
Chapter 1
Two Ways to Treat Time in Reduced Basis
Methods

Silke Glas, Antonia Mayerhofer, and Karsten Urban

Abstract In this chapter, we compare two ways to treat the time within reduced
basis methods (RBMs) for parabolic problems: Time-stepping and space-time vari-
ational based methods. We briefly recall both concepts and review well-posedness,
error control and model reduction in both cases as well as the numerical realization.
In particular, we highlight the conceptual differences of the two approaches.

We provide numerical investigations focussing on the performance of the RBM
in both variants regarding approximation quality, efficiency and reliability of the
error estimator. Pro’s and Con’s of both approaches are discussed.

1.1 Introduction

Parametrized partial differential equations (PPDEs) often occur in industrial or
financial applications. If simulations are required for many different values of the
involved parameters (“multi-query”), fine discretizations that are needed for a good
approximation may resolve in high dimensional systems and thus in (for many
applications too) long computation times. The reduced basis method (RBM) is
by now a well-known model reduction technique, which allows one to efficiently
reduce the numerical effort for many PPDEs by precomputing a reduced basis in an
offline phase (using a detailed model, sometimes called “truth”) and evaluating the
reduced model (for new parameter values) highly efficient in the online phase.

Here, we focus on time-dependent problems of parabolic type in variational
formulation and describe two different approaches. The maybe more standard one
is based upon a time-stepping scheme in the offline phase. The reduced basis is then
usually formed by the POD-Greedy method [3, 5], which results in a reduced time-
stepping system for the offline phase. The second approach that we wish to discuss,
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is based upon the space-time variational formulation of the parabolic problem, in
which the time is taken as an additional variable for the variational formulation.
This results in a Petrov-Galerkin problem in d C 1 dimensions (if d denotes the
spatial dimension). The reduced basis is then formed by a standard Greedy approach
resulting in a reduced space-time Petrov-Galerkin method [13, 14].

The aim of this paper is to provide a comparison of these two methods in
order to identify similarities and conceptual differences of the two approaches.
It complements and completes a recent similar comparison in [2] for discrete
instationary problems.

The remainder of this chapter is organized as follows. We start in Sect. 1.2 by
reviewing both variational formulations of parabolic PDEs. A brief survey of the
RBM is contained in Sect. 1.3. Section 1.4 is devoted to the description of the POD-
Greedy/time-stepping method for the RBM, whereas Sect. 1.5 contains the space-
time RBM. Our numerical experiments as well as the comparisons are presented in
Sect. 1.6. We finish with some conclusions in Sect. 1.7.

1.2 Variational Formulations of Parabolic Problems

Let V ,! H be separable Hilbert spaces with continuous and dense embedding. The
inner products and induced norms are denoted by .�; �/H, .�; �/V and k � kH , k � kV ,
respectively. We identify H with its dual yielding a Gelfand triple V ,! H ,! V 0.

Let 0 < T < 1 be the final time, I WD .0;T/ the time interval and ˝ � R
d an

open spatial domain. We consider a linear, bounded operator A 2 L.V;V 0/ induced
by a bilinear form a.�; �/ W V � V ! R as hA�; iV0�V D a.�;  /.1 We require the
bilinear form to satisfy the following properties

ja.�;  /j � Mak�kVk kV ; �;  2 V .boundedness/ (1.1a)

a.�; �/C �ak�k2H � ˛ak�k2V ; � 2 V .Gårding inequality/
(1.1b)

with constants Ma < 1, ˛a > 0, �a � 0. Then, we consider the parabolic initial
value problem of finding u.t/ 2 V , t 2 I a.e., such that

Pu.t/C Au.t/ D g.t/; in V 0; u.0/ D u0 in H; (1.2)

where g 2 L2.IIV 0/ and u0 2 H are given.

1For simplicity, we restrict ourselves to Linear Time-Invariant (LTI) systems. However, much of
what is said also holds for time-variant operators A.t/.
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1.2.1 Semi-variational Formulation

The maybemore standard approach consists of multiplying (1.2) with a test function
� 2 V and form the inner product inH (i.e., in space only). This leads to an evolution
problem in V 0, i.e.,

find u.t/ 2 V W .Pu.t/; �/H C a.u.t/; �/ D .g.t/; �/H ; � 2 V; t 2 I a.e. (1.3)

It is well-known that (1.3) is well-posed thanks to (1.1), see e.g. [15, Theorem 26.1].
Since the variational formulation is w.r.t. space only, we call it semi-variational.

1.2.2 Space-Time Variational Formulation

We now follow [12] for the description of a variational formulation of (1.2) w.r.t.
space and time. This approach leads to a variational problem with different trial and
test spaces X and Y, both being Bochner spaces, namely

X WD L2.IIV/ \ H1.IIV0/ D fv 2 L2.IIV/ W v; Pv 2 L2.IIV0/g; Y WD L2.IIV/ � H;

with norms kwk2
X

WD kwk2L2.IIV/ C k Pwk2L2.IIV0/
, w 2 X, and kvk2

Y
WD kv1k2L2.IIV/ C

kv2k2H , v D .v1; v2/ 2 Y. Since X ,! C.IIH/, see, e.g. [15, Theorem 25.5], u.0/ 2
H is well-defined for u 2 X.

The space-time variational formulation arises by multiplying (1.2) with test
functions v 2 Y and integrating w.r.t. time and space. This yields the linear operator
B 2 L.X;Y0/ defined as hBu; viY0�Y D b.u; v/ by (we omit the dependency on t in
the integrands in the sequel)

b.u; v/ WD
Z
I
hPu C Au; v1iV0�Vdt C .u.0/; v2/H ; u 2 X; v D .v1; v2/ 2 Y;

i.e., b.�; �/ W X � Y ! R and the right-hand side f 2 Y
0 is defined by

h f ; viY0�Y WD
Z
I
hg; v1iV0�Vdt C .u0; v2/H ; v D .v1; v2/ 2 Y:

Then, the space-time variational formulation of (1.2) reads

find u 2 X W hBu; viY0�Y D h f ; viY0�Y; 8 v 2 Y: (1.4)
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Again, (1.1) yields well-posedness, e.g. [12, Theorem 5.1]. In fact, the operator B is
boundedly invertible. The injectivity of the operator B is equivalent to

ˇb WD inf
w2X supv2Y

jb.w; v/j
kwkX kvkY > 0; .inf-sup condition/: (1.5)

1.3 Parametrized Problems and the RBM

We introduce a general notation here, which will then be specified for both
variational formulations. Let X ;Y be Hilbert spaces, � 2 P � R

P a parameter
and consider parametric forms c W X � Y � P ! R as well as h W Y � P ! R.
Then, the parameterized Petrov-Galerkin problem reads

find u.�/ 2 X W c.u.�/; vI�/ D h.vI�/ 8 v 2 Y: (1.6)

This framework obviously also includes the elliptic case, where Y D X . We briefly
review the main ingredients of the RBM and refer to [6, 11] for recent surveys.

It is always assumed that a detailed discretization is available in the following
sense: Let XN � X and YN � Y be subspaces of finite, but large, dimension N .
The detailed problem (sometimes called “truth”) then reads

find uN .�/ 2 XN W c.uN .�/; vN I�/ D h.vN I�/ 8 vN 2 YN : (1.7)

The “truth” solution uN .�/ is always assumed to be sufficiently close to u.�/.
For well-posedness and stability of (1.7), a uniform inf-sup condition is required,
e.g. [9].

The next step is the computation of a reduced basis formed by “snapshots”
� i WD uN .�i/, 1 � i � N � N , where the snapshot parameters �i 2 P are e.g.
determined by a Greedy procedure w.r.t. an efficiently computable error estimate
�N.�/. The reduced trial space is then defined as XN WD spanf�1; : : : ; �Ng and one
needs some stable (possibly parameter-dependent) test space YN.�/. The reduced
problem reads

find uN.�/ 2 XN W c.uN.�/; vN I�/ D h.vN I�/ 8 vN 2 YN.�/: (1.8)

In the above setting, it is easy to derive an error estimate which also results in the
required error estimator �N.�/ defined by

kuN .�/ � uN.�/kX � 1

ˇc
krN.�I�/kY0 DW �N.�/; (1.9)

where rN.vI�/ WD h.vI�/ � c.uN.�/; vI�/ D c.uN .�/ � uN.�/; vI�/, v 2 YN ,
is the residual and ˇc is the inf-sup constant associated with the bilinear form c.
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We call (1.8) online efficient if it can be solved with complexity independent of
N . In order to reach that goal, the following assumption is crucial: The forms are
assumed to be separable in the parameter (sometimes called affine decomposition),

c.u; vI�/ D
QcX
qD1

� cq.�/ cq.u; v/; h.vI�/ D
QhX
qD1

�hq .�/ hq.v/ (1.10)

for some Qc;Qh 2 N, functions � cq ; �
h
q W P ! R and parameter-independent

forms cq, hq that can be precomputed in the offline phase. The parameter-dependent
functions � cq ; �

h
q are assumed to be computable online efficient, i.e., with complexity

independent ofN .

1.4 Reduced Basis Methods with POD-Greedy

We start from the semi-variational formulation (1.3) and apply a semi-discretization
in time, known as Rothe’s method. To this end, set �t WD T

K for some K > 1, tk WD
k�t and we seek some approximation uk 	 u.tk/, where we omit the�-dependency
to shorten notation. This leads to a sequence of elliptic (time-independent) ordinary
differential equations starting with u0 WD u0. The standard �-scheme then reads

1

�t

�
ukC1 � uk; v

�
H

C a.�ukC1 C .1 � �/uk; vI�/

D �g.v; tkC1I�/C .1 � �/g.v; tkI�/; v 2 V:

“Truth” The next step is a discretization in space by a standard Galerkin method
using finite-dimensional spaces Vh � V with large dim.Vh/ D Nh 2 N. Then, the
detailed or “truth” problem for a given parameter � 2 P reads for an initial value
u0h WD ProjVh

u0 to find ukC1h .�/ 2 Vh, such that for vh 2 Vh,

.ukC1h ; vh/H C�t� a.ukC1h ; vhI�/
D .ukh; vh/H C�t.1 � �/ a.ukh; vhI�/C �g.vh; t

kC1I�/C .1 � �/g.vh; tkI�/;

for 0 � k � K � 1. If Vh D spanf�i W i D 1; : : : ;Nhg, the latter equation can be
written in matrix-vector form as follows. Let Mspace

h WD Œ.�i; �j/H�i;jD1;:::;Nh denote
the spatial mass matrix and Aspace

h WD Œa.�i; �j/�i;jD1;:::;Nh the stiffness matrix (we
denote matrices and vectors by underlined symbols), then we look for

ukC1h D
NhX
iD1

˛kC1i �i; ˛kC1 WD .˛kC1i /iD1;:::;Nh ;
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such that (gk and ˛0 being the expansion coefficients of g.t
k/ and u0, respectively)

.Mspace
h C ��t Aspace

h .�//˛kC1

D .Mspace
h C .1 � �/�t Aspace

h /˛k C�t.�gkC1 C .1 � �/gk/; (1.11)

for 0 � k � K � 1 as well as ˛0 WD ˛0. It is well-known that the �-scheme
is unconditionally stable for 1

2
� � � 1, whereas for 0 � � < 1

2
the space

discretization has to satisfy additional properties, see e.g. [10, Theorem 11.3.1]. The
choice � D 1

2
results in the Crank-Nicolson scheme. Note, that (1.11) requires to

solve a well-posed elliptic problem for each time step k, which easily follows from
the assumption (1.1) on the bilinear form a and coercivity of m.�;  / WD .�;  /H .
In fact, this implies that the matrix Mspace

h C ��t Aspace
h .�/ is positive definite, e.g.

[10, §11.3].
The system (1.11) is offline/online decomposable which is easily seen as long as

the forms a and g are separable in the parameter. In fact, the mass inner product m
is independent of the parameter.

Reduced Basis via POD-Greedy The reduced basis is computed by the POD-
Greedy method shown in Algorithm 1. This is a combination of the standard Greedy
algorithm for the parameter search and a Proper Orthogonal Decomposition (POD)
in time to select the time step containing the maximal information of the trajectory
for the given parameter.

Online Phase The POD-Greedy method produces a reduced space VN � V of
possibly small dimensionN WD NPOD-G � Nh. Then, a reduced basis approximation
for a new parameter � 2 P is determined by a corresponding time-stepping scheme
as follows. The reduced initial value u0N 2 VN is computed by .u0N � u0; vN/V D 0

for all vN 2 VN . Then, for 0 � k � K � 1, determine ukC1N .�/ 2 VN by

1

�t
.ukC1N � ukN ; vN/H C a.�ukC1N C .1 � �/ukN ; vN I�/ D f .vN I�/; vN 2 VN :

Obviously, this amounts solving a sequence of K reduced problems online.

Algorithm 1 POD-Greedy algorithm [5]
Require: Given Nmax > 0, Ptrain � P , 	tol; ` D 1

1: choose arbitrarily �` 2 Ptrain; set 
` WD
n

u0.�`/
ku0.�`/kV

o
, V` WD span.
`/

2: while max�2Ptrain �`.�/ > 	tol do
3: define �`C1 WD argmax�2Ptrain

�`.�/

4: define Q `C1 WD POD
˚
uk.�`C1/� ProjV` .u

k.�`C1//
�
kD0;:::;K

5: define 
`C1 WD orthonormalize
�

` [ f Q `C1g

�
, V`C1 WD span.
`C1/, ` D `C 1

6: end while
7: define VN WD V`, NV WDdim.VN/

8: return VN ; NV ;
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Error Estimator/Indicator As in the standard case in Sect. 1.3, an online efficient
error estimator is needed both in Algorithm 1 and online for the desired certification
of the RB approximation. Of course, such an estimator here also needs to incorpo-
rate the temporal evolution. In fact, there are several known choices for �N.�/ in
Algorithm 1. A standard estimator (bound) for the error ek.�/ WD ukh.�/� ukN.�/ at
final time T D tK is given by [4, Proposition 3.9]

keK.�/kV � ke0.�/kV
�
�UB

˛LB

�K
C

K�1X
kD0

�t

˛LB

�
�UB

˛LB

�K�k�1
krkN.�/kV0 DW �K

N.�/:

(1.12)

Here, ˛LB is a lower bound for the coercivity constant of the implicit part of the
operator, �UB an upper bound for the continuity constant of the explicit part and
rkN.�/ is the residual at time step tk. It can easily be seen that �K

N is offline/online
decomposable. There are some remarks in order.

Remark 1

(i) In our numerical experiments in Sect. 1.6 below, we use a finite element (FE)
discretization. In that case, the estimator (1.12) can not be used. In fact, ˛LB �
�UB, in our case �K

N.�/ 	 10119. This shows that �K
N.�/ grows extremely

quickly with increasing K for FE discretizations in V D H1
0.˝/, which

makes (1.12) practically useless. Note, however, that for FV discretizations,
one has ˛LB D �UB D 1, so that the estimator works often quite well.

(ii) For symmetric differential operators, the above estimate can be sharpened [4,
Proposition 3.11]. It allows to extend (1.12) to a �-dependent norm on the
whole trajectory. ˘

According to this remark, we cannot use �K
N.�/ here. Thus, we follow the

analysis in [4] and consider a weighted (sometimes called “space-time”) norm for
! WD .!k/kD0;:::;K�1, !k > 0 and

PK�1
kD0 !k D T defined as

jej2! WD
K�1X
kD0

!kkekk2V ; e D .ek/kD0;:::;K�1: (1.13)

A corresponding error indicator is defined as

�PST
N;! WD

 
K�1X
kD0

!kkrkN.�/k2V0

!1=2
: (1.14)

The term “indicator” means that the error (in whatever norm) cannot be proven to
be bounded in terms of�PST

N;! (it is not known to be a bound). However, even though
the error of the POD-Greedy scheme cannot be guaranteed to decay monotonically,
exponential convergence can be shown under additional assumptions [3].
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1.5 Space-Time Reduced Basis Methods

As we have seen in Sect. 1.2, the space-time variational formulation leads to a
parameterized Petrov-Galerkin problem. Thus, the form is exactly as in the general
RB-framework in (1.6). Note, that both X D H1.I/˝ V and Y D .L2.I/˝ V/ � H
are tensor products, so that it is convenient to use the same structure for the detailed
discretization, i.e.,XN D S�t˝Vh andYN D .Q�t˝Vh/�Vh,2 whereVh � V is the
space discretization as in Sect. 1.4 above and S�t � H1.I/ as well as Q�t � L2.I/
are temporal discretizations of step size �t [14].

Let us denote again by Vh D spanf�1; �2; : : : ; �Nhg the detailed space dis-
cretization (e.g. by piecewise linear finite elements for V D H1

0.˝/). Moreover,
let S�t D spanf�0; �1; : : : ; �Kg and Q�t D spanf
1; 
2; : : : ; 
Kg be the bases in
time (e.g. piecewise linear � i and piecewise constant 
 i on the same temporal mesh,
with the additional �0 for the initial value at t D 0).

The dimension of the arising test and trial spaces coincide, i.e., dim.XN / D
.KC1/Nh D dim.YN / DW N . Exploiting the structure of the discretized spaces for
the detailed solution uN D PNh

iD1
PK

kD0 uki �k ˝ �i yields

b.uN ; .
 k ˝ �j; 0/I�/ D
NhX
iD1
Œ.uki � uk�1i /.�i; �j/H C �t

2
.uki C uk�1i /a.�i; �jI�/�

D Mspace
h .uk � uk�1/C�t Aspace

h .�/uk�1=2;

with mass and stiffness matrices Mspace
h , Aspace

h .�/ as above. On the right-hand side,
we use a trapezoidal approximation as in [14] on a time grid 0 D t0 < � � � < tK D T,
I` WD Œt`�1; t`/ D suppf
`g:

f ..
` ˝ �j; 0/I�/ D
Z
I
hg.tI�/; 
` ˝ �j.t; :/iV0�Vdt D

Z
I`

hg.tI�/; 
`.t/�jiV0�Vdt

	 �t

2
hg.t`�1I�/C g.t`I�/; �jiV0�V :

It turns out that this particular choice for the discretization results (again) in the
Crank-Nicolson scheme involving an additional projection of the initial value, which
requires a CFL condition to ensure stability. A detailed investigation of stable space-
time discretizations can be found in [1].

2It can be seen that Vh � V ,! H is in fact sufficient [8].
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Since the space-time variational approach yields a standard Petrov-Galerkin
problem, the reduced basis trial and test spaces XN D spanf�1; : : : ; �Ng, YN.�/ WD
spanf�1.�/; : : : ; �N.�/g can be constructed exactly following the road map in
Sect. 1.3. Hence, we end up with a reduced problem of the form (1.8). In matrix-
vector form, the resulting system matrix BN.�/ WD Œb.� i; �j.�/I�/�i;jD1;:::;N is
of small dimension, but not symmetric. Moreover, BN.�/ is uniformly invertible
provided that the inf-sup condition in (1.5) holds for the RB spaces. It is not
difficult to show that the arising non-symmetric linear system can also be written
as minimization problem or in terms of normal equations (see [8] for details and
further applications).

If normal equations are used, no (parameter dependent) reduced test space
computation is required: Let XN D spanf'` W ` D 1; : : : ;N g and YN D spanf m W
m D 1; : : : ;N g be the detailed bases, denote by YN WD Œ. m;  m0/Y�m;m0D1;:::;N
the mass matrix of the test space Y

N as well as the detailed system matrix by
BN .�/ WD Œb.'`;  mI�/�`;mD1;:::;N . Next, denote by � j D PN

`D1 c
j
`'`, C WD

.c j
`/`D1;:::;N ; jD1;:::;N 2 R

N�N the expansion of the RB functions in terms of the
detailed basis. Then,

BN.�/ WD CT BN .�/.YN /�1.BN .�//T C; f
N
.�/ WD CT BN .�/.YN /�1fN .�/;

where fN .�/ contains the detailed basis coefficients of the right-hand side. The RB
approximation uN.�/ D PN

iD1 ˛i.�/� i, ˛.�/ WD .˛i.�//iD1;:::;N , is then determined
by the solution of the linear system of size N, i.e.

BN.�/ ˛.�/ D f
N
.�/: (1.15)

One can show that (1.15) admits an online/offline-separation, which is inherited
from the separation of the forms a and g (in particular, we have Qb D Qa and
Qf D Qg). This means that (1.15) can be solved online efficient. Finally, the inf-sup
stability of (1.15) is inherited from the detailed discretization.

1.6 Numerical Results

We provide some of our numerical investigations concerning the two approaches
described above for a standard diffusion-convection-reaction problem with time
dependent right-hand side. Since our focus is on the treatment of the time variable,
we restrict ourselves to a 1d problem in space.
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1.6.1 Data

Model Problem Let d D 1, ˝ D .0; 1/ and V WD H1
0.˝/ ,! L2.˝/ DW H.

Consider the time interval I D .0; 0:3/ and the parameter set P WD Œ0:5; 1:5� �
Œ0; 1� � Œ0; 1� � R

3. For a parameter � D .�1; �2; �3/
T 2 P find u 
 u.�/ that

solves

Pu � �1u00 C �2u
0 C �3u D g on I �˝; (1.16a)

u.t; x/ D 0 8 .t; x/ 2 I � @˝; (1.16b)

u.0; x/ D u0.x/ WD sin.2�x/ 8 x 2 ˝: (1.16c)

Set g.t; x/ WD sin.2�x/..4�2C0:5/ cos.4�t/�4� sin.4�t//C� cos.2�x/ cos.4�t/;
which corresponds to the solution u.t; x/ WD sin.2�x/ cos.4�t/ of (1.16) for the
reference parameter �ref D .1; 0:5; 0:5/ 2 P . The parameter-separability is easily
seen. We divide both ˝ and I into 26 subintervals, i.e., Nh D 26 � 1 and K D 26,
but we also consider various values for K. The training set Ptrain is chosen as 17
equidistantly distributed points in P in each direction.

“True” Norms For the space-time RBM, the “true” error is measured in the natural
discrete space-time norm [13]

�v�2N WD kNvk2L2.IIV/ C kPvk2L2.IIV0/ C kv.T/k2H ; v 2 X
N � X;

where Nv WD
KP

kD1

 k ˝ Nvk 2 L2.IIV/ and Nvk WD .�t/�1

R
Ik
v.t/ dt 2 V . Note, that

k NvkL2.IIV/ is an O.�t/-approximation of kvkL2.IIV/ (due to the piecewise constant
approximation Nvk).

For the POD-Greedy strategy, we consider the final time contribution kv.T/kV
[corresponding to the left-hand side of (1.12)] as well as the “space-time norm”
introduced in (1.13) for the specific weights !k WD �t, k D 0; : : : ;K � 1, plus the
final time contribution as “true” error, i.e.

jvj2�t WD j.v.tk//kD0;:::;K�1j2! C�t kv.T/k2V D
KX

kD0
�tkv.tk/k2V :

This means that jvj�t is an O.�t2/-approximation of kvkL2.IIV/.
Remark 2 For later reference, we point out that jvj�t is an O.�t2/-approximation
of kvkL2.IIV/, whereas k NvkL2.IIV/ is only of the order O.�t/. This means that it may
happen that jwj�t > �w�N even though kwkX > kwkL2.IIV/ for all 0 ¤ w 2 X. ˘
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Error Estimators/Greedy For the error estimation in the space-time RBM, we use
the residual-based error estimator�N.�/ in (1.9) with numerically estimated lower
bound for the inf-sup constant, ˇLB D 0:2. Of course, this is a relatively rough bound
(independent of �!) and performing e.g. a Successive Constraint Method (SCM [7])
would improve the subsequent results. For the POD-Greedy scheme, we use the
space-time error indicator �PST

N .�/ that arises from (1.14) by the choice !k 
 �t
for the weights.

We emphasize that �N.�/ bounds the norm in X D H1.I/ ˝ V ¨ L2.IIV/,
whereas�PST

N .�/ is “only” an indicator, in particular it is not known to be an upper
bound for any norm. In view of (1.12), we could expect that keK.�/kV might be a
candidate, or—since j � j�t is a discrete L2.IIV/-norm—we could consider kekL2.IIV/.
Comparison We conclude that a direct and fair comparison is not easy because of
the described methodological differences. Table 1.1 collects these differences and
our choice for the experiments.

1.6.2 Results

Greedy Training Within the framework of Table 1.1, the offline Greedy error
decay of both variants is shown in Fig. 1.1. The red lines correspond to the space-
time form, whereas the blue lines are for the POD-Greedy. Straight lines indicate
the error, dotted ones the error estimator/indicator. The left figure shows the weak
Greedy using the error estimators/indicators. We observe exponential decay w.r.t.
the RB dimension N in both cases—as predicted by the theory. At a first glance,
it seems that the decay of POD-Greedy is much faster than the one for space-time,
i.e., the stopping criterium in the Greedy algorithm for tol D 10�3 is reached at
NPOD-G D 7 and NST D 16. Note, however, that the online effort is related to N in a
different way for both variants, see below.

As mentioned above, the two variants are related to different norms. This is the
reason why we performed a strong Greedy using the jjj � jjjN -norm for both variants
(right graph in Fig. 1.1). We see a similar behavior—again referring to the different
online work load. It is interesting, though, that at least in these experiments, POD-
Greedy works very well even for the full norm—without theoretically foundation
though. However, we can also see from the results that �PST

N .�/ is not an error
bound since it is below the “exact” error for some N. Recall that �PST

N .�/ arises

Table 1.1 Differences of space-time RBM and POD-Greedy sampling

Snapshot space RB space “True” error Error estimated by

Space-time X
N

XN � � �N Residual based, �N.�/

in (1.9)

POD-Greedy ft0; : : : ; tKg � Vh VN j � j�t Indicator �PST
N .�/ in (1.14)

for !k � �t
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Fig. 1.1 RB-Greedy approximation error. Red: Space-Time (ST); blue: POD-Greedy (POD-G).
Left: weak Greedy, right: strong Greedy w.r.t. jjj � jjjN . Lines are plotted until the stopping criteria
for tol D 10�3 are reached in the while-loop (i.e., the error estimators in the next step are below
tol)

from the upper bound�K
N.�/ in (1.12) by setting involved coercivity and continuity

constants to 1. Moreover, note, that in the same spirit, we could easily lower the
gap between the two red space-time lines by sharpen ˇLB. The prescribed Greedy
tolerance of 10�3 is reached for NPOD-G D 6 for POD-Greedy and for NST D 12 for
space-time.

Online Phase We test the RB approximations for two cases, namely for P sym
test WD

f.�1; 0; 0/ W �1 2 Œ0:5; 1:5�g (symmetric case) and Pnon
test WD f.0:5; �2; 0:75/ W �2 2

Œ0; 1�g (non-symmetric case). The results are shown in Fig. 1.2, the symmetric case
in the top line, the non-symmetric in the bottom one.

First of all, both variants work as they should in the sense that the respective error
measures are below the Greedy tolerance of 10�3.

The “true” error (solid red lines) is slightly smaller for the space-time variant in
the symmetric case and very close to each other in the non-symmetric case.

We also compare the POD-Greedy error measure j � j�t. It is remarkable that this
quantity is almost identical to jjj � jjjN for space-time. This means that the temporal
derivative and the final time components of the solution are very-well approximated.
Regarding the result that for POD-Greedy the j � j�t-lines turn out to be above the
jjj � jjjN one, we recall Remark 2.

Finally, the error estimators/indicators are plotted as dash-dotted black lines. We
observe, that the effectivities3 are of almost the same size. However, if we rely on
the respective theory (i.e. jjjejjjN for space-time and ke.T/kV for POD-Greedy), the
effectivity of space-time improves, see Fig. 1.3.

3It is somehow misleading to use the term “effectivity” within the POD-Greedy framework, since
usually effectivity is the ratio of error bound and error.
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(a) (b)

(c) (d)

Fig. 1.2 RB approximation error on Ptest: Full error (red, solid), error estimator/indicator (black,
dash-dotted) and the POD-Greedy error measure j � j�t (blue, dashed) for Greedy tolerance tol D
0:001. Top line: symmetric case .�1; 0; 0/; bottom: non-symmetric .0:5; �2; 0:75/. (a) Space-time,
symmetric. (b) POD-Greedy, symmetric. (c) Space-time, non-symmetric. (d) POD-Greedy, non-
symmetric

WorkLoad/Effort We now compare the computational effort as well as the storage
amount (offline and online) of both variants, see Table 1.2.

Recall, that the chosen space-time method in the offline phase reduces to the
Crank-Nicholson scheme. Hence, the offline complexities and storage requirements
for the detailed solution of both variants indeed coincide (both linear in Nh; we
count 187 	 3Nh elements). The detailed solution requiresK solves (corresponding
to the number of time steps) of a sparse system of sizeNh. However, the space-time
precomputations needed to form the online system, rely on the full dimensionN .

In the online-phase, POD-Greedy needs to store (for the LTI case) Qa reduced
matrices and KQg vectors of size NPOD-G for the time-dependent right-hand side.
The RB solution amounts to solve K densely populated reduced systems. In the LTI
case, one may reduce this to the computation of one LU-decomposition and then K
triangular systems, i.e., O.N3POD-G C KN2POD-G/ operations.
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(a) (b)

(c)

Fig. 1.3 Greedy error decay (a), space-time (b) and POD-Greedy (c) using the final time for POD-
Greedy training and error measure on the symmetric test set

Table 1.2 Offline and online effort of the RBMs

POD-Greedy Space-time

O./ / # Offline Online Offline Online

Solution KNh N3POD-G C KN2POD-G KNh N3ST
4.032 2.520 4.032 1.728

Storage � 3Nh QaN
2
POD-G C KQgNPOD-G � 3Nh Q2bN

2
ST C QbQfNST

187 528 187 2.352

We have NPOD-G D 6, NST D 12, Nh D 63, Qa D Qb D 4, Qf D Qg D 1, K D 64; the
corresponding numbers are given in the respective second row

The space-time method usually requires more storage, either by storing a suitable
test space or—as described above—by the setup of the normal equations using the
affine decomposition (1.10). The normal equations needmemory of sizeO.Q2bN2STC
QbQfNST/. The RB-solution requires the solution of one reduced linear system of
dimension NST.
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1.7 Conclusions

We have explained and compared both theoretically and numerically two different
techniques to treat the time within the Reduced Basis Method (RBM). It is obvious
that a fair and significant numerical comparison is a delicate task. In particular,

• different norms need to be considered;
• the choice of the error estimator/indicator within the POD-Greedy method has a

significant impact;
• improving bounds for the involved constants will improve the results;
• we only consider such space-time methods that are equivalent to a time marching

scheme (here Crank-Nicholson). If this is not the case, the offline cost for the
space-time scheme will significantly increase;

• the number of time steps (K D 64) is moderate. As noted in Table 1.2, the online
effort for POD-Greedy grows linearly with K, whereas the online space-time
effort is independent of K. The reason is that the number of POD-Greedy basis
functions stays the same and just more time steps are needed. The dimension of
the space-time reduced system is independent of K. Increasing K (i.e., a higher
temporal resolution or longer time horizons keeping �t the same) will support
space-time;

• we only consider LTI-systems. Both the reduction rate and the storage depend on
this assumption.

Despite all these, we do think that our study indeed shows some facts, namely:

1. The POD-Greedy method allows one to use any time-marching scheme offline.
Even if the space-time discretization is chosen in such a way that it coincides
with a time-stepping scheme, this variant has an increased offline complexity. If
the full space-time dimension is needed, one may have to resort to tensor product
schemes [8].

2. In the online phase, the space-time method is more efficient concerning effort,
whereas POD-Greedy uses less storage.

3. If a theoretical justification of an error bound in the full X-norm is needed and
Finite Elements shall be used, space-time seems to be the method of choice. If a
Finite Volume discretization is chosen, POD-Greedy is more appropriate [5].

From these results, we tend to formulate the following recipe: If online compu-
tational time restrictions apply or for long-time horizons, the space-time approach
is advisable even in those cases where it might cause an increased offline effort. If
online storage restrictions apply or the use of a specific time-marching scheme is
necessary, the POD-Greedy approach is advisable.
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