
Edit Distance Neighbourhoods of Input-Driven
Pushdown Automata

Alexander Okhotin1(B) and Kai Salomaa2

1 St. Petersburg State University, 14th Line V.O., 29B,
Saint Petersburg 199178, Russia
alexander.okhotin@spbu.ru

2 School of Computing, Queen’s University,
Kingston, ON K7L 2N8, Canada

ksalomaa@cs.queensu.ca

Abstract. Edit distance �-neighbourhood of a formal language is the set
of all strings that can be transformed to one of the strings in this language
by at most � insertions and deletions. Both the regular and the context-
free languages are known to be closed under this operation, whereas the
deterministic pushdown automata are not. This paper establishes the
closure of the family of input-driven pushdown automata (IDPDA), also
known as visibly pushdown automata, under the edit distance neigh-
bourhood operation. A construction of automata representing the result
of the operation is given, and close lower bounds on the size of any such
automata are presented.

1 Introduction

Edit distance is the standard measure of similarity between two strings: this is the
least number of elementary edit operations—such as inserting a symbol, remov-
ing a symbol or replacing a symbol with another symbol—necessary to transform
one string into another. Algorithms and methods related to the edit distance are
useful in numerous applications: whenever DNA sequences are checked for sim-
ilarity, misspelled words are matched to their most probable spelling, etc.

Many problems involving edit distance are formulated in terms of formal
languages. In particular, one can consider the edit distance between a string
and a language, which is relevant to assessing the number of syntax errors in
an input string, as well as to correcting those errors [13]. There is also a notion
of a distance between a pair of languages, studied, in particular, by Chatterjee
et al. [6]. The shortest distance between two languages is uncomputable if both
languages are given by grammars [11], whereas the distance between a grammar
and a regular language is computable [7].

In connection with the distance between a string and a language, there is a
convenient notion of edit distance �-neighbourhood of a given language: this is
a set of all strings at edit distance at most � from some element of that lan-
guage. The edit distance �-neighbourhood is then an operation on languages.

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 260–272, 2017.
DOI: 10.1007/978-3-319-58747-9 23

Edit Distance Neighbourhoods of Input-Driven Pushdown Automata 261

It is known that the regular languages are closed under this operation. In partic-
ular, Povarov [20] determined an optimal construction for the 1-neighbourhood
of a given automaton; this result was extended to the �-neighbourhood in the
papers by Salomaa and Schofield [21] and by Ng, Rappaport and Salomaa [12].

The edit distance operation is no less relevant in formal grammars. For
context-free grammars, the work by Aho and Peterson [1] on error recovery
in parsers contains a direct construction of a grammar, which is sufficient to
prove the closure under edit distance neighbourhood. Also, �-neighbourhood is
computable by a nondeterministic finite transducer (NFT), and by the closure of
grammars under all such transductions, the closure follows; the same argument
applies to all families closed under NFT, such as the linear grammars. On the
other hand, for deterministic pushdown automata (DPDA)—or, equivalently,
for LR(k) grammars—there is a simple example witnessing their non-closure
under the 1-neighbourhood operation: the language L = { canbn |n � 0 } ∪
{ danb2n |n � 0 } is recognized by a DPDA, whereas its 1-neighbourhood, under
intersection with a∗b∗, is the language { anbn |n � 0 } ∪ { anb2n |n � 0 }, which
is a classical example of a language not recognized by any DPDA.

This paper investigates �-neighbourhoods for an important subclass of
DPDA: the input-driven pushdown automata (IDPDA), also known under the
name of visibly pushdown automata. In these automata, the input symbol deter-
mines whether the automaton should push a stack symbol, pop a stack symbol
or leave the stack untouched. These symbols are called left brackets, right brack-
ets and neutral symbols, and the symbol pushed at each left bracket is always
popped when reading the corresponding right bracket. Input-driven automata
are important as a model of hierarchically structured data, such as XML docu-
ments or computation traces for recursive procedure calls. They are also notable
for their appealing theoretical properties, resembling those of finite automata.

Input-driven automata were first studied by Mehlhorn [10] and by von
Braunmühl and Verbeek [4], who determined that the languages they recog-
nize lie in logarithmic space. Von Braunmühl and Verbeek [4] also proved that
deterministic and nondeterministic variants of the model are equal in power.
Later, Alur and Madhusudan [2,3] reintroduced the model under the names
“visibly pushdown automata” and “nested word automata”, and carried out
its language-theoretic study, in particular, establishing the closure of the cor-
responding family under the basic operations on languages. Their contribution
inspired further work on the closure properties of input-driven automata and on
their descriptional complexity [8,16–18].

The main result of this paper, presented in Sect. 3, is that the family of
languages recognized by input-driven automata is closed under the edit distance
neighbourhood operation. The main difficulty in the construction is that when
the symbol inserted or deleted is a bracket, then adding or removing that symbol
changes the bracket structure of the string, so that other brackets may now be
matched not to the same brackets as before. It is shown how, given an NIDPDA
for the original language, to construct an NIDPDA with one edit operation
applied.

262 A. Okhotin and K. Salomaa

The question of whether these constructions are optimal in terms of the
number of states is addressed in Sect. 4, where some lower bounds on the worst-
case size of an NIDPDA representing the edit distance neighbourhood of an
n-state NIDPDA are established. These bounds confirm that the constructions
presented in this paper are fairly close to optimal.

In Sect. 5, a similar construction is presented for deterministic input-driven
automata. The construction uses exponentially many states, and is accompanied
with a fairly close lower bound, showing that a DIDPDA for the edit distance
neighbourhood requires 2Ω(n2) states in the worst case.

2 Input-Driven Automata

An input-driven pushdown automaton (IDPDA) [2,3,10] is a special case of a
deterministic pushdown automaton, in which the input alphabet Σ is split into
three disjoint sets of left brackets Σ+1, right brackets Σ−1 and neutral symbols
Σ0. If the input symbol is a left bracket from Σ+1, then the automaton always
pushes one symbol onto the stack. For a right bracket from Σ−1, the automaton
must pop one symbol. Finally, for a neutral symbol in Σ0, the automaton may not
use the stack. In this paper, symbols from Σ+1 and Σ−1 shall be denoted by left
and right angled brackets, respectively (<, >), whereas lower-case Latin letters
from the beginning of the alphabet (a, b, c, . . .) shall be used for symbols from Σ0.
Input-driven automata may be deterministic (DIDPDA) and nondeterministic
(NIDPDA).

Under the simpler definition, input-driven automata operate on input strings,
in which the brackets are well-nested. When an input-driven automaton reads a
left bracket <∈ Σ+1, it pushes a symbol onto the stack. This symbol is popped
at the exact moment when the automaton encounters the matching right bracket
> ∈ Σ−1. Thus, a computation of an input-driven automaton on any well-nested
substring leaves the stack contents untouched, as illustrated in Fig. 1.

The more general definition of input-driven automata assumed in this paper
also allows ill-nested input strings. For every unmatched left bracket, the symbol
pushed to the stack when reading this bracket is never popped, and remains in
the stack to the end of the computation. An unmatched right bracket is read
with an empty stack: instead of popping a stack symbol, the automaton merely

Fig. 1. The computation of an IDPDA on a well-nested string.

Edit Distance Neighbourhoods of Input-Driven Pushdown Automata 263

detects that the stack is empty and makes a special transition, which leaves the
stack empty.

Definition 1 (von Braunmühl and Verbeek [4]; Alur and Madhusudan
[2]). A nondeterministic input-driven pushdown automaton (NIDPDA) over an
alphabet ˜Σ = (Σ+1, Σ−1, Σ0) consists of

– a finite set Q of states, with set of initial states Q0 ⊆ Q and accepting states
F ⊆ Q;

– a finite stack alphabet Γ , and a special symbol ⊥ /∈ Γ for the empty stack;
– for a neutral symbol c ∈ Σ0, a transition function δc : Q → 2Q gives the set

of possible next states;
– for each left bracket symbol <∈ Σ+1, the behaviour of the automaton is

described by a function δ< : Q → 2Q×Γ , which, for a given current state,
provides a set of pairs (q, γ), with q ∈ Q and γ ∈ Γ , where each pair means
that the automaton enters the state q and pushes γ onto the stack;

– for every right bracket symbol > ∈ Σ−1, there is a function δ> : Q × (Γ ∪
{⊥}) → 2Q specifying possible next states, assuming that the given stack
symbol is popped from the stack (or that the stack is empty).

A configuration is a triple (q, w, x), with the current state q ∈ Q, remaining input
w ∈ Σ∗ and stack contents x ∈ Γ ∗. Possible next configurations are defined as
follows.

(q, cw, x) �A (q′, w, x), c ∈ Σ0, q ∈ Q, q′ ∈ δc(q)
(q,<w, x) �A (q′, w, γx), < ∈ Σ+1, q ∈ Q, (q′, γ) ∈ δ<(q)

(q,>w, γx) �A (q′, w, x), > ∈ Σ−1, q ∈ Q, γ ∈ Γ, q′ ∈ δ>(q, γ)
(q,>w, ε) �A (q′, w, ε), > ∈ Σ−1, q′ ∈ δ>(q,⊥)

The language recognized by A is the set of all strings w ∈ Σ∗, on which the
automaton, having begun its computation in the configuration (q0, w, ε), eventu-
ally reaches a configuration of the form (q, ε, x), with q ∈ F and with any stack
contents x ∈ Γ ∗.

An NIDPDA is deterministic (DIDPDA), if there is a unique initial state
and every transition provides exactly one action.

As shown by von Braunmühl and Verbeek [4], every n-state NIDPDA operat-
ing on well-nested strings can be transformed to a 2n2

-state DIDPDA. Alur and
Madhusudan [2] extended this construction to allow ill-nested inputs, so that a
DIDPDA has 22n2

states; in the worst case, 2Ω(n2) states are necessary.
Another basic construction for DIDPDA that will be used in this paper is

computing the behaviour function of a given DIDPDA by another DIDPDA.
When a DIDPDA with a set of states Q processes a well-nested string w and
begins in a state q, it finishes reading that string in some state f(q), where
f : Q → Q is its behaviour function on w, and the stack is left untouched. Thus,
f completely characterizes the behaviour of a DIDPDA on w. For any given

264 A. Okhotin and K. Salomaa

DIDPDA A, it is possible to construct an nn-state DIDPDA, where n = |Q|,
that reaches the end of an input w in a state representing the behaviour of A
on the longest well-nested suffix of w. This construction is necessary for optimal
constructions representing operations on DIDPDA [17].

For more details on input-driven automata and their complexity, the readers
are directed to a recent survey [15].

3 Edit Distance for Input-Driven Automata

Let Σ be an alphabet, let a ∈ Σ be a symbol. Then, for a string w ∈ Σ∗, the
set of strings obtained by inserting a at any position is denoted by inserta(w) =
{uav |w = uv }. Similarly, the set of strings obtained by erasing a is deletea(w) =
{uv |w = uav }. These operations are extended to any language L ⊆ Σ∗ elemen-
twise, with inserta(L) =

⋃

w∈L inserta(w) and deletea(L) =
⋃

w∈L deletea(w).
The set of strings at edit distance at most � from a given string w is called

its �-neighbourhood, denoted by E�(w) and defined as follows.

E0(w) = {w}
E�+1(w) = E�(w) ∪

⋃

w′∈E�(w)

⋃

a∈Σ

(

inserta(w′) ∪ deletea(w′)
)

The �-neighbourhood of a language L ⊆ Σ∗ is the set of strings at edit distance
at most � from any string in L.

E�(L) =
⋃

w∈L

E�(w)

The definition of edit distance often includes the operation of replacing one
symbol with another. According to the above definition, replacement can be
implemented as a combination of one deletion and one insertion. This difference
affects the resulting edit distance. In this paper, the simpler definition is assumed,
because it makes the constructions easier; however, the constructions in this
paper can be extended to implement replacement as well.

In this paper, the above definitions are applied to languages over an alphabet
Σ = Σ+1∪Σ−1∪Σ0 recognized by an IDPDA, with the intention of constructing
another IDPDA that recognizes the edit distance neighbourhood of the given
language. A construction shall be obtained by first implementing the elementary
operations of inserting or deleting a single symbol. According to the definition
of the neighbourhood, all three types of symbols in Σ can be either inserted
or deleted. However, since IDPDA handle different types of symbols differently,
these six cases generally require separate treatment.

Neutral symbols are the easiest to insert or delete, the construction is the
same as for finite automata.

Lemma 1. Let L be a language recognized by an NIDPDA, let Q be its set of
states, and Γ its stack alphabet. Let c ∈ Σ0 be a neutral symbol. Then, both

Edit Distance Neighbourhoods of Input-Driven Pushdown Automata 265

languages insertc(L) and deletec(L) are recognized by NIDPDA with the set of
states Q ∪ ˜Q, where ˜Q = { q̃ | q ∈ Q }, and with the stack alphabet Γ .

There is also an NIDPDA with the same set of states Q and the same set of
stack symbols Γ that recognizes the language

⋃

c∈Σ0

(

insertc(L) ∪ deletec(L)
)

.

The second case is that of inserting a left bracket. The main difficulty is,
that once a new left bracket is inserted into a given string, it may match some
existing right bracket, which was formerly matched to a different left bracket.
This disrupts the operation of the simulated NIDPDA, and requires some efforts
to re-create it.

Lemma 2. Let L be a language recognized by an NIDPDA over an alphabet
with the set of states Q and with the stack alphabet Γ . Let � ∈ Σ+1 be a left
bracket. Then, the language insert�(L) is recognized by an NIDPDA with the set
of states Q ∪ ˜Q ∪ (Q × Γ), where ˜Q = { q̃ | q ∈ Q }, and with the stack alphabet
Γ ∪ {�} ∪ (Γ × Γ).

There is also an NIDPDA with the same states Q and the same stack symbols
Γ that recognizes

⋃

�∈Σ+1
insert�(L).

Proof. The first two types of states in the new automaton are the states q and
q̃, for any q ∈ Q. In either state, the new automaton simulates the original
automaton being in the state q.

In the beginning, the new automaton uses the states from ˜Q to simulate the
operation of the original automaton before it encounters the new left bracket that
has been inserted. At some point, the new automaton guesses that the currently
observed left bracket is the new one, and executes a special transition: when
passing the inserted left bracket (�) in a state q̃, the new automaton pushes a
special box symbol (�) into the stack and enters the state q: in these states, the
new automaton knows that the inserted symbol has already been encountered,
and simulates the original automaton as it is.

Later, when the automaton pops the box (�) upon reading some right bracket
(>), it knows that the stack symbol in the original computation corresponding to
this bracket lies in its stack one level deeper. Being an input-driven automaton,
it cannot pop it yet, but it can guess what that symbol is going to be. If γ
is the guessed stack symbol, then the automaton simulates the transition upon
popping γ and enters a state of the form (q, γ), where q is the result of the
transition, and γ is remembered in the state for later verification.

In states of the form (q, γ), neutral symbols are being read without modifying
the remembered stack symbol. Whenever a left bracket (<) occurs, and the
original automaton would enter a state r and push a stack symbol σ, the new
automaton enters the state r and pushes a special stack symbol (σ, γ), which
maintains the remembered stack symbol in the second component, and restores
it upon reading the well-nested substring.

When, in a state of the form (q, γ), the new automaton reaches a right bracket
(>), first, it verifies that the symbol being popped is indeed γ. The stack symbol
needed to carry out the present transition is again located one level deeper in the

266 A. Okhotin and K. Salomaa

stack, and therefore the automaton has to guess another stack symbol γ′, and
store it in the second component of the pair, etc. This completes the construction.

Since the automaton does not need to know the particular bracket symbol
� ∈ Σ+1 that has been inserted before and after encountering it, the same
construction yields an NIDPDA for the language

⋃

�∈Σ+1
insert�(L). 	

The case of erasing a left bracket is carried out slightly differently.

Lemma 3. Let L be a language recognized by an NIDPDA with the set of states
Q and with the stack alphabet Γ . Let � ∈ Σ+1 be a left bracket. Then, the
language delete�(L) is recognized by an NIDPDA with the set of states Q ∪ ˜Q ∪
(Q × Γ) and with the stack alphabet Γ ∪ (Γ × Γ).

Also, the language
⋃

�∈Σ+1
delete�(L), is recognized by an NIDPDA with

the same states and stack symbols.

Proof. The plan is that the new automaton is in a state q̃ before passing the
place where a left bracket (�) was erased. State (q, γ) means the situation after
passing the erased left bracket (�), while remembering the stack symbol that
the original automaton would push when reading that erased bracket (�). This
state means that γ is an extra stack symbol simulated on the top of the actual
stack. In a state q, the new automaton operates normally, as the erased symbol
is no longer expected.

Transitions in the state q̃ are the same as those in q, except that, upon
reading any symbol, the new automaton may decide that directly after that
symbol there was a left bracket (�) that got erased. Then, the new automaton
simulates a transition by these two symbols at once, and, assuming that the
original automaton’s transition upon the left bracket (�) is to a state r along
with pushing a symbol γ, the new automaton enters the state (r, γ).

In a state of the form (q, γ̂), upon reading any left bracket (<), the automaton
pushes a pair of stack symbols (γ, γ̂), where γ is the symbol that the original
automaton would push, and enters the same state that the original automaton
would enter. Later, upon reading the matching right bracket (>) and popping
the pair (γ, γ̂), the automaton enters the state (r, γ̂), assuming that the original
automaton would enter the state r.

When the new automaton encounters a right bracket (>) in a state of the
form (q, γ̂), popping a stack symbol γ, it simulates the original automaton’s
transition in the state q upon popping the stack symbol γ̂, and enters the state
(r, γ), assuming that r is the state that the original automaton would enter.

In a state of the form (q, γ̂), upon reaching the bottom of the stack, the
automaton simulates the transition upon popping γ and enters a normal state
r, the same that the original automaton would enter. 	

The constructions for insertion and deletion of right brackets are symmetric, the
number of states is the same.

Now, an NIDPDA for edit distance 1-neighbourhood can be obtained by
using all the six constructions within a single automation.

Edit Distance Neighbourhoods of Input-Driven Pushdown Automata 267

Theorem 1. Let L be a language recognized by an NIDPDA with n states and
k stack symbols. Then there exists an NIDPDA recognizing the language E1(L)
that has 10n + 4kn + 1 states and k2 + k + 1 stack symbols.

The �-neighbourhood can be obtained by applying this construction � times.

4 Lower Bounds for the Nondeterministic Case

Several constructions of automata have been presented, and the question is,
whether those constructions are optimal. This is proved by presenting witness
languages, that is, families of languages Ln recognized by an NIDPDA of size
n, such that every NIDPDA for the corresponding edit distance operation on
Ln requires at least f(n) states. The methods for establishing such results were
originally developed for finite automata, and later were generalized for NIDPDA.

The stack height of a string w is the height of the stack of an NIDPDA after
reading w. The height of the stack depends only on w.

Definition 2. Let ˜Σ = (Σ+1, Σ−1, Σ0) be an alphabet and let L ⊆ Σ∗. A set of
pairs F = {(x1, y1), . . . , (xm, ym)} is said to be a fooling set of depth k for L,
if each string xi has stack height k and

(i) xiyi ∈ L for all i ∈ {1, 2, . . . ,m}, and
(ii) for all i, j with 1 � i < j � m, xiyj /∈ L or xjyi /∈ L.

Lemma 4 ([8,18]). Let A be a nondeterministic input-driven pushdown
automaton with a set of states Q and a set of stack symbols Γ . If L(A) has
a fooling set F of depth k, then |Γ |k · |Q| � |F |.

First consider the insertion or deletion of a single symbol.
Choose Σ+1 = {<}, Σ−1 = {>} and Σ0 = {a, b, c, $}. For n � 1 define

Ln = {ci<ckaibj$bj>ai | 1 � i, j � n, k � 0}.

Lemma 5. (i) There exists a constant C � 1, such that, for each n � 1, the
language Ln is recognized by a DIDPDA A with C · n states and n stack
symbols.

(ii) Any NIDPDA recognizing the language delete<(Ln) needs at least n2 states.

Proof. (i) The following discussion assumes that the input string is in
c+<c+a+b+$b+>a+. It is easy to see that by increasing the number of states
of A by a multiplicative constant, the computation can be made to reject all
strings not of this form.

The computation counts the length i of the prefix in c+ preceding the left
bracket < and pushes this value to the stack. If i > n, A rejects. Then A skips
the following symbols c, checks that the maximal substring in a+ has length i,
and counts the number of b’s preceding the marker $. This number is compared
with the number of b’s after $. At the right bracket > the stack is popped and
the computation verifies that the suffix of symbols a has length i.

268 A. Okhotin and K. Salomaa

(ii) Choose

Sn = {(cn+1aibj , $bj>ai) | 1 � i, j � n}.

For all i, j ∈ {1, . . . , n}, the string cn+1aibj · $bj>ai is obtained from a string
from Ln by deleting a left bracket. On the other hand, for (i, j) �= (i′, j′), with
i, j, i′, j′ ∈ {1, . . . , n}, the string cn+1aibj ·$bj′

>ai′
is not in delete<(Ln), because

i �= i′ or j �= j′. This means that Sn is a fooling set of depth 0 for delete<(Ln)
and, by Lemma 4, any NIDPDA for delete<(Ln) needs |Sn| = n2 states. 	

Lemma 6. Any NIDPDA recognizing the language insert>(Ln) needs at least
n2 states.

Proof. Define

S′
n = {(ci<>caibj , $bj>ai) | 1 � i, j � n}.

Again, for all 1 � i, j � n, ci<>caibj · $bj>ai is obtained from a string of
Ln by inserting a right bracket and, on the other hand, for (i, j) �= (i′, j′),
ci<>caibj · $bj′

>ai′ �∈ insert>(Ln). This means that S′
n is a fooling set for

insert>(Ln), and the claim follows from Lemma 4. 	

The reversal LR of the language L recognized by an NIDPDA A can be

recognized by an NIDPDA with the same number of states and stack symbols as
A, when the left brackets (respectively, right brackets) in the original string are
interpreted as right brackets (respectively, left brackets) in the reversed string [3].
Since inserting a left bracket into a language L is the same as inserting a right
bracket into LR, and deleting a right bracket from L is the same as deleting a
left bracket from LR, Lemmas 5 and 6 imply a tight bound on the complexity
of inserting left brackets and deleting right brackets in terms of the number of
states in NIDPDA.

Corollary 1. For each n � 1 there exists a language L′
n recognized by a

NIDPDA with O(n) states such that any NIDPDA for the neighbourhoods
delete>(L′

n) and insert<(L′
n) needs n2 states.

It remains to consider the cases of inserting and deleting a neutral symbol.
Povarov [20] has shown that the Hamming neighbourhood of radius r of an n
state NFA language can be recognized by an NFA with n · (r +1) states and this
number of states is needed in the worst case. Since an input-driven computation
on strings consisting of neutral symbols is just an NFA, the lower bound for
the number of states applies also for NIDPDAs. Together with Lemma 1 this
implies:

Proposition 1. For an NIDPDA A with n states and σ ∈ Σ0, the neighbour-
hoods deleteσ(L(A)) and insertσ(L(A)) can be recognized by an NIDPDA with
2 · n states and this number of states is needed in the worst case.

Edit Distance Neighbourhoods of Input-Driven Pushdown Automata 269

The construction of Lemma 5 can be extended to yield a lower bound for the
cost of deleting multiple symbols. The result is stated in terms of neighbourhoods
of a given radius.

Choose Σ+1 = {<}, Σ−1 = {>} and Σ0 = {a, b, c, $}. For n � 1 define

Hn = {<ai1c<ai2c · · · <aircbj$bj>air>air−1 · · · >ai1 |
r � 1, i1, . . . , ir, j ∈ {1, . . . , n} }.

Lemma 7. (i) The language Hn can be recognized by an NIDPDA with C · n
states and n stack symbols, for some constant C.

(ii) For r � 1, any NIDPDA for the neighbourhood Er(Hn) needs at least nr+1

states.

5 The Deterministic Case

The construction for the edit distance neighbourhood given in the previous
section produces an NIDPDA out of an NIDPDA. If the goal is to obtain a
deterministic automaton, then the resulting NIDPDA can of course be deter-
minized, at the cost of a 2Θ(n2) blow-up in size. This section presents some
preliminary results on a direct construction for this operation, which transforms
a DIDPDA to a DIDPDA for the language with one left bracket erased.

Lemma 8. Let L be a language recognized by a DIDPDA with the set of states
Q and with the stack alphabet Γ . Let �∈ Σ+1 be a left bracket. Then, the
language delete�(L) is recognized by a DIDPDA with the set of states Q′ = Q×
2Q×(Γ∪{⊥}) ×QQ and with the stack alphabet Γ ′ = Σ+1 ×Γ ×2Q×(Γ∪{⊥}) ×QQ,
where QQ denotes the set of all functions from Q to Q.

Proof (sketch). At each level of brackets, the new automaton simulates the nor-
mal operation of the first automaton (Q), as well as constructs two data struc-
tures. The first data structure (2Q×(Γ∪{⊥})) is a set of pairs of a state q and
a stack symbol γ, each representing a situation when the computation on this
level, having processed some erased bracket (�) at some position, has pushed
γ upon reading that bracket, and finished reading the substring on this level in
the state q. The second data structure (QQ) is the behaviour function for the
well-nested substring at the current level. 	

There is a close lower bound for this construction. Let the alphabet be Σ+1 =
{<}, Σ−1 = {>} and Σ0 = {a, b, c, d}. For each n � 1, the language Kn is
defined as follows.

Kn =
{

uc<vd|u|a+|v|b mod n>a|u|a mod n
∣

∣ u, v ∈ {a, b, c}∗}

Lemma 9. The language Kn is recognized by a DIDPDA with C · n states.

270 A. Okhotin and K. Salomaa

Proof. First, the DIDPDA counts the number of symbols a in u modulo n. Then,
upon encountering the left bracket (<) and verifying that it is preceded by c, it
pushes the count of symbols a modulo n to the stack, and continues the counting
modulo n on the string v, this time counting the symbols b. After reading v, the
automaton remembers the sum |u|a + |v|b modulo n, and can then test that
the number of symbols d is correct. Finally, upon reading the right bracket (>),
the automaton pops the number |u|a modulo n from the stack and checks this
number against the suffix a|u|a mod n. 	

Lemma 10. Every DIDPDA recognizing delete<(Kn) needs at least 2n2

states.

Proof (Sketch of proof). A DIDPDA is faced with recognizing the following lan-
guage.

K ′
n =

{

wdi+j>ai
∣

∣ w ∈ {a, b, c}∗, and there exists a partition w = ucv,

with i = |u|a mod n and j = |v|b mod n
}

In the absence of left brackets, the automaton is essentially a DFA. The idea
of the lower bound argument is that a DFA should remember all pairs (i, j)
corresponding to different partitions of w as w = ucv. 	

This was just one of the four interesting cases of edit operations on DIDPDA. The
other three cases shall be dealt with in the full version of this paper. However, this
single case alone already implies a lower bound on the complexity of edit distance
1-neighbourhood of DIDPDA: indeed, any DIDPDA recognizing E1(Kn) needs
at least 2n2

states.
It can be concluded that the edit distance neighbourhood can be efficiently

expressed in nondeterministic IDPDA, and incurs a significant blow-up in the
deterministic case.

6 Future Work

It would be interesting to consider the edit distance neighbourhood operation for
other automaton models related to IDPDA that are relevant to processing hier-
archical data. Among such models, there are, in particular, the transducer-driven
automata (TDPDA), introduced independently by Caucal [5] (as synchronized
pushdown automata) and by Kutrib et al. [9].

In addition to the input-driven automaton models, the same question of the
expressibility of edit distance neighbourhood would be interesting to investigate
for other families of formal grammars besides the ordinary “context-free” gram-
mars. The families proposed for investigation are the multi-component gram-
mars [22], which are an established model in computational linguistics and have
good closure properties, and the conjunctive grammars, which extend the ordi-
nary grammars with a conjunction operation. In particular, it would be inter-
esting to investigate the edit distance for the linear conjunctive grammars [14],
which are notable for their equivalence with one-way real-time cellular automata,
as well as for their non-trivial expressive power [23].

Edit Distance Neighbourhoods of Input-Driven Pushdown Automata 271

References

1. Aho, A.V., Peterson, T.G.: A minimum distance error-correcting parser
for context-free languages. SIAM J. Comput. 1(4), 305–312 (1972).
http://dx.doi.org/doi/10.1137/0201022

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: ACM Symposium on
Theory of Computing, STOC 2004, Chicago, USA 13–16 June 2004, pp. 202–211
(2004). http://dx.doi.org/10.1145/1007352.1007390

3. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3)
(2009). http://dx.doi.org/10.1145/1516512.1516518

4. von Braunmühl, B., Verbeek, R.: Input driven languages are recognized in
log n space. Ann. Discrete Math. 24, 1–20 (1985). http://dx.doi.org/10.1016/
S0304-0208(08)73072-X

5. Caucal, D.: Synchronization of pushdown automata. In: Ibarra, O.H., Dang, Z.
(eds.) DLT 2006. LNCS, vol. 4036, pp. 120–132. Springer, Heidelberg (2006). doi:10.
1007/11779148 12

6. Chatterjee, K., Henzinger, T.A., Ibsen-Jensen, R., Otop, J.: Edit distance for push-
down automata. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B.
(eds.) ICALP 2015. LNCS, vol. 9135, pp. 121–133. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-47666-6 10

7. Han, Y.-S., Ko, K., Salomaa, K.: Approximate matching between a context-
free grammar and a finite-state automaton. Inf. Comput. 247, 278–289 (2016).
http://dx.doi.org/10.1016/j.ic.2016.02.001

8. Han, Y.-S., Salomaa, K.: Nondeterministic state complexity of nested word
automata. Theoret. Comput. Sci. 410, 2961–2971 (2009)

9. Kutrib, M., Malcher, A., Wendlandt, M.: Tinput-driven pushdown automata. In:
Durand-Lose, J., Nagy, B. (eds.) MCU 2015. LNCS, vol. 9288, pp. 94–112. Springer,
Cham (2015). doi:10.1007/978-3-319-23111-2 7

10. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition.
In: Bakker, J., Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–435.
Springer, Heidelberg (1980). doi:10.1007/3-540-10003-2 89

11. Mohri, M.: Edit-distance of weighted automata: general definitions and algorithms.
Int. J. Found. Comput. Sci. 14(6), 957–982 (2003)

12. Han, Y.-S., Ko, S.-K., Salomaa, K.: Generalizations of code languages with mar-
ginal errors. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 264–275.
Springer, Cham (2015). doi:10.1007/978-3-319-21500-6 21

13. Ng, T., Rappaport, D., Salomaa, K.: Descriptional complexity of error detec-
tion. In: Adamatzky, A. (ed.) Emergent Computation. ECC, vol. 24, pp. 101–119.
Springer, Cham (2017). doi:10.1007/978-3-319-46376-6 6

14. Okhotin, A.: Input-driven languages are linear conjunctive. Theoret. Comput. Sci.
618, 52–71 (2016). http://dx.doi.org/10.1016/j.tcs.2016.01.007

15. Okhotin, A., Salomaa, K.: Complexity of input-driven pushdown automata.
SIGACT News 45(2), 47–67 (2014). http://doi.acm.org/10.1145/2636805.2636821

16. Okhotin, A., Salomaa, K.: Descriptional complexity of unambiguous input-driven
pushdown automata. Theoret. Comput. Sci. 566, 1–11 (2015). http://dx.doi.org/
10.1016/j.tcs.2014.11.015

17. Okhotin, A., Salomaa, K.: State complexity of operations on input-driven push-
down automata. J. Comput. Syst. Sci. 86, 207–228 (2017). http://dx.doi.org/
10.1016/j.jcss.2017.02.001

http://dx.doi.org/doi/10.1137/0201022
http://dx.doi.org/10.1145/1007352.1007390
http://dx.doi.org/10.1145/1516512.1516518
http://dx.doi.org/10.1016/S0304-0208(08)73072-X
http://dx.doi.org/10.1016/S0304-0208(08)73072-X
http://dx.doi.org/10.1007/11779148_12
http://dx.doi.org/10.1007/11779148_12
http://dx.doi.org/10.1007/978-3-662-47666-6_10
http://dx.doi.org/10.1016/j.ic.2016.02.001
http://dx.doi.org/10.1007/978-3-319-23111-2_7
http://dx.doi.org/10.1007/3-540-10003-2_89
http://dx.doi.org/10.1007/978-3-319-21500-6_21
http://dx.doi.org/10.1007/978-3-319-46376-6_6
http://dx.doi.org/10.1016/j.tcs.2016.01.007
http://doi.acm.org/10.1145/2636805.2636821
http://dx.doi.org/10.1016/j.tcs.2014.11.015
http://dx.doi.org/10.1016/j.tcs.2014.11.015
http://dx.doi.org/10.1016/j.jcss.2017.02.001
http://dx.doi.org/10.1016/j.jcss.2017.02.001

272 A. Okhotin and K. Salomaa

18. Piao, X., Salomaa, K.: Operational state complexity of nested word automata.
Theoret. Comput. Sci. 410, 3290–3302 (2009). http://dx.doi.org/10.1016/j.tcs.
2009.05.002

19. Pighizzini, G.: How hard is computing the edit distance? Inf. Comput. 165, 1–13
(2001)

20. Povarov, G.: Descriptive complexity of the Hamming neighborhood of a regular
language. In: LATA 2007, pp. 509–520 (2007)

21. Salomaa, K., Schofield, P.N.: State complexity of additive weighted finite automata.
Int. J. Found. Comput. Sci. 18(6), 1407–1416 (2007)

22. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free
grammars. Theoret. Comput. Sci. 88(2), 191–229 (1991). http://dx.doi.org/
10.1016/0304-3975(91)90374-B

23. Terrier, V.: Recognition of linear-slender context-free languages by real time one-
way cellular automata. In: Kari, J. (ed.) AUTOMATA 2015. LNCS, vol. 9099, pp.
251–262. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47221-7 19

http://dx.doi.org/10.1016/j.tcs.2009.05.002
http://dx.doi.org/10.1016/j.tcs.2009.05.002
http://dx.doi.org/10.1016/0304-3975(91)90374-B
http://dx.doi.org/10.1016/0304-3975(91)90374-B
http://dx.doi.org/10.1007/978-3-662-47221-7_19

	Edit Distance Neighbourhoods of Input-Driven Pushdown Automata
	1 Introduction
	2 Input-Driven Automata
	3 Edit Distance for Input-Driven Automata
	4 Lower Bounds for the Nondeterministic Case
	5 The Deterministic Case
	6 Future Work
	References

