
Palindromic Decompositions
with Gaps and Errors

Micha�l Adamczyk1, Mai Alzamel2, Panagiotis Charalampopoulos2,
Costas S. Iliopoulos2, and Jakub Radoszewski1,2(B)

1 Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Warsaw, Poland
{michal.adamczyk,jrad}@mimuw.edu.pl

2 Department of Informatics, King’s College London, London, UK
{mai.alzamel,panagiotis.charalampopoulos,costas.iliopoulos}@kcl.ac.uk

Abstract. Identifying palindromes in sequences has been an interest-
ing line of research in combinatorics on words and also in computational
biology, after the discovery of the relation of palindromes in the DNA
sequence with the HIV virus. Efficient algorithms for the factorization of
sequences into palindromes and maximal palindromes have been devised
in recent years. We extend these studies by allowing gaps in decomposi-
tions and errors in palindromes, and also imposing a lower bound to the
length of acceptable palindromes.

We first present an algorithm for obtaining a palindromic decompo-
sition of a string of length n with the minimal total gap length in time
O(n log n · g) and space O(n · g), where g is the number of allowed gaps
in the decomposition. We then consider a decomposition of the string
in maximal δ-palindromes (i.e. palindromes with δ errors under the edit
or Hamming distance) and g allowed gaps. We present an algorithm to
obtain such a decomposition with the minimal total gap length in time
O(n · (g + δ)) and space O(n · g).

1 Introduction

A palindrome is a symmetric word that reads the same backward and forward.
The detection of palindromes is a classical and well-studied problem in computer
science, language theory and algorithm design with a lot of variants arising out
of different practical scenarios. String and sequence algorithms related to palin-
dromes have long drawn the attention of stringology researchers [3,11,17]. Inter-
estingly, in the seminal Knuth-Morris-Pratt paper presenting the well-known
string matching algorithm [16], a problem related to palindrome recognition was

M. Alzamel is supported by the Saudi Ministry of Higher Education.
P. Charalampopoulos is supported by the Graduate Teaching Scholarship scheme of
the Department of Informatics at King’s College London.
J. Radoszewski is a Newton International Fellow and is supported by the Polish
Ministry of Science and Higher Education under the ‘Iuventus Plus’ program grant
no. 0392/IP3/2015/73.

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 48–61, 2017.
DOI: 10.1007/978-3-319-58747-9 7

Palindromic Decompositions with Gaps and Errors 49

also considered. In combinatorics on words, for example, studies have investi-
gated the inhabitation of palindromes in Fibonacci words or Sturmian words
in general [6,7]. There is also an interesting conjecture related to periodicity of
infinite strings whose every factor can be decomposed into a bounded number
of palindromes [9].

In computational biology, palindromes play an important role in regulation
of gene activity and other cell processes because these are often observed near
promoters, introns and specific untranslated regions. Hairpins (also called com-
plemented palindromes) in the HIV virus are strings of the form xx̄R, where x̄R

is the reverse complement of x, while (even) palindromes are strings of the form
xxR. Algorithms for detecting palindromes can often be adapted to compute
hairpins as well. Hence, we can identify palindromes in the DNA sequence and
then align the part of the DNA sequence that contains them with the HIV virus.

In the beginnings of algorithmic study of palindromes, Manacher discovered
an on-line sequential algorithm that finds all initial palindromes in a string [19].
A string S[1 . . n] is said to have an initial palindrome of length k if S[1 . . k] is
a palindrome. Later Apostolico et al. observed that the algorithm given by [19]
is able to find all maximal palindromic factors in the string in O(n) time [2].
Gusfield gave another linear-time algorithm to find all maximal palindromes
in a string [14]. He also discussed the relation between biological sequences and
gapped (separated) palindromes (i.e. strings of the form xvx̄R). Gupta et al. [13]
presented an O(n)-time algorithm to compute specific classes—based on length
constraints—of such palindromes. Algorithms for finding the so-called gapped
palindromes were also considered in [10,17]. (In our study, we consider gaps
between palindromes, not inside them.)

A problem that gained significant attention recently was decomposing a
string into a minimal number of palindromes; any such decomposition is called
a palindromic factorization. Fici et al. [8] presented an on-line O(n log n)-time
algorithm for computing a palindromic factorization of a string of length n. A
similar on-line algorithm was presented by I et al. [15] as well as an on-line
algorithm with the same time complexity to factorize a string into maximal
palindromes. Alatabbi et al. gave an off-line O(n)-time algorithm for the latter
problem [1]. In addition, Rubinchik and Shur [20] devised an O(n)-sized data
structure that helps locate palindromes in a string; they also show how it can
be used to compute the palindromic factorization of a string in O(n log n) time.

A similar problem, first studied by Galil and Seiferas in [12], asked whether
a given string can be decomposed into k palindromes. Galil and Seiferas [12]
presented an on-line O(n)-time algorithm for k = 1, 2 and an off-line O(n)-time
algorithm for k = 3, 4. In 2014, Kosolobov et al. presented an on-line O(kn)-time
algorithm to decide this for arbitrary k [18].

Our work is a continuation of this line of research, motivated by possible
errors and inconsistencies in the biological data. We extend the previous work
by introducing a constraint on the length of the palindromes and allowing gaps
and errors in the decompositions. By gaps we mean regions of the string that
are not decomposed into palindromes of sufficient length. We allow errors in

50 M. Adamczyk et al.

the palindromes, so that a palindrome with errors is a string having a small
Hamming or edit distance from an ideal palindrome. We present two approaches
for decomposing a string into sufficiently long palindromes; one allowing only
gaps in the decomposition and the other allowing both gaps in the decomposition
and errors in the palindromes. We first present an algorithm that computes a
palindromic decomposition with the minimal total gap length of a string of length
n in time O(n log n ·g) and space O(n ·g), where g is the number of allowed gaps.
Secondly, we present an O(n · (g + δ))-time and O(n · g)-space algorithm for the
decomposition of a string of length n into maximal palindromes with at most
δ errors each, under the Hamming or edit distance, and g allowed gaps. The
algorithms can be applied for both standard and complemented palindromes.

2 Notation and Terminology

Let S = S[1]S[2] · · · S[n] be a string of length |S| = n over an alphabet Σ.
We consider the case of an integer alphabet; in this case each letter can be
replaced by its rank so that the resulting string consists of integers in the range
{1, . . . , n}. For two positions i and j, where 1 ≤ i ≤ j ≤ n, in S, we denote
the factor S[i]S[i + 1] · · · S[j] of S by S[i . . j]. We denote the reverse string of S
by SR, i.e. SR = S[n]S[n − 1] · · · S[1]. The empty string (denoted by ε) is the
unique string over Σ of length 0. A string S is said to be a palindrome if and
only if S = SR. If S[i . . j] is a palindrome, the number i+j

2 is called the center of
S[i . . j]. Let S[i . . j], where 1 ≤ i ≤ j ≤ n, be a palindromic factor in S. It is said
to be a maximal palindrome if there is no longer palindrome in S with center
i+j
2 . Note that a maximal palindrome can be a factor of another palindrome.

Definition 1. We say that S = p1p2 · · · p� is a (maximal) palindromic decom-
position of S if all the strings pi are (maximal) palindromes.

Definition 2. A (maximal) palindromic decomposition of S such that the num-
ber of (maximal) palindromes is minimal is called a (maximal) palindromic fac-
torization of S.

Note that any single letter is a palindrome and, hence, every string can always
be decomposed into palindromes. However, not every string can be decomposed
into maximal palindromes; e.g. consider S = abaca [1].

Let f be an involution on the alphabet Σ, i.e., a function such that f2 = id.
We extend f into a morphism on strings over Σ. We say that a string x is a
generalized palindrome if x = f(xR). Two known notions fit this definition:

– If f = id, then a generalized palindrome is a standard palindrome.
– If Σ = {A, C, G, T} and f(A) = T, f(C) = G, f(G) = C, f(T) = A, then a gener-

alized palindrome corresponds to a so-called complemented palindrome [14].

Example 3. The string A G T A C T T C A T G A is a standard palindrome and the
string T A G T C G A C T A is a complemented palindrome.

Palindromic Decompositions with Gaps and Errors 51

We also consider (generalized) palindromes with errors. Let us recall two
well-known metrics on strings. Let u and v be two strings. If |u| = |v|, then
the Hamming distance between u and v is the number of positions where u
and v do not match. The edit (or Levenshtein) distance between u and v is the
minimum number of edit operations (insertions, deletions, substitutions) needed
to transform u into v. We say that x is a generalized δ-palindrome under the
Hamming distance (or the edit distance) if the minimum Hamming distance
(edit distance, respectively) from x to any generalized palindrome is at most δ.

A generalized palindrome S[i . . j] is called maximal if there is no longer gen-
eralized palindrome with the same center. Similarly, a generalized δ-palindrome
S[i . . j] under the Hamming/edit distance is called maximal if there is no longer
generalized δ-palindrome under the same distance measure with the same center.

Example 4. All maximal 0-palindromes/1-palindromes in GTATCG (for f = id)
under the Hamming and under the edit distance are as follows:

Center 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0 G ε T ε TAT ε T ε C ε G

1 under Hamming G GT GTA TA GTATC AT ATC TC TCG CG G

1 under edit G GT GTA GTAT GTATC GTATCG ATC TC TCG CG G

For instance, the whole string GTATCG is a 1-palindrome under the edit distance,
as deleting its fifth letter yields a palindrome GTATG.

The computational problems we study can be formally stated as follows.

Generalized Palindromic Decomposition with Gaps
Input: A string S of length n, an involution f , and integers g,m ≥ 1
Output: A decomposition of S into generalized palindromes with the mini-
mal possible total length of gaps,

∑q
i |gi|, such that:

– There are at most g gaps, i.e. q ≤ g
– Each palindrome is of length at least m

Generalized Maximal δ-Palindromic Decomposition with Gaps
Input: A string S of length n, an involution f , and integers g,m, δ ≥ 1
Output: A decomposition of S into maximal generalized δ-palindromes with
the minimal possible total length of gaps,

∑q
i |gi|, such that:

– There are at most g gaps, i.e. q ≤ g
– Each generalized δ-palindrome is of length at least m

We apply several instances of dynamic programming. For simplicity of pre-
sentation, we only show how to compute the minimal total length of gaps and
omit describing the retrieval of the decomposition itself. To compute the latter,

52 M. Adamczyk et al.

in each of the dynamic programming matrices we would store a pointer to the
cell that gave us the minimum value so that we could actually compute the
decomposition with the minimal total length of the gaps by backtracing.

3 Palindromic Decomposition with Gaps

In this section we develop an efficient solution to the Generalized Palin-
dromic Decomposition with Gaps problem. It is based on several trans-
formations of the algorithm for computing a palindromic factorization by Fici
et al. [8]. For a string S of length n this algorithm works in O(n log n) time. The
algorithm consists of two steps:

1. Let Pj be the sorted list of starting positions of all palindromes ending at
position j in S. This list may have size O(j). However, it follows from combi-
natorial properties of palindromes that the sequence of consecutive differences
in Pj is non-increasing and contains at most O(log j) distinct values. Let Pj,Δ

be the maximal sublist of Pj containing elements whose predecessor in Pj is
smaller by exactly Δ. Then there are O(log j) such sublists in Pj . Hence, Pj

can be represented by a set Gj of size O(log j) which consists of triples of the
form (i,Δ, k) that represent Pj,Δ = {i, i + Δ, . . . , i + (k − 1)Δ}. The triples
are sorted according to decreasing values of Δ and all starting positions in
each triple are greater than in the previous one. Fici et al. show that Gj can
be computed from Gj−1 in O(log j) time.

2. Let PL[j] denote the number of palindromes in a palindromic factorization of
S[1 . . j]. Fici et al. show that it can be computed via a dynamic programming
approach, using all palindromes from Gj in O(log j) time. Their algorithm
works as follows. Let PLΔ[j] be the minimum number of palindromes we can
decompose S[1 . . j] in, provided that we use a palindrome from (i,Δ, k) ∈ Gj .
Then PLΔ[j] can be computed in constant time using PLΔ[j − Δ] based on
the fact that if (i,Δ, k) ∈ Gj and k ≥ 2, then (i,Δ, k−1) ∈ Gj−Δ. Exploiting
this fact, PLΔ[j] can be computed by only considering PLΔ[j − Δ] and the
shortest palindrome in (i,Δ, k). Finally, we compute PL[j] from all such
PLΔ[j] values.

In AppendixA we show for completeness that the same approach works for
generalized palindromes for any involution f .

To solve the Generalized Palindromic Decomposition with Gaps
problem, we first need to modify each of the triples in Gj to reflect the length
constraint (m). More precisely, due to the length constraint, in each Gj some
triples will disappear completely, and at most one triple will get trimmed (i.e.
the parameter k will be decreased).

Our algorithm then computes an array MG[1 . . n][0 . . g] such that MG[j][q]
is the minimum possible total length of gaps in a palindromic decomposition of
S[1 . . j], provided that there are at most q gaps. Simultaneously, our algorithm
computes an auxiliary array MG′[1 . . n][0 . . g] such that MG′[j][q] is the mini-
mum possible total length of gaps up to position j provided that this position
belongs to a gap: at most the q-th one.

Palindromic Decompositions with Gaps and Errors 53

For j > 0 and q ≥ 0 we have the following formula:

MG[j][q] = min(MG′[j][q],min
Δ

{MGΔ[j][q]})

where MGΔ[j][q] is the partial minimum computed only using generalized palin-
dromes from (i,Δ, k) ∈ Gj . The formula means: either we have a gap at posi-
tion j, or we use a generalized palindrome ending at position j. We also set
MG[0][q] = 0 for any q ≥ 0.

We compute MGΔ[j][q] for (i,Δ, k) ∈ Gj using the same approach as Fici
et al. [8] used for PLΔ, ignoring the triples that disappear due to the length
constraint. If there is a triple that got trimmed, then the corresponding triple at
position j − Δ (from which we reuse the values in the dynamic programming)
must have got trimmed as well. More precisely, if the triple (i,Δ, k) is trimmed
to (i,Δ, k′) at position j, then at position j − Δ there is a triple (i,Δ, k − 1)
which is trimmed to (i,Δ, k′ − 1); that is, by the same number of generalized
palindromes. Consequently, to compute MGΔ[j][q] from MGΔ[j−Δ][q], we need
to include one additional generalized palindrome (the shortest one in the triple)
just as in Fici et al.’s approach.

Example 5. Consider the string AACCAACCAACCAACCAA, f = id, and let m = 7.

A A C C A A C C A A C C A A C C A A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Then G18 = {(1,∞, 1), (5, 4, 4), (18, 1, 1)}, where:

– (1,∞, 1) represents the whole string,
– (5, 4, 4) represents {AACCAACCAACCAA, AACCAACCAA, AACCAA, AA} which will get

trimmed by 2 palindromes due to the length constraint, becoming (5, 4, 2),
– (18, 1, 1) represents {A} and disappears.

Now looking at position j − Δ = 18 − 4 = 14 for the trimmed group, we
had (5, 4, 3) ∈ G14 representing {AACCAACCAA, AACCAA, AA}, and this also gets
trimmed by 2 palindromes, becoming (5, 4, 1).

Finally, for j > 0 and q > 0 we compute MG′ using the following formula:

MG′[j][q] = min(MG′[j − 1][q],MG[j − 1][q − 1]) + 1.

The first case corresponds to continuing the gap from position j, whereas the
second to using a generalized palindrome finishing at position j − 1 or a gap
finishing at position j − 1 (the latter will be suboptimal). Here the border cases
are MG′[j][0] = ∞ for j ≥ 0 and MG′[0][q] = ∞ for q > 0.

Thus we arrive at the complete solution to the problem.

Theorem 6. The Generalized Palindromic Decomposition with Gaps
problem can be solved in O(n log n · g) time and O(n · g) space.

54 M. Adamczyk et al.

4 Computing Maximal Palindromes with Errors

Recall that all maximal (standard) palindromes in a string can be computed in
O(n) time by Manacher’s [5,19] and Gusfield’s [14] algorithms. These algorithms
perform different computations for odd- and for even-length palindromes. Recall
that we defined the centers of odd-length palindromes as integers and the centers
of even-length palindromes as odd multiples of 1

2 .
Gusfield’s algorithm [14] applies Longest Common Extension (LCE) Queries

in the string T = S$SR, where $ �∈ Σ is a sentinel character. An LCE(i, j)
query returns the length of the longest common prefix of the suffixes T [i . . |T |]
and T [j . . |T |]. For example, to compute the length of the maximal even-length
palindrome centered between positions i and i + 1, the algorithm computes
LCE(i+1, 2n+2− i) in T . Recall that LCE queries in a string (over an integer
alphabet) can be answered in O(1) time after linear-time preprocessing [4].

Gusfield’s approach can be easily adapted to generalized palindromes: it suf-
fices to apply LCE-queries on T = S$f(SR). To further simplify the descrip-
tion of this approach, we introduce the Longest Gapped Palindrome (LGPal)
Queries, such that LGPal(i, j) is the maximum k such that f(S[i−k+1 . . i]R) =
S[j . . j +k −1]; see Fig. 1. As we have already noticed, LGPal-queries are equiv-
alent to LCE-queries in T = S$f(SR).

Fig. 1. To find the longest complemented 1-palindrome under the Hamming distance
centered at position 7.5 in S = GACATTCGAACGT, it suffices to ask two LGPal-queries:
LGPal(7, 8) = 3 finds the first mismatch, and LGPal(3, 12) extends the 1-palindrome
after the mismatch. Note that each of these LGPal-queries is equivalent to an appro-
priate LCP-query in S$f(SR).

It is known (see [14]) that all maximal generalized δ-palindromes under the
Hamming distance can be computed in O(n · δ) time via at most δ applications
of the LGPal-query for each possible center position. Below we show how to
compute maximal generalized δ-palindromes under the edit distance within the
same time complexity.

Recall that if u is a generalized δ-palindrome under the edit distance, then
there exists a generalized palindrome v such that the minimal number of edit
operations (insertion, deletion, substitution) required to transform u to v is at
most δ. The following simple observation shows that we can restrict ourselves to
deletions and substitutions only, which we call in what follows the restricted edit
operations. Intuitively, instead of inserting at position i a character to match the
character at position |u|−i+1, we can delete the character at position |u|−i+1.

Palindromic Decompositions with Gaps and Errors 55

Observation 7. Let u be a generalized δ-palindrome and v a generalized palin-
drome such that the edit distance between u and v is minimal. Then there exists
a generalized palindrome v′ such that the number of restricted edit operations
needed to transform u to v′ is equal to the edit distance between u and v.

We can extend a maximal generalized δ-palindrome S[i . . j] to a maximal
generalized (δ+1)-palindrome in three ways; either ignore the letter S[i−1] and
then perform an LGPal-query, or ignore the letter S[j + 1] and then perform an
LGPal-query, or ignore both and then perform the LGPal-query. More formally:

Definition 8. Assume that S[i . . j] is a generalized δ-palindrome. Then we say
that each of the factors S[i′ . . j′] for:

– i′ = i − 1 − d, j′ = j + d, where d = LGPal(i − 2, j + 1)
– i′ = i − d, j′ = j + 1 + d, where d = LGPal(i − 1, j + 2)
– i′ = i − 1 − d, j′ = j + 1 + d, where d = LGPal(i − 2, j + 2)

is an extension of S[i . . j]. If the index i′ is smaller than 1 or the index j′ is
greater than |S|, the corresponding extension is not possible. We also say that
S[i . . j] can be extended to any of the three strings S[i′ . . j′].

Clearly, the extensions of a generalized δ-palindrome are always generalized (δ+
1)-palindromes.

To facilitate the case of δ-palindromes being prefixes or suffixes of the text,
we also introduce the following border-reductions for S[i . . j] being a generalized
δ-palindrome:

– If i = 1, a border reduction leads to S[1 . . j − 1].
– If j = n, a border reduction leads to S[i + 1 . . n].

If any of the reductions is possible, we also say that S[i . . j] can be border-reduced
to the corresponding strings. As previously, border-reductions of a generalized
δ-palindrome are always generalized (δ + 1)-palindromes.

Lemma 9. Given a maximal generalized δ-palindrome S[i′ . . j′] with δ > 0,
there exists a maximal generalized (δ − 1)-palindrome S[i . . j] which can be
extended or border-reduced to S[i′ . . j′].

Proof. Consider a shortest sequence of restricted edit operations that transforms
u = S[i′ . . j′] into a generalized palindrome v. Let us consider the position where
we perform a restricted edit operation that is closest to i′ or j′. Assume w.l.o.g.
that this position—denote it by e—is not further to i′ than to j′.

Assume first that this edit operation is a substitution. Then S[i . . j], for
i = e+1 and j = j′ − (e+1− i′), is a generalized (δ−1)-palindrome (the witness
generalized palindrome is the corresponding factor of v); see Fig. 2. Moreover, it
is a maximal generalized (δ − 1)-palindrome, as otherwise S[e] = S[i − 1] would
be equal to f(S[j + 1]), which means that the substitution at the position e
would not be necessary. This completes the proof in this case.

56 M. Adamczyk et al.

Fig. 2. If the outermost restricted edit operation on S[i′ . . j′] is a substitution (from
letter X to letter Y), then S[i′ . . j′] is an extension of the third type of the maximal
generalized (δ − 1)-palindrome S[i . . j].

Fig. 3. Three cases resulting when the outermost edit operation on S[i′ . . j′] is a dele-
tion of a character X.

Now assume that the edit operation at the position e was a deletion. Let
a = e+1 and b = j′ − (e− i′). Again, we see that clearly S[a . . b] is a generalized
(δ − 1)-palindrome. If it is maximal, then we are done. Otherwise, consider the
maximal generalized (δ − 1)-palindrome S[i . . j] centered at the same position
as S[a . . b] (a − i = j − b > 0). Now we have three cases; see Fig. 3.

1. If j ≤ j′, then we can obtain S[i′ . . j′] by an extension (of the first type) of
S[i . . j]; i.e. ignoring the letter S[i − 1].

2. If j > j′, then we have that S[i′ . . j′ + 1] is a generalized (δ − 1)-palindrome.
If, additionally, i′ > 1, then S[i′ − 1 . . j′ + 1] is a generalized δ-palindrome,
which contradicts the maximality of S[i′ . . j′].

3. Finally, if j > j′ and i′ = 1, then i = 1, j = j′ + 1. Hence, S[i′ . . j′] obtained
from S[i . . j] by a border-reduction.

This completes the proof of the lemma. ��
The combinatorial characterization of Lemma9 yields an algorithm for gen-

erating all maximal generalized d-palindromes, for all centers and subsequent
d = 0, . . . , δ. Maximal generalized 0-palindromes are computed using Gusfield’s
approach (LGPal-queries). For a given d < δ, we consider all the maximal gen-
eralized d-palindromes and try to extend each of them in all three possible ways
(and border-reduce, if possible). This way we obtain a number of generalized
(d + 1)-palindromes amongst which, by Lemma 9, are all maximal generalized
(d+1)-palindromes. To exclude the non-maximal ones, we group the generalized
(d + 1)-palindromes by their centers (in O(n) time via bucket sort) and retain
only the longest one for each center. We arrive at the following intermediate
result.

Lemma 10. Under the edit distance, all maximal generalized δ-palindromes in
a string of length n can be computed in O(n · δ) time and O(n) space.

Palindromic Decompositions with Gaps and Errors 57

5 Maximal Palindromic Decomposition with Gaps
and Errors

Let F be a set of factors of the text S[1 . . n]. In this section we develop a general
framework that allows to decompose S into factors from F , allowing at most g
gaps. We call such a factorization a (g,F)-factorization of S. Our goal is to find
a (g,F)-factorization of S that minimizes the total length of gaps. We aim at
the time complexity O((n + |F|) · g) and space complexity O(n · g + |F|).

In our solution we use dynamic programming to compute two arrays, similar
to the ones used in Sect. 3:

MG[1 . . n][0 . . g]: MG[j][q] is the minimum total length of gaps in a (q,F)-
factorization of S[1 . . j].
MG′[1 . . n][0 . . g]: MG′[j][q] is the minimum total length of gaps in a (q,F)-
factorization of S[1 . . j] for which the position j belongs to a gap.

We use the following formulas, for j > 0 and q > 0:

MG[j][q] = min(MG′[j][q], min
S[a..j]∈F

MG[a − 1][q])

MG′[j][q] = min(MG[j − 1][q − 1],MG′[j − 1][q]) + 1

The border cases are exactly the same as in Sect. 3.
Clearly, the space complexity of this solution is O(n · g + |F|). Let us analyse

its time complexity. Fix q ∈ {0, . . . , g}. The number of transitions using the
factors from F in the dynamic programming is |F| in total, as each factor is
used only for the position j where it ends. Hence, the formulas for MG[j][q] take
O(n ·g + |F| ·g) time to evaluate. Computing the MG′[j][q] values takes O(n ·g)
time. Thus we arrive at the desired time complexity of O((n + |F|) · g).

We apply this approach to maximal generalized δ-palindromes in each of the
considered metrics (see the classic result from [14] for the Hamming distance
and Lemma 10 for the edit distance) to obtain the following result.

Theorem 11. The Generalized Maximal δ-Palindromic Decomposi-
tion with Gaps problem under the Hamming distance or the edit distance
can be solved in O(n · (g + δ)) time and O(n · g) space.

Example 12. Consider the following string1 of length 92:
GGACTCGGCTTGCTGAGGTGCACACAGCAAGAGGCGAGAGCGGCGACTGGTGAGTACGCCAAATTT
TGACTAGCGGAGGCTAGAAGGAGAGA

We have used our implementation of the algorithm from Theorem11 to compute
the decomposition of the string into maximal complemented 3-palindromes of
length at least 14 under the edit distance with at most 4 gaps (g = 4, δ = 3,
m = 14) with the minimal total gap length:

1 See http://www.cesshiv1.org/disview.php?accession=AB220944.

http://www.cesshiv1.org/disview.php?accession=AB220944

58 M. Adamczyk et al.

[GGACTCG] GCTTGCTGAGGTGCACACAGCAAGA [GGCGAGAGC] GGCGACTGGTGAGTACGCC
[AAATTTTG] ACTAGCGGAGGCTAGA [AGGAGAGA]

The gaps are given in square brackets. Edit operations are underlined, with
deletes additionally given in italics. The gaps have total length 32.

In comparison, the optimal decomposition of this string under the Hamming
distance with the same parameters (g = 4, δ = 3, m = 14) uses four gaps of
total length 46.

6 Conclusions

We have presented two algorithms for finding palindromic decompositions: one
allowing gaps and the other allowing both gaps in the decomposition and
errors in palindromes. The first algorithm shows that (somewhat surprisingly)
Fici et al.’s algorithm [8] for finding an exact palindromic factorization can be
extended to handle gaps, a constraint on the palindromes length, and comple-
ments in palindromes as well. In the second algorithm we decompose a string into
maximal palindromes with errors; the most involved part here was computing
all such maximal palindromes under the edit distance.

In the problems that were defined in the beginning, the objective was to
minimize the total length of gaps, allowing a certain number of gaps. However,
the approaches that were presented in this paper can be used to solve differ-
ent variants of the problems, like minimizing only the total number of gaps or
maximizing the total length of palindromes, regardless of the number of gaps.

An open question is to efficiently compute decompositions into palindromes
that may contain errors and are not necessarily maximal. This problem seems
to be hard, as δ-palindromes do not have such a strong combinatorial structure
as palindromes without errors.

A Appendix

Generalized Palindromic Factorization

In this section we show that the approach of Fici et al. [8] works for generalized
palindromes for any involution f . The following auxiliary lemma extends the
combinatorial properties of standard palindromes used in [8] (see Lemmas 1–3
therein) to generalized palindromes. Recall that a string y is called a border of
a string x if it is both a prefix and a suffix of x. A number p is called a period of
x if x[i] = x[i + p] for all i = 1, . . . , |x| − p. It is well known that x has a period
p iff it has a border of length |x| − p; see [4,5].

Lemma 13.(a) Let y be a suffix of a generalized palindrome x. Then y is a
border of x iff y is a generalized palindrome.

(b) Let x be a string with a border y such that |x| ≤ 2|y|. Then x is a generalized
palindrome iff y is a generalized palindrome.

Palindromic Decompositions with Gaps and Errors 59

(c) Let y be a proper suffix of a generalized palindrome x. Then |x| − |y| is a
period of x iff y is a generalized palindrome. In particular, |x| − |y| is the
smallest period of x iff y is the longest generalized palindromic proper suffix
of x.

Proof. (a) Let y′ be the prefix of x of length |y|. As x is a generalized palindrome,
y′ = f(yR). (⇒) If y is a border of x, then y = y′ = f(yR), so y is a generalized
palindrome. (⇐) If y is a generalized palindrome, then y′ = f(yR) = y, so y is
a border of x.

(b) (⇒) From (a), if x is a generalized palindrome and y is its border, then
y is a generalized palindrome. (⇐) If y is a generalized palindrome, f(xR) has
a border f(yR) = y. This border covers the whole string f(xR) and is the same
as the border of x, so x = f(xR) and x indeed is a generalized palindrome.

(c) This is a consequence of part (a) and the relation between borders and
periods of a string. ��

The crucial combinatorial property of standard palindromes used in Step 1
of the algorithm in Sect. 3 is that the sequence of consecutive differences in Pj is
non-increasing and contains at most O(log j) distinct values. We show that the
same observation holds for generalized palindromes; this follows from the next
lemma, parts (1) and (2). The proof of Lemma 14 follows exactly the lines of
the proof of the corresponding Lemma 4 in [8]; due to space constraints, we refer
the reader to Fig. 3 illustrating the proof in [8].

Lemma 14. Let x be a generalized palindrome, y the longest generalized palin-
dromic proper suffix of x, and z the longest generalized palindromic proper suffix
of y. Let u and v be strings such that x = uy and y = vz. Then:

(1) |u| ≥ |v|;
(2) if |u| > |v| then |u| > |z|;
(3) if |u| = |v| then u = v.

Proof. (1) By Lemma 13(c), |u| = |x| − |y| is the smallest period of x, and |v| =
|y| − |z| is the smallest period of y. Since y is a factor of x, either |u| > |y| > |v|
or |u| is a period of y too, and thus it cannot be smaller than |v|.

(2) By Lemma 13(a), y is a border of x and thus v is a prefix of x. Let w
be a string such that x = vw. Then z is a border of w and |w| = |zu|. Since we
assume |u| > |v|, we must have |w| > |y|. Suppose to the contrary that |u| ≤ |z|.
Then |w| = |zu| ≤ 2|z|, and by Lemma 13(b), w is a generalized palindrome.
But this contradicts y being the longest generalized palindromic proper suffix
of x.

(3) In the proof of (2) we saw that v is a prefix of x, and so is u by definition.
Thus u = v if |u| = |v|. ��

We have thus shown that, also in case of generalized palindromes, the set Pj

can be compactly represented by a set Gj , as described in Sect. 3. To complete
Step 1 of the algorithm, we need to show that Gj can be computed from Gj−1 in
O(log j) time. For this, just as in [8], we show that each triple (i,Δ, k) ∈ Gj−1

60 M. Adamczyk et al.

will be either eliminated or replaced by (i − 1,Δ, k) in Gj . The proof exploits
part (3) of Lemma 14.

Lemma 15. Let pi and pi+1 be two consecutive elements of Pj−1,Δ. Then pi −
1 ∈ Pj iff pi+1 − 1 ∈ Pj.

Proof. By definition, pi+1 − pi = Δ, and the predecessor of pi in Pj is pi−1 =
pi −Δ. The strings x = S[pi−1 . . j −1], y = S[pi . . j −1], and z = S[pi+1 . . j −1]
form the situation of Lemma 14(3). Hence, S[pi − 1] = S[pi+1 − 1] = c. Thus,
pi − 1 ∈ Pj iff S[j] = f(c) iff pi+1 − 1 ∈ Pj . ��

After this transformation, one might need to update pairs of adjacent triples
in Gj because the gaps between them might have changed. This simple process
is explained in detail in [8] and takes only O(log j) additional time.

As for Step 2 of the algorithm, it suffices to show that the following combi-
natorial observation holds for generalized palindromes. Again we follow the lines
of the proof from [8] (cf. Fig. 5 in that paper).

Lemma 16. If (i,Δ, k) ∈ Gj and k ≥ 2, then (i,Δ, k − 1) ∈ Gj−Δ.

Proof. By definition, (i,Δ, k) ∈ Gj is equivalent to saying that Pj,Δ = {i, i +
Δ, . . . , i + (k − 1)Δ}, and we need to show that Pj−Δ,Δ = {i, i + Δ, . . . , i + (k −
2)Δ}. We will show first that Pj−Δ,Δ ∩ [i − Δ + 1 . . j − Δ] = {i, i + Δ, . . . , i +
(k − 2)Δ} and then that Pj−Δ,Δ ∩ [1 . . i − Δ] = ∅.

Since y = S[i . . j] and x = S[i − Δ . . j] are generalized palindromes and y is
the longest proper border of x (by Lemma 13(a)), S[i−Δ . . j−Δ] = y = S[i . . j].
Thus for all � ∈ [i . . j], � ∈ Pj iff � − Δ ∈ Pj−Δ. In particular, the consecutive
differences in both cases are the same and for all � ∈ [i + 1 . . j], � ∈ Pj,Δ iff
�−Δ ∈ Pj−Δ,Δ. Thus Pj−Δ,Δ ∩ [i−Δ+1 . . j −Δ] = {i, i+Δ, . . . , i+(k−2)Δ}.

We still need to show that Pj−Δ,Δ ∩ [1 . . i−Δ] = ∅, which is true if and only
if i−2Δ �∈ Pj−Δ. Suppose to the contrary that S[i−2Δ . . j −Δ] is a generalized
palindrome and let w = S[i−2Δ . . i−Δ−1]. Then S[j−2Δ+1 . . j−Δ] = f(wR).
Since z = S[i − Δ . . j − Δ] and S[i − Δ . . j] are generalized palindromes too, we
have that S[i − Δ . . i − 1] = w and S[j − Δ + 1 . . j] = f(wR). Finally, since z is
a generalized palindrome, S[i− 2Δ . . j] = wzf(wR) is a generalized palindrome.
This implies that i−2Δ ∈ Pj and thus i−Δ ∈ Pj,Δ, which is a contradiction. ��

References

1. Alatabbi, A., Iliopoulos, C.S., Rahman, M.S.: Maximal palindromic factorization.
In: Stringology, pp. 70–77 (2013)

2. Apostolico, A., Breslauer, D., Galil, Z.: Parallel detection of all palin-
dromes in a string. Theor. Comput. Sci. 141(1), 163–173 (1995).
http://dx.doi.org/10.1016/0304-3975(94)00083-U

3. Breslauer, D., Galil, Z.: Finding all periods and initial palin-
dromes of a string in parallel. Algorithmica 14(4), 355–366 (1995).
http://dx.doi.org/10.1007/BF01294132

http://dx.doi.org/10.1016/0304-3975(94)00083-U
http://dx.doi.org/10.1007/BF01294132

Palindromic Decompositions with Gaps and Errors 61

4. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press, Cambridge (2007)

5. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific, Singapore
(2003)

6. Droubay, X.: Palindromes in the Fibonacci word. Inf. Process. Lett. 55(4), 217–221
(1995). http://dx.doi.org/10.1016/0020-0190(95)00080-V

7. Droubay, X., Pirillo, G.: Palindromes and Sturmian words. Theor. Comput. Sci.
223(1–2), 73–85 (1999). http://dx.doi.org/10.1016/S0304-3975(97)00188–6

8. Fici, G., Gagie, T., Kärkkäinen, J., Kempa, D.: A subquadratic algorithm for
minimum palindromic factorization. J. Discret. Algorithms 28(C), 41–48 (2014).
http://dx.doi.org/10.1016/j.jda.2014.08.001

9. Frid, A., Puzynina, S., Zamboni, L.: On palindromic factorization of words. Adv.
Appl. Math. 50(5), 737–748 (2013). http://dx.doi.org/10.1016/j.aam.2013.01.002

10. Fujishige, Y., Nakamura, M., Inenaga, S., Bannai, H., Takeda, M.: Finding
gapped palindromes online. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.)
IWOCA 2016. LNCS, vol. 9843, pp. 191–202. Springer, Cham (2016). doi:10.1007/
978-3-319-44543-4 15

11. Galil, Z.: Real-time algorithms for string-matching and palindrome recognition. In:
Proceedings of the Eighth Annual ACM Symposium on Theory of Computing, pp.
161–173. ACM (1976). http://doi.acm.org/10.1145/800113.803644

12. Galil, Z., Seiferas, J.: A linear-time on-line recognition algorithm for “palstar”. J.
ACM 25(1), 102–111 (1978). http://doi.acm.org/10.1145/322047.322056

13. Gupta, S., Prasad, R., Yadav, S.: Searching gapped palindromes in DNA sequences
using dynamic suffix array. Indian J. Sci. Technol. 8(23), 1 (2015)

14. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, New York (1997)

15. I, T., Sugimoto, S., Inenaga, S., Bannai, H., Takeda, M.: Computing palindromic
factorizations and palindromic covers on-line. In: Kulikov, A.S., Kuznetsov, S.O.,
Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 150–161. Springer, Cham
(2014). doi:10.1007/978-3-319-07566-2 16

16. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

17. Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theor. Comput.
Sci. 410(51), 5365–5373 (2009). http://dx.doi.org/10.1016/j.tcs.2009.09.013

18. Kosolobov, D., Rubinchik, M., Shur, A.M.: Palk is linear recognizable online. In:
Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer,
R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 289–301. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46078-8 24

19. Manacher, G.: A new linear-time “on-line” algorithm for finding the smallest initial
palindrome of a string. J. ACM (JACM) 22(3), 346–351 (1975)

20. Rubinchik, M., Shur, A.M.: EERTREE: an efficient data structure for processing
palindromes in strings. In: Lipták, Z., Smyth, W.F. (eds.) IWOCA 2015. LNCS,
vol. 9538, pp. 321–333. Springer, Cham (2016). doi:10.1007/978-3-319-29516-9 27

http://dx.doi.org/10.1016/0020-0190(95)00080-V
http://dx.doi.org/10.1016/S0304-3975(97)00188--6
http://dx.doi.org/10.1016/j.jda.2014.08.001
http://dx.doi.org/10.1016/j.aam.2013.01.002
http://dx.doi.org/10.1007/978-3-319-44543-4_15
http://dx.doi.org/10.1007/978-3-319-44543-4_15
http://doi.acm.org/10.1145/800113.803644
http://doi.acm.org/10.1145/322047.322056
http://dx.doi.org/10.1007/978-3-319-07566-2_16
http://dx.doi.org/10.1016/j.tcs.2009.09.013
http://dx.doi.org/10.1007/978-3-662-46078-8_24
http://dx.doi.org/10.1007/978-3-319-29516-9_27

	Palindromic Decompositions with Gaps and Errors
	1 Introduction
	2 Notation and Terminology
	3 Palindromic Decomposition with Gaps
	4 Computing Maximal Palindromes with Errors
	5 Maximal Palindromic Decomposition with Gaps and Errors
	6 Conclusions
	A Appendix
	References

