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Preface

This volume contains selected peer-reviewed contributions from the MoRePaS
conference, Model Reduction of Parametrized Systems, third edition, held at
SISSA, International School for Advanced Studies, Trieste, Italy on October 13–16,
2015: http://www.sissa.it/morepas2015, following its 2009, first edition, in Münster
(hosted by the Westfälische Wilhelms-Universität Münster, Germany) and 2012,
second edition, Schloss Reisensburg (hosted by Ulm University, Germany). The
next MoRePaS 2018 will be in Nantes, France.

The MoRePaS workshop series aims to foster international exchange of new con-
cepts and ideas in numerical analysis, applied mathematics, engineering, scientific
computing, and programming with respect to the following topics:

– Reduced basis methods
– Proper orthogonal decomposition
– Proper generalized decomposition
– Approximation theory related to model reduction
– Learning theory and compressed sensing
– Stochastic and high-dimensional problems
– System-theoretic methods
– Nonlinear model reduction
– Reduction of coupled problems/multiphysics
– Optimization and optimal control
– State estimation and control
– Reduced order models and domain decomposition methods
– Krylov subspace and interpolatory methods
– Application to real, industrial and complex problems

The model reduction community is growing rapidly and during the past
decade has achieved a high level of visibility in the computational science and
engineering (CSE) global community, as is evident from the 30 contributions
selected to appear in this special volume, which cover a broad range of
modern topics as well as applications. A further collection of open access
posters related to MoRePaS 2015 is available at www.scienceopen.com,
doi:10.14293/S2199-1006.1.SOR-MATH.CLI8YJR.v1.
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vi Preface

The MoRePaS organization also supports a website (www.morepas.org) col-
lecting research software, preprints, organization of annual PhD student summer
schools, open positions and several other activities.

This book represents the current state of the art in developments in applied
mathematics, computational mathematics and engineering to deal with the increase
in the complexity of modelled systems, to improve parametric computing, to deal
with uncertainty quantification and to develop real-time computing. The need for
a computational collaboration between full order classical discretization techniques
and reduced order methods is highlighted.

We would like to thank the MoRePaS 2015 scientific committee for the
editorial revision of this volume, as well as the COST EU-MORNET network
(www.eu-mor.net)—European Union Cooperation in Science and Technology
Model Reduction Network (TD1307)—for the support. We would like to say
a big “thank you” to all the contributors, especially the invited speakers at the
conference. Special thanks are also due to Angela Vanegas and Francesca Bonadei
from Springer Italia for their editorial assistance.

Trieste, Italy Gianluigi Rozza
Magdeburg, Germany Peter Benner
Münster, Germany Mario Ohlberger
Cambridge, MA, USA Anthony T. Patera
Ulm, Germany Karsten Urban
June 2017

MoRePaS 2015 Group Picture at SISSA, Trieste, Italy

www.morepas.org
http://www.eu-mor.net
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Chapter 1
Two Ways to Treat Time in Reduced Basis
Methods

Silke Glas, Antonia Mayerhofer, and Karsten Urban

Abstract In this chapter, we compare two ways to treat the time within reduced
basis methods (RBMs) for parabolic problems: Time-stepping and space-time vari-
ational based methods. We briefly recall both concepts and review well-posedness,
error control and model reduction in both cases as well as the numerical realization.
In particular, we highlight the conceptual differences of the two approaches.

We provide numerical investigations focussing on the performance of the RBM
in both variants regarding approximation quality, efficiency and reliability of the
error estimator. Pro’s and Con’s of both approaches are discussed.

1.1 Introduction

Parametrized partial differential equations (PPDEs) often occur in industrial or
financial applications. If simulations are required for many different values of the
involved parameters (“multi-query”), fine discretizations that are needed for a good
approximation may resolve in high dimensional systems and thus in (for many
applications too) long computation times. The reduced basis method (RBM) is
by now a well-known model reduction technique, which allows one to efficiently
reduce the numerical effort for many PPDEs by precomputing a reduced basis in an
offline phase (using a detailed model, sometimes called “truth”) and evaluating the
reduced model (for new parameter values) highly efficient in the online phase.

Here, we focus on time-dependent problems of parabolic type in variational
formulation and describe two different approaches. The maybe more standard one
is based upon a time-stepping scheme in the offline phase. The reduced basis is then
usually formed by the POD-Greedy method [3, 5], which results in a reduced time-
stepping system for the offline phase. The second approach that we wish to discuss,

S. Glas • K. Urban (�)
Ulm University, Institute for Numerical Mathematics, Helmholtzstr. 20, 89081 Ulm, Germany
e-mail: silke.glas@uni-ulm.de; karsten.urban@uni-ulm.de
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2 S. Glas et al.

is based upon the space-time variational formulation of the parabolic problem, in
which the time is taken as an additional variable for the variational formulation.
This results in a Petrov-Galerkin problem in d C 1 dimensions (if d denotes the
spatial dimension). The reduced basis is then formed by a standard Greedy approach
resulting in a reduced space-time Petrov-Galerkin method [13, 14].

The aim of this paper is to provide a comparison of these two methods in
order to identify similarities and conceptual differences of the two approaches.
It complements and completes a recent similar comparison in [2] for discrete
instationary problems.

The remainder of this chapter is organized as follows. We start in Sect. 1.2 by
reviewing both variational formulations of parabolic PDEs. A brief survey of the
RBM is contained in Sect. 1.3. Section 1.4 is devoted to the description of the POD-
Greedy/time-stepping method for the RBM, whereas Sect. 1.5 contains the space-
time RBM. Our numerical experiments as well as the comparisons are presented in
Sect. 1.6. We finish with some conclusions in Sect. 1.7.

1.2 Variational Formulations of Parabolic Problems

Let V ,! H be separable Hilbert spaces with continuous and dense embedding. The
inner products and induced norms are denoted by .�; �/H, .�; �/V and k � kH , k � kV ,
respectively. We identify H with its dual yielding a Gelfand triple V ,! H ,! V 0.

Let 0 < T < 1 be the final time, I WD .0;T/ the time interval and ˝ � R
d an

open spatial domain. We consider a linear, bounded operator A 2 L.V;V 0/ induced
by a bilinear form a.�; �/ W V � V ! R as hA�; iV0�V D a.�;  /.1 We require the
bilinear form to satisfy the following properties

ja.�;  /j � Mak�kVk kV ; �;  2 V .boundedness/ (1.1a)

a.�; �/C �ak�k2H � ˛ak�k2V ; � 2 V .Gårding inequality/
(1.1b)

with constants Ma < 1, ˛a > 0, �a � 0. Then, we consider the parabolic initial
value problem of finding u.t/ 2 V , t 2 I a.e., such that

Pu.t/C Au.t/ D g.t/; in V 0; u.0/ D u0 in H; (1.2)

where g 2 L2.IIV 0/ and u0 2 H are given.

1For simplicity, we restrict ourselves to Linear Time-Invariant (LTI) systems. However, much of
what is said also holds for time-variant operators A.t/.
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1.2.1 Semi-variational Formulation

The maybe more standard approach consists of multiplying (1.2) with a test function
� 2 V and form the inner product in H (i.e., in space only). This leads to an evolution
problem in V 0, i.e.,

find u.t/ 2 V W .Pu.t/; �/H C a.u.t/; �/ D .g.t/; �/H ; � 2 V; t 2 I a.e. (1.3)

It is well-known that (1.3) is well-posed thanks to (1.1), see e.g. [15, Theorem 26.1].
Since the variational formulation is w.r.t. space only, we call it semi-variational.

1.2.2 Space-Time Variational Formulation

We now follow [12] for the description of a variational formulation of (1.2) w.r.t.
space and time. This approach leads to a variational problem with different trial and
test spaces X and Y, both being Bochner spaces, namely

X WD L2.IIV/ \ H1.IIV0/ D fv 2 L2.IIV/ W v; Pv 2 L2.IIV0/g; Y WD L2.IIV/ � H;

with norms kwk2
X

WD kwk2L2.IIV/ C k Pwk2L2.IIV0/
, w 2 X, and kvk2

Y
WD kv1k2L2.IIV/ C

kv2k2H , v D .v1; v2/ 2 Y. Since X ,! C.IIH/, see, e.g. [15, Theorem 25.5], u.0/ 2
H is well-defined for u 2 X.

The space-time variational formulation arises by multiplying (1.2) with test
functions v 2 Y and integrating w.r.t. time and space. This yields the linear operator
B 2 L.X;Y0/ defined as hBu; viY0�Y D b.u; v/ by (we omit the dependency on t in
the integrands in the sequel)

b.u; v/ WD
Z
I
hPu C Au; v1iV0�Vdt C .u.0/; v2/H ; u 2 X; v D .v1; v2/ 2 Y;

i.e., b.�; �/ W X � Y ! R and the right-hand side f 2 Y
0 is defined by

h f ; viY0�Y WD
Z
I
hg; v1iV0�Vdt C .u0; v2/H ; v D .v1; v2/ 2 Y:

Then, the space-time variational formulation of (1.2) reads

find u 2 X W hBu; viY0�Y D h f ; viY0�Y; 8 v 2 Y: (1.4)
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Again, (1.1) yields well-posedness, e.g. [12, Theorem 5.1]. In fact, the operator B is
boundedly invertible. The injectivity of the operator B is equivalent to

ˇb WD inf
w2X sup

v2Y
jb.w; v/j

kwkX kvkY > 0; .inf-sup condition/: (1.5)

1.3 Parametrized Problems and the RBM

We introduce a general notation here, which will then be specified for both
variational formulations. Let X ;Y be Hilbert spaces, � 2 P � R

P a parameter
and consider parametric forms c W X � Y � P ! R as well as h W Y � P ! R.
Then, the parameterized Petrov-Galerkin problem reads

find u.�/ 2 X W c.u.�/; vI�/ D h.vI�/ 8 v 2 Y: (1.6)

This framework obviously also includes the elliptic case, where Y D X . We briefly
review the main ingredients of the RBM and refer to [6, 11] for recent surveys.

It is always assumed that a detailed discretization is available in the following
sense: Let XN � X and YN � Y be subspaces of finite, but large, dimension N .
The detailed problem (sometimes called “truth”) then reads

find uN .�/ 2 XN W c.uN .�/; vN I�/ D h.vN I�/ 8 vN 2 YN : (1.7)

The “truth” solution uN .�/ is always assumed to be sufficiently close to u.�/.
For well-posedness and stability of (1.7), a uniform inf-sup condition is required,
e.g. [9].

The next step is the computation of a reduced basis formed by “snapshots”
� i WD uN .�i/, 1 � i � N � N , where the snapshot parameters �i 2 P are e.g.
determined by a Greedy procedure w.r.t. an efficiently computable error estimate
�N.�/. The reduced trial space is then defined as XN WD spanf�1; : : : ; �Ng and one
needs some stable (possibly parameter-dependent) test space YN.�/. The reduced
problem reads

find uN.�/ 2 XN W c.uN.�/; vN I�/ D h.vN I�/ 8 vN 2 YN.�/: (1.8)

In the above setting, it is easy to derive an error estimate which also results in the
required error estimator �N.�/ defined by

kuN .�/ � uN.�/kX � 1

ˇc
krN.�I�/kY0 DW �N.�/; (1.9)

where rN.vI�/ WD h.vI�/ � c.uN.�/; vI�/ D c.uN .�/ � uN.�/; vI�/, v 2 YN ,
is the residual and ˇc is the inf-sup constant associated with the bilinear form c.
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We call (1.8) online efficient if it can be solved with complexity independent of
N . In order to reach that goal, the following assumption is crucial: The forms are
assumed to be separable in the parameter (sometimes called affine decomposition),

c.u; vI�/ D
QcX
qD1

� cq.�/ cq.u; v/; h.vI�/ D
QhX
qD1

�hq .�/ hq.v/ (1.10)

for some Qc;Qh 2 N, functions � cq ; �
h
q W P ! R and parameter-independent

forms cq, hq that can be precomputed in the offline phase. The parameter-dependent
functions � cq ; �

h
q are assumed to be computable online efficient, i.e., with complexity

independent of N .

1.4 Reduced Basis Methods with POD-Greedy

We start from the semi-variational formulation (1.3) and apply a semi-discretization
in time, known as Rothe’s method. To this end, set �t WD T

K for some K > 1, tk WD
k�t and we seek some approximation uk 	 u.tk/, where we omit the�-dependency
to shorten notation. This leads to a sequence of elliptic (time-independent) ordinary
differential equations starting with u0 WD u0. The standard �-scheme then reads

1

�t

�
ukC1 � uk; v

�
H

C a.�ukC1 C .1 � �/uk; vI�/

D �g.v; tkC1I�/C .1 � �/g.v; tkI�/; v 2 V:

“Truth” The next step is a discretization in space by a standard Galerkin method
using finite-dimensional spaces Vh � V with large dim.Vh/ D Nh 2 N. Then, the
detailed or “truth” problem for a given parameter � 2 P reads for an initial value
u0h WD ProjVh

u0 to find ukC1h .�/ 2 Vh, such that for vh 2 Vh,

.ukC1h ; vh/H C�t� a.ukC1h ; vhI�/
D .ukh; vh/H C�t.1 � �/ a.ukh; vhI�/C �g.vh; t

kC1I�/C .1 � �/g.vh; tkI�/;

for 0 � k � K � 1. If Vh D spanf�i W i D 1; : : : ;Nhg, the latter equation can be
written in matrix-vector form as follows. Let Mspace

h WD Œ.�i; �j/H�i;jD1;:::;Nh denote
the spatial mass matrix and Aspace

h WD Œa.�i; �j/�i;jD1;:::;Nh the stiffness matrix (we
denote matrices and vectors by underlined symbols), then we look for

ukC1h D
NhX
iD1

˛kC1i �i; ˛kC1 WD .˛kC1i /iD1;:::;Nh ;
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such that (gk and ˛0 being the expansion coefficients of g.tk/ and u0, respectively)

.Mspace
h C ��t Aspace

h .�//˛kC1

D .Mspace
h C .1 � �/�t Aspace

h /˛k C�t.�gkC1 C .1 � �/gk/; (1.11)

for 0 � k � K � 1 as well as ˛0 WD ˛0. It is well-known that the �-scheme
is unconditionally stable for 1

2
� � � 1, whereas for 0 � � < 1

2
the space

discretization has to satisfy additional properties, see e.g. [10, Theorem 11.3.1]. The
choice � D 1

2
results in the Crank-Nicolson scheme. Note, that (1.11) requires to

solve a well-posed elliptic problem for each time step k, which easily follows from
the assumption (1.1) on the bilinear form a and coercivity of m.�;  / WD .�;  /H .
In fact, this implies that the matrix Mspace

h C ��t Aspace
h .�/ is positive definite, e.g.

[10, §11.3].
The system (1.11) is offline/online decomposable which is easily seen as long as

the forms a and g are separable in the parameter. In fact, the mass inner product m
is independent of the parameter.

Reduced Basis via POD-Greedy The reduced basis is computed by the POD-
Greedy method shown in Algorithm 1. This is a combination of the standard Greedy
algorithm for the parameter search and a Proper Orthogonal Decomposition (POD)
in time to select the time step containing the maximal information of the trajectory
for the given parameter.

Online Phase The POD-Greedy method produces a reduced space VN � V of
possibly small dimensionN WD NPOD-G � Nh. Then, a reduced basis approximation
for a new parameter � 2 P is determined by a corresponding time-stepping scheme
as follows. The reduced initial value u0N 2 VN is computed by .u0N � u0; vN/V D 0

for all vN 2 VN . Then, for 0 � k � K � 1, determine ukC1N .�/ 2 VN by

1

�t
.ukC1N � ukN ; vN/H C a.�ukC1N C .1 � �/ukN ; vN I�/ D f .vN I�/; vN 2 VN :

Obviously, this amounts solving a sequence of K reduced problems online.

Algorithm 1 POD-Greedy algorithm [5]
Require: Given Nmax > 0, Ptrain � P , 	tol; `D 1

1: choose arbitrarily �` 2 Ptrain; set 
` WD
n

u0.�`/
ku0.�`/kV

o
, V` WD span.
`/

2: while max�2Ptrain �`.�/ > 	tol do
3: define �`C1 WD argmax�2Ptrain

�`.�/

4: define Q `C1 WD POD
˚
uk.�`C1/� ProjV` .u

k.�`C1//
�
kD0;:::;K

5: define 
`C1 WD orthonormalize
�

` [ f Q `C1g

�
, V`C1 WD span.
`C1/, ` D `C 1

6: end while
7: define VN WD V`, NV WDdim.VN/

8: return VN ; NV ;
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Error Estimator/Indicator As in the standard case in Sect. 1.3, an online efficient
error estimator is needed both in Algorithm 1 and online for the desired certification
of the RB approximation. Of course, such an estimator here also needs to incorpo-
rate the temporal evolution. In fact, there are several known choices for �N.�/ in
Algorithm 1. A standard estimator (bound) for the error ek.�/ WD ukh.�/� ukN.�/ at
final time T D tK is given by [4, Proposition 3.9]

keK.�/kV � ke0.�/kV
�
�UB

˛LB

�K
C

K�1X
kD0

�t

˛LB

�
�UB

˛LB

�K�k�1
krkN.�/kV0 DW �K

N.�/:

(1.12)

Here, ˛LB is a lower bound for the coercivity constant of the implicit part of the
operator, �UB an upper bound for the continuity constant of the explicit part and
rkN.�/ is the residual at time step tk. It can easily be seen that �K

N is offline/online
decomposable. There are some remarks in order.

Remark 1

(i) In our numerical experiments in Sect. 1.6 below, we use a finite element (FE)
discretization. In that case, the estimator (1.12) can not be used. In fact, ˛LB �
�UB, in our case �K

N.�/ 	 10119. This shows that �K
N.�/ grows extremely

quickly with increasing K for FE discretizations in V D H1
0.˝/, which

makes (1.12) practically useless. Note, however, that for FV discretizations,
one has ˛LB D �UB D 1, so that the estimator works often quite well.

(ii) For symmetric differential operators, the above estimate can be sharpened [4,
Proposition 3.11]. It allows to extend (1.12) to a �-dependent norm on the
whole trajectory. ˘

According to this remark, we cannot use �K
N.�/ here. Thus, we follow the

analysis in [4] and consider a weighted (sometimes called “space-time”) norm for
! WD .!k/kD0;:::;K�1, !k > 0 and

PK�1
kD0 !k D T defined as

jej2! WD
K�1X
kD0

!kkekk2V ; e D .ek/kD0;:::;K�1: (1.13)

A corresponding error indicator is defined as

�PST
N;! WD

 
K�1X
kD0

!kkrkN.�/k2V0

!1=2
: (1.14)

The term “indicator” means that the error (in whatever norm) cannot be proven to
be bounded in terms of�PST

N;! (it is not known to be a bound). However, even though
the error of the POD-Greedy scheme cannot be guaranteed to decay monotonically,
exponential convergence can be shown under additional assumptions [3].
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1.5 Space-Time Reduced Basis Methods

As we have seen in Sect. 1.2, the space-time variational formulation leads to a
parameterized Petrov-Galerkin problem. Thus, the form is exactly as in the general
RB-framework in (1.6). Note, that both X D H1.I/˝ V and Y D .L2.I/˝ V/ � H
are tensor products, so that it is convenient to use the same structure for the detailed
discretization, i.e., XN D S�t˝Vh and Y

N D .Q�t˝Vh/�Vh,2 whereVh � V is the
space discretization as in Sect. 1.4 above and S�t � H1.I/ as well as Q�t � L2.I/
are temporal discretizations of step size �t [14].

Let us denote again by Vh D spanf�1; �2; : : : ; �Nhg the detailed space dis-
cretization (e.g. by piecewise linear finite elements for V D H1

0.˝/). Moreover,
let S�t D spanf�0; �1; : : : ; �Kg and Q�t D spanf1; 2; : : : ; Kg be the bases in
time (e.g. piecewise linear � i and piecewise constant  i on the same temporal mesh,
with the additional �0 for the initial value at t D 0).

The dimension of the arising test and trial spaces coincide, i.e., dim.XN / D
.KC1/Nh D dim.YN / DW N . Exploiting the structure of the discretized spaces for
the detailed solution uN D PNh

iD1
PK

kD0 uki �k ˝ �i yields

b.uN ; . k ˝ �j; 0/I�/ D
NhX
iD1
Œ.uki � uk�1i /.�i; �j/H C �t

2
.uki C uk�1i /a.�i; �jI�/�

D Mspace
h .uk � uk�1/C�t Aspace

h .�/uk�1=2;

with mass and stiffness matrices Mspace
h , Aspace

h .�/ as above. On the right-hand side,
we use a trapezoidal approximation as in [14] on a time grid 0 D t0 < � � � < tK D T,
I` WD Œt`�1; t`/ D suppf`g:

f ..` ˝ �j; 0/I�/ D
Z
I
hg.tI�/; ` ˝ �j.t; :/iV0�Vdt D

Z
I`

hg.tI�/; `.t/�jiV0�Vdt

	 �t

2
hg.t`�1I�/C g.t`I�/; �jiV0�V :

It turns out that this particular choice for the discretization results (again) in the
Crank-Nicolson scheme involving an additional projection of the initial value, which
requires a CFL condition to ensure stability. A detailed investigation of stable space-
time discretizations can be found in [1].

2It can be seen that Vh � V ,! H is in fact sufficient [8].
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Since the space-time variational approach yields a standard Petrov-Galerkin
problem, the reduced basis trial and test spaces XN D spanf�1; : : : ; �Ng, YN.�/ WD
spanf�1.�/; : : : ; �N.�/g can be constructed exactly following the road map in
Sect. 1.3. Hence, we end up with a reduced problem of the form (1.8). In matrix-
vector form, the resulting system matrix BN.�/ WD Œb.� i; �j.�/I�/�i;jD1;:::;N is
of small dimension, but not symmetric. Moreover, BN.�/ is uniformly invertible
provided that the inf-sup condition in (1.5) holds for the RB spaces. It is not
difficult to show that the arising non-symmetric linear system can also be written
as minimization problem or in terms of normal equations (see [8] for details and
further applications).

If normal equations are used, no (parameter dependent) reduced test space
computation is required: Let XN D spanf'` W ` D 1; : : : ;N g and Y

N D spanf m W
m D 1; : : : ;N g be the detailed bases, denote by YN WD Œ. m;  m0/Y�m;m0D1;:::;N
the mass matrix of the test space Y

N as well as the detailed system matrix by
BN .�/ WD Œb.'`;  mI�/�`;mD1;:::;N . Next, denote by � j D PN

`D1 c
j
`'`, C WD

.c j
`/`D1;:::;N ; jD1;:::;N 2 R

N�N the expansion of the RB functions in terms of the
detailed basis. Then,

BN.�/ WD CT BN .�/.YN /�1.BN .�//T C; f
N
.�/ WD CT BN .�/.YN /�1fN .�/;

where fN .�/ contains the detailed basis coefficients of the right-hand side. The RB

approximation uN.�/ D PN
iD1 ˛i.�/� i, ˛.�/ WD .˛i.�//iD1;:::;N , is then determined

by the solution of the linear system of size N, i.e.

BN.�/ ˛.�/ D f
N
.�/: (1.15)

One can show that (1.15) admits an online/offline-separation, which is inherited
from the separation of the forms a and g (in particular, we have Qb D Qa and
Qf D Qg). This means that (1.15) can be solved online efficient. Finally, the inf-sup
stability of (1.15) is inherited from the detailed discretization.

1.6 Numerical Results

We provide some of our numerical investigations concerning the two approaches
described above for a standard diffusion-convection-reaction problem with time
dependent right-hand side. Since our focus is on the treatment of the time variable,
we restrict ourselves to a 1d problem in space.
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1.6.1 Data

Model Problem Let d D 1, ˝ D .0; 1/ and V WD H1
0.˝/ ,! L2.˝/ DW H.

Consider the time interval I D .0; 0:3/ and the parameter set P WD Œ0:5; 1:5� �
Œ0; 1� � Œ0; 1� � R

3. For a parameter � D .�1; �2; �3/
T 2 P find u 
 u.�/ that

solves

Pu � �1u00 C �2u
0 C �3u D g on I �˝; (1.16a)

u.t; x/ D 0 8 .t; x/ 2 I � @˝; (1.16b)

u.0; x/ D u0.x/ WD sin.2�x/ 8 x 2 ˝: (1.16c)

Set g.t; x/ WD sin.2�x/..4�2C0:5/ cos.4�t/�4� sin.4�t//C� cos.2�x/ cos.4�t/;
which corresponds to the solution u.t; x/ WD sin.2�x/ cos.4�t/ of (1.16) for the
reference parameter �ref D .1; 0:5; 0:5/ 2 P . The parameter-separability is easily
seen. We divide both ˝ and I into 26 subintervals, i.e., Nh D 26 � 1 and K D 26,
but we also consider various values for K. The training set Ptrain is chosen as 17
equidistantly distributed points in P in each direction.

“True” Norms For the space-time RBM, the “true” error is measured in the natural
discrete space-time norm [13]

�v�2N WD kNvk2L2.IIV/ C kPvk2L2.IIV0/ C kv.T/k2H ; v 2 X
N � X;

where Nv WD
KP

kD1
 k ˝ Nvk 2 L2.IIV/ and Nvk WD .�t/�1

R
Ik
v.t/ dt 2 V . Note, that

k NvkL2.IIV/ is an O.�t/-approximation of kvkL2.IIV/ (due to the piecewise constant
approximation Nvk).

For the POD-Greedy strategy, we consider the final time contribution kv.T/kV
[corresponding to the left-hand side of (1.12)] as well as the “space-time norm”
introduced in (1.13) for the specific weights !k WD �t, k D 0; : : : ;K � 1, plus the
final time contribution as “true” error, i.e.

jvj2�t WD j.v.tk//kD0;:::;K�1j2! C�t kv.T/k2V D
KX

kD0
�tkv.tk/k2V :

This means that jvj�t is an O.�t2/-approximation of kvkL2.IIV/.
Remark 2 For later reference, we point out that jvj�t is an O.�t2/-approximation
of kvkL2.IIV/, whereas k NvkL2.IIV/ is only of the order O.�t/. This means that it may
happen that jwj�t > �w�N even though kwkX > kwkL2.IIV/ for all 0 ¤ w 2 X. ˘
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Error Estimators/Greedy For the error estimation in the space-time RBM, we use
the residual-based error estimator�N.�/ in (1.9) with numerically estimated lower
bound for the inf-sup constant, ˇLB D 0:2. Of course, this is a relatively rough bound
(independent of �!) and performing e.g. a Successive Constraint Method (SCM [7])
would improve the subsequent results. For the POD-Greedy scheme, we use the
space-time error indicator �PST

N .�/ that arises from (1.14) by the choice !k 
 �t
for the weights.

We emphasize that �N.�/ bounds the norm in X D H1.I/ ˝ V ¨ L2.IIV/,
whereas�PST

N .�/ is “only” an indicator, in particular it is not known to be an upper
bound for any norm. In view of (1.12), we could expect that keK.�/kV might be a
candidate, or—since j � j�t is a discrete L2.IIV/-norm—we could consider kekL2.IIV/.
Comparison We conclude that a direct and fair comparison is not easy because of
the described methodological differences. Table 1.1 collects these differences and
our choice for the experiments.

1.6.2 Results

Greedy Training Within the framework of Table 1.1, the offline Greedy error
decay of both variants is shown in Fig. 1.1. The red lines correspond to the space-
time form, whereas the blue lines are for the POD-Greedy. Straight lines indicate
the error, dotted ones the error estimator/indicator. The left figure shows the weak
Greedy using the error estimators/indicators. We observe exponential decay w.r.t.
the RB dimension N in both cases—as predicted by the theory. At a first glance,
it seems that the decay of POD-Greedy is much faster than the one for space-time,
i.e., the stopping criterium in the Greedy algorithm for tol D 10�3 is reached at
NPOD-G D 7 and NST D 16. Note, however, that the online effort is related to N in a
different way for both variants, see below.

As mentioned above, the two variants are related to different norms. This is the
reason why we performed a strong Greedy using the jjj � jjjN -norm for both variants
(right graph in Fig. 1.1). We see a similar behavior—again referring to the different
online work load. It is interesting, though, that at least in these experiments, POD-
Greedy works very well even for the full norm—without theoretically foundation
though. However, we can also see from the results that �PST

N .�/ is not an error
bound since it is below the “exact” error for some N. Recall that �PST

N .�/ arises

Table 1.1 Differences of space-time RBM and POD-Greedy sampling

Snapshot space RB space “True” error Error estimated by

Space-time X
N

XN � � �N Residual based, �N.�/

in (1.9)

POD-Greedy ft0; : : : ; tKg � Vh VN j � j�t Indicator �PST
N .�/ in (1.14)

for !k � �t
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Fig. 1.1 RB-Greedy approximation error. Red: Space-Time (ST); blue: POD-Greedy (POD-G).
Left: weak Greedy, right: strong Greedy w.r.t. jjj � jjjN . Lines are plotted until the stopping criteria
for tol D 10�3 are reached in the while-loop (i.e., the error estimators in the next step are below
tol)

from the upper bound�K
N.�/ in (1.12) by setting involved coercivity and continuity

constants to 1. Moreover, note, that in the same spirit, we could easily lower the
gap between the two red space-time lines by sharpen ˇLB. The prescribed Greedy
tolerance of 10�3 is reached for NPOD-G D 6 for POD-Greedy and for NST D 12 for
space-time.

Online Phase We test the RB approximations for two cases, namely for P sym
test WD

f.�1; 0; 0/ W �1 2 Œ0:5; 1:5�g (symmetric case) and Pnon
test WD f.0:5; �2; 0:75/ W �2 2

Œ0; 1�g (non-symmetric case). The results are shown in Fig. 1.2, the symmetric case
in the top line, the non-symmetric in the bottom one.

First of all, both variants work as they should in the sense that the respective error
measures are below the Greedy tolerance of 10�3.

The “true” error (solid red lines) is slightly smaller for the space-time variant in
the symmetric case and very close to each other in the non-symmetric case.

We also compare the POD-Greedy error measure j � j�t. It is remarkable that this
quantity is almost identical to jjj � jjjN for space-time. This means that the temporal
derivative and the final time components of the solution are very-well approximated.
Regarding the result that for POD-Greedy the j � j�t-lines turn out to be above the
jjj � jjjN one, we recall Remark 2.

Finally, the error estimators/indicators are plotted as dash-dotted black lines. We
observe, that the effectivities3 are of almost the same size. However, if we rely on
the respective theory (i.e. jjjejjjN for space-time and ke.T/kV for POD-Greedy), the
effectivity of space-time improves, see Fig. 1.3.

3It is somehow misleading to use the term “effectivity” within the POD-Greedy framework, since
usually effectivity is the ratio of error bound and error.
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(a) (b)

(c) (d)

Fig. 1.2 RB approximation error on Ptest: Full error (red, solid), error estimator/indicator (black,
dash-dotted) and the POD-Greedy error measure j � j�t (blue, dashed) for Greedy tolerance tol D
0:001. Top line: symmetric case .�1; 0; 0/; bottom: non-symmetric .0:5; �2; 0:75/. (a) Space-time,
symmetric. (b) POD-Greedy, symmetric. (c) Space-time, non-symmetric. (d) POD-Greedy, non-
symmetric

WorkLoad/Effort We now compare the computational effort as well as the storage
amount (offline and online) of both variants, see Table 1.2.

Recall, that the chosen space-time method in the offline phase reduces to the
Crank-Nicholson scheme. Hence, the offline complexities and storage requirements
for the detailed solution of both variants indeed coincide (both linear in Nh; we
count 187 	 3Nh elements). The detailed solution requires K solves (corresponding
to the number of time steps) of a sparse system of size Nh. However, the space-time
precomputations needed to form the online system, rely on the full dimension N .

In the online-phase, POD-Greedy needs to store (for the LTI case) Qa reduced
matrices and KQg vectors of size NPOD-G for the time-dependent right-hand side.
The RB solution amounts to solve K densely populated reduced systems. In the LTI
case, one may reduce this to the computation of one LU-decomposition and then K
triangular systems, i.e., O.N3POD-G C KN2POD-G/ operations.
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(a) (b)

(c)

Fig. 1.3 Greedy error decay (a), space-time (b) and POD-Greedy (c) using the final time for POD-
Greedy training and error measure on the symmetric test set

Table 1.2 Offline and online effort of the RBMs

POD-Greedy Space-time

O./ / # Offline Online Offline Online

Solution KNh N3POD-G C KN2POD-G KNh N3ST

4.032 2.520 4.032 1.728

Storage � 3Nh QaN
2
POD-G C KQgNPOD-G � 3Nh Q2bN

2
ST CQbQfNST

187 528 187 2.352

We have NPOD-G D 6, NST D 12, Nh D 63, Qa D Qb D 4, Qf D Qg D 1, K D 64; the
corresponding numbers are given in the respective second row

The space-time method usually requires more storage, either by storing a suitable
test space or—as described above—by the setup of the normal equations using the
affine decomposition (1.10). The normal equations need memory of size O.Q2bN2STC
QbQfNST/. The RB-solution requires the solution of one reduced linear system of
dimension NST.
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1.7 Conclusions

We have explained and compared both theoretically and numerically two different
techniques to treat the time within the Reduced Basis Method (RBM). It is obvious
that a fair and significant numerical comparison is a delicate task. In particular,

• different norms need to be considered;
• the choice of the error estimator/indicator within the POD-Greedy method has a

significant impact;
• improving bounds for the involved constants will improve the results;
• we only consider such space-time methods that are equivalent to a time marching

scheme (here Crank-Nicholson). If this is not the case, the offline cost for the
space-time scheme will significantly increase;

• the number of time steps (K D 64) is moderate. As noted in Table 1.2, the online
effort for POD-Greedy grows linearly with K, whereas the online space-time
effort is independent of K. The reason is that the number of POD-Greedy basis
functions stays the same and just more time steps are needed. The dimension of
the space-time reduced system is independent of K. Increasing K (i.e., a higher
temporal resolution or longer time horizons keeping �t the same) will support
space-time;

• we only consider LTI-systems. Both the reduction rate and the storage depend on
this assumption.

Despite all these, we do think that our study indeed shows some facts, namely:

1. The POD-Greedy method allows one to use any time-marching scheme offline.
Even if the space-time discretization is chosen in such a way that it coincides
with a time-stepping scheme, this variant has an increased offline complexity. If
the full space-time dimension is needed, one may have to resort to tensor product
schemes [8].

2. In the online phase, the space-time method is more efficient concerning effort,
whereas POD-Greedy uses less storage.

3. If a theoretical justification of an error bound in the full X-norm is needed and
Finite Elements shall be used, space-time seems to be the method of choice. If a
Finite Volume discretization is chosen, POD-Greedy is more appropriate [5].

From these results, we tend to formulate the following recipe: If online compu-
tational time restrictions apply or for long-time horizons, the space-time approach
is advisable even in those cases where it might cause an increased offline effort. If
online storage restrictions apply or the use of a specific time-marching scheme is
necessary, the POD-Greedy approach is advisable.
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Chapter 2
Simultaneous Empirical Interpolation
and Reduced Basis Method: Application
to Non-linear Multi-Physics Problem

Cécile Daversin and Christophe Prud’homme

Abstract This paper focuses on the reduced basis method in the case of non-
linear and non-affinely parametrized partial differential equations where affine
decomposition is not obtained. In this context, Empirical Interpolation Method
(EIM) (Barrault et al. C R Acad Sci Paris Ser I 339(9):667–672, 2004) is commonly
used to recover the affine decomposition necessary to deploy the Reduced Basis
(RB) methodology. The build of each EIM approximation requires many finite
element solves which increases significantly the computational cost hence making
it inefficient on large problems (Daversin et al. ESAIM proceedings, EDP Sciences,
Paris, vol. 43, pp. 225–254, 2013). We propose a Simultaneous EIM and RB method
(SER) whose principle is based on the use of reduced basis approximations into the
EIM building step. The number of finite element solves required by SER can drop to
N C 1 where N is the dimension of the RB approximation space, thus providing a
huge computational gain. The SER method has already been introduced in Daversin
and Prud’homme (C R Acad Sci Paris Ser I 353:1105–1109, 2015) through which it
is illustrated on a 2D benchmark itself introduced in Grepl et al. (Modél Math Anal
Numér 41(03):575–605, 2007). This paper develops the SER method with some
variants and in particular a multilevel SER, SER.`/ which improves significantly
SER at the cost of `N C 1 finite element solves. Finally we discuss these extensions
on a 3D multi-physics problem.

2.1 Introduction

The demand in terms of real time simulations and uncertainty quantification is
fast growing area in engineering, together with the size and the complexity of the
considered problems. Reduced order methods, and in particular the reduced basis
methods, play a critical role at breaking complexity.
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Especially designed for real-time and many-query simulations, the Reduced
Basis (RB) method offers an efficient evaluation of quantities of interest and covers a
large range of problems among which non-affinely parametrized Partial Differential
Equations (PDE). Based on the so-called offline/online decomposition, this method
distinguishes the parameter independent terms whose computation is costly due
to their dependence on the finite element dimension. Allowing to compute the
latter only once, such a decomposition is not necessarily available in particular
for non-affine/non-linear problems. The Empirical Interpolation Method (EIM) is
classically used prior to the RB methodology to recover an affinely parametrized
problem ensuring the availability of the offline/online decomposition. We proposed
a simultaneous EIM-RB (SER) method [2] to circumvent the possibly dissuasive
additional cost required by the EIM building step. Building together the affine
decomposition as well as the RB approximation space, SER indeed requires only
but a few finite elements solves.

Following up [2], this paper reports a finer analysis of SER and its variants
along with its expanded use to non-linear multi-physics problem. In particular
we introduce a multilevel SER, SER.`/ which improves significantly SER. After a
reminder of the SER method in the context of non-affinely parametrized PDEs, we
first give an overview of the investigated variants. All of them are based on the
development of an error representation, initially designed to guide the construction
of the RB approximation space from a Greedy algorithm. The second part illustrates
these variants with results obtained on a benchmark introduced in [5] on which
the SER preliminary results shown in [2] were based. The last part focuses on the
application of SER and SER.`/ to a non-linear multi-physics problem from the
HiFiMagnet project aiming to design an efficient model for high field magnets [4].

2.2 A Simultaneous EIM-RB Method

Let u.�/ be the solution of a non-linear and non-affinely parametrized PDE, where
� denotes the p-vector of inputs defined in the parameter space D � R

p. The non-
affine parametrization comes from the dependance of the PDE on at least one non-
affine function w.u.�/; xI�/. Considering X � H1.˝/ an Hilbert space whose
scalar product is denoted as .�; �/X, the variational formulation of the PDE consists
in finding u.�/ 2 X as a root of a functional r such that

r.u.�/; vI�Iw.u.�/; xI�// D 0 8v 2 X: (2.1)

2.2.1 Preliminaries

We denote by XN � X the finite element approximation space of dimension
N in which the approximation uN .�/ of u.�/ resides. The non-linearity of the



2 SER Method: Application to Non-linear Multi-Physics Problem 19

considered PDE is handled through iterative methods. The following description
relies on a Newton algorithm for which we introduce j the Jacobian associated with
the functional r of (2.1), and ku.�/ the solution at k-th Newton’s iteration. The
problem (2.1) then consists in finding ıkC1u.�/ 
 kC1u.�/�ku.�/ 2 XN such that

j.u; vI�I ku.�/Iw.ku.�/; xI�//ıkC1u.�/ D �r.ku.�/; vI�Iw.ku.�/; xI�//
(2.2)

2.2.1.1 Empirical Interpolation Method

The reduced basis method is based on an offline/online strategy assuming the
existence of an affine decomposition of (2.2). The dependance of j and r on
w.u.�/; xI�/ stands in the way of the availability of such decomposition. In
this context, the Empirical Interpolation method (EIM) is widely used to recover
an affinely parametrized problem from (2.2) building an affine approximation
wM.u.�/; xI�/ of w.u.�/; xI�/ reading as

wM.u.�/; xI�/ D
MX

mD1
ˇM
m .u.�/I�/qm.x/ (2.3)

whose approximation coefficients ˇM
m results from the resolution of a M�M system

ensuring the exactness of wM at a set of interpolation points ftigMiD1.
To this end, we first introduce a subset � of D from which a sample NSM D

f N�1; : : : ; N�Mg 2 DM is built. The EIM approximation space NWM D spanf N�m 

w.u. N�m/; xI N�m/; 1 6 m 6 Mg in which the approximation wM.u.�/; xI�/ shall
reside consists of the set of w evaluations on NSM elements. As starting point of the
EIM algorithm, the first sample point N�1 is picked in � assuming N�1 ¤ 0.

N�1 D w.u. N�1/; xI N�1/; t1 D arg sup
x2˝

j N�1.x/j; q1 D
N�1.x/
N�1.t1/

(2.4)

The next sample points f N�mgMmD2 are then selected through a Greedy algorithm as

N�M D argmax
�2� inf

z2WM�1

jjw.u.�/I :I�/� zjjL1.˝/ (2.5)

leading to the EIM approximation space enrichment NWM D NWM�1 ˚ spanf N�Mg. The
computation of the coefficients ˇM�1

m .u. N�M/I N�M/ allows to evaluate the residual
rM.x/ D w.u. N�M/; xI N�M/ � wM�1.u. N�M/; xI N�M/ defining the interpolation point
tM and the next basis function qM as

tM D arg sup
x2˝

jrM.x/j; qM.x/ D rM.x/
rM.tM/

(2.6)
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2.2.1.2 Reduced Basis Method

Defined as the linear combination of the finite element solutions forming the RB
approximation space WN D spanf�i 
 uN .�i/; 1 6 i 6 Ng, the reduced basis
approximation uN.�/ of u.�/ reads as

uN.�/ D
NX
iD1

uN;i.�/�i (2.7)

Based on a sample SN D f�1; � � � ;�Ng � D with N << N , WN is built from
the set of finite element solutions fuN .�i/gNiD1 which are orthonormalized, with
respect to the scalar product of X, through a Gram-Schmidt algorithm. As uN .�/,
the reduced basis approximation uN.�/ has to satisfy the Eq. (2.1). The computation
of the coefficients uN;i.�/ in WN (2.7) consists in solving the N � N reduced
system (2.8), considering f�ngNiD1 as test functions

NX
jD1

j.� j; �lI�I kuN Iw.kuN; xI�//ıkC1uN; j D �r.�lI�I kuN Iw.kuN ; xI�// (2.8)

where ıkC1uN; j 
 .kC1uN; j � kuN; j/ and with 1 6 l 6 N.

2.2.2 SER Method

Offering both an efficient computation of WN and an efficient assembly of the
reduced system (2.8) by means of the precomputation of the parameter independent
terms of (2.2), the affine decomposition obtained through the EIM approximation of
w.u.�/; xI�/ is a core enabler of the reduced basis method. The EIM initialization
step (2.4) requires a single finite element solve to build the first EIM basis function.
The building of the subsequent ones is based on a Greedy algorithm (2.5), for
which the number of finite element solves required is proportional to the size of
EIM trainset � . The complexity scales both with the finite element dimension N
and the size of � , hence making the cost of the EIM offline step prohibitive.

Introduced in [2], the simultaneous EIM-RB (SER) method reduces this cost
using the readily available reduced approximation into the Greedy algorithm
instead of finite element solves. Due to the lack of reduced approximation at the
initialization step (2.4), the finite element solve of the full non-linear problem (2.2)
for the first EIM approximation w1 cannot be avoided. But (2.2) is never solved
afterwards. This leads to a first rough affine decomposition making the reduced
basis methodology feasible, and it results in a first reduced approximation to be
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used in the EIM Greedy algorithm (2.5). From there, EIM and RB approximation
spaces are enriched alternately using solely RB approximations making the number
of finite element solves required drop to one for the EIM offline step.

The parameter selection process is then based on the last reduced basis approxi-
mation uM�1

N�M D argmax
�2� inf

z2WM�1

jjw.uM�1.�/I :I�/� zjjL1.˝/ (2.9)

used as well to build the current EIM basis function

N�M D w .uM�1. N�M/I xI N�M/ : (2.10)

The residual rM.x/ D w.uM�1. N�M/; xI N�M/ � wM�1.uM�1. N�M/; xI N�M/ is also
computed from uM�1 giving tM and qM from (2.6).

2.2.2.1 Error Estimation

The Greedy algorithm used in the EIM offline step—either based on finite element
solve (2.5) or on reduced basis approximation (2.9)—relies on an evaluation of
the approximation error, defining a criterion for the parameter selection process.
In the absence of such an error representation, the RB sample SN on which the RB
approximation space WN is based is built from a random selection. This is the case
for the preliminary results displayed in [2]. In order to improve the reliability of the
reduced basis approximation, we introduce an error representation allowing to build
WN from a Greedy algorithm. In the context of SER, this should improve the quality
of the reduced basis approximation used in the EIM algorithm and then the affine
decomposition especially during the first steps of SER.

The definition of an error bound for non-linear but affinely parametrized
problems is given in [6], based on the norm of the Riesz representation Yr of the
residual r such that .Yr; v/X D r.v/.

The definition of such an error bound is not readily feasible for non-linear non
affinely parametrized problems. Let us now introduce raffN;M as the evaluation of (2.1)
from the reduced basis approximation uN and the EIM approximation wM which
served to build it. The residual raffN;M.�/ admits an affine decomposition composed
of Qr terms based on the coefficients ˇM

q;m and the basis functions rq;m coming from
the EIM approximations (2.3).

raffN;M.�/ D r.uN.�/; vI�IwM.uN.�/; xI�//

D
QrX
qD1

MX
mD1

ˇM
q;m.uN.�/I�/rq;m.uN.�/; v/ (2.11)
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The Riesz representations Yrq;m;n of rq;m.�n; v/ with 1 6 q 6 Qr, 1 6 m 6 M,
and 1 6 n 6 N are computed offline, providing an efficient online evaluation of
Yr

aff
N;M . Inspired from [6] but not providing an error bound, the norm of the Riesz

representation Yr
aff
N;M of raffN;M (2.11) provides an error representation.

We then use this representation to drive construction of SN in the Greedy
algorithm

�i D arg max�2D k Yr
aff
N;M.�I�/ kX (2.12)

2.2.2.2 Some SER Variants

Besides its use in the SN building process (2.12) consisting in a first SER variant,
the previously introduced error representation serves as a quantifier of the reduced
basis approximation accuracy through the SER offline procedure. Various alterna-
tives based on this error representation have been investigated, whose most relevant
ones are detailed in the following. They are still illustrated from the results obtained
on the 2D benchmark introduced in [5].

r-Adaptation

We remind that the SER methodology consists of the simultaneous enrichment
of EIM and RB approximation spaces whose basis functions are alternately built
one by one. A first alternative consists in changing the frequency of the affine
decomposition updates, corresponding to perform the alternate build per groups of
size r. In this context, r D 1 corresponds to the initial SER method while r D M
stands for the standard RB methodology. Intermediary stages with 1 < r < M were
investigated in [2] with r constant for the whole offline step.

We propose to use error evaluations as a criterion, providing guidance to perform
a smart adaptation of r during the SER process. Introduced as r-adaptation, this
method is detailed in Algorithm 1.

The Greedy algorithm used in EIM (2.9) and in RB (2.12) offline stage
selects the parameter which maximizes a representation of the approximation error.
Based on the increment of this error representation between two updates, the r-
adaptation method aims to continue the enrichment until a relevant decrease of
the approximation error. This adaptation process distinguishes the update frequency
rEIM and rRB of the EIM and RB approximation spaces.
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Algorithm 1 r-adaptation method
for i D m to i D mC rEIM do F Build rEIM EIM basis functions
"i  max�2� infz2Wi�1 jjw.ui�1.�/I :I�/ � zjjL1 .˝/ and N�i  argmax�2� infz2Wi�1jjw.ui�1.�/I :I�/� zjjL1.˝/

Compute ri.x/ D w.ui�1. N�i/; xI N�i/� wi�1.ui�1. N�i/; xI N�i/, deduce ti and qi.x/
if ."i � "i�1/="i�1 < tolEIM then rEIM  rEIM C 1 end if F Continue EIM

approximation space enrichment
end for

for j D n to j D nC rRB do F Build rRB RB basis functions
"i  max�2D k Yr

aff
j�1; mCrEIM

.�I�/ kX and �j  arg max�2D k Yr
aff
j�1; mCrEIM

.�I�/ kX
Wj  Wj�1 ˚ spanf� j � uN .�j/g
if ."i � "i�1/="i�1 < tolRB then rRB  rRB C 1 end if F Continue RB

approximation space enrichment
end for

Algorithm 2 Hybrid Greedy algorithm
for i D m to i D mC rEIM do F Build rEIM EIM basis functions

for � 2 � do
if k Yr

aff
n�1; i�1.�/ kX =max�2� k Yr

aff
n�1; i�1.�/ kX < tol

then u.�/ uN .�/ F EIM Greedy
else u.�/ uN .�/ end if

end for
N�i argmax�2� infz2Wi�1 jjw.u.�/I :I�/� zjjL1 .˝/ F employ uN .�/ or uN .�/

depending on k Yr
aff
n�1; i�1.�/ kX

Compute ri.x/ D w.u. N�i/; xI N�i/� wi�1.u. N�i/; xI N�i/, deduce ti and qi.x/
end for

for j D n to j D nC rRB do F Build rRB RB basis functions
�j arg max�2D k Yr

aff
j�1; mCrEIM

.�I�/ kX
Wj  Wj�1 ˚ spanf� j � uN .�j/g

end for

Hybrid Greedy Algorithm

The accuracy of the reduced basis approximation plays a key role in the NSM building
step especially for the first EIM basis functions. A reduced basis approximation
of poor quality could then damage the EIM approximation and consequently the
quality of the affine decomposition. We propose to assess the quality of the reduced
basis approximation from the error representation used in (2.12) for each parameter
of the trainset. As illustrated in Algorithm 2, the reduced basis approximation is
employed solely on parameters for which it is considered as relevant. A parametric
finite element solve based on the current affine decomposition is used for the
remaining parameters to benefit from the precomputations while considering the
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whole trainset all through the SER offline step. This leads to an hybrid method
combining the use of finite element and RB approximations within the EIM Greedy
algorithm (2.5).

Multilevel SER.`/

The last variant we propose rests on the application of the SER methodology
several times during the offline step. The first level exactly corresponds to the
previously introduced SER method whose Greedy algorithm employed for EIM
is described in (2.9). Once the EIM and RB approximation spaces completed, the
multilevel SER.`/ method consists of restarting the algorithm while benefiting from
the reduced basis approximation coming from the previous level. Considering u`N the
reduced basis approximation obtained at the `-th level, the EIM Greedy algorithm
becomes

N�M D argmax
�2� inf

z2WM�1

jjw.u`�1N .�/I :I�/ � zjjL1.˝/ (2.13)

Coming from the whole WN approximation space, the reduced basis approximations
used in the EIM Greedy algorithm from the second level offer EIM approximations
of better quality. Based on this consideration, the resulting reduced basis approxi-
mations are expected to be more accurate as well.

2.3 Numerical Experiments

Based on the 2D non-linear and non affinely parametrized benchmark of Grepl et al.
[5], the following numerical experiments illustrate the proposed SER variants. The
results are presented with M D N but this is not mandatory. We consider the 2D
domain˝ D�0; 1Œ2 and the parameter space D D Œ0:01; 10�2, this problem consists
in finding u such that

��u C �1
e�2u � 1
�2

D 100 sin.2�x/ sin.2�y/ in ˝ with � D .�1; �2/ 2 D

(2.14)
The non-affinely parametrization of the problem (2.14) resides in the function
g.u; xI�/ D �1

e�2u�1
�2

. Based on a training set � � D of size 225, its EIM

approximation gM D
MP
iD1
ˇM
m .u;�/qm.x/ allows to recover the required affine
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Table 2.1 Impact of Greedy algorithm in WN building

N M max."uM;N/ max."sM;N/ N M max."uM;N / max."sM;N /

(a) Standard—RB random (b) Standard—RB Greedy

5 5 8.37e�3 6.33e�3 5 5 8.22e�3 6.27e�3

10 10 4.33e�4 2.10e�4 10 10 2.87e�4 2.09e�4

15 15 2.60e�4 1.44e�4 15 15 1.96e�5 1.47e�5

20 20 9.14e�5 4.69e�5 20 20 1.57e�5 1.32e�5

25 25 4.18e�5 1.15e�5 25 25 3.14e�6 2.52e�6

Table 2.2 Impact of Greedy algorithm in WN building within SER

N M max."uM;N/ max."sM;N/ N M max."uM;N / max."sM;N /

(a) SER—RB random (b) SER—RB Greedy

5 5 1.06e�2 8.23e�3 5 5 1.04e�2 8.09e�3

10 10 2.13e�3 1.6e�3 10 10 2.40e�3 1.87e�3

15 15 5.12e�4 4.22e�4 15 15 2.38e�4 2.01e�4

20 20 3.58e�5 2.27e�5 20 20 3.02e�5 1.67e�5

25 25 2.24e�5 1.44e�5 25 25 2.65e�5 1.94e�5

decomposition. We consider the absolute error on the solution u and on the output s
defined as the average of u over˝

"uM;N Dk uN � uN kL2 "sM;N Dj sN � sN j (2.15)

where �N is the finite element solution/output of the initial problem (2.1) and �N the
reduced basis solution/output.

The following tables display the maximum of the absolute errors (2.15) obtained
on a set a 1000 realizations selected randomly in D . Table 2.1b reproduces the
results in [5] using the standard method with an RB approximation space built
from (2.12), confirming the relevance of the proposed error representation.

Regarding the SER method, Table 2.2a displays the results coming from the use
of a random selection process within the construction of the RB approximation
space while the Table 2.2b illustrates the use of a Greedy algorithm in this context.
Although slightly higher than the errors obtained in Table 2.1b, these errors come
close the ones obtained in Table 2.1a for a reduced computational cost. Nevertheless,
the impact of the previously introduced error representation on this application turns
out to be limited.



26 C. Daversin and C. Prud’homme

Table 2.3 SER variants based on error representation

N M max."uM;N/ max."sM;N/ N M max."uM;N/ max."sM;N /

(a) r-adaptation (tolEIM=20%, tolRB=20%) (b) Hybrid EIM (tol = 20%)

5 5 1.04e�2 8.09e�3 5 5 1.03e�2 8.06e�3

10 10 2.40e�3 1.87e�3 10 10 2.29e�3 1.77e�3

15 15 2.34e�4 1.95e�4 15 15 2.25e�4 1.87e�4

20 20 3.46e�5 2.01e�5 20 20 3.08e�5 1.77e�5

25 25 1.61e�5 9.19e�6 25 25 1.95e�5 1.40e�5

Table 2.3a and b combine the previous Greedy algorithm used to build the RB
approximation space with the first two SER variants. Table 2.3a focuses on the
r-adaptation method (Algorithm 1) while Table 2.3b investigates the previously
introduced ranking of parameters, depending on the reduced basis approximation
reliability within the EIM Greedy algorithm (Algorithm 2). Compared to previous
SER results displayed in Table 2.2, neither of these variants results in a significative
improvement in the error. A similar behaviour is observed combining these two
variants.

Table 2.4a–d display the results obtained with the multilevel SER.`/) method.
As expected, the results coming from the first level (Table 2.4a) are similar to
ones of Table 2.4a. The observed disparity comes from the random selection
process performed at RB offline stage which could result in a slightly different RB
approximation space.

From the second level illustrated by Table 2.4b, we observe a significant decrease
of the error which comes up to the standard case introduced in Table 2.1a. However,
the error is no longer visibly evolving at the next levels as shown in Table 2.4c and d.

As to the results obtained with SER.`/ method combined with the use of the pre-
vious error representation through a Greedy algorithm within the RB offline stage,
they are illustrated in Table 2.5a–d. Their analysis results in the same conclusion as
for Table 2.4.

The previous analysis is supported by the convergence study of the considered
EIM approximation illustrated in Fig. 2.1. The graph of Fig. 2.1 plots the maximal
value of the functional used in the EIM Greedy algorithm depending on the number
of basis functions which compose the EIM approximation space. Compared with
the EIM convergence obtained using the standard RB methodology, we can indeed
notice a significant error decrease from the second level. The next levels remains
comparable to the latter, already very close to the EIM approximation performed
from the standard method.
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Fig. 2.1 SER.`/—EIM convergence. (a) Random. (b) RB Greedy

2.4 Application to Multi-Physics Model

The HiFiMagnet project [4] aims at developing an efficient multi-physics model for
high field magnets. We investigate the pertinence of the SER method on a 3D non-
linear electro-thermal model. Considering the multilevel variant which has just been
introduced, the initial SER method is denoted as SER.1/ in the following.

2.4.1 Electro-Thermal Model

The considered electro-thermal model consists of the coupling of the electrical
potential V in the magnet with the resulting temperature T. Thus, the temperature
T is the solution of the non-linear coupled and non affinely parametrized thermo-
electric problem

� �r � .�.T/rV/ D 0

�r � .k.T/rT/ D �.T/rV � rV
(2.16)

The non-linearity of (2.16) is coming from the dependance of the electrical
(resp. thermal) conductivity �.T/ (resp. k.T/) on temperature as well as the joule
effect terms

�.T/ D �0

1C ˛.T � T0/
and k.T/ D �.T/LT (2.17)

The temperature coefficient ˛ and the Lorentz number L are proper to the
material, and �0 represents the electric conductivity at reference temperature
T D T0. Related to the current density j in the magnet, the current flow is modeled
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from a difference of electrical potential VD between the current input and the current
output imposed as Dirichlet boundary conditions. Other boundaries are considered
as electrically insulated through a homogeneous Neumann condition.

�
V D 0 on input;V D VD on output
��.T/rV � n D 0 on other boundaries

(2.18)

The temperature increase due to the Joule effect is controlled with a water cooling
of the magnet corresponding to a forced convection condition on the concerned
regions, based on the water temperature Tw and on heat transfer coefficient h.

� �k.T/rT � n D h.T � Tw/ on cooled surfaces
�k.T/rT � n D 0 on other boundaries

(2.19)

The input parameter � D .�0; ˛;L; j; h;Tw/ 2 R
6 combines material properties

and operating conditions parameters, while the considered output is the mean
temperature over the magnet acting as a critical parameter in terms of magnet
design. The definition of �.T/ (2.17) from the input parameters thus makes the
model (2.16) non-affinely parametrized as well as non-linear. The SER methodology
readily applies in this context.

2.4.2 Application to Bitter Magnet

The first application focuses on the geometry illustrated in Fig. 2.2 whose mesh is
composed of 15,388 nodes. This geometry stands for a sector of a Bitter magnet

Fig. 2.2 Temperature
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Table 2.6 Input parameters
ranges

Input Range

�0 Œ40� 106; 60� 106� S m�1

˛ Œ3:3� 10�3; 3:5� 10�3�K�1

L Œ2:5� 10�8; 2:9� 10�8�

j Œ30� 106; 60� 106�A m�2
h Œ50;000; 65;000�W m�2 K�1

Tw Œ293; 313�K

Table 2.7 SER applied to electro-thermal model—Bitter magnet

N M max."uM;N / max."sM;N / N M max."uM;N / max."sM;N /

(a) Standard—RB random (b) SER.1/—RB random

5 5 1.64e+1 1.94e�1 5 5 1.05e+1 2.09e�2

10 10 6.84e+0 8.24e�2 10 10 5.07e�1 3.42e�3

15 15 6.30e�2 4.90e�4 15 15 5.24e�1 1.05e�3

20 20 1.31e�2 1.65e�4 20 20 9.23e�2 1.89e�4

25 25 9.80e�3 6.74e�5 25 25 3.26e�2 1.90e�4

commonly used in the context of high field magnet facilities. The ranges considered
for the input parameter given in Table 2.6 are chosen from physical considerations
coming both from literature and experimental measures.

Performed in parallel on eight processors, the results given hereafter are based on
a set of 1000 realizations for which parameters are randomly chosen in the ranges
of Table 2.6. The non-linearity is handled by a fixed point iterative method, but
this time with a Picard algorithm instead of a Newton method. Nevertheless, all
previous considerations apply in the same way. As for the benchmark, we display the
maximum of absolute errors (2.15) on solution and on output to be compared with
reference results obtained with the standard method. The considered EIM trainset is
of size 100.

The first Table 2.7a and b compare the SER[1] method with the standard one,
both based on a randomly selection process to build the RB approximation space.

Turning to the previously introduced error estimator, Table 2.8 displays the errors
obtained from its use into the parameter selection process. Besides its low impact
on the 2D benchmark illustrated by Table 2.2a and b, the Greedy algorithm used
to build the RB approximation space has a significant influence on this application.
Indeed, it results in errors whose order of magnitude comes close to ones obtained
with standard RB methodology.

The convergence study of the SER.1/ method and its variants on this kind of
application allows to go further in its analysis. To this purpose, Fig. 2.3a focuses
on the convergence study related with the EIM approximation considered for
the electrical conductivity �.T/. Besides the expected error decrease, this plot
highlights the enhancement coming from the use of the error representation in term
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Table 2.8 SER.1/—RB
Greedy

N M max."uM;N / max."sM;N /

5 5 7.66e+0 2.71e�2

10 10 3.37e�1 7.82e�4

15 15 4.85e�2 2.64e�4

20 20 2.93e�2 3.40e�4

25 25 5.23e�3 4.59e�5
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Fig. 2.3 SER method—EIM and RB convergence. (a) EIM approximation of �.T/. (b) Reduced
basis solution

of convergence. Figure 2.3b studies the relative L2 error of the RB approximation
depending on the number of basis functions. The resulting behaviour was expected
as well.

Regarding its impact on the previous 2D benchmark, we investigate as well the
use of multilevel SER.`/ method with l > 1 on the electro-thermal problem. In
this context, Table 2.9 compares the results obtained at first and second levels. In
spite of the random selection process, Table 2.9a is in good agreement with the
previous Table 2.7b. Table 2.9b confirms the relevance of the multilevel variant since
SER.2/ already gives results which come close to those obtained with standard RB
methodology.

As for the Fig. 2.1 in the case of the 2D benchmark, the convergence study of
the considered EIM approximations allows to go further in the analysis. To this end,
Fig. 2.4a (resp. Fig. 2.4b) compares the convergence resulting obtained from various
level for the EIM approximation of �.T/ (resp. k.T/). This study tends to confirm
the preliminary results obtained on the benchmark which show pertinence of this
SER variant.
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Table 2.9 SER.`/—random N M max."uM;N/ max."sM;N /

(a) SER.1/

5 5 2.56e+1 2.85e�1

10 10 9.55e+0 6.06e�2

(b) SER.2/

5 5 7.78e+0 3.57e�2

10 10 2.09e+0 4.92e�3
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Fig. 2.4 SER.`/—random—EIM convergence. (a) EIM �.T/. (b) EIM k.T/

2.4.3 Application to Polyhelix Magnet

As an alternative of the previously mentioned Bitter magnets, the polyhelix magnets
are designed to produce high magnetic fields. Detailed in [4], this technology rests
on complex geometries leading to large problems in a numerical point of view.
The saving in computational time offered by the SER method is thus all the more
pertinent in this context. We propose to investigate its use on such a problem.

Based on a mesh composed of 2.2 millions of tetrahedra for approximatively
500,000 nodes (Fig. 2.5), the next simulations are performed on 12 processors. The
computer used to perform this experiment is composed of two multi-threaded 6
cores CPUs and 141 GB of shared memory (Table 2.10).

The considered problem is similar to the one introduced in (2.16) for the Bitter
magnet. The underlying non-linearity is handled by a Picard method with a given
tolerance of 10�6. Except the parameter related with the current flow, the input data
are similar to the previous experiment. The current density previously considered is
this time replaced by the difference of potentialVD which directly gives the Dirichlet
boundary condition (2.18).

The next study is based on EIM and RB approximation spaces of size 5. It aims
to compare the computational time necessary to perform the EIM Greedy algorithm
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Fig. 2.5 Temperature

Table 2.10 Input parameters ranges

Input Range

�0 Œ50� 106; 50:2� 106� S m�1

˛ Œ3:3� 10�3; 3:5� 10�3�K�1

L Œ2:5� 10�8; 2:9� 10�8�

VD Œ55; 65�V

h Œ70;000; 90;000�W m�2 K�1

Tw Œ293; 313�K

with the standard RB methodology and with the introduced SER method. To this
end, we focus on the EIM approximation related with the electrical conductivity
�.T/ for which the considered trainset is composed of 100 parameters.

Consisting of the same finite element solve in both cases, the computational
time related with the initialization of the EIM building step is approximatively
1760 s. The SER method uses the reduced basis approximation which results from
the first EIM basis function while the standard methodology continue to use finite
elements approximations. Regarding the first EIM Greedy algorithm for which the
available reduced basis approximation rests on a single basis function, the mean
time required to solve the reduced problem is 2.1 s compared with 2087 s for the
corresponding finite element one. Regarding the whole set of resolutions performed
within the EIM Greedy algorithm, this amounts to a factor close to 500 in terms of
computational time.
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Table 2.11 Performances of the SER method on a large scale multi-physics problem

N Mean time per online realization (s) Gain factor observed for EIM Greedy algorithm

1 2:1 495

2 4:3 321

3 7:7 213

4 6:1 254

Through each stage of the SER method, the EIM basis functions are built from a
set of reduced basis approximations based on an enriched RB approximation space.
In this context, Table 2.11 displays the mean time necessary for a single resolution
and the resulting gain factor related with the whole EIM Greedy algorithm.

Still considering the mean temperature over the domain, the use of the SER

method with N D M D 5 results in a maximal output error of "s5;5 D 2:1 � 10�1
compared to "s5;5 D 4:5�10�2 with the standard methodology. We shall note that the
initial version of the SER method—based on a random selection process regarding
the building of the RB approximation space—shows convergence issues for some
inputs. In our numerical experiments, SER combined with error representation
provided an online code that was robust and did not fail to converge for some
parameter set.

2.5 Conclusion

Intended as a follow-up of [2] introducing the SER method, this paper investigates
some of its variants and in particular SER.`/ as well as the benefits of using an
error representation to drive the SER process. We have proposed a methodology that
can build simultaneously the affine decomposition of the original problem and the
associated reduced basis model. Both (EIM and RB) are feeding each other. We
recover convincing error convergence on EIM and RB on a standard benchmark
problem as well as on 3D industrial nonlinear multi-physics application. In our
numerical experiments, the SER methodology proved to be robust. We think that
the proposed variants allow to improve this robustness by breaking premature stalls
of our algorithm.

There are still various aspects of the methodology that can be investigated, we
believe that SER opens various opportunities, and there is of course the theoretical
question of the a priori convergence of the SER method—the methodology takes
advantage of the underlying low-dimensional structures of the nonlinear PDE
systems simultaneously from the EIM and RB sides.



2 SER Method: Application to Non-linear Multi-Physics Problem 35

Acknowledgements The authors would like to thank A.T. Patera (MIT) for the fruitful discussions
we had as well as Vincent Chabannes (U. Strasbourg) and Christophe Trophime (CNRS). The
authors acknowledge also the financial support of the ANR Chorus and the Labex IRMIA, and
would like to thank PRACE for awarding us access to resource Curie based in France at CCRT as
well as GENCI for awarding us access to resource Occigen based in France at Cines.

References

1. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An empirical interpolation method:
application to efficient reduced-basis discretization of partial differential equations. C.R. Acad.
Sci. Paris Ser. I 339(9), 667–672 (2004)

2. Daversin, C., Prud’homme, C.: Simultaneous empirical interpolation and reduced basis method
for non-linear problems. C.R. Acad. Sci. Paris Ser. I 353, 1105–1109 (2015)

3. Daversin, C., Veys, S., Trophime, C., Prud’homme, C.: A reduced basis framework: application
to large scale non-linear multi-physics problems. In: ESAIM Proceedings, vol. 43, pp. 225–254.
EDP Science, Paris (2013)

4. Daversin, C., Prud’homme, C., Trophime, C.: Full three-dimensional multiphysics
model of high-field polyhelices magnets. IEEE Trans. Appl. Supercond. 26(4) (2016).
doi:10.1109/TASC.2016.2516241

5. Grepl, M.A., Maday Y., Nguyen, N.C. Patera, A.T.: Efficient reduced-basis treatment of
nonaffine and nonlinear partial differential equations. Modél. Math. Anal. Numér. 41(03),
575–605 (2007)

6. Veroy, K., Prud’homme, C., Rovas, D.V, Patera, A.T.: A Posteriori Error Bounds for Reduced-
Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential
Equations. American Institute of Aeronautics and Astronautics Paper, 2003–3847 (2003)



Chapter 3
A Certified Reduced Basis Approach
for Parametrized Optimal Control Problems
with Two-Sided Control Constraints

Eduard Bader, Martin A. Grepl, and Karen Veroy

Abstract In this paper, we employ the reduced basis method for the efficient and
reliable solution of parametrized optimal control problems governed by elliptic
partial differential equations. We consider the standard linear-quadratic problem
setting with distributed control and two-sided control constraints, which play an
important role in many industrial and economical applications. For this problem
class, we propose two different reduced basis approximations and associated error
estimation procedures. In our first approach, we directly consider the resulting
optimality system, introduce suitable reduced basis approximations for the state,
adjoint, control, and Lagrange multipliers, and use a projection approach to bound
the error in the reduced optimal control. For our second approach, we first
reformulate the optimal control problem using two slack variables, we then develop
a reduced basis approximation for both slack problems by suitably restricting the
solution space, and derive error bounds for the slack based optimal control. We
discuss benefits and drawbacks of both approaches and substantiate the comparison
by presenting numerical results for a model problem.

3.1 Introduction

Optimal control problems governed by partial differential equations (PDEs) appear
in a wide range of applications in science and engineering, such as heat phenomena,
crystal growth, and fluid flow (see, e.g., [4, 8]). Their solution using classical
discretization techniques such as finite elements (FE) or finite volumes can be
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computationally expensive and time-consuming. Often, additional parameters enter
the problem, e.g., material or geometry parameters in a design exercise.

Previous work on reduced order methods for optimal control problems con-
sidered distributed but unconstrained controls or constrained but scalar controls.
Elliptic optimal control problems with distributed control have been considered
recently by Negri et al. [10]. The proposed error bound is based on the Banach-
Nečas-Babuška (BNB) theory applied to the first order optimality system. The
approach thus provides a combined bound for the error in the state, adjoint, and
control variable, but it is only applicable to problems without control constraints.
Since the bound requires the very costly computation of a lower bound to the inf-
sup constant, Negri et al. [11] compute error estimates using a heuristic interpolant
surrogate of that constant.

Based on the ideas in Tröltzsch and Volkwein [13], Kärcher and Grepl [6]
proposed rigorous and online-efficient control error bounds for reduced basis (RB)
approximations of scalar elliptic optimal control problems. These ideas are extended
and improved in [7] to distributed control problems.

In a recent paper [1], we employed the RB method as a surrogate model for
the solution of distributed and one-sided constrained optimal control problems
governed by parametrized elliptic partial differential equations. In this paper we
extend this work to two-sided control constraints. After stating the problem in
Sect. 3.2 we present the following contributions:

• In Sect. 3.3 we extend previous work on reduced basis methods for variational
inequalities in [1, 3] to the optimal control setting with two-sided control
constraints. While we can derive an offline-online decomposable RB optimality
system, we are only able to derive a partially offline-online decomposable control
error bound that depends on the FE dimension of the control.

• In Sect. 3.4 we build on the recent work in [1, 14] and propose an RB slack
approach for optimal control. We introduce two slack formulations for the
optimal control problem, which we obtain by shifting the optimal control by
each constraint. We are thus able to derive an offline-online decomposable RB
optimality systems and control error bound. The evaluation of this bound is
independent of the FE dimension of the problem, but requires the solution of
three RB systems.

In Sect. 3.5 we propose a greedy sampling procedure to construct the RB spaces and
in Sect. 3.6 we assess the properties of our methods by presenting numerical results
for a Graetz flow problem.

3.2 General Problem Statement and Finite Element
Discretization

In this section we introduce the parametrized linear-quadratic optimal control
problem with elliptic PDE constraint and a constrained distributed control. We
introduce a finite element (FE) discretization for the continuous problem and
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recall the first-order necessary (and in the convex setting sufficient) optimality
conditions.

3.2.1 Preliminaries

Let Ye with H1
0.˝/ � Ye � H1.˝/ be a Hilbert space over the bounded Lipschitz

domain ˝ � R
d; d 2 f1; 2; 3g, with boundary � .1 The inner product and induced

norm associated with Ye are given by .�; �/Y and k�kY D p
.�; �/Y . We assume that

the norm k�kY is equivalent to the H1.˝/-norm and denote the dual space of Ye

by Ye
0. We also introduce the control Hilbert space Ue D L2.˝/, together with its

inner product .�; �/U, induced norm k�kU D p
.�; �/U, and associated dual space Ue

0.2
Furthermore, let D � R

P be a prescribed P-dimensional compact parameter set in
which the P-tuple (input) parameter � D .�1; : : : ; �P/ resides.

We directly consider a FE “truth” approximation for the exact infinite-
dimensional optimal control problem. To this end, we define two conforming
FE spaces Y � Ye and U � Ue and denote their dimensions by NY D dim.Y/ and
NU D dim.U/. We assume that the truth spaces Y and U are sufficiently rich such
that the FE solutions guarantee a desired accuracy over D .

We next introduce the �-dependent bilinear form a.�; �I�/ W Y � Y ! R, and
shall assume that a.�; �I�/ is (1) continuous for all � 2 D with continuity constant
�a.�/ < 1 and (2) coercive for all � 2 D with coercivity constant ˛a.�/ > 0.
Furthermore, we introduce the �-dependent continuous linear functional f .�I�/ W
Y ! R and the bilinear form b.�; �I�/ W U � Y ! R with continuity constant
�b.�/ < 1.

In anticipation of the optimal control problem, we introduce the parametrized
control constraints ua.�/; ub.�/ 2 U and a desired state yd 2 D. Here, D � L2. D̋/

is a suitable FE space for the observation subdomain D̋ � ˝ . Furthermore, we note
that the semi-norm j�jD for y 2 L2.˝/ is defined by j�jD D k�kL2.˝D/.

The involved bilinear and linear forms as well as the control constraint are
assumed to depend affinely on the parameter. For example we require for all
w; v 2 Y and all parameters � 2 D that a.w; vI�/ D PQa

qD1 �q
a.�/ a

q.w; v/ and

ua.xI�/ D PQua
qD1 �q

ua.�/ u
q
a.x/ for some (preferably) small integers Qa and Qua.

Here, the coefficient functions �q�.�/ W D ! R are continuous and depend on �,
whereas the continuous bilinear and linear forms, e.g., aq.�; �/ and uqa 2 U do not
depend on �. Although we choose yd.x/ to be parameter-independent, our approach
directly extends to an affinely parameter-dependent yd.xI�/ (see Kärcher et al. [7]).

1The subscript “e” denotes the “exact” infinite-dimensional continuous problem setting.
2The framework of this work directly extends to Neumann boundary controls Ue D L2.@˝/ or
finite dimensional controls Ue D R

m. Also distributed controls on a subdomain ˝U � ˝ or
Neumann boundary controls on a boundary segment �U � @˝ are possible.
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For the development of a posteriori error bounds we also require additional
ingredients. We assume that we are given a positive lower bound ˛LB

a .�/ W D ! RC
for the coercivity constant ˛a.�/ of a.�; �I�/ such that ˛LB

a .�/ � ˛a.�/ 8� 2 D .
Furthermore, we assume that we have upper bounds available for the constant
CUB
D � CD D supw2Ynf0g

jwjD
kwkY � 0 8� 2 D ; and the continuity constant of the

bilinear form b.�; �I�/: �UB
b .�/ � �b.�/ 8� 2 D : Here, the constant CD depends

on the parameter, since later we use j�jD D k�kL2.˝D.�// (see Sect. 3.6). In our setting,
it is possible to compute these constants (or their bounds) efficiently using an offline-
online procedure (see [7, 12]).

3.2.2 Abstract Formulation of Linear-Quadratic Optimal
Control Problems and the First-Order Optimality
Conditions

We consider the following FE optimal control problem in weak form with ua.�/ <
ub.�/

min
Oy;Ou

J.Oy; Ou/ D 1

2
jOy � ydj2D C �

2
kOuk2U ; � > 0 (P)

s.t. .Oy; Ou/ 2 Y � U solves a.Oy; �I�/ D b.Ou; �I�/C f .�I�/ 8� 2 Y;

.ua.�/; �/U � .Ou; �/U � .ub.�/; �/U 8� 2 UC;

where UC WD f� 2 UI � � 0 almost everywhereg and we dropped the
�-dependence of the state and control .Oy; Ou/ for the sake of readability. We note that
the last line of (P) is equivalent to Ou being in the convex admissible set

Uad D f 2 UI .ua.�/; �/U � . ; �/U � .ub.�/; �/U 8� 2 UCg: (3.1)

In the following we call problem (P) the “primal” problem, for which the existence
and uniqueness of the solution is standard (see, e.g., [4]). The derivation of the
necessary and sufficient first-order optimality system is straightforward: Given � 2
D , the optimal solution .y; p; u; �; �b/ 2 Y � Y � U � U � U satisfies

a.y; �I�/ D b.u; �I�/C f .�I�/ 8� 2 Y; (3.2a)

a.'; pI�/ D .yd � y; '/D 8' 2 Y; (3.2b)

.�u;  /U � b. ; pI�/ D .�;  /U � .�b;  /U 8 2 U; (3.2c)

.ua.�/� u; �/U � 0 8� 2 UC; .ua.�/ � u; �/U D 0; � � 0; (3.2d)

.ub.�/� u; �/U � 0 8� 2 UC; .ub.�/ � u; �b/U D 0; �b � 0: (3.2e)
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Note that we follow a first-discretize-then-optimize approach here, for a more
detailed discussion see [4, Sect. 3.2.4]).

In the following we comment on the FE-setting in this paper. We assume that
the state variable is discretized by P1, i.e., continuous and piecewise linear, and the
control variable by P0, i.e., piecewise constant finite elements. Next, we introduce
two bases for the FE spaces Y and U, such that

Y D spanf �y
i ; i D 1; : : : ;NYg and U D spanf �u

i ; i D 1; : : : ;NUg;

where �y
i � 0; i D 1; : : : ;NY , and �u

i � 0; i D 1; : : : ;NU , are the usual hat
and bar basis functions. Using these basis functions we can express the functions
y; p 2 Y and u; �; �b 2 U as, e.g., y D PNY

iD1 yi�
y
i . The corresponding FE

coefficient vectors are given by, e.g., y D .y1; : : : ; yNY /
T 2 R

NY . Note that by
definition of UC and since �u

i � 0, the condition � 2 UC in (3.2d) and (3.2e)
translates into the condition � � 0 for the corresponding coefficient vector. Further,
we also introduce the control mass matrix MU with entries .MU/ij D .�u

i ; �
u
j /U ,

which is for a P0 control discretization a positive diagonal matrix. Hence the
point-wise and the ‘weak’ (averaged) constraint formulations are equivalent u.x/ �
ua.xI�/ , .u; �/U � .ua.�/; �/U 8� 2 UC. However, this is in general not true
for other control discretizations, e.g., P1.

Based on the truth FE primal problem (P) we derive an RB primal problem (PN)
and a rigorous a posteriori error bound for the error between the truth and RB control
approximation in Theorem 1.

3.3 Reduced Basis Method for the Primal Problem

3.3.1 Reduced Basis Approximation

To begin, we define the RB spaces YN � Y, UN ; ˙N ; ˙b;N � U as well as the
convex cones ˙CN � UC, ˙Cb;N � UC as follows: given N parameter samples
�1; : : : ; �N , we set

YN D spanf �y1; : : : ; �yNY
g D spanf y.�1/; p.�1/; : : : ; y.�N/; p.�N/ g; (3.3a)

UN D spanf�u1 ; : : : ; �uNU
g D spanfu.�1/; �.�1/; �b.�1/;: : :; u.�N/; �.�N/; �b.�

N/g;
(3.3b)

˙N D spanf ��1 ; : : : ; ��N� g D spanf �.�1/; : : : ; �.�N/ g; (3.3c)

˙b;N D spanf��b1 ; : : : ; ��bN�b g D spanf�b.�1/; : : : ; �b.�N/g; (3.3d)

˙CN D spanCf ��1 ; : : : ; ��N� g and ˙Cb;N D spanCf��b1 ; : : : ; ��bN�b g; (3.3e)
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where we assume that the basis functions, ��1 ; : : : ��N�

, are linearly independent and
spanCf�g indicates the cone spanned by non-negative combinations of the elements,
i.e.

spanCf�1; : : : ; �Ng D
(

NX
iD1

˛i�i j˛i � 0

)
:

Note that we employ integrated spaces for the state and adjoint as well as for the
control (see Remarks 1 and 2). For the spaces YN and UN we additionally assume
that the basis functions are orthogonal, i.e., .�yi ; �

y
j /Y D ıij and .�ui ; �

u
j /U D ıij, where

ıij is the Kronecker delta. This orthogonality is favorable to keep the condition of
the RB algebraic linear systems small [12]. In addition, we do not orthogonalize
the basis ��i ; �

�b
i of the cones ˙CN ; ˙

C
b;N � UC, because this non-negativity is

used in the definition of the reduced problem (PN) of (P).3 Although the conditions
��i 2 ˙CN and ��bi 2 ˙Cb;N appear to be much more restrictive than ��i ; �

�b
i 2 UC,

we observe in numerical tests (not shown) that the RB approximations converge to
the FE solutions with a similar rate as the control approximations. In addition, the
RB approximations are comparable to the best possible approximations derived by
projecting � to ˙N or ˙CN , analogously for �b. We describe the greedy sampling
approach to construct the RB spaces in Sect. 3.5. Next, given the RB spaces in (3.3)
we derive the RB primal problem

min
OyN ;OuN

J.OyN ; OuN/ D 1

2
jOyN � ydj2D C �

2
kOuNk2U (PN)

s.t. .OyN ; OuN/ 2 YN � UN solves a.OyN ; �I�/Db.OuN ; �I�/Cf .�I�/ 8� 2 YN ;

.ua.�/; �/U � .OuN ; �/U 8� 2 ˙CN ; .ub.�/; �/U � .OuN ; �/U 8� 2 ˙Cb;N :

The last line of (PN) defines the admissible set for uN : Uad;N D f 2
UN I .ua.�/; �/U � . ; �/U 8� 2 ˙CN ; .ub.�/; �/U � . ; �/U 8� 2 ˙Cb;Ng,
which is in general not a subset of Uad in (3.1). Analogously to the primal
problem (P) we obtain the RB optimality system: Given � 2 D , the optimal
solution .yN ; pN ; uN ; �N ; �b;N/ 2 YN � YN � UN �˙N �˙b;N satisfies

a.yN ; �I�/ D b.uN ; �I�/C f .�I�/ 8� 2 YN ; (3.4a)

a.'; pN I�/ D .yd � yN ; '/D 8' 2 YN ; (3.4b)

.�uN ;  /U � b. ; pN I�/ D .�N ;  /U � .�b;N;  /U 8 2 UN ; (3.4c)

.ua.�/� uN ; �/U � 0 8� 2 ˙C

N ; .ua.�/� uN ; �N/U D 0; �N 2 ˙C

N ; (3.4d)

.ub.�/� uN ; �/U � 0 8� 2 ˙C

b;N ; .ub.�/� uN ; �b;N/U D 0; �b;N 2 ˙C

b;N : (3.4e)

3Alternative methods to deal with the non-negativity can be found in [2].



3 A Certified RB Approach for Parametrized OCPs with Control Constraints 43

Remark 1 (Existence, Uniqueness, Integrated Space YN) Since (PN) is a linear-
quadratic optimal control problem over the closed convex admissible set Uad;N ,
the existence and uniqueness of the RB optimal control uN follows from standard
arguments (see, e.g., [4, Theorem 1.43]). Also note that we use a single “integrated”
reduced basis trial and test space YN for the state and adjoint equations as one
ingredient to ensure stability of the system (3.4), see e.g. Kärcher [5].

Remark 2 (Stability, Integrated Space UN) For the stability of the RB solutions we
need to show that the RB inf-sup constants

ˇN WD inf
 �2˙N

sup
 u2UN

. � ;  u/U

k �kUk ukU ; ˇb;N WD inf
 �b2˙b;N

sup
 u2UN

. �b ;  u/U

k �bkUk ukU

are bounded away from zero. We guarantee that ˇN ; ˇb;N � ˇ > 0 by enriching the
RB control space with suitable supremizers [9]. Here, these supremizers are just the
multiplier snapshots �.�n/; �b.�

n/; 1 � n � N; we thus have ˇN D ˇb;N D ˇ D 1.

3.3.2 Primal Error Bound

We next propose an a posteriori error bound for the optimal control. The bound
is based on [1], which uses an (1) RB approach for variational inequalities of the
first kind [3], and (2) an RB approach for optimal control problems with a PDE
constraint [7]. Before stating the main result, we define the following approximation
errors (omitting �-dependencies) of the RB primal system (3.4)

ey D y � yN ; ep D p � pN ; eu D u � uN ; e� D � � �N ; e�b D �b � �b;N ;

as well as the residuals in the next definition.

Definition 1 (Residuals) The residuals of the state equation, the adjoint equation
w.r.t. (3.2a)–(3.2c) are defined for all � 2 D by

ry.�I�/ D b.uN; �I�/C f .�I�/ � a.yN ; �I�/ 8� 2 Y;
(3.5a)

rp.'I�/ D .yd � yN ; '/D � a.'; pN I�/ 8' 2 Y;
(3.5b)

ru. I�/ D ��.uN ;  /U C b. ; pN I�/C .�N ;  /U � .�b;N ;  /U 8 2 U:
(3.5c)

Theorem 1 (Primal Error Bound) Let u and uN be the optimal controls of the FE
primal problem (P) and of the RB primal problem (PN), respectively. Then the error
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in the optimal control satisfies for any given parameter � 2 D

keukU � �
pr
N .�/;

where �pr
N .�/ WD c1.�/Cp

c1.�/2 C c2.�/ with nonnegative coefficients

c1.�/ D 1

2�

�
krukU0 C �UB

b

˛LB
a

krpkY0 C �.ı1 C ı1b/

�
; (3.6a)

c2.�/ D 1

�

"
2

˛LB
a

krykY0krpkY0 C 1

4

�
CUB
D

˛LB
a

�krykY0 C �UB
b .ı1 C ı1b/

��2
(3.6b)

C
�

krukU0 C �UB
b

˛LB
a

krpkY0 Cp2.�N ; �b;N/U
�
.ı1 C ı1b/C ı2 C ı2b

#
;

and ı1 D kŒua � uN �CkU; ı2 D .Œua � uN �C; �N/U; ı1b D kŒuN � ub�CkU; ı2b D
.ŒuN � ub�C; �b;N/U.
Here Œ��C D max.�; 0/ denotes the positive part (a.e.). Note that we sometimes use
r� instead of r�.�I�/ and omit the �-dependencies on the r.h.s. of (3.6) for a better
readability.

Proof This proof follows the proof of the primal error bound from [1]. Since the FE
optimal solution .y; p; u; �; �b/ satisfies the optimality conditions (3.2), we obtain
the following error-residual equations:

a.ey; �I�/� b.eu; �I�/ D ry.�I�/ 8� 2 Y; (3.7a)

a.'; epI�/C .ey; '/D D rp.'I�/ 8' 2 Y; (3.7b)

�.eu;  /U � b. ; epI�/ � .e� ;  /U C .e�b ;  /U D ru. I�/ 8 2 U: (3.7c)

From (3.7a) with � D ey, (3.7b) with ' D ep, and ˛LB
a .�/ � ˛a.�/ we infer that

keykY � 1

˛LB
a

�krykY0 C �UB
b keukU

�
; kepkY � 1

˛LB
a

�krpkY0 C CUB
D jeyjD

�
:

(3.8)

Choosing � D ep, ' D ey,  D eu in (3.7), adding (3.7b) and (3.7c), and
subtracting (3.7a) results in

�keuk2UCjeyj2D�krykY0 kepkYCkrpkY0 keykYCkrukU0keukUC.e� �e�b ; eu/U: (3.9)
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Next, we bound .e� ; eu/U and �.e�b ; eu/U. We first consider .e� ; eu/U and note that

.e� ; eu/U D .� � �N ; u � uN/U D .�; u � uN/U C .�N ; uN � u/U

D .�; u � ua.�//U C .�; ua.�/� uN/U C .�N ; uN � ua.�//U C .�N ; ua.�/ � u/U;

where, except for the second term, all terms are nonpositive, see (3.2d) and (3.4d).
Hence

.e� ; eu/U � .�; ua.�/ � uN/U � .�; Œua.�/ � uN �C/U (3.10)

D .� � �N ; Œua.�/ � uN �C/U C .�N ; Œua.�/ � uN �C/U � ke�kU ı1 C ı2:

Analogously, we bound �.e�b ; eu/U � ke�bkU ı1b C ı2b. Most significantly, it
remains to bound the terms ke�kU and ke�bkU , which we achieve in two steps: First,
we relate ke�kU and ke�bkU with ke� � e�bkU by

ke�k2UCke�bk2U Dke� � e�bk2UC2�.�; �b/U�.�N ; �b/UC.�N ; �b;N/U�.�; �b;N/U
�

If we employ .�; �b/U D 0, .�N ; �b/U � 0, and .�; �b;N/U � 0, we obtain

ke�kU ; ke�bkU � ke� � e�bkU Cp
2.�N; �b;N/U: (3.11)

Second, we focus on the optimality residual (3.7c), use the inf-sup stability of

.�; �/U and (3.8) to derive ke��e�bkU � krukU0 C�keukUC �UB
b
˛LB
a

�krpkY0 C CUB
D jeyjD

�
:

Next, we employ the inequalities (3.8) and (3.11) in (3.9) to obtain

�keuk2U C jeyj2D � keukU
�

krukU0 C �UB
b

˛LB
a

krpkY0 C �.ı1 C ı1b/

�
(3.12)

C 2

˛LB
a

krykY0krpkY0 C jeyjDC
UB
D

˛LB
a

�krykY0 C �UB
b .ı1 C ı1b/

�

C
�

krukU0 C �UB
b

˛LB
a

krpkY0 Cp
2.�N ; �b;N/U

�
.ı1 C ı1b/C ı2 C ı2b:

It thus follows from applying Young’s inequality to the jeyjD-terms in (3.12) that

keuk2U � 2c1.�/keukU � c2.�/ � 0;

where c1.�/ and c2.�/ are given in (3.6). Solving the last inequality for the larger
root yields keukU � c1.�/Cp

c1.�/2 C c2.�/ D �
pr
N .�/.
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We note that most of the ingredients of the primal error bound�pr
N .�/ introduced

in Theorem 1 are standard, i.e., the dual norms of state, adjoint, and control
residuals, as well as coercivity and continuity constants or rather their lower and
upper bounds [7, 12]. The only non-standard terms are ı1; ı2; ı1b and ı2b, which
measure the constraint-violation of the RB optimal control uN . As a result, the online
computational cost to evaluate ı�—and hence the error bound�pr

N .�/—depends on
the FE control dimension NU , requiring O..NU C N� C N�b/NU/ operations.

3.4 Slack Problem and the Primal-Slack Error Bound

In this section we introduce a reformulation of the original primal problem by
means of a slack variable. We extend the ideas presented for the one-sided control-
constrained problem in [1] to the two-sided control-constrained problem. First,
we reformulate the original optimization problem (P) by replacing the control
variable with a slack variable that depends on one of the two constraints ua.�/ or
ub.�/. Second, we use snapshots of the slack variable to construct an associated
convex cone, leading to strictly feasible approximations w.r.t. either the lower
or upper constraint. Third, we derive two RB slack problems by restricting the
RB-slack coefficients to a convex cone. And finally, we propose an a posteriori
N -independent error bound for RB slack approximation w.r.t. either the lower or
upper constraint in Theorem 2.

3.4.1 FE and RB Slack Problem

We consider the FE optimization problem (P) and introduce the slack variable s 2
UC given by

s D u � ua.�/ (3.13)

together with the corresponding FE coefficient vector s D u�ua.�/, where we state
the slack variable w.r.t. ua.�/. Here, we again omit the explicit dependence of u and
s on the parameter �. We note that, by construction, the feasibility of u w.r.t. ua.�/
is equivalent to MUs � 0, which in turn is equivalent to s � 0, if we are using P0
elements.

If we substitute u by sCua.�/ in (P), we obtain the “slack” optimization problem

min
Oy;Os

Js.Oy; Os/ D 1

2
jOy � ydj2D C �

2
kOs C ua.�/k2U (S)

s.t. .Oy; Os/ 2 Y � UC solves a.Oy; �I�/ D b.Os C ua.�/; �I�/C f .�I�/ 8� 2 Y;

.ub.�/; �/U � .Os C ua.�/; �/U 8� 2 UC:
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Analogously, we define a slack variable sb D ub.�/ � u w.r.t. ub.�/ and recast (P)
w.r.t. sb. We do not state this minimization problem explicitly since it is analogous
to (S).

In the following we derive two RB slack problems w.r.t. ua.�/ and ub.�/. We
start with the former and reuse the RB space YN , introduced in Sect. 3.3.1, for the
state and adjoint variables. Furthermore, for the RB approximation of the slack
variable s we simply introduce an RB slack space SN and a convex cone SCN by
shifting the control snapshots of (P) with the control constraint ua.�/

SN D spanf �s1; : : : ; �sNS
g D spanf u.�1/� ua.�

1/; : : : ; u.�N/ � ua.�
N/ g;

(3.14a)

SCN D spanCf �s1; : : : ; �sNS
g � UC: (3.14b)

We assume that the snapshots �s1; : : : ; �
s
Ns

are linearly independent and not orthog-
onalized. Further, we need to consider a Lagrange multiplier � s

b 2 UC for the
constraint ub.�/ by incorporating the RB space ˙b;N � U, as well as the convex
cone˙Cb;N from (3.3d) and (3.3e). Overall, for an RB approximation sN 2 SCN � UC
of s, we have sN � 0. From the definition of the slack variable s D u � ua.�/,
see (3.13), we derive the control approximation us WD sN C ua.�/ that satisfies us �
ua.�/. However, we can not conclude us � ub.�/ since the slack approximation sN
is constructed—as the slack variable s in (3.13)—using information from ua.�/ but
not ub.�/.

Overall, employing the RB spaces in (S) results in the RB slack problem

min
OysN ;OsN

Js.OysN ; OsN/ D 1

2
jOysN � ydj2D C �

2
kOsN C ua.�/k2U (SN)

s.t. .OysN ; OsN/2YN�SC

N solves a.OysN ; �I�/ D b.OsNCua.�/; �I�/Cf .�I�/ 8� 2 YN ;

.ub.�/; �/U � .OsN C ua.�/; �/U 8� 2 ˙C

b;N ;

As in the RB primal problem (PN), the existence and uniqueness of the RB
optimal control follows from the same arguments as in the Remark 1. Next,
we derive the optimality conditions for sN ; however, we here follow the ‘first-
discretize-then-optimize’ approach that will eventually lead to a feasible—w.r.t.
ua.�/—approximation of the control. We perform two steps.

First, we use the RB-representations of ysN ; sN with their RB-coefficient vectors
ys
N
; sN to discretize (SN). Since the algebraic RB slack problem is simple to derive,

we only state the main crucial condition that sN � 0. Next, we derive the first-
order optimality conditions. We introduce a discrete Lagrange multiplier O!N 2
R

NS ; O!N � 0, ensuring the non-negativeness of OsN and derive the following
necessary (and here sufficient) first-order optimality system: Given � 2 D , the
optimal RB slack solution coefficients .ys

N
; sN ; p

s
N
; � s

b;N ; !N/ 2 R
NY � R

NY � R
NS �
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R
N�b � R

NS satisfy (omitting all �-dependencies)

ANy
s
N

D FN C Bs
NsN C Bs

a;N ; (3.15a)

AT
Np

s
N

D Yd;N � DNy
s
N
; (3.15b)

�Us
NsN C �Us

a;N � .Bs
N/

Tps
N

D !N � U�b;s
N � s

b;N ; (3.15c)

sN
T!N D 0; sN � 0; !N � 0; (3.15d)

.U�b
b;N � U�b

a;N � U�b;s
N sN/

T� s
b;N D 0; U�b

b;N � U�b
a;N � U�b;s

N sN ; � s
b;N � 0:

(3.15e)

where the reduced basis matrices and vectors are given by

.AN/ijDa.�yi ; �
y
j /; .FN /iD f .�yi /; .Bs

N/ijDb.�sj ; �
y
i /; .B

s
a;N/iDb.ua; �

y
i /;

.Yd;N /iD .yd ; �yi /D; .DN/ijD .�yi ; �yj /D; .Us
N/ijD .�si ; �sj /U ; .Us

a;N/iD .ua; �si /U ;
.U�b ;s

N /ijD .��bi ; �sj /U ; .U�b
b;N/iD .ub; ��bi /U ; .U�b

a;N/iD .ua; ��bi /U
and 1 � i; j � N� [see (3.3) and (3.14)].

Second, by solving (3.15) we have sN � 0 and through the definition of s we
obtain a feasible—w.r.t. ua.�/—approximation for the control by us D sN C ua.�/:
In order to derive an error bound for ku � uskU we need, however, to analogously
repeat the RB reduction for the second RB slack problem with sb D ub.�/ � u.
There we likewise introduce the RB space Sb;N , as well as its convex cone SCb;N
and follow the previous steps to obtain sb;N � 0. Using this, we obtain a control
approximation usb D ub.�/ � sb;N that is feasible w.r.t. the constraint ub.�/.

3.4.2 Primal-Slack Error Bound

In the following we will focus on the primal-slack error bound for ku � uskU w.r.t.
ua.�/. Similarly to the primal error bound in Theorem 1 we use residuals and prop-
erties of the bilinear and linear forms to derive a quadratic inequality in ku � uskU .
We consider the following RB primal-slack approximation .ysN ; p

s
N ; u

s; �N ; �b;N/ 2
YN � YN � Uad � ˙CN � ˙Cb;N , which depends on the solutions of the RB primal
and slack problem. We define the corresponding errors esy D y � ysN ; esp D
p�psN ; esu D u�us: Further, we revisit Definition 1 and insert on the r.h.s. of (3.5)
the approximation .ysN ; p

s
N ; u

s; �N ; �b;N/ to obtain on the l.h.s. the residuals rsy; r
s
p; r

s
u.

We state the main result in the following theorem.

Theorem 2 (Primal-Slack Error Bound) Let u, sN, and sb;N be the optimal
solutions of the FE primal problem (P) and the RB slack problems (SN) and its
equivalent w.r.t. ub.�/, respectively. Then the error in the optimal control satisfies
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for all parameters � 2 D

kesukU � �
pr�sl
N .�/;

where �pr�sl
N .�/ WD cs1.�/Cp

cs1.�/
2 C cs2.�/ with nonnegative coefficients

cs1.�/ D 1

2�

�
krsukU0 C �UB

b

˛LB
a

krspkY0 C �kus � usbkU
�
; (3.16a)

cs2.�/ D 1

�

"
2

˛LB
a

krsykY0krspkY0 C 1

4

�
CUB
D

˛LB
a

.krsykY0 C �UB
b kus � usbkU/

�2
C .�N ; sN/U

C kus � usbkU
�

krsukU0 C �UB
b

˛LB
a

krspkY0 Cp
2.�N ; �b;N/U

�
C .�b;N ; sb;N/U

#

(3.16b)

Proof Let the FE primal solution .y; p; u; �; �b/ satisfy the optimality condi-
tions (3.2). We follow the proof of Theorem 1, and derive analogously to (3.9) the
inequality

�kesuk2UCjesyj2D�krsykY0 kespkYCkrspkY0kesykYCkrsukU0kesukUC.e��e�b ; e
s
u/U : (3.17)

We first focus on .e� ; esu/U and exploit the feasibility of us w.r.t. ua.�/. Again we
have .e� ; esu/U D �.�; ua.�/�u/U �.�; sN/U C.�N ; ua.�/�u/U C.�N ; sN/U, where
the first three terms are non-positive and hence .e� ; esu/U � .�N ; sN/U . In order to
bound �.e�b ; esu/U , we need to solve the second RB slack problem for usb and derive

�.e�b ; esu/U D .e�b ; u
s � usb C usb � u/U � ke�bkUkus � usbkU C .�b;N ; sb;N/U :

We restate that ke�bkU � ke� � e�bkU C p
2.�N ; �b;N/U and ke� � e�bkU is

bounded by ke� � e�bkU � krsukU0 C�kesukU C �UB
b
˛LB
a

�krspkY0 C CUB
D jesyjD

�
: Using the

bounds for .e� ; esu/U � .e�b ; e
s
u/U and the inequalities (3.8) in (3.17) we obtain

�kesuk2U C jesyj2D � kesukU
�

krsukU0 C �UB
b

˛LB
a

krspkY0 C �kus � usbkU
�

C .�N ; sN/U

C 2

˛LB
a

krsykY0 krspkY0 C jesyjD
CUB
D

˛LB
a

�krsykY0 C �UB
b kus � usbkU

�

C
�

krsukU0 C �UB
b

˛LB
a

krspkY0 Cp
2.�N ; �b;N/U

�
kus � usbkU C .�b;N ; sb;N/U :
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It thus follows from employing Young’s inequality to the jesyjD-term that kesuk2U �
2cs1.�/kesukU � cs2.�/ � 0, where cs1.�/ and cs2.�/ are given in (3.16). Solving the
last inequality for the larger root yields kesukU � cs1.�/ C p

cs1.�/
2 C cs2.�/ D

�
pr�sl
N .�/.

3.5 Greedy Sampling Procedure

The reduced basis spaces for the two-sided control-constrained optimal control
problem in Sects. 3.3.1, and 3.4.1 are constructed using the greedy sampling
procedure outlined in Algorithm 1. Suppose �train � D is a finite but suitably
large parameter train sample, �1 2 �train is the initial parameter value, Nmax the
maximum number of greedy iterations, "tol;min > 0 is a prescribed desired error
tolerance, and ��N.�/=ku�N.�/kU , � 2 fpr; pr�slg, is the primal or primal-slack
error bound from (3.6) or (3.16) with u�N 2 fuN; usg.

We make two remarks: First, by using the bounds ��N.�/, � 2 fpr; pr�slg we
only refer to the bounds derived for the primal error ku � uNkU and the slack error
ku � uskU w.r.t. to ua.�/. Therefore, using the primal-slack bound �pr�sl

N .�/ in
the greedy sampling procedure, we expect not only to construct an accurate RB
space SN for sN but also an accurate RB space Sb;N for sb;N . Second, we comment
on two special cases: (1) if one control constraint is fully active in each greedy
step, i.e. we have, e.g., u.�n/ D ua; n D 1; : : : ;N, we set SN D fg and sN D 0

(analogously for ub we set Sb;N D fg and sb;N D 0); and (2) if the control constraint
is never active, i.e., for all snapshots �.�n/ D �b.�

n/ D 0; n D 1; : : : ;N, we set
˙N D ˙CN D ˙b;N D ˙Cb;N D fg and �N D �b;N D 0.

Algorithm 1 Greedy sampling procedure
1: Choose �train � D , �1 2 �train (arbitrary), Nmax, and "tol;min > 0

2: Set N 1, Y0  f0g, U0 f0g, S0 f0g, Sb;0  f0g, ˙0  f0g, ˙b;0 f0g
3: Set ��

N.�
N/ 1

4: while��

N.�/=ku�

N .�
N/kU > "tol;min and N 	 Nmax do

5: YN  YN�1 ˚ spanf y.�N/; p.�N / g
6: UN  UN�1 ˚ spanf u.�N /; �.�N/; �b.�

N/ g
7: SN  SN�1 ˚ spanf s.�N / g
8: Sb;N  Sb;N�1 ˚ spanf sb.�N/ g
9: ˙N  ˙N�1 ˚ spanf �.�N/ g

10: ˙b;N  ˙b;N�1 ˚ spanf �b.�N/ g
11: �NC1  arg max

�2�train

��

N.�/=ku�

N .�
N/kU

12: N N C 1
13: end while
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3.6 Numerical Results: Graetz Flow with Parametrized
Geometry and Lower and Upper Control Constraints

We consider a Graetz flow problem, which describes a heat convection and
conduction in a duct. The main goal of this example is to demonstrate the
different properties of the approximations and their error bounds. The problem is
parametrized by a varying Péclet number �1 2 Œ5; 18� and a geometry parameter
�2 2 Œ0:8; 1:2�. Hence, the parameter domain is D D Œ5; 18� � Œ0:8; 1:2�. The
parametrized geometry is given by ˝.�/ D Œ0; 1:5C �2� � Œ0; 1� and is subdivided
into three subdomains ˝1.�/ D Œ0:2�2; 0:8�2� � Œ0:3; 0:7�, ˝2.�/ D Œ�2 C
0:2; �2 C 1:5� � Œ0:3; 0:7�, and ˝3.�/ D ˝.�/ n f˝1.�/ [ ˝2.�/g. A sketch of
the domain is shown in Fig. 3.1. We impose boundary condition of homogeneous
Neumann and of non-homogeneous Dirichlet type: yn D 0 on �N.�/, and y D 1 on
�D.�/. Thus the trial space is given by Y.�/ � Ye.�/ D fv 2 H1.˝.�//I vj�D.�/ D
1g. The amount of heat supply in the whole domain ˝.�/ is regulated by the
distributed control u 2 U.�/ � Ue.�/ D L2.˝.�// and bounded by the lower
and upper constraints ua D �0:5 and ub D 1:25. The observation domain is

D̋.�/ D ˝1.�/ [ ˝2.�/ and the desired state is given by yd D 0:5 on ˝1.�/

and yd D 2 on ˝2.�/.
Overall, the parametrized optimal control problem is given by

min
Oy2Y.�/;Ou2U.�/

J.Oy; OuI�/ D 1

2
jOy � ydj2D.�/ C �

2
kOuk2L2.˝.�//

s.t.
1

�1

Z
˝.�/

rOy � r� dx C
Z
˝.�/

ˇ.x/ � rOy� dx D
Z
˝.�/

Ou� dx 8� 2 Y.�/;

.ua; �/U.�/ � .Ou; �/U.�/ � .ub; �/U.�/ 8� 2 U.�/C;

for the given parabolic velocity field ˇ.x/ D .x2.1 � x2/; 0/T . The regularization
parameter � is fixed to 0:01.

After recasting the problem to a reference domain ˝ D ˝.�ref/ D Œ0; 2:5� �
Œ0; 1� for �ref D .5; 1/, and introducing suitable lifting functions that take into
account the non-homogeneous Dirichlet boundary conditions, we can reformulate

Fig. 3.1 Domain ˝.�/ for
the Graetz flow problem with
distributed control
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the problem in terms of the parameter-independent FE space Y � Ye D H1
0.˝/

and U � Ue D L2.˝/ [12]. We then obtain the affine representation of all involved
quantities with Qa D Qf D 4, Qb D Qd D Qu D Qyd D 2, and Qua D 1. The details
of these calculations are very similar to the details presented by Rozza et al. [12] and
Kärcher [5], and are thus omitted. The inner product for the state space is given by
.w; v/Y D 1

�ref
1

R
˝

rw � rv dx C 1
2
.
R
˝
ˇ.x/ � rw v dx C R

˝
ˇ.x/ � rv w dx/ and we

obtain a lower bound ˛LB
a .�/ for the coercivity constant by the so-called min-theta

approach [12]. Note that for the control space we obtain a parameter-dependent
inner product .�; �/U.�/ from the affine geometry parametrization. Hence the control
error is measured in the parameter-dependent energy norm k�kU.�/. The derivations
of the primal and primal-slack error bounds remain the same in this case and they
bound the control error in the energy norm.

Although the introduction of a domain parametrization seems to add an entirely
new �-dependence to the primal and the slack problems (P) and (S), the reductions
and the error bound derivations can be analogously derived w.r.t. .�; �/U.�/ instead of
.�; �/U.�ref/. Also the definition of the integrated space UN in (3.3) remains, while in
the inf-sup condition of Remark 2 we use .�; �/U.�/ instead of .�; �/U.

We choose a P1 discretization for the state and adjoint, and a P0 discretization for
the control to obtain dim.Y/ D NY 	 11;000 and dim.U/ D NU 	 22;000. The
chosen discretization induces a discretization error of roughly 2%. In Fig. 3.2 we
present control snapshots and associated active sets for two different parameters
displayed on the reference domain ˝.�ref

2 D 1/. We observe strongly varying
control solutions and active sets.

We construct the RB spaces using the greedy procedure described in Algorithm 1
by employing an equidistant train sample�train � D of size 30 �30 D 900 (log-scale
in �1 and lin-scale in �2) and stop the greedy enrichment after 30 steps. We also
introduce a test sample with 10 � 5 (log � lin) equidistant parameter points in
Œ5:2; 17:5� � Œ0:82; 1:17� � D .

(a) (b)

Fig. 3.2 Snapshots of active sets (upper row) and optimal control (lower row) on the reference
domain. The active (inactive) sets are displayed in light gray (gray). (a) � D .5; 0:8/. (b) � D
.18; 1:2/
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Fig. 3.3 Maximal relative
control errors and bounds
over the number of greedy
iterations. For each N the
maximal value over �test is
displayed for both errors and
both bound

In Fig. 3.3 we present, as a function of N, the resulting energy norm errors and
bounds over �test. Here, the errors and bounds are defined as follows: the primal-
slack bound is the maximum of �pr�sl

N .�/=ku.�/kU.�/ over �test, the primal bound
is the maximum of �pr

N .�/=ku.�/kU.�/ over �test, and the us and uN errors are the
maxima of ku.�/ � us.�/kU.�/=ku.�/kU.�/ and ku.�/ � uN.�/kU.�/=ku.�/kU.�/
over �test, respectively. We observe that both errors and both bounds decay very
similarly. Quantitatively, the error bounds are comparable throughout all N, since the
dominating primal-slack terms krsukU0.�/ and �kus � usbkU.�/ are comparable to the

dominating primal terms krukU0.�/ and �.ı1Cı1b/, resulting in�pr
N .�/ 	 �

pr�sl
N .�/.

We briefly report the computational timings: the solution of the FE optimization
problem takes 	 4 s (for a discretization error of 2%). The RB primal problem,
for N D 25, is solved in 	 0:066 s and the RB slack problem is solved faster in
	 0:029 s, since dim.SN/ D 25. We turn to the evaluation of error bounds: the
primal bound takes 0:01 s, whereas the primal-slack bound, given �N ; �b;N , takes
0:0065 s. From this we can conclude that for N D 25 the overall cost for one primal
bound evaluation is roughly 0:076 s D 0:066 s C 0:01 s and for the primal-slack
bound evaluation is roughly 0:13 	 0:029 C 0:029 C 0:066 C 0:0065 s, since it
relies on three RB solutions.

3.7 Conclusions

In this paper we extended the ideas from [1] to propose two certified reduced
basis approaches for distributed elliptic optimal control problems with two-sided
control constraints: a primal and a primal-slack approach. Albeit the reduction
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for the primal approach was straightforward, the primal-slack approach needed
more consideration. We proposed for each constraint a corresponding RB slack
problem with an additional Lagrange multiplier. The primal a posteriori error bound
from [1] could be extended for the two-sided case by special properties of the
Lagrange multipliers of the two-sided problem. The primal-slack error bound also
relies on these properties and in addition uses three RB solutions to derive an
N -independent error bound. Both the primal and slack RB approximation can be
evaluated efficiently using the standard offline-online decomposition. However, on
the one hand the primal error bound depends on the FE control dimension and on the
other hand the primal-slack error bound relies on three reduced order optimization
problems.
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Chapter 4
A Reduced Basis Method with an Exact Solution
Certificate and Spatio-Parameter Adaptivity:
Application to Linear Elasticity

Masayuki Yano

Abstract We present a reduced basis method for parametrized linear elasticity
equations with two objectives: providing an error bound with respect to the exact
weak solution of the PDE, as opposed to the typical finite-element “truth”, in the
online stage; providing automatic adaptivity in both physical and parameter spaces
in the offline stage. Our error bound builds on two ingredients: a minimum-residual
mixed formulation with a built-in bound for the dual norm of the residual with
respect to an infinite-dimensional function space; a combination of a minimum
eigenvalue bound technique and the successive constraint method which provides
a lower bound of the stability constant with respect to the infinite-dimensional
function space. The automatic adaptivity combines spatial mesh adaptation and
greedy parameter sampling for reduced bases and successive constraint method
to yield a reliable online system in an efficient manner. We demonstrate the
effectiveness of the approach for a parametrized linear elasticity problem with
geometry transformations and parameter-dependent singularities induced by cracks.

4.1 Introduction

Reduced basis (RB) methods provide rapid and reliable solution of parametrized
partial differential equations (PDEs), including linear elasticity equations, in real-
time and many-query applications; see, e.g., a review paper [13] and early appli-
cations to linear elasticity in [4, 7, 10, 14]. However, until recently, RB methods
have focused on approximating the high-fidelity “truth” solution—typically a finite
element (FE) solution on a prescribed mesh—and not the exact solution of the PDE,
which is of actual interest. Classical RB methods assume that the “truth” model
is sufficiently accurate to serve as an surrogate for the exact PDE. However, in
practice, satisfying the assumption requires a careful mesh construction especially
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in the presence of sharp corners and cracks (as done in [4]), and in any event the
assumption is never rigorously verified for all parameter values. In this work, we
present a RB method which provides a certificate with respect to the exact solution
of the parametrized PDE and automatically produces a reduced model that meets the
desired tolerance through automatic adaptivity, eliminating the issue of the “truth”.

Specifically, we present a RB method for linear elasticity problems that pro-
vides

1. error bounds with respect to the exact solution in energy norm or for functional
outputs for any parameter value in the online stage;

2. automatic adaptivity in physical space and parameter space to control the error
with respect to the exact solution;

3. a strict offline-online computational decomposition such that the online compu-
tational cost is independent of the offline FE solves.

Item 3 provides rapidness, as in the case for the standard RB method. Items
1 and 2, which provide certification and adaptivity with respect to the exact solution,
distinguish our method from the standard RB method.

Recently, a number of RB methods has been proposed to provide error bounds
with respect to the exact solution. Ali et al. [1] consider a RB method based on
snapshots generated by an adaptive wavelet method. Ohlberger and Schindler [8]
considers a RB method for multiscale problems with an error bound with respect to
the exact solution. We have also introduced RB methods which provide error bounds
with respect to the exact solution using the complementary variational principle [15]
and using a minimum-residual mixed formulation [16, 17]. This work shares a
common goal with the above recent works in the RB community.

The error certification and adaptation approach that we present in this paper is
an extension of the method we introduced in [17] for scalar equations to linear
elasticity equations with piecewise-affine geometry transformations. We provide
a solution approximation and an upper bound of the residual dual norm using a
minimum-residual mixed formulation. We provide a lower bound of the stability
constant using a version of the successive constraint method (SCM) [5], which
has been extended to provide bounds relative to an appropriate infinite-dimensional
function space by appealing to Weinstein’s method and a residual-based bounding
technique. In extending the approach to linear elasticity, special attention is paid to
the treatment of rigid-body rotation modes and the construction of the dual space in
the presence of geometry transformations.

The paper is organized as follows. Section 4.2 defines the problem of interest.
Section 4.3 presents our residual bound procedure. Section 4.4 presents our stability-
constant bound procedure. Section 4.5 presents the error bound. Section 4.6 presents
spatio-parameter adaptive algorithms. Section 4.7 presents numerical results.



4 RB Method for Linear Elasticity with Exact Solution Certificate and Adaptivity 57

4.2 Preliminaries

4.2.1 Problem Statement

Notations In order to describe tensor operations that appear in linear elasticity, we
now fix the notations. Given a order-2 tensor w, we “reshape” it as a vector w 2 R

d2

with entries .w/i�dCj D wij. Similarly, given a order-4 tensor A, we “reshape” it as a

matrix A 2 R
d2�d2 with entries .A/i�dCj;k�dCl D Aijkl. These reshaped notations allow

us to precisely express operations on order-2 and -4 tensors using the standard linear
algebra notations without introducing explicit indices.

Using the convection, the derivative of a vector field v W ˝ ! R
d evaluated at

x is expressed as a vector v.x/ 2 R
d2 with entries .rv.x//i�dCj D @vi

@xj
. Similarly,

the divergence of a order-2 tensor field q W ˝ ! R
d2 evaluated at x is expressed

as a vector rq.x/ 2 R
d with entries .rq.x//i D Pd

jD1
@qij
@xj

; the evaluation of q at

x in the direction of n 2 R
d is expressed as a vector n � q.x/ 2 R

d with entries
.n � q.x//i D Pd

jD1 qij.x/nj.

Problem Description over a Parametrized Domain We first introduce a P-
dimensional parameter domain D � R

P. We next introduce a d-dimensional
parametrized physical domain Q̋ .�/ � R

d with a Lipchitz boundary @ Q̋ .�/. For
each component i D 1; : : : ; d, the boundary @ Q̋ .�/ is decomposed into a Dirichlet

part Q�D;i.�/ and a Neumann part Q�N;i.�/ such that @ Q̋ .�/ D Q� D;i.�/[ Q� N;i.�/. We
then introduce a Sobolev space V. Q̋ / D fQv 2 .H1. Q̋ //d j Qvij Q�D;i D 0; i D 1; : : : ; dg,

where H1. Q̋ / is the standard H1 Sobolev space over Q̋ . (See, e.g., [2].)
We now introduce order-4 tensors, unwrapped as d2 � d2 matrices, associated

with our linear elasticity problem. We first introduce the strain tensor operator E 2
R

d2�d2 such that Er Qv.Qx/ 2 R
d2 is the reshaped strain tensor. We next introduce a

parametrized stiffness tensor field QK W D � Q̋ ! R
d2�d2 ; by definition the stiffness

tensor is symmetric positive definite for all � 2 D and Qx 2 Q̋ . We also introduce the
associated parametrized compliance tensor field QC W D� Q̋ ! R

d2�d2 . The stiffness
and compliance tensor are related by QK.�I Qx/ QC.�I Qx/ D Id2 , where Id2 denotes the
d2 � d2 identity matrix.

We now consider the following weak formulation of linear elasticity: given � 2
D, find Qu.�/ 2 V. Q̋ .�// such that

a Q̋ .�/.Qu.�/; QvI�/ D ` Q̋ .�/. QvI�/ 8Qv 2 V. Q̋ / (4.1)

where

a Q̋ .�/. Qw; QvI�/ D
Z
Q̋ .�/

Qr QvTET QK.�/E Qr QwdQx; (4.2)

` Q̋ .�/. QvI�/ D
Z
Q̋ .�/

QvT Qf .�/dQx C
Z
Q�N .�/

QvT Qg.�/dQs:
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Here, Qf .�/ is the body force on the solid, Qg.�/ is the traction force on the Neumann
boundaries, and the subscript Q̋ .�/ on the forms emphasizes the problem is defined
over a parameterized physical domain.

Reference-Domain Formulation Following the standard approach to treat
parametrized geometric variations in the RB method (see, e.g., [13, 14]), we
recast the problem over the parametrized domain Q̋ .�/ to a parameter-independent
reference domain˝ . Specifically, we consider each point Qx 2 Q̋ .�/ to be associated
with a unique point x 2 ˝ by a piecewise affine map. We denote the Jacobian of
the parametrized map by J.�/ 2 R

d�d and the associated determinant by jJ.�/j.
Similarly, we denote the Jacobian associated with the mapping of a boundary
segment by j@J.�/j. We also introduce a block matrix Y D Id ˝ J.�/ 2 R

d2�d2 that
facilitates transformation of tensors; here ˝ is the Kronecker product.

We now introduce a Sobolev space over˝ ,

V 
 V.˝/ 
 fv 2 .H1.˝//d j vij�Di D 0; i D 1; : : : ; dg

endowed with an inner product

.w; v/V 

Z
˝

rvTrwdx C
Z
˝

vTwdx C
Z
�N

vTwds (4.3)

and the associated induced norm kvkV 
 p
.v; v/V . We then introduce a weak

formulation that is equivalent to (4.1) but is associated with the reference domain:
given � 2 D, find u.�/ 2 V such that

a.u.�/; vI�/ D `.vI�/ 8v 2 V ; (4.4)

where

a.w; vI�/ D
Z
˝

rvTY.�/�1EK.�/EY.�/�TrwjJ.�/jdx

`.vI�/ D
Z
˝

vT f .�/jJ.�/jdx C
Z
�N

vTg.�/j@J.�/jds:

Here the tensor fields in the physical and reference domains are related by Qv.Qx/ D
v.x/, QK.�I Qx/ D K.�I x/, Qf .�I Qx/ D f .�I x/, and Qg.�I Qx/ D g.�I x/. We readily
verify that a.�; �I�/ is symmetric and bounded in V . We also note that a.�; �I�/ is
coercive in V due to the Korn inequality and the trace theorem [2]; we denote the
associated energy norm by jjj � jjj� 
 p

a.�; �I�/.
Remark 1 In the standard RB formulation [13], we simply treat the elasticity
equation as a vector-valued equation with the stiffness matrix OK.�/ 

jJ.�/jY.�/�1EK.�/EY.�/�T . Unfortunately, our exact error-bound formulation
does not permit this simple treatment; our formulation [17] requires the inverse of
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the stiffness matrix, while the matrix OK.�/ is singular because EK.�/E is rank-
deficient. We will keep the explicit representation of the stiffness matrix to clearly
show how our bound formulation for linear elasticity circumvents the issue.

Assumptions We clarify the set of assumptions for our RB formulation. First, we
assume that the stiffness tensor K.�/, the compliance tensor C.�/, the body force
f .�/, and the boundary traction force g.�/ each admit a decomposition that is affine
in functions of parameter: K.�/ D PQK

qD1 �K
q .�/Kq, C.�/ D PQC

qD1 �C
q .�/Cq,

f .�/ D PQf

qD1 �f
q.�/fq, and g.�/ D PQg

qD1 �g
q.�/gq, where Kq W ˝ ! R

d2�d2 ,
Cq W ˝ ! R

d2�d2 , fq W ˝ ! R
d, and gq W ˝ ! R

d are parameter-
independent fields, and �K

q W D ! R, �C
q W D ! R, �f

q W D ! R, and
�g

q W D ! R are parameter-dependent functions. Second, we assume that the

mapping from the reference domain ˝ to the physical domain Q̋ .�/ is piecewise
affine such that both the Jacobian J.�/ and the inverse Jacobian J.�/�1 admit a
decomposition that are affine in functions of parameter: J.�/ D PQJ

qD1 �J
q.�/Jq and

J.�/�1 D PQJinv

qD1 �Jinv

q .�/Jinv
q . Finally, we assume that the fields K.�/, C.�/, f .�/,

and g.�/ are piecewise polynomials such that we can integrate the fields exactly
using standard quadrature rules.

4.2.2 Abstract Error Bounds: Energy Norm
and Compliance Output

To simplify the presentation of our formulation, we introduce a parametrized inner
product

.w; v/W.�Iı/ D a.w; v/C ı.w; v/V

and the associated induced norm kwkW.�Iı/ 
 p
.w;w/W.�Iı/ for a parameter � 2

D and a weight ı 2 R>0. Here a.�; �I�/ is the bilinear form (4.2), and .�; �/V is
the inner product (4.3). The parametrized norm is related to the energy norm by
kvk2W.�Iı/ D jjjvjjj2� C ıkvk2V . For any ı 2 R>0, the norm k � kW.�Iı/ is equivalent to
the energy norm jjj � jjj�, which in turn is equivalent to k � kH1.˝/. The role of ı in our
formulation is discussed in Sect. 4.5.

In order to bound the error, we now introduce the residual form

r.vIwI�/ 
 `.vI�/ � a.w; vI�/ 8w; v 2 V (4.5)

and the associated dual norm kr.�IwI�/kW 0.�Iı/ 
 supv2V
r.vIwI�/
kvkW.�Iı/

. We also
introduce the stability constant

˛.�I ı/ 
 inf
v2V

jjjvjjj2�
kvk2W.�Iı/

: (4.6)
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The following proposition bounds the energy norm of the error.

Proposition 2 Given � 2 D and an approximation w 2 V , the error is bounded by

jjju.�/� wjjj� � 1

.˛.�I ı//1=2 kr.�IwI�/kW 0.�Iı/;

where r.�; �I �/ is the residual form (4.5), and ˛.�; �/ is the stability constant (4.6).

Proof See, e.g., Rozza et al. [13].
We can also construct an error bound for the compliance output s.�/ 


`.u.�/I�/.
Proposition 3 Let the compliance output associated with an approximation w 2 V
be Os.�/ 
 `.wI�/C r.wIwI�/, where r.�I �I �/ is the residual form (4.5). Then, the
error in the compliance output is bounded by

js.�/ � Os.�/j � 1

˛.�I ı/kr.�IwI�/k2W 0.�Iı/:

Proof We suppress� for brevity. It follows s.�/�Os.�/ D `.u/�.`.w/Cr.wIw// D
`.u/�`.w/�`.w/Ca.w;w/ D `.u�w/�a.u�w;w/D a.u�w; u�w/ D jjju�wjjj2�.
Proposition 2 then yields the desired result.

The energy-norm and compliance-output error bound both require the same
ingredients: an upper bound of the dual norm of the residual and a lower bound
of the stability constant. In the next two sections, we develop offline-online efficient
computational procedures for both of these quantities.

Remark 4 The output bound framework may be extended to any linear functional
output by introducing the adjoint equation; see, e.g., Rozza et al. [13].

4.3 Upper Bound of the Dual Norm of the Residual

4.3.1 Bound Form

Our bound formulation is based on a mixed formulation and requires a dual field [16,
17]. Our dual space over a physical domain is the H.div/-conforming space

Q. Q̋ .�// 
 fQq 2 .L2. Q̋ .�///d2 j Qr � Qq 2 .L2. Q̋ .�///dg:

The dual space over the reference domain is given by

Q 
 fq 2 .L2.˝//d2 j r � q 2 .L2.˝//dg:
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We relate a field in a physical domain Qq 2 Q. Q̋ .�// and a field in the reference
domain q 2 Q by the Piola transformation, Qq.Qx/ D jJ.�/j�1Yq.x/. The Piola
transformation has an important property that it preserves H.div/-conformity.

The following proposition introduces a version of the bound form introduced
in [17] extended to linear elasticity equations with geometry transformations.

Proposition 5 For any w 2 V , q 2 Q, � 2 D, and ı 2 R>0,

kr.�IwI�/kW 0.�Iı/ � .F.w; qI�I ı//1=2;

where the bound form is given by

F.w; qI�I ı/ D kjJ.�/j�1=2C.�/1=2Y.�/q � jJ.�/j1=2K.�/1=2EY.�/�Trwk2L2.˝/
C ı�1kY.�/�1.I � E/Y.�/qk2L2.˝/ C ı�1kr � q C f .�/jJ.�/jk2L2.˝/
C ı�1kg.�/j@J.�/j � n � qk2L2.�N / (4.7)

Proof For notational simplicity, we suppress� from parameter-dependent operators
and forms in the proof. For all v 2 V , w 2 V , q 2 Q, and ı 2 R>0,

r.vIwI�I ı/

D
Z
˝

vT f jJjdx C
Z
�N

vTgj@Jjds �
Z
˝

rvTY�1ETKEY�TrwjJjdx

C
Z
˝

vTr � qdx C
Z
˝

rvTqdx �
Z
�N

vTn � qds

D
Z
˝

rvTY�1ETKjJj.jJj�1CYq � EY�Trw/dx C
Z
˝

rvTY�1.I � E/Yqdx

C
Z
˝

vT.r � q C f jJj/dx C
Z
�N

vT.gj@Jj � n � q/ds

� .kjJj1=2K1=2EY�1rvk2L2.˝/ C ıkrvk2L2.˝/ C ıkvk2L2.˝/ C ıkvk2L2.�N //1=2

.kjJj�1=2C1=2Yq � jJj1=2K1=2EY�Trwk2L2.˝/ C ı�1kY�1.I � E/Yqk2L2.˝/
C ı�1kr � q C f jJjk2L2.˝/ C ı�1kgj@Jj � n � qk2L2.�N //1=2

D kvkW.�Iı/.F.w; qI�I ı//1=2:

Note, the second line of the first equality vanishes by the Green’s theorem. Hence,
kr.�IwI�I ı/kW 0.�Iı/ D supv2V r.vIwI�I ı/=kvkW.�Iı/ � .F.w; qI�I ı//1=2, 8q 2
Q, which is the desired inequality.

The bound form (4.7) for linear elasticity is similar to the bound form for scalar
equations introduced in [17]. However, the bound form differs in that it includes
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the “asymmetric penalty” term kY.�/�1.I � E/Y.�/qk2
L2.˝/

I this term penalizes

asymmetry in the dual tensor field in the physical domain, Qq 2 QQ.�/. In our
bounding procedure, this term arises because the linear elasticity equation has zero
energy with respect to not only translation but also rotation. In fact, the presence of
this term is closely related to the complementary variational principle for elasticity
equations requiring a symmetric dual field [9], as discussed in detail in Sect. 4.5.

The form (4.7) admits a decomposition into a quadratic, linear, and constant
forms:

F.w; pI�I ı/ D G..w; p/; .w; p/I�I ı/ � 2L..w; p/I�I ı/C H.�I ı/:

We here omit the explicit expressions for brevity and refer to a similar decom-
position without the “asymmetric penalty” term in [17]. The forms G, L, and H
inherit the affine decomposition of the parametrized operators K.�/, C.�/, f .�/,
g.�/, J.�/ and J.�/�1, which makes the bound form F amenable to offline-online
computational decomposition. In addition, the form G.�; �I�I ı/ is coercive and
bounded in V � Q; the proof relies on Korn’s inequality and is omitted here for
brevity.

4.3.2 Minimum-Bound Solutions and Approximations

Exact Solution We consider the following minimum bound problem: given � 2 D
and ı 2 R>0, find .u.�/; p.�// 2 V � Q such that

.u.�/; p.�// D arg inf
w2V ; q2Q

F.w; qI�I ı/:

The associated Euler-Lagrange equation is the following: given � 2 D, find
.u.�/; p.�// 2 V � Q such that

G..u.�/; p.�//; .v; q/I�I ı/ D L..v; q/I�I ı/ 8v 2 V ; 8q 2 Q:

The problem is wellposed due to the coercivity and boundedness of G in V � Q.
We can readily show that the primal solution u.�/ is the weak solution of

the original problem (4.4), and the dual solution p.�/ in the reference domain is
related to the primal solution by jJ.�/j�1Y.�/p.�/ D K.�/EY�T.�/ru.�/. The
associated residual bound is 0 as expected. Equivalently, the dual solution and the
primal solution are related in the physical domain by Qp.�/ D QK.�/E Qr Qu.�/; the
dual solution in the physical domain is the stress field. The tensor associated with
the dual field Qp.�/ is symmetric in the physical domain, which is consistent with
the constitutive relation, but is not symmetric in the reference domain.
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FE For a FE approximation of the minimum bound problem, we first introduce
a primal FE space VN of H1-conforming Lagrange elements and a dual FE
space QN of H.div/-conforming Raviart-Thomas elements [11]. We then consider
the minimum-bound FE approximation: given � 2 D and ı 2 R>0, find
.uN .�/; pN .�// 2 VN � QN such that

G..uN .�/; pN .�//; .v; q/I�I ı/ D L..v; q/I�I ı/ 8v 2 VN ; 8q 2 QN :
(4.8)

The problem is wellposed due to the coercivity and boundedness of G and
L. The dual norm of the residual is bounded by kr.�I uN .�/I�/kW 0.�Iı/ �
F.uN .�/; pN .�/I�I ı/1=2.
RB For a RB approximation of the minimum bound problem, we first introduce
primal and dual RB spaces VN D spanf�igNiD1 � V and QN D spanf�igNiD1 � Q. We
then introduce a minimum-bound RB approximation: given � 2 D and ı 2 R>0,
find .uN.�/; pN.�// 2 VN � QN such that

G..uN.�/; pN.�//; .v; q/I�I ı/ D L..v; q/I�I ı/ 8v 2 VN ; 8q 2 QN :

The problem is again wellposed due to the coercivity and boundedness of G
and L. The dual norm of the residual is bounded by kr.�I uN.�/I�/kW 0.�Iı/ �
F.uN.�/; pN.�/I�I ı/1=2.

4.4 Stability Constant

4.4.1 Transformation of the Stability Constant

We recall that a lower bound of the stability constant ˛.�I ı/ is needed to bound
the energy norm of the error. In our approach, we do not compute a lower bound
of ˛.�I ı/ directly but rather consider a related problem associated with another
quantity .�/. The following proposition relates the two quantities.

Proposition 6 For any � 2 D and ı 2 R>0, the stability constant ˛.�I ı/ is
bounded from the below by

˛.�I ı/ 
 inf
v2V

jjjvjjj2�
kvk2W.�Iı/

�
�
1C ı

LB.�/

��1

 ˛LB.�I ı/;

where LB.�/ satisfies LB.�/ � .�/ 
 infv2V jjjvjjj2�=kvk2V .
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Proof We note that

1

˛.�I ı/ D sup
v2V

kvk2W.�Iı/
jjjvjjj2�

D sup
v2V

jjjvjjj2� C ıkvk2V
jjjvjjj2�

D 1Cı sup
v2V

kvk2V
jjjvjjj2�

D 1C ı

.�/
:

Appealing to LB.�/ � .�/ provides the desired inequality.
We make a few observations. First, if we can provide a lower bound of .�/, then we
can provide a lower bound of ˛.�I ı/. Second, the stability constant is close to unity
if we choose ı � LB.�/; in particular, the effectivity of ˛LB.�I ı/ is desensitized
from the effectivity of LB.�/ as long as ı � LB.�/. Third, in the limit of ı ! 0,
the stability constant is unity; this is closely related to the complementary variational
principle, as discussed in detail in Sect. 4.5. Fourth, the fraction that appears in
the definition of .�/ admits an affine decomposition because jjjvjjj2� 
 a.v; vI�/
admits an affine decomposition and kvk2V is parameter independent.

4.4.2 A Residual-Based Lower Bound of the Minimum
Eigenvalue

By the Rayleigh quotient, the constant .�/ is related to the minimum eigenvalue
of the following eigenproblem: given � 2 D, find .zi.�/; �i.�// 2 V � R such that

a.zi.�/; vI�/ D �i.�/.zi.�/; v/V 8v 2 V and kzi.�/kV D 1I (4.9)

here the subscript i denotes the index of the eigenpair. We order the eigenpairs in
the ascending order of eigenvalues; hence .�/ D mini �i.�/ D �1.�/.

To compute a lower bound of the minimum eigenvalue, we appeal to Weinstein’s
method. Towards this end, we introduce the eigenproblem residual associated with
any approximate eigenpair .w; �/ 2 V � R,

reig.vIw; �I�/ D a.w; vI�/ � �.w; v/V ;

and the associated dual norm kreig.�Iw; �I�/kV 0 
 supv2V
reig.vIw;�I�/
kvkV . The eigen-

problem residual is sometimes called the “defect” in the literature. We then
introduce the following proposition by Weinstein. (See [3, Chap. 6].)

Proposition 7 For any � 2 D and a pair .w; �/ 2 V � R such that kwkV D 1, the
distance between � and the closest eigenvalue is bounded by

min
i

j�i.�/ � �j � kreig.�Iw; �I�/kV 0 :

Proof See [3, Chap. 6] for a general case or [17] for the specific case.
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Corollary 8 Consider any � 2 D and a pair .w; �/ 2 V � R such that kwkV D 1.
If j�1.�/ � �j < j�2.�/ � �j, then �1.�/ � � � kreig.�Iw; �I�/kV 0 .

In order to provide a lower bound of the minimum eigenvalue, the corollary
requires that the eigenvalue of the approximate eigenpair .�;w/ 2 V � R is closer
to �1.�/ than to �2.�/. Assuming this condition is satisfied, we can provide a
lower bound of the minimum eigenproblem by bounding the dual norm of the
eigenproblem residual, as shown in the following proposition.

Proposition 9 For any w 2 V , � 2 R, q 2 Q, and � 2 D,

kreig.�Iw; �I�/kV 0 � .Feig.w; �; qI�//1=2 8q 2 Q;

where the bound form is given by

Feig.w; �; qI�/ 
 �2.k��1jJ.�/jY.�/�1EK.�/EY.�/�Trw � rw � qk2L2.˝/
C kw C r � qk2L2.˝/ C kw � n � qk2L2.�N //: (4.10)

Proof The proof is omitted here for brevity. We refer to [17] for a complete proof;
unlike the proof of Proposition 5, rigid-body rotation modes do not introduce
additional difficulties relative to the scalar case in [17].

We can readily show that for an eigenpair .z1.�/; �1.�// 2 V � R of (4.9),
infq2Q Feig.z1.�/; �1.�/; qI�/ D 0. Hence, given the exact eigenvalue �1.�/, there
exists .w; q/ 2 V � Q such that the lower bound collapses to the exact eigenvalue.

4.4.3 FE Approximation of Bounds of �.�/

Upper Bound An upper bound of .�/ is readily given by a FE approximation of
the eigenproblem (4.9): given � 2 D, find .zN1 .�/; �

N
1 .�// 2 VN � R such that

a.zN1 .�/; vI�/ D �N1 .�/.z
N
1 .�/; v/V 8v 2 V and kzNi .�/kV D 1:

(4.11)

Because �1.�/ 
 infv2V jjjvjjj2�=kvk2V � infv2VN jjjvjjj2�=kvk2V 
 �N1 .�/, we
conclude .�/ 
 �1.�/ � �N1 .�/ 
 NUB.�/. We hence set NUB.�/ 
 �N1 .�/.

Lower Bound To compute a lower bound of .�/ using a FE approximation,
we first solve the Galerkin FE problem (4.11) to obtain an approximate eigenpair
.zN1 .�/; �

N
1 .�// 2 VN �R. We then solve the minimum bound problem associated

with (4.10) for the dual field: given � 2 D, find yN .�/ 2 QN such that

yN .�/ D arg inf
q2QN

Feig.z
N
1 .�/; �

N
1 .�/; qI�/:
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We then assume that j�1.�/ � �N1 .�/j < j�2.�/ � �N1 .�/j and set

NLB.�/ 
 �N1 .�/� .Feig.z
N
1 .�/; �

N
1 .�/; y

N .�/I�//1=2 � .�/: (4.12)

We unfortunately have no means to verify whether the assumption j�1.�/ �
�N1 .�/j < j�2.�/ � �N1 .�/j is satisfied. However, in practice, we have found that
smaller eigenvalues of (4.9) are well separated, and the associated eigenfunctions
are well approximated even on very coarse meshes. Hence, NLB.�/ defined by (4.12)
provides a lower bound of the stability constant .�/.

4.4.4 Offline-Online Efficient SCM and RB Bounds of �.�/

Lower Bound While the approach described in Sect. 4.4.3 provides a lower bound
of the stability constant .�/ under a plausible assumption, the approach requires
FE approximations and is not suited for rapid online evaluation. To overcome the
difficultly, we appeal to a version of the successive constraint method (SCM) of
Huynh et al. [5] that has been extended to compute a lower bound of the stability
constant with respect to an infinite-dimensional function spaces [17]. We refer to [5,
17] for detailed discussion of the algorithm; we here simply present the mechanics
for completeness.

For notational simplicity, we first define an operator associated with the bilin-
ear form a.w; vI�/, A.�/ 
 jJ.�/jY.�/�1EK.�/EY.�/�T . Because K.�/ and
Y.�/�1 D Id ˝ J.�/�1 admit affine decompositions, A.�/ also admits an affine
decomposition, which we denote by A.�/ D PQA

qD1 �A
q .�/Aq: The number of terms

in the affine expansion QA is at most QJQ2JinvQK .
The SCM computes the lower bound as follows. We first introduce a bounding

box BQA 
 QQA
qD1Œ O��q ; O�Cq � � R

QA , where O�q̇ 
 k�max.Aq/kL1.˝/; we can
readily evaluate k�max.Aq/kL1.˝/ since Aq are known. We then define YLB;M 
n
y 2 BQA j PQA

qD1 �A
q .�
0/ � NLB.�

0/; 8�0 2 �con

o
; here �con � D is a set of

judiciously chosen “SCM constraint points” (e.g., by a greedy algorithm) of
cardinality M, and NLB.�

0/, �0 2 �con, are the FE approximations of lower bound
of eigenvalues in (4.12). The SCM lower bound of .�/ is then given by

LB;M.�/ D inf
y2YLB;M

QAX
qD1

�A
q .�/yq: (4.13)

We can readily show LB;M.�/ � .�/; we refer to [5] or [17] for a proof.
The SCM algorithm is online-offline efficient: in the offline stage, we evaluate

the constants f�q̇ g by taking the L1-norm of Aq and fNLB.�
0/g�02�con by solving

M 
 j�conj FE problems (4.12); in the online stage, we solve a linear programming
problem (4.13) with QA variables and M inequality constraints.
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Upper Bound While bounding the error in the online stage requires only the lower
bound LB;M.�/, our offline training algorithm also requires a rapidly computable
upper bound of .�/ to select �con. Towards this end, we appeal to a Galerkin
RB approximation of .�/ (c.f. [12]). We introduce a RB space spanned by the
eigenfunctions associated with M parameter values: Veig

M D spanfzN1 .�0/g�02�con .

We then solve a RB eigenproblem: given � 2 D, find .zM;1.�/; �M;1.�// 2 Veig
M �R

such that kzM;1.�/kV D 1 and

a.zM;1.�/; vI�/ D �M;1.�/.zM;1.�/; v/V 8v 2 Veig
M : (4.14)

Because �1.�/ 
 infv2V jjjvjjj2�=kvk2V � inf
v2Veig

M
jjjvjjj2�=kvk2V 
 �1;M.�/, we

conclude .�/ 
 �1.�/ � �N1 .�/ 
 UB;M.�/. We hence set UB;M.�/ 

�M;1.�/. The RB eigenproblem (4.14) is amenable to offline-online computational
decomposition because the form a.�; �I�/ admits an affine decomposition. In
addition, the basis Veig

M is generated as a biproduct of computing fNLB.�
0/g�02�con

by FE eigenproblem (4.11) in the offline stage.

4.5 Error Bounds

Bounds Having devised offline-online efficient approach for computing an upper
bound of the dual norm of the residual and a lower bound of the stability constant,
we appeal to Proposition 2 to obtain a computable bound of an energy norm of the
error:

jjju.�/� uN.�/jjj� � �N.�/ 
 1

.˛LB;M.�I ı//1=2 .F.uN.�/; pN.�/I�I ı//1=2:

Similarly, we appeal to Proposition 3 to define an approximate compliance output
sN.�/ D `.uN.�//C r.uN.�/; uN.�/I�/ and to provide an error bound

js.�/� sN.�/j � �s
N.�/ 
 1

˛LB;M.�I ı/F.uN.�/; pN.�/I�I ı/:

We note that the term r.uN.�/; uN.�/I�/ is nonzero because our approximation
uN.�/ is based on the minimum-bound formulation and not a Galerkin projection.

Complementary Variational Principle There exists a close relationship between
our error bound formulation and finite-element error bounds based on the comple-
mentary variational principle in, e.g., [6, 9]. If we consider the limit of ı ! 0 for
our norm k � kW.�Iı/, our bound form (4.7) expressed in the physical domain Q̋ .�/
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becomes

F.w; qI�I ı/ D
(

k QC.�/1=2 Qq � QK.�/1=2 Qr Qwk2
L2. Q̋ /; q 2 QQ?.�/;

1; q 62 Q?.�/;

where

QQ?.�/ D fQq 2 QQ.�/ j � Qr � Qq D Qf .�/; Qn � Qq D g.�/; Qq-tensor is symmetricg
(4.15)

The associated stability constant for ı ! 0 is limı!0 ˛.�I ı/ D 1.
The conditions that define QQ.�/ in (4.15) are the dual-feasibility conditions

associated with the complementary variational principle. The symmetry of the dual
field is a required condition for linear elasticity [9], which is not present for scalar
equations. In addition, for Qq 2 QQ.�/, the complementary variational principle yields
jjj Qwjjj2� � k QC.�/1=2 Qq � QK.�/1=2 Qr Qwk2

L2. Q̋ /, which implies that the stability constant

is unity. Hence, our bound formulation in the limit ı ! 0 is equivalent to the
complementary variational principle.

For ı > 0, our approach is a “relaxation” of the complementary variational
principle in the sense that it does not require the dual field to lie in the dual-
feasible space (4.15). This relaxation facilitates offline-online decomposition, as the
construction of the parameter-dependent dual-feasible space QQ?.�/ in an online-
efficient manner seems only possible for rather limited cases [15]. However, as a
consequence, our stability constant ˛.�I ı/ is not unity, and we require an explicit
computation of a lower bound of the stability constant.

4.6 Spatio-Parameter Adaptation

Our spatio-parameter adaptation algorithm for SCM and RB offline training are
presented in [17]; we here reproduce the algorithms for completeness.

SCM The SCM training algorithm is shown as Algorithm 1. The algorithm
leverages the offline-online efficient upper and lower bounds of  introduced in
Sect. 4.4. In short, the algorithm computes the relative bound gap for each� 2 �train,
identifies � with the largest bound gap, computes NUB and NUB to prescribed
accuracy 	SCM;FE using the adaptive FE eigensolver, and updates the SCM constraint
set and reduced basis for the eigenproblem. The process is repeated until the bound
gap meets 	SCM for all � 2 �train. The two threshold parameters must satisfy
	SCM;FE � 	SCM < 1; in practice we set 	SCM 	 0:8 and 	SCM;FE � 	SCM;FE=2.
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Algorithm 1 Spatio-parameter adaptive SCM training
input : �train � D: SCM training set

	SCM, 	SCM;FE: greedy and finite-element bound-gap tolerances
output : fNLB.�

0/g�0
2�con : SCM constraints

Veig
M D fzN1 .�0/g�0

2�con : RB eigenproblem space

1 for M D 1; 2; : : : do
2 Identify the maximum relative .�/ gap parameter

�.M/ D arg sup�2�train
.UB;M�1.�/� LB;M�1.�//=UB;M�1.�/.

3 If sup�2�train
.UB;M.�/� LB;M.�//=UB;M.�/ < 	SCM, terminate.

4 Solve (4.11) and (4.12) to obtain eigenpair .zN1 .�
.M//; �N1 .�

.M// � NUB.�
.M/// and

a lower bound N1;LB.�/; invoke mesh adaptivity as necessary such that
.NUB.�M/� NLB.�M//=

N
UB.�/ < 	SCM;FE.

5 Augment the SCM constraint set, �con �con [ �.M/, and update

fNLB.�
0/g�0

2�con and Veig
M D fzN1 .�0/g�0

2�con accordingly.
6 end

Algorithm 2 Spatio-parameter adaptive RB training
input : �train: RB training set

	RB, 	RB;FE: greedy and finite-element error tolerance
output : VN , QN : RB spaces

1 for N D 1; 2; : : : do
2 Identify the maximum bound parameter �.N/ D arg sup�2�train

�N�1.�/.
3 If sup�2�train

�N�1.�/ 	 	RB, terminate.
4 Solve (4.8) to obtain FE approximations uN .�.N// and pN .�.N//; invoke mesh

adaptivity as necessary such that �N .�/ 	 	RB;FE.
5 Update RB spaces: VN D spanfVN�1; uN .�.N//g and

QN D spanfQN�1; pN .�.N//g.
6 end

RB The RB training algorithm is shown as Algorithm 2. The algorithm leverages
the offline-online efficient error bound �N . In short, the algorithm computes the
error bound for each � 2 �train, identifies � with the largest error bound,
approximate the solution to prescribed accuracy using the adaptive mixed FE solver,
and updates the reduced basis. The process is repeated until the error bound meets
	RB for all � 2 �train. The two threshold parameters must satisfy 	RB;FE � 	RB;
in practice we set 	RB;FE � 	RB=2. We set ı 
 min�2�train LB;M.�/=10 throughout
the training (and in online evaluation); the choice ensures that the stability constant
satisfies 10=11 � ˛LB;M.�/ � 1 and in particular is close to unity.

The reduced model constructed by Algorithms 1 and 2 provides an RB approxi-
mation uN.�/ such that the error jjju.�/�uN.�/jjj� with respect to the exact solution
is guaranteed to be less than 	RB for all � 2 �train; for � … �train, the model may
yield an approximation with an error greater than 	RB, but the approximation is
nevertheless equipped with an error bound with respect to the exact solution.
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4.7 Numerical Results

4.7.1 Problem Description

We consider a linear elasticity problem associated with a cracked square patch of
unit-length edges shown in Fig. 4.1. We will refer to the crack embedded in the
domain as the “embedded crack” and crack in the center as the “primary crack.” Two
parameters characterize the embedded crack: the first parameter, �1 2 Œ0:25; 0:4�,
controls the vertical location of the crack; the second parameter, �2 2 Œ0:3; 0:7�,
controls the length of the crack. The patch is clamped along �D, is subjected to
vertical traction force along �T , and is traction-free on all other boundaries. The
output of interest is compliance.

4.7.2 Uniform Spatio-Parameter Refinement

We first solve the parametrized cracked patch problem using uniform refinement.
The spatial meshes are obtained by uniformly refining the initial mesh shown in
Fig. 4.2a. The snapshot locations are 22, 32, 42, and 52 equispaced points over D 

Œ0:25; 0:4� � Œ0:3; 0:7�. All mixed FE discretization is based on P

3 Lagrange and
RT

2 Raviart-Thomas elements. For the purpose of assessment, the error bounds are
computed on the sampling set � � D consisting of 31� 41 D 1271 equidistributed
parameter points.

Figure 4.2b shows the result of the uniform refinement study. On the coarsest
mesh with N D 1008 degrees of freedom, the output error bound stagnates for
N � 9 and is of O.1/ independent of the number of snapshots; the error is dominated
by the insufficient spatial resolution. Even on the finest mesh with N 	 220;000,
the convergence of the error bound is affected by the spatial resolution for N � 16.
This behavior is due to the relatively slow convergence of the FE method in the
presence of spatial singularity and a rapid convergence of the RB method for the
parametrically smooth problem.

Fig. 4.1 Geometry and
parametrization of the
cracked patch problem
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Fig. 4.2 Uniform refinement convergence study: (a) initial mesh with the cracks denoted in red;
(b) convergence with N for several FE meshes

4.7.3 Spatio-Parameter Adaptive SCM and RB Refinement

SCM We now apply the spatio-parameter adaptive SCM training, Algorithm 1,
using threshold parameters 	SCM D 0:8 and 	SCM;FE D 0:2. Figure 4.3 summarizes
the result of the training process. Figure 4.3a shows that the dimension of the
adaptive FE space varies from 	 3500 to 	 7500, depending on the configuration.
Figure 4.3b shows that the target maximum relative SCM bound gap of 	SCM D 0:8

is achieved using M D 40 constraint points for all � 2 � � D. Figure 4.3c shows
that, similar to the original SCM [5], the SCM lower bound of the eigenvalue is
rather pessimistic away from the constraint points; as discussed earlier, we accept
the pessimistic estimate for the rigor it provides, and in any event the effectivity
of the stability constant ˛LB;M will be desensitized from the pessimistic estimate
LB;M thanks to the transformation introduced in Sect. 4.4.1. Figure 4.3d shows
that the Galerkin approximation of the upper bound—which in fact approximates
very closely the true value of —varies smoothly over the parameter domain. The
minimum LB is bounded from the below by 0:0018; we hence set ı D 0:00018 to
ensure that ˛LB;M.�/ > 0:9.

In order to more closely analyze the adaptive FE approximation of the stability
eigenproblem, we show in Fig. 4.4 the adaptation behavior for two configurations
associated with the smallest and largest FE spaces. Figure 4.4a–c summarize the
behavior for �.6/, the configuration where the embedded crack is shortest and is
far from the primary crack; the final N D 3514 mesh exhibits strong refinement
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Fig. 4.3 Behavior of the spatio-parameter adaptive greedy method for SCM: (a) the dimension of
the FE spaces; (b) reduction in the bound gap with number of SCM constraints; (c) SCM lower
bound of  over D; (d) Galerkin reduced-basis upper bound of  over D

towards the primary crack tip, but relatively weak refinement towards the embedded
crack tips. Figure 4.4d–f summarize the behavior for �.3/, the configuration where
the embedded crack is longest and is closest to the primary crack; the final N D
7690 mesh exhibits much stronger refinement towards the embedded crack tips
compared to the mesh for �.6/. As shown in Fig. 4.4c and f, the lower bound is
not as effective as the upper bound in general, but we accept the ineffectiveness for
the rigor it provides.

RB We now train the RB model using the spatio-parameter adaptive method,
Algorithm 2, for threshold parameters 	RB D 0:01 and 	RB;FE D 0:005. Figure 4.5
summarizes the result of the greedy training. Figure 4.5a shows that the number
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Fig. 4.4 Adaptive FE eigenproblem approximation for (a)–(c) �.6/ D .0:29; 0:3/ and (d)–(f)
�.3/ D .0:4; 0:7/

of degrees of freedom varies from 	13;000 to 	21;000. Figure 4.5b shows the
exponential convergence of the compliance output error with the dimension of
the RB space; this is contrary to the behavior for uniform meshes for which the
convergence with respect to the parameter dimension is limited by the insufficient
spatial resolution. Figure 4.5c shows that reduced model produces an error less
than 	RB D 10�2 for any parameter value in D (or more precisely at least �).
Figure 4.5d shows that the final common mesh which reflects refinement required
for all configurations over D exhibits strong refinement towards the crack tips and
some corners.

As we have done for the eigenproblem, we show in Fig. 4.6 the adaptive FE
solution for two configurations associated with the smallest and largest FE spaces.
Figure 4.6a–c summarize the behavior for �.17/, the configuration where the embed-
ded crack is shortest and far from the primary crack; the final N D 13;270 mesh
shows relatively weak refinement towards the embedded crack tips. Figure 4.6d–
f summarize the behavior for �.2/, the configuration where the embedded crack
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Fig. 4.5 Behavior of the spatio-parameter adaptive RB generation: (a) the dimension of the FE
spaces; (b) reduction in the error bound with the dimension of RB space; (c) output error bound
over D; (d) final common mesh

is longest and closest to the primary crack; we observe much stronger refinement
towards all crack tips. For both cases, the effectivity of the compliance output error
bound is less than 10, which is acceptable given that this is (rigorous) bounds of
the error in the outputs. For assessment purpose, the reference output is computed
using an adaptive FE method with an error tolerance that is ten times tighter than
the target tolerance.
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Fig. 4.6 Adaptive FE approximation for (a)–(c) �.17/ D .0:285; 0:35/ and for (d)–(f) �.2/ D
.0:4; 0:7/
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Chapter 5
A Reduced Basis Method for Parameter
Functions Using Wavelet Approximations

Antonia Mayerhofer and Karsten Urban

Abstract We consider parameterized parabolic partial differential equations
(PDEs) with variable initial conditions, which are interpreted as a parameter
function within the Reduced Basis Method (RBM). This means that we are facing an
infinite-dimensional parameter space. We propose to use the space-time variational
formulation of the parabolic PDE and show that this allows us to derive a two-step
greedy method to determine offline separately the reduced basis for the initial value
and the evolution. For the approximation of the initial value, we suggest to use
an adaptive wavelet approximation. Online, for a given new parameter function,
the reduced basis approximation depends on its (quasi-)best N-term approximation
in terms of the wavelet basis. A corresponding offline-online decomposable error
estimator is provided. Numerical experiments show the flexibility and the efficiency
of the method.

5.1 Introduction

The reduced basis method (RBM) is a well-known model reduction method
for parameterized partial differential equations (PDE) within multi-query and/or
realtime context situations. Of course, the structure and the dimension of the
parameter set D has significant influence on the efficiency of any RBM. Typically,
one has D � R

P with P being “reasonably” small. In some applications, however,
P may be large, even infinite. Such a case occurs if one faces a parameter function
so that D � H with H being a function (Hilbert) space of infinite dimension.

We consider a particularly relevant class of problems involving parameter
functions, namely parabolic problems with variable initial conditions, i.e., we
consider the initial condition as a parameter. One possible application are pricing
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and hedging problems in finance, where the payoff is used as a parameter, see [4, 5].
Using a parameterized initial value in an evolution equation is a challenge by itself
for standard RBM-techniques such as the POD-Greedy method [3], since usually
the error is propagating over time.

This is the reason why we rely on the space-time variational formulation for
parabolic problems introduced in [6] and being used within the RB-framework e.g.
in [9, 10]. Within this framework, we show that we can separate the treatment of the
initial value parameter function from additional parameters the PDE may have. We
introduce a two-stage Greedy method for computing a corresponding reduced basis
in the offline phase.

The issue remains how to approximate a parameter function, an 1-dimensional
object (expansion in a separable Hilbert space). We propose an adaptive wavelet
approximation for the parameter function online. We show that several ingredients
for the RB approximation can be precomputed in the offline phase and how to
realize an online-efficient approximation for a new parameter function. Numerical
results show the flexibility, efficiency and the approximation quality of the proposed
method.

The remainder of this chapter is organized as follows. In Sect. 5.2, we recall
those main facts of the RBM that we need here. Section 5.3 is devoted to a brief
survey of the space-time variational formulation for parabolic problems as well as
its parametric variant. Our suggested RBM for problems with parameter functions is
detailed in Sect. 5.4 also including the description of the use of an adaptive wavelet
approximation. We report our numerical results in Sect. 5.5 and finish with some
conclusions in Sect. 5.6. We refer to [4] to more details on the presented material.

5.2 Reduced Basis Method

Let D be some parameter space. Consider the parametrized PDE

find u 
 u. �/ 2 X W b.u; vI�/ D f .vI�/ 8 v 2 YI � 2 D ; (5.1)

where b W X�Y�D ! R is a parameter-dependent bilinear form and f W Y�D ! R

a parameter-dependent linear form. We assume well-posedness of (5.1). For discrete
(but high-dimensional) trial XN � X and test YN � Y spaces with dim.XN / D
dim.YN / D N � 0 and every � 2 D , an associated N -dimensional (detailed)
linear system has to be solved that is given by

find uN 
 uN . �/ 2 XN W b.uN ; vI�/ D f .vI�/ 8v 2 YN : (5.2)

We assume well-posedness and uniform stability w.r.t. N for this detailed system.
In a multi-query or real-time context, the solution of this detailed system

(sometimes called “truth”) is often too costly. In order to reduce the system, we
consider the solution subset (“manifold”) M.D/ D fu. �N / 2 XN W � 2 Dg. The
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RBM aims to approximate M.D/ by a lower dimensional space XN � XN where,
dim.XN/ D N � N . The reduced problem then reads

find uN 
 uN. �/ 2 XN W b.uN; vI�/ D f .vI�/ 8 v 2 YN (5.3)

with an appropriate test space YN (which may also be parameter-dependent, i.e.,
YN. �/). Hence, a linear system of dimension N needs to be solved.

The RBM is divided into an offline and an online phase. In the offline phase,
bases spanning the reduced system XN , YN are generated by computing detailed
solutions u. �i/ 2 XN for a well-chosen sample set of parameters �1; : : : ; �N � D
along with a reduced stable test space YN . The reduced system is then solved online
for new values of the parameters � 2 D . The goal is that the reduced system is
online-efficient, which means it can be solved with an amount of work independent
of the detailed dimension N .

In order to reach the latter goal, a standard assumption is to require that the forms
b and f are decomposable w.r.t. the parameter (sometimes called “affine decompo-
sition”), i.e., there exist Qb, Qf 2 N and functions �bq ; �

f
q W D ! R such that

b.u; vI�/ D
QbX
qD1

�bq . �/bq.u; v/; f .vI�/ D
QfX
qD1

�q
f . �/fq.v/ (5.4)

with (bi-)linear forms bq and fq independent of �. First, the reduced trial functions
ui WD uN . �i/ 2 XN and corresponding inf-sup-stable test functions vi 2 YN ,
i D 1; : : : ;N, are computed. Then, the parameter-independent components are
computed and stored, e.g.

bq.u
i; vj/ D

NX
k;lD1

˛iIk Q̨ jIl bq.'N
k ; Q'N

l /;

where 'N
k , Q'N

l are the basis functions of the detailed spaces XN , YN and ˛iIk,
Q̨ jIl are the expansion coefficients of the reduced basis functions ui, vj in terms of
the detailed basis functions. The linear forms fq.vj/ are precomputed in a similar
fashion. In the online phase, only �bq . �/ and � fq. �/ need to be evaluated for a new
parameter � and the sums in (5.4) can be computed with complexity independent
of N , i.e., online-efficient.

5.3 Space-Time Variational Formulation for Parabolic
Problems

We follow e.g. [6, 9, 10] for the introduction of space-time variational formulations
for parabolic PDEs in terms of Bochner(-Lebesgue) spaces. Let H ,! V be densely
embedded Hilbert spaces. By identifying H with its dual H0, we obtain the Gelfand
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tripleV ,! H ,! V 0, i.e., the scalar product .�; �/H onH generates the duality pairing
h�; �iV0�V . We denote the induced norms on V and H by j � jV and j � jH, respectively
and seek the solution in the space

X WD fu 2 L2.IIV/ W Pu 2 L2.IIV 0/g; I WD .0;T/ � R;

equipped with the graph norm kuk2
X

WD kuk2L2.IIV/ C kPuk2L2.IIV0/
.

The parameter spaces are assumed to be of the form D D D0 � D1 � H � R
P,

where �0 2 D0 accounts for the initial value (i.e., a function) and �1 2 D1

for parameters in the PDE. To be more specific, consider a parameter-dependent
bilinear form a W V �V �D1 ! R with induced linear operator A . �1/ 2 L .V;V 0/
as hA . �1/�;  iV0�V D a.�;  I�1/ for �; 2 V .1 Then, given a non-
parametric right-hand side g 2 L2.IIV 0/, we seek u.t/ 2 V , t 2 I such that for
� D . �0; �1/ 2 D

Pu.t/C A . �1/u.t/ D g.t/ in V 0; t 2 I a.e.; u.0/ D �0 in H: (5.5)

We assume that there exist constants Ca. �1/ > 0, ˛a. �1/ > 0 and �a. �1/ 2 R

such that for all �; 2 V

ja.�;  I�1/j � Ca. �1/j�jV j jV (continuity); (5.6)

a.�; �I�1/C �a. �1/j�j2H � ˛a. �1/j�j2V (Gårding inequality): (5.7)

Remark 1

(i) For u 2 X the initial condition in (5.5) is meaningful since X ,! C .NIIH/ [7,
III. Proposition 1.2].

(ii) We assume that g is parameter-independent just for ease of presentation. All
what is said here extends to parameter-dependent right-hand sides as well.

The test space is chosen as Y WD L2.IIV/ � H equipped with the graph norm
kvk2

Y
D kv1k2L2.I;V/ C jv2j2H , v D .v1; v2/ 2 Y. For w 2 X, v D .z; h/ 2 Y and

� 2 D , we define

b.w; vI�/ WD
Z
I
h Pw.t/; z.t/iV0�V dt C

Z
I
a.w.t/; z.t/I�1/dt C .w.0/; h/H; (5.8)

f .vI�/ WD
Z
I
hg.t/; z.t/iV0�V dt C . �0; h/H: (5.9)

The variational formulation of the parameterized parabolic PDE is then given by

find u 2 X W b.u; vI�/ D f .vI�/ 8 v 2 Y: (5.10)

1Note, that we also allow for time-dependent bilinear forms, i.e., non-LTI problems as e.g. in [6].
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Note, that (5.10) and (5.5) are in fact equivalent. Well-posedness was shown e.g. in
[6, Theorem 5.1]. The linear operator B. �/ W X ! Y

0 induced by hB. �/u; vi WD
b.u; vI�/, v 2 Y, is thus injective, which implies the inf-sup condition with a lower
inf-sup-bound ˇLB, i.e.,

inf
u2X sup

v2Y
b.u; vI�/
kukXkvkY � ˇ.�/ � ˇLB > 0: (5.11)

The lower inf-sup-bound plays a major role in the a-posteriori error estimation of
the space-time RBM.

5.4 Reduced Basis Method for Parameter Functions

Recall, that the parameter�0 2 D0 is the initial value, i.e., a parameter function in an
infinite-dimensional parameter set (function space). We are now going to introduce
an approach to deal with this challenge.

5.4.1 Using the Initial Value as Parameter in a Space-Time
Setting

We start by separating the (bi-)linear forms in (5.8), (5.9):

b.w; vI�/ D
Z
I
h Pw.t/; z.t/iV0�V dt C

Z
I
a.w.t/; z.t/I�1/dt C .w.0/; h/H (5.12)

DW b1.w; zI�1/C .w.0/; h/H

f .vI�/ D
Z
I
hg.t/; z.t/iV0�V dt C . �0; h/H DW g1.z/C . �0; h/H (5.13)

for � D . �0; �1/ 2 D , w 2 X and .z; h/ 2 Y. Note, that b.�; �I�/ only depends on
�1, whereas f .�I�/ only depends on �0, the latter one just for convenience.

The detailed (truth) discretization is induced by X
N � X and Y

N � Y with
dim.XN / D dim.YN / D N . We assume well-posedness and uniform stability
w.r.t. N of the truth problem [4]. Note, that X D H1.I/ ˝ V and Y D L2.I/ ˝
V � H are tensor products, so that it is convenient to construct the detailed spaces
accordingly,

X
N D .E10 ˚ EK

1 /˝ VJ D .E10 ˝ VJ /˚ .EK
1 ˝ VJ / DW QJ ˚ WL ;

Y
N D .FK ˝ VJ / � VJ DW ZL � VJ ; dim.WL / D L WD JK :
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Here, E10 contains the temporal basis function 0 (say) at t D 0 (dim.E10/ D 1), EK
1

collects the remaining basis functions of the ansatz space in time2 and FK consists
of the K temporal basis functions of the test space, see e.g. [10]. All superscripts
indicate the dimension of the spaces, so that N WD dim.XN / D J C L D
dim.YN /. This discretization allows a two-step computation for� D . �0; �1/ 2 D
as follows:

(a) Find q. �0/ 2 VJ W .q. �0/; h/H D . �0; h/H 8h 2 VJ ;

(5.14)

(b) Find w. �/ 2 WL W b1.w; zI�1/ D f1.zI�1; 0 ˝ q. �0// 8z 2 ZL ;

(5.15)

with b1 as in (5.12) and f1.zI�1;w/ WD g1.z/ � b1.w; zI�1/ with g1 as in (5.13).
The space-time variational approach allows us to use the standard RB-setting

in Sect. 5.2 for the a posteriori error estimate in terms of the residual. It turns out
that the separation in (5.14) is also crucial here. Let uN. �/ 2 XN � X

N (the
RB-approximation to be detailed below), then we get for any v D .z; h/ 2 Y

N

rN.vI�/ D f .vI�/ � b.uN. �/; vI�/
D g1.zI�1/� b1.uN. �/; zI�1/C . �0 � uN.0I�/; h/H
DW rN;1.zI�/C rN;0.hI�/: (5.16)

This separation of the residual allows us to control the error for the initial value
(t D 0) and the evolution separately.

5.4.2 Wavelet Approximation for the Parameter Function

The initial value is a function in D0  H. In principle, we could use any stable
basis in H to represent the initial value. However, as indicated in Sect. 5.1, we do
not want to fix any possible representation of �0 a priori as in [5], but adapt it
during the online phase. Hence, we need a basis for H that allows for a rapid and
local update of a given new �0. We have chosen wavelets. A detailed introduction
to wavelets goes far beyond the scope of the present paper, we thus refer e.g. to [8]
for details and sketch here just those ingredients that are particularly relevant in the
RB-context.

2 If we use a function in space, say q 2 VJ , as initial value, we “embed” it into QJ , i.e., we set
0 ˝ q 2 QJ with the temporal basis function 0 at t D 0.
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Wavelets on the real line are usually formed via translation and dilation of a
single (compactly supported) function  W R ! R, often called mother wavelet,
i.e.,

 �.x/ WD 2j=2 .2jx � k/; x 2 R; j 2 N0 (the level/; k 2 Z; � D . j; k/:

The simplest example is the Haar wavelet, where .x/Haar WD
(
1; 0 � x < 0:5;

�1; 0:5 � x < 1:

Then �Haar WD f Haar
� W � 2 Z � Zg is an orthonormal basis (ONB) for L2.R/. If

one only uses f. j; k/ W j 2 N0; 0 � k < 2jg instead of Z � Z, an ONB of L2.0; 1/
results. We denote such general index sets by �.

Definition 1 A countable set 
 WD f � W � 2 �g � H is called wavelet basis, if

(i) 
 is a Riesz basis for H, i.e., there exist constants 0 < c
 � C
 < 1 such
that

c

X
�2�

jd�j2 �
ˇ̌
ˇ̌X
�2�

d� �

ˇ̌
ˇ̌2
H

� C

X
�2�

jd�j2; .in short: kdk`2 � kdT
kH/I
(5.17)

(ii) 
 has local support, i.e., jsupp. �/j � 2�j�j, � D . j; k/, j�j WD j;
(iii) 
 has Qd vanishing moments, i.e., ..�/p;  �/H D 0 for all 0 � p < Qd and j�j > 0.

Remark 2 The Riesz representation theorem yields the existence of a dual wavelet
basis Q
 with the same properties but a possibly different d instead of Qd in (iii).
Typically,  � is a piecewise polynomial of degree d.
Nowadays, there is a whole variety of wavelet systems available, on general domains
˝ � R

n, with arbitrary smoothness and additional properties. Definition 1 has
several consequences. Just to mention a few (and without going into detail due to
page restrictions):

1. The wavelet coefficients d� decay fast with increasing level j�j.
2. The wavelet coefficients are small in regions where the function is smooth—

they indicate regions of local non-smoothness (like isolated singularities).
3. The norm equivalence (5.17) can be extended to scales of Sobolev spaces Hs

around s D 0 and allow for an online-efficient computation of the residual [1, 2].
4. There are fast adaptive methods to approximate a given function in H (to be

applied to approximate �0 online). Roughly speaking, one only needs higher
level wavelets in regions where the function is locally non-smooth. The norm
equivalence (5.17) ensures that this procedure converges very fast (see below).

Remark 3 It might be a first naive idea to choose a finite subset of wavelet-
indices, say �M � �, and use the corresponding expansion coefficients as a
parameter set of dimension j�Mj. Of course, this severely limits the choice of
initial conditions. If one is interested in a whole variety of such functions including
localized effects, a sufficient approximation causes j�Mj to be huge—thus making
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this idea computationally infeasible. Only if one has some knowledge on the shape
of the initial value, one may a-priori fix the approximation space, see e.g. [4, 5].

5.4.3 Online-Offline Reduced Basis Method

First Step Greedy: Adaptive Approximation of the Initial Value We start by
collecting offline-information for the online initial value approximation given a
new parameter function �0. We collect those information in a library Linit that is
computed offline. Of course, there are several possibilities how to construct such
a library, i.e., which kind of a priori knowledge is used. The less information is
used and/or the more flexibility to approximate �0 is required, the larger Linit will
be—at the expense of offline cost. On the other hand, additional information may
significantly reduce such cost. In this paper, we introduce a rather flexible (but
offline costly) method which is solely based upon the goal of achieving a sufficiently
good approximation. For alternatives, we refer to [4].

To this end, the standard Jackson-estimate allows to truncate a wavelet expansion
at a certain maximum level and to control the approximation error in terms of the
Sobolev regularity. In fact, if we denote by Sj the subspace of H generated by all
wavelets with level j�j � j, then

inf
vj2Sj

jv � vjjL2.˝/ � C 2�jsjvjHs.˝/; v 2 Hs.˝/; s � d;

with d as in Remark 2 [8, (5.30)]. Hence, if we know (or fix) the regularity of all
candidates for the initial values as well as an estimate for C, we may fix a maximal
level, say J. For all wavelets in the corresponding space SJ, we precompute the
associated “snapshot” q� 2 QJ for the initial value by solving

.q�; �/H D . �; �/H 8� 2 SJ; j�j � J: (5.18)

We thus obtain in the order of 2J such initial value snapshots and store them in an
Initial Value Library Linit D fq� W � 2 �; j�j � Jg.

Second Step Greedy: Evolution Snapshots Based upon some library Linit, we
precompute snapshots for the corresponding evolutions. This is done by an adapted
standard Greedy scheme w.r.t. some training set D train

1 � D1. The arising Evolution
Greedy is detailed in Algorithm 1. Note, that the training phase is performed for each
wavelet index �with the respective training set f �g�D train

1 . For each wavelet index

�, Algorithm 1 produces an RB space of the form W�
N.�/ D spanfw1�; : : : ;wN.�/

� g of

dimension N.�/, where wi
� solves the space-time parabolic problem

b1.w
i
�; zI�i

1/ D g1.z/� b1.q
�; zI�i

1/ 8 z 2 Y
N (5.19)
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Algorithm 1 Evolution greedy

Require: training set D train D f �g � D train
1 � D , tolerance tol1 > 0

1: Choose �1 2 D train, �1 WD . �; �
1
1/. Get precomputed q� 2 Linit

2: Compute w. �1/ 2 WL as in (5.19), ��
1 D fw. �1/g

3: for `D 1; : : : ;Nmax do
4: �`C1 D arg max

�2D train
�1
`.�/

5: if �1
`. �

`C1/ < tol1 then N.�/ WD ` Stop end if
6: Compute w. �`C1/ 2 WL as in (5.19)
7: S`C1

1 WD S`1 [ f�`C1g, ��
`C1 WD ��

` [ fw. �`C1/g
8: end for
9: return RB basis ��

N.�/

for a parameter �i
1 chosen in the i-th step of Algorithm 1 with training set f �g �

D train
1 . We collect all such solutions of (5.19) in an Evolution Library

Levol WD fw1�; : : : ;wN.�/
� W � 2 �; j�j � Jg;

which consists of all RB bases of the evolutions with initial values in Linit.
We do not compute a reduced inf-sup stable test space YN , since we use normal

equations, see Remark 4 below. The space-time variational approach allows us to
use a standard error estimator in Algorithm 1, i.e., the first part of (5.16),

�1
`. �/ WD kr`;1. �/kZ0

ˇLB
; (5.20)

where ˇLB is a lower bound of the inf-sup constant of the bilinear form b that may
be determined a priori e.g. by eigenvalue computations.

Orthonormalization Note, that we are going to use combinations of RB bases
stored in Levol for the RB approximation online. These combinations of snapshots
may not necessarily be linearly independent. We resolve this by performing an
online orthonormalization that is prepared offline as follows. Denote the set of all
functions that arise from the two-step Greedy method by WNmax WD fwi W 1 �
i � Nmaxg, Nmax D P

�2�;j�j	J N.�/, and denote its Gramian matrix by M WD
Œ.wi;wj/X�i;jD1;:::;Nmax . We then compute an SVD, i.e., M D UTDU. Setting S WD
U�1D�1=2 obviously yields STMS D �. At a first glance, this might seem to be an
overkill. However, in the online phase, we need to access all those rows and columns
of S that correspond to the required RB snapshots in Levol that are significant for
approximating the evolution for a new �0. Hence, we need to consider WNmax .

Online Phase We need to adapt the online phase for the specific case of a parameter
function �0. The main idea is to efficiently compute a (quasi-)best N0. �0/-term
approximation to a given �0 by determining those N0. �0/ wavelets yielding the
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largest coefficients in absolute values. Let us denote by �N. �0/ the arising index
set of dimension N0. �0/. Then, the computed approximation takes the form

u0;N. �0/ D
X

�2�N . �0/

d�. �0/q
�; N0. �0/ 
 j�N. �0/j;

with q� 2 Linit. The approximation error can be estimated as

k�0 � u0;N. �0/kH � �0
N. �0/ WD krN;0. �0/kH0

ˇLB

� 1

ˇLB

����0 �
X

�2�N . �0/

d� �
���
H

D 1

ˇLB

��� X
�62�N . �0/

d� �
���
H
:

(5.21)

For the evolutionary part, we use the reduced basis fw`� W � 2 �N. �/; ` D
1; : : : ;N.�/g � Levol to span the reduced space, which is of dimension N WD
N. �0/ D P

�2�N . �0/
N0.�/, i.e., we have to solve a linear system of dimension

N � N. Recall, that we have precomputed the SVD of the full Gramian matrix M
along with the matrix S to orthogonalize the snapshots. Now, we pick the submatrix
SN of S consisting of the N rows and columns of S that correspond to the given
initial value �0. We use this matrix SN as a preconditioner for the system matrix
BN. �/. The arising online phase is detailed in Algorithm 2.

Remark 4 The online solution in line 4 of Algorithm 2 is performed by solving the
corresponding normal equations. This is also the reason why we did not construct a
reduced test space in the offline phase in (5.19). For details, we refer to [4].

Recall from (5.16) that the residual—and consequently also the error estimate
�N—can be split in two parts. The first part contains k�0 � u0;N. �0/kH which is
equivalent to the initial value error in (5.21). Since �0 � u0;N. �0/ is a linear combi-
nation of wavelets, the Riesz basis property allows us to reduce this computation to
a weighted sum of wavelet coefficients, which is clearly online-efficient.

Algorithm 2 Online phase with online orthonormalization
Require: New parameter � 2 D , N D N. �0/, Linit, Levol, preconditioner S.
1: Compute BN. �/, FN. �/ and pick SN out of S.
2: Orthogonalization: QBN. �/ WD STNBN . �/SN , QFN. �/ WD STNFN. �/.
3: if det.QBN. �// D 0 then Delete zero rows/columns. end if
4: Solve QuN. �/ D .QBN. �//

�1 QFN. �/! uN. �/ D SN QuN. �/.
5: Compute �N. �/.
6: return RB solution uN. �/, estimator �N. �/.
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The second part of the error estimator is easily seen to be offline-online
decomposable and thus computable online-efficient. In addition, we obtain the
following error bound

kg1�b1.uN. �/; �I�1/kY0 �
ˇ̌
ˇ1 �

X
�2�N . �0/

d�. �0/
ˇ̌
ˇkg1.�/kY0 C

ˇ̌
ˇ X
�2�N . �0/

d�. �0/
ˇ̌
ˇtol1;

(5.22)

for tol1 defined as in Algorithm 1 and d�. �0/ being the expansion coefficients of
the approximate initial condition in terms of the basis function q� of Linit in (5.18).

It is remarkable that the upper bound (5.22) can be evaluated before the RB
approximation is actually computed, i.e., a-priori. This is important since the RB
solution may not respect the chosen greedy tolerances. The reason is that the training
set of the parameter function space contains single functions but linear combination
of these functions need to be considered online. If the upper bound (5.22) indicates
this, one may need to add some more basis functions by performing some few offline
computations (in a multi-fidelity fashion).

5.5 Numerical Experiments

We aim at numerically investigating the influence of the right-hand side and of
the error made in the approximation of the parameter function onto the RB error
(estimator). In order to concentrate on these issues, we consider a univariate
diffusion problem for V WD H1

0.0; 1/ and H WD L2.0; 1/, I WD .0; 0:3/

Pu.t; x/ � �1u
00.t; x/ D g.x/ for .t; x/ 2 .0; 0:3/ � .0; 1/;
u.0; x/ D �0.x/ for x 2 .0; 1/:

The parameter space is chosen as D D D0 � D1 WD L2.0; 1/ � Œ0:5; 1:5�. For the
right-hand side, we compare two settings. The first one is g.t; x/ D gzero.t; x/ 
 0,
as the a-priori error bound (5.22) is minimal then. The second case is an instationary
smooth right-hand side g.t; x/ D gsin.t; x/ D sin.2�x/cos.4�t/.

Truth We use the space-time discretization that is equivalent to the Crank-Nicolson
scheme, which is stable for �x D �t D 2�6, [9]. Note, that this setting also allows
us to compute the inf-sup constants analytically, so that our results are not influenced
by any approximation errors in the constants. Finally, as in [9], we use the natural
discrete norm for w 2 X

N � X given as

�w�2N WD k Nwk2L2.IIV/ C k Pwk2L2.IIV0/ C kw.T/k2H ;

for Nwk WD .�t/�1
R
Ik
w.t/ dt 2 V and Nw WD

KP
kD1

k ˝ Nwk 2 L2.IIV/.
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Parameter Function For the representation of the initial value, we use the Haar
wavelets, see Sect. 5.4.2. The approximation error, i.e., the sum of those wavelet
coefficients that are not used in the approximation, is computed up to a sufficiently
high fixed level. For the online computations, we used �0;smooth WD x.1 � x/, which
is smooth and allows for a sparse wavelet approximation. As a second example,
we chose �0;L2 WD jx � 0:5j1=2 2 L2.0; 1/ n H1

0.0; 1/. The space-time formulation
allows us such a non-smooth initial condition, whose wavelet coefficients reflect the
singularity of the derivative at x D 0:5.

Evolution Greedy The tolerance was chosen as tol1 D 0:001 and the training set
for D1 was set D train

1 WD f0:5 C k 1
17

W k D 0; : : : ; 17g, jD train
1 j D 18. We fix the

maximal level J D 6, which turned out to yield a sufficient resolution, i.e., jLinitj D
26 D 64. The Evolution Greedy is performed jSJj D 26 times with D train D f �g �
D train
1 for all j�j < 6. For both right-hand sides we obtain 4–5 evolution reduced

bases functions. The results concerning the following quantities are displayed in
Fig. 5.1.

(1) �u. �/� uN0CN. �/�N Exact error of the RB-approximation

(2) �1
N. �/ the RB error bound for the evolution in (5.20)

(3) 1
ˇ LB

.
P

�62�N . �0/

jd�j2/1=2 sum of non-considered wavelet coefficients as
upper bound for �N;0. �0/ as in (5.21)

(4) �1
N. �/C 1

ˇ LB
.

P
�62�N .�0/

jd�j2/1=2 full error bound �N : sum of the latter two

(5) Bound a-priori bound, right-hand side of (5.22)

In Fig. 5.1a (with smooth initial data and gzero), we see almost no difference
between (3) and (4), since the evolution error [estimator (2)] is very small, which
should be expected for gzero. Moreover, the difference between the full error
estimator (4) and the true error (1) is quite small, the efficiency of the error estimator
is quite good. The a-priori bound is reasonably good for N0 � 45.

As we change the right-hand side to gsin in Fig. 5.1b, the bound (5) immediately
detects this. Until N0 D 50, the error is dominated by the evolution and the error
bound is quite sharp. However, as this part drops down, the initial value error (3)
remains, which causes a slight decrease of efficiency.

The third case in Fig. 5.1c uses a non-smooth initial data. As expected, the decay
of the initial value error (3) is slow—we need many wavelets to represent �0;L2
well. The evolution error (2) is almost negligible, which is also detected by the a-
priori bound (5). However, even in this case, the full error estimator is sharp. Of
course, the final RB-dimension depends on the initial value and its approximation.
However, we have compared several configurations of initial value and right-hand
side and found in all cases that N grows linearly with N0 and the ratio is the same in
all scenarios [4].

In all cases, an expansion using N0 D 32 wavelets already gives very good
results. The detailed dimension was N D 4096 and could be reduced to a maximum
of N D 160, a factor of more than 25. We recall that the space-time approach



5 RBM for Parameter Functions Using Wavelets Approximations 89

0 10 20 30 40 50 60
10-6

10-5

10-4

10-3

10-2

10-1

N0

0 10 20 30 40 50 60
10-6

10-5

10-4

10-3

10-2

10-1

N0

N0

0 10 20 30 40 50 60
10-6

10-5

10-4

10-3

10-2

10-1

(a) (b)

(c)

(1) (2) (3) (4) (5)

Fig. 5.1 Error and estimators for different cases. Quantities (1)–(5) according to table above. (a)
�smooth; gzero. (b) �smooth; gsin. (c) �L2; gzero

amounts to solve one dense linear system of dimension N in the online stage. In
order to determine the speedup (i.e., the comparison of offline and online cost), the
best offline-situation occurs when a time-stepping scheme like Crank-Nicolson can
be used, requiring in the order of T

�t solves of a sparse system. In our experiments,
the corresponding CPU-time was about 0.01 s. The online RB-solution took about
0.0075 s, which is a speedup of 25%. Moreover, recall that our a-priori bound
indicates the required RB-dimension in advance, so that the online cost can be
estimated a priori.

However, such speedup numbers are misleading to a certain extend since they
correspond to the best possible offline situation (time-stepping), which only occurs
for very specific discretizations. Our approach also allows for non-time-marching
truth discretizations in which case the speedup is by far larger (we refer to [4] for
concrete applications in finance with an observed online speedup of about 97%).
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We stress the fact that our numerical experiment is mainly designed to explain
the functionality of the introduced method for parameter functions.

5.6 Conclusions

We presented a RBM for a parameter function as the initial value of a parabolic PDE.
The space-time variational formulation allows us to separate the approximation
of the initial condition from the error made in the evolution as time grows. An
offline library for the initial value is suggested which guarantees a prescribed online
tolerance. We used an online adaptive wavelet approximation, which provides us
with a great flexibility regarding both the size of the RB spaces as well as the
approximation quality. We present an a-priori bound as well as an error estimator.

The suggested offline library allows for arbitrary initial values in L2.0; 1/
with prescribed accuracy. This flexibility results in a significantly large offline
cost, in particular in higher space dimensions. To avoid this, one may use more
specific approximation spaces for the initial value(s), which yields quite reasonable
offline costs in particular in higher space dimensions [4]. Of course, this restricts
flexibility and may result in a non-sufficient approximation of the initial value and
consequently in a poor online reduced basis approximation.

In general, our numerical results show the flexibility of the method and the
efficiency of the a posteriori error bound.
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Chapter 6
Reduced Basis Isogeometric Mortar
Approximations for Eigenvalue Problems
in Vibroacoustics

Thomas Horger, Barbara Wohlmuth, and Linus Wunderlich

Abstract We simulate the vibration of a violin bridge in a multi-query context
using reduced basis techniques. The mathematical model is based on an eigenvalue
problem for the orthotropic linear elasticity equation. In addition to the nine material
parameters, a geometrical thickness parameter is considered. This parameter enters
as a 10th material parameter into the system by a mapping onto a parameter
independent reference domain. The detailed simulation is carried out by isogeomet-
ric mortar methods. Weakly coupled patch-wise tensorial structured isogeometric
elements are of special interest for complex geometries with piecewise smooth but
curvilinear boundaries. To obtain locality in the detailed system, we use the saddle
point approach and do not apply static condensation techniques. However within
the reduced basis context, it is natural to eliminate the Lagrange multiplier and
formulate a reduced eigenvalue problem for a symmetric positive definite matrix.
The selection of the snapshots is controlled by a multi-query greedy strategy taking
into account an error indicator allowing for multiple eigenvalues.

6.1 Introduction

Eigenvalue problems in the context of vibroacoustics often depend on several
parameters. In this work, we consider a geometry and material dependent violin
bridge. For a fast and reliable evaluation in the real-time and multi-query context,
reduced basis methods have proven to be a powerful tool.

For a comprehensive review on reduced basis methods, see, e. g., [29, 33]
or [28, Chap. 19] and the references therein. The methodology has been applied
successfully to many different problem classes, among others Stokes problems [20,
22, 32, 34], variational inequalities [13, 15] and linear elasticity [24]. Recently,
reduced basis methods for parameterized elliptic eigenvalue problems (�EVPs)
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gained attention. Early work on a residual based a posteriori estimator for the first
eigenvalue can be found in [23] and has been generalized in [26, 27] to the case of
several single eigenvalues with special focus to applications in electronic structure
problems in solids. Furthermore, the very simple and special case of a single
eigenvalue where only the mass matrix and not the stiffness matrix of a generalized
eigenvalue problem is parameter dependent has been discussed in [11]. Alternatively
to the classical reduced basis approach, component based reduction strategies are
considered in [36]. Here, we follow the ideas of [17] where rigorous bounds in the
case of multi-query and multiple eigenvalues are given. More precisely, a single
reduced basis is built for all eigenvalues of interest. The construction is based on a
greedy strategy using an error estimator which can be decomposed into offline and
online components.

The eigenvalues of a violin bridge play a crucial role in transmitting the vibration
of the strings to the violin body and hence influence the sound of the instrument,
see [10, 37]. Due to the complicated curved domain and improved eigenvalue
approximations compared to finite element methods, see [19], we consider an
isogeometric discretization. Flexibility for the tensor product spline spaces are
gained by a weak domain decomposition of the non-convex domain.

Isogeometric analysis, introduced in 2005 by Hughes et al. in [18], is a family
of methods that uses B-splines and non-uniform rational B-splines (NURBS)
as basis functions to construct numerical approximations of partial differential
equations, see also [1, 5]. Mortar methods are a popular tool for the weak coupling
of non-matching meshes, originally introduced for spectral and finite element
methods [2, 3]. An early contribution to isogeometric elements in combination with
domain decomposition techniques can be found in [16]. A rigorous mathematical
analysis of uniform inf-sup stability and reproduction properties for different
Lagrange multiplier spaces is given in [4]. Applications of isogeometric mortar
methods can be found in [7, 8, 35]. The weak form of a discrete mortar approach
can be either stated as a positive definite system on a constrained primal space
or alternatively as an indefinite saddle point system in terms of a primal and dual
variable. Both formulations are equivalent in the sense that they do yield the same
primal solution. From the computational point of view, quite often the saddle point
formulation is preferred since it allows the use of locally defined basis functions
and yields sparse systems. The elimination of the dual variable involves the inverse
of a mass matrix and, unless biorthogonal basis functions are used, significantly
reduces the sparsity pattern of the stiffness matrix. In general, the constrained
primal basis functions have a global support on the slave side of the interface.
This observation motivates us to use for the computation of the detailed solution
the saddle point mortar formulation and work with locally defined unconstrained
basis functions yielding sparse systems. However, typically a reduced system is
automatically dense. If the constraint is parameter independent we obtain a positive
definite system for the reduced setting. Here we show that even in the situation of a
parameter dependent geometry, we can reformulate the weak continuity constraint
in a parameter independent way.
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The rest of this contribution is structured as follows. In Sect. 6.2, we introduce
the model problem and briefly discuss the assumed orthotropic material law and
the applied isogeometric mortar discretization for the violin bridge. The geometric
setup includes a thickness parameter which is transformed to a material parameter.
Here, we also comment on the fact that although the geometry transformation
formally brings in a parameter into the weak mortar coupling, we can recast the
problem formulation as a parameter independent coupling condition across the
interfaces. The reduced basis approach is given in Sect. 6.3. Finally numerical
results illustrating the accuracy and flexibility of the presented approach are given
in Sect. 6.4. We point out that our parameter space is possibly non-convex due to the
non-linear constraints of the material parameters.

6.2 Problem Setting

The numerical simulation of vibroacoustic applications involves quite often com-
plex domains. Typical examples are large structures, such as, e.g., bridges, technical
devices such as, e.g., loudspeakers but also parts of string instruments such as,
e.g. violin bridges see Fig. 6.1. Within the abstract framework of modal analysis,
the fully bi-directional mechanical-acoustic coupled system can be reduced to a
generalized eigenvalue problem.

For the three dimensional geometry of a violin bridge, we consider the eigenvalue
problem of elasticity

� div�.u/ D ��u;

where � > 0 is the mass density, and �.u/ depends on the material law of
the structure under consideration. In our case, linear orthotropic materials are
appropriate since as depicted in Fig. 6.2 wood consists of three different axes and
only small deformations are considered. Note that besides the cylindrical structure
of a tree trunk, we consider Cartesian coordinates due to the small size of the violin
bridge compared to the diameter of a tree trunk.

Fig. 6.1 Example of a violin
bridge
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Fig. 6.2 Illustration of the
orthotropic structure of wood

y
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6.2.1 Orthotropic Material Law

The three axes are given by the fiber direction y, the in plane orthogonal direction z
and the radial direction x. By Hooke’s law, the stress strain relation can be stated in
its usual form as �.u/ D C".u/ with ".u/ D .ru C ru>/=2. Due to the alignment
of the coordinate system with the orthotropic structure, the stiffness tensor is given
as

C D

0
BBBBBBB@

A11 A12 A13 0 0 0

A21 A22 A23 0 0 0

A31 A32 A33 0 0 0

0 0 0 Gyz 0 0

0 0 0 0 Gzx 0

0 0 0 0 0 Gxy

1
CCCCCCCA
; (6.1)

with the shear moduli Gxy;Gyz;Gzx and the entries Aij depending on the elastic
moduli Ex;Ey;Ez and the Poisson’s ratios �xy; �yz; �zx. The exact formula for Aij can
be found in [30, Chap. 2.4].

Some important differences compared to isotropic material laws are worth
pointing out. While in the isotropic case, all Poisson’s ratios share the same value,
for orthotropic materials they represent three independent material parameters. The
only relation between the ratios is �ijEj D �jiEi. Also the possible range of the
material parameters, i.e., �1 < � < 1=2 for the isotropic case, is different.
A positive definite stiffness tensor and thus a coercive energy functional is only
guaranteed if 1 > �2yzEz=Ey C �2xyEy=Ex C 2�xy�yz�zxEz=Ex C �2zxEz=Ex and Ex=Ey >

�2xy. Note that Poisson’s ratios larger than 1=2 are permitted, but this does not
imply unphysical behavior as in the isotropic case, see, e.g., [31]. The conditions
Ei;Gij > 0 hold both in the isotropic and orthotropic case.

The curved domain of the violin bridge can be very precisely described by a
spline volume. Since it is not suitable for a single-patch description, we decompose
it into 16 three-dimensional spline patches shown in Fig. 6.3. While the description
of the geometry could also be done with fewer patches, the number of 16 patches
˝l gives us regular geometry mappings and a reasonable flexibility of the individual
meshes.
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Fig. 6.3 Decomposition of
the three-dimensional
geometry into 16 patches ˝l

and 16 interfaces �k

The decomposed geometry is solved using an equal-order isogeometric mortar
method as described in [4]. A trivariate B-spline space Vl is considered on each
patch ˝l. The broken ansatz space Vh D Q

l Vl is weakly coupled on each of the 16
interfaces. For each interface �k the two adjacent domains are labeled as one slave
and one master domain (i.e. �k D @˝s.k/ \ @˝m.k/) and the coupling space Mk is
set as a reduced trace space of the spline spaces on the slave domain, i.e., Mh DQ

k Mk. Several crosspoints and wirebasket lines exist in the decomposition where
an appropriate local degree reduction has to be performed to guarantee uniform
stability, see [4, Sect. 4.3].

We use the standard bilinear forms for mortar techniques in linear elasticity

a.u; v/ D
X
l

Z
˝l

�.u/ W ".v/; m.u; v/ D
X
l

Z
˝l

�uv; b.v;b/ D
X
k

Z
�k

Œv�kb ;

where Œv�k D vs.k/
ˇ̌
�k

�vm.k/
ˇ̌
�k

denotes the jump across the interface �k. We note that
no additional variational crime by different non-matching geometrical resolutions of
�k enters. The detailed eigenvalue problem is defined as .u; / 2 Vh � Mh, � 2 R,
such that

a.u; v/C b.v; / D �m.u; v/; v 2 Vh; (6.2a)

b.u;b/ D 0; b 2 Mh: (6.2b)

We note that the constraint (6.2b) reflects the weak continuity condition of the
displacement across the interface with respect to the standard two-dimensional
Lebesgue measure. Only in very special situations strong point-wise continuity is
granted from (6.2b).
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6.2.2 Transforming Geometrical Parameters to Material
Parameters

Additional to the nine material parameters Ei, Gij, �ij, we consider a geometry
parameter �10 related to the thickness of the violin bridge. Transforming the
geometry to a reference domain, we can interpret the thickness parameter as
extra material parameter. Let the parameter dependent geometry ˝.�/ be a
uni-directional scaling of a reference domain b̋ , i.e., a transformation by
F.�I�/ W b̋ ! ˝.�/, x D F.bxI�/ D .bx;by; �10bz/, with bx D .bx;by;bz/ 2b̋ . Transforming the unknown displacement and rescaling it as bu.bx/ D
DF.bxI�/>u.F.bxI�// allows us to define a symmetric strain variable on the
reference domain

b".bu.bx// D DF.bxI�/>".u.F.bxI�///DF.bxI�/:

The orthotropic stiffness tensor (6.1) is then transformed to

bC.�/ D

0
BBBBBBB@

A11 A12 ��210 A13
A21 A22 ��210 A23

��210 A31 ��210 A32 ��410 A33
��210 Gyz

��210 Gzx

Gxy

1
CCCCCCCA
:

In terms of this coordinate transformation, the eigenvalue problem in the continuous
H1-setting reads, since detDF.bxI�/ D ��110 is constant, as

Z
b̋b".bu/ bC.�/b".bv/ dbx D �

Z
b̋ �bu

>
0
@1 1

��210

1
Abv dbx:

In the mortar case, the coupling conditions across the interfaces have to be
transformed as well. Here we assume that the meshes on the physical domain are
obtained from the same mesh on the reference domain by the mapping F.

Z
�.�/

Œu.x/�.x/ d�.x/ D
Z
b� ŒDF.bxI�/�>bu.bx/�.F.bxI�//�10 db�.bx/

D �10

Z
b� Œbu.bx/�

0
@1 1

��110

1
A .F.bxI�// db�.bx/:
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We note thatb WD ıF is in the parameter independent Lagrange multiplier space on
the reference domain if  is in the parameter dependent one on the physical domain.
The remaining parameter dependence is a pure scaling of the Lagrange multiplier,
which does not influence the constrained primal space. These considerations show
us that the standard mortar coupling which is due to the geometry variation
parameter dependent can be transformed to a parameter independent one.

While these lines use the special structure of the geometry variation F, the
coupling can be transformed to a parameter independent one even in more general
situations. Then, the coupling on ˝.�/ must be posed in a suitable weighted
L2-space, which is adapted such that the transformed coupling is parameter inde-
pendent.

Another material parameter is the constant mass density �. However it does
not influence the eigenvectors. Only the eigenvalue is rescaled, yielding a trivial
parameter dependence. For this reason, the density is kept constant in the reduced
basis computations and can be varied in a post-process by rescaling the eigenvalues.

The described material parameters allow for an affine parameter dependence of
the mass and the stiffness, with Qa D 10, Qm D 2,

a.�; �I�/ D
QaX
qD1

�qa .�/a
q.�; �/; m.�; �I�/ D

QmX
qD1

�qm.�/m
q.�; �/;

where �1m.�/ D 1 can be chosen parameter independent.

6.3 Reduced Basis

We now apply reduced basis (RB) methods for the approximation of the parameter
dependent eigenvalue problem on the reference domain. By abuse of notation,
we denote the spaces and bilinear forms transformed to the reference domain as
before. RB techniques where the detailed problem is in saddle point form, in
general, require the construction of RB for both the primal and the dual space,
see, e.g., variational inequalities or when the coupling is parameter dependent, see
[12, 14, 15, 25]. To ensure the inf-sup stability of the discrete saddle point problem,
supremizers can be added to the primal space, additionally increasing the size of
the reduced system, see [32, 34]. Here it is sufficient to define a RB for the primal
space. For the simultaneous approximation of possible multiple eigenvalues and
eigenvectors, we follow the approach given and analyzed in [17].

Due to the parameter independence of b.�; �/ and the dual space, obtained by
the transformation described above, we can reformulate the detailed saddle point
problem (6.2) in a purely primal form posed on the constrained space

Xh D fv 2 Vh; b.v;b/ D 0;b 2 Mhg:
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We recall that this formulation is not suitable for solving the detailed solution, since,
in general, it is costly to construct explicitly a basis of Xh and severely disturbs the
sparsity of the detailed matrices.

The construction of the RB functions is done in two steps. Firstly, an initial
basis is built by a small POD from detailed solutions. This basis is then enlarged
by a greedy algorithm using an asymptotically reliable error estimator. All detailed
solutions do satisfy the weak coupling property and by definition the RB functions
do as well. Thus the saddle-point problem is reduced to a positive definite one.
The eigenvalue problem on the reduced space XN D f�n 2 Xh; n D 1; : : : ;Ng, for
the first K eigenpairs is then given by: Find the eigenvalues �red; i.�/ 2 R and the
eigenfunctions ured; i.�/ 2 XN , i D 1; : : : ;K, such that

a.ured; i.�/; vI�/ D �red; i.�/ m.ured; i.�/; vI�/; v 2 XN :

The error estimator presented in [17, Corollary 3.3] can directly be applied, but
the online-offline decomposition needs to be modified. In the original setting, a
parameter independent mass was considered, so we need to additionally include
the affine decomposition of the mass matrix.

The definition of the estimator is based on the residual

ri.�I�/ D a.ured; i.�/; �I�/ � �red; i.�/m.ured; i.�/; �I�/

measured in the dual norm k�k O�IX0

h
, with kgk O�IX0

h
D supv2Xh

g.v/=Oa.v; v/1=2 for g 2
X0h, where Oa.u; v/ WD a.u; vIb�/, and b� 2 P is a reference parameter. We define
Oei.�/ 2 Xh by

Oa.Oei.�/; v/ D ri.vI�/; v 2 Xh:

To adapt the online-offline decomposition, we follow [17, 23] and add additional
terms corresponding to the mass components mq.�; �/. The decomposition of the
mass can be related to the already known decomposition of the stiffness matrix,
by formally defining a bilinear form a.u; vI�/ � �red; i.�/m.u; vI�/. For the
convenience of the reader we recall the main steps. Let .�n/1	n	N be a orthonormal
basis (w. r. t. m.�; �Ib�/) of XN and let us define �qn 2 XN and �m;qn 2 XN by

Oa.�qn ; v/ D aq.�n; v/; v 2 Xh; 1 � n � N; 1 � q � Qa;

Oa.�m;qn ; v/ D mq.�n; v/; v 2 Xh; 1 � n � N; 1 � q � Qm:

In the following, we identify the function ured; i.�/ 2 VN and its vector represen-
tation w. r. t. the basis .�n/1	n	N such that .ured; i.�//n denotes the nth coefficient.
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Then, given a reduced eigenpair .ured; i.�/; �red; i.�//, we have the error representa-
tion

Oei.�/ D
NX

nD1

QaX
qD1

�qa .�/ .ured; i.�//n �
q
n � �red; i.�/

NX
nD1

QmX
qD1

�qm.�/ .ured; i.�//n �
m;q
n :

Consequently, using kri.�I�/k2O�IX0

h
D Oa.Oei.�/; Oei.�//, the computational cost intense

part of the error estimator can be performed in the offline phase, see [17, Sect. 3.3]
for a more detailed discussion.

6.4 Numerical Simulation

In this section, the performance of the proposed algorithm is illustrated by numer-
ical examples. The detailed computations were performed using geoPDEs [6], a
Matlab toolbox for isogeometric analysis, the reduced computations are based on
RBmatlab [9].

For the detailed problem, we use an anisotropic discretization. In plane, we use
splines of degree p D 3 on the non-matching mesh shown in Fig. 6.4. The mesh has
been adapted locally to better resolve possible corner singularities of the solution.
In the z-direction a single element of degree p D 4 is used. The resulting equation
system has 45;960 degrees of freedom for the displacement whereas the surface
traction on the interfaces is approximated by 2025 degrees of freedom.

We consider the ten parameters, described in Sect. 6.2, � D .�1; : : : ; �10/ with
the elastic modulii �1 D Ex, �2 D Ey, �3 D Ez, the shear modulii �4 D Gyz,
�5 D Gxz, �6 D Gxy, Poisson’s ratios �7 D �yz, �8 D �xz, �9 D �xy and the scaling
of the thickness �10.

Fig. 6.4 Non-matching
isogeometric mesh of the
violin bridge
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The considered parameter values were chosen according to real parameter data
given in [31, Table 7-1]. We consider two different scenarios. In the first setting,
we fix the wood type and take into account only natural variations, see [31,
Sect. 7.10]. To capture the sensitivity of the violin bridge with respect to uncertainty
in the material parameter one can chose a rather small parameter range around the
reference parameter. We chose the reference data of Fagus sylvatica, the common
beech, as given in Table 6.1, as well as the parameter range P1. The mass density
is fixed in all cases as 720 kg=m3.

In our second test setting, we also consider different wood types. Hence we have
to consider a larger parameter set, including the parameters for several types of
wood, resulting in a larger parameter set P2, see Table 6.1. We note, that not all
parameters in this large range are admissible for the orthotropic elasticity as they do
not fulfill the conditions for the positive definiteness of the elastic tensor, stated in
Sect. 6.2.1. Thus, we constrain the tensorial parameter space by

1 � �2yzEz=Ey C �2xyEy=Ex C 2�xy�yz�zxEz=Ex C �2zxEz=Ex � c0;

as well as Ex=Ey � �2xy � c1 where the tolerances c0 D 0:01 and c1 D 0:01 were
chosen, such that the wood types given in [31, Sect. 7.10] satisfy these conditions.
Exemplary, in Fig. 6.5 we depict an lower-dimensional sub-manifold of P2 which
includes non-admissible parameter values.

Table 6.1 Reference parameter and considered parameter ranges

Gyz Gzx Gxy

Ex [MPa] Ey [MPa] Ez [MPa] [MPa] [MPa] [MPa] �yz �zx �xy

b� 14;000 2280 1160 465 1080 1640 0:36 0:0429 0:448

P1 13;000 1500 750 100 500 1000 0:3 0:03 0:4

�15;000 �3000 �1500 �1000 �1500 �2000 �0:4 �0:06 �0:5
P2 1000 100 100 10 100 100 0:1 0:01 0:3

�20;000 �5000 �2000 �5000 �2500 �5000 �0:5 �0:1 �0:5

Fig. 6.5 Illustration of
non-admissible parameter
values in a lower-dimensional
sub-manifold of P2, varying
�zx 2 .0:01; 0:1/; �xy 2
.0:3; 0:5/;Ey 2 .100; 5000/
and fixing Ex D 1000;

Ez D 2000 and �yz D 0:5
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Table 6.2 The ten smallest eigenvalues for different thickness parameters, with the other parame-
ters fixed to the reference value

Eigenvalue �10 D 0:5 �10 D 1:0 �10 D 2:0 Ratio 0:5/1:0 Ratio 1:0=2:0

1 0:4057 1:3238 3:6954 0:3065 0:3582

2 1:1613 3:8870 10:8071 0:2988 0:3597

3 4:4096 12:9562 26:5621 0:3403 0:4878

4 6:1371 19:3254 30:0050 0:3176 0:6441

5 13:5564 27:3642 53:2657 0:4954 0:5137

6 19:2229 46:2521 93:9939 0:4156 0:4921

7 27:6118 65:0940 111:6075 0:4242 0:5832

8 39:3674 96:8069 129:3406 0:4067 0:7485

9 57:8266 107:6749 189:6090 0:5370 0:5679

10 68:0131 130:8876 241:7695 0:5196 0:5414

The thickness parameters is chosen to vary between 1/2 and 2 with the reference value set to 1

First, we consider the effect of the varying thickness parameter on the
solution of our model problem. In Table 6.2 the first eigenvalues are listed for
different values of the thickness, where we observe a notable and nonlinear
parameter dependency. A selection of the corresponding eigenfunctions is
depicted in Fig. 6.6, where the strong influence becomes even more evident,
since in some cases the shape of the eigenmode changes when varying the
thickness.

In the following RB tests, the relative error values are computed as the mean
value over a large amount of random parameters. The L2-error of the normed eigen-
functions is evaluated as the residual of the L2-projection onto the corresponding
detailed eigenspace. This takes into account possible multiple eigenvalues and the
invariance with respect to a scaling by .�1/.

The first test is the simultaneous approximation of the first five eigenpairs on both
parameter sets P1 and P2. We use an initial basis of size 25 computed by a POD,
which is enriched by the greedy algorithm up to a basis size of 250. In Fig. 6.7,
the error decay for the different eigenvalues and eigenfunctions is presented. We
observe very good convergence, with a similar rate in all cases. As expected the
magnitude of the error grows with the dimension and range of the parameter
set.

At this point, for the sake of completeness, we also consider the effectivities of
the error estimator and the resulting speed-up. For example using the parameter
range P1 varying the thickness, effectivities are around 4–16. Using the largest RB
of dimension 250, the computational speedup of the eigenvalue solver in Matlab is
a factor of 552.

Also an approximation of a larger number of eigenpairs does not pose any
unexpected difficulties. Error values for the eigenvalue and eigenfunction are shown
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first eigenvalue: 0.4057 first eigenvalue: 1.3238 first eigenvalue: 3.6954

third eigenvalue: 4.4096 third eigenvalue: 12.9562 third eigenvalue: 26.5621

fourth eigenvalue: 6.1371 fourth eigenvalue: 19.3254 fourth eigenvalue: 30.0050

Fig. 6.6 Influence of the thickness of the bridge on several eigenfunctions

in Fig. 6.8 for an approximation of the first 15 eigenpairs in the parameter set
P1, showing a good convergence behavior. The RB size necessary for a given
accuracy increases compared to the previous cases of 5 eigenpairs, due to the
higher amount of eigenfunctions which are, for a fixed parameter, orthogonal to
each other.

When considering the relative error for the eigenvalues, see Figs. 6.7 and 6.8,
we note that for a fixed basis size, the higher eigenvalues have a better relative
approximation than the lower ones. In contrast, considering the eigenfunctions, the
error of the ones associated with the lower eigenvalues are smaller compared to the
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Fig. 6.7 Convergence of the relative error of the eigenvalues (top) and eigenfunctions (bottom).
Parameter range P1 with a fixed thickness (left), with varying thickness (middle) and parameter
range P2 with varying thickness (right)
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Fig. 6.8 Convergence of the relative (left), absolute (middle) error of the eigenvalues and
eigenfunctions (right). Parameter range P1 with varying thickness, simultaneous approximating
15 eigenpairs

ones associated with the higher eigenvalues. This observation also holds true for the
absolute error in the eigenvalues. This is related to the fact that eigenvalues depend
sensitively on the parameters. In Fig. 6.9, we illustrate the distribution of the first
and 15th eigenvalue.
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Fig. 6.9 Sampling of the first
and 15th eigenvalue within
the parameter set P1 as used
in the test set. Extremal
values: min�1 D 0:29,
max�1 D 4:24,
min�15 D 100:19,
max�15 D 593:65
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test set parameter
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6.5 Conclusion

We have considered generalized eigenvalue problems to approximate the vibrations
of parameter dependent violin bridges. The model reduction is carried out in terms
of a RB method where the detailed solutions are obtained by isogeometric mortar
finite elements. In all considered test scenarios, highly accurate approximations for
both eigenvalues and eigenmodes are obtained. At the same time the complexity and
thus the run-time is significantly reduced. Instead of a detailed saddle point system
with 47;985 degrees of freedom, we have only to solve eigenvalue problems on
positive-definite systems with less than 300 degrees of freedom. Of special interest
is not only the variation in the material parameter but also to take into account
possible changes in the thickness of the violin bridge. In terms of a mapping to
a reference domain, we can reinterpret the geometry parameter as an additional
material parameter and avoid the indefinite saddlepoint problem.
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Chapter 7
Reduced Basis Approximations for Maxwell’s
Equations in Dispersive Media

Peter Benner and Martin Hess

Abstract Simulation of electromagnetic and optical wave propagation in, e.g.
water, fog or dielectric waveguides requires modeling of linear, temporally dis-
persive media. Using a POD-greedy and ID-greedy sampling driven by an error
indicator, we seek to generate a reduced model which accurately captures the
dynamics over a wide range of parameters, modeling the dispersion. The reduced
basis model reduction reduces the model order by a factor of more than 20, while
maintaining an approximation error of significantly less than 1% over the whole
parameter range.

7.1 Modeling Maxwell’s Equations in Temporally
Dispersive Media

The time-dependent Maxwell’s equations in hyperbolic form, also termed the high-
frequency approximation, is given in second order form in the electric field E as

r � 1

�
r � E C "

@2E

@t2
D �@ji

@t
; (7.1)

with the material parameters permeability� D �r�0 and permittivity " D "r"0, and
an impressed source current density ji. While the relative permeability �r and the
relative permittivity "r depend on the material properties, �0 and "0 are constants
corresponding to free space.

A temporally dispersive medium assumes a time-dependent relative permittivity
"r D "r.t/, depending on the history of the electric field strength [9, 11]. Such a
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relation needs to be taken into account when the propagation of an electromagnetic
pulse through certain media, such as water or fog, is simulated. A particular
application in medical imaging is the noninvasive interrogation of the interior of
tissues by electromagnetic waves. The approach followed here assumes a medium
of polar molecules with a permanent dipole moment. A concrete example is the
water molecule H2O, where the hydrogen atoms are attached at a certain angle to
the oxygen atom. While the molecule as a whole is neutrally charged, there is a
permanent dipole moment due to the particular angle.

Thus, the Maxwell’s equations (7.1) are altered by taking a relaxation polar-
ization into account. Considering liquid or solid dielectrics with polar molecules,
the molecules reply to the applied external field by rotating, i.e., rotating such that
the dipole moment is in sync with the external field. This causes friction, which
in turn leads to an exponential damping of the electromagnetic pulse [1, 3, 11].
Since the wave patterns are similar for different parameter configurations, we expect
this problem to be well-suited for projection-based model reduction. The dispersive
property is incorporated by replacing "0"rE.t; x; y/ with

"0"1E.t; x; y/C "0

Z t

�1
E.t � ; x; y/�./d (7.2)

with susceptibility � and spatial coordinates x and y. Here, a single pole expansion of
the susceptibility in frequency domain is assumed, called a Debye relaxation, with
relative permittivity at low-frequency limit "s, relative permittivity at high-frequency
limit "1 and relaxation time  :

�.!; x; y/ D ."s � "1/
{! C 1

: (7.3)

Making use of the exponential decay of � in time, the convolution integral can be
computed efficiently, see [9]. Here, the approach is to derive an auxiliary differential
equation for the polarization [6, 9], which avoids computation of the convolution
integral. Define P.t; x; y/ as the relaxation polarization (in the following referred to
as just the ‘polarization’)

P.t; x; y/ D "0

Z t

�1
E.t � ; x; y/�.; x; y/d; (7.4)

which leads to

@tP C P D "0."s � "1/E; (7.5)
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using the single pole expansion of �, such that the coupled system of E and P is
given as

r �
�
1

�0
r � E

�
C "0"1@2t E D f � @2t P; (7.6)

@tP C 1


P D "0."s � "1/


E; (7.7)

with polarization P and an input source denoted by f . This is called the Debye model
of orientational polarization, or Maxwell-Debye model for short.

Typical material parameter values for water are "1 D 1:80; "s D 81:00;  D
9:400�10�12 s and for foam "1 D 1:01; "s D 1:16;  D 6:497�10�10 s.

Section 7.2 details how the coupled system of Eqs. (7.6)–(7.7) is solved numeri-
cally, while Sect. 7.3 explains the model reduction procedures. Section 7.4 provides
numerical results and Sect. 7.5 concludes our findings.

7.2 Simulation of Maxwell’s Equations in Temporally
Dispersive Media

The discretization of (7.6)–(7.7) is done with Nédélec finite elements of first order
[14]. As a test case, the 2-dimensional unit square in the x-y-plane is chosen,
corresponding to a physical domain of 1 m-by-1 m. The finite element method is
implemented in MATLAB from first principles. The uniform triangulation of the
domain results in 9680 edge-based degrees of freedom, which serve as projection
space for the full-order model in the discretized electric field EN as well as the
discretized polarization PN . The boundary is a zero Dirichlet boundary (also called
PEC—perfectly electric conducting), enforced by setting the appropriate degrees
of freedom to zero. To achieve a broadband input source, a Gaussian pulse is
used to excite the system. In particular, the curl of a Gaussian in the z-direction
is used, which physically corresponds to a magnetic field present perpendicular to
the computational domain. Define the Gaussian pulse G W R2 ! R as

G.x; y/ D 1pj˙ j.2�/2 exp.�1
2
..x; y/T � �/T˙�1..x; y/T � �//; (7.8)

with mean in the center of the domain � D .0:5; 0:5/T and covariance matrix ˙ D�
0:1 0

0 0:1

�
, then the (vector-valued) spatial source term f1.x; y/ is

f1.x; y/ D r �
0
@ 0

0

G.x; y/

1
A D

0
@ @yG.x; y/

�@xG.x; y/
0

1
A : (7.9)
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The spatial source term is multiplied with the second derivative of a Gaussian in
time f2.t/, such that the input source is f D f .x; y; t/ D f1.x; y/f2.t/. The total time
interval is Œ0; 5� ns, divided into 500 timesteps of 10 ps each.

The time-stepping is realized by a Runge-Kutta-Nyström scheme in the electric
field and an explicit Euler in the polarization and applied to the semi-discretized
system with mass matrix M and the curl-curl matrix S. The Runge-Kutta-Nyström
scheme [4] makes use of the particular form REN D F .t;EN / found in (7.6) by a
simple transformation. The Eqs. (7.6) and (7.7) are solved in turn, i.e. assuming an
initial condition of EN .t; x; y/ D 0 and PN .t; x; y/ D 0, first (7.6) is solved and
then the time derivative of (7.7) is solved for @2t P

N with @tEN plugged in. The
solution for @2t P

N is then used in (7.6) for the next timestep. The Runge-Kutta-
Nyström scheme used here computes for each timestep tk

k1 D F .tk;E
N .tk/C 3C p

3

6
�t@tE

N .tk//; (7.10)

k2 D F .tk;E
N .tk/C 3 � p

3

6
�t@tE

N .tk/C 2 � p
3

12
�2

t k1/; (7.11)

k3 D F .tk;E
N .tk/C 3C p

3

6
�t@tE

N .tk/C
p
3

6
�2

t k2/; (7.12)

EN .tkC1/ D EN .tk/

C �t@tE
N .tk/C�2

t .
5 � 3p3
24

k1 C 3C p
3

12
k2 C 1C p

3

24
k3/; (7.13)

@tE
N .tkC1/ D @tE

N .tk/C�t.
3 � 2p3
12

k1 C 1

2
k2 C 3C 2

p
3

12
k3/; (7.14)

such that @2t E
N .tkC1/ can be computed by evaluating F at tkC1, but this is actually

not necessary, since @2t E
N .tkC1/ is not required in (7.7). Since the relaxation time is

in the range of nanoseconds, the time-stepping is chosen as �t D 1�10�11 s D 10

ps with a total number of timesteps nT D 500.
Example trajectories are shown in Figs. 7.1 and 7.2. Due to the smaller per-

mittivities in Fig. 7.1, the propagation velocity is larger and the fields are not as
strongly damped as in Fig. 7.2. In general, different parameter choices for "s, "1
and  mainly change the propagation velocity and amplitudes.

7.3 Reduced Basis Parametric Model Order Reduction

Parametric model order reduction (PMOR) aims at reducing the computational
effort in many-query and real-time tasks. A recent survey of PMOR techniques
can be found in [2]. The PMOR technique applied in this work is the reduced
basis method (RBM) [12]. Several studies of model order reduction techniques for
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Fig. 7.1 Snapshots of one component of the trajectory using "1 D 1, "s � "1 D 0:5 and
 D 1�10�9 . From top left to bottom right, timesteps 100, 150, 200, 250, 300, 350, 400, 450 and
500

Maxwell’s equations have been performed successfully [8, 10, 13], but the dispersive
case is not covered so far. A low-order model is determined by the RBM from
a few large-scale solves at judiciously chosen parameter locations. A particular
role play error indicators, which determine the parameter locations of choice. At
these parameter locations, a full order trajectory is computed and condensed to
the most dominant modes by a matrix decomposition. The most significant modes
are then stored in a projection matrix XN . Since it is a coupled problem in the
electric field EN and the polarization PN , a compound reduced basis XN is formed
by independently condensing both trajectories. To ensure numerical stability, the
compound reduced basis space needs to be orthonormalized separately. Since the
electric field and the polarization are differently scaled by a factor of about 1�10�6,
the columns are normalized before orthonormalization. A Ritz-Galerkin projection
is used, such that the large scale matrices Ai are projected as Ai

N D XT
NA

iXN .
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Fig. 7.2 Snapshots of one component of the trajectory using "1 D 2, "s � "1 D 1:5 and
 D 1�10�8 . From top left to bottom right, timesteps 100, 150, 200, 250, 300, 350, 400, 450 and
500

The same procedure is applied to the mass matrix M and the curl-curl matrix S.
The model is parametrized in the relaxation time  2 Œ1�10�10; 1�10�6� with 12
logarithmically spaced samples and �" D "s � "1 2 Œ0:5; 10� with 10 uniformly
spaced samples, thus defining the 2-dimensional sampled parameter domain �train.
A point in �train is denoted by the parameter vector �. Assuming an initial reduced
order model has been computed with reduced order solution EN.�; �/, it holds

�N.�/ D kEN .�; �/� EN.�; �/k �
nX

kD1
ak.�/bn�k.�/; (7.15)
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where

a.�/ D sup
n2f1;:::;nT g

sup
w¤y

kw � yk
k f .w; tnI �/� f .y; tnI �/k ; (7.16)

is the inverse Lipschitz constant and bn.�/ is the residual at timestep n.
The typical procedure is a greedy-max strategy, where the maximum of �N.�/

over the sampled parameter domain is chosen for another large-scale solve to enrich
the reduced basis. However, rigorous error estimation requires an upper bound on
the inverse Lipschitz constant, which is not feasible by current methods. Thus, an
error indicator is used by setting a D 1. Another option is to use finite volume
discretizations as in [7], where the Lipschitz constant does not appear in the error
estimate.

Time-dependent problems typically employ the POD-greedy technique, which
uses a proper orthogonal decomposition (POD) to condense the time trajectory.
For comparison, we also show results using an ID-greedy procedure, where an
interpolatory decomposition (ID) is used.

7.3.1 POD-Greedy Algorithm

The POD-Greedy approach is a well-established technique for model reduction of
time-dependent problems [7]. The POD performs a singular value decomposition
(SVD) on the orthogonal complement of the newly computed trajectory with respect
to the current projection basis XN . The projection onto the space XN is denoted by the
operator˘XN in the POD-Greedy algorithm. The modes corresponding to the largest
singular values are then appended to the projection basis. This ensures that the most
important information on the trajectory is appended due to the best approximation
property of the SVD.

The POD compression in time offers some tuning options. Either a fixed
number of modes can be appended to the projection basis, or a number of modes
corresponding to a percentage of the sum of the singular values. A high percentage,
such as 99%, is typically sufficient to resolve the trajectory accurately. This will
be used here, such that the modes corresponding to the largest singular values are
chosen until the sum of the associated singular values reaches 99% of the sum of all
singular values.

When the time trajectory is large, the POD can become infeasible to compute.
A compression of the trajectory is thus useful and can be achieved by an adaptive
snapshot selection [15]. Successively removing vectors from the trajectory, when the
angle to the last chosen vector is below a threshold angle, can significantly reduce
the size of the trajectory, without impacting the approximation accuracy. A variation
of this is looking at the angle between the current vector and the whole subspace,
which has already been chosen.
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Algorithm 1 POD-Greedy algorithm
INPUT: sampled parameter domain �train, maximum iteration number kMAX

OUTPUT: POD-Greedy samples SN , projection space XN.kMAX/

1: Choose �1 2 �train arbitrarily
2: Solve for EN .tiI �1/ and PN .tiI �1/, where i D 1; : : : ; nT
3: Set S1 D f�1g
4: Set N.0/ D 0

5: Set k D 1

6: POD of trajectories for EN .tiI �1/ and PN .tiI �1/ gives initial compound projection basis
XN.k/

7: Let `.k/ be the number of added basis vectors (w.r.t. the prescribed tolerance), then N.k/ D
N.k � 1/C `.k/

8: while k < kMAX do
9: Set k D kC 1;

10: Set �k D arg max�2�train �N.k/.�/

11: Set Sk D Sk�1 [ f�kg
12: Solve model for EN .tiI �k/ and PN .tiI �k/
13: eE.ti/ D EN .tiI �k/�˘XN E

N .tiI �k/, where i D 1; : : : ; nT
14: eP.ti/ D PN .tiI �k/�˘XN P

N .tiI �k/, where i D 1; : : : ; nT
15: POD of trajectories eE.ti/ and eP.ti/ and append modes to XN.k/

16: Let `.k/ be the number of added basis vectors (w.r.t. the prescribed tolerance), then N.k/ D
N.k � 1/C `.k/

17: end while

7.3.2 ID-Greedy Algorithm

Since the singular value decomposition (SVD) in the POD step might be costly, an
interpolatory decomposition (ID) is considered as an alternative, [5]. The potential
advantage is that computation times are lower than for an SVD. On the other hand,
the interpolatory decomposition does not generate orthonormal matrices.

The interpolatory decomposition of a matrix A 2 Rm�n is a randomized
decomposition into U 2 Rm�k, B 2 Rk�k and V 2 Rm�k as

A 	 U ı B ı VT ; (7.17)

where B is a k � k submatrix of A. The norm of U and V is close to one and both
matrices contain a k � k submatrix, see [5] for more details. It expresses each of the
columns of A as a linear combination of k selected columns of A and analogously
for the rows. This selection defines the k � k submatrix B of A, and in the resulting
system of coordinates, the action of A is represented by the action of its submatrix
B. Either the order k or an error tolerance is specified for its operation. Here, the
ID-greedy appends at most 20 basis vectors in each iteration.

The ID-greedy algorithm essentially only differs from the POD-greedy in that
the interpolative decomposition replaces the POD.
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Algorithm 2 ID-Greedy algorithm
INPUT: sampled parameter domain �train, maximum iteration number kMAX

OUTPUT: ID-Greedy samples SN , projection space XN.kMAX/

1: Choose �1 2 �train arbitrarily
2: Solve for EN .tiI �1/ and PN .tiI �1/, where i D 1; : : : ; nT
3: Set S1 D f�1g
4: Set N.0/ D 0

5: Set k D 1

6: ID of trajectories for EN .tiI �1/ and PN .tiI �1/ gives initial compound projection basis XN.1/

7: Let `.k/ be the number of added basis vectors (w.r.t. the prescribed tolerance), then N.k/ D
N.k � 1/C `.k/

8: while k < kMAX do
9: Set k D kC 1;

10: Set �k D arg max�2�train �N.k/.�/

11: Set Sk D Sk�1 [ f�kg
12: Solve model for EN .tiI �k/ and PN .tiI �k/
13: eE.ti/ D EN .tiI �k/�˘XN E

N .tiI �k/, where i D 1; : : : ; nT
14: eP.ti/ D PN .tiI �k/�˘XN P

N .tiI �k/, where i D 1; : : : ; nT
15: ID of trajectories eE.ti/ and eP.ti/ and append modes to XN.k/

16: Let `.k/ be the number of added basis vectors (w.r.t. the prescribed tolerance), then N.k/ D
N.k � 1/C `.k/

17: end while

7.4 Numerical Results

The trajectory of a single degree of freedom for the parameters �" D 0:1 and  D
1:23�10�9 is chosen for reference, which is a parameter configuration, that was
not chosen explicitly in either the POD-greedy or ID-greedy procedure. In Figs. 7.3
and 7.4, the error in that degree of freedom is shown with respect to increasing
model sizes. It indicates, that the POD-greedy and the ID-greedy deliver accurate
reduced order models of comparable size. Note that due to the employed version of
the greedy procedures, the number of added basis vectors per iteration varies and
can get as large as 29. Thus the explicit dependence of the reduced dimension N on
the iteration number k in the algorithms.

Over the whole parameter domain, there is a smooth decay in the maximum error
as shown in Fig. 7.5, indicating exponential convergence speed. The computation
times1 of using a POD-greedy reduced order model are shown in Table 7.1. Using a
model of dimension 123, the compute time of a trajectory reduces by a factor of 35.

1All computations were done on a Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz desktop
machine with 8GB RAM, running Ubuntu 12.04.5 LTS and MATLAB R2012b.
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Fig. 7.3 Error in the reference trajectory for POD-greedy generated models of size 9 (red), 21
(green), 79 (blue) and 123 (black)
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Fig. 7.4 Error in the reference trajectory for ID-greedy generated models of size 20 (red), 40
(green), 79 (blue) and 125 (black)

To better access the error decay of both methods, the algorithms are run
again with different choices of parameters, such that more intermediate models
are computed. The results are shown in Fig. 7.6. In particular, the interpolatory
decomposition appends at most six basis vectors in each greedy iteration and the
POD appends singular vectors corresponding to 80% of the sum of the singular
vectors. With this choice of tuning options for the POD-greedy and ID-greedy,
the greedy chooses the same parameter vector multiple times. This results in more
intermediate models but also creates computational overhead.
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Fig. 7.5 Comparison of SVD (red) and ID (blue) generated models. Shown is the maximum
relative error (mean in time) in the electric field over the sampled parameter domain

Table 7.1 Comparison of computation times of full order and reduced order models

Model size 9680 123 79 21 9

Time 43:5 s 1:24 s 0:67 s 0:12 s 0:07 s

The full order model is of size 9680
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Fig. 7.6 Comparison of SVD (red) and ID (blue) generated models with more intermediate
models in contrast to Fig. 7.5. Shown is the maximum relative error (mean in time) in the electric
field over the sampled parameter domain

In this model setup, the dominant offline time is in the computation of residuals
after each basis enrichment step, see Table 7.2. However, with an increasing number
of timesteps, the matrix decompositions will become more expensive. Table 7.3
shows the compute times of the matrix decompositions. It shows that with increasing
number of timesteps, adaptive snapshot selection [15] might become necessary.
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Table 7.2 Comparison of POD-greedy and ID-greedy computation times for different maximum
approximation errors, the number of greedy iterations is shown in brackets

Relative error POD-greedy time (greedy iterations) ID-greedy time (greedy iterations)

1�10�3 203 s (1) 266 s (1)

1�10�5 982 s (3) 717 s (2)

1�10�7 1622 s (4) 2313 s (4)

Table 7.3 Comparison of SVD (POD) and ID computation times for different number of
timesteps

Method 500 timesteps 1500 timesteps 3000 timesteps

SVD 2:9 s 10:9 s 26:6 s

ID 0:9 s 4:4 s 13:2 s

7.5 Conclusion

This is the first application of model reduction to Maxwell’s equations in dispersive
media, to the best of our knowledge. Since the parametric variations mainly
influence propagation velocity and amplitudes, this problem is well suited for
parametric model reduction. In short, if a single trajectory is well resolved, then
this also extends to other parameter locations. A reduced model order of 50 shows
less then 0:1% approximation error from the full order model of size 9680.

A reason for that is that the Debye relaxation does introduce an exponential
damping and does not show trailing waves. A different relaxation under the Lorentz-
Lorenz relation or Drude model [11] might prove more difficult for the model
reduction.
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Chapter 8
Offline Error Bounds for the Reduced Basis
Method

Robert O’Connor and Martin Grepl

Abstract The reduced basis method is a model order reduction technique that is
specifically designed for parameter-dependent systems. Due to an offline-online
computational decomposition, the method is particularly suitable for the many-
query or real-time contexts. Furthermore, it provides rigorous and efficiently
evaluable a posteriori error bounds, which are used offline in the greedy algorithm
to construct the reduced basis spaces and may be used online to certify the accuracy
of the reduced basis approximation. Unfortunately, in real-time applications a
posteriori error bounds are of limited use. First, if the reduced basis approximation
is not accurate enough, it is generally impossible to go back to the offline stage and
refine the reduced model; and second, the greedy algorithm guarantees a desired
accuracy only over the finite parameter training set and not over all points in
the admissible parameter domain. Here, we propose an extension or “add-on” to
the standard greedy algorithm that allows us to evaluate bounds over the entire
domain, given information for only a finite number of points. Our approach employs
sensitivity information at a finite number of points to bound the error and may thus
be used to guarantee a certain error tolerance over the entire parameter domain
during the offline stage. We focus on an elliptic problem and provide numerical
results for a thermal block model problem to validate our approach.

8.1 Introduction

The reduced basis (RB) method is a model order reduction technique that allows
efficient and reliable reduced order approximations for a large class of parametrized
partial differential equations (PDEs), see e.g. [3, 4, 8, 10, 13, 14] or the review
article [12] and the references therein. The reduced basis approximation is build
on a so-called “truth” approximation of the PDE, i.e., a usually high-dimensional
discretization of the PDE using a classical method such as finite elements or finite
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differences, and the errors in the reduced basis approximation are measured with
respect to the truth solution.

The efficiency of the reduced basis method hinges upon an offline-online compu-
tational decomposition: In the offline stage the reduced basis spaces are constructed
and several necessary precomputations (e.g. projections) are performed. This step
requires several solutions of the truth approximation and is thus computationally
expensive. In the online stage, given any new parameter value � in the admissible
parameter domain D , the reduced basis approximation and associated a posteriori
error bound can be computed very efficiently. The computational complexity
depends only on the dimension of the reduced model and not on the dimensionality
of the high-dimensional truth space. Due to the offline-online decomposition, the
reduced basis method is considered to be beneficial in two scenarios [11, 12]: the
many query context, where the offline cost is amortized due to a large number of
online solves, and the real-time context, where one simply requires a fast online
evaluation.

A crucial ingredient for constructing the reduced basis spaces during the offline
stage is the greedy algorithm which was originally proposed in [14]. The greedy
algorithm iteratively constructs the reduced space by searching for the largest a
posteriori error bound over a finite dimensional parameter train set � � D . Once
the parameter corresponding to the largest error bound is found, the associated full-
order solution is computed, the reduced basis is enriched with this solution, and the
necessary quantities for the approximation and error estimation are updated. The
process continues until the error bound is sufficiently small, i.e. satisfies a desired
error tolerance 	tol.

Unfortunately, the desired error tolerance cannot be guaranteed for all parameters
in D , but only for all parameters in � . There are usually two arguments to resolve
this issue: First, one usually requires the train set � to be chosen “sufficiently”
fine, so that a guaranteed certification of � in combination with the smoothness
of the solution in parameter space implies a sufficiently accurate reduced basis
approximation for all � 2 D . Second, since the a posteriori error bounds can be
efficiently evaluated even in the online stage, one argues that the reduced basis can
always be enriched afterwards if a parameter, encountered during the online stage,
results in a reduced basis approximation which does not meet the required error
tolerance. However, whereas the first argument is heuristic, the second argument—
although feasible in the many query context—is not a viable option in the real-time
context.

It is this lack of guaranteed offline certification in combination with the real-time
context which motivated the development in this paper. Our goal is to develop an
approach which allows us to rigorously guarantee a certain accuracy of the reduced
basis approximation over the entire parameter domain D , and not just over the
train set � . Our method can be considered an “add-on” to the standard greedy
algorithm: in addition to the reduced basis approximation and associated a posteriori
error bounds we also evaluate the sensitivity information and their error bounds
on a finite train set. Given these quantities, we can then bound the error at any
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parameter value in the domain and thus bound the accuracy of the reduced basis
approximation over D—we use the term “offline bound” for this approach. In that
way reduced basis models can be guaranteed to satisfy error tolerances for real-
time applications. Obviously, our approach incurs an additional offline cost (see
Sect. 8.4) and is thus not useful for applications where one can go back to the offline
stage at will and refine the reduced basis approximation at any time. However, if
an offline-guaranteed accuracy is essential for the application, the added offline cost
may be the only choice and thus acceptable. We note that our results may also be
interesting in many-query contexts because they allow us to perform error bounding
in the offline stage, reducing the workload in the online stage.

8.2 Problem Statement

For our work it will suffice to directly consider the following truth approximation,
i.e., a high-dimensional discretization of an elliptic PDE or just a finite-dimensional
system: Given � 2 D , find u.�/ 2 X such that

a.u.�/; vI�/ D f .vI�/; 8v 2 X: (8.1)

Here, D 2 R
p is a prescribed compact parameter set in which our parameter

� D .�1; : : : ; �P/ resides and X is a suitable (finite-dimensional) Hilbert space with
associated inner product .�; �/X and induced norm k � kX D p

.�; �/X. We shall assume
that the parameter-dependent bilinear form a.�; �I�/ W X � X ! R is continuous,

0 < �.�/ 
 sup
v2X

sup
w2X

a.v;wI�/
kvkXkwkX � �0 < 1; 8� 2 D ; (8.2)

and coercive,

˛.�/ 
 inf
v2X

a.v; vI�/
kvk2X

� ˛0 > 0; 8� 2 D ; (8.3)

and that f .�I�/ W X ! R is a parameter-dependent continuous linear functional
for all � 2 D . We shall also assume that (8.1) approximates the real (infinite-
dimensional) system sufficiently well for all parameters � 2 D .

Our assumptions that a.�; �I�/ be coercive could be relaxed to allow a larger class
of operators. The more general class of problems can be handled using the concept
of inf-sup stability. For such problems reduced basis methods are well established
[14] and our results can easily be adapted.
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In addition to the parameter-independent X-norm we also recall the parameter-
dependent energy inner product and induced norm jjjvjjj� 
 p

a.v; vI�/. Note that
the X-inner product is usually chosen to be equal to the energy inner product for
some fixed parameter value N�. Generally, sharper error bounds are achieved using
the energy-norm. Although we present numerical results for the energy-norm in
Sect. 8.6, we will work exclusively with the X-norm in the following derivation to
simplify the notation.

We further assume that a and f satisfy the following affine decompositions

a.w; vI�/ D
QaX
qD1

�q
a.�/a

q.w; v/; f .vI�/ D
QfX
qD1

�
q
f .�/f

q.v/; (8.4)

where the bilinear forms aq.�; �/ W X � X ! R and linear forms f q.�/ W X ! R are
independent of the parameters, and the parameter dependent functions�q� .�/ W D !
R are continuous and are assumed to have derivatives up to a certain order. We also
introduce the continuity constants of the parameter independent bilinear and linear
forms as

�a;q 
 sup
v2X

sup
w2X

aq.v;w/

kvkXkwkX and �f ;q 
 sup
v2X

f q.v/

kvkX : (8.5)

8.2.1 Sensitivity Derivatives

In order to understand how solutions of (8.1) behave in the neighborhood of a given
parameter value � we consider sensitivity derivatives. Given a parameter � 2 D
and associated solution u.�/ of (8.1), the directional derivative r�u.�/ 2 X in the
direction � 2 R

p is given as the solution to

a.r�u.�/; vI�/ D
QfX
qD1

h
r��

q
f .�/

i
f q.v/ �

QaX
qD1

	r��
q
a.�/



aq.u.�/; v/; 8v 2 X:

(8.6)
Often, we will need to solve for u.�/ and several of its sensitivity derivatives. In

that case we can take advantage of the fact that both (8.1) and (8.6) have the same
�-independent operator on the left-hand side.



8 Offline Error Bounds for the Reduced Basis Method 125

8.3 The Reduced Basis Method

8.3.1 Approximation

The reduced basis method involves the Galerkin projection of the truth system onto a
much lower-dimensional subspace XN of the truth space X. The space XN is spanned
by solutions of (8.1), i.e., XN D spanfu.�n/; 1 � n � Ng, where the parameter
values �n are selected by the greedy algorithm [14].

The reduced basis approximation of (8.1) is thus: Given � 2 D , uN.�/ 2 XN

satisfies

a.uN.�/; vI�/ D f .v/; 8v 2 XN : (8.7)

The definition of the sensitivity derivatives r�uN is analogous to (8.6) and thus
omitted. We also note that—given the assumptions above—the reduced basis
approximation uN.�/ can be efficiently computed using the standard offline-online
decomposition.

8.3.2 A Posteriori Error Estimation

In the sequel we require the usual a posteriori bounds for the error e.�/ 

u.�/�uN.�/ and for its sensitivity derivatives. To this end, we introduce the residual
associated with (8.7) and given by

r.vI�/ D f .vI�/ � a.uN.�/; vI�/; 8v 2 X; (8.8)

as well as the residual associated with the sensitivity equation and given by

r�.vI�/ 

QfX
qD1

r��
q
f .�/f

q.v/ � a
�r�uN.�/; vI��

�
QaX
qD1

r��
q
a.�/a

q.uN.�/; v/; 8v 2 X: (8.9)

We also require a lower bound for the coercivity constant, ˛LB.�/, satisfying 0 <
˛0 � ˛LB.�/ � ˛.�/; 8� 2 D ; the calculation of such lower bounds is discussed
in Sect. 8.5.

We next recall the well known a posteriori bounds for the error in the reduced
basis approximation and its sensitivity derivative; see e.g. [12] and [9] for the proofs.
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Theorem 1 The error in the reduced basis approximation, e.�/ D u.�/ � uN.�/,
and its sensitivity derivative, r�e.�/ D r�u.�/� r�uN.�/, are bounded by

ke.�/kX � �.�/ 
 kr.�I�/kX0

˛LB.�/
: (8.10)

and

kr�e.�/kX � ��.�/ 
 1

˛LB.�/

0
@kr�.�I�/kX0 C�.�/

QaX
qD1

jr��
q
a.�/j�a;q

1
A :
(8.11)

The bounds given in (8.10) and (8.11)—similar to the approximations u.�/ and
r�uN.�/—can all be computed very cheaply in the online stage; see [12] for details.

8.4 Offline Error Bounds

Our goal in this section is to derive error bounds which can be evaluated efficiently
at any parameter value ! in a specific domain while only requiring the solution of
the RB model at one fixed parameter value (i.e. anchor point) �. Obviously, such
bounds will be increasingly pessimistic as we deviate from the anchor point � and
will thus only be useful in a small neighborhood of �. However, such bounds can
be evaluated offline and thus serve as an “add-on” to the greedy procedure in order
to guarantee a “worst case” accuracy over the whole parameter domain.

8.4.1 Bounding the Difference Between Solutions

As a first ingredient we require a bound for the differences between solutions to (8.1)
at two parameter values � and !. We note that the analogous bounds stated here for
the truth solutions will also hold for solutions to the reduced basis model.

Theorem 2 The difference between two solutions, d.�; !/ 
 u.�/�u.!/, satisfies

kd.�; !/kX � 1

˛LB.!/

 
kukX

QaX
qD1

�a;qj�q
a.�/ ��q

a.!/j

C
QfX
qD1

�f ;qj�q
f .�/ ��

q
f .!/j

!
: (8.12)
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Proof We first take the difference of two solutions of (8.1) for � and !, add
˙PQa

qD1 �q
a.!/a

q.u.�/; v/, and invoke (8.4) to arrive at

a.d.�; !/; vI!/ D
QfX
qD1

�
�

q
f .�/ ��q

f .!/

�
f q.v/

�
QaX
qD1

�
�q

a.�/ ��q
a.!/

�
aq.u.�/; v/: (8.13)

Following the normal procedure we choose v D d.�; !/ which allows us to bound
the left-hand side using (8.3) and the coercivity lower bound. On the right-hand side
we make use of the triangle inequality and invoke (8.5) to obtain

˛LB.!/kd.�; !/k2X � kd.�; !/kX
 QfX

qD1
�f ;q

ˇ̌
�

q
f .�/ ��

q
f .!/

ˇ̌

C ku.�/kX
QaX
qD1

�a;q
ˇ̌
�q

a.�/ ��q
a.!/

ˇ̌!
: (8.14)

Cancelling and rearranging terms gives the desired result. ut
Similarly, we can bound the difference between the sensitivity derivatives at

various parameter values as stated in the following theorem. The proof is similar
to the proof of Theorem 2 and thus omitted.

Theorem 3 The difference between r�u.�/ and r�u.!/ satisfies the following
bounding property

kr�d.�; !/kX �
QfX
qD1

�f ;q

˛LB.!/
jr��

q
f .�/ � r��

q
f .!/j

C
QaX
qD1

�a;q

˛LB.!/

 
j�q

a.�/ ��q
a.!/jkr�u.�/kX C jr��

q
a.!/jkd.�; !/kX

C jr��
q
a.�/ � r��

q
a.!/jku.�/kX

!
: (8.15)

We make two remarks. First, we again note that Theorems 2 and 3 also hold for
the reduced basis system when all quantities are changed to reduced basis quantities.
Second, in the sequel we also require the bounds (8.12) and (8.15). Unfortunately,
these cannot be computed online-efficiently since they involve the truth quantities
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ku.�/kX and kr�u.�/kX . However, we can invoke the triangle inequality to bound
e.g. ku.�/kX � kuN.�/kX C �.�/ and similarly for kr�u.�/kX . We thus obtain
efficiently evaluable upper bounds for (8.12) and (8.15).

8.4.2 An Initial Offline Bound

We first consider error bounds that do not require the calculation of sensitivity
derivatives. To this end we assume that the reduced basis approximation (8.7) has
been solved and that the bound (8.10) has been evaluated for the parameter value
� 2 D . We would then like to bound e.!/ D u.!/ � uN.!/ for all ! 2 D . This
bound, as should be expected, will be useful only if ! is sufficiently close to �.

Theorem 4 Given a reduced basis solution uN.�/ and associated error bound
�.�/ at a specific parameter value �, the reduced basis error at any parameter
value ! 2 D is bounded by

ke.!/kX � �0.�; !/ 
 �.�/C 2

˛LB.!/

0
@

QfX
qD1

�f ;q
ˇ̌
�

q
f .�/ ��q

f .!/
ˇ̌
1
A

C 2kuN.�/kX C�.�/

˛LB.!/

0
@ QaX

qD1
�a;q

ˇ̌
�q

a.�/ ��q
a.!/

ˇ̌
1
A : (8.16)

Proof We begin by writing e.!/ in terms of e.�/, i.e.

e.!/ D e.�/ � d.�; !/C dN.�; !/: (8.17)

We then take the X-norm of both sides and apply the triangle inequality to the right-
hand side. Invoking (8.10) and (8.12) gives the desired result. ut

We again note that we only require the reduced basis solution and the associated
a posteriori error bound at the parameter value � to evaluate the a posteriori error
bound proposed in (8.16). Furthermore, the bound reduces to the standard bound
�.�/ for ! D �, but may increase rapidly as ! deviates from �. To alleviate this
issue, we propose a bound in the next section that makes use of first-order sensitivity
derivatives.

8.4.3 Bounds Based on First-Order Sensitivity Derivatives

We first note that we can bound the error in the sensitivity derivative r�e at the
parameter value ! as follows.
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Theorem 5 The error in the reduced basis approximation of the sensitivity deriva-
tive at any parameter value ! satisfies

kr�e.!/kX � ��.�/C kr�d.�; !/kX C kr�dN.�; !/kX : (8.18)

Proof The result directly follows from r�e.!/ D r�u.!/�r�uN.!/ by adding and
subtracting ˙r�u.�/ and ˙r�uN.�/, rearranging terms, and invoking the triangle
inequality. ut

Given the previously derived bounds for the sensitivity derivatives, we can now
introduce an improved bound in the following theorem.

Theorem 6 Making use of sensitivity derivatives we get the following error bound
for the parameter value ! D �C � 2 D:

ke.!/kX � �1.�; !/ 
 �.�/C��.�/C 2

˛LB

QfX
qD1

�f ;qI
q
f ;r

C
QaX
qD1

�a;q

˛LB

 �
2kuN.�/kX C�.�/

�0@Iqa;r C
QaX
NqD1

�a;NqIq;Nqa;a

˛LB

1
A

C
�
2kr�uN.�/kX C��.�/

�
Iqa C 2

˛LB

QfX
NqD1

�f ;NqIq;Nqa;f

!
; (8.19)

where the coercivity lower bound ˛LB satisfies ˛LB � min0		1 ˛.�C �/ and the
integrals are given by

Iqf ;r 

Z 1

0

ˇ̌
ˇr��

q
f .�/ � r��

q
f .�C �/

ˇ̌
ˇ d; (8.20a)

Iqa;r 

Z 1

0

ˇ̌r��
q
a.�/ � r��

q
a.�C �/

ˇ̌
d; (8.20b)

Iqa 

Z 1

0

ˇ̌
�q

a.�/ ��q
a.�C �/

ˇ̌
d; (8.20c)

Iq;Nqa;f 

Z 1

0

ˇ̌r��
q
a.�C �/

ˇ̌ ˇ̌ˇ� Nqf .�/ �� Nqf .�C �/
ˇ̌
ˇ d; (8.20d)

Iq;Nqa;a 

Z 1

0

ˇ̌r��
q
a.�C �/

ˇ̌ ˇ̌
� Nqa.�/ �� Nqa.�C �/

ˇ̌
d: (8.20e)
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Proof We begin with the fundamental theorem of calculus

e.�C �/ D e.�/C
Z 1

0

r�e.�C �/ d: (8.21)

We then take the X-norm of both sides and apply the triangle inequality on the right-
hand side. Invoking Theorems 1, 3, and 5 leads to the desired result. ut

In the majority of cases the functions �q
a.�/ and �q

f .�/ are analytical functions,
and the integrals in (8.20) can be evaluated exactly. Nevertheless, we only really
need to bound the integrals uniformly over certain neighborhoods [2].

The bounds given in Theorems 4 and 6 allow us to bound the error anywhere
in the neighborhood of a parameter value � using only a finite number of reduced
basis evaluations, i.e., the reduced basis approximation and the sensitivity derivative
as well as their a posteriori error bounds. In practice, we first introduce a tessellation
of the parameter domain D with a finite set of non-overlapping patches. We then
perform the reduced basis calculations at one point (e.g. the center) in each patch
and evaluate the offline error bounds (8.16) or (8.19) over the rest of each patch.
Figure 8.1 shows a sketch of the typical behaviour of the offline bounds for a
one-dimensional parameter domain. For a given fixed training set of size ntrain, the
additional cost to evaluate the first-order bounds during the offline stage is at most P
times higher than the “classical” greedy search for a P dimensional parameter (only
considering the greedy search and not the computation of the basis functions). This
can be seen from Theorem 6, i.e., in addition to evaluating the RB approximation
and error bound at all ntrain parameter values, we also need to evaluate the sensitivity
derivative and the respective error bound at these parameter values.

We note, however, that the local shape of the offline bounds as shown in Fig. 8.1
might not be of interest. Instead, we are usually interested in the global shape and
in the local worst case values which occur at the boundaries of the patches, i.e. the

Fig. 8.1 Results using the
first-order offline bounds
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peaks of the blue dashed line in Fig. 8.1. In the numerical results presented below
we therefore only plot the upper bound obtained by connecting these peaks.

There is just one ingredient that is still missing: calculating lower bounds for the
coercivity constants.

8.5 Computing Coercivity Constants

In reduced basis modeling stability constants play a vital role, but finding efficient
methods to produce the lower bounds that we need is notoriously difficult. For
simple problems tricks may exist to evaluate such lower bounds exactly [6], but
for the majority of problems more complicated methods are needed. The most used
method seems to be the successive constraints method (SCM). It is a powerful tool
for calculating lower bounds for coercivity constants at a large number of parameter
values while incurring minimal cost [1, 5].

Let us introduce the set

Y 
 fy 2 R
Qjyq D aq.v; v/=kvk2X ;81 � 1 � Q and anyv 2 Xg: (8.22)

The coercivity constant can be written as the solution to an optimization problem
over Y .

˛.�/ D inf
y2Y

QX
qD1

�q
a.�/yq (8.23)

Working with this formulation of the coercivity constant is often easier than working
with (8.3). The main difficulty is that the set Y is only defined implicitly and can
be very complicated. The idea of SCM is to relax the optimization problem by
replacing Y with a larger set that is defined by a finite set of linear constraints.
Lower bounds for the coercivity constant are then given implicitly as the solution to
a linear programming problem.

Unfortunately, SCM will not suffice for our purposes. We will need explicit
bounds on the coercivity constant over regions of the parameter domain. It was
shown how such bounds can be obtained in a recent paper [7]. That paper makes use
of SCM and the fact that ˛.�/ is a concave function of the variables �q

a.�/. The
concavity can be shown from (8.23) and tells us that lower bounds can be derived
using linear interpolation.
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8.6 Numerical Results

We consider the standard thermal block problem [12] to test our approach. The
spatial domain, given by ˝ D .0; 1/2 with boundary � , is divided into four equal
squares denoted by ˝i; i D 1; : : : ; 4. The reference conductivity in ˝0 is set to
unity, we denote the normalized conductivities in the other subdomains ˝i by �i.
The conductivities will serve as our parameters and vary in the range Œ0:5; 5�. We
consider two problem settings: a one parameter and a three parameter problem;
the domains of our test problems are shown in Fig. 8.2. The temperature satisfies
the Laplace equation in ˝ with continuity of temperature and heat flux across
subdomain interfaces. We assume homogeneous Dirichlet boundary conditions on
the bottom of the domain, homogeneous Neumann on the left and right side, and
a unit heat flux on the top boundary of the domain. The weak formulation of the
problem is thus given by (8.1), with the bilinear and linear forms satisfying the
assumptions stated in Sect. 8.2. The derivation is standard and thus omitted. Finally,
we introduce a linear truth finite element subspace of dimension N D 41; 820.
We also define the X-norm to be equal to the energy-norm with �i D 1 for all
i 2 f1; : : : ; 4g.

For this example problem our bounds can be greatly simplified. The most obvious
simplification is that all terms involving �q

f .�/ can be eliminated due to the fact
that f .�I�/ is parameter independent. We also not that the �q

a.�/ are affine and that
their derivatives are constant. As a result the integrals given in (8.20a), (8.20b),
and (8.20d) are all equal to zero and the evaluation of (8.20c) and (8.20e) is trivial.

For our first example problem we set �0 D �1 D �3 D 1 and thus have one
parameter � D �2 2 Œ0:5; 5�. We build a four-dimensional reduced basis model
with XN spanned by solutions u.�/ at � 2 f0:6; 1:35; 2:75; 4g. The offline bounds are
calculated by dividing the parameter domain into ` uniform intervals in the log scale,
computing the reduced basis quantities at the center of each interval, and computing
offline bounds for the rest of each interval. Figure 8.3 shows the a posteriori error
bounds and the zeroth-order offline bounds for ` 2 f320; 640; 1280g. Here the
detailed offline error bounds are not plotted but rather curves that interpolate the
peaks of those bounds. We note that the actual offline bounds lie between the plotted
curves and the a posteriori bounds and vary very quickly between ` valleys and `C1

Fig. 8.2 2� 2 thermal block
model problem. (a) Thermal
block with 1 parameter. (b)
Thermal block with 3
parameter
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Fig. 8.3 Results using the
zero-order offline bounds

Fig. 8.4 Results using the
first-order offline bounds

peaks. For all practical applications the quick variations are unimportant and only
the peaks are of interest, since they represent the worst case upper bound.

We observe that in comparison with the a posteriori bounds the zeroth-order
bounds are very pessimistic. We can achieve much better results, i.e. tighter upper
bounds, by using the first-order bounds as shown in Fig. 8.4. The first-order bounds
are much smaller, although reduced basis computations were performed at fewer
points in the parameter domain. Figure 8.1 shows the detailed behavior of the offline
bounds with ` D 320 over a small part of the parameter domain.

Depending on the tolerance 	tol that we would like to satisfy, a uniform log scale
distribution of the ` points will not be optimal. In practice, it may be more effective
to add points adaptively wherever the bounds need to be improved.

We next consider the three parameter problem setting with the admissible param-
eter domain D D Œ0:5; �B�

3, where �B is the maximal admissible parameter value.
This time we divide each interval Œ0:5; �B� into ` log-scale uniform subintervals and
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Fig. 8.5 Offline bounds for
the 3D problem with various
parameter domains

take the tensor product to get `3 patches in D . We then compute the offline bounds
over these patches. For this problem we only use the first-order offline bounds
because using the zeroth-order bounds would be too expensive. Figure 8.5 shows
the maximum values of the offline error bounds over the entire domain for various
values of ` and three different values of �B. We observe that a larger parameter
range of course requires more anchor points to guarantee a certain desired accuracy,
but also that the accuracy improves with the number of anchor points.

8.7 Conclusions and Extensions

The main result of this work is the derivation of error bounds which can be computed
offline and used to guarantee a certain desired error tolerance over the whole
parameter domain. This allows us to shift the cost of evaluating error bounds to
the offline stage thus reducing the online computational cost, but more importantly it
allows us to achieve a much higher level of confidence in our models. It enables us to
apply reduced basis methods to real-time applications while ensuring the accuracy
of the results.

It should be noted that our methods produce pessimistic bounds and can be quite
costly. Furthermore, since the bounds are based on sensitivity information—similar
to the approach presented in [2]—the approach is restricted to a modest number of
parameters. In general the heuristic method may be more practical unless it is really
necessary to be certain that desired tolerances are met.

We have derived zero and first-order offline bounds. We expect that using higher-
order bounds would produce better results and reduce the computational cost.
It may also be interesting to tailor the reduced basis space to produce accurate
approximations of not only the solution but also of its derivatives. Furthermore,
the proposed bounds may also be used to adaptively refine the train set, i.e. we
start with a coarse train set and then adaptively refine the set parameter regions
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where the offline bounds are largest (over the tessellations/patches). This idea will
be investigated in future research.

In practical applications it will usually be more useful to deal with outputs
rather than the full state u.�/. The reduced basis theory for such problems is well
established [12], and the results that we present here can easily be adapted.

Many of the ideas and bounds given in this paper could also be used to optimize
reduced basis models. One could for example attempt to optimize the train samples
that are used in greedy algorithms. If using offline bounds is too costly, the theory
can still be useful to derive better heuristics for dealing with error tolerances.

One example of real-time problems where offline bounds could be used is adap-
tive parameter estimation. In such contexts the system’s parameters are unknown
meaning that we cannot use a posteriori bounds. We can, however, use offline
bounds.
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Chapter 9
ArbiLoMod: Local Solution Spaces by Random
Training in Electrodynamics

Andreas Buhr, Christian Engwer, Mario Ohlberger, and Stephan Rave

Abstract The simulation method ArbiLoMod (Buhr et al., SIAM J. Sci. Comput.
2017, accepted) has the goal of providing users of Finite Element based simulation
software with quick re-simulation after localized changes to the model under
consideration. It generates a Reduced Order Model (ROM) for the full model
without ever solving the full model. To this end, a localized variant of the Reduced
Basis method is employed, solving only small localized problems in the generation
of the reduced basis. The key to quick re-simulation lies in recycling most of
the localized basis vectors after a localized model change. In this publication,
ArbiLoMod’s local training algorithm is analyzed numerically for the non-coercive
problem of time harmonic Maxwell’s equations in 2D, formulated in H.curl/.

9.1 Introduction

Simulation software based on the Finite Element Method is an essential ingredient
of many engineering workflows. In their pursue of design goals, engineers often
simulate structures several times, applying small changes after each simulation.
This results in large similarities between subsequent simulation runs. These simi-
larities are usually not considered by simulation software. The simulation method
ArbiLoMod was designed to change that and accelerate the subsequent simulation
of geometries which only differ in small details. A motivating example is the design
of mainboards for PCs. Improvements in the signal integrity properties of e.g. DDR
memory channels is often obtained by localized changes, as depicted in Fig. 9.1.

ArbiLoMod was also designed with the available computing power in mind:
Today, cloud environments are just a few clicks away and everyone can access
hundreds of cores easily. However, the network connection to these cloud
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Fig. 9.1 Printed circuit board subject to local modification of conductive tracks

environments is relatively slow in comparison to the available computing power, so
a method which should perform well under these circumstances must be designed
to be communication avoiding.

At the core of ArbiLoMod lies a localized variant of the Reduced Basis Method.
The Reduced Basis Method is a well established approach to create reduced order
models (ROMs) and its application to the Maxwell’s equations has been extensively
investigated by many groups (see e.g. [2, 5, 9, 10, 20]). On the other hand, there
are lots of methods with localized basis generation (e.g. [7, 11–13, 18, 19, 21]).
However to the authors’ knowledge, only little was published on the combination
of both. In [4], the Reduced Basis Element Method is applied to time harmonic
Maxwell’s equations.

This publication evaluates ArbiLoMod’s training numerically for the time har-
monic Maxwell’s equation. The remainder of this article is structured as follows:
In the following Sect. 9.2, the problem setting is given. Section 9.3 outlines
ArbiLoMod and highlights the specialties when considering inf-sup stable problems
in H.curl/. Afterwards, we demonstrate ArbiLoMod’s performance on a numerical
example in Sect. 9.4. Finally, we conclude in Sect. 9.5.

9.2 Problem Setting

We consider Maxwell’s equations [14] on the polygonal domain�. The material is
assumed to be linear and isotropic, i.e. the electric permittivity " and the magnetic
permeability � are scalars. On the boundary @� D �R [ �D we impose Dirichlet
(E � n D 0 on �D) and Robin (H � n D �.E � n/ � n on �R, [16, eq. (1.18)])
boundary conditions with the surface impedance parameter �. n denotes the unit
outer normal of �. The excitation is given by a current density Oj.

For the time harmonic case, this results in the following weak formulation:
find u 2 V WD H.curl/ so that

a.u; vI!/ D f .vI!/ 8v 2 V ; (9.1)

a.u; vI!/ WD
Z
�

1

�
.r � u/ � .r � v/ � "!2.u � v/dv C i!�

Z
�R

.u � n/ � .v � n/dS;

f .vI!/ WD �i!
Z
�
. Oj � v/
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where ! is the angular frequency. We see ! as a parametrization to this problem.
We solve in a parameter domain sampled by a finite training set „.

We use the inner product and energy norm given by:

.v; u/V WD
Z
�

1

�
.r � u/ � .r � v/C "!2max.u � v/dv C !max�

Z
�R

.u � n/ � .v � n/dS;

kukV WD p
.u; u/V : (9.2)

9.2.1 Discretization

We assume there is a non overlapping domain decomposition with subdomains�i,
�i \�j D ; for i ¤ j. For simplicity, we assume it to be rectangular. The domain
decomposition should cover the problem domain �  S

i�i but the subdomains
need not resolve the domain. This is important as we want to increase or decrease
the size of� between simulation runs without changing the domain decomposition.
For example, in a printed circuit board (PCB), the metal traces are often simulated
as being outside of the domain. Thus, a change of the traces leads to a change of the
calculation domain.

Further we assume there is a triangulation of � which resolves the domain
decomposition. We denote by Vh the discrete space spanned by lowest order Nedelec
ansatz functions [17] on this triangulation.

9.3 ArbiLoMod for Maxwell’s Equations

The main ingredients of ArbiLoMod are (1) a localizing space decomposition,
(2) localized trainings for reduced local subspace generation, (3) a localized a-
posteriori error estimator and (4) a localized enrichment for basis improvement.
In this publication, we focus on the first two steps, which are described in the
following.

9.3.1 Space Decomposition

Localization is performed in ArbiLoMod using a direct decomposition of the ansatz
space into localized subspaces. In the 2D case with Nedelec ansatz functions, there
are only volume spaces Vfig associated with the subdomains�i, and interface spaces
Vfi;jg associated with the interfaces between�i and�j. The interface spaces are only
associated with an interface, they are subspaces of the global function space and
have support on two domains. They are not trace spaces. In higher space dimensions
and/or with different ansatz functions, there may be also spaces associated with
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edges and nodes of the domain decomposition [1].

Vh D
 M

i

Vfig

!M0
@M

i;j

Vfi;jg

1
A (9.3)

The spaces Vfig are simply defined as the span of all ansatz functions having support
only on �i. With B denoting the set of all FE basis functions, we define:

Vfig WD span
˚
 2 B

ˇ̌
supp. /  �i

�
: (9.4)

The interface spaces Vfi;jg are not simply the span of FE ansatz functions. Instead,
they are defined as the span of all ansatz functions on the interface plus their
extension to the adjacent subdomains. The extension is done by solving for a fixed
frequency !0 with Dirichlet zero boundary conditions. The formal definition of the
interface spaces is in two steps: First, we define Ufi;jg as the space spanned by all
ansatz function having support on both �i and�j:

Ufi;jg WD span
˚
 2 B

ˇ̌
supp. / \�i ¤ ;; supp. / \�j ¤ ;� : (9.5)

Then we define the extension operator:

Extend W Ufi;jg ! Vfig ˚ Ufi;jg ˚ Vf jg; (9.6)

' 7! ' C  

where  2 Vfig ˚ Vf jg solves

a.' C  ; �I!0/ D 0 8� 2 Vfig ˚ Vf jg:

We then can define the interface spaces as

Vfi;jg WD ˚
Extend.'/

ˇ̌
' 2 Ufi;jg

�
: (9.7)

Equation (9.3) holds for this decomposition, i.e. there is a unique decomposition
of every element of Vh into the localized subspaces. We define projection operators
Pfig W Vh ! Vfig and Pfi;jg W Vh ! Vfi;jg by the relation

' D
X
i

Pfig.'/C
X
i;j

Pfi;jg.'/ 8' 2 Vh: (9.8)

9.3.2 Training

Having defined the localized spaces, we create reduced localized subspaces eVfig 
Vfig and eVfi;jg  Vfi;jg by a localized training procedure. The training is inspired by
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the “Empirical Port Reduction” introduced by Eftang et al. [8]. Its main four steps
are:

1. solve the problem (9.1) on a small training domain around the space in question
with zero boundary values for all parameters in the training set „,

2. solve the homogeneous equation repeatedly on a small training domain around
the space in question with random boundary values for all parameters in „,

3. apply the space decomposition to all computed local solutions to obtain the part
belonging to the space in question and

4. use a greedy procedure to create a space approximating this set.

For further details, we refer to [1]. The small training domain for an interface space
consists of the six subdomains around that interface. The small training domain for a
volume space consists of nine subdomains: the subdomain in question and the eight
subdomains surrounding it.

While the “Empirical Port Reduction” in [8] generates an interface space and
requires ports which do not intersect, this training can be used for both interface and
volume spaces. It can handle touching ports and can thus be applied to a standard
domain decomposition.

9.3.3 Reduced Model

In these first experiments the reduced global problem is obtained by a simple
Galerkin projection onto the direct sum of all reduced local subspaces. The global
solution space is

eVh WD
 M

i

eVfig
!M0

@M
i;j

eVfi;jg
1
A : (9.9)

And the reduced problem reads: findeu 2 eVh such that

a.eu; vI�/ D f .v/ 8v 2 eVh : (9.10)

9.4 Numerical Example

The numerical experiments are performed with pyMOR [15]. The source code
used to reproduce the results in this publication is provided alongside with this
publication and can be downloaded at http://www.arbilomod.org/morepas2015.tgz.
See the README file therein for installation instructions.
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Fig. 9.2 Geometries simulated. Black area is not part of the domain and treated as Dirichlet zero
boundary. Note the change is topology changing

9.4.1 Geometry Simulated

We simulate the unit square .0; 1/� .0; 1/ with robin boundary conditions at �R WD
0� .0; 1/[ 1� .0; 1/ and Dirichlet zero boundary conditions at �D WD .0; 1/� 0[
.0; 1/ � 1. The surface impedance parameter � is chosen as the impedance of free
space, � D 1=376:73Ohm. We introduce some structure by inserting perfect electric
conductors (PEC) into the domain, see Fig. 9.2. The PEC is modeled as Dirichlet
zero boundary condition. Note that it is slightly asymmetric intentionally, to produce
more interesting behavior. The mesh does not resolve the geometry. Rather, we use
a structured mesh and remove all degrees of freedom which are associated with an
edge whose center is inside of the PEC structure. The structured mesh consists of
100 times 100 squares, each of which is divided into four triangles. With each edge,
one degree of freedom is associated, which results in 60,200 degrees of freedom,
some of which are “disabled” because they are in PEC or on a Dirichlet boundary.
The parameter domain is the range from 10 MHz to 1 GHz. For the training set „,
we use 100 equidistant points in this range, including the endpoints. To simulate an
“arbitrary local modification”, the part of the PEC within .0:01; 0:2/ � .0:58; 0:80/
is removed and the simulation domain is enlarged.

The excitation is a current

j.x; y/ WD exp

�
� .x � 0:1/2 C .y � 0:5/2

1:25 � 10�3
�

� ey (9.11)

To get an impression of the solutions, some example solutions are plotted in
Fig. 9.3.
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Fig. 9.3 Example solutions for f=186 MHz, f=561 MHz and f=1 GHz for the first and second
geometry. Plotted is jRe.E/j. Script: maxwell_create_solutions.py
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Fig. 9.4 inf-sup and continuity constant of bilinear form. Linear and logarithmic. Script:
maxwell_calculate_infsup.py

9.4.2 Global Properties of Example

Before analyzing the behavior of the localized model reduction, we discuss some
properties of the full model. For its stability, its continuity constant � and reduced
inf-sup constants ě are the primary concern. They guarantee existence and unique-
ness of the solution and their quotient enters the best-approximation inequality

ku �euk �
�
1C �

ě
�

inf
v2eVh

ku � vk (9.12)

where u is the solution in Vh. Due to the construction of the norm, the continuity
constant cannot be larger than one, and numerics indicate that it is usually one
(Fig. 9.4). The inf-sup constant approaches zero when the frequency goes to zero.
This is the well known low frequency instability of this formulation. There are
remedies to this problem, but they are not considered here. The order of magnitude
of the inf-sup constant is around 10�2: Due to the Robin boundaries, the problem
is stable. With Dirichlet boundaries only, the inf-sup constant would drop to zero at
several frequencies. There are two drops in the inf-sup constant at ca. 770 MHz and
810 MHz. These correspond to resonances in the structure which arise when half a
wavelength is the width of a channel (�=2 	 1=5).

The most important question for the applicability of any reduced basis method
is: is the system reducible at all, i.e. can the solution manifold be approximated with
a low dimensional solution space? The best possible answer to this question is the
Kolmogorov n-width. We measured the approximation error when approximating
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Fig. 9.5 Error when approximating the solution set for all f 2 „ with an n-dimensional basis
obtained by greedy approximation of this set. This is an upper bound for the Kolmogorov n-width.
Script: maxwell_global_n_width.py
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Fig. 9.6 Left: Domain decomposition used. Right: Maximum error when solving with a localized
basis, generated by global solves. Script maxwell_local_n_width.py

the solution manifold with a basis generated by a greedy algorithm. The approxima-
tion is done by orthogonal projection onto the basis. This error is an upper bound to
the Kolmogorov n-width. Already with a basis size of 38, a relative error of 10�4 can
be achieved, see Fig. 9.5. So this problem is well suited for reduced basis methods.

9.4.3 Properties of Localized Spaces

The next question is: how much do we lose by localization? Using basis vectors
with limited support, one needs a larger total number of basis functions. To quantify
this, we compare the errors with global approximation from the previous section
with the error obtained when solving with a localized basis, using the best localized
basis we can generate. We use a 10 x 10 domain decomposition (see Fig. 9.6 left)
and the space decomposition introduced in Sect. 9.3.1. To construct the best possible
basis, we solve the full problem for all parameters in the training set. For each local
subspace, we apply the corresponding projection operator Pfig / Pfi;jg to all global
solutions and subsequently generate a basis for these local parts of global solutions
using a greedy procedure. The error when solving in the resulting reduced space
is depicted in Fig. 9.6, right. Much more basis vectors are needed, compared to the



9 ArbiLoMod-Training for Electrodynamics 145

0 1,000 2,000
10−9

10−4

101

basis size

m
ax

im
um

re
la

tiv
e

er
ro

r

0 1,000 2,000

10−4

10−2

100

basis size

re
du

ce
d

in
f-

su
p

co
ns

ta
nt 170 MHz

340 MHz
700 MHz
800 MHz
840 MHz
900 MHz

Fig. 9.7 Comparison of maximum error over all frequencies with inf-sup constant of reduced sys-
tem at selected frequencies for geometry 1. Basis generated by global solves. Increased error and
reduced inf-sup constant around basis size of 900. Script: maxwell_infsup_during_reduction.py

global reduced basis approach. However the reduction in comparison to the full
model (60,200 dofs) is still significant and in contrast to standard reduced basis
methods, the reduced system matrix is not dense but block-sparse. For a relative
error of 10�4, 1080 basis vectors are necessary.

In Fig. 9.6 the error is observed to jump occasionally. This is due to the instability
of a Galerkin projection of an inf-sup stable problem. While coercivity is retained
during Galerkin projection, inf-sup stability is not. While the inf-sup constant of
the reduced system is observed to be the same as the inf-sup constant of the full
system most of the time, sometimes it drops. This is depicted in Fig. 9.7. For a
stable reduction, a different test space is necessary. However, the application of the
known approaches such as [3, 6] to the localized setting is not straightforward. The
development of stable test spaces in the localized setting is beyond the scope of this
publication.

9.4.4 Properties of Training

Local basis vectors should be generated using the localized training described in
Sect. 9.3.2 and in [1]. To judge on the quality of these basis vectors, we compare the
error obtained using these basis vectors with the error obtained with local basis
vectors generated by global solves. The local basis vectors generated by global
solves are the reference: These are the best localized basis we can generate. The
results for both geometries are depicted in Fig. 9.8. While the error decreases more
slowly, we still have reasonable basis sizes with training. For a relative error of
10�4, 1280 basis vectors are necessary for geometry 1 and 1380 are necessary for
geometry 2.
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Fig. 9.9 Impact of geometry change: 5 domains contain changes, 14 domain spaces and 20
interface spaces have to be regenerated

9.4.5 Application to Local Geometry Change

If we work with a relative error of 5%, a basis of size 650 is sufficient for the
first geometry and size 675 for the second. After the geometry change, the local
reduced spaces which have no change in their training domain can be reused. Instead
of solving the full system with 60,200 degrees of freedom, the following effort is
necessary per frequency point (see also Fig. 9.9). Because the runtime is dominated
by matrix factorizations, we focus on these.

• 14 factorizations of local problems with 5340 dofs (volume training)
• 20 factorizations of local problems with 3550 dofs (interface training)
• 1 factorization of global reduced problem with 675 dofs (global solve)

The error between the reduced solution and the full solution in this case is 4.3%.
Script to reproduce: experiment_maxwell_geochange.py. The spacial distribution
of basis sizes is depicted in Fig. 9.10.
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geo 2:geo 1:

Fig. 9.10 Basis size distribution. Script: postprocessing_draw_basis_sizes_maxwell_geochange.
py

9.5 Conclusion

ArbiLoMod was applied to the non-coercive problem of 2D Maxwell’s equations in
H.curl/. Its localized training generates a basis of good quality. A reduced model
with little error for the full problem can be generated using only local solves, which
can easily be parallelized. After localized changes to the model, only in the changed
region the localized bases have to be regenerated. All other bases can be reused,
which results in large computational savings compared to a simulation from scratch.
The amount of savings is very dependent of the model and the changes which are
made. A thorough analysis of the computational savings is subject to future work, as
is the adaptation of ArbiLoMod’s localized a-posteriori error estimator and online
enrichment to this problem as well as the instability of the Galerkin projection.
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Chapter 10
Reduced-Order Semi-Implicit Schemes
for Fluid-Structure Interaction Problems

Francesco Ballarin, Gianluigi Rozza, and Yvon Maday

Abstract POD–Galerkin reduced-order models (ROMs) for fluid-structure
interaction problems (incompressible fluid and thin structure) are proposed in
this paper. Both the high-fidelity and reduced-order methods are based on a
Chorin-Temam operator-splitting approach. Two different reduced-order methods
are proposed, which differ on velocity continuity condition, imposed weakly
or strongly, respectively. The resulting ROMs are tested and compared on a
representative haemodynamics test case characterized by wave propagation, in
order to assess the capabilities of the proposed strategies.

10.1 Introduction

Several applications are characterized by multi-physics phenomena, such as the
interaction between an incompressible fluid and a compressible structure. The capa-
bility to perform real-time multi-physics simulations could greatly increase the
applicability of computational methods in applied sciences and engineering. To
reach this goal, reduced-order modelling techniques are applied in this paper.
We refer the interested reader to [1, 6, 9, 19] for some representative previous
approaches to the reduction of fluid-structure interaction problems, arising in
aeroelasticity [1] or haemodynamics [6, 9, 19]. The reduction proposed in the
current work is based on a POD–Galerkin approach. A difference with our previous
work [6], where a reduced-order monolithic approach has been proposed, is
related to the use of a partitioned reduced-order model, based on the semi-implicit
operator-spitting approach originally employed in [11] for the high-fidelity method.
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Extension to other methods (e.g. [4, 16]) is possible and object of forthcoming
work. The formulation of the FSI problem is summarized in Sect. 10.2, and its
high-fidelity discretization is reported in Sect. 10.3. Two reduced-order models
are proposed in Sect. 10.4, and compared by means of a numerical test case in
Sect. 10.5. Conclusions and perspectives are summarized in the final section of
the paper.

10.2 Problem Formulation

In this section the formulation of the fluid-structure interaction (FSI) model problem
is summarized. Let us consider the bidimensional fluid domain˝ D Œ0;L�� Œ0; hf �.
Its boundary is composed of a compliant wall ˙ D Œ0;L� � fhf g (top), fluid inlet
section �in D f0g � Œ0; hf � (left) and fluid outlet section �out D fLg � Œ0; hf � (right),
and a wall �sym D Œ0;L� � f0g (bottom). For the sake of simplicity we assume
low Reynolds numbers for the fluid problem and infinitesimal displacements for the
compliant wall. Thus, in the following, we will consider unsteady Stokes equations
on a fixed domain ˝ for the fluid and a linear structural model for the compliant
wall. In particular, we will further assume that the structure undergoes negligible
horizontal displacements, so that the structural equations of the compliant wall can
be described by a generalized string model [21, 22].

The coupled fluid-structure interaction problem is therefore: for all t 2 .0;T�,
find fluid velocity u.t/ W ˝ ! R

2, fluid pressure p.t/ W ˝ ! R and structure
displacement �.t/ W ˙ ! R such that

8̂
ˆ̂̂<
ˆ̂̂̂
:

�f @tu � div.� .u; p// D 0 in ˝ � .0;T�;
divu D 0 in ˝ � .0;T�;
u D @t�n on ˙ � .0;T�;
�shs@tt� � c1@xx�C c0� D �� .u; p/n � n on ˙ � .0;T�:

(10.1)

Equations (10.1)1–(10.1)2 formulate the Stokes problem on the fixed fluid domain
˝ , having defined the fluid Cauchy stress tensor � .u; p/ WD �pIC2�f".u/, ".u/ WD
1
2
.ruCrTu/, while (10.1)4 is the equation of the structural motion of the compliant

wall. Continuity of the velocity on the interface is guaranteed by (10.1)3. The FSI
system is completed by suitable initial and boundary conditions. In this paper we
assume resting conditions at t D 0 and the following fluid boundary conditions on
@˝ n˙ :

8̂
<̂
ˆ̂:
� .u; p/n D �pin.t/n on �in � .0;T�;
� .u; p/n D �pout.t/n on �out � .0;T�;
u � n D 0; � .u; p/n � � D 0 on �sym � .0;T�;

(10.2)
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and the following structure boundary condition on @˙ :

� D 0 on @˙ � .0;T�: (10.3)

Equations (10.2)1 and (10.2)2 prescribe pressure on inlet and outlet section,
respectively; Eq. (10.2)3 is a symmetry condition, arising from the consideration
of this simplified 2D problem as a section of a 3D cylindrical configuration. Here
n and � denote the outer unit normal to ˝ and tangential vector to ˙ , respectively.
Finally, (10.3) prescribes a clamped wall near both the inlet and outlet section of the
fluid. The value of constitutive parameters �f (fluid density), �s (structure density),
�f (fluid viscosity), c1 and c0 (structure constitutive parameters), L (domain width),
hf (fluid height), hs (structure thickness) will be further specified in Sect. 10.5, as
well as choices of pin.t/, pout.t/ and T for which the FSI system (10.1)–(10.3) is
characterized by propagation of a pressure wave.

10.3 High-Fidelity Formulation: Semi-Implicit Scheme

In this section we summarize the high-fidelity discretization of the FSI sys-
tem (10.1)–(10.3). An operator splitting approach, based on a Chorin-Temam
projection scheme, is pursued. In particular, Robin-Neumann iterations are carried
out in order to enhance the stability of the resulting algorithm.

10.3.1 A Projection-Based Semi-Implicit Coupling Scheme

We employ in this work a projection-based semi-implicit scheme, as proposed in [2,
11]. The fluid equations are discretized in time using the Chorin-Temam projection

scheme [23]. Thus, denoting by�t the time step length, Dt f kC1 WD f kC1�f k
�t the first

backward difference approximation of the time derivative of f .t nC1/ and Dtt f kC1 D
Dt.Dt f kC1/, we consider the following semi-implicit time discretization of (10.1)–
(10.3): for any k D 1; : : : ;K D T=�t

1. Explicit step (fluid viscous part): find1eu kC1 W ˝ ! R
2 such that:

(
�f
eu kC1�eu k

�t � 2�f div ".eu kC1/ D �rpk in ˝;

eu kC1 D Dt�
k n on ˙:

(10.4)

1For the sake of an easier comparison with Remark 1 we employ here thee� notation for the velocity.
However, since we will always employ the pressure Poisson formulation, thee� will be dropped in
the next sections.
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2. Implicit step:

2.1. Fluid projection substep: find pkC1 W ˝ ! R such that:

(
� div.rpkC1/ D � �f

�t diveu kC1 in ˝;
@
@np

kC1 D ��f Dtt�
kC1 on˙:

(10.5)

2.2. Structure substep: find �kC1 W ˙ ! R such that:

�shsDtt�
kC1 � c1@xx�

kC1 C c0�
kC1 D �� .eu kC1; pkC1/n � n on ˙:

(10.6)

The implicit step couples pressure stresses to the structure, and it is iterated until
convergence.

Remark 1 In place of step 1 and 2.1 (pressure Poisson formulation) one could also
consider the following pressure Darcy formulation:

I. Explicit step (fluid viscous part): findeu kC1 W ˝ ! R
2 such that:

(
�f
eu kC1�uk

�t � 2�f div ".eu kC1/ D 0 in ˝;

eu kC1 D Dt�
k n on ˙:

II. Implicit step:

II.1. Fluid projection substep: find ukC1 W ˝ ! R
2 and pkC1 W ˝ ! R

such that:

(
�f

ukC1�eu kC1

�t C rpkC1 D 0 in ˝;

ukC1 � n D Dt�
kC1 on ˙:

II.2. Structure substep: find �kC1 W ˙ ! R such that:

�shsDtt�
kC1 � c1@xx�

kC1 C c0�
kC1 D �� .eu kC1; pkC1/n � n on ˙:

For the sake of a more efficient reduced-order model (see Sect. 10.4) it is
convenient to consider the pressure Poisson formulation (steps 1 and 2.1) rather than
the pressure Darcy formulation (step I and II.1), because the latter would require a
larger system (comprised of both velocity and pressure) at step II.1.

Finally, in order to enhance the stability of the projection method we employ a
Robin-Neumann coupling, as proposed in [2]. See also [3, 12] for related topics.
Thus, we replace (10.5)2 with

@

@n
pkC1 C ˛Robp

kC1 D ��f Dtt�
kC1 C ˛Robp

k;
 on ˙: (10.7)
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being ˛Rob > 0 and pk;
 an extrapolation of the pressure (which will be defined in
Sect. 10.3.2). In particular, following [10, 13], we choose ˛Rob WD �f

�shs
. We remark

that, due to the simplifying assumptions of this problem (linear structural model,
fixed domain), the implicit step could have been solved in one shot, since it defines
a linear system in . pkC1; �kC1/. We still keep the Robin-Neumann coupling in this
case in order to assess the capabilities of such procedure in a reduced-order setting,
since it will be required in more general nonlinear problems.

10.3.2 Space Discretization of the High-Fidelity Formulation

Denote by V D ŒH1.˝/�2 the fluid velocity space (endowed with the H1 seminorm),
by Q D L2.˝/ the fluid pressure space (endowed with the L2 norm), and by E D
H1.˙/ the structure displacement space (endowed with the H1 seminorm). After
having obtained a weak formulation of the semi-implicit formulation, we consider
a finite element (FE) discretization for steps 1, 2.1 and 2.2. Second order Lagrange
FE are employed for fluid velocity (step 1) and structural displacement (step 2.2),
resulting in FE spaces Vh � V and Eh � E, respectively, while fluid pressure is
discretized by first order Lagrange FE, Qh � Q. Thus, the corresponding Galerkin-
FE formulation reads: for any k D 1; : : : ;K

1h. Explicit step (fluid viscous part): find u kC1
h 2 Vh such that:

Z
˝

�f

�t
ukC1h �vh dx C

Z
˝

2�f".u kC1
h / W rvh dx D

Z
˝

�f

�t
ukh �vh dx �

Z
˝

rpkh �vh dx
(10.8)

for all vh 2 Vh, subject to the coupling condition

u kC1
h D Dt�

k
h n on ˙ � .0;T�; (10.9)

and to the boundary condition u kC1
h � n D 0 on �sym � .0;T�.

2h. Implicit step: for any j D 0; : : :, until convergence:

2.1h. Fluid projection substep, with Robin boundary conditions: find
pkC1; jC1h 2 Qh such that:

Z
˝

rpkC1; jC1h � rqh dx C
Z
˙

˛Rob p
kC1; jC1
h qh ds D

�
Z
˝

�f

�t
divu kC1

h qh dx �
Z
˙

�f Dtt�
kC1; j
h qh ds

C
Z
˙

˛Rob p
kC1; j
h qh ds
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for all qh 2 Qh, subject to the boundary conditions pkC1; jC1h D pin.t/
on �in � .0;T� and pkC1; jC1h D pout.t/ on �out � .0;T�. Here the value
pkC1; jh has been chosen as pressure extrapolation for the Robin-Neumann
coupling.

2.2h. Structure substep: find �kC1; jC1h 2 Eh such that:

Z
˙

�shs
�t2

�
kC1; jC1
h �h ds C

Z
˙

c1@x�
kC1; jC1
h @x�h ds

C
Z
˙

c0�
kC1; jC1
h �h ds D

Z
˙

�shs
�t2

�kh �h ds

(10.10)

C
Z
˙

�shs
�t

Dt�
k
h �h ds

�
Z
˙

� .u kC1; pkC1; jC1/n � �hn ds

for all �h 2 Eh, subject to the boundary conditions �kC1; jC1h D 0 on @˙ .

The coupling condition (10.9) is imposed strongly. We will further comment in
Sect. 10.4 on the imposition of this condition at the reduced-order level. A relative
error on the increments is chosen as stopping criterion for step 2h, that is the implicit
step is repeated until

min

8̂
<
:̂

���pkC1; jC1h � pkC1; jh

���
Q���pkC1; jC1h

���
Q

;

����kC1; jC1h � �
kC1; j
h

���
E����kC1; jC1h

���
E

9>=
>; < tol;

for some prescribed tolerance tol. The solution . pkC1; j
�

h ; �
kC1; j�
h / at the iteration j


such that convergence is achieved is then denoted by . pkC1h ; �kC1h /.

10.4 Reduced-Order Formulation: POD–Galerkin
Semi-Implicit Scheme

In this section we propose two Proper Orthogonal Decomposition (POD)–Galerkin
semi-implicit reduced-order models (ROMs) for FSI system (10.1)–(10.3). The
first ROM (FSI ROM 1) is built starting directly from steps 1h, 2:1h and 2:2h,
and performing a Galerkin projection. Special treatment will be devoted to the
imposition of the coupling condition (10.9); unfortunately, this requires enlarging
the reduced-order systems. The second ROM (FSI ROM 2) will exploit a simple
change of variable for the fluid velocity to bypass this issue. In both cases, an offline-
online computational decoupling is sought [26].
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10.4.1 FSI ROM 1 Approach

10.4.1.1 Offline Stage

During the offline stage, the solution of the high-fidelity problem 1h, 2:1h and 2:2h
is computed. We then consider the following snapshot matrices

Su D Œu1hj : : : juKh � 2 R
Nu
h�K ;

Sp D Œp1
h
j : : : jpK

h
� 2 R

N
p
h�K ;

S� D Œ�1
h
j : : : j�K

h
� 2 R

N
�
h�K ;

where we denote with the underlined notation the vector of FE degrees of freedom
corresponding to each solution. Here Nu

h D dim.Vh/, N
p
h D dim.Qh/ and N�h D

dim.Eh/. Then, we carry out a proper orthogonal decomposition of each snapshot
matrix; the method of snapshots is used, and the snapshots are weighted with
the inner product associated to their functional space. Then, the first Nu, Np and
N� (respectively) left singular vectors, denoted by f'igNu

iD1, f jgNp

jD1 and f�lgN�lD1
(resp.), are then chosen as basis functions for the reduced spaces V.1/N , Q.1/N and

E.1/N (resp.), i.e.

V.1/N D span.f'igN
u

iD1/; Q.1/N D span.f jgNp

jD1/; E.1/N D span.f�lgN�lD1/:

10.4.1.2 On the Imposition of Coupling Condition (10.9)

The major drawback of this approach is related to the fact that the reduced spaces
V.1/N and E.1/N do not guarantee, in general, that the coupling conditions (10.9)
holds. To this end, during the online stage, we will resort to a weak imposition
of (10.9) by Lagrange multipliers. More precisely, we will enforce weakly the
normal component of (10.9) (i.e. u kC1

h � n D Dt�
k
h), while the tangential component

of (10.9) (i.e. u kC1
h �� D 0) is already imposed strongly, since it is homogeneous and

all basis functions in VN satisfy it. Thus, during the offline stage we need to build an
additional snapshot matrix of the Lagrange multipliers, in order to carry out a POD
to obtain a reduced Lagrange multipliers space. The traction on the interface, which
can be evaluated as the residual of (10.8) for test functions vh WD vhn which do not
vanish on the interface, is indeed the Lagrange multiplier to (10.9). Therefore, we
build an additional snapshot matrix

S� D Œ�1hj : : : j�K
h � 2 R

Nu
h�K ;

containing the FE degrees of freedom corresponding to the residual of (10.8) for
test functions vh WD vhn that do not vanish on the interface, compute a POD, and,
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similarly to the previous section, obtain a reduced space L.1/N as the space spanned
by the first N� left singular vectors. During the POD computation by the method of
snapshots we employ the L2 inner product on the interface as weight. We remark
again here that the Lagrange multiplier approach is not actually used during the
high-fidelity solution of the FSI system (in favor of a strong imposition), but rather
the snapshot matrix S� is obtained as a post-processing of the obtained solution. In
contrast, in the online stage the Lagrange multiplier approach will actually be used
while solving the linear system associated to the reduced fluid viscous step, in order
to impose weakly the coupling condition (10.9).

10.4.1.3 Online Stage

A reduced-order approximation of the FSI problem is then obtained by means of a
Galerkin projection over the reduced spaces V.1/N ;Q.1/N and E.1/N , respectively, treating

the coupling condition (10.9) with Lagrange multipliers in the reduced space L.1/N .
Thus, the corresponding online stage of the POD–Galerkin method reads: for any
k D 1; : : : ;K

1.1/N . Explicit step (fluid viscous part), with weak imposition of coupling conditions

through Lagrange multipliers: find .u kC1
N ; �kC1N / 2 V.1/N � L.1/N such that:

8̂
ˆ̂̂<
ˆ̂̂̂
:

R
˝

�f
�tu

kC1
N � vN dx C R

˝
2�f".u kC1

N / W rvN dx

C R
˙
�kC1N n � vN ds D R

˝

�f
�tu

k
N � vN dx

� R
˝

rpkN � vN dx;R
˙
u kC1
N � #Nn ds D R

˙
Dt�

k
h #N ds;

for all .vN ; #N/ 2 V.1/N �L.1/N . We note that the boundary condition u kC1
N �n D 0

on �sym is implicitly verified, since it is satisfied by any element in VN .

2.1/N . Implicit step: for any j D 0; : : :, until convergence:

2.1.1/N . Fluid projection substep, with Robin boundary conditions: find

pkC1; jC1N 2 Q.1/N such that:

Z
˝

rpkC1; jC1N � rqN dx C
Z
˙

˛Rob p
kC1; jC1
N qN ds D

�
Z
˝

�f

�t
divu kC1

N qN dx �
Z
˙

�f Dtt�
kC1; j
N qN ds

C
Z
˙

˛Rob p
kC1; j
N qN ds
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for all qN 2 Q.1/N . The imposition of the boundary conditions
pkC1; jC1N D pin.t/ on �in and pkC1; jC1N D pout.t/ on �out, although

not automatically prescribed by the reduced space Q.1/N , can be easily
treated by a lifting in 2:1h without the need to introduce an additional
Lagrange multiplier for the pressure, since the values to be imposed
value do not depend on any reduced space, rather are known functions.
The details are omitted for the sake of brevity; the interested reader is
referred to [5] for more details.

2.2.1/N . Structure substep: find �kC1; jC1N 2 E.1/N such that:

Z
˙

�shs
�t2

�
kC1; jC1
N �N ds C

Z
˙

c1@x�
kC1; jC1
N @x�N ds

C
Z
˙

c0�
kC1; jC1
N �N ds D

Z
˙

�shs
�t2

�kN �N ds

C
Z
˙

�shs
�t

Dt�
k
N �N ds

�
Z
˙

� .u kC1; pkC1; jC1/n � �Nn ds

for all �N 2 E.1/N . The boundary condition �kC1; jC1N D 0 on @˙ is
implicitly verified.

As for the high-fidelity model, a stopping criterion on the relative increment of
the solution is employed to terminate step 2.1/N .

Remark 2 (On Efficient Offline-Online Decoupling) The reduced-order problem
1
.1/
N , 2:1.1/N and 2:2.1/N can easily account for an efficient offline-online decoupling,

thanks to the linearity assumption in the problem formulation. For instance, the fluid
mass term

R
˝

�f
�tu

kC1
N � vN dx in 1.1/N , is efficiently assembled at the end of the offline

stage as

M.1/
N WD .Zu

N/
T Mh Z

u
N ;

and loaded during the online stage. Here Zu
N is the matrix which contains the velocity

basis functions f'igNu

iD1 as columns, and Mh is the FE matrix corresponding to
fluid mass term

R
˝

�f
�tu

kC1
h � vh dx in 1h. One can carry out a similar computational

procedure for all terms in the reduced formulation 1.1/N , 2:1.1/N and 2:2.1/N .
In a more general (nonlinear, geometrical parametrized) setting one can resort to

the empirical interpolation method [8] to recover an efficient offline-online splitting,
as recently shown for FSI problems in [6].

Remark 3 (On Supremizer Enrichment: The Role of Pressure) In contrast to what
is usually done in the reduced basis approximation of parametrized fluid dynamics
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problem (see [24, 25, 27], and also [5] for an extension to POD–Galerkin methods)
and previous works on FSI [6, 9, 18], we do not employ in this case a supremizer
enrichment of the velocity space to enforce inf-sup stability of the mixed velocity-
pressure formulation. This is heuristically motivated by the fact that, even at the
high-fidelity level, the Chorin-Temam scheme, in its pressure Poisson version, can
be successfully applied to FE spaces that do not fulfill a .V;Q/-inf-sup condition
[15], even though it may result in non-optimal error estimates.

Remark 4 (On Supremizer Enrichment: The Role of Lagrange Multiplier) Problem
1
.1/
N still features a saddle point structure. We remark that this structure is not due

to the original problem, but rather due to our choice of coupling conditions by
Lagrange multipliers. A drawback of ROM 1 is now apparent for what concerns
the size of the reduced system 1

.1/
N , which needs to be increased to Nu C N� due

to weak imposition of coupling condition. The ROM proposed in the next section
has been devised to overcome this limitation, and results in a reduced explicit step
of size Nu. Moreover, a further increase in dimension would be required if we were
willing to enrich the velocity space V.1/N with supremizers corresponding to the inf-

sup condition associated to problem 1
.1/
N , i.e. solutions to

Z
˝

rsk � rv D
Z
˙

�k
h � v 8v 2 V;

for all k D 1; : : : ;K. In this work we do not carry out such enrichment since it
would further increase the size of the reduced explicit step; nevertheless, a detailed
investigation of the stability of 1.1/N with and without enrichment by sk is an ongoing
task and will be presented in a forthcoming work.

10.4.2 FSI ROM 2 Approach

As we have seen in the previous section, it is challenging to enforce (10.9) at
the reduced-order level. The second reduced-order model proposed in this paper
overcomes these difficulties performing a change of variable for the fluid velocity,
namely defining an auxiliary unknown zkC1 W ˝ ! R

2 as

zkC1 D ukC1 � Dtb� k n; (10.11)

whereb� k is the solution of the following harmonic extension problem

��b� k D 0 in ˝;

subject to the following inhomogeneous boundary condition on the interface

b� k D �k on˙;
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and homogeneous boundary condition on the remaining boundaries. In this way, the
coupling condition (10.9) is equivalent to

zkC1 D 0 on ˙;

for which no weak imposition by Lagrange multipliers is required.

10.4.2.1 Offline Stage

During the offline stage, the solution of the high-fidelity problem 1h, 2:1h and 2:2h
is first sought. Auxiliary unknowns zkC1 are then computed thanks to (10.11), for all
k D 0; : : : ;K � 1. We then consider the following snapshot matrix

Sz D Œz1hj : : : jzKh � 2 R
Nu
h�K ;

and, similarly to Sect. 10.4.1.1, retain the first Nz POD modes in the reduced space
V.2/N . Reduced spaces for fluid pressure and structure displacement are defined as

in Sect. 10.4.1.1, Q.2/N WD Q.1/N and E.2/N WD E.1/N D span.f�lgN�lD1/. Moreover,
harmonically extend each f�lgN�lD1 to fb�lgN�lD1.

10.4.2.2 Online Stage

Similarly to Sect. 10.4.1.3, a reduced-order approximation of the FSI problem is
now obtained by means of a Galerkin projection over the reduced spaces V.2/N ;Q.2/N

and E.2/N , respectively, that is: for any k D 1; : : : ;K

1.2/N . Explicit step (fluid viscous part), with change of variable for the fluid velocity:

find zkC1N 2 V.2/N such that:

Z
˝

�f

�t
zkC1N � vN dx C

Z
˝

2�f".zkC1N / W rvN dx D
Z
˝

�f

�t
ukN � vN dx �

Z
˝

rpkN � vN dx;

�
Z
˝

�f

�t
Dtb� kN n � vN dx �

Z
˝

2�f".Dtb� kN n/ W rvN dx

for all vN 2 V.2/N . We note that boundary and interface conditions on zkC1N are
implicitly verified, since they are homogeneous and satisfied by any element in
V.2/N . Finally, for the sake of the implicit step, we define ukC1N as zkC1N CDtb� kN n.



160 F. Ballarin et al.

2.2/N . Implicit step: for any j D 0; : : :, until convergence:

2.1.2/N . Fluid projection substep, with Robin boundary conditions: as in 2.1.1/N .

2.2.2/N . Structure substep: as in 2.1.2/N . Finally, at convergence, harmonically
extend �kC1N to b� kC1

N . Note that this can be easily carried out as the
linear combination of the harmonically extended displacement basis
fb�lgN�lD1.

Remark 5 (On Efficient Offline-Online Decoupling) Similarly to Remark 2, an
efficient offline-online decoupling can be obtained also in this case. Thanks to the
definition of the harmonically extended displacements basis fb�lgN�lD1 an efficient
assembly of (e.g.) the right-hand side mass term

R
˝

�f
�tDtb� kN n � vN dx can be

obtained. We remark that this accounts for a negligible additional offline cost
(solution of N� harmonic extension problems) and no additional online cost, since
the extension of �kC1N to b� kC1

N does not actually require the solution of reduced
problem, but rather a linear combination of fb� lgN�lD1 once the coefficients of the
structural unknown have been computed.

10.5 Numerical Comparison

In this section we summarize the numerical results obtained by the proposed
reduced-order models. The values of constitutive and geometrical parameters are
summarized in Table 10.1 [14]. The domain has been discretized with a 120 � 10

structured mesh, while the time-step is �t D 10�4 s. The final time is T D 0:13 s,
so that K D 1300. T has been chosen to simulate the pressure wave propagation,
just before wave reflection occurs. Numerical simulations are carried out using
RBniCS [7, 17], an open-source reduced order modelling library developed at SISSA
mathLab, built on top of FEniCS [20].

FSI ROM 1 Figure 10.1 shows the POD singular values and retained energy as a
function of the number N of POD modes for FSI ROM 1. It can be noticed that the
decay of the singular values of fluid velocity and structure displacement is slower
than the one of fluid pressure; moreover, the first POD mode of fluid pressure retains
a larger energy (	 36%) than the first modes of structure displacement (	 15%) and
fluid velocity (	 12%). Accordingly, the (relative) error analysis (Fig. 10.2a) shows

Table 10.1 Constitutive parameters for test case (from [14])

�f 1 g/cm3 �f 0:035 Poise �s 1:1 g/cm3

Es 0:75 � 106 dyn/cm2 �s 0:5 c1
hsEs

h2f .1��2s /

c0
hsEs

2 .1C�s/
L 6 cm hf 0:5 cm

hs 0:1 cm pin 104.1� cos. 2� t
0:005

//1t<0:005 dyn/cm2 pout 0 dyn/cm2
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Fig. 10.1 Results of the offline stage of FSI ROM 1: (a) POD singular values and (b) retained
energy as a function of the number N of POD modes for fluid velocity, fluid pressure, and solid
displacement

Fig. 10.2 (a) Error analysis and (b) speedup analysis of FSI ROM 1, as a function of the number
N of POD modes for fluid velocity, fluid pressure, and solid displacement

that the reduced solution converges to the high-fidelity one, and that (except for
small N), the relative error on the pressure is smaller than the displacement one,
which is smaller than the velocity relative error. Employing only N D 30 POD
modes out of the K D 1300 snapshots, velocity, displacement and pressure relative
errors are of the order of 10�4, 10�5 and 10�7, respectively. Figure 10.2b shows that
the overall speedup for large values of N is of at least two order of magnitudes. In
particular, speedup for the explicit step is approximately constant for increasing N,
while the speedup for the implicit steps is increasing for larger N since the number
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Fig. 10.3 Comparison of the offline stage of FSI ROMs 1 and 2: (a) POD singular values and
(b) retained energy as a function of the number N of POD modes for fluid velocity u (FSI ROM 1)
and auxiliary fluid velocity z (FSI ROM 2)

of required iterations for the implicit step decreases with N (see Fig. 10.7b and c for
the maximum and average number of iterations, respectively).

FSI ROM 2 Figure 10.3 shows a comparison of the offline stage for ROMs 1 and 2.
From Fig. 10.3b it can be noticed that, after the change of variable, the first auxiliary
velocity z POD mode of FSI ROM 2 retains approximately 1:5% more energy
than the first velocity u POD mode. The remaining variables are omitted since
the pressure and displacement bases are the same as in FSI ROM 1. Moreover,
Fig. 10.4a shows that the left-hand side matrix of the fluid viscous step 1.2/N (FSI
ROM 2) is characterized by a condition number which is, for all N, at least 10 order
of magnitude smaller than the one of 1.1/N (FSI ROM 1). The combination of these
two remarks justifies the improvement in the error analysis for the velocity variables,
shown in Fig. 10.5b. On average, the relative error on the velocity unknown obtained
by FSI ROM 1 is seven times the one obtained by FSI ROM 2. Relative errors
for the remaining unknowns are omitted because they are comparable among FSI
ROMs 1 and 2. Moreover, we show in Fig. 10.6 the error analysis for the interface
stress. The plot clearly shows that FSI ROM 2 provides a better approximation of
the interface stress for N > 20. Online performance (Fig. 10.7) are comparable
to the ones obtained by FSI ROM 1. This is due to the fact that (i) the number of
iterations to reach convergence in step 2.1/N and 2.2/N are the same as maximum values
(Fig. 10.4b) and comparable on average (Fig. 10.4c), and (ii) the time to solve the
explicit step does not depend strongly on N (Fig. 10.7b), even though step 1.2/N (FSI
ROM 2) requires the solution of a linear system of size N �N (rather than 2N � 2N
for step 1.1/N (FSI ROM 1)).
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Fig. 10.4 Comparison of the condition number of the left-hand side matrix of 1.1/N and 1
.2/
N

((a)) and of the maximum ((b)) and average ((c)) number of iterations required by 2.1/N and 2.2/N , as
a function of the number N of POD modes for fluid velocity, fluid pressure, and solid displacement

10.6 Conclusions and Perspectives

Two semi-implicit reduced-order models for FSI problems have been proposed in
this work, based on a POD–Galerkin approximation of an operator splitting semi-
implicit high-fidelity scheme. FSI ROM 1 is a standard Galerkin projection over the
reduced spaces generated by POD. No supremizer enrichment is required, thanks to
the operator splitting approach. Even though FSI ROM 1 shows good performance
in terms of error analysis, its major drawbacks (when compared to FSI ROM 2)
are related to the weak imposition of (10.9) by Lagrange multipliers. Numerical
results of the previous section have shown that this is detrimental for several
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Fig. 10.5 Error analysis of FSI ROM 2, as a function of the number N of POD modes for fluid
velocity, fluid pressure, and solid displacement. (a) Error analysis of FSI ROM 2. (b) Comparison
of the error for fluid velocity unknown of FSI ROMs 1 and 2

Fig. 10.6 Error analysis of the interface stress for FSI ROMs 1 and 2, as a function of the number
N of POD modes for fluid velocity, fluid pressure, and solid displacement

aspects of the ROM: increased system dimension of the fluid explicit step, increased
condition number of the fluid explicit step, increased error for the velocity. FSI
ROM 2, instead, stems from the idea that (10.9) can be easily imposed in a reduced-
order framework by performing the change of variable (10.11). In this way, all the
detrimental effects of FSI ROM 1 are remedied. Moreover, better properties in terms
of POD retained energy are also obtained. The combination of these two factors
results in a better approximation of the fluid velocity. In particular, in FSI ROM 2,
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Fig. 10.7 Speedup analysis of FSI ROM 2, as a function of the number N of POD modes
for fluid velocity, fluid pressure, and solid displacement. (a) Speedup analysis of FSI ROM 2.
(b) Comparison of the speedup for fluid velocity unknown of FSI ROMs 1 and 2

we try to separate in the fluid velocity the fluid-structure interaction component
from the pure fluid part. Even though FSI ROM 1 suffers several drawbacks when
compared to FSI ROM 2 (especially for what concerns the increased condition
number), the approach proposed by FSI ROM 1 can be more easily integrated
with existing reduced order modelling capabilities for fluid problems, since it does
not require to change the existing computations of fluid velocity basis functions.
Nevertheless, especially for FSI ROM 1, a more detailed analysis of enrichment
procedures shall be carried out to further investigate the stability of the resulting
reduced problem, due to two saddle point structures to be taken into account (see
Remarks 3 and 4). Future work will concern ROMs that are better able to face the
hyperbolic nature of the problem. A more efficient separation at the reduced-order
level of the parabolic and hyperbolic components of the system may decrease the
number of basis functions required to obtain an accurate reduced description of the
FSI problem.
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Chapter 11
True Error Control for the Localized Reduced
Basis Method for Parabolic Problems

Mario Ohlberger, Stephan Rave, and Felix Schindler

Abstract We present an abstract framework for a posteriori error estimation
for approximations of scalar parabolic evolution equations, based on ellip-
tic reconstruction techniques (Makridakis and Nochetto, SIAM J. Numer.
Anal. 41(4):1585–1594, 2003. doi:10.1137/S0036142902406314; Lakkis and
Makridakis, Math. Comput. 75(256):1627–1658, 2006. doi:10.1090/S0025-5718-
06-01858-8; Demlow et al., SIAM J. Numer. Anal. 47(3):2157–2176, 2009.
doi:10.1137/070708792; Georgoulis et al., SIAM J. Numer. Anal. 49(2):427–
458, 2011. doi:10.1137/080722461). In addition to its original application (to
derive error estimates on the discretization error), we extend the scope of this
framework to derive offline/online decomposable a posteriori estimates on the
model reduction error in the context of Reduced Basis (RB) methods. In addition,
we present offline/online decomposable a posteriori error estimates on the full
approximation error (including discretization as well as model reduction error)
in the context of the localized RB method (Ohlberger and Schindler, SIAM J.
Sci. Comput. 37(6):A2865–A2895, 2015. doi:10.1137/151003660). Hence, this
work generalizes the localized RB method with true error certification to parabolic
problems. Numerical experiments are given to demonstrate the applicability of the
approach.

11.1 Introduction

We are interested in efficient and certified numerical approximations of parabolic
parametric problems, such as: given a Gelfand triple of suitable Hilbert spaces Q �
H � Q0, an end time Tend > 0, initial data p0 2 Q and right hand side f 2 H, for a
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parameter � 2 P find p.�I�/ 2 L2.0;TendIQ/ with @tp.�I�/ 2 L2.0;TendIQ0/, such
that p.0I�/ D p0 and

h@tp.tI�/; qi C b
�
p.tI�/; qI�� D . f ; q/H for all q 2 Q; (11.1)

where P � R
� for � 2 N denotes the set of admissible parameters and b denotes a

parametric elliptic bilinear form (see Sect. 11.2 for details).
We consider grid-based approximations ph.�/ 2 Qh of p.�/ 2 Q, obtained by

formulating (11.1) in terms of a discrete approximation space Qh � H (think of
Finite Elements or Finite Volumes) where b is replaced by a discrete counterpart
acting on Qh (e.g. in case of nonconforming approximations).

Efficiency of such an approximation for a single parameter is usually associated
with minimal computational effort, obtained by adaptive grid refinement using
localizable and reliable error estimates (see [17] and the references therein). For
parametric problems, however, where one is interested in approximating (11.1)
for many parameters, efficiency is related to an overall computational cost that
is minimal compared to the combined cost of separate approximations for each
parameter. To this end one employs model reduction with reduced basis (RB)
methods, where one usually considers a common approximation space Qh for all
parameters (with the notable exceptions [2, 18]) and where one iteratively builds a
reduced approximation space Qred � Qh by an adaptive greedy search, the purpose
of which is to capture the manifold of solutions of (11.1): f p.tI�/ 2 Q j t 2
Œ0;Tend�; � 2 Pg; we refer to the monographs [7, 15, 16] and the references
therein. One obtains a reduced problem by Galerkin projection of all quantities
onto Qred and, given a suitable parametrization of the problem, the assembly of
the reduced problem allows for an offline/online decomposition such that a reduced
solution pred.�/ 2 Qred for a parameter � 2 P can be efficiently computed with a
computational effort independent of the dimension of Qh. To assess the quality of the
reduced solution and to steer the greedy basis generation, RB methods traditionally
rely on residual based a posterior error estimates on the model reduction error
ered.�/ WD ph.�/� pred.�/, jjered.�/jj � �red.�/, with the drawback that usually no
information on the discretization error eh.�/ WD p.�/ � ph.�/ is available during
the online phase of the computation.

In contrast, we are interested in approximations of (11.1) which are efficient
in the parametric sense as well as certified in the sense that we have access to
an efficiently computable estimate on the full approximation error eh;red.�/ WD
p.�/ � pred.�/, including the discretization as well as the model reduction error:
jjeh;red.�/jj � �h;red.�/.

For elliptic problems such an estimate is available for the localized RB multiscale
method (LRBMS) [1, 14], the idea of which is to couple spatially localized
reduced bases associated with subdomains of the physical domain. In addition to
computational benefits due to the localization, the LRBMS also allows to adaptively
enrich the local reduced bases online by solving local corrector problems, given a
localizable error estimate. Apart from the LRBMS [13], we are only aware of [2]
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and [18], where the full approximation error is taken into account in the context of
RB methods.

In an instationary setting, localized RB methods were first applied in the context
of two-phase flow in porous media [8] and to parabolic problems such as (11.1)
in the context of Lithium-Ion Battery simulations [12], yet in either case without
error control. In contrast, here we present the fully certified localized RB method
for parabolic problems by equipping it with suitable a posteriori error estimates. As
argued above, it is beneficial to have access to several error estimates which can
be evaluated efficiently during the online phase: for instance to later enable online
adaptive basis enrichment, one could (i) solve local corrector problems, given �red,
whenever the reduced space is not rich enough; or one could (ii) locally adapt the
grid, given �h;red, whenever Qh is insufficient.

Therefore, we present a general framework for a posteriori error estimation for
parabolic problems, which will enable us to obtain either of the above estimates. It is
based on the elliptic reconstruction technique, introduced for several discretizations
and norms in [3, 5, 9, 10]. In this contribution we reformulate this approach in an
abstract setting, allowing for a novel application in the context of RB methods. In
particular, this technique allows to reuse existing a posteriori error estimates for
elliptic diffusion problems.

11.2 General Framework for A Posteriori Error Estimates

In the following presentation we mainly follow [5], reformulating it in an abstract
Hilbert space setting and slightly extending it by allowing non-symmetric bilinear
forms. We drop the parameter dependency in this section to simplify the notation.

Definition 1 (Abstract Parabolic Problem) Let Q be a Hilbert space, densely
embedded in another Hilbert space H (possibly Q D H), and let eQ  H be a finite
dimensional approximation space for Q, not necessarily contained in Q. Denote by
.�; �/, k � k the H-inner product and the norm induced by it.

Let f 2 H, and let b W .Q C eQ/ � .Q C eQ/ ! R be a bilinear form which
is continuous and coercive on Q. Let further jjj�jjj be a norm over Q C eQ, which
coincides with the square root of the symmetric part of b over Q.

Our goal is to bound the error e.t/ WD p.t/ � Qp.t/ between the true (analytical)
solution p 2 L2.0;TendIQ/, @tp 2 L2.0;TendIQ0/ of (11.1), where the duality pairing
h@tp.t/; qi is induced by the H-scalar product via the Gelfand triple Q  H D H0 
Q0, and the eQ-Galerkin approximation Qp 2 L2.0;Tend;eQ/, @t Qp 2 L2.0;Tend;eQ/,
solution of

.@t Qp.t/; Qq/C b. Qp.t/; Qq/ D . f ; Qq/ for all Qq 2 eQ: (11.2)

Definition 2 (Elliptic Reconstruction) Denote by ĕ the H-orthogonal projection
onto eQ. For Qq 2 eQ, define the elliptic reconstruction E .Qq/ 2 Q of Qq to be the unique
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solution of the variational problem

b.E .Qq/; q0/ D .B.Qq/� ĕ. f /C f ; q0/ for all q0 2 Q; (11.3)

where B.Qq/ 2 eQ is the H-inner product Riesz representative of the functional b.Qq; �/,
i.e., .B.Qq/; Qq0/ D b.Qq; Qq0/ for all Qq0 2 eQ. Note that E .Qq/ is well-defined, due to the
coercivity of b on Q.

The following central property of the elliptic reconstruction follows immediately
from its definition:

Proposition 1 Qq is the eQ-Galerkin approximation of the solution E .Qq/ of the weak
problem (11.3) in the sense that Qq satisfies

b.Qq; Qq0/ D . Qw � ĕ. f /C f ; Qq0/ for all Qq0 2 eQ:
Assume that for each t we have a decomposition Qp.t/ DW Qpc.t/ C Qpd.t/ (not

necessarily unique) where Qpc.t/ 2 Q, Qpd.t/ 2 eQ are the conforming and non-
conforming parts of Qp.t/. We consider the following error quantities:

�.t/ WD p.t/ � E . Qp.t//; ".t/ WD E . Qp.t// � Qp.t/;
ec.t/ WD p.t/ � Qpc.t/; "c.t/ WD E . Qp.t// � Qpc.t/:

Theorem 1 (Abstract Semi-Discrete Error Estimate) Let C WD .2 jjjbjjj2C1/1=2,
where jjjbjjj denotes the continuity constant of b on Q w.r.t. jjj�jjj, then

kekL2.0;TendIjjj�jjj/ �kec.0/k C p
3k@t QpdkL2.0;TendIjjj�jjjQ;�1/

C .C C 1/ � k"kL2.0;TendIjjj�jjj/ C C � kQpdkL2.0;TendIjjj�jjj/:

Proof (cf. [5]) For each q 2 Q, we have the error identity

h@te.t/; qi C b.�.t/; q/ D 0; (11.4)

using the definition of �, the properties of the elliptic reconstruction and the fact,
that p solves (11.1). Testing with ec.t/ and applying Young’s inequality then yields

@tkec.t/k2 C jjj�.t/jjj2 � 3
ˇ̌̌̌ ˇ̌
@t Qpd.t/

ˇ̌̌̌ ˇ̌2
Q;�1 C .2 jjjbjjj2 C 1/ � jjj"c.t/jjj2 : (11.5)

Hence, the claim follows by integrating (11.5) from 0 to Tend and using the triangle
inequalities jjje.t/jjj � jjj�.t/jjj C jjj".t/jjj and jjj"c.t/jjj � jjj".t/jjj C ˇ̌̌̌ ˇ̌Qpd.t/ˇ̌̌̌ ˇ̌. ut
Remark 1 According to Proposition 1, the term jjj".t/jjj can be bounded using
any available a posteriori error estimator for the elliptic equation (11.3). The
term

ˇ̌̌̌ ˇ̌
@t Qpd.t/

ˇ̌̌̌ ˇ̌
Q;�1 can be bounded by Cb

H;Qk@t Qpd.t/k using the Cauchy-Schwarz

inequality, where Cb
H;Q is a constant such that kqk � Cb

H;Q jjjqjjj for all q 2 Q.
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It is straightforward to modify the estimate in Theorem 1 for semi-discrete
solutions Qp.t/ to take the time discretization error into account:

Corollary 1 Let Qp 2 L2.0;Tend;eQ/, @t Qp 2 L2.0;Tend;eQ/ be an arbitrary discrete
approximation of p.t/, not necessarily satisfying (11.2). Let RT Œ Qp�.t/ 2 eQ denote
the eQ-Riesz representative w.r.t. the H-inner product of the time-stepping residual
of Qp.t/, i.e.

.RT Œ Qp�.t/; Qq/ D .@t Qp.t/; Qq/C b. Qp.t/; Qq/� . f ; Qq/ 8Qq 2 eQ:
Then, with C WD .3 jjjbjjj2 C 2/1=2, the following error estimate holds:

kekL2.0;TendIjjj�jjj/ � kec.0/k C 2k@t QpdkL2.0;TendIjjj�jjjQ;�1/
C .C C 1/ � k"kL2.0;TendIjjj�jjj/ C C � kQpdkL2.0;TendIjjj�jjj/
C 2Cb

H;Q � kRT Œ Qp�kL2.0;TendIH/:
(11.6)

Proof Since (11.4) no longer holds, we gain RT Œ Qp�.t/ as an additional source term
in the error equation:

h@te.t/; qi C b.�.t/; q/ D .�RT Œ Qp�.t/; q/:

The statement follows using the same line of argument as in the proof of Theorem 1,
taking the additional term into account. ut
Example 1 (Implicit Euler Time Stepping) Let nt 2 N be the number of time steps
and �t WD Tend=nt the (fixed) time step size. Let Qp.t/ be the eQ-valued piecewise
linear function with supporting points Qp.n � �t/ DW Qpn, n D 0; : : : nt, such that
Qp0 WD p.0/ and Qpn is defined for n > 0 as the solution of

� Qpn � Qpn�1
�t

; Qq
�

C b. Qpn; Qq/ D . f ; Qq/ 8Qq 2 eQ:

We then have for .n � 1/ ��t � t � n � t the equality

RT Œ Qp�.t/ D n ��t � t

�t
B. Qpn � Qpn�1/:

Thus,

kRT Œ Qp�kL2.0;TendIH/ D
(

ntX
nD1

�t

3
kB. Qpn � Qpn�1/k2

) 1=2
:
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Similarly, we obtain for the other quantities in (11.6) the bounds

k"kL2.0;TendIjjj�jjj/ � 2

(
ntX

nD0

�t

3
jjj"njjj2

) 1=2
;

kQpdkL2.0;TendIjjj�jjj/ � 2

(
ntX

nD1

�t

3

ˇ̌̌̌ ˇ̌Qpd;n ˇ̌̌̌ ˇ̌2
) 1=2

;

k@t QpdkL2.0;TendIjjj�jjjQ;�1/ �
(

ntX
nD1

1

�t

ˇ̌̌̌ ˇ̌Qpd;n � Qpd;n�1 ˇ̌̌̌ ˇ̌2
Q;�1

) 1=2
;

where "n WD ".n ��t/, Qpd;n WD Qpd.n ��t/, 0 � n � nt.

Example 2 (Reduced Basis Approximation) We can directly apply Corollary 1 to
obtain a posteriori estimates for standard reduced basis schemes. In this case,Q D H
will be some discrete ‘truth’ space andeQ  Q the reduced approximation space. The
Q and H-norms might be, in case of a conforming approximation, the H1

0.˝/ and
L2.˝/ norms for some domain˝ . (11.6) then reduces to

kekL2.0;TendIjjj�jjj/ � ke.0/k C .C C 1/ � k"kL2.0;TendIjjj�jjj/ C 2Cb
H;Q � kRT. Qp/kL2.0;TendIH/:

The elliptic error jjj"jjjL2.0;TendIQ/ could be bounded using a standard residual-
based error estimator for (11.3). For parametric problems with affine parameter
dependency, all appearing terms are easily offline/online decomposed.

11.3 Localized Reduced Basis Methods

We now return to the definition of the localized RB method for parabolic problems
as follows.

The Continuous Problem Let ˝ � R
d for d D 1; 2; 3 denote a bounded

connected domain with polygonal boundary @˝ and, following the notation of
Sect. 11.1, let H D L2.˝/ and Q D H1

0.˝/. We consider problem (11.1) with
the parametric bilinear form b, defined over Q, as

b.p; qI�/ D
Z
˝

.�.�/�"rp/ � rq for p; q 2 H1.˝/; � 2 P; (11.7)

given data functions �" 2 ŒL1.˝/�d�d and � W P ! L1.˝/. For � and �", such
that �.�/�" 2 ŒL1.˝/�d�d is bounded from below (away from 0) and above for all
� 2 P , the bilinear form b.�; �I�/ is continuous and coercive with respect to Q for
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all � 2 P . Thus, a unique solution p.�I�/ 2 L2.0;TendIQ/ of problem (11.1) exists
for all � 2 P , if f is bounded.

We continue with the definition of the discretization in order to define the
approximation space QQ, to extend the definition of b onto QQ and to introduce the
relevant norms.

The main idea of localized RB methods is to partition the physical domain˝ into
subdomains in the spirit of domain decomposition methods and to generate a local
reduced basis on each subdomain, as opposed to a single reduced basis with global
support. Coupling across subdomains is achieved by a symmetric weighted interior
penalty discontinuous Galerkin (SWIPDG) scheme [4] for the high-dimensional as
well as the reduced discretization.

The Discretization To discretize (11.1) we require two nested partitions of ˝:
a coarse one, TH with elements (subdomains) T 2 TH , and a fine one, h with
elements t 2 h (note that we use t to denote elements of the computational grids,
not to be confused with the time t). Within each subdomain T 2 TH we allow for any
local approximation of Q and b by discrete counterparts Qk;T

h and bTh of order k � 1,
associated with the local grid Th WD T \ h � h. In particular we consider (i) local
conforming approximations by setting Qk;T

h to fqh 2 C0.T/ j qhjt 2 Pk.t/ 8t 2
Th g � H1.T/ and bTh to bjT , where Pk.!/ denotes the space of polynomials over
!  ˝ of order up to k 2 N; (ii) local nonconforming approximations by setting
Qk;T

h to fqh 2 L2.T/ j qhjt 2 Pk.t/ 8t 2 Th g � L2.T/ and bTh to the following
SWIPDG bilinear form: for p; q 2 Qk;T

h and � 2 P , we define

bTh .p; qI�/ WD bT.p; qI�/C
X
e2FT

h

be.p; qI�/;

with bT.p; qI�/ WD R
T.�.�/�"rp/ � rq, where F T

h denotes the set of all inner faces
of Th that share two elements t�; tC 2 Th . The face bilinear form be for any inner or
boundary face e of h is given by be.p; qI�/ WD bec.q; pI�/Cbec.p; qI�/Cbep.p; qI�/
with the coupling and penalty face bilinear forms bec and bep given by

bec.p; qI�/ WD
Z
e
�˚̊ �.�/�" Q̆ rp��

e
ŒŒq��e and bep.p; qI�/ WD

Z
e
�e.�/ŒŒp��eŒŒq��e;

respectively, with the L2-orthogonal projection Q̆ from Definition 2. Given a
function q which is two-valued on faces, its jump and weighted average are given
by ŒŒq��e WD q��qC and ffqgge WD !�e q�C!Ce qC, respectively, on uniquely oriented
inner faces e D t� \ tC for t˙ 2 h, and by ŒŒq��e WD ffqgge WD q for boundary faces
e D t�\@˝ , with the locally adaptive weights given by !�e WD ıCe .ıCe Cı�e /�1 and
!Ce WD ı�e .ıCe C ı�e /�1, respectively, with ıė WD ne � �"̇ � ne. Here, ne 2 R

d denotes
the unique normal to a face e pointing away from t� and q˙ WD qjt˙ . The positive
penalty function is given by �e.�/ WD �h�1e ff�.�/gge�e

" , where � � 1 denotes a
user-dependent parameter, he > 0 denotes the diameter of a face e, and the locally
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adaptive weight is given by �e
" WD ıCe ı�e .ıCe Cı�e /�1 on inner faces and by �e

" WD ı�e
on boundary faces.

Given local approximations Qk;T
h and bTh on each subdomain T 2 TH, we define

the DG space by Qk
h WD ˚T2THQ

k;T
h and couple the local discretizations along a

coarse face E 2 FH , by SWIPDG fluxes to obtain the global bilinear form b W
P ! ŒQk

h � Qk
h ! R�, by

b.p; qI�/ WD
X
T2TH

bTh .p; qI�/C
X
E2FH

X
e2FE

h

be.p; qI�/;

for p; q 2 Qk
h, � 2 P , where FH denotes the set of all faces of the coarse grid TH

and where F E
h denotes the set of fine faces of h which lie on a coarse face E 2 FH .

Note that b is continuous and coercive with respect to Qk
h in the DG norm jjj�jjj� (see

the next section) if the penalty parameter � is chosen large enough (see [14] and the
references therein concerning the choice of �).

Depending on the choice of TH and the local approximations, the above defini-
tion covers a wide range of discretizations, ranging from a standard conforming to
a standard SWIPDG one; we refer to [14] for details. The semi-discrete problem
for a single parameter then reads as (11.2) with QQ D Qk

h. Presuming p0 2 Qk
h and

using implicit Euler time stepping (compare Example 1) the fully-discrete problem
reads: for each time step n > 0 find the DoF vector of pnh.�/ WD ph.n ��t; �/ 2 Qk

h,

denoted by pnh.�/ 2 R
dimQk

h , such that

�
Mh C�t b.�/

�
pnh.�/ D �t fh C pn�1h .�/; (11.8)

where Mh; b.�/ 2 R
dimQk

h�dimQk
h and fh 2 R

dimQk
h denote the matrix and vector

representations of .�; �/L2.˝/, b.�; �I�/ and . f ; �/L2.˝/, respectively, with respect to
the basis of Qk

h.

Model Reduction Let us assume that we are already given a reduced space Qred �
Qk

h (we postpone the discussion of how to find Qred to Sect. 11.5). Given Qred, we
formally arrive at the reduced problem simply by Galerkin projection of (11.8) onto
Qred, just like traditional RB methods: for each time step n > 0 find the reduced
DoF vector pnred.�/ 2 R

dimQred , such that

�
Mred C�t bred.�/

�
pnred.�/ D �t fred C pn�1red .�/; (11.9)

with p0red.�/ WD ˘red.p0/, where ˘red denotes the L2-orthogonal projection onto
Qred, and where Mred; bred.�/ 2 R

dimQred�dimQred and fred 2 R
dimQred denote the

matrix and vector representations of .�; �/L2.˝/, b.�; �I�/ and . f ; �/L2.˝/, respectively,
with respect to the basis of Qred.

As usual with RB methods, we can achieve an efficient offline/online splitting
of the computational process by precomputing the restriction of the functionals
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and operators arising in (11.8) to Qred, if those allow for an affine decomposition
with respect to the parameter �. For standard RB methods, where Qred is spanned
by reduced basis functions with global support, the matrix representation of the
reduced L2-product, for instance, would be given by Mred D ˘red � Mh � ˘red

?,

where˘red 2 R
dimQred�dimQk

h denotes the matrix representation of˘red (each row of
˘red corresponds to the DoF vector of one reduced basis function). For localized
RB methods, however, we are given a local reduced basis on each subdomain
T 2 TH (reflected in the structure of the reduced space, Qred D ˚T2THQ

T
red) and

all operators and functionals are localizable with respect to TH . Thus, the reduced
basis projection can be carried out locally as well. For instance, since .p; q/L2.˝/ DP

T2TH
.pjT ; qjT/L2.T/, we locally obtain MT

red D ˘T
red �MT

h �˘T
red
? 2 R

dimQT
red�dimQT

red

for all T 2 TH , where ˘T
red 2 R

dimQT
red�dimQk;T

h and MT
h 2 R

dimQk;T
h �dimQk;T

h denote

the matrix representations of the local L2-orthogonal reduced basis projection and
.�; �/L2.T/, respectively. The reduced L2-product matrix Mred 2 R

dimQred�dimQred , with
dimQred D P

T2h dimQT
red, is then assembled by combining the local matrices

using a standard DG mapping with respect to Qred. In the same manner, the reduction
of b can be carried out locally by projecting the local bilinear forms on each
subdomain as well as the coupling bilinear forms with respect to all neighbors,
yielding sparse reduced operators and products; we refer to [14] for details and
implications.

11.4 Error Analysis

For our analysis we introduce the broken Sobolev space H1.h/ WD ˚
q 2

L2.˝/
ˇ̌

qjt 2 H1.t/ 8t 2 h
�
, containing Q C QQ, since Qred � Qk

h �
H1.h/ � L2.˝/ and H1.˝/ � H1.h/. Note that the domain of all operators,
products and functionals of the previous section can be naturally extended to
H1.h/, for instance by using the broken gradient operator rh, which is locally
defined by .rhq/jt WD r.qjt/ for all t 2 h. Using said operator in the definition
of bT , we define the parametric energy semi-norm (which is a norm only on

H1
0.˝/) by jqj� WD �P

T2TH
bT.q; qI�/�1=2 and the parametric DG norm by

jjjqjjj� WD �P
T2TH

bT.q; qI�/CPe2Fh
bep.q; qI�/�1=2, for� 2 P and q 2 H1.h/,

respectively, where Fh denotes the set of all faces of h. Note that jjjqjjj� D jqj� for
q 2 H1

0.˝/.
Since we presume � to be affinely decomposable with respect to �, there exist

� 2 N strictly positive coefficients �� W P ! R and nonparametric components
�� 2 L1.˝/, such that �.�/ D P�

�D1 ��.�/�� . We can thus compare �, and in

particular jjj�jjj�, for two parameters by means of ˛.�;�/ WD min��D1 ��.�/��.�/�1
and �.�;�/ WD max��D1 ��.�/��.�/�1:

˛.�;�/1=2 jjj�jjj� � jjj�jjj� � �.�;�/1=2 jjj�jjj� : (11.10)
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Note that since we consider an energy norm here, usage of the above norm
equivalence requires no additional offline computations, in contrast to the standard
min-� approach [15], where continuity and coercivity constants of b.�; �I�/ need
to be computed when considering the H1

0-norm. We also denote by c".�/ > 0 the
minimum over x 2 ˝ of the smallest eigenvalue of the matrix �.xI�/�".x/ 2 R

d�d.
We are interested in a fully computable and offline/online decomposable estimate

on the full approximation error in a fixed energy norm. Therefore, we use the general
framework presented in Sect. 11.2 and apply it to the parametric setting of the
localized RB method. Since we use an implicit Euler time stepping for the reduced
scheme we can readily apply Corollary 1 and Example 1 by specifying all arising
terms.

Given any discontinuous function qred.�/ 2 Qred � Qk
h 6� H1

0.˝/, we use
the Oswald interpolation operator IOS W Qk

h ! Qk
h \ H1

0.˝/, which consists of
averaged evaluations of its source at Lagrange points of the grid h (compare
[14, Sect. 4] and the references therein), to compute the conforming and non-
conforming parts of a function by qcred WD IOS.qred/ and qdred WD qred � qcred,
respectively. Following Remark 1, we estimate the elliptic reconstruction error,
jjj".n ��t/jjj�, by the localizable and offline/online decomposable a posteriori error
estimate �.pred.n ��tI�/I�;�; Q�/ from [14, Corollary 4.5], where Q� 2 P denotes
any fixed parameter.

Since b reduces on H1
0.˝/ to the symmetric bilinear form (11.7), we have

jjjb.�; �I�/jjj� D 1 for any � 2 P . Denoting the Poincaré constant with respect
to ˝ by C˝P > 0, we can estimate jj˘red.q/jjL2.˝/ � C˝P c".�/

�1 jjjqjjj� for any
� 2 P , q 2 H1

0.˝/ and
ˇ̌̌̌ ˇ̌
@tpdred.t/

ˇ̌̌̌ ˇ̌
�;Q;�1 � C˝P c".�/

�1 ˇ̌̌̌ @tpdred.t/
ˇ̌̌̌
L2.˝/

for

@tpdred 2 L2.0;TendIQred/ and � 2 P . We thus obtain the following estimate by
applying Corollary 1 and Example 1 using the energy norm jjj�jjj� and the norm
equivalence (11.10).

Corollary 2 Let the two partitions h and TH of ˝ fulfill the requirements of
[14, Theorem 4.2], namely: let h be shape regular without hanging nodes and
fine enough, such that all data functions can be assumed polynomial on each
t 2 h; let the subdomains T 2 TH be shaped, such that a local Poincaré
inequality for functions in H1.T/ with zero mean holds. For � 2 P let p.�I�/ 2
L2.0;TendIH1

0.˝// denote the weak solution of the parabolic problem (11.1) and
let pred.�I�/ 2 L2.0;TendIQred/ denote the reduced solution of the fully-discrete
problem (11.9), where the constant function 1 is present in all local reduced bases
spanning Qred. It then holds for arbitrary O�;�; Q� 2 P , that

jjp.�/ � pred.�/jjL2.0;TendIjjj�jjj�/
� ˛.�;�/�1=2

n
jjec.0I�/jjL2.˝/ C p

5
ˇ̌̌̌
pdred.�/

ˇ̌̌̌
L2.0;TendIjjj�jjj�/

C 2 ˛.�; O�/�1 Cb
H;Q. O�/ ˇ̌̌̌ @tpdred.�/

ˇ̌̌̌
L2.0;TendIL2.˝//

C .
p
5C 1/ �ell..pred.�/; �; Q�/
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C 2 ˛.�; O�/�1 Cb
H;Q. O�/ jjRT.pred.�/I�/jjL2.0;TendIL2.˝//

o

DW �h;red.pred.�/I�; O�;�; Q�/

with Cb
H;Q. O�/ D C˝P c". O�/�1 and

�ell..pred.�/I�; Q�/2 WD 4�t

3

ntX
nD0

n
�OS2015.pred.n ��tI�/I�;�; Q�/

C
X
e2Fh

bep.pred.n ��tI�/; pred.n ��tI�/I�/
o

where �OS2015 denotes the estimate � from [14, Corollary 4.5].
In Corollary 2, we have the flexibility to choose three parameters O�;�; Q� 2 P:

the parameter� can be used to fix a norm throughout the computational process (for
instance during the greedy basis generation), while the purpose of the parameters O�
and Q� is to allow all quantities to be offline/online decomposable, cf. [14]. The price
to pay for this flexibility are the additional occurrences of ˛, which are equal to 1 in
the nonparametric case or if the parameters coincide.

11.5 Numerical Experiments

We consider (11.1) on ˝ D Œ0; 5� � Œ0; 1�, Tend D 0:05, with p0 D 0 and the
data functions f , � and � from the multiscale example in [14, Sect. 6.1]: �" is the
highly heterogeneous permeability tensor used in the first model of the 10th SPE
Comparative Solution Project,1 f models a source and two sinks and �.�/ WD 1 C
.1��/�c, where �c models a high-conductivity channel. The role of the parameter
� 2 P WD Œ0:1; 1� is thus to toggle the existence of the channel, the maximum
contrast of �.�/�" amounts to 106 (compare Fig. 11.1).

Basis Generation On each subdomain T 2 TH we initialize the local reduced
basis with 'T

red WDgram_schmidt(f1; f jTg), where gram_schmidt denotes
the Gram-Schmidt orthonormalization procedure (including re-orthonormalization
for numerical stability) with respect to the full H1.T/ product from our software
package pyMOR (see below). The constant function 1 has to be present in the local
reduced bases according to [14, Theorem 4.2] (to guarantee local mass conservation
w.r.t. the subdomains), while the presence of f sharpens the a posteriori estimate
by minimizing ˘red. f / � f , as motivated by the elliptic reconstruction (11.3). We
iteratively extend these initial bases using a variant of the POD-GREEDY algorithm
[6]: in each iteration (i) the worst approximated parameter, say �
 2 Ptrain, is found

1http://www.spe.org/web/csp/index.html.

http://www.spe.org/web/csp/index.html
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µ = 1 µ = 0.1

Fig. 11.1 Data functions and sample solutions on a grid with jhj D 8000 simplices for
parameters � D 1 (left column) and � D 0:1 (right column). Both plots in the first row as well
as the bottom four plots share the same color map (middle) with two different ranges. First row:
logarithmic plot of �.�/�" (dark: 1:41 � 10�3, light: 1:41 � 103). Rest: plot of the pressure ph.tI�/
(solution of (11.2), dark: �3:92 � 10�1, light: 7:61 � 10�1, isolines at 10%, 20%, 45%, 75% and
95%) for t D 0:01 (middle row) and the end time t D Tend D 0:05 (bottom row). Note the presence
of high-conductivity channels in the permeability (top left, light regions) throughout large parts of
the domain. The parameter dependency models a removal of one such channel in the middle right
of the domain

by evaluating the a posteriori error estimate from Corollary 2 over a set of training
parameters Ptrain � P; (ii) a full solution trajectory f ph.n ��tI�
/ j 0 � n � ntg is
computed using the discretization from Sect. 11.3; and (iii) the local reduced bases
'T

red for each subdomain T 2 TH are extended by the dominant POD mode of the
projection error of fph.n ��tI�
/jT j 0 � n � ntg, using the above Gram-Schmidt
procedure.

Software Implementation We use the open-source Python software package
pyMOR2 [11] for all model reduction algorithms as well as for the time stepping. For
the grids, operators, products and functionals we use the open-source C++ software
package DUNE, in particular the generic discretization toolbox dune-gdt3 (see
[14, Sect. 6] and the references therein), compiled into a Python module to be
directly usable in pyMOR’s algorithms.

We use a simplicial triangulation for the fine grid h, rectangular subdomains
T 2 TH and 10 equally sized time steps for the implicit Euler scheme. Within each
subdomain we use a local DG space of order 1, the resulting discretization thus
coincides with the one proposed in [4].

We observe a comparable decay of the estimated error during the greedy basis
generation in Fig. 11.2 for all subdomain configurations, though faster for a larger
number of subdomains jTHj, where the reduced space is much richer. In particular,
to reach the same prescribed error tolerance in the greedy algorithm, much less

2http://pymor.org.
3http://github.com/dune-community/dune-gdt.

http://pymor.org
http://github.com/dune-community/dune-gdt
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Fig. 11.2 Estimated error
evolution during the
POD-GREEDY basis
generation for several
subdomain configurations and
O� D � D Q� D 0:1, to
minimize all occurrences of ˛
in Corollary 2. Depicted is
the maximum estimated error
over a set of ten randomly
chosen test parameters
Ptest �P in each step of the
greedy algorithm, which was
configured to search over ten
uniformly distributed training
parameters

0 2 4 6 8

102

103

104

#of solutions required (resp.: #greedy extension steps)

| H | = 5×1
| H | = 10×2
| H | = 15×3
| H | = 20×4

solution snapshots are required for larger numbers of subdomains. We refer to [12,
Sect. 3.3] for a comparison of localized RB methods versus traditional RB methods.

11.6 Conclusion

In this contribution we used the elliptic reconstruction technique for a posteriori
error estimation of parabolic problems [3, 5, 9, 10] to derive efficient and reliable
true error control for the localized reduced basis method applied to scalar linear
parabolic problems. Numerical experiments were given to demonstrate the applica-
bility of the approach.
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Chapter 12
Efficient Reduction of PDEs Defined on Domains
with Variable Shape

Andrea Manzoni and Federico Negri

Abstract In this work we propose a new, general and computationally cheap
way to tackle parametrized PDEs defined on domains with variable shape when
relying on the reduced basis method. We easily describe a domain by boundary
parametrizations, and generate domain (and mesh) deformations by means of a
solid extension, obtained by solving a linear elasticity problem. The proposed
procedure is built over a two-stages reduction: (1) first, we construct a reduced
basis approximation for the mesh motion problem; (2) then, we generate a reduced
basis approximation of the state problem, relying on finite element snapshots
evaluated over a set of reduced deformed configurations. A Galerkin-POD method is
employed to construct both reduced problems, although this choice is not restrictive.
To deal with unavoidable nonaffine parametric dependencies arising in both the
mesh motion and the state problem, we apply a matrix version of the discrete
empirical interpolation method, allowing to treat geometrical deformations in a
non-intrusive, efficient and purely algebraic way. In order to assess the numerical
performances of the proposed technique, we address the solution of a parametrized
(direct) Helmholtz scattering problem where the parameters describe both the shape
of the obstacle and other relevant physical features. Thanks to its easiness and
efficiency, the methodology described in this work looks promising also in view
of reducing more complex problems.

12.1 Introduction

The reduced basis (RB) method provides nowadays a very efficient approach
for the numerical approximation of problems arising e.g. from engineering and
applied sciences which require the repeated solution of differential equations.
Well-known instances include partial differential equations (PDEs) depending on
several parameters, PDE-constrained optimization, as well as optimal control and
design problems. In all these cases, the RB method replaces the original large-
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scale numerical problem (or high-fidelity approximation) originated by applying,
e.g., a finite element (FE) method, with a reduced problem of substantially smaller
dimension [14, 25].

In all these contexts, relevant instances of parametrized PDEs arise when dealing
with problems defined over spatial domains undergoing geometrical transforma-
tions; this is the case of design problems, where being able to rapidly adapt existing
meshes to design variations is essential to perform, e.g., shape optimization in an
efficient way.

On the other hand, an offline/online stratagem, relying on the so-called affine
parametric dependence, is required to gain a strong computational speedup when
dealing with RB approximations to parametrized PDEs. In this respect, dealing with
shape variations has often a major impact on the computational efficiency, since:

1. equipping the set of varying shape with a suitable parametrization is an
involved, highly problem-dependent, task. In the RB context, parametric maps
defined over the whole domain are needed to formulate the PDE problem
on a parameter-independent reference configuration. However, in computed-
aided design (CAD), boundary parametrizations under analytic form are usually
defined for surfaces (in d D 3 dimensions) or curves (d D 2), rather than for the
whole domain, thus preventing their direct use within the RB context;

2. geometrical parametrizations usually yield nonaffine parametric dependencies,
so that an affine approximation of PDE operators has to be recovered through
the empirical interpolation method (EIM) [3, 19] – or its discrete counterpart
(DEIM) [6]. This usually entails an extensive work on the continuous formulation
of the problem, as well as intrusive changes to its high-fidelity implementation.

Several techniques have been exploited to perform RB approximations of PDEs
defined on varying domains. The simplest idea is to use affine maps, which induce
an affine parametric dependence, but only enable elementary deformations [26].

More involved deformations can be obtained by introducing nonaffine maps
yielding volume-based parametrizations. Within this class, we mention free-form
deformations (FFD) [2, 17, 21, 27, 31] and interpolation relying on radial basis
functions (RBF) [9, 10, 20, 23] as remarkable instances. Both techniques originate
global deformations by combining the displacements of a set of control points. FFD
deal with a cartesian lattice of control points and a tensor product of splines to
combine control points displacements; these latter are instead interpolated in the
RBF case, where the control points can be freely located inside the domain. In both
cases, however, selecting the number of control points, their position and admissible
displacements is far from being trivial.

Another option relies instead on the use of transfinite mappings, which define
the interior points of the original domain as linear combinations of points on the
boundaries [11]. In particular, each edge of the original domain is obtained as a
one-to-one mapping of the corresponding edge on the reference domain, through a
vector of geometrical parameters, see e.g. [8, 15, 16].

Finally, the use of B-splines and NURBS basis functions as a possible tool
to define more complex and realistic geometrical parametrizations has also been
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explored in [22, 28], in combination with isogeometric analysis for the generation
of the high-fidelity approximation.

The mesh motion strategy considered in this work allows to simplify the
way to deal with geometrical deformations, by relying on (1) simple boundary
parametrizations, and (2) the solution of a solid extension problem. Moreover,
we exploit a recently proposed matrix version of DEIM (MDEIM, [5, 23, 37])
to perform inexpensive evaluations of the online matrix operators for both the
deformation and the state problem. Hence, we first recover an affine parametric
dependence in the high-fidelity arrays appearing in both problems, by applying
MDEIM and DEIM for matrix and vector operators, respectively. This is performed
in a purely algebraic, black-box, in order to overcome the application of the EIM on
the continuous formulation of the problem, which is usually highly demanding, see
e.g. [4, 12, 24]. Then, we perform the RB approximation of both the deformation
and the state problem, relying on a Galerkin-POD technique.

The paper is structured as follows. In Sect. 12.2 we describe the proposed mesh
deformation technique. In Sect. 12.3 we introduce the class of problems we deal
with in this work, as well as the main features of the RB approximation framework
we develop. The whole computational procedure is then applied in Sect. 12.4 for
the sake of the efficient solution of a parametrized (direct) Helmholtz scattering
problem. Finally, some conclusions are reported in Sect. 12.5.

12.2 Solid Extension Mesh Moving Techniques

Let e̋ � R
d be a spatial domain with boundary e� , where d D 2; 3 is the number of

space dimensions. We denote by e� h a discretization of the boundary e� and by e̋h a
volumetric mesh of that geometry, e.g. a triangular mesh in 2D or a tetrahedral mesh
in 3D. Given a boundary deformation e� h 7! �h, mesh deformation techniques adapt
the mesh e̋h such that (i) the updated mesh ˝h conforms to the updated boundary,
i.e. @˝h D �h and (ii) the geometric embedding of ˝h (i.e., its nodes positions) is
modified while keeping fixed the mesh topology (i.e., its connectivity).

Among a wide range of existing mesh deformation techniques, here we focus
on the so called mesh-based variational methods (see, e.g., [32]). These latter
compute smooth harmonic [1], biharmonic [13] or elastic [33–35] deformations by
solving Laplacian, bi-Laplacian or elasticity problems, respectively. Specifically,
we consider this latter, which is often referred to as solid-extension mesh moving
technique (SEMMT) [33–35].

Before describing the method, let us first introduce a non-overlapping decompo-
sition of the boundary � into a deformable portione� and a fixed one @˝ ne� . Given
a boundary displacement h 2 ŒH1=2.e� /�d such that � D fx 2 R

d W x D QxC h; Qx 2e̋g, the SEMMT generates a deformed domain˝ as

˝.h/ D fx 2 R
d W x D Qx C d.h/; Qx 2 e̋g
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where d D d.h/ 2 ŒH1.e̋/�d is the displacement field solution of the following
linear elasticity problem:

�div.� .d// D 0 in e̋
d D h one�
d D 0 on @e̋ ne�:

(12.1)

Here, � .d/ D 2�".u/C�div.d/I is the Cauchy stress tensor , � and � are the Lamé
constants, I is the identity tensor and ".d/ D 1

2
.rd C rdT/ is the strain tensor.

Since the SEMMT is then applied at the discrete level, we introduce the FE trial
and test functions spaces

Vh.h/ D fvh j vh 2 ŒPh�
d; vhje�h D h; vhj@e̋hne�h D 0g;

V0h D fvh j vh 2 ŒPh�
d; vhj@e̋ D 0g;

where Ph denotes a FE space made of piecewise polynomial nodal basis functions.
The high-fidelity FE approximation of (12.1) reads as follows: find dh 2 Vh.h/ such
that

Z
e̋h

� .dh/ W ".vh/ d e̋ D 0 8vh 2 V0h : (12.2)

As described in [34], the method is then augmented with a proper Jacobian-based
stiffening in order to enhance the mesh quality. To this end, the way we account for
the Jacobian of the transformation from the element domain to the physical domain
is altered by replacing the global integrals in (12.2) as follows

Z
e̋h

Œ� � � � d e̋ D
X
e2e̋h

Z
�

Œ� � � �eJe d� �!
X
e2e̋h

Z
�

Œ� � � �eJe
�
J0

Je

��
d�:

(12.3)

Here, � denotes the reference element, Je is the Jacobian of the element e, J0 is an
arbitrary scaling parameter and � 2 RC is the so-called stiffening power.

At the algebraic level, problem (12.2) yields a linear system of large dimension
Nd
h � Nd

h to be solved,

B.�/dh D g.h/; (12.4)

where dh 2 R
Nd
h , B.�/ 2 R

Nd
h�Nd

h and the right-hand side vector g.h/ 2 R
Nd
h encodes

the action of the nonhomogeneous Dirichlet condition imposed one� .
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Fig. 12.1 Left: undeformed volumetric mesh e̋h; center and right: examples of deformed
volumetric meshes ˝h.h/ obtained through (12.5)

Given a boundary displacement h, solving (12.4) thus allows to obtain a deformed
volumetric mesh

˝h.h/ D fxh 2 R
d W xh D Qxh C dh.�;h/; Qxh 2 e̋hg:

which satisfies the requirements (i) and (ii).
The boundary displacement h can be generated in different ways depending on

the application at hand. In this work, we consider the simplest case where h is given
in the form of a parameter-dependent analytic function. To make an example, let us
consider the 2D domain ˝ D D.0I 5/ n D.0I 1/, where D.xcI r/ denotes the open
disk of center xc and radius r. A family of boundary deformations parametrized with
respect to a vector of two parameters .˛; ˇ/ could be defined as follows [7]

h D Œcos.t/C ˛ cos.2t/ � ˛; ˇ sin.t/� (12.5)

with t D atan2.Qx1; Qx2/ 2 Œ0; 2��, see Fig. 12.1. A more advanced alternative would
be to use suitable boundary morphing techniques like RBF or the design element
approach, see e.g. [38]. In all these cases, however, the boundary deformation is
controlled through a (possibly small) set Pg � R

g of geometrical parameters
�g, i.e. h D h.�g/. For instance, in the case of expression (12.5) we have
�g D .˛; ˇ; �/, by considering the stiffening power � 2 RC as a further parameter.
As a result, the mesh motion (MM) problem turns into the following parametrized
problem: given �g 2 Pg, find the displacement field dh 2 R

Nd
h such that

B.�g/dh D g.�g/: (12.6)

Note that the dependence of problem (12.6) on the parameters defining the family
of boundary deformations is only through its right-hand side g.
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12.3 Reduced Basis Approximation: POD-Galerkin
Techniques and Matrix DEIM

Solving problem (12.1) allows to compute a displacement field over the whole
domain; any parameter-dependent instance of the domain thus result by applying
the displacement to the reference, parameter-independent, domain e̋ � R

d, that is,

˝.�g/ D fx 2 R
d W x D Qx C d.�g/; Qx 2 e̋g; �g 2 PgI

the computational mesh e̋h over which the state problem is solved is then given by

˝h.�g/ D fxh 2 R
d W xh D Qxh C dh.�g/; Qxh 2 e̋hg; �g 2 Pg;

being dh D dh.�g/ the solution of the high-fidelity problem (12.6). Since its
solution for any parameter vector �g 2 Pg would be computationally expensive,
we rather approximate the displacement field by relying on the RB method,
whose main ingredients will be detailed in the following. Hence, we approximate
dh.�g/ 	 VdN.�g/ as a linear combination of Nd (deformation) basis functions,
being dN 2 R

Nd a vector of coefficients. The latter is the solution of a problem
obtained by projecting the high-fidelity system (12.6) onto the basis V, as we shall
describe later.

As a result, the set of parametrized domains we deal with is given by

˚
˝N

h .�g/ D fxNh 2 R
d W xNh D Qxh C VdN.�g/; Qxh 2 e̋hg; �g 2 Pg

� I
(12.7)

provided that the error kdh.�g/ � VdN.�g/k is sufficiently small—this is indeed
ensured by standard algorithms in the RB context—˝N

h .�g/ yields an accurate
approximation of ˝h.�g/.

12.3.1 Formulation of the State Problem

Let us now move to the state problem we finally want to solve. For the sake of
illustration, we consider as state problem the case of a scalar linear elliptic stationary
PDE, although the proposed technique can be extended to more general problems
in a straightforward way. Let us denote by W D W.�g/ a suitable Hilbert space,
defined over the parameter-dependent domain ˝.�g/ � R

d; in abstract form, the
parametrized problem we focus on can be written as follows: given� D .�g;�p/ 2
P D Pg � Pp � R

gCp, find u.�/ 2 W.�g/ such that

a.u.�/; vI d.�g/;�p/ D f .vI d.�g/;�p/ 8v 2 W.�g/I (12.8)
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here �p denotes a vector of physical parameters only affecting the state problem.
Note that the presence of the displacement d.�g/, playing the role of known
parametrized field in (12.8), induces a dependence of both the bilinear form
a.�; �I d.�g/;�p/ W W.�g/ � W.�g/ ! C and the linear form f .�I d.�g/;�p/ W
W.�g/ ! C on �g, too.

Here we assume that a.�; �I d.�g/;�p/ is continuous and weakly coercive over
W � W, and that f .�I d.�g/;�p/ is continuous, for any .�g;�p/, so that prob-
lem (12.8) admits a unique solution thanks to Nečas theorem.

The high-fidelity, FE approximation of problem (12.8) can then be obtained upon
defining a FE space Wh.�g/ � W.�g/ over the domain ˝N

h .�g/, and seeking
uh.�/ 2 Wh.�g/ such that

a.uh.�/; vhIdN.�g/;�p/ D f .vhIdN.�g/;�p/ 8vh 2 Wh.�g/I (12.9)

note that we have already considered the RB approximation of the displacement
field. From an algebraic standpoint, problem (12.9) yields a linear system of large
dimension Nu

h � Nu
h to be solved,

A.�/uh.�/ D f.�/; (12.10)

where A.�/ D A.dN.�g/I�p/ 2 R
Nu
h�Nu

h and f.�/ D f.dN.�g/I�p/ 2 R
Nu
h .

12.3.2 POD-Galerkin Reduced Order Models (ROMs)

Problems (12.6) and (12.10) share the same nature of parameter-dependent, high
dimensional, linear systems arising from the discretization of two different second-
order parametrized PDEs. To solve them efficiently, we rely in both cases on the RB
method, thus approximating the unknowns uh in a basis W 2 R

Nu
h�Nu , dh in a basis

V 2 R
Nd
h�Nd of reduced dimensions Nu � Nu

h , Nd � Nd
h , i.e. uh.�/ 	 WuN.�/,

dh.�g/ 	 VdN.�g/. Then, we enforce the orthogonality of the residual of each
equation to W and V, respectively, thus resulting in two Galerkin-RB problems
under the following form: given �g 2 Pg, find dN.�g/ 2 R

Nd

BN.�g/dN.�g/ D gN.�g/; (12.11)

and then, given �p 2 Pp, find uN.�/ 2 R
Nu such that

AN.�/uN.�/ D fN.�/; (12.12)
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where the reduced matrices and vectors are given by

BN.�g/ D V
T
B.�g/V; gN.�g/ D V

Tg.�g/; (12.13)

AN.�/ D W
T
A.dN.�g/I�p/W; fN.�/ D W

T f.dN.�g/I�p/: (12.14)

Here, we rely on the proper orthogonal decomposition (POD) method for
the construction of the RB spaces. Once a set of snapshots of problems (12.6)
and (12.10) has been computed, the singular value decomposition of the cor-
responding correlation matrices automatically yield optimal sets of orthonormal
basis functions; see, e.g., [25] for further details. Note that each snapshot of
problem (12.10) is computed on a different spatial domain, depending on the value
of �g; nevertheless, this is not a concern, since we have assumed that the mesh
deformation induced by dh.�g/ (and, correspondingly, by dN.�g/) does not affect
the mesh connectivity and, as a result, the connectivity graph of the matrix A.�/,
too. The resulting POD-Galerkin technique allows to obtain two problems (12.11)
and (12.12) of very small dimension.

Assembling the reduced matrices and vectors as in (12.13) and (12.14) when
� 2 P varies is still too expensive in order to achieve efficient offline construction
and online evaluation of the RB problem. As already mentioned, if the system
matrices (resp. vectors) can be expressed as an affine combination of constant
matrices (resp. vectors) weighted by suitable parameter-dependent coefficients, each
term of the weighted sums can be projected offline onto the RB space spanned by
W, V, respectively. For instance, if we assume that the matrix A.�/ admits an affine
decomposition

A.�/ D
MAX
qD1

�Aq .�/Aq; (12.15)

then

AN.�/ D W
T
A.�/W D

MAX
qD1

�Aq .�/W
T
AqW;

where �Aq WP 7! R and Aq 2 R
Nu
h�Nu

h are given functions and matrices, respectively,
for q D 1; : : : ;MA; a similar affine decomposition made by Mf terms is required
for the vector f.�/ as well. Since the reduced matrices WT

AqW 2 R
Nu�Nu can be

precomputed and stored offline, the online construction of the RB arrays in (12.14)
for a given � is fast and efficient as long as MA;Mf � Nu

h ; a similar conclusion
clearly holds for the RB arrays in (12.13), too.

In order to recover the affine structure (12.15) in those cases where the operator
A.�/ is nonaffine (i.e., (12.15) is not readily available), we must introduce a further
level of reduction, called hyper-reduction; we thus refer to the resulting ROM as
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{µ 1
g, · · · ,µ J

g}

collect solution and
system snapshots:

dh(µ j
g)

B(µ j
g), g(µ j

g)

MM-HROM SP-HROM

collect solution and
system snapshots:

uh(µ k)

A(µ k), f(µ k)

{µ 1, · · · ,µ K}

offline

MM-FOM

(M)DEIM

POD

SP-FOM

(M)DEIM

POD

µ = (µ g,µ p) dN(µ g) uN(µ)

online

Fig. 12.2 Scheme of offline and online phases for the geometry and state reduction. Here MM-
FOM and MM-HROM refer to (12.6) and (12.11), respectively (i.e. the full and hyper-reduced
order models for the mesh motion (MM) problem). SP-FOM and SP-HROM refer instead
to (12.10) and (12.12), respectively (i.e. the full and hyper-reduced order models for the state
problem (SP))

hyper-ROM (HROM). Here, we rely on DEIM to approximate the vectors f.�/ and
g.�g/, and its matrix variant MDEIM to approximateA.�/ and B.�g/. A schematic
summary of the entire offline/online computational strategy is offered in Fig. 12.2.

12.3.3 Matrix DEIM

For the sake of space—and because of its relative novelty—here we only detail the
way DEIM can be used to approximate a parameter-dependent matrix K./WT 7!
R

Nh�Nh , where  denotes a generic parameters vector. Given K./WT 7! R
Nh�Nh ,

the problem is to find M � Nh functions �qWT 7! R and parameter-independent
matrices Kq 2 R

Nh�Nh , 1 � q � M, such that

K./ 	 Km./ D
MX

qD1
�q./Kq: (12.16)
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The offline stage of this procedure consists of two main steps. First we express
K./ in vector format by stacking its columns, that is, we set k./ D vec.K.// 2
R

N2h . Hence, (12.16) can be reformulated as: find f˚;	./g such that

k./ 	 km./ D ˚	./; (12.17)

where ˚ 2 R
N2h�M is a -independent basis and 	./ 2 R

M the correspond-
ing coefficients vector. Then, we apply DEIM as in [6] to a set of snapshots

 D Œvec.K.1//; : : : ; vec.K.ns//� in order to obtain the basis ˚ and a set of
interpolation indices I � f1; � � � ;N2hg. The former is computed by applying the
POD technique over the columns of 
, whereas the latter is iteratively selected by
employing the magic points algorithm [19].

During the online phase, given a new  2 T , we can compute Km./ as

Km./ D vec�1.˚	.// with 	./ D ˚�1I KI ./; (12.18)

where ˚I and KI ./ denote the matrices formed by the I rows of ˚ and K./,
respectively. We point out that, for the sake of model order reduction, the crucial step
in the online evaluation of Km./ is the computation of KI ./. Nevertheless, this
operation can be performed efficiently when K./ results from a FE discretization of
a PDE operator, by employing the same assembly routine used for the high-fidelity
problem on the reduced mesh associated to the selected interpolation indices; see,
e.g., [23] for further details.

12.4 Numerical Example

As a proof of concept of the proposed technique, we consider a (direct) scattering
problem dealing with the Helmholtz equation. Scattering problems are meant to
study the effect that a bounded obstacle (or scatterer) has on incident waves,
depending on the geometrical properties of the body; these latter are considered
as geometrical parameters of interest. Such a problem is relevant in a wide range of
applications such as the design of sonars and radars, medical imaging, geophysical
exploration, and nondestructive testing [7]. Given the incident wave, the goal of a
direct scattering problem is to determine the scattered wave for the known obstacle;
from a numerical standpoint, this is also a premise in view of the (indeed, very
challenging) inverse scattering problem, in which the obstacle shape has to be
reconstructed from far-field measurements. Helmholtz equations have already been
tackled by RB methods, see, e.g. [18, 29, 30].

Let B � R
d, d D 2; 3, the domain of an object with boundary � D @B, and

assume that � D �.�g/ is parametrized with respect to a vector of geometrical
parameters�g 2 Pg � R

g. The exterior domain is defined by the unbounded region
R D R

d n B; here we restrict ourselves to the case d D 2, although everything can
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Fig. 12.3 Sketch of the
domain and of the underlying
physics; background coloring
given by <.u/ for
�g D .�0:4; 1:2; 1:2/,
� D 5, a D �=6

incoming  incoming  
wavewave

scattered scattered 
wavewave

Ω
Γext

γ(µ g)

B

be simply extended to the case d D 3 as well. Instead of considering an exterior
acoustics problem in an unbounded domain, we truncate this latter by an artificial
boundary �ext where local absorbing boundary conditions are imposed; as a result,
we deal with a bounded computational domain ˝ , see Fig. 12.3.

Here we consider the propagation of time harmonic waves, for which the acoustic
pressure P can be separated as P.x; tI�/ D <.u.xI�/e�i!t/; the complex amplitude
u D u.xI�/ then satisfies the Helmholtz equation

�u C �2u D 0 in ˝.�g/

u D �ei� a�x on �.�g/

ru � n � i�u D 0 on �ext:

(12.19)

Here � D !=c is the wave number, ! D 2�f the angular frequency and c D 340

cm s�1 the speed of sound. The scattered wave is time-harmonic, but not necessary
plane, whereas the incident wave is considered to be a plane, time-harmonic wave
ui.x; tI�/ D ei.�a�x�!t/ with amplitude A D 1 and direction a D .cos.a/; sin.a//T .
On the boundary �ext we prescribe a first-order absorbing boundary condition,
yielding an approximation of the Sommerfeld radiation condition

lim
r!1 r

�
@u

@r
� iku

�
D 0

usually imposed in the case of unbounded domains [36]. In addition to the
geometrical parameters�g D .˛; ˇ; �/ encoding the shape of the obstacle B and the
stiffening power, we also consider a vector of physical parameters �p D .�; a/ 2
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Pp � R
p to model different scenarios where the wave number, as well as the

direction, of the incident wave can vary.
We now apply the methodology developed in the previous sections to prob-

lem (12.19). The full-order model for the state Helmholtz problem is given by
a P

bubble
1 finite element approximation of (12.19), yielding a linear system of

dimension Nu
h D 147; 272 obtained using a mesh made of 97,934 triangular

elements. Similarly, the full-order model for the mesh motion problem (12.1) is built
using P

bubble
1 finite elements, yielding a linear system of dimension Nd

h D 294; 544.
Concerning the parameter range, we select ˛ 2 Œ�1=2; 1=2�, ˇ 2 Œ�0:81:2�,
� 2 Œ0; 1:4�; instead, physical parameters range in � 2 Œ2; 5�, a 2 Œ0; �=6�.

We first consider the reduction of the mesh motion problem. We begin by
computing a set of 50 solution, matrix and vector snapshots corresponding to 50
parameter samples selected by Latin Hypercube Sampling (LHS) design in Pg. The
eigenvalues of the correlation matrices of matrix and vector snapshots are reported
in Fig. 12.4. Based on their decay, we retain the first MB D 5 and Mg D 11 terms
and then perform MDEIM and DEIM, respectively, to select the sets of interpolation
indices. The reduced basis V is instead obtained by extracting N D 10 POD modes.
In all these cases, a tolerance of "POD D 10�5 has been imposed on the relative
information content criterion, see [25]. Very few basis functions are then required
to build an accurate ROM for the mesh motion problem, as it is shown by the
convergence analysis reported in Fig. 12.5, left. The magnitude of the resulting RB
displacement dN.�// is instead reported in Fig. 12.5, right, for different parameter
values.

Then, we turn to the reduction of the Helmholtz state problem—where˝.�g/ is
approximated by ˝N

h .�g/, see Eq. (12.7)—following the same procedure as above.
Regarding the system approximation, in this case MA D 60 and Mf D 142 terms
are selected out of 400 matrix and vector snapshots; concerning state reduction, we
retain N D 120 basis functions, see Fig. 12.6.
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Fig. 12.4 Decay of the singular values of system and solution snapshots for the mesh motion
problem
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Fig. 12.5 Left: Relative error on the solution of the mesh motion problem (averaged over a
test sample of 100 parameter values). Right: magnitude of the displacement dN .�/ for different
parameter values
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Fig. 12.6 Decay of the singular values of system and solution snapshots for the Helmholtz
problem

Note that the decay of the eigenvalues of the correlation matrix is much slower
than in the previous case highlighting a stronger variability of uh.�/—as well as
of the problem arrays A.�/, f.�/—with respect to combined variations of both
geometrical and physical parameters. This also translates into a much slower error
convergence with respect to the RB dimension Nu, see Fig. 12.7, right. The resulting
reduced mesh (see Fig. 12.7, left) is made of 291 elements, corresponding to about
the 0:3% of the original ones; note that they concentrate around the obstacle, i.e. in
the region where problem sensitivity to shape variations is higher. Some instances of
the solution uN.�/ to the Helmholtz equation obtained with the proposed technique
are finally shown in Fig. 12.8; as a concluding remark, we point out that the online
solution of both the reduced mesh motion (12.11) and the reduced Helmholtz
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Fig. 12.7 Left: zoom of the reduced mesh (red elements) around the object. Right: relative error
on the solution of the Helmholtz problem (averaged over a testing set of 200 parameter values)

Fig. 12.8 <.uN.�// for different values of the parameters

problem (12.12) problems takes about 0:26s, thus realizing a computational speedup
of about 25 times with respect to the finite element FOM.1

12.5 Conclusions

In this work we have presented a general and automatic way to deal with the
efficient solution of parameterized PDEs defined on domains with variable
shape. This framework combines a mesh motion technique relying on the
solution of a solid extension problem, a POD-Galerkin reduced basis method,
and a further hyper-reduction stage based on DEIM/MDEIM techniques.
Compared to already existing strategies for handling mesh deformations in
the RB context, the technique exploited in this work allows to directly
define global domain deformations starting from boundary parametrizations.
Indeed, relying on boundary—rather than volume—parametrizations is a

1These CPU times refer to computations performed on a workstation with Intel Core i5-2400S CPU
and 16 GB of RAM. The implementation of the mentioned algorithms has been done using the
redbKIT library (http://redbkit.github.io/redbKIT/), developed in the MATLAB®environment
and distributed under BSD 2-clause license.

http://redbkit.github.io/redbKIT/


12 Efficient Reduction of PDEs Defined on Domains with Variable Shape 197

very common way to handle shape variations when design optimization is
performed.

Although the proposed framework has been tested on a simplified case, where a
single explicit boundary parametrization has been considered, its capabilities look
promising in view of tackling a wider range of problems. For instance, it allows
to handle different types of parametrizations simultaneously, each one defined on
a separate portion of the boundary. It is also well-suited for three-dimensional
problems, provided a suitable boundary parametrization is defined in order to
describe those portions of the domain undergoing shape changes, and for time-
dependent problems, provided the deformation of the domain is described as a
function of time and parameters. The application of the proposed technique to
nonlinear problems is also straightforward, since the generation of the ROM for
the solid extension problem is independent from the one required by the state
problem. Furthermore, it also applies in the case where a database of boundary
deformations results from the solution of a different problem—rather than from an
explicit formula. This is the case, e.g., of fluid-structure interaction problems, where
the deformation of the fluid-structure interface is an unknown of the problem itself.
In this case, the ROM for the solid extension problem and the one for the fluid flow
both rely upon snapshots of the full-order fluid-structure interaction problem solved
at the offline stage; further work is ongoing in this respect.
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Chapter 13
Localized Reduced Basis Approximation
of a Nonlinear Finite Volume Battery Model
with Resolved Electrode Geometry

Mario Ohlberger and Stephan Rave

Abstract In this contribution we present first results towards localized model
order reduction for spatially resolved, three-dimensional lithium-ion battery models.
We introduce a localized reduced basis scheme based on non-conforming local
approximation spaces stemming from a finite volume discretization of the analytical
model and localized empirical operator interpolation for the approximation of the
model’s nonlinearities. Numerical examples are provided indicating the feasibility
of our approach.

13.1 Introduction

Over the recent years, three dimensional lithium (Li) ion battery models that fully
resolve the microscopic geometry of the battery electrodes have become a subject
of active research in electrochemistry [10]. These models are also studied in the
collaborative research project MULTIBAT, where the influence of the microscopic
electrode geometry plays in important role in understanding the degradation process
of Li-plating [9].

Due to the strongly nonlinear character of these models and the large number
of degrees of freedom of their discretization, numerical simulations are time
consuming and parameter studies quickly turn prohibitively expensive. Our work
in context of the MULTIBAT project has shown that model reduction techniques
such as reduced basis (RB) methods are able to vastly reduce the computational
complexity of parametrized microscale battery models while retaining the full
microscale features of their solutions [12, 15]. Still, such methods depend on the
solution of the full high-dimensional model for selected parameters during the
so-called offline phase. When only relatively few simulations of the model are
required—as it is typically the case for electrochemistry simulations where one
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is mainly interested in the qualitative behaviour of the battery cell—the offline
phase can quickly take nearly as much time as the simulation of the full model
for all parameters of interest would have required. It is, therefore, paramount to
reduce the number of full model solves as much possible. Localized RB methods
construct spatially localized approximation spaces from few global model solves or
even by only solving adequate local problems (see also [5, 6, 13] and the references
therein). Thus, these methods are a natural choice for accelerating the offline phase
of RB schemes, in particular for problems with a strong microscale character such
as geometrically resolved electrochemistry simulations.

While localized RB methods have been studied extensively for linear problems
and while there are first results for instationary problems [13, 15], we are not
aware of any previous work treating nonlinear models. In this contribution, we
introduce a localized RB scheme for nonlinear finite volume battery models, which
builds local approximation and interpolation spaces by decomposition of global
solution snapshots w.r.t. a given coarse triangulation of the computational domain
(Sect. 13.5). As a preparation, we will first briefly review the microscale battery
model under consideration (Sect. 13.2), its discretization (Sect. 13.3) and finally
its RB approximation (Sect. 13.4). We will close with first numerical experiments
that investigate the applicability of localized RB techniques to the problem at hand
(Sect. 13.6).

13.2 Analytical Model

As in [12, 15], we consider the microscale battery model introduced in [10] (without
taking thermal effects into account and assuming constant tC). In this model, the
battery cell is described via coupled systems of partial differential equations for the
concentration of LiC-ions and the electrical potential � for each part of the cell: the
electrolyte, positive and negative electrode, as well as positive and negative current
collector (Fig. 13.1).
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Fig. 13.1 Sketch of a lithium-ion battery cell. The cell is connected via two metallic current
collectors which are in contact with the negative/positive cell electrodes. The porous electrodes are
composed of active electrode particles into which Li-ions intercalate from the electrolyte filling the
pore space of the electrodes
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In the electrolyte, the change of the concentration c is governed by a diffusion
process, whereas � is determined by a stationary potential equation with source term
depending non-linearly on c:

@c

@t
� r � .Derc/ D 0;

�r �
�
�
1 � tC
F

RT
1

c
rc � �r�

�
D 0:

In the electrodes, the evolution of c, i.e. the intercalation of Li-ions into the active
particles, is again driven by diffusion. The potential � no longer depends on the
Li-ion distribution:

@c

@t
� r � .Dsrc/ D 0;

�r � .�r�/ D 0:

No Li-ions enter the metallic current collectors, so c 
 0 on this part of the domain,
whereas � is again given as:

�r � .�r�/ D 0:

The reaction at the interface between active electrode particles and the electrolyte
is governed by the so-called Butler-Volmer kinetics which determine the electric
current j D r� � n from the active particle into the electrolyte as

j D 2k
p
cecs.cmax � cs/ sinh

 
�s � �e � U0.

cs
cmax

/

2RT
� F
!
; (13.1)

where ce, �e (cs, �s) are the concentration and potential on the electrolyte (solid
particle) side of the interface. The Li-ion flux N over the interface proportionally
depends on j and is given by N D j=F. Note that the Butler-Volmer relations
ensure the coupling between both considered variables and, through the exponential
dependence on the overpotential �s � �e � U0.cs=cmax/, lead to a highly nonlinear
behaviour of the system.

Finally, continuity conditions for � are imposed between electrode and current
collector, whereas there is no coupling between electrolyte and current collector.
The following boundary conditions are imposed: � D U0.c.0/=cmax/ at the negative
current collector boundary, Neumann boundary conditions at the positive current
collector (applied fixed charge/discharge rate) and periodic boundary conditions for
c and � at the remaining domain boundaries. We denote the initial concentration
at time t D 0 by c0 D c.0/, the final time is denoted as T. All appearing
natural/material constants as well as the initial data is summarised in Table 13.1.
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Table 13.1 Constants used in the battery model

Symbol Unit Value Description

De
cm2

s 1:622 � 10�6 Collective interdiffusion coefficient in electrolyte

Ds
cm2

s 10�10 Ion diffusion coefficient in electrodes

� s
cm 10 Electronic conductivity in neg. electrode

0:38 Electronic conductivity in pos. electrode

� s
cm 0:02 Ion conductivity

cmax
mol
cm3 24681 � 10�6 Maximum LiC concentration in neg. electrode

23671 � 10�6 Maximum LiC concentration in pos. electrode

k Acm2:5

mol1:5 0:002 Reaction rate at neg. electrode/electrolyte interface

0:2 Reaction rate at pos. electrode/electrolyte interface

c0
mol
cm3 1200 � 10�6 Initial concentration in electrolyte

2639 � 10�6 Initial concentration in neg. electrode

20574 � 10�6 Initial concentration in pos. electrode

tC 0:39989 Transference number

T K 298 Temperature

F As
mol 96; 487 Faraday constant

R J
molK 8:314 Universal gas constant

The open circuit potential U0 for a state of charge s is give as U0.s/ D .�0:132C1:41 �e�3:52s/ �V
for the negative electrode and as U0.s/ D Œ0:0677504 � tanh.�21:8502 � sC 12:8268/� 0:105734 ��
.1:00167� s/�0:379571 � 1:576�� 0:045 � e�71:69�s8 C 0:01 � e�200�.s�0:19/C 4:06279� � V for the

positive electrode

13.3 Finite Volume Discretization

Following [16], the continuous model is discretized using a basic cell centered finite
volume scheme on a voxel grid. Each voxel is assigned a unique subdomain and
the Butler-Volmer conditions are chosen as numerical flux on grid faces separating
an electrolyte from an electrode voxel. We obtain a single nonlinear finite volume
operator A� W Vh ˚ Vh ! Vh ˚ Vh for the whole computational domain, where Vh

denotes the space of piecewise constant grid functions and � indicates a parameter
we want to vary. In the following, we will consider the applied charge current as
parameter of interest. Implicit Euler time stepping with constant time step size �t
leads to the N WD T=�t nonlinear equation systems

"
1
�t .c

.nC1/
� � c.n/� /
0

#
C A�

 "
c.nC1/�

�
.nC1/
�

#!
D 0; .c.n/� ; �

.n/
� / 2 Vh ˚ Vh: (13.2)

The equation systems are solved using a standard Newton iteration scheme.
Note that we can decompose A� as

A� D A.aff /� C A.bv/ C A.1=c/ (13.3)
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where A.bv/;A.1=c/ W Vh ˚ Vh ! Vh ˚ Vh accumulate the numerical fluxes
corresponding to (13.1) and �

1�tC
F RT 1

crc. Thus, the operator A.aff /� collecting
the remaining numerical fluxes is affine linear and the only operator in the
decomposition depending on the charge rate. A.aff /� can be further decomposed as

Aaff
� D Aconst C � � Abnd C Alin; (13.4)

with constant, non-parametric operators Aconst;Abnd corresponding to the boundary
conditions and a non-parametric linear operator A.lin/.

13.4 Reduced Basis Approximation

As reduced model we consider the Galerkin projection of (13.2) onto an appropriate
reduced basis space QV  Vh ˚ Vh, i.e. we solve

P QV

("
1
�t .Qc.nC1/� � Qc.n/� /

0

#
C A�

 "
Qc.nC1/�

Q�.nC1/�

#!)
D 0; .Qc.n/� ; Q�.n/� / 2 QV; (13.5)

where P QV denotes the orthogonal projection onto QV . In order to obtain at an
online efficient scheme, the projected operator P QV ı A� has to be approximated by
an efficiently computable approximation. Considering the decompositions (13.3)
and (13.4), only the nonlinear operators A.bv/� , A.1=c/� require special treatment for
which we employ empirical operator interpolation [8] based on the empirical
interpolation method [2]. Denoting the discrete time differential operator by B, the
fully reduced scheme is then given as

n
P QV ı B C P QV ı A.const/ C � � P QV ı A.bnd/ C P QV ı A.lin/

C fP QV ı I.1=c/
M.1=c/g ı QA.1=c/

M.1=c/ ı R.1=c/
M0.1=c/

C fP QV ı I.bv/
M.bv/g ı QA.bv/

M.bv/ ı R.bv/
M0.bv/

o " Qc.tC1/�

Q�.tC1/�

#!
D 0;

(13.6)

where QA.
/
M.�/ W RM0.�/ ! R

M.�/
(� D bv; 1=c) denotes the restriction of A.
/ to certain

M.
/ image degrees of freedom given the required M0.
/ source degrees of freedom,
R.
/
M0.�/ W Vh ˚ Vh ! R

M0.�/
is the linear operator restricting finite volume functions

to these M0.
/ source degrees of freedom, and I.
/
M.�/ W RM.�/ ! Vh ˚ Vh is the linear

interpolation operator to the M.
/ evaluation points and an appropriately selected
interpolation basis. Note that for the considered finite volume scheme we have
M0.
/ � 14 � M.
/, thus QA.
/

M.�/ can be computed quickly for sufficiently small M.
/.
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The remaining terms in (13.6) are linear (or constant) and can be pre-computed for
a given reduced basis of QV .

In [15] we have considered the solution of (13.6) where QV and the interpolation
data for A.bv/, A.1=c/ have been generated using standard model order reduction
techniques. The reduced space QV was determined by computing a proper orthogonal
decomposition (POD) [17] of solution trajectories of (13.2) for an equidistant
training set of charge rate parameters. Since the c and � variables are defined on
different scales, the POD had to be applied separately for both variables, yielding
a reduced space of the form QV D QVc ˚ QV� , in order to obtain a stable scheme.
Moreover, the intermediate stages of the Newton algorithms used for solving (13.2)
were included in the snapshot data to ensure the convergence of the Newton
algorithms when solving the reduced scheme.

The interpolation bases and interpolation points have been obtained by evaluating
A.
/ on the computed solution trajectories and then performing the EI-GREEDY

algorithm [7] on these evaluations. Note that for solution trajectories of (13.2), A�
vanishes identically in the �-component. Thus, applying the EI-GREEDY algorithm
directly to evaluations of A� would not have yielded usable interpolation spaces.

13.5 Localized Basis Generation

Localized RB methods can be seen as RB schemes where the reduced space QV has a
certain direct sum decomposition QV D QV1 ˚ : : :˚ QVK with subspaces QVi associated
to some partition ˝ D ˝1 [ : : : [˝K of the computational domain ˝ . Since this
imposes an additional constraint on the possible choices of reduced spaces QV , it is
not to be expected that such methods yield better approximation spaces for the same
(total) dimension of QV than classical RB methods. However, these methods can yield
enormous saving in computation time during basis generation. In particular, we are
interested in the following aspects:

1. When the parametrization of the problem mainly affects the global solution
behaviour, only few global solution snapshots may be required to observe all
relevant local behaviour. This can be exploited by computing local approximation
spaces from global solutions which have been decomposed according to the
partition ˝1 [ : : : [˝K (e.g. [1]).

2. The local approximation spaces QVi may be enriched by solving appropriate local
problems on a neighbourhood of ˝i. The solution of the local problems can
be trivially parallelized, and each local problem will be solvable much faster
than the global problem, which might even be unsolvable with the available
computational resources (e.g. [14]).

3. When the problem undergoes local changes (e.g. geometry change due to Li-
plating), the spaces QVi which are unaffected by the change can be reused and
only few new local problems have to be solved (e.g. [5]).
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For many applications, the time for basis generation must be taken into account
when considering the overall efficiency of the reduction scheme. Hence, such
localization approaches can be an essential tool for making model order reduction
profitable for these applications. This is also the case for battery simulations, where
typically only relatively few parameter samples are required to gain an appropriate
idea of the behaviour of the model and these same computational resources
are available for all required simulations. Also note that while reduced system
matrices/Jacobians are dense matrices for standard RB approaches, one typically
obtains block sparse matrices for localized RB approaches, so the increased global
system dimension can be largely compensated by appropriate choices of linear
solvers.

In this contribution we investigate if spatially resolved electrochemistry simula-
tions are in principle amenable to such localization techniques. For this we partition
the computational domain with a cuboid macro grid with elements ˝1; : : : ˝K that
are aligned with the microscale voxel grid of the given finite volume discretization
(cf. Fig. 13.4). This partition induces a direct sum decomposition of Vh:

Vh D Vh;1 ˚ : : :˚ Vh;K ; Vhi D f f 2 Vh j supp. f /  ˝ig:

We now compute local reduced spaces QVc;i, QV�;i by first computing global solution

snapshots c.n/�s , �.n/�s for preselected parameters�1; : : : ; �S and then performing local
PODs of the L2-orthogonal projections of these snapshots onto the local finite
volume spaces Vh;i. Hence,

QVc;i  spanfPVh;i.c
.n/
�s
/ j 1 � s � S; 1 � n � Ng;

QV�;i  spanfPVh;i.�
.n/
�s
/ j 1 � s � S; 1 � n � Ng:

Since our high-dimensional model is already given as a non-conforming discretiza-
tion, we con now simply obtain a reduced model by solving (13.5) with the reduced
space

QV D . QVc;1 ˚ : : :˚ QVc;K/˚ . QV�;1 ˚ : : :˚ QV�;K/:

In order to obtain a fully localized model, localized treatment of the nonlinearities
A.bv/, A.1=c/ is required as well. Not only will most of the speedup during the
offline phase be lost when the interpolation data is computed without localization.
Global interpolation basis vectors will also induce a coupling between all local
approximation spaces QVc;i, QV�;i. Thus the block sparsity structure of the Jacobians
appearing in the Newton update problems for solving (13.6) is lost, strongly
deteriorating reduced solution times. Moreover, the additional reduced degrees of
freedom due to localization can exhibit a destabilizing effect when not accounted
for while generating the interpolation spaces: in the limit when each subdomain
˝i corresponds to a single voxel, we have QV D Vh ˚ Vh whereas the images of
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the interpolated operators are only M.bv/=M.1=c/-dimensional with M.bv/=M.1=c/ �
dim.Vh ˚ Vh/.

As a first approach to localized treatment of the nonlinear operators, we
proceed similar to the reduced basis generation. We first construct local empirically
interpolated operators I.
/

i;M
.�/
i

ı QA.
/
i;M

.�/
i

ı R.
/
i;M

0.�/
i

(� D bv; 1=c) by applying the

EI-GREEDY algorithm to the projected evaluations

fPVh;i.A
.
/.Œc.n/�s

; �.n/�s
�T // j 1 � s � S; 1 � n � Ng:

We then obtain the localized interpolated operators

A.
/ 	 I.
/ ı QA.
/ ı R.
/;

where

I.
/ D
h
I.
/
1;M

.�/
1

; : : : ; I.
/
K;M

.�/
K

i
; QA.
/ D diag

� QA.
/
1;M

.�/
1

; : : : ; QA.
/
K;M

.�/
K

�
; (13.7)

R.
/ D
h
R.
/
1;M

0.�/
1

; : : : ;R.
/
K;M

0.�/
K

iT
: (13.8)

Using these operators in (13.6) leads to a basic, fully localized and fully reduced
approximation scheme for (13.2).

In order to obtain a stable reduced scheme, accurate approximation of the Butler-
Volmer fluxes is crucial. However, each localized interpolated operator only takes
interface fluxes into its associated domain˝i into account: Let T1 be a finite volume
cell at the boundary of˝i and T2 an adjacent cell in a different subdomain˝j, i ¤ j.
Unless both cells are selected as interpolation points for the respective operators,
local mass conservation will be violated at the T1/T2 interface due to the errors
introduced by empirical interpolation.

To investigate whether these jumps in the interface fluxes of the interpolated
operators have a destabilizing effect, we consider the following modified scheme:
We denote by A0.
/i W Vh ˚ Vh ! Vh ˚ Vh, (� D bv; 1=c) the operator which
accumulates all numerical fluxes associated with A.
/ which correspond to grid faces
contained in˝i. Fluxes corresponding to faces which are also contained in some˝j,
i ¤ j, are scaled by 1=2. This scaling ensures that we have

A.
/ D
KX
iD1

A0.
/i :

Each operator A0.
/i is interpolated separately yielding approximations I0.
/
i;M

.�/
i

ı
QA0.
/
i;M

.�/
i

ı R0.
/
i;M

0.�/
i

, where the interpolation data is again obtained via EI-GREEDY
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algorithms for the evaluations

˚
A0.
/.Œc.n/�s

; �.n/�s
�T/ j 1 � s � S; 1 � n � N

�
:

We then proceed as before by defining I0.
/, QA0.
/, R0.
/ as in (13.7), and (13.8),
obtaining the localized approximation A.
/ 	 I0.
/ ı QA0.
/ ı R0.
/.

13.6 Numerical Experiment

As a first numerical experiment we consider the small battery geometry depicted
in Fig. 13.2. For this geometry we compare the performance of the two localized
RB approximation schemes introduced in Sect. 13.5 with the scheme without
localization described in Sect. 13.4.

The model was simulated for 2000 s with equidistant time steps of size �t WD
10 s. In order to preclude any effects from possibly insufficient sampling of
the solution manifold, the reduced models were constructed using the relatively
large amount of S D 20 equidistant parameters in the parameter domain P WD
Œ0:00012; 0:0012�A=cm2 	 Œ0:1; 1�C. All reduced approximation and interpolation
spaces were computed with relative POD/EI-GREEDY error tolerances of 10�7.
The resulting local reduced basis dimensions for the concentration and potential
variables are depicted in Fig. 13.4. The maximum model reduction errors were
estimated by computing the reduction errors for a test set of 10 random parameters
and are shown for the concentration variable in Fig. 13.3 (the errors in the potential
variable show similar behaviour). All simulations of the high-dimensional finite
volume battery model have been performed within the DUNE software framework
[3, 4], which has been integrated with our model order reduction library pyMOR
[11].

We observe (Fig. 13.3, top row) that both localized schemes yield stable reduced
order models with good error decay, provided a sufficiently large number of
interpolation points is chosen. The localized scheme with special treatment of the

Fig. 13.2 Small battery
geometry used in numerical
experiment. Domain:
104�m � 40�m � 40�m,
4:600 degrees of freedom.
Coloring: LiC-concentration
at final simulation time
T D 2000s, electrolyte not
depicted
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Fig. 13.3 Relative model order reduction errors for the concentration variable c. The error is
measured in the L2-in space, L1-in time, L1-in � norm for 10 randomly sampled parameters
� 2 P WD Œ0:00012; 0:0012�A=cm2 � Œ0:1; 1�C. Top left: errors for the fully localized scheme,
QVi WD QVc;i˚QV�;i, Mloc WD maxi.max.M.bv/

i ;M.1=c/
i //. Top right: errors for the fully localized scheme

with additional special treatment of the interface fluxes, M0

loc WD maxi.max.M0.bv/
i ;M

0.1=c/
i //.

Bottom left: errors for reduced basis approximation without localization, M WD max.M.bv/;M.1=c//.
Bottom right: errors for reduced basis approximation without localization with same axis scaling
as in top row

boundary fluxes (top right) is indeed overall more stable than the localized scheme
without boundary treatment (top left) and yields slightly smaller reduction errors.

In comparison to the global RB approximation (bottom right), less reduced
basis vectors/interpolation points are required per subdomain to obtain a good
approximation for the localized schemes. As expected for localized RB schemes, the
total number of basis vectors/interpolation points is larger (cf. bottom left) than for
the global scheme, however. Given the small size of the full order model, we cannot
expect any speedup for the localized reduced models. Nevertheless, based on our
experience with global RB approximation of this model [15], we expect only a small
increase in the number of required basis vectors/interpolation points to approximate
larger, finely resolved geometries. Thus, good speedups can be expected for large-
scale applications. Verifying this hypothesis, as well as developing algorithms for
efficient localized construction and enrichment of the local approximation spaces,
will be subject to future work (Fig. 13.4).
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Fig. 13.4 Maximum local reduced basis dimensions dim.QVc;i/ (left) and dim.QV�;i/ (right) obtained
in the numerical experiment

13.7 Conclusion

In this contribution we demonstrated the applicability of the Localized Reduced
Basis Method for an instationary nonlinear finite volume Li-ion battery model
with resolved pore scale electrode geometry. To this end, we have extended
the Localized Reduced Basis Method to parabolic systems of equations, while
simultaneously employing the localized empirical operator interpolation in order
to deal with the strong nonlinearities of the underlying electrochemical reaction
processes. Numerical experiments were given to demonstrate the model order
reduction potential of this approach.
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Chapter 14
A-Posteriori Error Estimation of Discrete POD
Models for PDE-Constrained Optimal Control

Martin Gubisch, Ira Neitzel, and Stefan Volkwein

Abstract In this work a-posteriori error estimates for linear-quadratic optimal
control problems governed by parabolic equations are considered. Different error
estimation techniques for finite element discretizations and model-order reduction
are combined to validate suboptimal control solutions from low-order models which
are constructed by a Galerkin discretization and the application of proper orthogonal
decomposition. The theoretical findings are used to design an updating algorithm for
the reduced-order models; the efficiency and accuracy are illustrated by numerical
tests.

14.1 Introduction

Many optimal control problems governed by partial differential equations (PDEs),
especially those in higher dimensions, are challenging to be solved numerically
because their discretization leads to very high-dimensional problems. This is the
reason why model reduction techniques, such as the method of proper orthogonal
decomposition (POD), are subject to active research. The method of POD approx-
imates a high-dimensional problem by a smaller, tractable problem by means of
projections of the dynamical system onto subspaces that inherit characteristics of
the expected solution. Regarding convergence results for POD solutions to parabolic
PDEs we refer, for instance, to [14]. In [9], an overview over the topic of POD
model order reduction is provided.

Recently, some effort has been made to derive a-priori and a-posteriori error
analysis for the reduced control problems. We refer to [11] for a-priori error
estimates for POD approximations to control problems, and to [25] for first results
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on a-posteriori error estimates for linear-quadratic problems. These results are
extended to nonconvex problems in [13], and to problems with mixed control-state
constraints in [8]. The numerical analysis of POD a-posteriori error estimation for
optimal control problems is investigated in [23]. However, the available results in
the literature on POD a-posteriori error estimates so far do not account for the fact
that the subspace for the reduced model is generated from snapshots of the full
order model, which, in the setting of PDE constrained optimization, is typically a
finite element (FE) discretization of a continuous model problem. Thus, what is
commonly referred to as the true solution in the context of reduced order models
(ROM) is itself in fact an approximation of the real solution.

For the FE approximation of the real solution of parabolic problems, there exists
a range of results on a-priori and a-posteriori error estimates. Concerning a-priori
estimates, we refer to [18] and references therein, where error estimates are provided
for a space-time FE discretization of PDE-constrained optimal control problems
without further control or state constraints. This approach has been extended to
problems with additional control constraints in [19], that—after minor modifications
to the simplified structure of the control space—covers the model problem to be
discussed in our paper. The discretization therein includes a (discontinuous Galerkin
type) variant of the implicit Euler scheme for the time discretization and usual
H1-conforming FE discretization in space. We will heavily rely on this Galerkin
structure of the discretization in Sect. 14.4, where we derive our main result. We note
in passing that FE discretization error estimates for parabolic problems are available
also for certain types of state constraints, see [21] or [7], or semilinear parabolic
problems with pointwise-in-time state constraints, cf. [15], or control constraints,
see e.g. [22]. Cf. also results on plain convergence without any rates in [2].

However, standard a-priori estimates are in general not a good indicator for
enlarging or updating the reduced-order models since they usually tend to over-
estimate the effective errors significantly. Instead, a-posteriori error estimates may
be applied; [1] provides such methods for uncontrolled parabolic PDEs, focussing
on adaptive time and spatial grid selection. In [12], a detailed discussion about
the discretization and regularization of optimal control problems is presented. For
adaptive discretization strategies based on a-posteriori error estimates for parabolic
optimal control without additional inequality constraints we refer to e.g. [17] and
[20] and the references therein.

In this paper, we are concerned with the following model problem with state y
and control u in spaces to be specified,

Minimize J. y; u/ WD 1

2

TZ

0

Z

˝

. y.t; x/ � yd.t; x//
2dx dt C �

2

NuX
iD1

TZ

0

ui.t/
2 dt

(14.1a)
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subject to

@ty ��y D
NuX
iD1

ui�i C f in .0;T/ �˝; y.0; �/ D y0 in ˝; (14.1b)

y D 0 in .0;T/ � @˝; ua � u.t/ � ub almost everywhere in .0;T/ (14.1c)

where the last inequality is to be understood componentwise. Note that the functions
�i W ˝ ! R, i D 1; : : : ;Nu, are given, fixed data. The exact setting of the model
problem will be described in the next section. We are interested in discussing how
the discretization error on the one hand and the model order reduction error on the
other hand relate and can possibly be balanced, motivated by the following two
questions:

1. Since a reduced-order model is based on the snapshots of a high-dimensional
approximative PDE solution, the model already includes the FE discretization
errors and it does not make sense to decrease the POD residual below the order
of the FE discretization error.

2. If, however, the error of the POD approximation does not reflect the order of the
discretization error even when increasing the POD basis rank, i.e. the size of the
reduced order model, the current POD basis may not reflect the dynamics of the
optimal POD basis N referring to the optimal state solution Ny. In this case, an
update of the POD basis may be required to improve the results.

The paper is organized as follows: In Sect. 14.2, we summarize available theoretical
results for the continuous optimal control problem. Then, in Sect. 14.3, we briefly
describe the FE discretization along the lines of [19], and state an a-priori error
estimate. In short, the discretization is utilized by discretizing the state and adjoint
equations by the so-called dG(0)cG(1) method, cf. for instance [4, 5]. That is, the
time-discretization of the PDEs is done by piecewise constant functions, whereas
usual H1-conforming finite elements in space are used. The time-dependent controls
are discretized implicitly via the optimality conditions, cf. also the variational
discretization approach in [10]. For convenience of the reader, we summarize
existence and regularity results for the solution of the semidiscrete and fully discrete
state equations, as well as existence of unique solutions to the optimal control
problems and optimality conditions on each discretization level. For our main result
in the subsequent section, we will use in particular the optimality conditions from
Sect. 14.3.2 as well as the error estimate from [19], which we state in Sect. 14.3.3.
Our main result, the a-posteriori error analysis for a suboptimal discrete solution,
where we have in mind the discrete POD solution, follows in Sect. 14.4. The main
step in our analysis is to extend the a-posteriori error analysis technique from [25],
which is related to the one in [16] for ordinary differential equations, to estimate the
error between the full-order FE solution and the (discrete) solution of the reduced
model. Here, we readily make use of the fact that the dG(0)cG(1) discretization
is a Galerkin scheme. We eventually obtain an a-posteriori error estimator along
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the lines of [25], but in contrast to the latter paper, the estimator is computable
in the strict sense since it only depends on the computed, FE solution rather than
the true unknown continuous solution. Comparing this error to the FE error can
be an indication if for instance a POD basis update is useful. Then, Sect. 14.5
finally describes the method of model order reduction via proper orthogonal
decomposition. We end this paper by numerical experiments in Sect. 14.6.

It seems reasonable to include the discussion of a-posteriori finite element error
analysis in future work. While the focus of our paper is on a computable a-posteriori
error estimate for the solution of the reduced-order model, the clear separation of
discretization and model-order reduction errors will allow to balance the latter with
any type of available a-posteriori discretization error estimate.

14.2 Optimization Problem

In the following, we lay out the principle assumptions on the data in (14.1) and
summarize known results on existence and regularity of solutions to the underlying
PDE, the control problem itself, as well as first-order necessary and, due to
convexity, also sufficient optimality conditions.

Assumption 2.1 Let ˝ � R
n, n D 1; 2; 3; be a convex polygonal or polyhedral

domain with boundary @˝ for n D 2; 3, or an open interval in R. Moreover, let
T > 0 be a given real number that defines the time interval I WD .0;T/. In addition,
� 2 R is a positive, fixed parameter, and the bounds ua; ub 2 R

Nu are vectors of real
numbers that fulfill ua < ub componentwise. The desired state yd is a function from
L2.I �˝/ and the initial state y0 is a function from H1

0.˝/. For the shape functions
�iW˝ ! R, i D 1; : : : ;Nu; we require �i 2 H1

0.˝/.
We introduce the following short notation for inner products and norms on the
spaces L2.˝/ and L2.I �˝/, as well as L2.IIRNu/:

.v;w/ WD .v;w/L2.˝/; .v;w/I WD .v;w/L2.I�˝/; hv;wiI WD hv;wiL2.IIRNu /

kvk WD kvkL2.˝/; kvkI WD kvkL2.I�˝/; jvjI WD kvkL2.IIRNu /:

Throughout the paper we abbreviate V WD H1
0.˝/; c > 0 will denote generic

auxiliary constants. Moreover, in order to find a weak formulation of the state
equation (14.1b) and the optimal control problem (14.1), we introduce the state
space Y, the control space U, and the set of admissible controls Uad,

Y WD W.0;T/ D fv j v 2 L2.I;V/ and @tv 2 L2.I;V
/g; U WD L2.I;RNu/;

Uad WD fu 2 U j ua � u.t/ � ub for a.a. t 2 I componentwiseg;
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as well as the control operator

BWU ! L2.I �˝/; u 7!
NuX
iD1

ui.t/�i.x/:

A weak formulation of the state equation (14.1b) for a fixed control u 2 U and fixed
initial state y0 2 V as well as source term f 2 L2.I �˝/ is to find a state y 2 Y that
satisfies

TZ

0

.@ty; '/V�;V dt C .ry;r'/I D .Bu; '/I C . f ; '/I 8' 2 L2.I;V/; y.0; �/ D y0:

(14.2)

The following existence and regularity result is readily available from [6].

Proposition 1 For fixed control u 2 U; fixed source term f 2 L2.I � ˝/, and
fixed initial state y0 2 V there exists a unique solution y 2 Y of the weak state
equation (14.2). Moreover, the solution exhibits the improved regularity

y 2 L2.I;H2.˝/\ V/ \ H1.I;L2.˝// ,! C.NI;V/

and the stability estimate

k@tykI C kykI C krykI C kr2ykI � C.jujI C k fkI C kry0k/ (14.3)

is satisfied for a constant C > 0.
By the regularity y 2 H1.0;TIL2.˝// it is justified to use the bilinear form

b.y; '/ WD .@ty; '/I C .ry;r'/I;

and use the weak formulation

b.y; '/ D .Bu; '/I C . f ; '/I 8' 2 Y; y.0; �/ D y0: (14.4)

Note that due to the linearity of the state equation, (14.1) can be reformulated equiv-
alently into a setting with homogeneous initial condition and without additional
source term f by splitting the solution of (14.4) into two parts y D Oy C yu, which
fulfill the PDEs

@t Oy ��Oy D f in I �˝; Oy.0; �/ D y0 in ˝; Oy D 0 in I � @˝; (14.5)
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as well as

@tyu ��yu D
NuX
iD1

ui.t/�i.x/ in I �˝; yu.0; �/ D 0 in ˝; yu D 0 in I � @˝
(14.6)

in the weak sense. The fixed term Oy is independent of the controls and can be
incorporated into the desired state yd. For ease of presentation, we will therefore
assume without loss of generality: y0 D 0 as well as f D 0. In the following we
will, however, state more general results from [18, 19] for nonhomogeneous initial
conditions and additional source terms.

Next we introduce the linear control-to-state mapping S W U ! Y, Su D yu,
which leads to the reduced objective function OJ W U ! R

C
0 with u 7! J.S.u/; u/.

Note that here and in the following, we tacitly use the operator S also if we interpret
the state y as a function in L2.I �˝/. This makes (14.1) equivalent to

Minimize OJ.u/ subject to u 2 Uad: (P)

The following existence and uniqueness result is obtained by standard arguments,
cf. for instance [24], since the set of admissible controls is not empty by Ass. 2.1.

Lemma 1 Let Assumption 2.1 be satisfied. Then the optimal control problem (P)
admits a unique optimal control Nu 2 Uad with associated optimal state Ny D S Nu.
Let us refer to [24] for a detailed proof. We proceed by discussing standard first
order necessary optimality conditions for the optimal control problem with the help
of a variational inequality. Due to convexity, these conditions are also sufficient for
optimality.

Lemma 2 A control Nu is the unique solution of (P) if and only if Nu 2 Uad and the
following variational inequality holds:

OJ0.Nu/.u � Nu/ � 0 8u 2 Uad: (14.7)

For a proof, we refer again to e. g., [24]. In order to express the optimality conditions
in a more convenient way we define for any control u 2 Uad the adjoint state variable
p D p.u/ 2 Y, which is the solution of

�@tp ��p D yd � y.u/ in I �˝; p.T; �/ D 0 in ˝; p D 0 in I � @˝
(14.8)

with y.u/ D Su. A weak solution of this adjoint problem can be defined by means
of the already introduced bilinear form b, since elements of Y can be integrated by
parts in time. We obtain

b.'; p/ D .'; yd � y.u//I 8' 2 Y; p.T; �/ D 0: (14.9)
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Note that Prop. 1 is applicable to (14.9) after a time transformation  D T � t. We
then rewrite the first-order optimality conditions from Prop. 2 in the form

h� Nu � B
p.Nu/; u � NuiI � 0 8u 2 Uad;

where B
WL2.I�˝/ ! U denotes the Hilbert space adjoint operator of B satisfying
the formula .Bu; v/I D hu;B
viI for all u; v 2 U. The following identity for B
 can
easily be verified by means of the above definition. For any ' 2 L2.I �˝/, we find

B
' D u 2 L2.I;RNu/; ui.t/ WD
Z

˝

'.t; x/�i.x/dx; i D 1; : : : ;Nu and t 2 I:

Then, using the pointwise projection on the admissible set,

PadWU ! Uad; Pad.u/i.t/ WD max.ua;min.ub; ui.t///; i D 1; : : : ;Nu;

the optimality condition simplifies further to

Nu D Pad

�
1

�
B
p.Nu/

�
: (14.10)

We refer to [24] for the technique of proof. From Prop. 1 and the projection formula,
we deduce the following regularity result, which is a direct consequence of Prop. 2.3
in [19] taking into account that the controls depend only on the time variable.

Proposition 2 Let Nu be the solution of the optimization problem (P) with associated
state Ny D y.Nu/ and let Np WD p.Nu/ denote the corresponding adjoint state. Then Nu; Ny; Np
achieve the following regularities:

Ny; Np 2 L2.I;H2.˝/\ V/ \ H1.I;L2.˝// ,! C.NI;V/; Nu 2 H1.IIRNu/ ,! C.NIIRNu/

14.3 Discretization of the Problem

This section is devoted to the FE discretization of the optimal control problem
under consideration. We review the discretization procedure as well as results on
e.g. stability of discrete solutions, and an a-priori error estimate for the controls on
the continuous and discrete level from e.g. [19] for linear-quadratic problems with
controls varying in space and time, or [22], where the state equation is nonlinear, but
the setting of only time-dependent controls is addressed explicitly. More precisely,
we first give a brief overview about semidiscretization of the state (and adjoint)
equation in time by piecewise constant functions, with values in V . Note that
the resulting scheme is a variant of the implicit Euler method. Even though the
control functions themselves will not be discretized explicitly, we will obtain, by
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means of the semidiscrete optimality conditions, that the optimal control is in fact
piecewise constant in time, and therefore a discrete function. In a second step, we
discretize the involved PDEs also in space. Here, we use usual H1-conforming linear
finite elements. The resulting discretization scheme is commonly referred to as
dG(0)cG(1) method. Since the control functions are functions in time, only, solving
the time-and-space discrete optimality system corresponds to solving a completely
discretized problem.

14.3.1 Semidiscretization in Time

Along the lines of [18, 19], let a partitioning of the time interval NI D Œ0;T� be
given as NI D f0g [ I1 [ I2 [ : : : [ IM with subintervals Im D .tm�1; tm� of size km,
defined by time points 0 D t0 < t1 < : : : < tM�1 < tM D T. The discretization
parameter k is defined as a piecewise constant function by setting kjIm D km for m D
1; 2; : : : ;M, yet k also denotes the maximal size of the time steps, i.e., k D max km:
The semidiscrete trial and test space is given by

Yk D fvk 2 L2.I;V/ j vkjIm 2 P0.Im;V/; m D 1; 2; : : : ;Mg;

where P0.Im;V/ denotes the space of constant functions defined on Im with values
in V . The control space U and the set of admissible controls Uad remain unchanged,
yet we will later find that the semidiscrete optimal control is an element of the space

Uk WD fvk 2 U j vkjIm 2 P0.Im;R
Nu/; m D 1; 2; : : : ;Mg:

For functions vk 2 Yk we define

vCk;m WD lim
t!0C

vk.tm C t/ D vk.tmC1/; v�k;m WD lim
t!0C

vk.tm � t/ D vk.tm/;

Œvk�m WD vCk;m � v�k;m D vk.tmC1/ � vk.tm/ DW vk;mC1 � vk;m;

and introduce the short notation .v;w/Im WD .v;w/L2.Im�˝/, kvkIm WD kvkL2.Im�˝/
for functions v;w 2 L2.Im�˝/. The semidiscrete version of the bilinear form b.�; �/
for yk; 'k 2 Yk is given by

bk. yk; 'k/ D .ryk;r'k/I C
MX

mD2
. yk;m � yk;m�1; 'm/C . yk;1; 'k;1/;

and the dG(0) semidiscretization of the state equation (14.4) for fixed control u 2 U
reads as follows: Find a state yk D yk.u/ 2 Yk such that

bk. yk; 'k/ D .Bu; 'k/I C . f ; 'k/I C . y0; 'k;1/ 8'k 2 Yk: (14.11)
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Here, 'k;m denotes 'kjIm
: Note that we assumed y0 D 0 and f D 0 for ease of

presentation, but include the more general setting in the following theorem.

Theorem 1 For every fixed control u 2 U, the semidiscrete state equation (14.11)
with potentially nonhomogenous initial state y0 2 V and source term f 2 L2.I �˝/
admits a unique semidiscrete solution yk 2 Yk satisfying the stability result

kykk2I C krykk2I C k�ykk2I C
MX
iD1

k�1m kyk;i � yk;i�1k2 � Cfjuj2I C kfk2I C kry0k2g

with a constant C > 0 independent of the discretization parameters.

Proof This is a direct consequence of Theorem 4.1 in [18], taking into account that
the controls are only time-dependent functions, independent of the spatial variable.
With the semidiscrete control-to-state operator SkWU ! Yk, Sk.u/ D yk, where yk is
the solution of (14.11), and consequently a semidiscrete reduced objective function
OJk W U ! R

C
0 , u 7! J.Sk.u/; u/, the reduced semidiscrete problem formulation reads

Minimize OJk.u/ subject to u 2 Uad: (Pk)

Existence of a unique semidiscrete optimal control Nuk 2 Uad with associated
semidiscrete optimal state Nyk 2 Yk, analogously to Problem (P), follows by standard
arguments. Likewise, we obtain first-order necessary and sufficient optimality
conditions for Nuk 2 Uad in the form

OJ0k.Nuk/.u � Nuk/ D h� Nuk � B
pk.Nuk/; u � NukiI � 0 8u 2 Uad; (14.12)

where pk D pk.u/ 2 Yk is the semidiscrete adjoint state, i.e. the solution of the
semidiscrete adjoint equation

bk.'k; pk/ D .'k; yd � yk.u//I 8'k 2 Yk: (14.13)

Note that the stability results from Theorem 1 are applicable to (14.13). By making
use of the projection formula

Nuk D Pad

�
1

�
B
pk.Nuk/

�
(14.14)

on this level of discretization we readily obtain a structural result for the semidis-
crete optimal control:

Corollary 1 From the projection formula (14.14)we deduce that all components of
the optimal control Nuk are piecewise constant in time, i.e. Nuk 2 Uk \ Uad.
Note that from Corollary 1, it is clear that Nuk also solves the problem

Minimize OJk.uk/ subject to uk 2 Uk \ Uad;
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and thus the time discretization of the controls does not have to be discussed
explicitly.

14.3.2 Discretization in Space

Now, we introduce the spatial discretization of the optimal control problem, still in
the spirit of e.g. [19]. We consider two- or three-dimensional shape regular meshes;
see, e.g., [3], consisting of quadrilateral or hexahedral cells K, which constitute a
nonoverlapping cover of the computational domain ˝ . For n D 1, the cells reduce
to subintervalls of˝ . We denote the mesh by Th D fKg and define the discretization
parameter h as a cellwise constant function by setting hjK D hK with the diameter hK
of the cell K. We use the symbol h also for the maximal cell size, i.e., h D max hK .
On the mesh Th we construct a conforming FE space Vh � V in the standard way

Vh D fv 2 V j vjK 2 Q.K/ for K 2 Thg;

with basis f˚ j
hgjD1;:::;N , where Q.K/ consists of shape functions obtained via

bilinear transformations of polynomials up to degree one defined on a reference
cell OK; cf. also Sect. 3.2 in [18]. Then, the space-time discrete finite element space

Ykh D fvkh 2 L2.I;Vh/ j vkhjIm 2 P0.Im;Vh/; m D 1; 2; : : : ;Mg � Yk:

leads to a discrete version of the bilinear form bk.�; �/ for ykh; 'kh 2 Ykh, given by

bkh. ykh; 'kh/ D .rykh;r'kh/I C
MX

mD2
.ykh;m � ykh;m�1; 'kh;m/C . ykh;1; 'kh;1/:

Eventually, we obtain the so-called dG(0)cG(1) discretization of the state equation
for given control u 2 U: Find a state ykh D ykh.u/ 2 Ykh such that

bkh. ykh; 'kh/ D .Bu; 'kh/I C . f ; 'kh/I C . y0; 'kh;1/ 8'kh 2 Ykh: (14.15)

Theorem 2 Let Ass. 2.1 be satisfied. Then, for each u 2 U and possibly nonhomo-
geneous initial condition y0 2 V and source term f 2 L2.˝/, there exists a unique
solution ykh 2 Ykh of equation (14.15) satisfying the stability estimate

kykhk2I C krykhk2I C k�hykhk2I C
MX
iD1

k�1m kykh;i � ykh;i�1k2

� C
�juj2I C kfk2I C kr˘hy0k2

�

with a constant C > 0 independent of the discretization parameters k and h.
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Proof Again, this follows from [18], see Theorem 4.6, with the obvious modifica-
tions due to the structure of the control space.
Here, �hWVh ! Vh is defined by .�hvh; 'h/ D �.rvh;r'h/ for all 'h 2 Vh.
Repeating the steps from the semidiscrete setting leads to the introduction of the
discrete control-to-state operator SkhWU ! Ykh; ykh D Skh.u/, the discrete reduced
objective function Jkh W Uad ! R

C
0 ; u 7! J.u; Skh.u//; and the discrete problem

formulation

Minimize OJkh.u/ subject to u 2 Uad; (Pkh)

which, again by standard arguments, admits a unique optimal solution Nukh 2 Uad.
First-order necessary and sufficient optimality conditions for Nukh 2 Uad are given by

OJ0kh.Nukh/.u � Nukh/ D h� Nukh � B
pkh.Nukh/; u � NukhiI � 0 8u 2 Uad; (14.16)

via the discrete adjoint state pkh 2 Ykh being the solution of the discrete adjoint
equation

bkh.'kh; pkh/ D .'kh; yd � ykh/I 8'kh 2 Ykh: (14.17)

Let us conclude that the structure of (14.16), which is analogous to the continuous
problem due to Galerkin discretization, is of central importance to adapt the error
estimation techniques from [25], see Sect. 14.4.

14.3.3 A-Priori Error Estimate

Let us end this section by stating an a-priori discretization error estimate between
the optimal control Nu of (P) and the fully discrete solution Nukh of (Pkh). The following
theorem is a direct consequence of Theorem 6.1 in [18], where error estimates are
proven for control functions u 2 L2.I �˝/. The specific setting with finitely many
time-dependent controls is considered for nonconvex problems with semilinear state
equations in [22], Prop. 5.4.

Theorem 3 Let Nu be the optimal control of Problem (P) and Nukh be the optimal
control of Problem (Pkh). Then there exists a constant C > 0 independent of k and
h, such that the following error estimate is satisfied: jNu � NukhjI � C.k C h2/.
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14.4 A-Posteriori Error Analysis for an Approximate
Solution to Pkh

If the possibly high-dimensional optimization problem (Pkh) is not solved directly,
but an approximate solution Nupkh 2 Uk \ Uad is obtained by e.g. a POD Galerkin
approximation, see Sect. 14.5, one is interested in estimating the error

"
p
kh WD jNupkh � NukhjI;

without knowing Nukh. Together with an available error estimate for

"kh WD jNu � NukhjI;

this leads to an estimate for the error between the real optimal solution Nu and the
computed solution Nupkh,

" WD jNu � NupkhjI � "kh C "
p
kh;

where the influence of the discretization error on the one hand and the model
reduction error on the other hand are clearly separated. We will use Theorem 3
for the first part. We point out that "kh may also be estimated by other available
e.g. a-posteriori error estimators, and now focus on developing an estimate for the
second part. Since the discretization has been obtained by a Galerkin method, and
optimality conditions from Sect. 14.3 are available, we can apply the arguments and
techniques from [25]. Utilizing the notation ypkh D Skh.u

p
kh/ as well as ppkh D pkh.u

p
kh/,

we obtain the following:

Lemma 3 Let upkh 2 Uk \ Uad be arbitrary. Define a function �pk 2 Uk component-
wise by .�pk /i WD �

�upkh � B
ppkh
�
i
for i D 1; : : : ;Nu as well as the index sets of active

constraints

I �i WD f1 � m � M j .upkh/ijIm D ua;ig; i D 1; : : : ;Nu;

I Ci WD f1 � m � M j .upkh/ijIm D ub;ig; i D 1; : : : ;Nu;

the active setsA �i WD SfIm j m 2 I �i g,A Ci WD SfIm j m 2 I Ci g and the inactive
set A ıi WD I n .A �i [ A Ci /. Then the function �k 2 Uk defined componentwise by

�k;i D Œ�
p
k;i�� D � minf0; �pk;ig on A �i ;

�k;i D �Œ�pk;i�C D � maxf0; �pk;ig on A Ci ; �k;i D ��pk;i on A ıi
for i D 1; : : : ;Nu satisfies the perturbed variational inequality

h�upkh � B
ppkh C �k; u � upkhiI � 0 8u 2 Uk \ Uad:
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Proof Note first that due to the piecewise constant time discretization, the function
�k is an element of Uk. Now, direct calculations for u 2 Uk \ Uad shows:

h�upkh � B
ppkh C �k; u � upkhi D
NuX
iD1

MX
mD1

Z

Im

.�
p
k C �k/i.u � upkh/i dt

D
NuX
iD1

X
m2I�

i

km.�
p
k;m C Œ�

p
k;m��/i.u � ua/i C

X
m2IC

i

km.�
p
k;m � Œ�

p
k;m�C/i.u � ub/i � 0;

where we have used that .u � ua/i � 0 and .u � ub/i � 0.

Theorem 4 Let Nukh be the optimal solution to (Pkh) with associated state Nykh and
adjoint state Npkh. Suppose that upkh 2 Uk \ Uad is chosen arbitrarily with associated
state ypkh D ykh.u

p
kh/ 2 Ykh and adjoint state p

p
kh D pkh.u

p
kh/ 2 Ykh, and let �k 2 Uk be

given as in Lemma 3. Then the following estimate is satisfied: jNukh �upkhjI � j�kjI=�.
Proof The variational inequality (14.15)–(14.17) and Lemma 3 imply

0 � h� Nukh � B
 Npkh; upkh � NukhiI C �hupkh � B
ppkh C �k; Nukh � upkhiI
D ��jNukh � upkhj2I C hB
. ppkh � Npkh/; upkh � NukhiI � h�k; upkh � NukhiI
D ��jNukh � upkhj2I C .B.upkh � Nukh/; ppkh � Npkh/I � h�k; upkh � NukhiI
D ��jNukh � upkhj2I C b. ypkh � Nykh; ppkh � Npkh/� h�k; upkh � NukhiI
D ��jNukh � upkhj2I � kypkh � Nykhk2I � h�k; upkh � NukhiI:

From this calculation, we conclude that �jNukh � upkhj2I � j�kjIjupkh � NukhjI yields
jNukh � upkhjI � j�kjI=�.
Combining the results of Theorem 3 and Theorem 4, we directly obtain

Corollary 2 Let Nu 2 Uad be the optimal control of Problem (P), let upkh 2 Uk \ Uad

be chosen arbitrarily, and let �k 2 Uk be given as in Lemma 3. Then there exists
a constant C > 0 independent of k and h, such that the following error estimate is
fulfilled: jNu � upkhjI � C.k C h2/C j�kjI=�.

14.5 The POD Galerkin Discretization

In this section, we construct a problem specific subspace V`h  Vh with significantly
smaller dimension dimV`h D ` � N D dimVh such that the projection of an
element ykh on the reduced state space Y`kh D f�kh 2 Ykh j 8m D 1; : : : ;M W
�khjIm 2 P0.Im;V`h/g is still a good approximation of ykh. More precisely, for
a given basis rank `, we choose orthonormal ansatz functions  1h ; : : : ;  

`
h 2 Vh
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such that ykh � P`
hykh is minimized with respect to k � kL2.I;Vh/ where P`

h W
Vh ! V`h D span. 1h ; : : : ;  

`
h / denotes the canonical projector P`

h. ykh.t// DP`
lD1hykh.t/;  l

hiVh 
l
h. Hence, these basis functions  1h ; : : : ;  

`
h are given as a

solution to the optimization problem

min
 1h ;:::; 

`
h2Vh

Z T

0

kykh.t/ � P`
hykh.t/k2Vh

dt subject to h i
h;  

j
hiVh D ıij;

(14.18)

where ıij denotes the Kronecker delta. Since the integrand is piecewise constant on
the time intervals I1; : : : ; Im, we replace (14.18) by

min
 1h ;:::; 

`
h2Vh

MX
mD1

kmkykh;m � P`
hykh;mk2Vh

subject to h i
h;  

j
hiVh D ıij:

(14.19)

A solution to problem (14.18) is called a rank-` POD basis to the trajectory
ykh 2 Ykh and can be determined by solving the corresponding eigenvalue problem

R. ykh/ h D � h; R. ykh/ D
Z T

0

h�; ykh.t/iVhykh.t/ dt; (14.20)

choosing  1h ; : : : ;  
`
h 2 Vh as the eigenfunctions of Rkh WD R. ykh/ W Vh !

Vh corresponding to the ` largest eigenvalues �1 � � � � � �` > 0, cf. [8],
Sect. 2.2. Notice that the adjoint operator R
kh is compact due to the Hilbert-
Schmidt theorem, i.e. Rkh is compact as well, and that Rkh is non-negative, so a
complete decomposition of Vh into eigenfunctions of Rkh is available, and each
eigenvalue except for possibly zero has finite multiplicity, see [8], Lemma 2.12 and
Theorem 2.13.

The following approximation property holds, cf. Proposition 3.3 in [14]:

Z T

0

kykh.t/ � P`
hykh.t/k2Vh

dt D
MX

mD1

����ykh;m � P`
hykh;m

����
2

Vh

D
rank.Rkh/X
lD`C1

�l:

After a POD basis of some reference trajectory ykh 2 Ykh is constructed, we
introduce the reduced state space

Y`kh D f�kh 2 Ykh j 8m D 1; : : : ;M W �khjIm 2 P0.Im;V
`
h/g

and consider the reduced-order optimization problem

min
. y`kh;u/2Y`kh�Uad

1

2

MX
mD1

kmkykh;m � yd;mk2Vh
C �

2
juj2I : (14.21)
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The first-order optimality conditions of (14.21), consisting of a reduced state
equation corresponding to (14.4), a reduced adjoint state equation corresponding
to (14.9) and a control equation corresponding to (14.10), read as

bkh. ykh; 'kh/� .Bukh; 'kh/I D 0 8'kh 2 Y`kh; (14.22a)

bkh.'kh; pkh/ � .'kh; yd � ykh/I D 0 8'kh 2 Y`kh; (14.22b)

h�ukh � B
pkh; u � ukhiI � 0 8u 2 Uad: (14.22c)

Since the optimal trajectory Nykh is not available in practice to build up an appropriate
POD basis for the reduced-order model, different methods have been developed
recently on how to construct a reference trajectory Qykh which covers enough
dynamics of Nykh to build up an accurate reduced order space V`h .

If the desired state yd is smooth and the regularization parameter � is sufficiently
large, the dynamics of Nykh are usually simple enough such that the state solution
Qykh to some more or less arbitrary reference control such as Qu 
 1 generates a
suitable reduced space V`h . Otherwise, if Qykh differs too much from the optimal
solution Nykh, it may be necessary to choose an inefficiently large basis rank ` to
represent the more complex dynamics of Nykh in the eigenfunctions of Qykh. Moreover,
though the properties of R.Qykh/ should guarantee a suitable approximation of Nykh
in V`h if ` is sufficiently large, numerical instabilities arise especially if �` comes
close to zero: In this case, the set of eigenfunctions to R.Qykh/ corresponding to the
nonzero eigenvalues is not enlarged by a basis of range.R/?; instead, numerical
noise is added on the eigenfunctions so that the POD basis is not improved, but even
perturbed, cf. Fig. 14.4. Consequently, the system matrices of the reduced-order
model become singular and the reduced order solutions get instable. One way to
balance out this problem is to provide a basis update which improves the reference
control Qykh and hence the ansatz space V`h .

Let . 1h ; : : : ;  
`
h /  Vh be a rank-` POD basis computed from some reference

state Qykh and let u`kh, ` D 1; 2; : : :, denote the control solution to the reduced-order
optimality system (14.22). We study the development of the control errors "`ex D
jNu � Nu`khjI for various `. A stagnation of (the order of) "`ex may be caused by three
different effects:

1. The chosen basis ranks are still too small to represent the corresponding optimal
state solutions Nykh in an appropriate way. Adding some more basis vectors may
finally lead to a decay of "`ex; the stagnation is not necessarily an indication
for a badly chosen reference trajectory. Indeed, even the optimal POD basis
corresponding to the exact FE solution Nykh does not guarantee small errors "`ex
for small basis ranks, cf. our numerical tests in the next section.

2. The vector space spanned by the eigenfunctions of R. ykh/ is exploited before
"`ex decays below the desired exactness ". As mentioned above, additional POD
elements will not improve the error decay in this case. Further, the available
information may not be sufficient to extend the current basis by additional vectors
at all.
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3. The accuracy of the FE model "ex
kh D jNu� NukhjI is reached. In this case, expanding

the POD basis may decrease the error "`kh D jNukh � Nu`khjI between the high-
dimensional and the low-dimensional approximation of Nu, but not the actually
relevant error "`ex between Nu`kh and the exact control solution Nu.

14.6 Numerical Results

We test our findings combined in Algorithm 1* with the aid of an analytical test
problem where the exact control, state and adjoint solutions Nu; Ny; Np are known
explicitly. For this purpose, we introduce a desired control ud 2 U in addition
and replace the objective functional by QJ. y; u/ D J. y; u � ud/. In the optimality
system, this has no impact on the state equation or the adjoint equation; the adapted
variational inequality for the control now reads as h�.Nu � ud/ � B
 Np; u � NuiI � 0

for all u 2 Uad. We choose the one-dimensional spatial domain ˝ D .0; 2�/, the
control space U D L2.I;R1/ consisting of a single-component control u D u.t/ on
the time interval I D Œ0; �

2
�, the single shape function �.x/ D sin.x/, the lower and

upper control bounds ua D �5, ub D 5 and the regularization parameter � D 1.

Algorithm 1 *

Require: Basis ranks `min < `max, initial POD basis elements  1
h ; : : : ;  

`max
h 2 Vh, maximal

number of basis updates jmax.
1: Estimate FE error "ex

kh D jNu� NukhjI . Set j D 1, ` D `min.
2: while j 	 jmax do
3: Set  `

h D . 1; : : : ;  `/.
4: Calculate optimal control Nu`kh to the `-dimensional reduced-order model.
5: Estimate ROM residual "`kh D jNukh � Nu`khjI .
6: if "`kh 	 "ex

kh then
7: break (optimal accuracy reached)
8: else if ` < `max then
9: Set `D `C 1. (enlarge POD basis)

10: else
11: Calculate new POD basis elements  1

h ; : : : ;  
`max
h 2 Vh of R.Ny`kh/. (update POD basis)

12: Set ` D `min and j D jC 1.
13: end if
14: end while
We propose to choose the initial POD elements by starting with the admissible constant control
u.t/ D 1

2
.ub � ua/, calculating the corresponding state ykh.u/ and selecting the first eigenvectors

of R. ykh/. Further, we suggest to choose a minimal and a maximal basis rank `min, `max at the
beginning to increase the reduced model rank ` frequently, beginning with `min, until "`ex decays
below the desired exactness " or `max is reached; in the latter case, a basis update is provided,
choosing the lastly determined POD optimal control Nu`max

kh to calculate new snapshots Ny`max
kh and

resetting the model rank on `min
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Fig. 14.1 The optimal state Ny (left), the optimal control BNu (center) and the optimal adjoint state
Np (right) of the test setting

Then the optimal triple (see Fig. 14.1)

Ny.t; x/ D sin.x/ cos.x exp.t//; Np.t; x/ D sin.x/ cos.t/; (14.23a)

Nu.t/ D Pad
�˚

�
�

cos.t/
�C f10 sin.exp.2t//g� ; (14.23b)

can be realized by the source term f 2 L2.I �˝/, the initial value y0 2 H1
0.˝/, the

desired state yd 2 L2.I �˝/ and the desired control ud 2 L2.I;R1/ given by

f .t; x/ D � sin.x/ sin.xet/xet C sin.x/ cos.xet/C cos.x/ sin.xet/et

C cos.x/ sin.xet/et C sin.x/ cos.xet/e2t � �.x/Nu.t/;
y0.x/ D sin.x/ cos.x/; yd.t; x/ D sin.x/ sin.t/C sin.x/ cos.t/C Ny.t; x/;
ud.t/ D 10 sin.exp.2t//:

By direct recalculation one sees that the functions in (14.23) fulfill the adapted
optimality equations. The full-order optimality system (14.15)–(14.17) as well as
the reduced-order one (14.22) are solved by the fixpoint iteration unC1 D F.un/ D
Pad.B
p. y.u//=�/ with admissible initial control u0. This procedure generates a
converging sequence .unC1/n2N � Uad with limit Nu given that � is not too small.
In this case, F is a contracting selfmapping on Uad and the Banach fixpoint
theorem provides decay rates for the residual jNu � unjI , cf. [8, Sect. 5.5]. Compared
to numerical strategies which provide higher convergence rates such as Newton
methods, the numerical effort within the single iterations is small since no coupled
systems of PDEs have to be solved.

14.6.1 Finite Element Error Estimation

In order to be able to combine the a-priori FE error estimates from Sect. 14.3.3
with the a-posteriori error estimate for the POD approximation in a reasonable way,
we need to estimate the constant appearing in Theorem 3. More precisely, we will
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Fig. 14.2 On the left, we show that the exact errors of time integration k 7! "ex
kh0 on a sufficiently

fine spatial grid h20 � k and the exact spatial errors h2 7! "ex
k0h with sufficiently small time steps

k0 � h2 evolve approximatively linear in logarithmic scales. On the right, on sees that Ind.k; h/ �
"ex
kh holds given that the time and space grids are not too coarse: The bounds are sharp, but not

rigorous

estimate two constants Ct;Cx > 0 such that kNu � NukhkI 	 Ctk C Cxh2 holds. In
this way, we receive slightly better results then with the constant C presented in
Theorem 3; choose C D max.Ct;Cx/ for convenience. The dependency between the
time and space discretization quantities h; k and the resulting discretization errors is
shown in Fig. 14.2 (left); the quality of this error indicator is shown in Fig. 14.2
(right). We estimate such constants Ct;Cx by solving the discretized optimality
system (14.15)–(14.17) on grids of different grid widths:

Ct D 1

k1
jNuk1h0 � Nuk2h0 jI .h20; k2 � k1/; Cx D 1

h21
jNuk0h1 � Nuk0h2 jI .h22; k0 � h21/:

Notice that this procedure does not guarantee that Ind.k; h/ D Ctk C Cxh2

provides an upper bound for the FE error. In our numerical example, we choose the
parameters h0 D 3.14e-2 and k1 D 3.08e-2, k2 D 1.57e-3 as well as k0 D 3.93e-3
and h1 D 2.99e-1, h2 D 6.22e-2 and get Ct D 0.2, Cx D 0.184.

14.6.2 Model Reduction Error Estimation

We divide the time interval into M D 6400 subintervals and the spatial domain
into N D 500 subdomains. In this case, k D 2.45e-4 and h D 1.26e-2 hold.
With the growth constants given above, we expect a FE accuracy of the magnitude
"ex
kh D 7.82e-5. Let Qykh be a perturbation of the optimal FE solution Nykh such that

kNykh � QykhkI is of the order Q" D 1.00e-7. Although Q" < "ex
kh holds true, the POD
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Fig. 14.3 Here we present the decay behavior of the errors "`kh and "`ex in dependence of the chosen
POD basis rank ` as well as the desired FE error level "ex

kh. On the left, a POD basis belonging to
a small pointwise perturbation of the optimal state is applied to build up the reduced order model.
On the right, we use an updated POD basis
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Fig. 14.4 Some elements of the perturbed (left) and the updated (right) POD basis in comparison

error "`kh and hence also the exact error "`ex between the controls Nu`kh and Nukh or Nu,
respectively, do not reach the desired accuracy "ex

kh independent of the chosen basis
rank `, cf. Fig. 14.3 (left); the POD elements react very sensitive if the corresponding
snapshots are covered by noise. Notice that a perturbation of the control generating
the snapshots would not have this destabilizing effect on the POD basis. After
providing a basis update, we observe that the low-order model error "`kh decays far
below the high-order model accuracy "ex

kh for increasing basis rank ` while the exact
error "`ex stagnates on the level of "ex

kh as expected, cf. Fig. 14.3 (right). Starting with
`min D 12, the Algorithm stops successfully after three basis extensions without
requiring a further basis update. In Fig. 14.4 we compare the two POD bases. It turns
out that overall, the first fifteen basis elements coincide, except of possibly the sign.
Then, the noise starts to dominate the perturbed basis; the seventeenth basis function
has no structure any more (left). In contrast, the updated basis spans a subspace of
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Table 14.1 The duration of the single processes within the reduced order modelling routine with
adaptive basis selection

Process (ROM) Time # Total

Calculate snapshots 3.17 s 2� 6.34 s

Generate POD basis 19.09 s 2� 38.17 s

Assemble reduced system 0.33 s 2� 0.66 s

Solve reduced system 0.87 s 50� 43.65 s

A-posteriori error estimator 7.28 s 2� 14.56 s

FEM error estimation 6.04 s 1� 6.04 s

Total 109.40 s

Process (FEM) Time # Total

Solve full-order system 25.81 s 30� 774.27 s

Total 774.27 s

0
20
40
60
80

100
120

Calculate snapshots
Generate POD basis
Assemble reduced order model
Solve reduced optimality system
A−posteriori error estimator
Estimate FEM error

Vh with approximative dimension 34. POD elements of higher rank order than 34
get unstable as well (right), but here, the spanned space is already sufficiently large
and includes enough dynamics of the optimal state solution to represent Nykh up to FE
precision. Finally, we compare the effort of the full-order model with the reduced
one. The calculation times of the single steps are presented in Table 14.1; the
calculations are provided on an Intel(R) Core(Tm) i5 2.40 GHz processor. We use
N D 4000 finite elements now and M D 4000 time steps. Without model reduction,
30 fixpoint iterations are required, taking 774.27 s in total. To avoid noise in the
POD elements, we choose adaptive basis ranks `min D `max D minf20; `�g where
`� D maxf` j �` > 1.0e-12g: No basis elements corresponding to eigenvalues close
to zero shall be used to build up the reduced model. As before, the first solving
of the reduced optimality system requires 30 iterations, but the model error "`kh is
still above the desired accuracy "ex

kh. The rank of the reduced-order problem is 14
(since �15 D 4.03e-13). Providing one basis update with the snapshots y`kh.Nu14kh/, the
new POD elements include more dynamics of the problem although the eigenvalues
decay as before; now, we have ` D 15 (since �16 D 2.61e-13), the fixpoint routine
terminates after 20 iterations and "`kh decays below the FE accuracy. The reduced-
order modelling takes 109.40 s, 14:09% of the full-order solving.
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Chapter 15
Hi-POD Solution of Parametrized Fluid
Dynamics Problems: Preliminary Results

Davide Baroli, Cristina Maria Cova, Simona Perotto, Lorenzo Sala,
and Alessandro Veneziani

Abstract Numerical modeling of fluids in pipes or network of pipes (like in the
circulatory system) has been recently faced with new methods that exploit the spe-
cific nature of the dynamics, so that a one dimensional axial mainstream is enriched
by local secondary transverse components (Ern et al., Numerical Mathematics and
Advanced Applications, pp 703–710. Springer, Heidelberg, 2008; Perotto et al.,
Multiscale Model Simul 8(4):1102–1127, 2010; Perotto and Veneziani, J Sci Com-
put 60(3):505–536, 2014). These methods—under the name of Hierarchical Model
(Hi-Mod) reduction—construct a solution as a finite element axial discretization,
completed by a spectral approximation of the transverse dynamics. It has been
demonstrated that Hi-Mod reduction significantly accelerates the computations
without compromising the accuracy. In view of variational data assimilation pro-
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cedures (or, more in general, control problems), it is crucial to have efficient
model reduction techniques to rapidly solve, for instance, a parametrized problem
for several choices of the parameters of interest. In this work, we present some
preliminary results merging Hi-Mod techniques with a classical Proper Orthogonal
Decomposition (POD) strategy. We name this new approach as Hi-POD model
reduction. We demonstrate the efficiency and the reliability of Hi-POD on multi-
parameter advection-diffusion-reaction problems as well as on the incompressible
Navier-Stokes equations, both in a steady and in an unsteady setting.

15.1 Introduction

The growing request of efficient and reliable numerical simulations for modeling,
designing and optimizing engineering systems in a broad sense, challenges tra-
ditional methods for solving partial differential equations (PDEs). While general
purpose methods like finite elements are suitable for high fidelity solutions of
direct problems, practical applications often require to deal with multi-query
settings, where the right balance between accuracy and efficiency becomes critical.
Customization of methods to exploit all the possible features of the problem at
hand may yield significant improvements in terms of efficiency, possibly with no
meaningful loss in the accuracy required by engineering problems.

In this paper we focus on parametrized PDEs to model advection-diffusion-
reaction phenomena as well as incompressible fluid dynamic problems in pipes
or elongated domains. In particular, we propose to combine the Hierarchical
Model (Hi-Mod) reduction technique, which is customized on problems featuring
a leading dynamics triggered by the geometry, with a standard Proper Orthogonal
Decomposition (POD) approach for a rapid solution of parametrized settings.

A Hi-Mod approximation represents a fluid in a pipe as a one-dimensional
mainstream, locally enriched via transverse components. This separate description
of dynamics leads to construct enhanced 1D models, where locally higher fidelity
approximations are added to a backbone one-dimensional discretization [4, 16–
18, 20]. The rationale behind a Hi-Mod approach is that a 1D classical model can be
effectively improved by a spectral approximation of transverse components. In fact,
the high accuracy of spectral methods guarantees, in general, that a low number of
modes suffices to obtain a reliable approximation, yet with contained computational
costs.

POD is a popular strategy in design, assimilation and optimization contexts, and
relies on the so-called offline-online paradigm [6, 8, 10, 24, 28]. The offline stage
computes the (high fidelity) solution to the problem at hand for a set of samples
of the selected parameters. Then, an educated basis (called POD basis) is built
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by optimally extracting the most important components of the offline solutions
(called snapshots), collected in the so-called response matrix, via a singular value
decomposition. Finally, in the online phase, the POD basis is used to efficiently
represent the solution associated with new values of the parameters of interest, a
priori unknown.

In the Hi-POD procedure, the Hi-Mod reduction is used to build the response
matrix during the offline stage. Then, we perform the online computation by
assembling the Hi-Mod matrix associated with the new parameter and, successively,
by projecting such a matrix onto the POD basis. As we show in this work, Hi-POD
demonstrates to be quite competitive on a set of multiparameter problems, including
linear scalar advection-diffusion-reaction problems and the incompressible Navier-
Stokes equations.

The paper is organized as follows. In Sect. 15.2, we detail the Hi-POD technique
and we apply it to an advection-diffusion-reaction problem featuring six parameters,
pinpointing the efficiency of the procedure. Section 15.3 generalizes Hi-POD to a
vector problem, by focusing on the steady incompressible Navier-Stokes equations,
while the unsteady case is covered in Sect. 15.4. Some conclusions are drawn in
Sect. 15.5, where some hints for a possible future investigation are also provided.

15.2 Hi-POD Reduction of Parametrized PDEs: Basics

Merging of Hi-Mod and POD procedures for parametrized PDEs has been proposed
in [12, 13], in what we called Hi-PODmethod. We briefly recall the two ingredients,
separately. Then, we illustrate a basic example of Hi-POD technique.

15.2.1 The Hi-Mod Setting

Let ˝ � R
d be a d-dimensional domain, with d D 2; 3, that makes sense to

represent as ˝ 
 S
x2˝1Dfxg � ˙x, where ˝1D is the 1D horizontal supporting

fiber, while ˙x � R
d�1 represents the transverse section at x 2 ˝1D. The

reference morphology is a pipe, where the dominant dynamics occurs along ˝1D.
We generically consider an elliptic problem in the form

find u 2 V W a.u; v/ D F.v/ 8v 2 V; (15.1)

where V  H1.˝/ is a Hilbert space, a.�; �/ W V � V ! R is a coercive, continuous
bilinear form and F.�/ W V ! R is a linear and continuous form. Standard notation
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for the function spaces is adopted [11]. We refer to u in (15.1) as to the full solution.
The solution to this problem is supposed to depend on some parameters that we will
highlight in our notation later on.

In the Hi-Mod reduction procedure, we introduce the space

Vh
m D

n
vhm.x; y/ D

mX
kD1

Qvhk .x/'k.y/; with Qvhk 2 Vh
1D; x 2 ˝1D; y 2 ˙x

o
;

where Vh
1D � H1.˝1D/ is a discrete space of size Nh, f'kgk2NC is a basis of L2-

orthonormal modal functions (independent of x) to describe the dynamics in˙x, for
x varying along˝1D. For more details about the choice of the modal basis, we refer
to [2, 14, 20], while Vh

1D may be a classical finite element space [4, 17, 18, 20] or an
isogeometric function space [21].

The modal index m 2 N
C determines the level of detail of the Hi-Mod reduced

model. It may be fixed a priori, driven by some preliminary knowledge of the
phenomenon at hand as in [4, 20], or automatically chosen via an a posteriori
modeling error analysis as in [17, 19]. Index m can be varied along the domain
to better capture local dynamics [18, 19]. For simplicity, here we consider m to be
given and constant along the whole domain (uniform Hi-Mod reduction).

For a given modal index m 2 N
C, the Hi-Mod formulation reads as

find uhm 2 Vh
m W a.uhm; vhm/ D F.vhm/ 8vhm 2 Vh

m: (15.2)

The well-posedness of formulation (15.2) as well as the convergence of uhm to u can
be proved under suitable assumptions on space Vh

m [20].
In particular, after denoting by f#jgNh

jD1 a basis of the space Vh
1D, for each element

vhm 2 Vh
m, the Hi-Mod expansion reads

vhm.x; y/ D
mX

kD1

h NhX
jD1

Qvk;j#j.x/
i
'k.y/:

The unknowns of (15.2) are the mNh coefficients
˚Quk;j

�Nh;m

jD1;kD1 identifying the

Hi-Mod solution uhm. The Hi-Mod reduction obtains a system of m coupled
“psychologically” 1D problems. For m small (i.e., when the mainstream dominates
the dynamics), the solution process competes with purely 1D numerical models.
Accuracy of the model can be improved locally by properly setting m. From an
algebraic point of view, we solve the linear system Ah

mu
h
m D fhm, where Ah

m 2
R

mNh�mNh is the Hi-Mod stiffness matrix, uhm 2 R
mNh is the vector of the Hi-Mod

coefficients and fhm 2 R
mNh is the Hi-Mod right-hand side.
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15.2.2 POD Solution of Parametrized Hi-Mod Problems

Let us denote by ˛ a vector of parameters the solution of problem (15.1) depends
on. We reflect this dependence in our notation by writing the Hi-Mod solution as

uhm.˛/ D uhm.x; y;˛/ D
mX

kD1

h NhX
jD1

Qu˛k;j#j.x/
i
'k.y/; (15.3)

corresponding to the algebraic Hi-Mod system

Ah
m.˛/u

h
m.˛/ D fhm.˛/: (15.4)

The Hi-Mod approximation to problem (15.1) will be indifferently denoted
via (15.3) or by the vector uhm.˛/.

The goal of the Hi-POD procedure that we describe hereafter is to rapidly
estimate the solution to (15.1) for a specific set ˛
 of data, by exploiting Hi-Mod
solutions previously computed for different choices of the parameter vector. The
rationale is to reduce the computational cost of the solution to (15.4), yet preserving
reliability.

According to the POD approach, we exploit an offline/online paradigm, i.e.,

- we compute the Hi-Mod approximation associated with different samples of the
parameter ˛ to build the POD reduced basis (offline phase);

- we compute the solution for ˛
 by projecting system (15.4) onto the space
spanned by the POD basis (online phase).

15.2.2.1 The Offline Phase

We generate the reduced POD basis relying on a set of available samples of the
solution computed with the Hi-Mod reduction. Even though offline costs are not
usually considered in evaluating the advantage of a POD procedure, also this stage
may introduce a computational burden when many samples are needed, like in
multiparametric problems. The generation of snapshots with the Hi-Mod approach,
already demonstrated to be significantly faster [14], mitigates the costs of this phase.
The pay-off of the procedure is based on the expectation that the POD basis is
considerably lower-size than the order mNh of the Hi-Mod system. We will discuss
this aspect in the numerical assessment.

Let S be the so-called response (or snapshot) matrix, collecting L Hi-Mod
solutions to (15.1), for p different values ˛i of the parameter, with i D 1; : : : ;L.
Precisely, we identify each Hi-Mod solution with the corresponding vector in (15.4),

uhm.˛i/ D 	Qu˛i1;1; : : : ; Qu˛i1;Nh
; Qu˛i2;1; : : : ; Qu˛i2;Nh

; : : : ; Qu˛im;Nh


T 2 R
mNh ; (15.5)
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the unknown coefficients being ordered mode-wise. Thus, the response matrix S 2
R
.mNh/�L reads

S D 	
uhm.˛1/;u

h
m.˛2/; : : : ;u

h
m.˛L/


 D

2
666666666666664

Qu˛11;1 Qu˛21;1 : : : Qu˛L1;1
:::

:::
:::

:::

Qu˛11;Nh
Qu˛21;Nh

: : : Qu˛L1;Nh

Qu˛12;1 Qu˛22;1 : : : Qu˛L2;1
:::

:::
:::

:::

Qu˛12;Nh
Qu˛22;Nh

: : : Qu˛L2;Nh
:::

:::
:::

:::

Qu˛1m;Nh
Qu˛2m;Nh

: : : Qu˛Lm;Nh

3
777777777777775

: (15.6)

The selection of representative values of the parameter is clearly critical in
the effectiveness of the POD procedure. More the snapshots cover the entire
parameter space and more evident the model reduction will be. This is a nontrivial
issue, generally problem dependent. For instance, in [9] the concept of domain of
effectiveness is introduced to formalize the region of the parameter space accurately
covered by a snapshot in a problem of cardiac conductivity. In this preliminary
work, we do not dwell with this aspect since we work on more general problems. A
significant number of snapshots is anyhow needed to construct an efficient POD
basis, the Hi-Mod procedure providing an effective tool for this purpose (with
respect to a full finite element generation of the snapshots).

To establish a correlation between the POD procedure and statistical moments,
we enforce the snapshot matrix to have null average by setting

R D S � 1

L

LX
iD1

2
666666666666664

Qu˛i1;1 Qu˛i1;1 : : : Qu˛i1;1
:::

:::
:::

:::

Qu˛i1;Nh
Qu˛i1;Nh

: : : Qu˛i1;Nh

Qu˛i2;1 Qu˛i2;1 : : : Qu˛i2;1
:::

:::
:::

:::

Qu˛i2;Nh
Qu˛i2;Nh

: : : Qu˛i2;Nh
:::

:::
:::

:::

Qu˛im;Nh
Qu˛im;Nh

: : : Qu˛im;Nh

3
777777777777775

2 R
.mNh/�L: (15.7)

By Singular Value Decomposition (SVD), we write

R D 
˙˚T ;

with 
 2 R
.mNh/�.mNh/, ˙ 2 R

.mNh/�L, ˚ 2 R
L�L. Matrices 
 and ˚ are unitary

and collect the left and the right singular vectors of R, respectively. Matrix ˙ D
diag .�1; : : : ; �q/ is pseudo-diagonal, �1; �2; : : : ; �q being the singular values of R,
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with �1 � �2 � � � � � �q and q D minfmNh;Lg [5]. In the numerical assessment
below, we take q D L.

The POD (orthogonal) basis is given by the l left singular vectors f ig associated
with the most significant l singular values, with l � mNh. Different criteria can be
pursued to select those singular values. A possible approach is to select the first l
ordered singular values, such that

Pl
iD1 �2i =

Pq
iD1 �2i � " for a positive user-defined

tolerance " [28]. The reduced POD space then reads Vl
POD D spanf 1; : : : ; lg,

with dim.Vl
POD/ D l.

Equivalently, we can identify the POD basis by applying the spectral decompo-
sition to the covariance matrix C 
 RTR (being mNh � L ). As well known, the
right singular vectors of R coincide with the eigenvectors ci of C, with eigenvalues
�i D �2i , for i D 1; : : : ;L. Thus, the POD basis functions reads  i D ��1i Sci [28].

15.2.2.2 The Online Phase

We aim at rapidly computing the Hi-Mod approximation to problem (15.1) for
the parameter value ˛
 not included in the sampling set f˛igLiD1. For this pur-
pose, we assume an affine parameter dependence. Then, we project the Hi-Mod
system (15.4), with ˛ D ˛
, onto the POD space Vl

POD, by solving the linear system

A˛
�

PODu
˛�

POD D f˛
�

POD;

with A˛
�

POD D .
 l
POD/

TAh
m.˛

/ 
 l

POD 2 R
l�l, f˛�

POD D .
 l
POD/

T fhm.˛

/ 2 R

l and
u˛

�

POD D Œu˛
�

POD;1; : : : ; u
˛�

POD;l�
T 2 R

l, where Ah
m.˛

/ and fhm.˛


/ are defined as
in (15.4), and 
 l

POD D Œ 1; : : : ; l� 2 R
.mNh/�l is the matrix collecting, by column,

the POD basis functions.
By exploiting the POD basis, we write

uhm.˛

/ 	

lX
sD1

u˛
�

POD;s s:

The construction of A˛
�

POD and f˛
�

POD requires the assembly of the Hi-Mod
matrix/right-hand side for the value ˛
, successively projected onto the POD
space. Also in the basic POD online phase, we need to assembly, in general,
the full problem, and the Hi-Mod model, featuring lower size than a full finite
element problem, gives a computational advantage. In addition, the final solution is
computed by solving an l � l system as opposed to the mNh � mNh Hi-Mod system,
with a clear overall computational advantage, as we verify hereafter. In absence of
an affine parameter dependence, we can resort to an empirical interpolation method
as explained, e.g., in [24].
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15.2.3 Numerical Assessment

In this preliminary paper, we consider only 2D problems, the 3D case being
a development of the present work. We consider the linear advection-diffusion-
reaction (ADR) problem

8̂
<̂
ˆ̂:

�r � ��.x/ru.x/
�C b.x/ � ru.x/C �.x/u.x/ D f .x/ in ˝

u.x/ D 0 on �D

�.x/
@u

@n
.x/ D 0 on �N ;

(15.8)

with �D; �N � @˝ , such that �D [ �N D @˝ and
ı
� D \ ı

� ND ;, where �, b,
� and f denote the viscosity, the advective field, the reactive coefficient and the
source term, respectively. In particular, we set ˝ D .0; 6/ � .0; 1/, with �N D
f.x; y/ W x D 6; 0 � y � 1; g and �D D @˝ n �N . We also assume constant
viscosity and reaction, i.e., we pick � D 0:1�0 for �0 2 Œ1; 10� and � 2 Œ0; 3�;
then, we assign a sinusoidal advective field, b.x/ D Œb1; b2 sin.6x/�T with b1 2
Œ2; 20� and b2 2 Œ1; 3�, and the source term f .x/ D f1�C1 .x/ C f2�C2 .x/ for f1,
f2 2 Œ5; 25� and where function �! denotes the characteristic function associated
with the generic domain !, C1 D f.x; y/ W .x � 1:5/2 C 0:4 .y � 0:25/2 < 0:01g
and C2 D f.x; y/ W .x� 0:75/2 C 0:4 .y� 0:75/2 < 0:01g identifying two ellipsoidal
areas in ˝ . According to the notation in (15.1), we set therefore V 
 H1

�D
.˝/,

a.u; v/ 
 �
�ru;rv�C �

b � ru C �u; v
�
, for any u; v 2 V , and F.v/ D �

f ; v
�
, for

any v 2 V ,
��; �� denoting the L2.˝/-scalar product.

In the offline phase, we select L D 30 problems, by randomly varying coefficients
�0, � , b1, b2, f1 and f2 in the corresponding ranges, so that ˛ 
 Œ�0; �; b1; b2; f1; f2�T .
We introduce a uniform partition of ˝1D into 121 sub-intervals, and we Hi-Mod
approximate the selected L problems, combining piecewise linear finite elements
along the 1D fiber with a modal expansion based on 20 sinusoidal functions along
the transverse direction.

In the online phase, we aim at computing the Hi-Mod approximation to
problem (15.8) for ˛ D ˛
 D Œ�
0 ; �
; b
1 ; b
2 ; f 
1 ; f 
2 �T , with

�
0 D 2:4; �
 D 0; b
1 D 5; b
2 D 1; f 
1 D f 
2 D 10:

Figure 15.1 shows a Hi-Mod reference solution, uR;hm , computed by directly applying
Hi-Mod reduction to (15.8) for˛ D ˛
, with the same Hi-Mod discretization setting
used for the offline phase.

This test is intended to demonstrate the reliability of Hi-POD to construct an
approximation of the Hi-Mod solution (that, in turn, approximates the full solution
u), with a contained computational cost.

Figure 15.2 shows the spectrum of the response matrixR in (15.7). As highlighted
by the vertical lines, we select four different values for the number l of POD modes,
i.e., l D 2; 6; 19; 29. For these choices, the ratio

Pl
iD1 �2i =

Pq
iD1 �2i assumes the

value 0:780 for l D 2, 0:971 for l D 6, 0:999 for l D 19 (and, clearly, 1 for l D 29).
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Fig. 15.1 ADR problem. Hi-Mod reference solution

Fig. 15.2 ADR problem. Singular values of the response matrix R

Fig. 15.3 ADR problem. Hi-Mod approximation provided by the Hi-POD approach for l D 2

(top), l D 6 (center), l D 19 (bottom)

The singular values for the specific problem decay quite slowly. This is due to the
presence of many (six) parameters, so that the redundancy of the snapshots (that
triggers the decay) is quite limited.

Nevertheless, we observe that the Hi-POD solution still furnishes a reliable and
rapid approximation of the solution in correspondence of the value ˛
. Precisely,
Fig. 15.3 shows the Hi-Mod approximation provided by Hi-POD, for l D 2; 6; 19

(top-bottom). We stress that six POD modes are enough to obtain a Hi-Mod reduced
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Table 15.1 ADR problem

l D 2 l D 6 l D 19 l D 29

jjuR;hm �uhm.˛
�/jjL2.˝/

jjuR;hm jjL2.˝/
3.52e-01 3.44e-02 9.71e-04 4.38e-04

jjuR;hm �uhm.˛
�/jjH1.˝/

jjuR;hm jjH1.˝/

4.54e-01 6.88e-02 2.21e-03 8.24e-04

Relative errors for different Hi-POD reconstructions of the Hi-Mod solution

solution which, qualitatively, exhibits the same features as uR;hm . Moreover, the
contribution of singular vectors for l > 19 is of no improvement. We also notice
that the results for l D 6 are excellent, in spite of the large number of parameters.

Table 15.1 provides more quantitative information. We collect the L2.˝/- and
the H1.˝/-norm of the relative error obtained by replacing the Hi-Mod reference
solution with the one provided by the Hi-POD approach. As expected, the error
diminishes as the number of POD modes increases.

15.3 Hi-POD Reduction of the Navier-Stokes Equations

We generalize the Hi-POD procedure in Sect. 15.2.2 to the incompressible Navier-
Stokes equations [25]. We first consider the stationary problem

8̂
ˆ̂̂<
ˆ̂̂̂
:

�r � .2� D.u// .x/C .u � r/ u.x/C rp.x/ D f.x/ in ˝

r � u.x/ D 0 in ˝

u.x/ D 0 on �D

.D.u/� pI/ .x/ n D gn on �N ;

(15.9)

with u D Œu1; u2�T and p the velocity and the pressure of the flow, respectively
� > 0 the kinematic viscosity, D.u/ D 1

2

�ru C .ru/T
�

the strain rate, f the force
per unit mass, n the unit outward normal vector to the domain boundary @˝ , I the
identity tensor, g a sufficiently regular function, and where �D and �N are defined
as in (15.8). We apply a standard Picard linearization of the nonlinear term

8̂
ˆ̂̂<
ˆ̂̂̂
:

�r � �2� D.ukC1/�C �
uk � r�ukC1 C rpkC1 D f in ˝

r � .ukC1/ D 0 in ˝

ukC1 D 0 on �D�
D.ukC1/ � pkC1I

�
n D gn on �N ;

where fuj; pjg denotes the unknown pair at the iteration j. Stopping criterion of the
Picard iteration is designed on the increment between two consecutive iterations.
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Problem (15.9) is approximated via a standard Hi-Mod technique, for both the
velocity and the pressure, where a modal basis constituted by orthogonal Legendre
polynomials, adjusted to include the boundary conditions, is used. Finite elements
are used along the centerline. The finite dimension Hi-Mod spaces for velocity
and pressure obtained by the combination of different discretization methods need
to be inf-sup compatible. Unfortunately, no proof of compatibility is currently
available, even though some empirical strategies based on the Bathe-Chapelle test
are available [7, 14]. In particular, here we take piecewise quadratic velocity/linear
pressure along the mainstream and the numbers mp;mu of pressure and velocity
modes is set such that mu D mp C 2. Numerical evidence suggests this to be an
inf-sup compatible choice [1, 7]. Finally, the same number of modes is used for the
two velocity components, for the sake of simplicity.

We denote by Vh;u
1D � H1.˝1D/ and by Vh;p

1D � L2.˝1D/ the finite element space
adopted to discretize u1, u2 and p, respectively along ˝1D, with dim.Vh;u

1D / D Nh;u

and dim.Vh;p
1D / D Nh;p. Thus, the total number of degrees of freedom involved by a

Hi-Mod approximation of u and p is Nu D 2muNh;u and Np D mpNh;p, respectively.
From an algebraic viewpoint, at each Picard iteration, we solve the linear system

(we omit index k for easiness of notation)

Shfmu;mpg z
h
mu;mp

D Fh
fmu;mpg; (15.10)

where

Shfmu;mpg D
"
Ch
fmu;mug ŒB

h
fmu;mpg�

T

Bh
fmu;mpg 0

#
2 R

.NuCNp/�.NuCNp/;

with Ch
fmu;mug 2 R

Nu�Nu , Bh
fmu;mpg 2 R

Np�Nu the Hi-Mod momentum and divergence

matrix, respectively, zhmu;mp
D Œuhmu

; phmp
�T 2 R

NuCNp the vector of the Hi-Mod

solutions, and where Fh
fmu;mpg D Œfhmu

; 0�T 2 R
NuCNp , with fhmu

the Hi-Mod right-
hand side of the momentum equation.

When coming to the Hi-POD procedure for problem (15.9), we follow a
segregated procedure, where a basis function set is constructed for the velocity and
another one for the pressure. The effectiveness of this reduced basis in representing
the solution for a different value of the parameter is higher with respect to a
monolithic approach, where a unique POD basis is built. We will support this
statement with numerical evidence. Still referring to (15.6) and (15.7), we build two
separate response matrices, Ru 2 R

Nu�L and Rp 2 R
Np�L, which gather, by column,

the Hi-Mod approximation for the velocity, uhmu
.˛/ 2 R

Nu , and for the pressure,
phmp
.˛/ 2 R

Np , solutions to the Navier-Stokes problem (15.9) for L different choices

˛i, with i D 1; : : : ;L, of the parameter that, in this case, is ˛ D Œ�; f; g�T . A standard
block-Gaussian procedure resorting to the pressure Schur-complement is used to
compute velocity and pressure, separately [3].
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Following a segregated SVD analysis of the two unknowns, after identifying the
two indices lu and lp, separately, we construct a unique reduced POD space Vl

POD,
with l D max.lu; lp/, by collecting the first l singular vectors of Ru and of Rp. More
precisely, for a new value ˛
 of the parameters, with ˛
 ¤ ˛i for i D 1; : : : ;L,
at each Picard iteration, we project the linearized Navier-Stokes problem onto the
space Vl

POD.
Another possible approach is to keep the computation of the velocity and pressure

separate on the two basis function sets with size lu and lp, by resorting to an
approximation of the pressure Schur complement, followed by the computation of
the velocity, similar to what is done in algebraic splittings [3, 22, 26, 27]. More
in general, the treatment of the nonlinear term in the Navier-Stokes problem can
follow approximation strategies with a specific basis function set and empirical
interpolation strategies [24]. At this preliminary stage, we do not follow this
approach and we just assess the performances of the basic procedure. However,
this topic will be considered in the follow-up of the present work in view of real
applications.

It is also worth noting that no inf-sup compatibility is guaranteed for the POD
basis functions. Numerical evidence suggests that we do have inf-sup compatible
basis functions, however a theoretical analysis is still missing.

15.3.1 A Benchmark Test Case

We solve problem (15.9) on the rectangular domain ˝ D .0; 8/ � .�2; 2/, where
�D D f.x; y/ W 0 � x � 8; y D ˙2g and �N D @˝ n �D.

Moreover, we assume the analytical representation

f D

f0;x C fxx x C fxy y
f0;y C fyx x C fyy y

�
(15.11)

for the forcing term f involved in the parameter ˛.
In the offline stage, we Hi-Mod approximate L D 30 problems, by varying the

coefficients fst, for s D 0; x; y and t D x; y, in (15.11), the kinematic viscosity � and
the boundary value g in (15.9). In particular, we randomly sample the coefficients
fst on the interval Œ0; 100�, whereas we adopt a uniform sampling for � on Œ30; 70�
and for g on Œ1; 80�.

Concerning the adopted Hi-Mod discretization, we partition the fiber˝1D into 80
uniform sub-intervals to employ quadratic and linear finite elements for the velocity
and the pressure, respectively. Five Legendre polynomials are used to describe the
transverse trend of u, while three modal functions are adopted for p.
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In the online phase, we compute the Hi-POD approximation to problem (15.9)
with parameters ˛
 D Œf
; �
; g
�T , with f
 D Œ82:6; 12:1�T , �
 D 51:4 and g
 D
24:2, fxx D fyy D fxy D fyx D 0. Figure 15.4 (left) shows the contour plots of the two
components of the velocity and of the pressure for the reference Hi-Mod solution
fuR;hmu

; pR;hmp
g (from top to bottom: horizontal velocity, vertical velocity, pressure), with

uR;hmu
D ŒuR;hmu;1

; uR;hmu;2
�T .

For the sake of completeness, we display the results of a monolithic approach
in Fig. 15.4 (center and right), where the POD basis is computed on a unique
response matrix for the velocity and pressure. While velocity results are quite
accurate, pressure approximation is bad, suggesting that, probably, a lack of inf-
sup compatibility of the reduced basis leads to unreliable pressure approximations,
independently of the dimension of the POD space.

When we turn to the segregated approach, Fig. 15.5 shows the distribution of the
singular values of the response matrices Ru and Rp, respectively. Again the values
decay is not so rapid to pinpoint a clear cut-off value (at least for significantly small
dimensions of the reduced basis), as a consequence of the multiple parametrization
that inhibits the redundancy of the snapshots. However, when we compare the
Hi-Mod solution identified by three different choices of the POD spaces, Vl;u

POD

Fig. 15.4 Steady Navier-Stokes equations. Hi-Mod reference solution (left), Hi-Mod approxima-
tion yielded by the monolithic Hi-POD approach for l D 11 (center) and l D 28 (right): horizontal
(top) and vertical (middle) velocity components; pressure (bottom)

Fig. 15.5 Steady Navier-Stokes equations. Singular values of the response matrix Ru (left) and Rp

(right)
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Fig. 15.6 Steady Navier-Stokes equations. Hi-POD approximation yielded by the segregated Hi-
POD approach for l D 4 (left), l D 6 (center), l D 10 (right): horizontal (top) and vertical (middle)
velocity components; pressure (bottom)

Table 15.2 Steady Navier-Stokes equations

jjuR;hmu ;1
� uhmu ;1

.˛�/jjH1.˝/
jjuR;hmu ;1

jjH1.˝/
jjuR;hmu ;2

� uhmu ;2
.˛�/jjH1.˝/

jjuR;hmu ;2
jjH1.˝/

jjpR;hmp
� phmp

.˛�/jjL2.˝/
jjpR;hm jjL2.˝/

l D 4 7:1 � 10�3 3:9 � 10�1 4:8 � 10�1

l D 6 3:8 � 10�4 4:3 � 10�2 3:9 � 10�1

l D 10 1:1 � 10�4 8:6 � 10�3 1:3 � 10�3

Relative errors for different Hi-POD reconstructions of the Hi-Mod solution

and Vl;p
POD, with the reference approximation in Fig. 15.4 (left), we notice that

the choice l D 6 is enough for a reliable reconstruction of the approximate
solution (see Fig. 15.6 (center)). The horizontal velocity component—being the
most predominant dynamics—is captured even with a lower size of the reduced
spaces Vl;u

POD, while the pressure still represents the most challenging quantity to be
correctly described.

In Table 15.2, we quantify the accuracy of the Hi-POD procedure. We compare
the relative errors between the Hi-Mod reference solution fuR;hmu

; pR;hmp
g and the Hi-

POD approximation fuhmu
.˛
/; phmp

.˛
/g generated by different Hi-POD schemes,

with uhmu
.˛
/ D Œuhmu;1

.˛
/; uhmu;2
.˛
/�T .

As for the computational time (in seconds),1 we found that the segregated Hi-
POD requires 0:13s to be compared with 0:9s demanded by the standard Hi-Mod
approximation. This highlights the significant computational advantage attainable
by Hi-POD, in particular for a rapid approximation of the incompressible Navier-
Stokes equations when estimating one or more parameters of interest.

1All the experiments have been performed using MATLAB® R2010a 64-bit on a Fujitsu Lifebook
T902 equipped with a 2.70 GHz i5 (3rd generation) vPro processor and 8 GB of RAM.
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15.4 Towards More Realistic Applications

We extend the Hi-POD segregated approach to the unsteady Navier-Stokes equa-
tions
8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

@u
@t
.x; t/ � r � .2� D.u// .x; t/C .u � r/ u.x; t/C rp.x; t/ D f.x; t/ in Q

r � u.x; t/ D 0 in Q

u.x; t/ D 0 on GD

.D.u/� pI/ .x; t/ n D g.x; t/n on GN

u.x; 0/ D u0.x/ in ˝;
(15.12)

with Q D ˝ � I for I D .0;T/ the time window of interest, GD D �D � I, GN D
�N �I, u0 the initial value, and where all the other quantities are defined as in (15.9).
After introducing a uniform partition of the interval I into M sub-intervals of length
�t, we resort to the backward Euler scheme and approximate the nonlinear term via
a classical first order semi-implicit scheme. The semi-discrete problem reads: for
each 0 � n � M � 1, find funC1; pnC1g 2 V 
 ŒH1

�D
.˝/�2 � L2.˝/ such that

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

unC1 � un

�t
� r � �2� D.unC1/�C .un � r/unC1 C rpnC1 D fnC1 in ˝

r � unC1 D 0 in ˝

unC1 D 0 on �D�
D.unC1/� pnC1I

�
n D gnC1n on �N ;

(15.13)

with u0 D u0.x/, unC1 ' u.x; tnC1/, pnC1 ' p.x; tnC1/ and ti D i�t, for i D
0; : : : ;M.

For the Hi-Mod approximation, we replace space V in (15.13) with the same
Hi-Mod space as in the steady case.

When applied to unsteady problems, POD procedures are generally used for
estimating the solution at a generic time by taking advantage of precomputed
snapshots [28]. In our specific case, we know the Hi-Mod solution for a certain
number of parameters ˛i, and we aim at rapidly estimating the solution over a time
interval of interest for a specific value ˛
 of the parameter, with ˛
 ¤ ˛i. The
procedure we propose here is the following one:

1. we precompute offline the steady Hi-Mod solution for L samples ˛i of the
parameter, i D 1; : : : ;L;

2. for a specific value ˛
 of the parameter, we compute online the Hi-Mod solution
to (15.12) at the first times tj, for j D 1; : : : ;P;

3. we juxtapose the Hi-Mod snapshots to the steady response matrix obtained
offline;
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4. we perform the Hi-POD procedure to estimate the solution to (15.12) at times tj,
with j > P.

In absence of a complete analysis of this approach, we present here some
preliminary numerical results in a non-rectilinear domain. Hi-Mod reduction has
been already applied to curvilinear domains [15, 21]. In particular, in [21] we exploit
the isogeometric analysis to describe a curvilinear centerline˝1D, by replacing the
1D finite element discretization with an isogeometric approximation.

Here, we consider a quadrilateral domain with a sinusoidal-shaped centerline (see
Fig. 15.7). We adopt the same approach as in [15] based on an affine mapping of the
bent domain into a rectilinear reference one. During the offline phase, we Hi-Mod
solve problem (15.9) for L D 5 different choices of the parameter ˛ D Œ�; f; g�T ,
by uniformly sampling the viscosity � in Œ1:5; 7�, g in Œ1; 80�, and f.x/ D Œf1; f2�T ,
with f1, f2 2 R in Œ0; 10�. Domain ˝1D is divided in 80 uniform sub-intervals.
We approximate u and p with five and three Legendre polynomials along the
transverse direction combined with piecewise quadratic and linear functions along
˝1D, respectively. The corresponding Hi-Mod approximations constitute the first L
columns of the response matrices Ru and Rp.

Then, we solve the unsteady problem (15.12). We pick u0 D 0, T D 10, and we
introduce a uniform partition of the time interval I, with �t D 0:1.

The data ˛
 for the online phase are �
 D 2:8, g
 D 30 C 20 sin.t/ and f
 D
Œ5:8; 1:1�T . Matrices Ru and Rp are added by the first P D 5 Hi-Mod approximations
fuh;jmu

.˛
/; ph;jmp
.˛
/g, for j D 1; : : : ; 5, so that Ru 2 R

Nu�10 and Rp 2 R
Np�10, where

Nu D 2 � 5 � Nh;u, Np D 3 � Nh;p with Nh;u and Nh;p the dimension of the one
dimensional finite element space used along˝1D for u and p, respectively.

Figure 15.7 compares, at four different times, a reference Hi-Mod solution
fuR;hmu

; pR;hmp
g, with uR;hmu

D ŒuR;hmu;1
; uR;hmu;2

�T , computed by hierarchically reducing

problem (15.12) with the Hi-POD solution fuhmu
.˛
/; phmp

.˛
/g, with uhmu
.˛
/ D

Œuhmu;1
.˛
/; uhmu;2

.˛
/�T , for l D 6. The agreement between the two solutions is
qualitatively very good, in spite of the fact that no information from the Hi-Mod
solver on the problem after time t5 is exploited to construct the Hi-POD solution.
The pressure still features larger errors, as in the steady case.

We make this comparison more quantitative in Table 15.3, where we collect the
L2.˝/- and the H1.˝/-norm of the relative error between the Hi-Mod reference
solution and the Hi-POD one, at the same four times as in Fig. 15.7. We notice
that the error does not grow significantly with time. This suggests that the Hi-
POD approach can be particularly viable for reconstructing asymptotic solutions
in periodic regimes, as in computational hemodynamics. As for the computational
efficiency, Hi-POD solution requires 103s vs 287s of Hi-Mod one, with a significant
reduction of the computational time.
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Fig. 15.7 Unsteady Navier-Stokes equations. Reference Hi-Mod solution (left) and Hi-Mod
approximation yielded by the Hi-POD approach for l D 6 (right), at t D 2 (first row), t D 4

(second row), t D 6 (third row) and t D T (fourth row): horizontal (top) and vertical (middle)
velocity components; pressure (bottom)
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Table 15.3 Unsteady Navier-Stokes equations

jjuR;hmu ;1
� uhmu ;1

.˛�/jjH1.˝/
jjuR;hmu ;1

jjH1.˝/
jjuR;hmu ;2

� uhmu;2
.˛�/jjH1.˝/

jjuR;hmu ;2
jjH1.˝/

jjpR;hmp
� phmp

.˛�/jjL2.˝/
jjpR;hmp jjL2.˝/

t D 2 5:4 � 10�4 4:5 � 10�4 3:4 � 10�2

t D 4 2:4 � 10�3 2:1 � 10�3 1:0 � 10�1

t D 6 2:3 � 10�3 2:2 � 10�3 6:2 � 10�2

t D T 2:6 � 10�3 2:4 � 10�3 7:7 � 10�2

Relative error associated with the Hi-Mod approximation provided by Hi-POD at different times

15.5 Conclusions and Future Developments

The preliminary results in Sects. 15.2.3, 15.3.1 and 15.4 yielded by the combination
of the model/solution reduction techniques, Hi-Mod/POD, are very promising in
view of modeling incompressible fluid dynamics in pipes or elongated domains. We
have verified that Hi-POD enables a fast solution of parametrized ADR problems
and of the incompressible, steady and unsteady, Navier-Stokes equations, even
though in the presence of many (six) parameters. In particular, using Hi-Mod in
place of a traditional discretization method applied to the reference (full) problem
accelerates the offline phase and also the construction of the reduced problem
projected onto the POD space.

Clearly, there are several features of this new approach that need to be investi-
gated. First of all, we plan to migrate to 3D problems within a parallel implemen-
tation setting (in the library LifeV, www.lifev.org). Moreover, we aim at further
accelerating the computational procedure by using empirical interpolation methods
for possible nonlinear terms [24]. Finally, an extensive theoretical analysis is needed
to estimate the convergence of the Hi-POD solution to the full one as well as the inf-
sup compatibility of the Hi-Mod bases deserves to be rigorously analyzed.

As reference application we are interested in computational hemodynamics, in
particular to estimate blood viscosity from velocity measures in patients affected by
sickle cell diseases [23].
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Chapter 16
Adaptive Sampling for Nonlinear
Dimensionality Reduction Based
on Manifold Learning

Thomas Franz, Ralf Zimmermann, and Stefan Görtz

Abstract We make use of the non-intrusive dimensionality reduction method
Isomap in order to emulate nonlinear parametric flow problems that are governed
by the Reynolds-averaged Navier-Stokes equations. Isomap is a manifold learning
approach that provides a low-dimensional embedding space that is approximately
isometric to the manifold that is assumed to be formed by the high-fidelity Navier-
Stokes flow solutions under smooth variations of the inflow conditions. The focus
of the work at hand is the adaptive construction and refinement of the Isomap
emulator: We exploit the non-Euclidean Isomap metric to detect and fill up gaps
in the sampling in the embedding space. The performance of the proposed manifold
filling method will be illustrated by numerical experiments, where we consider
nonlinear parameter-dependent steady-state Navier-Stokes flows in the transonic
regime.

16.1 Introduction

In [8], the authors proposed a non-intrusive low-order emulator model for nonlinear
parametric flow problems governed by the Navier-Stokes equations. The approach is
based on the manifold learning method Isomap [17] combined with an interpolation
scheme and will be referred to hereafter as Isomap+I. Via this method, a low-
dimensional embedding space is constructed that is approximately isometric to the
manifold that is assumed to be formed by the high-fidelity Navier-Stokes flow

T. Franz (�) • S. Görtz
Institute for Aerodynamics and Flow Technology, German Aerospace Center (DLR),
Braunschweig, Germany
e-mail: thomas.franz@dlr.de; stefan.goertz@dlr.de

R. Zimmermann
Institute ‘Computational Mathematics’, TU Braunschweig, Braunschweig, Germany

Department of Mathematics and Computer Science, University of Southern Denmark, Odense M,
Denmark
e-mail: ralf.zimmermann@tu-bs.de; zimmermann@imada.sdu.dk

© Springer International Publishing AG 2017
P. Benner et al. (eds.), Model Reduction of Parametrized Systems,
MS&A 17, DOI 10.1007/978-3-319-58786-8_16

255

mailto:thomas.franz@dlr.de
mailto:stefan.goertz@dlr.de
mailto:ralf.zimmermann@tu-bs.de; zimmermann@imada.sdu.dk


256 T. Franz et al.

solutions under smooth variations of the inflow conditions. As with almost all
model reduction methods, the offline stage for the Isomap+I approach requires a
suitable design of experiment, i.e., a well-chosen sampling of high-fidelity flow
solutions, the so-called snapshots. The online stage, however, might be considered
as an adaptive way for choosing for each low-order prediction the most suitable
local snapshot neighborhood rather than using all available snapshot information
in a brute-force way. The notion of locality is based on the Isomap metric. The
focus of this article is on an adaptive construction and refinement of the underlying
design of experiment. Since Isomap comes with a natural non-Euclidean metric for
measuring snapshot distances, we make use of this metric to detect gaps in the
embedding space. By the (approximate) isometry between the embedding space
and the manifold of flow solutions, we obtain in this way a manifold filling design
of experiment. In contrast, standard approaches like the Latin Hypercube method
[6] aim at a parameter-space filling design of experiment. The performance of the
proposed manifold filling method is illustrated by numerical experiment, where
we consider nonlinear parameter-dependent steady-state Navier-Stokes flows in the
transonic regime.

Organization In Sect. 16.2, the Isomap-based emulator model is briefly introduced.
The adaptive sampling strategy based on the manifold characterization is developed
in Sect. 16.3.1, followed by a proof of concept in Sect. 16.3.2. Afterwards, the
methods are demonstrated for an engineering application in Sect. 16.4. Finally,
conclusions are drawn in Sect. 16.5.

16.2 The Isomap-Based Emulator Model

In this section, we briefly review the manifold learning based approach to emulate
steady-state flows governed by the Reynolds-averaged Navier Stokes (RANS) equa-
tions that was introduced in [7, 8]. For background information on computational
fluid dynamics see, e.g., [3], for an introduction to differentiable manifolds see,
e.g., [16].

Let M � R
n be an embedded submanifold in the Euclidean space with intrinsic

dimension dim.M / D d < n. Let W � M be an open domain in M such that
there exists a coordinate chart1 h W W ! Y onto an open domain Y � R

d. The
fundamental objective of manifold learning (ML) [5, 18] is to solve the isometric
embedding problem [2, 18], which we reformulate as follows:

For a given finite set of sampled data points W D fW1; : : : ;Wmg � W � R
n compute

an approximation of the coordinate chart h such that the restriction to the discrete sample
points

hjW W W  W D fW1; : : : ;Wmg ! Y D fy1; : : : ; ymg � Y ; h.Wi/ D yi;

1i.e., a bijective both-ways differentiable mapping.
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is such that the image point set Y features (approximately) the same inter-point distances as
the high dimensional data set W.

One of the most popular ML methods is Isomap [17]. Isomap works by approxi-
mating the geodesic distance between data vectors Wi and Wj via computing the
length of an Euclidean polygon course that connects Wi and Wj. The polygon
course is determined based on a graph-theoretical shortest path problem, which
is detailed in [8] and [17]. The basic idea is illustrated in Fig. 16.1a. Once the
geodesic distances are estimated, a distance matrix D 2 R

m�m is formed, where
the entry dij, i; j D 1; : : : ;m, is the approximated geodesic distance between Wi

and Wj. The next step is to employ classical multidimensional scaling [11, Sect. 14]
with the distance matrix D as an input. This results in a data set Y D fy1; : : : ; ymg
with

��yi � yj
�� 	 dij for i; j D 1; : : : ;m. Moreover, the data set Y is tuned for

the envisioned application by minimizing an additional loss function afterwards,
see [7, Sect. 4.3.1]. The resulting embedding space when applying Isomap to the
‘swiss roll’ standard example in manifold learning (see Fig. 16.1b) is displayed in
Fig. 16.1c.

So far, we have constructed a low-dimensional representation of the high-
dimensional input data. In order to obtain a valid emulator, a mapping from
the low-dimensional space to the high-dimensional manifold is required. As it is
common in many model reduction methods, including proper orthogonal decom-

(a)

(b)

(c)

Fig. 16.1 Left: Geodesic distances vs. Euclidean distances. Right: The ‘swiss roll’ standard
example. (a) Approximation of the geodesic distance. (b) Swiss roll: Original data set in R

3. (c)
Swiss roll: Isometric embedding in R

2
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position [12] and the reduced basis method [15], we assume that the output of the
emulator is a linear combination of the input snapshots. In our setting, the input data
vectors stem from solutions to the RANS equations under parametric variations, i.e.,
Wj D W.p j/, where p j is the parameter vector specifying the inflow conditions.
The ansatz at an untried flow condition p
 is W.p
/ D Pm

jD1 aj.p
/Wj: Hence,
the nonlinear parametric dependency is in the coefficients aj D aj.p/ while the
snapshots Wj are fixed. The essential idea of manifold learning is to localize the
information in the sense that only the N nearest neighbors fWj D W.p j/j j 2
I ; jI j D Ng contribute to W.p
/, where the notion of proximity depends on
the Isomap metric.

The exact procedure is as follows: If the flow at p
 is to be emulated, we then
first determine the corresponding location in the embedding space y
 D y.p
/ 2 R

d

via multivariate interpolation based on the embedded data set f.p j; yj/gmjD1. Isomap
provides us with the nearest neighbors fyj j j 2 I g of y
. Next, we represent
y
 approximatively as a weighted linear combination of the nearest neighbors as
y
 	 P

j2I ajyj, where we determine the weights aj via the following optimization
problem:

min
a2RN

ky
 �
X
j2I

ajy jk22 C kak2c s. t.
X
j2I

aj D 1; (16.1)

with penalty term

kak2c WD
X
j2I

cja
2
j ; cj D "

 ��y
 � y j
��
2

maxifky
 � yik2g

!k

; 0 < " � 1; 1 < k 2 N:

The penalty term weights the influence of the snapshots based on their distance
to the prediction point y
. Let a
 2 R

N be the solution to (16.1). Because of
the inherent (approximate) isometry between the snapshots Wj and the locations
yj in the embedding space, we use the same weight vector to construct the high-
dimensional flow state

W
 D
X
j2I

a
j Wj: (16.2)

The extra condition in Eq. (16.1) is such that when the whole set of embedded
snapshots y j, j 2 I , is translated via T W y 7! y C � to a new set z j D T.yj/,
j 2 I , then

T.y
/ D y
 C � D .y1; : : : ; yjI j/a C � D .z1; : : : ; zjI j/a D z
:

Best practice settings for the meta-parameters "; k and further details are given in
[7]. In addition, a heuristic choosing the size of the neighborhood I automatically
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is developed in [7] and employed for all conducted predictions. We call the above
process Isomap+I.

16.3 Adaptive Sampling

The algorithmic efficiency and the numerical accuracy of the Isomap-based emu-
lator strongly depend on the selected input information. Computing the input
snapshots is costly by nature, because high-fidelity solutions to the very system that
is to be emulated are required. Moreover, spatial sampling methods suffer from the
curse of dimensionality [6, Sect. 1.1] in the sense that the number of sample points
that is required to achieve a certain sampling density grows exponentially with the
spatial dimension. To keep the number of full system solves as small as possible, we
present an incremental sampling method that attempts to create a homogeneously
distributed data set of the manifold based on geometric information.

16.3.1 Manifold Filling Adaptive Sampling Strategies

As outlined in Sect. 16.2, Isomap preserves the interpoint distances of the underlying
manifold domain W . This property is what we exploit for detecting gaps in the input
data set.

Let fy1; : : : ; ymg D Ym � R
d be the low-dimensional representative of the large-

scale input snapshot set fW1; : : : ;Wmg D Wm � R
n and let y W P ! R

d with
y.p j/ D yj, p j 2 P � R

d, j D 1; : : : ;m. If there is a location yg 2 fy.p/ j p 2 Pg
and a radius � > 0 such that the � -ball B� .yg/ D fQy 2 R

d j kyg � Qyk2 < �g does
not contain any sampled representatives, i.e., y j … B� .yg/8j D 1; : : : ;m, then we
say that there is a gap of size � at yg 2 fy.p/ j p 2 Pg. The objective is to detect
these gaps and fill them by adding suitable snapshots to the input data set.

We device an iterative adaptation process. Let P � R
d be the parameter domain

of interest and let P Qm D fp1; : : : ;p Qmg � P be a set of Qm 2 N preselected sample
locations. Moreover, let 1 � i � m � Qm be the number of the current iteration of
the adaptive sampling process, where i;m 2 N and m > Qm is the maximal number
of affordable snapshots. Starting with the initial design of experiment (DoE) of Qm
snapshots W Qm D fW1; : : : ;W Qmg � R

n, where Wj D W.p j/, the associated initial
embedding Y Qm D fy1; : : : ; y Qmg � R

d is calculated via Isomap.
The procedure to detect gaps is as follows: For a given location p 2 P the

corresponding location in the embedding space y W P ! R
d is determined via

interpolation based on the data set of current sample locations f.p j; y j/g QmjD1, cf.
Sect. 16.2. Then, the weighted sum of the distances of the N 2 N nearest neighbors
yj; j 2 I to y.p/ is calculated:

dist.y.p// WD dmin.y.p//
dmax.y.p//

X
j2I

ky.p/ � yjk2; (16.3)
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Algorithm 1 Manifold filling adaptive sampling algorithm
Require: Desired number of snapshots m, number of initial snapshots Qm
1: Generate Qm < m parameter values p1; : : : ; p Qm 2P, e.g. via LHS
2: P fp1; : : : ; pQmg
3: Compute snapshot solutions W.p/ at each parameter value p 2 P
4: W fW.p1/; : : : ;W.p Qm/g F initial sampling
5: for i D 1 to m� Qm do
6: Calculate embedding Y of the generated snapshot set W via Isomap
7: Compute interpolation model for y based on f.p j; y j/g QmCi�1

jD1

8: Determine p� 2P by maximizing Edist or Erec

9: Compute snapshot solution W� at parameter configuration p� 2P
10: P P[ fp�g
11: W  W [ fW�g
12: end for
13: return Set W of m snapshots

where dmin.y.p// D minj2I ky.p/ � y jk2 and dmax.y.p// D maxj2I ky.p/ � y jk2.
The distance function (16.3) is multiplied by an indicator function !:

Edist.y.p// WD dist.y.p// � !.p/; !.p/ D
(
1 if p 2 P;

0 else,
(16.4)

which ensures that the adaptation process takes place only in the inside of the
parameter domain of interest. The maximizer p
 D arg maxEdist.y.p// determines
the next snapshot to be added to the model. The above method will be referred to
as the maximum distance error (MDE) strategy. A pseudo code of this method is
outlined in Algorithm 1.

On top of the distance based error criterion (16.4), we introduce a reconstruction
error indicator that yields reliable results when the manifold is sufficiently homo-
geneously sampled, i.e. the sampling does not divide into disconnected clusters.
Let Y QmCi�1 be the embedding data set at iteration i � 1 of the adaptive sampling

process. For each y j 2 Y QmCi�1, we compute a prediction OW.y j/ D OW j
based on its

N nearest neighbors and the relative error Erel.y j/ D k OW j�W jk2
kW jk2 to the corresponding

snapshot W j. Note that y j is not counted as a neighbor of itself and hence OWj ¤ Wj.
Subsequently, interpolation is performed to approximate the relative error at an
arbitrary location y … Y QmCi�1 based on the data set f.y j;Erel.y j//g QmCi�1

jD1 . To ensure
that the error is zero at the given sample points, the reconstruction error is defined
as

Erec.y.p// WD Erel.y.p// � Edist.y.p//: (16.5)

Since an almost homogeneously sampled manifold must be given, we employ the
error function Erec only every kth iteration in practice. For the remaining iterations
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Edist is utilized exclusively to ensure a homogeneously distributed manifold. The
resulting hybrid error sampling strategy is referred to as HYE in the following.

Remark 1 It is not a necessity that we add only one snapshot per iteration. In each
iteration, we may choose to determine several local maximizers to Edist and Erec,
respectively, and add the corresponding snapshots to the information pool.

Choice of the Initial Sampling Plan and Starting Points for Optimization When
starting from scratch, the initial sampling plan of Qm points in the parameter
domain of interest P is chosen randomly. More precisely, we employ either space
filling random Latin Hypercube Sampling (LHS) [6] or Halton sequences [9] to
construct the initial DoE. The selection of the starting points for the maximization
of either (16.4) or (16.5) requires special consideration as the objective functions
features many local maxima. We make the following differentiation:

1. If the initial DoE P D fp1; : : : ;p Qmg is such that its convex hull coincides with the
parameter space P of interest, then we treat the convex hull of the corresponding
embedding points Y D fy1; : : : ; y Qmg as the domain of interest in the embedding
space, even though the mapping is not convex in general. In this case, we perform
a Delaunay triangulation [14] of Y and determine the centers y.ci/ 2 conv.Y/,
i D 1; : : : ; l of the Delaunay simplices of largest volume. The corresponding
locations p.y.ci// 2 P are selected as starting points for optimizing (16.4).
(The p.y.ci// are found via interpolation.)

2. Otherwise, we perform another space filling LHS to create the starting points
randomly in order to avoid clustering effects. This procedure is also followed
for determining the starting points for optimizing (16.5) in order to increase the
probability to locate the global maximum.

16.3.2 Proof of Concept

In this section, we illustrate the performance of Algorithm 1 on two academic
examples.

Detection of Gaps Reconsider the swiss role, parameterized by two parameters t
and h:

s W P ! W � R
3; .t; h/ 7! .t cos.t/; h; t sin.t//; P D Œ 3

2
�; 9

2
�/ � Œ0; 21/

To artificially create a hole in the sample set, we exclude the rectangle .9:5; 10:5/�
.8; 13/ from the parameter domain and construct an initial random-based DoE P of
jPj D 748 sample points in P n .9:5; 10:5/� .8; 13/.

Now, we conduct a single step of Algorithm 1, where we perform step 8 with
respect to (16.4) and consider only the single nearest neighbor in evaluating the
distance function (16.3). This results in an optimal location p
 2 P that is displayed



262 T. Franz et al.

Fig. 16.2 Detection of a gap in the DoE illustrated for the swiss roll. (a) Point cloud and detected
gap center in the parameter domain P. (b) Point cloud and detected gap center in the embedding
domain Y . (c) Point cloud and detected gap center on the swiss roll manifold W

Fig. 16.3 Curved plate: Locations of the initial and refined parameter samples. (a) Initial
parameter sampling. (b) Refined sample set

in Fig. 16.2a. Figure 16.2b, c depict the corresponding point y
 D y.p
/ in the
embedding space and s.p
/ 2 R

3 on the swiss roll manifold, respectively.

Manifold Filling As a second academic example, we consider a curved plate
parameterized by

c W P ! W � R
3; .t; h/ 7! . t

2

10
cos.t/; h; t2

10
sin.t//; P D Œ 3

2
�; 3�� � Œ0; 21�:

We start with a Latin hypercube sampling of 40 data points selected from the
interior of P and add the four corner points of the rectangle P , see Fig. 16.3a. The
corresponding initial sample data set W44 � W and its discrete Isomap embedding
Y44 are depicted in Fig. 16.4a, b, respectively.

We detect the regions of low sampling density via the MDE approach. The
starting points for the optimization procedures are chosen by a LHS of size 30 in
each iteration. In Fig. 16.4c, d, the generated snapshot set W QmCi and its embeddings
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Fig. 16.4 Manifold filling adaptive sampling strategy illustrated for a curved plate. (a) W44 � W .
(b) Y44 � Y . (c) W194 � W . (d) Y194 � Y

after i D 150 iterations is shown, respectively.2 The QmCi D 194 parameter locations
in P associated with the final refined snapshot set are depicted in Fig. 16.3b. Note
that the sampling plan is denser for larger t, which is in line with the fact that the
function c exhibits a higher angular velocity for increasing t.

16.4 An Engineering Example

As an engineering application, we emulate the high-Reynolds number flow past the
two-dimensional NACA 64A010 airfoil in the transonic flow regime. The geometry
of the airfoil is shown in Fig. 16.5b. The hybrid unstructured grid features 21; 454
grid points, including 400 surface grid points, and is depicted in Fig. 16.5.

The objective is to emulate the distribution of the pressure coefficient Cp on the
surface of the airfoil under varying angle of attack, ˛, and Mach number, Ma. To

2The number of nearest neighbors used for the embedding was chosen automatically in each
iteration according to [7, Sect. 4.3.3].
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Fig. 16.5 Computational grid for the NACA 64A010 airfoil. (a) View of the entire flow field. (b)
Detailed view close to the surface

Fig. 16.6 Left: Locations of the snapshots and various prediction points in the ˛-Ma-space
for the NACA 64A010 test case. Furthermore, the employed snapshots for the prediction at
.˛;Ma/ D .6:5ı; 0:75/ are encircled. Right: Representatives within the embedding space colored
corresponding to the angle of attack ˛ (top) and the Mach number Ma (bottom)

this end, we generate a snapshot set of flow solutions, where the initial parameter
locations P are selected via a LHS of m D 30 samples from in the parameter space
P D f.˛;Ma/ 2 Œ4ı; 10ı�� Œ0:74; 0:82�g, see Fig. 16.6. The corresponding viscous
flow solution snapshots W.p/, p 2 P, are computed with DLR’s RANS solver
TAU [10] using the negative Spalart-Allmaras one-equation turbulence model [1].
Convergence is detected based on a reduction of the normalized density residual
by seven orders of magnitude in each solver run. The Reynolds number is fixed
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throughout at a value of Re D 7;500;000. Computing a full CFD solution under this
conditions took 474 iterations or 63 CPU seconds on average.3

From the flow solution snapshots, we extract the vectors W.p/, p 2 P containing
the discretized surface-Cp distributions, which form our initial point cloud W.
Since in this test case two varying parameters are considered, the full-order
solution manifold W D fW.˛;Ma/; .˛;Ma/ 2 Pg � R

400 is of intrinsic
dimension two.4 The low intrinsic dimension is not a technical requirement, but
an natural assumption in the context of model order reduction. We use the Isomap+I
process of Sect. 16.2 to predict the Cp distributions at untried parameter locations
and compare the results to the approximations computed via proper orthogonal
decomposition combined with interpolation, which yields predictions at untried
parameter combinations by interpolating the POD coefficients as done in [4]. This
method will be referred to as POD+I in the following. Both interpolation based
ROMs are coupled with the RBF interpolation using a TPS kernel augmented by a
polynomial ' 2 ˘1 [6, 13], ' W Rd ! R, where ˘1 is the space of polynomials
of degree of at most one. Prior to each interpolation process, the sample locations
in the parameter space are scaled to the unit hypercube, with the result that the
input scaling is normalized and does not thwart the Isomap metric. The TPS kernel
has been chosen for its good approximation quality and robustness based on best
practice observations made in [19]. The first author’s thesis features the results at
all the prediction points indicated in Fig. 16.6. Here, we display only the worst
result, which is obtained at .˛;Ma/ D .6:5ı; 0:75/, since we aim at improving the
prediction by adaptively refining the snapshot sampling according to the MDE and
HYE strategy. The nine nearest neighbors on the manifold that are used to compute
the prediction are encircled in Fig. 16.6 and the resulting Cp distribution is shown in
Fig. 16.7.

We start with an initial DoE of 5 sample points generated by a Halton sequence,
where none of the points is considered to lie on the boundary of P . We perform
25 iterations of Algorithm 1 to arrive at a final sampling of 30 snapshots. In
both sampling strategies, we consider only the nearest neighbor when evaluating
the objective function (16.4). In the hybrid strategy HYE, we maximize (16.5)
instead of (16.4) in every third iteration. In Table 16.1, we list the mean relative
error, the standard deviation and the maximum relative error for the Isomap
emulator associated with the adaptively refined data sets obtained via the MDE
strategy and the HYE strategy, respectively.5 For comparison, we include the errors
corresponding to Isomap emulators based on the non-adaptive random DoEs of the
same cardinality 30 that are obtained by a Halton sequence and a space filling

3All computations were conducted sequentially on the same standard desktop computer endowed
with an Intel® Xeon® E3-1270 v3 Processor (8M Cache, 3.50 GHz) and 32 GB RAM.
4For applications where the dimension of the manifold is unknown, there exist various methods to
estimate the intrinsic dimensionality of the data, e.g. by looking for the “elbow” [17].
5Error quantification is with respect to the surface Cp distributions and is based on 2500 uniformly
distributed TAU reference CFD solutions.
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Fig. 16.7 Surface Cp distribution at .˛;Ma/ D .6:5ı; 0:75/. The upper and lower curves
correspond to the suction and pressure side of the airfoil, respectively. Results obtained based
on a non-adaptive random sampling of 30 input snapshots. (a) Complete surface Cp distribution.
(b) Detailed view close to shock

Table 16.1 The mean relative error, its standard deviation and the maximum relative error after a
full sampling process of various sampling strategies/designs for the NACA 64A010 test case

Method Mean rel. error STD. deviation Max. rel. error

MDE 2:3347 � 10�2 1:6616 � 10�2 9:2956 � 10�2

HYE 2:1903 � 10�2 1:0320 � 10�2 5:3337 � 10�2

Halton 2:6670 � 10�2 2:7398 � 10�2 2:3016 � 10�1

LHS 3:1262 � 10�2 2:6257 � 10�2 1:8009 � 10�1

LHS. The adaptive sampling strategies developed here yield samplings with a
smaller change of the relative errors than in both random samplings. Hence the
maximum relative error is closer to the mean relative error, which leads to a more
reliable global emulator with less outliers in prediction accuracy. Note, that the
mean relative errors are also smaller for the adaptive strategies. The embeddings
of the final samplings are shown in Fig. 16.8. As aspired by MDE, the embedding
of the corresponding sampling is quite evenly distributed. This also holds for the
embedding of the sampling obtained by HYE, even if Erec is applied in every third
iteration. In contrast, the embeddings of both random samplings feature close-by
points, which may lead to redundant information.

We use the HYE-adaptively constructed emulator to predict the surface pressure
at the flow condition of .˛;Ma/ D .6:5ı; 0:75/, where a poor approximation quality
was observed in Fig. 16.7. Recall that those results were obtained with the same
number of 30 input snapshots, but chosen randomly (LHS) rather than adaptively.

The Cp-distributions obtained from the emulators are shown in Fig. 16.9a, where
we compare the CFD reference and the Isomap+I and the POD+I emulators. As
can be seen, both the Isomap+I and the POD+I predictions greatly benefit from the
adaptive sampling process. (Compare Figs. 16.7, 16.8, and 16.9a.) The Isomap+I
prediction matches the reference solution with high accuracy throughout by using
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Fig. 16.8 Embeddings of the final samplings obtained by various sampling methods and DoEs for
the NACA 64A010 test case

Fig. 16.9 Prediction of the surface Cp-distribution at .˛;Ma/ D .6:5ı; 0:75/ based on 5 initial
plus 25 adaptively sampled snapshots via HYE. (a) Prediction of the surface Cp-distribution at
.˛;Ma/ D .6:5ı; 0:75/. (b) HYE based final sampling
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only three neighboring snapshots (see Fig. 16.9b). The POD+I based prediction only
shows a small mismatch upstream of the shock.

16.5 Conclusions

We have developed two adaptive sampling strategies, referred to as the maximum
distance error (MDE) and the hybrid error (HYE) strategy, respectively, that aim at
determining sample locations in a given parameter domain of interest such that a
well-distributed homogeneous design of experiment is achieved in the embedding
space with as few high-fidelity sample computations as possible. The underlying
assumption is that the sample data is contained in a submanifold of low intrinsic
dimension that is embedded in a large-dimensional Euclidean vector space. Thus,
the notions of ‘well-distributed’ and ‘homogeneous’ are to be understood with
respect to the geometry of this submanifold.

Both adaptive sampling methods try to generate manifold filling sample data
sets such that the essential geometric characteristics of the underlying submanifold
are captured. The MDE strategy relies on the geodesic interpoint distances that are
approximated using the Isomap manifold learning technique. The HYE strategy
additionally considers the reconstruction error of an Isomap+I emulator during the
sampling process, such that the sample density in the highly nonlinear regions of
the manifold, where the error is expected to be larger, is augmented.

In the numerical experiments, we have shown that the adaptive sampling
strategies eventually lead to more accurate emulators than when using space filling
random samplings of the same cardinality. More precisely, the advantages over
random samplings have been demonstrated for an Isomap-based emulator of the
viscous flow around the 2D NACA 64A010 airfoil. Moreover, we observed that the
standard POD-based flow emulator also benefits from the Isomap-induced adaptive
sampling process.
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Chapter 17
Cross-Gramian-Based Model
Reduction: A Comparison

Christian Himpe and Mario Ohlberger

Abstract As an alternative to the popular balanced truncation method, the cross
Gramian matrix induces a class of balancing model reduction techniques. Besides
the classical computation of the cross Gramian by a Sylvester matrix equation, an
empirical cross Gramian can be computed based on simulated trajectories. This
work assesses the cross Gramian and its empirical Gramian variant for state-space
reduction on a procedural benchmark based on the cross Gramian itself.

17.1 Introduction

The cross Gramian matrix is an interesting mathematical object with manifold
applications in control theory, system theory and even information theory [11]. Yet,
first and foremost the cross Gramian is used in the context of model order reduction.

The cross Gramian was introduced in [5] for SISO (Single-Input-Single-Output)
systems and extended in [6, 18] to MIMO (Multiple-Input-Multiple-Output) sys-
tems as an alternative balancing method to the balanced truncation [22] model
reduction technique. A data-driven variant of the cross Gramian, the empirical cross
Gramian, was proposed in [29] for SISO systems and extended in [10] to MIMO
systems, expanding the set of empirical Gramians [15, 16].

Various approaches for cross-Gramian-based model reduction have been studied
[1, 10, 24, 27, 28]. This work compares a small selection of these methods, using a
procedural benchmark based on a method to generate random systems introduced in
[26]. In this setting, a linear time-invariant input-output system is the central object
of interest:

Px.t/ D Ax.t/C Bu.t/;

y.t/ D Cx.t/C Du.t/;
(17.1)
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which consists of a dynamical system and an output equation. The associated vector
field is given as a linear transformation of the state x W R ! R

N by the system
matrix A 2 R

N�N , and a source term introducing the input u W R ! R
M through the

input matrix B 2 R
N�M . In the scope of this work the real parts of the eigenvalues

of A are assumed to be negative which implies an asymptotically stable dynamical
system. The output y W R ! R

Q is determined by an output functional consisting
of a linear transformation of the state x by the output matrix C 2 R

Q�N , and a term
forwarding the input u by the feed-through matrix D 2 R

Q�M; the latter is assumed
to be trivial D D 0 in this contribution, as it does not affect the investigated model
reduction procedures.

This work is structured as follows: An outline of the cross Gramian, the
empirical cross Gramian and the considered methods for cross-Gramian-based
model reduction is given in Sect. 17.2. In Sect. 17.3 the procedural benchmark is
proposed, and in Sect. 17.4 the considered methods are tested upon this benchmark.

17.2 The Cross Gramian

Two operators play a central role in systems theory [14]: The controllability operator
C W LM2 ! R

N and the observability operator O W RN ! LQ2 :

C .u/ D
Z 0

�1
e�At Bu.t/dt; O.x0/ D C eAt x0I

the former measures how much energy introduced by u is needed to drive x to a
certain state, the latter quantifies how well the state x is visible in the output y. A
composition of the observability with the controllability operator yields the Hankel
operator H W LM2 ! LQ2 ,

H D O ı C ;

whose singular values, the so called Hankel singular values, classify the states by
importance in terms of the system’s input-output coherence. Commonly, the action
of the Hankel operator is described by “mapping past inputs to future outputs” [8].

The permuted composition of C with O , that is only admissible for square
systems, which have the same number of inputs and outputs M D Q, yields a cross
operator WX W RN ! R

N .

Definition 1 The composition of the controllability operatorC with the observabil-
ity operator O is called cross GramianWX :

WX WD C ı O D
Z 1
0

eAt BC eAt dt 2 R
N�N :
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This cross Gramian concurrently encodes controllability and observability informa-
tion of the underlying system. Despite the name, the cross Gramian is generally
neither symmetric nor positive semi-definite, hence, it is not a Gramian matrix but
it was introduced under this name in [5].

An obvious connection between the Hankel operator and the cross Gramian is
given by the equality of their traces:

tr.H/ D tr.OC / D tr.CO/ D tr.WX/:

Similarly, the logarithm-determinants are equal: logdet.H/ D logdet.WX/, which is
the basis for the cross-Gramian-based information index [7] measuring information
entropy. Yet, a central property of the cross Gramian is only available for symmetric
systems.

Lemma 1 For a symmetric system the absolute values of the eigenvalues of the
cross Gramian are equal to the Hankel singular values:

�i.H/ D j�i.WX/j:

This property is expanded to orthogonally symmetric systems in [4].

Proof A symmetric system has a symmetric Hankel operator:

H D H
 ) OC D .OC /
:

Hence, for the singular values of the Hankel operator holds:

�i.H/ D �i.OC / D p
�i.OC .OC /
/ D p

�i.OCOC /

[13]D
p
�i.COCO/ D

p
�i.WXWX/ D j�i.WX/j:

ut
Classically, to compute the cross Gramian, a relation to the solution of a matrix

equation is exploited.

Lemma 2 The cross Gramian is the solution to the Sylvester matrix equation:

AWX C WXA D �BC: (17.2)

Proof This is a special case of [17, Theorem 5]

17.2.1 The Empirical Cross Gramian

An alternative approach to the computation of the cross Gramian via a matrix
equation is the computation of its empirical variant. Empirical (controllability
and observability) Gramians were first introduced in [15, 16] and result from
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(numerically obtained) trajectory data. Following, a summary of the empirical cross
Gramian [10], which extends ideas from [15, 29] is given. A justification for using
an empirical Gramian is given i.e. by the definition of the cross Gramian,

WX D
Z 1
0

.eAt B/.eA
|t C|/|dt;

which can be interpreted as cross covariance matrix of the system’s impulse
response and adjoint system’s impulse response. As originally in [22], these impulse
responses are trajectories,

Px.t/ D Ax.t/C Bı.t/ ) x.t/ D eAt B;

Pz.t/ D A|z.t/C C|ı.t/ ) z.t/ D eA
|t C|;

) WX D
Z 1
0

x.t/z.t/|dt; (17.3)

and yield an empirical linear cross Gramian [2, Sect. 2.3].
A more general definition of the empirical cross Gramian [10, 29], without

relying on the linear structure of the underlying system, such as a closed form for
the adjoint system, is then even applicable to nonlinear systems.

Definition 2 For sets fck 2 R n 0 W l D 1 : : :Kg, fdk 2 R n 0 W l D 1 : : : Lg, the m-th
M-dimensional standard base vector eM;m and the j-th N-dimensional standard base
vector eN; j, the empirical cross Gramian bWX 2 R

N�N is given by:

bWX WD 1

KLM

KX
kD1

LX
lD1

MX
mD1

1

ckdl

Z 1
0


 klm.t/dt;


 klm
ij .t/ D �

xkmi .t/ � Nxkmi
� �

yljm.t/ � Nyljm
�
;

(17.4)

with xkmi being the i-th component of the state trajectory for the input
ukm.t/ D ckeM;mı.t/, given initial state and Nxkmi the associated temporal average
state, while yljm is the m-th component of the output trajectory for the initial state
xlj0 D dleN; j, zero input and Nylj the associated temporal average output.
This empirical cross Gramian requires K �M state trajectories for perturbed impulse
input, and L �N output trajectories for perturbed initial states with no input. The sets
fckg and fdlg define the operating region of the underlying system and determine
for which inputs and initial states the empirical cross Gramian is valid. In [10] the
empirical cross Gramian is generalized to an empirical cross covariance matrix by
admitting arbitrary input functions and centering the state and output trajectories
about their respective steady state. Furthermore, it is shown in [10] that the empirical
cross Gramian is equal to the cross Gramian in Definition 1 for linear systems (17.1).
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Theorem 1 For an asymptotically stable linear system, the empirical cross
Gramian bWX reduces to the cross Gramian WX.

Proof See [10, Lemma 3]
Since this empirical cross Gramian requires merely discrete (output) trajectories

and does not rely on the linear ˙.A;B;C/ structure of the system, it can be
computed also for nonlinear systems. Due to the only prerequisite of trajectory
data, empirical Gramians are a flexible tool, but warrant prior knowledge on the
operating region of the system to define the perturbations. Hence, based on the idea
of numerical linearization cf. [21], empirical Gramians give rise to a data-driven
nonlinear model reduction technique.

The empirical cross Gramian consists of inner products between state trajectories
with perturbed input and output trajectories with perturbed initial state. This
allows, by treating the parameters as additional (constant) states, to extend the
cross Gramian beyond state input-output coherence to include observability-based
parameter identifiability information [10]. The associated empirical joint Gramian is
an empirical cross Gramian that enables a combined state and parameter reduction
from a single cross operator.

Furthermore, a cross Gramian for non-symmetric and also non-square systems
[12], which can be efficiently computed in its empirical variant, expands the
applicability of the cross Gramian to more general system configurations.

17.2.2 Cross-Gramian-Based Model Reduction

Model Reduction is the principal application of the cross Gramian. Cross-Gramian-
based model reduction is a projection-based approach: The state-space trajectory
is approximated by a lower-dimensional trajectory, which results from a reducing
truncated projection R 2 R

n�N and a reconstructing truncated projection S 2 R
N�n

for n < N:

xr.t/ WD Rx.t/ ) x.t/ 	 Sxr.t/:

Using such projections, a reduced order model for the full order system is given by:

Pxr.t/ D RASxr.t/C RBur.t/;

yr.t/ D CSxr.t/;

and xr;0 D Rx0. This can be simplified by Ar WD RAS, Br WD RB, Cr WD CS, due to
the linear structure of the system:

Pxr.t/ D Arxr.t/C Bru.t/;

yr.t/ D Crxr.t/:
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To obtain such projections from the cross Gramian, various methods can be used.
The eigenvalue decomposition of the cross Gramian matrix,

WX
EVDD T�T�1;

given a symmetric system, yields a balancing projection S WD T, R WD T�1
[1], which can be truncated based on the absolute value of the magnitude of the
eigenvalues j�ij D j�iij. Alternatively, a singular value decomposition of the cross
Gramian,

WX
SVDD U˙V;

can be utilized. Similarly, S WD U and R WD V can be truncated based on the
associated singular values �i D ˙ii; yet this projection is only approximately
balancing [24, 28] and the reduced order model’s stability is not guaranteed to be
preserved.

As a variant, only the left or right singular vectors can be used individually as a
Galerkin projection,

(
S WD U R WD U|

S WD V| R WD V:
(17.5)

This direct truncation [10] is less accurate, but provides an orthogonal projection.
Lastly, we note that instead of truncating the decomposition derived projections

based on the eigen- or singular values, it is suggested in [3], to use the quantities
di WD jQbi Qci�ij and Odi WD jQbi Qci�ij (compare (17.6)) for balanced and approximately
balanced systems respectively, which utilizes the columns of the (approximately)
balanced input matrix Qbi and rows of the (approximately) balanced output matrix Qci.

17.3 Inverse Sylvester Procedure

To compare the cross-Gramian-based reduced order model quality of the classically
computed cross Gramian (17.2) and the empirical cross Gramian from Sect. 17.2.1,
a procedural and randomly generated benchmark system of variable state-space
dimension is presented. The proposed system generator is a special case of the
inverse Lyapunov procedure [26]. This variant though generates exclusively state-
space symmetric systems featuring A D A| and B D C|, which are found in
applications such as RC circuits and have some interesting properties as shown
[19, 23], such as equality of the controllability, observability and cross Gramian:
WC D WO D WX .
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We note that the cross Gramian, as an N � N dimensional linear operator WX W
R

N ! R
N , is an endomorphism. This leads to the following relation between the

system matrix A and the cross Gramian matrix WX , as stated in [20]:

Corollary 1 Let WX be the cross Gramian to the system ˙.A;B;C/. Then A is a
cross Gramian to the virtual system .�WX ;B;C/.

Proof This is a direct consequence of Lemma 2.
Hence, for a known cross Gramian WX , input matrix B and output matrix C, an
associated system matrix A can be computed as the cross Gramian of the virtual
system. To ensure the (asymptotic) stability of the system, an observation from [19,
Theorem 2.1] is utilized.

Lemma 3 For a state-space symmetric system the cross Gramian is symmetric and
positive semi-definite.

Proof Given a state-space symmetric system, the associated cross Gramian’s
Sylvester equation (17.2) becomes a Lyapunov equation:

AWX C WXA D BC , AWX C WXA
| D BB|;

of which a solution is symmetric and positive semi-definite. ut
Thus, an (asymptotically) stable state-space symmetric system can be generated by
providing an input matrix B, which determines the output matrix C D B| and a
symmetric positive semi-definite cross Gramian WX . A procedure1 to generate ran-
dom asymptotically stable state-space symmetric systems, called inverse Sylvester
procedure, is given by:

1. Sample the cross Gramian’s eigenvalues to define a positive definite cross
Gramian in balanced form, which is a diagonal matrix, from �i D a. ba /

UŒ0;1�

with 0 < a < b.
2. Sample an input matrix B from an iid multivariate standard normal distribution

N N�M
0;1 and set the output matrix to C WD B|.

3. Solve �WXA�AWX D �BC , WXACAWX D BC for (a negative semi-definite)
system matrix A.

4. Sample an orthogonal (un-)balancing transformation U by a QR decomposition
of a multivariate standard normally distributed matrix fU;Rg D qr.N N�N

0;1 /.
5. Unbalance the system by: U|AU, U|B, CU

17.4 Model Reduction Experiments

In this section the Sylvester-equation-based cross Gramian is compared to the
empirical cross Gramians in terms of state-space model reduction of a random
system generated by the inverse Sylvester procedure. A test system is generated

1See also isp.m in the associated source code archive.
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as state-space symmetric SISO system, M D Q D 1, of order N D 1000 by the
inverse Sylvester procedure, using a D 1

10
, b D 10, excited by zero-mean, unit-

variance Gaussian noise during each time-step and starting from a zero initial state.
Due to the use of empirical Gramians, a time horizon of T D 1 and a fixed time-step
width of h D 1

100
is selected. The cross Gramian variants are computed by solving

a matrix equation (17.2), by the empirical linear cross Gramian (17.3) [9] and by
the empirical cross Gramian (17.4) [9], from which the reducing projections are
obtained using the direct truncation approximate balancing (17.5) method. During
the construction of the empirical cross Gramians an impulse input u.t/ D ı.t/ is
utilized. The state-space symmetry implies, first, that the matrix equation for the
cross Gramian is practically a Lyapunov equation, and second, that utilizing the
SVD of the cross Gramian is equivalent to the eigendecomposition.

The model reduction error, the error between the FOM (Full Order Model) and
ROM (Reduced Order Model) output, is measured in the (time-domain) Lebesgue
L1-, L2- and L1-norms,

ky � yrkL1 D
Z 1
0

ky.t/ � yr.t/k1dt;

ky � yrkL2 D
sZ 1

0

ky.t/ � yr.t/k22dt;

ky � yrkL1
D ess sup

t2Œ0;1/
ky.t/ � yr.t/k1;

as well as approximately in the (frequency-domain) Hardy H1-norm and approxi-
mately in the Hardy H2-norm. Since a state-space symmetric SISO system is used,
twice the truncated tail of singular values not only bounds, but equals the H1-error
between the original and reduced transfer function G and Gr [19, Theorem 4.1]:

kG � GrkH1
D 2

NX
iDnC1

�i:

Thus, the H1-error of the reduced order model can be approximated by this formula
using the singular values of a numerically approximated cross Gramian.

The H2-error is approximated based on [28, Remark 3.3]:

kG � GrkH2 	
q

tr.eC2WX;22eB2/; (17.6)

with the balanced and truncated input and output matrices eB2 D B � UU|B andeC2 D C � CUU| as well as the truncated square lower right block of the balanced
diagonal cross Gramian WX;22.

Figures 17.1, 17.2 and 17.3 show the relative L1-, L2- and L1-output errors
for the classic cross Gramian (WX;1), empirical linear cross Gramian (WX;2) and
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Fig. 17.1 Relative L1 output error between the FOM and ROMs for the matrix equation based
cross Gramian WX;1, the empirical linear cross Gramian WX;2 and the empirical cross Gramian
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Fig. 17.2 Relative L2 output error between the FOM and ROMs for the matrix equation based
cross Gramian WX;1, the empirical linear cross Gramian WX;2 and the empirical cross Gramian
WX;3

empirical cross Gramian (WX;3) using approximate-balancing-based projections
over varying reduced state-space dimension up to order dim.xr.t// D 100. These
errors are approximately computed, based on the previous definitions, by simulating
the full and reduced order model with fixed input time series of Gaussian noise.

For all tested cross Gramians, the Lebesgue error measures behave very similarly.
While the output errors for the empirical linear cross Gramian and the empirical
cross Gramian decay at a reduced order of n � 7 to a level near the numerical
precision with a similar rate, the matrix equation derived cross Gramian reaches this
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Fig. 17.4 Approximate relative H2 output error between the FOM and ROMs for the matrix
equation based cross Gramian WX;1, the empirical linear cross Gramian WX;2 and the empirical
cross Gramian WX;3

level at n � 18. Overall, the model reduces very well and due to the specific time
frame for the reduction and comparison and the empirical Gramians yield better
results.

In Figs. 17.4 and 17.5 the approximate H2-error and the approximate H1-error
are depicted for the three cross Gramian variants over varying reduced orders up to
dim.xr.t// D 100.

For the frequency-domain errors the cross Gramian obtained as solution to a
Sylvester (Lyapunov) equation does not attain the same accuracy as the empirical
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Fig. 17.5 Approximate relative H1 output error between the FOM and ROMs for the matrix
equation based cross Gramian WX;1, the empirical linear cross Gramian WX;2 and the empirical
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cross Gramians, which reach the numerical precision level for n � 6. Also, as for the
time-domain errors, the sharp decay in the output error occurs at a higher reduced
order n � 19 for the non-empirical cross Gramian, but machine precision is not
reached.

The difference in reduced order model quality in the time-domain norms between
the empirically and non-empirically computed cross Gramians arises from the
restricted operating region, especially in terms of the numerical integration order,
time-step width and time horizon. For the frequency-domain norms, the disparity
in accuracy originates in the different computational approaches of numerically
approximating the cross Gramian matrix, as the Hardy-norm computations utilize
the respective cross Gramian’s singular values.

17.5 Conclusion

This work summarized the cross Gramian and its empirical variant and assessed
methods for cross-Gramian-based model reduction mathematically and numerically.
The latter is conducted by a new cross-Gramian-based random state-space symmet-
ric system generator. Due to the strict definition of the operating region of the test
system, the empirical cross Gramians produce superior reduced order models. This
confirms the results of [25], that empirical Gramians can convey more information
on the input-output behavior for a specific operating region than the classic matrix
equation approach.
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17.6 Code Availability

The source code of the implementations used to compute the presented results can
be obtained from:

http://www.runmycode.org/companion/view/1854
and is authored by: Christian Himpe.
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Chapter 18
Truncated Gramians for Bilinear Systems
and Their Advantages in Model Order
Reduction

Peter Benner, Pawan Goyal, and Martin Redmann

Abstract In this paper, we discuss truncated Gramians (TGrams) for bilin-
ear control systems and their relations to Lyapunov equations. We show how
TGrams relate to input and output energy functionals, and we also present
interpretations of controllability and observability of the bilinear systems in terms
of these TGrams. These studies allow us to determine those states that are less
important for the system dynamics via an appropriate transformation based on the
TGrams. Furthermore, we discuss advantages of the TGrams over the Gramians
for bilinear systems as proposed in Al-baiyat and Bettayeb (Proceedings of 32nd
IEEE CDC, pp. 22–27, 1993). We illustrate the efficiency of the TGrams in the
framework of model order reduction via a couple of examples, and compare to the
approach based on the full Gramians for bilinear systems.

18.1 Introduction

Direct numerical simulations are one of the conventional methods to study physical
phenomena of dynamical systems. However, extracting all the complex system
dynamics generally leads to large state-space dynamical systems, whose direct
simulations are inefficient and involve a huge computational burden. Hence, there
is a need to consider model order reduction (MOR), aiming to replace these large-
scale dynamical systems by systems of much smaller state dimension. MOR for
linear systems has been investigated intensively in recent years and is widely used
in numerous applications; see, e.g., [2, 8, 23]. In this work, we consider MOR for

P. Benner
Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics
of Complex Technical Systems, Magdeburg, Germany
e-mail: benner@mpi-magdeburg.mpg.de

P. Goyal (�) • M. Redmann
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106
Magdeburg, Germany
e-mail: goyalp@mpi-magdeburg.mpg.de; redmann@mpi-magdeburg.mpg.de

© Springer International Publishing AG 2017
P. Benner et al. (eds.), Model Reduction of Parametrized Systems,
MS&A 17, DOI 10.1007/978-3-319-58786-8_18

285

mailto:benner@mpi-magdeburg.mpg.de
mailto:goyalp@mpi-magdeburg.mpg.de
mailto:redmann@mpi-magdeburg.mpg.de


286 P. Benner et al.

bilinear control systems, which can be considered as a bridge between linear and
nonlinear systems and are of the form:

Px.t/ D Ax.t/C
Xm

kD1 N
.k/x.t/uk.t/C Bu.t/;

y.t/ D Cx.t/; x.0/ D 0;

(18.1)

where x.t/ 2 R
n, u.t/ 2 R

m and y.t/ 2 R
p are the state, input and output vectors

of the system, respectively. The numbers m and p represent the quantity of inputs
and outputs. All system matrices are of appropriate dimensions. The applications of
bilinear systems can be seen in various fields [11, 18, 21]. Further, the applicability
of the systems (18.1) in MOR for stochastic control problems is studied in [7, 17]
and for MOR of a certain class of linear parametric systems in [4]. Our goal is to
construct another low-dimensional bilinear system

POx.t/ D OAOx.t/C
Xm

kD1
ON.k/ Ox.t/uk.t/C OBu.t/;

Oy.t/ D OCOx.t/; Ox.0/ D 0;

(18.2)

where OA; ON.k/ 2 R
r�r , OB 2 R

r�m and OC 2 R
p�r with r � n, ensuring y 	 Oy for all

admissible inputs u 2 L2.0;1/ with components uk, k D 1; : : : ;m. Analogous to
linear systems, we aim to obtain the reduced matrices via projection. For this, we
construct two projection matrices V;W 2 R

n�r such that WTV is invertible, which
allow us to determine the reduced matrices as:

OA D .WTV/�1WTAV; ON.k/ D .WTV/�1WTN.k/V; for k 2 f1; : : : ;mg;
OB D .WTV/�1WTB and OC D CV:

Clearly, it can be seen that the quality of the reduced system (18.2) depends on the
choice of the projection matrices. Several methods for linear systems have been
extended to bilinear systems such as balanced truncation [7] and interpolation-
based MOR [3, 5, 10, 13]. In this work, we mainly focus on a balanced truncation
based MOR technique for bilinear systems. Balanced truncation for linear systems,
Nk D 0 in (18.1), has been studied in, e.g., [2, 19], and relies on controllability
and observability Gramians of the system. Later on, the balancing concept for
general nonlinear systems has been extended in a series of papers; see, e.g., [14,
16, 22], where a new notion of controllability and observability energy functionals
has been introduced. Although theoretically the balancing concept for nonlinear
systems is appealing, it is seldom applicable from the computational perspective.
This is due to the fact that the energy functionals are solutions of nonlinear
Hamilton-Jacobi equations, which are extremely expensive to solve for large-scale
systems.
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Subsequently, the generalized Gramians for bilinear systems have been devel-
oped in regards to MOR; see, e.g. [1], which are the solutions of generalized
Lyapunov equations of the form

AP C PAT C
Xm

kD1 N
.k/P

�
N.k/

�T D �BBT ; (18.3a)

ATQ C QA C
Xm

kD1
�
N.k/

�T
QN.k/ D �CTC; (18.3b)

where A, N.k/, B and C are as in (18.1). The connections between these Gramians
and the energy functionals of bilinear systems have been studied in [7, 15]. Fur-
thermore, the relations between the Gramians and the controllability/observability
of bilinear systems have also been studied in [7]. However, the main bottleneck
in using these Gramians in the MOR context is the computation of the Gramians,
though recently there have been many advances in methods to determine the low-
rank solutions of these generalized Lyapunov equations (18.3); see [6, 24].

This motivates us to investigate an alternative pair of Gramians for bilinear sys-
tems, which we call Truncated Gramians (TGrams). Regarding this, in Sect. 18.2
we recall balanced truncation for bilinear systems based on the Gramians (18.3). In
Sect. 18.3, we propose TGrams for bilinear systems and investigate their connec-
tions with the controllability and observability of the bilinear systems. Moreover,
we reveal the relation between these TGrams and energy functionals of the bilinear
systems. Then, we discuss the advantages of considering these TGrams in the MOR
context. Subsequently in Sect. 18.4, we provide a couple of numerical examples to
illustrate the applicability of the TGrams for MOR of bilinear systems.

18.2 Background Work

In this section, we outline basic concepts of balanced truncation MOR. For this,
let us consider a bilinear control system as in (18.1), then the controllability and
observability of a state x 2 R

n can be defined based on energy functionals as
follows [22]:

Ec.x0/ D inf
u2L2.�1;0/

x.�1/D0; x.0/Dx0

1

2

Z 0

�1
ku.t/k2dt; Eo.x0/ D 1

2

Z 1
0

ky.t/k2dt;

(18.4)

respectively. The functional Ec is measured in terms of the minimal input energy
required to steer the system from x.�1/ D 0 to a desired state x0 at time
t D 0. If the state x0 is uncontrollable, then it requires infinite energy; that means
Ec.x0/ D 1. On the other hand, the functional Eo characterizes the output energy
determined by a particular initial state x0 using the uncontrolled system. If the state
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x0 is unobservable, then it produces no output energy; Eo.x0/ D 0. In the linear case
.Nk D 0/, these energy functionals can be represented exactly by the Gramians of
the linear system:

Ec.x/ D 1
2
hx;P#

l xi and Eo.x/ D 1
2
hx;Qlxi;

where h�; �i represents the Euclidean inner product, P#
l denotes the Moore-Penrose

pseudo inverse of Pl, and Pl andQl are the unique and positive semidefinite solutions
of the following Lyapunov equations:

APl C PlA
T C BBT D 0 and ATQl C QlA C CTC D 0; (18.5)

respectively. In case of a nonlinear setting, the functionals Ec and Eo can be
determined by solving Hamilton-Jacobi nonlinear PDEs, which are quite expensive
to solve for large-scale settings. For more details on these PDEs, we refer to [22].
However, for MOR of bilinear systems, the Gramians, namely the controllability
.P/ and the observability .Q/ Gramians, are defined as

P D
1X
kD1

Z 1
0

� � �
Z 1
0

NPk.t1; : : : ; tk/ NPk.t1; : : : ; tk/
Tdt1 � � � dtk;

Q D
1X
kD1

Z 1
0

� � �
Z 1
0

NQk.t1; : : : ; tk/ NQk.t1; : : : ; tk/
Tdt1 � � � dtk;

(18.6)

respectively, where

NP1.t1/ D eAt1B; NPk.t1; : : : ; tk/ D eAtk
	
N.1/; : : : ;N.k/


 NPk�1;

NQ1.t1/ D eA
T t1CT ; NQk.t1; : : : ; tk/ D eA

Ttk
h�
N.1/

�T
; : : : ;

�
N.k/

�Ti NQk�1:
(18.7)

Then, the connections between these Gramians and Lyapunov equations are derived
in [1]. Therein, it is shown that these Gramians satisfy the generalized Lyapunov
equations stated in (18.3). Though energy functionals for bilinear system cannot
be determined exactly in terms of the Gramians of the latter system, the Gramians
provide a lower bound (locally) for the input (controllability) energy functional and
an upper bound (locally) for the output (observability) energy functional as follows:

Ec.x/ � 1
2
hx;P�1xi; and Eo.x/ � 1

2
hx;Qxi; (18.8)

in a small open neighborhood of the origin [7, 15], where in (18.8) we assume that
P and Q are positive definite.

However, in the general case with P;Q � 0 it is shown in [7] that if the desired
state x0 62 ImP, then Ec.x0/ D 1, and similarly if an initial state x0 belongs to
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KerQ, then Eo.x0/ D 0. This shows that the states x0 with x0 2 KerQ or x0 62 ImP
do not play any role in the dynamics of the system; hence they can be removed.
The main idea of balanced truncation lies in furthermore neglecting the almost
uncontrollable and almost unobservable states (hard to control and hard to observe
states).

In order to guarantee that hard to control and hard to observe states are
truncated simultaneously, we need to find a transformation x 7! T�1x, leading to a
transformed bilinear system, whose controllability and observability Gramians are
equal and diagonal, i.e.,

T�1PT�T D TTQT D ˙ D diag .�1; �2; : : : ; �n/: (18.9)

Analogous to the linear case (see, e.g., [2]), having the factorizations of P D LLT

and LTQL D U˙2UT , one finds the corresponding transformation matrix in T D
LU˙�

1
2 . Now, w.l.o.g. we consider the following bilinear system being a balanced

bilinear system:

Px1.t/
Px2.t/

�
D

A11 A12
A21 A22

� 
x1.t/
x2.t/

�
C

mX
kD1

"
N.k/11 N.k/12
N.k/21 N.k/22

#
x1.t/
x2.t/

�
uk.t/C


B1
B2

�
u.t/;

y.t/ D 	
C1 C2


 	
xT1 .t/ x

T
2 .t/


T
;

with the controllability and observability Gramians equal to ˙ W

˙ D diag .�1; �2; : : : ; �n/;

�i � �iC1 and x1.t/ 2 R
r and x2.t/ 2 R

n�r. Fixing r such that �r > �rC1, we
determine a reduced-order system of order r by neglecting x2 as follows:

Px1.t/ D A11x1.t/C
Xm

kD1 N
.k/
11 x1.t/uk.t/C B1u.t/;

yr.t/ D C1x1.t/:
(18.10)

This provides a good local reduced-order system, but unlike in the linear case, it is
not clear how to quantify the error, occurring due to x2 being removed.

18.3 Truncated Gramians for Bilinear Systems

As discussed in the preceding section, we need to solve two generalized Lya-
punov equations in order to compute reduced-order systems via balanced trun-
cation. Solving these generalized Lyapunov equations is a numerical challenge
for large-scale settings, although there have been many advancements in this
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direction in recent times; see, e.g. [6, 24]. In this section, we seek to determine
TGrams for bilinear systems and discuss their advantages in the balancing-type
MOR.

We define TGrams for bilinear systems by considering only the first two terms
in the series in (18.6), which are dependent on the first two kernels of the Volterra
series of the bilinear system, as follows:

PT D
Z 1
0

NP1.t1/ NPT
1 .t1/dt C

Z 1
0

Z 1
0

NP2.t1; t2/ NPT
2 .t1; t2/dt1dt2; (18.11a)

QT D
Z 1
0

NQ1.t1/ NQT
1 .t1/dt1 C

Z 1
0

Z 1
0

NQ2.t1; t2/ NQT
2 .t1; t2/dt1dt2; (18.11b)

where NPi and NQi are defined in (18.7). Next, we establish the relations between these
truncated Gramians and the solutions of Lyapunov equations.

Lemma 1 Consider the bilinear system (18.1) and let PT and QT be the truncated
controllability and observability Gramians of the system as defined in (18.11). Then,
PT and QT satisfy the following Lyapunov equations:

APT C PTA
T C

Xm

kD1 N
.k/Pl

�
N.k/

�T C BBT D 0; (18.12a)

ATQT C QTA C
Xm

kD1
�
N.k/

�T
QlN

.k/ C CTC D 0; (18.12b)

respectively, where Pl and Ql are the Gramians of the linear systems as shown
in (18.5).
The above lemma can be proven in a similar way as done in [1, Thm. 1].
Therefore, due to space limitations, we omit the proof. Next, we compare the energy
functionals of the bilinear system and the quadratic forms given by the TGrams.
Before we state the corresponding lemma, we introduce the homogeneous bilinear
system, which is used to characterize the observability energy in the system, as
follows:

Px.t/ D Ax.t/C
Xm

kD1 N
.k/x.t/uk.t/;

y.t/ D Cx.t/; x.0/ D x0:
(18.13)

Lemma 2 Given the bilinear system (18.1), with an asymptotically stable A, being
asymptotically reachable from 0 to any state x. Let P;Q > 0 and PT ;QT > 0 be
the Gramians and TGrams of the system, respectively. Then, there exists a small
neighborhoodW of 0, where the following relations hold:

Ec.x/ � 1
2
xTP�1T x � 1

2
xTP�1x and x 2 W.0/: (18.14)
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Furthermore, there also exists a neighborhood OW of 0, where the following holds:

Eo.x/ � 1
2
xTQTx � 1

2
xTQx and x 2 OW.0/; (18.15)

where Ec and Eo are the energy functionals defined in (18.4).

Proof To prove (18.14), we follow the lines of reasoning in [7]. Let us assume
that x0 2 R

n is controlled by the input u D ux0 W� � 1; 0� ! R
m, minimizing the

input cost functional in the definition of Ec.x0/. Using this input, we consider the
homogeneous linear differential equation given by

P� D
�
A C

Xm

kD1 N
.k/uk.t/

�
� DW Au.t/�.t/; (18.16)

whose fundamental solution is denoted by ˚u. Thus, if we consider a time-varying
system as Px D Au.t/x C Bu, then its controllability Gramian can be given by

Pu D
Z 0

�1
˚u.0; /BB

T˚u.0; /
Td: (18.17)

The input u also controls the time-varying system from 0 to x0; therefore we have

kuk2L2 � xT0P
#
ux0; (18.18)

where P#
u denotes the Moore-Penrose pseudo inverse of Pu. Alternatively, one can

also determine Pu as an observability Gramian as

Pu D
Z 1
0


u.t; 0/BB
T
u.t; 0/

Tdt; (18.19)

where 
u is the fundamental solution of the dual system satisfying

P
u D
�
AT C

Xm

kD1
�
N.k/

�T
uk.t/

�

u; 
u.t; t/ D I: (18.20)

Note that we always choose x0 in a small neighborhood W0 of 0 such that
only a small input is required to steer the systems from 0 to x0, ensuring the
asymptotic stability of Au.t/. Hence, the matrix Pu is well-defined. Now, we define
Qx.t/ D 
u.t; 0/x0, then we have

xT0PTx0 D �
Z 1
0

d

dt

�Qx.t/TPT Qx.t/� dt

D �
Z 1
0

Qx.t/T
�
APT C

Xm

kD1 N
.k/PTuk.�t/

CPTA
T C

Xm

kD1 PT
�
N.k/

�T
uk.�t/

�
Qx.t/dt
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D �
Z 1
0

Qx.t/T
�
APT C PTA

T C
Xm

kD1 N
.k/Pl

�
N.k/

�T� Qx.t/dt C
1Z

0

Qx.t/T

�
mX

kD1

�
N.k/Pl

�
N.k/

�T � N.k/PTuk.�t/ � PT
�
N.k/

�T
uk.�t/

�
Qx.t/dt:

Thus, we get

�
Z 1
0

Qx.t/T
�
APT C PTA

T C
Xm

kD1 N
.k/Pl

�
N.k/

�T� Qx.t/dt D
Z 1
0

Qx.t/TBBT Qx.t/dt

D xT0Pux0:

Moreover, if

1Z

0

Qx.t/T
mX

kD1

�
N.k/Pl

�
N.k/

�T � N.k/PTuk.�t/ � PT
�
N.k/

�T
uk.�t/

�
Qx.t/dt � 0;

(18.21)

then we have xT0PTx0 � xT0Pux0. Furthermore, if we assume that the reachable state
x0 lies in a sufficiently small ball W in the neighborhood of 0 and W.0/  W0.0/,
then x0 is reached with a sufficiently small input u, guaranteeing that the
condition (18.21) is satisfied for all states x0 2 W.0/. Hence, we obtain

xT0P
�1
T x0 � xT0P

�1
u x0; where x0 2 W.0/:

Furthermore, if the controllability Gramian P, which is the solution of (18.3a), is
determined as a series [12], then it is easy to conclude that P � PT � 0. That
means, xT0P

�1x0 � xT0P
�1
T x0: Thus, we have xT0P

�1x0 � xT0P
�1
T x0 � xT0P

�1
u x0, where

x0 2 W.0/:
Furthermore, along the lines of the proof [15, Thm 3.3], we can prove that

Eo.x0; u/� 1
2
xT0QTx0 D

Z 1
0

x.t/TR.t/x.t/dt;

where R.t/ D
mP

kD1

�
QTN.k/uk.t/ � 1

2

�
N.k/

�T
QlN.k/

�
. For sufficiently small input u,

it can be seen that R.t/ is a negative semidefinite matrix. Hence, we get

Eo.x0; u/� 1
2
xT0QTx0 � 0 ) Eo.x0; u/ � 1

2
xT0QTx0:



18 Truncated Gramians for Bilinear Systems and Their Advantages in MOR 293

Moreover, if the observability Gramian is determined as a series with positive
semidefinite summands, then it can also be seen that Q � QT ; hence

Eo.x0; u/ � 1
2
xT0QTx0 � 1

2
xT0Qx0:

This concludes the proof. �
To illustrate the relation between energy functionals, Gramians and TGrams of

bilinear systems, we consider the same scalar example considered in [15].

Example 1 Consider a scalar example .a; b; c; �/. We assume a < 0, �2 C 2a < 0

and bc ¤ 0 to ensure the existence of P;Q > 0. The energy functionals of the system
can be determined by solving the corresponding nonlinear PDEs [15], which are:

Ec.x/ D 2a

�2


�x

�x C b
C log

�
b

�x C b

��
and Eo.x/ D �1

2

�
c2

2a

�
x2:

The approximations of the energy functionals using the Gramians are:

E.G/c .x/ D 1

2

�
�2 C 2a

�b2

�
x2 and E.G/o .x/ D 1

2

� �c2

�2 C 2a

�
x2:

The approximations of the energy functionals using TGrams are:

E.T/c .x/ D a

�
�b2 C �2b2

2a

��1
x2 and E.T/o .x/ D 1

4a

�
�c2 C �2c2

2a

�
x2:

The comparison of these quantities by taking numerical values for �a D b D c D
� D 1 is illustrated in Fig. 18.1.
Next, we recall the discussion in [7] about definiteness of Gramians and controlla-
bility/observability of the bilinear systems. Following this discussion, we also show
how controllability/observability of the bilinear systems are related to the TGrams.

−0.2 0 0.2 −0.2 0 0.2
0

2

4

6

8

·10−2

x

Controllability energy comparison

Ec(x)

E(G)
c (x)

E(T )
c (x)

0

1

2

3

·10−2

x

Observability energy comparison

Eo(x)

E(G)
o (x)

E(T )
o (x)

Fig. 18.1 The figure shows the comparison of the energy functionals of the system and their
approximations via Gramians and TGrams as stated in Lemma 2
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Theorem 1

(a) Consider the bilinear system (18.1) and define its truncated controllability
Gramian PT as in (18.11a). If the final state x0 … ImPT, then Ec.x0/ D 1.

(b) Consider the homogeneous bilinear system (18.13) and assume that the trun-
cated observability Gramian QT is defined as in (18.11b). If the initial condition
x0 2 KerQT, then the output y.t/ is zero for all t � 0, i.e. Eo.x0/ D 0.

Proof The above theorem can be proven in a similar manner as [7, Thm. 3.1]
using one of the important properties of positive semidefinite matrices. It is that
the null space of the matrix C , which is the sum of two positive semidefinite
matrices A and B, is the intersection of the null space of A and B. In
other words, if the vector v belongs to the null space of C , then A v D 0

and Bv D 0 as well. However, we skip a detailed proof due to the limited
space. �
From Lemma 2 and Theorem 1, it is clear that the TGrams for bilinear systems can
also be used to determine the states that absorb a lot of energy, and still produce
very little output energy. However, there are several advantages of considering the
TGrams over the Gramians for bilinear systems. Firstly, TGrams approximate
the energy functionals of the bilinear systems more accurately (at least locally) as
proven in Lemma 2 and illustrated in Example 1. Secondly, in order to compute
TGrams, we require the solutions of four conventional Lyapunov equations,
whereas the Gramians require the solutions of the generalized Lyapunov equa-
tions (18.3), which are indeed much more computationally cumbersome. Lastly,
TGrams are of smaller rank as compared to Gramians; i.e. P � PT and Q � QT .
This indicates that �i.P � Q/ � �i.PT � QT/, where �i.�/ denotes the i-th largest
eigenvalue of the matrix. This can be shown using Weyl’s inequality [25]. Hence,
if one chooses to truncate at machine precision, then the reduced system based on
TGrams is probably to be of a small order; however, the relative decay of the Hankel

singular values
�p

�i.PT � QT/
�

so far lacks any analysis.

18.4 Numerical Results

In this section, we illustrate the efficiency of the reduced-order systems obtained
via the proposed TGrams for the bilinear system and compare it with that
of the full Gramians [7]. We denote the Gramians for the bilinear system by
SGrams (standard Gramians) from now on. In order to determine the low-rank
factors of the Gramians for bilinear systems, we employ the most recently proposed
algorithm in [24], which utilizes many of the properties of inexact solutions and uses
the extended Krylov subspace method (EKSM) to solve the conventional Lyapunov
equation up to a desired accuracy. To determine the low-rank factors of the linear
Lyapunov equation, we also utilize EKSM to be in the same line. All the simulations
were carried out in MATLAB® version 7.11.0(R2010b) on a board with 4 Intel®
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Xeon®E7-8837 CPUs with a 2.67-GHz clock speed, 8 Cores each and 1TB of total
RAM.

18.4.1 Burgers’ Equation

We consider a viscous Burgers’ equation, which is one of the standard test
examples for bilinear systems; see, e.g. [10]. Therein, one can also find the
governing equation, boundary conditions and initial condition of the system. As
shown in [10], a spatial semi-discretization of the governing equation using k
equidistant nodes leads to an ODE system with quadratic nonlinearity. However,
the quadratic nonlinear system can be approximated using Carleman bilinearization;
see, e.g., [21]. The dimension of the approximated bilinearized system is n D kCk2.
We set the viscosity � D 0:1 and k D 40, and choose the observation vector C
such that it yields an average value for the variable v in the spatial domain. The
bilinearized system is not an H2 system, which can be checked by looking at the
eigenvalues of the matrix X WD .I ˝ A C A ˝ I C N ˝ N/. If �.X / 6� C

�,
then the series determining its controllability Gramians diverges. To overcome this
issue, we choose a scaling factor � , which multiplies with the matrices B and Nk,
and the input u.t/ is scaled by 1

�
. For this example, we set � D 0:1, ensuring

�.X / � C
�.

We determine reduced systems of orders r D 5 and r D 10 using SGrams and
TGrams, and compare the quality of the reduced-order systems by using two
arbitrary control inputs as shown in Fig. 18.2. More importantly, we also show the
CPU-time to determine the low-rank factors of SGrams and TGrams in the same
figure.

Figure 18.2 shows that computing TGrams is much cheaper than SGrams.
Moreover, we observe that the reduced systems based on TGrams are very
much competitive to those of SGrams for both control inputs and both orders in
Example 18.4.1.

18.4.2 Electricity Cable Impacted by Wind

Below, we discuss an example studied in [20]. Therein, a damped wave equation
with Lévy noise is considered, which is transformed into a first order stochastic
PDE (SPDE) and then discretized in space. The governing equation, which models
the lateral displacement of an electricity cable impacted by wind, is

@2

@t2
X.t; z/C 2

@

@t
X.t; z/ D @2

@z2
X.t; z/C e�.z� �2 /2 u.t/C 2 e�.z� �2 /2X.t�; z/@M.t/

@t
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Fig. 18.2 Comparisons of CPU-time and time-domain responses of the original and reduced-
order systems for two different orders and for two inputs for the Burgers’ equation example. (a)
Comparison of CPU-time to compute SGrams and TGrams for Example 18.4.1. (b) For an input
u.t/ D t � e�t � sin.� t/. (c) For an input u.t/ D t � e�t C 1

s for t; z 2 Œ0; ��, where M is a scalar, square integrable Lévy process with mean
zero. The boundary and initial conditions are:

X.t; 0/ D X.t; �/ D 0 and X.0; z/ D 0;
@

@t
X.t; z/

ˇ̌
ˇ̌
tD0


 0:

An approximation for the position of the middle of the cable represents the output

Y.t/ D 1

2"

Z �
2C"

�
2 �"

X.t; z/dz; " > 0:

Following [20], a semi-discretized version of the above SPDE has the following
form with x.0/ D 0 and t 2 Œ0; ��:

dx.t/ D ŒAx.t/C Bu.t/� dt C Nx.s�/dM.s/; y.t/ D Cx.t/: (18.22)
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Fig. 18.3 Comparison of CPU-time to compute SGrams and TGrams for Example 18.4.2

Here, A, N 2 R
n�n, B 2 R

n�m, C 2 R
p�n, x.t�/ WD lims"t x.s/ and y is

the corresponding output. We, moreover, assume that the adapted control satisfies
kuk2

L 2
T

WD E
R T
0 ku.t/k2

Rm dt < 1. For more details, we refer to [20].
In contrast to [20], we fix a different noise process, which allows the wind

to come from two directions instead of just one. The noise term we choose is
represented by a compound Poisson process M.t/ D PN.t/

iD1 Zi with .N.t//t2Œ0;��
being a Poisson process with parameter 1. Furthermore, Z1;Z2; : : : are independent

uniformly distributed random variables with Zi � U
�
�p

3;
p
3
�

, which are also

independent of .N.t//t2Œ0;��. This choice implies E ŒM.t/� D 0 and E
	
M2.1/


 D 1.
BT for such an Ito type SDE (18.22) with the particular choice of M is also based
on Gramians, which fulfill equations (18.3) with m D 1 and N WD N.1/. We fix the
dimension of (18.22) to n D 1000 and set u.t/ D ew.t/ sin.t/, and then run several
numerical experiments.

We apply BT based on SGrams as described in [9] and compute the reduced
systems of order r D 3 and r D 6. Similarly, we determine the reduced systems
of the same orders using TGrams. Next, we discuss the quality of these derived
reduced systems and computational cost to determine the low-rank factors of
SGrams and TGrams. In Fig. 18.3, we see that the TGrams are computationally
much cheaper as compared to the SGrams.

For the r D 3 case, clearly the reduced system based on TGrams outperforms
the one based on the SGrams for all three trajectories (see Fig. 18.4a). This is also
true for the mean deviation as shown in the Fig. 18.4c (left). For the r D 6 case,
it is not that obvious anymore. The reduced system obtained by SGrams seems
to be marginally more accurate, but still both methods result in very competitive
reduced-order systems, see Fig. 18.4b, c (right).
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Fig. 18.4 Comparison of reduced-order systems for u.t/ D ew.t/ sin.t/. (a) ln

� jy.!;t/�yr.!;t/j
jy.!;t/j

�

with reduced order dimension r D 3. (b) ln

� jy.!;t/�yr.!;t/j
jy.!;t/j

�
with reduced order dimension r D 6.

(c) ln

�
Ejy.t/�yr .t/j

Ejy.t/j
�

, where r D 3 (left), 6 (right)

18.5 Conclusions

In this paper, we have proposed truncated Gramians for bilinear systems. These
allow us to find the states, which are both hard to control and hard to observe,
like the Gramians for bilinear systems. We have also shown that the truncated
Gramians approximate the energy functionals of bilinear systems better (at least
locally) as compared to the Gramians of the latter systems. We have presented
how controllability and observability of bilinear systems are related to the truncated
Gramians. Moreover, we have discussed advantages of the truncated Gramians in
the model reduction context. In the end, we have demonstrated the efficiency of
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the proposed truncated Gramians in model reduction by means of two numerical
examples.
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Chapter 19
Leveraging Sparsity and Compressive Sensing
for Reduced Order Modeling

J. Nathan Kutz, Syuzanna Sargsyan, and Steven L. Brunton

Abstract Sparsity can be leveraged with dimensionality-reduction techniques to
characterize and model parametrized nonlinear dynamical systems. Sparsity is used
for both sparse representation, via proper orthogonal decomposition (POD) modes
in different dynamical regimes, and by compressive sensing, which provides the
mathematical architecture for robust classification of POD subspaces. The method
relies on constructing POD libraries in order to characterize the dominant, low-
rank coherent structures. Using a greedy sampling algorithm, such as gappy POD
and one of its many variants, an accurate Galerkin-POD projection approximating
the nonlinear terms from a sparse number of grid points can be constructed.
The selected grid points for sampling, if chosen well, can be shown to be effec-
tive sensing/measurement locations for classifying the underlying dynamics and
reconstruction of the nonlinear dynamical system. The use of sparse sampling for
interpolating nonlinearities and classification of appropriate POD modes facilitates
a family of local reduced-order models for each physical regime, rather than a
higher-order global model. We demonstrate the sparse sampling and classification
method on the canonical problem of flow around a cylinder. The method allows
for a robust mathematical framework for robustly selecting POD modes from a
library, accurately constructing the full state space, and generating a Galerkin-POD
projection for simulating the nonlinear dynamical system.

19.1 Introduction

Reduced-order models (ROMs) are of growing importance in scientific applications
and computing as they help reduce the computational complexity and time needed
to solve large-scale, engineering systems [7, 41]. For many complex systems of
interest, simulations reveal that the dynamics of the system are sparse in the sense
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that a relatively small subset of the full space is needed to describe the evolution
of the system. Thus solutions can often be approximated through dimensionality
reduction methods where if n is the dimension of the original system and r is
the dimension of the subspace (or slow-manifold) where the sparse dynamics
is embedded, then r � n. Familiar examples include large-scale patterns of
atmospheric variability, fluid dynamics and/or network simulations of neurosensory
systems, which reveal that many variables are correlated. As a result, the large-
scale dynamics may be compressed, or encoded, in a much smaller space than
the full space using, for instance, the proper orthogonal decomposition (POD).
The dynamics of the encoded subspace may be deduced from a modal (Galerkin)
projection, observations of the system and/or constraints from physical laws (e.g.
conservation of energy). In this manuscript, we show that the role of sparsity
goes far beyond simply constructing low-dimensional embeddings. Specifically, we
show that compressive sensing and sparse representation can be used in a highly
effective manner for model reduction for both reconstruction and classification of
parametrized systems.

The effective use of ROMs relies on constructing appropriate low-dimensional
subspaces for projecting the dynamics along with sparse interpolation methods for
evaluating nonlinearities and inner products. As such, there are three key parameters
for characterizing ROM architectures:

n – dimension of the original system

r – target rank of low-dimensional system

m – number of measurements for interpolation

where n � r;m and m > r but with m � r. The interpolation measurements are
similar to, but greater than, the rank of the low-dimensional system.

For parametrized nonlinear dynamical systems, the parameter � generally
guarantees the existence of a number of distinct dynamical regimes that can each
be represented by a r-rank dynamical system through Galerkin-POD projection. We
capitalize on this fact by building libraries of POD modes for different dynamical
regimes associated with �, which is similar to modern machine learning methods
for clustering and classification of distinct features of data [8, 36] Thus a suite
of local ROMs are constructed to avoid the well-known numerical instabilities
generated from a global model encompassing many parameter regimes [7, 17].
Once the POD modes are constructed, then the same sparse sampling strategies
using m measurements (e.g. gappy POD [7, 41]) that enable efficient evaluation of
nonlinear terms can be used to first identify (classify) the current dynamical regime
of interest before constructing an appropriate r-rank ROM model. The rank r of the
model selected is dependent on the specific dynamical regime whereas the m sparse
sampling (interpolation) points are chosen to be effective across all POD library
modes. We demonstrate a method for constructing the library modes, selecting
interpolation points, and constructing ROMs from appropriate parameter regimes.
Sparsity techniques are central to integrating the overall mathematical framework.
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19.2 Nonlinear Model Order Reduction and POD

The success of nonlinear model order reduction is largely dependent upon two
key innovations: (1) the well-known POD-Galerkin method [30], which is used for
projecting the high-dimensional nonlinear dynamics to a low-dimensional subspace
in a principled way, and (2) sparse sampling of the state space for interpolating
the nonlinear terms required for the subspace projection. Thus sparsity is already
established as a critically enabling mathematical framework for model reduction
through methods such as gappy POD and its variants [16, 28, 45, 46]. Indeed,
efficiently managing the computation of the nonlinearity was recognized early on
in the ROMs community, and a variety of techniques where proposed to accomplish
the task. Perhaps the first innovation in sparse sampling with POD modes was the
technique proposed by Everson and Sirovich for which the gappy POD moniker
was derived [28]. In their sparse sampling scheme, random measurements were
used to perform reconstruction tasks of inner products. Principled selection of
the interpolation points, through the gappy POD infrastructure [16, 28, 45, 46] or
missing point (best points) estimation (MPE) [4, 37], were quickly incorporated into
ROMs to improve performance. More recently, the empirical interpolation method
(EIM) [6] and its most successful variant, the POD-tailored discrete empirical
interpolation method (DEIM) [18], have provided a greedy algorithm that allows for
nearly optimal reconstructions of nonlinear terms of the original high-dimensional
system. The DEIM approach combines projection with interpolation. Specifically,
the DEIM uses selected interpolation indices to specify an interpolation-based
projection for a nearly optimal `2 subspace approximating the nonlinearity.

Consider a parametrized, high-dimensional system of nonlinear differential
equations that can arise, for example, from the finite-difference discretization of
a partial differential equation:

du.t/
dt

D Lu.t/C N.u.t/; �/; (19.1)

where u.t/ D Œu1.t/ u2.t/ � � � un.t/�T 2 R
n and n � 1. Typically, uj.t/ D u.xj; t/

is the value of the field of interest discretized at the spatial location xj. The
linear part of the dynamics is given by L 2 R

n�n and the nonlinear terms are in
the vector N.u.t// D ŒN1.u.t/; �/ N2.u.t/; �/ � � � Nn.u.t//; ��T 2 R

n. The
nonlinear function is evaluated component-wise at the n spatial grid points used
for discretization. Note that we have assumed, without loss of generality, that the
parametric dependence� is in the nonlinear term.

For achieving high-accuracy solutions, n is typically required to be very large,
thus making the computation of the solution expensive and/or intractable. The POD-
Galerkin method is a principled dimensionality-reduction scheme that approximates
the function u.t/ with rank-r-optimal basis functions where r � n. These optimal
basis functions are computed from a singular value decomposition of a series
of temporal snapshots of the nonlinear dynamical system. Specifically, suppose
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snapshots of the state, u.tj/ with j D 1; 2; � � � ; p, are collected. The snapshot matrix
X D Œu.t1/ u.t2/ � � � u.tp/� 2 R

n�p is constructed and the SVD of X is computed:
X D ‰†W
. The r-dimensional basis for optimally approximating u.t/ is given by
the first r columns of matrix‰ , denoted by‰ r. The POD-Galerkin approximation is

u.t/ 	 ‰ ra.t/ (19.2)

where a.t/ 2 R
r is the time-dependent coefficient vector and r � n. Plugging

this modal expansion into the governing equation (19.1) and applying orthogonality
(multiplying by ‰T

r ) gives the dimensionally reduced evolution

da.t/
dt

D ‰T
r L‰ ra.t/C‰T

r N.‰ ra.t/; �/: (19.3)

By solving this system of much smaller dimension, the solution of a high-
dimensional nonlinear dynamical system can be approximated. Of critical impor-
tance is evaluating the nonlinear terms in an efficient way using the gappy POD or
DEIM mathematical architecture. Otherwise, the evaluation of the nonlinear terms
still requires calculation of functions and inner products with the original dimension
n. In certain cases, such as the quadratic nonlinearity of Navier-Stokes, the nonlinear
terms can be computed once in an off-line manner. However, parametrized systems
generally require repeated evaluation of the nonlinear terms as the POD modes
change with �.

19.3 Sparse Sampling for ROMs

The POD method aims to exploit the underlying low-dimensional dynamics
observed in many high-dimensional computations. Although POD reductions are
common for dimensionality reduction [30], the key to producing a viable ROM is
to evaluate the nonlinear terms in (19.3). Specifically, a major shortcoming of the
POD-Galerkin method can be generally due to the evaluation of the nonlinear term
N.‰ ra.t/; �/. To avoid this difficulty, sparse sampling (gappy POD, EIM, DEIM)
approximates N D N.‰ ra.t/; �/ through projection and interpolation instead of
evaluating it directly. A considerable reduction in complexity is achieved by sparse
sampling because evaluating the approximate nonlinear term does not require a
prolongation of the reduced state variables back to the original high dimensional
state approximation required to evaluate the nonlinearity in the POD approximation.
The method therefore improves the efficiency of the POD approximation and
achieves a complexity reduction of the nonlinear term with a complexity
proportional to the number of reduced variables. Sparse sampling constructs
these specially selected interpolation indices that specify an interpolation-based
projection to provide a nearly `2 optimal subspace approximation to the nonlinear
term without the expense of orthogonal projection [18].
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In particular, onlym � n measurements are required for reconstruction, allowing
us to define the sparse representation variable Qu 2 R

m

Qu D Pu (19.4)

where the measurement matrix P 2 R
m�n specifies m measurement locations of the

full state u 2 R
n. As an example, the measurement matrix might take the form

P D

2
666664

1 0 � � � � � � 0
0 � � � 0 1 0 � � � � � � 0
0 � � � � � � 0 1 0 � � � 0
::: 0 � � � 0 0 1 � � � :::
0 � � � � � � 0 0 0 � � � 1

3
777775

(19.5)

where measurement locations take on the value of unity and the matrix elements
are zero elsewhere. The matrix P defines a projection onto an m-dimensional
measurement space Qu that is used to approximate u.

The insight and observation of (19.4) forms the basis of the Gappy POD method
introduced by Everson and Sirovich [28]. In particular, one can use a small number
of measurements, or gappy data, to reconstruct the full state of the system. In doing
so, we can overcome the complexity of evaluating higher-order nonlinear terms in
the POD reduction.

The measurement matrix P allows for an approximation of the state vector u
from m measurements. The approximation is given by using (19.4) with (19.11):

Qu 	 P
mX
jD1

Qaj j (19.6)

where the coefficients Qaj minimize the error in approximation: kQu � Puk. The
challenge is now how to determine the Qaj given the fact that taking inner products
of (19.6) can no longer be performed. Specifically, the vector Qu is of length m
whereas the POD modes are of length n, i.e. the inner product requires information
from the full range of x, the underlying discretized spatial variable which is of length
n. Thus the modes  j.x/ are in general not orthogonal over the m-dimensional
support of Qu. The support will be denoted as sŒ Qu�. More precisely, orthogonality
must be considered on the full range versus the support space. Thus the following
two relationships hold

Mjk D �
 j;  k

� D ıjk (19.7a)

Mjk D �
 j;  k

�
sŒQu� ¤ 0 for all j; k (19.7b)
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where Mjk are the entries of the Hermitian matrix M and ıjk is the Kronecker delta
function. The fact that the POD modes are not orthogonal on the support sŒ Qu� leads
us to consider alternatives for evaluating the vector Qa.

To determine the Qaj, a least-square algorithm can be used to minimize the error

E D
Z
sŒQu�

2
4 Qu �

mX
jD1

Qaj j

3
5
2

dx (19.8)

where the inner product is evaluated on the support sŒ Qu�, thus making the two terms
in the integral of the same size N. The minimizing solution to the error (19.8)
requires the residual to be orthogonal to each mode  n so that

0
@ Qu �

mX
jD1

Qaj j;  j

1
A

sŒQu�
D0 j ¤ k; j D 1; 2; � � � ;m: (19.9)

In practice then, we can project the full state vector u on to the support space and
determine the vector Qa:

MQa D f (19.10)

where the matrix M elements are given by (19.7b) and the components of the vector
fk are given by fj D �

u;  j
�
sŒQu�. Note that in the event the measurement space is

sufficiently dense, or as the support space is the entire space, then M D I, thus
implying the eigenvalues of M approach unity as the number of measurements
become dense. Once the vector Qa is determined, then a reconstruction of the solution
can be performed us

u.x; t/ 	 ‰ Qa : (19.11)

As the measurements become dense, the matrix M converge to I and Qa ! a.
It only remains to consider the efficacy of the measurement matrix P. Originally,

random measurements were proposed [28]. However, the ROMs community quickly
developed principled techniques based upon, for example, minimization of the
condition number of M [45], selection of minima or maxima of POD modes [46],
and/or greedy algorithms of EIM/DEIM [6, 18]. Thus m measurement locations
where judiciously chosen for the task of accurately interpolating the nonlinear terms
in the ROM. This type of sparsity has been commonly used throughout the ROMs
community. Indeed, continued efforts have been made to improve interpolation
strategies, such as the recent Q-DEIM architecture [23], generalized EIM [35] or
online refinement using a genetic algorithm [43].
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19.4 Machine Learning and POD Libraries

The POD reduction with sparse sampling provides a number of advantages for
model reduction of nonlinear dynamical systems. POD provides a principled way
to construct an r-dimensional subspace ‰ r characterizing the dynamics while
sparse sampling augments the POD method by providing a method to evaluate the
problematic nonlinear terms using an m-dimensional subspace projection matrix
P. Thus a small number of points can be sampled to approximate the nonlinear
terms in the ROM. Figure 19.1 illustrates the library building procedure whereby
a dynamical regime is sampled in order to construct an appropriate POD basis
‰ r. Inspired by machine learning methods [8, 36], the various POD basis for a
parametrized system are merged into a master library of POD modes ‰L which
contains all the low-rank subspaces exhibited by the dynamical system.

The method proposed here capitalizes on these methods by building low-
dimensional libraries associated with the full nonlinear system dynamics as well as
the specific nonlinearities. Interpolation points, as will be shown in what follows,
can be used with sparse representation and compressive sensing to (1) identify
dynamical regimes, (2) reconstruct the full state of the system, and (3) provide
an efficient nonlinear model reduction and POD-Galerkin prediction for the future
state.

The concept of library building of low-rank “features” from data is well
established in the computer science community. In the reduced-order modeling
community, it has recently become an issue of intense investigation. Indeed, a vari-
ety of recent works have produced libraries of ROM models [2, 9, 10, 19, 38–40, 42]
that can be selected and/or interpolated through measurement and classification.
Alternatively, cluster-based reduced order models use a k-means clustering to build
a Markov transition model between dynamical states [31]. These recent innovations
are similar to the ideas advocated here. However, the focus of this work is on

Xµ= ΨL= =

Ψ Σ W∗

Ψµ
r

Fig. 19.1 Library construction from numerical simulations of the governing equations (19.1).
Simulations are performed of the parametrized system for different values of a bifurcation
parameter �. For each regime, low-dimensional POD modes ‰ r are computed via an SVD
decomposition. The various rank-r truncated subspaces are stored in the library of modes matrix
‰L. This is the learning stage of the algorithm
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determining how suitably chosen P can be used across all the libraries for POD
mode selection and reconstruction. If one chooses, one can build two sets of
libraries: one for the full dynamics and a second for the nonlinearity so as to make
it computationally efficient with the DEIM strategy [42]. Before these more formal
techniques based upon machine learning were developed, it was already realized that
parameter domains could be decomposed into subdomains and a local ROM/POD
computed in each subdomain. Patera et al. [25] used a partitioning based on a binary
tree whereas Amsallem et al. [1] used a Voronoi Tessellation of the domain. Such
methods were closely related to the work of Du and Gunzburger [24] where the
data snapshots were partitioned into subsets and multiple reduced bases computed.
The multiple bases were then recombined into a single basis, so it doesn’t lead to
a library per se. For a review of these domain partitioning strategies, please see
Ref. [3].

19.5 Compressive Sensing for POD Mode Selection

Although there are a number of techniques for selecting the correct POD library ele-
ments to use, including the workhorse k-means clustering algorithm [2, 19, 38–40],
we will instead make use of sparse sampling and compressive sensing innovations
for characterizing the nonlinear dynamical system [9, 10, 42]. Compressive sensing
has emerged as a leading theoretical construct for using a sparse number of samples
for reconstructing a full state space [5, 12–15, 21, 22]. Specifically, we wish to use a
limited number of sensors for classifying the dynamical regime of the system from
a range of potential POD library elements characterized by a parameter �. Once a
correct classification is a achieved, a standard `2 reconstruction of the full state space
can be accomplished with the selected subset of POD modes, and a POD-Galerkin
prediction can be computed for its future.

In general, we will have a sparse measurement vector Qu given by (19.4). The
full state vector u can be approximated with the POD library modes (u D ‰La),
therefore

Qu D P‰La; (19.12)

where ‰L is the low-rank matrix whose columns are POD basis vectors concate-
nated across all ˇ regimes and c is the coefficient vector giving the projection of
u onto these POD modes. If P‰L obeys the restricted isometry property [5] and u
is sufficiently sparse in ‰L, then it is possible to solve the highly-underdetermined
system (19.12) with the sparsest vector a. Mathematically, this is equivalent to an `0
optimization problem which is np-hard. However, under certain conditions, a sparse
solution of Eq. (19.12) can be found by minimizing the l1 norm instead [14, 22] so
that

c D arg min
a0

jja0jj1; subject to Qu D P‰La: (19.13)
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ũ=

ΨP L a

=
a(t)

m
ode

Fig. 19.2 The compressive sensing algorithm for mode selection. In this mathematical framework,
a sparse measurement is taken of the system (19.1) and a highly under-determined system of
equations P‰La D Qu is solved subject to `1 penalization so that kak1 is minimized. Illustrated
is the selection of the �th POD modes. The bar plot on the left depicts the non-zero values of
the vector a which correspond to the ‰ r library elements. Note that the sampling matrix P that
produces the sparse sample Qu D Pu is critical for success in classification of the correct library
elements ‰ r and the corresponding reconstruction

The last equation can be solved through standard convex optimization methods.
Thus the `1 norm is a proxy for sparsity. Note that we only use the sparsity
for classification, not reconstruction. Figure 19.2 demonstrate the sparse sampling
strategy and prototypical results for the sparse solution a. For a review of com-
pressive sensing, sparse representation and sparsity promoting methods, see recent
comprehensive reviews on the subject [26, 27].

19.6 Example: Flow Around a Cylinder

To demonstrate the sparse classification and reconstruction algorithm developed,
we consider the canonical problem of flow around a cylinder. This problem is well
understood and has already been the subject of studies concerning sparse spatial
measurements [9, 11, 32, 44]. Specifically, it is known that for low to moderate
Reynolds numbers, the dynamics is spatially low-dimensional and POD approaches
have been successful in quantifying the dynamics [20, 29, 33, 34, 44]. The Reynolds
number, Re, plays the role of the bifurcation parameter � in (19.1), i.e. it is a
parametrized dynamical system.
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The data we consider comes from numerical simulations of the incompressible
Navier-Stokes equation:

@u

@t
C u � ru C rp � 1

Re
r2u D 0 (19.14a)

r � u D 0 (19.14b)

where u .x; y; t/ 2 R
2 represents the 2D velocity, and p .x; y; t/ 2 R

2 the
corresponding pressure field. The boundary condition are as follows: (1) Constant
flow of u D .1; 0/T at x D �15, i.e., the entry of the channel, (2) Constant pressure
of p D 0 at x D 25, i.e., the end of the channel, and (3) Neumann boundary
conditions, i.e. @u

@n D 0 on the boundary of the channel and the cylinder (centered at
.x; y/ D .0; 0/ and of radius unity).

For each relevant value of the parameter Re we perform an SVD on the data
matrix in order to extract POD modes. It is well known that for relatively low
Reynolds number, a fast decay of the singular values is observed so that only a
few POD modes are needed to characterize the dynamics. Figure 19.3 shows the 3
most dominant POD modes for Reynolds number Re D 40; 150; 300; 1000. Note
that 99% of the total energy (variance) is selected for the POD mode selection
cut-off, giving a total of 1; 3; 3; 9 POD modes to represent the dynamics in the
regimes shown. For a threshold of 99.9%, more modes are required to account for
the variability.

Classification of the Reynolds number is accomplished by solving the optimiza-
tion problem (19.13) and obtaining the sparse coefficient vector a. Note that each
entry in a corresponds to the energy of a single POD mode from our library. For
simplicity, we select a number of local minima and maxima of the POD modes as
sampling locations [46] for the matrix P. Because the optimization in `1 promotes
sparsity, those coefficients from POD modes associated with the measured flow
primarily are large the nonzero terms. The classification of the Reynolds number
is done by summing the absolute value of the coefficient that corresponds to each
Reynolds number. To account for the large number of coefficients allocated for
the higher Reynolds number (which may be 16 POD modes for 99.9% variance
at Re D 1000, rather than a single coefficient for Reynolds number 40), we divide
by the square root of the number of POD modes allocated in a for each Reynolds
number. The classified method is the one that has the largest magnitude after this
process. The result of this classification process is summarized in Table 19.1.

Although the accuracy in classification is quite high, many of the false classifi-
cations are due to categorizing a Reynolds number from a neighboring flow, i.e.
the Reynolds 1000 is often mistaken for Reynolds number 800. This is largely
due to the fact that these two Reynolds numbers are strikingly similar so that the
algorithm proposed has a difficult time separating their modal structures. Figure 19.4
shows a schematic of the sparse sensing configuration along with the reconstruction
of the pressure field achieved at Re D 1000 with 15 sensors. Classification and
reconstruction performance can be improved using other methods for constructing
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Table 19.1 Success Rate with m sensors using random sampling and sensors placed on randomly
selected minima/maxima of POD modes [46]

m-Random sensors (%) m-Sensors by POD (%)

m D 10; r D 99:9% 78:9 75:4

m D 10; r D 99:99% 48:7 76:9

m D 20; r D 99:9% 76:1 92:9

m D 20; r D 99:99% 85:2 88:3

Fig. 19.4 Illustration of m sparse sensor locations (left panel) for classification and reconstruction
of the flow field. The selection of sensory/interpolation locations can be accomplished by various
algorithms [9, 11, 32, 42, 44]. For a selected algorithm, the sensing matrix P determines the
classification and reconstruction performance

the sensing matrix P [9, 11, 32, 42, 44]. Regardless, this example demonstrate the
usage of sparsity promoting techniques for POD mode selection (`1 optimization)
and subsequent reconstruction (`2 projection).

19.7 Outlook on Sparsity for ROMs

In this work, we have shown that sparsity can be taken advantage of in at least two
distinct ways: (1) for approximating the nonlinearities in the Galerkin projection
through `2 interpolation, and (2) for classifying the dynamical regime of the
parametrized dynamical system using `1-based compressive sensing. The former is
well known in the ROMs community as gappy POD and its variants (e.g. EIM and
DEIM). The latter is only now emerging as a critically enabling machine learning
technique for classification and compressive architectures. In combination, the two
methods are well matched as both can be leveraged to full advantage by optimizing
the sampling locations of the measurement matrix P [42]. Indeed, poor selection of
the interpolating points requires a much higher number of interpolation points m.

The full power of `1-based optimization techniques still remains an area of active
research. At its core, the `1 norm serves as a proxy for sparsity, which is known
to be a hallmark feature of reduced order models, i.e. r-dimensional, low-rank
representations are ubiquitous. Thus in addition to classification, one might envision
using sparsity promoting techniques to perform such tasks as compressive SVDs,
for instance, for computing approximate POD modes using down sampled data
matrices, i.e. random SVD. As computational science continues into the exascale
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regime, sparsity promoting techniques will only continue to grow in importance.
Indeed, we envision that making full use of sparse sampling will be critically
enabling for solving such high-dimensional systems. In this work, two advantageous
applications are shown. Undoubtedly, more key applications will emerge for sparse
sampling techniques capable of characterizing the full state space.

Acknowledgements J.N. Kutz would like to acknowledge support from the Air Force Office of
Scientific Research (FA9550-15-1-0385).

References

1. Amsallem, D., Cortial, J., Farhat, C.: On demand CFD-based aeroelastic predictions using a
database of reduced-order bases and models. In: AIAA Conference (2009)

2. Amsallem, D., Tezaur, R., Farhat, C.: Real-time solution of computational problems using
databases of parametric linear reduced-order models with arbitrary underlying meshes. J.
Comput. Phys. 326, 373–397 (2016)

3. Amsallem, D., Zahr, M.J., Washabaugh, K.: Fast local reduced basis updates for the effi-
cient reduction of nonlinear systems with hyper-reduction. Adv. Comput. Math. (2015).
doi:10.1007/s10444-015-9409-0

4. Astrid, P.: Fast reduced order modeling technique for large scale LTV systems. In: Proceedings
of 2004 American Control Conference, vol. 1, pp. 762–767 (2004)

5. Baraniuk, R.G.: Compressive sensing. IEEE Signal Process. Mag. 24(4), 118–120 (2007)
6. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method:

application to efficient reduced-basis discretization of partial differential equations. C. R. Math.
Acad. Sci. Paris 339, 667–672 (2004)

7. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods
for parametric dynamical systems. SIAM Rev. 57, 483–531 (2015)

8. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)
9. Bright, I., Lin, G., Kutz, J.N.: Compressive sensing based machine learning strategy for

characterizing the flow around a cylinder with limited pressure measurements. Phys. Fluids
25, 127102 (2013)

10. Brunton, S.L., Tu, J.H., Bright, I., Kutz, J.N.: Compressive sensing and low-rank libraries for
classification of bifurcation regimes in nonlinear dynamical systems. SIAM J. Appl. Dyn. Syst.
13, 1716–1732 (2014)

11. Brunton, B.W., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Sparse sensor placement optimization
for classification. SIAM J. App. Math. 76, 2099–2122 (2016)

12. Candès, E.J.: In: Sanz-Solé, M., Soria, J., Varona, J.L., Verdera, J. (eds.) Compressive sensing.
In: Proceeding of the International Congress of Mathematicians, vol. 2, pp. 1433–1452 (2006)

13. Candès, E.J., Tao, T.: Near optimal signal recovery from random projections: universal
encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

14. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction
from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509
(2006)

15. Candès, E.J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate
measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

16. Carlberg, K., Farhat, C., Cortial, J., Amsallem, D.: The GNAT method for nonlinear model
reduction: effective implementation and application to computational fluid dynamics and
turbulent flows. J. Comput. Phys. 242, 623–647 (2013)



314 J.N. Kutz et al.

17. Carlberg, K., Barone, M., Antil, H.: Galerkin v. least-squares Petrov–Galerkin projection in
nonlinear model reduction. J. Comput. Phys. 330, 693–734 (2017)

18. Chaturantabut, S., Sorensen, D.: Nonlinear model reduction via discrete empirical interpola-
tion. SIAM J. Sci. Comput. 32, 2737–2764 (2010)

19. Choi, Y., Amsallem, D., Farhat, C.: Gradient-based constrained optimization using a database
of linear reduced-order models. arXiv:1506.07849 (2015)

20. Deane, A.E., Kevrekidis, I.G., Karniadakis, G.E., Orszag, S.A.: Low-dimensional models for
complex geometry flows: application to grooved channels and circular cylinders. Phys. Fluids
3, 2337 (1991)

21. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
22. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal 1-norm

solution is also the sparsest solution. Commun. Pure Appl. Math. 59(6), 797–829 (2006)
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Chapter 20
A HJB-POD Approach to the Control
of the Level Set Equation

Alessandro Alla, Giulia Fabrini, and Maurizio Falcone

Abstract We consider an optimal control problem where the dynamics is given
by the propagation of a one-dimensional graph controlled by its normal speed. A
target corresponding to the final configuration of the front is given and we want to
minimize the cost to reach the target. We want to solve this optimal control problem
via the dynamic programming approach but it is well known that these methods
suffer from the “curse of dimensionality” so that we can not apply the method to the
semi-discrete version of the dynamical system. However, this is made possible by a
reduced-order model for the level set equation which is based on Proper Orthogonal
Decomposition. This results in a new low-dimensional dynamical system which is
sufficient to track the dynamics. By the numerical solution of the Hamilton-Jacobi-
Bellman equation related to the POD approximation we can compute the feedback
law and the corresponding optimal trajectory for the nonlinear front propagation
problem. We discuss some numerical issues of this approach and present a couple
of numerical examples.
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20.1 Introduction

The optimal control of partial differential equations is a challenging problem that
has a rather long tradition nowadays. The origin dates back to the monograph by
J.L. Lions [17] and several books on infinite dimensional optimal control problems
have appeared since then (see e.g. [11, 15, 16, 21]).

Here we follow a different approach based on Dynamic Programming (DP).
Although formally one can follow this approach and obtain the characterization
of the value function as the unique solution (in a weak sense) of a Hamilton-
Jacobi equation in a Banach space several difficulties arise when one tries to
apply this approach for numerical purposes. It is well known that the DP approach
suffers of the curse of dimensionality so the naive discretization based on a finite
difference/finite elements discretization of the dynamics in order to reduce it to
a finite dimensional problem and apply DP to this system is simply unfeasible.
The number of dimensions of the discrete system will be too high (thousands
or millions of nodes). This motivates a reduced order modeling approach where
the dynamics will be (hopefully) represented by a low number of basis elements,
then we can apply DP to this low order system. The same approach has been
introduced and studied starting from the seminal paper [13, 14] and has shown
to be rather effective for the optimal control of parabolic and advection-diffusion
equations [2]. In the above cases the solution of the dynamics is typically regular
and the asymptotic behavior is easy to predict. More recently a technique based
on spectral elements has been applied to optimal control problems for the wave
equation (see [12]).

The novelty in this paper is to deal with the dynamics given by the level
set equation for front propagation problems, a problem with many applications
in combustion, gas dynamics, fluid dynamics and image processing. The front
propagation problem has solutions which are just Lipschitz continuous since
singularities and topology changes in the front can appear during the evolution. Its
solution must be understood in the viscosity sense (see [19] and [18] for an extensive
presentation of the level set method and its applications). This clearly introduces
some technical difficulties and makes it more complicated to construct the model
reduction approximation based on the snapshots. We will use a model reduction
based on POD (Proper Orthogonal Decomposition, [22]) to obtain a rather accurate
approximation for the level-set dynamics in dimension 1. Moreover, we mention
that in the paper [10] the level set method is coupled to a Reduced Basis model
in order to derive a rigorous approximation of the admissible region for a system
characterized by several parameters.

To set the paper into perspective, we want to mention that the problem of solving
the controlled level-set equation in dimension 1 has been studied in [8], where
they apply iterative descent methods for the optimization. Starting from the results
obtained in [7] for the uncontrolled dynamics, they prove the existence of optimal
controls under different assumptions on the speed function (which in their case is
a function of the space). Concerning the solution of the control problem they give
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a proof in a specific setting (see [8] for all the details). The difference here is that
the control is a general function of space and time and not necessarily piecewise
constant (as in [8]), moreover in this paper we apply the DP approach in order to
obtain an approximate feedback control. The drawback is that since we are in a
general setting both for the control and the profile we want to reach, there is not a
theoretical result which ensures that the controllability problem has a solution.

The paper is organized as follows: in Sect. 20.2 we present the front propagation
problem with the associated optimal control problem, in Sect. 20.3 we give the
main features of the DP approach and we explain how to deal with the model
order reduction of the level set equation, finally in Sect. 20.4 we will present some
numerical tests which show the efficiency of the proposed method.

20.2 A Front Propagation Problem with Target

Let us introduce our problem, we refer to [18] for more details on the topic.
The dynamics will describe the front propagation of an interface via the level-set
equation in R

n. The typical situation is the following: an initial position for the front
� .0/ D �0 (i.e. an initial surface in R

n) is given and the front evolves driven by a
force always directed in the normal direction to every point of the front. The velocity
in the normal direction will be denoted by V� and the scalar speed a.x; t/must keep
the same sign during the evolution (let us choose the positive sign to fix ideas). Note
that in the general case the speed can also depend on the position x and the time t,
although also the case of a piecewise constant speed is interesting (and we will use
it in the sequel). To summarize, we will have in general

V� D a.x; t/; a W Rn � RC ! RC: (20.1)

The initial configuration of the front is

� .0/ D �0 (20.2)

and �0 can be a single closed curve or the union of arbitrarily many finite
closed curves without intersections. The evolutive equation should describe the
propagation of the front � .t/ in time. This problem can produce singularities for
a single smooth curve �0 even in the particular case of a constant speed. It is
well known that a powerful method to track this evolution even when one has
singularities and topology changes (e.g. when the front � .t/ starting from �0 can
produce intersections at time t) is the level set method where one describes � .t/ as
the 0-level set of a continuous function solving the Cauchy problem

�
˚t.x; t/C a.x; t/jr˚.x; t/j D 0 in R

n � RC
˚.x; 0/ D ˚0.x/ in R

n (20.3)
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where ˚0 is a representation function for �0 (i.e. a continuous function changing
sign across �0) and a.x; t/ is assumed to be known. Solving (20.3) one can obtain
˚.x; t/ and recover the position of the front � .t/ as

� .t/ WD fx 2 R
n W ˚.x; t/ D 0g (20.4)

The Cauchy problem has a unique viscosity solution under rather general assump-
tions (see [6]).

Since here we just want to describe our technique we will consider the evolution
of a graph, i.e. the dimension will be n D 1 and we look for the front

� .t/ WD f.x; y.x; t//jx 2 Rg � R
2:

In this particular case the dynamics will be given by

�
yt D a.x; t/

p
1C y2x ; .x; t/ 2 R � Œ0;T�;

y.x; 0/ D y0.x/; x 2 R:
(20.5)

Many numerical schemes have been proposed so far to solve the level set Eq. (20.5).
In particular we refer to [19] for monotone and consistent schemes based on finite
difference approximation and to [9] for semi-Lagrangian schemes. In the present
work, we will adopt an explicit finite difference scheme. We closely follow the
scheme used in [7]; we choose space and time steps,�x and�t respectively and let

xj D j�x; j 2 Z; tn D n�t; 0 � n � N;

where N�t D T. We denote by ynj the numerical approximation of y.xj; tn/. We
approximate the solution of Eq. (20.5) using the following scheme: let y0j D y0.xj/,
j 2 Z and for n D 0; : : : ;N � 1

ynC1j D ynj C�t a.xj; tn/

s
1C max

� �ynj�1 � ynj
�x

;
ynjC1 � ynj
�x

�� 2
j 2 Z:

More information about the numerical approximation can be found [8]. Let us
remark that we must work on a bounded interval ˝ WD .a; b/ for numerical
purposes. Then the grid will have only a finite number of nodes a D x0 < x1 <
: : : < xd D b and, in order to give enough freedom to the front evolution, we impose
homogeneous zero Neumann boundary conditions (see [19] for more details on the
implementation).

Let us introduce the control problem for the front propagation. Now the speed
function a.x; t/ will not be fixed but will be our control function which we can
vary in order to steer the solution as close as possible to a particular desired
configuration of the front, e.g. our target denoted by Ny. In this framework, the
speed a.x; t/ will be denoted as u.x; t/, adopting the classical notation for control
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problems. In conclusion we have a control problem for a first order nonlinear partial
differential equation of Hamilton-Jacobi type which can develop singularities during
the evolution. This is known to be a difficult problem for the lack of regularity of
the solution. Note that another important issue is the reachability of the target: we
are not aware of any theoretical result which ensure us that the target is reachable
in finite time so it is natural to set the problem as an infinite horizon problem.
We will use the corresponding cost functional with a quadratic running cost in order
to penalize the distance from the target:

Jp. y0; u.t// D
Z 1
0

ky.x; t/ � Nyk2p�Ny.x/e��tdt; (20.6)

where y.x; t/ is the solution of (20.5), " is a positive parameter and

�Ny.x/ D
�
1 if ky.x; t/ � Nykp > "
0 otherwise:

(20.7)

Note that there is a strong dependence of the cost function from the initial condition
y0.x/ and from the norm of the running cost p. In fact we want to solve an infinite
horizon optimal control problem with a running cost which penalizes the distance in
Lp-norm (where p D 1; 2;1) from our target which is a stripe of radius " centered
in the profile we want to reach Ny. For a given time t > 0 and ˝ D Œa; b� � R we
define the L1-error as

jjy.x; t/� Nyjj1 WD max
x2˝ jy.x; t/� Nyj

and the Lp-error ( p D 1; 2) as

jjy.x; t/� Nyjjp WD
�Z

˝

jy.x; t/ � Nyjpdx
� 1

p

:

Let us also observe that the characteristic function (20.7) makes the costs vanish
whenever we enter a neighborhood of the target. The reachability of the target is an
interesting open problem which we will not address in this paper (however in the
numerical examples the neighborhood is always reachable).

20.3 An HJB-POD Method for the Control
of the Level-Set Equation

In this section we recall the main features of the dynamic programming principle
and Proper Orthogonal Decomposition (POD). Finally, we also explain the coupling
of the two methods. The interested reader can find more details in [3, 14].
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20.3.1 Numerical Approximation of the HJB Equation

We illustrate the dynamic programming approach for optimal control problems of
the form

min
u2U J. y0; u/ WD

1Z

0

L. y.s/; u.s// e��s ds (20.8)

constrained by the nonlinear ordinary differential equation:

� Py.t/ D f . y.t/; u.t//; t > 0;
y.0/ D y0

(20.9)

with system dynamics in R
n and a control signal u.t/ 2 U 
 fu.�/measurable ; u W

Œ0;C1Œ! Ug, where U is a compact subset of Rm; we assume � > 0, while L.�; �/
and f .�; �/ are Lipschitz-continuous, bounded functions. More details on this topic
can be found in [5]. In this setting, a standard tool is the application of the dynamic
programming principle, which leads to a characterization of the value function

v. y0/ WD inf
u2U J. y0; u/ (20.10)

as unique viscosity solution of the HJB equation:

�v. y0/C sup
u2U

f�rv � f . y0; u/� L. y0; u/g D 0; (20.11)

where Dv is the gradient of the value functions. Equation (20.11) may be approxi-
mated in several ways, we consider a fully-discrete semi-Lagrangian scheme which
is based on the discretization of the system dynamics with time step h, and a mesh
parameter k, leading to a fully discrete approximation Vh;k. y0/ satisfying

Vh;k. y0i/ D min
u2Uf.1� �h/I1ŒVh;k�. y0i C hf . y0i ; u//C L. y0i ; u/g ; (20.12)

for every element y0i of the discretized state space. Note that in general, the arrival
point y0i C hf . y0i ; u/ is not a node of the state space grid, and therefore the value is
computed by means of a linear interpolation operator, denoted by I1ŒVh;k�.

The bottleneck of this approach is related to the so-called curse of the dimen-
sionality, namely, the computational cost increases dramatically as soon as the
dimension does. One way to overcome the dimensionality issue is the construction
of efficient iterative solvers for (20.12).
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The simplest iterative solver is based on a direct fixed point iteration of the value
function known as value iteration method (VI)

VjC1
h;k WD min

u2Uf.1� �h/I1ŒV
j
h;k�. y0i C hf . y0i ; u//C L. y0i ; u/g ; i D 1; : : : ;Np

(20.13)

where Np denotes the number of nodes of the grid. This algorithm converges slowly
for any initial condition V0h;k since the operator on the right hand side is a contraction
mapping.

A more efficient formulation is the so-called policy iteration algorithm (PI),
which starting from an initial guess u0i of the control at every node, performs the
following iterative procedure:

ŒVj
h;k�i D .1 � �h/I1ŒV

j
h;k�. y0i C hf . y0i ; u

j
i //C hL. y0i ; u

j
i /

Œu jC1�i D argmin
u2U

f.1 � �h/I1ŒVj
h;k�. y0i C hf . y0i ; u//C hL. y0i ; u/g

where we first have to solve a linear system, since we freeze the control, in order
to find the value function corresponding to the given control and then update the
control. We iterate until convergence to the value function. The PI algorithm has a
quadratic convergence provided a good initial guess is given and its convergence
is only local (as for the Newton method), so there is a need for good initialization.
In order to provide a smart initial guess for the algorithm it was proposed in [2]
an acceleration mechanism based on a (VI) solution on a coarse grid, which is
used to generate an initial guess for (PI) on the fine grid. The proposed coupling
aims at efficiency and robustness. In this work, we adopt the Accelerated Policy
Iteration method (shortly API) for the approximation of the HJB equation (see [2]
for more details).

The main advantage of the dynamic programming approach is the possibility to
have a synthesis of feedback controls. Once the discretized value function Vh;k has
been obtained, the approximated optimal control u
h;k. y0/ for a point y0 of the state
space is obtained by:

u
h;k. y0/ D arg min
u2Uf.1 � �h/I1ŒVh;k�. y0 C hf . y0; u//C L. y0; u/g (20.14)

This choice is quasi-optimal provided some additional condition on the dynamics
are satisfied, a typical example is a linear dependence on the control variable as it has
been shown in [9, p. 231]. Finally, let us observe that our optimal control problem
fits into the general framework if we define in (20.8) and (20.9), respectively:

L. y.t/; u.t// WD ky.t/ � Nyk2p�Ny;

f . ynj ; u/ WD u.xj; t/

s
1C max

� �
ynj�1 � ynj
�x

;
ynjC1 � ynj
�x

�� 2
:



324 A. Alla et al.

20.3.2 POD Approximation of the Control Problem

In this section, we explain the POD method for the approximate solution of
the optimal control problem. The approach is based on projecting the nonlinear
dynamics onto a low dimensional manifold utilizing projectors which contain
information of the dynamics. A common approach in this framework is based on
the snapshot form of POD proposed in [20], which works as follows.

The snapshots are computed by the numerical approximation of (20.9) for y.ti/ 2
R

n for given time instances and a reference control. Its choice turns out to be very
important in order to build accurate surrogate model and may provide basis function
which are not able to capture the desired dynamics.

We define the POD ansatz of order ` for the state y as

y.t/ 	 Ny C
X̀
iD1

y`i .t/ i : (20.15)

where Ny 2 R
n is our target. We define the snapshot matrix Y D Œ y.t0/�Ny; : : : ; y.tn/�

Ny� and determine its singular value decomposition Y D W˙V . The POD basis
functions 
 D f ig`iD1 of rank ` are the first ` columns of the matrix W.

The reduced optimal control problem is obtained through replacing (20.9) by
a dynamical system obtained from a Galerkin approximation with basis functions
f ig`iD1 and ansatz (20.15) for the state.

This leads to an `-dimensional system for the unknown coefficients fy`i g`iD1;
namely

Py`.t/ D 
 T f .
y`; u.t//; y`.0/ D y`0: (20.16)

where y`0 D 
 T. y0 � Ny/ 2 R
`. The error of the Galerkin projection is governed by

the singular values associated to the truncated states of the SVD.
The POD-Galerkin approximation leads to the optimization problem

inf
u2U J`

y`0
.u/ WD

Z 1
0

L. y`.s/; u.s//e��s ds; (20.17)

where u 2 U , y` solves the reduced dynamics (20.16). The value function v`,
defined for the initial state y`0 2 R

` is given by

v`. y`0/ D inf
u2U J`

y`0
.u/ :

Note that the resulting HJB equations are defined in R
`; but for computational

purposes we need to restrict our numerical domain to a bounded subset of R`. We
refer the interested reader to [1] for details on this issue.
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20.4 Numerical Tests

In this section we describe our numerical tests. The aim is to drive an initial front’s
profile to a desired final configuration which will be our target, no final time is given.
We compute the snapshots with an initial guess for the control inputs. We remark
that it is rather crucial to obtain snapshots which simulate the desired trajectory. In
fact, to the best of our knowledge, there is no general recipe even for linear dynamics
and this is an open question which is hard to address in general. In the current work,
we could observe the sensitivity of the surrogate model with respect to the choice of
the initial input. However, we found very helpful to enrich the snapshot set with the
desired configuration Ny. A study of basis generation in this framework may be found
in [4]. To apply model order reduction we assume that the control may be rewritten
as follows:

u.x; t/ WD
MX
iD1

ui.t/bi.x/ (20.18)

where ui W Œ0;C1� ! U are the control inputs, M is the finite number of control
functions which will be used to reconstruct u.x; t/ and the coefficients bi W Rn ! R

are the so called shape functions which model the actions that we can applied to the
system governed by our model. The dynamics is given by (20.5) and we performed
the simulations choosing different norms in the cost functional in (20.6).

To show the effectiveness of the method we compute the error in different norms
between the final configuration of the front and the given target. We define the error
as follows:

Ep D kyf .x/ � Nykp; p D 1; 2;1 (20.19)

where we denote yf .x/ the final configuration of the front. All the numerical
simulations have been realized on a MacBook Pro with 1 CPU Intel Core i5 2.4 GHz
and 8GB RAM. The codes used for the simulations are written in Matlab.

20.4.1 Test 1: Constant Final Configuration

In this test we choose the initial profile y0.x/ D 1 C cos.2�.1 � x//

2
in (20.5)

with x 2 Œ0; 1�. We want to steer the front toward the target Ny.x/ D 2:5. We
compute the snapshots with a finite difference explicit scheme with a space step
�x D 0:05, time step �t D 0:01 and a given input u.x; t/ D 0:42e�.x�0:5/2 . The
shape functions in (20.18) are b1.x/ D y0.x/; b2.x/ D e�.x�0:5/2 and the control
set is U D Œ�2; 2�. In this test the chosen parameters for the value function are:
�x D 0:1; " D 0:01; � D 1; ` D 5;� D 0:01 (the time step to integrate
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Fig. 20.1 Test 1: evolution of the controlled front in the phase-plane with the target (left), final
controlled and uncontrolled front’s profile with the target (right) with p D 2
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Fig. 20.2 Test 1: Final controlled and uncontrolled front’s profile and target using the norm p D 1

(left) and the norm p D1 (right)

the trajectories). The set U is discretized into 9 equidistant elements for the value
function and 21 for the trajectories.

In the left panel of Fig. 20.1 we show the controlled evolution of the front. We can
observe that the final configuration of the front is in a neighborhood of the desired
configuration. In the right panel of Fig. 20.1 we compare the controlled front’s
configuration, obtained with the L2-norm with the target and the uncontrolled front.
Figure 20.2 shows the same comparison where the optimal configuration is com-
puted with L1 and L1-norm. Although the classical choice for the norm in the cost
functional is p D 2, we obtain better results for p D 1: We also consider p D 1.

In Table 20.1 we compute the quantity Ep to evaluate the distance between
the controlled final configuration and the desired one in different norms. We also
evaluate the cost functional with different choices of p. It turns out that the norm
with p D 1 provides the most accurate final configuration, whereas the norm p D 2

has lower value of the cost functional. We note that the evaluation of the cost
functional takes into account the whole history of the trajectories and not just the
final configuration.
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Table 20.1 Test 1: Error between final and desired configuration and evaluation of the cost
functional for " D 0:01

p D 1 p D 2 p D1
Ep 0:0214 0:0584 0:0949

Jp. y0; u/ 0:3326 0:3185 0:5832
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Fig. 20.3 Test 2: evolution of the front in the phase-plane with the target (left), final controlled
and uncontrolled front’s profile with the target (right) with p D 2

20.4.2 Test 2: Constant Initial Configuration

In this test we choose a constant initial profile y0.x/ 
 0 in (20.5) with x 2 Œ�1; 1�.
The target is Ny.x/ D 0:2 C e�.x�0:5/:2 . We compute the snapshots with a finite
difference explicit scheme with a space step �x D 0:05, time step �t D 0:01

and velocity u.x; t/ D 0:2C e�.x�0:5/:2 .
In this test the parameters for the value function are: �x D 0:1; " D 0:01; � D

1;U 
 Œ0; 2�; b.x/ D 0:2C e�.x�0:5/:2 ; ` D 4;� D 0:01 (the time step to integrate
the trajectories). The number of controls are 11 for the value function and 21 for the
trajectories.

In Fig. 20.3 we show the evolution of the controlled front where the final profile
is steered close to the target.

For the sake of completeness we also show the optimal control in Fig. 20.4. As
explained in Test 1, we perform the simulations using different norms in the cost
functional ( p D 1; 2;1). Table 20.2 shows the distance between the controlled
solution and the desired configuration and the evaluation of the cost functional.
Here, we can see that the choice of p D 2 in the norm for the cost functional
provides the most accurate final configuration, whereas p D 1 provides a lower
value for the cost functional.
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Table 20.2 Test 2: Error between final and desired configuration and evaluation of the cost
functional for " D 0:01

p D 1 p D 2 p D1
Ep 0:0526 0:0439 0:0617

Jp. y0; u/ 0:2561 0:2562 0:2218

20.4.3 Test 3: A Non-regular Target

Here we consider a final configuration which is not regular. To this end let us define

Ny.x/ WD C1�Œa;x�.x/C C2�Œx;b�.x/: (20.20)

The constant initial profile is y0.x/ 
 0 in (20.5) with x 2 Œ0; 1�. We compute the
snapshots with a finite difference explicit scheme with a space step �x D 0:05,
time step�t D 0:01 and velocity u.x; t/ D C1�Œ0;x� CC2�Œx;1�, with C1 D 0:5;C2 D
0:8:x D 0:5.

In this test the parameters for the value function are:�x D 0:1; " D 0:01; � D 1;

U 
 Œ0; 3�; b1.x/ D �Œ0;x�; b2 D �Œx;1� (shape functions), ` D 4 (POD basis’s rank)
� D 0:01 (the time step to integrate the trajectories).

The number of controls are 16 for the value function and 31 for the trajectories.
In Fig. 20.5 we show the evolution of the controlled front where the final profile is
steered close to the target with p D 2. Finally, in Fig. 20.6 we also show the optimal
control.

An analysis of the distance between the controlled and desired configuration
is provided in Table 20.3. In this example, we can see that the norm with
p D 2 provides the most accurate solution for the final configuration and the cost
functional. Then, the results with p D 1;C1 are displayed in Fig. 20.7.
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Table 20.3 Test 3: Error between final and desired configuration and evaluation of the cost
functional with " D 0:01

p D 1 p D 2 p D1
Ep 0:0256 0:011 0:0218

Jp. y0; u/ 0:0382 0:0366 0:0568

20.5 Conclusions

We have proposed a HJB-POD approach for the control of a nonlinear hyperbolic
problem which typically has weak solutions in the viscosity sense. This problem is
more difficult with respect to other evolutive problems, such as parabolic equations,
where the regularity of the initial condition is preserved or even improved. There-
fore, it is not trivial that POD model order reduction with a few number of basis
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functions provide a satisfactory approximation of the model. Indeed, numerical
simulations show that if we represent the front with a POD-basis with rank 4 or
5 we obtain satisfactory results. Clearly it would be helpful to increase the number
of basis functions to obtain better performances by the HJB-POD method (see [3]).
Un fortunately, that is very hard at the moment due to the curse of dimensionality
of dynamic programming, another possibility is to up-date the set of basis functions
during the evolution as in [1]. Furthermore, we have investigated different norms in
the cost functional, motivated by the lack of general theory particularly for nonlinear
dynamics. It turns out that the best approximation is obtained using the standard L2

norm in most of the cases.
The computation of the basis functions remains an open question that definitely

deserves further investigation. We will try to extend the results in [3] to build
theoretical results in a future work.
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Chapter 21
Model Order Reduction Approaches for Infinite
Horizon Optimal Control Problems via
the HJB Equation

Alessandro Alla, Andreas Schmidt, and Bernard Haasdonk

Abstract We investigate feedback control for infinite horizon optimal control prob-
lems for partial differential equations. The method is based on the coupling between
Hamilton-Jacobi-Bellman (HJB) equations and model reduction techniques. It
is well-known that HJB equations suffer the so called curse of dimensionality
and, therefore, a reduction of the dimension of the system is mandatory. In this
report we focus on the infinite horizon optimal control problem with quadratic
cost functionals. We compare several model reduction methods such as Proper
Orthogonal Decomposition, Balanced Truncation and a new algebraic Riccati
equation based approach. Finally, we present numerical examples and discuss
several features of the different methods analyzing advantages and disadvantages
of the reduction methods.

21.1 Introduction

The approximation of optimal control problems for partial differential equations
(PDEs) is a very challenging topic. Although it has been successfully studied for
open-loop problems (we address the interested reader to the books [15, 23] for more
details), the closed-loop control problem presents several open questions for infinite
dimensional equations.

One common way to obtain a feedback control is by means of the dynamic
programming principle (DPP). The DPP characterizes the value function and its
continuous version leads to a HJB equation. The theory of the viscosity solution
allows us to characterize the value function as the unique solution of the HJB
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equations. We note that these results are quite general and valid for any problem
dimension. We refer to the book [6] for more details about the topic for ordinary
differential equations. For the sake of completeness, we also mention Model
Predictive Control as alternative to obtain a feedback control (see [14]).

The numerical approximation of HJB equations has been studied with different
techniques such as Finite Difference, Finite Volume and Semi-Lagrangian schemes.
We refer the interested reader to [12] for a comprehensive analysis of these methods.

The DPP is known to suffer the so called curse of dimensionality, namely
the computational complexity of the problem increases exponentially when the
dimension does. The problem is much harder when dealing with PDEs since their
spatial discretization leads to huge systems of ODEs. Typically, we are able to
solve a HJB equations numerically up to dimension 4 or 5. For this reason, model
reduction plays a crucial role in order to reduce the complexity of the problem and
to make the control problems feasible. The procedure is thus split in two parts,
where the first part consists of finding a reduced order model (ROM) which is
suitable for the control purpose, followed by the numerical solution of the HJB
equations, associated with the control problem, where the full system is replaced
with the ROM.

Proper Orthogonal Decomposition (POD, see [24]) and Balanced Truncation
(BT, see [5]) are two of the most popular techniques for model reduction of
dynamical systems, including spatially discretized PDEs. POD is a rather general
method, which is based on a Galerkin projection method for nonlinear dynamical
systems where the basis functions are built upon information on the system whereas
the BT method is based on a Petrov-Galerkin projection, where the basis functions
are obtained by solving two Lyapunov equations. The latter approach is only valid
for linear systems, although extensions can be formulated (see [19]).

The coupling between HJB equations and POD has already been proposed by a
series of pioneering work [17, 18]. A study of the feedback control and an adaptive
method can be found in [1] and [4]. Error estimation for the method has been
recently studied in [3]. We refer to [16] for the coupling with BT. For the sake
of completeness, we also mention a different approach for the control of infinite
dimensional systems, based on the DPP and a sparse grid approach, see [13].

In addition to POD and BT, in this work we consider a new approach based on
solutions of algebraic Riccati equations (ARE) for the approximation of the value
function for linear quadratic problems. This approach turns out to better capture
information of the control problem and improve the quality of the suboptimal
control. We analyze and compare the reduction techniques for linear and nonlinear
dynamical systems. We note that in the nonlinear settings we linearize the dynamical
system in a neighborhood of the desired state to apply BT and the MOR approach
based on the solutions of the ARE equation.

The paper is organized as follows. In Sect. 21.2 we recall the main results on
dynamic programming. Section 21.3 explains the model order reduction approaches
and their application to the dynamic programming principle and the HJB equations.
Finally, numerical tests are presented in Sect. 21.4 and conclusions are drawn in
Sect. 21.5.
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21.2 Numerical Approximation of HJB Equations

In this section we recall the basic results for the approximation of the Bellman
equation, more details can be found in [6] and [12].

Let the dynamics be given by

� Py.t/ D f . y.t/; u.t//; t � 0;

y.0/ D x;
(21.1)

where the state y.t/ 2 R
n, the control u.t/ 2 R

m and u 2 U 
 fu W Œ0;C1/ !
U; measurableg where U is a closed bounded subset of R

m, and x 2 R
n is the

initial condition. If f is Lipschitz continuous with respect to the state variable and
continuous with respect to . y; u/, the classical assumptions for the existence and
uniqueness result for the Cauchy problem (21.1) are satisfied (see [6]).

The cost functional J W U ! R we want to minimize is given by:

Jx.u.�// :D
Z 1
0

g. y.s/; u.s//e��sds ; (21.2)

where g is Lipschitz continuous in both arguments and � � 0 is a given parameter.
The function g represents the running costs and � is the discount factor which
guarantees that the integral is finite whenever g is bounded and � > 0. Let us define
the value function of the problem as

v.x/ :D inf
u.�/2U Jx.u.�// : (21.3)

The Dynamic Programming Principle (DPP) characterizes the value function as
follows

v.x/ D inf
u2Uf

Z T

0

g. yx.t; u/; u.t//e
��t dt C v. yx.T; u//e

��Tg; (21.4)

where yx.t; u/ is the solution of the dynamics for a given initial condition x and any
T > 0. From the DPP, one can obtain a characterization of the value function in
terms of the following first order nonlinear Bellman equation

�v.x/C max
u2U f�f .x; u/ � Dv.x/ � g.x; u/g D 0; for x 2 R

n : (21.5)

Here, Dv.x/ denotes the gradient of v at the point x. Once the value function is
computed we are able to build the feedback as follows:

u
.x/ WD arg min
u2U

f f .x; u/ � Dv.x/C g.x; u/g:
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Several approximation schemes on a fixed grid G have been proposed for (21.5).
Here we will use a semi-Lagrangian approximation based on the Dynamic Pro-
gramming Principle. This leads to

v�t.x/ D min
u2Ufe���tv�t .x C�tf .x; u//C�tg .x; u/g ; (21.6)

where v�t.x/ converges to v.x/ when �t ! 0. A natural way to solve (21.6) is to
write it in fixed point iteration form

VkC1
i D min

u2Ufe���tI ŒVk� .xi C�tf .xi; u//C�tg .xi; u/g ; i D 1; : : : ;NG:

(21.7)

Here Vk
i represents the values of the value function v at a node xi of the grid at the

k-th iteration in (21.7) and I is a multilinear interpolation operator acting on the
values of the equidistant grid G with mesh spacing denoted by �x.

The method is referred to in the literature as the value iteration method. The
convergence of the value iteration can be very slow and accelerated techniques,
such as the policy iteration technique, can be found in [2].

Remark 1 Let us mention that in general it is hard to find an explicit solution for
Eq. (21.5) due to the nonlinearity of the problem. A particular case is the so called
linear quadratic regulator (LQR) problem where the dynamics is linear and the cost
functional is quadratic. The equations are thus given as

f . y; u/ D Ay C Bu; g. y; u/ D yTQy C uTRu;

where A;Q 2 R
n�n, B 2 R

n�m, R 2 R
m�m with Q and R symmetric and Q positive

semi-definite and R positive definite. Furthermore, the set of admissible control
values is U D R. Under these assumptions, it is known that the value function
at any point x 2 R

n is given by v.x/ D xTPx where P 2 R
n�n is the solution of the

following shifted algebraic Riccati equation (ARE):

.A � �In/TP C P.A � �In/ � PBR�1BTP C Q D 0: (21.8)

Here, In 2 R
n�n is the n-dimensional identity matrix. Finally, the optimal control

is directly given in an appropriate state-feedback form u.t/ D �R�1BTPy.t/.
More details on the LQR can be found in [10]. We will use the LQR problem
for comparison purposes as a benchmark model in the numerical examples, see
Sect. 21.4.

21.3 Model Reduction

The focus of this section is to recall some model reduction techniques utilized
to build surrogate models in this work. The Reduced Order Modelling (ROM)
approach to optimal control problems is based on projecting the nonlinear dynamics
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onto a low dimensional manifold utilizing projectors that contain information of
the expected controlled dynamics. The idea behind the projection techniques is to
restrict the dynamics y.t/ onto a low-dimensional subspace V � R

n that contains
the relevant information. We equip the space V with a basis matrix V 2 R

n�`
which will be specified in the following subsections, and approximate the full state
vector by y.t/ 	 Vy`.t/, where y`.t/ W Œ0;1/ ! R

` are the reduced coordinates.
Plugging this ansatz into the dynamical system (21.1), and requiring a so called
Petrov-Galerkin condition yields

8<
:

Py`.t/ D WTf .Vy`.t/; u.t//

y`.0/ D WTx;
(21.9)

where the matrix W 2 R
n�` is chosen, such that WTV D I`. Further sampling based

techniques can be employed to obtain an efficient scheme for nonlinear problems as
suggested in [9, 11] and the references therein. The presented procedure is a generic
framework for model reduction. It is clear, that the quality of the approximation
greatly depends on the reduced space V . In the next subsections, we briefly
revisit some classical projection techniques and introduce a new approach, which
is tailored for the approximation of the value function.

21.3.1 Proper Orthogonal Decomposition

A common approach is based on the snapshot form of POD proposed in [21], which
in the present situation works as follows. We compute a set of snapshots y1; : : : ; yk
of the dynamical system (21.1) corresponding to a prescribed input and different
time instances t1; : : : ; tk and define the POD ansatz of order ` for the state y.t/ by

y.t/ 	
X̀
iD1

y`i .t/ i; (21.10)

where the basis vectors f ig`iD1 are obtained from the singular value decomposition
of the snapshot matrix Y D Œ y1; : : : ; yk�; i.e. Y D 
˙� , and the first ` columns
of 
 D .
1; : : : ; 
n/ form the POD basis functions of rank `. Hence we choose
the basis vectors V D W D .
1; : : : ; 
`/ for the POD method in (21.9). Here the
SVD is based on the Euclidean inner product. This is reasonable in our situation,
since the numerical computations performed in our examples are based on finite
difference schemes.

In the present work the quality of the resulting basis is strongly related to the
choice of a given input u, whose optimal choice is usually unknown. For control
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problems, one way to improve this selection is to compute snapshots from the
following equation for a given pair . y; u/ and any final time T > 0

� Pp.t/ D fy. y.t/; u.t//p.t/C gy. y.t/; u.t//; p.T/ D 0; (21.11)

as suggested in [22]. We refer to p W Œ0;T� ! R
n as the adjoint solution (see [15]).

The advantage of this approach is that it is able to capture the dynamics of the adjoint
Eq. (21.11) which is directly related to the optimality conditions. In order to obtain
the POD basis, one has to simulate the high dimensional system and subsequently
perform a SVD, which can both be implemented very efficiently.

21.3.2 Balanced Truncation

The balanced truncation (BT) method is a well-established ROM technique for LTI
systems

Py.t/ D Ay.t/C Bu.t/;

z.t/ D Cy.t/;

where z.t/ is the output of interest. We refer to [5] for a complete description of
the topic. The BT method is based on the solution of the reachability Gramian QP
and the observability Gramian QQ which solve respectively the following Lyapunov
equations

A QP C QPAT C BBT D 0; AT QQ C QQA C CTC D 0:

We determine the Cholesky factorization of the Gramians

QP D ˚˚T ; QQ D # # T :

Then, we compute the singular value decomposition of the Hankel operator # T˚

and set

W D #U1˙
1=2
1 ; V D #V1˙

1=2
1 ;

where U1;V1 2 R
n�` are the first ` columns of the left and right singular vectors of

the Hankel operator and˙1 D diag.�1; : : : ; �`/ matrix of the first ` singular values.
The idea of BT is to neglect states that are both, hard to reach and hard to observe.

This is done by neglecting states that correspond to low Hankel singular values
�i. This method is very popular, also because the whole procedure can be verified
by a-priori error bounds in several system norms, and the Lyapunov equations
can be solved very efficiently due to their typical low-rank structure in large-scale
applications, see [7].
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21.3.3 A New Approach Based on Algebraic Riccati Equations

For arbitrary control problems, the value function is in general not available in
analytical form. However, in the case of the LQR problem, the value function has the
quadratic form v.x/ D xTPx where P solves an algebraic Riccati equation (21.8).

Thus, the relevant information of the value function is stored in the matrix P
and can be extracted by taking the SVD (or eigenvalue decomposition, since P is
symmetric) P D 
˙
 T with an orthonormal matrix 
 D Œ 1; : : : ;  n�. We can
approximate P with P` D P`

kD1 �k k 
T
k and the error bound reads

kP � P`k2 � �`C1;

where we applied the Schmidt-Eckart-Young-Mirsky theorem as mentioned in [5,
20]. We define the reduced value function as v`.x/ :D xTP`x. Then the following
bound holds true

jv.x/� v`.x/j � �`C1kxk2; 8x 2 R
n:

Thus, if we define the reduced space V :D span. 1; : : : ;  `/, we can expect an
accurate approximation of the relevant information in the value function, at least in
the case where the system dynamics are linear. Finally, we note that in (21.9) we
choose V D W D .
i/

`
iD1. This procedure thus requires the solution of an algebraic

Riccati equation and a subsequent SVD. By employing low-rank techniques, both
of these tasks can be sped up substantially.

21.3.4 The Coupling Between HJB and Model Reduction

Since the curse of dimensionality prohibits a direct solution of the HJB equations
in higher dimensions, we apply model reduction in the first place, in order to obtain
a small system for which the HJB equation admits a computable solution. We
note that model reduction does not solve the curse of dimensionality. However,
we choose the number of basis functions in such a way that the reduced problem
becomes computationally tractable, unlike the full-dimensional problem which
cannot be solved numerically. In the general projection framework above, we define
the following reduced HJB problem, which is the optimal control problem for the
projected system:

inf
u2U J`WTx.u/ D inf

u2U

Z 1
0

g.Vy`.t/; u.t/; t/e��t dt; (21.12)

s.t.
Py`.t/ D WTf .Vy`.t/; u.t//; t � 0

y`.0/ D WTx
(21.13)
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As in the full-dimensional case, the value function v`.WTx/ D infu2U J`
WTx
.u/

fulfills an `-dimensional HJB equation, which can be solved numerically. This
gives an approximation to the true (in general unknown) value function at the point
x 2 R

n:

Ov`.x/ :D v`.WTx/: (21.14)

Furthermore, the reduced value function Ov`.x/ can be used to define a reduced
feedback control function similar to the full dimensional case as

Ou
.x/ :D min
u2U f f .x; u/ � D Ov`.x/C g.x; u/g:

Remark 2 For the numerical approximation of the value function, we must restrict
our computational domain in the `-dimensional reduced space. Since the physical
meaning of the full-coordinates is lost when going to the reduced coordinates, it
is in general not clear how to choose the interval lengths of the grid. We therefore
restrict ourselves to the approximation of the value function for vectors in the set
� :D fx 2 R

n s.t. kxk1 � ag, i.e. for all x 2 � and i D 1; : : : ; n it holds jxij � a,
where xi denotes the i-th component of x. We then define the reduced domain

�` :D
`�

iD1
.xi; Nxi/ � R

`; (21.15)

where the interval boundaries xi and Nxi are calculated in such a way that for all full
states x 2 �, the projected vectors are mapped to vectors in �`, i.e. WTx 2 �` for
all x 2 �. Thus, we expect to have a valid value function for all vectors x 2 �. A
different approach for the reduced interval can be found in [1].

21.4 Numerical Examples

We now compare the different approaches introduced in Sect. 21.3. The first
example is a classical LQR scenario, i.e. a linear system with quadratic cost
functional. This simple setup has the huge advantage of a known value function, that
can be used for comparing the different approaches for the HJB approximations. In
the second example, we study the behavior of the feedback control for a nonlinear
viscous Burgers equation.
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21.4.1 One-Dimensional Heat Advection-Diffusion Equation

Our first example consists of a one-dimensional advection-diffusion equation

@tw.t; �/ � �diff@��w.t; �/C �adv@�w.t; �/ D 1˝B.�/u.t/; t � 0; � 2 ˝
w.t; �/ D 0; t � 0; � 2 @˝
w.0; x/ D w0.x/; x 2 ˝

z.t/ D 1

j˝Cj
Z
˝C

w.t; �/d�;

with˝ :D .�1; 1/ � R; @˝ D f�1; 1g and distributed control acting on a set˝B D
Œ�0:5;�0:1�. The output of interest z.t/ is the average temperature distribution
on the interval ˝C D Œ0:1; 0:6�, 1˝B.�/ and 1˝C .�/ denote the characteristic
functions of the set ˝B resp. ˝C at the point � 2 ˝ . We choose the parameter
values �diff D 0:2 and �adv D 2. We discretize the PDE in space by using a
finite difference scheme on an equidistant grid with interior points f�igniD1. The
dimension of the semi-discrete problem is 61. The advection term is discretized
by using an upwind scheme. In order to solve the problem numerically for the
simulation and the generation of the snapshots, we apply an explicit Euler scheme
with �t D 1

2
�diff�x2. In order to obtain a control problem, we introduce the cost

functional as in Remark 1 with Q D 20CTC and R D 0:1, where C is the discretized
representation of z.�/. The final setting is given by

min
u2L2.0;1/

Z 1
0

.20z.t/2 C 0:1u.t/2/dt

s.t. Py.t/ D f . y.t/; u.t// D Ay.t/C Bu.t/; z.t/ D Cy.t/; y.0/ D x:

The solution to this problem can be calculated in a closed loop form and is given
by u.t/ D �10BTPx.t/, where P 2 R

n�n solves the associated ARE (21.8) with
� D 0. Furthermore, the value function is known to be a quadratic function of the
form v.x/ D xTPx. Figure 21.1 shows the controlled and uncontrolled solution for
the initial condition x D �

0:2 � 1.�0:8;�0:6/.�i/
�n
iD1, where the true LQR control is

used to generate the figure.
We now construct the bases Wq and Vq for the different approaches q 2 fPOD,

PODadj, BT, Riccg introduced in Sect. 21.3. In order to obtain the basis for the
POD approach, we simulate the full system with a prescribed control function
u.t/ D sin.t/ for t 2 Œ0; 2�� and compute the POD method as explained in
Sect. 21.3. Since WPOD is an orthonormal matrix, we simply set the biorthogonal
counterpart as VPOD :D WPOD. The basis WPOD,adj for the adjoint system is calculated
with the same control input and discretization parameters, but solving Eq. (21.11).
The basis matrices for balanced truncation are denoted as WBT and VBT and are
calculated in the usual way as explained in Sect. 21.3. Finally, the Riccati basis is
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Fig. 21.1 Initial state,
uncontrolled and controlled
state of the linear example at
time t D 0:3
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Fig. 21.2 Dominant basis
vectors for all approaches
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built by taking the first ` left singular vectors of the SVD of P 2 R
n�n, where P

solves the ARE (21.8).
We now calculate the reduced value functions for the different approaches, which

we will denote as Ov`q with q as above. For that purpose, we discretize the reduced
domain (21.15) by dividing each dimension in 29 equidistant intervals. We then
apply a value iteration scheme to calculate the solution of the HJB equations.
For details, we refer to Sect. 21.2 and the references given there. The goal in this
linear example is to reproduce the true LQR control and value function by the HJB
approach. The set of admissible controls is thus chosen as a discrete grid on the
interval Œ�2; 2� with 301 grid points. This set of controls is sufficiently large, to
capture the control values for all possible vectors x 2 � with a D 0:2, see Remark 2.
The fine resolution in the control space allows a good comparison of the HJB control
to the true LQR control.

As a first qualitative comparison, we plot the dominant basis vectors of all
different approaches in Fig. 21.2. It can be seen that the basis vectors carry very
different information. Especially the basis vector for the Riccati approach does
not reflect the input region of the model very well, but it provides details about
the region of measurement ˝C. Still, by its construction we expect accurate
approximations of the value function.
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Fig. 21.3 Results for the approximation of the value function (left) for ` D 3. True (LQR) control
and approximated controls (right) for a given initial state x D 0:2.BC CT/

Table 21.1 Mean
approximation error of the
value function for the
different approaches

`D 1 ` D 2 ` D 3 ` D 4

POD 0:6426 0:5634 0:3297 0:3752

PODadj 0:8144 0:4008 0:1036 0:0959

BT 0:9971 0:8271 0:7387 0:5848

Ricc 0:5472 0:1363 0:0711 0:0566

Another interesting insight is given, when we compare the values of the
approximated value functions Ov`;q.�/ at the points xi :D 0:2ei, where ei is the i-th
unit vector in R

n. The results are depicted in Fig. 21.3 for ` D 3. We see that the
different bases deliver different results: the Riccati and adjoint approach capture the
original behavior of the value function. We note that if we increase the dimension of
the surrogate, the results improve for all approaches. In Fig. 21.3 we also show the
resulting optimal control, and again we can see how the Riccati and adjoint approach
are able to recover the true control signal.

A more quantitative comparison is given in Table 21.1: We calculate the values
of the true value function and the reduced value functions for all approaches
for 50 random test vectors from the set �. We next calculate the relative error
between the approximation and the true LQR value function and list the mean
approximation error in Table 21.1. In this example, the POD-basis does not yield
accurate approximations to the true value function. Balanced truncation requires
even more basis functions to capture the relevant information for the value function.
This can be seen for instance by comparing the approximation error for ` D 4 in
the BT case to the error for ` D 2 in the POD case: The BT approach requires more
basis vectors to reach the same mean error. Only the adjoint approach and the basis
WRicc yield very accurate results.
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21.4.2 Viscous Burgers Equation

Let us now study a more complex dynamical system, where no analytical value
function can be derived. We choose the 1D viscous Burgers equation on the domain
˝ :D .�1; 1/ with homogeneous Dirichlet boundary conditions. The continuous
equations now read as follows:

@tw.�; t/ � 0:2@��w.�; t/C 5w@�w.�; t/ D 1˝B.�/u.�/; � 2 ˝; t � 0

w.�; t/ D 0; � 2 f�1; 1g; t � 0;

w.�; 0/ D w0.�/; � 2 ˝:

The output of interest in this case is defined as the integral of the state over the
whole domain: z.t/ :D R

˝
w.�; t/d� for t � 0. The control acts on the subdomain

˝B :D Œ�0:7;�0:5�. The semi-discretization is again performed by using finite
differences with the same setting as in the linear example. The discretized system
has now dimension n D 61 and all computations are again performed by using an
explicit Euler scheme. The discretized PDE and the discretized output then have the
form (21.1) with

f . y.t/; u.t// D Ay.t/C Bu.t/C Qf . y.t//; y.0/ D x; z.t/ D Cy.t/;

where Qf . y/ models the discretized nonlinear transport term.
We introduce an infinite-horizon optimal control problem, similar to the LQR

case, by defining the cost functional for the discretized equations as

Jx.u.�// :D
Z 1
0

.100z.t/2 C 0:1u.t/2/e��tdt

with the discount factor � D 1. Figure 21.4 shows the uncontrolled state and
controlled solution. We note that the stabilization of the Burgers equation via LQR
problem has been studied in [8]. The control in the latter case has been computed
after a linearization of the dynamics around the set point y D 0 in order to
solve the ARE equation. The continuous initial condition is w0.�/ D 0:2.1 � �2/.
The corresponding output and control function is depicted in Fig. 21.5. We can
observe that the Riccati based approach is able to recover the LQR control. We
recall that in the HJB setting the control space is discretized and it is not continuous
as in the LQR setting.

We build the different bases for this example with the same setting as in the
linear example before, only the time-steps for the HJB scheme have been adjusted
and the controls are chosen as 41 equidistant points from Œ�5; 5� in order to allow
the necessary higher control values. Note that we do not aim at a direct comparison
to the LQR control, we do not need to discretize the control set as fine as in the
first example. For the BT and the Riccati approach, we linearize the system around
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Fig. 21.4 Uncontrolled (top)
and LQR-controlled (bottom)
state example of the Burgers
equation
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y D 0 and obtain a heat equation for which the BT basis and the ARE solution are
calculated. Then, the calculation of the value function is performed for the nonlinear
reduced equation, where the discretization is performed in the same manner as in
the linear example.

In this example we do not have a closed-loop form of the value function and thus
we need a different way to compare the results. For this purpose, we approximate the
value of the cost functional numerically by performing a highly-resolved simulation,
followed by a quadrature using the trapezoidal rule. We simulate the closed-loop
systems until T D 5, which suffices to neglect the increment in the cost functional
on t 2 .5;1/.



346 A. Alla et al.

Table 21.2 Cost functional values for different initial vectors

x0;1 x0;2
`D 1 `D 2 `D 3 ` D 4 ` D 1 ` D 2 ` D 3 `D 4

Ricc 0:2962 0:2958 0:2955 0:2956 0:3789 0:3786 0:3786 0:3785

POD 0:3926 0:3171 0:3112 0:3006 0:4197 0:3817 0:3802 0:3790

BT 0:2981 0:3169 0:3297 0:3260 0:3785 0:3987 0:4115 0:4080

PODadj 0:2960 0:2958 0:2955 0:2953 0:3786 0:3786 0:3786 0:3786

LQR 0:2959 0:2959 0:2959 0:2959 0:3786 0:3786 0:3786 0:3786

To compare the methods we show in Table 21.2 the evaluation of the cost
functional for different initial conditions x0;1 D 0:2B and x0;2 D 0:2.1 � �/2

and model reduction methods. It is hard to compare the method since we do not
know the full solution, however it turns out that the Riccati and POD adjoint
approach have the minimum values and are the closest to the full dimensional
Riccati linearized control.

21.5 Conclusion

In this paper we propose a comparison of different model order reduction techniques
for dynamic programming equations. Numerical experiments show that the POD
adjoint and the Riccati based approach provide very accurate approximation for the
control problem with quadratic cost functional. This is what one can expect since
both methods contain information about the optimization problem, unlike BT and
POD when the snapshots are generated with a random initial input. Moreover, the
Riccati based approach can be generalized to nonlinear dynamics. Here we propose
to linearize the system around one point of interests. In the future we would like to
investigate a greedy strategy to select more points. A parametric scenario will also
be considered in a future work as proposed in [20] for linear dynamical systems.
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Chapter 22
Interpolatory Methods forH1 Model
Reduction of Multi-Input/Multi-Output Systems

Alessandro Castagnotto, Christopher Beattie, and Serkan Gugercin

Abstract We develop here a computationally effective approach for producing
high-quality H1-approximations to large scale linear dynamical systems having
multiple inputs and multiple outputs (MIMO). We extend an approach for H1
model reduction introduced by Flagg et al. (Syst Control Lett 62(7):567–574,
2013) for the single-input/single-output (SISO) setting, which combined ideas
originating in interpolatory H2-optimal model reduction with complex Chebyshev
approximation. Retaining this framework, our approach to the MIMO problem
has its principal computational cost dominated by (sparse) linear solves, and so
it can remain an effective strategy in many large-scale settings. We are able
to avoid computationally demanding H1 norm calculations that are normally
required to monitor progress within each optimization cycle through the use of
“data-driven” rational approximations that are built upon previously computed
function samples. Numerical examples are included that illustrate our approach. We
produce high fidelity reduced models having consistently better H1 performance
than models produced via balanced truncation; these models often are as good
as (and occasionally better than) models produced using optimal Hankel norm
approximation as well. In all cases considered, the method described here produces
reduced models at far lower cost than is possible with either balanced truncation or
optimal Hankel norm approximation.

22.1 Introduction

The accurate modeling of dynamical systems often requires that a large number of
differential equations describing the evolution of a large number of state variables be
integrated over time to predict system behavior. The number of state variables and
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differential equations involved can be especially large and forbidding when these
models arise, say, from a modified nodal analysis of integrated electronic circuits,
or more broadly, from a spatial discretization of partial differential equations over
a fine grid. Most dynamical systems arising in practice can be represented at least
locally around an operating point, with a state-space representation having the form

E Px D A x C B u;

y D C x C Du;
(22.1)

where E 2 R
N �N is the descriptor matrix, A 2 R

N�N is the system matrix and
x 2 R

N , u 2 R
m, and y 2 R

p (p;m � N) represent the state, input, and output
of the system, respectively. A static feed-through relation from the control input u
to the control output y is modeled through the matrix D 2 R

p�m. Most practical
systems involve several actuators (input variables) and several quantities of interest
(output variables), motivating our focus here on systems having multiple inputs and
multiple outputs (MIMO).

In many application settings, the state dimension N (which typically matches the
order of the model) can grow quite large as greater model fidelity is pursued, and
in some cases it can reach magnitudes of 106 and more. Simulation, optimization,
and control design based on such large-scale models becomes computationally very
expensive, at times even intractable. This motivates consideration of reduced order
models (ROMs), which are comparatively low-order models that in spite of having
significantly smaller order, n � N, are designed so as to reproduce the input-
output response of the full-order model (FOM) accurately while preserving certain
fundamental structural properties, that may include stability and passivity. For state
space models such as (22.1), reduced models are obtained generally through Petrov-
Galerkin projections having the form:

Er‚ …„ ƒ
W>E V Pxr D

Ar‚ …„ ƒ
W>AV xr C

Br‚…„ƒ
W>B u;

yr D CV„ƒ‚…
Cr

xr C Dr u:
(22.2)

The projection matrices V;W 2 R
N �n become the primary objects of scrutiny in

the model reduction enterprise, since how they are chosen has a great impact on the
quality of the ROM. For truly large-scale systems, interpolatory model reduction,
which includes approaches known variously as moment matching methods and
Krylov subspace methods, has drawn significant interest due to its flexibility
and comparatively low computational cost [1–3]. Indeed, these methods typically
require only the solution of large (generally sparse) linear systems of equations, for
which several optimized methods are available. Through the appropriate selection
of V and W, it is possible to match the action of the transfer function

G.s/ D C .sE � A/�1 B C D (22.3)
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along arbitrarily selected input and output tangent directions at arbitrarily selected
(driving) frequencies. The capacity to do this is central to our approach and is stated
briefly here as:

Theorem 1 ([4, 5]) Let G.s/ be the transfer function matrix (22.3) of the
FOM (22.1) and let Gr.s/ be the transfer function matrix of an associated ROM
obtained through Petrov-Galerkin projection as in (22.2). Suppose �; � 2 C are
complex scalars (“shifts”) that do not coincide with any eigenvalues of the matrix
pencil .E;A/ but otherwise are arbitrary. Let also r 2 C

m and l 2 C
p be arbitrary

nontrivial tangent directions. Then

G.�/ � r D Gr.�/ � r if .A � �E/�1 Br 2 Ran.V/; (22.4a)

l> � G.�/ D l> � Gr.�/ if .A � �E/�> C>l 2 Ran.W/; (22.4b)

l> � G0.�/ � r D l> � G0r.�/ � r if, additionally, � D �: (22.4c)

A set of complex shifts, f�igniD1, f�igniD1, with corresponding tangent directions,
frigniD1, fligniD1, will be collectively referred to as interpolation data in our present
context. We define primitive projection matrices as

eV :D 	
.A � �1E/

�1Br1; : : : ; .A � �nE/�1Brn



(22.5a)

eW :D 	
.A � �1E/

�>C>l1; : : : ; .A � �nE/
�>C>ln



(22.5b)

Note thateV and eW satisfy Sylvester equations having the form:

AeV � EeVS� D BeR and A>eW � E>eW S>� D C>eL; (22.6)

where S� D diag .�1; ::; �n/ 2 C
n�n, S� D diag .�1; ::; �n/ 2 C

n�n, eR D
Œr1; ::; rn� 2 C

m�n andeL D Œl1; : : : ; ln� 2 C
p�n [6]. In this way, the Petrov-Galerkin

projection of (22.2) is parameterized by interpolation data and the principal task
in defining interpolatory models then becomes the judicious choice of shifts and
tangent directions.

Procedures have been developed over the past decade for choosing interpolation
data that yield reduced models, Gr.s/, that minimize, at least locally the approxima-
tion error, G.s/ � Gr.s/, as measured with respect to the H2-norm:

kG � GrkH2
:D

s
1

2�

Z 1
�1

kG. j!/ � Gr. j!/k2F d! (22.7)

(see [1]). Minimizing the H2-error, kG � GrkH2
, is of interest through the immedi-

ate relationship this quantity bears with the induced system response error:

ky � yrkL1
� kG � GrkH2

ku.t/kL2
; (22.8)



352 A. Castagnotto et al.

A well-known approach to accomplish this that has become popular at least in part
due to its simplicity and effectiveness is the Iterative Rational Krylov Algorithm
(IRKA) [7], which, in effect, runs a simple fixed point iteration aimed at producing
interpolation data that satisfy first-order H2-optimality conditions, i.e.,

G.��i/ � Obi D Gr.��i/ � Obi; Oc>i � G.��i/ D Oc>i � Gr.��i/; (22.9a)

and Oc>i � G0.��i/ � Obi D Oc>i � G0r.��i/ � Obi: (22.9b)

for i D 1; : : : ; n. The data �i, Obi and Oci are reduced poles and right/left vector
residues corresponding to the pole-residue expansion of the ROM:

Gr.s/ D
nX

iD1

Oci Ob>i
s � �i : (22.10)

Despite the relative ease with which H2-optimal reduced models can be
obtained, there are several circumstances in which it might be preferable to obtain a
ROM which produces a small error as measured in the H1-norm:

kG � GrkH1

:D max
!

&max.G. j!/� Gr. j!//; (22.11)

where &max.M/ denotes the largest singular value of a matrix M (see [1]). ROMs
having small H1-error produce an output response with a uniformly bounded
“energy” error:

ky � yrkL2
� kG � GrkH1

kukL2
: (22.12)

The H1 norm is also used as a robustness measure for closed-loop control systems
and is therefore of central importance in robust control. It finds frequent use in
aerospace applications, among others, where the L2 energy of the system response
is of critical interest in design and optimization.

Strategies for producing reduced models that give good H1 performance has
long been an active area of research [8]. Analogous to the H1-control design
problem, the optimal H1 reduction problem can be formulated in terms of linear
matrix inequalities, although advantageous features such as linearity and convexity
are lost in this case [9, 10]. Due to the high cost related to solving these matrix
inequalities, this approach is generally not feasible in large-scale settings.

Another family of methods for the H1 reduction problem relates it to the
problem of finding an optimal Hankel norm approximation (OHNA) [11–13]. Along
these lines the balanced truncation (BT) algorithm yields rigorous upper bounds on
the H1 error and often produces small approximation error, especially for higher
reduced order approximants [1, 14]. Each of these procedures is generally feasible
only for mid-size problems since either an all-pass dilation requiring large-scale
eigenvalue decomposition (for OHNA) or the solution of generalized Lyapunov



22 Interpolatory H1 Model Reduction of MIMO Systems 353

equations (for BT) is required. Extensions to large-scale models are available,
however—e.g., in [15–20].

A wholly different approach to the H1 model reduction problem for SISO
models was proposed by Flagg, Beattie, and Gugercin in [21]. A locally H2-optimal
reduced model is taken as a starting point and adjusted through the variation of rank-
one modifications parameterized by the scalar feed-through term, D. Minimization
of the H1-error with respect to this parameterization available through D produces
ROMs that are observed to have generally very good H1-performance, often
exceeding what could be attained with OHNA.

In this work, we extend these earlier interpolatory methods to MIMO systems.
We introduce a strategy that reduces the computational expense of the intermediate
optimization steps by means of data-driven MOR methods (we use vector fitting [22,
23]). Stability of the reduced model is guaranteed through appropriate constraints in
the resulting multivariate optimization problem. Numerical examples show effective
reduction of approximation error, often outperforming both OHNA and BT.

22.2 MIMO Interpolatory H1-Approximation (MIHA)

In this section we first characterize the H1-optimal reduced order models from
the perspective of rational interpolation. This motivates the usage of H2-optimal
reduction as a starting point for the model reduction algorithm we propose for the
H1 approximation problem.

22.2.1 Characterization of H1-Approximants via Rational
Interpolation

In the SISO case, Trefethen [13] has characterized best H1 approximations within
a broader context of rational interpolation:

Theorem 2 (Trefethen [13]) Suppose G.s/ is a (scalar-valued) transfer function
associated with a SISO dynamical system as in (22.3). Let bGr.s/ be an optimalH1
approximation to G.s/ and let Gr be any nth order stable approximation to G.s/ that
interpolates G.s/ at 2n C 1 points in the open right half-plane. Then

min
!2R jG. j!/� Gr. j!/j � kG �bGrkH1

� kG � GrkH1

In particular, if jG. j!/�Gr. j!/j D const for all ! 2 R then Gr is itself an optimal
H1-approximation to G.s/.

For the SISO case, a goodH1 approximation will be obtained when the modulus
of the error, jG.s/ � Gr.s/j, is nearly constant as s D j! runs along the imaginary
axis. In the MIMO case, the analogous argument becomes more technically involved
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as the maximum singular value of matrix-valued function G.s/ � Gr.s/ will not
generally be analytic in the neighborhood of the imaginary axis (e.g., where multiple
singular values occur). Nonetheless, the intuition of the SISO case carries over to
the MIMO case, as the following Gedankenexperiment might suggest: Suppose thatbGr is an H1-optimal interpolatory approximation to G but &max.G. j!/ � Gr. j!//
is not constant with respect to ! 2 R. Then there exist frequencies O! and Q! 2 R

and 	 > 0 such that

kG �bGrkH1
D &max.G. j O!/�bGr. j O!// � 	 C min

!
&max.G. j!/ �bGr. j!//

D 	 C &max.G. j Q!/�bGr. j Q!//:

By nudging interpolation data away from the vicinity of Q! and toward O! while
simultaneously nudging the poles of bGr away from the vicinity of O! and toward Q!,
one may decrease the value of &max.G. j O!/�bGr. j O!// while increasing the value of
&max.G. j Q!/�bGr. j Q!//. This will (incrementally) decrease the H1 norm and bring
the values of &max.G. j O!/ � bGr. j O!// and &max.G. j Q!/ � bGr. j Q!// closer together
toward a common value.

Of course, the nudging process described above contains insufficient detail to
suggest an algorithm, and indeed, our approach to this problem follows a somewhat
different path, a path that nonetheless uses the guiding heuristic for (near) H1-
optimality:

&max.G. j!/�eGr. j!// 	 const for all ! 2 R: (22.13)

Approximations with good H1 performance should have an advantageous con-
figuration of poles and interpolation data that locates them symmetrically about
the imaginary axis, thus balancing regions where &max.G.s/ � eGr.s// is big (e.g.,
pole locations) symmetrically against regions reflected across the imaginary axis
where &max.G.s/�eGr.s// is small (e.g., interpolation locations). This configuration
of poles and interpolation data, we note, is precisely the outcome of optimal
H2 approximation as well, and this will provide us with an easily computable
approximation that is likely to have good H1 performance.

22.2.2 H1 Approximation with InterpolatoryH2-Optimal
Initialization

Local H2-optimal ROMs are often observed to give good H1 performance—
this is in addition to the expected good H2 performance. This H1 behaviour is
illustrated in Fig. 22.1, where the H1 approximation errors of local H2-optimal
ROMs produced by IRKA are compared to ROMs of the same order obtained
through BT for the CD player MIMO benchmark model [24].
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Fig. 22.1 Numerical investigations indicate that IRKA models are often good also in terms of the
H1-error

The frequently favourable H1 behaviour of IRKA models has particular
significance in this context, since they are computationally cheap to obtain even
in large-scale settings, indeed often they are much cheaper than comparable BT
computations. The resulting locally H2-optimal ROMs can be further improved
(with respect to H1 error) by relaxing the (implicit) interpolation constraint at
1 while preserving the H2-optimal interpolation conditions (which is the most
important link the H2-optimal ROM has with the original model).

Consider the partial fraction expansion

Gr.s/ D
NX
iD1

Oci Ob>i
s � �i

C Dr: (22.14)

For ease of exposition, we assume the poles, �i, to be simple, although the results
we develop here can be extended to the case of higher multiplicity. The input/output
behavior is determined by n scalar parameters �i, n pairs of input/output residuals
Obi; Oci and the p�m-dimensional feed-throughDr. Considering that a constant scaling
factor can be arbitrarily defined in the product of the residuals, this leaves us a total
of n . p C m/ C p � m parameters, n . p C m/ of which can be described in terms
of two-sided tangential interpolation conditions (22.4). This interpolation data is
established for the original H2-optimal ROM and we wish it to remain invariant
over subsequent adjustments, so the only remaining degrees-of-freedom are the p �m
entries in the feed-through matrix Dr.

In the typical context of H2-optimal model reduction, Dr is chosen to match
the feed-through term D of the original model, thus guaranteeing that the error
G�eGr remains in H2. Note that D remains untouched by the state-space projections
in (22.2), moreover since typically p;m � N, the feed-through term need not
be involved in the reduction process and may be retained from the FOM. Indeed,
retaining the original feed-through term is a necessary condition for H2 optimality,
forcing interpolation at s D 1 and as a consequence, small error at higher
frequencies. Contrasting significantly with H2-based model reduction, good H1
performance does not require Dr D D, and in this work we exploit this flexibility
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in a crucial way. A key observation playing a significant role in what follows was
made in [25, 26] that the feed-through term Dr induces a parametrization of all
reduced order models satisfying the two-sided tangential interpolation conditions.
This result is summarized by following theorem taken from [25, Theorem 4.1] and
[26, Theorem 3]

Theorem 3 LeteR,eL be defined through the Sylvester equations in (22.6). Assume,
without loss of generality, that the full order model satisfies D D 0 and let the
nominal reduced model G0r .s/ D Cr .sEr � Ar/

�1 Br be obtained through Petrov-
Galerkin projection using the primitive projection matrices (22.5). Then, for any
Dr 2 C

p�m, the perturbed reduced order model

eGD
r .s;Dr/ D �eCr C DreR� 	seEr � �eAr CeL>DreR�
�1 �eBr CeL>Dr

�C Dr

(22.15)

also satisfies the tangential interpolation conditions (22.4).
Note that for D ¤ 0, the results of Theorem 3 can be trivially extended by adding
D to the right-hand side in (22.15). Even though for theoretical consideration the
use of primitive Krylov bases eV; eW introduced in (22.5) is often convenient, from a
numerical standpoint there are several reason why one may choose a different basis
for the projection matrices. This next result shows that the interpolation conditions
are preserved also for arbitrary bases—in particular also real and orthonormal
bases—provided that the shifting matrices R and L are appropriately chosen.

Corollary 1 Let Tv;Tw 2 C
n�n be invertible matrices used to transform the

primitive baseseV; eW of the Krylov subspace to new bases V D eVTv and W D eWTw.
Let the same transformation be applied to the matrices of tangential directions,
resulting in R DeRTv and L DeLTw. Then, for any Dr, the ROM GD

r is given by

GD
r .s;Dr/ D .Cr C DrR/„ ƒ‚ …

CD
r

2
64sEr � �

Ar C L>DrR
�

„ ƒ‚ …
AD
r

3
75
�1
�
Br C L>Dr

�
„ ƒ‚ …

BD
r

CDr

(22.16)

Proof The proof amounts to showing that the transfer function matrix GD
r of the

ROM is invariant to a change of basis fromeV and eW as long aseR andeL are adapted
accordingly.

GD
r � Dr D CD

r

�
sE � AD

r

�
�1

BD
r

D .CV C DrR/
h
sW>EV � W>AV � L>DrR

>

i
�1 �

W>B C L>Dr

�

D �
CeV C DreR� Tv

h
T>

w

�
seW>EeV � eW>AeV �eL>DreR>

�
Tv
i

�1

T>

w

�eW>B CeL>Dr

�

D �
CeV C DreR�

h
seW>EeV � eW>AeV �eL>DreR>

i
�1 �eW>B CeL>Dr

�

DeGD
r � Dr :



22 Interpolatory H1 Model Reduction of MIMO Systems 357

The results of Theorem 3 generalize to the case of arbitrary bases. Following
the notation from [25, Definition 2.1], the state-space models resulting from
Petrov-Galerkin projections with V;W and eV; eW respectively are restricted system
equivalent. As a consequence, they share the same transfer function matrix.

Using the Sherman-Morrison-Woodbury formula [27] for the inverse of rank k
perturbations of a matrix, we are able to decompose the transfer function of the
shifted reduced model into the original reduced model and an additional term.

Corollary 2 Define the auxiliary variableKr :D sEr �Ar. The transfer function of
the shifted reduced model GD

r can be given as

GD
r .s/ D G0r .s/C�GD

r .s;Dr/; (22.17)

where G0r is the transfer function of the unperturbed model and �G
D
r is defined as

�GD
r D �1C�2 C�3 � .�4/

�1 ��2 C Dr

given

�1 :D CrK �1
r L>Dr

�3 :D .Cr C DrR/K �1
r L>

�2 :D DrRK �1
r

�
Br C L>Dr

�
�4 :D I � DrRK �1

r L>

(22.18)

Proof Note that by the Sherman-Morrison-Woodbury formula, following equality
holds:

�
Kr � L>DrR

��1 D K �1
r C K �1

r L>
�
I � DrRK

�1
r L>

��1
DrRK

�1
r : (22.19)

Using this relation in the definition of GD
r , the proof is completed by straightforward

algebraic manipulations.
We proceed by attempting to exploit the additional degrees-of-freedom available

inDr to trade off excessive accuracy at high frequencies for improved approximation
in lower frequency ranges, as measured with the H1-norm. We first obtain
an H2-optimal ROM by means of IRKA and subsequently minimize the H1-
error norm with respect to the constant feed-through matrix Dr while preserving
tangential interpolation and guaranteeing stability. The resulting ROM G
r will
represent a local optimum out of the set of all stable ROMs satisfying the tangential
interpolation conditions. The outline of our proposed reduction procedure, called
MIMO interpolatoryH1-approximation (MIHA), is given in Algorithm 1.

Numerical results in Sect. 22.3 will show the effectiveness of this procedure in
further reducing the H1-error for a given IRKA model. However, at this stage the
optimization in Step 2 appears problematic, for it requires both the computation of
the H1-norm of a large-scale model and a constrained multivariate optimization
of a non-convex, non-smooth function. It turns out that both of these issues can be
resolved effectively, as it will be discussed in the following sections.
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Algorithm 1 MIMO interpolatory H1-approximation (MIHA)
Input: G.s/, n
Output: Stable, locally optimal reduced order model G�

r , approximation error e�

H1

1: G0r  IRKA.G.s/; n/
2: D�

r  arg minDr

��G.s/� GD
r .s;Dr/

��
H1

s.t. GD
r .s;D

�

r / is stable

3: G�

r  GD
r .s;D

�

r /

4: e�

H1

 ��G.s/� G�

r .s/
��
H1

22.2.3 Efficient Implementation

As we have noted, the main computational burden of the algorithm described above
resides mainly in Step 2. We are able to lighten this burden somewhat through
judicious use of (22.17) and by taking advantage of previously computed transfer
function evaluations.

22.2.3.1 A “Free” Surrogate Model for the Approximation Error G � G0r

Step 1 of Algorithm 1 requires performing H2-optimal reduction using IRKA.
This is a fixed point iteration involving a number of steps k before convergence
is achieved. At every step j, Hermite tangential interpolation about some complex
frequencies f�igniD1 and tangential directions frigniD1, fligniD1 is performed. For this
purpose, the projection matrices in (22.5) are computed, and it is easy to see that for
all i D 1; : : : ; n it holds

C �eVei D C .A � �iE/
�1 Bri D G.�i/ri (22.20a)

e>i eW> � B D l>i C .A � �iE/�1 B D l>i G.�i/ (22.20b)

e>i eW>EeVei D l>i .A � �iE/
�1 E .A � �iE/�1 ri D l>i G0.�i/ri (22.20c)

Observe that, at basically no additional cost, we can gather information about
the FOM while performing IRKA. Figure 22.2a illustrates this point by showing
the development of the shifts during the IRKA iterations reducing the CDplayer
benchmark model to a reduced order n D 10. For all complex frequencies indicated
by a marker, tangent data for the full order model is collected.

To use this “free” data, there are various choices for “data-driven” procedures that
produce useful rational approximations. Loewner methods [25, 28–30] are effective
and are already integrated into IRKA iteration strategies [31]. We adopt here a vector
fitting strategy [22, 23, 32–34] instead. This allows us to produce stable low-order
approximations of the reduction error after IRKA

fG0e 	 G0e :D G � G0r : (22.21)
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Fig. 22.2 Data collecting during IRKA can be used to generate data-driven surrogates. (a) Points
at which data of the FOM is collected during IRKA. (b) Decay of singular values of the matrix
ŒL; �L� for the data collected during IRKA

An appropriate choice of order for the surrogate model can be obtained by forming
the Loewner L and shifted Loewner �L matrices from G and G0 evaluations that
were generated in the course of the IRKA iteration and then observing the singular
value decay of the matrix ŒL; �L�, as indicated in Fig. 22.2b.

Using the decomposition in (22.17), the H1-norm evaluations required during
the optimization will be feasible even for large-scale full order models. In addition,
it will allow us to obtain a cheap estimate QeH1

for the approximation error

eH1
:D ��G � GD

r

��
H1

	
���fG0e ��GD

r

���
H1

D QeH1
(22.22)

22.2.3.2 Constrained Multivariate Optimization with Respect to Dr

The focus of this work lies in the development of new model reduction strategies.
Our intent is not directed toward making a contribution to either the theory
or practice of numerical optimization and we are content in this work to use
standard optimization approaches. In the results of Sect. 22.3, we rely on state-of-
the-art algorithms that are widespread and available, e.g., in MATLAB. With that
caveat understood, we do note that the constrained multivariate optimization over
the reduced feed-through, Dr, is a challenging optimization problem, so we will
explain briefly the setting that seems to work best in our case. The computation
and optimization of H1-norms for large-scale models remains an active area of
research, as demonstrated by Mitchell and Overton [35, 36] and Aliyev et al. [37].

The problem we need to solve in step 2 of Algorithm 1 is

min
Dr2Rp�m

max
!
&max

�
G. j!/ � GD

r . j!;Dr/
�

s:t: GD
r .s;Dr/ is stable

(22.23)
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Fig. 22.3 Comparison of different solvers shows the effectiveness of coordinate descent followed
by multivariate optimization

which represents a non-smooth, non-convex multivariate optimization problem in
a p�m-dimensional search space. In our experience, the best strategy considering
both optimization time and optimal solution is given by a combination of coordinate
descent (CD) [38] and subsequent multivariate optimization (MV). We refer to
this combined strategy as CD+MV. The coordinate descent strategy is used in this
setting somewhat like an initialization procedure to find a better starting point than
D0r D 0. This initialization is based on reducing the search space from p � m
dimensions to just one, hence performing a much simpler univariate optimization in
each step. Once one cycle has been conducted for all elements in the feed-through
matrix, the resulting feed-through is used to initialize a nonlinear constrained
optimization solver that minimizes the error with respect to the whole Dr matrix.
We have used a sequential quadratic programming (SQP) method as implemented
in MATLAB’s fmincon, although acceptable options for this final step abound.
Further information about optimization strategies can be found in [39].

The suitability of CD+MV is motivated by extensive simulations conducted
comparing different strategies, such as direct multivariate optimization, global
search (GS) [40], and genetic algorithms (GA) (cp. Fig. 22.3). Ultimately, we rely
on the results of Sect. 22.3 to show that this procedure is effective.

22.3 Numerical Results

In the following we demonstrate the effectiveness of the proposed procedure by
showing reduction results with different MIMO models. The reduction code is based
on the sssMOR toolbox1 [41]. For generation of vector fitting surrogates, we use the
vectfit3 function2 [22, 32, 33]. Note that more recent implementation of MIMO

1Available at www.rt.mw.tum.de/?sssMOR.
2Available at www.sintef.no/projectweb/vectfit/downloads/vfut3/.

www.rt.mw.tum.de/?sssMOR
www.sintef.no/projectweb/vectfit/downloads/vfut3/
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vector fitting introduced in [23] could be used instead, especially for improved
robustness.

22.3.1 Heat Model

Our proposed procedure is demonstrated through numerical examples conducted
on a MIMO benchmark model representing a discretized heat equation of order
N D 197 with p D 2 outputs and m D 2 inputs [42].

Model reduction for this model was conducted for a range of reduced orders; the
results are summarized in Table 22.1. The table shows the reduced order n, the order
nm of the error surrogate fG0e , and the relative H1 error of the proposed ROM GD

r ,
as well as the percentage improvement over the initial IRKA model. Our proposed
method improves significantly on the H1 performance of IRKA, in some cases by
more than 50%.

Figure 22.4 gives a graphical representation of the reduction results. The plots
compare the approximation error achieved after applying MIHA, with a vector
fitting surrogate as described in Sect. 22.2.3.1, to other reduction strategies. These
include the direct reduction with IRKA, balanced truncation (BT), Optimal Hankel
Norm Approximation (OHNA) as well as the optimization with respect to the actual
error G0e (MIHA without surrogate). For a better graphical comparison throughout
the reduced orders studied, the errors are related to the theoretical lower bound given
by

eH1

:D &HnC1; (22.24)

Table 22.1 Results for the heat model problem

n 1 2 3 4 5 6 7 8 9 10

nm 14 24 20 22 24 30 32 36 36 36
kG�GD

r k
kGk

8.7e-2 7.6e-3 1.2e-2 1.2e-3 6.5e-4 5.7e-4 4.1e-4 1.6e-4 4.4e-5 8.6e-6

1� kG�GD
r kkG�G0rk 50.8% 39.0% 27.0% 36.7% 36.0% 44.8% 52.0% 44.6% 49.5% 42.6%
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reduced order

‖G
−G

r‖

MIHA (VF surr.)
MIHA (no surr.)
IRKA
OHNA
BT

Fig. 22.4 Plot of the approximation error relative to the theoretical error bound
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Fig. 22.5 Optimization with the surrogate effectively reduces and provides an accurate estimate
of the true error. (a) Singular value plot of the error before and after optimization. (b) Comparison
of error estimate QeH1

versus true error eH1

with which we denote the Hankel singular value of order n C 1.
Notice how effectively the ROMs resulting from the Dr-optimization reduce the

H1-error beyond what is produced by the IRKA ROMs and that they often, (here,
in 9 out of 10 cases) yield better results than BT and sometimes (here, in 3 out of
10 cases) yield better results even than OHNA. Note also that the optimization with
respect to the vector-fitting surrogate produces as good a result as optimization with
respect to the true error. For reduced order n D 8, optimization with respect to the
surrogate yields even a better result. This is not expected and may be due to the
different cost functions involved, causing optimization of the true error to converge
to a worse solution.

The plot also confirms our initial motivation in using IRKA models as starting
points, since their approximation in terms of the H1 norm is often not far from BT.
Finally, note how in several cases the resulting ROM is very close to the theoretical
lower bound, which implies that the respective ROMs are not far from being the
global optimum.

Figure 22.5a shows the approximation error before and after the feed-through
optimization for a selected reduced order of 2. The largest singular value is
drastically reduced (ca. 40%) by lifting up the value at high frequencies. This
confirms our intuition that the H1-optimal reduced order model should have a
nearly constant error modulus over all frequencies. Finally, Fig. 22.5b demonstrates
the validity of the error estimate QeH1

obtained using the surrogate model.

22.3.2 ISS Model

Similar simulations were conducted on a MIMO model with m D 3 inputs and
p D 3 outputs of order N D 270, representing the 1r component of the International
Space Station (ISS) [24]. The results are summarized in Table 22.2 and Fig. 22.6.
Note that the H1-error after IRKA is comparable to that of BT and the proposed
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Table 22.2 Results for the ISS problem

n 2 4 6 8 10 12 14 16 18 20

nm 12 18 12 18 18 15 42 48 30 30
kG�GD

r k
kGk

2.7e-1 9.4e-2 8.4e-2 7.9e-2 3.6e-2 3.4e-2 2.2e-2 2.2e-2 1.0e-2 7.7e-3

1� kG�GD
r kkG�G0rk 7.5% 9.9% 8.8% 4.9% 9.5% 13.8% 23.3% 15.7% 3.5% 25.8%
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Fig. 22.6 Plot of the approximation error relative to the theoretical error bound (ISS)
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Fig. 22.7 Singular value plot of the error before and after optimization (ISS)

procedure is effective in further reducing the error, outperforming BT in all cases
investigated.

Finally, note also in this case that the modulus of the error due to this H1-
approximation procedure is nearly constant, as anticipated. This is demonstrated in
Fig. 22.7, where the error plots for the reduction order n D 10 are compared.
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Chapter 23
Model Reduction of Linear Time-Varying
Systems with Applications for Moving Loads

M. Cruz Varona and B. Lohmann

Abstract In this paper we consider different model reduction techniques for
systems with moving loads. Due to the time-dependency of the input and output
matrices, the application of time-varying projection matrices for the reduction offers
new degrees of freedom, which also come along with some challenges. This paper
deals with both, simple methods for the reduction of particular linear time-varying
systems, as well as with a more advanced technique considering the emerging time
derivatives.

23.1 Introduction

The detailed modeling of physical and technical phenomena arising in many
engineering and computer science applications may yield models of very large
dimension. This is particular the case in fields such as thermo-fluid dynamics, struc-
tural mechanics or integrated circuit design, where the models are mostly obtained
from a spatial discretization of the underlying partial differential equations. The
resulting large systems of ordinary differential equations or differential-algebraic
equations are computationally expensive to simulate and handle. In order to reduce
the computational effort, model reduction techniques that generate reduced-order
models that approximate the dynamic behaviour and preserve the relevant properties
of the original model are required. For the reduction of linear time-invariant (LTI)
systems, various well-established reduction approaches exist (see e.g. [2]). In the
past 10 years, further model reduction methods have been developed for linear,
parametric and nonlinear systems [19, 6, 17, 5] and applied in a wide variety of
domains.

In this contribution, we investigate model order reduction of linear time-varying
(LTV) systems. Such systems arise in many real-life applications, since dynamical
systems often depend on parameters which vary over time or might alter their
behaviour due to ageing, degradation, environmental changes and time-dependent
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operating conditions. Another possible application for LTV systems are moving
loads. This particular but still very frequent problem arises, for example, in working
gears, cableways, bridges with moving vehicles or milling processes. Since the
position of the acting force varies over time, systems with sliding components
exhibit a time-variant behaviour. The varying load location can be modeled and
considered in different ways, thus yielding diverse alternative representations for
systems with moving loads and, according to this, leading to different approaches
to reduce them.

One possibility is to represent moving loads as LTV systems, in which only the
input and/or output matrices B.t/ and C.t/ are time-dependent. Such systems can be
then reduced using balanced truncation model reduction methods developed in [20,
18]. These approaches, however, require a high computational and storage effort,
since two differential Lyapunov equations must be solved. Recently, a practical and
efficient procedure of balanced truncation for LTV systems has been presented in
[14]. Note that these aforementioned balanced truncation techniques can be applied
to general LTV systems, where all system matrices are time-dependent. For the
reduction of systems with only time-varying input and output matrices the two-
step approach proposed in [3, 21] can also be pursued. This method consists first
on a low-rank approximation of the time-dependent input matrix and consequently
on applying standard model reduction techniques to the resulting LTI system with
a modified input. The approximation of the input matrix in a low-dimensional
subspace is performed via the solution of a linear least squares minimization
problem.

Systems with moving loads can further be modeled by means of linear switched
systems. Well-known reduction methods such as balanced truncation can then be
applied for the reduction of each LTI subsystem [13].

A last alternative option for describing systems with moving loads is to consider
the load position as a time-dependent parameter of the system model. This results in
a linear parameter-varying (LPV) system, in which only the input and/or output
matrices depend on a time-varying parameter. In many recent publications, e.g.
[3, 10, 11, 13], the parameter is assumed to be time-independent. Thereby any
parametric model order reduction (pMOR) approach [1, 4, 6, 16] can be applied
to the resulting parametric LTI system. In some other recent publications [7–9, 22],
however, the time variation of the parameter is taken into account, whereby new
time derivative terms emerge during the time-dependent parametric model reduction
process.

In this paper different time-varying model reduction techniques for systems with
moving loads are presented and discussed. Firstly, LTV systems are considered
and the time-dependent projective reduction framework is briefly explained in
Sect. 23.2. Since moving loads represent particular LTV systems with only time-
dependent input and/or output matrices, we then introduce simple and straight-
forward reduction approaches for the resulting special cases in Sect. 23.3. These
straightforward methods shift the time-dependency or make use of the special struc-
ture of the considered problem to compute time-independent projection matrices,
and thus avoid the emerging time derivative. These approaches are simple and can be
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used as a basis for comparison with more complex existing techniques that consider
the time variability using time-dependent projection matrices (such as e.g. LTV-
balanced truncation). In the second part of the paper, we focus on LPV systems
and present an advanced time-dependent parametric model reduction approach by
matrix interpolation [7, 8] in Sect. 23.4, which makes use of parameter-varying
projection matrices V. p.t// and W. p.t//, and takes the emerging time derivatives
into account. Some numerical results for the reduction of systems with moving loads
applying the proposed methods are reported, compared and discussed in Sect. 23.5.
Finally, the conclusions of the contribution and an outlook are given in Sect. 23.6.

23.2 Linear Time-Varying Model Order Reduction

In the following we first consider a high-dimensional linear time-varying system of
the form

E.t/ Px.t/ D A.t/ x.t/C B.t/ u.t/;

y.t/ D C.t/ x.t/;
(23.1)

where E.t/, A.t/ 2 R
n�n, B.t/ 2 R

n�m and C.t/ 2 R
q�n are the time-dependent

system matrices, x.t/ 2 R
n is the state vector and u.t/ 2 R

m, y.t/ 2 R
q represent the

inputs and outputs of the system, respectively. The system matrix E.t/ is assumed to
be nonsingular for all t 2 Œ0;T�. Note that it is also possible to consider second-order
systems and reformulate them into the first-order form (23.1).

23.2.1 Time-Dependent Projective Reduction Framework

In projective model order reduction, we aim to find a reduced-order model by
approximating the state vector x.t/ on a subspace of lower dimension r � n. In the
time-varying case, the state vector x.t/ might be projected onto a varying subspace
spanned by the columns of a time-dependent projection matrix V.t/ 2 R

n�r [20, 22].
Therefore, the approximation equations read

x.t/ 	 V.t/ xr.t/;

Px.t/ 	 PV.t/ xr.t/C V.t/ Pxr.t/;
(23.2)

whereby the product rule must be considered in this case for the time derivative
of the state vector. Plugging first these both equations into (23.1), and applying
thereon a properly chosen time-dependent projection matrix W.t/ which enforces
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the Petrov-Galerkin condition leads to the time-varying reduced-order model

Er.t/‚ …„ ƒ
W.t/TE.t/V.t/ Pxr.t/ D

0
B@

Ar.t/‚ …„ ƒ
W.t/TA.t/V.t/�W.t/TE.t/ PV.t/

1
CA xr.t/C

Br.t/‚ …„ ƒ
W.t/TB.t/ u.t/;

yr.t/ D C.t/V.t/„ ƒ‚ …
Cr.t/

xr.t/:

(23.3)

It is noteworthy to mention that the system matrix of the reduced-order model (23.3)
not only comprises the reduced matrix Ar.t/, but also includes a further term which
depends on the time derivative PV.t/ of the time-varying projection matrix. This
additional term influences the dynamic behaviour of the reduced-order model and
should therefore be taken into account.

The usage of time-dependent projection matrices (rather than time-independent
bases) for the reduction of LTV systems certainly opens up new degrees of
freedom, since the bases are time-dependent and not constant anymore. In other
words, the time-varying dynamics of the LTV model are not projected onto a
constant subspace, but rather onto a varying subspace. The reduced basis V.t/—and
consequently also the subspace—adapts itself during time, provides a more accurate
consideration of the arising time variability than a constant basis V and should
therefore (at least theoretically) offer benefits regarding the approximation quality.
For the computation of time-dependent projection matrices, however, standard
reduction methods such as balanced truncation cannot be directly applied, but must
be adapted instead. Furthermore, the time derivative of V.t/ should be approximated
numerically (thus increasing the computational effort) and included in the time
integration scheme of the reduced-order model [14].

23.3 Straightforward Reduction Approaches for Particular
Linear Time-Varying Systems

In the previous section we have seen that the application of time-dependent projec-
tion matrices for the reduction of LTV systems comes along with some difficulties
and challenges. For the reduction of particular LTV systems, in which only the input
and/or output matrices depend on time, the usage of time-independent projection
matrices V and W might be sufficient. In this section we discuss some special,
but technically very relevant, cases for LTV systems and propose straightforward
approaches to reduce them.
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23.3.1 Case 1: Moving Loads

The first case we want to consider is a high-dimensional LTV system with only
time-varying input matrix, and all other matrices being time-independent:

E Px.t/ D Ax.t/C B.t/ u.t/;

y.t/ D Cx.t/:
(23.4)

The time-dependent input matrix describes the position of the moving forces at time
t. In the following we present two straightforward approaches to reduce a system in
the form above using time-independent projection matrices.

23.3.1.1 Approach 1: Two-Step Method

The first straightforward reduction method is deducted from the two-step approach
presented in [21, 3]. The method consists first on a low-rank approximation of the
time-varying input matrix, and consequently on applying standard model reduction
techniques to the resulting linear time-invariant system with a modified input:

1. The time-variability of the input matrix is shifted to the input variables through a
low-rank approximation of the input matrix by B.t/ 	 B QB.t/, where B 2 R

n�Qm
with Qm � n is a constant matrix and QB.t/ 2 R

Qm�m. Introducing a new input
Qu.t/ D QB.t/ u.t/, the original model (23.4) can be transformed to:

E Px.t/ D Ax.t/C B

Qu.t/‚ …„ ƒ
QB.t/ u.t/;

y.t/ D Cx.t/:

(23.5)

2. The resulting multiple-input multiple-output (MIMO) LTI system .E;A;B;C/
can subsequently be reduced by means of any standard reduction approach for
LTI systems (balanced truncation, MIMO rational Krylov or MIMO-IRKA, for
instance). The reduced-order model is then given by

Er‚ …„ ƒ
WTEV Pxr.t/ D

Ar‚…„ƒ
WTAV xr.t/C

Br‚…„ƒ
WTB

Qu.t/‚ …„ ƒ
QB.t/ u.t/;

yr.t/ D CV„ƒ‚…
Cr

xr.t/;
(23.6)

where the reduced time-varying input matrix reads Br.t/ D Br
QB.t/.



372 M. Cruz Varona and B. Lohmann

For the approximation of the input matrix B.t/, other than [21, 3] we simply
take the correct input columns bi.t/ with the moving load acting at corresponding
nodes i of a coarse finite element grid and form the low-rank matrix B with them,
without performing a least squares minimization with the basis functions. Note
that the two-step approach only provides satisfactory results, if the number of
columns Qm of the low-rank matrix B is sufficiently large [21]. Otherwise the overall
approximation error in the output (due to the approximation error in the input matrix
and the model reduction error) can become inadmissibly large. Note also that this
reduction method is limited to systems with a known trajectory of the load before
the simulation.

23.3.1.2 Approach 2: One-Sided Reduction with Output Krylov Subspace

The second straightforward method uses Krylov subspaces for the reduction and
exploits the fact that the only time-varying element in system (23.4) is the input
matrix B.t/. Since an input Krylov subspace would yield a time-varying projection
matrix

V.t/ WD 	
A�1s0 B.t/ A

�1
s0 EA

�1
s0 B.t/ : : : .A

�1
s0 E/

r�1A�1s0 B.t/


; (23.7)

where As0 D A � s0E, the idea of this approach is to perform a one-sided reduction
with V D W, where the columns of W form a basis of the output Krylov subspace:

W WD 	
A�Ts0 CT A�Ts0 ETA�Ts0 CT : : : .A�Ts0 ET/r�1A�Ts0 CT



: (23.8)

Thereby, time-independent projection matrices are obtained for computing the
reduced-order model

Er‚ …„ ƒ
WTEW Pxr.t/ D

Ar‚ …„ ƒ
WTAW xr.t/C

Br.t/‚ …„ ƒ
WTB.t/ u.t/;

yr.t/ D CW„ƒ‚…
Cr

xr.t/:
(23.9)

Although only the first r Taylor coefficients (so-called moments) of the transfer
function of the original and the reduced model around the expansion points s0
match due to the application of a one-sided reduction, we obtain time-independent
projection matrices with this approach and can therefore get rid of the time
derivative PV.t/. The motivation for this straightforward approach is thus to exploit
the special structure of the considered problem to get time-independent projection
matrices.
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23.3.2 Case 2: Moving Sensors

Now we consider a LTV system with only time-varying output matrix

E Px.t/ D Ax.t/C Bu.t/;

y.t/ D C.t/ x.t/:
(23.10)

The time-dependent output matrix describes the position of the moving sensors at
time t. This particular LTV system can easily be reduced in the following ways.

23.3.2.1 Approach 1: Two-Step Method

1. We shift the time-variability of the output matrix to the output variables through
a low-rank approximation by C.t/ 	 QC.t/C, where C 2 R

Qq�n with Qq � n is a
constant matrix and QC.t/ 2 R

q�Qq. Introducing a new output Qy.t/ D Cx.t/, the
original model (23.10) can be transformed to:

E Px.t/ D Ax.t/C Bu.t/;

y.t/ D QC.t/ Cx.t/„ƒ‚…
Qy.t/

: (23.11)

2. The resulting system .E;A;B;C/ can subsequently be reduced by means
of any appropriate multiple-input multiple-output LTI reduction technique.
The calculated time-independent projection matrices lead to the reduced-order
model

Er‚ …„ ƒ
WTEV Pxr.t/ D

Ar‚…„ƒ
WTAV xr.t/C

Br‚…„ƒ
WTB u.t/;

yr.t/ D QC.t/ CV„ƒ‚…
Cr

xr.t/;
(23.12)

with the reduced time-varying output matrix Cr.t/ D QC.t/Cr.

The approximation of C.t/ is performed by simply taking the output rows with
the moving sensor at the corresponding nodes of a coarse finite element grid.
Note that the approximation of the output matrix yields additional errors in the
output [21].
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23.3.2.2 Approach 2: One-Sided Reduction with Input Krylov Subspace

Since in this case an output Krylov subspace would lead to a time-varying projection
matrix

W.t/ WD 	
A�Ts0 C.t/T A�Ts0 ETA�Ts0 C.t/T : : : .A�Ts0 ET /r�1A�Ts0 C.t/T



(23.13)

due to the time-dependent output matrix C.t/, the idea is now to perform a one-sided
reduction with W D V, where the columns of V form a basis of the input Krylov
subspace:

V WD 	
A�1s0 B A�1s0 EA

�1
s0 B : : : .A

�1
s0 E/

r�1A�1s0 B


: (23.14)

The reduced model is then given by:

Er‚…„ƒ
VTEV Pxr.t/ D

Ar‚…„ƒ
VTAV xr.t/C

Br‚…„ƒ
VTB u.t/;

yr.t/ D C.t/V„ƒ‚…
Cr.t/

xr.t/:
(23.15)

Due to the application of a one-sided reduction, only r moments are matched.
Nevertheless, the time derivative is avoided, since V and W are time-independent
( PV D 0).

23.3.3 Case 3: Moving Loads and Sensors

Finally, we consider the combined case with time-varying input and output matrices

E Px.t/ D Ax.t/C B.t/ u.t/;

y.t/ D C.t/ x.t/:
(23.16)

If the sensor position coincides with the location of the load, then C.t/ D B.t/T .

23.3.3.1 Approach 1: Two-Step Method

In this case, the respective two-step techniques explained before have to be
combined properly:

1. The time-variability of B.t/ is shifted to the input variables and the time-
dependency of C.t/ to the output variables, thus obtaining a MIMO LTI system.
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2. Time-independent projection matrices are then calculated applying an appro-
priate model order reduction method to the resulting system .E;A;B;C/. The
reduced-order model is finally given by

Er‚ …„ ƒ
WTEV Pxr.t/ D

Ar‚…„ƒ
WTAV xr.t/C

Br‚…„ƒ
WTB

Qu.t/‚ …„ ƒ
QB.t/ u.t/;

yr.t/ D QC.t/ CV„ƒ‚…
Cr

xr.t/:
(23.17)

23.3.3.2 Approach 2: Reduction with Modal Truncation

Unfortunately, in this case 3 the application of a one-sided reduction with either an
input or an output Krylov subspace would yield time-varying projection matrices
V.t/ and W.t/ according to (23.7) or (23.13), respectively. A possible alternative
to still obtain time-independent projection matrices and thus get rid of the time
derivative PV is to use modal truncation as reduction approach. This method only
uses the time-independent matrices A and E for computing dominant eigenvalues
(e.g. with smallest magnitude or smallest real part) and eigenvectors, thus yielding
time-independent projection matrices for the reduction.

23.4 Time-Varying Parametric Model Order Reduction

After having considered linear time-varying systems and presented some straight-
forward approaches to reduce special cases arising in moving load and sensor
problems, in this section we focus on linear parameter-varying systems of the form

E. p.t// Px.t/ D A. p.t// x.t/C B. p.t// u.t/;

y.t/ D C. p.t// x.t/:
(23.18)

Such systems also exhibit a time-varying dynamic behaviour, since the system
matrices explicitly depend on parameters p.t/ which vary over time. Note that
moving load and sensor problems can be represented as LPV systems with only
parameter-varying input and/or output matrices, if the load and sensor location
are considered as time-dependent parameters of the system model. Due to the
time-dependency of the parameters, in the next subsection we derive a projection-
based, time-varying parametric model order reduction approach called p(t)MOR,
to obtain a reduced-order model of a LPV system [8, 9]. Based on that, we then
adapt the pMOR approach by matrix interpolation [16] to the parameter-varying
case, whereby new time derivative terms emerge [7, 9]. For the sake of a concise
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presentation, the time argument t will be omitted in the state, input and output
vectors hereafter.

23.4.1 Projective p(t)MOR

Similarly as explained in Sect. 23.2.1, in the case of projection-based time-
dependent parametric model order reduction we aim to approximate the state
vector x by x 	 V. p.t// xr using a parameter-varying projection matrix V. p.t//.
Plugging the corresponding approximation equations for x and its derivative Px
in (23.18), and applying thereon a properly chosen projection matrix W. p.t// that
imposes the Petrov-Galerkin condition yields the reduced-order model

Er. p.t// Pxr D
�
Ar. p.t// � W. p.t//TE. p.t// PV. p.t//

�
xr C Br. p.t// u;

yr D Cr. p.t// xr;
(23.19)

with the time-dependent parametric reduced matrices

Er. p.t// D W. p.t//TE. p.t//V. p.t//; Ar. p.t// D W. p.t//TA. p.t//V. p.t//;

Br. p.t// D W. p.t//TB. p.t//; Cr. p.t// D C. p.t//V. p.t//:
(23.20)

The reduced model comprises an additional term depending on the time derivative
PV. p.t//, which has to be considered during the extension of the matrix interpolation
method to the parameter-varying case.

23.4.2 p(t)MOR by Matrix Interpolation

The local pMOR technique of matrix interpolation can be applied to efficiently
obtain a parametric reduced-order model from the interpolation of reduced matrices
precomputed at different grid points in the parameter space. Similarly as in the
classic method [16], the LPV system (23.18) is first evaluated and individually
reduced at certain parameter samples pi; i D 1; : : : ; k with respective projection
matrices Vi WD V. pi/ and Wi WD W. pi/. The reduced state vectors xr;i of the
independently calculated reduced models

Er;i Pxr;i D
�
Ar;i � WT

i Ei PV. p.t//
�
xr;i C Br;i u;

yr;i D Cr;i xr;i

(23.21)
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generally lie in different subspaces and have, therefore, different physical meanings.
For this reason, the direct interpolation of the reduced matrices is not meaningful,
and hence the local reduced models have to be transformed into a common
set of coordinates first. This is performed applying state transformations of the
form

xr;i D Ti Oxr;i;
Pxr;i D PTi Oxr;i C Ti

POxr;i;
(23.22)

with regular matrices Ti WD T. pi/, whereby the product rule is required again
for the differentiation of xr;i. These state transformations serve to adjust the
different right local bases Vi to new bases OVi D Vi Ti. In order to adjust the
different left local bases Wi by means of OWi D Wi Mi as well, the reduced
models from (23.21) are subsequently multiplied from the left with regular
matrices MT

i . The resulting reduced and transformed systems are thus given
by

OEr;i‚ …„ ƒ
MT

i Er;iTi
POxr;i D

OAnew r;i‚ …„ ƒ0
BB@

OAr;i‚ …„ ƒ
MT

i Ar;iTi �MT
i W

T
i Ei

PV. p.t//Ti � MT
i Er;i

PTi

1
CCA Oxr;i C

OBr;i‚…„ƒ
MT

i Br;i u;

yr;i DCr;iTi„ƒ‚…
OCr;i

Oxr;i:

(23.23)

One possible way to calculate the transformation matrices Ti and Mi is based
on making the state vectors Oxr;i compatible with respect to a reference subspace
spanned by the columns of the orthogonal matrix R. To this end, the matrices
are chosen as Ti WD .RT Vi/

�1 and Mi WD .RT Wi/
�1, where the columns of R

correspond to the r most important directions of Vall D ŒV1 : : : Vk� calculated by a
Singular Value Decomposition (SVD) [16].

The resulting system matrix OAnew r;i not only comprises the expected reduced
matrix OAr;i, but also consists of two further terms that depend on PV. p.t// and
PTi, respectively. The calculation of these time derivatives that are required for
the computation of the reduced-order model will be discussed in the next two
sections.

After the transformation of the local models and the computation of the new
emerging time derivatives, a parameter-varying reduced-order model for a new
parameter value p.t/ is obtained in the online phase by a weighted interpolation
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between the reduced matrices from (23.23) according to

QEr. p.t// D
Xk

iD1 !i. p.t// OEr;i; QAnew r. p.t// D
Xk

iD1 !i. p.t// OAnew r;i;

QBr. p.t// D
Xk

iD1 !i. p.t// OBr;i; QCr. p.t// D
Xk

iD1 !i. p.t// OCr;i;

(23.24)

where
Pk

iD1 !i. p.t// D 1. For simplicity, here we use piecewise linear interpolation
of the reduced matrices. Higher order interpolation schemes could also be applied.

23.4.2.1 Time Derivative of V

The time derivative of the projection matrix V. p.t// can be numerically calculated
using a finite difference approximation. Applying the chain rule first and employing
a finite difference method thereon, the time derivative is given by:

PV. p.t// D @V
@p

Pp D Vt � Vt

pt � p
t

pt � pt�1
�t

: (23.25)

pt and p
t

denote the upper and lower limit of the interval Œp
t
;pt�, in which the

parameter vector pt is located at time instant t. The local bases at these parameter
sample points are given by Vt and Vt, respectively. The partial derivatives @V

@p for
each pair of parameter sample points are calculated in the offline phase of the matrix
interpolation approach. In the online phase, the current time derivative PV. p.t// is
then computed by multiplying the partial derivative of the corresponding parameter
interval at time instant t with Pp, which represents the current velocity of the moving
load. Figure 23.1 illustrates the aforementioned intervals and the efficient numerical
calculation of the time derivative PV. p.t// by a finite difference approximation using
only precomputed local bases. Numerical issues that arise when approximating the
derivative via finite differences are out of the scope of this paper and are treated e.g.
in [14].

Fig. 23.1 Graphical
representation of the
calculation of the time
derivative PV.p.t// using the
local bases Vi computed at
the parameter sample
points pi
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23.4.2.2 Time Derivative of T

As explained before, in this paper the transformation matrices Ti are calculated with
Ti D .RTVi/

�1 WDK�1. For the computation of the time derivative PTi we make use
of the following definition [12, p. 67]:

Definition 1 Let the matrix K be nonsingular. The time derivative of the inverse
matrix is then given by dK�1

dt D �K�1 dK
dt K

�1.
This leads to:

PTi D dK�1

dt
D �.RTVi/

�1RT PV. p.t//.RTVi/
�1 D �TiRT PV. p.t//Ti: (23.26)

23.4.3 p(t)MOR by Matrix Interpolation for Particular Cases

For the reduction of general linear parameter-varying systems the application of
time-dependent parametric projection matrices undoubtedly provides an accurate
consideration of the arising time variability. Their usage, however, involves some
difficulties, like the calculation of the additional derivatives and their incorporation
in the numerical simulation of the reduced-order model. Particular LPV systems
with only parameter-varying input and/or output matrices, arising e.g. in moving
load and sensor problems, can efficiently be reduced using the matrix interpolation
approach combined with the usage of parameter-independent projection matrices.
In the following, this technique is briefly explained for some special cases:

Moving Loads The application of parameter-varying projection matrices V. p.t//
and W. p.t// for the individual reduction of the local systems within matrix
interpolation results in a reduced model, where all reduced matrices vary with
the time-dependent parameter, although the original LPV system only contains
variations in the input matrix. In order to get rid of the emerging derivatives and
only have to interpolate the input matrix in the online phase of matrix interpolation,
one-sided reductions with an output Krylov subspace W D span.W/ should be
employed.

Moving Sensors In a similar manner, for the case of a LPV system with only
parameter-varying output matrix C. p.t// one-sided projections with a single input
Krylov subspace V D span.V/ computed with the input matrix should be performed
for the reduction of the sampled models during matrix interpolation. In this way,
we obtain parameter-independent projection matrices VDW and only have to
interpolate the output matrix, thus reducing the computational effort in the online
phase.

Moving Loads and Sensors For the combined moving load and sensor example
the application of one-sided projections with either input or output Krylov subspaces
is not helpful, since both the input and output matrices are parameter-varying
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in this case. Therefore, parameter-independent projection matrices can only be
calculated using modal truncation. By doing so, the reduced-order model only
contains parameter variations in the input and output reduced matrices like in the
original system.

23.5 Numerical Examples

In this section, we present some numerical results for systems with moving loads.

23.5.1 Timoshenko Beam

The presented reduction approaches are first applied to the finite element model
of a simply supported Timoshenko beam of length L subjected to a moving load
(Fig. 23.2). Since the moving force F.t/ is applied in the negative z-direction and
we are only interested in the vertical displacement of the beam, the model described
in [15] is adapted from a 3D to a 1D finite element model. Furthermore, both the
moving load and/or sensor case are incorporated into the model, yielding time-
dependent input and/or output matrices. The resulting single-input single-output
second-order system is reformulated into a LTV first-order model of the form

E‚ …„ ƒ
F 0
0 M

� Px‚…„ƒPz
Rz
�
.t/ D

A‚ …„ ƒ
0 F

�K �D

� x‚…„ƒ
z
Pz
�
.t/C

b.t/‚…„ƒ
0

Ob.t/
�
F.t/;

y.t/ D 	Oc.t/T 0T



„ ƒ‚ …
c.t/T


z
Pz
�
.t/;

(23.27)

Fig. 23.2 A simply
supported Timoshenko beam
subjected to a moving force
F.t/

F(t)

z
y

x
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where the arbitrary nonsingular matrix F 2 R
2N�2N is chosen in our case to F D K

for the aim of stability preservation using a one-sided reduction (cf. [9, 15]). The
dimension of the original model is then given by n D 2 � 2N with N finite elements.

Moving Load Case We first consider the reduction of a beam of length L D 1m
subjected to a point force moving from the tip to the supporting with a constant
velocity v and an amplitude of F.t/ D 20N. For the numerical simulation we
use an implicit Euler scheme with a step size of dt D 0:001 s. In Fig. 23.3 the
simulation results for the different proposed reduction methods are presented. We
first apply the standard matrix interpolation (MatrInt) approach using k D 76
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Fig. 23.3 Simulation results for the Timoshenko beam with moving load for different reduction
methods and velocities. Original dimension n D 2 � 2 � 451 D 1804, reduced dimension r D 10.
Krylov-based reductions performed with expansion points s0 D 0
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Table 23.1 Absolute L2 output error norms ky� yrkL2

MatrInt V. p.t// MatrInt PV, PT MatrInt W Approx B + IRKA

v D 1m
s 4:8e�4 1:5e�2 3:0e�5 1:0e�4

v D 5m
s 3:0e�3 6:8e�2 1:8e�5 2:0e�4

v D 10m
s 2:6e�3 1:0e�3 1:7e�5 5:8e�5

v D 20m
s 2:2e�2 5:4e�3 1:2e�5 3:9e�5

equidistantly distributed local models with corresponding current input, which are
individually reduced applying one-sided projections with input Krylov subspaces
(V. p.t//) for r D 10. The consideration of the theoretically emerging derivatives
PV and PT according to (23.23) in the matrix interpolation scheme only yields better
results than the standard MatrInt method for large velocities of the moving load (as
highlighted in Table 23.1). In any case, the application of a single time-independent
output Krylov subspace (W) during MatrInt and the two-step method ( Qm D 76)
combined with MIMO-IRKA yields the best results (see Table 23.1).

Moving Load and Sensor Case Now we consider a larger beam of length L D
50m with both moving load and sensor. The observation of the z-deflection of the
beam coincides at any time with the position of the moving load, meaning that
c. p.t//T D b. p.t//. First we apply the matrix interpolation approach and use modal
truncation for the individual reduction of the k D 201 sampled models constructed
with the input and output vectors corresponding to each parameter sample point.
Since modal truncation only considers the matrices A and E for the reduction and
these matrices do not vary over time, we only have to compute one single pair
of time-independent projection matrices V and W in the offline phase. During
the online phase, only the parameter-varying input and output vectors have to be
interpolated in order to obtain a reduced-order model for each current position of
the load/sensor.

Next, we further apply the aforementioned two-step method for the reduction. To
this end, the time-varying input and output vectors are first approximated by low-
rank matrices B and C on a coarse finite element grid. To ensure a proper compara-
bility with MatrInt, we choose the same Qm D 201 nodes where local models were
constructed before. The herewith obtained approximated output y.t/ and approxima-
tion errors are depicted in Fig. 23.4. One can see that the number of chosen columns
Qm is sufficiently large, since the approximation error is adequately small. After that,
we both apply two-sided MIMO rational Krylov (2-RK) and MIMO-IRKA for the
reduction of the resulting LTI system. Figure 23.4 shows the simulated output for
the different explained reduction methods as well as the corresponding absolute
and relative L2 errors. Although all results show a similar behaviour, the matrix
interpolation approach combined with modal truncation together with the two-step
method by IRKA lead to the smallest errors. Simulations were also conducted
with the extended p(t)MOR approach by matrix interpolation considering the time
derivatives like in (23.23). Unfortunately, these additional terms make the pencils
. OAnew r;i; OEr;i/ often unstable, yielding unstable interpolated systems and results.
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Fig. 23.4 Simulation results for the Timoshenko beam with moving load and sensor for different
reduction methods. Original dimension n D 2 � 2 � 1001 D 4004, reduced dimension r D 80.
Krylov-based reductions performed with expansion points s0 D 0

23.5.2 Beam with Moving Heat Source

We now apply the presented techniques on a second example [14], which describes
the heat transfer along a beam of length L with a moving heat source. The
temperature is observed at the same position as the heat source, thus c.t/T D b.t/.
In our case, we consider a system dimension of n D 2500, apply an input
heating source of u.t/D 50 ıC and use an implicit Euler scheme with a step size
of dtD 1 s for the time integration. Figure 23.5 shows the simulation results, and
the absolute and relative errors for the different employed reduction methods. One
interesting observation is that in this case the application of the extended MatrInt
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Fig. 23.5 Simulation results for the 1D beam with moving heat source for different reduction
methods. Original dimension n D 2500, reduced dimension r D 40. Krylov-based reductions
performed with expansion points s0 D 0

approach with the consideration of the time derivatives yields a slightly better
approximation than the classic MatrInt combined with modal truncation (k D 84).
In general, this fact could also be observed for the previous and some other
numerical experiments with higher velocities, as long as the overall interpolated
systems were stable. This slightly better approximation can be explained through
the more accurate consideration of the arising time variability using time-dependent
projection matrices, as opposed to modal truncation which does not consider the
moving interactions. The approximation of the time-dependent input and output
vectors by low-rank matrices using Qm D 84 nodes, and the subsequent application
of balanced truncation (TBR) or MIMO-IRKA for the reduction shows a similar
behaviour. Although the extended MatrInt shows in this case the best results, it is
difficult to clearly identify a superior method, since all presented approaches are
suitable for the reduction of systems with moving loads.
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23.6 Conclusions

In this paper, we have presented several time-varying model reduction techniques
for systems with moving loads. Such particular, but still frequent problems lead
to high-dimensional systems with time-varying input and/or output matrices. For
their reduction, time-dependent projection matrices can be applied, thus offering
an accurate consideration of the time variation, but leading also to an additional
derivative in the reduced model which have to be taken into account. Since moving
load problems represent particular LTV systems, we have presented straightforward
reduction approaches for some special cases, where time-independent projection
matrices are calculated and therefore the emerging time derivative is avoided.
Systems with moving loads can also be modeled as special LPV systems, where
the input and/or output matrices depend on a time-varying parameter describing the
position of the load. In this context we have derived a projection-based, time-varying
parametric model reduction approach and extended the matrix interpolation scheme
to the parameter-varying case. With the appropriate combination of this method with
the application of parameter-independent projection matrices, special LPV systems
can be efficiently reduced avoiding the time derivatives. The proposed methods
have been tested on two different beam models for both the moving load and/or
sensor cases. All techniques have provided similar satisfactory results, showing
that all methods are suitable for the reduction of systems with moving loads.
In particular, the presented straightforward approaches using time-independent
projection matrices are very simple, but may be absolutely sufficient for certain
problems. They provide a basis for comparison with more complex techniques
that consider the time variability using time-dependent projection matrices. These
advanced techniques should be investigated more deeply in the future, especially
concerning general LTV systems, the increased computational effort due to the
time-dependent projection matrices and derivatives, fast-varying load variations and
stability preservation in the reduced-order model.
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we thank the former and current members of our model order reduction lab (MORLAB) for the
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Chapter 24
Interpolation Strategy for BT-Based Parametric
MOR of Gas Pipeline-Networks

Y. Lu, N. Marheineke, and J. Mohring

Abstract Proceeding from balanced truncation-based parametric reduced order
models (BT-pROM) a matrix interpolation strategy is presented that allows the
cheap evaluation of reduced order models at new parameter sets. The method
extends the framework of model order reduction (MOR) for high-order parameter-
dependent linear time invariant systems in descriptor form by Geuss (2013) by
treating not only permutations and rotations but also distortions of reduced order
basis vectors. The applicability of the interpolation strategy and different variants is
shown on BT-pROMs for gas transport in pipeline-networks.

24.1 Introduction

Optimization and control of large transient gas networks require the fast simulation
of the underlying parametric partial differential algebraic systems. In this paper we
present a surrogate modeling technique that is composed of linearization around
stationary states, spatial semi-discretization and model order reduction via balanced
truncation (BT). Making use of a matrix interpolation strategy (MIS) in the spirit
of [1, 7] we explore its performance for evaluating the BT-pROMs over a wide
parameter range of different boundary pressures and temperatures. Our developed
variant DTMIS particularly regards possible distortions of the reduced basis vectors.
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24.2 Modeling Approach for Gas Pipeline-Networks

Proceeding from a nonlinear partial differential algebraic gas network model we
perform linearization and spatial semi-discretization to obtain a parametric linear
time invariant system as basis for MOR.

Modeling The gas dynamics in a horizontal pipe e can be described by the one-
dimensional isothermal Euler equations in terms of pressure pe and flow rate qe for
space parameter x 2 Œxine ; xoute � and time t 2 Œ0; tend�,

@t

�
1

z
pe.x; t/

�
C RsT

Ae
@xqe.x; t/ D 0; (24.1a)

@tqe.x; t/C Ae@xpe.x; t/C RsT@x
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D � RsT

2AeDe
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qe.x; t/jqe.x; t/j
pe.x; t/

(24.1b)

with pipe length Le, diameterDe, cross-sectional areaAe, temperature T, and specific
gas constant Rs. The gas compressibility z and friction � are empirically given by
AGA and Chen formula, respectively, [6], i.e.,

z. pe;T/ D 1C 0:257
pe
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� 0:533peT
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with critical pressure p? and temperature T? values depending on the gas type, and
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with Reynolds number Re.qe/ D jqejDe=.�Ae/, dynamic gas viscosity �, and
pipe roughness �e. A network of pipelines can then be modeled as a directed
graph G D .E ;N / where the edges are represented by the pipes e 2 E (with
mathematically positive orientation from xine to xoute ). The set of nodes N consists
of sources Nin, sinks Nout and branching (neutral) nodes Nneu. At the branching
nodes, mass conservation –known as first Kirchhoff law– and pressure equality in
terms of auxiliary variables p are imposed as coupling conditions, i.e.,

X
e2ı�

v

qe.x
out
e ; t/ D

X
e2ıC

v

qe.x
in
e ; t/; (24.1c)

pe.x
in
e ; t/ D p.v; t/; e 2 ıCv ; pe.x

out
e ; t/ D p.v; t/; e 2 ı�v ; v 2 Nneu

(24.1d)

where ı�v and ıCv denote the sets of ingoing and outgoing arcs at v 2 Nneu, cf.
Fig. 24.1. As boundary conditions we prescribe the pressure profile at the sources
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Fig. 24.1 Network topology
Fork: G D .E ;N / with
source Nin D fv1g, sinks
Nout D fv3; v4; v5g, as well
as Nneu D fv2g, ı�

v2
D fe1g

and ıC

v2
D fe2; e3; e4g

and the flow rate at the sinks

p.v; t/ D fv.t/; v 2 Nin; q.v; t/ D fv.t/; v 2 Nout: (24.1e)

System (24.1) is supplemented with consistent initial conditions obtained from
solving the stationary problem with the boundary conditions (24.1e) evaluated at
time t D 0

Linearization Expanding around a stationary state y.x; t/ D ys.x/ C 	yt.x; t/ C
O.	2/, y 2 fpe; qeg, that is specified by a certain parameter set p 2 P � R

d, the
nonlinear system (24.1) decomposes in first order into a stationary subsystem
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and a linear transient (correction) subsystem
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with initial conditions yt.x; 0/ D 0, y 2 fpe; qeg, and
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The coefficient functions ct
e;j, j D 1; : : : ; 5, depend not only on the stationary

state but also on the model parameters of the pipeline-network and the gas flow.
Moreover, note that the flow rate should be regularized before the linearization
procedure, i.e., jqej D .q2e C ˛2/1=2, ˛ small, [10].

Semi-discretization As spatial discretization for (24.2) we use a conservative first-
order finite-volume-like method on a staggered grid to obtain small discretization
stencils. Each pipe is distributed in cells of same length where the pressure pt

e and the
mass balance are evaluated at the cell edges and the flow rate qt

e and the momentum
balance at the cell midpoints. Sources and sinks are either located on the edges or
midpoints of a cell, if pressure or flow rate are given as boundary condition. Neutral
nodes are placed at cell boundaries, as suggested in [6]. Function values of pt

e at
a midpoint and qt

e at a cell boundary are interpolated. Note that for readability the
indices t

e are suppressed in the stated scheme for a pipe interior,

d

dt
piC1=2 D �c1;iC1=2
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d

dt
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�x
. piC1=2 � pi�1=2/� c4;iqi � c5;ipi

with pi D . piC1=2 C pi�1=2/=2 and qiC1=2 D .qiC1 C qi/=2 as well as cell size �x.
The resulting linear time invariant system (LTIS) of differential algebraic equa-

tions (DAE) for the pipeline-network is parameter-dependent,˙.p/, p 2 P � R
d,

˙.p/ W E.p/
d

dt
x.t/ D A.p/x.t/C B.p/u.t/; y.t/ D C.p/x.t/; (24.3)

with system matrices E;A 2 R
n�n, B 2 R

n�m and C 2 R
p�n. The states, inputs and

outputs are denoted by x 2 R
n, u 2 R

m and y 2 R
p. The inputs are certainly the

boundary conditions, the outputs are taken here as the flow rates at the sources and
the pressures at the sinks. As in optimization and control the variation of boundary
value profiles (24.1e) is often of interest, we consider a parameter dependence on
the boundary pressure p.v; 0/, v 2 Nin and the temperature T, i.e., p � R

2. In the
following we refer to a sample ofNp different parameter settings and denote the local
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LTIS associated with pk by ˙k, k D 1; : : : ;Np. It is assumed that ˙k is stable with
the regular pencil Ak � �Ek. The stability depends, among others, on the applied
discretization and is ensured for the discretized gas network under consideration.
Moreover, the linearized model is stable as long as the nonlinear model (24.1) is
asymptotically stable under “small” perturbations from the stationary state [8]. Note
that, whenever possible, we suppress the parameter index k in the explanations to
facilitate the readability.

24.3 BT-MOR for LTIS in Descriptor Form

In the classical method of balanced truncation for ordinary differential equations
[4, 15], the original model of order n is first transformed into a balanced form,
where the controllability and observability Gramians are diagonally equal. Then, a
BT-ROM of order r, r � n is obtained by truncating the .n�r/ states that are related
to the .n� r/ smallest Hankel singular values, i.e., diagonal entries of the Gramians.

Considering the full order model (FOM) of DAEs ˙ in (24.3), a QZ-
decomposition leads to a pencil A � �E in the generalized real Schur form. By
applying a block-diagonalization [9],˙ can be decoupled into proper and improper
subsystems. The spectra of the proper and improper subsystems are the same
as the finite and infinite ones of the whole system. Afterwards, the proper and
improper subsystems are separately transformed into the balanced form. Whereas
the standard BT procedure can be applied to obtain a proper ROM, truncation for
the improper subsystem can not be performed in general. If states related to non-
zero small HSVs are neglected, the improper ROM may have a finite spectrum with
non-negative real parts, which leads to a non-stable inaccurate approximation [11].
In addition, algebraic constraints of the systems might be violated. For example, in
case of the gas networks, some of the coupling conditions (Kirchhoff’s laws and the
pressure equivalence at neutral nodes) may not hold true which implies physically
meaningless results. However, states related to zero HSVs can be neglected without
affecting the system [14].

Thus, a BT-ROM of order r D rf C r1 is given by

˙r W Er
d

dt
xr.t/ D Arxr.t/C Bru.t/; yr.t/ D Crxr.t/ (24.4a)

Er D WTEV D

Irf

Er1

�
; Br D WTB D


Brf

Br1

�
; W D 	

Wrf Wr1




Ar D WTAV D

Arf

Ir1

�
; Cr D CV D 	

Crf Cr1



; V D 	

Vrf Vr1
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with its proper and improper subsystems

˙prop
r W d

dt
xrf .t/ D Arf xrf .t/C Brf u.t/; yrf .t/ D Crf xrf .t/ (24.4b)

˙ improp
r W Er1

d

dt
xr1.t/ D xr1.t/C Br1u.t/; yr1.t/ D Cr1xr1.t/:

(24.4c)

The applied projections W, V are obviously parameter-dependent, but not orthonor-
mal. They build bases of the (parameter-dependent) rank-r subspaces W , V in R

n.
Analogously, Wrf ;Vrf and Wr1 ;Vr1 form bases of rank-rf subspaces Wrf ;Vrf and
rank-r1 subspaces Wr1 ;Vr1 , respectively. The BT-ROM˙r is stable as long as the
FOM˙ of (24.3) is stable, [15]. Moreover, since only states related to the improper
zero-HSVs are truncated, the DAE-index is preserved, [14].

An error estimate for the system’s transfer function G in the frequency domain
is related to the (decreasingly sorted) proper HSVs �i, i D 1; : : : ; nf , [14],

kG � GrkH1
D kGprop � Gprop

r kH1
� 2

nfX
iDrfC1

�i

with the H1-norm defined as kGkH1
D sup!2R kG.i!/k2. Hereby,Gprop and Gprop

r

denote the strictly proper part of G and Gr, respectively. Due to the Paley-Wiener
Theorem, this error estimate also holds in the time domain [4] where the H1-norm
is regarded as the 2-induced operator norm,

ky.t/� yr.t/k2 � kG � GrkH1
ku.t/k2:

24.4 Interpolation for BT-pROMs

BT-MOR is not suitable for online parameter variations in our application because
the computational effort (complexity, memory storage) is so extremely high for a
large-scale LTIS. Therefore, we suggest an interpolation strategy. Once BT-pROMs
˙r;k are computed for different parameter settings k D 1; : : : ;Np, a reduced order
model at a new parameter p can be efficiently approached by means of interpolation,
e.g., by interpolating the transfer functions, the projection spaces or the whole
solution (reduced basis method). In [2, 3] an interpolation of BT-pROMs based on
the transfer function is investigated and applied to microelectromechanical systems,
the approach yields a reduced order model whose size increases with the number of
interpolants. In this paper, we explore a (size-preserving) matrix interpolation in the
spirit of [1, 7].



24 Interpolation Strategy for BT-Based Parametric MOR of Gas Pipeline-Networks 393

Consider the intuitive ansatz

˙r.p/ W Er.p/
d

dt
xr.t/ D Ar.p/xr.t/C Br.p/u.t/; yr.t/ D Cr.p/xr.t/

(24.5a)

Mr.p/ D
NpX
kD1

˛k.p/Mr;k; M 2 fE;A;B;Cg
(24.5b)

where the weighting functions ˛k are determined by the selected interpolation
method. Note that in BT, the states of ˙k are recombined during the decoupling
phase in order to be separated with respect to the finite and infinite spectra. In
the MOR phase the states are again recombined such that they can be rearranged
according to the HSVs in decreasing order. States related to the small proper HSVs
and to the zero-valued improper HSVs are truncated until the local reduced systems
˙r;k have the same order r. Thus, the projections Wk, Vk usually span different
rank-r subspaces Wk, Vk in R

n. Consequently, the reduced states xr;k have in general
no common physical interpretation, which implies that such a interpolation of
type (24.5) might not be meaningful.

Generalized Rank-r Subspace and Respective Transformation To make sense
of the interpolation, all local reduced states xr;k are transformed in a generalized
rank-r subspace NV . Choosing its basis NV requires in general a priori knowledge
about the dynamics of the local ROMs. Different strategies are discussed in
literature. For example, one of the local bases might act as generalized basis
NV D Vk0 , k0 2 f1; : : : ;Npg, [1]. This is suitable, if all local reduced states lie in the
same subspace. In case that the local bases are very different, the generalized basis
must catch the most important characteristics of all local ROMs. For this purpose, a
Proper Orthogonal Decomposition (POD) [13] can be employed [12], i.e.,

	 NV U


˙
	 NV U


T D 	
V1 � � � VNp


 	
V1 � � � VNp


T
:

The state transformation TV;k maps xr;k in NV , i.e., Nxr D TV;kxr;k. A transforma-
tion proposed in [12]

TV;k D . NVTVk/
�1 (24.6)

describes permutations, rotations and length distortions of the basis vectors. Fur-
thermore, it maximizes correlations between each i-th base vectors, i D 1; : : : ; r,
but minimizes correlations between the i-th and i0-th base vectors, i ¤ i0 in NV and
Vk, where the correlations are defined according to the Modal Assurance Criterion
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(MAC) [1]

MAC. NVi0 ;Vk;i/ D jh NVi0;Vk;iij2
h NVi0 ; NVi0ihVk;i;Vk;ii

:

However, TV;k of (24.6) can be singular, if NV is orthogonal to Vk. To avoid
this crucial weakness, one seeks state transformations such that the sum of the
correlations of all i-th base vectors in NV and Vk is maximized.

Theorem 1 [1, Proposition 4.1.] The optimization problem wrt. the Frobenius
norm k � kF

min
RV ;k2O.r/

�� NV � VkRV;k

��2
F

has the unique solution RV;k D UVT , where U and V are the left and right singular
vectors of Vk NVT D U˙VT .

Proof The first optimality condition together with the uniqueness of the singular
value decomposition yields the result. ut
The orthogonal mapping RV;k can handle permutations and rotations of the basis
vectors in Vk wrt. NV, but cannot capture length distortions. To deal also with
distortions, we propose a modification on top of the transformation RV;k.

Theorem 2 Let NVi0 and QVk;i be the i-th column vectors in NV and NVk D VkRV;k. The
optimization problem

min
�V ;i�0

��� NVi0 � �V;i QVk;i

���2
F

has the unique solution

�V;i D h NVi0 ; QVk;ii
h QVk;i; QVk;ii

:

Proof The statement follows from the first optimality condition using the fact

that
��� NVi0 � �V;i QVk;i

���2
F

D
��� NVi0 � �V;i QVk;i

���2
2
. The sign �V;i � 0 can be particularly

concluded from Theorem 1. ut
Combining Theorem 1 and Theorem 2 we consider the state transformation

TV;k D RV;kDV;k; DV;k D diag.�V;1; : : : ; �V;r/: (24.7)

Analogously to NV , NV and TV;k, we construct NW , NW and TW;k. This step is
necessary, since the local left projections Wk contain the local left Hankel singular
vectors related to the local-preserved HSVs in MOR. Similarly to (24.7), we obtain
TW;k D RW;kDW;k with DW;k D diag.�W;1; : : : ; �W;r/. Consequently, the BT-ROM
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associated with the parameter pk, k D 1; : : : ;Np, is given with respect to the
generalized rank-r subspaces by

Ȯ r;k W OEr;k
d

dt
Oxr;k.t/ D OAr;k Oxr;k.t/C OBr;ku.t/; yr;k.t/ D OCr;k Oxr;k.t/

(24.8)

OEr;k D TT
W;kEr;kTV;k; OAr;k D TT

W;kAr;kTV;k;

OBr;k D TT
W;kBr;k; OCr;k D Cr;kTV;k; Oxr;k D TV;kxr;k:

Note that the basis change has no influence on the input-output properties of the
system.

Manifold for Interpolation An accurate matrix interpolation (24.5) requires that
the variations of the parameter-dependent matrix entries are covered well by the
interpolants. For example, the interpolants capture the critical points (wrt. first
and second derivatives) of the functions that describe the behavior of the matrix
entries on p 2 P � R

d. This certainly presupposes sufficient smoothness of the
parameter dependence. Unfortunately, the requirement is hardly fulfilled by the BT-
ROMs (24.8) as interpolants. Hence, it may be advantageous to map the matrices
into a space where the dependencies can be approximated as well as possible in
order to perform the interpolation there and map then the results back to the original
space where the BT-ROMs lie. In an appropriate space the matrix entries might
be regarded as smooth functions of the parameter. We particularly apply here the
concept of a differential Riemannian manifold M which implies the existence of a
tangent space TM for each matrix M 2 M [1, 5, 7].

Let Mk denote a matrix associated to the parameter pk, k D 1; : : : ;Np with Np

sample size. Consider the manifold M of regular matrices R
r�r and Mk 2 M .

The lifting of the regular matrices Mk into the tangent space TMk0
at a reference

matrixMk0 2 M can be achieved by the logarithmic mapping which preserves some
matrix properties such as symmetric positive definiteness [1]. For that purpose all
Mk must lie in the neighborhood of Mk0 such that MkM�1k0 has a positive spectrum
and hence the logarithm ln.MkM�1k0 / is unique and real-valued [7]. Performing the
interpolation of the matrices in the tangent space TMk0

, the result is transformed
back into the original manifold M by means of the exponential mapping. Thus, the
corresponding interpolated matrix at p is given by

M.p/ D exp

0
@

NpX
kD1

!.p/ ln
�
MkM�1k0

�
1
AMk0

with weight function !. In case of singular matrices Mk, we consider the manifold
of real matrices. The interpolation can then be performed in the linear space at Mk0
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by using the affine mapping [1],

M.p/ D
NpX
kD1

!.p/ .Mk � Mk0 /C Mk0 :

The choice of an appropriate reference matrix Mk0 to build the respective tangent
space requires in general a priori knowledge about the dependencies of the local
BT-ROMs on the parameter, which is hard to analyze. In [5] a heuristic selection
criterion is proposed for the case of regular matrices. It is based on the assumption
that the entries of Mk lifted in the tangent space TMk0

depend almost linearly on
pk D . pk;1; : : : ; pk;d/ 2 R

d. This means that considering � k0;k D ln.MkM�1k0 / the

respective .i; j/-th matrix entry is approximated by � i;jk0;k 	 ˛
i;j
k0;0

C Pd
`D1 ˛

i;j
k0;`

pk;`
with constant coefficients ˛i;jk0;`. Then, the normalized least-squares residual of
the sample is used as indicator of the parameter dependence, and the maximal
values over all matrix entries are considered as selection criterion for the reference
parameter pk0 ,

k�

0 D arg min
k0

�k0 ; �k0 D max
i;j
�
i;j
k0
; �

i;j
k0

D
qPNp

kD1.˛
i;j
k0;0

CPd
`D1 ˛

i;j
k0;`

pk;` � � i;jk0;k/2
maxk �

i;j
k0;k

� mink �
i;j
k0;k

:

Alternatively, one could consider the normalized least-squares residual in the
original manifold

� D max
i;j
� i;j; � i;j D

qPNp

kD1.˛
i;j
0 CPd

`D1 ˛
i;j
` pk;` � mi;j

k /
2

maxk m
i;j
k � mink m

i;j
k

where mi;j
k denotes the matrix entries of Mk. Comparing � and �k0 , the interpolation

is performed in the respective tangent space if �k0 � � . The prescribed selection
criterion can be straightforward transferred to the case of singular matrices,
assuming a linear parameter dependence of the matrix entries lifted in the linear
space at Mk0 , i.e., � k0;k D Mk � Mk0 , and in the manifold.

Note that in our application of the gas network, the system matrices OAr;k are
regular while OEr;k, OBr;k and OCr;k are singular.

Interpolation of Decoupled System The BT-ROM Ȯ r;k of (24.8) is in general
not decoupled in proper and improper subsystems (cf. (24.4)) any more. Hence,
any interpolated reduced order model is also not decoupled, as the matrix inter-
polation (24.5) preserves the structure of the matrices due to the element-wise
performance. If the algebraic subsystem of the FOM ˙ is parameter-invariant,
then there is no interchange between the proper and improper BT-ROMs wrt.
the parameter (involving a decoupled form of Ȯ r). Hence, the subsystems can
be adjusted and interpolated separately. In case of decoupled Ȯ r, only .r2f C r21/
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elementary operations are needed to approximate the matrix pencil A� �E, instead
of 2.rf C r1/2 operation for the coupled system. This is more amenable to real-
time applications. Note that in the gas networks under consideration the assumption
on the FOM holds true, i.e., the algebraic coupling conditions are parameter-
independent.

Theorem 3 Assume that the algebraic part of the FOM (24.3) is parameter-
invariant. Then, the proper and improper systems ˙prop

r;k and ˙ improp
r;k of the BT-

ROMs (24.4), k D 1; : : : ;Np, can be separately transformed into generalized
subspaces NW D NWrf ˚ NWr1 and NV D NVrf ˚ NVr1 , which are spanned by NWrf ,NWr1 and NVrf , NVr1 respectively. Furthermore, the transformation only requires the

mapping of ˙prop
r;k and ˙ improp

r;k into NV .

Proof To facilitate the readability we suppress the parameter index k. Assume that
TVrf

, TWrf
are the transformations associated with the proper BT-ROM. According

to (24.8), the transformed system Ȯ prop
r is given by

OErf
d

dt
Oxrf .t/ D OArf Oxrf .t/C OBrf u.t/; yrf .t/ D OCrf Oxrf .t/

OErf D TT
Wrf

ErfTVrf
; OArf D TT

Wrf
ArfTVrf

; Erf D Irf ;

OBrf D TT
Wrf

Brf ;
OCrf D CrfTVrf

; Oxrf D TVrf
xrf :

Since OErf is regular,

d

dt
Oxrf .t/ D OE�1rf OArf Oxrf .t/C OE�1rf OBrf u.t/

leads to

TVrf

d

dt
xrf .t/ D T�1Vrf

ArfTVrf
xrf .t/C T�1Vrf

Brf u.t/:

The same can be shown for the improper BT-ROM in an analogue manner. ut

24.5 Results and Discussion

Proceeding from a sample of BT-pROMs for gas pipeline-networks we demonstrate
the applicability of the matrix interpolation strategy (MIS) for an efficient model
order reduction. In particular, we compare different variants (with and without
distortion treatment, with original and tangent manifold), regarding the outputs of
the interpolated systems.



398 Y. Lu et al.

As test scenario we consider exemplarily the network topologyFork visualized in
Fig. 24.1 over the time horizon Œ0; tend�, tend D 48 [h]. Although it is a rather small
network consisting only of four pipes, the results are representative for the appli-
cation. The pipes e1; : : : ; e4 have different lengths Le1;:::;4 D .16; 45; 7; 38/ [km],
but same diameter De D 1 [m] and roughness parameter �e D 5 � 10�5 [m].
The last enters with the dynamical gas viscosity � D 10�5 [kg/(ms)] in the
Chen formula for the friction �. The specific gas constant is Rs D 448 [J/(kg
K)]. The boundary conditions (24.1e) of the gas network given by p.v; t/ D
p0 C 0:5.1:05p0 � p0/.1 � cos�t=tend/ [bar] at v 2 Nin and q.v; t/ D 200 [kg/s]
at v 2 Nout act as inputs, whereas the pressure p.v; t/ at v 2 Nout and the flow
rate q.v; t/ at v 2 Nin are considered as outputs for t 2 Œ0; tend�. In addition to
the boundary pressure p0 2 Œ55; 65� [bar], the temperature T 2 Œ�20; 20� [ıC] is
regarded as parameter of the model problem, i.e., p D . p0;T/ 2 P � R

2. Note
that typical values p
 D 106, q
 D 10 and t
 D 102 are used to scale pressure,
flow rate and time so that the equation system is numerically easier to solve. The
stationary problem is determined as follows: using the first Kirchhoff law (24.1c)
and the boundary condition, the stationary flow rates of the pipeline-network are
evaluated. Afterwards, the stationary pressure of each pipe is calculated by solving
an initial value problem for e1; : : : ; e4.

In the following the original FOMs are of order n D 35 due to the spatial
discretization with grid size �xe1;:::;4 D .6:4; 15; 2:33; 12:67/ [km]. The BT-ROMs
are chosen to be of order r D 15. The BT-ROMs decouple in proper and improper
subsystems since the algebraic constraints of the FOM are parameter-independent.
We solve them by means of the MATLAB routine ode15s (with the default values).
Moreover, we use a cubic MIS. Note that the effective choices of the reduced
model order and the interpolation order affect quantitatively, but not qualitatively
the observed results. Quantitative improvement might be obtained by adapted more
sophisticated choices, but this goes beyond the topic of this paper. Focusing on the
matrix interpolation we explore here two exemplary model cases that show different
parameter-dependent characteristics:

Case I : p0 sampled at f55; 59:5; 65g and T D 0,
the generalized bases for the proper and improper BT-ROMs are constructed by
using the POD method

Case II: T sampled at f�20;�0:49; 20g and p0 D 57:7,
the local bases at T D �0:49 are chosen as generalized bases for the proper and
improper BT-ROMs

We apply four different MIS variants: DMIS and DTMIS operate without and with
distortion treatment on the original manifold, DMMIS and DTDMMIS operate
without and with distortion treatment on the tangent manifold.

The approximation quality of the interpolation methods is presented in terms of
the relative L 2.0; tend/-error in Fig. 24.2, comparing the output of the interpolated
system with that of the directly computed BT-ROM. In both model cases our
proposed handling of length distortions (Theorem 2) shows a clear improvement.
The approximation results are better than the ones achieved with the hitherto
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p in [bar]
656055
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yr directly interpolated
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-20 -10 0 10 20
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DMMIS
DTDMIS
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yr directly interpolated

Fig. 24.2 Comparison of different matrix interpolation strategies, relative L 2.0; tend/-error
between the outputs of the interpolated system and the computed BT-ROM. Top: Case I (pressure
variations); bottom: Case II (temperature variations)

existing matrix interpolation strategy by [7]. The influence of the chosen manifold
on the results depends on the considered case. Whereas the use of the original
manifold seems beneficially in Case I, it is the tangent manifold in Case II. In total,
the results concerning Case II are in size an order better than those of Case I which
might be explained by less differences in the underlying local rank-r subspaces.
The larger the differences of the local rank-r subspaces, the more difficult is the
construction of a generalized subspace (to cover the most important dynamics
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of the system). In our application, the interpolation results are very robust for
temperature variations. Changes in pressure, in contrast, might cause instabilities
in the interpolated reduced order models, although the underlying sample of ROMs
(interpolants) is stable. This happens for example outside the considered interval
Œ55; 65� in Case I. Developing interpolation techniques that preserve stability is
hence topic of recent research. Considering the performance, the combination of
MOR and an interpolation strategy is superior to computing directly a ROM at a
new parameter setting, because the overall computational costs are dominated by the
model order reduction technique. The costs due to our additional distortion handling
are marginal.

Figure 24.2 shows additionally the results for directly interpolated outputs yr;k.
As it is less error-prone, the direct output interpolation is certainly superior to MIS
when only the outputs are of interest. However, optimization and control of transient
gas networks require the input-output behavior for large input/output variations over
a wide range of parameters. For this purpose, knowledge about the system matrices
that belong to the different parameter settings is needed to make possible the cheap
and fast evaluation of many reduced order models by help of MIS.

24.6 Conclusion

In this paper we proposed an extension of the matrix interpolation strategy by
Geuss [7] for parametric MOR, regarding length distortions of the reduced order
basis vector. We showed the applicability and especially the improvement of the
results for gas transport in pipeline-networks. The combination of MOR and matrix
interpolation allows for the efficient computation of parametric reduced order
models and makes optimization and control of large transient gas networks possible.
Thereby, the underlying model order reduction technique (here balanced truncation)
and the interpolation order that are used are replaceable in view of the desired
approximation quality. We remark that non-stable interpolated reduced order models
might occur, although the sample of interpolants is stable. Thus, the development of
stability-preserving interpolation techniques is addressed in future.
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Chapter 25
Energy Stable Model Order Reduction
for the Allen-Cahn Equation

Murat Uzunca and Bülent Karasözen

Abstract The Allen-Cahn equation is a gradient system, where the free-energy
functional decreases monotonically in time. We develop an energy stable reduced
order model (ROM) for a gradient system, which inherits the energy decreasing
property of the full order model (FOM). For the space discretization we apply a
discontinuous Galerkin (dG) method and for time discretization the energy stable
average vector field (AVF) method. We construct ROMs with proper orthogonal
decomposition (POD)-greedy adaptive sampling of the snapshots in time and eval-
uating the nonlinear function with greedy discrete empirical interpolation method
(DEIM). The computational efficiency and accuracy of the reduced solutions are
demonstrated numerically for the parametrized Allen-Cahn equation with Neumann
and periodic boundary conditions.

25.1 Introduction

The Allen-Cahn equation [2]

ut D 	�u � f .u/; .x; t/ 2 ˝ � .0;T�; (25.1)

on a bounded region˝ � R
d.d D 1; 2/, is a gradient system in the L2 norm:

ut D �ıE .u/
ıu

: (25.2)
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Equation (25.2) is characterized by the minimization of the Ginzburg–Landau
energy functional

E .u/ D
Z
˝

�	
2

jruj2 C F.u/
�
dx;

with a potential functional F.u/. The main characteristic of a gradient system is the
energy decreasing property:

E .u.tn// < E .u.tm//; 8tn > tm: (25.3)

The Allen-Cahn equation (25.1) was originally introduced to describe the phase
of a binary mixture. Nowadays it is used as a model for interface problems in
material science, fluid dynamics, image analysis, mean curvature flow, and pattern
formation. In (25.1) the unknown u denotes the concentration of the one of the
mixture. The parameter 	 is related to the interfacial width, capturing the dominating
effect of reaction kinetics and stays for effective diffusivity. The non-linear term
f .u/ in (25.1) is given by f .u/ D F0.u/. Depending on the choice of the potential
functional F.u/, i.e. the non-linear function f .u/, different types of gradient systems
occur. The most common potential functions for the Allen–Cahn equation are the
convex quartic double-well potential [17] and the non-convex logarithmic potential
[7], given respectively by:

F.u/ D .u2 � 1/2=4; (25.4a)

F.u/ D .�Œ.1C u/ ln.1C u/C .1� u/ ln.1 � u/� � �cu2/=2; (25.4b)

where �c in (25.4b) is the transition temperature. For temperature � close to �c,
the logarithmic potential is usually approximated by the convex quartic double-well
potential. In case of the quartic double-well potential, f .u/ D u3 � u represents
the bi-stable nonlinearity. For the logarithmic potential, it takes the form f .u/ D
.�=2/ ln ..1C u/=.1� u//� �cu.

The main characteristic of the Allen-Cahn equation (25.1) is the rapid formation
of the transient layers and exponentially slow formation of the terminal layers for
very small values of 	. This is known as metastability phenomena, characterized
by the relative flatness of solutions, where the stable or unstable fixed points
coalesce or vanish over long time. These make the numerical computation of the
Allen-Cahn equation (25.1) challenging for very small values of 	. In the literature
for discretization of (25.1) in space, the well-known finite-differences, spectral
elements [13], continuous finite elements [26] and local discontinuous Galerkin
(LDG) method [21] are used. Several energy stable integrators are developed to
preserve the energy decreasing property of the Allen-Cahn equation. For small
values of the diffusion parameter 	, semi-discretization in space leads to stiff
systems. Therefore it is important to design efficient and accurate numerical
schemes that are energy stable and robust for small 	. Because the explicit methods
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are not suitable for stiff systems, several energy stable implicit-explicit methods
based on the convex splitting of the non-linear term are developed [12, 18, 29].

In this work, we use the symmetric interior penalty Galerkin (SIPG) finite
elements for space discretization [4, 27] and the energy stable average vector field
(AVF) method [9, 22] for time discretization. The SIPG approximation enables to
capture the sharp gradients or singularities locally. On the other hand, the AVF
method is the only second order implicit energy stable method for a gradient system.
Because the computation of the patterns for small values of 	 is time-consuming,
we consider reduced order modeling which inherits the essential dynamics like the
energy decreasing property of the Allen-Cahn equation. In the literature, there are
only two papers dealing with the reduced order modeling for Allen-Cahn equation.
Using finite difference discretization in space and convex splitting in time, an energy
stable reduced order model is derived in [31]. In [24], a non-linear POD/Galerkin
reduced order model is applied for efficient computation of the metastable states.
An early application of POD to the optimal control of phase field models in material
sciences dates back to 2001 [34]. It was shown that for the optimal control of two
coupled non-linear PDEs, the solutions of the POD reduced model have nearly the
same accuracy as the finite element FOM solutions, whereas the computing time is
reduced enormously. Here we apply the greedy proper orthogonal decomposition
(PODG) method for the parametrized non-linear parabolic PDEs [15, 19], where
the reduced basis functions are formed iteratively by a greedy algorithm for the
parameter values such that a POD mode from the matrix of projection error for the
parameter value with the largest error is captured and used to enlarge the reduced
space. In order to reduce the computational complexity of the function evaluation
for the non-linear term in the reduced model, the empirical interpolation method
(EIM) [6, 20] and discrete empirical interpolation method (DEIM) [11, 35] are used.
The greedy DEIM is included in the adaptive sampling algorithm. We use in the
PODG sampling algorithm, the residual-based a posteriori error indicator such that
the FOMs are solved only for selected parameter values. We see that the DEIM
reduced system is conditionally energy stable whereas the fully discrete system is
unconditionally stable. The performance of the PODG approach is illustrated for the
Allen Cahn equation with quartic and logarithmic potential functions for different
parameters. We want to remark that the majority of the model order reduction
(MOR) techniques for parametrized PDEs are projection based, which use the state-
space description of the models by numerical simulation. There exists equation-free
MOR methods using system responses such as measurements [8]. The data-driven
MOR method in the Loewner framework [23] was applied to parametrized systems.

The rest of the paper is organized as follows. In Sect. 25.2, fully discretization
of the model problem (25.1) is introduced. In Sect. 25.3, we describe the reduced
order modeling together with a POD-greedy sampling algorithm. We present in
Sect. 25.4 numerical results for ROMs of the parametrized Allen-Cahn equation
with the parameters 	 and � .
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25.2 Fully Discrete System

In this section, we describe the full discretization of the parametrized form of the
(2D) Allen-Cahn equation (25.1) using the symmetric interior penalty Galerkin
(SIPG) in space and the second order energy stable average vector field (AVF)
method in time. For a certain parameter �, we denote the parameter dependence
of a solution u.x; t/ by u.�/ WD u.x; tI�/, where the parameter � stands for either
the diffusivity 	, or the temperature � in case of logarithmic potential. We also
denote the parameter dependence of the non-linear function by f .uI�/. Then, the
variational form of the parametrized Allen-Cahn equation is given as:

.@tu.�/; (/˝ C a.�I u.�/; (/C . f .u.�/I�/; (/˝ D 0; 8( 2 H1.˝/: (25.5)

The Allen-Cahn equation was considered in the literature under Dirichlet,
Neumann and periodic boundary conditions. Here, we give the SIPG discretization
for the homogeneous Neumann boundary conditions [5, 27]; dG discretization for
periodic boundary conditions is given in [33]. The SIPG semi-discretized system
of (25.5) reads as: for a.e. t 2 .0;T�, find uh.�/ in the SIPG finite element space Vh

such that

.@tuh.�/; (h/˝ C ah.�I uh.�/; (h/C . f .uh.�/I�/; (h/˝ D 0; 8(h 2 Vh;

(25.6)

with the SIPG bilinear form

ah.�I u; (/ D
X
K2Th

Z
K
	ru � r( �

X
E2E0h

Z
E

f	rug Œ(�ds

�
X
E2E0h

Z
E

f	r(g Œu�C
X
E2E0h

�	

hE

Z
E
Œu�Œ(�ds;

(25.7)

on a triangulation Th with triangular elements K and interior edges E having
measure hE. In (25.7), � denotes the penalty parameter which should be sufficiently
large to ensure the stability of the SIPG scheme [5, 27]. For easy notation, we omit
the explicit dependence of the discrete solution, bilinear form and the non-linear
term on the parameter �. The solution of (25.6) is given by

uh.x; t/ D
nKX
iD1

nqX
jD1

uij.t/'
i
j.x/;

where ' i
j.x/ and uij.t/, i D 1; : : : ; nk, j D 1; : : : ; nq, are the basis functions of Vh and

the unknown coefficients, respectively. The number nq denotes the local dimension,
depending on the order q of the basis functions, on each triangular element and nK
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is the number of triangular elements. The unknown coefficients and basis functions
are defined as vectors:

u WD u.t/ D .u11.t/; u
1
2.t/; : : : ; u

nK
nq .t//

T WD .u1.t/; u2.t/; : : : ; uN .t//T ;

' WD '.x/ D .'11.x/; '
1
2.x/; : : : ; '

nK
nq .x//

T WD .'1.x/; '2.x/; : : : ; 'N .x//T :

Here N D nK � nq denotes the dG degrees of freedom (DoFs). Then, the SIPG
semi-discretized system (25.6) leads to the full order model (FOM), in form of a
semi-linear system of ordinary differential equations (ODEs):

Mut C Au C f .u/ D 0; (25.8)

for the unknown coefficient vector u.t/, where M 2 R
N �N is the mass matrix,

A 2 R
N �N is the stiffness matrix, and f .u/ 2 R

N is the non-linear vector of
unknown coefficients u, whose i-th entry is given by f i.u/ D . f .uh.t//; 'i.x//˝ ,
i D 1; : : : ;N .

For the temporal discretization, we consider the uniform partition 0 D t0 <
t1 < : : : < tJ D T of the time interval Œ0;T� with the uniform time step-size
�t D tnC1 � tn, n D 0; 1; : : : ; J � 1. As the time integrator, we use the AVF method
[9, 22] which preserves the energy decreasing property without restriction of the
step size �t. The AVF method for a general gradient system Py D �rG. y/ is given
as:

ynC1 D yn ��t
Z 1

0

rG.ynC1 C .1 � /yn/d:

The application of the AVF time integrator to (25.8) leads to the fully discrete
system

MunC1�MunC�t

2
A.unC1Cun/C�t

Z 1

0

f .unC1C.1�/un/d D 0: (25.9)

25.2.1 Energy Stability of the Full Order Model

Now, we prove that the SIPG-AVF full discretized gradient system is uncondition-
ally energy stable. The SIPG discretized energy function of the continuous energy
E .u/ at a time tn D n�t is given by:

Eh.u
n
h/ D	

2

��runh
��2
L2.˝/ C .F.unh/; 1/˝

C
X
E2E0h

�
�.f	runhg; Œunh�/E C �	

2hE
.Œunh�; Œu

n
h�/E

�
;

(25.10)
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where unh WD uh.tn/ 2 Vh. Applying the AVF time integrator to the semi-discrete
system (25.6) and using the bilinearity of ah, we get for n D 0; 1; : : : ; J � 1

1

�t
.unC1h � unh; (h/˝ C 1

2
ah.u

nC1
h C unh; (h/

C
Z 1

0

. f .unC1h C .1 � /unh/; (h/˝d D 0:

Choosing (h D unC1h �unh and using the algebraic identity .aCb/.a�b/D a2�b2

1

�t
.unC1h � unh; u

nC1
h � unh/˝ C 1

2
ah.u

nC1
h ; unC1h /� 1

2
ah.u

n
h; u

n
h/

C
Z
˝

Z 1

0

. f .unC1h C .1 � /unh/.unC1h � unh/d

�
dx D 0:

(25.11)

By the change of variable zh D unC1h C .1 � /unh, we get

Z 1

0

. f .unC1h C .1 � /unh/.u
nC1
h � unh/d D

Z unC1
h

unh

f .zh/dz D F.unC1h / � F.unh/:

(25.12)

Finally, substituting (25.12) into (25.11), using (25.7) and (25.10), we obtain

Eh.u
nC1
h / � Eh.u

n
h/ D � 1

�t
kunC1h � unhk2L2.˝/ � 0;

which implies that Eh.u
nC1
h / � Eh.unh/ for any time step size �t > 0:

25.3 Model Order Reduction for Gradient Systems

In this section, we describe the construction of the reduced order model (ROM) and
DEIM of the non-linear term for the SIPG discretization. We also show that the
reduced solutions using DEIM provides conditional energy stability of the discrete
energy function.

25.3.1 Reduced Order Model

The ROM solution uh;r.x; t/ of dimension N � N is formed by approximating the
solution uh.x; t/ in a subspace Vh;r � Vh spanned by a set of L2-orthogonal basis
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functions f igNiD1 of dimension N, and then projecting onto Vh;r:

uh.x; t/ 	 uh;r.x; t/ D
NX
iD1

ui;r.t/ i.x/; . i.x/;  j.x//˝ D ıij; (25.13)

where ur.t/ WD .u1;r.t/; : : : ; uN;r.t//T is the coefficient vector of the reduced
solution. Then, the SIPG weak formulation for ROM reads as: for a.e. t 2 .0;T�,
find uh;r.x; t/ 2 Vh;r such that

.@tuh;r; (h;r/˝ C ah.uh;r; (h;r/C . f .uh;r/; (h;r/˝ D 0; 8(h;r 2 Vh;r (25.14)

Since the reduced basis functions f igNiD1 � Vh;r also belong to the space Vh,
they can be expanded by finite element basis functions f'i.x/gNiD1 as:

 i.x/ D
NX
jD1


j;i'j.x/; 
 T�;iM
�;j D ıij: (25.15)

The coefficient vectors of the reduced basis function are collected in the columns of
the matrix� D Œ
�;1; : : : ; 
�;N � 2 R

N �N . The coefficient vectors of FOM and ROM
solutions are related by u 	 �ur. Substituting this relation together with (25.13)
and (25.15) into the system (25.14), we obtain for the unknown coefficient vectors
the reduced semi-discrete ODE system:

@tur C Arur C f r.ur/ D 0; (25.16)

with the reduced stiffness matrix Ar D � TA� and the reduced non-linear vector
f r.ur/ D � T f .�ur/. The construction of the reduced basis functions f igNiD1 is
discussed in Sect. 25.3.4.

25.3.2 Discrete Empirical Interpolation Method (DEIM)

Although the dimension of the reduced system (25.16) is small, N � N , the
computation of the reduced non-linear vector f r.ur/ D � T f .�ur/ still depends
on the dimension N of the full system. In order to reduce the online computational
cost, we apply the DEIM [11] to approximate the non-linear vector f .�ur/ 2 R

N

from a M � N dimensional subspace spanned by non-linear vectors f .�ur.tn//,
n D 1; : : : ; J. Let M � N orthonormal basis functions fWigMiD1 are given. We
set the matrix W WD ŒW1; : : : ;WM� 2 R

N �M (the functions Wi are computed
successively during the greedy iteration in EIM, whereas here, in DEIM, the
functions Wi are computed priori by POD and then they are used in the greedy
iteration). Then, we can use the approximation f .�ur/ 	 Q fm.�ur/, where
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fm.�ur/ D PTf .�ur/ 2 R
M and the matrix Q D W.PTW/�1 2 R

N �M is
precomputable. For the details of the computation of the reduced non-linear vectors
we refer to the greedy DEIM algorithm [11]. For continuous finite element and
finite volume discretizations, the number of flops for the computation of bilinear
form and nonlinear term depends on the maximum number of neighbor cells [15].
In the case of dG discretization, due to its local nature, it depends only on the
number of nodes in the local cells. For instance, in the case of SIPG with linear
elements (nq D 3), for each degree of freedom, integrals have to be computed on
a single triangular element [25], whereas in the case of continuous finite elements,
integral computations on 6 neighbor cells are needed [3]. Since the AVF method
is an implicit time integrator, at each time step, a non-linear system of equations
has to be solved by Newton’s method. The reduced Jacobian has a diagonal block
structure for the SIPG discretization, which is easily invertible [25], and requires
O.nqM/ operations with DEIM.

25.3.3 Energy Stability of the Reduced Solution

The energy stability of the DEIM reduced order model is proved in the same way as
for the FOM. Applying the AVF time integrator to the semi-discrete system (25.14),
choosing (h;r D unC1h;r �unh;r, and using the algebraic identity .aCb/.a�b/ D a2�b2

and the bilinearity of ah, we obtain

1

�t
.unC1h;r � unh;r; u

nC1
h;r � unh;r/˝ C 1

2
ah.u

nC1
h;r ; u

nC1
h;r /� 1

2
ah.u

n
h;r; u

n
h;r/

C
Z 1

0

Z
˝

f .unC1h;r C .1 � /unh;r/.u
nC1
h;r � unh;r/dx

�
d D 0:

(25.17)

Let us set the averaged reduced solution zh;r D unC1h;r C .1 � /unh;r, and the
averaged coefficient vector zr D unC1r C .1 � /un

r of the reduced system. Then,
from the integral term in (25.17):

Z 1

0

Z
˝

f .zh;r/.u
nC1
h;r � unh;r/dx

�
d D

Z 1

0

2
6664

NX
iD1

.unC1
i;r .t/ � uni;r.t//

.�T f .� zr//i‚ …„ ƒZ
˝

f .zh;r/ i.x/dx

3
7775 d

D
Z 1

0

.� .unC1
r � unr //

T f.� zr//d:

On the left hand side of (25.17), using the DEIM approximation f .� zr/ 	
Q fm.� zr/, adding and subtracting the term

R 1
0

	R
˝ f .zh;r/.u

nC1
h;r � unh;r/dx



d , and
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using the integral mean theorem, we obtain

Eh.u
nC1
h;r /� Eh.u

n
h;r/ D � 1

�t
kunC1h;r � unh;rk2L2.˝/

C
Z 1

0

.� .unC1r � un
r //

T. f.� zr/� Q fm.� zr//d

D � 1

�t
kunC1h;r � unh;rk2L2.˝/

C h� .unC1r � unr /; f .� Qznr /� Q fm.� Qznr /i;

for some Qznr between unr and unC1r , and h�; �i denoting the Euclidean inner product.
Applying the Cauchy-Schwarz inequality, we get

h� .unC1r � unr /; f .� Qznr /�Q fm.� Qznr /i � k� .unC1
r � unr /k2k f .� Qznr /�Q fm.� Qznr /k2:

Using the a priori error bound [3, 10, 11], we have

k f .� Qznr /� Q fm.� Qznr /k2 � k.PTW/�1jj2k.I � WWT/f .� Qznr /jj2:

Using the equivalent weighted-Euclidean inner product form of the L2-norm on
the reduced space Vh;r, we have

kunC1
h;r � unh;rk2L2.˝/ D.unC1

r � unr /
TMr.u

nC1
r � unr / D .unC1

r � unr /
T� TM� .unC1

r � unr /

D.unC1
r � unr /

T� TRTR� .unC1
r � unr / D kR� .unC1

r � unr /k22;

where Mr D � TM� is the reduced mass matrix (indeed it is the identity matrix,
� is M-orthogonal), and R is the Cholesky factor of the mass matrix M (i.e. M D
RTR). Thus, we get the identity

k� .unC1r � unr /k2 DkR�1R� .unC1r � unr /k2 � kR�1k2kR� .unC1r � unr /k2
DkR�1k2kunC1h;r � unh;rkL2.˝/:

Using the above identity, we obtain for the energy difference:

Eh.u
nC1
h;r /� Eh.u

n
h;r/ �kunC1h;r � unh;rk2L2.˝/ 

� 1

�t
C kR�1k2k.PTW/�1jj2k.I � WWT/f .� Qznr /jj2

kunC1h;r � unh;rkL2.˝/

!
:

(25.18)
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The ROM satisfies the energy decrease property Eh.u
nC1
h;r / � Eh.unh;r/ when the

right hand side of (25.18) is non-positive, i.e., if the time-step size is bounded as

�t � kunC1h;r � unh;rkL2.˝/
kR�1k2k.PTW/�1jj2k.I � WWT/f .� Qznr /jj2

: (25.19)

The columns of the matrix W are orthonormal and k.PTW/�1k2 and kR�1k2 are
of moderate size. They differ in the numerical tests between 10–30, and 30–60,
respectively. The upper bound for �t in (25.19) for each time step can be extended
for all time steps to the following global upper bound:

�t � kuh;rkm;L2.˝/
kR�1k2k.PTW/�1jj2k f .� Qzr/jjM;2

; (25.20)

where

kuh;rkm;L2.˝/ D min
1	n	J�1 kunC1h;r � unh;rkL2.˝/;

k f .� Qzr/jjM;2 D max
1	n	J�1 k.I � WWT/f .� Qznr /jj2:

The global upper bound for the time step-size�t in the right hand side of (25.20),
is a sufficiently large number so that we can choose �t sufficiently large in the
numerical examples in Sect. 25.4. Hence, the DEIM reduced energy decreases
almost unconditionally for large time step-size.

25.3.4 POD Greedy Adaptive Sampling

For an efficient offline-online computation of the reduced basis functions f igNiD1,
several greedy sampling algorithms are developed for finite difference, finite
element and finite volume methods (see for example [15, 19, 35]). In this section
we will describe the POD-greedy sampling procedure for the SIPG discretized
Allen-Cahn equation. Let u�� denotes the solution vector of the FOM related to a
parameter value�
. Let us also denote by PODX.B; k/ the operator on the Euclidean
space with X-weighted inner product (X is a positive definite matrix), and giving k
POD basis functions of the matrix B, related to the first k largest singular values.
For instance, for a parameter value �
, the M-orthonormal reduced modes f
igNiD1,
coefficient vectors of the L2-orthonormal reduced basis functions f igNiD1, may be
computed through the generalized singular value decomposition [25] of the snapshot
matrix Œun1

�� ; : : : ;uJ�� � 2 R
N �J by f
1; : : : ; 
Ng D PODM.Œu

n1
�� ; : : : ;uJ�� �;N/.

Because the computation of the POD modes for time dependent parametrized
PDEs is computationally demanding, we develop an adaptive POD-greedy (PODG)
algorithm, where we perform a greedy search among a parameter space M [19].
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The algorithm starts by selecting an initial parameter set M0 D f�
g, where �

belongs to a training set Mtrain D f�1; : : : ; �nsg � M , and an empty reduced space
V0h;r D f0g. At the k-th greedy iteration, we determine the parameter �
 2 Mtrain

for which an error indicator �k.�

/ is related to the reduced system (25.16) on

Vk�1
h;r . Then, we extend the reduced space Vk�1

h;r by adding a single POD mode
corresponding to the dominant singular value of e�� WD Œe1�� ; : : : ; eJ�� �, where

en�� D un�� �ProjVk�1
h;r

un�� is the projection error on Vk�1
h;r . Here, the single POD mode

is computed by the operator PODM.e�� ; 1/. We stop the greedy iteration either until
a predefined maximum number Nmax is reached, or the error indicator �k.�


/ is
below a prescribed tolerance TOLG. We use as an error indicator the residual-based
a-posteriori indicator

�k.�/ D
 
�t

JX
nD1

kRh.u
n
r;�/kH�1

!1=2
;

where k � kH�1 is the dual norm on H1, and Rh.unr;�/ denotes the residual of the
reduced system (25.14) on the n-th time level after time discretization.

In addition, at each greedy iteration, the computation of the error indicators
�k.�i/, i D 1; : : : ; ns, requires the solution of the reduced system (25.16) for
several times. For an efficient offline/online decomposition, we make use of the
affine dependence of the bilinear form ah on the parameter 	. Thus the stiffness
matrix A1 related to the bilinear form ah.1I u; v/ is computed in the offline stage
only once. In the online stage, Ar D 	� TA1� is computed without an additional
cost. On the other hand, the non-linear term related to the logarithmic potential
does not depend affinely on the parameter � , therefore in the online stage, the
non-linear vector in (25.16) is approximated using DEIM, which requires a quite
small number of operations, M � N for the nonlinear vector and nqM for the
Jacobian computation. The matrix Q in the DEIM is computed only once in the
offline stage. Moreover, in the POD-Greedy basis computation, we also use the
DEIM approximation (“Inner DEIM” in the Algorithm 1). Related to a certain
parameter value �
, the (temporary) inner DEIM basis functions fW1; : : : ;WMg are
computed through the POD of the snapshot ensemble F
 WD Œ f 1�� ; : : : ; f J�� � of
the non-linear vectors; i.e. fW1; : : : ;WMg WD PODI.F
;M/, where I is the identity
matrix. In order to minimize the error induced by DEIM, we take a sufficiently large
M D Mmax;
 � rank.F
/ at each greedy iteration. Finally, we construct the (final)
outer DEIM basis functions by applying the POD to the snapshot matrix collecting
all the snapshots for the parameter values � 2 MN , which are stored in the POD-
greedy algorithm.

The solutions exhibit larger gradients for the sharp interface limit when 	 !
0. In this case the FOM solutions are computed on spatially non-uniform grids
using moving mesh methods [28] or adaptive finite elements [16, 37]. Using space
adaptive methods, more points are located at the sharp interface in order to resolve
the steep gradients. Compared to the fixed meshes, space-adaptive meshes require
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Algorithm 1 POD-greedy algorithm
Input: Samples Mtrain D f�ig, jMtrainj D ns, tolerance TOLG
Output: VN

h;r WD spanf
1; : : : ; 
Ng, W WD spanfW1; : : : ;WMg

M0 WD f�1g, �� D �1, V0h;r WD f0g, N D 1

while N 	 Nmax do
compute un�� , nD 1; 2; : : : ; J
set en�� D un�� � ProjVN�1

h;r
un�� , n D 1; 2; : : : ; J

VN
h;r  � VN�1

h;r [ PODM.fe1�� ; : : : ; eJ��g; 1/
for i D 1 to ns do
fW1; : : : ;WMmax;ig D PODI.f f 1�i

; : : : ; f J�i
g;Mmax;i/ (Inner DEIM Basis)

solve reduced system on VN
h;r using DEIM approximation

calculate error indicator �N.�i/

end for
�� D argmax

�2f�1;:::;�nsg

�N.�/

if �N.�
�/ 	 TOLG then

Nmax D N
break

end if
MN WDMN�1 [ f��g
N  � N C 1

end while
F  � ŒF1; : : : ;FN �, Fi D Œ f 1�i

; : : : ; f J�i
�, �i 2MN , i D 1; : : : ;N

fW1; : : : ;WMg D PODI.F ;M/ (Outer DEIM Basis)

less degrees of freedom, which also would increase the speed-up of the ROMs.
On the other hand, the dimension of the snapshots changes at each time step for
space-adaptive meshes in contrast to the fixed size of the snapshots for fixed meshes.
In order to deal with this problem, a common discretization space can be formed.
But this space would be relatively high dimensional for sharp interface problems
with locally varying features. In [32] formation of the fixed common discretization
space is avoided without interpolating the snapshots. But, then the error of the POD
reduced solutions do not satisfy the Galerkin orthogonality to the reduced space
created by the adaptive snapshots. An error analysis of the POD Galerkin method
for linear elliptic problems is performed in [32] and applicability of the approach is
tested for 2D linear convection problems and time dependent Burger’s equation. We
also mention that spatially adaptive ROMs are studied for adaptive wavelets in [1]
and for adaptive mixed finite elements in [36].

25.4 Numerical Results

In this section we give two numerical tests to demonstrate the effectiveness of
the ROM. In the PODG algorithm, we set the tolerance TOLG D 10�3 and the
maximum number of PODG basis functions Nmax D 20. For the selected parameter
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values �
 in the greedy algorithm, the FOMs are solved using linear dG elements
with uniform spatial mesh size h WD �x1 D �x2. The average number of Newton
iterations was one for solving the nonlinear equations (9) at each time step. In all
examples, we present the L2.0;TIL2.˝// errors of the difference between the FOM
and ROM solutions, and L1.0;T/ errors of the difference between the discrete
energies, i.e. the maximum error among the discrete time instances.

25.4.1 Allen-Cahn Equation with Quartic Potential Functional

We consider the 2D Allen-Cahn equation in [21] with a quartic potential func-
tional (25.4a), so the bistable non-linear function f .u/ D u3�u, under homogeneous
Neumann boundary conditions in the spatial domain ˝ D Œ0; 1�2 and in the time
interval t 2 Œ0; 1�. The spatial and temporal step sizes are taken as h D 0:015 and
�t D 0:01, respectively. The initial condition is

u.x; 0/ D tanh

 
0:25�p

.x1 � 0:5/2 C .x2 � 0:5/2p
2	

!
:

The FOM becomes stiff for smaller 	. The training set for � D 1=	 is chosen by
Clenshaw-Curtis points [14] using more points in direction of larger �, or smaller
	, respectively:

Mtrain D f10:00; 24:78; 67:32; 132:5; 212:46; 297:54; 377:5; 442:68; 485:22; 500:00g:

The decrease of the error indicator and energy decreases are given in Fig. 25.1. The
error plot between FOM and PODG-DEIM solutions at the final time in Fig. 25.2
shows that the dynamic of the system can be captured efficiently by 20 PODG and
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Fig. 25.1 Allen-Cahn with quartic potential: error indicator vs POD modes (left) and decrease of
energies for � D 200 (right)
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Fig. 25.2 Allen-Cahn with quartic potential: FOM profile (left) and error plot between FOM and
PODG-DEIM (right) solutions, at the final time for � D 200

50 DEIM modes, which shows that FOM and ROM solutions of the Allen-Cahn
equation is robust with respect to 	.

25.4.2 Allen-Cahn Equation with Logarithmic Potential
Functional

Our second example is the 2D Allen-Cahn equation in [30], obtained here through a
scale of the system (25.1) by a factor

p
	=2. We consider the system under periodic

boundary conditions, and with a non-convex logarithmic potential (25.4b). We work
on ˝ D Œ0; 2��2 with the terminal time T D 1. For the mesh sizes, we take �t D
0:01 and h 	 0:015. We accept the initial condition as u.x; 0/ D 0:05.2�rand�1/,
where the term rand stands for a random number in Œ0; 1�.

In the PODG algorithm, we choose now the temperature as a parameter by setting
� D � and we fix 	 D 0:04. The training set Mtrain is taken as the set consisting
of the elements �k D 0:05 C 0:03.k � 1/ � Œ0:05; 0:17�, k D 1; : : : ; 5. The
decrease of the error indicator is given in Fig. 25.3, left. The solution profile and
error plot between FOM and PODG-DEIM solutions at the final time are presented
in Fig. 25.4, using 20 PODG and 50 DEIM modes. In Table 25.1, we give the
numerical errors for the solutions and energies between FOM and ROM solutions
for both examples.

Finally, in Table 25.2, we present the CPU times and speed-up factors related
to the solutions of FOM, PODG without DEIM and PODG-DEIM. It can be easily
seen that PODG with DEIM dramatically improves the computational efficiency.
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Fig. 25.3 Allen-Cahn with logarithmic potential: error indicator vs POD modes (left) and decrease
of energies for � D 0:10 (right)

Fig. 25.4 Allen-Cahn with logarithmic potential: FOM profile (left) and error plot between FOM
and PODG-DEIM (right) solutions, at the final time for � D 0:10

Table 25.1 FOM-ROM solution errors and errors between discrete energies

Quartic F Logarithmic F

Solution Energy Solution Energy

PODG 9.87e-05 1.63e-06 9.66e-06 7.72e-07

PODG-DEIM 9.94e-05 1.64e-06 1.08e-05 2.43e-06

Table 25.2 CPU times and speed-up factors

Wall clock time (s) Speed-up factor

FOM PODG PODG-DEIM PODG PODG-DEIM

AC (quartic F) 50:64 9:72 2:23 5:21 22:71

AC (logarithmic F) 40:49 7:33 1:78 5:52 22:75
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Chapter 26
MOR-Based Uncertainty Quantification
in Transcranial Magnetic Stimulation

Lorenzo Codecasa, Konstantin Weise, Luca Di Rienzo, and Jens Haueisen

Abstract Field computation for Transcranial Magnetic Stimulation requires the
knowledge of the electrical conductivity profiles in the human head. Unfortunately,
the conductivities of the different tissue types are not exactly known and vary
from person to person. Consequently, the computation of the electric field in the
human brain should incorporate the uncertainty in the conductivity values. In
this paper, we compare a non-intrusive polynomial chaos expansion and a new
intrusive parametric Model Order Reduction approach for the sensitivity analysis in
Transcranial Magnetic Stimulation computations. Our results show that compared
to the non-intrusive method, the new intrusive method provides similar results but
shows two orders of magnitude reduced computation time. We find monotonically
decreasing errors for increasing state-space dimensions, indicating convergence of
the new method. For the sensitivity analysis, both Sobol coefficients and sensitivity
coefficients indicate that the uncertainty of the white matter conductivity has the
largest influence on the uncertainty in the field computation, followed by gray matter
and cerebrospinal fluid. Consequently, individual white matter conductivity values
should be used in Transcranial Magnetic Stimulation field computations.
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26.1 Introduction

Transcranial Magnetic Stimulation (TMS) is a non-invasive technique to stimulate
cortical regions of the human brain by the principle of electromagnetic induction
[1, 2]. The complex geometry of the human brain requires the application of
numerical techniques such as the Finite Element Method (FEM) to compute
the spatial distribution of the induced electric field [12]. The knowledge of the
electrical conductivity of the biological tissues constitutes one of the main elements
to predict the induced electric field inside the human brain since they directly
affect the solution of the boundary value problem under consideration. However,
in vivo measurements of those tissue parameters are difficult to obtain and vary
between subjects, which make exact individual assertions currently impossible
[6]. Preinvestigations in [8, 18] underlined the necessity to perform an extended
uncertainty and sensitivity analysis in this framework using a realistic head model
and there is an essential need for more effective techniques due to the increasing
model complexity of high-resolution realistic head models. In most cases, Monte
Carlo (MC) methods are too expensive and techniques based on Polynomial Chaos
Expansion (PCE) are favourable. In [4] a novel approach based on Parametric Model
Order Reduction (PMOR) was proposed which allows to reduce the computational
costs of PCE approaches. Here we add sensitivity analysis to the work presented in
[4]. Recent works (e.g. [5]) propose somehow similar approaches, but for different
applications. In [14] model reduction and sensitivity analysis are summarized.

26.2 Methods

26.2.1 TMS Deterministic Modeling

In the deterministic modeling phase we use a realistic head model [19], which
is shown in Fig. 26.1. It contains five different tissues, namely scalp, skull, cere-
brospinal fluid (CSF), grey matter (GM) and white matter (WM). The model is
discretized using approximately N D 2:8 � 106 linear tetrahedral finite elements.
The coil1 is approximated by 2712 magnetic dipoles constituted in three layers
[16]. The electromagnetic problem at hand is simplified due to the low electrical
conductivities and moderate excitation frequencies which are in the range of 2–
3 kHz so that the secondary magnetic field from the induced eddy currents can
be neglected [12]. In this way, the magnetic field can be expressed in terms of
the magnetic vector potential ac produced by the excitation coil (bc D r � ac,
r � ac D 0). Considering the current conservation law, this reduces to solve

1The excitation coil is a Magstim 70 mm double coil with 9 windings which is placed above the
motor cortex area M1 (Brodman area 4) at a distance of 4 mm from the skalp.
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Fig. 26.1 FEM model of the
human head used for
uncertainty quantification
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the following equation at angular frequency ! with Neumann conditions on the
boundary @˝ of the spatial domain˝

r � .��.r;p/r'.r;p// D i! r � .�.r;p/ac.r//; (26.1)

in which the unknown '.r;p/ is the electric potential, ac.r/ is the known magnetic
vector potential, and �.r;p/ is the electric conductivity; the latter can be assumed
to be a linear combination of the P parameters pi, forming vector p

�.r;p/ D �0.r/C
PX

iD1
�i.r/ pi: (26.2)

As it is well known, the FEM discretization is achieved by rewriting the electromag-
netic problem in the weak form (problem D)

Z
˝

r' 0.r/ � �.r;p/r'.r;p/ dr D i!
Z
˝

r' 0.r/ � �.r;p/ac.r/ dr (26.3)

for all functions ' 0.r/, in which both ' 0.r/ and '.r;p/ belong to the linear
tetrahedral finite element space X of dimension jX j D N whose Degrees of
Freedom form vector x.p/.
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26.2.2 TMS Stochastic Modeling

The electrical conductivities of scalp and skin are modelled as deterministic since
they hardly affect the induced electric field inside the human brain. On the
other hand, the conductivities of CSF, GM, and WM show a wide spread across
individuals and measurements and are then modelled as uniform distributed random
variables. The conductivity values are defined as in Table 26.1.

In a PCE analysis, the electric potential '.r;p/ is approximated in the form

'.r;p/ D
X
j˛j	Q

'˛.r/ ˛. p/; (26.4)

in which ˛ are multi-indices of P elements and  ˛.p/ are polynomials of degrees
less than a chosen Q, forming an orthonormal basis in the probability space of
random variable pi, given by

 ˛.p/ D
PY

iD1
l˛i. pi/; (26.5)

with l˛i. pi/ being orthonormal Legendre polynomials.
The number of coefficients in a maximum order PCE is given by

M D
 
P C Q

P

!
: (26.6)

Both intrusive and non-intrusive approaches to PCE can be used. Non-intrusive
approaches are commonly adopted as the most efficient alternatives to Monte Carlo
technique. In this way the coefficients '˛.r/ are determined from the solutions
'.r;p/ of the deterministic problems D for all values of p in a proper set G .
However, even using sparse-grids [20], the set G becomes very large when the
number of parameters P or the polynomial degree Q increases. Thus the number
of deterministic problems to be solved becomes infeasible.

Table 26.1 Deterministic and stochastic conductivities [S=m]

Tissue Deterministic or stochastic Lower value Upper value References

Scalp Deterministic 0:34 0:34 [9]

Skull Deterministic 0:025 0:025 [10, 15]

CSF Stochastic 1:432 2:148 [3]

Grey matter Stochastic 0:153 0:573 [6, 7, 11]

White matter Stochastic 0:094 0:334 [6, 7, 11]
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26.2.3 Parametric Model Order Reduction Approach

Hereafter we propose Algorithm 1 alternative to the non-intrusive PCE approach
[18], based on the well-known greedy algorithm [19], which constructs a reduced
order model tailored to PCE analysis solving a much smaller number of deter-
ministic problems with respect to the non-intrusive PCE approaches. Moreover
the computational cost of the solution to these deterministic problems is much
smaller with respect to the non-intrusive approaches, since accurate estimations
of the solution to these deterministic problems are derived from the reduced order
model solutions taken as starting points in the adopted iterative methods for solving
linear systems. The PCE expansion of the solution to the original problem is then
obtained from such reduced order model.

In the algorithm, at step 1, the FEM discretization of the electromagnetic
deterministic problem (26.3) is solved for each selected value of p. A preconditioned
conjugate gradient method is used and the number of iterations is reduced by
assuming as initial point the O'.r;p/ estimation provided by the previously computed
compact model. At step 2 an orthonormal basis of space Sk is generated, computing
a set of functions vj.r/, with j D 1; : : : ; k, generating all functions '.r;p/ computed
at step 1 and forming the column vector

v.r/ D Œvj.r/�: (26.7)

Algorithm 1 PMOR-based algorithm
Set k WD 0 (dimension of the reduced model)
Set # WD C1 (norm of the residual)
Set linear space S0 WD ;
Choose vector p in G
Set O'.r; p/ WD 0

while # > " do
Set k WD kC 1

1 Solve problem (26.3) for '.r; p/ using O'.r; p/ as initial estimation
2 Generate an orthonormal basis of the linear space Sk spanned by Sk�1 and '.r; p/
3 Generate reduced order model Rk.p/, projecting problem D onto space Sk

for all q 2 G do
4 Solve the reduced order model Rk.q/ obtaining O'.r; q/ as an approximation for

'.r; q/
5 Estimate the approximation residual �

if � > # then
Set # WD �

6 Set p WD q

Set K WD k
7 Determine the PCE expansion of the solution to the reduced order model RK.p/ and reconstruct
the PCE expansion of '.r; p/
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At step 3 the reduced order model Rk.p/ is constructed. This model is obtained
from (26.3) assuming that the X space is substituted by its subspace, spanned by
functions vj.r/, with j D 1; : : : ; k. In this way the compact model takes the form

 
OS0 C

PX
iD1

pi OSi
!

Ox.p/ D i!

 
Ou0 C

PX
iD1

pi Oui
!

(26.8)

in which OSi, with i D 1; : : : ;P, are square matrices of dimension k given by

OSi D
Z

˝

rvj.r/ � �i.r/rvl.r/ dr
�
; i D 0; : : : ;P; (26.9)

and Oui, with i D 0; : : : ;P, are column vectors of k rows

Oui D
Z

˝

rvj.r/ � �i.r/ac.r/ dr
�
: (26.10)

Vector Ox.p/ allows to approximate the solution '.r;p/ to (26.3) as (step 4)

O'.r;p/ D
kX

jD1
Oxj.p/vj.r/ D vT.r/Ox: (26.11)

At step 5, � represents the residual when '.r;q/ is substituted by O'.r;q/ in (26.3).
It is worth recalling here that there are error estimators, which allow an offline-
online decomposition and thus an estimation of the residual at a computational
cost that scales with the dimension of the reduced space (except for the necessary
computation of the respective Riesz representations of course [17]). At step 6, the
value of q in G maximizing the value of � becomes the candidate p for solving the
deterministic problem (26.3) at next step 1. At step 7, an intrusive PCE approach is
applied to the reduced order model RK . Thus Ox.p/ is approximated by its PCE

Ox.p/ D
X
j˛j	Q

Oy˛ ˛.p/: (26.12)

Substituting this expansion into (26.8), multiplying then (26.8) by ˇ.p/, with jˇj �
M, and applying the expected value operator EŒ��, it results in

 
1M ˝ OS0 C

PX
iD1

Pi ˝ OSi
!

vec. OY/ D
 
e1 ˝ Ou0 C

PX
iD1

Pie1 ˝ Oui
!
; (26.13)

in which

Pi D 	
EŒ pi ˛.p/ ˇ.p/�



(26.14)
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Fig. 26.2 Convergence of the algorithm represented as the residual vs. the reduced basis dimen-
sion

are square matrices of order M, ˝ indicates Kronecker’s tensor product, OY D Œ Oy˛�
is a K � M matrix, vec. OY/ is the vector of the stacked columns of OY, and e1 is a
column vector of M rows made of all zeros except the first element that is one. In
these and all the following definitions of matrices and vectors the entries are indexed
by organizing multi-indices in lexicographic order.

This linear system of equations in the unknowns vec. OY/ has reduced dimension
with respect to that of the standard intrusive PCE approach, so that it can be solved
at negligible cost. From the PCE expansion of Ox.p/, the PCE expansion of O'.r;p/
approximating the PCE of '.r;p/ is straightforwardly obtained as

O'.r;p/ D
X
jˇj	Q

v.r/Oy˛ ˛.p/: (26.15)

As can be noted in Fig. 26.2 the convergence of the algorithm is of exponential
type.

26.2.4 The Non-intrusive Approach

In order to compare the numerical results of the new method the PCE-coefficients
'˛.r/ are also determined using a traditional non-intrusive approach based on
Regression (REG). The implementation presented in Weise et al. [18] is used.
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In such approach the computational grid G is constructed as the tensor product
of the roots of the Q-th order Legendre polynomials resulting in a total number of
G D QP. In this way the values pˇ of the parameter vector are considered, in which
multi-index ˇ D .ˇ1; : : : ; ˇP/, with ˇi D 1; : : : ;Q and i D 1; : : : ;P.

The solutions '.r;pˇ/ of the deterministic problems (26.3) are then computed
for all the chosen values pˇ of the parameter vector. The N Degrees of Freedom
(DoF) of each of these solutions, forming vector x.pˇ/, define the N � G matrix
X D Œx.pˇ/�. The PCE of the DoF, forming the N�M matrix Y D Œ y˛� are obtained
solving the overdetermined system of equations in the least squares sense

YA D X; (26.16)

in which A D Œ ˛.pˇ/� is an M � G matrix. From the PCE of the DoF, the PCE of
the electric potential '˛.r/ is derived.

26.2.5 Post-processing

The PCE of the magnitude E.r;p/ of the induced electric field is determined in a
post-processing stage in the form

E.r;p/ D
X
j˛j	Q

E˛.r/ ˛.p/: (26.17)

Since the PCE polynomials are assumed orthonormal, from (26.17) the statistical
mean �E.r/ of E.r;p/ is directly given by the first PCE coefficient. The standard
deviation �E.r/ is calculated as the sum of the remaining squared coefficients:

�E.r/ D E0.r/; �E.r/ D
s X
0<j˛j	Q

E2˛.r/: (26.18)

In order to quantify how strongly the induced electric field is affected by the
variations of the stochastic electrical conductivity of each tissue, we can perform a
sensitivity analysis in two different approaches.

According to a first approach, first-order Sobol’ sensitivity coefficients (not
normalized to the total variance) can be introduced as in [13] and computed
using (26.5) as

Si.r/ D Var ŒE ŒE.r;p/jpi�� D
X
˛2Si

E2˛.r/; (26.19)

where Si D f˛j˛j D 0 for all j ¤ i and ˛i > 0g, with i D 1; : : : ;P.
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Furthermore, according to a second approach, derivative-based sensitivity coef-
ficients can be introduced as in [20] and estimated from (26.5) as

S0i.r/ D E

@E

@pi
.r;p/

�
D
X
j˛j	Q

E˛.r/E

@ ˛.p/
@pi

�
D

X
˛2S 0

i

p
2˛i C 1E˛.r/;

(26.20)

being S 0i D f˛j˛j D 0 for all j ¤ i and ˛i oddg, with i D 1; : : : ;P.

26.3 Numerical Results

The grid G adopted in both PMOR and REG is composed of G D 53 D 125

nodes and the chosen polynomial degree for PCE is P D 5. The spatial distributions
of �E and �E determined by PMOR (with K D 14) and REG approaches are
shown in Fig. 26.3. The absolute difference between both approaches show minor
deviations. The equivalence is underlined by the relative error in the energy norm
which is 4:5 � 10�6 for the mean and 1:7 � 10�4 for the standard deviation. The
mean induced electric field allows a more general interpretation of the estimated
field distributions. Moreover, the standard deviation reveals areas in GM and
WM where the electric field shows a wide spread as a result of the uncertain
conductivity.

Since the PCE is performed in the whole brain, it is possible to determine
the Probability Density Function (PDF) of E in every point by sampling the
polynomials (26.17). The PDFs of three exemplary points located right under
the excitation coil are evaluated and shown in Fig. 26.4 to further illustrate the
agreement between the PMOR and the REG approach. For all three PDFs, the
relative error between the two approaches is less than 0.2%. The small differences
may originate from the sampling procedure since the PMOR and the REG approach
did not share the same sample set. The PDFs illustrate how the shape and spread
of the induced electric field vary in space. It can be observed that the spread
is large inside the WM domain which is surrounded by two domains, namely
GM and CSF, both obeying uncertain conductivities. A major strength of PMOR
approach is its computational efficiency. It required 0.8 GB of memory and a
total simulation time of 80 s using a MacBook Pro Early 2011 (Intel Core i7-
2720QM @ 2.3 GHz with 4-cores, 8-threads and with 16 GB RAM). In contrast,
REG approach required 2.2 GB and finished after 250min on a more powerful
computer (Intel Core i7-3770K @ 4.2 GHz with 4-cores, 8-threads and with 32 GB
RAM). In this way, PMOR is more than 180 times faster than traditional non-
intrusive methods. In conclusion, the MOR approach was run on a laptop while
the non-intrusive approach was run on a much faster desktop computer. So the
comparison of the two approaches is pessimistic in estimating the advantage of the
novel approach.
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Fig. 26.3 Mean �E, standard deviation �E and absolute differences of both in the sagittal plane
under the excitation coil determined by PMOR and REG

The spatial distributions of the three linear Sobol coefficients (given by (26.19))
of the biological tissues CSF, GM, and WM are computed as in [13] and are
shown on the left hand side in Fig. 26.5. On the right hand side, the absolute
difference between the new PMOR and the REG approach is shown. The linear
Sobol coefficients quantify the contribution of the individual material conductivities
to the total variance observed in the whole head with a unit of measure (V/m)2.
Consequently, they are linked to the standard deviation shown in Fig. 26.3. The
absolute difference between the Sobol coefficients obtained by PMOR and REG
are up to five magnitudes lower than their magnitudes indicating an excellent
agreement between both approaches. In case of the Sobol coefficient for CSF, the
difference plot shows an unstructured spread in the skull and scalp region, which
is eventually a result of numerical noise introduced during the solving process of
the linear system. It is observed from the numerical results that the linear Sobol
coefficients add up to more than 99% of the total variance, indicating their prime
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Fig. 26.4 Probability density functions of E in three points located right under the excitation coil
determined by the MOR and REG. The polynomials are sampled 1 � 106 times in a postprocessing
step

importance during this analysis. It can be seen that the spatial distributions of all
three Sobol coefficients are similar while their magnitudes vary. All of them show
a maximum in the white matter area at the posterior wall of the sulcus centralis
posterior together with a sudden change to adjacent tissue areas (Fig. 26.3). In the
main extend, the Sobol coefficients indicate that the whole WM region is primarily
affected by the conductivity variations. It can thus be concluded that conductivity
variations in GM and CSF directly affect the white matter area. Considering the
magnitude of the Sobol coefficients, it can be stated that white matter contributes
with up to 180 (V/m)2 most to the total variance of the induced electric field, directly
followed by grey matter and CSF with 133 (V/m)2 and 60 (V/m)2, respectively. It
is noted that this observation is in contrast to the one made during the analysis of
a simplified gyrus sulcus structure in [18], since it has to be considered, that the
conductivity variation of white matter differs between the present paper and [18]
(here: 0:094 � �WM � 0:334 S/m, [18]: 0:096 � �WM � 0:166 S/m).

Next, the derivative based global sensitivity coefficients (GDS) are computed
according to (26.20), which, compared to the Sobol coefficients, obey a more
deterministic interpretation of sensitivity. The three GDS coefficients are shown on
the left hand side in Fig. 26.6. As in the previous case, the corresponding absolute
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differences between the coefficients obtained by PMOR and REG approach are
shown on the right hand side. Again, both approaches show an excellent agreement
and yield almost identical results. The distributions of the GDS coefficients differ
strongly to the ones of the Sobol coefficients from Fig. 26.5 since they quantify the
rate of change of the induced electric field with respect to a change in conductivity
with a unit of measure V/S. Its sign provides information about the direction of
change, whether the electric field is decreasing (minus sign, blue color) or increasing
(plus sign, red color) when the conductivity rises. From an electromagnetic point of
view, considering Faraday’s law of induction, it is expected that, in the presence of
boundaries, an increase in conductivity will lead to a drop of the electric field in
the respective domain while keeping the induced current density at a constant level
to fulfil the current conservation law. This can be observed by comparing the blue
regions in the respective domains when comparing the individual GDS coefficients
with each other. The sensitivity maps of the GDS coefficients are much broader
distributed and span throughout the entire brain area compared to the Sobol coef-
ficients. This nicely demonstrates the impact of individual conductivity variations
to all other domains of the brain. However, similar to the Sobol coefficients, their
magnitudes are also highest in the target region of the sulcus centralis posterior.
As expected from electromagnetic theory, the distribution of the GDS coefficient of
CSF indicates a negative, i.e. decreasing induced electric field in CSF and adjacent
domains such as the considered deterministic skull and scalp region. At the same
time, it can be observed that the induced electric field increases predominantly in
the white matter region. This can be seen by the extended red area inside the brain
and in the sulcus centralis posterior. The present observation concerning the location
and the magnitude of this effect is in contrast to the one made in the simplified
gyrus/sulcus model from [18]. The sensitivity maps of the GDS coefficients for
GM and WM show similar patterns and magnitudes. Interestingly, the GM region
at the posterior wall of the sulcus centralis is less affected by the conductivity
variations, which is indicated by the white color. One reason for this could be the
embedded structure of GM. However, this effect is immediately annulled in the
adjacent CSF and WM region, where the induced electric field would increase or
decrease, respectively, in consequence of a positive conductivity variation. Those
observations are also novel compared to the ones made during the analysis of the
simplified gyrus/sulcus structure [18]. Besides all differences between the spatial
distributions and the unit of measure between the Sobol and the GDS coefficients,
the fundamental discoveries attained by both sensitivity indicators coincide well
and contribute substantially to understand the complex processes taking place in the
TMS framework.

In Fig. 26.7 the convergence properties of Algorithm 1 are numerically demon-
strated.
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Fig. 26.7 Accuracy of the
PMOR-based algorithm. (a)
Relative error in `2-norm in
both electric potential and
electric field vs. the accuracy
threshold 	 of Algorithm 1.
(b) Relative error in `2-norm
in both electric potential and
electric field vs. the
dimension of the reduced
order model
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26.4 Conclusion

The present paper demonstrates the advantages and applicability of a parametric
Model Order Reduction approach to uncertainty quantification in the framework
of Transcranial Magnetic Stimulation modeling. Three tissue conductivities of the
brain are described as random variables and the relevant statistics (mean, standard
deviation, sensitivities coefficients) in the stochastic modeling of the magnetic
stimulation phenomena are estimated with a dramatic reduction in the computational
burden. The analysis helps to define which tissue conductivity must be most
precisely be known and at which level of accuracy for an effective modeling. Besides
of the first two statistical moments, the spatial distribution of different sensitivity
measures are presented deepening the understanding of the complex phenomena
taking place when considering uncertain conductivity data. By virtue of extending
the sensitivity analysis to a realistic head model, it is possible to identify particular
differences in comparison to the previous study [18], which is related to a simplified
gyrus/sulcus model. The developed code is not yet optimized so we prefer not
to make it available for the moment. In the light of the previous considerations,
the motivation is further strengthened to extend this kind of studies also in other
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biomedical frameworks such as Transcranial Direct Current Stimulation in the
future.
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Chapter 27
Model Order Reduction of Nonlinear Eddy
Current Problems Using Missing Point
Estimation

Y. Paquay, O. Brüls, and C. Geuzaine

Abstract In electromagnetics, the finite element method has become the most used
tool to study several applications from transformers and rotating machines in low
frequencies to antennas and photonic devices in high frequencies. Unfortunately,
this approach usually leads to (very) large systems of equations and is thus
very computationally demanding. This contribution compares three model order
reduction techniques for the solution of nonlinear low frequency electromagnetic
applications (in the so-called magnetoquasistatic regime) to efficiently reduce the
number of equations—leading to smaller and faster systems to solve.

27.1 Introduction

The Finite Element (FE) method has been used in numerous engineering fields to
simulate various phenomena, from structural analysis to combustion modelling to
electromagnetics. While its main advantage is to correctly represent dynamical and
nonlinear behaviours, the spatial discretization inherent to the FE method is also its
main drawback, as it usually leads to (very) large systems of (nonlinear) equations.
This extensive number of equations requires a lot of computational resources,
usually far too much for quasi-real time simulations.

In this paper, we propose to apply a methodology that combines the Proper
Orthogonal Decomposition (POD) [19] and the Missing Point Estimation (MPE)
[2] to reduce those large FE systems for nonlinear eddy current applications, e.g.
for the modeling of a 3-phase power transformer, to only dozens of equations—
and therefore allowing a drastic reduction in the computational time and required
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resources. This paper also presents a discussion on the use of the Discrete Empirical
Interpolation Method (DEIM) [6] in the magnetoquasistatic case, which has already
been efficiently used in the static case [7].

27.2 Eddy current problem

Let us consider a general spatial domain ˝ (boundary � ) where the nonlinear
eddy current problem is to be solved in the time domain during T seconds with
Nt equispaced timesteps—the corresponding time increment �t D T=Nt. In this
problem, the source is imposed directly as a current density j in a source domain
˝j � ˝ . This current density j generates a magnetic field h and a corresponding
induction field b D �h in ˝ where � is the permeability of the medium (� D 1=�

with � the reluctivity). In general, ˝ consists of linear and nonlinear magnetic
subdomains,˝ l and ˝nl respectively. In ˝ l, the reluctivity is constant (e.g. � D �0
with �0 the vacuum reluctivity) whereas in ˝nl it depends on the induction field b,
i.e. � D �.b/. Parts ˝c � ˝ (˝c \ ˝j D ;) can be conducting with conductivity
� , in which induced currents will arise if j is time varying. The conductivity and the
nonlinear reluctivity of a material are independent, e.g. a material can be conductive
and nonlinear and would be written as ˝nl

c .
The general nonlinear eddy current problem is derived from Maxwell’s equations

where displacement currents are neglected, and can be formulated in terms of the
magnetic vector potential a 2 H.curl;˝/ ,

˚
a 2 L2.˝/I curl a 2 L2.˝/

�
such

that b D curl a [4]:

�@ta C curl Œ�.curl a/ curl a� D j in ˝; (27.1)

a � n D 0 in �; (27.2)

where n is the outer unit normal vector. Multiplying Eq. (27.1) by appropriate test
functions and integrating by part over ˝ leads to the following weak formulation:
find a such that

�
�@ta; a0

�
˝c

C �
�curl a; curl a0

�
˝

C ˝
n � �curl a; a0˛

�
D �

j; a0
�
˝j

(27.3)

holds for all test functions a0 2 H0.curl;˝/ , fa0 2 H.curl;˝/I a0 � n D 0j� g.
The second term can be decomposed in the linear and nonlinear subdomains as

�
�curl a; curl a0

�
˝

D �
�0curl a; curl a0

�
˝ l C � Q�.curl a/curl a; curl a0�

˝nl :

(27.4)

Applying the standard Galerkin finite element method using Whitney edge elements
[9] on Eq. (27.3) leads to the spatially discretized system of differential algebraic
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equations [7]:

MPx C S.x/x D v; (27.5)

where x is the vector of unknowns of size N, M is the mass matrix that represents
the dynamics, S is the magnetic stiffness matrix and v depends on the source current
density j.

Applying an implicit Euler scheme for the time discretisation of Eq. (27.5) leads
to the discrete system of equations at time tk D k�t for k D 1; � � � ;Nt:


M
�t

C S.xk/
�
xk D M

�t
xk�1 C vk (27.6)

with xk D x.tk/ and vk D v.tk/.
A Newton-Raphson (NR) scheme is used to linearize Eq. (27.6) at each time step.

To this end, starting from an initial guess x0k D xk�1 and x00 D 0, the linear system

J.xik/ıx
i
k D r.xik/ (27.7)

is solved and the solution is updated with

xiC1k D xik C ıxik (27.8)

for i D 1; � � � ; n such that
��ıxnk

��
2

� 10�5, i.e. until the increment is sufficiently
small, at which point xk is taken as xnk. In Eq. (27.7), J.xik/ is the Jacobian matrix
depending on xik and rik is the residual given by

r.xik/ D M
�t

xk�1 C vk �

M
�t

C S.xik/
�
xik: (27.9)

27.3 Model Order Reduction

The size of Eq. (27.7) equals the size N of the unknown vector x, which can be (very)
large for practical engineering simulations. This section aims at defining successful
techniques to reduce the system size (and thus the CPU time required to obtain
the solution). Three methods are considered: the Proper Orthogonal Decomposition
(POD) [18], the Discrete Empirical Interpolation Method (DEIM) [6] and the
Missing Point Estimation (MPE) [2].
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27.3.1 Proper Orthogonal Decomposition

The POD is applied to reduce the system of Eq. (27.6) or the NR system from
Eq. (27.7) by using a snapshot matrix X [19] that gathers the solutions for all time
steps (called snapshots):

X D 	
x1; x2; � � � ; xNt


 2 RN�Nt (27.10)

where Nt is the number of time steps. Contrary to [7] where the calculation of the
SVD is made using the covariance matrix (i.e. XTX), we directly perform a thin
singular value decomposition (SVD) on the snapshot matrix X—maintaining the
same efficiency but without computing the covariance matrix. Then

ŒUx; �x;Vx� D thin svd.X/ (27.11)

and the reduced basis is given by Ux. The vector x 2 RN�1 is reduced in the basis
Ux to a vector Qx 2 Rr�1 (r � N):

x D Ux Qx: (27.12)

The reduced solution Qx obtained by projecting x onto the reduced basis Ux given by
the application of the SVD on a snapshot matrix has been shown as the optimal
(best) choice [21]. At this point, r equals Nt and in typical cases Nt � N.
Nevertheless, from [21], we could also truncate the reduced basis Ux to its r < Nt

first columns in order to approximate the original snapshot matrix with a given error
"r. Similarly, the reduced basis Ux could be truncated based on the Kolmogorov
r-width Kr, which measures the extent to which X can be approximated by a r-
dimensional subspace of a normed linear space [8, 13, 14]. In practice, Kr and
"r decrease monotonically with r. Thanks to the singular values, the error "r is
computed as:

"r D
Pn

iDrC1 �2iPn
iD1 �2i

(27.13)

where �i is the ith singular value in the diagonal of�x. The lower "r (e.g. "r � 10�8),
the better; graphically, this indicator measures the decay of the singular values: the
fastest, the better.

By injecting Eq. (27.12) into Eq. (27.6), the reduced system is overdetermined
with N equations for r unknowns:


M
�t

C S.Ux Qxk/
�
Ux Qxk D M

�t
Ux Qxk�1 C vk (27.14)
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and by applying a Galerkin projection onto the same reduced basis [21], the reduced
system becomes:

" QM
�t

C QS.Ux Qxk/
#

Qxk D
QM
�t

Qxk�1 C Qvk (27.15)

where QM D UT
xMUx (similarly for QS) and Qvk D UT

x vk. By analogy for the NR
method, Eq. (27.7) becomes

QJ.Qxik/ı Qxik D Qr.Qxik/ (27.16)

with the corresponding reduced matrices

QJ.Qxik/ D UT
x J.Ux Qxik/Ux; (27.17)

Qr.Qxik/ D
QM
�t

Qxk�1 C Qvk �
" QM
�t

C QS.Ux Qxik/
#

Qxik: (27.18)

The size of the reduced system of Eq. (27.16) is r � N as expected but the nonlinear
parts in Eqs. (27.17) and (27.18) (i.e. QS.Ux Qxik/ and QJ.Ux Qxik/) still depend on the full
order solution xik D Ux Qxik. Therefore the evaluation of these terms still requires to
expand the reduced states to the full order size solution at each nonlinear iteration.

27.3.2 Discrete Empirical Interpolation Method

The DEIM [6] (or its continuous version EIM [3]) is a nonlinear reduction technique
that projects a few evaluations of a large vector (or matrix) onto a smaller mapping
basis in order to reduce the computational time originally required to generate it.
Let us consider the large vector z.p/ 2 RN�1 depending on some parameters p and
construct the snapshot matrix Z as:

Z D 	
z.p1/; z.p2/; � � � 
 : (27.19)

One would like to write

z.p/ ' Uz Nz.p/ (27.20)

where Uz 2 RN�q is a mapping basis and Nz.p/ 2 Rq�1 a reduced evaluation of z.p/
with q � N. The matrix Uz is computed as the reduced basis Ux in Sect. 27.3.1 by
applying a thin SVD on the snapshot matrix Z (and can be truncated by analyzing
the singular values decay in �z):

ŒUz; �z;Vz� D thin svd.Z/ (27.21)
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The DEIM expresses Nz from the evaluation of only q components of z such that

Nz.p/ ' �
PTUz

��1
PTz.p/ (27.22)

with P 2 RN�q a selection matrix for the q rows of z.p/ which is found by applying
the DEIM algorithm [6]. Here are the main steps of this procedure:

1. From Eq. (27.20), multiplying both sides by PT to select q rows of z.p/ leads to:

PTz.p/ ' �
PTUz

� Nz.p/: (27.23)

2. If
�
PTUz

�
is invertible, then we can deduce the expression of Nz.p/ (Eq. 27.22) as:

Nz.p/ D �
PTUz

��1
PTz.p/: (27.24)

3. Finally, by injecting Eq. (27.24) into Eq. (27.20), we obtain:

z.p/ ' Uz
�
PTUz

��1
PTz.p/: (27.25)

4. Since a FE element only depends on its neighbours (e.g. local influence), we
can restrict the computations to these q local components without generating
the overall vector z.p/ (similarly with rows for matrices). Equation (27.25) can
therefore be written as:

z.p/ ' Uz
�
PTUz

��1
z.PTp/: (27.26)

In the magnetoquasistatic case from Eqs. (27.17) and (27.18), the vectors
QS.Ux Qxik/Qxik and QJ.Ux Qxik/Qxik perfectly match the expression of z.p/. Indeed, these
vectors need to evaluate S.xik/ and J.xik/ respectively at each nonlinear iteration. By
applying the DEIM with z.pk/ D S.xnk/x

n
k , these expressions read:

S.xik/ ' Uz
�
PTUz

��1
S.PTxik/; (27.27)

J.xik/ ' Uz
�
PTUz

��1
„ ƒ‚ …

U�

z

J.PTxik/; (27.28)

where U
z 2 RN�q can be computed once. By injecting Eq. (27.27) in Eq. (27.18),
the reduced residual becomes:

Qr.Qxik/ '
QM
�t

Qxk�1 C Qvk �
" QM
�t

C UT
xU


z S.P

TUx Qxik/Ux

#
Qxik: (27.29)
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As will be seen later in Sect. 27.4.2, the combination of POD with DEIM lacks
robustness for the considered nonlinear eddy current problem. As an alternative, we
investigate below the use of the Missing Point Estimation technique [2].

27.3.3 Missing Point Estimation

The MPE approach [2] has the same goal as the DEIM: reducing the computation
of all entries of a general (nonlinear) vector or matrix. While the DEIM can
be used alone to approximate a vector z based on a small set of evaluations
projected onto a reduced basis Uz computed from (nonlinear) snapshots Z of the
full size vector z, the MPE must be combined with the POD since it replaces the
projection subspace UT

x by another subspace defined as UT
xPP

T . As a consequence,
the reduction procedure follows a Petrov-Galerkin approach with different left and
right projection subspaces. Other techniques use the same philosophy, e.g. Hyper-
Reduction [17] or Gappy POD [5], and differ in the determination of the reduced
number of evaluations.

Let us consider the term QS.xik/ D UT
x S.x

i
k/Ux with S.xik/ that still depends on the

full size order solution xik. Applying the MPE on S.xik/ gives a reduced set of its
rows NS.xik/:

NS.xik/ D PTS.xik/ (27.30)

with P 2 RN�q (q � N) a selection matrix that gathers q rows of S (as previously
explained, only the q rows of S are computed, i.e. S.PTxik)). Since q rows are
selected in S, only the corresponding q rows in the POD basis are useful and then
kept:

NUx D PTUx (27.31)

with NUx 2 Rq�r computed once (or offline). By applying the MPE on Eq. (27.16) it
reads:

NUT
x

NJ.xik/Uxı Qxik D NUT
x Nr.xik/ (27.32)

with NJ.xik/ D PTJ.xik/ D J.PTxik/ and Nr.xik/ D PTr.xik/ D r.PTxik/. The overall
system is reduced to an r-dimensional subspace (with the application of the POD
basis Ux) but only by considering q components of the FE model (using P) with
r; q � N. Contrary to the DEIM greedy algorithm which selects the points based
on the snapshots matrix Z, the MPE greedy algorithm tends to verify

NUT
x

NUx 	 I (27.33)
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by increasing sequentially q with the most contributing rows [2] (this procedure
may be long and should be done during an offline stage). While the DEIM strongly
depends on the number of snapshots to determine the reduced set of unknowns, the
MPE considers the original N FE degrees of freedom. In the worst case, q D Nt with
the DEIM and may be too small to correctly represent the nonlinear vector/matrix
or q D N with the MPE and all the degrees of freedom are taken into account. The
selection is based on the criteria of Eq. (27.33) and can be equivalently seen as the
decay of the condition number of NUT

x
NUx to 1. The closest the condition number is to

1, the better the criteria is fulfilled.

27.4 Numerical Results

As a test case, we consider a 2-D nonlinear model of a 3-phase power transformer
such as depicted in Fig. 27.1 [10]. The model has N D 7300 unknowns and is
simulated at no load. The nonlinear core reluctivity is given by the Brauer law:

�.b/ D � C ˛ exp.ˇb2/ (27.34)

with � D 80:47, ˛ D 0:05 and ˇ D 4:21 (from core material V330-50A [10]). The
(laminated) core conductivity is either chosen as zero (nonconducting) or as

� D d2

12
�iron D 4:16 � 10�1 S/m (27.35)

where d is the thickness of the laminations (0.5 mm) and �iron D 2 � 107 S/m [11].
A single period at 50Hz (T D 20ms) with Nt D 20 time steps is analyzed and the
input current density is given for phase i by:

j D .�1/� I

Sc
cos.2�ft C �i/Oez (27.36)

Fig. 27.1 FE model of the
3-phase transformer

A A B BC C

core

air

êy

êxêz
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Table 27.1 Subdomains of
the 3-phase transformer in
Fig. 27.1

Domain Physical region Legend in Fig. 27.1

˝nl
c n˝j Core (if � ¤ 0) White

˝ l
cc Air Lined

˝nl
cc Core (if � D 0) White

˝j Windings Filled

Phase Phase delay � [rad] Legend in Fig. 27.1

A 0 Black

B 4�=3 Gray

C 2�=3 Light gray

2 4 6 8 10 12 14 16 18 20

10−1

10−8

10−15

106

Singular value

Fig. 27.2 Singular values of snapshot matrix X, i.e. �x (circled with line) and snapshot matrix Z,
i.e. �z (squared with line) with I D 0:3 A & � D 4:16 � 10�1 S/m

where � D 0 (resp. � D 1) for left (resp. right) part of the coil (representing
the direction of the current), I 2 Œ0:1; 0:3� is the input peak current (I D 0:1 A
induces linear magnetic behaviour whereas I D 0:3 A causes the core to saturate,
see Fig. 27.9), Sc the coil surface, �i the phase delay of phase i and Oez the unit vector
along the z-axis. A full-order time domain simulation of 20 ms takes around 1 min
to compute. The subdomains description is given in Table 27.1.

27.4.1 Proper Orthogonal Decomposition

First, in the reduction process, one must verify that the problem can be mapped onto
a smaller r-dimensional subspace. Since the singular values of the snapshot matrix
X quickly decay (circled with line in Fig. 27.2), the POD can indeed be used to
reduce the system while preserving a small error. In the following tests, the POD



448 Y. Paquay et al.

basis is truncated after the 11th singular value to fulfill "r D 10�15 with r D 11.
As explained in [16] for an inductor-core system, varying the input current does
not always require to recompute the POD basis if the model is well trained with
an appropriate current to correctly capture the nonlinear behaviour. By defining the
reduced snapshot matrix QX as:

QX D 	 Qx1; Qx2; � � � ; QxNt


 2 Rr�Nt ; (27.37)

and using Eq. (27.12), we define the relative error of method i as:

�i D
���X � Ux QXi

���
2

kXk2
; (27.38)

where QXi collects the reduction states obtained by reduction technique i. In this
3-phase transformer, a single POD basis can achieve a small relative error for
all input currents—below 5% from an engineering point of view (dashed line in
Fig. 27.3). Unfortunately, the perfect choice of that basis is very sensitive. Secondly,
changing the conductivity value requires another POD basis due to a change in the
eddy current distribution—similar to a change in frequency [16] (straight line in
Fig. 27.4). For practical applications though, contrary to the input current, once the
transformer is built, the conductivity is fixed and is no longer a parameter. If a local

Fig. 27.3 Relative error �POD

according to input peak
current (basis generated with
input current I D 0:01A
dotted line, 0.25 A dashed
line, 0.5 A straight line).
Circled with line represents
the transition between linear
and nonlinear regimes

0 0.2 0.4

10−3

10−1

101

Input peak current [A]

Fig. 27.4 Relative error �POD

according to core
conductivity (basis generated
with � D 1S/m)

101 103 105 107

10−3

10−1

101

Core conductivity [S/m]
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basis cannot correctly represent all the dynamics in a single low dimensional space,
one would build a global basis by gathering all the snapshots of all parameter values
[7] or interpolate between the local reduced bases in the parameter space [1, 16].

The POD reduces the magnetoquasistatic case to 11 equations leading to a
theoretical speedup between 663 and 440,413 (the computational time plummets
to between 90 and 0.1 ms) depending on the linear solver [12]. But the nonlinear
terms still need the full order size: much of the computational gain is lost there, and
the application of the POD alone is thus not sufficient.

27.4.2 Discrete Empirical Interpolation Method

In [7], the POD-DEIM has been used to efficiently reduce a static (� D 0S/m) 3D
3-phase transformer with an error lower than 0.1% by using 55 DEIM components
(representing edges in the model). Once the core conductivity is no longer zero,
however, the stability of the DEIM suffers and becomes more and more dependent
on a priori independent parameters such as the number of time steps Nt or the
conductivity � [15, 20]. An alternative to the original DEIM algorithm is proposed
in [22], i.e. DIME, but also presents the same issues in this eddy current problem
(3-phase transformer, I D 0:3 A and � D 4:16 � 10�1 S/m). This lack of robustness
is illustrated in Figs. 27.5 and 27.6 where changing the number of time steps highly
impacts the relative error obtained with the POD-DEIM squared with line and
POD-DIME squared with dashed line techniques whereas the POD-MPE straight
line approach keeps a quasi constant relative error. In Fig. 27.5, the DEIM/DIME
reduced size q is obtained by truncating the nonlinear basis Uz through the SVD
to maintain " � 10�15. In practice, the 25 first modes are significant (i.e. when
Nt � 25). In Fig. 27.6, no truncation is performed on Uz and q D Nt. The results
remain unchanged for Nt > 90. In both figures, the MPE reduced size is kept
constant as the influence of the MPE reduced size on the error is analysed in
Fig. 27.8 in the following section. By looking at the singular values of the nonlinear

Fig. 27.5 Relative errors
�POD-DEIM (squared with line),
�POD-DIME (squared with
dashed line) with
q D min.25;Nt/ and
�POD-MPE (straight line)

20 40 60 80

10−6

10−9

10−3

100

Nt
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Fig. 27.6 Relative errors
�POD-DEIM (squared with line),
�POD-DIME (squared with
dashed line) with q D Nt and
�POD-MPE (straight line)

20 40 60 80
Nt

10−6

10−9

10−3

100

contribution, one can find a decay similar to the one depicted by squared with line
in Fig. 27.2 where a small projection error is not achievable with a low number of
modes (or similarly the Kolmogorov q-width is too large) to effectively represent
the nonlinear term onto a q-dimensional subspace with q � N. Consequently, the
POD-DEIM (and POD-DIME) can not correctly be used to reduce the computation
of the nonlinear terms.

27.4.3 Missing Point Estimation

The application of the MPE consists in the determination of the q rows to keep in
Eq. (27.16) to obtain Eq. (27.32). Contrary to the DEIM, it can be seen in Fig. 27.5
that the number of time steps Nt does not significantly influence the reduction.
Similar results were obtained by varying the number of simulated periods T or the
conductivity.

The POD-MPE is applied to the same 3-phase power transformer as the POD-
DEIM (Fig. 27.1), using both the small (I D 0:1 A) and the large (I D 0:3 A)
current values and either a zero (� D 0 S/m) or nonzero (� D 4:16 � 10�1 S/m)
conductivity for the core. The condition number of NUT

x
NUx, for both extreme cases,

decays very fast to 1 (see Fig. 27.7). However, the relative error �POD-MPE with
respect to the reduction ratio seems to be independent of this criteria (see Fig. 27.8)
where q ranges from 50 to 350 (depending on the configuration) for a relative error
below 0.1%. This important reduction allows a high gain in the computational time
and resources but a better criterion should be investigated. By applying the POD-
MPE, the assembly of the nonlinear terms is limited to q 2 Œ50; � � � ; 350� rows
instead of N D 7300 and the projection of them onto the reduced basis Ux at each
nonlinear iteration is also computed faster compared to the original matrix products.
The reduction ratios are comprised between 99% and 95% allowing a computational
time from 0.6 to 3 s, still limited by the assembly time compared to the resolution
time of 90 ms (obtained with the use of the POD allowing a drastic reduction to
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Fig. 27.7 Condition number of NUT
x
NUx
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Fig. 27.8 Relative error �POD-MPE

r D 11). The induction field b for the different setups, i.e. I D 0:1 A (top)—
I D 0:3 A (middle) and � D 0 S/m (left)—� D 4:16 � 10�1 S/m (right), and the
MPE selected points (bottom) are shown in Fig. 27.9.
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Fig. 27.9 20th time step of induction field b for I D 0:1 A (top) - I D 0:3 A (middle) and
� D 0 S/m (left) - � D 4:16 � 10�1 S/m (right). Legend: linear scale from 0 T (blue-small arrows)
to 1.52 T (red-large arrows) . 50 first MPE points (bottom)
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27.5 Conclusion

In this paper, we investigated a combined approach of the Proper Orthogonal
Decomposition and the Missing Point Estimation to efficiently and drastically
reduce both nonlinear static and eddy current models of a 3-phase power trans-
former. The reduction ratios, comprised between 99% and 95% for the assembly
and around 99.9% for the resolution, allow a reduced computational time of 0.6–
5 s compared to the original finite element model resolution time of about 60 s.
However, further work should investigate a better suited criterion on the a priori
reduced size to ensure a sufficiently small error.
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Chapter 28
On Efficient Approaches for Solving a Cake
Filtration Model Under Parameter Variation

S. Osterroth, O. Iliev, and R. Pinnau

Abstract In this work, we are considering a mathematical model for an industrial
cake filtration process. The model is of moving boundary type and involves a
set of parameters, which vary in a given range. We are interested in the case
when the model has to be solved for thousands of different parameter values, and
therefore model order reduction (MOR) is desirable, so that from full order solutions
with one or several sets of parameters we derive a reduced model, which is used
further to perform the simulations with new parameters. We study and compare
the performance of several MOR techniques known from the literature. We start
with standard MOR based on proper orthogonal decomposition (POD) and consider
also several more advanced techniques based on combination of MOR and reduced
basis techniques, including approaches relying on computation of sensitivities.
The transformation from a moving to a fixed domain introduces time varying
coefficients into the equations, which makes it reasonable to use an offline/online
decomposition. Several test cases involving different simulation time horizons and
short time training are considered. Numerical tests show that the discussed methods
can approximate the full model solution accurately and work efficiently for new
parameters belonging to a given parameter range.

28.1 Introduction

Filtration and separation processes are found in an abundance of everyday appli-
cations, in buildings, vehicles, and vacuum cleaners, to name only a few and these
processes are essential for ensuring a high quality of life. Thorough mathematical
modeling and fast and accurate computer simulations advance the prediction of
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filtration efficiency and reduce design and manufacturing costs for more advanced
filters.

In this paper, we focus on solid/liquid separation, specifically, the separation of
particles from a fluid such as oil or air. Here two filtration modes are mainly used:
cross-flow and dead-end filtration. In cross-flow filtration only part of the dirty fluid
passes through the filtering medium. This mode is characterized by one inlet with
dirty fluid and two outlets, one with cleaned fluid and one with the rest of the dirty
fluid. In dead-end filtration, in which the fluid is pushed through a porous filtering
media that separates dirty inflow from clean (or at least cleaner) outflow, all (or most
of) the particles are deposited inside or on the surface of the medium and are thus
removed from the dirty fluid. Here the filtration, which targets at capturing particles
strictly within the filtering medium is called depth filtration, while deposition of
particles on the surface of the filtering medium leading to a growth of so-called
cake there, is known as cake filtration.

Most previous literature has focused on either depth filtration ([11] and
references therein), or pure cake filtration ([26] and references therein). However,
especially in the case of polydisperse particles, one often observes a simultaneous
depth and cake filtration, and this process is indeed the subject of our study. A
major challenge of any filtration process is to balance two key factors: the capturing
efficiency and the flow rate—pressure drop ratio [11]. Whereas the first factor
relates to the purity of the filtered fluid and the size of the penetrating particles,
the second is primarily a measure of energy efficiency. In general, one seeks high
filtration efficiency at low energy cost, but the two criteria are contradictory and as
mentioned above, a balance is needed. In addition to these two key factors, a third
important criterion is the dirt storage capacity, i.e., the amount of dirt that can be
captured before replacing a filter. This criterion directly correlates with the lifetime
of a filter. Because the three criteria impose contradictory requirements, there is
no simple answer for selecting the filtering media and the operation conditions.
For example, selecting a filter medium with smaller pores improves the filtration
efficiency, but reduces the energy efficiency and shortens the lifetime. Therefore
detailed studies are needed to make these decisions. Even for the two commonly
considered cases, pure depth filtration (all captured particles deposited strictly
within the filtering medium) and pure cake filtration (all particles captured and
deposited on the upstream surface of the porous media), these studies are not trivial.
For the combined depth and cake filtration system considered here, they are even
more challenging. A model for this system and first results are described in [10].
Note that the cake described by this model is an incompressible one.

Generally, one has to differ between the microscopic description, where one
models single particles and a resolved pore structure [16, 26] and the macroscopic
description, where the particles are modeled as a dissolved continuum [10, 13, 25],
i.e., a concentration. Here we consider the latter case, i.e., we deal with an
effective porous medium and describe averaged quantities. Navier-Stokes-Brinkman
equations are a standard model for describing dead-end filtration related flows
through plain and porous media, we refer to [11] for more details on this topic. For
the needs of this article it is just important to know that the velocity is computed in
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advance and it is taken as input parameter for the equations describing the transport
and capturing of (concentration of) particles.

The combined depth and cake filtration is based on the equations for depth
filtration [9]. The dissolved concentration in the porous medium and in the cake is
described with a convection-diffusion-reaction (CDR) equation. The concentration
of particles deposited inside the medium and inside the cake is described with a
kinetic expression and these two equations are coupled with an evolution equation
(depending on flow, filtering medium, cake and particles properties) accounting
for the growth of the cake [10]. This set of equations appears for every different
particle size leading to a large number of unknowns in the case of polydisperse
particles. For dead-end filtration it is a reasonable approximation to assume that one
spatial direction (perpendicular to the filtering medium) is considered in the CDR.
However, one has to account for the variation of velocity. Overall we end up with a
large-scale moving boundary value problem.

The above model exhibits a set of parameters, which are subject to parameter
variation. We perform a sensitivity analysis to investigate the change of the solution
with respect to a parameter. This gives us further insight in the behavior of the
system. Our goal is to simulate the system for a large set of parameters. Thus we use
model reduction to decrease the computational time needed to solve the system. The
system is solved for a set of reference parameters and the corresponding solutions
are used to derive a reduced-order model. This reduced model is applied to other
parameter configurations and test cases. In our case, we modify the reduced model
depending on the actual parameter values with the help of information computed
from the sensitivity analysis. We use extrapolation, expansion, and interpolation
[2, 7, 12]. Other authors also suggest using the sensitivity information directly in
the basis determination procedure [4, 5, 23]. An important ingredient for the method
is the offline/online decomposition procedure [20], which is essential to achieve a
computational speed up.

The sequel of the article is organized as follows. In Sect. 28.2 the problem is
described mathematically and the transformation from a moving to a fixed domain
is carried out. In Sect. 28.3 the model reduction framework is described. This
is followed by the description of a 1D problem describing a standard filtration
test case. Finally, we present numerical results in Sect. 28.5 for three test cases
demonstrating the feasibility of our approach. Concluding remarks are given in
Sect. 28.6.

28.2 Model Problem

The process of cake filtration is depicted schematically in Fig. 28.1. We are
considering a fluid flow from right to left with constant inflow rate.

Consider a domain ˝ , which is split into two parts: the free liquid part ˝f .t/
and the filtering (porous) part ˝p.t/, i.e., ˝ D ˝f .t/ [ ˝p.t/. The subdomains
depend on time, since the interface between them is moving while the cake grows,



458 S. Osterroth et al.

Fig. 28.1 Computational
domain ˝: in dark gray filter
medium, in light gray filter
cake with surface normal
direction �. Flow from right
(inflow boundary �in) to left
(outflow boundary �out)

whereas the overall domain ˝ is fixed. The inflow boundary is denoted by �in and
the outflow boundary by �out.

The governing equations are given below, see also [10]. Here C denotes the
concentration of dissolved dirt and M is the concentration of deposited dirt inside
the medium/cake (due to depth filtration).

@tC C u � rC � D�C D
(
0; x 2 ˝f .t/

�@tM; x 2 ˝p.t/
(28.1)

@tM D ˛juN jC; x 2 ˝p.t/ (28.2)

Equation (28.1) is describing the transport of dirt towards the medium and has
an additional reaction term in the porous part of the domain, i.e., here some of
the particles are deposited. Equation (28.2) describes the rate of deposition (so
called adsorption rate) only in the porous part. For the moment we assume that
the adsorption rates coincide in the medium and the cake. The parameters are
the macroscopic fluid velocity u, the diffusivity D and the adsorption rate ˛. The
velocity component in normal direction � to the cake (or the porous medium) surface
is denoted by uN . Since the velocity is precomputed the value is known. In most
of the cases also the flow in the porous medium is normal. This allows us to use
the same normal velocity inside the medium. Assuming that the concentration C is
constant in the liquid part of the domain, we consider only˝p instead of˝ . For that
reason we impose the following boundary conditions:

C D .1 � �/Cin; x 2 �p;in (28.3)

@�C D 0; x 2 �p;out; (28.4)

where Cin is a given constant inflow concentration and � is the direction normal to
the outflow. Here � denotes the so called cake growth factor which describes the
growth of the cake thickness L as

@L

@t
D �

CinjuN j
�s.1 � �cake/

: (28.5)
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The particle density is given by �s and a prescribed cake porosity by �cake. The
initial conditions are given as

C.x; 0/ D C0.x/; M.x; 0/ D 0; L.0/ D L0; (28.6)

with given functions C0 and L0.
Note that in the above model the concentration M is decoupled from C. In more

involved models, e.g., a nonlinear model @tM D ˛juN j.1 C M=M0/C, the two
quantities can be coupled [9, 11]. Secondly the modeling of the whole filtration
loop requires additional information. As mentioned previously, the Navier-Stokes-
Brinkman equations are used to compute the flow field and the pressure drop.
Here the Brinkman term includes the so-called permeability, which measures the
resistance of the filter medium and the cake to the flow. Due to the growth of the
cake and the loading with particles this resistance increases. To compute the change
in permeability due to loading the concentration of deposited dirt M is needed (see,
e.g. [11]).

Equation (28.5) is independent of the solution C and therefore the cake thickness
can be precomputed. A generalization of the moving to a free boundary problem
is in progress and will be presented in a forthcoming article. There, the Dirichlet
condition will be replaced by a (reactive) Robin condition.

As mentioned above, we restrict our computations to the porous part of the
domain. Thus this part is not fixed any longer, but evolves in time. Therefore a
discretization has to be adjusted in every time step. To avoid this (also with the
hidden agenda of model reduction), we transform the domain ˝p.t/ to a fixed
domain ˝ref independent of t. Let us define a mapping 
 W Œ0;T� �˝p.t/ ! ˝ref .
Introduce a new coordinate y D 
.t; x/ and the transformed variables

NC.t; y/ D NC.t; 
.t; x// D C.t; x/; NM.t; y/ D NM.t; 
.t; x// D M.t; x/: (28.7)

Transforming the differential operators by using the chain rule leads to

dtC.t; x/ D @t NC C
X
j

@ NC
@yj

@yj
@t

D @t NC C r NC � @ty (28.8)

u � rC D
X
i

ui
@C

@xi
D
X
i

ui
X
j

@ NC
@yj

@
. yj/

@xi
D u � �D
 Tr NC� (28.9)

�C D rTrC D �
D
 Tr�T D
 Tr NC D rTD
D
 Tr NC; (28.10)

where D
 is the Jacobian matrix. Then the governing equations (28.1) and (28.2)
can be rewritten in the transformed, time-independent domain˝ref as

@t NC C .@ty C D
u/ � r NC � DrTD
D
 Tr NC D �@t NM � @ty � r NM (28.11)

@t NM C @ty � r NM D ˛juN j NC: (28.12)
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Note that now the coefficients are depending on time. The boundary and initial
conditions are transformed analogously.

28.3 Reduced Basis Method

Consider a PDE of the form

@tw C A1.�/ � rw � A2.�/�w D R.�/w; (28.13)

where � 2 D � R
p is a parameter vector from a set D of admissible parameter

values. Here A1;A2 and R denote parameter dependent prefactors. Define the
solution set XD D fw.�/ W � 2 Dg. The goal of the reduced basis method is to
find a low dimensional subspace XRB � XD approximating the solution in a proper
manner. The space XRB is built from solution trajectories w.�i/ for i D 1; : : : ;Ns,
where Ns is the number of different parameter choices. Thus the span is given as
XRB D span .fw.�1/; : : : ;w.�Ns/g/, where the solution is included for all time
instances. Such a reduced basis space is called a Lagrangian reduced basis [21]. The
chosen values are mostly referred to as snapshots. In general they are not orthogonal.
Therefore we use the technique proper orthogonal decomposition (POD) to extract
an orthonormal basis from the snapshots. The idea of POD is to approximate the
given snapshots in an optimal least-squares sense [14, 19].

We shortly summarize the most important features of POD. For more details we
refer to [19, 21, 27]. Consider the minimization problem

argmin
�1;:::;�`

J .�1; : : : ; �`/ D
NsX
iD1

������w.�i/�
X̀
jD1

hw.�i/; �jiW�j
������
2

W

(28.14a)

s.t. h�i; �jiW D ıij; i; j D 1; : : : ; `; (28.14b)

where W is a Hilbert space and h�; �iW is the corresponding inner product. The
solution �i, i D 1; : : : ; `, of the above problem can be obtained by solving an
eigenvalue/eigenvector problem [27]. It is called POD basis or POD modes. The
number ` has to be chosen a priori and different methods for choosing the value are
available, for example energy estimates [19] or the Greedy algorithm [21].

Having a basis at hand, one can use a Galerkin projection to obtain the reduced
model. Define the approximation w` of w by

w` D
X̀
iD1

�i.t/�i: (28.15)
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Inserting into Eq. (28.13), multiplying from the right by �j, j D 1; : : : ; `, we end up
with

@t�i C
X̀
iD1

�jA1.�/ � r�i
„ ƒ‚ …

DQa1:;j.�/

�i.t/ �
X̀
iD1

�jA2.�/��i

„ ƒ‚ …
Qa2:;j.�/

�i.t/ D
X̀
iD1

�jR.�/�i

„ ƒ‚ …
Qr:;j.�/

�i.t/:

(28.16)

This yields the reduced system

@t�C QA1.�/� � QA2.�/� D QR.�/�; (28.17)

where � D Œ�1; : : : ; �`�
T and matrices QA1.�/, QA2.�/ and QR.�/ defined from

the above entries. Let us further assume that the prefactors are affine parametric
dependent

A1.�/ D
q1X
iD1

�1i .�/A
i
1; A2.�/ D

q2X
iD1

�2i .�/A
i
2; R.�/ D

qrX
iD1

� ri .�/R
i;

(28.18)

where �1i ; �
2
i and � ri are scalar functions for all i D 1; : : : ; ` [21]. This property

allows a further simplification of (28.17) and the splitting of the computation process
in an offline and an online stage [20].

The snapshots are determined from the trajectories for a given set of reference
parameters Dref � D . Consequently the derived basis yields the best approximation
for this parameter setting. For � 2 D n Dref it is a priori not clear if the derived
basis yields a good approximation. Thus for improving the robustness of the
basis, sensitivity information are included. This can be done by either including
the sensitivities of the trajectory with respect to the model parameters [5, 23] or
by considering the sensitivities of the POD basis functions itself [7, 12]. From
a practical point of view this investigation is very important, since in design,
control or optimization one needs to perform several simulations [8]. Therefore the
sensitivities of the POD basis are computed as in [7] and the methods extrapolation
and expansion are used. In extrapolation a first order Taylor approximation of the
POD basis around a given reference parameter �0 is used, i.e.,

�.�/ D �.�0/C
pX

iD1
.�i � �0i /

@�

@�i
.�0/: (28.19)

Note that the new basis is not guaranteed to be orthonormal. Therefore an additional
re-orthonormalization might be needed. For expansion the approximation subspace
XRB is increased by adding the sensitivities as additional basis functions. Since for
p different parameters sensitivities are added the size of the basis is . p C 1/`. Here
one also has to take care of the basis properties. Another method for adjusting the
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basis function with respect to parameter variation is interpolation. Amsallem and
Farhat introduced in [2] a technique based on a mapping to the tangent space,
doing interpolation there and mapping back. This algorithm guarantees the basis
properties.

28.4 The 1D Problem

For testing we simplify the model to a standard filtration test case. We assume that
a flat filtering medium is used and that the flow rate is constant. Assuming further
that the flow is unidirectional from one side allows to reduce the model to 1D. Then
Eqs. (28.1) and (28.2) read

@tC C u@xC � D@2xxC D �@tM; x 2 ˝p.t/; (28.20)

@tM D ˛jujC; x 2 ˝p.t/; (28.21)

where ˝p.t/ D Œ0;L.t/� � A with A the cross section area. As stated before we
transform to the fixed domain ˝ref D Œ0; 1� � A using the transformation � D

.t; x/ D x=L.t/. This method is often referred to as Landau transformation [6] or
boundary immobilization method [15]. This yields

@t NC C
�

u

L.t/
� �

L0.t/
L.t/

�
@� NC � D

L.t/2
@2��

NC D �
�
@t NM � � L

0.t/
L.t/

@� NM
�
; (28.22)

@t NM � �
L0.t/
L.t/

@� NM D ˛juj NC; (28.23)

where � 2 Œ0; 1�. Note that the equation for NM is now a PDE whereas we had an
ODE for M. Therefore also a boundary condition on NM needs to be imposed and,
as described in [3], we set NM.1; t/ D 0. This also reflects the physics that there is
no deposition directly at the surface (M and accordingly NM just measures deposition
caused by depth filtration).

To solve the above problem we first compute the thickness L.t/, since the
computation in (28.5) is decoupled from NC. Thus all time-dependent prefactors are
known and the system for NC and NM can be solved with this knowledge. As the
prefactors are scalar, they can be factored out from the system matrices and the
offline/online decomposition can be used to compute the reduced matrices.

For our study we consider the velocity u and the initial concentration Cin as
parameters and define the parameter domain D D Œuup; udown� � ŒCin;down;Cin;up� �
R
2 depicted in Fig. 28.2. We have a spherical particle mixture with Np D 117

different particle sizes, which means that Eqs. (28.22) and (28.23) are repeated 117
times (with differing parameters). The cake height equations (28.5) are summed for
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Fig. 28.2 Parameter domain D with interpolation points and subdomains

all particle sizes, i.e.,

@L

@t
D juj
�s.1 � �cake/

NpX
iD1

�iC
i
in; (28.24)

where �i and Ci
in are the cake growth factor and the initial concentration for particle

size i, respectively. For comparison we consider six different methods:

• old/fixed/baseline [7, 12]: The basis from one reference parameter configuration
is reused for all other parameter configurations without adjustment.

• optimal [27]: For every parameter configuration the full order system is solved
and the (optimal) POD basis is computed.

• extrapolation [1, 7, 8, 12]: From one reference point the POD modes and the
corresponding sensitivities are computed. Then the current POD basis for a new
parameter configuration is approximated by (28.19).

• expansion [1, 7, 12]: POD basis and the corresponding sensitivities are computed
from one reference point. The sensitivities are added to the basis. An additional
re-orthogonalization is necessary. For our example the size of the basis is 3`.

• interpolation [2, 24]: For multiple points the full order system is solved and the
POD basis is computed. Then the interpolation procedure from [2] is used with
bilinear interpolation.

• global [22]: The full order solutions for multiple parameter configurations are
merged into one snapshot matrix and a POD basis from all the information is
computed. We choose the parameter values a priori and no Greedy algorithm for
computing the optimal snapshot location is considered (for Greedy see e.g. [1]).

Below we refer to the methods whenever the name is written in italic script. Methods
using the sensitivities directly in the snapshot matrix were tested for the above
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problem in [17]. The methods old and optimal serve as upper and lower bounds
for the relative error in the tests. Optimal can be seen as the best achievable
approximation with a given parameter configuration and a preset number of POD
modes (lower error bound), whereas old can be seen as the easiest achievable
approximation for any parameter configuration using a reference configuration
(upper error bound). Thus an improved method should lie in between these bounds.

28.5 Numerical Tests

A cell-centered finite volume scheme with upwind discretization of the convective
part and central differences for the diffusive part in space and implicit Euler scheme
in time is used. The spatial resolution is N D 8 cells and the time step �t D 1 s.
From the solution of the discretized linear system the POD basis is computed.

The parameter domain is shown in Fig. 28.2, where the middle point (black cross)
shows the reference point. The methods extrapolation and expansion use informa-
tion (solution and sensitivities) from this point, i.e., Ns D 1. For interpolation the
domain is divided in four subdomains. Here the four corner points are used as
interpolation nodes for bilinear interpolation. Therefore the POD basis has to be
known in all of the points. This method can be interpreted as a local method, since
different bases are used in the subdomains (compare the classification in [18]). For
the global basis, information from all nine depicted points (Ns D 9) are used.

The results are shown at two cuts through the parameter domain. The blue
line reflects constant inflow with varying velocity and the red line vice versa. For
both parameters 101 sampling points are used (total of 1012 different parameter
configurations). All other parameter values are listed in Table 28.1.

In the following we compare the relative error of the approximation (in com-
parison to the full order numerical solution) and the relative computation times (in
comparison to the time for a full order numerical solve). We consider three different
test cases: short time horizon, long time horizon and short time training.

For a short time horizon of Tend D 60 s we have a total amount of 112320
unknowns. For the POD approximation we used three modes (i.e., 180 unknowns,
approx. 0:1% of original amount of unknowns). Looking at the results for the
cuts through the parameter domain in Fig. 28.3 one can see the following: The
methods based on the reference data from the midpoint are coinciding in this
point with the optimal approximation, since they are exactly designed in this

Table 28.1 Parameter values

Œuup; udown� �0:002503235m=s � Œ1:5; 0:5� L0 0:000691m

ŒCin;down;Cin;up� 0:0048 kg=m3 � Œ0:5; 1:5� D 10�6m2=s

˛ 0–25 � 103 m�1 �s 2650 kg=m3

� 0–1 �cake 0:5
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Fig. 28.3 Relative error for Tend D 60 s and ` D 3 POD modes, right variation of velocity, left
variation of initial concentration

Table 28.2 Relative computation times for Tend D 60 s and `D 3

Old Extrapolation Expansion Interpolation Global

Offline cost 1:93 27:55 27:56 10:49 7:57

Av. online cost 0:31 0:31 0:32 0:31 0:31

way. For interpolation this is additionally true for the boundary points, since they
are interpolation nodes. Comparing the approximation for velocity and inflow
concentration one can see that the inflow concentration has a larger influence on
the solution, since the variation in the relative error is much higher than for velocity.
As mentioned before the number of unknowns in the reduced system is three times
for expansion (i.e. 9) and therefore the approximation is better, especially in the
reference point. For the velocity this is true in the whole parameter range, whereas
for the inflow concentration this is just valid in a neighborhood of the reference
point.

Looking at the previously defined bounds old (diamond) and optimal (circle),
just interpolation and expansion lie in between and therefore yield an improvement
of the approximation. The global approximation yields an overall balanced error for
the whole parameter range, since it is built from several points and therefore has to
approximate all points.

Comparing the relative computation times (Table 28.2) shows that the offline
time can be very large (up to 28 times for extrapolation and expansion), whereas
the average online cost are reduced to one-third of the average solution cost (three
reduced order solves instead of one full order solve). Even if the reduced system is
in the expansion case three times as large, the computational time is comparable due
to the overall small size of the reduced system.
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Let us shortly have a look at the relative error over the whole parameter domain
shown in Fig. 28.4. Here one can see that interpolation and optimal coincide in all
interpolation nodes. For all methods, which are just considering the information
from the midpoint, the error is increasing towards the boundary of the parameter
domain. As pointed out above, the concentration has a larger influence on the error.
Taking a fixed concentration value and varying the velocity, the error is nearly
constant, see Fig. 28.5. This is valid over nearly the whole domain. Fixing the

velocity (m/s) 10-3
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Fig. 28.4 Relative error for Tend D 60 s and `D 3 POD modes over the whole parameter domain
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Fig. 28.5 Relative error for Tend D 60 s and ` D 3 POD at off reference points, on the left
Cin D 0:0036 kg=m3 with varying velocity and on the right u D �0:00188m=s with varying
concentration
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velocity and varying the concentration, the behavior in Figs. 28.3 and 28.5 is similar,
almost the same. For the cuts in Fig. 28.5 again interpolation and expansion lie in
between the bounds, but, as can be seen in Fig. 28.4, one can also identify regions,
where the global approximation lies in this range.

In the case of a long time horizon of Tend D 3600 s the total amount of unknowns
in the full order system is 6739200 and 5 POD modes are used to approximate the
solution (leading to 1800 unknowns in the reduced system). Considering the relative
error in Fig. 28.6 one can see that the results are similar to the short time horizon.
Again interpolation and expansion (with larger basis) yield the best approximation
results.

Comparing the computation times (Table 28.3) one can see that the offline times
decrease a lot, in particular for extrapolation and expansion. This indicates that the
relative time to compute the sensitivities of the POD modes for a larger problem is
in comparison not as large as for the example before. For all methods the average
online computation times are below 10%.

For the last example we considered short time training for the long time horizon,
i.e., we computed the solution for Tend D 60 s and used the derived POD modes for
building the reduced system for Tend D 3600 s. The results are shown in Fig. 28.7 for
` D 6 POD modes. The global approximation is left out, because the results were
not satisfactory leading to a large approximation error. But another approximation is
considered namely the short time optimal approximation. For every new parameter
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Fig. 28.6 Relative error for Tend D 3600 s and ` D 5 POD modes, right variation of velocity, left
variation of initial concentrations

Table 28.3 Relative computation times for Tend D 3600 s and ` D 5

Old Extrapolation Expansion Interpolation Global

Offline cost 1:00 3:95 3:95 8:22 8:19

Av. online cost 0:07 0:07 0:07 0:08 0:07
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Fig. 28.7 Relative error for short time training and ` D 6

Table 28.4 Relative computation times for short time training and ` D 6

Old Extrapolation Expansion Interpolation Short optimal

Offline cost 0:07 1:01 1:01 0:38 0:00

Av. online cost 0:06 0:07 0:09 0:07 0:11

configuration the full order solution for the short time horizon is computed and the
optimal POD based is determined. This basis is used for the long time horizon as an
approximation. Note that this method has no offline phase, since all computations
are depending on the actual parameter values.

Looking at the results one can see that although the approximation is based
on the short time solution, the results are good. The relative error is quite small
and especially expansion yields good results, which are better than the short time
optimal approximation. For the variation of velocity interpolation performs quite
well, whereas in the case of initial concentration the relative error is larger than 1.
Note that also the old approximation is computed from the short time horizon. For
this example the computation times are most interesting (Table 28.4). One can see
that also the relative offline cost are now decreased lot (here comparison is carried
out with full order solve for long time horizon), but the average online cost are still
on the same level as for the long time horizon case. Therefore here the speed up is
achieved in the offline phase.

28.6 Conclusions

In this work we considered a model for combined depth and cake filtration. This
model is subject to parameter variation and therefore a study for two parameters,
namely the velocity and the inflow concentration, was carried out in 1D. For this
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purpose, different model reduction techniques based on POD, sensitivity analysis,
and interpolation are used to speed up the computations. The numerical results show
that this methods can speed up the computations. Of course this is just valid for the
online stage, whereas in the offline phase a larger amount of computations has to be
done. From the tested methods in particular interpolation and expansion are suitable
to achieve a computational speed up in combination with a low approximation error.
For short time training also the short optimal approximation has shown good results.
The approximation error for extrapolation is larger than our upper bound in all the
cases and therefore this method should not be used for our application.

References

1. Akman, T.: Local improvements to reduced-order approximations of optimal control problems
governed by diffusion-convection-reaction equation. Comput. Math. Appl. 70(2), 104–131
(2015)

2. Amsallem, D., Farhat, C.: Interpolation method for adapting reduced-order models and
application to aeroelasticity. AIAA J. 46(7), 1803–1813 (2008)

3. Breward, C.J.W., Byrne, H.M., Lewis, C.E.: A multiphase model describing vascular tumour
growth. Bull. Math. Biol. 65(4), 609–640 (2003)

4. Carlberg, K., Farhat, C.: A compact proper orthogonal decomposition basis for optimization-
oriented reduced-order models. In: The 12th AIAA/ISSMO Multidisciplinary Analysis
Optimization Conference, vol. 5964 (2008)

5. Carlberg, K., Farhat, C.: A low-cost, goal-oriented ‘compact proper orthogonal decomposition’
basis for model reduction of static systems. Int. J. Numer. Methods Eng. 86(3), 381–402 (2011)

6. Crank, J.: Free and Moving Boundary Problems. Clarendon, Oxford (1984)
7. Hay, A., Borggaard, J.T., Pelletier, D.: Local improvements to reduced-order models using

sensitivity analysis of the proper orthogonal decomposition. J. Fluid Mech. 629, 41–72 (2009)
8. Hay, A., Akhtar, I., Borggaard, J.T.: On the use of sensitivity analysis in model reduction to

predict flows for varying inflow conditions. Int. J. Numer. Methods Fluids 68(1), 122–134
(2012)

9. Herzig, J.P., Leclerc, D.M., Goff, P.Le.: Flow of suspensions through porous media –
application to deep filtration. Ind. Eng. Chem. 62(5), 8–35 (1970)

10. Iliev, O., Kirsch, R., Osterroth, S.: Cake filtration simulation for poly-dispersed spherical
particles. In: Proceedings Filtech 2015 Conference. L10-03-P112 (2015)

11. Iliev, O., Kirsch, R., Lakdawala, Z., Rief, S., Steiner, K.: Modeling and simulation of filtration
processes. In: Currents in Industrial Mathematics: From Concepts to Research to Education,
pp. 163–228. Springer, Berlin, Heidelberg (2015)

12. Jarvis, C.: Sensitivity based proper orthogonal decomposition for nonlinear parameter
dependent systems. In: 2014 American Control Conference, pp. 135–140 (2014)

13. Kuhn, M., Briesen, H.: Dynamic modeling of filter-aid filtration including surface- and depth-
filtration effects. Chem. Eng. Technol. 39(3), 425–434 (2016)

14. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic
problems. Numer. Math. 90(1), 117–148 (2001)
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Chapter 29
Model Reduction for Coupled Near-Well
and Reservoir Models Using Multiple
Space-Time Discretizations

Walid Kheriji, Yalchin Efendiev, Victor Manuel Calo, and Eduardo Gildin

Abstract In reservoir simulations, fine fully-resolved grids deliver accurate model
representations, but lead to large systems of nonlinear equations to solve every
time step. Numerous techniques are applied in porous media flow simulations to
reduce the computational effort associated with solving the underlying coupled
nonlinear partial differential equations. Many models treat the reservoir as a whole.
In other cases, the near-well accuracy is important as it controls the production
rate. Near-well modeling requires finer space and time resolution compared with
the remaining of the reservoir domain. To address these needs, we combine Model
Order Reduction (MOR) with local grid refinement and local time stepping for
reservoir simulations in highly heterogeneous porous media. We present a domain
decomposition algorithm for a gas flow model in porous media coupling near-well
regions, which are locally well-resolved in space and time with a coarser reservoir
discretization. We use a full resolution for the near-well regions and apply MOR in
the remainder of the domain. We illustrate our findings with numerical results on a
gas flow model through porous media in a heterogeneous reservoir.
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29.1 Introduction

Proper reservoir management often is challenging to perform due to the intrinsic
uncertainties and complexities associated with the reservoir properties (see [31]).
To this end, accurate results for reservoirs are obtained if a fully-resolved, fine
grid discretization is used in the model. At every time step, this requires the
solution of large systems of nonlinear equations. The importance of obtaining a
simpler model that can represent the physics of the full system is paramount to
speed up the workflows that require many (from dozens to thousands) calls of the
forward model. This is usually the case in history matching (see [1, 27]), production
optimization problems (see [10]) and uncertainty quantifications (see [23]). Also,
the computational time of such large-scale models become the bottleneck of fast
turnarounds in the decision-making process and assimilation of real-time data into
reservoir models (see [16, 21]). Over the past decade, numerous techniques have
been applied in porous media flow simulation to reduce the computational effort
associated with the solution of the underlying coupled nonlinear partial differential
equations. These techniques range from heuristic approaches (see [25, 29]), to more
elegant mathematical techniques (see [3, 22]), explore the idea of reducing the
complexity of a model that can approximate the full nonlinear system of equations
with controlled accuracy. In many cases, reduced-order modeling techniques are a
viable way of mitigating computational cost when simulating a large scale model,
while they maintain high accuracy when compared with high fidelity models.
Reduced order modeling by projection has been used in systems/controls, frame-
work, such as the balanced truncation (see [22]), proper orthogonal decomposition
(POD) (see [11]), the trajectory piecewise linear (TPWL) techniques of Cardoso
and Durlofsky [6], empirical interpolation methods (see [12, 19]), bilinear Krylov
subspace methods (see [17]) and quadratic bilinear model order reduction (see [20]).
Many of these simulation models treat the reservoir as a whole model, while near-
well regions in reservoir simulations usually require Local Grid Refinement (LGR)
and Local Time Stepping (LTS) due to several physical processes that occur in these
regions such as higher Darcy velocities, the coupling of the stationary well model
with the transient reservoir model, high non-linearities due to phase segregation
(typically gas separates) and complex physics such as formation damage models.
In addition the near-well geological model is usually finer in the near-well region
due to the higher availability of reliable data. Different approaches combining
LTS and LGR have been studied for reservoir simulation applications. The first
class of algorithms belongs to Domain Decomposition Methods (DDM). Matching
conditions are defined at the near-well reservoir interface with possible overlap, and
a Schwarz algorithm is used to compute the solution (see [13, 26]). A second class
of methods uses both a coarse grid on the full domain and a LGR in the near-well
grid (usually called windowing). These grids communicate both at the near-well
reservoir interface and also between the perforated fine and coarse cells. In [24],
Walid et al. combined these two latter approaches. An efficient iterative algorithm
is obtained using at the near-well reservoir interface, optimized Robin conditions
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for the pressure. DDM and MOR has been combined and applied in different multi-
physics problems (see [2, 4, 5, 8, 9], and [30]).

In this chapter, we combine the DDM algorithm developed in [24] with the
MOR technique developed in [18]. We describe model reduction techniques that
consider near-well and reservoir regions separately and use different spatial and
temporal resolutions to achieve efficient and accurate reduced order models. We
use full resolution to solve the near-well discretization and apply MOR (POD-
DEIM) in the rest of the domain. We use POD to construct a low-order model using
snapshots formed from a forward simulation with the original high-order model. In
the presence of a general nonlinearity, the computational complexity of the reduced
model still depends to the original fully-resolved discretization. By employing the
Discrete Empirical Interpolation Method (DEIM), we reduce the computational
complexity of the nonlinear term of the reduced model to a cost proportional to
the number of reduced variables obtained by POD.

This chapter is organized as follows. We first present in Sect. 29.2 a compressible
flow model in porous media. Then, in Sect. 29.3 we describe the local space and
time refinement discretization coupled with model order reduction using POD and
DEIM. Finally in Sect. 29.4 we illustrate the efficiency of our MOR-DDM algorithm
on 2D test cases both in terms of accuracy and CPU time compared with the
reference solution obtained using the LGR grid with global fine time stepping and
full resolution.

29.2 Compressible Flow Model in Porous Media

In this section we consider compressible phase flow in a porous media. The model
describes the injection of gas through a injector well in a 2D reservoir initially
saturated with gas. The velocity is given by the Darcy laws

V D � 1
�

K rp; (29.1)

where p is the pressure and � is the gas viscosity assumed to be constant. The rock
permeability is denoted by K and the rock porosity by �. Then, the pressure p is
solution of the following mass conservation equation.

8̂
<̂
ˆ̂:

� @t�. p/C r � .�. p/ V/ D 0; in ˝r � .0;T/;
�Krp � n D 0; on �r � .0;T/;

p D pbhp; on �w � .0;T/;
p D pinit; in ˝r � f0g;

(29.2)

where �. p/ is the mass density (assumed linear) and pbhp.t/ is the imposed bottom
hole pressure at the well boundary. To simplify notation, we assume that the
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Fig. 29.1 Example of
reservoir domain ˝r and
near-well subdomain ˝w with
the near-well reservoir
interface �rw, and the well
boundaries �w

r

well

w
w rw r

injection pressure pbhp.t/ is chosen such that �Krp � nw < 0 at the well boundaries
�w, where nw is the unit normal vector at the well boundaries outward to ˝r. The
case of producer wells could also be dealt without additional difficulties. The near-
well accuracy controls the injection (production) rate which motivates the use of a
near-well refinement of the spatial and temporal resolution for the simulation of this
model.

Let us denote by ˝w � ˝r the near-well region. In the following, the outer
boundary of the near-well region ˝w is denoted by �rw (see Fig. 29.1). We use
a model order reduction-domain decomposition method (MOR-DDM) to solve
Eqs. (29.1)–(29.2) with a coarse discretization in space and time in the reservoir
domain˝r and a locally refined space and time discretization in the near-well region
˝w. These discretizations are coupled by solving iteratively both subproblems on a
given time interval .tn�1; tn/ using appropriate interface conditions at �w and �rw.
A Robin condition for the pressure is used at the boundary �rw of the subdomain
˝w. At the well boundary �w of the domain ˝r, a total flux Neumann condition is
imposed.

29.3 Model Order Reduction Using Local Space and Time
Refinement

Instead of using a local grid refinement and a global fine time step size with full
resolution to solve Eqs. (29.1)–(29.2), we use a domain decomposition method
coupling the coarse discretization in space and time in the reservoir domain using
POD-DEIM with a fine discretization in space and time in the near-well domain
using full resolution. In the following, first the coarse and fine finite volume
discretizations of ˝r and ˝w are introduced, then we describe the MOR-DDM
algorithm with a single time step, and finally the extension taking into account local
time stepping schemes in the near-well domain is explained.
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29.3.1 Two Level Finite Volume Discretization

The discretization (see Fig. 29.2) starts from a coarse finite volume mesh of the full
reservoir domain˝r defined by

�
Mr;F

int
r ;Pw

�
;

where Mr is the set of coarse cells K, F int
r the set of coarse inner faces � , and Pw

the set of well perforations. The mesh is assumed to be conforming in the sense that
the set of neighbouring cells M� � Mr of an inner face � 2 F int

r contains exactly
two cells K and L. The inner face � is denoted by � D KjL. Considering that the
size of the cells is very large compared with the well radius, the wells are discretized
using Peaceman’s indices in each perforated cell [28]. For the sake of simplicity, the
well is assumed to be vertical with consequently, in our horizontal 2D case, a single
perforation. Let us denote by Pw the set of perforations � and by Kr

� 2 Mr the
corresponding perforated coarse cells.

A set of near-well coarse cells is assumed to be refined (coarse cells inside the
red boundary in Fig. 29.2) and the near-well mesh is obtained by adding a layer of

LGR: lgr

r

w rw

Fig. 29.2 Left: LGR mesh M lgr. Top right: reservoir coarse mesh Mr. Bottom right: near-well fine
mesh Mw and near-well reservoir interfaces Frw
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coarse cells at the boundary of the union of the refined cells. The resulting near-well
mesh is defined by

�
Mw;F

int
w ;Frw;Pw

�
;

where Mw is the set of cells K, F int
w is the set of inner faces � , Pw is the set of

well perforations, and Frw � F int
r is the set of boundary faces corresponding by

construction to coarse faces. The fine perforated cells are denoted by Kw
� for all

perforations � 2 Pw as Fig. 29.2 displays. We assume that the near-well mesh is
conforming in the sense that the set of neighboring cells M� � Mw of an inner face
� 2 F int

w contains exactly two cells K and L, and the inner face � is denoted by � D
KjL. At the near-well reservoir interface, for each face � 2 Frw, we assume that the
set of the two neighboring cells M� D fK;Lg is ordered such that K 2 Mw \ Mr

and L 2 Mr n Mw.
A cell centre finite volume discretization is used for the discretization of the

compressible flow model. We will denote by Pr (resp. Pw) the vector of cell
pressures Pr;K , K 2 Mr (resp. Pw;K , K 2 Mw). Let � D KjL be an inner coarse or
fine face, and nK;� the unit normal vector at the face � outward to the cell K. Let P
be the reservoir or near-well discrete pressure Pr or Pw. Assuming the orthogonality

of the mesh w.r.t. the permeability field K, the Darcy flux
Z
�

�Krp � nK;�d� is

approximated by the following conservative Two Point Flux Approximation (TPFA)
[14]

FK;� .P/ D T� .PK � PL/;

where T� is the transmissivity of the face � 2 F int
r or � 2 F int

w . A Two Point flux
approximation of the Darcy flux is also assumed at the near-well reservoir interface
� D KjL 2 Frw. It is denoted by

FK;� .Pw;K ;Pr;L/ D T� .Pw;K � Pr;L/;

where T� is the transmissivity of the face � . In the following DDM algorithm,
Pr;L represents the pressure interface value viewed by the near-well subdomain
in order to obtain the same finite volume discretization than the one obtained on
the single LGR mesh M lgr shown in Fig. 29.2. For each � 2 Pw, the Darcy fluxZ
�

�Krp � nK;�d� at the well perforation boundary is defined by the two point flux

approximation

Fs
K;� .Ps;K ;P� / D PIs� .Ps;K � P� /;

where P� denotes the pressure inside the perforation, K D Ks
� is the coarse (s D r)

or fine (s D w) perforated cell, and PIs� for s D r or s D w is the modified
transmissivity of the perforation � in the cell K obtained using the Peaceman
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formula which takes into account the singularity of the pressure solution at the well
(see [28]).

29.3.2 Model Order Reduction: Domain Decomposition
Method

At the near-well reservoir interface Frw, a Robin optimized interface condition is
used.

� pw C ˛ K rpw � nw D � pr C ˛ K rpr � nw; (29.3)

where nw is the normal at �rw outward ˝w, and � and ˛ are two positive optimized
parameters (see [24]). The parameter ˛ is set to 1 and the parameter � is chosen
to optimize the convergence rate leading to an optimized DD algorithm. The
optimization of the coefficient� is done using existing theory for optimized Schwarz
methods (see [15]), the optimal parameter can be computed analytically in such a
way that the DDM algorithm converges in two iterations after time integration on
one coarse time step, without taking into account the local time stepping. On the
well boundary �w, a Neumann total flux condition is used. In our injection well
example, we obtain the following condition

��. pr/ 1
�
Krpr D ��. pbhp/

1

�
Krpw; (29.4)

Let us consider, on the reservoir and near-well meshes, the same time discretiza-
tion t0; t1; � � � ; tN of the interval .0;T/ with t0 D 0, tN D T, and�tn D tn�tn�1 > 0,
n D 1; � � � ;N. The gas flow model in porous media is integrated by an implicit Euler
scheme. The discretization in space uses the TPFA discretization of the Darcy flow
together with an upwinding of the mass density with respect to the sign of the Darcy
flow. Let the reservoir and near-well solutions at time t n�1 be given. Let us denote
by xC D max.x; 0/ and x� D min.x; 0/. Then, knowing the near-well solution
Pw at time tn, the reservoir subproblem computes the solution Pr at time tn of the
conservation equations is given by:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

For each cell K 2 Mr;

�K
jKj
�tn

�
�.Pr;K/� �.Pn�1

r;K /
�

C
X

�DKjL2F int
r

�.Pr;K/

�
FK;� .Pr/

C C
X

�DKjL2F int
r

�.Pr;L/

�
FK;� .Pr/

�

C
X

�2Pw jKr
�DK

�. pbhp/

�
Fr
K;� .Pr;K ; pbhp/ D 0;

(29.5)
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coupled with the well perforations interface conditions for all � 2 Pw

�.pbhp/

�
Fr
K;� .Pr;K ; pbhp/ D �.pbhp/

�
Fw
K;� .Pw;Kw

�
; pbhp/: (29.6)

Knowing the solution Pr, the near-well subproblem computes the solution Pw, of
the conservation equations is given by:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

For each cell K 2 Mw;

�K

�
�.Pw;K/� �.Pn�1

w;K /
� jKj
�tn

C
X

�DKjL2F int
w

�.Pw;K/

�
FK;� .Pw/

C C
X

�DKjL2F int
w

�.Pw;L/

�
FK;� .Pw/

�

C
X

�DKjL2Frw

�.Pw;K/

�
FK;� .Pw;K ;Pw;� /

C C
X

�DKjL2Frw

�.Pw;� /

�
FK;� .Pw;K ;Pw;� /

�

C
X

�2Pw jKw
�DK

�. pbhp/

�
Fw
K;� .Pw;K ; pbhp/ D 0;

(29.7)

coupled with the following near-well reservoir interface conditions for all � D KjL

j� j��Pw;� � ˛�FK;� .Pw;K ;Pw;� / D j� j��Pr;� � ˛�FK;� .Pr;K ;Pr;� /; (29.8)

where j� j the lengh of the face � .
Model reduction is performed using POD and DEIM, to solve the reservoir

subproblem (29.5)–(29.6) coupled with a fully-resolved of the near-well subprob-
lem (29.7)–(29.8). POD constructs a low-order model using snapshots from a
forward simulation with the original high-order model using fine time step and LGR
mesh M lgr.

Let us denote by nr the number of cells in the mesh Mr located into the
subdomain˝r n˝w, by nw the number of cells in the mesh Mr located in the near-
well domain ˝w, and by np � nr the reduced pressure dimensional space. Given

a set of snapshots SP D
h
Pr.t1/;Pr.t2/; : : : :;Pr.tN/

i
2 R

nr�N , we apply a singular

value decomposition (SVD) on the matrix SP. The POD basis matrix ' 2 R
nr�np ;

corresponds to the first np left singular vectors. To extend the POD basis matrix to
the full reservoir domain and to keep the full well-resolution in the near-well region,
we define the following prolongation of the POD basis matrix

Q' D
�
' 0

0 Inw

�
2 R

nrw�npw ;
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where nrw D nr C nw and npw D np C nw, then the pressure is projected into the
reduced subspace as, Pr.t/ D Q'pr.t/, where pr.t/ 2 R

npw is the reduced solution.
POD is usually limited to problems with linear or bilinear terms. In the presence
of a general nonlinearity, the computational complexity of the reduced model
still depends to the finely resolved discretization. DEIM effectively overcomes
this shortcoming of the method. DEIM constructs a subspace to approximate the
nonlinear terms and selects points that specify an interpolation based projection
of dimension mp � nr to give a nearly optimal subspace approximation to the
nonlinear term (see [7, 18]).

Let us denote by Nr .Pr.t// the nonlinear term in the reservoir subproblem
(29.5)–(29.6), then for each cell K 2 Mr, .Nr .Pr//K is given by:

8̂
ˆ̂̂<
ˆ̂̂̂
:

.Nr .Pr//K D
X

�DKjL2F int
r

�.Pr;K/

�
FK;� .Pr/

C C
X

�DKjL2F int
r

�.Pr;L/

�
FK;� .Pr/

�

C
X

�2Pw jKr
�DK

�. pbhp/

�
Fr
K;� .Pr;K ; pbhp/

(29.9)

Let us define the diagonal matrix L D .jKj�K/K2Mr 2 R
nrw�nrw where �K

and jKj denote, respectively, the porosity and the surface of the cell K. Then the
system (29.5) can be rewritten in the following algebraic form:

1

�tn
L
�
�.Pr/ � �.Pn�1

r /
�

C Nr .Pr/ D 0: (29.10)

We replace Pr and Pn�1
r respectively by Q'pr and Q'pn�1r and we project the system

(29.10) onto Q', then the reduced system of (29.10) is of the form:

1

�tn
Q'T L Q'

�
�.pr/ � �.pn�1r /

�
C Q'T Nr . Q'pr/ D 0; (29.11)

We approximate the nonlinear function Nr on a linear subspace spanned by basis

vectors 
 D
�
 1; � � � ;  mp

�
2 R

nr�mp , obtained by applying POD to the snapshots

of the nonlinear function Nr W SNr D
h
Nr.Pr.t1//;Nr.Pr.t2//; � � � ;Nr.Pr.tN//

i
2

R
nr�N . Similarly to POD, to extend the DEIM to the full reservoir domain and

to keep the full well-resolution in the near-well region, we define the following
prolongation of the DEIM basis matrix

Q
 D
�

 0

0 Inw

�
2 R

nlgr�mpw ;
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where mpw D mp C nw; then Nr 	 Pmpw

iD1 ci Q i D Q
c. Thus, DEIM selects only mpw

rows of Q
 to compute the coefficients c. This can be formalized using the selection
matrix

P D
h
e}1 ; : : : ; e}mpw

i
2 R

nlgr�mpw

where ei is the ith column of the identity matrix. Assume PT Q
 is nonsingular, the
reduced system (29.11) becomes

1

�tn
Q'T L Q'„ ƒ‚ …
npw�npw

�
�.pr/� �.pn�1r /

�
C Q'T Q
.PT Q
/�1„ ƒ‚ …

npw�mpw

PT Nr . Q'pr/„ ƒ‚ …
mpw�1

D 0; (29.12)

When the nonlinearity is component-wise, the selection matrix PT can be
brought inside the nonlinearity Nr and hence the computational complexity of
PT Nr . Q'pr/ is independent of the fine grid dimension nlgr (size of high fidelity
model). This is obviously not applicable in our case . However, thanks to the
TPFA discretization, the evolution of each nonlinear element depends only to the
neighboring elements, and therefore it is possible to compute the nonlinear term
PT Nr . Q'pr/ independently of the fine grid dimension nlgr using a certain sparse
matrix data structure. Let Q'K the row of the basis matrix Q' corresponding to the cell
K 2 Mr, then Pr;K D Q'Kpr, and hence the Two Point flux approximation of the
Darcy flux can be rewritten in the following reduced order form

FK;� .Pr/ D T� .Pr;K � Pr;L/ D T� . Q'K � Q'L/pr D QFK;� . pr/

Using the notations above, Eq. (29.9) can be rewritten in the following reduced order
form
8̂
ˆ̂̂<
ˆ̂̂̂
:

. QNr . pr//K D
X

�DKjL2F int
r

�. Q'Kpr/
�

QFK;� . pr/C C
X

�DKjL2F int
r

�. Q'Lpr/
�

QFK;� . pr/�

C
X

�2Pw jKr
�DK

�. pr;� /

�
Fr
K;� . Q'Kpr; pr;� /;

(29.13)

with pr;� denotes the pressure inside the perforation. Let us denote by Ki the ith cell
in the reservoir mesh Mr. Then, a new formulation of Nr. Q'pr/ is provided by

Nr . Q'pr/ D
h
. QNr . pr//K1 ; : : : ; . QNr . pr//Knrw

iT 2 R
nrw ;

and thus

PT Nr . Q'pr/ D
h
. QNr . pr//K}1 ; : : : ; . QNr . pr//K}mpw

iT 2 R
mpw :
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Equation (29.12) coupled with the well perforations interface conditions for all � 2
Pw

�. pr;� /

�
PIs�. Q'Kr

�
pr � pr;� / D �. pbhp/

�
Fw
K;� .Pw;Kw

�
; pbhp/: (29.14)

Let us set

pr;Pw D
�
pr;� ; � 2 Pw

�
;

using these notations, we can rewrite the reservoir subproblem (29.12)–(29.14) as
follows

8<
:

Rr

�
pr;pr;Pw

�
D 0;

BQT

�
pr;pr;Pw

�
D BQT

�
Pw; pbhp

�
;

where Rr denotes the system of reservoir conservation equation, and BQT denotes
the total flux boundary conditions at the well perforations Pw. Similarly, let us set

Pw;Frw D
�
Pw;� ; � 2 Frw

�
and Pr;Frw D

�
Q'Lpr; � D KjL; � 2 Frw

�
;

Similarly, we can rewrite the near-well subproblem (29.7)–(29.8) as follows

8<
:

Rw

�
Pw;Pw;Frw

�
D 0;

Brobin

�
Pw;Pw;Frw

�
D Brobin

�
Pr;Pr;Frw

�
;

where Rw denotes the system of reservoir conservation equation, and Brobin denotes
the Robin boundary condition for the pressure at the interface �rw. Then, the MOR-
DDM algorithm, at a given time step tn, is the following multiplicative Schwarz
algorithm which computes the reservoir and near-well solutions pr, and Pw of the
coupled systems (29.12)–(29.14)–(29.7)–(29.8) solving successively the following
subproblems

8<
:

Rr

�
pkr ;p

k
r;Pw

�
D 0;

BQT

�
pkr ;p

k
r;Pw

�
D BQT

�
Pk�1
w ; pbhp

�

8<
:

Rw

�
Pk
w;P

k
w;Frw

�
D 0;

Brobin

�
Pk
w;P

k
w;Frw

�
D Brobin

�
pk
r ;P

k
r;Frw

�
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for k � 1 until the following stopping criteria is fulfilled:

dQ D
jBQT

�
Pk
w; pbhp

�
� BQT

�
Pk�1
w ; pbhp

�
j

jBQT

�
Pk
w; pbhp

�
j

� "; (29.15)

for a given ".

29.3.3 Local Time Stepping

Let t0; � � � ; tN denote the coarse time discretization on the reservoir domain with
the coarse time stepping �tn D tn � tn�1 > 0, n D 1; � � � ;N. Each time
interval .tn�1; tn/ is discretized using a local time stepping scheme in the near-well
subdomain denoted by tn;m, m D 0; � � � ;Nn with �tn;m D tn;m � tn;m�1 > 0 for
all m D 1; � � � ;Nn, and tn;0 D tn�1, tn;Nn D tn. Firstly, the boundary conditions at
the near-well reservoir interface are interpolated in time between the two successive
coarse times tn�1 and tn:

8<
:
Brobin

�
Pn;m;k
w ;Pn;m;k

w;Frw

�
D tn;m�tn�1

�tn Brobin

�
pk;nr ;P

k;n
r;Frw

�

C tn�tn;m
�tn Brobin

�
pk;n�1r ;Pk;n�1

r;Frw

�
:

Secondly, at each well perforation of the reservoir coarse mesh, the time average of
the total flux between tn�1 and tn is imposed:

BQT

�
pn;kr ;p

n;k
r;Pw

�
D

NnX
mD1

�tn;m

�tn
BQT

�
Pn;m;k�1
w ; pn;mbhp

�
:

To construct the reduced basis for the pressure and the nonlinear term at the offline
stage, we collect the snapshots at each coarse time step of the full global fine time
step resolution in the LGR mesh M lgr.

29.4 Numerical Tests

The reservoir, defined by the two-dimensional domain˝r D .�L;L/� .�L;L/ with
L D 2:5 km, is assumed to be heterogeneous with porosity � and permeability K
shown in Figs. 29.3 and 29.4 (SPE10, top layer). The reservoir is initially saturated
with liquid (gas) at initial pressure pinit D 40 � 105 Pa. The bottom hole pressure
pbhp.t/ at offline stage and online stage are depicted in Fig. 29.5. The vertical well
injector of radius rw D 0:12m is located at the center of the reservoir. The gas mass
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Fig. 29.3 Porosity (SPE10)

Fig. 29.4 Permeability
(SPE10)
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Fig. 29.5 Given bottom hole pressure (pbhp)

density defined by

�. p/ D M

RT
p;

where R D 8:314 J K�1 mol�1, the molar mass M D 0:016Kg, the fixed temperature
T D 323 K. The gas viscosity is fixed to � D 13 � 10�6. The reservoir coarse mesh
Mr is the uniform Cartesian mesh Mr � Mr with Mr D 19 of step �x D 2L

Mr
D

263:15m. The near-well subdomain is defined by ˝w D .�Lw;Lw/ � .�Lw;Lw/
with Lw D 657m, and its mesh Mw is obtained, starting from the restriction of
the coarse mesh Mr to ˝w, by subdivision of all coarse cells in the subdomain
.�Lw C�x;Lw ��x/� .�Lw C�x;Lw ��x/ by a factor 3 in each direction leading
to nine square fine cells per coarse cell.

In order to construct our algorithm MOR-DDM, we solve the model (29.1)–
(29.2) on LGR mesh M lgr as shown in Fig. 29.2 for 30 days using the coarse
time step �t D 1 day, and a fine time stepping obtained by subdivision of each
coarse time step into five sub time steps and saved the snapshots of pressure
and the nonlinear term at each coarse time step. Thus, we have 30 snapshots
for the both pressure and the nonlinear term. Let us denote by MORnp;mp -DDM,
the reduced order model-domain decomposition algorithm obtained with np and
mp modes successively for the pressure and the nonlinear term. The solutions
obtained by the MORnp;mp -DDM algorithm are compared in term of accuracy
and CPU time to both the solution obtained with DDM algorithm and to the
reference solution obtained on the LGR mesh M lgr computed with the fine time
stepping.
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Fig. 29.6 Cumulative gas rate obtained at 30 days with different algorithms

Fig. 29.7 Pressure obtained at 30 days with fine discretization using full order

The well cumulative gas flow rate as a function of time obtained with different
algorithms (.np;mp/ 2 f1; 3; 5g2) is exhibited in Fig. 29.6. We show in Figs. 29.7
and 29.8 the pressure solution obtained at final time, successively for the reference
solution and for the MOR5;5-DDM algorithm. The figure shows that the solutions
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Fig. 29.8 Pressure obtained
at 30 days with
MOR5;5-DDM

converge to the reference solution on the LGR mesh with fine time stepping as the
number of modes increase

The convergence of the DDM iterations exhibited in Figs. 29.9 and 29.10
successively for DDM algorithm and for MORnp;mp-DDM algorithm (.np;mp/ 2
f1; 3; 5g2) is obtained in 2 iterations in both cases for the stopping criteria " D 10�2
on the relative well total flux maximum variation (29.15).

We finally give in Table 29.1, the CPU times and the relative pressure error
obtained with the reference LGR algorithm using the global fine time step, the DDM
algorithm and the MORnp;mp -DDM algorithms (.np;mp/ 2 f1; 3; 5g2).

These results show a factor of roughly 2 of gain in CPU time obtained with
DDM algorithm with an error equal to 0:16%. A factor of almost 4 of gain in
CPU time is obtained with our new algorithms MOR-DDM. This gains do not
include the snapshot generating offline cost and it seems to be not significant
compared to what usually obtained via MOR. However this disadvantage disappear
when we apply our DD-ROM algorithm in real case of reservoir simulation
application. First, the basis function generated at the offline stage will be re-
used for many different input and output data, therefore the cost of our algorithm
will be reduced too much compared to the re-used of the high fidelity model.
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Fig. 29.9 Convergence of dQ obtained by DDM algorithm using full order

Second, due to the use of a full order on the near-well region, the CPU gains
will increase whenever the size of the near-well region decreasing compared to
the rest of the reservoir. In our example the near well region is almost one fifth
of the reservoir domain whereas in real case the near well region is limited
to few meters and the reservoir stretches mostly over several tens of kilome-
ters.

The error obtained with the different modes number is close to the error obtained
with DDM algorithm using full order.
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Fig. 29.10 Convergence of dQ obtained by MOR3;3-DDM algorithm

Table 29.1 Relative pressure error and CPU time obtained with different algorithms

Methods CPU time (s) Pressure error

LGR-Fine time step-Full ordera 86 –

DDM-Full order 40 0:0016

MOR1;1-DDM 18 0:0102

MOR3;1-DDM 20 0:0177

MOR1;3-DDM 20 0:0154

MOR3;3-DDM 21 0:0049

MOR5;3-DDM 20 0:0050

MOR3;5-DDM 20 0:0050

MOR5;5-DDM 20 0:0044

aReference solution

29.5 Conclusion

A model order reduction algorithm for a compressible flow model in porous media
coupling near-well regions locally refined in space and time with a coarser reservoir
discretization has been presented. The algorithm is based on domain decomposition
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method and using POD locally for the pressure and DEIM locally for the nonlinear
term. The algorithm has been implemented in 2D for a gas flow through porous
media in a heterogeneous reservoir with an injection well. The numerical results
show good behavior of our algorithm that provides good accuracy compared to the
reference solution obtained with full order on LGR using a global fine time step.
Furthermore we observe important gains in CPU time for a cost approximately 4
times less. Compared with the solution obtained with full order using local time
step (DDM algorithm) we get a CPU time savings for a cost approximately 2 times
less.
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Chapter 30
Time-Dependent Parametric Model Order
Reduction for Material Removal Simulations

Michael Baumann, Dominik Hamann, and Peter Eberhard

Abstract Machining of thin and lightweight structures is a crucial manufacturing
step in industries ranging from aerospace to power engineering. In order to enable
efficient simulations of elastic workpieces and solve typical tasks like the prediction
of process stability, reduced elastic models have to be determined by model order
reduction. Thereby, the system matrices need to be constant, which cannot be
assumed for elastic bodies with varying geometry due to material removal. In this
contribution we propose a technique to generate reduced elastic bodies for systems
with time-varying geometries and their application in time-domain simulations.
Therefore, the model is described as a parameter-dependent system. Due to the fact
that the considered parameter varies in time-domain simulations, time-dependent
parametric model order reduction techniques for elastic bodies are presented.

30.1 Introduction

In elastic multibody simulations moving loads can be implemented with parametric
model order reduction. Usually the parameter dependency is actually also a time
dependency, thus time-dependent parametric model order reduction has to be
developed and implemented, see [11, 13]. The application of parametric model
order reduction, neglecting the time variance in the modeling, does not consider
the variation of the reduced system dynamics. The time-dependent parametric
model order reduction eliminates the implicit simplification in modeling. However,
these additional terms have been frequently and consciously neglected in many
applications of moving loads, due to their minor influence in these applications. In
[11, 13] time-dependent parametric model order reduction is investigated for mov-
ing load problems, where the finite element mesh remains constant. The parameter
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dependency of the T-shaped plate is linked to the machining progress. On the one
hand the contact point moves due to the feed of the milling tool and on the other
hand the geometry of the T-shaped plate is affected due to machining. Based on the
milling process a distinctive change of the workpiece dynamics can be determined.
Thus, the change of the eigenfrequencies is to be mentioned, [1, 5, 6]. The
investigated application of this contribution significantly differs from commonly
investigated applications by these characteristics. Furthermore, machining processes
exhibit a strong sensitivity to varying dynamics. Thus, the simplifications in the
modeling may effect the stability of the process. Hence, the model of the T-
shaped plate is a remarkable example for the application of parametric model order
reduction techniques and motivated by realistic applications. Practical problems
include machining of frame components, milling of blades for aircraft propellers or
turbines. The applications demand high geometric accuracy and an excellent surface
finish. In [4], a turning process is investigated using a parametric flexible multibody
model. The new contribution of this paper is the comparison of parametric model
order reduction and time-dependent parametric model order reduction in material
removal simulations.

The structure of the paper is as follows. First, the theoretical approach of
time-dependent parametric model order reduction is presented in Sect. 30.2. After-
wards, the modeling of the milling force, Sect. 30.3, and the workpiece dynamics,
Sect. 30.4, of the investigated example is stated. Section 30.5 presents the results
with the investigation of the T-shaped plate in frequency domain as well as the
milling process in time domain.

30.2 Time-Dependent Parametric Model Order Reduction

In this section the mathematical differences of the time dependent parametric model
order reduction (PTMOR) compared to parametric model order reduction (PMOR)
are presented. Starting with model order reduction (MOR) of linear time invariant
systems, PMOR offers a meaningful interpolation of the systems. After describing
some basics, the computational handling of the additional terms of PTMOR is shown.

The linear time invariant system from structural mechanics

M Rq.t/C D Pq.t/C Kq.t/ D Bu.t/ , (30.1a)

y.t/ D Cq.t/ (30.1b)

is considered, which is an ordinary differential equation obtained by local dis-
cretization of partial differential equations with the finite element method. Here,
the symmetric mass, damping, and stiffness matrices M, D, K 2 R

N�N and the
elastic coordinates q.t/ 2 R

N are taken into account. The input matrix B 2 R
N�r
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distributes the components of the actuating force u.t/ 2 R
r, whereas the output

matrix C 2 R
w�N specifies the favored output y.t/ 2 R

w.
An approximation of the high order model by MOR techniques, see [3], based on

the projection

q.t/ 	 V Nq.t/ (30.2)

with the projection matrix V 2 R
N�n, and n � N yields the reduced order model

WTMV„ ƒ‚ …
NM

RNq.t/C WTDV„ ƒ‚ …
ND

PNq.t/C WTKV„ ƒ‚ …
NK

Nq.t/ D WTB„ƒ‚…
NB

u.t/ , (30.3a)

Ny.t/ D CV„ƒ‚…
NC

Nq.t/ (30.3b)

by means of the Petrov-Galerkin projection and the left projection matrix W 2
R

N�n. If for the projection matrices W D V, orthogonal projection instead of
oblique projection is used, whereby the preservation of structural properties is
ensured.

The representation of the interesting system dynamics by the reduced order
model, depicted by the bar symbol, can save computational effort while preserving
the essential dynamics and neglecting the non-essential dynamics.

If an interpolation of different reduced order models is sought, PMOR techniques
can be used. The demand of interpolated systems could, e.g., be motivated by
optimization problems for which the preparation of high order models for every
parameter p is too expensive.

Generally the subspaces of individually reduced systems differ and, therefore,
the elastic coordinates can differ as well

Nq1.t/ ¤ : : : ¤ Nqi ¤ : : : ¤ Nqk.t/ . (30.4)

Hence, the direct matrix interpolation is not meaningful and the matrix interpolation
of different reduced order models can be prepared by the additional individual
transformation

Nqi.t/ D Ti Qq.t/ (30.5)

with

Ti D �
RTVi

��1
, (30.6)
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see [9]. In order to select a common subspace, the singular value decomposition
(SVD) of the union of all subspaces

U†NT D svd
�
Œv1; : : : ; vn„ ƒ‚ …

V1

; : : : ; vnk�
�

, (30.7a)

U D Œu1; : : : ;un„ ƒ‚ …
R

; : : : ;unk� (30.7b)

can be used. Here, k reduced order systems of order n are considered. Choosing
the common subspace based on an SVD is not mandatory. Another simple way is to
choose the subspace of one reduced order model R D Vi. The approach yields the
approximation

q.t/ 	 ViTi„ƒ‚…eVi

Qq.t/ (30.8)

and the linear parameter varying system

eM. p/ RQq.t/CeD. p/ PQq.t/C eK. p/ Qq.t/ D eB. p/u.t/ , (30.9a)

Qy.t/ D eC. p/ Qq.t/ . (30.9b)

In this paper, for simpler representation only a scalar parameter p is considered
but everything can be generalized to parameter vectors. In this regard, the system
dynamics is represented by the interpolated system matrices

eN. p/ D
kX

iD1
ci. p/eVT

i Ni
eVi„ ƒ‚ …eNi

; Ni 2 fMi; Di; Ki; Bi ;Cig (30.10)

depicted by the tilde symbol. The parameter-dependent coefficients ci. p/ are chosen
by the interpolation approach, e.g. using linear interpolation or cubic splines.

Various modeling problems require a time dependency of the parameter, i.e. p D
p.t/, which is then considered by PTMOR. An application of this extension is the
moving load problem. As a consequence of the time dependent parameter, there
results a time dependency of the projection matrix

eV D eV� p.t/� D eV.t/ (30.11)
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which yields the approximations

q.t/ 	 eV.t/ Oq.t/ , (30.12a)

Pq.t/ 	 eV.t/ POq.t/C PeV.t/ Oq.t/ , (30.12b)

Rq.t/ 	 eV.t/ ROq.t/C 2 PeV.t/ POq.t/C ReV.t/ Oq.t/ , (30.12c)

whereby the derivatives of the elastic coordinates receive additional terms due to
Leibniz’s rule, see [11, 13].

For the calculation of the additional terms, the time derivatives of the projection
matrix eV.t/ are separated corresponding to

PeV.t/ D deV.t/
dt

D @eV
@p

dp

dt
C @eV

@t„ƒ‚…
0

D @eV
@p

Pp.t/ , (30.13a)

ReV.t/ D @2eV
@p2

Pp2.t/C @eV
@p

Rp.t/ (30.13b)

into parameter dependent matrices and time dependent parameter derivations. The
time dependent matrices vanish since there is no direct time dependency of the
projection matrix.

The linear time varying system

� eM0. p/„ƒ‚…
bM

� ROq.t/C
�eD0. p/C 2eM1. p/Pp„ ƒ‚ …

bD

� POq.t/

C
�eK0. p/CeD1. p/Pp C eM2. p/Pp2 C eM1. p/Rp„ ƒ‚ …

bK

�
Oq.t/ D eB0. p/„ƒ‚…

bB
u.t/ , (30.14a)

Oy.t/ D eC0. p/„ƒ‚…
bC

Oq.t/ (30.14b)

is obtained with

eNr. p/ D
nX

iD1
ci. p/eVT

i Ni
@reVi

@pr„ ƒ‚ …eNi;r

. (30.15)

All matrices of this linear time varying system can be calculated in an offline step
whereas just the interpolation has to be done online. The matrices eNr with r D 0

match to the matrices of the PMOR approach. The matrices which are affected by
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partial derivatives eNr with r > 0 are the new terms in the PTMOR approach distin-
guishing it from the PMOR approach, however they are not available directly from
the high order model. Thus, numerical methods, for example difference quotients,
have to be used. Another possibility is in the case of polynomial interpolation, such
as cubic spline interpolation, utilizing derivatives of these polynomials.

30.3 Modeling of the Milling Force

Milling is described by a common force law in the stability analysis of machining
processes, [8]. The centerpiece of this approach is the dynamic chip thickness
approximation which uses an approximation of the nominal chip thickness and
one based on the relative displacement of the workpiece and the tool. Both the
current displacement and the material removal one rotation before, is an indication
of the workpiece surface and thus the chip thickness. The current displacement,
which indicates the current machined surface, is taken into account in the next
rotation. This process is not necessarily stable and can lead to self-exited vibrations,
called chatter, [12]. In stability analysis of machining processes, the dynamics of
the workpiece is often modeled in a rather simple way, e.g. by single-degree-of-
freedom oscillators. In contrast, high dimensional finite element models are used
for the modeling of chipping, where the finite element mesh has to be adapted
very frequently. The use of a (time-dependent) parametric reduced-order model
represents an approach to combine the advantages of both existing approaches. On
the one hand, we have a small model, which enables complex stability analysis,
and on the other hand, we preserve the dynamics of the workpiece as detailed as
necessary.

Figure 30.1 illustrates the mechanical model of up-milling. The sketch shows a
workpiece and a symmetric milling tool with M D 2 teeth. Here, only the displace-
ment of the workpiece y.t/ D Œx.t/ y.t/�T is taken into account. The dynamic chip

Fig. 30.1 Mechanical model
of material removal by
milling

workpiece

tool

y

x

Fr, j

Ft, j
v f
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thickness of the tooth j

hj D g.'j/
	
0 1

 cos.'j/ � sin.'j/

sin.'j/ cos.'j/

��
fz
0

�
� y.t/C y.t � /

�
(30.16)

is calculated using the current displacement y.t/ and the one of the rotations before
y.t � /, where the time delay  D 60=.M˝/ depends on the revolution speed
˝ and, in case of symmetry, of the number of teeth M. With the feed per tooth
fz D 0:1 � 10�3 m, the calculation of the radial part of the chip thickness and the
screen function

g.'j/ D
(
1 if �en < mod.'j; 2�/ < �ex

0 otherwise,
(30.17)

the dynamic chip thickness calculation is almost complete. The screen function
considers that either the tooth j is currently cutting or not, which is detected using
the modulo operator mod.a; b/ returning the remainder a=b, the entry angle �en,
and the exit angle �ex. For up-milling �en D 0, as illustrated, and �ex is calculated
including the radial immersion and the diameter of the tool. A nonsensical, negative
chip thickness is avoided by

Nhj D max.hj; 0/ . (30.18)

The resulting forces in the tangential and radial direction at the tooth j are

Ftr;j D

Ft;j

Fr;j

�
D ap

"
kt Nhqtj
kr Nhqrj

#
(30.19)

with the axial immersion ap, cutting force coefficient kt D 107 � 106 N=m1Cqt and
kr D 40 � 106 N=m1Cqr , and exponent qt;r D 0:75 in the tangential and radial
direction. The tangential and radial forces at the teeth have to be transformed in
x and y direction

Fxy;j D


cos.'j/ sin.'j/
� sin.'j/ cos.'j/

�
Ftr;j (30.20)

and summed up

Fxy
�
t; y.t/; y.t � /� D

MX
jD1

Fxy;j . (30.21)
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The presented mathematical model of the chipping force underlies several simplifi-
cations which enable a simple and powerful linearization for stability analysis. For
instance the unperturbed chip thickness is a circular approximation of the trochoidal
geometry or the neglect of the tangential displacement are to be mentioned.

30.4 Modeling of the Workpiece Dynamics

For the calculation of the varying workpiece dynamics, an efficient implementation
is available. The geometry of the workpiece, represented by the mesh, is adapted
to several states of the machining progress. Nodes are shifted in the y direction,
corresponding to the ideal tool path, and the relevant elements are updated, see
Fig. 30.2.

The model of the T-shaped plate has primary dimensions of 0:17m � 0:03m �
0:15m and is set up by plates with the thickness 0:01m. The tool with a diameter
of 0:02m machines a notch with a cross section of 0:005m � 0:01m. The axial
immersion ap D 0:01m is constant while the milling tool moves 0:02m in the x
direction. Linear elements with a feed size of 1=3 � 10�3 m are used. This yields
30; 888 degrees of freedom for the constrained model due to the fixed bottom of the
workpiece.

The mass matrixM and the stiffness matrixK are calculated for steel with density
� D 7:8 � 103 kg=m3, Young’s modulus E D 210 � 109 N=m2 and Poisson ratio � D
0:3. For the calculation of the damping matrix D, Rayleigh dampingD D ˛MCˇK
is used. The mass proportional factor is ˛ D 3:86 s�1 and the stiffness proportional
factor is ˇ D 2:25 � 10�5 s.

To accommodate the presented chipping force the input and output matrix are
chosen to the x and y degrees of freedom of one node, thus CT D B and r D
w D 2. The chosen surface node is at the same x position as the milling tool and

Fig. 30.2 T-shaped
workpiece

x

y z
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in the middle of the axial immersion. Generally, there are many nodes available and
complex material removal algorithms can be used for the implementation of the load
application.

The workpiece dynamics is approximated with projection matrices determined
by modal truncation, component mode synthesis and moment matching, see [2, 3, 7].
The order of the reduced systems is chosen to n D 10, thus m 2 Œ1; n�. First, modal
truncation is realized by calculating eigenmodes of the conservative system

�
�2mM C K

�
˚eig;m D 0 . (30.22)

In order to include static accuracy

K˚stat D B (30.23)

with ˚stat 2 R
30 888�2 it follows

Vcms D 	
˚eig;1; : : : ; ˚eig;8; ˚stat



. (30.24)

In case of MOR with moment matching the Krylov subspace is calculated with an
Arnoldi algorithm [10]. Here, Wkry D Vkry due to CT D B and five moments are
matched at frequency fkry D 450Hz, next to the first eigenfrequency of the T-shaped
plate.

30.5 Results

We investigate the additional terms of PTMOR which are usually neglected in the
PMOR approach using the example of the milling process. Hence, investigations in
the frequency domain and time domain are considered. In the time domain, the entire
process is simulated with standard integration schemes. In the frequency domain,
the frozen transfer function is investigated, [14].

30.5.1 Frequency Domain

The investigation of the dynamics of the presented nonlinear, time varying and
delayed system with methods of linear time invariant systems is motivated by
different characteristics. Firstly, the variance of the investigated system is quite
slow in simulations with realistic milling parameters. Secondly, the actuating
force u.t/ D Fxy

�
t; y.t/; y.t � /

�
is almost periodic, due to the periodicity of

the coefficients despite the state and delayed state dependency considering stable
machining processes, [5, 8]. The oscillations of stable milling processes only contain
harmonics of the tooth passing frequency ft D N˝=60.
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The transfer function which represents the response of linear time invariant
systems reads

H.s/ D C
�
s2M C sD C K

��1
B (30.25)

and is obtained with the Laplace transformation with the complex frequency
parameter s D {!, the angular frequency ! D 2�f , the imaginary unit { and
the frequency f of the actuation. Considering the time dependency due to the
parameter change, the frozen transfer function at one time point is given bybH.s; t/ D bH.s; p;˝/, where the current machining progress is represented by the
parameter p and the velocity of the variation depends on the revolution speed˝ due
to the feed velocity vf D fzN˝=60.

Using a Frobenius error measure, the absolute error is defined by

"abs
�;�.s/ D k�.s/ ��.s/kF , (30.26)

where �.s/ and �.s/ are representing transfer functions, of the original H.s/ and
the reduced system NH.s/, and the Frobenius norm k � kF is used.

An illustration of the transfer function of the high order model and of absolute
errors is shown in Fig. 30.3. As a result, the magnitude of the influence of the PTMOR

approach compared to the absolute reduction error is small for this simulation
scenario. The absolute reduction error keH�HkF of the component mode synthesis
shows a high dependency on the frequency. The attachment of static modes yields a
static correctness whereas the dynamic error is about 10�10. The absolute deviation
of the PTMOR to the PMOR approach kbH�eHkF is about 10�13, however, the transfer

Fig. 30.3 Transfer function of the high order model kHkF , absolute error of the reduced order
model with PMOR approach keH � HkF , absolute error of the reduced order model with PTMOR

approach kbH � HkF , and absolute deviation of PTMOR to PMOR approach kbH �eHkF using the
component mode synthesis approach at p D 0:5 and ˝ D 13; 500 1/min
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function kHkF possesses values between 10�8 and 10�5. Thus the deviation induced
by the additional time dependent matrices is in the range of the reduction error and
consequently five to eight magnitudes lower than the frequency response of the high
order model. Of course, for faster processes and different parameters the influence
of the time dependencies can be much larger.

For identification of the variance in frequency domain depending on the parame-
ter

k� ��kH2;! D
0
@ 1
�

!2Z

!1

�
k�.{!/��.{!/kF

�2
d!

1
A
1=2

(30.27)

is used, which is related to the frequency-weightedH2-norm. The integration limits
f1 D 0 and f2 D 2500Hz are used to eliminate the representation of the frequency
dependency. This parameter dependent variance is shown in Fig. 30.4, where the
seven ticks at the x-axis represent the seven high order models utilized for the
interpolation.

The influence of time-dependent terms in the PTMOR approach clearly varies
in the parameter space, but is here still in the same magnitude. The magnitude of
the influence for the investigated scenario, according to Fig. 30.3, is in an usually
negligible range for realistic milling processes.

Should the theoretical influence of the time dependent matrices be demonstrated,
the revolution speed can be chosen to very high values. The resulting deviations
in frequency domain are obtained with moment matching and shown in Fig. 30.5.
Using ˝ D 0 yields the PMOR approach. Figure 30.5 depicts a continuously

0 1/6 1/3 1/2 2/3 5/6 1

1

2

3

·10−11

parameter p [-]

ab
so

lu
te
H

2-
er

ro
r

‖Ĥ
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Fig. 30.4 Absolute H2-error of the PTMOR approach compared to the PMOR approach using the
component mode synthesis approach and ˝ D 13; 500 1/min
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Ĥ,H

= 101
)

abs
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Fig. 30.5 Transfer function of the high order model kHkF and the absolute deviation of PTMOR

approach kbH�HkF using moment matching at p D 0:5 and different revolution speeds ˝

increasing influence of the additional matrices of the PTMOR approach to higher
revolution speeds. These additional terms can be taken as correction or maintenance
of the repartitioning of kinetic and potential energy, [11].

30.5.2 Time Domain

In the time domain, the milling process is simulated in the presented configuration.
Firstly, the milling process is simulated with the PMOR approach and the Matlab
integrator dde23 is implemented for constant delays. Secondly, these results are
compared with the PTMOR results.

Figure 30.6 shows the time domain results. The upper figures show results of
the PMOR approach for each input and output, x.t/ and y.t/, respectively. The lower
figures show the difference of the two approaches. Here only one half rotation of
the milling tool is shown due to the almost periodically exciting force. Should a
tooth be in cut, higher deviation can be determined, see the characteristic triangular
shape of the two deviations. The output x.t/ represents the elastic deformation of
the T-shaped plate at the milling tool in x direction. It is dominated by the static
response of the cutting force, thus the characteristic triangular shape can be seen as
well. The deviation of the time dependent terms is clearly visible but here a couple
of magnitudes lower than the arising elastic deformations of the workpiece.
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Fig. 30.6 Time domain results of the milling process at p � 1 and ˝ D 13; 500 1=min with
the reduced order model by component mode synthesis, regarding the elastic deformation of the
workpiece in x and y direction as well as the deviation of PTMOR and PMOR approach in x and y
direction

30.6 Conclusion

This contribution compares the PTMOR and the PMOR approach for material removal
simulations, specifically the milling process of a T-shaped plate. Therefore, different
MOR techniques are used and the investigation is conducted in frequency and time
domain. Especially the comparison of the two approaches in frequency domain with
different revolution speeds provides an impression of the influence of the additional
terms of the PTMOR approach.

From the mathematical point of view, the PTMOR approach is the consequential
approximation approach of the presented time varying system. However, the
approximation error based on neglecting these additional time-dependent terms
resulting in the PMOR approach is acceptable for the presented application in the
milling process. Machining processes are restricted in cutting speeds due to material
properties.

Generally neglecting the additional time-dependent matrices of the PTMOR

approach cannot be advised. A case-by-case review is required, since the calculation
of the time-dependent matrices of the PTMOR approach can easily be included in the
PMOR approach.
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