
Chapter 16
Adaptive Sampling for Nonlinear
Dimensionality Reduction Based
on Manifold Learning

Thomas Franz, Ralf Zimmermann, and Stefan Görtz

Abstract We make use of the non-intrusive dimensionality reduction method
Isomap in order to emulate nonlinear parametric flow problems that are governed
by the Reynolds-averaged Navier-Stokes equations. Isomap is a manifold learning
approach that provides a low-dimensional embedding space that is approximately
isometric to the manifold that is assumed to be formed by the high-fidelity Navier-
Stokes flow solutions under smooth variations of the inflow conditions. The focus
of the work at hand is the adaptive construction and refinement of the Isomap
emulator: We exploit the non-Euclidean Isomap metric to detect and fill up gaps
in the sampling in the embedding space. The performance of the proposed manifold
filling method will be illustrated by numerical experiments, where we consider
nonlinear parameter-dependent steady-state Navier-Stokes flows in the transonic
regime.

16.1 Introduction

In [8], the authors proposed a non-intrusive low-order emulator model for nonlinear
parametric flow problems governed by the Navier-Stokes equations. The approach is
based on the manifold learning method Isomap [17] combined with an interpolation
scheme and will be referred to hereafter as Isomap+I. Via this method, a low-
dimensional embedding space is constructed that is approximately isometric to the
manifold that is assumed to be formed by the high-fidelity Navier-Stokes flow
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solutions under smooth variations of the inflow conditions. As with almost all
model reduction methods, the offline stage for the Isomap+I approach requires a
suitable design of experiment, i.e., a well-chosen sampling of high-fidelity flow
solutions, the so-called snapshots. The online stage, however, might be considered
as an adaptive way for choosing for each low-order prediction the most suitable
local snapshot neighborhood rather than using all available snapshot information
in a brute-force way. The notion of locality is based on the Isomap metric. The
focus of this article is on an adaptive construction and refinement of the underlying
design of experiment. Since Isomap comes with a natural non-Euclidean metric for
measuring snapshot distances, we make use of this metric to detect gaps in the
embedding space. By the (approximate) isometry between the embedding space
and the manifold of flow solutions, we obtain in this way a manifold filling design
of experiment. In contrast, standard approaches like the Latin Hypercube method
[6] aim at a parameter-space filling design of experiment. The performance of the
proposed manifold filling method is illustrated by numerical experiment, where
we consider nonlinear parameter-dependent steady-state Navier-Stokes flows in the
transonic regime.

Organization In Sect. 16.2, the Isomap-based emulator model is briefly introduced.
The adaptive sampling strategy based on the manifold characterization is developed
in Sect. 16.3.1, followed by a proof of concept in Sect. 16.3.2. Afterwards, the
methods are demonstrated for an engineering application in Sect. 16.4. Finally,
conclusions are drawn in Sect. 16.5.

16.2 The Isomap-Based Emulator Model

In this section, we briefly review the manifold learning based approach to emulate
steady-state flows governed by the Reynolds-averagedNavier Stokes (RANS) equa-
tions that was introduced in [7, 8]. For background information on computational
fluid dynamics see, e.g., [3], for an introduction to differentiable manifolds see,
e.g., [16].

Let M � R
n be an embedded submanifold in the Euclidean space with intrinsic

dimension dim.M / D d < n. Let W � M be an open domain in M such that
there exists a coordinate chart1 h W W ! Y onto an open domain Y � R

d. The
fundamental objective of manifold learning (ML) [5, 18] is to solve the isometric
embedding problem [2, 18], which we reformulate as follows:

For a given finite set of sampled data points W D fW1; : : : ;Wmg � W � R
n compute

an approximation of the coordinate chart h such that the restriction to the discrete sample
points

hjW W W � W D fW1; : : : ;Wmg ! Y D fy1; : : : ; ymg � Y ; h.Wi/ D yi;

1i.e., a bijective both-ways differentiable mapping.
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is such that the image point set Y features (approximately) the same inter-point distances as
the high dimensional data set W.

One of the most popular ML methods is Isomap [17]. Isomap works by approxi-
mating the geodesic distance between data vectors Wi and Wj via computing the
length of an Euclidean polygon course that connects Wi and Wj. The polygon
course is determined based on a graph-theoretical shortest path problem, which
is detailed in [8] and [17]. The basic idea is illustrated in Fig. 16.1a. Once the
geodesic distances are estimated, a distance matrix D 2 R

m�m is formed, where
the entry dij, i; j D 1; : : : ;m, is the approximated geodesic distance between Wi

andWj. The next step is to employ classical multidimensional scaling [11, Sect. 14]
with the distance matrix D as an input. This results in a data set Y D fy1; : : : ; ymg
with

�
�yi � yj

�
� � dij for i; j D 1; : : : ;m. Moreover, the data set Y is tuned for

the envisioned application by minimizing an additional loss function afterwards,
see [7, Sect. 4.3.1]. The resulting embedding space when applying Isomap to the
‘swiss roll’ standard example in manifold learning (see Fig. 16.1b) is displayed in
Fig. 16.1c.

So far, we have constructed a low-dimensional representation of the high-
dimensional input data. In order to obtain a valid emulator, a mapping from
the low-dimensional space to the high-dimensional manifold is required. As it is
common in many model reduction methods, including proper orthogonal decom-

(a)

(b)

(c)

Fig. 16.1 Left: Geodesic distances vs. Euclidean distances. Right: The ‘swiss roll’ standard
example. (a) Approximation of the geodesic distance. (b) Swiss roll: Original data set in R

3. (c)
Swiss roll: Isometric embedding in R2
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position [12] and the reduced basis method [15], we assume that the output of the
emulator is a linear combination of the input snapshots. In our setting, the input data
vectors stem from solutions to the RANS equations under parametric variations, i.e.,
Wj D W.p j/, where p j is the parameter vector specifying the inflow conditions.
The ansatz at an untried flow condition p� is W.p�/ D Pm

jD1 aj.p
�/Wj: Hence,

the nonlinear parametric dependency is in the coefficients aj D aj.p/ while the
snapshots Wj are fixed. The essential idea of manifold learning is to localize the
information in the sense that only the N nearest neighbors fWj D W.p j/j j 2
I ; jI j D Ng contribute to W.p�/, where the notion of proximity depends on
the Isomap metric.

The exact procedure is as follows: If the flow at p� is to be emulated, we then
first determine the corresponding location in the embedding space y� D y.p�/ 2 R

d

via multivariate interpolation based on the embedded data set f.p j; yj/gmjD1. Isomap
provides us with the nearest neighbors fyj j j 2 I g of y�. Next, we represent
y� approximatively as a weighted linear combination of the nearest neighbors as
y� � P

j2I ajyj, where we determine the weights aj via the following optimization
problem:

min
a2RN

ky� �
X

j2I
ajy jk2

2 C kak2
c s. t.

X

j2I
aj D 1; (16.1)

with penalty term

kak2
c WD

X

j2I
cja

2
j ; cj D "

 �
�y� � y j

�
�

2

maxifky� � yik2g

!k

; 0 < " � 1; 1 < k 2 N:

The penalty term weights the influence of the snapshots based on their distance
to the prediction point y�. Let a� 2 R

N be the solution to (16.1). Because of
the inherent (approximate) isometry between the snapshots Wj and the locations
yj in the embedding space, we use the same weight vector to construct the high-
dimensional flow state

W� D
X

j2I
a�j Wj: (16.2)

The extra condition in Eq. (16.1) is such that when the whole set of embedded
snapshots y j, j 2 I , is translated via T W y 7! y C � to a new set z j D T.yj/,
j 2 I , then

T.y�/ D y� C � D .y1; : : : ; yjI j/a C � D .z1; : : : ; zjI j/a D z�:

Best practice settings for the meta-parameters "; k and further details are given in
[7]. In addition, a heuristic choosing the size of the neighborhoodI automatically
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is developed in [7] and employed for all conducted predictions. We call the above
process Isomap+I.

16.3 Adaptive Sampling

The algorithmic efficiency and the numerical accuracy of the Isomap-based emu-
lator strongly depend on the selected input information. Computing the input
snapshots is costly by nature, because high-fidelity solutions to the very system that
is to be emulated are required. Moreover, spatial sampling methods suffer from the
curse of dimensionality [6, Sect. 1.1] in the sense that the number of sample points
that is required to achieve a certain sampling density grows exponentially with the
spatial dimension. To keep the number of full system solves as small as possible, we
present an incremental sampling method that attempts to create a homogeneously
distributed data set of the manifold based on geometric information.

16.3.1 Manifold Filling Adaptive Sampling Strategies

As outlined in Sect. 16.2, Isomap preserves the interpoint distances of the underlying
manifold domainW . This property is what we exploit for detecting gaps in the input
data set.

Let fy1; : : : ; ymg D Ym � R
d be the low-dimensional representative of the large-

scale input snapshot set fW1; : : : ;Wmg D Wm � R
n and let y W P ! R

d with
y.p j/ D yj, p j 2 P � R

d, j D 1; : : : ;m. If there is a location yg 2 fy.p/ j p 2 Pg
and a radius � > 0 such that the � -ball B� .yg/ D fQy 2 R

d j kyg � Qyk2 < �g does
not contain any sampled representatives, i.e., y j … B� .yg/8j D 1; : : : ;m, then we
say that there is a gap of size � at yg 2 fy.p/ j p 2 Pg. The objective is to detect
these gaps and fill them by adding suitable snapshots to the input data set.

We device an iterative adaptation process. LetP � R
d be the parameter domain

of interest and let P Qm D fp1; : : : ;p Qmg � P be a set of Qm 2 N preselected sample
locations. Moreover, let 1 � i � m � Qm be the number of the current iteration of
the adaptive sampling process, where i;m 2 N and m > Qm is the maximal number
of affordable snapshots. Starting with the initial design of experiment (DoE) of Qm
snapshots W Qm D fW1; : : : ;W Qmg � R

n, where Wj D W.p j/, the associated initial
embedding Y Qm D fy1; : : : ; y Qmg � R

d is calculated via Isomap.
The procedure to detect gaps is as follows: For a given location p 2 P the

corresponding location in the embedding space y W P ! R
d is determined via

interpolation based on the data set of current sample locations f.p j; y j/g QmjD1, cf.
Sect. 16.2. Then, the weighted sum of the distances of the N 2 N nearest neighbors
yj; j 2 I to y.p/ is calculated:

dist.y.p// WD dmin.y.p//

dmax.y.p//

X

j2I
ky.p/ � yjk2; (16.3)
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Algorithm 1Manifold filling adaptive sampling algorithm
Require: Desired number of snapshots m, number of initial snapshots Qm
1: Generate Qm < m parameter values p1; : : : ; p Qm 2P, e.g. via LHS
2: P fp1; : : : ; pQmg
3: Compute snapshot solutionsW.p/ at each parameter value p 2 P
4: W fW.p1/; : : : ;W.p Qm/g F initial sampling
5: for i D 1 to m� Qm do
6: Calculate embedding Y of the generated snapshot set W via Isomap
7: Compute interpolation model for y based on f.p j; y j/g QmCi�1

jD1

8: Determine p� 2P by maximizing Edist or Erec

9: Compute snapshot solution W� at parameter configuration p� 2P
10: P P[ fp�g
11: W  W [ fW�g
12: end for
13: return SetW of m snapshots

where dmin.y.p// D minj2I ky.p/ � y jk2 and dmax.y.p// D maxj2I ky.p/ � y jk2.
The distance function (16.3) is multiplied by an indicator function !:

Edist.y.p// WD dist.y.p// � !.p/; !.p/ D
(

1 if p 2 P;

0 else,
(16.4)

which ensures that the adaptation process takes place only in the inside of the
parameter domain of interest. The maximizer p� D argmaxEdist.y.p// determines
the next snapshot to be added to the model. The above method will be referred to
as the maximum distance error (MDE) strategy. A pseudo code of this method is
outlined in Algorithm 1.

On top of the distance based error criterion (16.4), we introduce a reconstruction
error indicator that yields reliable results when the manifold is sufficiently homo-
geneously sampled, i.e. the sampling does not divide into disconnected clusters.
Let Y QmCi�1 be the embedding data set at iteration i � 1 of the adaptive sampling

process. For each y j 2 Y QmCi�1, we compute a prediction OW.y j/ D OW j
based on its

N nearest neighbors and the relative error Erel.y j/ D k OW j�W jk2
kW jk2 to the corresponding

snapshotW j. Note that y j is not counted as a neighbor of itself and hence OWj ¤ Wj.
Subsequently, interpolation is performed to approximate the relative error at an
arbitrary location y … Y QmCi�1 based on the data set f.y j;Erel.y j//g QmCi�1

jD1 . To ensure
that the error is zero at the given sample points, the reconstruction error is defined
as

Erec.y.p// WD Erel.y.p// � Edist.y.p//: (16.5)

Since an almost homogeneously sampled manifold must be given, we employ the
error function Erec only every kth iteration in practice. For the remaining iterations
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Edist is utilized exclusively to ensure a homogeneously distributed manifold. The
resulting hybrid error sampling strategy is referred to as HYE in the following.

Remark 1 It is not a necessity that we add only one snapshot per iteration. In each
iteration, we may choose to determine several local maximizers to Edist and Erec,
respectively, and add the corresponding snapshots to the information pool.

Choice of the Initial Sampling Plan and Starting Points for Optimization When
starting from scratch, the initial sampling plan of Qm points in the parameter
domain of interest P is chosen randomly. More precisely, we employ either space
filling random Latin Hypercube Sampling (LHS) [6] or Halton sequences [9] to
construct the initial DoE. The selection of the starting points for the maximization
of either (16.4) or (16.5) requires special consideration as the objective functions
features many local maxima. We make the following differentiation:

1. If the initial DoE P D fp1; : : : ;p Qmg is such that its convex hull coincides with the
parameter spaceP of interest, then we treat the convex hull of the corresponding
embedding points Y D fy1; : : : ; y Qmg as the domain of interest in the embedding
space, even though the mapping is not convex in general. In this case, we perform
a Delaunay triangulation [14] of Y and determine the centers y.ci/ 2 conv.Y/,
i D 1; : : : ; l of the Delaunay simplices of largest volume. The corresponding
locations p.y.ci// 2 P are selected as starting points for optimizing (16.4).
(The p.y.ci// are found via interpolation.)

2. Otherwise, we perform another space filling LHS to create the starting points
randomly in order to avoid clustering effects. This procedure is also followed
for determining the starting points for optimizing (16.5) in order to increase the
probability to locate the global maximum.

16.3.2 Proof of Concept

In this section, we illustrate the performance of Algorithm 1 on two academic
examples.

Detection of Gaps Reconsider the swiss role, parameterized by two parameters t
and h:

s W P ! W � R
3; .t; h/ 7! .t cos.t/; h; t sin.t//; P D Œ 3

2
�; 9

2
�/ � Œ0; 21/

To artificially create a hole in the sample set, we exclude the rectangle .9:5; 10:5/ �
.8; 13/ from the parameter domain and construct an initial random-based DoE P of
jPj D 748 sample points inP n .9:5; 10:5/ � .8; 13/.

Now, we conduct a single step of Algorithm 1, where we perform step 8 with
respect to (16.4) and consider only the single nearest neighbor in evaluating the
distance function (16.3). This results in an optimal location p� 2 P that is displayed
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Fig. 16.2 Detection of a gap in the DoE illustrated for the swiss roll. (a) Point cloud and detected
gap center in the parameter domain P. (b) Point cloud and detected gap center in the embedding
domain Y . (c) Point cloud and detected gap center on the swiss roll manifold W

Fig. 16.3 Curved plate: Locations of the initial and refined parameter samples. (a) Initial
parameter sampling. (b) Refined sample set

in Fig. 16.2a. Figure 16.2b, c depict the corresponding point y� D y.p�/ in the
embedding space and s.p�/ 2 R

3 on the swiss roll manifold, respectively.

Manifold Filling As a second academic example, we consider a curved plate
parameterized by

c W P ! W � R
3; .t; h/ 7! . t2

10
cos.t/; h; t2

10
sin.t//; P D Œ 3

2
�; 3�� � Œ0; 21�:

We start with a Latin hypercube sampling of 40 data points selected from the
interior ofP and add the four corner points of the rectangleP , see Fig. 16.3a. The
corresponding initial sample data set W44 � W and its discrete Isomap embedding
Y44 are depicted in Fig. 16.4a, b, respectively.

We detect the regions of low sampling density via the MDE approach. The
starting points for the optimization procedures are chosen by a LHS of size 30 in
each iteration. In Fig. 16.4c, d, the generated snapshot set W QmCi and its embeddings
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Fig. 16.4 Manifold filling adaptive sampling strategy illustrated for a curved plate. (a) W44 � W .
(b) Y44 � Y . (c) W194 � W . (d) Y194 � Y

after i D 150 iterations is shown, respectively.2 The QmCi D 194 parameter locations
in P associated with the final refined snapshot set are depicted in Fig. 16.3b. Note
that the sampling plan is denser for larger t, which is in line with the fact that the
function c exhibits a higher angular velocity for increasing t.

16.4 An Engineering Example

As an engineering application, we emulate the high-Reynolds number flow past the
two-dimensional NACA64A010 airfoil in the transonic flow regime. The geometry
of the airfoil is shown in Fig. 16.5b. The hybrid unstructured grid features 21; 454

grid points, including 400 surface grid points, and is depicted in Fig. 16.5.
The objective is to emulate the distribution of the pressure coefficient Cp on the

surface of the airfoil under varying angle of attack, ˛, and Mach number, Ma. To

2The number of nearest neighbors used for the embedding was chosen automatically in each
iteration according to [7, Sect. 4.3.3].
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Fig. 16.5 Computational grid for the NACA64A010 airfoil. (a) View of the entire flow field. (b)
Detailed view close to the surface

Fig. 16.6 Left: Locations of the snapshots and various prediction points in the ˛-Ma-space
for the NACA64A010 test case. Furthermore, the employed snapshots for the prediction at
.˛;Ma/ D .6:5ı; 0:75/ are encircled. Right: Representatives within the embedding space colored
corresponding to the angle of attack ˛ (top) and the Mach number Ma (bottom)

this end, we generate a snapshot set of flow solutions, where the initial parameter
locations P are selected via a LHS of m D 30 samples from in the parameter space
P D f.˛;Ma/ 2 Œ4ı; 10ı� � Œ0:74; 0:82�g, see Fig. 16.6. The corresponding viscous
flow solution snapshots W.p/, p 2 P, are computed with DLR’s RANS solver
TAU [10] using the negative Spalart-Allmaras one-equation turbulence model [1].
Convergence is detected based on a reduction of the normalized density residual
by seven orders of magnitude in each solver run. The Reynolds number is fixed
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throughout at a value of Re D 7;500;000. Computing a full CFD solution under this
conditions took 474 iterations or 63 CPU seconds on average.3

From the flow solution snapshots, we extract the vectorsW.p/, p 2 P containing
the discretized surface-Cp distributions, which form our initial point cloud W.
Since in this test case two varying parameters are considered, the full-order
solution manifold W D fW.˛;Ma/; .˛;Ma/ 2 Pg � R

400 is of intrinsic
dimension two.4 The low intrinsic dimension is not a technical requirement, but
an natural assumption in the context of model order reduction. We use the Isomap+I
process of Sect. 16.2 to predict the Cp distributions at untried parameter locations
and compare the results to the approximations computed via proper orthogonal
decomposition combined with interpolation, which yields predictions at untried
parameter combinations by interpolating the POD coefficients as done in [4]. This
method will be referred to as POD+I in the following. Both interpolation based
ROMs are coupled with the RBF interpolation using a TPS kernel augmented by a
polynomial ' 2 ˘1 [6, 13], ' W Rd ! R, where ˘1 is the space of polynomials
of degree of at most one. Prior to each interpolation process, the sample locations
in the parameter space are scaled to the unit hypercube, with the result that the
input scaling is normalized and does not thwart the Isomap metric. The TPS kernel
has been chosen for its good approximation quality and robustness based on best
practice observations made in [19]. The first author’s thesis features the results at
all the prediction points indicated in Fig. 16.6. Here, we display only the worst
result, which is obtained at .˛;Ma/ D .6:5ı; 0:75/, since we aim at improving the
prediction by adaptively refining the snapshot sampling according to the MDE and
HYE strategy. The nine nearest neighbors on the manifold that are used to compute
the prediction are encircled in Fig. 16.6 and the resulting Cp distribution is shown in
Fig. 16.7.

We start with an initial DoE of 5 sample points generated by a Halton sequence,
where none of the points is considered to lie on the boundary of P . We perform
25 iterations of Algorithm 1 to arrive at a final sampling of 30 snapshots. In
both sampling strategies, we consider only the nearest neighbor when evaluating
the objective function (16.4). In the hybrid strategy HYE, we maximize (16.5)
instead of (16.4) in every third iteration. In Table 16.1, we list the mean relative
error, the standard deviation and the maximum relative error for the Isomap
emulator associated with the adaptively refined data sets obtained via the MDE
strategy and the HYE strategy, respectively.5 For comparison, we include the errors
corresponding to Isomap emulators based on the non-adaptive random DoEs of the
same cardinality 30 that are obtained by a Halton sequence and a space filling

3All computations were conducted sequentially on the same standard desktop computer endowed
with an Intel® Xeon® E3-1270 v3 Processor (8M Cache, 3.50GHz) and 32 GB RAM.
4For applications where the dimension of the manifold is unknown, there exist various methods to
estimate the intrinsic dimensionality of the data, e.g. by looking for the “elbow” [17].
5Error quantification is with respect to the surface Cp distributions and is based on 2500 uniformly
distributed TAU reference CFD solutions.
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Fig. 16.7 Surface Cp distribution at .˛;Ma/ D .6:5ı; 0:75/. The upper and lower curves
correspond to the suction and pressure side of the airfoil, respectively. Results obtained based
on a non-adaptive random sampling of 30 input snapshots. (a) Complete surface Cp distribution.
(b) Detailed view close to shock

Table 16.1 The mean relative error, its standard deviation and the maximum relative error after a
full sampling process of various sampling strategies/designs for the NACA64A010 test case

Method Mean rel. error STD. deviation Max. rel. error

MDE 2:3347 � 10�2 1:6616 � 10�2 9:2956 � 10�2

HYE 2:1903 � 10�2 1:0320 � 10�2 5:3337 � 10�2

Halton 2:6670 � 10�2 2:7398 � 10�2 2:3016 � 10�1

LHS 3:1262 � 10�2 2:6257 � 10�2 1:8009 � 10�1

LHS. The adaptive sampling strategies developed here yield samplings with a
smaller change of the relative errors than in both random samplings. Hence the
maximum relative error is closer to the mean relative error, which leads to a more
reliable global emulator with less outliers in prediction accuracy. Note, that the
mean relative errors are also smaller for the adaptive strategies. The embeddings
of the final samplings are shown in Fig. 16.8. As aspired by MDE, the embedding
of the corresponding sampling is quite evenly distributed. This also holds for the
embedding of the sampling obtained by HYE, even if Erec is applied in every third
iteration. In contrast, the embeddings of both random samplings feature close-by
points, which may lead to redundant information.

We use the HYE-adaptively constructed emulator to predict the surface pressure
at the flow condition of .˛;Ma/ D .6:5ı; 0:75/, where a poor approximation quality
was observed in Fig. 16.7. Recall that those results were obtained with the same
number of 30 input snapshots, but chosen randomly (LHS) rather than adaptively.

The Cp-distributions obtained from the emulators are shown in Fig. 16.9a, where
we compare the CFD reference and the Isomap+I and the POD+I emulators. As
can be seen, both the Isomap+I and the POD+I predictions greatly benefit from the
adaptive sampling process. (Compare Figs. 16.7, 16.8, and 16.9a.) The Isomap+I
prediction matches the reference solution with high accuracy throughout by using
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Fig. 16.8 Embeddings of the final samplings obtained by various sampling methods and DoEs for
the NACA64A010 test case

Fig. 16.9 Prediction of the surface Cp-distribution at .˛;Ma/ D .6:5ı; 0:75/ based on 5 initial
plus 25 adaptively sampled snapshots via HYE. (a) Prediction of the surface Cp-distribution at
.˛;Ma/ D .6:5ı; 0:75/. (b) HYE based final sampling
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only three neighboring snapshots (see Fig. 16.9b). The POD+I based prediction only
shows a small mismatch upstream of the shock.

16.5 Conclusions

We have developed two adaptive sampling strategies, referred to as the maximum
distance error (MDE) and the hybrid error (HYE) strategy, respectively, that aim at
determining sample locations in a given parameter domain of interest such that a
well-distributed homogeneous design of experiment is achieved in the embedding
space with as few high-fidelity sample computations as possible. The underlying
assumption is that the sample data is contained in a submanifold of low intrinsic
dimension that is embedded in a large-dimensional Euclidean vector space. Thus,
the notions of ‘well-distributed’ and ‘homogeneous’ are to be understood with
respect to the geometry of this submanifold.

Both adaptive sampling methods try to generate manifold filling sample data
sets such that the essential geometric characteristics of the underlying submanifold
are captured. The MDE strategy relies on the geodesic interpoint distances that are
approximated using the Isomap manifold learning technique. The HYE strategy
additionally considers the reconstruction error of an Isomap+I emulator during the
sampling process, such that the sample density in the highly nonlinear regions of
the manifold, where the error is expected to be larger, is augmented.

In the numerical experiments, we have shown that the adaptive sampling
strategies eventually lead to more accurate emulators than when using space filling
random samplings of the same cardinality. More precisely, the advantages over
random samplings have been demonstrated for an Isomap-based emulator of the
viscous flow around the 2D NACA64A010 airfoil. Moreover, we observed that the
standard POD-based flow emulator also benefits from the Isomap-induced adaptive
sampling process.
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