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Abstract. Let F be a connected graph with � vertices. The existence
of a subgraph isomorphic to F can be defined in first-order logic with
quantifier depth no better than �, simply because no first-order formula
of smaller quantifier depth can distinguish between the complete graphs
K� and K�−1. We show that, for some F , the existence of an F subgraph
in sufficiently large connected graphs is definable with quantifier depth
�−3. On the other hand, this is never possible with quantifier depth bet-
ter than �/2. If we, however, consider definitions over connected graphs
with sufficiently large treewidth, the quantifier depth can for some F be
arbitrarily small comparing to � but never smaller than the treewidth
of F .

We also prove that any first-order definition of the existence of an
induced subgraph isomorphic to F requires quantifier depth strictly more
than the density of F , even over highly connected graphs. From this
bound we derive a succinctness result for existential monadic second-
order logic: A usage of just one monadic quantifier sometimes reduces
the first-order quantifier depth at a super-recursive rate.

1 Introduction

For a fixed graph F on � vertices, let S(F ) denote the class of all graphs con-
taining a subgraph isomorphic to F . The decision problem for S(F ) is known as
Subgraph Isomorphism problem. It is solvable in time O(n�) on n-vertex input
graphs by exhaustive search. Nešetřil and Poljak [15] showed that S(F ) can be
recognized in time O(n(ω/3)�+2), where ω < 2.373 is the exponent of fast square
matrix multiplication. Moreover, the color-coding method by Alon, Yuster and
Zwick [2] yields the time bound

2O(�) · ntw(F )+1 log n,
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where tw(F ) denotes the treewidth of F . On the other hand, the decision problem
for S(K�), that is, the problem of deciding if an input graph contains a clique of
� vertices, cannot be solved in time no(�) unless the Exponential Time Hypothesis
fails.

We here are interested in the descriptive complexity of Subgraph Isomor-

phism. A sentence Φ defines a class of graphs C if

G |= Φ ⇐⇒ G ∈ C, (1)

where G |= Φ means that Φ is true on G. For a logic L, we let DL(C) (resp.
WL(C)) denote the minimum quantifier depth (resp. variable width) of Φ ∈ L
defining C. Note that WL(C) ≤ DL(C). We simplify notation by writing

WL(F ) = WL(S(F )) and DL(F ) = DL(S(F )). (2)

We are primarily interested in the first-order logic of graphs with relation
symbols for adjacency and equality of vertices, that will be denoted by FO. We
suppose that the vertex set of any n-vertex graph is {1, . . . , n}. Seeking the
adequate logical formalism for various models of computation, descriptive com-
plexity theory considers also more expressive logics involving numerical relations
over the integers. Given a set N of such relations, FO[N ] is used to denote the
extension of FO whose language contains symbols for each relation in N . Of
special interest are FO[<], FO[+,×], and FO[Arb], where Arb indicates that
arbitrary relations are allowed. It is known [10,14] that FO[Arb] and FO[+,×]
capture (non-uniform) AC0 and DLOGTIME-uniform AC0 respectively.

We will simplify the notation (2) further by writing D(F ) = DFO(F ) and
W (F ) = WFO(F ). Dropping FO in the subscript, we also use notation like
D<(F ) or WArb(F ). In this way we obtain two hierarchies of width and depth
parameters. In particular,

WArb(F ) ≤ W<(F ) ≤ W (F ) and DArb(F ) ≤ D<(F ) ≤ D(F ).

The relation of FO[Arb] to circuit complexity implies that S(F ) is recognizable
by bounded-depth unbounded-fan-in circuits of size nWArb(F )+o(1); see [10,18].
The interplay between the two areas has been studied in [12,13,18,19]. Notewor-
thy, the parameters WArb(F ) and DArb(F ) admit combinatorial upper bounds

WArb(F ) ≤ tw(F ) + 3 and DArb(F ) ≤ td(F ) + 2 (3)

in terms of the treewidth and treedepth of F ; see [20].1

The focus of our paper is on FO without any background arithmetical rela-
tions. Our interest in this weakest setting is motivated by the prominent problem

1 In his presentation [20], Benjamin Rossman states upper bounds WFO(F ) ≤ tw(F )+
1 and DFO(F ) ≤ td(F ) for the colorful version of Subgraph Isomorphism studied
in [13]. It is not hard to observe that the auxiliary color predicates can be defined
in FO[Arb] at the cost of two extra quantified variables by the color-coding method
developed in [2]; see also [3, Theorem4.2].
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on the power of encoding-independent computations; see, e.g., [9]. It is a long-
standing open question in finite model theory as to whether there exists a logic
capturing polynomial time on finite relational structures. The existence of a logic
capturing polynomial time would mean that any polynomial-time computation
could be made, in a sense, independent of the input encoding. If this is true,
are the encoding-independent computations necessarily slower than the stan-
dard ones? This question admits the following natural variation. Suppose that
a decision problem a priori admits an encoding-independent polynomial-time
algorithm, say, being definable in FO, like Subgraph Isomorphism for a fixed
pattern graph F . Is it always true that the running time of this algorithm can
be improved in the standard encoding-dependent Turing model of computation?

A straightforward conversion of an FO sentence defining S(F ) into an algo-
rithm recognizing S(F ) results in the time bound O(nD(F )) for Subgraph Iso-

morphism, which can actually be improved to O(nW (F )); see [14, Proposition 6.6].
The same applies to FO[<]. The last logic is especially interesting in the context
of order-invariant definitions. It is well known [14,21] that there are properties
of (unordered) finite structures that can be defined in FO[<] but not in FO.
Even if a property, like S(F ), is definable in FO, one can expect that in FO[<]
it can be defined much more succinctly. As a simple example, take F to be the
star graph K1,s and observe that D<(K1,s) ≤ log2 s+3 and W<(K1,s) ≤ 3 while
W (K1,s) = s + 1.

The main goal we pose in this paper is examining abilities and limitations
of the “pure” FO in succinctly defining Subgraph Isomorphism. Actually, if a
pattern graph F has � vertices, then the trivial upper bound D(F ) ≤ � cannot
be improved. We have W (F ) = � simply because no first-order formula with
less than � variables can distinguish between the complete graphs K� and K�−1.
Is this, however, the only reason preventing more succinct definitions of S(F )?
How succinctly can S(F ) be defined on large enough graphs? The question can
be formalized as follows. We say that a sentence Φ defines S(F ) on sufficiently
large connected graphs if there is k such that (1) with C = S(F ) is true for
all connected G with at least k vertices. Let Wv(F ) (resp. Dv(F )) denote the
minimum variable width (resp. quantifier depth) of such Φ.

Throughout the paper, we assume that the fixed pattern graph F is con-
nected. Therefore, F is contained in a host graph G if and only if it is contained
in a connected component of G. By this reason, the decision problem for S(F )
efficiently reduces to its restriction to connected input graphs. Since it suffices to
solve the problem only on all sufficiently large inputs, S(F ) is still recognizable
in time O(nWv(F )), while Wv(F ) ≤ W (F ).

A further relaxation is motivated by Courcelle’s theorem [6] saying that every
graph property definable by a sentence in monadic second-order logic can be
efficiently decided on graphs of bounded treewidth. More precisely, for Sub-

graph Isomorphism Courcelle’s theorem implies that S(F ) is decidable in time
f(�, tw(G)) · n, which means linear time for any class of input graphs having
bounded treewidth.
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Now, we say that a sentence Φ defines S(F ) on connected graphs with suf-
ficiently large treewidth if there is k such that (1) with C = S(F ) is true for
all connected G with treewidth at least k. Denote the minimum variable width
(resp. quantifier depth) of such Φ by Wtw (F ) (resp. Dtw (F )). Fix k that ensures
the minimum value Wtw (F ) and recall that, by Courcelle’s theorem, the sub-
graph isomorphism problem is solvable on graphs with treewidth less than k in
linear time. Note that, for a fixed k, whether or not tw(G) < k is also decidable
in linear time [4]. It follows that S(F ) is recognizable even in time O(nWtw (F )),
while Wtw (F ) ≤ Wv(F ).

The above discussion shows that the parameters Wv(F ), Dv(F ), Wtw (F ),
and Dtw (F ) have clear algorithmic meaning. Analyzing this setting, we obtain
the following results.

– We demonstrate that non-trivial definitions over sufficiently large graphs are
possible by showing that Dv(F ) ≤ v(F ) − 3 for some F , where v(F ) denotes
the number of vertices in F . On the other hand, we show limitations of this
approach by proving that Wv(F ) ≥ (v(F ) − 1)/2 for all F .

– The last barrier (as well as any lower bound in terms of v(F )) can be overcome
by definitions over graphs with sufficiently large treewidth. Specifically, for
every � and a ≤ � there is an �-vertex F such that Dtw (F ) ≤ a and, moreover,
tw(F ) = a − 1. On the other hand, Wtw (F ) ≥ tw(F ) for all F . Note that,
along with (3), this implies that WArb(F ) ≤ Wtw (F ) + 3.

We also address the descriptive complexity of the Induced Subgraph Isomor-

phism problem. Let I(F ) denote the class of all graphs containing an induced
subgraph isomorphic to F . The state-of-the-art of the algorithmics for Induced

Subgraph Isomorphism is different from Subgraph Isomorphism. Floderus
et al. [8] collected evidence in favor of the conjecture that I(F ) for F with �
vertices cannot be recognized faster than I(Kc �), where c < 1 is a constant.

Similarly to D(F ), we define D[F ] = D(I(F )), where the square brackets
indicate that the case of induced subgraphs is considered. The trivial argument
showing that D(F ) = v(F ) does not work anymore unless F is a complete graph
(whereas K� contains every �-vertex F as a subgraph, it contains no induced
copy of F unless F = K�). Proving or disproving that D[F ] = v(F ) seems to be
a subtle problem. Our results on Induced Subgraph Isomorphism are as follows.

– We prove a general lower bound D[F ] > e(F )/v(F ), where e(F ) denotes the
number of edges in F . In fact, the bound holds true even for Dtw [F ].

– From this bound we derive a succinctness result for existential monadic
second-order logic: A usage of just one monadic quantifier sometimes reduces
the FO quantifier depth at a super-recursive rate. More precisely, let
D∃MSO[F ] denote the minimum quantifier depth of a second-order sentence
with a single existential monadic quantifier that defines I(F ). Then D∃MSO[F ]
can sometimes be so small comparing to D[F ] = DFO[F ] that there is no total
recursive function f such that f(D∃MSO[F ]) ≥ D[F ] for all F .



312 O. Verbitsky and M. Zhukovskii

2 Preliminaries

First-Order Complexity of Graph Properties. We consider first-order sen-
tences about graphs in the language containing the adjacency and the equality
relations. Let C be a first-order definable class of graphs and π be a graph
parameter. Let Dk

π(C) denote the minimum quantifier depth of a first-order
sentence Φ such that, for every connected graph G with π(G) ≥ k, Φ is true
on G exactly when G belongs to C. Note that Dk

π(C) ≥ Dk+1
π (C), and define

Dπ(C) = mink Dk
π(C). In other words, Dπ(C) is the minimum quantifier depth

of a first-order sentence defining C over connected graphs with sufficiently large
values of π.

The variable width of a first-order sentence Φ is the number of first-order
variables used to build Φ; different occurrences of the same variable do not
count. By Wπ(C) we denote the minimum variable width of Φ defining C over
connected graphs with sufficiently large π. Note that Wπ(C) ≤ Dπ(C).

Recall that a graph is k-connected if it has more than k vertices, is connected,
and remains connected after removal of any k−1 vertices. The connectivity κ(G)
of G is equal to the maximum k such that G is k-connected. We will consider the
depth Dπ(C) and the width Wπ(C) for three parameters π, namely the number
of vertices v(G), the treewidth tw(G), and the connectivity κ(G). It is not hard
to see that

Dv(C) ≥ Dtw (C) ≥ Dκ(C) and Wv(C) ≥ Wtw (C) ≥ Wκ(C).

As it was discussed in Sect. 1, the values of Dv(C) and Dtw (C), as well as Wv(C)
and Wtw (C), are related to the time complexity of the decision problem for C.
Consideration of Dκ(C) and Wκ(C) is motivated by the fact that some lower
bounds we are able to show for Dv(C) and Dtw (C) actually hold for Dκ(C) or
even for Wκ(C), and it is natural to present them in this stronger form.

Recall that S(F ) denotes the class of graphs containing a subgraph isomor-
phic to F . Simplifying the notation, we write Dv(F ) = Dv(S(F )), Wv(F ) =
Wv(S(F )), etc.

Given two non-isomorphic graphs G and H, let D(G,H) (resp. W (G,H))
denote the minimum quantifier depth (resp. variable width) of a sentence that
is true on one of the graphs and false on the other.

Lemma 1. 1. Dπ(C) ≥ d if there are connected graphs G ∈ C and H /∈ C with
arbitrarily large values of π(G) and π(H) such that D(G,H) ≥ d.

2. Wπ(C) ≥ d if there are connected graphs G ∈ C and H /∈ C with arbitrarily
large values of π(G) and π(H) such that W (G,H) ≥ d.

3. Dπ(C) ≤ d if D(G,H) ≤ d for all connected graphs G ∈ C and H /∈ C with
sufficiently large values of π(G) and π(H).

Lemma 1 reduces estimating Dπ(C) to estimating D(G,H) over connected
G ∈ C and H /∈ C with large values of π. Also, proving lower bounds for Wπ(C)
reduces to proving lower bounds for W (G,H). For estimating D(G,H) and
W (G,H) we will use the well-known characterization of these parameters in
terms of the k-pebble Ehrenfeucht-Fräıssé game [10]:
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1. D(G,H) is equal to the minimum k such that Spoiler has a winning strategy
in the k-round k-pebble game on G and H.

2. W (G,H) is equal to the minimum k such that, for some d, Spoiler has a
winning strategy in the d-round k-pebble game on G and H.

Graph-Theoretic Preliminaries. Recall that v(G) denotes the number of
vertices in a graph G. The treewidth of G is denoted by tw(G). The neighborhood
N(v) of a vertex v consists of all vertices adjacent to v. The number deg v =
|N(v)| is called the degree of v. The vertex of degree 1 is called pendant.

We use the standard notation Kn for complete graphs, Pn for paths, and Cn

for cycles on n vertices. Furthermore, Ka,b denotes the complete bipartite graph
whose vertex classes have a and b vertices. In particular, K1,n−1 is the star graph
on n vertices. The subscript in the name of a graph will almost always denote
the number of vertices. If a graph is indexed by two parameters, their sum is
typically equal to the total number of vertices in the graph.

L4,2 S4,2 J4,3 M3,2

Fig. 1. Special graph families: Lollipops, sparklers, jellyfishes, and megastars.

The following definitions are illustrated in Fig. 1. Let a ≥ 3 and b ≥ 1.
The lollipop graph La,b is obtained from Ka and Pb by adding an edge between
an end vertex of Pb and a vertex of Ka. We also make a natural convention
that La,0 = Ka. Furthermore, the sparkler graph Sa,b is obtained from K1,a−1

and Pb by adding an edge between an end vertex of Pb and the central vertex
of K1,a−1. The jellyfish graph Ja,b is the result of attaching b pendant vertices
to a vertex of Ka. Finally, the megastar graph Ms,t is obtained from the star
K1,s by subdividing each edge into Pt+1; thus v(Ms,t) = st + 1.

3 Definitions over Sufficiently Large Graphs

Our first goal is to demonstrate that non-trivial definitions over large connected
graphs are really possible. The lollipop graphs La,1 give simple examples of
pattern graphs F with Dv(F ) ≤ v(F )−1. Though not so easily, the same can be
shown for the path graphs P�. We are able to show better upper bounds using
sparkler graphs.
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Theorem 2. There is a graph F with Dv(F ) ≤ v(F ) − 3. Specifically,
Dv(S4,4) = 5.

For the proof we need two technical lemmas.

Lemma 3. Suppose that a connected graph H contains the 4-star K1,4 as a
subgraph but does not contain any subgraph S4,4. Then H contains a vertex of
degree more than (v(H)/2)1/7.

Proof. H cannot contain P15 because, together with K1,4, it would give an S4,4

subgraph. Consider an arbitrary spanning tree T in H and denote its maximum
vertex degree by d and its radius by r. Note that v(T ) ≤ 1 + d + d(d − 1) +
. . . + d(d − 1)r−1. Since T contains no P15, we have r ≤ 7. It follows that
v(H) = v(T ) < 2d7. ��

Let ∼ denote the adjacency relation.

Lemma 4. Let y0 ∈ V (H) and assume that

– H is a sufficiently large connected graph,
– H does not contain S4,4,
– deg y0 ≥ 4,
– y0y1y2y3y4 is a path in H.

Then (see Fig. 2)

1. deg y0 = 4,
2. y0 ∼ y2, y0 � y3, y0 � y4,
3. if N(y0) = {y1, y2, y

′, y′′}, then y1 � y′ and y1 � y′′.

x0

x1

x2

x3

x4

x′ x′′
x′′′

S4,4 in G

y0

y1

y2

y3

y4

y′ y′′

H

Fig. 2. Proof of Theorem 2.
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Proof. By Lemma 3 we know that H must contain a vertex z of large degree,
namely deg z ≥ 7. We have y0 � y4 for else H would contain a cycle C5 and,
together with z, this would give us a subgraph S4,4 (because, by connectedness of
H, we would have a path P5 emanating from z). Therefore, y0 has a neighbor y′ /∈
{y1, y2, y3, y4}. Furthermore, y0 � y3 for else, considering a path from z to one of
the vertices y′, y0, y1, y2, y3, y4, we get a P5 emanating from z and, hence, an S4,4.
Therefore, y0 has another neighbor y′′ /∈ {y′, y1, y2, y3, y4}. Furthermore, y0 ∼
y2 for else y0 would have three neighbors y′, y′′, y′′′ different from y1, y2, y3, y4,
which would give S4,4. By the same reason, y0 has no other neighbors, that is,
N(y0) = {y1, y2, y

′, y′′} and deg y0 = 4. Note that z ∈ {y0, y1, y2, y3, y4} for else
we easily get an S4,4 by considering a path from z to one of these vertices. It is
also easy to see that z 
= y0, y4, y3, y1 (for example, if deg y1 ≥ 7, then it would
give an S4,4 with tail y1y0y2y3y4). Therefore, z = y2. If y1 ∼ y′ or y1 ∼ y′′, we
would have an S4,4 with tails y2y1y

′y0y′′ or y2y1y
′′y0y′ respectively. ��

Proof (of Theorem 2). We are now ready to prove the upper bound Dv(S4,4) ≤ 5.
Consider sufficiently large connected graphs G and H and suppose that G contains
an S4,4, whose vertices are labeled as in Fig. 2, and H contains no copy of S4,4. We
describe a winning strategy for Spoiler in the game on G and H.

1st round. Spoiler pebbles x0. Denote the response of Duplicator in H by y0.
Assume that deg y0 ≥ 4 for else Spoiler wins in the next 4 moves. Assume that
x0 ∼ x2 for else Spoiler wins by pebbling x1, x2, x3, x4 (if Duplicator responds
with a path y0y1y2y3y4, she loses by Condition 2 in Lemma4).

2nd round. Spoiler pebbles x1. Denote the response of Duplicator in H by
y1. Assume that there is a path y0y1y2y3y4 for else Spoiler wins in the next 3
moves.

Case 1: x1 is adjacent to any of the vertices x′, x′′, x′′′, say, to x′. Spoiler
pebbles x2 and x′ and wins. Indeed, Duplicator has to respond with two vertices
in H both in N(y0) ∩ N(y1), which is impossible by Conditions 1 and 3 of
Lemma 4.

Case 2: x1 � x′, x1 � x′′, x1 � x′′′. Spoiler wins by pebbling x′, x′′, x′′′.
Duplicator has to respond with three vertices in N(y0)\N(y1), which is impos-
sible by Conditions 1 and 2 of Lemma4.

This completes the proof of the upper bound. On the other hand, we have
Dv(S4,4) > 4 by considering the jellyfish graphs G = J5,n and H = J4,n. ��

We now show general lower bounds for Dv(F ) and Wv(F ). For this, we need
some definitions. Let v0v1 . . . vt be an induced path in a graph G. We call it
pendant if deg v0 
= 2, deg vt = 1 and deg vi = 2 for all 1 ≤ i < t. Furthermore,
let S be an induced star K1,s in G with the central vertex v0. We call S pendant
if all its pendant vertices are pendant also in G, and in G there are no more than
s pendant vertices adjacent to v0. The definition ensures that a pendant path
(or star) cannot be contained in a larger pendant path (or star). As an example,
note that the sparkler graph Ss+1,t has a pendant Pt+1 and a pendant K1,s.

Let p(F ) denote the maximum t such that F has a pendant path Pt+1.
Similarly, let s(F ) denote the maximum s such that F has a pendant star K1,s.
If F has no pendant vertex, then we set p(F ) = 0 and s(F ) = 0.
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Theorem 5. Dv(F ) ≥ (v(F ) + 1)/2 and Wv(F ) ≥ (v(F ) − 1)/2 for every con-
nected F unless F = P2 or F = P3.

Proof. Denote

� = v(F ), t = p(F ) and s = s(F ).

We begin with noticing that

Dv(F ) ≥ � − t and Wv(F ) ≥ � − t − 1. (4)

Indeed, this is obvious if F is a path, that is, F = Pt+1. If F is not a path, we
consider lollipop graphs G = L�−t,n and H = L�−t−1,n for each n ≥ t (note that
� ≥ t+3 and, if � = t+3, then H = L2,n = Pn+2). Obviously, G contains F , and
H does not. It remains to note that D(G,H) ≥ � − t and W (G,H) ≥ � − t − 1.

We also claim that

Dv(F ) ≥ � − s and Wv(F ) ≥ � − s − 1. (5)

This is obvious if F is a star, that is, F = K1,s. If F is not a star, we consider
jellyfish graphs G = J�−s,n and H = J�−s−1,n for each n ≥ s (note that � ≥ s+3
and, if � = s + 3, then H = J2,n = K1,n+1). Clearly, G contains F , and H does
not. It remains to observe that D(G,H) ≥ � − s and W (G,H) ≥ � − s − 1.

Let F = K1,�−1 or F = P�, where � ≥ 4. Using (4) and (5) respectively,
we get Dv(F ) ≥ � − 1 ≥ �+1

2 and, similarly, Wv(F ) ≥ � − 2 ≥ �−1
2 . Assume,

therefore, that F is neither a star nor a path. In this case we claim that

t + s < �. (6)

This is obviously true if F has no pendant vertex, that is, t = s = 0. Suppose
that F has a pendant vertex and, therefore, both t > 0 and s > 0. Consider an
arbitrary spanning tree T of F and note that T contains all pendant paths and
stars of F . Fix a longest pendant path P and a largest pendant star S in F . If
P and S share at most one common vertex, we readily get (6). If they share two
vertices, then S = K1,1, i.e., s = 1, and t + 1 < � follows from the assumption
that F is not a path.

The theorem readily follows from (4)–(6). ��

4 Definitions over Graphs of Sufficiently Large
Treewidth

Theorem 5 poses limitations on the succinctness of definitions over sufficiently
large graphs. We now show that there are no such limitations for definitions over
connected graphs with sufficiently large treewidth.

The Grid Minor Theorem says that every graph of large treewidth contains a
large grid minor; see [7]. The strongest version of this result belongs to Chekuri
and Chuzhoy [5] who proved that, for some ε > 0, every graph G of treewidth
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k contains the m × m grid as a minor with m = Ω(kε). If m > 2b, then G
must contain M3,b as a subgraph. This applies also to all subgraphs of M3,b. The
following result is based on the fact that a graph of large treewidth contains a
long path.

Theorem 6. For all a and � such that 3 ≤ a ≤ � there is a graph F with
v(F ) = � and tw(F ) = a − 1 such that Dtw (F ) ≤ a. Specifically, Dtw (La,b) =
Wκ(La,b) = a if a ≥ 3 and b ≥ 0.

Note for comparison that Wv(La,b) ≥ a + b − 2, as follows from the bound
(5) in the proof of Theorem5.

Proof. We first prove the upper bound Dtw (La,b) ≤ a. If a connected graph H
of large treewidth does not contain La,b, it cannot contain even Ka for else Ka

could be combined with a long path to give La,b. Therefore, Spoiler wins on
G ∈ S(La,b) and such H in a moves.

For the lower bound Wκ(La,b) ≥ a, consider G = K(a, n) and H = K(a −
1, n), where K(a, n) denotes the complete a-partite graph with each part having
n vertices. Note that this graph is (a − 1)n-connected. If n > b, then G contains
La,b, while H for any n does not contain even Ka. It remains to note that
W (G,H) ≥ a if n ≥ a − 1. ��
We now prove a general lower bound for Wtw (F ) in terms of the treewidth
tw(F ). Using the terminology of [11, Chap. 5], we define the core F0 of F to be
the graph obtained from F by removing, consecutively and as long as possible,
vertices of degree at most 1. If F is not a forest, then F0 is nonempty; it consists
of all cycles of F and the paths between them.

We will use the well-known fact that there are cubic graphs of arbitrary
large treewidth. This fact dates back to Pinsker [17] who showed that a random
cubic graph with high probability has good expansion properties, implying linear
treewidth.

Theorem 7. If F is connected, then

1. Wtw (F ) ≥ v(F0), and
2. Wtw (F ) ≥ tw(F ) + 1 unless F is contained in some 3-megastar M3,b.

Note that the bound in part 2 of Theorem7 is tight by Theorem 6.

Proof. 1. Denote v(F ) = � and v(F0) = �0. If F is a tree, then �0 = 0, and the
claim is trivial. Suppose, therefore, that F is not a tree. In this case, �0 ≥ 3.

We begin with a cubic graph B of as large treewidth tw(B) as desired. Let
(B)� denote the graph obtained from B by subdividing each edge by � new
vertices. Since B is a minor of (B)�, we have tw((B)�) ≥ tw(B); see [7].

Next, we construct a gadget graph A as follows. By a k-uniform tree we
mean a tree of even diameter where every non-leaf vertex has degree k and
all distances between a leaf and the central vertex are equal. The graph A is
obtained by merging the �-uniform tree of radius � and (B)�; merging is done by
identifying one leaf of the tree and one vertex of (B)�.
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We now construct G by attaching a copy of A to each vertex of K�0 . Specif-
ically, a copy Au of A is created for each vertex u of K�0 , and u is identified
with the central vertex of (the tree part of) Au. Let H be obtained from G by
shrinking its clique part to K�0−1. Since both G and H contain copies of (B)�,
these two graphs have treewidth at least as large as tw(B).

The clique part of G is large enough to host the core F0, and the remaining
tree shoots of F fit into the A-parts of G. Therefore, G contains F as a subgraph.
On the other hand, the clique part of H is too small for hosting F0, and no cycle
of F fits into any A-part because A has larger girth than F . Therefore, H does
not contain F . It remains to notice that W (G,H) ≥ �0.

2. Suppose first that F is not a tree. By part 1, we then have

Wtw (F ) ≥ v(F0) ≥ tw(F0) + 1 = tw(F ) + 1.

If F is a tree not contained in any 3-megastar, then there are connected graphs
of arbitrarily large treewidth that do not contain F as a subgraph (for example,
consider (B)� for a connected cubic graph B as in part 1). Trivially, there are also
connected graphs of arbitrarily large treewidth that contain F as a subgraph.
Since one pebble is not enough for Spoiler to distinguish the latter from the
former, we have Wtw (F ) ≥ 2 = tw(F ) + 1 in this case. ��

5 Induced Subgraphs: Trading Super-Recursively Many
First-Order Quantifiers for a Single Monadic One

By I(F ) we denote the class of all graphs containing an induced subgraph iso-
morphic to F . Similarly to D(F ), we use the notation D[F ] = D(I(F )), where
the square brackets indicate that only induced subgraphs are considered. In the
same vein, Dκ[F ] = Dκ(I(F )).

Unlike the case of (not necessarily induced) subgraphs, where the equality
D(F ) = v(F ) is trivial, determining and estimating the parameter D[F ] seems
to be a subtle problem. In this section we prove a lower bound for D[F ] in terms
of the density of F ; this bound actually holds for Dκ[F ]. The proof will use
known facts about random graphs in the Erdős-Rényi model G(n, p), collected
below. It should be stressed that, whenever the term subgraph stands alone, it
refers to a not necessarily induced subgraph. With high probability means that
the probability approaches 1 as n → ∞.

The density of a graph K is defined to be the ratio ρ(K) = e(K)/v(K). The
maximum ρ(K) over all subgraphs K of a graph F will be denoted by ρ∗(F ). The
following fact from the random graph theory was used also in [13] for proving
average-case lower bounds on the AC0 complexity of Subgraph Isomorphism.

Lemma 8 (Subgraph Threshold, see [11, Chap. 3]).

1. If α = 1/ρ∗(F ), then the probability that G(n, n−α) contains F as a subgraph
converges to a limit different from 0 and 1 as n → ∞.

2. If α > 1/ρ∗(F ), then with high probability G(n, n−α) does not contain F as
a subgraph.
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Let α > 0. Given a graph S and its subgraph K, we define fα(S,K) =
v(S) − v(K) − α(e(S) − e(K)).

Lemma 9 (Generic Extension, see [1, Chap. 10]). Let F be a graph with
vertices v1, . . . , v� and K be a subgraph of F with vertices v1, . . . , vk. Assume that
fα(S,K) > 0 for every subgraph S of F containing K as a proper subgraph. Then
with high probability every sequence of pairwise distinct vertices x1, . . . , xk in
G(n, n−α) can be extended with pairwise distinct xk+1, . . . , x� such that xi ∼ xj

if and only if vi ∼ vj for all i ≤ � and k < j ≤ �.

Lemma 10 (Zero-One d-Law [23]). Let 0 < α < 1
d−2 , and Ψ be a first-order

statement of quantifier depth d. Then the probability that Ψ is true on G(n, n−α)
converges either to 0 or to 1 as n → ∞.

We are now ready to prove our result.

Theorem 11. If e(F ) > v(F ), then Dκ[F ] ≥ e(F )
v(F ) + 2 and Dκ(F ) ≥ e(F )

v(F ) + 2.

Proof. We prove the bound for Dκ[F ]. The same proof works as well for Dκ(F )
(and is even simpler as the equality (7) below is only needed in the induced
case).

Set α = 1/ρ∗(F ) and denote Gn = G(n, n−α). We begin with proving that

P[Gn ∈ I(F )] = P[Gn ∈ S(F )] − o(1). (7)

Let K be a maximal subgraph of F with ρ(K) = ρ∗(F ). Note that K is an
induced subgraph of F . Note also that, if F is balanced, i.e., ρ∗(F ) = ρ(F ),
then K = F . The graph K has less than

(
v(K)
2

)
supergraphs K ′ obtainable by

adding an edge to K, and every K ′ has density strictly larger than K, that is,
ρ(K ′) > 1/α. By part 2 of Lemma 8, each such K ′ appears as a subgraph in Gn

with probability o(1). It follows that

P[Gn ∈ I(K)] = P[Gn ∈ S(K)] − o(1). (8)

which readily implies (7) in the case that F is balanced.
Suppose now that F is not balanced. In this case, for every subgraph S of

F containing K properly we have v(S)/e(S) > α, which implies fα(S,K) > 0.
Lemma 9 ensures that, with probability 1−o(1), every induced copy of K in Gn

extends to an induced copy of F . Therefore,

P[Gn ∈ S(F )] ≥ P[Gn ∈ I(F )] ≥ P[Gn ∈ I(K)] − o(1)
≥ P[Gn ∈ S(K)] − o(1) ≥ P[Gn ∈ S(F )] − o(1), (9)

where the last but one inequality is due to (8). Equality (7) is proved.
By part 1 of Lemma 8, limn→∞ P[Gn ∈ S(F )] exists and equals neither 0 nor

1. It follows from (7) that P[Gn ∈ I(F )] converges to the same limit, different
from 0 and 1.
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Now, assume that a first-order sentence Φ of quantifier depth d defines S(F )
over k-connected graphs for all k ≥ k0. We have to prove that d ≥ e(F )

v(F ) + 2,
whatever k0.

By the assumption of the theorem, ρ∗(F ) ≥ ρ(F ) > 1. Fix k such that
1 + 1/k < ρ(F ) and k ≥ k0. Lemma 9 implies that with high probability every
two vertices in Gn can be connected by k vertex-disjoint paths (of length k each).
Therefore, Gn is k-connected with high probability.

Since Φ correctly decides the existence of an induced copy of F on all k-
connected graphs,

P[Gn |= Φ] = P[Gn ∈ I(F )] + o(1).

Therefore, P[Gn |= Φ] converges to the same limit as P[Gn ∈ I(F )], which, as
we have seen, is different from 0 and 1. By Lemma 10, this implies that α ≥ 1

d−2 .
From here we conclude that

d ≥ ρ∗(F ) + 2 ≥ e(F )
v(F )

+ 2,

as required. ��
We now turn to existential monadic second-order logic, denoted by ∃MSO,

whose formulas are of the form

∃X1 . . . ∃Xm Φ, (10)

where a first-order subformula Φ is preceded by (second-order) quantification
over unary relations (that is, we are now allowed to use existential quantifiers
over subsets of vertices X1,X2, . . .). The second-order quantifiers contribute to
the quantifier depth as well as the first-order ones. Thus, the quantifier depth
of the sentence (10) is larger by m than the quantifier depth of the formula
Φ. If a graph property C is definable in ∃MSO, the minimum quantifier depth
of a defining formula will be denoted by D∃MSO(C). Furthermore, we define
D∃MSO[F ] = D∃MSO(I(F )).

It is very well known that ∃MSO is strictly more expressive than first-order
logic. For example, the properties of a graph to be disconnected or to be bipar-
tite are expressible in ∃MSO but not in FO. We now show that ∃MSO is also
much more succinct than FO, which means that some properties of graphs that
are expressible in FO can be expressed in ∃MSO with significantly smaller quan-
tifier depth. In fact, this can be demonstrated by considering the properties of
containing a fixed induced subgraph. It turns out that, if we are allowed to use
just one monadic second-order quantifier, the number of first-order quantifiers
can sometimes be drastically reduced.

Theorem 12. There is no total recursive function f such that

f(D∃MSO[F ]) ≥ D[F ]

for all graphs F . Moreover, this holds true even for the fragment of ∃MSO where
exactly one second-order quantifier is allowed.
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The proof, which can be found in a long version of this paper [22], is based
on Theorem 11 and [16, Theorem 4.2].
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