extend the POD basis matrix to
the full reservoir domain and to keep the full well-resolution in the near-well region,
we define the following prolongation of the POD basis matrix

Q' D
�
' 0

0 Inw

�

2 R
nrw�npw ;



29 Model Reduction Using Multiple Space-Time Discretizations 479

where nrw D nr C nw and npw D np C nw, then the pressure is projected into the
reduced subspace as, Pr.t/ D Q'pr.t/, where pr.t/ 2 R

npw is the reduced solution.
POD is usually limited to problems with linear or bilinear terms. In the presence
of a general nonlinearity, the computational complexity of the reduced model
still depends to the finely resolved discretization. DEIM effectively overcomes
this shortcoming of the method. DEIM constructs a subspace to approximate the
nonlinear terms and selects points that specify an interpolation based projection
of dimension mp � nr to give a nearly optimal subspace approximation to the
nonlinear term (see [7, 18]).

Let us denote by Nr .Pr.t// the nonlinear term in the reservoir subproblem
(29.5)–(29.6), then for each cell K 2 Mr, .Nr .Pr//K is given by:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

.Nr .Pr//K D
X

�DKjL2F int
r

�.Pr;K/

�
FK;� .Pr/

C C
X

�DKjL2F int
r

�.Pr;L/

�
FK;� .Pr/

�

C
X

�2Pw jKr
�DK

�. pbhp/

�
Fr
K;� .Pr;K ; pbhp/

(29.9)

Let us define the diagonal matrix L D .jKj�K/K2Mr 2 R
nrw�nrw where �K

and jKj denote, respectively, the porosity and the surface of the cell K. Then the
system (29.5) can be rewritten in the following algebraic form:

1

�tn
L

�
�.Pr/ � �.Pn�1

r /
�

C Nr .Pr/ D 0: (29.10)

We replace Pr and Pn�1
r respectively by Q'pr and Q'pn�1

r and we project the system
(29.10) onto Q', then the reduced system of (29.10) is of the form:

1

�tn
Q'T L Q'

�
�.pr/ � �.pn�1

r /
�

C Q'T Nr . Q'pr/ D 0; (29.11)

We approximate the nonlinear functionNr on a linear subspace spanned by basis

vectors 	 D
�
 1; � � � ;  mp

�
2 R

nr�mp , obtained by applying POD to the snapshots

of the nonlinear function Nr W SNr D
h
Nr.Pr.t1//;Nr.Pr.t2//; � � � ;Nr.Pr.tN//

i
2

R
nr�N . Similarly to POD, to extend the DEIM to the full reservoir domain and

to keep the full well-resolution in the near-well region, we define the following
prolongation of the DEIM basis matrix

Q	 D
�
	 0

0 Inw

�

2 R
nlgr�mpw ;
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where mpw D mp C nw; then Nr � Pmpw

iD1 ci Q i D Q	c. Thus, DEIM selects only mpw

rows of Q	 to compute the coefficients c. This can be formalized using the selection
matrix

P D
h
e}1 ; : : : ; e}mpw

i
2 R

nlgr�mpw

where ei is the ith column of the identity matrix. Assume PT Q	 is nonsingular, the
reduced system (29.11) becomes

1

�tn
Q'T L Q'
„ ƒ‚ …
npw�npw

�
�.pr/� �.pn�1

r /
�

C Q'T Q	.PT Q	/�1
„ ƒ‚ …

npw�mpw

PT Nr . Q'pr/„ ƒ‚ …
mpw�1

D 0; (29.12)

When the nonlinearity is component-wise, the selection matrix PT can be
brought inside the nonlinearity Nr and hence the computational complexity of
PT Nr . Q'pr/ is independent of the fine grid dimension nlgr (size of high fidelity
model). This is obviously not applicable in our case . However, thanks to the
TPFA discretization, the evolution of each nonlinear element depends only to the
neighboring elements, and therefore it is possible to compute the nonlinear term
PT Nr . Q'pr/ independently of the fine grid dimension nlgr using a certain sparse
matrix data structure. Let Q'K the row of the basis matrix Q' corresponding to the cell
K 2 Mr, then Pr;K D Q'Kpr, and hence the Two Point flux approximation of the
Darcy flux can be rewritten in the following reduced order form

FK;� .Pr/ D T� .Pr;K � Pr;L/ D T� . Q'K � Q'L/pr D QFK;� . pr/

Using the notations above, Eq. (29.9) can be rewritten in the following reduced order
form
8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

. QNr . pr//K D
X

�DKjL2F int
r

�. Q'Kpr/
�

QFK;� . pr/C C
X

�DKjL2F int
r

�. Q'Lpr/
�

QFK;� . pr/�

C
X

�2Pw jKr
�DK

�. pr;� /

�
Fr
K;� . Q'Kpr; pr;� /;

(29.13)

with pr;� denotes the pressure inside the perforation. Let us denote by Ki the ith cell
in the reservoir meshMr. Then, a new formulation of Nr. Q'pr/ is provided by

Nr . Q'pr/ D
h
. QNr . pr//K1 ; : : : ; . QNr . pr//Knrw

iT 2 R
nrw ;

and thus

PT Nr . Q'pr/ D
h
. QNr . pr//K}1 ; : : : ; . QNr . pr//K}mpw

iT 2 R
mpw :
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Equation (29.12) coupled with the well perforations interface conditions for all � 2
Pw

�. pr;� /

�
PIs�. Q'Kr

�
pr � pr;� / D �. pbhp/

�
Fw
K;� .Pw;Kw

�
; pbhp/: (29.14)

Let us set

pr;Pw D
�
pr;� ; � 2 Pw

�
;

using these notations, we can rewrite the reservoir subproblem (29.12)–(29.14) as
follows

8
<

:

Rr

�
pr;pr;Pw

�
D 0;

BQT

�
pr;pr;Pw

�
D BQT

�
Pw; pbhp

�
;

where Rr denotes the system of reservoir conservation equation, and BQT denotes
the total flux boundary conditions at the well perforationsPw. Similarly, let us set

Pw;Frw D
�
Pw;� ; � 2 Frw

�
and Pr;Frw D

�
Q'Lpr; � D KjL; � 2 Frw

�
;

Similarly, we can rewrite the near-well subproblem (29.7)–(29.8) as follows

8
<

:

Rw

�
Pw;Pw;Frw

�
D 0;

Brobin

�
Pw;Pw;Frw

�
D Brobin

�
Pr;Pr;Frw

�
;

whereRw denotes the system of reservoir conservation equation, andBrobin denotes
the Robin boundary condition for the pressure at the interface �rw. Then, the MOR-
DDM algorithm, at a given time step tn, is the following multiplicative Schwarz
algorithm which computes the reservoir and near-well solutions pr, and Pw of the
coupled systems (29.12)–(29.14)–(29.7)–(29.8) solving successively the following
subproblems

8
<

:

Rr

�
pkr ;p

k
r;Pw

�
D 0;

BQT

�
pkr ;p

k
r;Pw

�
D BQT

�
Pk�1
w ; pbhp

�

8
<

:

Rw

�
Pk
w;P

k
w;Frw

�
D 0;

Brobin

�
Pk
w;P

k
w;Frw

�
D Brobin

�
pk
r ;P

k
r;Frw

�
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for k � 1 until the following stopping criteria is fulfilled:

dQ D
jBQT

�
Pk
w; pbhp

�
� BQT

�
Pk�1
w ; pbhp

�
j

jBQT

�
Pk
w; pbhp

�
j

	 "; (29.15)

for a given ".

29.3.3 Local Time Stepping

Let t0; � � � ; tN denote the coarse time discretization on the reservoir domain with
the coarse time stepping �tn D tn � tn�1 > 0, n D 1; � � � ;N. Each time
interval .tn�1; tn/ is discretized using a local time stepping scheme in the near-well
subdomain denoted by tn;m, m D 0; � � � ;Nn with �tn;m D tn;m � tn;m�1 > 0 for
all m D 1; � � � ;Nn, and tn;0 D tn�1, tn;Nn D tn. Firstly, the boundary conditions at
the near-well reservoir interface are interpolated in time between the two successive
coarse times tn�1 and tn:

8
<

:

Brobin

�
Pn;m;k
w ;Pn;m;k

w;Frw

�
D tn;m�tn�1

�tn Brobin

�
pk;nr ;P
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:

Secondly, at each well perforation of the reservoir coarse mesh, the time average of
the total flux between tn�1 and tn is imposed:
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�
:

To construct the reduced basis for the pressure and the nonlinear term at the offline
stage, we collect the snapshots at each coarse time step of the full global fine time
step resolution in the LGR meshM lgr.

29.4 Numerical Tests

The reservoir, defined by the two-dimensional domain˝r D .�L;L/� .�L;L/ with
L D 2:5 km, is assumed to be heterogeneous with porosity � and permeability K
shown in Figs. 29.3 and 29.4 (SPE10, top layer). The reservoir is initially saturated
with liquid (gas) at initial pressure pinit D 40 � 105 Pa. The bottom hole pressure
pbhp.t/ at offline stage and online stage are depicted in Fig. 29.5. The vertical well
injector of radius rw D 0:12m is located at the center of the reservoir. The gas mass
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Fig. 29.3 Porosity (SPE10)

Fig. 29.4 Permeability
(SPE10)
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Fig. 29.5 Given bottom hole pressure (pbhp)

density defined by

�. p/ D M

RT
p;

where R D 8:314 JK�1mol�1, the molar massM D 0:016Kg, the fixed temperature
T D 323 K. The gas viscosity is fixed to � D 13 � 10�6. The reservoir coarse mesh
Mr is the uniform Cartesian mesh Mr � Mr with Mr D 19 of step �x D 2L

Mr
D

263:15m. The near-well subdomain is defined by ˝w D .�Lw;Lw/ � .�Lw;Lw/
with Lw D 657m, and its mesh Mw is obtained, starting from the restriction of
the coarse mesh Mr to ˝w, by subdivision of all coarse cells in the subdomain
.�Lw C�x;Lw ��x/� .�Lw C�x;Lw ��x/ by a factor 3 in each direction leading
to nine square fine cells per coarse cell.

In order to construct our algorithm MOR-DDM, we solve the model (29.1)–
(29.2) on LGR mesh M lgr as shown in Fig. 29.2 for 30 days using the coarse
time step �t D 1 day, and a fine time stepping obtained by subdivision of each
coarse time step into five sub time steps and saved the snapshots of pressure
and the nonlinear term at each coarse time step. Thus, we have 30 snapshots
for the both pressure and the nonlinear term. Let us denote by MORnp;mp -DDM,
the reduced order model-domain decomposition algorithm obtained with np and
mp modes successively for the pressure and the nonlinear term. The solutions
obtained by the MORnp;mp -DDM algorithm are compared in term of accuracy
and CPU time to both the solution obtained with DDM algorithm and to the
reference solution obtained on the LGR mesh M lgr computed with the fine time
stepping.
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Fig. 29.6 Cumulative gas rate obtained at 30 days with different algorithms

Fig. 29.7 Pressure obtained at 30 days with fine discretization using full order

The well cumulative gas flow rate as a function of time obtained with different
algorithms (.np;mp/ 2 f1; 3; 5g2) is exhibited in Fig. 29.6. We show in Figs. 29.7
and 29.8 the pressure solution obtained at final time, successively for the reference
solution and for the MOR5;5-DDM algorithm. The figure shows that the solutions
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Fig. 29.8 Pressure obtained
at 30 days with
MOR5;5-DDM

converge to the reference solution on the LGR mesh with fine time stepping as the
number of modes increase

The convergence of the DDM iterations exhibited in Figs. 29.9 and 29.10
successively for DDM algorithm and for MORnp;mp-DDM algorithm (.np;mp/ 2
f1; 3; 5g2) is obtained in 2 iterations in both cases for the stopping criteria " D 10�2
on the relative well total flux maximum variation (29.15).

We finally give in Table 29.1, the CPU times and the relative pressure error
obtained with the reference LGR algorithm using the global fine time step, the DDM
algorithm and the MORnp;mp -DDM algorithms (.np;mp/ 2 f1; 3; 5g2).

These results show a factor of roughly 2 of gain in CPU time obtained with
DDM algorithm with an error equal to 0:16%. A factor of almost 4 of gain in
CPU time is obtained with our new algorithms MOR-DDM. This gains do not
include the snapshot generating offline cost and it seems to be not significant
compared to what usually obtained via MOR. However this disadvantage disappear
when we apply our DD-ROM algorithm in real case of reservoir simulation
application. First, the basis function generated at the offline stage will be re-
used for many different input and output data, therefore the cost of our algorithm
will be reduced too much compared to the re-used of the high fidelity model.
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Fig. 29.9 Convergence of dQ obtained by DDM algorithm using full order

Second, due to the use of a full order on the near-well region, the CPU gains
will increase whenever the size of the near-well region decreasing compared to
the rest of the reservoir. In our example the near well region is almost one fifth
of the reservoir domain whereas in real case the near well region is limited
to few meters and the reservoir stretches mostly over several tens of kilome-
ters.

The error obtained with the different modes number is close to the error obtained
with DDM algorithm using full order.
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Fig. 29.10 Convergence of dQ obtained by MOR3;3-DDM algorithm

Table 29.1 Relative pressure error and CPU time obtained with different algorithms

Methods CPU time (s) Pressure error

LGR-Fine time step-Full ordera 86 –

DDM-Full order 40 0:0016

MOR1;1-DDM 18 0:0102

MOR3;1-DDM 20 0:0177

MOR1;3-DDM 20 0:0154

MOR3;3-DDM 21 0:0049

MOR5;3-DDM 20 0:0050

MOR3;5-DDM 20 0:0050

MOR5;5-DDM 20 0:0044

aReference solution

29.5 Conclusion

A model order reduction algorithm for a compressible flow model in porous media
coupling near-well regions locally refined in space and time with a coarser reservoir
discretization has been presented. The algorithm is based on domain decomposition
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method and using POD locally for the pressure and DEIM locally for the nonlinear
term. The algorithm has been implemented in 2D for a gas flow through porous
media in a heterogeneous reservoir with an injection well. The numerical results
show good behavior of our algorithm that provides good accuracy compared to the
reference solution obtained with full order on LGR using a global fine time step.
Furthermore we observe important gains in CPU time for a cost approximately 4
times less. Compared with the solution obtained with full order using local time
step (DDM algorithm) we get a CPU time savings for a cost approximately 2 times
less.

Acknowledgements This publication was made possible by NPRP award [NPRP 7-1482-1-278]
from the Qatar National Research Fund (a member of The Qatar Foundation). Additionally, this
project was partially supported by the European Union’s Horizon 2020, research and innovation
programme under the Marie Sklodowska-Curie grant agreement N 644202.

References

1. Afra, S., Gildin, E., Tarrahi, M.: Heterogeneous reservoir characterization using efficient
parameterization through higher order svd (hosvd). In: American Control Conference. IEEE,
Portland, OR (2014)

2. Antil, H., Heinkenschloss, M., Hoppe, R.H.W., Sorensen, D.C.: Domain decomposition and
model reduction for the numerical solution of PDE constrained optimization problems with
localized optimization variables. Comput. Vis. Sci. 13(6), 249–264 (2010)

3. Antoulas, A., Sorensen, D., Gugercin, S.: A survey of model reduction methods for large-scale
systems. Contemp. Math. Numer. Algorithms 280, 193–220 (2001)

4. Baiges, J., Codina, R., Idelsohn, S.: A domain decomposition strategy for reduced order
models. Application to the Incompressible Navier-Stokes Equations. Comput. Methods Appl.
Mech. Eng. 267, 23–42 (2013)

5. Buffoni M., Telib, H., Lollo, A.: Iterative methods for model reduction by domain decomposi-
tion. Comput. Fluids 38(6), 1160–1167 (2009)

6. Cardoso, M., Durlofsky, L.: Use of reduced-order modeling procedures for production
optimization. SPE J. 15(2), 426–435 (2010)

7. Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpola-
tion. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010). doi:10.1137/090766498

8. Corigliano, A., Dossi, M., Mariani, S.: Domain decomposition and model order reduction
methods applied to the simulation of multi-physics problems in MEMS. Comput. Struct. 122,
113–127 (2013)

9. Corigliano, A., Dossi, M., Mariani, S.: Model order reduction and domain decomposition
strategies for the solution of the dynamic elastic-plastic structural problem. Comput. Methods
Appl. Mech. Eng. 290, 127–155 (2015)

10. Doren, J., Markovinovic R., Jansen, J.-D.: Reduced-order optimal control of water flood-
ing using proper orthogonal decomposition. Comput. Geosci. 10(1), 137–158 (2006).
doi:10.1007/s10596-005-9014-2. http://dx.doi.org/10.1007/s10596-005-9014-2

11. Doren, J.V., Markovinovic, R., Cansen, J.: Reduced-order optimal control of waterflooding
using pod. In: 9th European Conference of the Mathematics of Oil Recovery. EAGE, Cannes
(2004)

http://dx.doi.org/ 10.1007/s10596-005-9014-2


490 W. Kheriji et al.

12. Efendiev, Y., Romanovskay, A., Gildin, E., Ghasemi, M.: Nonlinear complexity reduction
for fast simulation of flow in heterogeneous porous media. In: SPE Reservoir Simulation
Symposium. Society of Petroleum Engineers, The Woodlands, TX. SPE 163618-MS (2013).
http://dx.doi.org/10.2118/163618-MS

13. Ewing, R.E., Lazarov, R.D., Vassilevski, P.S.: Finite difference schemes on grids with local
refinement on time and space for parabolic problems. Derivation, stability and error analysis.
Computing 45, 193–215 (1990)

14. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handb. Numer. Anal. 7, 713–
1018 (2000)

15. Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44, 699–731 (2006)
16. Ghasemi, M., Zhao, S., Insperger, T., Kalmar-Nagy, T.: Act-and-wait control of discrete

systems with random delays. In: American Control Conference (ACC), pp. 5440–5443. IEEE,
Montreal (2012). http://dx.doi.org/10.1109/ACC.2012.6315674

17. Ghasemi, M., Ashraf, I., Gildin, E.: Reduced order modeling in reservoir simulation using
the bilinear approximaion techniques. In: SPE Latin American and Caribbean Petroleum
Engineering Conference. Society of Petroleum Engineers, Maracaibo. SPE 169357-MS (2014).
http://dx.doi.org/10.2118/169357-MS

18. Ghasemi M., Yang, Y., Gildin, E., Efendiev Y., Calo, V.: Fast multiscale reservoir simulations
using POD-DEIM model reduction. In: SPE Reservoir Simulation Symposium. Houston, TX,
pp. 23–25 (2015)

19. Ghommem, M., Calo, V.M., Efendiev, Y., Gildin, E.: Complexity reduction of multi-phase
flows in heterogeneous porous media. In: SPE Kuwait Oil and Gas Show and Conference.
SPE, Kuwait City. SPE 167295 (2013)

20. Gildin, E., Ghasemi, M.: A new model reduction technique applied to reservoir simulation.
In: 14th European conference on the mathematics of oil recovery. European Association of
Geoscientists and Engineers, Sicily (2014). http://dx.doi.org/10.3997/2214-4609.20141820

21. Gildin, E., Lopez, T.J.: Closed-loop reservoir management: do we need complex models. In:
SPE Digital Energy Conference and Exhibition. The Woodlands, TX (2011)

22. Heijn, T., Markovinovic, R., Jansen, J.: Generation of low-order reservoir models using system-
theoretical concepts. SPE J. 9(2) (2004)

23. Jafarpour, B., Tarrahi, M.: Assessing the performance of the ensemble kalman filter for
subsurface flow data integration under variogram uncertainty. Water Resour. Res. 47(5) (2011)

24. Kheriji, W., Masson, R., Moncorgé, A.: Nearwell local space and time refinement in reservoir
simulation. Math. Comput. Simul. 118, 273–292 (2015)

25. Lerlertpakdee, P., Jafarpour, B., Gildin, E.: Efficient production optimization with flow-
network models. SPE J. 19, 1–83 (2014)

26. Mlacnik, M.J.: Using well windows in full field reservoir simulations. Ph.D. Thesis, University
of Leoben (2002)

27. Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse Theory for Petroleum Reservoir Characterization
and History Matching, vol. 1. Cambridge University Press, Cambridge (2008)

28. Peaceman, D.W.: Fundamentals of Numerical Reservoir Simulations. Elsevier, Amsterdam
(1977)

29. Queipo, N.V., Pintos, S., Rincón, N., Contreras, N., Colmenares, J.: Surrogate modeling-based
optimization for the integration of static and dynamic data into a reservoir description. J. Pet.
Sci. Eng. 35(3), 167–181 (2002)

30. Sun, K., Glowinski, R., Heinkenschloss, M., Sorensen, D.C.: Domain decomposition and
model reduction of systems with local nonlinearities. In: Proceedings of ENUMATH 2007.
The 7th European Conference on Numerical Mathematics and Advanced Applications, Graz,
pp. 389–396 (2008)

31. Voneiff, G., Sadeghi, S., Bastian, P., Wolters, B., Jochen, J., Chow, B., Gatens, M.:
Probabilistic forecasting of horizontal well performance in unconventional reservoirs using
publicly-available completion data. In: SPE Unconventional Resources Conference. Society of
Petroleum Engineers, The Woodlands, TX (2014)

http://dx.doi.org/10.2118/163618-MS
http://dx.doi.org/10.1109/ACC.2012.6315674
http://dx.doi.org/10.2118/169357-MS
http://dx.doi. org/10.3997/2214-4609.20141820

	29 Model Reduction for Coupled Near-Well and Reservoir Models Using Multiple Space-Time Discretizations
	29.1 Introduction
	29.2 Compressible Flow Model in Porous Media
	29.3 Model Order Reduction Using Local Space and Time Refinement
	29.3.1 Two Level Finite Volume Discretization
	29.3.2 Model Order Reduction: Domain Decomposition Method
	29.3.3 Local Time Stepping

	29.4 Numerical Tests
	29.5 Conclusion
	References


