
Pascal Weil (Ed.)

 123

LN
CS

 1
03

04

12th International Computer Science Symposium
in Russia, CSR 2017
Kazan, Russia, June 8–12, 2017, Proceedings

Computer Science –
Theory and Applications

Lecture Notes in Computer Science 10304

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Pascal Weil (Ed.)

Computer Science –

Theory and Applications
12th International Computer Science Symposium in Russia, CSR 2017
Kazan, Russia, June 8–12, 2017
Proceedings

123

Editor
Pascal Weil
CNRS and University of Bordeaux
Talence
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-58746-2 ISBN 978-3-319-58747-9 (eBook)
DOI 10.1007/978-3-319-58747-9

Library of Congress Control Number: 2017939718

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 12th International Computer Science Symposium in Russia (CSR 2017) was held
during June 8–12, 2017 in Kazan, hosted by Kazan Federal University. It was the 12th
event in the series of regular international meetings, following CSR 2012 in Nizhny
Novgorod, CSR 2013 in Ekaterinburg, CSR 2014 in Moscow, CSR 2015 in List-
vyanka, and CSR 2016 in St. Petersburg.

The opening lecture was given by Thierry Coquand (Chalmers) and five other
invited plenary lectures were given by Javier Esparza (Munich), Elham Kashefi (Paris
and Edinburgh), Andrew McGregor (Amherst), Ronitt Rubinfeld (MIT), and Marc
Zeitoun (Bordeaux). We would like to extend our thanks to all of them.

This volume contains the accepted papers and those sent by the invited speakers.
The scope of the proposed topics for the symposium is quite broad and covers a wide
range of areas in theoretical computer science and its applications. We received 44
papers in total, from which the Program Committee selected 22 papers for presentation
at the symposium and for publication in the proceedings. The committee met elec-
tronically over a full week and the chair wants to thank all the committee members for
their availability during that intensive time and for interesting discussions. Our work
would not have been possible without the generous help of over 80 additional external
reviewers. To avoid conflicts of interest, the Program Committee members were asked
to refrain from submitting papers to the conference.

The reviewing process relied in an essential manner on the EasyChair conference
system created by Andrei Voronkov: It greatly improved the efficiency of the com-
mittee’s work and of the logistics of producing this proceedings volume, and we are
grateful for its availability.

We appreciate the support of Kazan Federal University and of Yandex. As in
previous editions of the conference, Yandex generously provided the Best Paper
Awards. The recipients of these awards were selected by the Program Committee.

– The Best Paper Award was split between two papers: by Alexei Miasnikov, Svetla
Vassileva, and Armin Weiß, “The Conjugacy Problem in Free Solvable Groups and
Wreath Products of Abelian Groups is in TC0”; and by Lukas Fleischer and
Manfred Kufleitner, “Green’s Relations in Finite Transformation Groups.”

– The Best Student Award goes to the paper by Alexey Milovanov, “On Algorithmic
Statistics for Space-Bounded Algorithms.”

The workshop Computation and Cryptography with qu-bits (CCQ 2017) was
co-located with CSR 2017.

Finally, we thank the local organizers for their impeccable work: Farid Ablayev
(chair), Aida Gainutdinova, Anton Marchenko, Daniil Musatov, Alina Petukhova,
Alexander Vasiliev, Valeria Volkova, Mansur Ziatdinov, and Marsel Sitdikov.

April 2017 Pascal Weil

Organization

Program Committee

Farid Ablayev Kazan State University, Russia
Ittai Abraham VMware Research, Israel
Isolde Adler University of Leeds, UK
Frédérique Bassino LIPN, Université Paris 13, France
Véronique Bruyère University of Mons, Belgium
Maike Buchin Ruhr Universität Bochum, Germany
Hubie Chen Universidad del País Vasco and Ikerbasque, Spain
Anuj Dawar University of Cambridge, UK
Stéphanie Delaune CNRS, IRISA, France
Anna Frid Aix-Marseille Université, France
Elena Grigorescu Purdue University, USA
S. Krishna IIT Bombay, India
K. Narayan Kumar Chennai Mathematical Institute, India
Frédéric Magniez CNRS, Université Paris Diderot, France
Meena Mahajan The Institute of Mathematical Sciences, Chennai, India
Grigory Marshalko Technical Committee for Standardisation TC26, Russia
Catuscia Palamidessi Inria, France
Victor Selivanov Institute on Informatics Systems, Russia
Kavitha Telikepalli Tata Institute of Fundamental Research, Mumbai, India
Thomas Thierauf HTW Aalen, Germany
Szymon Toruńczyk University of Warsaw, Poland
Hélène Touzet CNRS, University of Lille and Inria, France
Mikhail Volkov Ural State University, Russia
Dorothea Wagner Karlsruhe Institute of Technology, Germany
Pascal Weil LaBRI, CNRS and Université de Bordeaux, France

Additional Reviewers

Alagic, Gorjan
Aschieri, Federico
Atig, Mohamed Faouzi
Barth, Lukas
Batra, Jatin
Berger, Ulrich
Bhandari, Siddharth
Bollig, Beate
Buchhold, Valentin

Bulín, Jakub
Capelli, Florent
Costa, Alfredo
Czerwiński, Wojciech
Dupuis, Frédéric
Durand, Bruno
Fages, François
Fernique, Thomas
Gabbasov, Bulat

Gacs, Peter
Gainutdinova, Aida
Gandikota, Venkata
Glasser, Christian
Gogacz, Tomasz
Griffin, Christopher
Haase, Christoph
Heunen, Chris
Hoshino, Naohiko

Huang, Chien-Chung
Inenaga, Shunsuke
Jerrum, Mark
Kao, Mong-Jen
Kaplan, Marc
Kiefer, Sandra
Klasing, Ralf
Kocman, Radim
Konnov, Igor
Kozma, Laszlo
Kołodziejczyk, Leszek
Kumar, Akash
Kuske, Dietrich
Lavado, Giovanna
Lhote, Loick
Lhoussaine, Cedric
Limaye, Nutan
Lin, Young-San

Liu, Yanhong A.
Lohrey, Markus
Manuel, Amaldev
Markey, Nicolas
Mengel, Stefan
Merkle, Wolfgang
Misra, Neeldhara
N.P., Swaroop
Natarajan, Abhiram
Nimbhorkar, Prajakta
Oum, Sang-Il
Panolan, Fahad
Place, Thomas
Pournin, Lionel
Qian, Chen
Radermacher, Marcel
Romanovski, Nikolay
Roos, Yves

Rudskoy, Vladimir
Salfelder, Felix
Salvy, Bruno
Saurabh, Nitin
Schmitz, Heinz
Schnoebelen, Philippe
Shilov, Nikolay
Shukla, Anil
Shur, Arseny
Sijben, Stef
Subrahmanyam, Venkata
Talbot, Jean-Marc
Vandenberghe, Lieven
Vandin, Andrea
Zhou, Samson
Ziatdinov, Mansur

VIII Organization

Contents

Type Theory and Formalisation of Mathematics . 1
Thierry Coquand

Advances in Parameterized Verification of Population Protocols 7
Javier Esparza

Verification of Quantum Computation and the Price of Trust 15
Alexandru Gheorghiu, Theodoros Kapourniotis, and Elham Kashefi

Graph Sketching and Streaming: New Approaches for Analyzing
Massive Graphs . 20

Andrew McGregor

Concatenation Hierarchies: New Bottle, Old Wine. 25
Thomas Place and Marc Zeitoun

Can We Locally Compute Sparse Connected Subgraphs? 38
Ronitt Rubinfeld

Palindromic Decompositions with Gaps and Errors 48
Michał Adamczyk, Mai Alzamel, Panagiotis Charalampopoulos,
Costas S. Iliopoulos, and Jakub Radoszewski

Cascade Heap: Towards Time-Optimal Extractions 62
Maxim Babenko, Ignat Kolesnichenko, and Ivan Smirnov

Entropic Uniform Sampling of Linear Extensions in Series-Parallel Posets . . . 71
Olivier Bodini, Matthieu Dien, Antoine Genitrini,
and Frédéric Peschanski

Parameterized Counting of Trees, Forests and Matroid Bases 85
Cornelius Brand and Marc Roth

Generalized Dyck Shifts. 99
Marie-Pierre Béal and Pavel Heller

Green’s Relations in Finite Transformation Semigroups 112
Lukas Fleischer and Manfred Kufleitner

Nondeterministic Unitary OBDDs . 126
Aida Gainutdinova and Abuzer Yakaryılmaz

Unary Coded PSPACE-Complete Languages in ASPACE(loglog n) 141
Viliam Geffert

http://dx.doi.org/10.1007/978-3-319-58747-9_1
http://dx.doi.org/10.1007/978-3-319-58747-9_2
http://dx.doi.org/10.1007/978-3-319-58747-9_3
http://dx.doi.org/10.1007/978-3-319-58747-9_4
http://dx.doi.org/10.1007/978-3-319-58747-9_4
http://dx.doi.org/10.1007/978-3-319-58747-9_5
http://dx.doi.org/10.1007/978-3-319-58747-9_6
http://dx.doi.org/10.1007/978-3-319-58747-9_7
http://dx.doi.org/10.1007/978-3-319-58747-9_8
http://dx.doi.org/10.1007/978-3-319-58747-9_9
http://dx.doi.org/10.1007/978-3-319-58747-9_10
http://dx.doi.org/10.1007/978-3-319-58747-9_11
http://dx.doi.org/10.1007/978-3-319-58747-9_12
http://dx.doi.org/10.1007/978-3-319-58747-9_13
http://dx.doi.org/10.1007/978-3-319-58747-9_14

Turing Degree Spectra of Minimal Subshifts . 154
Michael Hochman and Pascal Vanier

Reordering Method and Hierarchies for Quantum and Classical Ordered
Binary Decision Diagrams . 162

Kamil Khadiev and Aliya Khadieva

Dynamic Stabbing Queries with Sub-logarithmic Local Updates
for Overlapping Intervals . 176

Elena Khramtcova and Maarten Löffler

The Transformation Monoid of a Partially Lossy Queue 191
Chris Köcher and Dietrich Kuske

Approximation Algorithms for the Maximum Carpool Matching Problem . . . 206
Gilad Kutiel

The Conjugacy Problem in Free Solvable Groups and Wreath Products
of Abelian Groups is in TC0 . 217

Alexei Miasnikov, Svetla Vassileva, and Armin Weiß

On Algorithmic Statistics for Space-Bounded Algorithms. 232
Alexey Milovanov

Popularity in the Generalized Hospital Residents Setting 245
Meghana Nasre and Amit Rawat

Edit Distance Neighbourhoods of Input-Driven Pushdown Automata 260
Alexander Okhotin and Kai Salomaa

The (Minimum) Rank of Typical Fooling-Set Matrices 273
Mozhgan Pourmoradnasseri and Dirk Oliver Theis

On Probabilistic Algorithm for Solving Almost All Instances
of the Set Partition Problem . 285

Alexandr V. Seliverstov

Dag-Like Communication and Its Applications . 294
Dmitry Sokolov

The Descriptive Complexity of Subgraph Isomorphism Without Numerics . . . 308
Oleg Verbitsky and Maksim Zhukovskii

On a Generalization of Horn Constraint Systems. 323
Piotr Wojciechowski, R. Chandrasekaran, and K. Subramani

Author Index . 337

X Contents

http://dx.doi.org/10.1007/978-3-319-58747-9_15
http://dx.doi.org/10.1007/978-3-319-58747-9_16
http://dx.doi.org/10.1007/978-3-319-58747-9_16
http://dx.doi.org/10.1007/978-3-319-58747-9_17
http://dx.doi.org/10.1007/978-3-319-58747-9_17
http://dx.doi.org/10.1007/978-3-319-58747-9_18
http://dx.doi.org/10.1007/978-3-319-58747-9_19
http://dx.doi.org/10.1007/978-3-319-58747-9_20
http://dx.doi.org/10.1007/978-3-319-58747-9_20
http://dx.doi.org/10.1007/978-3-319-58747-9_21
http://dx.doi.org/10.1007/978-3-319-58747-9_22
http://dx.doi.org/10.1007/978-3-319-58747-9_23
http://dx.doi.org/10.1007/978-3-319-58747-9_24
http://dx.doi.org/10.1007/978-3-319-58747-9_25
http://dx.doi.org/10.1007/978-3-319-58747-9_25
http://dx.doi.org/10.1007/978-3-319-58747-9_26
http://dx.doi.org/10.1007/978-3-319-58747-9_27
http://dx.doi.org/10.1007/978-3-319-58747-9_28

Type Theory and Formalisation of Mathematics

Thierry Coquand1,2(B)

1 Department of Computer Science and Engineering,
Göteborg University, Gothenburg, Sweden

thierry.coquand@cse.gu.se
2 Department of Computer Science and Engineering,

Chalmers University of Technology, Gothenburg, Sweden

It is difficult to overestimate the importance of modularity for specifying and
reasoning about software [1], or for checking large and complex mathematical
arguments [8–10]. The goal of this presentation is to explain in what way a
recent development in type theory, the formulation of the axiom of univalence,
addresses these modularity issues.

1 Equality and Collections in Mathematics

It will be convenient to start with a quick description of how structures are
represented in mathematics. There is a natural stratification: at the first level, we
have collections representing algebraic or ordered structures, like groups, rings,
lattices, and at the next level, we have collections of such structures (categories),
and so on.

At the first level, a structure is a set equipped with some operations and/or
relations. This is the level considered by Bourbaki in his théorie des structures
[3]. One important modularity principle is then that two isomorphic structures
should be considered to be the same. In particular, two isomorphic structures
should satisfy the same properties. For instance, if G and H are two isomorphic
groups, and G is abelian (resp. solvable) then so is H. This is not quite true
in set theory however since we can formulate properties that are not invariant
by isomorphisms (for instance the real number π may be in G and not in H).
For this reason, Bourbaki formulated the notion of transportable or 〈〈 structural 〉〉

properties, that are exactly the properties invariant by isomorphisms1.
At the second level, where we consider collection of structures, we find a new

notion of 〈〈being the same collection 〉〉. A typical example is given by the collec-
tion of all families of sets over a given (base) set B. One representation is SETB

which is the collection of all family of sets Xb, b ∈ B. Another representation is
SET/B the collection of all pairs Y, f where Y is a set and f a function Y → B.
For a mathematician, these two representations are 〈〈 structurally the same 〉〉.
We have two canonical maps F : SETB → SET/B and G : SET/B → SETB for
changing representations: if X = (Xb) is a family of sets over B then F (X) will

1 One important fact will be that, in contrast with set theory, all statements expressible
in type theory are transportable.

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 1–6, 2017.
DOI: 10.1007/978-3-319-58747-9 1

2 T. Coquand

be the collection Σ(b ∈ B)Xb of pairs (b, u) with u in Xb together with the first
projection. If f : Y → B then G(Y, f) will be the family Xb = {y ∈ Y | f(y) = b}.
However this does not define an isomorphism: G(F (X)) and X are only isomor-
phic (and not equal as sets in general). One way to understand the situation
is that we should consider the two collections SETB and SET/B as groupoids
and the pair F,G define an equivalence (and not an isomorphism) between these
groupoids. This gives us a new way to identify collections, and hence a new
(powerful) modularity principle2. This new notion of identification comes from
mathematical practice, but one can argue that it is not (contrary to the first
level) so well represented in set theory (for instance, a notion of 〈〈 transportable 〉〉

property at this level would be quite complex, and does not seem to have been
formulated).

At the next level, where we consider collections of groupoids, or collections of
categories, we have the notion of 2-groupoids, then n-groupoids, with more and
more complex notions of equivalences, and where it is less and less clear when
a property is transportable. As we are going to see, type theory, together with
the axiom of univalence, provides a system with a (formally) simple and general
notion of equivalence, and where every expressible statement is invariant w.r.t.
equivalences.

2 Dependent Type Theory

The notion of type, which comes from logic [6] has been found convenient in the
theory of programming languages. Each type represents a collection of values. In
particular, we have base types, such as the type nat of natural numbers, or the
type bool of Boolean values, and if A and B are two types, we can form the type
A → B which is the type of programs representing functions from the collection
A to the collection B, and the type A × B which is the type of pairs of elements
of type A and of type B.

Dependent type theory extends this 〈〈 simple 〉〉 [6] type theory by adding a
universe type U , or a type of 〈〈 small 〉〉 types, and the following type: given a0, a1

element of type A we can form the identification type Id A a0 a1 of all possible
identifications of a0 and a1. For instance, if A is a type representing a collection
of some algebraic structures, e.g. groups, and a0 and a1 represent two groups,
then Id A a0 a1 should represent the type of all possible identifications of a0 and
a1. The introduction of these two new type formations introduces dependent
types: if F is of type A → U , then F x represents a family of (small) types
indexed by x of type A and if x and y are of type A then Id A x y represents
a family of types indexed by x and y. It is then natural, if B(x) is a family of
types indexed by x of type A, to introduce the types Π(x : A)B and Σ(x : A)B
which generalize respectively the function type and the binary product type.
2 To give another (maybe more surprising) example: the collection of all linear orders

with a fixed finite number of elements is a large collection, but it has no non trivial
automorphisms, and should be considered to be the 〈〈 same 〉〉 as the groupoid with
one object and only the identity morphism.

Type Theory and Formalisation of Mathematics 3

Interestingly, this notion of dependent types was already introduced by the
mathematician N.G. de Bruijn as a good system of notations for representing
mathematical arguments [4]. A further idea was to represent a proposition as a
type of its proofs. Then A → B will represent implication: a proof that A implies
B can indeed be seen as a function transforming a proof of A to a proof of B,
while A × B similarly represents conjunction. One can then think of Π(x : A)B
as representation universal quantification, and Σ(x : A)B as representation of (a
strong form of) existential quantification. For instance, one could consider the
two types

1. Π(a : A)Σ(x : A)Id A a x
2. Σ(a : A)Π(x : A)Id A a x

The first type has only one inhabitant, since we can choose x to be the same
as a and we should have a trivial identification in Id A a a, while the second
type, which is usually abrviated as isContr A, expresses that the type A contains
exactly one element. One obtains in this way an elegant formalism for expressing
proofs of mathematical theorems, which works entirely by type declarations.

While N.G. de Bruijn was representing a proposition as the type of its proofs,
he noticed that these types should have a special property of proof-irrelevance.
He gave the following example [5]. If we have a type R of real numbers with
a family of type x > 0 expressing the property of being strictly positive, then
the logarithm function ln will be represented as an element of the type Π(r :
R)(r > 0) → R, since it expects both a real number r and a proof that this real
number is strictly positive. We expect also that ln r p0 is the same as ln r p1
if we have two proofs p0 and p1 of r > 0. This is the case if we have a proof
of Id (x > 0) p0 p1, which expresses proof-irrelevance. In univalent foundations,
this is used as a definition of when a type A represents a proposition, this is the
case if we can prove (i.e. we can find an inhabitant of) the type3

isProp A = Π(x0 x1 : A)Id A x0 x1

We can then define when a type A is a set by being such that each identification
type Id A x0 x1 is a proposition (that is, there is at most one identification of
two elements of A, like it is for a set in set theory). This is represented by the
type

isSet A = Π(x0 x1 : A)isProp (Id A x0 x1)

We can use the universe and dependent sums to form the type of structures.
For instance the type

Σ(X : U)X × (X → X)

represents the type of element A, (a, f) with a : A and f : A → A, so the type
os structures with one constan and one unary function. The type of semi-groups
will be represented by the type

SG = Σ(X : U)sG X

3 We write Π(x y : A)B for Π(x : A)Π(y : A)B.

4 T. Coquand

where sG X is the type of semigroup structures on X

sG X = isSet X ×Σ(f : X → X → X)Π(x0 x1 x2 : X)Id X (f (f x0 x1) x2) (f x0 (f x1 x2))

We expect identifications for this type SG to correspond to isomorphisms of
semigroups, and so, we don’t expect SG to be a set: in general there may be
several identifications between two given semigroups.

3 Logical Laws of Identifications

What is remarkable is that, when expressed in this formalism of dependent type
theory, the general laws of identifications can all be listed in a short way. The
two first logical laws are that there should be a trivial identification 1a of type
Id A a a for any a in A, and that we have a general transport principle

Id A a0 a1 → (B(a0) → B(a1))

whenever B(x) is a family of types indexed over x of type A. Notice that this
gives not only the principle of substitution of equal by equal (if B(x) is a family
of propositions) but also, if A is a type of structure, and B(x) a general family
of types, the fact that we can use an identification of a0 and a1 to transport any
element of B(a0) to an element of B(a1). This provides a vast generalization of
Bourbaki’s notion of transport of structures.

P. Martin-Löf noticed, in [11], that these laws should be complemented by
the following principle, which can be expressed by the fact that, in order to
prove C(x, p), for x : A and p : Id A a x it is enough to prove C(a, 1a). This
principle can be seen as a new logical law of identifications and has several
remarkable consequences. For instance, using the two first logical law we can
define a composition operation

Id A a0 a1 × Id A a1 a2 → Id A a0 a2

which reflects the transitivity of equality. A consequence of the third identifica-
tion law is that this composition is associative, and that 1a acts like a neutral
element of this composition.

4 Mathematical Law of Identifications: The Axiom
of Univalence

What is missing at this point is a law describing the equality in the type U . This
law, the axiom of univalence, is a generalization of the (extensionality) principle
that two logically equivalent propositions are equal.

We first need a description of the notion of equivalence. We define, for f of
type A → B

isEquiv f = Π(y : B)isContr (Σ(x : A)Id B (f x) y)

Type Theory and Formalisation of Mathematics 5

which expresses roughly that each fiber of f is a singleton. While formally simple,
this generalizes in a uniform way all possible notions of equivalence (logical
equivalence of propositions, isomorphisms of structure, categorical equivalence
between groupoids or categories) that occur in mathematics. We define then the
type of equivalences Equiv A B as the type Σ (f : A → B)isEquiv f .

As a special case of the general transport principle, we have a transport
function

Id U A B → (A → B)

which transforms an idenfication p in a transport function t(p) : A → B. Using
Martin-Löf’s law, one can show that t(p) is an equivalence, and we get a map
Id U A B → Equiv A B. The axiom of univalence can be expressed as the fact
that this map has a section, so that any equivalence can be seen as a transport
map of an identification.

An unexpected consequence of this axiom is the principle of function exten-
sionality: two functions can be identified if they can be pointwise identified. This
is an important modularity principle: if two functions have the same input-output
behevior we can in any context replace one by the other.

The axiom of univalence can be seen as a generalization of this modularity
principle. It implies for instance that if two structures are equivalent (e.g. two
groups are isomorphic, or two categories are equivalent) we can replace in any
context one by the other. In particular, not only they share the same properties,
but we can transport any notion for one structure to the other.

Let us now give a further example of modularity that we get by expressing all
notions in an 〈〈 invariant 〉〉 way. If S(X) is a notion of structure, any equivalence
f : A → B provides automatically a transport of structures f∗ : S(A) → S(B).
In this way, any given structure s on A can be transported to a structure f∗s on
B. If t : S(B) is a structure on B, we can then define an equivalence f : A → B
to be a morphism from A, s to B, t if we can show Id S(B) (f∗s) t.

Let us now assume that we have defined a general notion (it can be a property
or a structure) Z(X, s) : X → U for X : U, s : S(X). It follows then from the
general laws of identifications that for any equivalence f : A → B

Id (A → U) (Z(B, f∗ s) ◦ f) Z(A, s)

where g ◦ f is the composition (g ◦ f) x = g (f x). In particular, if f is a
automorphism of the structure A, s that is f∗s can be identified to s, we get

Id (A → U) (Z(A, s) ◦ f) Z(A, s)

which expresses that anything expressible about a structure is automatically
invariant by any automorphism of this structure4.

4 For a trivial, but significant [7] example, the center of group is automatically invari-
ant by any automorphism of a group, and in particular, it is a normal subgroup.

6 T. Coquand

5 Actual Formalization of Mathematics

As we have tried to explain, dependent type theory with the axiom of univa-
lence provides a formalism in which we can only express notions invariant by
equivalence, with a notion of equivalence which captures in a uniform way sev-
eral notions of equivalence in mathematics, and we have argued that this can be
essential for having good modularity properties.

One can however wonder if using such a formalism will not put too many
constraints on the user. While it is too early to be sure, preliminary experiments
[12,13] seem to indicate that this is not the case. In particular, basic notions
of homological algebra (abelian, triangulated categories) can be expressed quite
elegantly, and several results that require a strong form of the axiom of choice
when formulated in set theory can be expressed effectively in this framework.

References

1. Appel, A.: Modular verification for computer security. In: CSF 2016: 29th IEEE
Computer Security Foundations Symposium, June 2016

2. Bishop, E.: Mathematics as a numerical language 1970 Intuitionism and Proof
Theory (Proc. Conf., Buffalo, N.Y.), pp. 53–71 (1968)

3. Bourbaki, N.: Éléments de mathématique. Chapitre 4: Structures. Actualités Sci.
Ind. no. 1258 Hermann, Paris (1957)

4. de Bruijn, N.G.: The mathematical language AUTOMATH, its usage, and some of
its extensions. In: 1970 Symposium on Automatic Demonstration. Lecture Notes
in Mathematics, vol. 125, pp. 29–61

5. de Bruijn, N.G.: A survey of the project AUTOMATH. In: To H. B. Curry: essays
on combinatory logic, lambda calculus and formalism, pp. 579–606 (1980)

6. Church, A.: A formulation of the simple theory of types. J. Symbolic Logic 5, 56–68
(1940)

7. Interview of P. Deligne. https://www.simonsfoundation.org/science lives video/
pierre-deligne/

8. Gonthier, G.: A computer-checked proof of the Four Colour Theorem. Microsoft
report (2005)

9. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: Blazy,
S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–
179. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39634-2 14

10. Th. Hales. Developments in formal proofs. Astérisque No. 367–368, Exp. No. 1086,
pp. 387–410 (2015)

11. Martin-Löf, P.: Constructive mathematics and computer programming. In: Logic,
methodology and philosophy of science, VI (Hannover, 1979). Stud. Logic Found.
Math., vol. 104, pp. 153–175 (1982)

12. Voevodsky, V.: An experimental library of formalized mathematics based on the
univalent foundations. Math. Structures Comput. Sci. 25(5), 1278–1294 (2015)

13. Library UniMath. https://github.com/UniMath/UniMath/tree/master/UniMath

https://www.simonsfoundation.org/science_lives_video/pierre-deligne/
https://www.simonsfoundation.org/science_lives_video/pierre-deligne/
http://dx.doi.org/10.1007/978-3-642-39634-2_14
https://github.com/UniMath/UniMath/tree/master/UniMath

Advances in Parameterized Verification
of Population Protocols

Javier Esparza(B)

Technische Universität München, Munich, Germany
esparza@in.tum.de

Abstract. Population protocols (Angluin et al. PODC, 2004) are a for-
mal model of sensor networks consisting of identical mobile devices. Two
devices can interact and thereby change their states. Computations are
infinite sequences of interactions satisfying a strong fairness constraint.

A population protocol is well specified if for every initial configuration
C of devices, and every computation starting at C, all devices eventually
agree on a consensus value depending only on C. If a protocol is well
specified, then it is said to compute the predicate that assigns to each
initial configuration its consensus value.

While the computational power of well-specified protocols has been
extensively studied, much less is known about how to verify their correct-
ness: Given a population protocol, is it well specified? Given a population
protocol and a predicate, does the protocol compute the predicate? Given
a well-specified protocol, can we automatically obtain a symbolic repre-
sentation of the predicate it computes? We survey our recent work on
this problem.

Population protocols [3,4] are a model of distributed computation by anony-
mous, identical finite-state agents. While they were initially introduced to model
networks of passively mobile sensors [3,4], they capture the essence of distrib-
uted computation in diverse areas such as trust propagation [16] and chemical
reaction networks [27], a popular model for theoretical chemistry.

The Model. A protocol has a finite set of states Q, and a set of transitions of the
form (q, q′) �→ (r, r′), where q, q′, r, r′ ∈ Q. At each computation step of a popula-
tion protocol a scheduler selects two agents, observes their current states, say q1
and q2, selects a rule with (q1, q2) on the left-hand side, say (q1, q2) �→ (q3, q4),
and updates the states of the agents to q3 and q4

1. Since agents are anonymous
and identical, it is irrelevant which agent moves to which state. Further, the
global state of a protocol is completely determined by the number of agents at
each state, i.e., by a mapping Q → N. Such a mapping is called a configuration.

Without loss of generality, one can assume that for every two states q1, q2
the protocol has at least one transition of the form (q1, q2) �→ (q3, q4) for some

1 Since I am often asked this question, let me mention that extensions to k agents for
some k > 2 can be easily simulated by protocols with k = 2.

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 7–14, 2017.
DOI: 10.1007/978-3-319-58747-9 2

8 J. Esparza

states q3, q4 (perhaps the transition (q1, q2) �→ (q1, q2) that does not change the
current configuration). Then the protocol cannot block, and all computations
have an infinite number of steps. Schedulers are requested to satisfy a fairness
condition: if a configuration C appears infinitely often in the execution, then
every transition enabled at C is taken infinitely often in the execution. This con-
dition approximates the behavior of a probabilistic scheduler that selects agents
at random, either uniformly or according to some fixed probability distribution.

Computing with Population Protocols. Population protocols are machines
for the distributed computation of predicates N

n → {0, 1}. In the simplest ver-
sion, a predicate P (x1, . . . , xn) of arity n is computed by a protocol with initial
states q1, . . . , qn. Given k1, . . . , kn ∈ N

n, the value P (k1, . . . , kn) is computed by
preparing the initial configuration C0 given by C0(qi) = ki for every 1 ≤ i ≤ n
and C0(q) = 0 for every non-initial state q, and letting the protocol run. Intu-
itively, P (k1, . . . , kn) = b holds if in every fair execution starting at C0, all agents
eventually agree to b and do not ever change their mind—so, loosely speaking,
population protocols compute by reaching consensus. But what does it mean
that the agents agree to b? For this, we define a mapping that assigns to every
state q ∈ Q an opinion O(q) ∈ {0, 1}, with the intended meaning that agents
at state q have opinion O(q). Therefore, we have P (k1, . . . , kn) = b if every fair
computation C0 C1 C2 . . . reaches a configuration Ci such that for every j ≥ i
and for every state q satisfying Cj(q) > 0, the state q satisfies O(q) = b.

Observe that not every protocol computes a predicate. It is easy to construct
protocols such that for some initial configuration C0 some fair computation never
agrees to a value, or for which two fair computations agree to two different values.
We call such protocols ill specified, and say that a protocol is well specified if it
is not ill specified.

Computing Power. Most of the work on population protocols carried out by
the distributed computing community has concentrated on characterizing the
predicates computable by well-specified protocols. In particular, Angluin et al.
[3,4] gave explicit well-specified protocols to compute every predicate definable
in Presburger arithmetic, the first-order theory of addition, and showed in a
later paper (with a different set of authors) that they cannot compute anything
else, i.e., well-specified population protocols compute exactly the Presburger-
definable predicates [5,7]. There is also extensive work on the computational
power and runtime of protocols. For example, protocols for any Presburger-
definable predicate satisfying a certain runtime guarantee are shown in [6], while
other papers have designed particularly efficient protocols for specific predicates
(see e.g. [2]).

Verification Problems for Population Protocols. The verification com-
munity is interested in other questions. Given a population protocol, is it well
specified? Given a population protocol and a Presburger predicate (represented

Advances in Parameterized Verification of Population Protocols 9

by a Presburger formula), does the protocol compute the predicate? Given a
well-specified protocol, can we automatically obtain a symbolic representation
of the predicate it computes? It is also interested in properties concerning the
executions of a protocol, seen not as a device for the distributed computation
of a predicate, but as a concurrent system. In particular, we are interested in
checking if a protocol satisfies a given temporal logic specification expressed in,
for example, Linear Temporal Logic, one of the standard specification languages.
All these problems are challenging because of their parameterized nature. The
semantics of a population protocol is an infinite family of finite-state transition
systems, one for each possible input. Therefore, any of the problems above is
actually a question of the form: Do all members of the family satisfy a certain
property?

Deciding the property for one single member requires to inspect only one
finite transition system, and can be done automatically using a model checker.
This is the approach that verification researchers investigated first [11,12,28,31],
but it only proves the correctness of a protocol for a finite number of inputs.
Alternatively, one can also formalize a proof of well specification in a theorem
prover [15], but this approach is not automatic: a human prover must first come
up with a proof for each particular protocol. Can we go beyond this? The ver-
ification community has studied parameterized verification problems for a long
time (see [9,17]), and so at first sight one could feel optimistic. Unfortunately, the
techniques developed in this area cannot be applied to the analysis of population
protocols. It is worth to spend some lines explaining why.

Classical Parameterized Verification Techniques Do Not Work. Many
simple parameterized models of computation have Turing power, and so all inter-
esting analysis problems are undecidable for them [8]. For example, given a
Turing machine M and an input x, we can easily construct a little finite-state
program that simulates a tape cell. The program has a boolean variable indi-
cating whether the head is on the cell or not, a variable storing the current
tape symbol, and a third variable storing the current control state when the
head is on the cell. A agent running the program communicates with its left
and right neighbors by message passing. If M accepts x, then it does so using a
finite number N of tape cells. Therefore, the instance of the system containing
N agents eventually reaches a configuration in which the value of the control-
state variable of a agent is a final state of M . On the contrary, if M does not
accept x, then no instance, however large, ever reaches such a configuration. So
the reachability problem for parameterized programs is undecidable. However,
this proof sketch contains the sentence “the program communicates with its left
and right neighbors”. This is achieved by giving agents an identity, typically a
number in the range [1..N]. This number appears as a parameter i in the code,
and so it is not the case that all agents execute exactly the same code, but the
code where the parameter is instantiated with the agent identity. Since in pop-
ulation protocols agents have no identity, the argument above does not apply.
So, are parameterized verification questions for systems consisting of completely

10 J. Esparza

identical agents decidable, and, if this is the case, can these results be applied
to population protocols?

The answer to the first question is positive but, unfortunately, the second is
not. Many questions about systems of identical agents can be proved decidable
using the theory of well-quasi orders [1,21], which have become the standard
mathematical tool for parameterized verification. Loosely speaking, the theory
can be applied when the specification to be checked satisfies a monotonicity
property: if the instance consisting of N agents satisfies the property, then for
every K the instance with N +K agents will also satisfy it. However, the central
verification questions for population protocols, like well-specification, are not
monotonic. This is due to the notion of fairness inherently present in population
protocols. While an execution of the instance of the protocol running with N
agents is also an execution of the instance with N +K agents (the K additional
agents just do not participate in the execution), the same is not true for fair
executions, because the new K processes cannot be indefinitely left out. This
problem can be overcome for some simple notions of fairness, but not for the
particularly demanding one required by population protocols.

Parameterized Verification of Population Protocols. In 2014 I started an
initiative to attack the parameterized verification of population protocols, which
has been (and continues to be) quite successful. Together with my colleagues and
students Michael Blondin, Pierre Ganty, Stefan Jaax, Jérôme Leroux, Rupak
Majumdar, and Philipp J. Meyer, we have

– obtained decidability and undecidability results that establish the limits of
what is algorithmically achievable, and several complexity bounds showing
that many questions have very high complexity; and

– initiated the study of population protocols that are good for verification:
classes of protocols with the same expressive power as the general class, but
with more tractable verification problems.

In the rest of this note I summarize our results.

Decidability of Central Verification Questions. In [18], a paper published at
CONCUR 2015, we showed that the three central verification problems for pop-
ulation protocols are all decidable:

(a) Given a population protocol, is it well specified?
(b) Given a population protocol and a Presburger predicate (represented by a

Presburger formula), does the protocol compute the predicate?
(c) Given a well-specified protocol, can we automatically obtain a symbolic rep-

resentation of the predicate it computes?

We call (b) the fitting problem (whether a given protocol fits the specification),
and (c) the tailor problem (tailoring a protocol that fits the specification). The
proofs relied on breakthrough results by Jérôme Leroux on the theory of Petri
nets, a model very close to population protocols [22–25]. Shortly after submitting

Advances in Parameterized Verification of Population Protocols 11

this paper we were able to substantially improve our results: We showed that
questions (a) and (b) are recursively equivalent to the reachability problem for
Petri nets, eliminating the need for the most advanced and complicated of Ler-
oux’s results (the ones of [22]). These improvements are contained in the journal
version of [18], recently published in Acta Informatica [20] (I do not recommend
to read [18] any more!).

The reductions from the reachability problem show that there is little hope of
finding reasonably efficient algorithms for arbitrary protocols, even small ones:
The reachability problem is known to be EXPSPACE-hard, and all known algo-
rithms for it have non-primitive recursive complexity (actually, the first explicit
upper bound for the problem was only obtained very recently, see [29] for a
recent survey). In particular, there are no stable implementations of any of these
algorithms, and they are considered impractical for nearly all applications.

To solve problem (c), we introduce a notion of certificate of well-specification
for a protocol. We provide algorithms that, given a protocol and an advice string
decide if the string is a certificate, and extract from it a Presburger formula of the
predicate computed by the protocol. The overall algorithm for problem (c) just
enumerates all advice strings, checks if they are a certificate, and if so computes
a formula. However, this algorithm may not terminate if a protocol happens to
have no certificates. So we also show that this is not the case: every well-specified
protocol has at least one certificate. Since this certificate approach only provides
two semi-decision algorithms for problem (c), we know even less concerning its
complexity, no upper bound has been given yet.

Decidability of Model Checking Problems. Population protocols have been used
to model systems beyond their initial motivation in distributed computing. In
particular, they can also model trust propagation [16], evolutionary dynamics
[26], or chemical reaction systems [27,30]. These systems do not always aim
at the computation of predicates, or, if they do, they do not compute them
in the way defined by Angluin et al. [3]. With more diverse applications of
population protocols comes also new properties one would like to reason about.
For instance, Delporte-Gallet et al. [14] studied privacy in population protocols.
They proved (by hand) different properties of specific protocols, like “the system
can reach a good configuration without any interaction involving a distinguished
agent p0”. For these reasons, in [19], published at FSTTCS 2016, we studied the
general model checking problem for population protocols against probabilistic
linear-time (LTL) specifications. We use the probabilistic semantics in which the
scheduler selecting the agents at each step proceeds stochastically. We assume
that each transition carries a label that can be observed whenever it occurs. This
assigns to each computation an infinite word over the set of labels. We can then
speak of the probability of the set of computations satisfying a given formula φ
of LTL. We show that the qualitative model checking problem (i.e., deciding if φ
holds with probability 1) is decidable, while the quantitative problem (deciding
if the probability that φ holds exceeds a given probability) is undecidable.

12 J. Esparza

Efficiently Verifiable Protocols. The theoretical results of [18,20] on the well-
specification problem can be reformulated as: the membership problem for the
class WS of well-specified protocols is decidable but at least as hard as the
reachability problem for Petri nets. This motivates the search for a class of
protocols properly contained in WS and satisfying the following three properties:

(a) No loss of expressive power : the class should compute all Presburger-
definable predicates.

(b) Naturality : the class should contain most protocols discussed in the litera-
ture.

(c) Feasible membership problem: membership for the class should have reason-
able complexity.

The class WS obviously satisfies (a) and (b), but not (c). In our most recent
work, currently under submission and available online in [10], we introduce a new
class WS3, standing for Well-Specified Strongly Silent protocols. We show that
WS3 still satisfies (a) and (b), and then prove that the membership problem for
WS3 is in the complexity class DP; the class of languages L such that L = L1∩L2

for some languages L1 ∈ NP and L2 ∈ coNP. This is a dramatic improvement
with respect to the EXPSPACE-hardness of the membership problem for WS.

Our proof that the problem is in DP reduces membership for WS3 to check-
ing (un)satisfiability of two systems of boolean combinations of linear constraints
over the natural numbers. This allows us to implement our decision procedure
on top of the constraint solver Z3 [13], yielding the first software able to auto-
matically prove well-specification for all initial configurations. We have tested
our implementation on the families of protocols studied in [11,12,28,31]. These
papers prove correctness for some inputs of protocols with up to 9 states and
28 transitions. Our approach proves correctness for all inputs of protocols with
up to 20 states in less than one second, and protocols with 70 states and 2500
transitions in less than one hour. In particular, we can automatically prove well-
specification for all inputs in less time than previous tools needed to check one
single large input.

Acknowledgments. I want to thank my colleagues Pierre Ganty, Jérôme Leroux,
and Rupak Majumdar, my postdoc Michael Blondin, and my PhD students Stefan
Jaax and Philipp J. Meyer for agreeing to put their brains to work on these questions.
Thank you also to Dejvuth Suwimonteerabuth for implementing the little simulator I
use in my talks on population protocols.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: Proceedings of the 11th Annual IEEE Symposium
on Logic in Computer Science, LICS 1996, pp. 313–321. IEEE Computer Society
(1996)

2. Alistarh, D., Gelashvili, R., Vojnovic, M.: Fast and exact majority in population
protocols. In: Proceedings of the ACM Symposium on Principles of Distributed
Computing, PODC 2015, pp. 47–56. ACM (2015)

Advances in Parameterized Verification of Population Protocols 13

3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. In: PODC 2004, pp. 290–299.
ACM (2004)

4. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253
(2006)

5. Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear.
In: PODC 2006, pp. 292–299. ACM (2006)

6. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols
with a leader. Distrib. Comput. 21(3), 183–199 (2008)

7. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distrib. Comput. 20(4), 279–304 (2007)

8. Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

9. Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith, H., Widder, J.:
Decidability of parameterized verification. In: Synthesis Lectures on Distributed
Computing Theory. Morgan & Claypool Publishers (2015)

10. Blondin, M., Esparza, J., Jaax, S., Meyer, P.: Towards efficient verification of pop-
ulation protocols. CoRR, abs/1703.04367 (2017)

11. Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Algorithmic Verification of Pop-
ulation Protocols. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS
2010. LNCS, vol. 6366, pp. 221–235. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16023-3 19

12. Clement, J., Delporte-Gallet, C., Fauconnier, H., Sighireanu, M.: Guidelines for
the verification of population protocols. In: ICDCS 2011, pp. 215–224 (2011)

13. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

14. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: Secretive birds:
privacy in population protocols. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.)
OPODIS 2007. LNCS, vol. 4878, pp. 329–342. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-77096-1 24

15. Deng, Y., Monin, J.-F.: Verifying self-stabilizing population protocols with Coq.
In: TASE 2009, pp. 201–208. IEEE Computer Society (2009)

16. Diamadi, Z., Fischer, M.J.: A simple game for the study of trust in distributed
systems. Wuhan Univ. J. Nat. Sci. 6(1–2), 72–82 (2001)

17. Esparza, J.: Keeping a crowd safe: on the complexity of parameterized verifi-
cation (invited talk). In: STACS. LIPIcs, vol. 25, pp. 1–10. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2014). Corrected version available in CoRR,
abs/1405.1841

18. Esparza, J., Ganty, P., Leroux, J., Majumdar, R.: Verification of population proto-
cols. In: Proceedings of the 26th International Conference on Concurrency Theory
(CONCUR), pp. 470–482 (2015)

19. Esparza, J., Ganty, P., Leroux, J., Majumdar, R.: Model checking population pro-
tocols. In: FSTTCS. LIPIcs, vol. 65, pp. 27:1–27:14 (2016)

20. Esparza, J., Ganty, P., Leroux, J., Majumdar, R.: Verification of population pro-
tocols. Acta Inf. 54(2), 191–215 (2017)

21. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.
Comput. Sci. 256(1–2), 63–92 (2001)

22. Leroux, J.: The general vector addition system reachability problem by Presburger
inductive invariants. In: LICS 2009, pp. 4–13. IEEE Computer Society (2009)

http://dx.doi.org/10.1007/978-3-642-16023-3_19
http://dx.doi.org/10.1007/978-3-642-16023-3_19
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-77096-1_24
http://dx.doi.org/10.1007/978-3-540-77096-1_24

14 J. Esparza

23. Leroux, J.: Vector addition system reversible reachability problem. In: Katoen,
J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 327–341. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23217-6 22

24. Leroux, J.: Presburger vector addition systems. In: LICS 2013, pp. 23–32. IEEE
Computer Society (2013)

25. Leroux, J.: Vector addition system reversible reachability problem. Log. Methods
Comput. Sci. 9(1) (2013)

26. Moran, P.A.P.: Random processes in genetics. Math. Proc. Camb. Philos. Soc.
54(1), 60–71 (1958)

27. Navlakha, S., Bar-Joseph, Z.: Distributed information processing in biological and
computational systems. Commun. ACM 58(1), 94–102 (2014)

28. Pang, J., Luo, Z., Deng, Y.: On automatic verification of self-stabilizing population
protocols. In: Proceedings of the 2nd IEEE/IFIP International Symposium on
Theoretical Aspects of Software Engineering (TASE), pp. 185–192 (2008)

29. Schmitz, S.: The complexity of reachability in vector addition systems. SIGLOG
News 3(1), 4–21 (2016)

30. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochas-
tic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008)

31. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4 59

http://dx.doi.org/10.1007/978-3-642-23217-6_22
http://dx.doi.org/10.1007/978-3-642-02658-4_59

Verification of Quantum Computation
and the Price of Trust

Alexandru Gheorghiu1, Theodoros Kapourniotis2, and Elham Kashefi1,3(B)

1 School of Informatics, University of Edinburgh, Edinburgh, UK
ekashefi@inf.ed.ac.uk

2 Department of Physics, University of Warwick, Coventry, UK
3 CNRS LIP6, Université Pierre et Marie Curie, Paris, France

This is an extended abstract of the presentation made at CSR 2017. Complete
details can be found in our upcoming paper [1].

Quantum computers promise to efficiently solve not only problems believed
to be intractable to classical computers [2], but also problems for which verifying
the solution is considered intractable [3]. In particular, there are problems in the
complexity class BQP, i.e. solvable in polynomial time by a quantum computer,
that are believed to be outside of NP, the class of problems for which checking
the solution can be performed in polynomial time by a classical computer. This
raises the question of how one can verify whether quantum computers are indeed
producing correct results. Answering this question leads to quantum verification,
which has been highlighted as a significant challenge on the road to scalable
quantum computing technology. Verification is pertinent to both medium-sized
quantum computers, expected to be developed in under a decade, but also to
future quantum cloud supercomputers used by remote users. It is also relevant
for experiments of quantum mechanics, where the size of the system involved is
beyond the regime of classical simulation. In this paper we attempt to catego-
rize the different methods of quantum verification that have appeared in recent
years. Since most of them are based on cryptographic primitives and treat quan-
tum devices as untrusted entities, we highlight a general trade-off between trust
assumptions and complexity.

The setting in which quantum verification has been studied extensively is
that of interactive proof systems. This involves two distinct entities: a trusted
party called the verifier (also known as client), tasked with verifying the cor-
rectness of a computation and an untrusted party called the prover (also known
as server), who runs the computation and attempts to convince the verifier of
the result. Formally, for some language L ∈ BQP the verifier wants to know,
for an input x, whether x ∈ L or x �∈ L. The prover is trying to convince the
verifier that one of these statements is true usually by demonstrating that it has
performed the correct quantum computation. To ensure this, in a typical run
of a verification protocol, the verifier asks the prover to not only perform the
quantum computation, but also a series of trials that will be used to test his
behaviour. Cryptographic methods are applied so that the prover cannot distin-
guish the tests from the computation and try to cheat selectively. This class of
protocols constitutes the majority of verification protocols developed so far. For
this reason, in our paper, we will primarily review these types of approaches.
c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 15–19, 2017.
DOI: 10.1007/978-3-319-58747-9 3

16 A. Gheorghiu et al.

Fig. 1. Prepare and send verification protocol

It is worth mentioning that all techniques reviewed in this paper assume that
the prover can deviate in any possible way that follows the laws of quantum
mechanics.

Essential to the effectiveness of a verification protocol is the ascription of
trust to some of the used devices. Ideally, one wants to restrict the trust to the
classical computer which the verifier controls. However, all existing approaches
require some extra trust assumptions on the quantum devices or the channels
involved in the protocol. For instance, protocols in which the verifier interacts
with a single quantum prover require the verifier to possess a trusted quantum
device. If there is more than one prover, the verifier can indeed be fully classical,
but then the provers are forbidden from interacting with each other. Our goal
in this paper is to highlight the trade-off between the trust assumptions of each
verification technique and the required resources to achieve the same level of
confidence in the verification.

We proceed by first considering protocols which make use of cryptographic
primitives and have information-theoretic security. These protocols are divided
into two broad categories:

1. Prepare and send/receive and measure protocols. These are protocols in which
the verifier and the prover exchange qubits through some quantum channel.
As the name suggests, the verifier either prepares and sends qubits to the
prover [4–9] or, alternatively, receives qubits from the prover and measures
them [10–12]. In the first case, the verifier relies on the uncertainty principle
and the no-cloning theorem to ensure that the prover cannot distinguish tests
from computations. In the second case, the verifier uses a type of cut-and-
choose technique to decide whether to test the prover or perform a computa-
tion using the received states. In both cases, the essential element is the fact
that the prover is oblivious to some part of the delegated computation. This
property is commonly referred to as blindness [13–20] and is a shared feature
of most verification protocols. A schematic illustration of a prepare and send
protocol is shown in Fig. 1.

Verification of Quantum Computation and the Price of Trust 17

2. Entanglement-based protocols. These are protocols in which entangled states
are shared either between the verifier and the prover [21,22] or between multi-
ple provers [23,24]. One of the main reasons for considering the entanglement-
based setting is because it can lead to device-independent verification. In other
words, because of the remarkable properties of non-local correlations, it is pos-
sible to verify a quantum computation in a situation in which all quantum
devices are untrusted. It is, however, necessary to assume that the quantum
devices sharing entanglement are not communicating throughout the proto-
col. In this case, the verifier needs to test not only the prover performing
the computation, but also any other quantum device that is sharing entan-
glement. Depending on the trust assumptions about the shared entangled
states as well as the measurement devices we notice different scalings for the
communication complexity of the protocols as we show in the table below.

We then also consider protocols which are not based in cryptography, but are
more akin to quantum state certification. These are known as post-hoc verifica-
tion protocols [25–27] and can also be categorized as either receive and measure
or entanglement-based. While the cryptographic protocols aim to test the opera-
tions performed by the prover(s) towards achieving universal quantum computa-
tion, post-hoc protocols simply check quantum witnesses for decision problems.
In other words, deciding whether some input x belongs or not to a language
L ∈ BQP reduces to performing a two-outcome measurement of a quantum wit-
ness state |ψ〉. The protocols either have the prover send this state to the verifier
to be measured, or the verifier coordinates a set of entangled provers to prepare
and measure |ψ〉.

Measurements Entanglement

Trusted Semi-trusted Untrusted

Trusted O(N) O(N2) O(N13log(N))

Untrusted O(N2) O(N2) O(N64)

In both the previously mentioned cryptographic and post-hoc protocols, there
are no limiting assumptions about the computational powers of the provers.
In other words, even though we regard them as BQP machines, verification is
possible even if the provers are computationally unbounded. Recently, however,
verification protocols have been proposed for settings in which the provers are
limited to a sub-universal model of quantum computations. The two that we
review are for the one-pure-qubit model [28] and the instantaneous quantum
polynomial-time model (or IQP) [29,30].

Lastly, we address the issue of fault-tolerance [31]. This entails the ability
to perform verification in a setting where quantum devices and quantum states
are subject to noise that scales with the size of the system. Achieving fault-
tolerant verification is crucial for the practical applicability of these protocols

18 A. Gheorghiu et al.

and their use in near-future experiments of quantum supremacy (attempting to
demonstrate the “supraclassical power” of quantum computing).

By categorizing and analysing the resources required in each protocol, while
at the same time making the trust assumptions explicit, we illustrate the bigger
picture of quantum verification in the delegated setting. This highlights the
significant overlap between quantum computation, cryptography and complexity
theory and can serve as a guide for the development and improvement of future
protocols.

References

1. Gheorghiu, A., Kapourniotis, T., Kashefi, E.: Verification of quantum computation
and the price of trust (2015)

2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

3. Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algorithm for approx-
imating the Jones polynomial. In: Proceedings of the Thirty-Eighth Annual ACM
Symposium on Theory of Computing, pp. 427–436. ACM (2006)

4. Aharonov, D., Ben-Or, M., Eban, E.: Interactive proofs for quantum computations.
In: Proceedings of Innovations in Computer Science 2010 (ICS 2010), p. 453 (2010)

5. Fitzsimons, J.F., Kashefi, E.: Unconditionally verifiable blind computation. arXiv
preprint (2012). arXiv:1203.5217

6. Broadbent, A.: How to verify a quantum computation. arXiv preprint (2015).
arXiv:1509.09180

7. Barz, S., Fitzsimons, J.F., Kashefi, E., Walther, P.: Experimental verification of
quantum computation. Nat. Phys. 9(11), 727–731 (2013)

8. Kapourniotis, T., Dunjko, V., Kashefi, E.: On optimising quantum communication
in verifiable quantum computing. arXiv preprint (2015). arXiv:1506.06943

9. Kashefi, E., Wallden, P.: Optimised resource construction for verifiable quantum
computation. arXiv preprint (2015). arXiv:1510.07408

10. Morimae, T.: Measurement-only verifiable blind quantum computing with quan-
tum input verification (2016). arXiv preprint arXiv:1606.06467

11. Hayashi, M., Morimae, T.: Verifiable measurement-only blind quantum computing
with stabilizer testing. arXiv preprint (2015). arXiv:1505.07535

12. Hayashi, M., Hajdusek, M.: Self-guaranteed measurement-based quantum compu-
tation. arXiv preprint (2016). arXiv:1603.02195

13. Arrighi, P., Salvail, L.: Blind quantum computation. Int. J. Quantum Inform.
4(05), 883–898 (2006)

14. Childs, A.: Secure assisted quantum computation. Quant. Inf. Compt. 5(6), 456
(2005)

15. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation.
In: 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2009), pp. 517–526. IEEE (2009)

16. Mantri, A., Perez-Delgado, C.A., Fitzsimons, J.F.: Optimal blind quantum com-
putation. Phys. Rev. Lett. 111(23), 230502 (2013)

17. Perez-Delgado, C.A., Fitzsimons, J.F.: Overcoming efficiency constraints on blind
quantum computation. arXiv preprint (2014). arXiv:1411.4777

18. Giovannetti, V., Maccone, L., Morimae, T., Rudolph, T.G.: Efficient universal blind
quantum computation. Phys. Rev. Lett. 111(23), 230501 (2013)

http://arxiv.org/abs/1203.5217
http://arxiv.org/abs/1509.09180
http://arxiv.org/abs/1506.06943
http://arxiv.org/abs/1510.07408
http://arxiv.org/abs/1606.06467
http://arxiv.org/abs/1505.07535
http://arxiv.org/abs/1603.02195
http://arxiv.org/abs/1411.4777

Verification of Quantum Computation and the Price of Trust 19

19. Morimae, T., Fujii, K.: Blind quantum computation protocol in which alice only
makes measurements. Phys. Rev. A 87(5), 050301 (2013)

20. Sueki, T., Koshiba, T., Morimae, T.: Ancilla-driven universal blind quantum com-
putation. Phys. Rev. A 87(6), 060301 (2013)

21. Gheorghiu, A., Kashefi, E., Wallden, P.: Robustness and device independence of
verifiable blind quantum computing. arXiv preprint (2015). arXiv:1502.02571

22. Hajdusek, M., Perez-Delgado, C.A., Fitzsimons, J.F.: Device-independent verifi-
able blind quantum computation. arXiv preprint (2015). arXiv:1502.02563

23. Reichardt, B.W., Unger, F., Vazirani, U.: Classical command of quantum systems.
Nature 496(7446), 456–460 (2013)

24. McKague, M.: Interactive proofs for BQP via self-tested graph states (2013).
arXiv:1309.5675

25. Fitzsimons, J.F., Hajdušek, M.: Post hoc verification of quantum computation.
arXiv preprint (2015). arXiv:1512.04375

26. Morimae, T., Fitzsimons, J.F.: Post hoc verification with a single prover. arXiv
preprint (2016). arXiv:1603.06046

27. Hangleiter, D., Kliesch, M., Schwarz, M., Eisert, J.: Direct certification of a class
of quantum simulations. arXiv preprint (2016). arXiv:1602.00703

28. Kapourniotis, T., Kashefi, E., Datta, A.: Blindness and verification of quantum
computation with one pure qubit. In: 9th Conference on the Theory of Quantum
Computation, Communication and Cryptography (TQC 2014), vol. 27, pp. 176–
204 (2014)

29. Mills, D., Pappa, A., Kapourniotis, T., Kashefi, E.: Information theoretically secure
hypothesis test for temporally unstructured quantum computation (2017)

30. Kapourniotis,T., Datta, A.: Nonadaptive fault-tolerant verification of quantum
supremacy with noise (2017)

31. Shor, P.W.: Fault-tolerant quantum computation. In: 37th Annual Symposium on
Foundations of Computer Science, Proceedings, pp. 56–65. IEEE (1996)

http://arxiv.org/abs/1502.02571
http://arxiv.org/abs/1502.02563
http://arxiv.org/abs/1309.5675
http://arxiv.org/abs/1512.04375
http://arxiv.org/abs/1603.06046
http://arxiv.org/abs/1602.00703

Graph Sketching and Streaming:
New Approaches for Analyzing Massive Graphs

Andrew McGregor(B)

University of Massachusetts, Amherst, USA
mcgregor@cs.umass.edu

Abstract. In this invited talk, we will survey some of the recent work
on designing algorithms for analyzing massive graphs. Such graphs may
not fit in main memory, may be distributed across numerous machines,
and may change over time. This has motivated a rich body of work
on analyzing graphs in the data stream model and the development of
general algorithmic techniques, such as graph sketching, that can help
minimize the space and communication costs required to process these
massive graphs.

1 Motivation and Definitions

If you pick up your favorite algorithms textbooks and turn to a random page,
there is a reasonable chance that you will find an algorithm for solving a graph
problem. This is perhaps unsurprising given that graphs are a natural abstraction
whenever you have information about a set of basic entities and the relation-
ships between these entities, e.g., people and their friendships, web-pages and
hyperlinks; neurons and synapses; or IP addresses and network flows. However,
many of the classical algorithms for analyzing graphs implicitly assume that
the graphs are static and fit in the main memory of a single machine. Unfortu-
nately, in a growing number of applications this is not the case and attention has
turned to algorithms that can process streams of graph data and/or graph data
that is distributed across numerous machines. In these scenarios, standard graph
techniques and primitives such as constructing BFS or DFS trees, dynamic pro-
gramming, and linear programming are no longer applicable and new techniques,
such as graph sketching, are required.

In the accompanying talk, we will survey some of the recent work on these
new approaches to analyzing massive graphs. In this document, we first present
some of the relevant definitions and then collect together references for some of
the main results that will be discussed.

Basic Definitions. The simplest version of the data stream model for processing
graphs is the insert-only model. In this model, the input stream consists of a

This work was supported in part by NSF Awards CCF-0953754, IIS-1251110, CCF-
1320719, CCF-1637536, and a Google Research Award.

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 20–24, 2017.
DOI: 10.1007/978-3-319-58747-9 4

Graph Sketching and Streaming 21

sequence of unordered pairs e = {u, v} where u, v ∈ [n]. Such a stream,

S = 〈e1, e2, . . . , em〉
naturally defines an undirected graph G = (V,E) where V = [n] and E =
{e1, . . . , em}. The goal is to design an algorithm that solves the required graph
problem on the graph G while only accessing the input sequentially and using
memory that is sublinear in m.

A natural extension of the model is the insert-delete model in which edges
can be both inserted and deleted. In this case, the input is a sequence

S = 〈a1, a2, . . .〉 where ai = (ei,Δi)

where ei encodes an undirected edge as before and Δi ∈ {−1, 1}. The multiplicity
of an edge e is defined as fe =

∑
i:ei=e Δi and we typically restrict our attention

to the case where fe ∈ {0, 1} for all edges e. Both the insert-only and insert-
delete model can be extended to handle weighted graphs where the occurrence
of each edge e in the input is replaced by the pair (e, we) where we indicates the
weight of the edge.

An important algorithmic technique in the insert-delete model in particular,
is that of graph sketching. A sketch is a random linear projection of a vector
corresponding to the input data. In the context of graphs, this vector would be

f ∈ {0, 1}(n2)

where entries correspond to the current fe values and the sketch would be
M f ∈ R

d where d � n2 is the dimension of the sketch and M is a random
matrix chosen according to an appropriate distribution, i.e., one from which
the relevant properties of f can be inferred given M f . Such a sketch can then
be used as the basis for a data stream algorithm since M f can be computed
incrementally: when (e,Δ) arrives in the stream we can update M f as follows:

M f ← M f + Δ · Me

where Me is the eth column of M . Hence, it suffices to store the current sketch
and any random bits needed to compute the matrix M . The main challenge
is therefore to design low-dimensional sketches as this results in small-space
algorithms. Sketches are also useful for the purpose of reducing communication
in various distributed models since if each machine communicates a sketch of
their local input, then a sketch of the entire data set can be recovered simply by
adding together the individual sketches.

2 Some Results and References

In this section, we briefly summarize some of the main results in the area. This
is not intended to be an exhaustive survey and we focus on the most represen-
tative or most recent results on each problem. Further details of some of these
algorithms can also be found in the survey [30] although many of the results
postdate that survey.

22 A. McGregor

Connectivity and Sparsification. One of the most basic graph problems is deter-
mining whether a graph is connected. This and many related problems can be
solved relatively easily in the insert-only model using O(n polylog n) space, e.g.,
to test connectivity when there are no edge deletions, it suffices to keep track
of the connected components of the graph. Furthermore, it can be shown that
Ω(n log n) space is necessary to solve this problem [37]. A more surprising result
is that O(n polylog n) space also suffices in the insert-delete model [3]; this was
one of the first applications of the graph sketching technique. Furthermore, the
basic algorithm can be extended to testing k-edge connectivity [4] and approx-
imate testing of k-node connectivity [20] using O(kn polylog n) space. Lastly,
in O(ε−2n polylog n) space it is possible to construct combinatorial and spec-
tral sparsifiers of the input graph [20,28]; these allow the size of all cuts to be
approximated up to a 1 + ε factor along with various properties related to the
Laplacian of the graph.

Matching. Most of the work on approximating maximum matchings has focused
on the insert-only model. The trivial greedy approach yields a 2-approximation
using O(n log n) space in the unweighted case and after a long sequence of papers,
a (2+ε)-approximation algorithm using O(ε−1n log n) space in the weighted case
is now known [19,35]. The best known lower bound is that no algorithm can beat
a factor e/(e − 1) ≈ 1.58 while using only O(n polylog n) space [25] and closing
the gap remains an open problem. Better approximation guarantees or lower
space requirements are possible if the algorithm may take a small number of
additional passes over the data stream [2,17,23,29] or if the edges of the graph
are assumed to arrive in a random order [26,29]. Another line of work considers
low arboricity graphs, e.g., the size of the maximum matching in a planar graph
can be approximated up to a (5 + ε) factor using O(ε−2 log n) space [15,32].

In the insert-delete model, it is known that Θ(n2/α3 · polylog n) space is
necessary and sufficient to find a matching that is at least 1/α times the size
of the maximum matching [8,13]. This can be reduced to O(n2/α4 · polylog n)
space if we are only interested in estimating the size of the maximum matching
[7]. Furthermore, if the size of the maximum matching is bounded by k, then
Θ(k2 polylog n) space is necessary and sufficient to find a matching of maximum
size [11,13].

And more. . . Other graph problems considered in the data stream model include
finding the densest subgraph [10,18,31]; correlation clustering [1]; counting tri-
angles [9,24,33], estimating the size of the maximum cut [27], finding large inde-
pendent sets and cliques [14,21], and performing random walks [36]. Some of the
above problems have also been considered in the sliding window model, a variant
of the insert-only model in which the relevant graph is defined by only the most
recent edges [16]. Another notable body of related work considers problems that
can be described in terms of hypergraphs, i.e., every edge in the stream includes
an arbitrary number of nodes rather than just two. Such problems include min-
imum set cover [5,6,12,22], maximum coverage [5,34], and minimum hitting
set [13].

Graph Sketching and Streaming 23

References

1. Ahn, K.J., Cormode, G., Guha, S., McGregor, A., Wirth, A.: Correlation clustering
in data streams. In: International Conference on Machine Learning, pp. 2237–2246
(2015)

2. Ahn, K.J., Guha, S.: Linear programming in the semi-streaming model with appli-
cation to the maximum matching problem. Inf. Comput. 222, 59–79 (2013)

3. Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measure-
ments. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 459–467 (2012)

4. Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: sparsification, spanners, and
subgraphs. In: ACM Symposium on Principles of Database Systems, pp. 5–14
(2012)

5. Assadi, S.: Tight Space-Approximation Tradeoff for the Multi-Pass Streaming Set
Cover Problem. ArXiv e-prints, March 2017

6. Assadi, S., Khanna, S., Li, Y.: Tight bounds for single-pass streaming complexity of
the set cover problem. In: ACM Symposium on Theory of Computing, pp. 698–711
(2016)

7. Assadi, S., Khanna, S., Li, Y.: On estimating maximum matching size in graph
streams. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1723–1742 (2017)

8. Assadi, S., Khanna, S., Li, Y., Yaroslavtsev, G.: Maximum matchings in dynamic
graph streams and the simultaneous communication model. In: ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 1345–1364 (2016)

9. Bera, S.K., Chakrabarti, A.: Towards tighter space bounds for counting triangles
and other substructures in graph streams. In: Symposium on Theoretical Aspects
of Computer Science, pp. 11:1–11:14 (2017)

10. Bhattacharya, S., Henzinger, M., Nanongkai, D., Tsourakakis, C.E.: Space- and
time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic
streams. In: ACM Symposium on Theory of Computing, pp. 173–182 (2015)

11. Bury, M., Schwiegelshohn, C.: Sublinear estimation of weighted matchings in
dynamic data streams. In: European Symposium on Algorithms, pp. 263–274
(2015)

12. Chakrabarti, A., Wirth, A.: Incidence geometries and the pass complexity of semi-
streaming set cover. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1365–
1373 (2016)

13. Chitnis, R., Cormode, G., Esfandiari, H., Hajiaghayi, M., McGregor, A.,
Monemizadeh, M., Vorotnikova, S.: Kernelization via sampling with applications to
finding matchings and related problems in dynamic graph streams. In: ACM-SIAM
Symposium on Discrete Algorithms, pp. 1326–1344 (2016)

14. Cormode, G., Dark, J., Konrad, C.: Independent set size approximation in graph
streams. CoRR abs/1702.08299 (2017). http://arxiv.org/abs/1702.08299

15. Cormode, G., Jowhari, H., Monemizadeh, M., Muthukrishnan, S.: The sparse awak-
ens: Streaming algorithms for matching size estimation in sparse graphs. CoRR
abs/1608.03118 (2016). http://arxiv.org/abs/1608.03118

16. Crouch, M.S., McGregor, A., Stubbs, D.: Dynamic graphs in the sliding-window
model. In: European Symposium on Algorithms, pp. 337–348 (2013)

17. Esfandiari, H., Hajiaghayi, M., Monemizadeh, M.: Finding large matchings in semi-
streaming. In: IEEE International Conference on Data Mining Workshops, pp.
608–614 (2016)

18. Esfandiari, H., Hajiaghayi, M., Woodruff, D.P.: Brief announcement: applications
of uniform sampling: Densest subgraph and beyond. In: ACM Symposium on Par-
allel Algorithms and Architectures, pp. 397–399 (2016)

http://arxiv.org/abs/1702.08299
http://arxiv.org/abs/1608.03118

24 A. McGregor

19. Ghaffari, M.: Space-optimal semi-streaming for (2 + ε)-approximate matching.
CoRR abs/1701.03730 (2017). http://arxiv.org/abs/1701.03730

20. Guha, S., McGregor, A., Tench, D.: Vertex and hyperedge connectivity in dynamic
graph streams. In: ACM Symposium on Principles of Database Systems, pp. 241–
247 (2015)

21. Halldórsson, B.V., Halldórsson, M.M., Losievskaja, E., Szegedy, M.: Streaming
algorithms for independent sets. In: International Colloquium on Automata, Lan-
guages and Programming, pp. 641–652 (2010)

22. Har-Peled, S., Indyk, P., Mahabadi, S., Vakilian, A.: Towards tight bounds for
the streaming set cover problem. In: ACM Symposium on Principles of Database
Systems, pp. 371–383 (2016)

23. Kale, S., Tirodkar, S., Vishwanathan, S.: Maximum matching in two, three, and a
few more passes over graph streams. CoRR abs/1702.02559 (2017). http://arxiv.
org/abs/1702.02559

24. Kallaugher, J., Price, E.: A hybrid sampling scheme for triangle counting. In: ACM-
SIAM Symposium on Discrete Algorithms, pp. 1778–1797 (2017)

25. Kapralov, M.: Better bounds for matchings in the streaming model. In: ACM-SIAM
Symposium on Discrete Algorithms, pp. 1679–1697 (2013)

26. Kapralov, M., Khanna, S., Sudan, M.: Approximating matching size from random
streams. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 734–751 (2014)

27. Kapralov, M., Khanna, S., Sudan, M., Velingker, A.: 1 + Ω(1)-approximation to
MAX-CUT requires linear space. In: ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 1703–1722 (2017)

28. Kapralov, M., Lee, Y.T., Musco, C., Musco, C., Sidford, A.: Single pass spectral
sparsification in dynamic streams. In: IEEE Symposium on Foundations of Com-
puter Science, pp. 561–570 (2014)

29. Konrad, C., Magniez, F., Mathieu, C.: Maximum matching in semi-streaming
with few passes. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.)
APPROX/RANDOM -2012. LNCS, vol. 7408, pp. 231–242. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-32512-0 20

30. McGregor, A.: Graph stream algorithms: a survey. SIGMOD Record 43(1), 9–20
(2014)

31. McGregor, A., Tench, D., Vorotnikova, S., Vu, H.T.: Densest subgraph in dynamic
graph streams. In: Mathematical Foundations of Computer Science, pp. 472–482
(2015)

32. McGregor, A., Vorotnikova, S.: A note on logarithmic space stream algorithms for
matchings in low arboricity graphs. CoRR abs/1612.02531 (2016). http://arxiv.
org/abs/1612.02531

33. McGregor, A., Vorotnikova, S., Vu, H.T.: Better algorithms for counting triangles
in data streams. In: ACM Symposium on Principles of Database Systems, pp.
401–411 (2016)

34. McGregor, A., Vu, H.T.: Better streaming algorithms for the maximum coverage
problem. In: International Conference in Database Theory, pp. 22:1–22:18 (2017)

35. Paz, A., Schwartzman, G.: A (2+ ε)-approximation for maximum weight matching
in the semi-streaming model. In: ACM-SIAM Symposium on Discrete Algorithms,
pp. 2153–2161 (2017)

36. Sarma, A.D., Gollapudi, S., Panigrahy, R.: Estimating pagerank on graph streams.
J. ACM 58(3), 13 (2011)

37. Sun, X., Woodruff, D.P.: Tight bounds for graph problems in insertion streams.
In: International Workshop on Approximation Algorithms for Combinatorial Opti-
mization Problems, pp. 435–448 (2015)

http://arxiv.org/abs/1701.03730
http://arxiv.org/abs/1702.02559
http://arxiv.org/abs/1702.02559
http://dx.doi.org/10.1007/978-3-642-32512-0_20
http://arxiv.org/abs/1612.02531
http://arxiv.org/abs/1612.02531

Concatenation Hierarchies:
New Bottle, Old Wine

Thomas Place(B) and Marc Zeitoun(B)

LaBRI, Bordeaux University, Bordeaux, France
{tplace,mz}@labri.fr

Abstract. We survey progress made in the understanding of concatena-
tion hierarchies of regular languages during the last decades. This paper
is an extended abstract meant to serve as a precursor of a forthcoming
long version.

1 Historical Background and Motivations

Our objective in this extended abstract is to outline progress obtained during the
last 50 years about concatenation hierarchies of regular languages over a fixed,
finite alphabet A. Such hierarchies were considered in order to understand the
interplay between two basic constructs used to build regular languages: Boolean
operations and concatenation. The story started with Kleene’s theorem [12], one
of the core results in automata theory. It states that languages of finite words
recognized by finite automata are exactly the ones that can be described by
regular expressions, i.e., are built from the singleton languages and the empty
set using a finite number of times operations among three basic ones: union,
concatenation, and iteration (also known as Kleene star).

As Kleene’s theorem provides another syntax for regular languages, it makes
it possible to classify them according to the hardness of describing a language by
such an expression. The notion of star-height was designed for this purpose. The
star-height of a regular expression is its maximum number of nested Kleene stars.
The star-height of a regular language is the minimum among the star-heights
of all regular expressions that define the language. Since there are languages
of arbitrary star-height [7,8], this makes the notion an appropriate complexity
measure, and justifies the question of computing the star-height of a regular
language (it was raised by Eggan [8], see also Brzozowski [4]).

Given a regular language and a natural number n, is there an expression
of star-height n defining the language?

This question, called the star-height problem, is an instance of a membership
problem. Given a class C of regular languages, the membership problem for C

simply asks whether C is a decidable class, that is:
INPUT: A regular language L

OUTPUT: Does L belong to C?

Funded by the DeLTA project (ANR-16-CE40-0007).

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 25–37, 2017.
DOI: 10.1007/978-3-319-58747-9 5

26 T. Place and M. Zeitoun

Thus, the star-height problem asks whether membership is decidable for each
class Hn, where Hn is the class of languages having star-height n. It was first
solved by Hashiguchi [10], but it took several more years to obtain simpler proofs,
see e.g., [3,11].

Kleene’s theorem also implies that adding complement to our set of basic
operations does not make it possible to define more languages. Therefore, instead
of just considering regular expressions, one may consider generalized regular
expressions, where complement is allowed (in addition to union, concatenation
and Kleene star). This yields the notion of generalized star-height, which is
defined as the star-height, but replacing “regular expression” by “generalized
regular expression”. One may then ask the very same question: is there an algo-
rithm to compute the generalized star-height of a regular language? Despite its
very simple statement, this question, also raised by Brzozowski [4], is still open.
Even more, one does not know whether there exists a regular language of general-
ized star-height greater than 1. In other words, membership is open for the class
of languages of generalized star-height 1 (see [18] for a historical presentation).

This makes it relevant to already focus on languages of star height 0, i.e.,
that can be described using only union, concatenation and Boolean operations
(including complement), but without the Kleene star. Such languages are called
star-free. Surprisingly, even this restricted problem turned out to be difficult. It
was solved by Schützenberger [30] in a seminal paper.

Theorem 1 (Schützenberger [30]). Membership is decidable for the class of
star-free languages.

The star-free languages rose to prominence due to their numerous charac-
terizations, and in particular, the logical one, which is due to McNaughton and
Papert [15]. Observe that one may describe languages with logical sentences.
Indeed, any word may be viewed as a logical structure made of a linearly ordered
sequence of positions, each one carrying a label. In first-order logic over words
(denoted by FO(<)), one may quantify these positions, compare them with a
predicate “<” interpreted as the (strict) linear order, and check their labels (for
any letter a, a unary predicate Pa selecting positions with label a is available).
Each FO(<) sentence states a property over words and defines the language of
all words that satisfy it.

Theorem 2 (McNaughton-Papert [15]). For any regular language L, the
following properties are equivalent:

– L is star-free.
– L can be defined by an FO(<) sentence.

Let us point out that this connection is rather intuitive. Indeed, there is a
clear correspondence between union, intersection and complement for star-free
languages and the Boolean connectives in FO(<) sentences. Moreover, concate-
nation corresponds to existential quantification.

Concatenation Hierarchies: New Bottle, Old Wine 27

1.1 The Dot-Depth and the Straubing-Thérien hierarchies

Just as the star-height measures how complex a regular language is, a natural
complexity for star-free languages is the number of alternations between the
concatenation product and the complement operation that are required to build a
given language from basic star-free languages. This led Brzozowski and Cohen [5]
to introduce in the 70s a hierarchy of classes of regular languages, called the dot-
depth hierarchy. This hierarchy classifies all star-free languages into full levels,
indexed by natural numbers: 0, 1, 2,. . . , and half-levels, indexed by half natural
numbers: 1

2 , 3
2 , 5

2 , etc. Roughly speaking, level n ∈ N consists of all languages
that can be expressed by a star-free expression having n alternations between
concatenation and Boolean operations.

More formally, the hierarchy is built by using, alternately, two closure oper-
ations starting from level 0: Boolean closure and polynomial closure. Given a
class of languages C, its Boolean closure (denoted by Bool(C)) is the smallest
Boolean algebra containing C. Polynomial closure is slightly more complicated
as it involves marked concatenation. Given two languages L1 and L2, a marked
concatenation of L1 with L2 is a language of the form,

L1aL2 for some a ∈ A.

We may now define the polynomial closure of C (denoted by Pol(C)) as the
smallest class of languages containing C and closed under union, intersection
and marked concatenation (i.e., L1aL2 ∈ C for any L1, L2 ∈ C and any a ∈ A).

The dot-depth hierarchy is now defined as follows:

– Level 0 is the class {∅, {ε}, A+, A∗} (where A is the working alphabet).
– Each half-level is the polynomial closure of the previous full level: for any

natural number n ∈ N, level n + 1
2 is the polynomial closure of level n.

– Each full level is the Boolean closure of the previous half-level: for any natural
number n ∈ N, level n + 1 is the Boolean closure of level n + 1

2 .

A side remark is that the above definitions are not the original ones. First,
the historical definition of the dot-depth hierarchy started from another class of
languages for level 0. However, both definitions coincide at level 1 and above.
Next, the polynomial closure of a class C was historically defined as the smallest
class containing C and closed under both union and marked concatenation. This
original definition is intuitively weaker: it does not explicitly require Pol(C)
to be closed under intersection. However, it was shown by Arfi [1,2] that the
two definitions are equivalent (provided that the class C satisfy some standard
closure properties, which are always fulfilled for classes within concatenation
hierarchies). This was also shown later by Pin [17]. We will present an alternative,
elementary proof in the full version of this paper.

Clearly, the union of all levels in the dot-depth hierarchy is the whole class of
star-free languages. Moreover, it was shown by Brzozowski and Knast that the
dot-depth hierarchy is strict: any level contains strictly more languages than the
previous one.

28 T. Place and M. Zeitoun

Theorem 3 (Brzozowski and Knast [6]). The dot-depth hierarchy is strict
when the alphabet contains at least two letters.

This shows in particular that in general, Boolean closure does not preserve
the property of being polynomially closed, and conversely. In other words, classes
built using Boolean and polynomial closure do not satisfy the same closure prop-
erties: typically, when C is a class of languages, Pol(C) is closed under marked
concatenation but not under complement, while Bool(C) is closed under com-
plement but not under marked concatenation.

The fact that the hierarchy is strict motivates the investigation of the mem-
bership problem for all levels.

Problem 4 (Membership for the dot-depth hierarchy). For a fixed level in the
dot-depth hierarchy, is the membership problem decidable for this level?

Using the framework developed by Schützenberger in his proof for deciding
whether a language is star-free, Knast [13] established that level 1 has decidable
membership, via a quite intricate proof from the combinatorial point of view.

Theorem 5 (Knast [13]). Level 1 in the dot-depth hierarchy has decidable
membership.

The case of half levels required to adapt Schützenberger’s methodology, since
it was designed to deal with Boolean algebras only (recall that half-levels are not
Boolean algebras, otherwise the hierarchy would collapse). This was achieved by
Pin and Weil [21–23] and by Glaßer and Schmitz [9].

Theorem 6 (Pin and Weil [21–23], Glaßer and Schmitz [9]). Levels 1
2

and 3
2 in the dot-depth hierarchy have decidable membership.

One may now wonder why, in the definition of the dot-depth hierarchy, level 0
is {∅, {ε}, A+, A∗}. It would be natural to start from {∅, A∗}, and to apply the
very same construction for higher levels. This is exactly how the Straubing-
Thérien hierarchy is defined. It was introduced independently by Straubing [33]
and Thérien [35]. Its definition follows the same scheme as that of the dot-depth
hierarchy, except that level 0 is {∅, A∗}.

Like the dot-depth hierarchy, the Straubing-Thérien hierarchy is strict and
spans the whole class of star-free languages. This can be shown by proving that
level n in the dot-depth hierarchy sits between levels n and n+1 in the Straubing-
Thérien hierarchy. This makes the membership problem again relevant for each
level in this hierarchy.

Problem 7 (Membership for the Straubing-Thérien hierarchy). For a fixed level
in the Straubing-Thérien hierarchy, is the membership problem decidable for
this level?

Just as for the dot-depth hierarchy, level 1 in the Straubing-Thérien hierarchy
was shown to be decidable (actually before the formal definition of the hierarchy
itself), and the first half-levels were solved using the adaptation of the framework
of Schützenberger to classes that are not closed under complement.

Concatenation Hierarchies: New Bottle, Old Wine 29

Theorem 8 (Simon [31,32]). Level 1 in the Straubing-Thérien hierarchy has
decidable membership.

Theorem 9 (Arfi [1,2], Pin and Weil [21,22]). Levels 1
2 and 3

2 in the
Straubing-Thérien hierarchy have decidable membership.

Both hierarchies are strongly related. First, as we already stated, they
are interleaved. More importantly, Straubing established an effective reduction
between the membership problems associated to their levels [34].

Theorem 10 (Straubing [34]). Membership for level n ∈ N in the dot-depth
hierarchy reduces to membership for level n in the Straubing-Thérien hierarchy.

This theorem is crucial. Indeed, from a combinatorial view, membership is
simpler to deal with for the Straubing-Thérien hierarchy rather than for the dot-
depth. This is evidenced by all recent publications on the topic: most results for
the dot-depth are indirect. They are corollaries of direct results for the Straubing-
Thérien hierarchy via the above theorem. Thus, while the name “dot-depth”
remains widely used, the Straubing-Thérien hierarchy is much more prominent.

1.2 Quantifier Alternation Hierarchies

Since star-free languages are exactly those that one can define in first-order logic,
it is desirable to refine this correspondence level by level, in each of the hierarchies
considered so far. A beautiful result of Thomas [36] establishes indeed such a
correspondence, and it is very natural. To present it, we first need to slightly
extend the standard signature used in first-order logic over words: we add four
new predicates in addition to “<” and the unary predicates Pa for a ∈ A:

– The (binary) successor, interpreted as the successor between positions.
– The (unary) minimum, that selects the leftmost position of the word.
– The (unary) maximum, that selects the rightmost position of the word.
– The (nullary) empty predicate, which holds for the empty word only.

We denote by FO(<,+1,min,max, ε) the resulting logic. Notice that these pred-
icates are all definable in FO(<). Therefore, adding them in the signature does
not add to the overall expressive power of first-order logic. In other words, FO(<)
and FO(<,+1,min,max, ε) are equally expressive. However, this enriched signa-
ture makes it possible to define fragments of first-order logic corresponding to
levels of the dot-depth hierarchy.

To this end, we classify FO(<,+1,min,max, ε) sentences by counting their
number of quantifier alternations. Given a natural number n ∈ N, a sentence is
said to be “Σn(<,+1,min,max, ε)” (resp. “Πn(<,+1,min,max, ε)”) when it is an
FO(<,+1,min,max, ε)-formula whose prenex normal form has either:

– Exactly n blocks of quantifiers, the leftmost being an “∃” (resp. a “∀”) block,
or

– Strictly less than n blocks of quantifiers.

30 T. Place and M. Zeitoun

For example, a formula over the signature (<,+1,min,max, ε, (Pa)a∈A) whose
prenex normal form is

∃x1∃x2 ∀x3 ∃x4 ϕ(x1, x2, x3, x4) (ϕ quantifier-free)

is Σ3(<,+1,min,max, ε). Observe that while FO(<) and FO(<,+1,min,max, ε)
have the same expressiveness, the enriched signature increases the expressive
power of each individual level.

Note also that the negation of a Σn(<,+1,min,max, ε) sentence is not a
Σn(<,+1,min,max, ε) sentence in general (it is a Πn(<,+1,min,max, ε) sentence),
and the corresponding classes of languages are not closed under complement. It
is therefore meaningful to define BΣn(<,+1,min,max, ε) sentences as Boolean
combinations of Σn(<,+1,min,max, ε) and Πn(<,+1,min,max, ε) sentences. This
gives a strict hierarchy of classes of languages depicted in Fig. 1, where, slightly
abusing notation, each level denotes the class of languages defined by the corre-
sponding set of formulas.

Σ0 = Π0 = BΣ0

Σ1

Π1

BΣ1

Σ2

Π2

BΣ2

Σ3

Π3

�

�

�

�

�

�

�

�

�

�

Fig. 1. Quantifier alternation hierarchy

The correspondence discovered by Thomas relates levels in the dot-depth
hierarchy and levels in the quantifier alternation hierarchy of first-order logic,
over the signature (<,+1,min,max, ε, (Pa)a∈A).

Theorem 11 (Thomas [36]). For any alphabet A, any n ∈ N and any lan-
guage L ⊆ A∗, the two following properties hold:

1. L has dot-depth n iff L can be defined by a BΣn(<,+1,min,max, ε) sentence.
2. L has dot-depth n + 1

2 iff L can be defined by a Σn+1(<,+1,min,max, ε) sen-
tence.

Some years later, a similar correspondence was established between levels in
the Straubing-Thérien hierarchy and levels in the quantifier alternation hierarchy
over the original signature (<, (Pa)a∈A). Such levels are defined analogously as
for the enriched signature, and denoted by BΣn(<), Σn(<), etc.

Theorem 12 (Perrin and Pin [16]). For any alphabet A, any n ∈ N and
any language L ⊆ A∗, the two following properties hold:

1. L has level n in the Straubing-Thérien hierarchy iff L can be defined by a
BΣn(<) sentence.

2. L has level n + 1
2 in the Straubing-Thérien hierarchy iff L can be defined by

a Σn+1(<) sentence.

Concatenation Hierarchies: New Bottle, Old Wine 31

2 Generic Concatenation Hierarchies

Since the dot-depth and Straubing-Thérien hierarchies follow the very same con-
struction scheme and enjoy similar properties, it is natural to generalize the defi-
nition. We will therefore define a generic notion of concatenation hierarchy. Such
hierarchies should still classify languages according to the required number of
alternations between concatenation and Boolean operations that are needed to
define them. The only parameter in the construction is level 0, which is now any
class of languages C satisfying some mild hypotheses (such as being a Boolean
algebra). This parameter C is called the basis of the hierarchy. Once C is fixed,
the construction process is uniform, exactly the same as for the two hierarchies
we have already presented:

– Level 0 is the basis (i.e., our parameter class C).
– Each half-level is the polynomial closure of the previous full level: for any

natural number n ∈ N, level n + 1
2 is the polynomial closure of level n.

– Each full-level is the Boolean closure of the previous half-level: for any natural
number n ∈ N, level n + 1 is the Boolean closure of level n + 1

2 .

For q ∈ N or q ∈ 1
2 + N, let C[q] denote level q of the concatenation hierarchy

of basis C. By definition, we have C[n] ⊆ C[n + 1
2] ⊆ C[n + 1] for any n ∈ N.

However, note that these inclusions need not be strict. For instance, if the basis
is closed under Boolean operations and marked concatenation (such as the class
of star-free languages), the associated hierarchy collapses at level 0. Of course
the interesting hierarchies are the strict ones. We give a graphical representation
of the construction process of a concatenation hierarchy in Fig. 2 below.

0
(basis)

1
2 1 3

2 2 5
2 3 7

2

Pol

Bool

Pol

Bool

Pol

Bool

Pol

Fig. 2. A concatenation hierarchy

Notice that not all concatenations hierarchies are classifications of the star-
free languages. Indeed, the generic definition now makes it possible to define
hierarchies containing languages which are not star-free: it suffices to choose a
basis containing such languages. The most famous one is the group hierarchy of
Margolis and Pin [14], whose basis is the class of all regular languages recognized
by an automaton in which every letter induces a permutation on the states.

The following result, which will be shown in the full version of this paper,
generalizes Theorem 3 to any concatenation hierarchy whose basis is finite.

Theorem 13. Let C be a finite Boolean algebra of regular languages over an
alphabet of size at least 2. Then, the concatenation hierarchy of basis C is strict.

Again, this theorem justifies the quest for algorithms deciding membership
in levels of the hierarchy of basis C.

32 T. Place and M. Zeitoun

Quantifier Alternation Hierarchies

The correspondence between star-free languages and first-order logic established
by McNaughton and Papert in Theorem 2 can be lifted not only to the dot-
depth and the Straubing-Thérien hierarchies (Theorems 11 and 12), but also to
arbitrary concatenation hierarchies: for any basis C, we associate a well-chosen
first-order signature (also denoted by C) such that the concatenation hierarchy
of basis C and the quantifier alternation hierarchy within the variant FO(C) of
first-order logic equipped with this signature correspond. This signature contains
all label predicates: for any a ∈ A, we have a unary predicate (denoted by “Pa”)
which is interpreted as the unary relation selecting all positions whose label is a.
Moreover, for any language L ∈ C, we add four predicates. To define them, we
introduce the following notation: if w = a1 · · · an is a word of length n, we denote
by w[i, j] its infix ai · · · aj (which is empty if i > j), and we let w]i, j] = w[i+1, j],
w[i, j[= w[i, j − 1] and w]i, j[= w[i + 1, j − 1]. We are now able to finish our
description of the signature (associated to) C. In addition to the strict order and
the letter predicates, we add the following predicates for each language L ∈ C:

– A binary predicate IL. Its interpretation is as follows: given a word w and
two positions i, j in w, IL(i, j) holds when i < j and the infix w]i, j[is in L.

– A unary predicate PL. Its interpretation is as follows: given a word w and a
position i in w, PL(i) holds when the prefix w[1, i[is in L.

– A unary predicate SL. Its interpretation is as follows: given a word w and a
position i in w, SL(i) holds when the suffix w]i, |w|] is in L.

– A nullary predicate NL. Its interpretation is as follows: given a word w, NL

holds when w is in L.

Recall that we abuse notation and identify C with this signature. In other words,
we denote by FO(C) the associated variant of first-order logic.

We are now ready to state a generic correspondence between the concatena-
tion hierarchy of basis C and the quantifier alternation hierarchy within FO(C).
We need an additional condition on C: it should be closed under left and right
quotients. That is, if L belongs to C, then for any a ∈ A, so do its left and right
quotients a−1L = {w ∈ A∗ | aw ∈ L} and La−1 = {w ∈ A∗ | wa ∈ L}.

Theorem 14. Let C be a Boolean algebra of regular languages which is closed
under left and right quotients. Then, for any finite alphabet A, any n ∈ N and
any language L ⊆ A∗, the two following properties hold:

1. L ∈ C[n] if and only if L can be defined by a BΣn(C) sentence.
2. L ∈ C[n + 1

2] if and only if L can be defined by a Σn+1(C) sentence.

3 Decision Problems

The membership problem for concatenation hierarchies is not well understood.
For instance, although the dot-depth hierarchy has been given a lot of attention
since 1971, obtaining membership algorithms for all of its levels remains one of
the most famous open problems in automata theory. It has been under investi-
gation for decades but progress is slow: as we explained above, the first known

Concatenation Hierarchies: New Bottle, Old Wine 33

result is due to Knast [13] and yields an algorithm for dot-depth 1. Algorithms
were later found for the half-levels 1

2 in [21,22] and 3
2 in [9,23]. However, it took

more than thirty years to obtain an algorithm for the next full level: dot-depth 2
(see [25]). Furthermore, the problem is still open for dot-depth 3.

The result for level 2 is based on a new approach, which is the key idea we
wish to convey in this survey. The approach relies on two main features:

1. It is generic to all concatenations hierarchies whose basis is finite (which is
the case of the dot-depth and of the Straubing-Thérien hierarchies).

2. We consider decision problems which are more general than membership.
While recent papers on the topic actually consider several such problems
(see [28] for a global picture), we will focus on the simplest one: separation.

Let us define the separation problem. Consider a class of languages C. Given
two languages L0 and L1, we say that L0 is C-separable from L1 if and only if
there exists a third language K ∈ C such that L1 ⊆ K and L2 ∩ K = ∅. The
separation problem for C is as follows:

INPUT: Two regular languages L0 and L1

OUTPUT: Is L0 C-separable from L1?

The main reason why this problem is interesting is that solving it requires (and
therefore, brings) much insight about the class C. In particular, membership for
C reduces to separation for C. More interesting, if one has an algorithm in hand
to decide separation for a given half-level in a concatenation hierarchy, then one
can use it to obtain a new one deciding membership for the next half-level. This
is what we formally state in the next theorem, which is essentially a result of [25]
(note however that while the proof argument of [25] is generic to all hierarchies,
the statement itself in [25] is specific to the Straubing-Thérien hierarchy).

Theorem 15. Consider a basis C which is a Boolean algebra of regular lan-
guages closed under left and right quotients. Then, for any natural number n ≥ 1,
there exists an effective reduction from the membership problem for level C[n+ 1

2]
to the separation problem for level C[n − 1

2].

This result is completed by the following theorem, which summarizes the
recent results that have been obtained regarding the separation problem for low
levels within concatenation hierarchies. The first two items are taken from [29]
and the third one is an unpublished generalization of a result of [24] (which states
that separation for level 5

2 in the Straubing-Thérien hierarchy is decidable).

Theorem 16. Consider an arbitrary finite Boolean algebra C which is closed
under left and right quotients. Then the following results hold:

1. Pol(C)-separation is decidable.
2. BPol(C)-separation is decidable.
3. Pol(BPol(C))-separation is decidable.

34 T. Place and M. Zeitoun

Altogether, this yields that for any concatenation hierarchy whose basis is
finite, levels 1

2 , 1 and 3
2 have decidable separation. Moreover, this can be com-

bined with Theorem 15 to obtain the decidability of membership for level 5
2 .

These results are generic to all concatenations hierarchies whose basis is finite.
However, in the special case of the dot-depth and Straubing-Thérien hierarchies,
one can do better and lift them to levels 2 and 5

2 for separation (and thus to level
7
2 for membership). These stronger results are based on a specific property of the
Straubing-Thérien hierarchy: its level 3

2 is also level 1
2 in another concatenation

hierarchy having a finite basis. Let us explain this statement in more details.

Back to the Dot-Depth and Straubing-Thérien Hierarchies

In this final part, we explain why one may lift all results one level higher in the
dot-depth and Straubing-Thérien hierarchies. The argument relies on a theorem
of Pin and Straubing [20], which implies that levels 3

2 and above in the Straubing-
Thérien hierarchy are also levels 1

2 and above in the concatenation hierarchy
whose basis is the finite class AT of alphabet testable languages, defined below.
While simple, this result is crucial: it allows us to lift the separation results of
Theorem 16 to levels 2 and 5

2 of the Straubing-Thérien hierarchy.
Let us define the class AT of alphabet testable languages. It consists of all

Boolean combinations of languages of the form,

A∗aA∗ for some a ∈ A.

Clearly AT is finite, and one may verify that it is a Boolean algebra closed under
left and right quotients. It was proved by Pin and Straubing [20] that level 3

2 in
the Straubing-Thérien hierarchy1 is also the class Pol(AT).

Note that the original formulation of this statement by Pin and Straubing
is that level 3

2 in the Straubing-Thérien hierarchy consists exactly of unions of
languages of the form,

B∗
0a1B

∗
1a2B

∗
2 · · · anB∗

n with B0, . . . , Bn ⊆ A.

We reformulate this result in the following theorem.

Theorem 17 (Pin and Straubing [20]). Level 3
2 in the Straubing-Thérien

hierarchy is exactly the class Pol(AT). In particular, any level n ≥ 3
2 (half or

full) in the Straubing-Thérien hierarchy corresponds exactly to level n − 1 in the
concatenation hierarchy of basis AT.

The important point here is that while AT is more involved than {∅, A∗} as
a basis, it remains finite. Therefore, Theorem 17 states that any level n ≥ 3

2 in
the Straubing-Thérien hierarchy is also level n − 1 in another hierarchy whose
basis is finite. This result is crucial. Indeed, this means that Theorem 16 does
not only apply to levels 1

2 , 1 and 3
2 of the Straubing-Thérien hierarchy but also

to levels 2 and 5
2 . Altogether, we get the following corollary.

1 In fact, the original formulation of Pin and Straubing considers level 2 in the
Straubing-Thérien hierarchy and not level 3

2
.

Concatenation Hierarchies: New Bottle, Old Wine 35

Corollary 18. The separation problem is decidable for levels 2 and 5
2 in the

Straubing-Thérien hierarchy. Moreover, the membership problem is decidable for
level 7

2 .

Finally, these results can be lifted to the dot-depth hierarchy using an app-
roach which is similar to the one used by Straubing in Theorem 10. Indeed, recall
from Theorem 10 that the Straubing-Thérien hierarchy can be viewed as “more
fundamental” than the dot-depth. It turns out that the reduction provided by
Straubing can actually be lifted to half-levels [23] and to separation [26].

Theorem 19. For any level n in the dot-depth hierarchy, the following two
properties hold:

– If membership is decidable for level n in the Straubing-Thérien, then it is
decidable for level n in the dot-depth hierarchy as well.

– If separation is decidable for level n in the Straubing-Thérien, then it is decid-
able for level n in the dot-depth hierarchy as well.

Corollary 20. The separation problem for levels 2 and 5
2 in the dot-depth hier-

archy are decidable. Moreover, the membership problem is decidable for level 7
2 .

4 Conclusion

In this extended abstract, we outlined part of the (slow) progress that occurred
during the last decades regarding concatenation hierarchies. We refer the reader
to the full version of the paper for details, and to [18,19,27,37] for surveys on
this fascinating subject.

References

1. Arfi, M.: Polynomial operations on rational languages. In: Brandenburg, F.J.,
Vidal-Naquet, G., Wirsing, M. (eds.) STACS 1987. LNCS, vol. 247, pp. 198–206.
Springer, Heidelberg (1987). doi:10.1007/BFb0039607

2. Arfi, M.: Opérations Polynomiales et Hiérarchies de Concaténation. Theoret. Com-
put. Sci. 91(1), 71–84 (1991)

3. Bojanczyk, M.: Star height via games. In: 2015 30th Annual ACM/IEEE Sympo-
sium on Logic in Computer Science. IEEE Computer Society 2015, pp. 214–219
(2015)

4. Brzozowski, J.A.: Developments in the Theory of regular Languages. In: IFIP
Congress, pp. 29–40 (1980)

5. Brzozowski, J.A., Cohen, R.S.: Dot-depth of star-free events. J. Comput. Syst. Sci.
5(1), 1–16 (1971)

6. Brzozowski, J.A., Knast, R.: The Dot-depth hierarchy of star-free languages is
infinite. J. Comput. Syst. Sci. 16(1), 37–55 (1978)

7. Dejean, F., Schützenberger, M.P.: On a question of Eggan. Inf. Control 9(1), 23–25
(1966)

8. Eggan, L.C.: Transition graphs and the star-height of regular events. Michigan
Math. J. 10(4), 385–397 (1963)

9. Glaßer, C., Schmitz, H.: Languages of dot-depth 3/2. Theory Comput. Syst. 42(2),
256–286 (2007)

http://dx.doi.org/10.1007/BFb0039607

36 T. Place and M. Zeitoun

10. Hashiguchi, K.: Algorithms for determining relative star height and star height.
Inf. Comput. 78(2), 124–169 (1988)

11. Kirsten, D.: Distance desert automata and the star height problem. RAIRO-Theor.
Inf. Appl. 39(3), 455–509 (2005)

12. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C., McCarthy, J. (eds.) Annals of Mathematics Studies 34, pp. 3–41. Princeton
University Press, New Jersey (1956)

13. Knast, R.: A semigroup characterization of dot-depth one languages. RAIRO -
Theor. Inform. Appl. 17(4), 321–330 (1983)

14. Margolis, S.W., Pin, J.E.: Products of group languages. In: Budach, L. (ed.)
FCT 1985. LNCS, vol. 199, pp. 285–299. Springer, Heidelberg (1985). doi:10.1007/
BFb0028813

15. McNaughton, R., Papert, S.A.: Counter-Free Automata. MIT Press, Cambridge
(1971)

16. Perrin, D., Pin, J.É.: First-order logic and star-free sets. J. Comput. Syst. Sci.
32(3), 393–406 (1986)

17. Pin, J.É.: An explicit formula for the intersection of two polynomials of regular
languages. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 31–45.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38771-5 5

18. Pin, J.-É.: Open problems about regular languages, 35 years later. In: The Role
of Theory in Computer Science. Essays Dedicated to Janusz Brzozowski. World
Scientific (2017)

19. Pin, J.-É.: The dot-depth hierarchy, 45 years later. In: The Role of Theory in
Computer Science. Essays Dedicated to Janusz Brzozowski. World Scientific (2017)

20. Pin, J.-É., Straubing, H.: Monoids of upper triangular boolean matrices. In: Semi-
groups. Structure and Universal Algebraic Problems, vol. 39, pp. 259–272. North-
Holland (1985)

21. Pin, J.-E., Weil, P.: Polynomial closure and unambiguous product. In: Fülöp, Z.,
Gécseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 348–359. Springer, Heidelberg
(1995). doi:10.1007/3-540-60084-1 87

22. Pin, J.É., Weil, P.: Polynomial closure and unambiguous product. Theory Comput.
Syst. 30(4), 383–422 (1997)

23. Pin, J.É., Weil, P.: The wreath product principle for ordered semigroups. Commun.
Algebra 30(12), 5677–5713 (2002)

24. Place, T.: Separating regular languages with two quantifier alternations. In: 30th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, pp.
202–213 (2015)

25. Place, T., Zeitoun, M.: Going higher in the first-order quantifier alternation hierar-
chy on words. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014. LNCS, vol. 8573, pp. 342–353. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-43951-7 29

26. Place, T., Zeitoun, M.: Separation and the successor relation. In: 32nd International
Symposium on Theoretical Aspects of Computer Science, STACS 2015. Dagstuhl,
Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, pp. 662–675 (2015)

27. Place, T., Zeitoun, M.: The tale of the quantifier alternation hierarchy of first-order
logic over words. SIGLOG news 2(3), 4–17 (2015)

28. Place, T., Zeitoun, M.: The covering problem: a unified approach for investigating
the expressive power of logics. In: Proceedings of the 41st International Symposium
on Mathematical Foundations of Computer Science, MFCS 2016, pp. 77:1–77:15
(2016)

http://dx.doi.org/10.1007/BFb0028813
http://dx.doi.org/10.1007/BFb0028813
http://dx.doi.org/10.1007/978-3-642-38771-5_5
http://dx.doi.org/10.1007/3-540-60084-1_87
http://dx.doi.org/10.1007/978-3-662-43951-7_29
http://dx.doi.org/10.1007/978-3-662-43951-7_29

Concatenation Hierarchies: New Bottle, Old Wine 37

29. Place, T., Zeitoun, M.: Separation for dot-depth two. In: 32th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2017 (2017)

30. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control
8(2), 190–194 (1965)

31. Simon, I.: Hierarchies of Events of Dot-Depth One. Ph.D. thesis. Waterloo, Ontario,
Canada: University of Waterloo, Department of Applied Analysis and Computer
Science (1972)

32. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung
1975. LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975). doi:10.1007/
3-540-07407-4 23

33. Straubing, H.: A generalization of the schützenberger product of finite monoids.
Theoret. Comput. Sci. 13(2), 137–150 (1981)

34. Straubing, H.: Finite semigroup varieties of the form V * D. J. Pure Appl. Algebra
36, 53–94 (1985)

35. Thérien, D.: Classification of finite monoids: the language approach. Theoret. Com-
put. Sci. 14(2), 195–208 (1981)

36. Thomas, W.: Classifying regular events in symbolic logic. J. Comput. Syst. Sci.
25(3), 360–376 (1982)

37. Weil, P.: Concatenation product: a survey. In: Pin, J.E. (ed.) LITP 1988. LNCS,
vol. 386, pp. 120–137. Springer, Heidelberg (1989). doi:10.1007/BFb0013116

http://dx.doi.org/10.1007/3-540-07407-4_23
http://dx.doi.org/10.1007/3-540-07407-4_23
http://dx.doi.org/10.1007/BFb0013116

Can We Locally Compute Sparse Connected
Subgraphs?

Ronitt Rubinfeld1,2(B)

1 MIT, Cambridge, USA
ronitt@csail.mit.edu

2 Tel Aviv University, Tel Aviv, Israel

1 Introduction

How can we solve optimization problems on data that is so large, that we cannot
hope to view more than a miniscule fraction of it? When attempting to solve
optimization problems on big data, we are presented with a double catastrophe,
as both the inputs to and the outputs from the computation are large. One ray
of hope is that often, the portion of the output that is needed by the user is, in
fact, of a more manageable size. In such a situation, it would be useful if one
could find very fast ways of computing only the portion of the output that is
required by the user.

One approach to such settings is the study of sub-linear time algorithms.
For the most part, sub-linear time algorithms have been studied in settings
where the goal is to approximate only the value of an optimal solution, or to
determine whether or not the input has a specified property. For sparse graphs
and optimization problems, sublinear time approximations have been given for
quantities such as the minimum spanning tree, optimal vertex cover, maximal
matching, maximum matching, dominating set, sparse set cover, sparse packing
and cover problems [15,18,20,34,46,55,59,60,62,74].

In contrast, here we concern ourselves with the ability to provide access to the
full description of a near-optimal solution (typically referred to as the “search”
problem). For problems whose outputs are too large to view in their entirety, we
consider algorithms within the context of local computation algorithms (LCAs),
a framework introduced in [2,65] to capture the subtle aspects of providing the
user with sublinear time access to the parts of the output solution that they
require.

Arguably, one of the most basic graph problems, for which the local version
is first considered in [49], is the following: Suppose one wants to provide fast
query access to a spanning tree of a given input graph – that is, design an oracle
that has a particular spanning tree “in mind”, and, given an edge query from
the input graph, the oracle should quickly reply whether the edge is part of
its spanning tree or not. One might ask whether the oracle could always say
“yes” when asked about any edge in the graph, since every edge is part of some

R. Rubinfeld—Supported by ISF grant 1147/09 and NSF grant CCF-1650733.

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 38–47, 2017.
DOI: 10.1007/978-3-319-58747-9 6

Can We Locally Compute Sparse Connected Subgraphs? 39

spanning tree? The difficulty is that we would like the oracle’s answers to be
consistent with a single spanning tree.

While at first thought, it might seem plausible that such an easy task could be
accomplished, it turns out that there is no sublinear time oracle that can provide
such “spanning tree” answers! This can be seen by considering the behaviors of
the oracle on the graph that is a path of length n and the graph that is a cycle
of length n. On the path, the oracle must answer “yes” for every edge, while
on the cycle, the oracle must answer “no” for a single edge, and “yes” for every
other edge. Unfortunately, given an edge, determining whether it is in the cycle
graph or the path graph requires linear time. Note that though the weight of
a minimum spanning tree can be approximated in sublinear time for bounded
weight graphs [15,18,20], this argument also shows that there is no sublinear
time local computation algorithm which provides query access to a minimum
spanning tree!

Given the impossibility of providing sublinear time query access to a spanning
tree, in the rest of this survey, we describe work on a simpler question suggested
in [49]: Is it possible to provide sublinear time query access to a sparse connected
subgraph? This question in its full generality remains wide open. In the next
section, we describe the local computation algorithms model, some context and
related work. In the third section, we give a more detailed definition of the
sparse connected subgraph question, as well as describe results that give partial
answers.

2 Local Computation Algorithms

Locality in computation, or the ability to compute a function of the input
by viewing few locations in the input, is an ubiquitous notion and is of cen-
tral importance to parallel and distributed computing, sub-linear time algo-
rithms, dynamic algorithms and data structures. LCAs can be used to model
non-communicating entities computing in parallel on the same data, such as
in cloud computations, wireless networks and game theory. Though the model
of LCAs was introduced relatively recently, earlier works implicitly construct
LCAs in a variety of settings. Some examples include locally (list)-decodable
codes (e.g., [6,11,24,25,28,30,33,36,40,41,52,72,73]), local decompression (e.g.,
[26,31,57,66]), local reconstruction and filters for monotone and Lipschitz func-
tions [1,7,13,19,38,67], and local reconstruction of graph properties [39]. The
study of LCAs has been very active in the past few years, with recent results
that include constructing maximal independent sets [2,10,23,29,51,65], approxi-
mate maximum matchings [53,54], satisfying assignments for k-CNF [2,65], local
computation mechanism design [35], local decompression [21], and local recon-
struction of graph properties [14].

On input x = (x1, . . . , xn), a local computation algorithm (LCA) [2,65], sup-
ports user queries to a correct output y = (y1, . . . , ym) of the computational
problem on input x, such that after each query by a user to a specified location i
of the output, the LCA computes and outputs yi. If there is more than one legal

40 R. Rubinfeld

output for input x, then it is required that all outputs be consistent with the
same legal output y. The LCA is given probe access to bits of x.1 The LCA does
not have knowledge of future user queries. Maintaining consistency presents a
challenge when the computation has several legal outputs. Though independent
copies of the LCA cannot interact during the query-answering process, we may
assume that they have access to a common initial random bit sequence.

For a given problem, the hope is that the query time and space complexity
of an LCA is nearly proportional to the amount of the solution that is requested
by the user. Even when such ambitious goals are not achieved, LCAs are of
importance when the time and space complexity is sub-linear in the size of the
input and output to the problem, and do not require storing the history of
previous queries and answers.

Local distributed algorithms have received much attention in the distributed
computing literature, where the model is such that the number of rounds is
bounded by a constant, but the computation is performed by all of the proces-
sors in the distributed network [56,58]. Naor and Stockmeyer [58] and Mayer,
Naor and Stockmeyer [56] investigate the question of what can be computed
under these constraints, and show that there are nontrivial problems which can
be solved via such algorithms. Several more recent works investigate local algo-
rithms for various problems, including coloring, maximal independent set, dom-
inating set (some examples are in [8,9,27,42–47,69,70]).

Although all of these algorithms are distributed algorithms, we note that
those that use constant rounds yield (sequential) LCAs via a reduction of Parnas
and Ron [62]. The cross-fertilization between the areas of distributed algorithms
and LCAs has led to exciting recent results improving algorithms for maximal
independent set in both models (see for example [2,10,23,29,51,65] and the
references therein).

The input access allowed in the distributed settings is more restrictive in that
distributed algorithms may only receive information from neighboring nodes. It
is not clear how much the restriction affects the complexity of a problem – in
particular, the recent work of [32] shows that for many graph problems, this
restriction does not significantly increase the power of LCAs.

Local Algorithms for Massive Graphs. Local algorithms (which do not necessarily
fall under the LCA model) have been demonstrated to be applicable for com-
putations on the web graph. In [3,4,12,37,68], local algorithms are given which,
for a given vertex v in the web graph, computes an approximation to v’s person-
alized PageRank vector and computes the vertices that contribute significantly
to v’s PageRank. In these algorithms, evaluations are made only to the nearby
neighborhood of v, so that the running time depends on the accuracy parame-
ters input to the algorithm, but there is no running time dependence on the
size of the webgraph. Local graph partitioning algorithms have been presented
in several works (some early examples include [4,5,61,71,75]) to find subsets of

1 We use the word probe to refer to the LCAs views of locations in the input and query
to refer to the user requests to the LCA.

Can We Locally Compute Sparse Connected Subgraphs? 41

vertices whose internal connections are significantly richer than their external
connections. The running time of these algorithms depends on the size of the
cluster that is output, which can be much smaller than the size of the entire
graph. However, even when the size of the cluster is guaranteed to be small, it is
not obvious how to use these algorithms in the local computation setting where
the cluster decompositions must be consistent among queries to all vertices.

3 Designing LCAs for Sparse Approximating Subgraphs

A somewhat more general set of questions than those described in the introduc-
tion are: Is it possible to provide fast random access to a sparsified version of
a given input graph, that approximates various properties of the original input
graph? Such algorithms have applications to motion planning and multiple entity
coordination algorithms. For example, in a distributed and geometric setting, it
has been shown that such algorithms can be used to design motion planning
algorithms for multi-robot systems, and in particular, a provably correct flock-
ing algorithm [16,17]. Such algorithms have also been used to design algorithms
for a number of other basic problems such as minimum spanning graphs and
sparse spanners, where spanner graphs are required to maintain low distortion
of pairwise distances in the spanner as compared to the pairwise distances in
the original graph. Progress in this line of problems has led to some answers and
even more questions than were apparent at first sight!

The Sparse Spanning Graph Problem. As introduced in [49], LCAs for sparse
spanning subgraphs consider the following scenario: Given a connected graph
G = (V,E), a basic task is to provide random access to a sparse graph G̃ = (V, Ẽ)
that is a connected spanning subgraph of G, where the sparsity is controlled by
an input parameter ε such that the number of edges in Ẽ is at most (1 + ε)n.
That is, given an edge (u, v) in G, the LCA decides whether (u, v) belongs to G̃,
where the answers to each edge (u, v) must be consistent with a single connected
sparse graph G̃ that is a subgraph of the input graph G. To achieve this, the
LCA may probe the incidence relations of the graph G. There may be many
possible G̃ – the LCA must answer consistently according to a single one.

In [49], it is shown that for general bounded-degree graphs, the probe com-
plexity of any such algorithm must be Ω(

√
n). The open question that remains

is the following:

Problem 1. Are there LCAs for membership in sparse spanning subgraphs with
probe complexity o(n) for all bounded degree graphs?

More specifically, is θ(
√

n) the right complexity for general bounded degree
graphs? Partial progress in this direction has been made: In a sequence of works
[48–50], several algorithms are developed and analyzed in terms of various graph
parameters and properties.

– For graphs in which all vertices expand at a similar rate, and in particu-
lar, for good expanders, an algorithm of complexity θ̃(

√
n/ε) is given [49].

42 R. Rubinfeld

This algorithm is based on choosing θ(
√

εn) centers at random and partition-
ing the vertices of the graph according to the nearest center. The edges of a
breadth-first-search tree from the center to each of the vertices in its partition
are included in the sparse spanning graph. In addition, a carefully chosen set
of additional edges are included in the sparse spanning graph which connect
partitions. By showing how to locally determine which partition each vertex
is in, as well as which edges between partitions are included, an LCA that
achieves the desired complexity is given.

– For the class of minor-free graphs, algorithms are given whose runtime does
not depend on n, and has polynomial dependence on 1/ε [50]. This algorithm
also constructs a first phase partition by choosing centers, though a much
larger number of centers than in the previous algorithm for expanders. After
the first phase, there are many parts in the partition that are too large, so a
method of refining the partition in a local manner must be designed.

– For the class of hyperfinite graphs, which generalize minor-free graphs, an
algorithm is given, based on Kruskal’s algorithm, whose complexity is inde-
pendent of n, but the dependence on 1/ε is exponential [49].

– For graphs in which every t-vertex subgraph has expansion 1/(log t)1+o(1)

then there is an algorithm whose complexity is independent of n (but depends
triply exponentially on 1/ε). On the other hand, there are graphs in which
every t-vertex subgraph has expansion 1/(log t)1−o(1) for which dependence
on n is necessary [48].

The previous describes various technical ideas that are appropriate for very
different classes of bounded degree graphs. It remains to be seen whether one
can design an LCA that runs in sub-linear time for all bounded degree graphs.

Low Weight Spanning Subgraphs. As we have seen in the introduction, it is not
possible to give a fast LCA for the minimum spanning tree (MST) problem, but
we consider the following weakening of the problem: An LCA for low weight
sparse spanning graphs would, on query an edge e in the graph, tell the user
whether the edge e is in E′, such that E′ is a low weight sparse spanning sub-
graph of G. Do sublinear time LCAs exist finding sparse low-weight spanning
subgraphs?

Problem 2. Are there families of weighted graphs for which there are o(n)-time
LCAs for low weight sparse spanning subgraphs?

For minor-free graphs, [50] give an LCA which provides query access to a low
weight sparse spanning subgraph, such that the runtime has polynomial depen-
dence on ε and d. The output spanning subgraph has the additional property of
being a spanner. Graph spanners are subgraphs which give minimal distortion
in terms of pairwise distances of the original input graph. More formally, given
a (weighted) graph G, a subgraph G′ of G is a k-spanner if for every pair of
vertices u, v, the distance between u and v in G′ is at most k times the distance
between u and v in G (for various definitions of spanners, see e.g., [22,63,64]).

Can We Locally Compute Sparse Connected Subgraphs? 43

k is referred to as the stretch or dilation. The goal is to find a G′ with a min-
imum number of edges or weight. Such subgraphs are important in distributed
computation and in studying geometric network optimization.

4 Final Words

For such a seemingly basic problem, relatively little is known. Sublinear time
LCAs have been designed for providing query access to sparse spanning sub-
graphs in two extreme cases, when the input graph is a very good expander,
and when the input graph is highly nonexpanding. Several techniques have been
developed to attack this problem. Nevertheless, the question of whether sublinear
time LCAs are possible for general bounded degree graphs remains a mystery.
Furthermore, nothing is known when there is no bound on the maximum degree
of the input graph.

References

1. Ailon, N., Chazelle, B., Comandur, S., Liu, D.: Property-preserving data recon-
struction. Algorithmica 51(2), 160–182 (2008)

2. Alon, N., Rubinfeld, R., Vardi, S., Xie, N.: Space-efficient local computation algo-
rithms. In: 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2012), Kyoto, January 2012

3. Andersen, R., Borgs, C., Chayes, J., Hopcroft, J., Mirrokni, V., Teng, S.: Local
computation of pagerank contributions. Internet Math. 5(1–2), 23–45 (2008)

4. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vec-
tors. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science, pp. 475–486 (2006)

5. Andersen, R., Peres, Y.: Finding sparse cuts locally using evolving sets. In: Pro-
ceedings of the 41st Annual ACM Symposium on the Theory of Computing, pp.
235–244 (2009)

6. Arora, S., Sudan, M.: Improved low-degree testing and its applications. Combina-
torica 23(3), 365–426 (2003)

7. Awasthi, P., Jha, M., Molinaro, M., Raskhodnikova, S.: Limitations of local filters
of Lipschitz and monotone functions. In: Gupta, A., Jansen, K., Rolim, J., Serve-
dio, R. (eds.) APPROX/RANDOM-2012. LNCS, vol. 7408, pp. 374–386. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32512-0 32

8. Barenboim, L., Elkin, M.: Distributed (Δ + 1)-coloring in linear (in Δ) time. In:
Proceedings of the 41st Annual ACM Symposium on the Theory of Computing,
pp. 111–120 (2009)

9. Barenboim, L., Elkin, M.: Deterministic distributed vertex coloring in polylogarith-
mic time. In: Proceedings of the 29th ACM Symposium on Principles of Distributed
Computing, pp. 410–419 (2010)

10. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed
symmetry breaking. J. ACM 63(3), 20 (2016)

11. Ben-Aroya, A., Efremenko, K., Ta-Shma, A.: Local list-decoding with a constant
number of queries, Technical report TR10-047, Electronic Colloquium on Compu-
tational Complexity, April 2010

http://dx.doi.org/10.1007/978-3-642-32512-0_32

44 R. Rubinfeld

12. Berkhin, P.: Bookmark-coloring algorithm for personalized pagerank computing.
Internet Mathematics 3(1), 41–62 (2006)

13. Bhattacharyya, A., Grigorescu, E., Jha, M., Jung, K., Raskhodnikova, S.,
Woodruff, D.P.: Lower bounds for local monotonicity reconstruction from
transitive-closure spanners. SIAM J. Discrete Math. 26(2), 618–646 (2012)

14. Campagna, A., Guo, A., Rubinfeld, R.: Local reconstructors and tolerant testers
for connectivity and diameter. In: Raghavendra, P., Raskhodnikova, S., Jansen,
K., Rolim, J.D.P. (eds.) APPROX/RANDOM-2013. LNCS, vol. 8096, pp. 411–
424. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40328-6 29

15. Chazelle, B., Rubinfeld, R., Trevisan, L.: Approximating the minimum spanning
tree weight in sublinear time. SIAM J. Comput. 34(6), 1370–1379 (2005)

16. Cornejo, A.: Local distributed algorithms for multi-robot systems. Ph.D. thesis,
MIT (2012)

17. Cornejo, A., Kuhn, F., Ley-Wild, R., Lynch, N.: Keeping mobile robot swarms
connected. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 496–511. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-04355-0 50

18. Czumaj, A., Ergun, F., Fortnow, L., Magen, A., Newman, I., Rubinfeld, R., Sohler,
C.: Sublinear-time approximation of euclidean minimum spanning tree. SIAM J.
Comput. 35(1), 91–109 (2005)

19. Czumaj, A., Sohler, C.: Sublinear-time algorithms. Bull. Eur. Assoc. Theor. Com-
put. Sci. 89, 23–47 (2006)

20. Czumaj, A., Sohler, C.: Estimating the weight of metric minimum spanning trees
in sublinear time. SIAM J. Comput. 39(3), 904–922 (2009)

21. Dutta, A., Levi, R., Ron, D., Rubinfeld, R.: A simple online competitive adaptation
of Lempel-Ziv compression with efficient random access support. In: Proceedings
of the Data Compression Conference (DCC), pp. 113–122 (2013)

22. Elkin, M., Peleg, D.: The hardness of approximating spanner problems. Theor.
Comput. Syst. 41(4), 691–729 (2007)

23. Even, G., Medina, M., Ron, D.: Best of two local models: local centralized and
local distributed algorithms. CoRR abs/1402.3796 (2014). http://arxiv.org/abs/
1402.3796

24. Feigenbaum, D.B.J.: Hiding instances in multi-oracle queries. In: Proceedings of
the 7th Annual STACS Conference, pp. 34–48 (1990)

25. Feigenbaum, J., Fortnow, L.: Random self-reducibility of complete sets. SIAM J.
Comput. 22, 994–1005 (1993)

26. Ferragina, P., Venturini, R.: A simple storage scheme for strings achieving entropy
bounds. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 690–696 (2007)

27. Fraigniaud, P., Korman, A., Peleg, D.: Local distributed decision. CoRR
abs/1011.2152 (2010)

28. Gemmell, P., Lipton, R., Rubinfeld, R., Sudan, M., Wigderson, A.: Self-
testing/correcting for polynomials and for approximate functions. In: Proceedings
of the 23rd Annual ACM Symposium on the Theory of Computing, pp. 32–42
(1991)

29. Ghaffari, M.: An improved distributed algorithm for maximal independent set.
In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2016, Arlington, 10–12 January 2016, pp. 270–277 (2016).
http://dx.doi.org/10.1137/1.9781611974331.ch20

30. Goldreich, O., Rubinfeld, R., Sudan, M.: Learning polynomials with queries: the
highly noisy case. SIAM J. Discrete Math. 13(4), 535–570 (2000)

http://dx.doi.org/10.1007/978-3-642-40328-6_29
http://dx.doi.org/10.1007/978-3-642-04355-0_50
http://arxiv.org/abs/1402.3796
http://arxiv.org/abs/1402.3796
http://dx.doi.org/10.1137/1.9781611974331.ch20

Can We Locally Compute Sparse Connected Subgraphs? 45

31. González, R., Navarro, G.: Statistical encoding of succinct data structures. In:
Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 294–306.
Springer, Heidelberg (2006). doi:10.1007/11780441 27

32. Göös, M., Hirvonen, J., Levi, R., Medina, M., Suomela, J.: Non-local probes do
not help with many graph problems. In: Gavoille, C., Ilcinkas, D. (eds.) DISC
2016. LNCS, vol. 9888, pp. 201–214. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53426-7 15

33. Gopalan, P., Klivans, A.R., Zuckerman, D.: List-decoding Reed Muller codes over
small fields. In: Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, pp. 265–274 (2008)

34. Hasidim, A., Kelner, J., Nguyen, H.N., Onak, K.: Local graph partitions for approx-
imation and testing. In: Proceedings of the 50th Annual IEEE Symposium on
Foundations of Computer Science, pp. 22–31 (2009)

35. Hassidim, A., Mansour, Y., Vardi, S.: Local computation mechanism design. CoRR
abs/1311.3939 (2013)

36. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: deran-
domizing the XOR lemma. In: Proceedings of the 29th Annual ACM Symposium
on the Theory of Computing, pp. 220–229 (1997)

37. Jeh, G., Widom, J.: Scaling personalized web search. In: Proceedings of the 12th
International Conference on World Wide Web, pp. 271–279 (2003)

38. Jha, M., Raskhodnikova, S.: Testing and reconstruction of Lipschitz functions with
applications to data privacy. SIAM J. Comput. 42(2), 700–731 (2013)

39. Kale, S., Peres, Y., Seshadhri, C.: Noise tolerance of expanders and sublinear
expansion reconstruction. SIAM J. Comput. 42(1), 305–323 (2013)

40. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-
correcting codes. In: Proceedings of the 32nd Annual ACM Symposium on the
Theory of Computing, pp. 80–86 (2000)

41. Kopparty, S., Saraf, S.: Local list-decoding and testing of sparse random linear
codes from high-error, Technical report 115, Electronic Colloquium on Computa-
tional Complexity (ECCC) (2009)

42. Kuhn, F.: Local multicoloring algorithms: computing a nearly-optimal TDMA
schedule in constant time. In: Proceedings of the 26th International Symposium
on Theoretical Aspects of Computer Science, pp. 613–624 (2009)

43. Kuhn, F., Moscibroda, T.: Distributed approximation of capacitated dominating
sets. In: Proceedings of the 19th Annual ACM Symposium on Parallelism in Algo-
rithms and Architectures, pp. 161–170 (2007)

44. Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Fast deterministic
distributed maximal independent set computation on growth-bounded graphs.
In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 273–287. Springer,
Heidelberg (2005). doi:10.1007/11561927 21

45. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In:
Proceedings of the 23rd ACM Symposium on Principles of Distributed Computing,
pp. 300–309 (2004)

46. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In:
Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms, pp. 980–
989 (2006)

47. Kuhn, F., Wattenhofer, R.: On the complexity of distributed graph coloring. In:
Proceedings of the 25th ACM Symposium on Principles of Distributed Computing,
pp. 7–15 (2006)

48. Levi, R., Moshkovitz, G., Ron, D., Rubinfeld, R., Shapira, A.: Constructing near
spanning trees with few local inspections. Random Struct. Algorithms (2016)

http://dx.doi.org/10.1007/11780441_27
http://dx.doi.org/10.1007/978-3-662-53426-7_15
http://dx.doi.org/10.1007/978-3-662-53426-7_15
http://dx.doi.org/10.1007/11561927_21

46 R. Rubinfeld

49. Levi, R., Ron, D., Rubinfeld, R.: Local algorithms for sparse spanning graphs.
In: Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2014, 4–6 September 2014, Barcelona, pp.
826–842 (2014)

50. Levi, R., Ron, D., Rubinfeld, R.: A local algorithm for constructing spanners in
minor-free graphs. In: Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, APPROX/RANDOM 2016, 7–9 September
2016, Paris, pp. 38:1–38:15 (2016)

51. Levi, R., Rubinfeld, R., Yodpinyanee, A.: Brief announcement: local computation
algorithms for graphs of non-constant degrees. In: Proceedings of the 27th ACM on
Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland,
13–15 June 2015, pp. 59–61 (2015). http://doi.acm.org/10.1145/2755573.2755615

52. Lipton, R.: New directions in testing. In: Proceedings of the DIMACS Workshop
on Distributed Computing and Cryptography (1989)

53. Mansour, Y., Rubinstein, A., Vardi, S., Xie, N.: Converting online algorithms to
local computation algorithms. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer,
R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 653–664. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31594-7 55

54. Mansour, Y., Vardi, S.: A local computation approximation scheme to maximum
matching. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.)
APPROX/RANDOM-2013. LNCS, vol. 8096, pp. 260–273. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-40328-6 19

55. Marko, S., Ron, D.: Distance approximation in bounded-degree and gen-
eral sparse graphs. In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.)
APPROX/RANDOM-2006. LNCS, vol. 4110, pp. 475–486. Springer, Heidelberg
(2006). doi:10.1007/11830924 43

56. Mayer, A., Naor, S., Stockmeyer, L.: Local computations on static and dynamic
graphs. In: Proceedings of the 3rd Israel Symposium on Theory and Computing
Systems (1995)

57. Muthukrishnan, S., Strauss, M., Zheng, X.: Workload-optimal histograms on
streams. Technical report 2005-19, DIMACS Technical Report (2005)

58. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6),
1259–1277 (1995)

59. Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local
improvements. In: Proceedings of the 49th Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 327–336 (2008)

60. Onak, K., Ron, D., Rosen, M., Rubinfeld, R.: A near-optimal sublinear-time algo-
rithm for approximating the minimum vertex cover size. In: 23rd Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2012), Kyoto, January 2012

61. Orecchia, L., Allen Zhu, Z.: Flow-based algorithms for local graph clustering. In:
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2014, Portland, 5–7 January 2014, pp. 1267–1286 (2014)

62. Parnas, M., Ron, D.: Approximating the minimum vertex cover in sublinear time
and a connection to distributed algorithms. Theor. Comput. Sci. 381(1–3), 183–
196 (2007)

63. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. In: PODC,
pp. 77–85 (1987)

64. Pettie, S.: Distributed algorithms for ultrasparse spanners and linear size skeletons.
Distrib. Comput. 22(3), 147–166 (2010)

65. Rubinfeld, R., Tamir, G., Vardi, S., Xie, N.: Fast local computation algorithms.
In: Proceedings of the Innovations in Computer Science Conference (2011)

http://doi.acm.org/10.1145/2755573.2755615
http://dx.doi.org/10.1007/978-3-642-31594-7_55
http://dx.doi.org/10.1007/978-3-642-40328-6_19
http://dx.doi.org/10.1007/11830924_43

Can We Locally Compute Sparse Connected Subgraphs? 47

66. Sadakane, K., Grossi, R.: Squeezing succinct data structures into entropy bounds.
In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1230–1239 (2006)

67. Saks, M.E., Seshadhri, C.: Local monotonicity reconstruction. SIAM J. Comput.
39(7), 2897–2926 (2010)

68. Sarlos, T., Benczur, A., Csalogany, K., Fogaras, D., Racz, B.: To randomize or not
to randomize: space optimal summaries for hyperlink analysis. In: Proceedings of
the 15th International Conference on World Wide Web, pp. 297–306 (2006)

69. Schneider, J., Wattenhofer, R.: A log-star distributed maximal independent set
algorithm for growth-bounded graphs. In: Proceedings of the 27th ACM Sympo-
sium on Principles of Distributed Computing, pp. 35–44 (2008)

70. Schneider, J., Wattenhofer, R.: A new technique for distributed symmetry break-
ing. In: Proceedings of the 29th ACM Symposium on Principles of Distributed
Computing, pp. 257–266 (2010)

71. Spielman, D., Teng, S.: Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems. In: Proceedings of the 36th Annual ACM
Symposium on the Theory of Computing, pp. 81–90 (2004)

72. Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the XOR
lemma. J. Comput. Syst. Sci. 62(2), 236–266 (2001)

73. Yekhanin, S.: Private information retrieval. Commun. ACM 53(4), 68–73 (2010)
74. Yoshida, Y., Yamamoto, Y., Ito, H.: An improved constant-time approximation

algorithm for maximum matchings. In: Proceedings of the 41st Annual ACM Sym-
posium on the Theory of Computing, pp. 225–234 (2009)

75. Zhu, Z.A., Lattanzi, S., Mirrokni, V.: A local algorithm for finding well-connected
clusters. In: Proceedings of the Thirtieth International Conference on Machine
Learning (2013)

Palindromic Decompositions
with Gaps and Errors

Micha�l Adamczyk1, Mai Alzamel2, Panagiotis Charalampopoulos2,
Costas S. Iliopoulos2, and Jakub Radoszewski1,2(B)

1 Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Warsaw, Poland
{michal.adamczyk,jrad}@mimuw.edu.pl

2 Department of Informatics, King’s College London, London, UK
{mai.alzamel,panagiotis.charalampopoulos,costas.iliopoulos}@kcl.ac.uk

Abstract. Identifying palindromes in sequences has been an interest-
ing line of research in combinatorics on words and also in computational
biology, after the discovery of the relation of palindromes in the DNA
sequence with the HIV virus. Efficient algorithms for the factorization of
sequences into palindromes and maximal palindromes have been devised
in recent years. We extend these studies by allowing gaps in decomposi-
tions and errors in palindromes, and also imposing a lower bound to the
length of acceptable palindromes.

We first present an algorithm for obtaining a palindromic decompo-
sition of a string of length n with the minimal total gap length in time
O(n log n · g) and space O(n · g), where g is the number of allowed gaps
in the decomposition. We then consider a decomposition of the string
in maximal δ-palindromes (i.e. palindromes with δ errors under the edit
or Hamming distance) and g allowed gaps. We present an algorithm to
obtain such a decomposition with the minimal total gap length in time
O(n · (g + δ)) and space O(n · g).

1 Introduction

A palindrome is a symmetric word that reads the same backward and forward.
The detection of palindromes is a classical and well-studied problem in computer
science, language theory and algorithm design with a lot of variants arising out
of different practical scenarios. String and sequence algorithms related to palin-
dromes have long drawn the attention of stringology researchers [3,11,17]. Inter-
estingly, in the seminal Knuth-Morris-Pratt paper presenting the well-known
string matching algorithm [16], a problem related to palindrome recognition was

M. Alzamel is supported by the Saudi Ministry of Higher Education.
P. Charalampopoulos is supported by the Graduate Teaching Scholarship scheme of
the Department of Informatics at King’s College London.
J. Radoszewski is a Newton International Fellow and is supported by the Polish
Ministry of Science and Higher Education under the ‘Iuventus Plus’ program grant
no. 0392/IP3/2015/73.

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 48–61, 2017.
DOI: 10.1007/978-3-319-58747-9 7

Palindromic Decompositions with Gaps and Errors 49

also considered. In combinatorics on words, for example, studies have investi-
gated the inhabitation of palindromes in Fibonacci words or Sturmian words
in general [6,7]. There is also an interesting conjecture related to periodicity of
infinite strings whose every factor can be decomposed into a bounded number
of palindromes [9].

In computational biology, palindromes play an important role in regulation
of gene activity and other cell processes because these are often observed near
promoters, introns and specific untranslated regions. Hairpins (also called com-
plemented palindromes) in the HIV virus are strings of the form xx̄R, where x̄R

is the reverse complement of x, while (even) palindromes are strings of the form
xxR. Algorithms for detecting palindromes can often be adapted to compute
hairpins as well. Hence, we can identify palindromes in the DNA sequence and
then align the part of the DNA sequence that contains them with the HIV virus.

In the beginnings of algorithmic study of palindromes, Manacher discovered
an on-line sequential algorithm that finds all initial palindromes in a string [19].
A string S[1 . . n] is said to have an initial palindrome of length k if S[1 . . k] is
a palindrome. Later Apostolico et al. observed that the algorithm given by [19]
is able to find all maximal palindromic factors in the string in O(n) time [2].
Gusfield gave another linear-time algorithm to find all maximal palindromes
in a string [14]. He also discussed the relation between biological sequences and
gapped (separated) palindromes (i.e. strings of the form xvx̄R). Gupta et al. [13]
presented an O(n)-time algorithm to compute specific classes—based on length
constraints—of such palindromes. Algorithms for finding the so-called gapped
palindromes were also considered in [10,17]. (In our study, we consider gaps
between palindromes, not inside them.)

A problem that gained significant attention recently was decomposing a
string into a minimal number of palindromes; any such decomposition is called
a palindromic factorization. Fici et al. [8] presented an on-line O(n log n)-time
algorithm for computing a palindromic factorization of a string of length n. A
similar on-line algorithm was presented by I et al. [15] as well as an on-line
algorithm with the same time complexity to factorize a string into maximal
palindromes. Alatabbi et al. gave an off-line O(n)-time algorithm for the latter
problem [1]. In addition, Rubinchik and Shur [20] devised an O(n)-sized data
structure that helps locate palindromes in a string; they also show how it can
be used to compute the palindromic factorization of a string in O(n log n) time.

A similar problem, first studied by Galil and Seiferas in [12], asked whether
a given string can be decomposed into k palindromes. Galil and Seiferas [12]
presented an on-line O(n)-time algorithm for k = 1, 2 and an off-line O(n)-time
algorithm for k = 3, 4. In 2014, Kosolobov et al. presented an on-line O(kn)-time
algorithm to decide this for arbitrary k [18].

Our work is a continuation of this line of research, motivated by possible
errors and inconsistencies in the biological data. We extend the previous work
by introducing a constraint on the length of the palindromes and allowing gaps
and errors in the decompositions. By gaps we mean regions of the string that
are not decomposed into palindromes of sufficient length. We allow errors in

50 M. Adamczyk et al.

the palindromes, so that a palindrome with errors is a string having a small
Hamming or edit distance from an ideal palindrome. We present two approaches
for decomposing a string into sufficiently long palindromes; one allowing only
gaps in the decomposition and the other allowing both gaps in the decomposition
and errors in the palindromes. We first present an algorithm that computes a
palindromic decomposition with the minimal total gap length of a string of length
n in time O(n log n ·g) and space O(n ·g), where g is the number of allowed gaps.
Secondly, we present an O(n · (g + δ))-time and O(n · g)-space algorithm for the
decomposition of a string of length n into maximal palindromes with at most
δ errors each, under the Hamming or edit distance, and g allowed gaps. The
algorithms can be applied for both standard and complemented palindromes.

2 Notation and Terminology

Let S = S[1]S[2] · · · S[n] be a string of length |S| = n over an alphabet Σ.
We consider the case of an integer alphabet; in this case each letter can be
replaced by its rank so that the resulting string consists of integers in the range
{1, . . . , n}. For two positions i and j, where 1 ≤ i ≤ j ≤ n, in S, we denote
the factor S[i]S[i + 1] · · · S[j] of S by S[i . . j]. We denote the reverse string of S
by SR, i.e. SR = S[n]S[n − 1] · · · S[1]. The empty string (denoted by ε) is the
unique string over Σ of length 0. A string S is said to be a palindrome if and
only if S = SR. If S[i . . j] is a palindrome, the number i+j

2 is called the center of
S[i . . j]. Let S[i . . j], where 1 ≤ i ≤ j ≤ n, be a palindromic factor in S. It is said
to be a maximal palindrome if there is no longer palindrome in S with center
i+j
2 . Note that a maximal palindrome can be a factor of another palindrome.

Definition 1. We say that S = p1p2 · · · p� is a (maximal) palindromic decom-
position of S if all the strings pi are (maximal) palindromes.

Definition 2. A (maximal) palindromic decomposition of S such that the num-
ber of (maximal) palindromes is minimal is called a (maximal) palindromic fac-
torization of S.

Note that any single letter is a palindrome and, hence, every string can always
be decomposed into palindromes. However, not every string can be decomposed
into maximal palindromes; e.g. consider S = abaca [1].

Let f be an involution on the alphabet Σ, i.e., a function such that f2 = id.
We extend f into a morphism on strings over Σ. We say that a string x is a
generalized palindrome if x = f(xR). Two known notions fit this definition:

– If f = id, then a generalized palindrome is a standard palindrome.
– If Σ = {A, C, G, T} and f(A) = T, f(C) = G, f(G) = C, f(T) = A, then a gener-

alized palindrome corresponds to a so-called complemented palindrome [14].

Example 3. The string A G T A C T T C A T G A is a standard palindrome and the
string T A G T C G A C T A is a complemented palindrome.

Palindromic Decompositions with Gaps and Errors 51

We also consider (generalized) palindromes with errors. Let us recall two
well-known metrics on strings. Let u and v be two strings. If |u| = |v|, then
the Hamming distance between u and v is the number of positions where u
and v do not match. The edit (or Levenshtein) distance between u and v is the
minimum number of edit operations (insertions, deletions, substitutions) needed
to transform u into v. We say that x is a generalized δ-palindrome under the
Hamming distance (or the edit distance) if the minimum Hamming distance
(edit distance, respectively) from x to any generalized palindrome is at most δ.

A generalized palindrome S[i . . j] is called maximal if there is no longer gen-
eralized palindrome with the same center. Similarly, a generalized δ-palindrome
S[i . . j] under the Hamming/edit distance is called maximal if there is no longer
generalized δ-palindrome under the same distance measure with the same center.

Example 4. All maximal 0-palindromes/1-palindromes in GTATCG (for f = id)
under the Hamming and under the edit distance are as follows:

Center 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0 G ε T ε TAT ε T ε C ε G

1 under Hamming G GT GTA TA GTATC AT ATC TC TCG CG G

1 under edit G GT GTA GTAT GTATC GTATCG ATC TC TCG CG G

For instance, the whole string GTATCG is a 1-palindrome under the edit distance,
as deleting its fifth letter yields a palindrome GTATG.

The computational problems we study can be formally stated as follows.

Generalized Palindromic Decomposition with Gaps
Input: A string S of length n, an involution f , and integers g,m ≥ 1
Output: A decomposition of S into generalized palindromes with the mini-
mal possible total length of gaps,

∑q
i |gi|, such that:

– There are at most g gaps, i.e. q ≤ g
– Each palindrome is of length at least m

Generalized Maximal δ-Palindromic Decomposition with Gaps
Input: A string S of length n, an involution f , and integers g,m, δ ≥ 1
Output: A decomposition of S into maximal generalized δ-palindromes with
the minimal possible total length of gaps,

∑q
i |gi|, such that:

– There are at most g gaps, i.e. q ≤ g
– Each generalized δ-palindrome is of length at least m

We apply several instances of dynamic programming. For simplicity of pre-
sentation, we only show how to compute the minimal total length of gaps and
omit describing the retrieval of the decomposition itself. To compute the latter,

52 M. Adamczyk et al.

in each of the dynamic programming matrices we would store a pointer to the
cell that gave us the minimum value so that we could actually compute the
decomposition with the minimal total length of the gaps by backtracing.

3 Palindromic Decomposition with Gaps

In this section we develop an efficient solution to the Generalized Palin-
dromic Decomposition with Gaps problem. It is based on several trans-
formations of the algorithm for computing a palindromic factorization by Fici
et al. [8]. For a string S of length n this algorithm works in O(n log n) time. The
algorithm consists of two steps:

1. Let Pj be the sorted list of starting positions of all palindromes ending at
position j in S. This list may have size O(j). However, it follows from combi-
natorial properties of palindromes that the sequence of consecutive differences
in Pj is non-increasing and contains at most O(log j) distinct values. Let Pj,Δ

be the maximal sublist of Pj containing elements whose predecessor in Pj is
smaller by exactly Δ. Then there are O(log j) such sublists in Pj . Hence, Pj

can be represented by a set Gj of size O(log j) which consists of triples of the
form (i,Δ, k) that represent Pj,Δ = {i, i + Δ, . . . , i + (k − 1)Δ}. The triples
are sorted according to decreasing values of Δ and all starting positions in
each triple are greater than in the previous one. Fici et al. show that Gj can
be computed from Gj−1 in O(log j) time.

2. Let PL[j] denote the number of palindromes in a palindromic factorization of
S[1 . . j]. Fici et al. show that it can be computed via a dynamic programming
approach, using all palindromes from Gj in O(log j) time. Their algorithm
works as follows. Let PLΔ[j] be the minimum number of palindromes we can
decompose S[1 . . j] in, provided that we use a palindrome from (i,Δ, k) ∈ Gj .
Then PLΔ[j] can be computed in constant time using PLΔ[j − Δ] based on
the fact that if (i,Δ, k) ∈ Gj and k ≥ 2, then (i,Δ, k−1) ∈ Gj−Δ. Exploiting
this fact, PLΔ[j] can be computed by only considering PLΔ[j − Δ] and the
shortest palindrome in (i,Δ, k). Finally, we compute PL[j] from all such
PLΔ[j] values.

In AppendixA we show for completeness that the same approach works for
generalized palindromes for any involution f .

To solve the Generalized Palindromic Decomposition with Gaps
problem, we first need to modify each of the triples in Gj to reflect the length
constraint (m). More precisely, due to the length constraint, in each Gj some
triples will disappear completely, and at most one triple will get trimmed (i.e.
the parameter k will be decreased).

Our algorithm then computes an array MG[1 . . n][0 . . g] such that MG[j][q]
is the minimum possible total length of gaps in a palindromic decomposition of
S[1 . . j], provided that there are at most q gaps. Simultaneously, our algorithm
computes an auxiliary array MG′[1 . . n][0 . . g] such that MG′[j][q] is the mini-
mum possible total length of gaps up to position j provided that this position
belongs to a gap: at most the q-th one.

Palindromic Decompositions with Gaps and Errors 53

For j > 0 and q ≥ 0 we have the following formula:

MG[j][q] = min(MG′[j][q],min
Δ

{MGΔ[j][q]})

where MGΔ[j][q] is the partial minimum computed only using generalized palin-
dromes from (i,Δ, k) ∈ Gj . The formula means: either we have a gap at posi-
tion j, or we use a generalized palindrome ending at position j. We also set
MG[0][q] = 0 for any q ≥ 0.

We compute MGΔ[j][q] for (i,Δ, k) ∈ Gj using the same approach as Fici
et al. [8] used for PLΔ, ignoring the triples that disappear due to the length
constraint. If there is a triple that got trimmed, then the corresponding triple at
position j − Δ (from which we reuse the values in the dynamic programming)
must have got trimmed as well. More precisely, if the triple (i,Δ, k) is trimmed
to (i,Δ, k′) at position j, then at position j − Δ there is a triple (i,Δ, k − 1)
which is trimmed to (i,Δ, k′ − 1); that is, by the same number of generalized
palindromes. Consequently, to compute MGΔ[j][q] from MGΔ[j−Δ][q], we need
to include one additional generalized palindrome (the shortest one in the triple)
just as in Fici et al.’s approach.

Example 5. Consider the string AACCAACCAACCAACCAA, f = id, and let m = 7.

A A C C A A C C A A C C A A C C A A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Then G18 = {(1,∞, 1), (5, 4, 4), (18, 1, 1)}, where:

– (1,∞, 1) represents the whole string,
– (5, 4, 4) represents {AACCAACCAACCAA, AACCAACCAA, AACCAA, AA} which will get

trimmed by 2 palindromes due to the length constraint, becoming (5, 4, 2),
– (18, 1, 1) represents {A} and disappears.

Now looking at position j − Δ = 18 − 4 = 14 for the trimmed group, we
had (5, 4, 3) ∈ G14 representing {AACCAACCAA, AACCAA, AA}, and this also gets
trimmed by 2 palindromes, becoming (5, 4, 1).

Finally, for j > 0 and q > 0 we compute MG′ using the following formula:

MG′[j][q] = min(MG′[j − 1][q],MG[j − 1][q − 1]) + 1.

The first case corresponds to continuing the gap from position j, whereas the
second to using a generalized palindrome finishing at position j − 1 or a gap
finishing at position j − 1 (the latter will be suboptimal). Here the border cases
are MG′[j][0] = ∞ for j ≥ 0 and MG′[0][q] = ∞ for q > 0.

Thus we arrive at the complete solution to the problem.

Theorem 6. The Generalized Palindromic Decomposition with Gaps
problem can be solved in O(n log n · g) time and O(n · g) space.

54 M. Adamczyk et al.

4 Computing Maximal Palindromes with Errors

Recall that all maximal (standard) palindromes in a string can be computed in
O(n) time by Manacher’s [5,19] and Gusfield’s [14] algorithms. These algorithms
perform different computations for odd- and for even-length palindromes. Recall
that we defined the centers of odd-length palindromes as integers and the centers
of even-length palindromes as odd multiples of 1

2 .
Gusfield’s algorithm [14] applies Longest Common Extension (LCE) Queries

in the string T = S$SR, where $ �∈ Σ is a sentinel character. An LCE(i, j)
query returns the length of the longest common prefix of the suffixes T [i . . |T |]
and T [j . . |T |]. For example, to compute the length of the maximal even-length
palindrome centered between positions i and i + 1, the algorithm computes
LCE(i+1, 2n+2− i) in T . Recall that LCE queries in a string (over an integer
alphabet) can be answered in O(1) time after linear-time preprocessing [4].

Gusfield’s approach can be easily adapted to generalized palindromes: it suf-
fices to apply LCE-queries on T = S$f(SR). To further simplify the descrip-
tion of this approach, we introduce the Longest Gapped Palindrome (LGPal)
Queries, such that LGPal(i, j) is the maximum k such that f(S[i−k+1 . . i]R) =
S[j . . j +k −1]; see Fig. 1. As we have already noticed, LGPal-queries are equiv-
alent to LCE-queries in T = S$f(SR).

Fig. 1. To find the longest complemented 1-palindrome under the Hamming distance
centered at position 7.5 in S = GACATTCGAACGT, it suffices to ask two LGPal-queries:
LGPal(7, 8) = 3 finds the first mismatch, and LGPal(3, 12) extends the 1-palindrome
after the mismatch. Note that each of these LGPal-queries is equivalent to an appro-
priate LCP-query in S$f(SR).

It is known (see [14]) that all maximal generalized δ-palindromes under the
Hamming distance can be computed in O(n · δ) time via at most δ applications
of the LGPal-query for each possible center position. Below we show how to
compute maximal generalized δ-palindromes under the edit distance within the
same time complexity.

Recall that if u is a generalized δ-palindrome under the edit distance, then
there exists a generalized palindrome v such that the minimal number of edit
operations (insertion, deletion, substitution) required to transform u to v is at
most δ. The following simple observation shows that we can restrict ourselves to
deletions and substitutions only, which we call in what follows the restricted edit
operations. Intuitively, instead of inserting at position i a character to match the
character at position |u|−i+1, we can delete the character at position |u|−i+1.

Palindromic Decompositions with Gaps and Errors 55

Observation 7. Let u be a generalized δ-palindrome and v a generalized palin-
drome such that the edit distance between u and v is minimal. Then there exists
a generalized palindrome v′ such that the number of restricted edit operations
needed to transform u to v′ is equal to the edit distance between u and v.

We can extend a maximal generalized δ-palindrome S[i . . j] to a maximal
generalized (δ+1)-palindrome in three ways; either ignore the letter S[i−1] and
then perform an LGPal-query, or ignore the letter S[j + 1] and then perform an
LGPal-query, or ignore both and then perform the LGPal-query. More formally:

Definition 8. Assume that S[i . . j] is a generalized δ-palindrome. Then we say
that each of the factors S[i′ . . j′] for:

– i′ = i − 1 − d, j′ = j + d, where d = LGPal(i − 2, j + 1)
– i′ = i − d, j′ = j + 1 + d, where d = LGPal(i − 1, j + 2)
– i′ = i − 1 − d, j′ = j + 1 + d, where d = LGPal(i − 2, j + 2)

is an extension of S[i . . j]. If the index i′ is smaller than 1 or the index j′ is
greater than |S|, the corresponding extension is not possible. We also say that
S[i . . j] can be extended to any of the three strings S[i′ . . j′].

Clearly, the extensions of a generalized δ-palindrome are always generalized (δ+
1)-palindromes.

To facilitate the case of δ-palindromes being prefixes or suffixes of the text,
we also introduce the following border-reductions for S[i . . j] being a generalized
δ-palindrome:

– If i = 1, a border reduction leads to S[1 . . j − 1].
– If j = n, a border reduction leads to S[i + 1 . . n].

If any of the reductions is possible, we also say that S[i . . j] can be border-reduced
to the corresponding strings. As previously, border-reductions of a generalized
δ-palindrome are always generalized (δ + 1)-palindromes.

Lemma 9. Given a maximal generalized δ-palindrome S[i′ . . j′] with δ > 0,
there exists a maximal generalized (δ − 1)-palindrome S[i . . j] which can be
extended or border-reduced to S[i′ . . j′].

Proof. Consider a shortest sequence of restricted edit operations that transforms
u = S[i′ . . j′] into a generalized palindrome v. Let us consider the position where
we perform a restricted edit operation that is closest to i′ or j′. Assume w.l.o.g.
that this position—denote it by e—is not further to i′ than to j′.

Assume first that this edit operation is a substitution. Then S[i . . j], for
i = e+1 and j = j′ − (e+1− i′), is a generalized (δ−1)-palindrome (the witness
generalized palindrome is the corresponding factor of v); see Fig. 2. Moreover, it
is a maximal generalized (δ − 1)-palindrome, as otherwise S[e] = S[i − 1] would
be equal to f(S[j + 1]), which means that the substitution at the position e
would not be necessary. This completes the proof in this case.

56 M. Adamczyk et al.

Fig. 2. If the outermost restricted edit operation on S[i′ . . j′] is a substitution (from
letter X to letter Y), then S[i′ . . j′] is an extension of the third type of the maximal
generalized (δ − 1)-palindrome S[i . . j].

Fig. 3. Three cases resulting when the outermost edit operation on S[i′ . . j′] is a dele-
tion of a character X.

Now assume that the edit operation at the position e was a deletion. Let
a = e+1 and b = j′ − (e− i′). Again, we see that clearly S[a . . b] is a generalized
(δ − 1)-palindrome. If it is maximal, then we are done. Otherwise, consider the
maximal generalized (δ − 1)-palindrome S[i . . j] centered at the same position
as S[a . . b] (a − i = j − b > 0). Now we have three cases; see Fig. 3.

1. If j ≤ j′, then we can obtain S[i′ . . j′] by an extension (of the first type) of
S[i . . j]; i.e. ignoring the letter S[i − 1].

2. If j > j′, then we have that S[i′ . . j′ + 1] is a generalized (δ − 1)-palindrome.
If, additionally, i′ > 1, then S[i′ − 1 . . j′ + 1] is a generalized δ-palindrome,
which contradicts the maximality of S[i′ . . j′].

3. Finally, if j > j′ and i′ = 1, then i = 1, j = j′ + 1. Hence, S[i′ . . j′] obtained
from S[i . . j] by a border-reduction.

This completes the proof of the lemma. ��
The combinatorial characterization of Lemma9 yields an algorithm for gen-

erating all maximal generalized d-palindromes, for all centers and subsequent
d = 0, . . . , δ. Maximal generalized 0-palindromes are computed using Gusfield’s
approach (LGPal-queries). For a given d < δ, we consider all the maximal gen-
eralized d-palindromes and try to extend each of them in all three possible ways
(and border-reduce, if possible). This way we obtain a number of generalized
(d + 1)-palindromes amongst which, by Lemma 9, are all maximal generalized
(d+1)-palindromes. To exclude the non-maximal ones, we group the generalized
(d + 1)-palindromes by their centers (in O(n) time via bucket sort) and retain
only the longest one for each center. We arrive at the following intermediate
result.

Lemma 10. Under the edit distance, all maximal generalized δ-palindromes in
a string of length n can be computed in O(n · δ) time and O(n) space.

Palindromic Decompositions with Gaps and Errors 57

5 Maximal Palindromic Decomposition with Gaps
and Errors

Let F be a set of factors of the text S[1 . . n]. In this section we develop a general
framework that allows to decompose S into factors from F , allowing at most g
gaps. We call such a factorization a (g,F)-factorization of S. Our goal is to find
a (g,F)-factorization of S that minimizes the total length of gaps. We aim at
the time complexity O((n + |F|) · g) and space complexity O(n · g + |F|).

In our solution we use dynamic programming to compute two arrays, similar
to the ones used in Sect. 3:

MG[1 . . n][0 . . g]: MG[j][q] is the minimum total length of gaps in a (q,F)-
factorization of S[1 . . j].
MG′[1 . . n][0 . . g]: MG′[j][q] is the minimum total length of gaps in a (q,F)-
factorization of S[1 . . j] for which the position j belongs to a gap.

We use the following formulas, for j > 0 and q > 0:

MG[j][q] = min(MG′[j][q], min
S[a..j]∈F

MG[a − 1][q])

MG′[j][q] = min(MG[j − 1][q − 1],MG′[j − 1][q]) + 1

The border cases are exactly the same as in Sect. 3.
Clearly, the space complexity of this solution is O(n · g + |F|). Let us analyse

its time complexity. Fix q ∈ {0, . . . , g}. The number of transitions using the
factors from F in the dynamic programming is |F| in total, as each factor is
used only for the position j where it ends. Hence, the formulas for MG[j][q] take
O(n ·g + |F| ·g) time to evaluate. Computing the MG′[j][q] values takes O(n ·g)
time. Thus we arrive at the desired time complexity of O((n + |F|) · g).

We apply this approach to maximal generalized δ-palindromes in each of the
considered metrics (see the classic result from [14] for the Hamming distance
and Lemma 10 for the edit distance) to obtain the following result.

Theorem 11. The Generalized Maximal δ-Palindromic Decomposi-
tion with Gaps problem under the Hamming distance or the edit distance
can be solved in O(n · (g + δ)) time and O(n · g) space.

Example 12. Consider the following string1 of length 92:
GGACTCGGCTTGCTGAGGTGCACACAGCAAGAGGCGAGAGCGGCGACTGGTGAGTACGCCAAATTT
TGACTAGCGGAGGCTAGAAGGAGAGA

We have used our implementation of the algorithm from Theorem11 to compute
the decomposition of the string into maximal complemented 3-palindromes of
length at least 14 under the edit distance with at most 4 gaps (g = 4, δ = 3,
m = 14) with the minimal total gap length:

1 See http://www.cesshiv1.org/disview.php?accession=AB220944.

http://www.cesshiv1.org/disview.php?accession=AB220944

58 M. Adamczyk et al.

[GGACTCG] GCTTGCTGAGGTGCACACAGCAAGA [GGCGAGAGC] GGCGACTGGTGAGTACGCC
[AAATTTTG] ACTAGCGGAGGCTAGA [AGGAGAGA]

The gaps are given in square brackets. Edit operations are underlined, with
deletes additionally given in italics. The gaps have total length 32.

In comparison, the optimal decomposition of this string under the Hamming
distance with the same parameters (g = 4, δ = 3, m = 14) uses four gaps of
total length 46.

6 Conclusions

We have presented two algorithms for finding palindromic decompositions: one
allowing gaps and the other allowing both gaps in the decomposition and
errors in palindromes. The first algorithm shows that (somewhat surprisingly)
Fici et al.’s algorithm [8] for finding an exact palindromic factorization can be
extended to handle gaps, a constraint on the palindromes length, and comple-
ments in palindromes as well. In the second algorithm we decompose a string into
maximal palindromes with errors; the most involved part here was computing
all such maximal palindromes under the edit distance.

In the problems that were defined in the beginning, the objective was to
minimize the total length of gaps, allowing a certain number of gaps. However,
the approaches that were presented in this paper can be used to solve differ-
ent variants of the problems, like minimizing only the total number of gaps or
maximizing the total length of palindromes, regardless of the number of gaps.

An open question is to efficiently compute decompositions into palindromes
that may contain errors and are not necessarily maximal. This problem seems
to be hard, as δ-palindromes do not have such a strong combinatorial structure
as palindromes without errors.

A Appendix

Generalized Palindromic Factorization

In this section we show that the approach of Fici et al. [8] works for generalized
palindromes for any involution f . The following auxiliary lemma extends the
combinatorial properties of standard palindromes used in [8] (see Lemmas 1–3
therein) to generalized palindromes. Recall that a string y is called a border of
a string x if it is both a prefix and a suffix of x. A number p is called a period of
x if x[i] = x[i + p] for all i = 1, . . . , |x| − p. It is well known that x has a period
p iff it has a border of length |x| − p; see [4,5].

Lemma 13.(a) Let y be a suffix of a generalized palindrome x. Then y is a
border of x iff y is a generalized palindrome.

(b) Let x be a string with a border y such that |x| ≤ 2|y|. Then x is a generalized
palindrome iff y is a generalized palindrome.

Palindromic Decompositions with Gaps and Errors 59

(c) Let y be a proper suffix of a generalized palindrome x. Then |x| − |y| is a
period of x iff y is a generalized palindrome. In particular, |x| − |y| is the
smallest period of x iff y is the longest generalized palindromic proper suffix
of x.

Proof. (a) Let y′ be the prefix of x of length |y|. As x is a generalized palindrome,
y′ = f(yR). (⇒) If y is a border of x, then y = y′ = f(yR), so y is a generalized
palindrome. (⇐) If y is a generalized palindrome, then y′ = f(yR) = y, so y is
a border of x.

(b) (⇒) From (a), if x is a generalized palindrome and y is its border, then
y is a generalized palindrome. (⇐) If y is a generalized palindrome, f(xR) has
a border f(yR) = y. This border covers the whole string f(xR) and is the same
as the border of x, so x = f(xR) and x indeed is a generalized palindrome.

(c) This is a consequence of part (a) and the relation between borders and
periods of a string. ��

The crucial combinatorial property of standard palindromes used in Step 1
of the algorithm in Sect. 3 is that the sequence of consecutive differences in Pj is
non-increasing and contains at most O(log j) distinct values. We show that the
same observation holds for generalized palindromes; this follows from the next
lemma, parts (1) and (2). The proof of Lemma 14 follows exactly the lines of
the proof of the corresponding Lemma 4 in [8]; due to space constraints, we refer
the reader to Fig. 3 illustrating the proof in [8].

Lemma 14. Let x be a generalized palindrome, y the longest generalized palin-
dromic proper suffix of x, and z the longest generalized palindromic proper suffix
of y. Let u and v be strings such that x = uy and y = vz. Then:

(1) |u| ≥ |v|;
(2) if |u| > |v| then |u| > |z|;
(3) if |u| = |v| then u = v.

Proof. (1) By Lemma 13(c), |u| = |x| − |y| is the smallest period of x, and |v| =
|y| − |z| is the smallest period of y. Since y is a factor of x, either |u| > |y| > |v|
or |u| is a period of y too, and thus it cannot be smaller than |v|.

(2) By Lemma 13(a), y is a border of x and thus v is a prefix of x. Let w
be a string such that x = vw. Then z is a border of w and |w| = |zu|. Since we
assume |u| > |v|, we must have |w| > |y|. Suppose to the contrary that |u| ≤ |z|.
Then |w| = |zu| ≤ 2|z|, and by Lemma 13(b), w is a generalized palindrome.
But this contradicts y being the longest generalized palindromic proper suffix
of x.

(3) In the proof of (2) we saw that v is a prefix of x, and so is u by definition.
Thus u = v if |u| = |v|. ��

We have thus shown that, also in case of generalized palindromes, the set Pj

can be compactly represented by a set Gj , as described in Sect. 3. To complete
Step 1 of the algorithm, we need to show that Gj can be computed from Gj−1 in
O(log j) time. For this, just as in [8], we show that each triple (i,Δ, k) ∈ Gj−1

60 M. Adamczyk et al.

will be either eliminated or replaced by (i − 1,Δ, k) in Gj . The proof exploits
part (3) of Lemma 14.

Lemma 15. Let pi and pi+1 be two consecutive elements of Pj−1,Δ. Then pi −
1 ∈ Pj iff pi+1 − 1 ∈ Pj.

Proof. By definition, pi+1 − pi = Δ, and the predecessor of pi in Pj is pi−1 =
pi −Δ. The strings x = S[pi−1 . . j −1], y = S[pi . . j −1], and z = S[pi+1 . . j −1]
form the situation of Lemma 14(3). Hence, S[pi − 1] = S[pi+1 − 1] = c. Thus,
pi − 1 ∈ Pj iff S[j] = f(c) iff pi+1 − 1 ∈ Pj . ��

After this transformation, one might need to update pairs of adjacent triples
in Gj because the gaps between them might have changed. This simple process
is explained in detail in [8] and takes only O(log j) additional time.

As for Step 2 of the algorithm, it suffices to show that the following combi-
natorial observation holds for generalized palindromes. Again we follow the lines
of the proof from [8] (cf. Fig. 5 in that paper).

Lemma 16. If (i,Δ, k) ∈ Gj and k ≥ 2, then (i,Δ, k − 1) ∈ Gj−Δ.

Proof. By definition, (i,Δ, k) ∈ Gj is equivalent to saying that Pj,Δ = {i, i +
Δ, . . . , i + (k − 1)Δ}, and we need to show that Pj−Δ,Δ = {i, i + Δ, . . . , i + (k −
2)Δ}. We will show first that Pj−Δ,Δ ∩ [i − Δ + 1 . . j − Δ] = {i, i + Δ, . . . , i +
(k − 2)Δ} and then that Pj−Δ,Δ ∩ [1 . . i − Δ] = ∅.

Since y = S[i . . j] and x = S[i − Δ . . j] are generalized palindromes and y is
the longest proper border of x (by Lemma 13(a)), S[i−Δ . . j−Δ] = y = S[i . . j].
Thus for all � ∈ [i . . j], � ∈ Pj iff � − Δ ∈ Pj−Δ. In particular, the consecutive
differences in both cases are the same and for all � ∈ [i + 1 . . j], � ∈ Pj,Δ iff
�−Δ ∈ Pj−Δ,Δ. Thus Pj−Δ,Δ ∩ [i−Δ+1 . . j −Δ] = {i, i+Δ, . . . , i+(k−2)Δ}.

We still need to show that Pj−Δ,Δ ∩ [1 . . i−Δ] = ∅, which is true if and only
if i−2Δ �∈ Pj−Δ. Suppose to the contrary that S[i−2Δ . . j −Δ] is a generalized
palindrome and let w = S[i−2Δ . . i−Δ−1]. Then S[j−2Δ+1 . . j−Δ] = f(wR).
Since z = S[i − Δ . . j − Δ] and S[i − Δ . . j] are generalized palindromes too, we
have that S[i − Δ . . i − 1] = w and S[j − Δ + 1 . . j] = f(wR). Finally, since z is
a generalized palindrome, S[i− 2Δ . . j] = wzf(wR) is a generalized palindrome.
This implies that i−2Δ ∈ Pj and thus i−Δ ∈ Pj,Δ, which is a contradiction. ��

References

1. Alatabbi, A., Iliopoulos, C.S., Rahman, M.S.: Maximal palindromic factorization.
In: Stringology, pp. 70–77 (2013)

2. Apostolico, A., Breslauer, D., Galil, Z.: Parallel detection of all palin-
dromes in a string. Theor. Comput. Sci. 141(1), 163–173 (1995).
http://dx.doi.org/10.1016/0304-3975(94)00083-U

3. Breslauer, D., Galil, Z.: Finding all periods and initial palin-
dromes of a string in parallel. Algorithmica 14(4), 355–366 (1995).
http://dx.doi.org/10.1007/BF01294132

http://dx.doi.org/10.1016/0304-3975(94)00083-U
http://dx.doi.org/10.1007/BF01294132

Palindromic Decompositions with Gaps and Errors 61

4. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press, Cambridge (2007)

5. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific, Singapore
(2003)

6. Droubay, X.: Palindromes in the Fibonacci word. Inf. Process. Lett. 55(4), 217–221
(1995). http://dx.doi.org/10.1016/0020-0190(95)00080-V

7. Droubay, X., Pirillo, G.: Palindromes and Sturmian words. Theor. Comput. Sci.
223(1–2), 73–85 (1999). http://dx.doi.org/10.1016/S0304-3975(97)00188–6

8. Fici, G., Gagie, T., Kärkkäinen, J., Kempa, D.: A subquadratic algorithm for
minimum palindromic factorization. J. Discret. Algorithms 28(C), 41–48 (2014).
http://dx.doi.org/10.1016/j.jda.2014.08.001

9. Frid, A., Puzynina, S., Zamboni, L.: On palindromic factorization of words. Adv.
Appl. Math. 50(5), 737–748 (2013). http://dx.doi.org/10.1016/j.aam.2013.01.002

10. Fujishige, Y., Nakamura, M., Inenaga, S., Bannai, H., Takeda, M.: Finding
gapped palindromes online. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.)
IWOCA 2016. LNCS, vol. 9843, pp. 191–202. Springer, Cham (2016). doi:10.1007/
978-3-319-44543-4 15

11. Galil, Z.: Real-time algorithms for string-matching and palindrome recognition. In:
Proceedings of the Eighth Annual ACM Symposium on Theory of Computing, pp.
161–173. ACM (1976). http://doi.acm.org/10.1145/800113.803644

12. Galil, Z., Seiferas, J.: A linear-time on-line recognition algorithm for “palstar”. J.
ACM 25(1), 102–111 (1978). http://doi.acm.org/10.1145/322047.322056

13. Gupta, S., Prasad, R., Yadav, S.: Searching gapped palindromes in DNA sequences
using dynamic suffix array. Indian J. Sci. Technol. 8(23), 1 (2015)

14. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, New York (1997)

15. I, T., Sugimoto, S., Inenaga, S., Bannai, H., Takeda, M.: Computing palindromic
factorizations and palindromic covers on-line. In: Kulikov, A.S., Kuznetsov, S.O.,
Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 150–161. Springer, Cham
(2014). doi:10.1007/978-3-319-07566-2 16

16. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

17. Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theor. Comput.
Sci. 410(51), 5365–5373 (2009). http://dx.doi.org/10.1016/j.tcs.2009.09.013

18. Kosolobov, D., Rubinchik, M., Shur, A.M.: Palk is linear recognizable online. In:
Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer,
R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 289–301. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46078-8 24

19. Manacher, G.: A new linear-time “on-line” algorithm for finding the smallest initial
palindrome of a string. J. ACM (JACM) 22(3), 346–351 (1975)

20. Rubinchik, M., Shur, A.M.: EERTREE: an efficient data structure for processing
palindromes in strings. In: Lipták, Z., Smyth, W.F. (eds.) IWOCA 2015. LNCS,
vol. 9538, pp. 321–333. Springer, Cham (2016). doi:10.1007/978-3-319-29516-9 27

http://dx.doi.org/10.1016/0020-0190(95)00080-V
http://dx.doi.org/10.1016/S0304-3975(97)00188--6
http://dx.doi.org/10.1016/j.jda.2014.08.001
http://dx.doi.org/10.1016/j.aam.2013.01.002
http://dx.doi.org/10.1007/978-3-319-44543-4_15
http://dx.doi.org/10.1007/978-3-319-44543-4_15
http://doi.acm.org/10.1145/800113.803644
http://doi.acm.org/10.1145/322047.322056
http://dx.doi.org/10.1007/978-3-319-07566-2_16
http://dx.doi.org/10.1016/j.tcs.2009.09.013
http://dx.doi.org/10.1007/978-3-662-46078-8_24
http://dx.doi.org/10.1007/978-3-319-29516-9_27

Cascade Heap: Towards Time-Optimal
Extractions

Maxim Babenko1,2, Ignat Kolesnichenko2,3(B), and Ivan Smirnov3

1 National Research University Higher School of Economics, Moscow, Russia
maxim.babenko@gmail.com

2 Yandex LLC, Moscow, Russia
3 Moscow Institute of Physics and Technology, Moscow, Russia

ignat1990@gmail.com, ifsmirnov@yandex.ru

Abstract. Heaps are well-studied fundamental data structures, having
myriads of applications, both theoretical and practical.

We consider the problem of designing a heap with an “optimal”
extract-min operation. Assuming an arbitrary linear ordering of keys,
a heap with n elements typically takes O(log n) time to extract the min-
imum. Extracting all elements faster is impossible as this would violate
the Ω(n log n) bound for comparison-based sorting. It is known, however,
that is takes only O(n + k log k) time to sort just k smallest elements
out of n given, which prompts that there might be a faster heap, whose
extract-min performance depends on the number of elements extracted
so far.

In this paper we show that is indeed the case. We present a version of
heap that performs insert in O(1) time and takes only O(log∗ n+log k)
time to carry out the k-th extraction (where log∗ denotes the iterated
logarithm). All the above bounds are worst-case.

1 Introduction

Heap is a data structure consisting of elements with some assigned keys. Typi-
cally heaps enable inserting new elements (insert), extracting the element with
the minimum key (extract-min), and decreasing keys of existing elements
(decrease-key). Multitude of heap flavors are known, and their design and
possible applications have been studied quite extensively [1, Chap. 6.5].

Let n denote the number of elements in the heap. Historically, the first version
of heap was suggested by Williams [2]. This binary heap is able to perform
insert, extract-min, and decrease-key in O(log n) time. A Fibonacci heap
introduced by Fredman and Tarjan [3] improves upon these bounds and carries
insert and decrease-key in O(1) time but still takes O(log n) time to perform
extract-min (these bounds are amortized). Another quite sophisticated data
structure is suggested by Brodal [4]. Similarly to Fibonacci heaps, it requires
O(1) time per insert and decrease-key and O(log n) time per extract-
min. In contrast to Fibonacci heaps, all these bounds are worst-case rather than
amortized. Much effort [5,6] has been devoted to study heaps in RAM model,
where keys are restricted to be integers in a certain range.
c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 62–70, 2017.
DOI: 10.1007/978-3-319-58747-9 8

Cascade Heap: Towards Time-Optimal Extractions 63

Let us focus on just insert and extract-min operations. For any
comparison-based algorithm a sequence of n insertions and n extractions cannot
be performed faster than in Ω(n log n) time, as it follows from the well-known
sorting bound. The latter bound, in fact, shows that extract-min cannot be
performed faster that O(log n) on average. Still it is possible to partial-sort an
array (i.e. find and sort k ≤ n smallest keys out of n given) in just O(n+k log k)
time using, e.g. linear-time selection of the k-th order statistic [7]. This indicates
that extract-min could run faster if the number of extractions is small. See [8]
for some practical randomized algorithms.

As it is widely known, O(n+k log k) bound for partial-sorting keys is optimal
in comparison-based model. Hence one would expect some heap data structure
with O(1) time per insert and O(log k) time per extract-min to exist (where
k stands for the total number of elements extracted so far).

Hereinafter we use the following notation: log(r) indicates the r-th iteration
of logarithm, i.e. log(0) x = x, log(k+1) x = log log(k) x; log∗ indicates the iterated
logarithm, i.e. log∗ x is the minimum k such that log(k) x ≤ 1.

In this paper we make some progress towards obtaining a data structure with
the optimal time complexity by presenting Cascade Heaps with O(1) insertion
and O(log∗ n + log k) extraction times. These bounds are worst-case.

The rest of the paper is organized as follows. In Sect. 2 we introduce some
notation and auxiliary subroutines to be used later. In Sect. 3 we give a high-
level overview of Cascade Heaps and present an amortized version. Section 4
deamortizes the data structure. In Sect. 5 we conclude.

2 Preliminaries

2.1 Binary Heaps

Let K be a linear-ordered universe of possible keys. Our algorithms are
comparison-based, i.e. it is assumed that any pair of keys can be compared
in O(1) time. By H(L) we denote the family of all binary heaps with keys in
some linear ordered set L.

Recall the classical binary heap data structure [2]. It consists of an almost
complete binary tree T with keys assigned to its nodes. This tree satisfies the
following heap-like property: the key at each node is larger than or equal to the
key at its parent (if any). For the sake of simplicity, we assume all keys in our
heaps to be distinct. To insert an element into a binary heap we place it to the
end of the last level of the tree (forming a new one if the current last level is full)
and then run the standard sift-up procedure, restoring the heap-like property.
The minimum key can always be found in the root of such a tree. To extract the
minimum, we move the last element from the last tree level to the root and then
invoke sift-down procedure at the root. A collection of n keys can be turned
into a binary heap in O(n) time using make-heap routine. For more details,
please refer to [1, Chap. 6].

64 M. Babenko et al.

2.2 Recursive Heaps

Let us introduce the notion of a recursive heap, which will be the corner-stone
of all our data structures. In what follows, we will need to be able to compare
not only individual keys but also keys with heaps and heaps themselves. To
this aim, for the sake of comparison each heap is identified with its minimum
key. This way, we can introduce a linear order on, e.g., H(K) ∪ K. Now denote
K by H(0)(K) and for m ≥ 1 define H(m)(K) to be H(H(m−1)(K)) ∪ K. In
other words, H(0)(K) is the set of keys, H(1)(K) is the family of keys and heaps
of keys, H(2)(K) is the family consisting of keys and heaps whose elements are
keys and heaps of keys, etc. We call heaps in H(m)(K) recursive.

To make comparisons cheap, for each recursive heap and all its contained
subheaps we explicitly maintain their minimum keys.

For a recursive heap α, we call its rank the smallest m such that α ∈
H(m)(K). Also let top-size(α) denote the number of elements in the almost
complete binary tree (called the top-tree) representing α. Please keep in mind
that elements of this tree could be trees themselves, so top-size(α) is not the
same as the number of keys stored in α.

Given a recursive heap α ∈ H(m)(K), a new element β (either a key or a
heap from H(m−1)(K)) can be inserted in O(top-size(α)) time by attaching β as
a new leaf of the top-tree of α and applying sift-up.

Also the minimum key in α can be extracted without increasing the rank
of α and increasing top-size(α) on the constant. This will be done by the fol-
lowing recursive-extract-min procedure. Denote the root of α by root(α).
Note that the root of a recursive heap may be either a key, or a heap itself. If
root(α) is a key then we perform the usual binary heap extraction, which takes
O(log(top-size(α))) time and clearly cannot increase the rank of α and decreases
top-size(α).

Otherwise let root(α) be a tree. We split α into root root(α) and its left
and right subtrees, denoted by left(α) and right(α) respectively and proceed to
extracting the minimum in root(α). After at most m−1 such iterations we obtain
a tree where the root node is just a key. We split this tree as earlier. It remains
to re-assemble α from the left and right subtrees: left(α), right(α), left(root(α)),
right(root(α)), etc. Note that, the ranks of the left and right subtrees (viewed as
recursive heaps) do not exceed the rank of the tree itself. Hence we can use heaps
left(root(root(α))), right(root(root(α))), . . . (of rank at most m− 2) as elements
to construct a new heap β with rank at most m − 1 in O(m) time using make-
heap routine. The remaining job is to merge left(α) and right(α) (of rank at
most m) with heaps β, left(root(α)) and right(root(α)) (of rank at most m− 1).
First, we place β into the root and attach subtrees left(α) and right(α) to β as
its children. Then we invoke sift-down to restore the heap-like property for
the constructed tree α′. After that we insert left(root(α)) and right(root(α)) as
elements into α′ using insert procedure for binary heap. Altogether this takes
O(log(top-size(α)) + m) time and increases top-size(α) by at most two.

Cascade Heap: Towards Time-Optimal Extractions 65

We summarize as follows:

Theorem 1. Inserting an element (either a key or a heap) into a recursive heap
α takes O(log top-size(α)) time and increases top-size(α) by one. Extracting the
minimum key from a recursive heap α of rank m takes O(m + log top-size(α))
time, increases top-size(α) by at most 2, and does not increase the rank of α.

3 Cascade Heaps

3.1 Separating Insertions and Extractions

We start by describing a heap, which runs insert in O(log n) worst-case time and
extract-min in O(log k) worst-case time. This shows the core techniques that
will help us to get closer to the O(log k) worst-case time bound for extract-min.

Our heap consists of two parts: the insertion heap IH from H(K) and the
extraction heap EH from H(2)(K). Let us describe the insertion and extraction
routines. The insertion routine works as a simple heap insertion to IH. The
extraction is done as follows. First we insert IH (as an element) to EH and set
the new IH to be the empty heap. Second we run recursive-extract-min to
extract the minimum key from EH as described in Sect. 2. Note that the top-size
of EH increases by at most three (inserting IH into EH increases the top-size by
one and recursive-extract-min increases it by at most two). Therefore the
top-size of EH is O(k), where k is the number of extractions performed so far.

The above data structure is very simple and elegant. Its main drawback is
that insertion requires O(log n) time both in the average and in the worst cases.
In the rest of this section we show how to reduce the insertion time to O(1) in
amortized sense.

3.2 Amortized CascadeHeap

Let us generalize by adding more intermediate levels to our data structure. We
first describe its amortized version. We maintain a collection of recursive heaps
IH1, . . . , IHlog∗ n, and, as earlier, a recursive heap EH.

The following tetration notation will be useful:

na = aa··a

︸︷︷︸

n

.

For each i, the rank of IH will be at most i and its top-size will remain less
than i2. The rank of EH will be at most log∗ n+2 and its top-size will be bounded
by O(k).

insert for CascadeHeap works as follows. First, we insert the element into
IH1. If this heap reaches its top-size limit of 2 (we call this situation an overflow),
we insert IH1 (as an element) into IH2 and set IH1 to be empty. If IH2 also reaches
its top-size limit, then we insert IH2 into IH3, etc. This maintains the top-size
and rank invariants.

66 M. Babenko et al.

Clearly, if at most n elements are being inserted in CascadeHeap, then log∗ n
levels of IHi are enough. As n grows, log∗ n may increase by 1 thus forming a
new level.

Consider extract-min for CascadeHeap. We take all IH1, . . . , IHlog∗ n, con-
struct a heap (of rank at most log∗ n + 1) out of them, and insert the resulting
element into EH (recall that the latter is of rank at most log∗ n + 2). Finally we
extract the minimum key from EH. Altogether top-size(EH) increases by at most
three (by one during insertion and by two during extraction), hence it remains
O(k). The top-size and the rank invariants are obviously maintained.

Time complexities of the above insert and extract-min are as follows.
Constructing a heap out of IHi takes O(log∗ n) time, inserting the latter into EH
takes O(log k) time, extracting the minimum from EH takes O(log∗ n + log k),
which is O(log∗ n + log k) in total.

Analyzing insertions is a bit more tricky, so instead of proving amortized
bounds we compute the average complexity (we will present a formal deamor-
tized O(1) worst-case version in the next section anyway). Consider a sequence
of N insertions. Then IHi overflows at most

N
12 · 22 · . . . · i2

times. Each overflow involves inserting IHi into IHi+1, which costs O(log(i+12)) =
O(i2) time since top-size(IHi+1) < i+12. Therefore, the total cost of handling
overflows at IHi is

N
12 · 22 · . . . · i−12

= O(N · 2−i).

Summing over all i, one gets O(N) in total or O(1) per inserted element on
average, as promised.

4 Deamortization

4.1 Delayed Insertions

In this chapter we describe how to deamortize CascadeHeap. We start by intro-
ducing a heap with delayed insertions. Informally this is just the usual binary
heap where each insertion is split into log n separate elementary steps. When an
insertion starts the only possible operations are to continue the insertion or to
cancel it. Once the final step of the insertion is complete, we obtain the heap
which is the same as if we would have performed the insertion using sift-up
routine.

Let us describe this data structure formally. It can be in one of two states: a
regular state or an insertion state. In the regular state the data structure is rep-
resented by a regular binary heap and supports insert and extract-min oper-
ations. extract-min extracts the root element and splits the tree into two sub-
trees. insert operation receives and memorizes an element x and changes the state
of the heap to insertion. In the insertion state the data structure supports two

Cascade Heap: Towards Time-Optimal Extractions 67

operations: continue and cancel. continue operation performs some inser-
tion steps. If the insertion completes after continue the heap goes to the regular
state and appears to be changed to the heap with additional element x, otherwise
no visible changes occur. If cancel is called then the insertion is interrupted; it
returns the element x being inserted. All described operations take O(1) worst-
case time. The full insertion requires O(log n) steps (calls to continue) to finish.

The insertion executes sift-up routine gradually, which adds x as a new leaf
and then lifts x up to the root step-by-step. At each step x is compared against
its parent v, if the key of x is less than the key of v then we swap v and x,
otherwise we finish sift-up. However, we must ensure that no changes to the
tree are visible before the insertion is finished. To this aim, we employ a variant
of copy-on-write technique as follows. For readers, the heap is represented by a
pointer to its root node. In insert we initially find a spot for x in the tree (at
the end of the last level or at the beginning of the new level if the last one is full)
and set v to be the parent of x. Child pointers of v are not updated, though, so
this child-parent relation between x and v is “virtual”. On each step we compare
the keys of x and v. If the key of x is larger then x is attached to v, and insert
finishes. Otherwise we need to “swap” x and v. To do this without affecting the
readers, we make a (shallow) copy v′ of v and attach x to v′, swap x and v′, and
reset v to its parent. The invariant is that if, at some point, we do actually attach
x to v then what we get is essentially the tree as it would have appeared at this
point of sift-up. Also note that x could be lifted to the very root of the tree,
i.e. v could become null. In this case insert finishes by replacing the pointer to
the root of the tree. At the end, one prunes the nodes that are no longer used
(these could be detected by, e.g., a simple reference counting). Figure 1 provides
an example.

1

4

7v

10 3 x

9

5

6 8

(a)

1

v

4

7

10

9

5

6 8

3

x

4

7

(b)

1

4

7

10

9

5

6 8

3

x

4

7

(c)

Fig. 1. Delayed insertion of x into the heap. (a) Just after the insertion started; (b)
After sift-up; (c) After the final step. Blue bold indicates new nodes created during
insertion. Red dashed bold indicates nodes that are pruned after insertion. (Color figure
online)

68 M. Babenko et al.

4.2 Deamortizing CascadeHeap

Now we use the above heaps with delayed insertions to implement the top-trees
for each of IHi. insert for CascadeHeap works as follows: we first execute up to
γ (which is a constant to be chosen latter) calls to continue for those IHi that
are in the insertion state, starting from the smallest i. If after these calls some
of IHi is in the regular state and reaches its top-size limit of i2, then we start
inserting IHi into IHi+1. As we show later, at this point IHi+1 will be in the
regular state, i.e. insertions will not interfere.

extract-min cancels all insertions and thus receives certain un-inserted
recursive heaps {α1, . . . , αt}, t = O(log∗ n). Then it constructs a heap out of
all αi and IHi and inserts the result into EH. Clearly this takes O(log∗ n+log k),
as in the amortized version.

To facilitate locating appropriate IHi during insert, we maintain a sorted
linked list L of the form i1 < i2 < . . . < it consisting of all i such that IHi is
in the insertion state. During insert, this list is scanned from left to right. For
each i ∈ L, we invoke continue for IHi. We stop either when L is fully scanned
or after γ calls to continue. If after some continue call the insertion into
IHi completes, we remove IHi from the list. In the latter case it is also possible
that IHi overflows, i.e. reaches the top-size limit of i2. We collect all such i thus
forming a new list F (initially empty). Finally, once all (up to γ) continue calls
complete, we handle overflows: scan F is the reverse order (from largest indexes
to smallest) and for each i ∈ F start inserting IHi into IHi+1 (and thus clear IHi),
remove i from F and add i+1 to beginning of L (note that at this point L does
not contain elements that less than or equal to i + 1, therefore this operation
preserves sorted order of elements in list L). Obviously the total overhead of
maintaining L and F is O(γ), which does not affect the time complexity.

It remains to prove that the insertions in IHi do not interfere (and choose the
appropriate value of γ). Note that it suffices to assume that no extractions are
being performed since an extraction immediately cancels all ongoing activities.

Fix k ∈ {1, . . . , log∗ n} and consider IHk. It gets overflowed after each

N = 12 · 22 · . . . · k2

insertions into CascadeHeap. Consider a moment when IHk overflows. We need
at most δ · log(k+12) = δ · k2 calls to continue to insert IHk into IHk+1. (Here
δ > 0 is some constant depending on the implementation details of heaps with
delayed insertion.) The next overflow will happen after exactly N insertions.
During these insertions the algorithm is ready to spend time performing up to
γN continue calls.

Recall that these calls first address smaller insertion heaps before moving
to larger ones. Let us estimate the total number of continue calls needed to
handle insertions in IH1, . . . , IHk. Fix i ∈ {1, . . . , k − 1}, then IHi overflows

N
12 · 22 · . . . · i2 = i+12 · i+22 · . . . · k2

Cascade Heap: Towards Time-Optimal Extractions 69

times during N insertions into CascadeHeap. Handling each overflow takes at
most δ · i2 calls to continue for IH1, . . . , IHk. Hence at least

γN − δ
k−1
∑

i=1

i2 · i+12 · . . . · k2 (1)

of calls to continue remain “spare” and thus are offered to IHk+1, IHk+2 , etc.
It remains to prove that (1) is at least δ · k2. Indeed, set γ := 3δ, then

γN − δ

k−1
∑

i=1

i2 · i+12 · . . . · k2 =

N ·
(

γ − δ

k−1
∑

i=1

1
12 · 22 · . . . · i−12

)

≥

N ·
(

γ − δ

k−1
∑

i=1

1
2i−1

)

≥ N · (γ − 2δ) = δN.

Therefore we have at least δN spare continue calls but only need δ · k2 < δN .
The proof follows.

We summarize:

Theorem 2. For CascadeHeap, insert takes O(1) worst-case time and
extract-min takes O(log∗ n + log k) worst-case time, where n denotes the cur-
rent number of keys in the heap and k denotes the number of extract-min
calls performed so far.

5 Conclusions

We have presented a new CascadeHeap data structure, which is almost optimal
in sense of insertion and extraction times. In our construction, we only rely on
binary heaps and simple recursion ideas, which suggests that our approach could
be quite practical.

One could try to extend CascadeHeap with operations like unite or
decrease-key. This seems doable but the exact implementation details and
complexity bounds are yet to be examined.

The major remaining open problem obviously is: can we obtain a truly-
optimal heap, i.e. a heap with O(1) worst-case time insert O(log k) worst-case
time extract-min? The additional O(log∗ n) term in CascadeHeap is minute,
but could turn out to be notoriously difficult to eliminate.

70 M. Babenko et al.

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

2. Williams, J.W.J.: Heapsort. Commun. ACM 7, 347–348 (1964)
3. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network

optimization algorithms. J. ACM 34(3), 596–615 (1987)
4. Brodal, G.S.: Worst-case efficient priority queues. In: Proceedings of the Seventh

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1996), pp. 52–58,
Philadelphia, PA, USA. Society for Industrial and Applied Mathematics (1996)

5. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time. In:
Proceedings of the 16th Annual Symposium on Foundations of Computer Science
(SFCS 1975), pp. 75–84, Washington, DC, USA. IEEE Computer Society (1975)

6. Thorup, M.: On ram priority queues. SIAM J. Comput. 30(1), 86–109 (2000)
7. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Time bounds for

selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)
8. Navarro, G., Paredes, R.: On sorting, heaps, and minimum spanning trees.

Algorithmica 57(4), 585–620 (2010)

Entropic Uniform Sampling of Linear Extensions
in Series-Parallel Posets

Olivier Bodini1, Matthieu Dien2(B), Antoine Genitrini2,
and Frédéric Peschanski2

1 Laboratoire d’Informatique de Paris-Nord, CNRS UMR 7030 - Institut
Galilée - Université Paris-Nord, 99, avenue Jean-Baptiste Clément,

93430 Villetaneuse, France
Olivier.Bodini@lipn.univ-paris13.fr

2 Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606,
4 place Jussieu, 75005 Paris, France

{Matthieu.Dien,Antoine.Genitrini,Frederic.Peschanski}@lip6.fr

Abstract. In this paper, we introduce a uniform random sampler for
linear extensions of Series-Parallel posets. The algorithms we present
ensure an essential property of random generation algorithms: entropy.
They are in a sense optimal in their consumption of random bits.

1 Introduction

The state-space of a concurrent program is interpreted, in what is called the
interleaving semantics, as the linearization of partially ordered sets (posets).
This linearization process is highly combinatorial, a topic we studied thoroughly
in previous papers. The uniform random generation of linear extensions pro-
vides a stochastic approach for the linearization process, hopefully avoiding the
so-called “combinatorial explosion”. For instance, in [1] we develop an efficient
algorithm to draw linear extensions of tree-shaped posets. The algorithm has
worst-case time complexity O(n log n) (counting arithmetic operations) with n
the size of the poset (more precisely, the number of nodes of its covering tree).
A uniform random sampler for posets of dimension 2 is introduced in [2]. A
perfect sampling algorithm for arbitrary posets is presented in [4]. These are
polynomial algorithms but in the order Õ(n3) hence not usable on large posets.
Our goal is to identify subclasses of posets for which more efficient algorithms
can be proposed. In this paper, we introduce a uniform random sampler for lin-
ear extensions of Series-Parallel (SP) posets. This represents a very important
class of posets that can be found in many practical settings. Generating linear
extensions uniformly at random for this subclass can be done in a relatively
straightforward way. However, such a naive algorithm fails an essential property
of random generation algorithms: entropy. When studying random generation,
the consumption of random bits is a very important measure. An entropic algo-
rithm minimizes this consumption, which has a major impact on efficiency. The
algorithms we describe in the paper are entropic, i.e. they are in a sense optimal
in their consumption of random bits.
c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 71–84, 2017.
DOI: 10.1007/978-3-319-58747-9 9

72 O. Bodini et al.

The outline of the paper is as follows. First, in Sect. 2 we define a canonical
representation of Series-Parallel posets. Based on this representation we develop
our random generation algorithms in Sect. 3. We propose two variants of the
random sampler: a bottom-up and a top-down variant. In Sect. 4 we describe the
common stochastic core of both algorithms. This is where we discuss, and prove,
the property of entropy. In this extended abstract, we only provide outlines for
the correctness and entropy proofs.

2 Canonical Representation of Series-Parallel Posets

The Series-Parallel posets are not easily handled from an algorithmic point of
view. The ground set, the set of relations, and the inductive structure of a Series-
Parallel poset must be adapted in order tu use them automatically through algo-
rithms, see for example [11]. So, to work with Series-Parallel posets we introduce
a canonical representation of such posets, based on their covering directed acyclic
graph (DAG). Then we design an effective algorithm that can be precisely ana-
lyzed, thanks to the canonicity of our representation. In this section we detail
such a DAG representation whose main objective is to preserve the necessary
informations such that the uniformity property of the sampling process is pre-
served. We first recall the classical construction of Series-Parallel posets [10] (SP
posets). This is based on the two basic composition rules below.

Definition 1 (Poset compositions). Let P and Q be two independent partial
orders, i.e. posets whose ground sets are disjoint.

– The parallel composition R of P and Q, denoted by R = P ‖ Q, is the partial
order obtained by the disjoint union of the ground sets of P and Q and such
that

∀E ∈ {P,Q},∀x, y ∈ E, x ≺R y iff x ≺E y.

– The series composition S of P and Q, denoted by S = P.Q, is the partial
order obtained by the disjoint union of the ground sets of P and Q and such
that

∀x, y ∈ P ∪ Q,x ≺S y iff

⎧
⎨

⎩

x ∈ P and y ∈ Q
x, y ∈ P and x ≺P y
x, y ∈ Q and x ≺Q y

.

We are now ready for the definitions of SP posets.

Definition 2 (Series-Parallel partial orders). The class of Series-Parallel
orders is the smallest class containing the atomic order and closed under series
and parallel composition.

In the mathematical definition, a partial order is a set of relations between
points of the ground set. We must adapt this context to obtain an efficient
representation in computers. So, a common way to handle such a poset for an
algorithmic need, is to exploit their covering DAG.

Entropic Uniform Sampling of Linear Extensions in Series-Parallel Posets 73

Fig. 1. (Left to Right) The covering of a Poset P ; A SP DAG for P ; The topological
sorts of a given equivalence class and the associated linear extension.

Definition 3. Let P be a partial order. The covering G of P is the directed
acyclic graph (DAG) whose nodes are the points of the ground set V of P and
whose set of directed edges is such that

{(x, y) ∈ V 2 | (x ≺P y) ∧ ¬(∃z ∈ V, x ≺P z ≺P y)}.

Note that the combinatorial class of coverings is the one of intransitive DAG.
The leftmost part of Fig. 1 represents the covering of a Series-Parallel poset.

It represents the poset with ground set {b, c, d, e, f, i, j, k, l}. The set of order
relation is {b < d, b < e, c < f, d < i, d < j, e < i, e < j, f < i, f < j, i < k, j <
k, k < l} and all transitive relations. We will use the common representation of
coverings as Hasse diagrams in which edges are directed from top to bottom.

Definition 4. Let P be a poset. A linear extension of P is a total order of the
points of the ground set of P and satisfying the relations of P .

The rightmost chain represented in Fig. 1, is the following linear extension of
P : b < c < d < e < f < i < j < k < l. For the rest of the paper, the points of P
will be called nodes. The following is folklore.

Fact 1. Let P be a poset. Each linear extension of P corresponds to a topological
sort of the nodes of the covering of P .

We now introduce our special flavor of coverings, with the objective of getting
effective and elegant algorithms presented in the next sections.

Let P a poset, and G its covering. First we want to distinguish the different
children of a node in G. The classical way for this consists in a combinatorial
embedding of G in the plane (cf. [5, Chap. 3])1. In our context, we choose an
1 The combinatorial embedding allows to distinguish the two successors of a node: the
left one and the right one.

74 O. Bodini et al.

arbitrary embedding, e.g. in Fig. 1, we have chosen that b is on the left of c.
Note that this arbitrary choice only impacts the representation and not the poset
itself. Thus, we will identify the covering of a poset with the chosen combinatorial
embedding.

A second simplification is that we only consider unary-binary DAGs instead
of ones with nodes of arbitrary in-degree and out-degree. This is important oth-
erwise an extra level of loop would be required in the algorithms. To reach
this goal, we use the left-leaning principle [8] directly on the combinatorial
embedding: a poset composed of several posets in parallel, associated to a
combinatorial embedding of its covering, P1 ‖ P2 ‖ · · · ‖ Pn is seen as a
poset with a binary parallel composition (relying on its associativity property):
(. . . (P1 ‖ P2) ‖ . . .) ‖ Pn.

To encode the covering G with only unary-binary nodes, we need to introduce
some “silent” nodes that we call white nodes in the rest of the paper, among the
original black nodes of G (the points of the ground set of P). In the following,
we explain the construction of this new structure. We also show how to recover
the linear extensions of P from this representation.

Definition 5. Let Ψ be the following function, from the set of combinatorial
embeddings of Series Parallel poset coverings to the set of bicolored unary-binary
(combinatorially embedded) DAGs. It is inductively defined as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ(∅) = ◦ Ψ(•) = • Ψ

⎛

⎜
⎜
⎝

•
...

•

⎞

⎟
⎟
⎠ =

•
...

•

Ψ(P.(Q ‖ R).S) =

Ψ(P)

Ψ(Q) Ψ(R)

Ψ(S)

,

where P,Q,R and S are arbitrary coverings of Series-Parallel posets. P and S
may be empty. Q and R must not be empty and R must verify ¬(∃R1, R2, R =
R1 ‖ R2).

The Series-Parallel DAG (SP DAG) of a poset P is the image of an arbitrary
combinatorial embedding of the covering of P by the function Ψ .

When the poset looks like P1 ‖ P2 ‖ · · · ‖ Pn, the last pattern condition
means R = Pn. Note that the unique constraint for P and S is that they are
SP posets, eventually empty. In particular, they can contain substructure like
(A ‖ B). Thus the application of the last rule is not deterministic, in the sense
that we can apply it sometimes successively, but the order of application is
arbitrary. However the rules are trivially confluent.

In Fig. 1, on the left, a poset is represented by its covering. In the middle,
it is the SP DAG we associate to this covering. A SP DAG contains bicolored
nodes. The black nodes are the nodes of the initial covering, while the white
nodes have been added to fulfill the unary-binary arity constraint.

Entropic Uniform Sampling of Linear Extensions in Series-Parallel Posets 75

The SP DAGs are by essence recursively decomposable, and thus we use the
classical notation from Analytic Combinatorics [3] for their characterization.

Proposition 1. The class D of SP DAGs is unambiguously specified by:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D = • +
•
Dt

+

• + ◦
D Dr

D + ◦

Dt = • +
•
Dt

+

•
D Dr

D + ◦

Dr = Dt +

◦
D Dr

D
Let us recall the basic notation from Analytic Combinatorics, by describing the
first equation. A DAG in D is either a single node • or a root • followed by a
DAG from the class Dt or a top root (either a black node • or a white node ◦)
with a left substructure belonging to D and a right substructure from Dr, both
followed by a bottom substructure corresponding either to a DAG in D or to a
white node ◦. In the rest of the paper we will use the terms top, left, right and
bottom substructures.

Remark that the class Dt contains the connected Series-Parallel coverings
with a single source (i.e. a node smaller that all other nodes), and Dr encodes
the class of connected Series-Parallel coverings.

Theorem 2. For each Series-Parallel poset, we choose an arbitrary combinato-
rial embedding of the covering. Let E be the set of the chosen embeddings of the
Series-Parallel posets. Ψ is a bijection from E to the set of SP DAGs.

The proof is direct by a structural induction.
By successively using the combinatorial embedding, the left-leaning principle

and the transformation Ψ , we have an effective and canonical way for represent-
ing Series-Parallel posets.

Another central property is the correspondence between the linear extensions
of the poset P and the topological sorts of Ψ(P).

Let P be a poset, and S = Ψ(P) be its associated SP DAG. We consider the
set of topological sorts of S. Obviously each of them contain all nodes of S, the
black ones but also the white ones, although the latter have no meaning for P .

Definition 6. Let P be a poset, and S = Ψ(P) be its associated SP DAG. Let ρ
be the function, from the set of topological sorts of S to the set of linear extensions
of P , such that, applied to a topological sort all white nodes are removed.

76 O. Bodini et al.

Definition 7. Let P be a Series-Parallel poset, and S = Ψ(P) be its associated
SP DAG. We define the following equivalence relation based on the function ρ:
Two topological sorts s1 and s2 of S are equivalent if and only if ρ(s1) = ρ(s2).

Let us remark some fundamental constraint in the equivalence relation: for
two distinct linear extensions of a poset, the numbers of sorts in the two cor-
responding equivalence classes are not necessary equal. In fact, in Fig. 1 (right-
hand side), we have represented the three topological sorts corresponding to the
same linear extension. But the following linear extension c < f < b < d < e <
i < j < k < l, is given by a single topological sort, where both white nodes
appear between e and i. As a consequence, we cannot directly sample uniformly
a topological sort of S and then apply the transformation ρ to obtain uniformly
a linear extension of P .

Definition 8. Let P be a Series-Parallel poset, S = Ψ(P) be its associated SP
DAG. In an equivalence class of topological sorts of S, we define the represen-
tative to be the sort whose white nodes appear as soon as possible. If two white
nodes are incomparable and appear successively in the representative we choose
the leftmost one (in S) to appear first.

In Fig. 1 (on the right side), among the three topological sorts, the rightmost
one is considered to be the representative for the linear extension. The case where
several white nodes are incomparable and successive in the topological sort is
handled similarly.

Theorem 3. Let P be a Series-Parallel poset, S = Ψ(P) be its associated SP
DAG. An uniform sampling of the linear extension of a Series-Parallel poset P is
obtained by drawing uniformly at random a representative Ψ(P) and by applying
the function ρ to it.

The proof of the theorem is a direct consequence of the previous results.
To conclude this section, we exhibit the computational complexity for the

construction of the SP DAG resulting of a Series-Parallel poset.

Proposition 2. The SP DAG corresponding to a Series-Parallel poset, whose
ground set contains n nodes is built in O(n) time complexity.

The number of black nodes of the SP DAG is n and the number of white
nodes is at most 2(n − 1).

This last proposition guarantees that the complexity of building and using
a SP DAG in place of its associated Series-Parallel poset, will be negligible in
front of the complexity of the algorithms presented below.

3 Random Generation of Linear Extensions

Based on the SP DAG structures defined in the previous section, we now begin
the presentation of the uniform random samplers. In this section, we give the
outline of the algorithms, and in the next section we discuss their common

Entropic Uniform Sampling of Linear Extensions in Series-Parallel Posets 77

stochastic core. We present two complementary generation schemes: a bottom-
up scheme that recursively generates the linear extensions “from the inside-out”,
and a top-down variant that does the converse. Both algorithms have an interest.
The bottom-up approach is arguably the simplest, in that it follows the recursive
decomposition of the input DAG. The correctness proofs are much easier in this
setting. Comparatively, the top-down approach seems more convoluted, and it
is best seen as a transformation of the bottom-up scheme in the proofs. One
advantage the top-down algorithm is that it can be implemented in-place.

Algorithm 1. Bottom-up variant of the uniform random generation of linear
extensions

function RandLinExt-BU(P)
if P = ◦ then return []
else if P = •x then return [x]
else if P = •x . T then return cons(x, RandLinExt-BU(Q))
else if P = � . (L ‖ R) . T then

h := Shuffle(RandLinExt-BU(L), RandLinExt-BU(R))
t := RandLinExt-BU(T)
if � = •x then return concat(cons(x, h), t)
else return concat(h, t)

The bottom-up variant is Algorithm 1. We illustrate it on the poset example
of Fig. 1. The root is an unlabeled white node, with two subposets with respective
roots b and c. The join node is white and also the root of the poset comprising
the labels {i, j, k, l}. In the case of such a fork/join structure, the algorithm
works as follows. First, the algorithm is recursively applied on the two subposets
in parallel: the one with labels {b, d, e} and the one with labels {c, f}. For the
latter, there is only one possibility: taking first the label c and then f , resulting
in the partial linear extension [c, f]. For the left part, the label b is prepended
to the uniform shuffle of the singleton linear extensions [d] and [e]. The shuffle
algorithm will be presented in detail, but in this situation it simply consists
in taking either [d, e] or [e, d] both with a probability of 1

2 . Suppose we take
the latter, we ultimately obtain the linear extension [b, e, d]. Note that nothing
is appended at the end since the join node is white in this subposet. In the
next step, the extensions [c, f] and [b, e, d] are shuffled uniformly, one possible
outcome being [c, b, e, d, f]. This is then concatenated with a linear extension of
the downward poset. For example [c, b, e, d, f, i, j, k, l] is one such possibility, and
is thus a possible output of the algorithm.

The top-down variant is described by Algorithm 2. The main difference with
the bottom-up algorithm is that it samples positions in an array instead of labels
directly. The advantage is that most operations can then be performed in-place,
at the price of having to deal with one level of indirection. The rankings struc-
ture is a mapping associating the node labels to a position in the sampled linear
extension. The positions are organized as a stack structure, initially containing
all the available positions from 1 to |P | (the size of the poset in the number

78 O. Bodini et al.

Algorithm 2. Top-down variant of the uniform random generation of linear
extensions

function RandLinExt-TD(P)
function RecRandLinExt-TD(P , rankings, positions)

if P = ◦ then return rankings
else if P = •x then

rankings[x] := pop(positions)
return rankings

else if P = •x . T then
rankings[x] := pop(positions)
return RecRandLinExt-TD(T , rankings, positions)

else if P = � . (L | R) . T then
if � = •x then rankings[x] := pop(positions)
upPositions := positions[0 . . . |L| + |R| − 1]
botPositions := positions[|L| + |R| . . . |P | − 1]
l, r := Split(upPositions, |L|, |R|)
rankings := RecRandLinExt-TD(L, rankings, l)
rankings := RecRandLinExt-TD(R, rankings, r)
return RecRandLinExt-TD(T , rankings, botPositions)

rankings := an empty dictionary
positions := [1 . . . |P |]
return RecRandLinExt-TD(P , rankings, positions)

of labels i.e. the black nodes). In our example poset, the initial contents of
positions is [1, 2, 3, 4, 5, 6, 7, 8, 9]. The rankings map is empty. In the first step,
the white root is simply skipped and the two sets of positions are computed: the
upPositions taking the front part of the poset i.e. [1, 2, 3, 4, 5] and botPositions
what is remaining i.e. [6, 7, 8, 9]. The algorithm then performs an uniform split
of the positions 1 to 5 e.g. in a subset l = {2, 3, 4} for {b, d, e} and r = {1, 5} for
{c, f}. The details about the splitting process are given below. The rankings of
each subposet are computed recursively, and the result naturally interleaves since
we work with disjoint sets of positions. Once again, we can ultimately obtain the
linear extension [c, b, e, d, f, i, j, k, l]. We have to show that it is obtained with
the same exact (uniform) probability as in the bottom-up case.

In fact, the two algorithms are dual. In the bottom-up case, randomness
comes from the Shuffle function which is the dual of the Split function in the
sense of a coproduct. A shuffle takes two lists and mixes them into one, while the
split takes one list and divides it into two. The key property comes from the fact
that the shuffle (resp. split) of one (resp. two) list(s) is sampled uniformly: each
shuffle (resp. splits) has the same probability to be drawn. For example, there
is

(
5
2

)
= 10 possible shuffles between the sets {a, b, c} and {d, e}. Equivalently

there is 10 possibles splits of the set {a, b, c, d, e} into two subsets, one of size 3
and the other of size 2.

Both algorithms operate in the same way: they draw a random combination
of p elements among p+ q, then shuffle or split using this combination. This will

Entropic Uniform Sampling of Linear Extensions in Series-Parallel Posets 79

Algorithm 3. Algorithm of uniform random splitting and shuffling
function Split(S, p, q)

�, r := [], []
i := 0
v := RandomCombination(p, q)
for all e ∈ v do

if e then
append S[i] to �

else
append S[i] to r

return �, r

function Shuffle(�, r)
t := []
v := RandomCombination(|�|, |r|)
for all e ∈ v do

if e then
append pop(�) to t

else
append pop(r) to t

return t

be discussed in the next section. Based on the assumption that the stochastic
process is uniform, we obtain a first important result about the algorithms.

Theorem 4. Algorithms 1 and 2 both generate a linear extension of a series-
parallel poset P uniformly at random. Their worst-case time complexity is Θ(n2)
(by measuring the number of memory writes). The average time complexity is
equivalent to 1

4

√
π n3

3
√
2−4

.

Fact 5 (Möhring [7]). Let P be a SP poset and �P be its number of linear exten-
sions. If P = P1×P2 is the series composition of P1 and P2, then �P = �P1 ·�P2 . If
P = P1+P2 is the parallel composition of P1 and P2, then �P =

(
n1+n2

n1

)·�P1 ·�P2 ,
where n1 (resp. n2) is the size of P1 (resp. P2).

The correctness of both algorithms is easily proved by a structural induction
and based on the Fact 5.

To compute the average complexity, the idea is to find a recurrence equation
for the number of SP DAGs of size n and another recurrence equation for counting
the number of cumulated memory writes on SP DAGs of size n. Thus, using stan-
dard analytic combinatorics tools [3], we derive the asymptotic behaviors of the
solutions of both recurrences. The result is obtained by dividing the asymptotic
number of cumulated memory writes by the one of SP DAGs of size n.

4 Entropic Sampling Core

The bottom-up and top-down algorithms described in the previous section both
depend upon the same stochastic core: namely the procedure we named Ran-
domCombination. Random generation must adopt the point of view of prob-
abilistic Turing machines, i.e. deterministic machines with a tape containing
random bits. As a consequence, an important measure of complexity for such
an algorithm is the entropy of the targeted distribution: the number of random
bits consumed to produce a possible output. Our objective is to define entropic
algorithms, according to the following definition.

80 O. Bodini et al.

Definition 9 (Entropic algorithm). Let A be an algorithm sampling an ele-
ment of a finite set S at random according to a probability distribution μ. We
say that A is entropic if the average number of random bits ne it uses to sample
one element e ∈ S is proportional to the entropy of μ, in the sense of Shannon
entropy [9]:

∃K > 0,∀e ∈ S, ne � K ·
∑

x∈S

−μ(x) log2(μ(x)).

The key idea in the following entropic algorithms is to show that Bernoulli
random variable (r.v.) of small or big parameter has weak entropy and because
we are unable to use fraction of bits we group it in packs to draw Bernoulli r.v. of
entropy 1. The maximum entropy of a Bernoulli is reached when the parameter
is 1

2 , in this case the Bernoulli r.v. is just a random bit.

Algorithm 4. Algorithm of uniform random generation of combination
function RandomCombination(p, q)

l := []
�True is the number of True in l
�False is the number of False in l

rndBits := a stream of random booleans produced with k-Bernoulli
(

p
p+q

)

if p > log(q)2 ∧ q > log(p)2 then
while �True <= p ∧ �False <= q do

if pop(rndBits) then l := cons(True, l)
else l := cons(False, l)

remaining := ¬pop(l)
else

if p < q then
l := a list of q times False

remaining := True

else
l := a list of p times True
remaining := False

for i := �True+ �False − 1 to p + q − 1 do
j := uniformRandomInt[0 . . . i]
insert remaining at position j in l
return l

The core of the random samplers is presented in Algorithm 4. The objective
is to draw, in an entropic way, a list l of booleans of size p + q such that p cells
contains a True value and the q remaining are set to False.

We give an example of the sampling process for p = 6 and q = 2. In the first
step, the list l is filled with True and False values, with respective probability

p
p+q and q

p+q . For this we use a stream of Bernoulli random variables rndBits
that is produced by a function named k-Bernoulli, which we explain below.
The filling process stops when one of the boolean values is drawn once more than

Entropic Uniform Sampling of Linear Extensions in Series-Parallel Posets 81

needed (e.g. reaching p+1 (resp. q+1) times True (resp. False) values). The last
value is then discarded. For example, if l = F :: T :: T :: F :: T :: F :: T :: [] then
F is drawn 3 times although only 2 is needed. So the last F is discarded. In the
second step of the algorithm, a number remaining of boolean values is needed to
complete the list l. These are randomly inserted among the bits already drawn,
by using uniform integer random variables. For example:

l = T :: T :: F :: T :: F :: T :: []
↪→ l = T :: T :: F :: T :: T :: F :: T :: []
↪→ l = T :: T :: F :: T :: T :: F :: T :: T :: []

At the end, the list l contains the required number of booleans values, and as
we justify below, it is drawn uniformly.

An important part of the algorithm is the first test p > log(q)2 ∧ q > log(p)2.
This tests if p is largely smaller than q (or q largely smaller than p). In this
case we skip the Bernoulli drawing step to directly insert the smallest number
of booleans in the bigger one. This particular case is due to a change of rate in
the distribution of the binomial coefficient.

Theorem 6. The RandomCombination algorithm uniformly samples a list
of p True and q False. It uses an entropic number of random bits.

Proof (sketch). Let l be a drawn list of p True and q False. The correctness
proof, is divided into two cases:

– l was drawn entirely during the first step: in this case the probability to
draw l is directly the product of the probability to draw each boolean i.e.(

p
p+q

)p (
q

p+q

)q

and because this probability does not depend of l it is the
same for each l

– l was drawn after p + q − k Bernoulli samples: using the previous argument,
this combination of p+ q −k values is uniformly drawn. Then each remaining
boolean is uniformly inserted, and so, each combination of p + q − k + 1 to
p + q booleans is uniformly built from the previous one

Concerning the random bit efficiency of the algorithm, we assume that k-
Bernoulli is entropic, which we will establish later. Assuming this, the main
idea of the proof is to analyze the number of consumed booleans in the stream
rndBits.

To do this we let the random variable T to be the sum of �True and �False
at the end of the first step (when the list l if filled initially). Thus, we have

P(T = t) =
(

t

p

)(
p

p + q

)p+1 (
q

p + q

)t−p

+
(

t

q

)(
p

p + q

)q−t (
q

p + q

)q+1

Then, we compute the expected value T and get E[T] = (p + q) + o(p + q) when
p > log(q)2 (resp. q > log(p)2). The latter condition justifies the first test of the
algorithm. It remains to count the number of random bits used and to compare

82 O. Bodini et al.

it to the entropy of the combinations of p among p + q elements i.e. the entropy
of

(
p

p+q

)
.

We recall that a uniform integer between 0 and n can be drawn with O(log n)
random bits. We let Bp,q the number of random bits used to sample a Bernoulli
random variable of parameter p

p+q . We recall that the entropy of such variable
is −p log p

p+q − q log q
p+q .

Thus, the number of average random bits used is E[T]Bp,q +o(p+q)O(log n).
The o(p + q)O(log n) term come from the second step of the algorithm i.e. the
uniform insertions of remaining booleans. To conclude, the average number of
random bits used is asymptotically equal to (p + q)Bp,q which is equivalent to
the entropy of

(
p

p+q

)
. ��

Algorithm 5. Sampling of k Bernoulli random variables
function k-Bernoulli(p) � p is less than 1

function k-BernoulliAux(p)

k :=
⌊

log 1
2

log p

⌋
, i := 0

v := a vector of k times True

while ¬Bernoulli(
∑i

�=0

(
k
�

)
pk−�(1 − p)�) do

i := i + 1
j := uniformRandomInt([0 . . . k − 1])
v[j] := False

return v
if p < 1

2
then return negate(k-BernoulliAux(1 − p))

else return k-BernoulliAux(p)

The entropic property of the RandomCombination relies on the entropy
of the k-Bernoulli function, which is described by Algorithm 5. The key idea
is to draw Bernoulli random variables of parameter p by packs, using the fact
that a successful Bernoulli r.v. of parameter pk corresponds to a sequence of k

successes of a Bernoulli r.v. of parameter p. Thus, the parameter k =
⌊
log 1

2
log p

⌋
is

such that pk is close to 1
2 . This allows to draw Bernoulli r.v. of parameter close to

1
2 , for which Bernoulli is entropic. Let us consider the following example of a
call to k-Bernoulli with the argument 2

7 . In that case we let p = 1− 2
7 = 5

7 and
so k = 2. Then we present the different possible runs in the form of a decision
tree. We draw a Bernoulli r.v. of parameter

(
5
7

)2 and:

– if the Bernoulli draw is successful then two successes of Bernoulli r.v. of
parameter 2

7 are returned
– else it is a fail, which means that at least one of the two Bernoulli r.v. of

parameter 2
7 is a fail, which has a probability 2 · 5

7 · 2
7 to happen, so we need

to redraw a new r.v.
• if it is successful, it means that only one variable is a fail and so we need

decide which one

Entropic Uniform Sampling of Linear Extensions in Series-Parallel Posets 83

• else we need to draw one more r.v. of parameter 1, in other words a
successful r.v., and we return two failed r.v.

The last brick of this framework is the Bernoulli algorithm, already known
in the literature (as explained by [6]).

Algorithm 6. Sampling of Bernoulli random variable
function Bernoulli(p) � p is less than 1

function RecBernoulli(a, b, p)
if RandomBit() = 0 then

if m > p then return False

else RecBernoulli(a+b
2

, b, p)
else

if m < p then return True

else RecBernoulli(a, a+b
2

, p)
return RecBernoulli(0, 1, p)

Theorem 7. The Algorithm 6 draws a Bernoulli random variable of parameter
p using, in average, 2 random bits.

Proof. The correction proof is direct. We just remark that if we note K the
number of calls to the recursive RecBernoulli function, K is equal to the
length K prefix of the binary writings of p.

The average number of random bits used is the expectation of K:

E[K] =
∞∑

k=1

k · 1
2

k

=
1
2

·
(

d
dz

1
1 − z

) ∣
∣
∣
∣
z= 1

2

= 2

��
Theorem 8. The Algorithm 5 draws

⌊
log 1

2
log p

⌋
Bernoulli random variable of para-

meter p entropically.

Proof (sketch). Let N be the number of iteration of the while loop in the k-
Bernoulli algorithm, we get that the number of random bits used is upper
bounded by 2N +N log k: the number of bits used to draw N Bernoulli plus the
number of bits used for the N uniform (over [0 . . . k]) r.v. draws.

So, the expected number of random bits used is
k∑

n=0

(
k

n

)

pk−n(1 − p)n(2(n + 1) + n log k) = 2 + (1 − p)(2 + log k)

We have to average it by the number of Bernoulli r.v. drawn this way i.e. k. So,
the average number of random bits used to draw one Bernoulli r.v. of parameter
p is 2

k + (1 − p)(2 + log k). The minimum of this function in k is reached when
k = 2 log 2

1−p , in other word when the average number of random bits used is
greater or equal to 2. This corresponds to the case where k = 1 in the algorithm
k-Bernoulli: in this case we should directly use Bernoulli. In the other case,
we obtain that the average number of random bits used is entropic. ��

84 O. Bodini et al.

References

1. Bodini, O., Genitrini, A., Peschanski, F.: A quantitative study of pure parallel
processes. Electron. J. Comb. 23(1), 39 (2016). P1.11

2. Felsner, S., Wernisch, L.: Markov chains for linear extensions, the two-dimensional
case. In: SODA, pp. 239–247. Citeseer (1997)

3. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,
Cambridge (2009)

4. Huber, M.: Fast perfect sampling from linear extensions. Discr. Math. 306(4),
420–428 (2006)

5. Klein, P., Mozes, S.: Optimization Algorithms for Planar Graphs (to appear)
6. Lumbroso, J.: Optimal discrete uniform generation from coin flips, and applica-

tions. CoRR abs/1304.1916 (2013). http://arxiv.org/abs/1304.1916
7. Möhring, R.H.: Computationally Tractable Classes of Ordered Sets. Report, Insti-

tut für Ökonometrie und Operations Research (1987)
8. Sedgewick, R.: Left-leaning red-black trees. In: Dagstuhl Workshop on Data Struc-

tures. p. 17 (2008)
9. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE

Mobile Comput. Commun. Rev. 5(1), 3–55 (2001)
10. Stanley, R.P.: Enumerative Combinatorics, vol. 1, 2nd edn. Cambridge University

Press, New York (2011)
11. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs.

In: Proceedings of the Eleventh Annual ACM Symposium on Theory of Comput-
ing (STOC 1979), pp. 1–12. ACM, New York (1979). http://doi.acm.org/10.1145/
800135.804393

http://arxiv.org/abs/1304.1916
http://doi.acm.org/10.1145/800135.804393
http://doi.acm.org/10.1145/800135.804393

Parameterized Counting of Trees,
Forests and Matroid Bases

Cornelius Brand(B) and Marc Roth

Saarland University and Cluster of Excellence (MMCI), Saarbrücken, Germany
{cbrand,mroth}@mmci.uni-saarland.de

Abstract. We prove #W[1]-hardness of counting (1) trees with k edges
in a given graph, (2) forests with k edges in a given graph, and (3) bases
of a given matroid of rank (or nullity) k representable over an arbitrary
field of characteristic two, where k is the parameter.

1 Introduction

Parameterized counting complexity has produced results on the hardness of com-
puting the number of paths, cliques and cycles with k edges in a given graph.
One important step was the proof of #W[1]-hardness for computing the num-
ber of k-matchings in a simple graph [3]. This line of research culminated in a
classification theorem of Curticapean and Marx [4] for the following problem:
Given a graph H from a class of graphs H and an arbitrary graph G, compute
the number of all subgraphs of G that are isomorphic to H, parameterized by
|V (H)|. They proved that this problem is fixed-parameter tractable if the vertex
cover number of all graphs in H is bounded by a constant1, and #W[1]-hard
otherwise.

This theorem does not cover the problem of counting all occurrences of all
subgraphs of a certain size that are contained in a fixed class H of graphs. For
example, using their theorem, we can classify the problem of counting all k-
cliques in a graph as #W[1]-hard as follows: For the class H, we take H = {Kn |
n ∈ N}. As n goes to infinity, so does the vertex cover number of Kn, and the
hardness follows. Of course, we might take H to be the set of all trees or all
forests, but then the theorem speaks about the complexity of computing the
number of one specific tree or forest in some given graph, instead of counting
all trees or forests of a given size. It is the complexity of these two problems,
namely counting all trees and counting all forests with a given number of edges
in a given graph that we are concerned with in this paper.

Another problem that has yet escaped a parameterized analysis is the prob-
lem of counting bases in matroids. Matroids have been studied over decades
and play a central role in numerous combinatorial applications (see e.g. [13]).
Although they were treated in the parameterized world (see e.g. [5, Chap. 12] for

1 That is, sup{τ(H) | H ∈ H} < ∞, where τ(H) is the size of a minimum vertex cover
of H.

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 85–98, 2017.
DOI: 10.1007/978-3-319-58747-9 10

86 C. Brand and M. Roth

an overview), the problem of computing the number of bases was only addressed
from the classical point of view so far [12,14,15]. It should be noted that this
problem comprises also a generalization of counting forests in a graph, which
gives the connection to the previously mentioned problems. Building on our
results on counting forests, this gap in knowledge is one we address in the sub-
sequent sections.

1.1 Related Work

It is known that computing the number of all (labeled) trees and computing
the number of all forests are #P-hard problems, even on planar graphs [8,9,16].
A general theorem of Eppstein implies their being fixed-parameter tractable on
planar graphs [6].

The problem of counting k-independent sets in a binary matroid is #P-hard.
This follows from the well-known fact that the k-forests of a graph G correspond
one-to-one to the k-independent sets of the binary matroid represented by the
incidence matrix of G over F2 (see e.g. [14]). Also, counting the bases of a binary
matroid is #P-hard (see e.g. [15]). On the other hand, the number of bases of a
regular matroid can be computed in polynomial time [12].

2 Preliminaries

The integers are denoted by Z. The polynomial ring over some ring R in the
variables x1, . . . , xn is written R[x1, . . . , xn]. The set of matrices with m rows,
n columns and entries from a set X is Mat(n × m,X). For an integer � and a
finite set X, we suggestively denote with

(
X
�

)
the set of subsets of X of size �,

the number of which is
(|X|

�

)
.

2.1 Parameterized Counting Complexity

We begin with basic definitions of parameterized counting complexity, follow-
ing closely Chapt. 14 of the textbook [7], which we recommend to the inter-
ested reader for a more comprehensive overview of the topic. Our fundamental
object of study is the following. A parameterized counting problem (F, k) con-
sists of a function F : {0, 1}∗ → N and a polynomial-time computable function
k : {0, 1}∗ → N, called the parameterization.

A parameterized counting problem (F, k) is called fixed-parameter tractable
if there is an algorithm A for computing F , a constant c > 0 and a computable
function f : N → N such that A is running in time f(k(x))·|x|c for all x ∈ {0, 1}∗.
We say that such an algorithm runs in fpt-time. Let (F, k) and (F ′, k′) be two
parameterized counting problems. Then, a function R : {0, 1}∗ → {0, 1}∗ is
called an fpt parsimonious reduction from (F, k) to (F ′, k′) if

1. For all x ∈ {0, 1}∗, F (x) = F ′(R(x)).
2. R runs in fpt-time.

Parameterized Counting of Trees, Forests and Matroid Bases 87

3. There is some computable g : N → N such that k′(R(x)) ≤ g(k(x)) for all
x ∈ {0, 1}∗.

An algorithm A with oracle access to F ′ is called an fpt Turing reduction from
(F, k) to (F ′, k′) if

1. A computes F .
2. A runs in fpt-time.
3. There is some computable g : N → N such that for all x ∈ {0, 1}∗ and for

all instances y for which the oracle is queried during the execution of A(x),
k′(y) ≤ g(k(x)).

The parameterized counting problem #k-Clique is defined as follows, and is
parameterized by k: Given a graph G and an integer k, compute the number of
cliques of size k in G. The class #W[1] is defined as the set of all parameterized
counting problems (F, k) such that there is an fpt parsimonious reduction from
(F, k) to #k-Clique. A parameterized counting problem (F, k) is called #W[1]-
hard if there is an fpt Turing reduction from #k-Clique to (F, k).

2.2 Matroids

A matroid is a pair M = (E, I) consisting of a finite ground set E and a family
I �= ∅ of subsets of E that satisfies the following axioms:

1. I is downward closed, i.e. if I ∈ I and I ′ ⊂ I, then I ′ ∈ I.
2. I has the exchange property, i.e. if I1, I2 ∈ I and |I1| < |I2|, then there is

some e ∈ I2 − I1 such that I1 ∪ {e} ∈ I.

Note that this entails ∅ ∈ I. The elements of I are called independent sets, and
an inclusion-wise maximal element of I is called a basis of M . The exchange
property warrants that all bases have the same cardinality, and we call this
cardinality the rank of M , written as rk M . Furthermore we define (|E|− rk M)
as the nullity of M . The pair Mk = (E, Ik) with Ik = {I ∈ I | |I| ≤ k} is again
a matroid, called the k-truncation Mk of M .

For a field F , a representation of M over F is a mapping ρ : E → V , where
V is a vector space over F , such that for all A ⊆ E, A is independent if and only
if ρ(A) is linearly independent. M is called representable if it is representable
over some field. If there is such a representation, we call M representable over
F , or F -linear, and it holds that rk(ρ) = rk(M). Conversely, every matrix over
a field F induces an F -linear matroid on its columns, where sets of columns are
independent if and only if they are linearly independent. A k-truncation of a
matrix is the matrix of a representation of the k-truncation of the corresponding
linear matroid, possibly over a different field. Recently, Lokshtanov et al. proved
that a k-truncation of a matrix can be computed in deterministic polynomial
time (see [10], Theorem 3.23).2 In the following we will write Fq for the field
with q elements.
2 A slightly weaker version of this result with a simpler proof that still suffices for our

application seems to follow along the lines of Snook [14].

88 C. Brand and M. Roth

Given a matroid M = (E, I), the dual matroid M∗ of M is a matroid on
the same ground set as M , and B ⊆ E is a basis of M∗ if and only if E\B is a
basis of M . Given a representation of a matroid M , a representation of M∗ in
the same field can be found in polynomial time (see e.g. [11]).

In the following, all matroids will be assumed to be representable, and
encoded using a representing matrix ρ and a suitable encoding for the ground
field. Furthermore, we can, without loss of generality, always assume that ρ has
rk(M) rows, because row operations (multiplying a row by a non-zero scalar,
and adding such multiples to other rows) do not affect linear independence of
the columns of ρ. Hence, any ρ′ obtained from ρ through row operations is a
representation of M . In particular, by Gaussian elimination, we may assume all
but the first rk(M) rows of ρ to be zero.

2.3 Graphs and Matrices

We consider simple graphs without self-loops unless stated otherwise. Given a
graph G we will write n for the number of vertices of G and m for the number
of edges. A k-forest is an acyclic graph consisting of k edges and a k-tree is a
connected k-forest. We say that two graphs G1 = (V1, E1) and G2 = (V2, E2)
are isomorphic if there is a bijection ϕ : V1 → V2 such that for all u, v ∈ V1,
{u, v} ∈ E1 if and only if {ϕ(u), ϕ(v)} ∈ E2. A k-matching of a graph G = (V,E)
is a subset of k edges such that no pair of edges has a common vertex. The
following was established by Curticapean.

Theorem 1 ([3]). Given a graph G and a parameter k, it is #W[1]-hard to
compute the number of matchings of size k in G.

Given a graph G with vertices v1, . . . , vn and edges e1, . . . , em we define the
(unoriented) incidence matrix M [G] ∈ Mat(n × m,F2) of G by M [G](i, j) := 1
if vi ∈ ej and 0 otherwise. A subset of columns of M [G] is linearly independent
(over F2) if and only if the corresponding edges form a k-forest in G.

3 Counting Trees

Definition 1. Given a graph G and a natural number k, we denote the problem
of counting all acyclic, connected subsets of edges of G of size k as #k-Trees,
parameterized by k.

In this section we will prove the hardness of counting trees. For the proof,
we show hardness of an intermediate problem.

Definition 2 (Weighted k-trees). Given a graph G = (V,E) with edge weights
{we}e∈E and k ∈ N, #k-WTrees is defined as the problem of computing

WTk(G) :=
∑

t∈Tk(G)

∏

e∈t

we,

where Tk(G) is the set of all acyclic, connected edge sets of size k in G.

Parameterized Counting of Trees, Forests and Matroid Bases 89

Note that this polynomial bears some similarity with the multivariate forest
polynomial, to be defined in the next section. In fact, both polynomials have in
common that they can be viewed as the multivariate generating functions of the
respective structures in a graph.

Borrowing an idea from [1] in the context of counting forests, we first consider
the above polynomial on a modified graph, namely after adding an apex, and
show that this reveals information on the number of k-matchings in the original
graph. More precisely, edges incident to the apex will be assigned a weight z
which leads to the following intermediate problem.

Definition 3. Let k be a natural number, G = (V,E) be a graph with an apex
a ∈ V , that is, a vertex that is adjacent to every other vertex, and edge weights
{we}e∈E such that we = 1 for all edges e that are not adjacent to a and we = z
for a fixed z ≤ k otherwise. Then we denote the problem of computing WTk(G)
parameterized by k as #k-WApexTrees.

Lemma 1. #k-WApexTrees is #W[1]-hard.

Proof. First, we will outline the proof: The problem we are reducing from is the
problem of counting k-matchings. That is, given a graph G we want to compute
the number of k matchings by using an oracle for #k-WApexTrees. To do
so, we are going to add x isolated vertices to G and after that, add an apex a
(that is adjacent to every vertex in G and to every isolated vertex). We call the
resulting graph Gx. The first step in the reduction is to count the number of trees
containing 2k edges such that exactly k edges are incident to a. This number
can be computed by assigning weight z to every edge incident to a (yielding
a graph we call Gx,z), computing the value of WT2k, which is a polynomial
in z, for different values of z and then interpolating the coefficient of zk. Note
that we can compute this number for different values of x. After that we show
that those numbers induce a system of linear equations with a unique solution.
Finally we prove that one entry of the solution vector is the number of 2k-trees
in G0 such that (1) exactly k edges are incident to a and (2) for each of those
edges {v1, a}, . . . , {vk, a} there exist u1, . . . , uk such that {u1, v1}, . . . , {uk, vk}
are also contained in the tree. As trees do not contain cycles, we have that the ui

are pairwise different which implies that trees satisfying (1) and (2) correspond
(up to a factor of 2k) to the k-matchings in G.

As stated before, we reduce from the problem of counting k-matchings. Let
G = (V,E) be a graph with n = |V |. For x and z we construct the graph Gx,z

as follows:

– Add x isolated vertices to G.
– Add a vertex a to G and connect a to all other vertices, including the isolated

ones (i.e., a is an apex).
– Assign weights to the edges as follows: If a /∈ e then set we = 1. Otherwise

set we = z.

The unweighted version of Gx,z is just denoted by Gx. Furthermore we denote
the set of edges adjacent to a as Ea

x . Now fix x and compute for all i ∈ {0, . . . , 2k}

90 C. Brand and M. Roth

the value Pi(x) = WT2k(Gx,i) with an oracle for #k-WApexTrees. This cor-
responds to evaluating the following polynomial in points 0, . . . , 2k:

Qx(z) =
∑

t∈T2k(Gx)

∏

e∈t

we =
∑

t∈T2k(Gx)

∏

e∈t
a/∈e

1 ·
∏

e∈t
a∈e

z =
∑

t∈T2k(Gx)

z|Ea
x∩t|

Therefore, we can interpolate all coefficients. In particular, we are interested in
the coefficient of zk, which is the number of trees of size 2k in Gx, such that
exactly k edges of the tree are adjacent to the apex a. We call these trees apex-
fair, and denote their set as Fx. Now, consider an edge e = {v, a} of such an
apex-fair tree t that is adjacent to a. We call e apex-isolated if v is not incident
to any other edge of t. Otherwise we call e apex-connected, and we call the
subtree tc of t without apex-isolated edges apex-connected as well.3 Note that tc

is indeed a tree, not only a forest. Furthermore, tc is a tree in G0 as edges that
are connected to isolated vertices cannot be apex-connected.

We observe that for an apex-fair tree t in Gx, the subtree tc in G0 has exactly
s−k apex-connected edges, where s is the number of edges in tc: Since t is apex-
fair, we know that exactly k of the edges in t are not incident to a, and thus by
definition, such an edge cannot be apex-isolated. Hence, these k edges are also
in tc, meaning that the remaining s − k edges in tc have to be incident to the
apex, and indeed, they have to be apex-connected, since all apex-isolated edges
were removed from t when constructing tc.

We can partition the set Fx of apex-fair trees in Gx by the number s of edges
that the corresponding apex-connected tree contains, say

Fx =
2k⋃

s=0

Bx(s)

where Bx(s) is the set of apex-fair trees t in Gx such that tc is of size s. Clearly,
this union is disjoint, and Bx(i) = ∅ for 0 ≤ i ≤ k, since we consider apex-fair
trees, meaning that |Fx| =

∑2k
s=k |Bx(s)|. Now, consider a single apex-fair tree

t ∈ Bx(s) for some fixed s, which is hence of size 2k. Then, as argued, tc has
exactly s − k apex-connected edges, and k edges not incident to the apex. This
leaves 2k−s edges of t to be chosen, and since there are already k edges present in
tc that are not incident to the apex, and t is apex-fair, all these 2k−s edges have
be incident to the apex, and also have to be apex-isolated, since otherwise they
would be in tc. By the construction of Gx, there are n+x possible choices for the
apex-isolated edges in total, but s of these are already occupied by tc, leaving
n+x−s choices for the 2k−s remaining edges. Hence, for every apex-connected
tree tc, there are exactly

(
n+x−s
2k−s

)
fair trees t′ such that t′c = tc. Letting βs be

the number of apex-connected trees of size s, this amounts to

|Bx(s)| = βs ·
(

n + x − s

2k − s

)

3 This terminology stems from the fact that the removal of a leaves v isolated.

Parameterized Counting of Trees, Forests and Matroid Bases 91

and thus

|Fx| =
2k∑

s=k+1

βs ·
(

n + x − s

2k − s

)
.

For convenience, we perform an index shift on β, and find

|Fx| =
k∑

s=1

βs+k ·
(

n + x − (k + s)
k − s

)
.

We can then evaluate |Fx| for x ∈ {1, . . . , k} and solve for the βs. To do so,
we show that the corresponding matrix A ∈ N

k×k, defined by

Ai,j =
(

i + n − k − j

k − j

)

has full rank.
Its j-th column is an evaluation vector of the polynomial

Rj(x) =
(

x + n − k − j

k − j

)
.

The degrees of the polynomials Rj are pairwise distinct and hence, the polyno-
mials and the evaluation vectors are as well. It follows that A has full rank, i.e.,
we can indeed compute the coefficients βs.

Finally, consider β2k: This is the number of apex-connected trees in G0 with
k edges in G0 and k apex-connected edges. It follows that these trees correspond
to k-matchings in G, more precisely, for every k-matching in G, there are 2k

such apex-connected trees. This concludes the proof.
�
In the proof of Lemma 1 we exploited the fact that the weights of edges incident
to the apex can be used to enforce some desired structure via interpolation.
One might wonder why we explicitly enforced the edges with weight �=1 to be
incident to the apex and the weights of those edges to be equal in the definition
of #k-WApexTrees, instead of just defining a canonical edge-weighted variant
of the problem of counting trees. The reason for this is the fact that we need
this very structure in order to get rid of the weights and reduce to #k-Trees,
at least in our reduction. Before we do this reduction, we prove another lemma.

Lemma 2. Let G = (V,E) be a simple graph and A ⊆ E a subset of edges
of size z. Then, the problem of computing the number of (k + z)-trees whose
edges contain A can be solved in time O(2z) · poly(|V |) if access to an oracle for
#k-Trees is provided.

Proof. Let S be a subset of edges of G. We define TS as the set of all (k + z)
trees in G that do not contain any edge in S. Note that we can compute |TS |

92 C. Brand and M. Roth

by deleting all edges in S and computing the number of (k + z)-trees in G by
posing an oracle query. Furthermore, it holds that

TS1 ∩ TS2 = TS1∪S2 (1)

for any two subsets of edges S1 and S2. Let T be the set of all (k + z) trees in
G, i.e., T := T∅. Now we can express the number of (k + z) trees whose edges
contain A as

|T\
⋃

e∈A

T{e}|.

Using the inclusion-exclusion principle, we get

|T\
⋃

e∈A

T{e}| = |T | −
∑

∅	=J⊆A

(−1)|J|−1 |
⋂

e∈J

T{e}| = |T | −
∑

∅	=J⊆A

(−1)|J|−1 |TJ |

where the second equality follows from (1). Finally, we observe that there are
exactly 2z summands, each of which can be computed by posing an oracle query
for the corresponding TJ .
�

This allows us to make the final step in the proof of Theorem2:

Lemma 3. #k-WApexTrees is fpt Turing reducible to #k-Trees.

Proof. Let k be a natural number and G = (V ∪ {a}, E ∪ V × {a}) be a graph
with apex a and edge weights as in Definition 3. The goal is to compute

WTk(G) =
∑

t∈Tk(G)

∏

e∈t

we,

where we = z if a ∈ e and we = 1 otherwise. First, we point out that Tk(G) can
be partitioned into trees (with k edges) that do not contain a and trees that do
contain a. We denote the set of the latter as T a

k (G). Then we have that

WTk(G) =
∑

t∈Tk(G)

∏

e∈t

we =
∑

t∈Tk(G−{a})

∏

e∈t

we +
∑

t∈Ta
k (G)

∏

e∈t

we

= |Tk(G − {a})| +
∑

t∈Ta
k (G)

∏

e∈t

we.

Now |Tk(G − {a})| can be computed by querying the oracle. If z = 0 then∑
t∈Ta

k (G)

∏
e∈t we = 0 as well, that is, we are done. Otherwise we need to realise

the edges with weight z to compute
∑

t∈Ta
k (G)

∏
e∈t we. To do so, we construct

the graph Gz = (V z, Ez) from G as follows:

– Delete the apex and the adjacent edges.
– Add apices a1, . . . , az (including edges to all vertices in G).
– Add a vertex a and edges {a, ai} for all i ∈ [z].

Parameterized Counting of Trees, Forests and Matroid Bases 93

We first sketch the idea of the proof: Let T̂ be the set of all trees with k + z
edges in Gz such that all edges {a, a1}, . . . , {a, az} are met and let t ∈ T̂ . As t is
connected, there is at least one vertex v in G−{a} such that {v, ai} is contained
in t for an i ∈ [z]. Furthermore, for every vertex v in G − {a} at most one of
the edges {v, a1}, . . . , {v, az} can be contained in t, because otherwise t would
have a cycle. This means that taking one of the edges {v, a1}, . . . , {v, az} in Gz

corresponds to taking edge {v, a} of weight z in G. We will prove that

|T̂ | =
∑

t∈Ta
k (G)

∏

e∈t

we.

Finally we will use Lemma 2, that is, an application of the inclusion-exclusion
principle, to compute |T̂ |.
Now let t ∈ T̂ . As stated above we claim that for every vertex v in G − {a} at
most one of the edges {v, a1}, . . . , {v, az} can be contained in t. Assuming not,
there is a vertex v in G − {a} and indices i �= j such that {v, ai} and {v, aj}
are contained in t, but this induces the cycle (a, ai, v, aj , a) which contradicts
the fact that t is a tree. Now we define a mapping f : T̂ → T a

k (G) as follows:
For every edge e = {u, v} in G − {a}, e is contained in f(t) if and only if e is
contained in t and for every edge ea = {v, a}, e is contained in f(t) if and only
if there is an i ∈ [z] such that {v, ai} is contained in t. Note that f(t) contains a
as there is at least one vertex v in G − {a} such that {v, ai} is contained in t for
an i ∈ [z]. For a tree tG ∈ T a

k (G) we define g(tG) := {t ∈ T̂ | f(t) = tG}. Now let
T a

k (G)[�] be the set of all trees tG ∈ T a
k (G) such that there are exactly � vertices

v in G−{a} such that {v, a} is contained in tG. For every such vertex, there are
z possibilities to construct a tree t ∈ T̂ such that f(t) = tG (by taking one of
the edges {v, a1}, . . . , {v, az}). Hence |g(tG)| = z� if tG ∈ T a

k (G)[�]. Furthermore
we claim that

T̂ =
⋃̇

tG∈Ta
k (G)

g(tG).

This follows from the observation that the sets g(tG) are the classes of the
equivalence relation t ∼ t′ ⇔ f(t) = f(t′). Putting everything together we have

∑

t∈Ta
k (G)

∏

e∈t

we =
k∑

�=1

∑

t∈Ta
k (G)[�]

∏

e∈t

we =
k∑

�=1

∑

t∈Ta
k (G)[�]

z�

=
k∑

�=1

∑

t∈Ta
k (G)[�]

|g(t)| =
∑

t∈Ta
k (G)

|g(t)| =
∣
∣
∣
∣
⋃̇

tG∈Ta
k (G)

g(tG)
∣
∣
∣
∣ = |T̂ |

It remains to show how to compute |T̂ | with an oracle for #k-Trees. This
can be done by applying Lemma2 with A = {{a, a1}, . . . , {a, az}}.
�

We can thus state:

Theorem 2. #k-Trees is #W[1]-hard when parameterized by k.

94 C. Brand and M. Roth

Proof. In Lemma 1 it was shown that #k-WApexTrees is #W[1]-hard.
In Lemma 3 we proved that #k-WApexTrees is fpt Turing reducible to
#k-Trees. It follows that #k-Trees is #W[1]-hard as well.

4 Counting Forests

In this section, we will prove that counting k-forests is #W[1]-hard. This result
will be used to show hardness of counting matroid bases in fields of fixed char-
acteristic.

Definition 4. Let G = (V,E) be a multigraph with edges labeled with formal
variables {we}e∈E. Then the multivariate forest polynomial of G is defined as

F (G; {we}e∈E) =
∑

A⊆E acyclic

∏

e∈A

we.

The polynomial obtained by replacing all weights we with a fresh variable x, i.e.,
setting we = x for all e ∈ E and x /∈ {we | e ∈ E}, is called the univariate forest
polynomial of the graph and is simply denoted F (G;x).

For a forest A in G, let c(A) be the family of all sets T ⊆ V (G) such that
T �= ∅ and T is a maximal connected component in A. Adding an apex, that is,
a new vertex that is connected to all other vertices, to a graph G = (V,E) and
labeling each of the new edges with a new variable z makes the univariate forest
polynomial into a bivariate one, namely F (G′;x, z), where G′ is the described
graph with an added apex. In the following, G will always be the original graph,
and G′ will be the graph obtained in this way.

Note that F (G′;x, z) ∈ Z[x, z] ∼= (Z[z])[x]. In particular, the coefficient of xk

in F (G′;x, z) is an element of Z[z]. To make this very clear in the following, we
shall refer to this element of Z[z] as the coefficient polynomial of xk in F (G′;x, z).

Lemma 4. There is a polynomial-time Turing reduction from counting match-
ings of size k in a graph G to computing the coefficient polynomial of xk of the
bivariate forest polynomial F (G′;x, z) of the graph G′, parameterized by k in
both problems. In particular, this reduction retains the parameter k and is thus
even an fpt Turing reduction.

Proof. The coefficient polynomial Ck(z) ∈ Z[z] of xk in F (G′;x, z) can be
expressed in terms of G through

Ck(z) =
∑

A∈(Ek) acyclic in G

∏

T∈c(A)

(1 + |T |z),

as follows immediately from Lemma 7 in [1] after specializing to x and z. Since
a forest in G with k edges can cover at most 2k nodes of G, at least n−2k nodes
of G are left uncovered by T , and are thus present in c(A) as components T with

Parameterized Counting of Trees, Forests and Matroid Bases 95

|T | = 1. This shows that the product
∏

T∈c(A)(1 + |T |z) of each summand (and
hence also Ck(z)) is a multiple of (1 + z)n−2k. Thus, the polynomial quotient

Qk(z) := Ck(z)/(1 + z)n−2k

is a well-defined element of Z[z].
Observe that it is precisely the k-matchings of G that will have 2k covered and

n − 2k uncovered nodes, and such a k-matching has k components with |T | = 2,
and n − 2k components with |T | = 1. Therefore, the summand corresponding
to some A in Ck(z) is of the form (1 + z)n−2k(1 + 2z)k if and only if A is a k-
matching. Likewise, the number of k-matchings is precisely the number of such
monomials in Ck(z). In all other monomials, the factor (1 + z) is hence present
with degree at least n − 2k + 1. Denote with Mk the number of k-matchings in
G. After substituting z �→ y−1 (hence, y = z +1), this can be stated as follows:

Qk(y) = Ck(y)/yn−2k = Mk · (2y − 1)k + y · R(y)

for some polynomial R(y). We see that for y = 0, y ·R(y) = 0, and hence, keeping
in mind that z = y − 1, it follows

Qk(y = 0) = Qk(z = −1) = Mk · (−1)k.

We now argue why this is an fpt Turing reduction. Note that in the coor-
dinates yi, the polynomial division is just a shift of coefficients. Therefore, an
oracle to the k-th coefficient polynomial of F (G′;x, z), as provided in a Turing
reduction, yields the polynomial Ck(z). After a change of basis from z to y − 1
and a corresponding shift of coefficients to perform the division by yn−2k, we
can evaluate the resulting polynomial Qk(y) at y = 0 and obtain Mk · (−1)k and
thus Mk. This can clearly be done in polynomial time in the size of G (and k,
for that matter) once Ck(z) was obtained, and the only oracle query involved
does not alter the parameter and is hence valid for an fpt Turing reduction.
�

This proves that the coefficient polynomial of xk in the bivariate polynomial
F (G′;x, z) is hard to compute. We now want to show that this implies that the
k-th coefficient (which is a natural number, not a polynomial) of the univariate
polynomial is hard to compute. We do this by reducing the computation the
coefficient polynomial of xk in F (G′;x, z) to computing the k-th coefficient in a
suitable univariate forest polynomial.

We first show that, although the degree of the coefficient polynomial Ck(z)
(in the bivariate case) is not bounded by f(k), but Ω(n), it suffices to know
O(k) coefficients of the coefficient polynomial Ck(z) in order to reconstruct the
whole coefficient polynomial. This is essentially an application of the Chinese
Remainder Theorem for polynomials, and is given in detail in the full version [2].

Lemma 5. There is an fpt Turing reduction from computing the coefficient poly-
nomial Ck(z) of xk in F (G′;x, z) to computing the first k coefficients of univari-
ate forest polynomials on multigraphs.

96 C. Brand and M. Roth

Combining the above proves:

Theorem 3. Given a graph G and a number k, it is #W[1]-hard to compute
the number of acyclic subsets of edges of size k in G, parameterized by k.

Proof. Combining Theorem 1 with Lemmas 4 and 5 yields that computing the
first k coefficients of the univariate forest polynomial of multigraphs is #W[1]-
hard. Using Lemma 9 from [1] allows to express the forest polynomial of the
multigraph G as F (G;x) = p(x) · F (G′; g(x)), where p, g : R → R are functions
such that g is invertible and G′ is a simple graph. Now, observe that computing
the mapping G �→ Fk(G;x) is #W[1]-hard for each fixed x, where Fk(G;x) is the
forest polynomial F (G;x) evaluated at x only over the first k coefficients: It is
easy to see that Fk(G; ax) = Fk(G(a);x), where G is the graph obtained from G
by replacing each edge with a copies of weight x. By using k different values for
a, this would allow polynomial interpolation of the first k coefficients of F (G;x).
Employing now the equation Fk(G;x) = p(x) · Fk(G′; g(x)) and the properties
of g, this shows that computing the mapping G′ �→ Fk(G′;x) on simple graphs
G′ is #W[1]-hard for all x, and hence also for x = 1, where it coincides with
counting forests.
�

5 Counting Matroid Bases

Definition 5. The problem of computing the number of bases of a matroid para-
meterized by its rank (nullity) is denoted as #Rank-Bases (#Nullity-Bases).

Lemma 6. The problem of counting k-forests in a simple graph is fpt Turing
reducible to the problem #Rank-Bases, even when the matroid is restricted to
be representable over a field of characteristic 2.

Proof. Given a graph G = (V,E) with |V | = n and |E| = m and a natural
number k, we want to count the k-forests of G. Therefore we first construct
the incidence matrix M [G] ∈ Mat(n × m,F2) of G. Recall that the linearly
independent k-subsets of columns of M [G] correspond one-to-one to k-forests
in G. In the next step, we compute the reduced row echelon form of M [G] by
applying elementary row operations. As stated in the beginning, these operations
do not change the linear dependency of the column vectors. Then, we delete the
zero rows which also does not change the linear dependency of the columns. We
denote the resulting matrix as M red[G]. Now, let r be the rank of M red[G], which
equals the rank of M [G]. Note that M red[G] ∈ Mat(r ×m,F2). If r < k, then we
output 0, as G does not have any k-forests in this case. Otherwise, we k-truncate
M red[G] in polynomial time by the deterministic algorithm of Lokshtanov et al.
[10] and end up with the matrix M (k)[G] ∈ Mat(k × m,F2rk). Observe that the
linear dependency of the column vectors is preserved, i.e., whenever columns
c1, . . . , ck are linearly independent in M [G], they are also linearly independent
in M (k)[G] and vice versa. Therefore, the rank of M (k)[G] is at least k, since
M [G] has rank greater or equal k. As M (k)[G] has only k rows, it follows that the

Parameterized Counting of Trees, Forests and Matroid Bases 97

rank is exactly k, i.e., M (k)[G] has full rank. Furthermore, the number of linearly
independent k-subsets of columns of M (k)[G] equals the number of k-forests in
G. As the rank of M (k)[G] is full, we conclude that the number of bases of the
matroid that is represented by M (k)[G] equals the number of k-forests in G.
Finally, this matroid is representable over F2rk—a field of characteristic 2—by
construction.
�
Lemma 7. The problem of counting k-forests in a simple graph is fpt Turing-
reducible to the problem #Nullity-Bases, even when the matroid is restricted
to be representable over a field of characteristic 2.

Proof. We proceed as in the proof of Lemma 6. Having M (k)[G], we construct
its dual matroid M∗[G], which can be done in polynomial time (see e.g. [11]). It
holds that the number of bases of M∗[G] equals the number of bases of M (k)[G].
Furthermore, the rank of M∗[G] is n − k, i.e., its nullity is k, which concludes
the proof.
�
Theorem 4. #Rank-Bases and #Nullity-Bases are #W[1]-hard, even
when restricted to matroids representable over a field of characteristic 2.

Proof. Follows from Lemmas 6, 7 and Theorem 3.
�
One might ask whether the same is true for matroids that are representable

over a fixed finite field. Due to Vertigan [15], it is known that the classical
problem of counting bases in binary matroids is #P-hard. However, it is fixed-
parameter tractable for each fixed finite field.

Theorem 5. For every fixed finite field F, the problems #Rank-Bases and
#Nullity-Bases are fixed parameter tractable for matroids given in a linear
representation over F.

Proof (of Theorem 5). We give an fpt algorithm for #Rank-Bases.
For #Nullity-Bases, an algorithm follows by computing the dual matroid as
in the proof of Lemma 7.

Let s be the size of the finite field, M be the representation of the given
matroid and let k be its rank. We can assume that M only has k rows. For
otherwise, we can compute the reduced row echelon form and delete zero rows,
which does not change the linear dependencies of the column vectors. If M has
only k rows, then there are at most sk different column vectors. Therefore, we
remember the muliplicity of every column vector and delete multiple occurences
afterwards. We end up with a matrix with at most sk columns. Then, we can
check for every k-subset of columns whether they are linearly independent. If
this is the case, we just multiply the multiplicities of the columns and in the
end, we output the sum of all those terms. The running time of this procedure
is bounded by

(
sk

k

) · poly(n), where n is the number of columns of the matrix.
�

Acknowledgements. The authors wish to thank Markus Bläser, Radu Curticapean,
Holger Dell and Petr Hliněný for helpful comments on this work.

98 C. Brand and M. Roth

References

1. Brand, C., Dell, H., Roth, M.: Fine-grained dichotomies for the tutte plane and
boolean #CSP. In: 11th International Symposium on Parameterized and Exact
Computation (IPEC 2016), 24–26 August 2016, Aarhus, Denmark, pp. 9:1–9:14
(2016)

2. Brand, C., Roth, M.: Parameterized counting of trees, forests and matroid bases.
CoRR, abs/1611.01823 (2016)

3. Curticapean, R.: Counting matchings of size k Is �W[1]-Hard. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965,
pp. 352–363. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39206-1 30

4. Curticapean, R., Marx, D.: Complexity of counting subgraphs: only the bound-
edness of the vertex-cover number counts. In: 55th IEEE Annual Symposium on
Foundations of Computer Science (FOCS 2014), Philadelphia, PA, USA, 18–21
October 2014, pp. 130–139 (2014)

5. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Heidelberg (2015)

6. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. In:
Graph Algorithms and Applications, p. 283 (2002)

7. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Heidelberg (2006)

8. Gebauer, H., Okamoto, Y.: Fast exponential-time algorithms for the forest counting
and the Tutte polynomial computation in graph classes. Int. J. Found. Comput.
Sci. 20(1), 25–44 (2009)

9. Jerrum, M.: Counting trees in a graph is #P-complete. Inf. Process. Lett. 51(3),
111–116 (1994)

10. Lokshtanov, D., Misra, P., Panolan, F., Saurabh, S.: Deterministic truncation of
linear matroids. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B.
(eds.) ICALP 2015. LNCS, vol. 9134, pp. 922–934. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-47672-7 75

11. Marx, D.: A parameterized view on matroid optimization problems. Theor. Com-
put. Sci. 410(44), 4471–4479 (2009)

12. Maurer, S.B.: Matrix generalizations of some theorems on trees, cycles and cocycles
in graphs. SIAM J. Appl. Math. 30(1), 143–148 (1976)

13. Oxley, J.G.: Matroid Theory. Oxford University Press, New York (1992)
14. Snook, M.: Counting bases of representable matroids. Electr. J. Comb. 19(4), P41

(2012)
15. Vertigan, D.: Bicycle dimension and special points of the Tutte polynomial. J.

Comb. Theory Ser. B 74(2), 378–396 (1998)
16. Vertigan, D., Welsh, D.J.A.: The compunational complexity of the Tutte plane.

Comb. Probability Comput. 1, 181–187 (1992)

http://dx.doi.org/10.1007/978-3-642-39206-1_30
http://dx.doi.org/10.1007/978-3-662-47672-7_75

Generalized Dyck Shifts

Marie-Pierre Béal(B) and Pavel Heller

Laboratoire d’informatique Gaspard-Monge, UMR 8049 CNRS,
Université Paris-Est, Marne-la-Vallée Cedex, France

{beal,pavel.heller}@u-pem.fr

Abstract. We introduce a new class of subshifts of sequences, called
generalized Dyck shifts, which extends the class of Dyck shifts introduced
by Krieger. The finite factors of these shifts are factors of generalized
Dyck words. Generalized Dyck words were introduced by Labelle and
Yeh who exhibited unambiguous algebraic grammars generating these
context-free languages. Other unambiguous algebraic grammars for gen-
eralized Dyck languages were found by Duchon. We define a coding of
periodic patterns of generalized Dyck shifts which allows to compute
their zeta function. We prove that the zeta function of a generalized
Dyck shift is the commutative image of the generating function of an
unambiguous context-free language and is thus an N-algebraic series.

1 Introduction

The Dyck shift introduced by Krieger in [9] is the set of bi-infinite sequences of sym-
bols whose finite factors are factors of Dyck words, or well-parenthesized words. To
be well-parenthesized, a word needs to have exactly as many opening parentheses
(represented here by the letter a) as closing parentheses (represented by the let-
ter b) with the added condition that each opening parenthesis is matched with a
closing parenthesis. If one gives the height value +1 to the letter a and the height
value −1 to the letter b, this condition means that the total height of a Dyck word
is 0 and the height of each prefix of a Dyck word is nonnegative.

Dyck shifts are symbolic dynamical systems which are not sofic and belong to
larger classes of shifts like Markov-Dyck shifts (see [10,13]), or sofic-Dyck shifts
(see [1]).

In [11] Labelle and Yeh introduced the notion of generalized Dyck words
where potentially a larger set of height values are used. They proved the unam-
biguous context-free nature of generalized Dyck words and exhibited unambigu-
ous context-free grammars for these languages. In [6], Duchon gave new unam-
biguous context-free grammars for them. Generalized Dyck words were also stud-
ied from the point of view of Lyndon words by Melançon and Jacquet in [7].

In this paper we show how to define a shift from generalized Dyck words.
This shift is called a generalized Dyck shift. We assign class values to letters

This work is supported by the French National Agency (ANR) through “Programme
d’Investissements d’Avenir” (Project ACRONYME no. ANR-10-LABX-58) and by
the region of Île-de-France through the DIM RDM-IdF.

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 99–111, 2017.
DOI: 10.1007/978-3-319-58747-9 11

100 M.-P. Béal and P. Heller

(for instance, we assign the class value α to the letters a and b). In order to get
a nontrivial shift we need to have at least two class values. Generalized Dyck
words and factor-free generalized Dyck words are defined recursively as follows.
Factor-free generalized Dyck words are the nonempty sequences w of letters of
a same class such that h(w) = 0, h(w1) > 0 for any proper prefix w1 of w,
and which have no proper factor with these properties. This includes the letters
of height 0. Generalized Dyck words are defined as either the empty word or
sequences a1d1 · · · akdk where di are generalized Dyck words and a1 · · · ak is a
factor-free generalized Dyck word. The generalized Dyck shift is the set of bi-
infinite sequences of symbols whose finite factors are factors of generalized Dyck
words. These shifts extend the Dyck shift of Krieger.

We give a computation of the zeta function of generalized Dyck shifts which
counts the periodic sequences of the shift. We prove that the multivariate zeta
function of a generalized Dyck shift is the commutative image of a product of
the generating series of the stars of unambiguous context-free circular codes, the
codes being cyclically disjoint. The result is based on an encoding of the periodic
patterns of the shift. As a consequence the zeta function of a generalized Dyck
shift is an N-algebraic series.

Section 2 provides some background on shifts. In Sect. 3 we define the notions
of generalized Dyck words and generalized Dyck shifts. We give unambiguous
context-free grammars generating several languages linked to generalized Dyck
words. The computation of the multivariate and ordinary zeta functions of a
generalized Dyck shift is given in Sect. 4. This section contains the decomposition
of the multivariate zeta function of a generalized Dyck shift into the commutative
image of a product of the generating series of the stars of two unambiguous
context-free circular codes.

2 Background on Shifts

We refer to [12] for basic notions in symbolic dynamics. Let A be a finite alpha-
bet. We denote by A∗ the set of words over A and by A+ the set of nonempty
words over A.

A factor of a word w is a word u such that w = vuz for some words v, z.
A proper factor of a word w is a factor distinct from w and the empty word.

A shift of sequences X is defined as the set XF of bi-infinite sequences of
symbols of A avoiding some set F of finite words (i.e. having no finite factor in
F). The set F is called a set of forbidden factors of X. We denote by B(X) the
set of finite blocks of X, that is the set of allowed finite factors of X.

When F can be chosen finite (resp. regular, visibly pushdown), X is called
a shift of finite type (resp. a sofic shift, a sofic-Dyck shift). The full shift over A
is the set AZ.

Shifts of sequences may be defined as closed subsets of AZ invariant by
the shift transformation σ, where σ((xi)i∈Z) = (xi+1)i∈Z. Sets of bi-infinite
sequences which are invariant by the shift transformation without being nec-
essarily closed subsets of AZ are called σ-invariant sets. The orbit of a sequence

Generalized Dyck Shifts 101

x ∈ AZ is the set of all σi(x) for i ∈ Z. A period of a sequence x ∈ AZ is a
positive integer p such that σp(x) = x.

A (topological) conjugacy from X ⊆ AZ to Y ⊆ BZ is a bijective continuous
map from X onto Y which commutes with the shift transformation. Observe
that a conjugacy preserves the periods of a sequence.

3 Generalized Dyck Words

In this paper, we consider a finite alphabet A ⊂ Z × Σ, where Σ is a finite
alphabet, equipped with two functions: a height function h from A to Z and a
class function c from A to Σ. Letters with positive height will be denoted by
A+ and letters with negative height by A−. The set of letters of class α will
be denoted by Aα. The set of letters of class α with positive (resp. negative)
height is denoted by Aα,+ (resp. Aα,−). We assume that all sets Aα have both
letters with a positive and with a negative height. We set (iα, α) ∈ Aα,+ and
(−jα, α) ∈ Aα,−. The height of a nonempty word is the sum of the height of its
letters. The height of the empty word is 0.

A factor-free generalized Dyck word is a nonempty sequence w of letters
of a same class such that h(w) = 0, h(w1) > 0 for any proper prefix w1 of w,
and which has no proper factor with these properties. This includes the letters of
height 0. Note that it is a sequence of letters in a same class. We denote by D̃α the
set of factor-free generalized Dyck words in A+

α and D̃ = �αD̃α. A generalized
Dyck word is defined recursively as follows. It is either the empty word or a
sequence a1d1 · · · akdk where each di is a generalized Dyck word and a1 · · · ak

is a factor-free generalized Dyck word, or a concatenation of generalized Dyck
words. We denote by Dα the set of generalized Dyck words built from factor-free
sequences a1 · · · ak in A+

α . We denote by D the set of generalized Dyck words.
Note that D = ∪αDα ∪ {ε}.

Hence a nonempty generalized Dyck word can be obtained by inserting after
each letter of a factor-free generalized Dyck word, other generalized Dyck words.
Further (see [6, Theorem 7]) this decomposition is unique.

A word is factor-free if no proper factor of this word belongs to D. The set
of factor-free words of a language L is denoted by L̃. Generalized Dyck words
(resp. factor-free generalized Dyck words) will be simply called Dyck words (resp.
factor-free Dyck words).

A prime Dyck word over A is a Dyck word which is not empty and not the
product of shorter Dyck words. Note that the empty word is a Dyck word which
is not prime. We denote by P the set of prime Dyck words.

Observe that P is a prefix and suffix code. A factor-free Dyck word is prime
but the converse is not true. If w is a Dyck word over A then h(w) = 0 and
h(w1) ≥ 0 for each prefix w1 of w. If w is a prime Dyck word over A then
h(w) = 0 and h(w1) > 0 for each proper prefix w1 of w.

Example 1. Let Σ = {α, β} and A = {a = (+3, α), b = (−2, α), a′ =
(+3, β), b′ = (−2, β)}. The word ababb is a factor-free Dyck word over A,

102 M.-P. Béal and P. Heller

Fig. 1. The prime Dyck word a(a′b′a′b′b′)b(a′b′a′b′b′)abb of Example 1. Symbols a or
a′ are represented by up edges while symbols b or b′ by down edges according to the
height of the symbols. Symbols in Aα (resp. Aβ) are represented by red (resp. blue)
edges. (Color figure online)

a(a′b′a′b′b′)b (a′b′a′b′b′) abb (see Fig. 1) is a prime Dyck word over A which
is not factor-free.

The generalized Dyck shift over A is the set of bi-infinite sequences whose
blocks are factors of a Dyck word over A. We denote this shift by XA. It is thus
a coded system as defined by Blanchard and Hansel [4].

Example 2. If Σ is a singleton the generalized Dyck shift is just the full shift,
i.e. the set of all bi-infinite sequences over A. So the notion of generalized Dyck
shift is interesting only for alphabets Σ of size at least two.

Example 3. If Σ = {α, β} and A = {“(“ = (+1, α),′′)′′ = (−1, α), “[“ =
(+1, β),′′]′′ = (−1, β)}, the shift XA is the Dyck shift with two kinds of paren-
theses.

Example 4. If Σ = {α, β} and A = {a = (+3, α), b = (−2, α), a′ = (+3, β), b′ =
(−2, β)}, for instance the sequences · · · bbb.aaaa · · · , ω(aba′b′abbaba′b′b′abb)ω

belong to XA.

Following Duchon [6] we set m = maxa∈A+ h(a), n = −mina∈A− h(a). We
define for α ∈ Σ, i > 0, j > 0,

– L̃i,α the set of factor-free words w ∈ A+
α with height i such that each proper

prefix w1 of w has a height h(w1) > i.
– R̃j,α the set of factor-free words w ∈ A+

α with height −j such that each proper
prefix w1 of w has a height h(w1) > 0.

– Li,α
1 the set of nonempty words w = a1d1a2 · · · dk−1ak with k ≥ 1, di ∈ D,

a1a2 . . . ak ∈ L̃i,α.
– Rj,α the set of nonempty words w = a1d1a2 · · · dk−1ak with k ≥ 1, di ∈ D,

a1a2 . . . ak ∈ R̃j,α.
– Pα the set of nonempty words w = a1d1a2 · · · dk−1ak with k ≥ 1, di ∈ D,

a1a2 . . . ak ∈ D̃α.

1 The definition of Li differs here from the one given in [6].

Generalized Dyck Shifts 103

We set Li =
⋃

α Li,α, Rj =
⋃

α Rj,α, L =
⋃m

i=1 Li, R =
⋃n

j=1 Rj . Note that
a word in Li,α or Rj,β does not end nor start with a nonempty Dyck word by
definition.

In terms of lattice paths, Li,α is a set of paths that start in (0, 0) and end on
the line y = i without having a step ending on or under this line before the last
step. The set Rj,α is a set of paths that start in (0, 0) and end on the level −j
without having a step ending on or going below the line y = 0 before the last
step (see Fig. 2).

L1,α
D

R1,α

Fig. 2. The prime Dyck word a(a′b′a′b′b′)b(a′b′a′b′b′)abb of Example 1 in L1,αDR1,α.

By definition Li,α and Rj,α are codes which are both prefix and suffix. The
set Li,α does not overlap strictly with Lj,α. Indeed, if uv ∈ Li,α and vw ∈ Lj,α,
h(v) < 0 unless v is the empty word or v = uv. A word of Li,α is neither prefix
nor suffix of a word in Lj,β with α �= β. Observe also that Li,α is empty for
i > m and Rj,α is empty for j > n.

Lemma 1. We have the following unambiguous grammars for Li, Rj, P :

L̃i,α =
∑

h(a)=i,c(a)=α

a +
∑

k>i

L̃k,αR̃k−i,α (1)

R̃j,α =
∑

h(a)=−j,c(a)=α

a +
∑

k

L̃k,αR̃k+j,α (2)

D̃α =
∑

h(a)=0,c(a)=α

a +
∑

k

L̃k,αR̃k,α (3)

Li,α =
∑

h(a)=i,c(a)=α

a +
∑

k>i

Lk,αDRk−i,α (4)

Rj,α =
∑

h(a)=−j,c(a)=α

a +
∑

k

Lk,αDRk+j,α (5)

Pα =
∑

h(a)=0

a +
∑

k

Lk,αDRk,α (6)

P =
∑

α

Pα, D = P ∗, Li =
∑

α

Li,α, Rj =
∑

α

Rj,α. (7)

104 M.-P. Béal and P. Heller

Proof. We have L̃i,αR̃j,β with α �= β forbidden in L̃i,α, R̃j,α, D̃α. We have
L̃k,αR̃k−i,α ⊆ L̃i,α for any k > i. If w ∈ L̃i,α, if |w| > 1, let u be the unique
proper prefix of w such that h(u) is minimal. Let h(u) = k > i and w = uv.
Then u ∈ L̃k,α and v ∈ R̃k−i,α. Further, if uv = u′v′ with u ∈ L̃k,α, v ∈ R̃k−i,α,
u′ ∈ L̃k′,α, v′ ∈ R̃k′−i,α. One has for instance u prefix of u′. Let u′ = uu′′. Then
k ≥ k′. If k > k′, then v /∈ R̃k−i,α. Thus k = k′, u” ∈ D, implying u” = ε. This
proves Eq. (1). Equations (2) and (3) are obtained similarly.

We have Lk,αDRk−i,α ⊆ Li,α. If w ∈ Li,α and if |w| > 1 let u be the smallest
proper prefix of w such that h(u) is minimal and t be the largest proper prefix
of w such that h(t) is minimal (see Fig. 2). We have t = uv with v ∈ D and
w = uvz. Then u ∈ Lk,α and z ∈ Rk−i,α. Further, if uvz = u′v′z′ with u ∈ Lk,α,
z ∈ Rk−i,α, u′ ∈ Lk′,α, z′ ∈ Rk′−i,α, v, v′ ∈ D, then for instance u is a prefix
of u′. Assume that u is a strict prefix of u′. Let u′ = uu′′. Then k ≥ k′. If
k > k′, then vz /∈ DRk−i,α. Thus k = k′. Then u′′ ∈ D\{ε}, a contradiction
since u′ ∈ Lk′,α dos not end with a nonempty word of D. Thus u = u′. Similarly,
z = z′ and thus v = v′. This proves Eq. (4). Equations (5) and (6) are obtained
similarly.

We consider the free monoid generated by A with a zero quotiented by the
following relations

a1 · · · ak = 1 if a1 · · · ak is a factor-free Dyck word

w = 0, if w ∈ L̃i,αR̃j,β with α �= β and i, j > 0.

where 1 is the unity of the monoid.
For a word w over A, we denote by w ∈ A∗ ∪ {0,1} its reduced form which

is the unique word obtained by applying the above relations.
For instance (] reduces to 0 in the Dyck shift.
Observe that a word z in L̃i,αR̃j,β with α �= β is not factor of a Dyck word.

Indeed, if z is a factor of a Dyck word d, it is a factor uv, where u ∈ L̃i,α,
v ∈ R̃j,β , of a1d1 · · · akdk where di ∈ D and a1 · · · ak is a factor-free Dyck word.
If none ai is a factor of uv, then uv is a factor of some di whose length is shorter
than d. By recurrence on the size of d we obtain that uv is factor of a factor-
free Dyck word. Since uv ∈ A+

α A+
β , we get a contradiction. Observe that, since

u ∈ L̃i,α, v ∈ R̃j,β and di ∈ D for 1 ≤ i ≤ k, di cannot overlap nor be a factor of
uv unless di is the empty word. Thus if ai is factor of u or v for some 1 ≤ i ≤ k,
then uv = a1 · · · ak and d1 = d2 = · · · dk−1 = ε. This gives a contradiction since
uv ∈ A+

α A+
β with α �= β and a1 · · · ak ∈ A+

γ for some γ.
The set of words reducing to 1 is the set of Dyck words. If two Dyck words

overlap, the overlapping word is a Dyck word: if uv and vw are Dyck words,
then u, v, w also. Dyck words. Thus if uv and vw reduce to 1, then u, v, w also.
Further, a factor-free word has no suffix being a prefix of a word in L̃i,αR̃j,β

with α �= β. Hence a word reducing to 1 has no non trivial overlap with a word
reducing to 0. As a consequence the reduced form is unique.

Generalized Dyck Shifts 105

Proposition 1. The reduced form of a word w is either 0, 1, u, v or uv where

u ∈ R̃js,βs
· · · R̃j1,β1

v ∈ L̃i1,α1 · · · L̃ir,αr

for some j1, .., js, i1, .., ir > 0 and β1, .., βs, α1, .., αr ∈ Σ.

Proof. Assume that w �= 0,1. Let u be the unique prefix of w of minimal height,
the unicity coming from the fact that w is reduced. This prefix may be the empty
word. We set w = uv. Then v has a unique decomposition into L̃i1,α1 · · · L̃ir,αr

where i1 + · · · + is = i with h(v) = i > 0. Indeed let z be the unique nonempty
prefix of v such that h(z) = i1 is minimal. The prefix z being reduced, it is
a factor-free word. As z does not contain any factor in L̃i,αR̃j,β with α �= β,
i, j > 0, z ∈ L̃i1,α1 for some α1 ∈ Σ. The whole decomposition of v thus belongs
to L̃i1,α1 · · · L̃ir,αr

where i1 + · · · + ir = i. A symmetrical property holds for u.
Let uv ∈ R̃js,βs

· · · R̃j1,β1L̃i1,α1 · · · L̃ir,αr
. Then uv �= 0. Indeed, if uv contains

a factor z in L̃i,αR̃j,β with α �= β and i, j > 0, then z = tt′ where t ∈ L̃i,α

and t′ ∈ R̃j,β . Since t cannot be a suffix of some word in R̃jk,βk
· · · R̃jk′ ,βk′ it

is a suffix of some word in R̃js,βs
· · · R̃j1,β1L̃i1,α1 · · · L̃ik′ ,αk′ and t′ cannot be

a prefix of a word in L̃ik′+1,αk′+1
· · · L̃ir,αr

. Thus uv �= 0. Further a word in
L̃i,αR̃j,β with α �= β and i, j > 0 is not factor of a Dyck word, thus 0 �= 1.

Words whose reduced form is either 1 or u (resp. v) as above are called
matched-call (resp. matched-return). The set of matched-call (resp. matched-
return) words is denoted by MC(X) (resp. MR(X)). Thus matched-call words
are sequences of words in R+D and mached-return words are sequences of words
in L + D.

Example 5. For instance, the reduced form of the word “) (() [[]] [” in the Dyck
shift with two kinds of parentheses is “) ([”. We have u =) in R̃1,α and v = ([
in L̃1,αL̃1,β . In the shift of Example 1, the word ba(a′b′a′b′b′)ba has the reduced
form b(ab)a ∈ R̃2,αL̃1,αL̃3,α.

Proposition 2. The generalized Dyck shift is the set of sequences avoiding the
factors whose reduced form is 0.

Proof. First a word whose reduced form is 0 is not factor of a Dyck word. Con-
versely let w be a word over A. Its reduced form is either 0, 1 or u, v, uv with
u ∈ X = R̃js,βs

· · · R̃j1,β1 and v ∈ Y = L̃i1,α1 · · · L̃ir,αr
. Hence it is nonnull if and

only if it is a factor of a Dyck word. Indeed any word in X, Y or XY is factor of a
Dyck word since ((L̃iβ1 ,β1)

j1(R̃j1,βs
)iβ1−1) · · · ((L̃iβs ,βs

)js (R̃js,βs
)iβs−1)X ⊆ D,

Y ((L̃ir,αr
)jαr −1 (R̃jαr ,αr

)ir) · · · ((L̃i1,α1)
jα1−1(R̃jα1 ,α1)

i1) ⊆ D and L̃iβ1 ,β1 , . . .,
R̃jα1 ,α1 are non empty. Thus w itself is factor of a Dyck word.

106 M.-P. Béal and P. Heller

Example 6. We continue with Example 4. Setting in this example Li = Li,α,
Ri = Ri,α, and L′

i = Li,β , R′
i = Ri,β , ri = RiD, �i = LiD, we have

L3 = a L′
3 = a′

L2 = L3DR1 = aDR1 L′
2 = a′DR′

1

L1 = L2DR1 + L3DR2 L′
1 = L′

2DR′
1 + L′

3DR′
2

R2 = b R′
2 = b′

R1 = L1DR2 = L1Db R′
1 = L′

1Db′

P = L1DR1 + L2DR2 + L′
1DR′

1 + L′
2DR′

2

Thus R1 = L1Db = (aDR1DR1 + aDb)Db = aD((R1D)2 + bD)b. We can
set UbD = (R1D)2 + bD since R1 ∈ A∗b. We get r1 = R1D = �1bD =
(aD)U(bD)(bD), �1 = (aD)U(bD).

We have

R1D = (aD)U(bD)(bD) = (aD)((R1D)2 + bD)bD
= (aD)(aDUbDbDaDUbDbD + bD)bD.

Thus

U = ε + (aD)U(bD)(bD)(aD)U(bD).

Similarly,

R′
1D = (a′D)V (b′D)(b′D)
V = ε + (a′D)V (b′D)(b′D)(a′D)V (b′D).

We have

PD = (aD)U(bD)(aD)U(bD)(bD) + (aD)(aD)U(bD)(bD)(bD)+
(a′D)V (b′D)(a′D)V (b′D)(b′D) + (a′D)(a′D)V (b′D)(b′D)(b′D).

The right symbol D in all the above equations may be removed by right multi-
plication of both sides by (1 − P) which is the inverse of D.

4 Zeta Function of Generalized Dyck Shifts

4.1 Multivariate Zeta Functions

We recall the notion of multivariate zeta function introduced by Berstel and
Reutenauer in [3,14].

For K = Z or K = N (containing 0) we denote by K〈〈A〉〉 the set of noncom-
mutative formal power series over the alphabet A with coefficients in K. For each
language L of finite words over a finite alphabet A we define the characteristic
series of L as the series L =

∑
u∈L u in N〈〈A〉〉.

Generalized Dyck Shifts 107

Let K[[A]] be the usual commutative algebra of formal power series in the
variables of A and π : K〈〈A〉〉 → K[[A]] be the natural homomorphism. Let S be
a commutative or noncommutative series. One can write S =

∑
n≥0[S]n where

each [S]n is the homogeneous part of S of degree n. The notation extends to
matrices H with coefficients in K〈〈A〉〉 or K[[A]] with ([H]n)pq = [Hpq]n, where
p, q are indices of H.

Call periodic pattern of a shift X a word u such that the bi-infinite concate-
nation of u belongs to X and denote P(X) the set of periodic patterns of X.
These definitions are extended to σ-invariant sets of bi-infinite sequences which
may not be shifts.

The multivariate zeta function Z(X) of a σ-invariant set X is the commuta-
tive series in Z[[A]]

Z(X) = exp
∑

n≥1

π[P(X)]n
n

.

The (ordinary) zeta function of a σ-invariant set X is

ζX(z) = exp
∑

n≥1

pn
zn

n
,

where pn is the number of sequences of X of period n, i.e. of sequences x such
that σn(x) = x.

Let θ : Z[[A]] → Z[[z]] be the homomorphism such that θ(a) = z for any letter
a ∈ A. If S ∈ Z[[A]], θ(S) will also be denoted by S(z). Note that ζX(z) =
θ(Z(X)).

It is known that the multivariate zeta function of a shift has nonnegative
integer coefficients [12].

4.2 Encoding of Periodic Sequences of a Generalized Dyck Shift

We say that two finite words x, y are conjugate if x = uv and y = vu for some
words u, v.

If C is a code, we denote by XC the σ-invariant set containing all bi-infinite
concatenation of words in C. This set is not a shift since it may not be closed.

The following proposition gives an encoding of the periodic patterns of a
generalized Dyck shift.

Proposition 3. Let X be the generalized Dyck shift over A. The set of periodic
patterns P(X) of X is

P(X) = P(XDL) � P(XR+P).

Proof. Let z be a periodic pattern. Then x = · · · zz.zz · · · is a periodic sequence
of X. The reduced form of z is z = 1, u, v or u · v where

u ∈ R̃js,βs
· · · R̃j1,β1

v ∈ L̃i1,α1 · · · L̃ir,αr

108 M.-P. Béal and P. Heller

If z is not already in MC(X) or in MR(X), then its reduced form is uv. In this
case z has a conjugate z′ whose reduced form is the reduced form of vu. We
have

vu ∈ L̃i1,α1 · · · L̃ir,αr
R̃js,βs

· · · R̃j1,β1 .

Since · · · z′z′.z′z′ · · · ∈ X, we have αr = βs, and L̃ir,αr
R̃js,βs

is included in either
Lir−js,αr

or Rjs−ir,αr
or D. In the first case, αr = βs−1 and Lir−js,αr

R̃js−1,βs−1 is
then included in either Lir−js−js−1,αr

or Rjs−1−(ir−js),αr
or D. In the second case

αr−1 = βs and L̃ir−1,αr−1Rjs−ir,αr
is then included in either Ljs−ir−ir−1,αr

or
Rir−1+ir−js,αr

or D. In the third case, αr−1 = βs−1 and L̃ir−1,αr−1DR̃js−1,αr−1

is then included in either Lir−1−js−1,αr−1 or Rjs−1−ir−1,αr−1 or D. By iterat-
ing the reduction, we get that vu is included in some product equal to either
Lk1,γ1 . . . Lkn,γn

or Lk1,γ1 . . . Lkn,γn
D or Rkn,γn

. . . Rk1,γ1 or DRkn,γn
. . . Rk1,γ1

or D. This product vu is thus either in MC(X) or in MR(X).
If z′ is matched-call, then it is a product of words in P or in R. In this case

z is conjugate to a word in (P + R)∗.
If z′ is matched-return and not matched-call, i.e. z′ /∈ D, we can assume that

it does not end with a Dyck word (if z′ = uw with w Dyck, we could consider wu
instead). In that case it is a product of words in P ∗L = DL and z is conjugate
to a word in (DL)∗. As a consequence P(X) = P(XDL) � P(XR+P).

Let us finally show that P(XDL)∩P(XR+P) = ∅. Assume the contrary. Then
there are nonempty conjugate words w,w′ such that w is in (DL)∗ and w′ is in
(R + P)∗.

This implies that the height of w is positive and the height of w′ is nonposi-
tive, contradicting the conjugacy of w and w′.

4.3 Computation of the Zeta Function

We recall below the notion of circular codes (see for instance [2]). We say that
a subset S of nonempty words over A is a circular code if for all n,m ≥ 1 and
x1, x2, . . . , xn ∈ S, y1, y2, . . . , ym ∈ S and p ∈ A∗ and s ∈ A+, the equalities
sx2x3 · · · xnp = y1y2 · · · ym and x1 = ps imply n = m, p = ε and xi = yi for
each 1 ≤ i ≤ n.

Two codes C1 and C2 are cyclically disjoint if a word of C∗
1 which is conjugate

to a word of C∗
2 , is empty.

Proposition 4. The sets DL and P � R are cyclically disjoint circular codes.

Proof. We first show that R � P is circular. Keeping the notation of the def-
inition, let x1, x2, . . . , xn ∈ S, y1, y2, . . . , ym ∈ S, p ∈ A∗ and s ∈ A+. We
prove the claim by induction on n+m. Suppose that sx2x3 · · · xnp = y1y2 · · · ym

and x1 = ps imply n = m and xi = yi when n + m < N . Assume now that
sx2x3 · · · xnp = y1y2 · · · ym and x1 = ps for some n,m with n + m = N .

If p was nonempty, then, since x1 = ps where s �= ε, we have h(p) > 0. This
would contradict p being a suffix of y1y2 · · · ym, which is clearly matched-call,

Generalized Dyck Shifts 109

hence we get p = ε. It follows that x1 is a prefix of y1 or the converse, implying
x1 = y1. By induction hypothesis we obtain that n = m and xi = yi.

Let us show that P ∗L is circular. Let us assume that s �= x1. Since s is a
prefix of y1y2 · · · ym and is a suffix of x1, we have s ∈ P ∗L and p ∈ P ∗. As p �= ε,
p ∈ P+. This contradicts the fact that p is a suffix of y1 · · · ym. Hence s = x1

and p = ε. Now x1 · · · xn = y1y2 · · · ym implies x1 = y1 since xi, yi ∈ P ∗L. By
induction hypothesis we get n = m and xi = yi.

We now show that DL and P + R are cyclically disjoint. Let u ∈ (DL)∗ and
v ∈ (P +R)∗ such that u and v are two nonempty conjugate words. This implies
that the height of u is positive and the height of v is nonpositive, contradicting
the conjugacy of u and v.

Proposition 5. Let X be a generalized Dyck shift over A. The multivariate zeta
function of X has the following expression.

Z(X) = π((DL)∗(P + R)∗).

Proof. From Proposition 3 we get that the multivariate zeta function of X is
Z(X) = Z(XDL)Z(XP+R).

From [15, Proposition 4.7.11] (see also [2, Proposition 3.1],[8]), if C is a
circular code Z(XC) = π(C∗). The result follows from the fact that DL and
P + R are circular codes.

Example 7. We consider the Dyck shift X with two kinds of parentheses of
Example 3 defined by Σ = {α, β} and A = {“(“ = (+1, α), ”)” = (−1, α), “[“ =
(+1, β), ”]” = (−1, β)}.

Setting a = “(“, b = ”)”, a′ = “[“, b′ = ”]”, L1 = L1,α, L′
1 = L1,β , R1 =

R1,α, R′
1 = R1,β , we have

L1 = a L′
1 = a′ (8)

R1 = b R′
1 = b′ (9)

P = L1DR1 + L′
1DR′

1 = aDb + a′Db′ (10)
D = 1 + PD = 1 + aDbD + a′Db′D (11)

Thus

Z(X) = π((D(a + a′))∗ (b + b′ + aDb + a′Db′)∗),

where D is defined by Eq. 11. A computation gives the formula of Keller for
ζX(z) [8]:

ζX(z) =
2(1 +

√
1 − 8z2)

(1 − 4z +
√

1 − 8z2)2
.

Example 8. We consider the shift XA defined by Σ = {α, β} and A = {a =
(+2, α), b = (−1, α), a′ = (+2, β), b′ = (−1, β)}.

110 M.-P. Béal and P. Heller

Setting Li = Li,α, L′
i = Li,β , and Ri = Ri,α, R′

i = Ri,β , we have

L2 = a L′
2 = a′ (12)

R1 = b R′
1 = b′ (13)

L1 = L2DR1 = aDb L′
1 = a′Db′ (14)

P = L1DR1 + L′
1DR′

1 = aDbDb + a′Db′Db′ (15)
D = 1 + PD = 1 + aDbDbD + a′Db′Db′D (16)

Thus

Z(X) = π((D(aDb + a′Db′ + a + a′))∗ (b + b′ + aDbDb + a′Db′Db′)∗),

where D is defined by Eq. 16.

Let S be a multivariate series in N〈〈A〉〉. We denote by < S, u > the coefficient of
a word u in S. We say that S is N-algebraic if S− < S, ε > ε is the multivariate
generating series of some unambiguous context-free language. The multivariate
zeta function of a shift is N-algebraic if it is the commutative image of some mul-
tivariate N-algebraic series. In one variable, a series S(z) is N-algebraic if it is the
first component (S1(z)) of a system of equations Si(z) = Pi(z, S1(z), .., Sr(z)),
where 1 ≤ i ≤ r and Pi are multivariate polynomials with coefficients in N (see
for instance [5]).

Corollary 1. The multivariate zeta function of a generalized Dyck shift is the
commutative image of a product of the generating series of the stars of unam-
biguous context-free circular codes, the codes being cyclically disjoint. The mul-
tivariate and ordinary zeta functions of a generalized Dyck shift are N-algebraic
series.

Proof. The result follows from Proposition 5 and the fact that DL and P ∪ R
are unambiguous context-free circular codes since the languages P,Li,α, Rj,β are
unambiguous context-free. Further DL and P ∪ R are cyclically disjoint.

References

1. Béal, M.-P., Blockelet, M., Dima, C.: Sofic-Dyck shifts. Theor. Comput. Sci. 609,
226–244 (2016)

2. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Encyclopedia
of Mathematics and its Applications, vol. 129. Cambridge University Press,
Cambridge (2010)

3. Berstel, J., Reutenauer, C.: Zeta functions of formal languages. Trans. Amer. Math.
Soc. 321, 533–546 (1990)

4. Blanchard, F., Hansel, G.: Systèmes codés. Theor. Comput. Sci. 44, 17–49 (1986)
5. Bousquet-Mélou, M.: Rational and algebraic series in combinatorial enumeration.

In: International Congress of Mathematicians, vol. III, pp. 789–826 (2006). Eur.
Math. Soc., Zürich

Generalized Dyck Shifts 111

6. Duchon, P.: On the enumeration and generation of generalized Dyck words. Dis-
crete Math. 225(1–3), 121–135 (2000)

7. Jacquet, H., Mélançon, G.: Langages de Dyck généralisés et factorisations du
monoide libre. Ann. Sci. Math. Québec 97, 103–122 (1997)

8. Keller, G.: Circular codes, loop counting, and zeta-functions. J. Combin. Theory
Ser. A 56(1), 75–83 (1991)

9. Krieger, W.: On the uniqueness of the equilibrium state. Math. Systems Theory
8(2), 97–104 (1974/1975)

10. Krieger, W., Matsumoto, K.: Zeta functions and topological entropy of the Markov-
Dyck shifts. Münster J. Math. 4, 171–183 (2011)

11. Labelle, J., Yeh, Y.: Generalized Dyck paths. Discrete Math. 82(1), 1–6 (1990)
12. Lind,D.,Marcus,B.:An Introduction toSymbolicDynamics andCoding.Cambridge

University Press, Cambridge (1995)
13. Matsumoto, K.: On the simple C∗-algebras arising from Dyck systems. J. Operator

Theory 58(1), 205–226 (2007)
14. Reutenauer, C.: N-rationality of zeta functions. Adv. Appl. Math. 18(1), 1–17

(1997)
15. Stanley, R.P.: Enumerative Combinatorics. Wadsworth Publ. Co., Belmont (1986)

Green’s Relations
in Finite Transformation Semigroups

Lukas Fleischer(B) and Manfred Kufleitner

FMI, University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany
{fleischer,kufleitner}@fmi.uni-stuttgart.de

Abstract. We consider the complexity of Green’s relations when the
semigroup is given by transformations on a finite set. Green’s relations
can be defined by reachability in the (right/left/two-sided) Cayley graph.
The equivalence classes then correspond to the strongly connected com-
ponents. It is not difficult to show that, in the worst case, the number of
equivalence classes is in the same order of magnitude as the number of
elements. Another important parameter is the maximal length of a chain
of components. Our main contribution is an exponential lower bound for
this parameter. There is a simple construction for an arbitrary set of
generators. However, the proof for constant alphabet is rather involved.
Our results also apply to automata and their syntactic semigroups.

1 Introduction

Let Q be a finite set with n elements. There are nn mappings from Q to Q. Such
mappings are called transformations and the elements of Q are called states.
The composition of transformations defines an associative operation. If Σ is
some arbitrary subset of transformations, we can consider the transformation
semigroup S generated by Σ; this is the closure of Σ under composition.1 The
set of all transformations on Q is called the full transformation semigroup on Q.
One can view (Q,Σ) as a description of S. Since every element s of a semigroup S
defines a transformation x �→ x · s on S1 = S ∪ {1}, every semigroup S admits
such a description (S1, S); here, 1 either denotes the neutral element of S or, if S
does not have a neutral element, we add 1 as a new neutral element. Essentially,
the description (S1, S) is nothing but the multiplication table for S. On the other
hand, there are cases where a description as a transformation semigroup is much
more succinct than the multiplication table. For instance, the full transformation
semigroup on Q can be generated by a set Σ with three elements [7]. In addition
to the size of S, it would be interesting to know which other properties could be
derived from the number n of states.

Green’s relations are an important tool for analyzing the structure of a semi-
group S. They are defined as follows:

This work was supported by the DFG grants DI 435/5-2 and KU 2716/1-1.
1 When introducing transformation semigroups in terms of actions, then this is the

framework of faithful actions.

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 112–125, 2017.
DOI: 10.1007/978-3-319-58747-9 12

Green’s Relations in Finite Transformation Semigroups 113

s �R t if sS1 ⊆ tS1, s �L t if S1s ⊆ S1t, s �J t if S1sS1 ⊆ S1tS1.

We write s R t if both s �R t and s �R t; and we set s <R t if s �R t but not
s R t. The relations L, <L, J and <J are defined analogously. The relations R,
L, and J form equivalence relations. The equivalence classes corresponding to
these relations are called R-classes (resp. L-classes, J -classes) of S. Instead of
ideals, one could alternatively also use reachability in the right (resp. left, two-
sided) Cayley graph of S for defining �R (resp. �L, �J). We note that s <R t
implies s <J t and, symmetrically, s <L t implies s <J t. The complexity of
deciding Green’s relations for transformation semigroups was recently shown to
be PSPACE-complete [1]. When considering a transformation semigroup on n
states, one of our first results shows that the maximal number of J -classes is
in nΘ(n). In particular, the number of equivalence classes is in the same order
of magnitude as the size of the transformation semigroup. Since every J -class
contains at least one R- and one L-class, the same bound holds for R and L.

Another important parameter is the maximal length � such that there are
elements s1, . . . , s� with s1 >R · · · >R s�, called the R-height. Similarly, we are
interested in the L- and J -height. Many semigroup constructions such as the
Rhodes expansion and variants thereof rely on this parameter; see e.g. [2,3,6].
We show that the maximal R-height is in 2Θ(n); for the maximal L-height and
J -height we only have 2Ω(n) as a lower bound. Proving the lower bounds for
a fixed number of generators is much more involved than for arbitrarily many
generators. The exponential lower bounds are quite unexpected in the following
sense: If the transformation semigroup is small, then the number of equivalence
classes (and hence, the lengths of chains) cannot be big. On the other hand, the
transformation semigroup is maximal if it is full. And an equivalence class in
the full transformation semigroup only depends on the number of states in the
image; this is because we can apply arbitrary permutations. In particular, the
number of equivalence classes in these two extreme cases is small.

There is a tight connection between deterministic automata and transforma-
tion semigroups. Roughly speaking, a transformation semigroup is an automaton
without initial and finial states. The main difference is that for automata, one
usually is interested in the syntactic semigroup rather than the transformation
semigroup; the syntactic semigroup is the transformation semigroup of the min-
imal automaton. We show that the above bounds on the number of equivalence
classes and heights also apply to syntactic semigroups.

Theorem 1. For each n ∈ N, there exists a minimal automaton An with n
states over an alphabet of size 5 such that the number of J -classes (resp. R-
classes, L-classes) of the transformation semigroup T (An) is at least (n−4)n−4.

Theorem 2. There exists a sequence of minimal automata (An)n∈N over a fixed
alphabet such that An has n states and the R-height (resp. L-height, J -height)
of the transformation semigroup T (An) is in Ω(2n/n9.5).

114 L. Fleischer and M. Kufleitner

2 Preliminaries

A semigroup is a set S equipped with an associative operation · : S × S → S.
A subsemigroup of S is a subset T such that s1s2 ∈ T for all s1, s2 ∈ T . It is
called completely isolated if the converse implication holds, i.e., s1s2 ∈ T implies
s1 ∈ T and s2 ∈ T for all s1, s2 ∈ S. The opposite semigroup of S is obtained
by replacing the operation with its left-right dual ◦ : S × S → S defined by
x ◦ y = y · x.

In general, Green’s relations in a subsemigroup T of S do not coincide with
the corresponding relations in S. However, if T is a completely isolated subsemi-
group, the following property holds:

Proposition 3. Let S be a semigroup and let T be a completely isolated sub-
semigroup of S. Let K be one of the relations �R, �L, �J , R, L or J . Then,
for all x, y ∈ T , we have x K y in S if and only if x K y in T .

Proof. We will only prove the statement for the preorder �R. For the implication
from right to left, we have xS1 ⊆ xT 1S1 ⊆ yT 1S1 ⊆ yS1. For the converse
implication, suppose that xS1 ⊆ yS1, i.e., there exists some z ∈ S1 such that
yz = x. Since T is completely isolated, we have z ∈ T 1, which yields zT 1 ⊆ T 1

and thus, xT 1 = yzT 1 ⊆ yT 1. �	
An R-chain is a sequence (s1, . . . , s�) of elements of S such that si+1 <R si for
all i ∈ {1, . . . , � − 1}; � is called the length of the R-chain. The maximal length
of an R-chain of S is called the R-height of S. The notions L-chains, J -chains,
L-height and J -height are defined analogously.

A partial transformation on a set Q is a partial function f : Q → Q. If the
domain of f is all of Q, i.e., if f is a total function, f is called a transformation.
A partial transformation f : Q → Q is called injective if f(p)
= f(q) whenever
p
= q and both f(p) and f(q) are defined. The elements of Q are often called
states. In the following, we use the notation q · f instead of f(q) to denote the
image of an element q ∈ Q under f . For R ⊆ Q let R · f = {q · f | q ∈ R}.
Note that for all subsets R ⊆ Q and all partial transformations f : Q → Q, the
inequality |R · f | � |R| holds; we will implicitly use this property throughout
the paper. The composition fg of two transformations f : Q → Q and g : Q → Q
is defined by q · fg = (q · f) · g. The composition is associative.

The set of all partial transformations (resp. transformations) on a fixed set Q
forms a semigroup with composition as the binary operation. It is called the full
partial transformation semigroup (resp. full transformation semigroup) on Q.
Subsemigroups of full (partial) transformation semigroups are called (partial)
transformation semigroups and are often specified in terms of generators. Partial
transformation semigroups and transformation semigroups are strongly related.
On one side, every transformation semigroup also is a partial transformation
semigroup. In the other direction a slightly weaker statement holds:

Proposition 4. Let P be a partial transformation semigroup on n states. Then
there exists a transformation semigroup on n+1 states which is isomorphic to P .

Green’s Relations in Finite Transformation Semigroups 115

A partial transformation semigroup is called injective if it is generated by a set
of injective partial transformations. An important property of injective partial
transformation semigroups is that they have a left-right dual:

Proposition 5. The opposite semigroup of an injective partial transformation
semigroup is a partial transformation semigroup.

Transformation semigroups naturally arise when considering deterministic finite
automata. Let A = (Q,Σ, δ, q0, F) be a deterministic finite automaton. Then,
each letter a ∈ Σ can be interpreted as a transformation a : Q → Q where
q · a = δ(q, a). The transformation semigroup on Q generated by all letters in Σ
is denoted by T (A) and it is called the transition semigroup of A. Conversely,
given a transformation semigroup T on a finite set Q and a finite set of generators
Σ, for each q0 ∈ Q and F ⊆ Q, one can define a deterministic finite automaton
A = (Q,Σ, δ, q0, F) where δ : Q × Σ → Q is defined as δ(q, a) = q · a.

A well-known approach for translating bounds on the size of a transformation
semigroup to syntactic monoids is to make an automaton minimal. This can be
done by introducing a new generator c with qi · c = qi+1 for Q = {q1, . . . , qn}
and qn+1 = q1; moreover, one chooses some arbitrary state to be both initial
and final. We adapt this construction to also work with Green’s relations.

Proposition 6. Let T be a transformation semigroup on n states, generated
by a finite set Σ. Then there exists a minimal (n + 1)-state deterministic finite
automaton A over an alphabet of size |Σ|+1 such that T is a completely isolated
subsemigroup of T (A).

Proof. Let T be a transformation semigroup on a set of states Q = {q1, . . . , qn},
generated by Σ. Let A = (Q∪{q0} , Σ∪{c} , δ, q0, {qn}) be the automaton defined
by δ(q0, a) = q0 and δ(qi, a) = qi · a for i � 1 and all a ∈ Σ. The transitions
for the letter c are defined by δ(qi, c) = qi+1 for i < n and δ(qn, c) = q1. This
automaton is minimal: for two different states qi, qj ∈ Q ∪ {q0} with i > j, we
have δ(qi, c

n−i) = qn but δ(qj , c
n−i)
= qn.

By construction, T is a subsemigroup of T (A). To see that T is completely
isolated within T (A), note that we have δ(q0, u) = q0 if and only if u ∈ Σ∗. �	

3 Bounds for the Number of Classes

Let K be any of the relations R, L or J . The näıve upper bound for the number
of K-classes of a transformation semigroup T on n states is given by the size of
T itself. Since there are nn different functions from Q to Q, the semigroup T
contains at most nn elements. It is well known that this bound is tight even for a
constant number of generators, since for each n � 1 there exists a transformation
semigroup of size nn generated by a set Σ with three elements; see e.g. [7].

As each R-class (resp. L-class, J -class) consists of at least one element, the
number of such classes is also bounded by nn. We now show that this upper
bound is tight up to a constant factor.

116 L. Fleischer and M. Kufleitner

Proposition 7. Let T be a transformation semigroup on n states, generated by
a finite set Σ. Then there exists a transformation semigroup on n + 3 states
which is generated by |Σ| + 1 elements and has at least |T | different J -classes.

Proof. Let T be a semigroup of transformations on a set of states Q, generated
by a finite set Σ, and let q0 be an arbitrary element from Q. Let q1, q2, q3 be new
states not in Q and let c be a new generator not in Σ. Let U be the transformation
semigroup on Q ∪ {q1, q2, q3} obtained by extending the transformations of T as
follows: for each a ∈ Σ and q ∈ Q, let q · c = q, q1 · a = q3 · a = q3 · c = q0,
q1 · c = q2 · a = q2, and q2 · c = q3.

Let u, v ∈ Σ∗ be different elements of T . Then cuc and cvc are different in U .
We claim that cuc
�J cvc in U . For the sake of contradiction, suppose that there
exist x, y ∈ (Σ ∪ {c})∗ such that cuc = xcvcy in U . Clearly, q1 · cuc = q3
∈ Q.
Moreover, at least one of the words x or y must be non-empty and therefore
q1 · xcucy ∈ Q. This shows that cuc
= xcvcy, as desired. �	
Combining the result with statements from the previous section, we obtain a
lower bound for the number of J -classes of the transition semigroup of an
automaton.

Proof (Theorem 1). As we mentioned before, it is well known that there exists
a 3-generator transformation semigroup on n states of size nn. If we first apply
Proposition 7 and then Proposition 6 to T , we obtain the claim by Proposition 3.
The statement extends to R-classes (resp. L-classes) because each J -class con-
tains at least one R-class (resp. L-class). �	

4 Bounds for the Length of Chains

Let K be any of the relations R, L or J . As with the number of K-classes, the
näıve upper bound for the length of K-chains is given by the maximal size nn

of the transformation semigroup on n states. In this section, we improve this
upper bound for R-chains and later give a lower bound that matches up to a
polynomial gap.

Lemma 8. Let P be a partial transformation semigroup on a finite set Q of
cardinality n. Let x, y ∈ P such that Q · x = Q · xy. Then x R xy.

Proof. Let ω = n! and let z = yω−1. It suffices to show that xyz = x in P ,
i.e., for all q ∈ Q, we have q · x = q · xyz. By assumption, the restriction of y to
the set Q · x is bijective. Thus, the mapping yω acts as identity on Q · x. This
yields q · xyz = q · xyω = (q · x) · yω = q · x. �	
Proposition 9. Let P be a partial transformation semigroup on n states. Then
the R-height of P is at most 2n.

Proof. Let P be a partial transformation semigroup on a set of states Q with
|Q| = n. Let (u1, u2, . . . , u�) be an R-chain of P . We show that all sets Q·ui must
be pairwise distinct which yields the desired bound. Suppose that Q ·ui = Q ·uj

for 1 � i < j � �. Since uj <R ui, there exists v ∈ P with uiv = uj . Lemma 8
yields uj R ui which implies ui+1 R ui, a contradiction. �	

Green’s Relations in Finite Transformation Semigroups 117

4.1 Token Computations in Transformation Semigroups

In this subsection, we introduce the building blocks for the lower bound on the
height. A token machine is a pair (C, I) where C is a finite set and I is a set of
partial transformations on C. The elements of the set C are called cells, subsets
of C are called configurations and the generators I are called instructions.

A program is a finite word over the alphabet I and a computation is a
sequence

R0
ι1−→ R1

ι2−→ R2 · · · ι�−→ R�

where all Ri ⊆ C have the same cardinality and Ri−1 ·ιi = Ri. The configuration
R0 is called initial configuration and R� is called the final configuration of the
computation. The program ι1ι2 · · · ι� is the label of the computation and � is
its length. It is progressing if all configurations appearing in the computation
are pairwise distinct and for each i ∈ {1, . . . , �} and each ι ∈ I\ {ιi}, we have
|Ri−1 · ι| < |Ri|. It is maximal if |R� · ι| < |R�| for all ι ∈ I.

A language over programs L ⊆ I∗ is called deterministic on a configuration
R ⊆ C if |R · u1| = |R| = |R · u2| implies u1 = u2 for all u1, u2 ∈ L.

The focal idea of token machines is captured in the following proposition
which states that computations in token machines naturally yield lower bounds
for the length of R-chains.

Proposition 10. Let (C, I) be a token machine and let P be the partial trans-
formation semigroup on C generated by I. If there exists a maximal progressing
computation of length �, then the R-height of P is at least �.

Proof. Let R0
ι1−→ R1

ι2−→ R2 · · · ι�−→ R� be a maximal progressing computation.
For each i ∈ {1, . . . , �}, we let ui = ι1ι2 · · · ιi. It remains to show that (u1, . . . , u�)
is an R-chain. By definition, we immediately obtain ui+1 �R ui. Assume, for
the sake of contradiction, that ui �R ui+1 for some i ∈ {1, . . . , � − 1}, i.e., there
exists v ∈ I∗ with ui = ui+1v. Without loss of generality, we may assume that
i is maximal with this property. If |v| = 0, then Ri = R0 · ui = R0 · ui+1 =
Ri+1, contradicting the premise of progression. Thus, |v| � 1 and since the
computation is progressing and maximal, we have i < � − 1 and v = ιi+2w for
some w ∈ I∗. This yields ui+2wιi+1 = ui+1ιi+2wιi+1 = ui+1vιi+1 = uiιi+1 =
ui+1, contradicting the maximality of i. �	

4.2 Lower Bounds over a Growing Instruction Set

Before describing the technical ingredients required in our main result, we prove
a slightly weaker statement. In contrast to the result presented later, it relies on
an alphabet that grows exponentially with the number of elements.

Theorem 11. For all even n ∈ N, there exists a token machine with n cells
which admits a maximal progressing computation of length at least

(
n

n/2

) − 1.

118 L. Fleischer and M. Kufleitner

Proof. Let C = {1, 2, . . . , n}. Let � =
(

n
n/2

) − 1 and let {R0, R1, . . . , R�} be the
set of n/2-element subsets of C. For each i ∈ {1, . . . , �}, let ιi : Ri−1 → Ri be a
bijection. Note that in the context of the present proof, it does not matter which
of the (n/2)! bijections is chosen; for example, one can always choose the unique
bijection ιi such that ιi(j) < ιi(k) if and only if j < k. Each ιi can be viewed
as a partial transformation on C which is undefined for all c ∈ C\Ri−1. We now
show that in the token machine (C, I) with I = {ιi | 1 � i � �}, the sequence

R0
ι1−→ R1

ι2−→ R2 · · · ι�−→ R�

is a maximal progressing computation. It is a valid computation by the definition
of the instructions ιi. Consider i ∈ {0, . . . , �} and j ∈ {1, 2, . . . , �} \ {i + 1}. Since
Rj−1
= Ri, the instruction ιj is undefined on at least one element of Ri and
thus, |Ri · ιj | < |Ri|. This shows that the computation is both progressing and
maximal. �	
The theorem has a series of interesting consequences which will be outlined in
Sect. 4.4, after proving an improved variant of the theorem with fixed alphabet.

4.3 Tapes and Binary Counters

A sub-machine of a token machine (C, I) is a subset S ⊆ C such that for each
configuration R and for each instruction ι ∈ I with |R · ι| = |R|, we also have
|(R ∩ S) · ι| = |R ∩ S|. In other words, each computation stays a computation
when restricted to S. The union of two token machines (C, I) and (C ′, I ′) with
C ∩C ′ = ∅ is the token machine (C ∪C ′, I ∪I ′) where the instructions in I\I ′ are
extended to act as identity on C ′ and the instructions in I ′\I are extended to act
as identity on C. The cells C and C ′ of the original machines are sub-machines
of the union.

An n-bit tape T is a token machine (C, I) with n cells and an arbitrary (but
fixed) order (c0, c1, . . . , cn−1). One can interpret configurations R ⊆ C as bit
strings bn−1bn−2 · · · b0 where bi = 1 if and only if ci ∈ R and bi = 0 otherwise, and
think of T as a ring buffer with a read/write head at position 0. An instruction
ιTrotl can be used to move the tape head to the right (or, actually, retain the
head position but left-rotate the buffer). For each i ∈ {0, . . . , n − 2}, we let
ci ·ιTrotl = ci+1 and cn−1 ·ιTrotl = c0. The instruction ιTrotr is defined analogously and
moves in the opposite direction. An instruction ιT=0 can be used to check whether
the head is scanning a zero and halt the program otherwise. It is undefined on
c0 and defined as the identity on {c1, . . . , cn−1}. Conversely, the ιTsync instruction
is defined as the identity on c0 and undefined on every other cell. An instruction
ιTmvl maps c0 to c1, acts as the identity on {c2, c3, . . . , cn−1} and is undefined on
c1. Analogously, ιTmvr maps c0 to cn−1, acts as the identity on {c1, c2, . . . , cn−2}
and is undefined on cn−1. The value of T under a configuration R is

∑
ci∈R 2i.

An n-bit binary counter N is constructed as follows. Three new n-bit tapes
S, T and T are introduced. Their cells are (d0, d1, . . . , dn−1), (c0, c1, . . . , cn−1)
and (c0, c1, . . . , cn−1), respectively. Then, the union of S, T and T is constructed
and the following instructions are added:

Green’s Relations in Finite Transformation Semigroups 119

– ιNrotl = ιTrotlι
T
rotlι

S
rotl,

– ιNrotr = ιTrotrι
T
rotrι

S
rotr,

– ιN=0 = ιT=0,
– ιN=1 = ιT=0,

– ιNsync = ιSsync,
– ιNoff = ιS=0,

– ιNinc with c0 · ιNinc = c0 and c0 · ιNinc undefined and c · ιNinc = c for all c
∈ {c0, c0},
– ιNdec with c0 · ιNdec = c0 and c0 · ιNdec undefined and c · ιNdec = c for all c
∈ {c0, c0}.

Following this, the original instructions of S, T and T are removed from I. Thus,
a binary counter provides exactly eight instructions. A configuration R of N is
valid if |R ∩ S| = 1 and for each i ∈ {0, . . . , n − 1}, we have ci ∈ R if and only
if ci
∈ R.

Lemma 12. Let R be a valid configuration of a binary counter N and let u ∈ I∗

such that |R · u| = |R|. Then R · u is a valid configuration of N .

Proof. By induction on the length of u, it suffices to prove that the action of
instructions on R preserves validity.

The instructions ιNrotl and ιNrotr cyclically rotate the tapes T , T and S. Thus,
if R is valid, then R · ιNrotl and R · ιNrotr are valid as well.

For each ι ∈ {
ιN=0, ι

N
=1, ι

N
sync, ι

N
off

}
, we have either |R · ι| < |R| or R · ι = R.

If
∣
∣R · ιNinc

∣
∣ = |R|, then R does not contain c0. If, moreover, R is a valid

configuration, it contains c0. But then, R · ιNinc contains c0 and does not contain
c0. It coincides with R on all other cells. Thus, R · ιNinc is valid as well. By a
symmetric argument, the instruction ιNdec preserves validity. �	
We now define three regular languages

LN
reset = ιNsync((ι

N
=0 | ιNdec)ι

N
rotrι

N
off)∗(ιN=0 | ιNdec)ι

N
rotrι

N
sync,

LN
inc = ιNsync(ι

N
decι

N
rotrι

N
off)∗ιNinc(ι

N
offιNrotr)

∗ιNsync and

LN
dec = ιNsync(ι

N
incι

N
rotrι

N
off)∗ιNdec(ι

N
offιNrotr)

∗ιNsync.

Lemma 13. The languages LN
reset, LN

inc and LN
dec are deterministic on all valid

configurations.

Proof. Suppose there are two different words u1, u2 ∈ LN
reset and a valid con-

figuration R such that |R · u1| = |R|. Since LN
reset is prefix-free, there exist a

unique word p ∈ I∗ and different instructions ι1, ι2 ∈ I such that u1 ∈ pι1I
∗ and

u2 ∈ pι2I
∗. A careful analysis of the structure of the regular expression for LN

reset

shows that either {ι1, ι2} =
{
ιN=0, ι

N
dec

}
or {ι1, ι2} =

{
ιNoff , ιNsync

}
.

In the first case, we may assume without loss of generality that ι1 = ιN=0 and
ι2 = ιNdec. From |R · pι1| = |R · p|, we deduce c0
∈ R · p because ιN=0 is undefined
on c0. This implies c0 ∈ R · p since R · p is a valid configuration by Lemma 12.
Since ιNdec is undefined on c0, it follows that |R · u2| � |R · pι2| < |R · p| � |R|.

In the second case, we may assume that ι1 = ιNoff and ι2 = ιNsync. Since
|R · pι1| = |R · p| and since ιNoff is undefined on d0, we have d0
∈ R·p. This implies
di ∈ R · p for some i ∈ {1, . . . , n − 1} because R · p is valid by Lemma 12. The
instruction ιNsync is undefined on {d1, d2, . . . , dn−1} which yields |R · u2| < |R|, as
above.

The proofs for LN
inc and LN

dec follow by a similar reasoning. �	

120 L. Fleischer and M. Kufleitner

Let R be a configuration of N . We say that the counter is synchronized under R
if d0 ∈ R. The value of N under R is the value of T under R∩{c0, c1, . . . , cn−1}.

In addition to the eight counter instructions defined above, for any fixed
constant k ∈ {0, . . . , 2n − 1} one can define an instruction ιNval=k which asserts
that the value of the counter equals k as follows. For each i ∈ {0, . . . , n − 1}
with k mod 2i+1 � 2i, we let ci · ιNval=k = ci and let ci · ιNval=k be undefined.
Symmetrically, we let ci · ιNval=k = ci and ci · ιNval=k undefined if k mod 2i+1 < 2i.

Lemma 14. Let R be a valid configuration and let u ∈ LN
reset such that |R · u| =

|R|. Then, under R · u, the counter is synchronized and its value is zero.

Proof. It is easy to see that each word u ∈ LN
reset with |R · u| = |R| cyclically

rotates the three tapes of N exactly n times and after each cyclic rotation, either
ιN=0 or ιNdec is applied. The codomains of both ιN=0 and ιNdec do not contain c0 and
thus, we have R · u ∩ {c0, c1, . . . , cn−1} = ∅ which is equivalent to saying that
the value under R · u is zero. To see that the counter is synchronized, note that
applying ιNsync to a valid configuration preserves the number of elements if and
only if the configuration is synchronized. �	
Lemma 15. Let R be a valid configuration and let u ∈ LN

inc such that |R · u| =
|R|. If v is the value of the counter under R and v′ is its value under R · u, we
have v′ = v + 1 � 2n − 1.

Proof. Let us first assume that v < 2n − 1. Let i ∈ {0, . . . , n − 1} be minimal
such that ci
∈ R and let

w = ιNsync(ι
N
decι

N
rotrι

N
off)iιNinc(ι

N
offιNrotr)

n−iιNsync.

We claim that u = w. By Lemma 13, it suffices to show that |R · w| = |R|. Let
us first investigate the instructions operating on S. The word starts with an ιNsync

instruction, each ιNoff instruction is applied after R has been rotated cyclically 1
to n − 1 times and the second ιNsync instruction is applied after exactly n cyclic
rotations. We deduce

∣
∣R · ιNsync

∣
∣ = |R| from |R · u| = |R|, and thus, the counter

is synchronized on both R and on the configuration reached before the last ιNsync

instruction. Moreover, whenever a ιNoff instruction is applied to a configuration
R′, we have di ∈ R′ for some i ∈ {1, . . . , n − 1}. Note that the case v = 2n − 1
can be excluded since in order for the ιNinc instruction to preserve the number
of elements in the configuration, it would have to be preceded by at least n
ιNrotrι

N
off -factors and one of those factors would reduce the number of elements.

The instruction ιNdec is applied exactly once before each of the first i cyclic
rotations. Since {c0, c1, . . . , ci−1} ⊆ R, we have c0 ∈ R · ιNsync(ι

N
decι

N
rotrι

N
off)j for all

j ∈ {0, . . . , i − 1}. Moreover, since ci
∈ R, we have c0
∈ R · ιNsync(ι
N
decι

N
rotrι

N
off)i

which implies c0 ∈ R · ιNsync(ι
N
decι

N
rotrι

N
off)i by Lemma 12. Consequently, the occur-

rences of ιNdec and ιNinc in w do not reduce the number of elements in the configu-
ration. The above observations also show that

R · u = R · w = {ci} ∪ (R ∩ {ci+1, ci+2, . . . , cn−1})

which is equivalent to the claim v′ = v + 1. �	

Green’s Relations in Finite Transformation Semigroups 121

For the ιNdec instruction, a symmetric version of the lemma holds.

Lemma 16. Let R be a valid configuration and let u ∈ LN
dec such that |R · u| =

|R|. If v is the value of the counter under R and v′ is its value under R · u, we
have v′ = v − 1 � 0.

4.4 Main Result

Let n ∈ N be an even number. Let T be an n-bit tape with cells (t0, t1, . . . , tn−1).
The union of T with three log2 n�-bit counters P , Q and Z forms a token
machine, henceforth referred to as U . A configuration of U is valid if it is valid
when restricted to each of the three counters.

Informally, the idea of our construction is the following: as in the proof of
Theorem 11, we enumerate all n/2-element subsets of an n-element set on the
tape T . In order to do so with a constant number of generators, this enumeration
needs to be done in a very specific way. We say that a word Y ∈ {0, 1}∗ is a
successor of X ∈ {0, 1}∗ if there exist p ∈ {0, 1}∗, i � 1 and j � 0 such that
X = p01i0j and Y = p10j+11i−1. For each m ∈ {0, 1, . . . , n} one can define a
sequence of bit strings (X0,X1, . . . , X�) as stated in the following lemma:

Lemma 17. For all n ∈ N and m ∈ {0, 1, . . . , n}, there exists a unique sequence
(X0,X1, . . . , X�) such that

– X0 = 0n−m1m,
– for each k ∈ {1, . . . , �}, Xk is a successor of Xk−1 and
– X� does not have a successor.

The terms of this sequence are pairwise distinct, each term contains exactly m
occurrences of the letter 1, and we have � =

(
n
m

)
as well as X� = 1m0n−m.

Proof. First observe that if a word X ∈ {0, 1}∗ can be factorized as X = p01i0j

with p ∈ {0, 1}∗ and i � 1 and j � 0, then this factorization is unique. As a
consequence, the sequence defined above is unique and its terms are pairwise
distinct. It is also easy to see that if Y is a successor of X, then X and Y
contain the same number of 1’s. The remaining two properties � =

(
n
m

)
and

X� = 1m0m−n clearly hold if n = 0 or m ∈ {0, n}.
We now assume n � 1, as well as m ∈ {1, . . . , n − 1} , and proceed by

induction on n. Let s ∈ {0, . . . , n} such that X0,X1, . . . , Xs ∈ 0 {0, 1}n−1

and Xs+1,Xs+2, . . . , X� ∈ 1 {0, 1}n−1. Applying the induction hypothesis to
the suffixes of length n − 1 of X0, X1, . . . , Xs, we know that s =

(
n−1
m

)
and

Xs = 01m0(n−1)−m. This yields Xs+1 = 10n−m1m−1 and by applying induc-
tion again to the suffixes of Xs+1, Xs+2, . . . , X�, we obtain � − s =

(
n−1
m−1

)

as well as X� = 11m−10(n−1)−(m−1) = 1m0n−m. Note that by Pascal’s rule,
� = � − s + s =

(
n−1
m−1

)
+

(
n−1
m

)
=

(
n
m

)
which concludes the proof. �	

122 L. Fleischer and M. Kufleitner

Note that the sequence corresponds to binary counting and deleting all
counter values not having m bits equal 1. Since we are interested in enu-
merating n/2-element subsets, we only consider the case m = n/2. Inter-
preting the bit strings Xk as n/2-element subsets of an n-element set, the
sequence (X0,X1, . . . , X�) describes our enumeration order. Thus, all configura-
tions appearing in the computation always contain n/2 elements when restricted
to T . The counter P keeps track of the position of the head on T . It is needed
for moving a block of 1-bits as far to the right as possible when transitioning
from Xk−1 to Xk. The volatile counters Q and Z are only used by the following
macro that checks whether the bit below the tape head of T is 1.

L=1 = ιTrotr((ε | ιT=0L
Z
inc)ι

T
rotrL

Q
inc)

∗ιQval=n−1ι
Z
val=n/2L

Q
resetL

Z
reset.

Roughly speaking, a word from L=1, which preserves the cardinality of the con-
figuration, rotates the tape T cyclically n times. The counter Q is used to ensure
that neither more nor less rotations are performed. After each rotation, except
for the last one, the counter Z is increased non-deterministically if the bit under
the tape head is 0. Then, the value of Z is checked to be exactly n/2. Since we
know that the number of 0-bits on T is n/2 and since the bit under the tape
head cannot contribute to the value of Z, this is only possible if the bit under
the tape head is set. More precisely, the following lemma holds.

Lemma 18. Let R be a valid configuration such that |R ∩ T | = n/2, the coun-
ters P and Q are synchronized and the values of P and Q are zero. Then there
exists a word u ∈ L=1 with |R · u| = |R| if and only if t0 ∈ R. Moreover, if such
a word u exists, it is unique and we have R · u = R.

Proof. For i ∈ {0, 1, . . . , n − 1}, let mi = 1 if ti
∈ R and let mi = 0 otherwise.
By Lemma 15, the ιQval=n−1 instruction in a word w ∈ L=1 preserves the

number of elements in a valid configuration if and only if w contains exactly
n − 1 occurrences of LQ

inc. Therefore, each word that preserves the number of
elements when applied to R contains the instruction ιNrotr exactly n times. Since
each occurrence of LZ

inc is paired with a ιT=0 instruction, LZ
inc is applied at most

mi times after the i-th rotation, i.e., every program that does not reduce the
number of elements when applied to R has the form

ιTrotr

n−1∏

i=1

((ιT=0L
Z
inc)

kiιTrotrL
Q
inc)ι

Q
val=n−1ι

Z
val=n/2L

Q
resetL

Z
reset

for some ki ∈ {0, 1} with ki � mi. Moreover, the ιZval=n/2 instruction preserves the
cardinality of the configuration if and only if the sum of all ki with 1 � i � n−1
equals n/2. Therefore, any choice of values ki must also satisfy

n/2 =
n−1∑

i=1

ki �
n−1∑

i=1

mi = n/2 − m0

Green’s Relations in Finite Transformation Semigroups 123

where the last equality follows from the assumption that |R ∩ T | = n/2. This is
only possible if m0 = 0, i.e., t0 ∈ R, and ki = mi for all i ∈ {1, 2, . . . , n − 1}.
By letting ki = mi in the program above, we obtain the unique word u such
that |R · u| = |R|. To see that R · u = R, note that after n cyclic rotations, the
tape T returns to its original state. Moreover, by Lemma 14, both Q and Z are
synchronized and have value zero. �	

We also let Lrotl = LP
decι

T
rotl and Lrotr = LP

incι
T
rotr. The language L is now defined

as L = LP
resetL

Q
resetL

Z
reset(L=1Lrotr)∗ιT=0Lrotl(ιTmvl(L1 | L2 | L3))∗ιPval=n−1 with

L1 = (ιPval=0 | Lrotlι
T
=0Lrotr)Lrotr(L=1Lrotr)∗ιT=0Lrotl,

L2 = (LrotlL=1)+ιPval=0(L=1Lrotr)+ιT=0Lrotl,

L3 = (LrotlL=1)+Lrotlι
T
=0LrotrLrotr(K1 | K2K

∗
3K4),

K1 = ιT=0Lrotl(ιTmvrLrotl)∗ιPval=0,

K2 = L=1Lrotl(ιTmvrLrotl)∗ιPval=0Lrotr(ιT=0Lrotr)∗L=1Lrotr,

K3 = L=1Lrotl(ιTmvrLrotl)∗LrotlL=1LrotrLrotr(ιT=0Lrotr)∗L=1Lrotr,

K4 = ιT=0Lrotl(ιTmvrLrotl)∗LrotlL=1Lrotr.

The following lemma is the technical main ingredient for Theorem 20.

Lemma 19. There exists a valid initial configuration R such that L is deter-
ministic on R. Moreover, there exists a word u ∈ L of length at least

(
n

n/2

)
such

that |R · u| = |R|.
A proof of the lemma can be found in the full version of this paper [5]. Here,

we only give a sketch of the arguments. To show that L is deterministic, one can
use case distinctions similar to those in the proof of Lemma 13. It then suffices
to prove the existence of a word which enumerates the subsets corresponding
to the sequence (X0,X1, . . . , X�) defined above. An important invariant is that
after each application of a factor from ιTmvr(L1 | L2 | L3), the tape head points
at the leftmost bit of the rightmost 1-block of T . Each such factor replaces the
subset corresponding to Xk−1 by the subset corresponding to Xk on T .

The last missing piece is a component that imposes the language L on the
labels of valid computations. To this end, let A = (Q, I, δ, q0, F) be the minimal
deterministic automaton of L. We remove the sink state from Q and let all
transitions leading to that state be undefined instead. Then, as long as there
exists a state which has two ingoing transitions labeled by the same letter, we
create a copy of the state and redirect one of the transitions to the copy. When
interpreting the letters of I as actions on Q, the tuple (Q, I) then forms a token
machine which we call control unit. By construction, all instructions are injective.

Theorem 20. For all n ∈ N, there exists a token machine with n + 9 log n� +
O(1) cells and 32 instructions which admits a maximal progressing computation
of length at least

(
n

�n/2�
)
.

124 L. Fleischer and M. Kufleitner

Proof. It suffices to prove the theorem for even numbers n. Let V be the union of
U and the control unit. Any word, which is not a prefix of a word in L, empties
the configuration when applied to the initial configuration {q0} in the control
unit. Thus, by taking the union of the initial configuration from Lemma 19 and
{q0}, we obtain a maximal progressing computation of the desired length in V .

The only instructions required in the construction are ιTrotl, ιTrotr, ιTmvl, ιTmvr,
ιT=0, ιPval=0, ιQval=n−1, ιZval=n/2 and eight additional instructions for each of the
three binary counters. Since L is a fixed language, the control unit has c cells
for a constant c ∈ N (independent of n), and U has n + 9 log n� cells: n cells
for the tape T and log n� cells for each of the three tapes of the three binary
counters. Therefore, the number of cells of V is n + 9 log n� + c. �	
Corollary 21. There exists a sequence of transformation semigroups (Tn)n∈N

with a fixed number of generators such that Tn has n states and the R-height
(resp. L-height, J -height) of Tn is in Ω(2n/n9.5).

Proof. For the R-height, the result is an immediate consequence of Theorem 20,
Propositions 10 and 4. The statement also holds for J -height because every R-
chain also is a J -chain; see e.g. [8, Proposition 1.4]. An equivalent statement for
the L-height follows from Proposition 5 and the fact that all instructions used in
the construction are injective. By Stirling’s formula, we have

(
n

n/2

) ∈ Ω(2n/n0.5);
see [4,9]. Thus, we obtain the desired bound. Note that the bound in Theorem 20
is for n + 9 log n� + O(1) cells and not just n cells. This yields the factor n9 in
the denominator. �	

We can now prove our second main result.

Proof (Theorem 2). In view of Proposition 6 and Proposition 3, the theorem
immediately follows from Corollary 21. �	

Acknowledgments. We thank the anonymous referees for several useful suggestions
which helped to improve the presentation of this paper.

References

1. Brandl, C., Simon, H.U.: Complexity analysis: transformation monoids of finite
automata. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 143–154. Springer,
Cham (2015). doi:10.1007/978-3-319-21500-6 11

2. Carton, O., Michel, M.: Unambiguous Büchi automata. Theoret. Comput. Sci.
297(1), 37–81 (2003)

3. Eilenberg, S.: Automata, Languages, and Machines, vol. B. Academic Press, New
York (1976)

4. Feller, W.: An Introduction to Probability Theory and its Applications, vol. 1. New
York, Wiley (1957)

5. Fleischer, L., Kufleitner, M.: Green’s Relations in Finite Transformation Semi-
groups. CoRR, abs/1703.04941 (2017)

http://dx.doi.org/10.1007/978-3-319-21500-6_11

Green’s Relations in Finite Transformation Semigroups 125

6. Ganardi, M., Hucke, D., Lohrey, M.: Querying regular languages over sliding win-
dows. In: FSTTCS 2016, Proceedings, vol. 65. LIPIcs, pp. 18:1–18:14. Dagstuhl
Publishing (2016)

7. Holzer, M., König, B.: On deterministic finite automata and syntactic monoid size.
Theoret. Comput. Sci. 327(3), 319–347 (2004)

8. Pin, J.É.: Varieties of Formal Languages. North Oxford Academic, London (1986)
9. Robbins, H.: A remark on Stirling’s formula. Am. Math. Monthly 62, 26–28 (1955)

Nondeterministic Unitary OBDDs

Aida Gainutdinova1(B) and Abuzer Yakaryılmaz2

1 Kazan Federal University, Kazan, Russia
aida.ksu@gmail.com

2 Faculty of Computing, University of Latvia, R̄ıga, Latvia
abuzer@lu.lv

Abstract. We investigate the width complexity of nondeterministic uni-
tary OBDDs (NUOBDDs). Firstly, we present a generic lower bound on
their widths based on the size of strong 1-fooling sets. Then, we present
classically “cheap” functions that are “expensive” for NUOBDDs and
vice versa by improving the previous gap. We also present a function
for which neither classical nor unitary nondeterminism does help. More-
over, based on our results, we present a width hierarchy for NUOBDDs.
Lastly, we provide the bounds on the widths of NUOBDDs for the basic
Boolean operations negation, union, and intersection.

1 Introduction

Branching Programs (BPs) are one of the well known computational models,
which are important not only theoretically but also practically, such as hardware
verification, model checking and others [21]. The main complexity measures for
BPs are the size of BPs – its number of nodes and length (time complexity). It is
well–known that BPs of polynomial size are equivalent to non-uniform log-space
Turing machines.

The important restricted variant of BPs is Ordered Binary Decision Dia-
grams (OBDDs), which are oblivious read-once branching programs [21]. Time
complexity for OBDD is at most n (the length of the input), and so the nat-
ural complexity measure for OBDD is its width. Different variants of OBDDs
such as deterministic, probabilistic, nondeterministic, and quantum have been
considered (e.g. [3,5,6,15,18]) and they have been compared in term of their
widths. For example, it was shown that randomized OBDDs can be exponen-
tially more efficient than deterministic and nondeterministic OBDDs [6], and,
quantum OBDDs can be exponentially more efficient than deterministic and sta-
ble probabilistic OBDD and this bound is tight [3]. In [18] some simple functions
were presented such that unitary OBDDs (the known most restricted quantum

The arXiv number is 1612.07015.
A. Gainutdinova—Some parts of this work was done during Gainutdinova’s visit to
National Laboratory for Scientific Computing (Brazil) in June 2015 supported by
CAPES with grant 88881.030338/2013-01.
A. Yakaryılmaz—Partially supported by CAPES with grant 88881.030338/2013-01
and ERC Advanced Grant MQC.

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 126–140, 2017.
DOI: 10.1007/978-3-319-58747-9 13

Nondeterministic Unitary OBDDs 127

OBDD) need exponential size for computing these functions with bounded error,
while deterministic OBDDs can represent these functions in linear size. Quantum
and classical nondeterminism for OBDD models were considered in [5], where
the superiority of quantum OBDDs over classical counterparts was shown. In
particular, an explicit function was presented, which is computed by a quantum
nondeterministic OBDD of constant width, but any classical nondeterministic
OBDD for this function needs non-constant width.

The OBDDs of constant width can also be considered as a nonuniform ana-
log of one-way finite automata [1]. It is well known that classical nondeterminis-
tic automata recognize precisely regular languages. There are different variants
of nondeterministic quantum finite automata (NQFA) in literature [9,16,22].
Nakanishi et al. [16] considered quantum finite automata of Kondacs-Watrous
type [12], which use measurement at each step of a computation. They showed
that (unlike the case of classical finite automata) the class of languages recog-
nizable by NQFAs properly contains the class of all regular languages. A full
characterization of the class of languages recognized by all NQFA variants that
are at least as general as the Kondacs-Watrous type was presented in [22]: they
define the class of exclusive stochastic languages.

Bertoni and Carpentieri [9] considered a weaker model – nondeterministic
quantum automata of Moore-Crutchfield type [14] with a single measurement at
the end of a computation. They showed that the class of languages recognized
by this model does not contain any finite nonempty language but contains a
nonregular language.

In this paper we investigate nondeterministic quantum OBDDs where the
model can evolve unitarily, followed by a projective measurement at the end.
We call the model as nondeterministic unitary OBDD (NUOBDD). It can be
seen as OBDD counterparts of unitary space bounded circuits [10] or Moore-
Crutchfield (measure-once) quantum finite automata [8,14].

Section 2 presents the necessary background. We present our results in Sect. 3.
We start by presenting a generic lower bound on the widths of NUOBDD
based on the size of strong 1-fooling sets (Sect. 3.1). Then, we present (i) quan-
tumly “cheap” but classical “expensive” functions by improving the previous
gap (Sect. 3.2) and (ii) classically “cheap” functions that are “expensive” for
NUOBDDs (Sect. 3.3). We also present a function for which neither classical nor
unitary nondeterminism does help (Sect. 3.4). Moreover, based on our results,
we present a width hierarchy for NUOBDDs (Sect. 3.5). Lastly, we provide the
bounds on the widths of NUOBDDs for the basic Boolean operations negation,
union, and intersection (Sect. 3.6). We close the paper by Sect. 4. Due to limited
space, some proofs are omitted, which can be found in [11].

2 Preliminaries

We start with the definitions of the models. Then, we present some basic facts
from linear algebra which will be used in the proofs.

128 A. Gainutdinova and A. Yakaryılmaz

2.1 Definitions

We use superscripts for enumerating vectors and strings, and, subscripts for
enumerating the elements of vectors and strings. A d-state quantum system
(QS) can be described by a d-dimensional Hilbert space (Hd) over the field
of complex numbers with the norm || · ||2. A pure (quantum) state of the QS
is described by a column vector |ψ〉 ∈ Hd, whose length is one (unitary ket-
vector), i.e.

√〈ψ|ψ〉 = 1. As long as it is a closed system, the evolution of the QS
is described by some unitary matrices U . In order to retrieve information from
the system, we can apply a projective measurement (then the system is no longer
closed). We refer the reader to [19] for more details on the finite dimensional QSs
(see [17] for a complete reference on quantum computing).

Definition 1. A branching program (BP) on the variable set X = {x1, . . . , xn}
is a finite directed acyclic graph with one source node and sink nodes partitioned
into two sets – Accept and Reject. Each non-sink node is labelled by a variable
xi and has two outgoing edges labelled 0 and 1, respectively.

An input σ is accepted if and only if it induces a chain of transitions leading to
a node in Accept, otherwise σ is rejected. A BP P computes a Boolean function
f : {0, 1}n → {0, 1} iff P accepts each σ ∈ f−1(1) and P rejects each σ ∈ f−1(0).

Definition 2. A BP is oblivious if its nodes can be partitioned into levels
V0, . . . , V� such that nodes in V� are sink nodes, nodes in each level Vj with
0 ≤ j < � have outgoing edges only to nodes in the next level Vj+1, and all nodes
in the level Vj query the same bit σij+1 of the input. If on each computational
path from the source node to a sink node each variable from X is tested at most
once, then such BP is called read-once BP.

In this paper, we investigate read-once oblivious BPs that are commonly
called as Ordered Binary Decision Diagrams (OBDDs). Since the lengths of
OBDDs are fixed, the main complexity measure for them is their widths, i.e.
for OBDD P , width(P) = maxj |Vj |. The width of OBDDs can be seen as the
number of states of finite automata and so we can refer the widths also as the
sizes of OBDDs.

A nondeterministic OBDD (NOBDD) can have the ability of making more
than one outgoing transition for each tested input bit from each node and so
the program can follow more than one computational path and if one of the
paths ends with an accepting node, then the input is accepted. Otherwise (all
computation paths end with some rejecting nodes), the input is rejected.

Quantum OBDDs (QOBDDs) are non-trivial generalizations of classical
OBDDs [5] when using general quantum operators like superoperators [20]. Here
we focus on a restricted version of QOBDDs that evolves only unitarily followed
by a projective measurement at the end [2]: unitary OBDDs (UOBDDs).

Definition 3. A UOBDD Mn, defined on the variable set X = {x1, . . . , xn},
with width d (operating on Hd) is a quadruple Mn =

(
Q, |ψ0〉, T,Qacc

)
, where

Q = {q1, . . . , qd} is the set of states such that the set {|q1〉, . . . , |qd〉} forms a

Nondeterministic Unitary OBDDs 129

basis for Hd, |ψ0〉 ∈ Hd is the initial quantum state, Qacc ⊆ Q is the set of
accepting states, and T = {(ij , Uj(0), Uj(1))}n

j=1 is a sequence of instructions
such that ij determines a variable xij

tested at the step j, Uj(0) and Uj(1) are
unitary transformations defined over Hd.

For any given input σ ∈ {0, 1}n, the computation of Mn can be traced by a
unitary vector, which is initially |ψ0〉. At the j-th step (j = 1, . . . , n) the input
bit xij

is tested and then the corresponding unitary operator is applied:

|ψj〉 = Uj(σij
)|ψj−1〉,

where |ψj−1〉 and |ψj〉 represent the quantum states after the (j − 1)th and jth

steps, respectively.
After all input bits are read, the following projective measurement is applied:

P = {Pacc, Prej}, where both Pacc and Prej are diagonal 0–1 matrices such that
Pacc[j, j] = 1 iff qj ∈ Qacc and Prej = I − Pacc. Here Pacc (Prej) projects any
quantum state into the subspace spanned by accepting (non-accepting/rejecting)
basis states. Then, the accepting probability of Mn on σ is calculated from the
final state vector |ψn〉 as follows: PrMn

accept(σ) = ||Pacc|ψn〉||2.
It is clear that Mn defines a probability distribution over the inputs from

{0, 1}n. By picking some threshold between 0 and 1, we can classify the inputs
as the ones accepted with probability greater than the threshold and the others.
Picking threshold as 0 is a special case and also known as nondeterministic
acceptance mode for probabilistic and quantum models [7,22].

Definition 4. Nondeterministic UOBDD (NUOBDD) is a UOBDD, say Nn,
that is restricted to compute the Boolean function f with threshold 0: each mem-
ber of f−1(1) is accepted with non-zero probability by Nn and each member of
f−1(0) is accepted with zero probability by Nn. Then it is said that f is computed
by NUOBDD Nn.

Definition 5. A probabilistic OBDD (POBDD) Pn can be defined in the same
way as UOBDD Mn with the following modifications: the initial state is a sto-
chastic vector (v0), each transformation is a stochastic matrix (the ones at the
j-th levels are Aj(0) and Aj(1)).

The computation of Pn is traced by a stochastic vector: at the j-th step (j =
1, . . . , n) the input bit xij

is tested and then the corresponding stochastic oper-
ator is applied: vj = Aj(σij

)vj−1, where vj−1 and vj represent the probabilistic
states after the (j − 1)th and jth steps, respectively. Lastly, the accepting prob-
ability is calculated from the final vector as follows: PrPn

accept(σ) =
∑

qi∈Qacc
vn

i .
If the initial probabilistic state and each stochastic matrix in Pn is restricted to
have only 0s and 1s, then all the computations become deterministic and so Pn

is called a deterministic OBDD. If we do the same restriction to Mn, then we
obtain again a deterministic OBDD but its computation must be reversible (0–1
unitary matrices are also known as permutation matrices) and so it is called a
(classical) reversible OBDD (ROBDD). Similar to quantum nondeterminism, Pn

130 A. Gainutdinova and A. Yakaryılmaz

with threshold 0 forms an NOBDD. Besides a POBDD or UOBDD is called exact
if it accepts any input with probability either 1 or 0. Then, the corresponding
function is called to be computed exactly.

The classes OBDDd
n, NOBDD

d
n, and NUOBDDd

n are formed by the Boolean
functions defined on {0, 1}n that can be respectively computed by OBDDs,
NOBDDs, and NUOBDDs with width at most d.

2.2 Some Facts from Linear Algebra

Let V be a vector space over the field C of complex numbers with the norm
|| · ||2. We denote zero element of V by 0. Here are the properties of norm:

1. ||ψ|| = 0 ⇔ ψ = 0;
2. ∀ψ, φ ∈ V, ||ψ + φ|| ≤ ||ψ|| + ||φ|| (triangle inequality); and,
3. ∀α ∈ C,∀ψ ∈ V, ||α ψ|| = |α| · ||ψ||.

If Ψ is a set of linearly independent vectors and ψ /∈ Ψ can not be expressed
as a linear combination of the vectors from Ψ , then the set Ψ ∪ {ψ} obtained by
adding ψ to the set Ψ is linearly independent.

Lemma 6. Let {ψ1, ψ2, . . . , ψd} ∈ V be a linearly independent set of vectors
and U be a unitary transformation of the space V . Then, the set of vectors
{Uψ1, Uψ2, . . . , Uψd} is linearly independent.

Lemma 7. Let ψ1, . . . , ψm, ψ ∈ V be such that ψ1, . . . , ψm are linearly indepen-
dent and U be a linear map in V such that ||U |ψi〉|| = 0 (i = 1, . . . ,m) and
||U |ψ〉|| > 0. Then the set {ψ1, . . . , ψm, ψ} is linearly independent.

3 Our Results

We present our results under six subsections.

3.1 A Lower Bound for NUOBDDs

Let f : {0, 1}n → {0, 1} be an arbitrary function and π = (i1, . . . , in) be a per-
mutation of {1, . . . , n}. For a given X = {x1, . . . , xn}, an integer k (0 < k < n)
and a permutation π, Xπ

k denotes {xi1 , . . . , xik
}. Any possible assignment on Xπ

k ,
say σ ∈ {0, 1}k, is denoted by ρσ

π,k : Xπ
k → σ. Then f |ρσ

π,k
is called a subfunction

obtained from f by applying ρσ
π,k.

A set Sπ
k = {(σ, γ) : σ ∈ {0, 1}k, γ ∈ {0, 1}n−k} is called a strong 1-fooling

set for f if

– f |ρσ
π,k

(γ) = 1 for each (σ, γ) ∈ Sπ
k , and,

– f |ρσ
π,k

(γ′) = 0 and f |ρσ′
π,k

(γ) = 0 for each (σ, γ), (σ′, γ′) ∈ Sπ
k .

Nondeterministic Unitary OBDDs 131

Let σ, σ′ ∈ {0, 1}k. We say that the string γ ∈ {0, 1}n−k distinguishes the
string σ from the string σ′, if f |ρσ

π,k
(γ) > 0 and f |ρσ′

π,k
(γ) = 0. Note that this

definition is not symmetric.

Theorem 8. Let NUOBDD (NOBDD) Nn computes a function f : {0, 1}n →
{0, 1} reading variables in an order π = (i1, . . . , in). Then

Width(Nn) ≥ max
k

|Sπ
k |.

Proof. Let d = maxk |Sπ
k | and l be an index satisfying |Sπ

l | = d, and Sπ
l =

{(σ1, γ1), . . . , (σd, γd)}. Let Nn be an NUOBDD computing f . Consider the l-th
level of Nn. Let Ψ = {|ψ(σj)〉 | j = 1, . . . , d} be a set of state vectors of program
Nn after processing inputs σ1, . . . , σd, i.e. |ψ(σj)〉 = U(σj)|ψ0〉.
Claim. The set Ψ is linearly independent.

Proof. Assume that Ψ is not linearly independent. Then there is a quantum state
|ψ〉 = |ψ(σi)〉 ∈ Ψ expressed as a linear combination of the others in Ψ :

|ψ(σi)〉 =
d∑

j=1
j �=i

αj |ψ(σj)〉,

and αj �= 0 for some j.
Let γi be a string such that (σi, γi) ∈ Sπ

l . Then, by definition, for every input
σj (j �= i), we have f |

ρσj

π,k
(γi) = 0, and program Nn accepts the inputs σjγi with

zero probability:

PrNn
accept(σ

jγi) = ||PaccU(γi)|ψ(σj)〉||2 = 0.

That means ||PaccU(γi)|ψ(σj)〉|| = 0.
The final quantum state for the input σiγi is

|ψ(σiγi)〉 = U(γi)|ψ(σi)〉 = U(γi)
d∑

j=1
j �=i

αj |ψ(σj)〉

and by linearity we can follow that

|ψ(σiγi)〉 =
d∑

j=1
j �=i

αjU(γi)|ψ(σj)〉 =
d∑

j=1
j �=i

αj |ψ(σjγi)〉.

Then, the accepting probability of the input σiγi can be calculated as

PrNn
accept(σiγi) = ||Pacc|ψ(σiγi)〉||2 =

||∑k
j=1
j �=i

αjPacc|ψ(σjγi)〉||2 ≤ (
∑k

j=1
j �=i

|αj | ||Paccψ(σjγi)||)2 = 0.

132 A. Gainutdinova and A. Yakaryılmaz

However, f |
ρσi

π,k
(γi) > 0 and Nn must accept this input with nonzero probability.

Since this is a contradiction, the set Ψ is linearly independent. �

Since the set Ψ of the state vectors of Nn at the l-th level is linearly inde-
pendent and its size is d (|Ψ | = d), then the dimension of the space of states of
Nn cannot be less than d: Width(Nn) ≥ d.

The proof for the case when Nn is an NOBDD is the similar. The difference
is that in this case we need to consider the norm || · ||1 instead of || · ||2. If Nn is an
NOBDD computing f , then the acceptance probability is defined from the final
vector vn as PrNn

accept(vn) = ||Paccv
n||1. Recall that for a vector v = (v1, . . . , vd)

||v||1 =
∑d

i=1 |vi|. �

3.2 Function notPerm

In [4] some functions were presented that are computed by NUOBDDs with
constant width but NOBDDs need at least logarithmic width (Ω(log n)). Here,
we present a Boolean function based on which we obtain a better bound.

Let n = m2 for some m > 0. We define function notPERMn : {0, 1}n → {0, 1}
as

notPERMn(σ) =
{

0, if A(σ) is a permutation matrix,
1, otherwise,

where the input bits are indexed as

x1,1, . . . , x1,m, x2,1, . . . , x2,m, . . . , . . . , xm,1, . . . , xm,m

and xi,j is σi,j , the (i, j)-th entry of A. Note that A is a permutation matrix if
and only if it contains exactly one 1 in every row and in every column.

The column and row summations of A can be represented by a 2m digit
integer in base (m + 1): T (A) = (cmcm−1 · · · c1rmrm−1 · · · r1), where ci and ri

are the summations of the entries in i-th column and j-th row, respectively, for
1 ≤ i, j ≤ m. Then T (A) can be a value between 0 and Tmax = (m+1)2m−1, i.e.
between (0 · · · 0) and (m · · · m). It can be easily verified that A is a permutation
matrix if and only if T (A) = (1 · · · 1) =

∑2m−1
i=0 (m + 1)i = Tperm.

Theorem 9. Function notPERMn is computed by a width-2 NUOBDD Nn.

Proof. The NUOBDD Nn has two states {q1, q2}, q2 is the only accepting state,
and Nn operates on R

2. Let α be the angle of π
Tmax

. The initial state is

cos(−Tpermα)|q1〉 + sin(−Tpermα)|q2〉,

the point on the unit circle away from |q1〉 by angle Tperm(A)α in clockwise
direction. After reading the input, Nn makes a counter clockwise rotation with
angle T (A)α, i.e., it rotates with angle α

(
(m + 1)i + (m + 1)m+j

)
if xi,j = 1

and it applies the identity operator if xi,j = 0.

Nondeterministic Unitary OBDDs 133

If A is a permutation matrix, it makes a total rotation with angle Tpermα
and so the final quantum state becomes |q1〉. Thus, the input is accepted with
zero probability.

If A is not a permutation matrix, then the amplitude of |q2〉 in the final
quantum state always takes a nonzero value and so the input is always accepted
with nonzero probability. Note that Nn can make at most π degree rotation. �

It is known that Function PERMn (¬notPERMn) cannot be computed efficiently
by deterministic read-once BPs, where PERMn(σ) = 1 iff A(σ) is a permutation
matrix. By using a known lower bound given for BPs, we can obtain the following.

Fact 1 [13]. The size of any nondeterministic read-once BP, computing PERMn,
cannot be less than 2m/(2

√
m), where m =

√
n.

Theorem 10. The width of any NOBDD computing notPERMn cannot be less
than

√
n − 5

4 log n − 1.

Remark that any NOBDD can be simulated by a nondeterministic QOBDD
with the same width if quantum model can use superoperators [4]. However, as
shown here, NOBDDs and NUOBDDs with the same widths are incomparable
under certain bounds.

3.3 Function EXACT

We present a classically “cheap” but unitarily “expensive” function: EXACTkn :
{0, 1}n → {0, 1}:

EXACTkn(σ) =
{

1, if #1(σ) = k,
0, otherwise,

where #1(σ) is a number of 1s in σ. If k = n, then we have the function ANDn :
{0, 1}n → {0, 1} that equals 1 iff the input does not contain any 0.

Theorem 11. There exists a UOBDD Mn with width d = max{k+1, n−k+1}
that computes EXACTkn exactly (and so nondeterministically).

Theorem 12. The width of any NUOBDD computing EXACTkn cannot be less
than max{k + 1, n − k + 1}.
Proof. Let Nn =

(
Q, |ψ0〉, T,Qacc

)
be an NUOBDD that computes EXACTkn, π =

(i1, . . . , in) be an order of reading variables used by Nn, and d = max{k, n− k}.

The computation begins from the initial configuration |ψ0〉. The input is of
the form σ = σ1 · · · σn. After the l-th step of the computation (1 ≤ l ≤ n − 1),
the variables xi1 , . . . , xil

are read by Nn and the configuration is |ψl(σi1 · · · σil
)〉.

At the (l +1)-th step, Nn reads the next variable xil+1 = σil+1 and the new con-
figuration becomes |ψl+1(σi1 · · · σil

σil+1)〉 = Ul+1(σil+1)|ψl(σi1 · · · σil
)〉. At the

134 A. Gainutdinova and A. Yakaryılmaz

end of the computation, the projective measurement is applied to the resulting
configuration |ψn(σi1 · · · σin

)〉, and then, the probability of accepting the input
is calculated as PrNn

acc(σ) = ||Pacc|ψn(σi1 · · · σin
)〉||2.

The idea behind our proof is as follows. For each level l (l = 0, . . . , d) of Nn,
we consider the set of all possible quantum states and then focus on a maximal
subset that is linearly independent. Then we can give a lower bound on the size
of this subset.

Let Ψl = {|ψl(σ)〉 : σ ∈ {0, 1}l} be the set of all possible quantum states
after the l-th step, i.e. |ψl(σ)〉 = Ul(σl) · · · U1(σ1)|ψ0〉.
Lemma 13. Let |ψ1〉, . . . , |ψm〉, |ψ〉 ∈ Ψl and |ψ1〉, . . . , |ψm〉 be linearly indepen-
dent for some m ≥ 1, where |ψi〉 = |ψl(σi)〉 for i = 1, . . . , m and |ψ〉 = |ψl(σ)〉.
If there exists a string γ ∈ {0, 1}n−l that distinguishes the string σ from each of
the strings σ1, . . . , σm, then the set {|ψ1〉, . . . , |ψm〉, |ψ〉} is linearly independent.

Proof. Let U = Un(γn−l) · · · Ul+1(γ1). It is given that ||PaccU |ψi〉|| = 0 for each
i = 1, . . . , m, and ||PaccU |ψ〉|| > 0. Due to Lemma 7, we can follow that the set
{|ψ1〉, . . . , |ψm〉, |ψ〉} is linearly independent. �

Let Φl (Φl ⊆ Ψl) be the maximal set of linearly independent vectors. We will
estimate the cardinality of Φl by induction on l (l = 0, . . . , d). We will consider
two cases: when k ≥ n/2 and when k < n/2.

Case 1. First we assume k ≥ n/2 that is d = k.
Initial step: At the level l = 0, the set Ψ0 consists of a single vector |ψ0〉.

So we have |Φ0| = 1. At the level l = 1, the set Ψ1 contains two vectors
|ψ1(0)〉, |ψ1(1)〉. It is clear that these vectors are linearly independent since the
string γ = 1k−10n−k distinguishes the string 1 from the string 0.

Induction step (for l = 2, . . . , d): At the (l − 1)-th level, we assume that
Φl−1 ⊆ Ψl−1 has at least l elements, say |ψj0〉, . . . , |ψjl−1〉, where the corre-
sponding inputs are σj0 , . . . , σjl−1 ∈ {0, 1}l−1, respectively.

At the l-th step, Nn reads the value xil
= σil

. Due to Lemma 6 (Sect. 2.2),
we know that the set Φ0

l = {Ul(0)|ψj0〉, . . . , Ul(0)|ψjl−1〉} is linearly indepen-
dent. It is clear that |ψl(1l)〉 = Ul(1)Ul−1(1) · · · U1(1)|ψ0〉 is not a member of
Φ0

l . Moreover, the string 1k−l0n−k distinguishes 1l from each of σj10, . . . , σjl0.
Therefore, due to Lemma 13, we can follow that the set Φ0

l ∪{|ψl(1l)〉} is linearly
independent. Thus, Φl contains at least (l+1) elements, i.e. |ψj0〉, . . . , |ψjl〉, and
|ψl(1l)〉.

Therefore, Φd has at least d + 1 elements and so the dimension of the space
of quantum states must be at least d + 1.

Case 2. Now assume that k < n/2 and therefore d = n − k. It is clear that
EXACTkn(σ) = 1 iff #0(σ) = n − k, where #0(σ) denotes the number of 0 s in σ
and we have n − k ≥ n/2. We can apply the same reasoning as in the previous
case by interchanging 0 and 1.

Therefore, in both cases Φd has at least d + 1 elements and so the dimension
of quantum system must be at least d+1, where d = max{k, n−k}. Since there

Nondeterministic Unitary OBDDs 135

is an NUOBDD with width (d + 1) to solve EXACTkn, we can also conclude that
|Φd| = d + 1. �
Theorem 14. The function EXACTkn is computed by an OBDD Dn with width
min(k + 1, n − k + 1) + 1.

Theorem 15. The width of any NOBDD computing EXACTkn cannot be less than
min(k + 1, n − k + 1) + 1.

Proof. Let d = min(k, n − k). Assume k ≤ n/2 that is d = k. For any order π
of reading variables we can construct the following strong 1-fooling set for the
function EXACTkn:

Sπ
k = {(σi, γi) : i = 0, . . . , k, σi = 0 · · · 0︸ ︷︷ ︸

k−i

1 · · · 1︸ ︷︷ ︸
i

, γi = 0 · · · 0︸ ︷︷ ︸
n−2k+i

1 · · · 1︸ ︷︷ ︸
k−i

}.

Due to Theorem 8, we follow the result.
If k > n/2, then n − k ≤ n/2. In this case

Sπ
k = {(σi, γi) : i = 0, . . . , k, σi = 0 · · · 0︸ ︷︷ ︸

k−i

1 · · · 1︸ ︷︷ ︸
i

, γi = 0 · · · 0︸ ︷︷ ︸
n−2k+i

1 · · · 1︸ ︷︷ ︸
k−i

}.

Let d = min(k, n − k). Assume k ≤ n/2 that is d = k. Let Pn be an NOBDD
that computes EXACTkn and has width < d+2. Consider the k-th level Vk of Pn and
a set of partial inputs Σ = {σj ∈ {0, 1}k : σj = 0 · · · 0︸ ︷︷ ︸

k−j

1 · · · 1︸ ︷︷ ︸
j

, j = 0, . . . , k}. Let

path(σj) be one of the paths after reading σj that can also lead the computation
to an accepting node after reading (k − j) more 1s. Due to the Pigeonhole
principle, each path(σj) must be in a different node of the k-th level and so Vk

contains at least k + 1 different nodes, say v0, . . . , vk.
The level Vk+1 contains k + 1 different nodes, say v′

0, . . . , v
′
k, that can be

accessed from v0, . . . , vk by reading a single 0, because from these nodes the
computation can still go to some accepting nodes. If a single 1 is read, then
vk must switched to a node other than v′

0, . . . , v
′
k. If it switches to v′

j , then the
non-member input 1k11k−j0∗ with length n is accepted since the computation
from v′

j can go to an accepting node (the input 0k−j1j01k−j0∗ with length n is
a member). Therefore, there must be at least (k + 2) nodes.

If k > n/2, then n − k ≤ n/2 and so we can use the same proof by inter-
changing 0s and 1s. �
Corollary 16. The function ANDn is computed by an NOBDD Pn with width 2.
The function ANDn is computed by an NUOBDD Nn with width n + 1 and there
is no NUOBDD computing ANDn with width less than n + 1.

Now we show that negation of the function EXACTkn is cheap for NUOBDD:

notEXACTkn(σ) =
{

0, if #1(σ) = k,
1, otherwise.

Theorem 17. For any positive integer k (k ≤ n) the function notEXACTkn can
be computed by an NUOBDD Nn with width 2.

136 A. Gainutdinova and A. Yakaryılmaz

3.4 Function MOD

Here we present a series of results for Boolean function MODpn : {0, 1}n → {0, 1},
which is defined as:

MODpn(σ) =
{

1, if #1(σ) ≡ 0 (mod p),
0, otherwise.

It is clear that MODpn can be solved by reversible OBDDs and so by exact
UOBDDs with width p.

Theorem 18. There is a width-p ROBDD Rn computing the function MODpn.

Now, we show that nondeterminism does not help neither classically nor
quantumly in order to solve MODpn.

Theorem 19. If p ≤ n/2, then the width of any NOBDD computing MODpn can-
not be less than p. For any p (p ≤ n) the width of any NUOBDD computing
MODpn cannot be less than p.

Proof. For the case p ≤ n/2 the proof is the following. For any order π of reading
variables we can construct the following strong 1-fooling set for the function
MODpn:

Sπ
n−p+1 = {(σi, γi) : i = 0, . . . , p − 1, σi = 0 · · · 0︸ ︷︷ ︸

n−p+1−i

1 · · · 1︸ ︷︷ ︸
i

, γi = 0 · · · 0︸ ︷︷ ︸
i−1

1 · · · 1︸ ︷︷ ︸
p−i

}.

Due to Theorem 8, we follow the result.
Let consider the case p > n/2 and let Nn be any NUOBDD computing MODpn.

Using the same arguments as in the proof of Theorem 12 we can show that on the
(p− 1)-th level of Nn the set of linear independent vectors, which are achievable
quantum states, contains at least p elements. They are |ψ(σ0)〉, . . . , |ψ(σp−1)〉,
where σj = 1j0p−j−1 and j = 0, . . . , p − 1. �

Currently we do not know whether using more general QOBDD models can
narrow the width for MODpn.

3.5 Hierarchy for NUOBDDs

In [4,5], the following width hierarchy for OBDDs and NOBDDs was presented.
For any integer n > 3 and 1 < d ≤ n

2 , we have

OBDDd−1
n � OBDDd

n and NOBDDd−1
n � NOBDDd

n.

For any integer n, d = d(n), 16 ≤ d ≤ 2n/4, we have

OBDD�d/8�−1
� OBDDd and NOBDD�d/8�−1

� NOBDDd.

Here we obtain a complete hierarchy result for NUOBDDs with width up to n.

Nondeterministic Unitary OBDDs 137

Theorem 20. For any integer n > 1 and 1 < d ≤ n, we have

NUOBDDd−1
n � NUOBDDd

n.

Proof. It is obvious that NUOBDDd−1 ⊆ NUOBDDd. If d ≤ n/2, we know that
MODdn ∈ NUOBDDd

n and MODdn /∈ NUOBDDd−1
n due to Theorems 18 and 19. If

d > n/2, we know that EXACTd−1
n ∈ NUOBDDd

n and EXACTd−1
n /∈ NUOBDDd−1

n

due to Theorems 11 and 12. �
Theorem 21. (1) For any (d1, d2) satisfying 1 < d1, d2 ≤ n, NOBDDd2

n �⊆
NUOBDDd1

n . (2) For any (d1, d2) satisfying 1 < d1, d2 <
√

n − 5
4 log n − 1,

NUOBDDd2
n �⊆ NOBDDd1

n .

Proof. Let d1, d2 be arbitrary integers satisfying 1 < d1, d2 ≤ n. By Corollary
16, we know that ANDn ∈ NOBDD2

n ⊆ NOBDDd2
n and ANDn �∈ NUOBDDn

n and so
ANDn �∈ NUOBDDd1

n . Therefore, NOBDDd2
n �⊆ NUOBDDd1

n .
Let d1, d2 be arbitrary integers satisfying 1 < d1, d2 <

√
n − 5

4 log n − 1. By
Theorem 9 and Corollary 10, we know that notPERMn ∈ NUOBDD2

n ⊆ NUOBDDd1
n

and notPERMn �∈ NOBDDd2
n . Therefore, NUOBDDd2

n �⊆ NOBDDd1
n . �

3.6 Union, Intersection, and Complementation

Let f, g : {0, 1}n → {0, 1}. We call a function h = f ∪g the union of the functions
f and g iff h(σ) = f(σ)

∨
g(σ) for all σ ∈ {0, 1}n. We call a function h = f∩g the

intersection of the functions f and g iff h(σ) = f(σ)
∧

g(σ) for all σ ∈ {0, 1}n.
We call h the negation of the function f iff h(σ) = ¬f(σ) for all σ ∈ {0, 1}n.

Theorem 22. Let f and g be Boolean functions defined on {0, 1}n computed by
an NUOBDD Nn with width c and an NUOBDD N ′

n with width d respectively
such that Nn and N ′

n use the same order π of reading variables. Then, the
Boolean function f ∪ g can be computed by an NUOBDD, say N ′′

n , with width
c + d.

Proof. Let Nn = (Q = {q1, . . . , qc}, |ψ0〉, T,Qacc), N ′
n = (Q′ = {q′

1, . . . , q
′
d},

|ψ′0〉, T ′, Q′
acc), where T = {(ij , Uj(0), Uj(1))}n

j=1, T
′ = {(ij , U ′

j(0), U ′
j(1))}n

j=1.
The NUOBDD N ′′

n can be constructed based on Nn and N ′
n as follows.

N ′′
n = (Q′′ = Q∪Q′ = {q1, . . . , qc, q

′
1, . . . , q

′
d}, |ψ′′0〉, T ′′, Q′′

acc = Qacc ∪Q′
acc),

where the initial quantum state is |ψ′′0〉 = 1√
2
(|ψ0〉 ⊕ |ψ′0〉). The sequence of

instructions T ′′ = {ij , U
′′
j (0), U ′′

j (1)}n
j=1, where U ′′

j (σ) =
(

Uj(σ) 0
0 U ′

j(σ)

)
. Here

0 denotes zero matrix.
By construction, N ′′

n executes both Nn and N ′
n in parallel with equal ampli-

tude, and so it accepts a given input with zero probability iff both Nn and N ′
n

accept it with zero probability. In other words, it accepts an input with non-zero
probability iff Nn or N ′

n accepts it with non-zero probability. Thus, N ′′
n computes

the function f ∪ h. �

138 A. Gainutdinova and A. Yakaryılmaz

Theorem 23. Let f and g be Boolean functions defined on {0, 1}n computed by
an NUOBDD Nn with width c and an NUOBDD N ′

n with width d, respectively,
such that Nn and N ′

n use the same order π of reading variables. Then, the
Boolean function f ∩ g can be computed by an NUOBDD, say N ′′

n , with width
c · d.

Proof. Let Nn = (Q = {q1, . . . , qc}, |ψ0〉, T,Qacc), N ′
n = (Q′ = {q′

1, . . . , q
′
d},

|ψ′0〉, T ′, Q′
acc), where T = {(ij , Uj(0), Uj(1))}n

j=1, T ′ = {(ij , U ′
j(0), U ′

j(1))}n
j=1.

The NUOBDD N ′′
n can be constructed by tensoring Nn and N ′

n as follows.
N ′′

n = (Q′′ = Q × Q′ = {q1,1, . . . , qc,d}, |ψ0〉 ⊗ |ψ′0〉, T ′′, Q′′
acc), where the

sequence of instructions T ′′ = {ij , Uj(0) ⊗ U ′
j(0), Uj(1) ⊗ U ′

j(1)}n
j=1 and the set

of accepting states contains all the states qi,j satisfying qi ∈ Qacc and qj ∈ Q′
acc.

From this construction it follows that Pr
N ′′

n
accept(σ) = PrNn

accept(σ) ·Pr
N ′

n
accept(σ).

If the input σ is such that f(σ) = 1 and g(σ) = 1, then both Nn and N ′
n accept it

with non-zero probability and therefore N ′′
n also accepts this input with non-zero

probability. If the input σ is such that f(σ) = 0 or g(σ) = 0 then Pr
N ′′

n
accept(σ) = 0

for this input. �
The bound for intersection can be shown to be tight in certain cases.

Theorem 24. There exist functions f and g computed by NUOBDDs Nf,n

with width c and Ng,n with width d, respectively, such that the width of any
NUOBDD computing the function h = f ∩ g cannot be less than lcm(c · d),
where lcm(c · d) ≤ n.

The bounds given in Theorems 22 and 23 are also valid for NOBDDs. Deter-
ministic OBDDs, on the other hand, requires c · d for union operation.

Classically, if a function, say f , solved by an NOBDD with width d, then
the negation of f can be solved by another NOBDD with width at most 2d. By
using Corollary 16 and the result below we conclude that in case of NUOBDD,
we cannot provide such a bound.

Corollary 25. (from Theorem 17) The function ¬ANDn is computable by
NUOBDD with width 2.

4 Concluding Remarks

In this paper we investigate the width complexity of nondeteministic unitary
OBDDs and compare them with their classical counterpart. Our results are
mainly for linear and sublinear widths. As a future work, we plan to investi-
gate the superlinear widths. Here we present a width hierarchy and a similar
result is not known for nondeterministic quantum OBDDs using general quan-
tum operators. We also find interesting possible applications of our results to
some other models like quantum finite automata.

Acknowledgments. We thank the anonymous reviewers for their very helpful com-
ments and corrections.

Nondeterministic Unitary OBDDs 139

References

1. Ablayev, F., Gainutdinova, A.: Complexity of quantum uniform and nonuniform
automata. In: Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 78–87.
Springer, Heidelberg (2005). doi:10.1007/11505877 7

2. Ablayev, F., Gainutdinova, A., Karpinski, M.: On computational power of quantum
branching programs. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 59–70.
Springer, Heidelberg (2001). doi:10.1007/3-540-44669-9 8

3. Ablayev, F.M., Gainutdinova, A., Karpinski, M., Moore, C., Pollett, C.: On the
computational power of probabilistic and quantum branching program. Inf. Com-
put. 203(2), 145–162 (2005)

4. Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quan-
tum OBDDs and width hierarchies for classical OBDDs. In: Jürgensen, H.,
Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 53–64.
Springer, Cham (2014). doi:10.1007/978-3-319-09704-6 6

5. Ablayev, F.M., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quan-
tum OBDDs and width hierarchies for classical OBDDs. Lobachevskii J. Math.
37(6), 670–682 (2016)

6. Ablayev, F., Karpinski, M.: On the power of randomized branching programs. In:
Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 348–356. Springer,
Heidelberg (1996). doi:10.1007/3-540-61440-0 141

7. Adleman, L.M., DeMarrais, J., Huang, M.D.A.: Quantum computability. SIAM J.
Comput. 26(5), 1524–1540 (1997)

8. Ambainis, A., Yakaryılmaz, A.: Automata and quantum computing. Technical
report. arXiv 1507.01988 (2015)

9. Bertoni, A., Carpentieri, M.: Analogies and differences between quantum and sto-
chastic automata. Theoret. Comput. Sci. 262(1–2), 69–81 (2001)

10. Fefferman, B., Lin, C.Y.Y.: A complete characterization of unitary quantum space.
Technical report, arXiv 1604.01384 (2016)

11. Gainutdinova, A., Yakaryılmaz, A.: Nondeterministic unitary OBDDs. Technical
report, arXiv 1612.07015 (2016)

12. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In:
FOCS, pp. 66–75. IEEE Computer Society (1997)

13. Krause, M., Meinel, C., Waack, S.: Separating the eraser turing machine classes
Le, NLe, co-NLe and Pe. Theor. Comput. Sci. 86(2), 267–275 (1991)

14. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theoret.
Comput. Sci. 237(1–2), 275–306 (2000)

15. Nakanishi, M., Hamaguchi, K., Kashiwabara, T.: Ordered quantum branching pro-
grams are more powerful than ordered probabilistic branching programs under a
bounded-width restriction. In: Du, D.-Z.-Z., Eades, P., Estivill-Castro, V., Lin,
X., Sharma, A. (eds.) COCOON 2000. LNCS, vol. 1858, pp. 467–476. Springer,
Heidelberg (2000). doi:10.1007/3-540-44968-X 46

16. Nakanishi, M., Indoh, T., Hamaguchi, K., Kashiwabara, T.: On the power of non-
deterministic quantum finite automata. IEICE Trans. Inf. Syst. E85–D(2), 327–
332 (2002)

17. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

18. Sauerhoff, M., Sieling, D.: Quantum branching programs and space-bounded
nonuniform quantum complexity. Theoret. Comput. Sci. 334(1–3), 177–225 (2005)

http://dx.doi.org/10.1007/11505877_7
http://dx.doi.org/10.1007/3-540-44669-9_8
http://dx.doi.org/10.1007/978-3-319-09704-6_6
http://dx.doi.org/10.1007/3-540-61440-0_141
https://arxiv.org/abs/1507.01988
https://arxiv.org/abs/1604.01384
https://arxiv.org/abs/1612.07015
http://dx.doi.org/10.1007/3-540-44968-X_46

140 A. Gainutdinova and A. Yakaryılmaz

19. Say, A.C.C., Yakaryılmaz, A.: Quantum finite automata: a modern introduc-
tion. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Computing with New
Resources. LNCS, vol. 8808, pp. 208–222. Springer, Cham (2014). doi:10.1007/
978-3-319-13350-8 16

20. Watrous, J.: Quantum computational complexity. In: Meyers, R.A. (ed.) Encyclo-
pedia of Complexity and System Science. Springer, New York (2009)

21. Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM (2000)
22. Yakaryılmaz, A., Say, A.C.C.: Languages recognized by nondeterministic quantum

finite automata. Quantum Inf. Comput. 10(9–10), 747–770 (2010)

http://dx.doi.org/10.1007/978-3-319-13350-8_16
http://dx.doi.org/10.1007/978-3-319-13350-8_16

Unary Coded PSPACE-Complete Languages
in ASPACE(loglog n)

Viliam Geffert(B)

Department of Computer Science, P.J. Šafárik University,
Jesenná 5, 04154 Košice, Slovakia

viliam.geffert@upjs.sk

Abstract. We show that there exists a binary PSpace-complete lan-
guage L such that its unary coded version L′ is in ASpacedm(log log n),
i.e., L′ is accepted by an alternating Turing machine using an ini-
tially delimited worktape of size log log n. As a consequence, the stan-
dard translation between unary languages accepted with log log n space
and binary languages accepted with log n space works for alternating
machines if and only if P = PSpace.

In general, if a binary language L is in DTimeSpace(2n·nO(1), nO(1)),
i.e., if L is accepted by a deterministic Turing machine in 2n ·nO(1) time
and, simultaneously, in nO(1) space, then its unary coded version L′ is in
ASpacedm(log log n). In turn, if a unary L′ is in ASpacedm(log log n),
then its binary coded version L is in DTime(2n·nO(1)) ∩DSpace(nO(1)),
and also in NTimeSpace(2n ·nO(1), nO(1)).

This unexpected power of sublogarithmic space follows from the fact
that, with a worktape of size log log n on a unary input 1n, an alternating
machine can simulate a stack with log n bits, representing the contents of
the stack by its input head position. The standard push/pop operations
are implemented by moving the head along the input.

Keywords: Computational complexity · Alternation · Sublogarithmic
space

1 Introduction and Preliminaries

In computational complexity theory, an important role plays the relation between
binary inputs and their unary coded counterparts. As an example, we know
that NTime(2O(n)) separates from DTime(2O(n)) if and only if NP separates
from P on unary languages [13]. Consequently, the first separation is much more
difficult than the separation of NP from P, since we must provide a witness
language L′ in NP−P which is, in addition, unary. The same holds for the

V. Geffert—Supported by the Slovak grant contracts VEGA 1/0142/15 and APVV-
15-0091.

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 141–153, 2017.
DOI: 10.1007/978-3-319-58747-9 14

142 V. Geffert

relation DSpace(n) ?= NSpace(n) versus DSpace(log n) ?= NSpace(log n) [18].
Such results can be obtained by the use of the following translation [18]:1

Theorem 1. If a unary language L1 ∈ TimeSpace(t(N), s(N)), then its
binary coded version L1→2 ∈ TimeSpace(t(2n) · n, s(2n)). Vice versa, if a
binary language L2 ∈ TimeSpace(t(2n), s(2n)), then its unary coded version
L2→1 ∈ TimeSpace(t(N), s(N)). This holds for deterministic, nondeterminis-
tic, and alternating complexity classes with simultaneous bounds on time and
space, for any monotone functions t(N) ≥ N and s(N) ≥ Ω(log N) satisfying
t(2N) ≤ O(t(N)) and s(2N) ≤ O(s(N)).

Thus, by taking s(N) = log N , we get that a unary language L1 can be
accepted with O(log N) space if and only if its binary coded version L1→2 with
O(n) space, which holds for the deterministic, nondeterministic, as well as for
the alternating space complexity classes. That is,

XSpace(log N)1→2 = XSpace(n)2, for X ∈ {D,N,A}.

Here XSpace(s(N))1→2 denotes the class of binary coded versions of all unary
languages in XSpace(s(N)) and XSpace(s(n))2 the class of binary languages
in XSpace(s(n)).

By combination of more sophisticated techniques [1,6,10] (for details and a
survey, see Theorem 1 and its proof in [12]), the assumption s(N) ≥ Ω(log N) in
Theorem 1 can be replaced by s(N) ≥ Ω(log log N), in the case of deterministic
and nondeterministic classes XSpacedm(s(n)) that represent a more powerful
model, where the worktapes contain initially �s(n)� blank cells delimited by end-
markers, as opposed to the classical classes XSpace(s(n)), where the worktapes
are initially empty.2 Thus, taking s(N) = log log N , we get

XSpacedm(log log N)1→2 = XSpace(log n)2, for X ∈ {D,N}. (1)

On the other hand, for alternating space, it was shown in [12] that

ASpacedm(log log N)1→2 ⊇ ASpace(log n)2, but
ASpacedm(log log N)1→2 ⊆ ASpace(log n)2 implies P=NP.

(2)

Since P=NP is unlikely, we conjecture that (1) does not hold for the alternating
classes. Clearly, this does not exclude the possibility that one could disprove the
“⊆” inclusion in (2) without gaining anything about the P

?=NP problem.
This brings our attention to the properties of ASpacedm(log log N)1→2, the

class of binary coded versions of all unary languages that can be accepted by
alternating machines with worktapes of size �log log N�, delimited initially.

1 Throughout the paper, we denote the length of a binary input by n, while the length
of a unary input by N . This reflects the fact that n < N .

2 XSpace(s(n)) = XSpacedm(s(n)), if s(n) is fully space constructible. The notation
“dm” derives from “Demon” Turing Machines [4].

PSPACE Versus Unary ASPACE(loglog n) 143

One of the key observations in this paper is that, with a worktape of size
O(log log N) on a unary input 1N, an alternating machine can simulate a stack
with �log(N+1)� bits, representing the contents of the stack by a “proper” input
head position H. The contents of the stack can be changed by moving along the
input to a new calculated position H ′. Besides the push/pop operations, we have
also a read-only access to all bits stored below the top of the stack.

Based on this, we then introduce two machine models that characterize the
class ASpacedm(log log N)1→2 exactly. It turns out that this class corresponds
to an alternating machine equipped, besides the standard binary two-way read-
only input tape, with a worktape using O(log n) cells and an auxiliary pushdown
store capable of containing n bits. The second—but equivalent—model is the
same except that, instead of a pushdown store, it uses a binary stack with an
additional read-only access to the interior contents, below the top. That is,

ASpacedm(log log N)1→2 = ASpaceBinPushdown(log n, n)2
= ASpaceBinStack(log n, n)2.

The above results allow us to specify the position of ASpacedm(log log N)1→2

among the standard complexity classes as follows:

ASpacedm(log log N)1→2 ⊇ DTimeSpace(2n ·nO(1), nO(1))2,
ASpacedm(log log N)1→2 ⊆ DTime(2n ·nO(1))2 ∩ DSpace(nO(1))2,
ASpacedm(log log N)1→2 ⊆ NTimeSpace(2n ·nO(1), nO(1))2.

Thus, translation from unary languages accepted by alternating machines
with delimited �log log N� space to their binary counterparts brings us to a
quite strong class. After that, we show that

– there exists a binary PSpace-complete language such that its unary coded
version is in ASpacedm(log log N).

This allows us to derive a much stronger version of (2):

ASpacedm(log log N)1→2 = ASpace(log n)2 if and only if P=PSpace. (3)

Solved in either way, the left “=” in (3) makes a great impact. We do not expect
a positive answer—this requires a deterministic polynomial-time simulation of
an alternating machine with O(log log N) space, but on an expanded unary coun-
terpart of the original binary input, of length N ≥ 2n −1. Every less efficient
simulation/separation counts, e.g.: ASpacedm(log log N)1→2 ⊆ NP if and only
if NP =PSpace. Thus, the alternating machines with O(log log n) space may
bring answers to questions related to higher complexity classes.

We assume the reader is familiar with the basics of the standard determinis-
tic, nondeterministic, and alternating Turing machines. (See, e.g., [3,14,19]).

We only recall here that the length of an integer K > 0 written in binary
is k = 1+�log K�. However, a binary input
 bn−1 . . . b0 � enclosed in between
two endmarkers will be interpreted as K =

∑n
i=0 bi ·2i, with bn

df.= 1. Thus,

144 V. Geffert

the left endmarker plays the role of the hidden most significant bit.3 Similarly,
a unary input
1N � will be interpreted as K = N +1, so also here the left
endmarker plays the role of the hidden digit. Thus, for K = 1, 2, 3, 4, 5, . . . , we
obtain the respective binary inputs ε, 0, 1, 00, 01, . . . and the corresponding unary
inputs ε, 1, 11, 111, 1111, Taking into account the role of the left endmarker,
the lengths of the corresponding binary and unary coded inputs are related as
follows:

n = �log(N+1)�. (4)

2 Input Head as an Additional Memory

In this section, we first show how an alternating machine, on a unary input tape
containing
1N�, can compute bit(H, �), the �-th bit in the binary representation
of the current input head position H, using only O(log log N) worktape space.
The position H itself should be preserved for future. Once this is possible, we
can remember a stack capable of containing �log(N+1)� bits by the current
input head position H. The standard push/pop operations will be implemented
by moving the head along the input to a new calculated position H ′, using an
auxiliary worktape of size O(log log N). Besides the standard push/pop opera-
tions, we shall also have a read-only access to all bits stored below the top of
the stack.

Such task is beyond the power of nondeterministic machines with space
bounded by o(log N): if the head moves too far along the unary input, the
original tape position H is lost [9,10]. It should be pointed out that the bits
in the binary representation of N +1 (the value N +1 is given in unary—the
special case, corresponding to H at the end of the input) can be computed with
O(log log N) space even by a deterministic machine, if �log log N� worktape cells
are delimited initially.4

Recall that, on the unary input tape with
1N �, the input head position
is in the range H ∈ {0, . . . , N +1}. Thus, the meaningful bit positions in the
value H written in binary are in the range {0, . . . , �log(N+1)�}, and hence the
binary representation of any meaningful bit position � ≤ �log(N+1)� is of length
1+�log �� ≤ O(log log N).

3 This ensures that the same number cannot be represented by two different binary
strings, using a different number of leading zeros.

4 This is based on the following facts. First, it is quite trivial to see that the machine
can compute mi = (N +1) mod pi for any given prime pi ≤ O(log N), by counting
modulo pi while traversing across the unary input tape with �1N�. Thus, the machine
has a read-only access to (m1, m2, m3, . . .), the first O(log N/ log log N) remainders
in the Chinese Residual Representation of N+1. With access to these remainders, the
�-th bit in the binary representation of N+1 can be computed by using O(log log N)
worktape space. This was shown in [6], building on ideas presented in [5,7]. (See
also [1, Theorem 4.5]. Some related topics and other applications can be found
in [2,16]).

PSPACE Versus Unary ASPACE(loglog n) 145

Theorem 2. For any given v ∈ {0, 1}, � ≥ 0, and any starting input head
position H ∈ {0, . . . , N +1} on the unary input 1N, the question of whether
v = bit(H, �) can be decided by an alternating machine with O(log �) space.

Let us present just the main idea. Our alternating Turing machine implements an
alternating procedure test bit(v, �) that starts in a special finite control state qtest

with v and � written in binary in two separate worktape tracks and the input
head placed at the starting position H. Depending on whether v = bit(H, �), the
subtree of all computation paths in rooted in qtest will be accepting or rejecting.
If H = 0, i.e., if the input head scans the left endmarker, then bit(H, �) = 0
for each �, so we just compare v with zero. Now, for H > 0, we use the fact
that bit(H, �) = bit(H −1, �) if and only if bit(H −1, k) = 0, for some k < �.
Thus, the question of whether v = bit(H, �) can be decided by deciding the
same kind of questions, namely, whether b = bit(H−1, k), for “properly” chosen
values b ∈ {0, 1} and k ≤ �. Therefore, the computation proceeds by assignment
H := H−1, that is, by moving the input head one position to the left. After that,
the question is decided by activating new instances of the alternating procedure
test bit(b, k) running in parallel, from the very beginning. Each of these instances
is activated by switching to the state qtest, but with its own parameters b and k
on the worktape and with the new starting position of the input head, namely,
with H ′ = H−1.

Thus, we have constructed the alternating procedure test bit(v, �) that
decides whether v = bit(H, �) but, as a side effect, it destroys the original input
tape position H. Now we are going to design a function that returns the value
bit(H, �) in a straightforward way, without side effects. We shall also implement
a function that returns bit(N +1, �), preserving the current input head posi-
tion H. These two functions are implemented in an alternating fashion, so the
statement of the next theorem should be a little bit more careful.

Theorem 3. For any given � ≥ 0 and any input head position H ∈ {0, . . . , N +
1} on the unary input 1N, the value bit(H, �) can be computed by an alternating
machine with O(log �) space. The same holds for computing the value bit(N +
1, �). Moreover, in both these cases,

(I) The machine has a unique computation path returning the correct value.
Along this path, all universal decisions stepping aside lead to alternating
subtrees that are accepting and all existential decisions stepping aside to
subtrees that are rejecting. In addition, this path preserves the current input
head position H.

(II) The remaining paths may return wrong results, halt without returning any
results at all, or destroy the input head position. The outcome of such paths
is overridden, by item (I) above.

The alternating machine implementing a function head bit(�) is quite simple.
Starting in a special finite control state, with � on the worktape and the input
head at the position H, the machine first guesses b = bit(H, �), that is, branching
existentially, it chooses between b = 0 and b = 1. Next, the machine branches

146 V. Geffert

universally. The first branch returns the value b as a result and exits the func-
tion call, without changing the original position H. The second branch verifies
the guess, by calling the procedure test bit(b, �) presented in Theorem 2. This
destroys the original position H, but after stepping aside from the path return-
ing the result b. The machine for the function input bit(�) proceeds in the same
way as for head bit(�) but, before verifying the guessed value b, we move the
input head to the right endmarker. Thus, the procedure test bit(b, �) verifies
b = bit(H ′, �) for H ′ = N+1. The original input head position is lost, but after
stepping aside from the path returning b.

We are now ready to implement a binary stack of size n = �log(N+1)�.
Note that, by (4), the size of the binary stack is exactly equal to the length of
the binary coded version of
1N �. To be more precise, let current contents of
the stack be a binary string vk−1 . . . v0, with the bit v0 on top. For this data
structure, we shall provide the following package of operations:

– stack bit(�), for � ∈ {0, . . . , k−1}: a function that returns v�, the �-th bit from
top, not changing the contents of the stack vk−1 . . . v0.

– stack pop: removes the topmost bit, changing the contents of the stack from
vk−1 . . . v0 to vk−1 . . . v1.

– stack push(v), for v ∈ {0, 1}: adds the bit v on top, changing the stack contents
from vk−1 . . . v0 to vk−1 . . . v0v.

Theorem 4. The package of operations handling the binary stack of size n =
�log(N+1)�, namely, stack bit(�), stack pop, and stack push(v), can be imple-
mented as a package of alternating procedures keeping the current contents of
the stack by the current position of the input head on the unary input 1N and
using O(log n) ≤ O(log log N) space on the worktape.

Moreover, each of these alternating procedures works with the contents of the
stack correctly along the unique computation path, such that all universal deci-
sions stepping aside from this path lead to alternating subtrees that are accepting
while all existential decisions stepping aside to subtrees that are rejecting. Thus,
even though some computation paths do not work with the contents of the stack
correctly, the outcome of such paths is overridden.

Proof. By (4), we have that 2n−1 = 2�log(N+1)�−1 ≤ N . Thus, for each binary
string bn−1 . . . b0, there does exist a position H ≤ 2n−1 along the unary input 1N

such that H is binary written as bn−1 . . . b0. (For bn−1 . . . b0 = 0n, the corre-
sponding position is H = 0 at the left endmarker.) This allows us to represent
the current contents of the binary stack of size n by two quantities:

– the current position of the input head H ∈ {0, . . . , 2n−1} and
– a global variable g ∈ {0, . . . , n}, stored on a separate worktape track.

These two values are interpreted as follows: if the current input head position
H is binary written as bn−1 . . . bg . . . b0, the current contents of the stack is
bn−1 . . . bg, with the bit bg on top. The remaining bits bg−1 . . . b0 are ignored.
That is, we can represent the given stack contents vk−1 . . . v0 by any input head

PSPACE Versus Unary ASPACE(loglog n) 147

structure stack • —global values:
n = �log(N+1)� • —stack size limit
H ∈ {0, . . . , 2n−1} • —input head position: bn−1 . . . b0 in binary
g ∈ {0, . . . , n} • —stack contents: bn−1 . . . bg, with bg on top

function stack bit(�)
return head bit(g+�) • —return the �-th bit from top of the stack

end

procedure stack pop
g := g + 1 • —remove one bit from top

end

procedure stack push(v)
g := g − 1 • — add one bit on top1:
while head bit(g)<v ∧ H <N+1 do H := H + 12:

• — ensure that bit(H, g) ≥ v
while head bit(g)>v ∧ H >0 do H := H − 13:

• — ensure that bit(H, g) ≤ v
end

Fig. 1. A package of procedures implementing the binary stack of size �log(N+1)�.

position H the binary representation of which ranges between vk−1 . . . v00n−k

and vk−1 . . . v01n−k. Let us now implement this stack.
First, it is obvious that the value stack bit(�) can be obtained by the use

of head bit(g+�). (Displayed as the function stack bit in Fig. 1.) An important
detail is that head bit has a unique computation path returning the result that
is correct, not changing the current input head position, and hence preserving
the structure of the stack. All remaining paths are overridden. (See also items
(I) and (II) in Theorem 3).

Second, removing the topmost bit from the stack is trivial, by assignment
g := g+1. Clearly, if the current input head position H is binary written as
bn−1 . . . bg . . . b0, the stack contents changes from bn−1 . . . bg+1bg to bn−1 . . . bg+1.
(The procedure for this is stack pop, displayed in Fig. 1).

Finally, let us consider pushing the bit v ∈ {0, 1} on top the stack. Let
bn−1 . . . bgbg′ . . . b0 be the binary representation of the current input head posi-
tion H. First, we replace g on the worktape by the new value g′ = g−1. This
increases the stack height by one (Fig. 1, procedure stack push, line 1). Now, if
the value bg′ = bit(H, g′) is equal to v, we are done, the bit v has already been
pushed on top of the stack. For bg′ �= v, we have two cases to consider.

First, if bg′ = 0 < 1 = v, the binary representation of H is in the form
bn−1 . . . bg0bg′−1 . . . b0. In this case, we run a loop (line 2) and move the input
head to the right, searching for the nearest input position H ′ with bit(H ′, g′) = 1.
Clearly, the binary representation of H ′ is bn−1 . . . bg10g′

. Thus, we have updated
the stack contents from bn−1 . . . bg to bn−1 . . . bg1, with the bit v = 1 on top. It
should be pointed out that we move the input head to the right in the loop
that recomputes the g′-th bit for the current input position again and again, by

148 V. Geffert

calling head bit. This function is implemented in an alternating way which, by a
wrong existential guess, may return a wrong result. However, by items (I) and
(II) in Theorem 3, the outcome of such paths is overridden. For this reason, the
outcome of the loop executed in line 2 depends only on the unique path working
with the correct bits in all iterations, which overrides all paths that stop too
early or too late—before or behind the correct position H ′. Nevertheless, by a
wrong sequence of existential choices—guessing always that the g′-th bit is equal
to zero—the machine may try to traverse the entire input tape, to the right of
the right endmarker. For this reason, the iteration is stopped when we reach this
endmarker (condition H <N+1 in line 2).

Second, if bg′ = 1 > 0 = v, the binary representation of H is in the form
bn−1 . . . bg1bg′−1 . . . b0. Here we run a loop that moves the input head to the left
(line 3), searching for the nearest input position H ′ with bit(H ′, g′) = 0. Clearly,
H ′ is binary represented by bn−1 . . . bg01g′

. This updates the stack contents from
bn−1 . . . bg to bn−1 . . . bg0, which pushes the bit v = 0 onto the stack. The rea-
soning about correctness is the same as in the case of bg′ < v. Here we pay a
special attention to the path that, making wrong guesses, tries to traverse the
entire input tape, to the left of the left endmarker. Thus, we stop the iteration
when we reach the left endmarker (condition H >0 in line 3).

Since both g and � are bounded by n = �log(N+1)�, all stack operations are
implemented with O(log n) ≤ O(log log N) worktape space. �

3 Machine Models for Binary Inputs

Here we shall establish, in terms of machine models, an exact characterization
of ASpacedm(log log N)1→2, the class of binary coded versions of all unary
languages that can be accepted by alternating Turing machines starting with
�log log N� worktape cells, delimited initially. It turns out that this class is equiv-
alent to the class of binary languages accepted by the following two types of
machines:

Definition 5. An alternating auxiliary binary pushdown automaton is an alter-
nating Turing machine equipped with a finite state control, a two-way read-only
input tape, a separate two-way read-write worktape that is initially empty, and
a pushdown store containing initially a bottom-of-the-pushdown endmarker
.
During the computation, only zeros and ones can be pushed on top.

An alternating auxiliary binary stack automaton is similar except that,
instead of a pushdown store, it is equipped with a binary stack which permits
also a read-only access to the interior contents below the top. The stack is imple-
mented as a special worktape with a two-way read-only head, but the standard
push/pop operations are permitted whenever this head is scanning the topmost
symbol. Initially, the stack contains only the bottom-of-the-stack endmarker
.

The class of languages accepted by alternating auxiliary pushdown automata
keeping at most O(log n) symbols on the worktape and at most n bits in the

PSPACE Versus Unary ASPACE(loglog n) 149

pushdown store will be denoted by ASpaceBinPushdown(log n, n). The cor-
responding language class for machines equipped with the binary stack of size n
will be denoted by ASpaceBinStack(log n, n).

Theorem 6. If a binary language L2 is in ASpaceBinStack(log n, n), then
its unary coded version L2→1 is in ASpacedm(log log N).

Proof. Let L2 be accepted by an alternating auxiliary stack machine A keeping
at most O(log n) symbols on the worktape and at most n bits in the stack. We
need a machine A′ that decides, for a given input
1N � , whether the string
bn−1 . . . b0, representing the number N +1 in binary, is in L2. The machine A′

uses a worktape of length s = �log log N�, delimited by two endmarkers.
We begin with computing n, the length of the virtual binary input, which

is also the position of the most significant bit in the binary represented N +1.
Using (4), this value is bounded by n = �log(N+1)� ≤ log(2N) = 1+2log log N <
1+21+�log log N� = 1+21+s. Therefore, we can compute n by running a loop
iterated for � := 21+s, 21+s−1, 21+s−2, . . . , 0 in which we search for the first �
satisfying bit(N+1, �) = 1. When this happens, take n := � and save this value in
a separate worktape track. On the unary input
1N�, the machine A′ computes
bit(N +1, �) by calling the function input bit(�), described in Theorem 3. The
used space is bounded by O(log �) ≤ O(log 21+s) ≤ O(s) ≤ O(log log N).

During the simulation, A′ maintains the following data about A:
First, n ≤ 21+s is saved in a separate worktape track. This value does not

change in the course of the simulation.
Second, the current state of A is kept in the finite state control and the current

contents of the worktape of A is kept in a separate worktape track. During the
simulation, these data are manipulated in a straightforward way.

Third, hI ∈ {n+1, . . . , 0}, representing the current head position along the
virtual input tape
bn−1 . . . b0� , is kept in a separate worktape track. A′ does
not keep the virtual input itself — this would require Ω(log N) space. The cor-
responding input bit is computed “on demand”: each time the simulation of a
single step of A needs it, A′ calls the alternating function input bit(hI−1). For
hI = 0, the input head of A scans the right endmarker and no function call is
needed. Similarly, for hI = n+1, the input head of A scans the left endmarker.
Thus, if the simulation requires to move the input head of A one position to the
right (left), A′ decreases (increases, respectively) hI by one. For this reason, this
value is initialized to hI = n + 1.

Fourth, g ∈ {n, . . . , 0} and hS ∈ {n− g, . . . , 0} are kept in two separate
worktape tracks, and H ∈ {0, . . . , N +1} is represented by the current head
position along the unary input
1N�, initialized to g = n, hS = 0, and H = 0.
These values implement the stack of A, capable of containing n bits, by the use
of the alternating procedures described in Theorem 4. Namely, if H is written
in binary as vn−1 . . . vg . . . v0, the current contents in the stack is
 vn−1 . . . vg,
with vg on top, and the stack head is scanning vhS+g. The corresponding bit
in the stack is computed on demand: each time the simulation of A needs it,
A′ calls the alternating function stack bit(hS). For hS +g = n, the stack head

150 V. Geffert

scans the bottom-of-the-stack endmarker
 and no function call is needed. If the
simulation requires to move the stack head to the right (left), hS is decreased
(increased, respectively). Moreover, if hS = 0, i.e., if the stack head is at the
topmost symbol, the simulation may require the standard pop/push operations,
by the use of the alternating procedures stack pop or stack push, respectively.
Finally, A′ aborts the simulation, if A tries a push operation when the stack is
full.

During the simulation, A′ mirrors existential/universal branching of A, the
same holds for all accepting/rejecting decisions. Clearly, hI, g, hS are all bounded
by O(n), and hence, by (4), they are kept with O(log n) ≤ O(log log N) bits.
The same holds for the current contents of the worktape and the position of the
worktape head, using O(log n) ≤ O(log log N) bits. �
Theorem 7. If a unary language L1 is in ASpacedm(log log N), then its binary
coded version L1→2 is in ASpaceBinPushdown(log n, n).

To give an idea, we need, for the given alternating machine A accepting L1, an
alternating auxiliary pushdown machine A′ such that, on an input
bn−1 . . . b0�
representing a number N +1 in binary, it decides whether
1N � is accepted
by A. We first allocate a worktape space of size s = �log log N� ≤ O(log n). The
simulation is straightforward; the only problem is that A′ has to keep H, the
position of the input head of A on
1N�. Whenever the input head is not placed
at the left endmarker (H = 0 is handled separately), H is written in binary in
the pushdown store. Similarly as on the binary input tape, the most significant
bit is hidden, represented by
, the bottom-of-the-pushdown endmarker. Thus,
the pushdown store containing only
 corresponds to H = 1 (the leftmost “1” in

1N�) while
bn−1 . . . b0 (a perfect copy of the binary input) to H = N+1 (the
right endmarker). During the simulation, on demand, we need to test whether
H = N+1, i.e., to compare the contents in the pushdown
vk−1 . . . v0 with the
binary input tape
 bn−1 . . . b0 � and to increase or decrease H by one, i.e., to
replace, for some i ≥ 0, a string 01i on top of the pushdown by 10i, or vice versa.
The length of 01i can be counted by moving along the input
bn−1 . . . b0�.

By combining Theorems 6 and 7, we thus get:

Theorem 8. A unary language L1 is in ASpacedm(log log N) if and only if
its binary coded version L1→2 is in ASpaceBinPushdown(log n, n) or, equiv-
alently, if and only if L1→2 is in ASpaceBinStack(log n, n).

We conclude this section by exhibiting the power of such machines:

Theorem 9. DTimeSpace(2n·nO(1), nO(1)) ⊆ ASpaceBinPushdown(log n, n).

The argument is an updated version of the proof showing that DTime(nO(1)) ⊆
ASpace(log n) [3]. As a starting point, we use the simplified presentation
from [8]. Let L be accepted by a single-tape deterministic Turing machine A
working in time t(n) ≤ 2n ·nO(1) and space s(n) ≤ nO(1). For the given input
w ∈ L, consider the rectangular table of size t(n)×s(n) describing the accepting
computation. The top row describes the initial configuration and the bottom

PSPACE Versus Unary ASPACE(loglog n) 151

row the final configuration. In general, the i-th row describes the configuration
after i steps, in the form
xi,1 . . . xi,ji−1x

(qi)
i,ji

xi,ji+1 . . . xi,s(n)#̄, which displays the
used part of the worktape and the current state qi placed at the position ji.
Each intermediate square is determined by the three squares in the row directly
above. The alternating device A′ starts from the bottom left corner of the table,
since A accepts in the unique state qF with the head at the left endmarker. Now,
for the given square in the i-th row and j-th column, A′ branches existentially
and guesses the contents in the three squares above. Then, branching universally,
these squares are verified in the same way, all the way up to the top row, where
guesses are verified by comparison with the input. Since A is deterministic, all
guesses along different branches running in parallel must be globally consistent.

During this simulation, the current square is kept in the finite state con-
trol. The horizontal coordinate j is stored on the worktape with O(log n) bits.
The vertical coordinate i needs k · log n + n bits, for some k ≥ 1. This value
is represented by i′ = �i/2n�, kept on the worktape with k · log n bits, and by
i′′ = i mod 2n, kept in the pushdown with n bits. The value i′′ is manipulated
(decreased, tested for zero) in a similar way as in Theorem 7: using the input
head of A′ as an auxiliary counter, we can replace a suffix 10i on top of the
pushdown by 01i.

4 Consequences

By combining the results derived so far with the Savitch’s theorem [18] and the
fact that ASpacedm(log log N) is a subset of DTime(N ·(log N)O(1)) and also of
NTimeSpace(N ·(log N)O(1), (log N)O(1)), shown in [11], we can now specify the
position of ASpacedm(log log N)1→2 among the standard complexity classes.

Theorem 10. If a binary language L2 is in DTimeSpace(2n·nO(1), nO(1)), then
its unary coded version L2→1 is in ASpacedm(log log N). In turn, if a unary
language L1 is in ASpacedm(log log N), then its binary coded version L1→2 is
in DTime(2n ·nO(1)) ∩ DSpace(nO(1)) and in NTimeSpace(2n ·nO(1), nO(1)).

By (2), we already had the “downward” translation P2 = ASpace(log n)2 ⊆
ASpacedm(log log N)1→2. To shed some light on the reverse inclusion, consider
the problem of quantified boolean formulas, i.e., QBF. This language consists
of expressions of the form (Q1xi1 . . . Qmxim)f(x1, . . . , xm), where each Qj is
a universal or existential quantifier and f(x1, . . . , xm) is a boolean function.
Moreover, the boolean formula should have no free variables and should be true.
Each variable xi is represented by its index i, written in binary. For example,
(∀10 ∃1 ∀11) (¬1 ∨ ¬10 ∧ 11) represents (∀x2∃x1∀x3) (¬x1∨¬x2∧x3). Now, let
QBF2 denote a binary version of QBF in which, in a straightforward way, each
letter of the alphabet Δ = {∀,∃, (,),∨,∧,¬, 0, 1} is coded by four bits.

Theorem 11. There exists a binary PSpace-complete language, namely,
QBF2, such that its unary coded version QBF2→1 is in ASpacedm(log log N).

152 V. Geffert

Proof. It is well known that QBF is PSpace-complete [17], which can also be
found in many textbooks, e.g., in [8,14]. Moreover, the deterministic algorithm
for testing membership in QBF, presented in [14, Theorem 11.10], runs not
only in nO(1) space, but also in 2n ·nO(1) time, even though this is not stated
in [14] explicitly. Basically, given a formula of length n with m ≤ n quantified
variables, this algorithm evaluates the formula by a recursive procedure which
examines the binary tree with O(2m) nodes, in which 2m leaves correspond to
the 2m possible combinations of the truth values assigned to the m variables.
Processing of a single node in this tree takes time nO(1), which gives the total
computation time O(2m)×nO(1) ≤ 2n ·nO(1), whereas the space depends on the
recursion depth, which gives the total space m×nO(1) ≤ nO(1). Thus, QBF is in
DTimeSpace(2n ·nO(1), nO(1)).

All this clearly holds for the binary version QBF2 as well. But then, by
Theorem 10, the unary coded version QBF2→1 is in ASpacedm(log log N). �
Actually, almost all “natural” PSpace-complete (also NP-complete) problems
in the literature belong to DTimeSpace(2n ·nO(1), nO(1)), and hence their unary
versions to ASpacedm(log log N). Now, using Theorem 11, we get:

Theorem 12. The class consisting of the binary coded versions of all unary
languages in ASpacedm(log log N) coincides with the class of binary languages
in ASpace(log n) if and only if P = PSpace.

Proof. Since ASpacedm(log log N)1→2 ⊇ ASpace(log n)2, by (2), we have that
ASpacedm(log log N)1→2 = ASpace(log n)2 if and only if ASpacedm(log log
N)1→2 ⊆ ASpace(log n)2.

Now, suppose that P = PSpace. Let L1 be an arbitrary unary language
in ASpacedm(log log N). But then, by Theorem 10, its binary coded version
L1→2 is in DSpace(nO(1)) = PSpace and hence, by assumption, it is also in
P = ASpace(log n). Thus, ASpacedm(log log N)1→2 ⊆ ASpace(log n)2.

Conversely, let ASpacedm(log log N)1→2 ⊆ ASpace(log n)2. By Theorem 11,
we have that QBF2, the binary version of QBF, is a PSpace-complete language
such that its unary coded version QBF2→1 is in ASpacedm(log log N). But then,
by assumption, the binary language QBF2 is in ASpace(log n) = P. Thus, we
have a PSpace-complete language in P, which gives that P = PSpace. �
Corollary 13. ASpacedm(log log N)1→2 ⊆ NP if and only if NP=PSpace .

The argument is an easy modification of the proof of Theorem 12. The same
holds if “NP” is replaced by any other complexity class C ⊆ PSpace such that
C is closed under polynomial time reductions.

In this context, a promising line of research is studying the computational
power of the alternating auxiliary pushdown/stack automata with simultaneous
bounds on the worktape space and the number of bits in the pushdown/stack.
By Theorem 8, we have that the class ASpacedm(log log n)1→2 is equal
to both ASpaceBinPushdown(log n, n)2 and ASpaceBinStack(log n, n)2.
Hence, these two classes are equal. On the other hand, if the size of the push-
down/stack is not restricted, these two computational models are substantially

PSPACE Versus Unary ASPACE(loglog n) 153

different [15]: using our notation, we have ASpaceBinPushdown(log n,∞) =
DTime(2nO(1)), while ASpaceBinStack(log n,∞) = DTime(22nO(1)

). However,
nothing is known about the general case.

Acknowledgment. The author thanks the reviewers for their suggestions, especially
for sending a summary of PC discussions which has stimulated future work in this area.

References

1. Allender, E.: The division breakthroughs. Bull. Eur. Assoc. Theoret. Comput. Sci.
74, 61–77 (2001)

2. Allender, E., Mix Barrington, D., Hesse, W.: Uniform circuits for division: con-
sequences and problems. In: Proceedings IEEE Conference Computational Com-
plexity, pp. 150–159 (2001)

3. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. J. Assoc. Comput. Mach.
28, 114–133 (1981)

4. Chang, R., Hartmanis, J., Ranjan, D.: Space bounded computations: review and
new separation results. Theoret. Comput. Sci. 80, 289–302 (1991)

5. Chiu, A.: Complexity of parallel arithmetic using the Chinese remainder represen-
tation. Master’s thesis, Univ. Wisconsin-Milwaukee (1995). (G. Davida, supervisor)

6. Chiu, A., Davida, G., Litow, B.: Division in logspace-uniform NC1. RAIRO Inform.
Théor. Appl. 35, 259–275 (2001)

7. Dietz, P., Macarie, I., Seiferas, J.: Bits and relative order from residues, space
efficiently. Inform. Process. Lett. 50, 123–127 (1994)

8. Emde Boas, P.: Machine models and simulations. In: Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science. Elsevier Science (1989)

9. Geffert, V.: Nondeterministic computations in sublogarithmic space and space con-
structibility. SIAM J. Comput. 20, 484–498 (1991)

10. Geffert, V.: Bridging across the log(n) space frontier. Inform. Comput. 142, 127–
158 (1998)

11. Geffert, V.: Alternating demon space is closed under complement and other
simulations for sublogarithmic space. In: Brlek, S., Reutenauer, C. (eds.) DLT
2016. LNCS, vol. 9840, pp. 190–202. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53132-7 16

12. Geffert, V., Pardubska, D.: Unary coded NP-complete languages in ASPACE(log
log n). Internat. J. Found. Comput. Sci. 24, 1167–1182 (2013)

13. Hartmanis, J., Immerman, N., Sewelson, W.: Sparse sets in NP–P: EXPTIME
versus NEXPTIME. Inform. Control 65, 158–181 (1985)

14. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Reading (2001)

15. Ladner, B., Lipton, R., Stockmeyer, L.: Alternating pushdown and stack automata.
SIAM J. Comput. 13, 135–155 (1984)

16. Macarie, I.I.: Space-efficient deterministic simulation of probabilistic automata. In:
Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp.
109–122. Springer, Heidelberg (1994). doi:10.1007/3-540-57785-8 135

17. Meyer, A., Stockmeyer, L.: Word problems requiring exponential time. In: Pro-
ceeding of ACM Symposium Theory of Computation, pp. 1–9 (1973)

18. Savitch, W.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. System Sci. 4, 177–192 (1970)

19. Szepietowski, A.: Turing Machines with Sublogarithmic Space. LNCS, vol. 843.
Springer, Heidelberg (1994)

http://dx.doi.org/10.1007/978-3-662-53132-7_16
http://dx.doi.org/10.1007/978-3-662-53132-7_16
http://dx.doi.org/10.1007/3-540-57785-8_135

Turing Degree Spectra of Minimal Subshifts

Michael Hochman1 and Pascal Vanier2(B)

1 Einstein Institute of Mathematics,
Hebrew University of Jerusalem, Jerusalem, Israel

2 Laboratoire d’Algorithmique, Complexité et Logique,
Université de Paris-Est, LACL, UPEC, Créteil, France

pascal.vanier@lacl.fr

Abstract. Subshifts are shift invariant closed subsets of ΣZ
d

, with Σ
a finite alphabet. Minimal subshifts are subshifts in which all points
contain the same patterns. It has been proved by Jeandel and Vanier
that the Turing degree spectra of non-periodic minimal subshifts always
contain the cone of Turing degrees above any of its degrees. It was how-
ever not known whether each minimal subshift’s spectrum was formed
of exactly one cone or not. We construct inductively a minimal subshift
whose spectrum consists of an uncountable number of cones with incom-
parable bases.

A Z
d-subshift is a closed shift invariant subset of ΣZ

d

, with Σ finite. Subshifts
may be seen as sets of colorings of Z

d, with a finite number of colors, avoiding
some set of forbidden patterns. The traditionally studied type of subshifts are
Subshifts of Finite Type (SFTs), subshifts that may be defined using a finite fam-
ily of forbidden patterns. For SFTs, there is a fundamental distinction between
dimension one and higher dimensions: in dimension one, SFTs are essentially
biinfinite walks on a graph while in higher dimensions SFTs become more com-
plex and can embed Turing machine computations.

Subshift may also be seen as dynamical systems, and it has turned out that
many dynamical properties of SFTs, sofic subshifts (letter by letter projections
of SFTs) and effective subshifts (subshift that may be defined with a recursively
enumerable family of forbidden patterns) can be characterized by means of com-
putability theoretic objects. Examples of such characterizations include entropy,
which can be characterized as the right recursively enumerable reals [HM10],
slopes of periodicity [JV10], subactions [Hoc09,AS13,DRS10] and several other
aspects [FS12,SS16].

From a computable point of view, effective subshifts, SFTs and sofic subshifts
are all Π0

1 classes. These are subsets of {0, 1}N for which there exists a Turing
machine which, given a point of {0, 1}N as an oracle, halts if and only if it is
not in the class. One measure of the computational power of classes of sets
are Muchnik and Medvedev degrees: two classes are Muchnik equivalent if for
each point of one of the classes there exists a computable function which maps
it to some point of the other class. They are Medvedev equivalent if we have
uniformity: if it is the same function for all points. Simpson [Sim11], building on
c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 154–161, 2017.
DOI: 10.1007/978-3-319-58747-9 15

Turing Degree Spectra of Minimal Subshifts 155

the work of Hanf [Han74] and Myers [Mye74], proved that the Medvedev and
Muchnik degrees of SFTs are the same as the Medvedev degrees of Π0

1 classes
in general.

However, this measure is not very fine-grained, for instance two subshifts
can be Muchnik equivalent but not even have the same cardinality: one may
be uncountable while the other is countable or even finite, in particular, two
subshifts containing each a computable point will always be Muchnik/Medvedev
equivalent. A more precise measure is the Turing degree spectrum: the set of
Turing degrees of its points. These have first been studied on one dimensional
subshifts Cenzer, Dashti, and King [CDK08] and Cenzer, Dashti, Toska, and
Wyman [CDTW10,CDTW12].

Subsequently Jeandel and Vanier [JV13] focused on Turing degree spectra
of the classical classes of multidimensional subshifts: SFTs, sofic and effective
subshifts. They proved in particular that the Turing degree spectra of SFTs are
almost the same as the spectra of Π0

1 classes (see Kent and Lewis [KL10] for a
survey of Π0

1 spectra):

Theorem (Jeandel and Vanier [JV13], Theorem 4.1). Let S ⊆ {0, 1}N be a
Π0

1 class, there exists an SFT X such that X and S are recursively homeomorphic
up to a uniformly computable subset of X.

This means that if we add 0 to the spectrum of S then we can construct an
SFT with the same spectrum. In order to show that it is not possible to realize
exactly some Π0

1 classes, that is without adding a computable point, they studied
the spectra of minimal subshifts.

Minimal subshifts are subshifts containing no proper subshift, or equivalently
subshifts in which all configurations have the same finite subpatterns. They
are fundamental in the sense that all subshifts contain at least one minimal
subshift [Bir12].

It was proved in [JV13] that the spectrum of any non-periodic minimal sub-
shift contains the cone above any of its degrees (a definition of cone of Turing
degrees is given in Sect. 1.3):

Theorem (Jeandel and Vanier [JV13], Theorem 5.10). Let X be a minimal
non-finite subshift (i.e. non-periodic in at least one direction). For any point
x ∈ X and any degree d ≥T degT x, there exists a point y ∈ X such that
d = degT y.

Here we answer the followup question of whether a minimal subshift’s spec-
trum always corresponds to a single cone or if there exists one containing at least
two cones of incomparable bases. It is quite easy to prove the following theorem:

Theorem 1. For any Turing degree degT d, there exists a minimal subshift X
whose spectrum of Turing degrees is a cone of base degT d.

For instance the spectrum of a Sturmian subshift [MH40] with an irrational
angle is the cone whose base is the degree of the angle of the rotation. The
theorem can also be seen as a corollary of Miller’s proof [Mil12] [Proposition 3.1]
of a result on Medvedev degrees.

156 M. Hochman and P. Vanier

Theorem 2. There exist a minimal subshift X ⊂ {0, 1}Zd

and points xz ∈ X

with z ∈ {0, 1}N such that for any z �= z′ ∈ {0, 1}N, degT xz and degT xz′ are
incomparable and such that there exists no point y ∈ X with degT y ≤T degT xz

and degT y ≤T degT xz′ .

That is to say, there exists a minimal subshift whose spectrum consists of
2ℵ0 cones with incomparable bases.

The subshift constructed in this proof is not effective and cannot be “effec-
tivized”, since minimal effective subshifts always contain a computable point and
thus their spectra are the whole set of Turing degrees when they are non-periodic.

1 Preliminary Definitions

1.1 Words and Languages

For a possibly infinite word w = w0 . . . wn, we denote w[i,j] = wi . . . wj . For a
language L, denote by L∗ the set of finite words formed by concatenations of
words of L and Lω the set of infinite words formed by concatenations of words
of L∗. We will say that a word w′ extends a word w when w is a prefix of w′.

1.2 Subshifts

We give here some standard definitions and facts about subshifts, one may con-
sult the book of Lind and Marcus [LM95] for more details.

Let Σ be a finite alphabet, its elements are called symbols, the d-dimensional
full shift on Σ is the set ΣZ

d

of all maps (colorings) from Z
d to the Σ (the colors).

For v ∈ Z
d, the shift functions σv : ΣZ

d → ΣZ
d

, are defined locally by σv(cx) =

cx+v. The full shift equipped with the distance d(x, y) = 2
−min

⎧
⎨

⎩
‖v‖

∣
∣
∣
∣
v∈Z

d,xv �=yv

⎫
⎬

⎭

is a compact metric space on which the shift functions act as homeomorphisms.
An element of ΣZ

d

is called a configuration.
Every closed shift-invariant (invariant by application of any σv) subset X of

ΣZ
d

is called a subshift. An element of a subshift is called a point of this subshift.
Alternatively, subshifts can be defined with the help of forbidden patterns.

A pattern is a function p : P → Σ, where P , the support, is a finite subset of
Z

d. We say that a configuration x contains a pattern p : P → Σ, or equivalently
that the pattern p appears in x, if there exists z ∈ Z

d such that x|z+P = p.
Let F be a collection of forbidden patterns, XF is the subset of ΣZ

d

con-
taining all configurations having nowhere a pattern of F . More formally, XF is
defined by

XF =
{

x ∈ ΣZ
d

∣
∣
∣
∣
∀z ∈ Z

d,∀p ∈ F, x|z+P �= p

}

.

In particular, a subshift is said to be a subshift of finite type (SFT) when it
can be defined by a collection of forbidden patterns that is finite. Similarly, an

Turing Degree Spectra of Minimal Subshifts 157

effective subshift is a subshift which can be defined by a recursively enumerable
collection of forbidden patterns. A subshift Y ⊆ ΓZ

d

is sofic if there exists an
SFT X on some alphabet Σ and a letter by letter projection π : Γ → Σ, such
that π(X) = Y , where we extended π naturally on configurations.

Let us now come to the definition of the object of study of this article:

Definition 1 (Minimal subshift). A subshift X is called minimal if it verifies
one of the following equivalent conditions:

– There is no subshift Y such that Y � X.
– All the points of X contain the same patterns.
– It is the closure of the orbit of any of its points.

In the sequel, we will use the two latter conditions.

1.3 Computability

We give here some definitions and basic notations for computability theory, a
detailed introduction may be found in Rogers [Rog87].

A set A ⊆ N is called recursively enumerable if there exists a Turing machine
that enumerates each of its elements, or equivalently, if there exists a Turing
machine that halts only when its input is an element of A.

For x, y ∈ {0, 1}N, we say that x ≤T y if there exists a Turing machine
M such that M with oracle y computes x, that is to say M has access to a
supplementary tape on which y is written. Of course x ≡T y when we have
both x ≤T y and y ≤T x. The Turing degree of x is the equivalence class of
x with respect to ≡T . The spectrum of some subset S ⊆ {0, 1}N is defined as
Sp (S) = {d | ∃x ∈ S,d = degT x}.

A cone of Turing degrees is a set of degrees D for which there exists a degree
d such that D = {d | d ≥T d}.

We call recursive operator a partial function φ : {0, 1}N → {0, 1}N corre-
sponding to a Turing machine whose input is its oracle and output is an infinite
sequence. We say that the function is undefined on the inputs on which the
Turing machine does not output an infinite sequence of bits.

2 Minimal Subshifts with Several Cones

Lemma 1. There exists a countable set C ⊆ {0, 1}N such that for any finite
language L, any two recursive partial operators φ1, φ2 : {0, 1}N → {0, 1}N and
two distinct words w1, w2 ⊆ L∗, there exist two words w′

1, w
′
2 ∈ L∗ extending

respectively w1 and w2 such that we have one of the following:

(a) either for any pair x, y ∈ Lω, φ1(w′
1x) differs from φ2(w′

2y) when they are
both defined,

(b) or for any pair x, y ∈ Lω, φ1(w1x) = φ2(w2y) ∈ C when both defined.

158 M. Hochman and P. Vanier

Proof. Let M1,M2 be the Turing machines computing the functions x �→
φ1(w1x), x �→ φ2(w2x) respectively. When restricting ourselves to inputs on
which both operators are defined, by continuity of computable functions, it is
quite clear that:

– either there exists some sequences x, y ∈ L∗ such that M1(x)’s output differs
from M2(y)’s output at some step,

– or the outputs of both machines M1,M2 do not depend on their inputs on
their respective domains and are equal, in this latter case, we are in case b.
We define C to be the set of these outputs, for all finite languages L and all
such pairs M1,M2 of operators.

In the former case, there exist prefixes w′
1 and w′

2 of w1x and w2y such that the
partial outputs of M1 once it has read w′

1 already differs from the partial output
of M2 once it has read w′

2.
In the latter case, one may take w′

1 = w1 and w′
2 = w2. C is countable since

there is a countable number of tuples L, φ1, φ2, w1, w2. �
Theorem 3. There exists a minimal subshift X ⊆ {0, 1}N whose spectrum con-
tains 2ℵ0 disjoint cones of Turing degrees with incomparable bases with no degree
below any two of them.

Note that this proof is in no way effective. As a matter of fact, for minimal
subshifts, it is equivalent to be effective and to contain a recursive point [BJ10].
The set of Turing degrees an effective subshift is thus always the cone of all
degrees.

The following theorem establishes a variant of Theorem2 for one-sided, one-
dimensional subshifts. After the proof we comment on how to recover the full
statement of Theorem 2, which applies to two-sided onedimensional, and to mul-
tidimensional, subshifts.

Proof. We construct a sequence of sofic subshifts (Xi)i∈N such that Xi+1 ⊆ Xi

and such that the limit X =
⋂

i∈N
Xi is minimal. In the process of constructing

the Xi, which will be formed of concatenations of allowed words xi
1, . . . , x

i
k,

we ensure that no extensions of two distinct words may compute an identical
sequence with any of the first i Turing machines. At the same time, we make sure
that all allowed words of level i + 1 contain all words of level i, thus enforcing
the minimality of the limit X. We also have to avoid that the limit X contains
a computable point.

Let (Mi)i∈N be an enumeration of all minimal subshifts containing a point
of the set C defined in Lemma 1. Such an enumeration exists since C is countable
and minimal subshifts are the closure of any of their points. We will also need an
enumeration (φi)i∈N of the partial recursive operators from {0, 1}N to {0, 1}N.

Now let us define the sequence of sofic shifts (Xi)i∈N∗ . These will actually be
renewal systems, a subclass of sofic shifts, see Williams [Wil90]: each of them will
be the shift invariant closure of the biinfinite words formed by concatenations of
words of some language Li which here will be finite languages.

Turing Degree Spectra of Minimal Subshifts 159

We define X0 = {0, 1}N that is to say X0 is generated by L1 = {w0 = 0, w1 =
1}. Let us now give the induction step. At each step, Li+1 will contain 2i+1 words
w0...0, . . . , w1...1, the indices being binary words of length i+1, which will verify
the following conditions:

1. The words wb0, wb1 of Li+1 start with the word wb of Li and consist only of
concatenations of words of Li.

2. The words wb with b ∈ {0, 1}i+1 of Li+1 each contain all the words of wb′

with b′ ∈ {0, 1}i of Li.
3. For any two words wb �= wb′ of Li+1 and for all j, j′ ≤ i:

– Either for all x, y ∈ Lω
i , φj(wbx) �= φj′(wb′y) when both defined,

– Or for all x, y ∈ Lω
i , φj(wbx), φj′(wb′y) are in C when defined.

4. The words wb0, wb1 do not appear in any configuration of Mj , for all j ≤ i.

Conditions 1 and 2 are easy to ensure: just make wba, b ∈ {0, 1}i, a ∈ {0, 1}
start with wb followed by all concatenations of words wb′ with b′ ∈ {0, 1}i.
We then use Lemma 1 to extend any w previously constructed into a word w′

verifying condition 3, this is done several times in a row, once for every quadruple
w,w′, φj , φj′ , using language L = Li. And finally, since Xi is not minimal, we
can extend w′ so that it contains a pattern appearing in none of the Mj ’s for
j ≤ i, to obtain condition 4. Now we can just extend w′ with two different words
thus obtaining wb0 and wb1.

Now let’s check that this leads to the desired result:

– X =
⋂

Xi is a countable intersection of compact shift-invariant non-empty
spaces, it is compact and shift-invariant and non-empty, thus a subshift.

– Any pattern p appearing in some point of X is contained in a pattern wb, with
b ∈ {0, 1}i for some i, by construction (condition 2), all wb′ with b ∈ {0, 1}i+1

contain wb. Therefore, all points of X, since they are contained in Xi+1,
contain wb and hence p. So X is minimal.

– For all z ∈ {0, 1}N, define the points xz = limi→∞ wz[0,i], they are in X
because they belong to each Xi. Condition 3 ensures that if from two of them
one could compute the same sequence y ∈ {0, 1}N, then this sequence would
be in C. But condition 4 ensures that no point of X belongs to a minimal
subshift containing a point of C.

This means that for any two z �= z′ ∈ {0, 1}N no point in X is a common
lower bound for xz and xz′ , in particular this means that each of them is the
base of the only cone it belongs to. �
It is quite straightforward to transform this proof in order to get a subshift

on {0, 1}Z instead of {0, 1}N: it suffices to allow words to be extended in two
directions and to now put wb in the center of any wba, so that the limit sequence
is well defined. Note that the words do not need to grow at the same rate on
both sides, but need to be strictly increasing on both sides. One way to do this
is for instance to put a copy of all concatenations of all words of the previous
level on both sides instead of just one.

We thus obtain Theorem 2 by making the minimal subshift on Z periodic in
all other directions of Z

d:

160 M. Hochman and P. Vanier

Corollary 1. For any dimension d, there exists a minimal subshift X ⊆ {0, 1}Zd

whose spectrum of Turing degrees contains 2ℵ0 cones of incomparable bases with
no degree below any two of them.

References

[AS13] Aubrun, N., Sablik, M.: Simulation of effective subshifts by two-
dimensional subshifts of finite type. Acta Applicandae Mathemat-
icae 126(1), 35–63 (2013). ISSN: 1572–9036. 1007, doi:10.1007/
s10440-013-9808-5, http://dx.doi.org/10.1007/s10440-013-9808-5

[Bir12] Birkhoff, M.-G.D.: Quelques théorèmes sur le mouvement des systèmes
dynamiques. Bulletin de la SMF 40, 305–323 (1912)

[BJ10] Ballier, A., Jeandel, E.: Computing (or not) quasi-periodicity functions of
tilings. In: Second Symposium on Cellular Automata (JAC) (2010)

[CDK08] Cenzer, D., Dashti, A., King, J.L.F.: Computable symbolic dynamics.
Math. Logic Q. 54(5), 460–469 (2008). doi:10.1002/malq.200710066

[CDTW10] Cenzer, D., Dashti, A., Toska, F., Wyman, S.: Computability of countable
subshifts. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L.
(eds.) CiE 2010. LNCS, vol. 6158, pp. 88–97. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13962-8 10

[CDTW12] Cenzer, D., Dashti, A., Toska, F., Wyman, S.: Computability of countable
subshifts in one dimension. Theory Comput. Syst. 51, 352–371 (2012).
doi:10.1007/s00224-011-9358-z

[DRS10] Durand, B., Romashchenko, A., Shen, A.: Effective closed subshifts in 1D
can be implemented in 2D. In: Blass, A., Dershowitz, N., Reisig, W. (eds.)
Fields of Logic and Computation. LNCS, vol. 6300, pp. 208–226. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15025-8 12

[FS12] Fernique, T., Sablik, M.: Local rules for computable planar tilings. In:
Formenti, E. (ed.) Proceedings 18th International Workshop on Cellular
Automata and Discrete Complex Systems and 3rd International Sympo-
sium Journées Automates Cellulaires (AUTOMATA & JAC 2012), La
Marana, Corsica, 19–21 September 2012, vol. 90, EPTCS, pp. 133–141.
doi:10.4204/EPTCS.90.11, http://dx.doi.org/10.4204/EPTCS.90.11

[Han74] Hanf, W.: Non recursive tilings of the plane I. J. Symb. Logic 39(2), 283–
285 (1974)

[HM10] Hochman, M., Meyerovitch, T.: A characterization of the entropies of mul-
tidimensional shifts of finite type. Ann. Math. 171(3), 2011–2038 (2010).
doi:10.4007/annals.2010.171.2011

[Hoc09] Hochman, M.: On the dynamics, recursive properties of multidimensional
symbolic systems. Inventiones Mathematicae 176, 131 (2009)

[JV10] Jeandel, E., Vanier, P.: Slopes of tilings. In: Kari, J. (ed.) JAC, pp. 145–
155. Turku Center for Computer Science (2010). ISBN: 978-952-12-2503-1

[JV13] Jeandel, E., Vanier, P.: Turing degrees of multidimensional SFTs. In:
Theoretical Computer Science 505.0. Theory and Applications of Mod-
els of Computation 2011, pp. 81–92 (2013). ISBN: 0304-3975. http://dx.
doi.org/10.1016/j.tcs.2012.08.027, http://www.sciencedirect.com/science/
article/pii/S0304397512008031

[KL10] Kent, T., Lewis, A.E.M.: On the degree spectrum of a Π0
1 class. Trans.

Am. Math. Soc. 362, 5283–5319 (2010)

http://dx.doi.org/10.1007/s10440-013-9808-5
http://dx.doi.org/10.1007/s10440-013-9808-5
http://dx.doi.org/10.1007/s10440-013-9808-5
http://dx.doi.org/10.1002/malq.200710066
http://dx.doi.org/10.1007/978-3-642-13962-8_10
http://dx.doi.org/10.1007/s00224-011-9358-z
http://dx.doi.org/10.1007/978-3-642-15025-8_12
http://dx.doi.org/10.4204/EPTCS.90.11
http://dx.doi.org/10.4204/EPTCS.90.11
http://dx.doi.org/10.4007/annals.2010.171.2011
http://dx.doi.org/10.1016/j.tcs.2012.08.027
http://dx.doi.org/10.1016/j.tcs.2012.08.027
http://www.sciencedirect.com/science/article/pii/S0304397512008031
http://www.sciencedirect.com/science/article/pii/S0304397512008031

Turing Degree Spectra of Minimal Subshifts 161

[LM95] Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding.
Cambridge University Press, New York (1995)

[MH40] Morse, H.M., Hedlund, G.A.: Symbolic dynamics II. Sturmian trajectories.
Am. J. Math. 62(1), 1–42 (1940)

[Mil12] Miller, J.S.: Two notes on subshifts. Proc. Am. Math. Soc. 140(5), 1617–
1622 (2012). doi:10.1090/S0002-9939-2011-11000-1

[Mye74] Myers, D.: Non recursive tilings of the plane II. J. Symbol. Logic 39(2),
286–294 (1974)

[Rog87] Rogers Jr., H.: Theory of Recursive Functions and Effective Computability.
MIT Press, Cambridge (1987)

[Sim11] Simpson, S.G.: Medvedev degrees of 2-dimensional subshifts of finite type.
In: Ergodic Theory and Dynamical Systems (2011)

[SS16] Sablik, M., Schraudner, M.: Algorithmic complexity for the realization
of an effective subshift by a sofic. In: Chatzigiannakis, I., Mitzenmacher,
M., Rabani, Y., Sangiorgi, D. (eds.) 43rd International Colloquium on
Automata, Languages, and Programming (ICALP 2016), Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 55, pp. 110:1–110:14.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2016).
ISBN: 978-3-95977-013-2, http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.
110, http://drops.dagstuhl.de/opus/volltexte/2016/6245

[Wil90] Williams, S.: Notes on renewal systems. Proc. Am. Math. Soc. 110(3),
851–853 (1990)

http://dx.doi.org/10.1090/S0002-9939-2011-11000-1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.110
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.110
http://drops.dagstuhl.de/opus/volltexte/2016/6245

Reordering Method and Hierarchies
for Quantum and Classical Ordered Binary

Decision Diagrams

Kamil Khadiev1,2(B) and Aliya Khadieva2

1 University of Latvia, Riga, Latvia
kamilhadi@gmail.com

2 Kazan Federal University, Kazan, Russia
aliya.khadi@gmail.com

Abstract. We consider Quantum OBDD model. It is restricted version
of read-once Quantum Branching Programs, with respect to “width”
complexity. It is known that maximal complexity gap between determin-
istic and quantum model is exponential. But there are few examples of
such functions. We present method (called “reordering”), which allows
to build Boolean function g from Boolean Function f , such that if for
f we have gap between quantum and deterministic OBDD complexity
for natural order of variables, then we have almost the same gap for
function g, but for any order. Using it we construct the total function
REQ which deterministic OBDD complexity is 2Ω(n/logn) and present
quantum OBDD of width O(n2). It is bigger gap for explicit function
that was known before for OBDD of width more than linear. Using this
result we prove the width hierarchy for complexity classes of Boolean
functions for quantum OBDDs.

Additionally, we prove the width hierarchy for complexity classes of
Boolean functions for bounded error probabilistic OBDDs. And using
“reordering” method we extend a hierarchy for k-OBDD of polynomial
size, for k = o(n/log3n). Moreover, we proved a similar hierarchy for
bounded error probabilistic k-OBDD. And for deterministic and proba-
bilistic k-OBDDs of superpolynomial and subexponential size.

Keywords: Quantum computing · Quantum OBDD · OBDD · Branch-
ing programs · Quantum vs classical · Quantum models · Hierarchy ·
Computational complexity · Probabilistic OBDD

1 Introduction

Branching programs are one of the well known models of computation. These
models have been shown useful in a variety of domains, such as hardware verifi-
cation, model checking, and other CAD applications (see for example the book

K. Khadiev—Partially supported by ERC Advanced Grant MQC. The work is per-
formed according to the Russian Government Program of Competitive Growth of
Kazan Federal University.

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 162–175, 2017.
DOI: 10.1007/978-3-319-58747-9 16

Reordering Method and Hierarchies 163

by I. Wegener [Weg00]). It is known that the class of Boolean functions com-
puted by polynomial size branching programs coincide with the class of functions
computed by non-uniform log-space machines.

One of important restrictive branching programs are oblivious read once
branching programs, also known as Ordered Binary Decision Diagrams (OBDD)
[Weg00]. It is a good model of data streaming algorithms. These algorithms are
actively used in industry, because of rapidly increasing of size of data which
should be processed by programs. Since a length of an OBDD is at most linear
(in the length of the input), the main complexity measure is “width”, analog of
size for automata. And it can be seen as nonuniform automata (see for example
[AG05]). In the last decades quantum OBDDs came into play [AGK01,NHK00,
SS05a,Sau06].

In 2005 F. Ablayev, A. Gainutdinova, M. Karpinski, C. Moore and C. Pollett
[AGK+05] proved that the gap between width of quantum and deterministic
OBDD is at most exponential. They showed that this bound can be reached for
MODp function that takes the value 1 on input such that number of 1s by mod-
ulo p is 0. Authors presented quantum OBDD of width O(log p) for this function
(another quantum OBDD of same width is presented in [AV08]) and proved that
any deterministic OBDD has width at least p. However explicit function MODp

presents a gap for OBDD of at most linear width. For bigger width it was shown
that Boolean function PERM has not deterministic OBDD of width less than
2

√
n/2/(

√
n/2)3/2 [KMW91] and M. Sauerhoff and D. Sieling [SS05b] constructed

quantum OBDD of width O(n2 log n). F. Ablayev, A. Khasianov and A. Vasiliev
[AKV08] presented the quantum OBDD of width O(n log n) for PERM . Let us
note that for partial functions the gap between widths of quantum and deter-
ministic OBDDs can be more than exponential [AGKY14,Gai15,AGKY16].

Better difference between quantum and deterministic complexity was proven
in [AKV08] for Equality function. But there authors had exponential gap only
for natural order of variables. They presented the quantum OBDD of width
O(n), which is based on quantum fingerprinting technique, at the same time any
deterministic OBDD has width at least 2n/2 for natural order. But if we consider
any order, then we can construct deterministic OBDD of constant width.

Changing the order is one of the main issues for proving lower bound on
width for OBDD. We present a technique that allows to build Boolean Function
g from Boolean function f . We consider f such that any deterministic OBDD
with natural order for the function has width at least d(n) and we can construct
quantum OBDD of width w(n). In that case we present quantum OBDD of
width O(w(n/logn) · n/logn) for function g and any deterministic OBDD has
width at least d(O(n/logn)). It means that if difference between quantum OBDD
complexity of function f and deterministic OBDD complexity for natural order is
exponential, then we have almost exponential difference for function g. We called
this method “reordering”. And idea is based on adding addresses of variables to
input. Similar idea was used in [Kha15].

Then, we present Boolean function Reordered Equality (REQ), it is modi-
fication of Equality function [AKV08]. We apply the main ideas of reordering

164 K. Khadiev and A. Khadieva

and prove that for REQ deterministic OBDD has width 2Ω(n/logn) and bounded
error quantum OBDD has width O(n2/log2n). This gap between determinis-
tic and quantum complexity is better than for PERM function. And it has
advantage over results on EQ, because we prove distance for any order of input
variables. And in comparing to MODp, we can show a distance for bigger width.

Using complexity properties of MODp function, REQ function and Mixed
weighted sum function (MWSn) [Sau05] we prove the width hierarchy (not tight)
for classes of Boolean functions computed by bounded error quantum OBDD.
The hierarchy is separated to three cases: first one is for width less than log n,
and for this case we prove hierarchy with small gap between width-parameters
of classes. Second one is for width less than n and bigger gap. And third one is
for width less than 2O(n) and here gap is the biggest. Similar hierarchy is already
known for deterministic and nondeterministic OBDD [AGKY14,AGKY16], for
deterministic k-OBDD [Kha15]. And we present not tight width hierarchy for
bounded error probabilistic OBDD in the paper.

Forth group of results is extending the hierarchy for deterministic and
bounded error probabilistic k-OBDD of polynomial size. The known tight hier-
archy for classes of Boolean functions that computed by a deterministic k-
OBDD of polynomial size is result of B. Bollig, M. Sauerhoff, D. Sieling, and
I. Wegener [BSSW98]. They proved that P-(k − 1)OBDD � P-kOBDD for
k = o(

√
n log3/2 n). It is known extension of this hierarchy for k = o(n/log2n)

in papers [Kha16,AK13]. But this hierarchy is not tight with the gap between
classes in hierarchy at least not constant. We prove almost tight hierarchy P-
kOBDD � P-2kOBDD for k = o(n/log3n). Our result is better than both of
them. It is better than first one, because k is bigger, but at the same time it is
not enough tight. And it is better than second one because proper inclusion of
classes is proven if k is 2 times increased. Additionally, we prove almost tight
hierarchy for k − OBDD of superpolynomial and subexponential size. These
hierarchies improve known not tight hierarchy from [Kha16]. Our hierarchy is
almost tight (with small gap), but for little bit smaller k. The proof of hierarchies
is based on complexity properties of Boolean function Reordered Pointer Jump-
ing, it is modification of Pointer Jumping function from [NW91,BSSW98], is
based on ideas of reordering method. For probabilistic case it is not known tight
hierarchy for polynomial size only for sublinear width [Kha16]. Additionally,
for more general model Probabilistic k-BP Hromkovich and Sauerhoff in 2003
[HS03] proved the tight hierarchy for k ≤ log n/3. We proved similar almost
tight hierarchy for polynomial size bounded error probabilistic k-OBDD with
error at most 1/3 for k = o(n1/3/logn). And almost tight hierarchies for super-
polynomial and subexponential size, these results improve results from [Kha16].
Note that, for example for nondeterministic k-OBDD we cannot get result better
than [Kha16], because for constant k 1-OBDD of polynomial size and k-OBDD
compute the same Boolean functions [BHW06].

Structure of the paper is following. Section 2 contains description of models,
classes and other necessary definitions. Discussion reordering method and appli-
cations for quantum OBDD located in Sect. 3. The width hierarchies for quantum

Reordering Method and Hierarchies 165

and probabilistic OBDDs are proved in Sect. 4. Finally, Sect. 5 contains apply-
ing reordering method and hierarchy results to deterministic and probabilistic
k-OBDD.

2 Preliminaries

Ordered read ones Branching Programs (OBDD) are well known model for
Boolean functions computation. A good source for different models of branching
programs is the book by I. Wegener [Weg00].

A branching program over a set X of n Boolean variables is a directed acyclic
graph with two distinguished nodes s (a source node) and t (a sink node). We
denote such program Ps,t or just P . Each inner node v of P is associated with
a variable x ∈ X. Deterministic P has exactly two outgoing edges labeled x = 0
and x = 1 respectively for such node v.

The program P computes the Boolean function f(X) (f : {0, 1}n → {0, 1})
as follows: for each σ ∈ {0, 1}n we let f(σ) = 1 if and only if there exists at least
one s − t path (called accepting path for σ) such that all edges along this path
are consistent with σ.

A branching program is leveled if the nodes can be partitioned into levels
V1, . . . , V� and a level V�+1 such that the nodes in V�+1 are the sink nodes, nodes
in each level Vj with j ≤ � have outgoing edges only to nodes in the next level
Vj+1. For a leveled Ps,t the source node s is a node from the first level V1 of
nodes and the sink node t is a node from the last level V�+1.

The width w(P) of a leveled branching program P is the maximum of number
of nodes in levels of P . w(P) = max1≤j≤� |Vj |. The size of branching program P
is a number of nodes of program P .

A leveled branching program is called oblivious if all inner nodes of one level
are labeled by the same variable. A branching program is called read once if
each variable is tested on each path only once. An oblivious leveled read once
branching program is also called Ordered Binary Decision Diagram (OBDD).
OBDD P reads variables in its individual order π = (j1, . . . , jn), π(i) = ji,
π−1(j) is position of j in permutation π. We call π(P) the order of P . Let us
denote natural order as id = (1, . . . , n). Sometimes we will use notation id-
OBDD P , it means that π(P) = id. Let width(f) = minP w(P) for OBDD P
which computes f and id−width(f) is the same but for id-OBDD.

The Branching program P is called k-OBDD if it consists from k layers,
where i-th (1 ≤ i ≤ k) layer P i of P is an OBDD. Let πi be an order of P i,
1 ≤ i ≤ k and π1 = · · · = πk = π. We call order π(P) = π the order of P .

Let trP : {1, . . . , n} × {1, . . . , w(P)} × {0, 1} → {1, . . . , w(P)} be transi-
tion function of OBDD P on level i. OBDD P is called commutative if for
any permutation π′ we can construct OBDD P ′ by just reordering transi-
tion functions and P ′ still computes the same function. Formally, it means
trP ′(i, s, xπ′(i)) = trP (π−1(π′(i)), s, xπ′(i)), for π is order of P , i ∈ {1, . . . , n},
s ∈ {1, . . . , w(P)}. k-OBDD P is commutative if each layer is commutative
OBDD.

166 K. Khadiev and A. Khadieva

Nondeterministic OBDD (NOBDD) is nondeterministic counterpart of
OBDD. Probabilistic OBDD (POBDD) can have more than two edges for node,
and choose one of them using probabilistic mechanism. POBDD P computes
Boolean function f with bounded error 0.5 − ε if probability of right answer is
at least 0.5 + ε.

Let us discuss a definition of quantum OBDD (QOBDD). It is given in differ-
ent terms, but you can see that it is equivalent. You can see [AGK+05], [AGK01]
for more details.

For a given n > 0, a quantum OBDD P of width w, defined on {0, 1}n, is a
4-tuple P = (T, |ψ〉0, Accept, π), where

– T = {Tj : 1 ≤ j ≤ n and Tj = (G0
j , G

1
j)} are ordered pairs of (left) unitary

matrices representing the transitions is applied at the j-th step, where G0
j or

G1
j , determined by the corresponding input bit, is applied.

– |ψ〉0 is initial vector from w-dimensional Hilbert space over field of complex
numbers. |ψ〉0 = |q0〉 where q0 corresponds to the initial node.

– Accept ⊂ {1, . . . , w} is accepting nodes.
– π is a permutation of {1, . . . , n} defining the order of testing the input bits.

For any given input σ ∈ {0, 1}n, the computation of P on σ can be traced
by a vector from w-dimensional Hilbert space over field of complex numbers.
The initial one is |ψ〉0. In each step j, 1 ≤ j ≤ n, the input bit xπ(j) is tested
and then the corresponding unitary operator is applied: |ψ〉j = G

xπ(j)
j (|ψ〉j−1),

where |ψ〉j−1 and |ψ〉j represent the state of the system after the (j − 1)-th and
j-th steps, respectively, where 1 ≤ j ≤ n.

In the end of computation program P measure qubits. The accepting (return
1) probability Praccept(σ) of Pn on input σ is Praccept(ν) =

∑
i∈Accept v2

i , for
|ψ〉n = (v1, . . . , vw). We say that a function f is computed by P with bounded
error if there exists an ε ∈ (0, 1

2] such that P accepts all inputs from f−1(1)
with a probability at least 1

2 + ε and Pn accepts all inputs from f−1(0) with a
probability at most 1

2 − ε. We can say that error of answer is 1
2 − ε.

3 Reordering Method and Exponential Gap Between
Quantum and Classical OBDD

Let us introduce some helpful definitions. Let θ = ({xj1 , . . . , xju
}, {xi1 ,

. . . , xin−u
}) = (XA,XB) be a partition of set X into two parts. Below we will

use equivalent notations f(X) and f(XA,XB). Let f |ρ be a subfunction of f ,
where ρ is a mapping ρ : XA → {0, 1}|XA|. Function f |ρ is obtained from f by
applying ρ, so if ρ : XA → ν, then f |ρ(XB) = f(ν,XB). Let Nθ(f) be num-
ber of different subfunctions with respect to partition θ. Let Π(n) be the set
of all permutations of {1, . . . , n}. We say, that partition θ agrees with permu-
tation π = (j1, . . . , jn) ∈ Π(n), if for some u, 1 < u < n the following is right:
θ = ({xj1 , . . . , xju

}, {xju+1 , . . . , xjn
}). We denote Θ(π) a set of all partitions

which agrees with π. Let Nπ(f) = maxθ∈Θ(π) Nθ(f), N(f) = minπ∈Π(n) Nπ(f).

Reordering Method and Hierarchies 167

It is known that the difference between quantum and deterministic OBDD
complexity is at most exponential [AGK+05]. But one of the main issues in
proof of complexity of OBDD is different orders of input variables. We suggest a
method, called “reordering”, which allows to construct partial function f ′ from
Boolean function f such that N id(f) = d(n), N(f ′) ≥ d(q), n = q(log q
 + 1).
Note that N(f ′) = width(f ′) and N id(f) = id−width(f), due to [Weg00]. At the
same time, if commutative QOBDD P of width g(n) computes f , then we can
construct QOBDD P ′ of width g(q) · q which computes f ′. If g(n) = O(n) and
d(n) = O(2n), then we can say that d(q/	log q + 1
) is almost exponential great
than g(q) · q. And total boolean function f ′′ with same properties can be built
using result of computation of P ′ for unspecified inputs. And for some functions
we can give explicit definition of such total reordered function.

Reordering Method. Let us shuffle input bits for solving “order issues”. It
means that order of value bits is determined by input. Let us consider input
X = (x1, . . . , xn), among the variables we have q value bits Z = {z1, . . . , zq},
where q is such that n = q(log q
 + 1). And any value bit has 	log q
 bits as
address, that is binary representation of number of real position of value bit
in input. We call this process as reordering of input or reordering of Boolean
function f(X). Now from f(X) we obtain a new partial Boolean function f ′(X)
on reordered input, such that any value bit has unique address and all addresses
from {1, . . . , q} are occurred in input. In a case of xor-reordering address of value
bit can be obtain as parity of current and previous address bits (Fig. 1).

Let us formally describe a partial function f ′(X) :

– X consists of q blocks, for n = q(log q
 + 1) or q = O(n/logn).
– Block i consists of p = 	log q
 address bits yi

1, . . . , y
i
p and one value bit zi.

Formally, (x(i−1)(p+1)+1, . . . , xi(p+1)) = (yi
1, . . . , y

i
p, z

i).
– Function Adr : {0, 1}n × {1, . . . , q} → {1, . . . , q}, Adr(X, i) is the address of

i-th value bit. Let bin(y1, . . . , yp) is a number, which binary representation
is (y1, . . . , yp), then in a case of reordering Adr(X, i) = bin(yi

1, . . . , y
i
p) + 1.

If we consider xor-reordering then Adr(X, i) = Adr′(X, i) + 1, Adr′(X, i) =
Adr′(X, i − 1) ⊕ bin(yi

1, . . . , y
i
p) for i ≥ 1 and Adr′(X, 0) = 0. Here when

we apply parity function to integers, we mean parity of their bits in binary
representation.

– We consider only such inputs σ ∈ {0, 1}n that addresses of the blocks
are different and all addresses are occurred. Formally, {1, . . . , q} =
{Adr(σ, 1), . . . , Adr(σ, q)}.

– Let a permutation π = (Adr(σ, 1), . . . , Adr(σ, q)), and γ is string of value bits
of σ then f ′(σ) = f(γπ−1(1), . . . , γπ−1(q)).

Theorem 1. Let Boolean function f over X = (x1, · · · , xn), such that N id(f) ≥
d(n). Then partial Boolean function f ′, reordered or xor-reordered version of f ,
such that N(f ′) ≥ d(q), where n = q(log q
 + 1).

Proof. Let us consider function f ′(X) and any order π = (j1, . . . , jn) and π′ =
(i1, . . . , iq) is the order of value bits according to order π. Let Σ be the set of

168 K. Khadiev and A. Khadieva

Fig. 1. Input. Blocks of address and value bits.

inputs with natural order of blocks (value bits) with respect to π, that is Σ =
{σ ∈ {0, 1}n : Adr(σ, ir) = r, for 1 ≤ r ≤ q}. Let partition θ ∈ Θ((1, . . . , q)), θ =
({x1, . . . , xu}, {xu+1, . . . , xq}) be such that Nθ(f) = N id(f). And let partition
θ′ = (XA,XB) = ({x1, . . . , xu′}, {xu′+1, . . . , xn}), for θ′ ∈ Θ(π), be such that
exactly u value bits belongs to XA and others to XB . Let Γ = {γ ∈ {0, 1}u :
for different γ, γ′ and corresponding subfunctions holds f |ρ �= f |ρ′}. And Ξ =
{ξ ∈ {0, 1}u′

: there are ν ∈ {0, 1}n−u′
such that (ξ, ν) ∈ Σ and string of value

bits of ξ belongs to Γ}. It is easy to see that |Γ | = |Ξ| and each ξ ∈ Ξ produce
own subfunction of function f ′. Therefore Nθ′

(f ′) ≥ Nθ(f). Due to definition,
Nπ(f ′) ≥ Nθ′

(f ′) ≥ N id(f). It is right for any order, hence N(f ′) ≥ N id(f). �
Theorem 2. Let commutative QOBDD P of width g = g(n) computes a
Boolean function f(X) over X = (x1, . . . , xn). Then there is id-QOBDD P ′ of
width g(q) · q which computes partial Boolean function f ′, xor-reordered version
of f , where q is such that n = q(log q
 + 1).

Proof. Because of P is commutative, we can consider id-QOBDD Pid of the same
width g(n) for function f . For description of computation of P ′ we use quantum
register |ψ〉 = |ψ1ψ2 . . . ψt〉, where t = 	log g
 and g × g matrices for unitary
operators (G0

i , G
1
i), i ∈ {1, 2 . . . q}.

Then we consider partial function f ′(X) described above. In this case we
have q value bits and p = 	log q
 address bits for any value bit. Let us construct
QOBDD P ′ for computing f ′.

Program P ′ has quantum register of 	log g
+	log q
 qubits, having g·q states.
Let us denote it as |φ〉 = |φ1φ2 . . . φpψ1ψ2 . . . ψt〉, where t = 	log g
, p = 	log q
.

Part of register |φ〉 consisting of |ψ1ψ2 . . . ψt〉 qubits (we note it as a com-
puting part) is modified on reading value bit. In other hand, we added qubits
|φ1φ2 . . . φp〉 (let this part be an address part) to determine address of value bit.
And superposition of the states of these two parts will give us a right computa-
tion of function. Program P ′ consists of q parts, because input contains q blocks,
for n = (log q
 + 1)q or q = O(n/ log n). For any i ∈ {1, . . . , q} block i handles
value bit zi.

Informally, when P ′ processes a block, it stores address in address part by
applying parity function. After that some modifications are produced on the
computation part, with respect to value bit.

Let us describe i-th block of levels formally, for i ∈ {1, . . . , q}. In the first
	log q
 levels the program computes address Adr′(X, i), it reads bits one by one,

and for bit yi
j we use unitary operator U

yi
j

j on the address part of register |φ〉,

Reordering Method and Hierarchies 169

for j ∈ {1, 2 . . . , p} (see Picture 1). U
yi

j

j = I ⊗ I ⊗ . . . ⊗ I ⊗ Ayi
j ⊗ I . . . ⊗ I,

where A0 = I and A1 = NOT , I and NOT are 2 × 2 matrices, such that I is
diagonal 1-matrix and NOT is anti-diagonal 1-matrix. And we do not modify
computation part.

After these operations address part of register in binary notation equals to
the address Adr′(X, i). In the vector of the states all elements are equals to zero
except elements of block where address part of qubits corresponds to Adr(X, i).

After reading zi we transform system |φ〉 by unitary (g · q ×g · q)-matrix Dzi

.

D0 =

⎛

⎜
⎜
⎜
⎝

G0
1 0 · · · 0

0 G0
2 · · · 0

...
...

. . .
...

0 0 · · · G0
q

⎞

⎟
⎟
⎟
⎠

and D1 =

⎛

⎜
⎜
⎜
⎝

G1
1 0 · · · 0

0 G1
2 · · · 0

...
...

. . .
...

0 0 · · · G1
q

⎞

⎟
⎟
⎟
⎠

,

where matrices {(G0
i , G

1
i), 1 ≤ i ≤ q} are unitary matrices transforming

quantum system in id-QOBDD Pid.
Because of size of register, QOBDD P ′ has width g(q) · q. Let us prove that

P ′ computes f ′.
Let us consider an input σ ∈ {0, 1}n. Let a permutation π = (j1, . . . , jq) =

(Adr(σ, 1), . . . , Adr(σ, q)) be an order of value variables with respect to input σ.
Due to id-QOBDD Pid is commutative, we can reorder unitary operators

{(G0
i , G

1
i), 1 ≤ i ≤ q} according to order π and get a QOBDD Pπ computing f

as well.
It is easy to see that P ′ exactly emulates computation of Pπ, therefore P ′ on

σ gives us the same result as Pπ on corresponding value bits. So, by definition
of f ′ we have P ′ computes f ′. �
Corollary 1. Let commutative k-QOBDD P of width g = g(n) computes a
Boolean function f(X) over X = (x1, . . . , xn). Then there is k-QOBDD P ′ of
width g(q) · q which computes partial Boolean function f ′, xor-reordered version
of f , where q is such that n = q(log q
 + 1).

It is proved exactly by the same way as Theorem 2.

Theorem 3. If for some Boolean function f : {0, 1}n → {0, 1} there are com-
mutative k-OBDD P1, k-NOBDD P2 and k-POBDD P3 that computes f and
width of Pi is di for i ∈ {1, 2, 3}. Then there are k-OBDDs D1,D4, k-NOBDDs
D2,D5 and k-POBDDs D3,D6 such that width of Di is di(q) · q for i ∈ {1, 2, 3}
and di−3(q) · q for i ∈ {4, 5, 6}, and Di computes f ′, reordered version of f ,
and Dj computes f ′′, xor-reordered version of f , for i ∈ {1, 2, 3}, j ∈ {4, 5, 6},
n = q(log q
 + 1), f ′ and f ′′ are partial Boolean function.

Proof. Let P1 be commutative deterministic k-OBDD of width d1(n) which com-
putes Boolean function f . Let Boolean function f ′ is reordered f and f ′′ is
xor-reordered f , note that f ′ and f ′′ are partial Boolean functions.

We want to construct deterministic k-OBDDs D1 and D4 of width q·d1(q), for
n = q(log2 q
+1). D1 is for reordering case and D4 is for xor-reordering one. D1

170 K. Khadiev and A. Khadieva

and D4 read variables in natural order. D1 and D4 have q · d1(q) nodes on level,
each of them corresponds to pair (i, s), where i ∈ {1, . . . , q}, s ∈ {1, . . . , d(q)}.
Let us describe computation on block j.

– A case of reordering and program D1. In the begin of the block D1 situated in
one of the nodes (1, s). After reading first 	log q
 bits of the block D′ just store
a number Adr(X, j) = a in states and program reaches node corresponding
to (a, s). Then if transition function of P is such that s′ = trD(π−1(a), s, zj)
then D′ reaches (1, s′).

– A case of xor-reordering and program D4. In the begin of the block D4 is
situated in one of the nodes (b, s). After reading first 	log q
 bits of the block
D4 just computes parity of b − 1 and address bits, so computes a number
Adr′(X, j) = a′ and program reaches node, which is correspond to (a, s), for
a = a′ + 1.

In the case when all addresses are different, D1 and D4 just emulate work
of Dπ which is constructed from D by permutation of transition function with
respect to order (Adr(X, 1), . . . , Adr(X, q)). By the definition of commutative
k-OBDD the Dπ computes the same function f . Therefore D1 and D4 also
return the same result. And by the definition of functions f ′ and f ′′ programs
D1 computes f ′ and D4 computes f ′′.

We can construct nondeterministic k-OBDDs D2,D5 and probabilistic k-
OBDDs D3,D6 by the similar way. �
Corollary 2. Let Boolean function f over X = (x1, · · · , xn), such that
N id(f) ≥ d(n) and commutative k-QOBDD P , k-OBDD D, k-NOBDD H
and k-POBDD R of width g(n), d(n), h(n) and w(n), respectively, computes f .
Then there are total Boolean functions f (i), total xor-reordered version of f , for
i ∈ {1, . . . , 4} and f (j), total reordered version of f , for j ∈ {5, . . . , 7}, such
that N(f (i)), N(f (j)),≥ d(q), where n = q(log q
+1). And there are k-QOBDD
P ′ of width g(q) · q which computes f (1) and k-OBDD D′, k-NOBDD H ′ and
k-POBDD R′ of width d(q) · q, h(q) · q and w(q) · q, respectively, such that D′

computes computing f (2), f (5), H ′ computes computing f (3), f (6), R′ computes
computing f (4), f (7).

Proof. Let partial Boolean function f ′ be xor-reordered version of f . Due to
Theorems 1 and 2, N(f ′) ≥ d(q), id-QOBDD P ′ of width g(q) · q computes f ′.
Let total function f (1) be such that f (1)(σ) = f ′(σ) for input σ allowed for f ′.
And for input σ′, not allowed for f ′, f (1)(σ) equals to result of P ′. It is easy to
see that N(f (1)) ≥ N(f ′). Similar prove for f (i) and f (j). �

Exponential Gap Between Quantum and Classical OBDDs. Let us apply
reordering method to Equality function EQn : {0, 1}n → {0, 1}. EQn(σ) = 1, iff
(σ1, σ2 . . . σn/2) = (σn/2+1, σn/2+2 . . . σn).

From [AKV08] we know, that there is commutative id-QOBDD P of width
O(n), which computes this function. After xor-reordering we get partial func-
tion EQ′

n(X) computed by QOBDD of width O(q) · q = O(q2), where q =
O(n/ log n).

Reordering Method and Hierarchies 171

It is known that N id(EQn) = 2n/2. Due to Theorem 1 we have N(EQ′
n) ≥

2q/2, therefore deterministic OBDD has width at least 2q/2.
So we have following Theorem for EQ′

n:

Theorem 4. Let partial Boolean function EQ′
n is xor-reordered EQn. Then

there is quantum OBDD P of width O(n2/ log2 n) which computes EQ′
n and any

deterministic OBDD D which computes EQ′
n has width 2Ω(n/ log n).

Let us consider Reordered Equality function REQn : {0, 1}n → {0, 1}. This
is total version of EQ′

n and on inputs which is not allowed for EQ′
n the result

of function is exactly result of QOBDD P ′ which was contracted for EQ′
n by

the method from the proof of Theorem2. Due to fingerprinting algorithm for
EQn from [AKV08], we can see that REQn(σ) = 1 iff

∑q/2
i=1 2Adr′(σ,i)V al(σ, i) =

∑q
i=q/2+1 2Adr′(σ,i)V al(σ, i). We can prove the following lemma for this function:

Lemma 1. N(REQn) ≥ 2n/(2�log2 n+1�).

It means that any deterministic OBDD P of width w computing REQn is such
that w ≥ 2n/(2�log2 n+1�). Therefore function REQ such that:

Theorem 5. There is quantum OBDD P of width O(n2/ log2 n) which computes
total Boolean function REQn and any deterministic OBDD D which computes
REQ has width 2Ω(n/ log n).

Proof. By the definition of the function we can construct QOBDD P and
Lemma 1 shows a bound for deterministic case. �

So, REQn is explicit function which shows the following distance between
quantum and deterministic ODDD complexity: O(n2/ log2 n) and 2Ω(n/ log n).

4 Hierarchy for Probabilistic and Quantum OBDDs

Let us consider classes BPOBDDd and BQOBDDd of Boolean functions that
will be computed by probabilistic and quantum OBDDs with bounded error of
width d, respectively. We want to prove a width hierarchy for these classes.

Hierarchy for Probabilistic OBDDs. Before proof of hierarchy let us con-
sider the Boolean function WSn(X) due to Savickỳ and Žák [SŽ00]. For a positive
integer n and X = (x1, . . . , xn) ∈ {0, 1}n, let p(n) be the smallest prime larger
than n and let sn(X) = (

∑n
i=1 i · xi) mod p(n). Define the weighted sum func-

tion by WSn(x) = xsn(X). For this function it is known that for every n large
enough it holds that any bounded error probabilistic OBDD P which computes
WSn(X) has size no less than 2Ω(n). Let us modify Boolean function WSn(X)
using pending bits. We will denote it WSb

n(X). For a positive integers n and b,
b ≤ n/3 and X = (x1, . . . , xn) ∈ {0, 1}n, let p(b) be the smallest prime larger
than b, sb(X) = (

∑b
i=1 i · xi) mod p(b). Define the weighted sum function by

WSb
n(x) = xsb(X). We can prove the following lemma by the way as in [SŽ00].

172 K. Khadiev and A. Khadieva

Lemma 2. For large enough n and const = o(b), any bounded error probabilistic
OBDD P computing WSb

n(X) has width no less than 2Ω(b). There is bounded
error probabilistic OBDD P of width 2b which computes WSb

n(X).

The second claim of the Lemma follows form the fact that any Boolean
function over X ∈ {0, 1}n can be computed by deterministic OBDD of width
2n, just by building full binary tree.

Let us prove hierarchy for BPOBDDd classes using these properties of
Boolean function WSb

n(X).

Theorem 6. For integer d = o(2n), const = o(d), the following statement holds:
BPOBDDd1/δ �BPOBDDd, for const = o(δ).

Proof. It is easy to see that BPOBDDd1/δ⊆BPOBDDd. Let us prove inequal-
ity of these classes. Due to Lemma 2, Boolean function WSlog d

n ∈BPOBDDd,
at the same time for any bounded error probabilistic OBDD P we have w(P) =
2Ω(log d) > 2(log d)/δ = d1/δ. Therefore WSlog d

n �∈BPOBDDd1/δ . �
Hierarchy for Quantum OBDDs. Let us modify Boolean function REQn(X)
using pending bits as for WSb

n(X). We will denote it REQb
n(X). Also let us

consider complexity property of MODp function (number of 1 s by modulo p is
0). And Boolean function MSW b

n(X), it is similar modification of MSWn(X)
function [Sau06] using pending bits. MSW b

n(X) = xz ⊕ xr+n/2, where z =
sb/2(x1, . . . , xb/2), r = sb/2(xb/2+1, . . . , xb), if r = z and MSW b

n(X) = 0 other-
wise. Complexity properties of functions are described in the following lemma.

Lemma 3. Claim 1. Any bounded error quantum OBDD P which computes
REQb

n(X) has width at least �b/	log b + 1
�, for �b/	log b + 1
� ≥ 1. There is
bounded error quantum OBDD P of width b2 which computes REQb

n(X).
Claim 2. Any bounded error quantum OBDD P which computes MODp(X)

has width no less than �log p�, for 2 ≤ p ≤ n. There is bounded error quantum
OBDD P of width O(log p) which computes MODp(X).

Claim 3. Any bounded error quantum OBDD P which computes MSW b
n(X)

has width no less than 2Ω(b), for const = o(b). There is bounded error quantum
OBDD P of width 2b which computes MSW b

n(X).

A proof of Claim 1 is similar to Theorem 5, a proof of Claim 2 is presented
in [AGK+05,AV08] and a proof of Claim 3 is based on result from [Sau06].

Let us prove hierarchies for BQOBDDd classes using presented above
lemma.

Theorem 7. For a integer d following statements are right:
BQOBDDd/δ2�BPOBDDd2 , for d < log n, d > 2, const = o(δ).
BQOBDDd/ log2

2 d�BPOBDDd2 , for d < nd > 2.
BQOBDDd1/δ�BQOBDDd, for d = o(2n), const = o(d), const = o(δ).

A proof is based on Lemma 3.

Reordering Method and Hierarchies 173

5 Extension of Hierarchy for Deterministic
and Probabilistic k-OBDD

Let us apply the reordering method to k-OBDD model. We will prove almost
tight hierarchy for Deterministic and Probabilistic k-OBDDs using complexity
properties of Pointer jumping function (PJ) [NW91,BSSW98]. These hierarchies
are extention of existing ones. At first, let us present version of function which
works with integer numbers.

Let VA, VB be two disjoint sets (of vertices) with |VA| = |VB | = m and
V = VA ∪ VB . Let FA = {fA : VA → VB}, FB = {fB : VB → VA} and
f = (fA, fB) : V → V defined by f(v) = fA(v), if v ∈ VA and f = fB(v),
v ∈ VB . For each k ≥ 0 define f (k)(v) by f (0)(v) = v, f (k+1)(v) = f(f (k)(v)). Let
v0 ∈ VA. The function we will be interested in computing is gk,m : FA ×FB → V
defined by gk,m(fA, fB) = f (k)(v0). Boolean function PJt,n : {0, 1}n → {0, 1} is
boolean version of gk,m, where we encode fA in a binary string using m log m bits
and do it with fB as well. The result of function is parity of binary representation
of result vertex.

Let us apply reordering method to PJk,n function. RPJk,n is total version
of reordered PJk,n. Formally: Boolean function RPJk,n : {0, 1}n → {0, 1} is
following. Let us separate whole input X = (x1, . . . , xn) to b blocks, such that
b	log2 b + 1
 = n, therefore b = O(n/ log n). And let Adr(X, i) be integer, which
binary representation is first 	log2 b
 bits of i-th block and V al(X, i) be a value
of bit number 	log2 b + 1
 of block i, for i ∈ {0, . . . , b − 1}. Let a be such that
b = 2a	log2 a
 and VA = {0, . . . , a − 1}, VB = {a, . . . , 2a − 1}.

Let function BV : {0, 1}n ×{0, . . . , 2a−1} → {0, . . . , a−1} be the following:

BV (X, v) =
∑

i:(v−1)�log2 b�<Adr(X,i)≤v�log2 b�
2Adr(X,i)−(v−1)�log2 b� · V al(X, i) (mod a)

Then fA(v) = BV (X, v) + a, fB(v) = BV (X, v).
Let r = gk,a(fA, fB), then

RPJk,n(X) =
⊕

i:(r−1)�log2 b�<Adr(X,i)≤r�log2 b�
V al(X, i).

Let us prove lower bound for this function:

Lemma 4. Claim 1. The functions RPJ2k−1,n can be computed by 2k-OBDD
of size O(n3).

Claim 2. Each k-OBDD for RPJ2k−1,n, has size 2Ω(n/(k log n)−log(n/ log n)).
Each k-POBDD for RPJ2k−1,n which computed with bounded error at least 1/3,
has size 2Ω(n/(k3 log n)−log(n/ log n)).

A proof of lower bound is based on communication complexity properties of the
function PJk,n from [NW91]. And a proof of upper bound is based on Theorem3
and Corollary 2.

174 K. Khadiev and A. Khadieva

Using this lemma we extend hierarchy for following classes: P-kOBDD,
BP1/3-kOBDD, SUPERPOLY-kOBDD, BSUPERPOLY1/3-kOBDD, SUBEXPα

-kOBDD and BSUBEXPα,1/3-kOBDD. These are classes of Boolean functions
computed by following models:

– P-kOBDD and BPδ-kOBDD are for polynomial size k-OBDD, the first one
is for deterministic case and the second one is for bounded error probabilistic
k-OBDD with error at least δ.

– SUPERPOLY-kOBDD and BSUPERPOLY1/3-kOBDD are similar classes for
superpolynomial size models.

– SUBEXPα-kOBDD and BSUBEXPα,1/3-kOBDD are similar classes for size
at most 2O(nα), for 0 < α < 1.

Theorem 8. Claim 1. P-kOBDD � P-2kOBDD, for k = o(n/ log3 n). BP1/3-
kOBDD � BP1/3-2kOBDD, for k = o(n1/3/ log n).

Claim 2. SUPERPOLY-kOBDD � SUPERPOLY-2kOBDD, for k =
o(n1−δ), δ > 0. BSUPERPOLY1/3-kOBDD � BSUPERPOLY1/3-2kOBDD, for
k = o(n1/3−δ), δ > 0.

Claim 3. SUBEXPα-kOBDD � SUBEXPα-2kOBDD, for k = o(n1−δ), 1 >
δ > α + ε, ε > 0. BSUBEXPα,1/3-kOBDD � BSUBEXPα,1/3-2kOBDD, for
k = o(n1/3−δ/3), 1/3 > δ > α + ε, ε > 0.

A proof is based on Lemma 4.

Acknowledgements. We thank Alexander Vasiliev and Aida Gainutdinova from
Kazan Federal University and Andris Ambainis from University of Latvia for their
helpful comments and discussions.

References

[AG05] Ablayev, F., Gainutdinova, A.: Complexity of quantum uniform and
nonuniform automata. In: Felice, C., Restivo, A. (eds.) DLT 2005. LNCS,
vol. 3572, pp. 78–87. Springer, Heidelberg (2005). doi:10.1007/11505877 7

[AGK01] Ablayev, F., Gainutdinova, A., Karpinski, M.: On computational power of
quantum branching programs. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol.
2138, pp. 59–70. Springer, Heidelberg (2001). doi:10.1007/3-540-44669-9 8

[AGK+05] Ablayev, F., Gainutdinova, A., Karpinski, M., Moore, C., Pollett, C.: On
the computational power of probabilistic and quantum branching program.
Inf. Comput. 203(2), 145–162 (2005)

[AGKY14] Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow
quantum OBDDs and width hierarchies for classical OBDDs. In: Jürgensen,
H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp.
53–64. Springer, Cham (2014). doi:10.1007/978-3-319-09704-6 6

[AGKY16] Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow
quantum obdds and width hierarchies for classical obdds. Lobachevskii J.
Math. 37(6), 670–682 (2016)

[AK13] Ablayev, F., Khadiev, K.: Extension of the hierarchy for k-OBDDs of small
width. Russ. Math. 53(3), 46–50 (2013)

http://dx.doi.org/10.1007/11505877_7
http://dx.doi.org/10.1007/3-540-44669-9_8
http://dx.doi.org/10.1007/978-3-319-09704-6_6

Reordering Method and Hierarchies 175

[AKV08] Ablayev, F., Khasianov, A., Vasiliev, A.: On complexity of quantum
branching programs computing equality-like boolean functions. In: ECCC
(2008)

[AV08] Ablayev, F., Vasiliev, A.: On the computation of boolean functions by
quantum branching programs via fingerprinting. In: Electronic Colloquium
on Computational Complexity (ECCC), vol. 15 (2008)

[BHW06] Brosenne, H., Homeister, M., Waack, S.: Nondeterministic ordered binary
decision diagrams with repeated tests and various modes of acceptance.
Inf. Process. Lett. 98(1), 6–10 (2006)

[BSSW98] Bollig, B., Sauerhoff, M., Sieling, D., Wegener, I.: Hierarchy theorems for
kobdds and kibdds. Theor. Comput. Sci. 205(1), 45–60 (1998)

[Gai15] Gainutdinova, A.F.: Comparative complexity of quantum and classical
obdds for total and partial functions. Russ. Math. 59(11), 26–35 (2015)

[HS03] Hromkovič, J., Sauerhoff, M.: The power of nondeterminism and random-
ness for oblivious branching programs. Theory Comput. Syst. 36(2), 159–
182 (2003)

[Kha15] Khadiev, K.: Width hierarchy for k-obdd of small width. Lobachevskii J.
Math. 36(2), 178–183 (2015)

[Kha16] Khadiev, K.: On the hierarchies for deterministic, nondeterministic and
probabilistic ordered read-k-times branching programs. Lobachevskii J.
Math. 37(6), 682–703 (2016)

[KMW91] Krause, M., Meinel, C., Waack, S.: Separating the eraser turing machine
classes Le, NLe, co-NLe and Pe. Theor. Comput. Sci. 86(2), 267–275 (1991)

[NHK00] Nakanishi, M., Hamaguchi, K., Kashiwabara, T.: Ordered quantum branch-
ing programs are more powerful than ordered probabilistic branching
programs under a bounded-width restriction. In: Du, D.-Z.-Z., Eades,
P., Estivill-Castro, V., Lin, X., Sharma, A. (eds.) COCOON 2000.
LNCS, vol. 1858, pp. 467–476. Springer, Heidelberg (2000). doi:10.1007/
3-540-44968-X 46

[NW91] Nisan, N., Widgerson, A.: Rounds in communication complexity revisited.
In: Proceedings of the Twenty-Third Annual ACM Symposium on Theory
of Computing, pp. 419–429. ACM (1991)

[Sau05] Sauerhoff, M.: Quantum vs. classical read-once branching programs. arXiv
preprint quant-ph/0504198 (2005)

[Sau06] Sauerhoff, M.: Quantum vs. classical read-once branching programs. In:
Krause, M., Pudlák, P., Reischuk, R., van Melkebeek, D., (eds.) Complexity
of Boolean Functions, number 06111 in Dagstuhl Seminar Proceedings,
Dagstuhl, Germany, Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Schloss Dagstuhl, Germany (2006)

[SS05a] Sauerhoff, M., Sieling, D.: Quantum branching programs and space-
bounded nonuniform quantum complexity. Theor. Comput. Sci. 334(1–3),
177–225 (2005)

[SS05b] Sauerhoff, M., Sieling, D.: Quantum branching programs and space-
bounded nonuniform quantum complexity. Theor. Comput. Sci. 334(1),
177–225 (2005)

[SŽ00] SŽák, P., Žák, S.: A read-once lower bound and a (1,+ k)-hierarchy for
branching programs. Theor. Comput. Sci. 238(1), 347–362 (2000)

[Weg00] Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory
and Applications. SIAM (2000)

http://dx.doi.org/10.1007/3-540-44968-X_46
http://dx.doi.org/10.1007/3-540-44968-X_46

Dynamic Stabbing Queries with Sub-logarithmic
Local Updates for Overlapping Intervals

Elena Khramtcova1(B) and Maarten Löffler2

1 Computer Science Department, Université Libre de Bruxelles, Brussels, Belgium
elena.khramtsova@gmail.com

2 Department of Information and Computing Sciences,
Utrecht University, Utrecht, The Netherlands

m.loffler@uu.nl

Abstract. We present a data structure to maintain a set of intervals
on the real line subject to fast insertions and deletions of the intervals,
stabbing queries, and local updates. Intuitively, a local update replaces an
interval by another one of roughly the same size and location. We inves-
tigate whether local updates can be implemented faster than a deletion
followed by an insertion.

We present the first results for this problem for sets of possibly over-
lapping intervals. If the maximum depth of the overlap (a.k.a. ply) is
bounded by a constant, our data structure performs insertions, dele-
tions and stabbing queries in time O(log n), and local updates in time
O(log n/ log log n), where n is the number of intervals. We also analyze
the dependence on the ply when it is not constant. Our results are adap-
tive: the times depend on the current ply at the time of each operation.

1 Introduction

Preprocessing a set of objects for fast containment queries is a classic data
structure problem. One of the most basic variants is maintaining a set S of
one-dimensional intervals on the real line R

1, subject to stabbing queries. Given
a point q ∈ R

1, the stabbing query for q aims to find all the intervals in S
that contain q. Maintaining a set of intervals subject to stabbing queries is well
understood both in the static [9] and in the dynamic setting [6,10]. In particu-
lar, it is well known how to maintain a set of n intervals subject to insertions
and deletions in time O(log n), and stabbing queries in time O(log n+ k), where
k is the size of the output [10]. Data structures for stabbing queries remain
an active research area and many variations of the problem have been studied:
reporting the number of the stabbed intervals [1], finding the maximum prior-
ity stabbed interval [7,12], or considering different computational models and
tradeoffs between memory requirements and query time [3,13].

E. Khramtcova was partially supported by F.R.S.-FNRS, and by the SNF grant
P2TIP2-168563 under the Early PostDoc Mobility program.
M. Löffler was partially supported by the Netherlands Organisation for Scientific
Research (NWO) under project no. 639.021.123 and 614.001.504.

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 176–190, 2017.
DOI: 10.1007/978-3-319-58747-9 17

Dynamic Stabbing Queries for Intervals with Sub-logarithmic Local Updates 177

In certain applications, for example involving moving or uncertain data, a
special kind of update is frequently performed, called local update by Nekrich [11];
see also Löffler et al. [8] and references therein. Intuitively, a local update replaces
an interval by another interval similar to it: the new interval has roughly the
same size and location as the old interval (we make this definition precise in the
next section). The particular nature of the local update suggests that it should
be possible to perform such updates strictly faster than in logarithmic time, as
in that much time one could delete an interval and insert another interval that
would not need to be similar to the deleted one. In this paper we show that this
is indeed the case for stabbing data structures in R

1.
Sub-logarithmic local updates for containment queries in a set of disjoint

intervals have already been studied in Löffler et al. [8]. However, the condition
that intervals are and remain pairwise disjoint at all times is unrealistic in many
applications. The method in [8] is hard to generalize to overlapping intervals
even if the depth of the overlap is constant (see also Fig. 4). Therefore designing
a new data structure that would handle overlapping intervals is posed as an open
problem in [8]. Here we address this problem.

In this paper, we present a data structure to store a set of possibly overlapping
intervals, allowing fast insertions, deletions, and local updates. The performance
of the data structure is measured in terms of the number of intervals in the set
and the ply of the set: the maximum number of intervals containing any point
in R

1. If the ply is bounded by a constant, then the operations of insertion,
deletion, and answering a stabbing query require O(log n) time each, and a local
update requires O(log n/ log log n) time.

We conclude this section with the directions for further research. First direc-
tion is extending our data structure to operate with two-dimensional objects,
which are very important in many applications. Another open question concerns
the fact that the performance of our data structure depends linearly on the cur-
rent ply of the interval set, see Theorem 3. Thus one would desire to be able, if
ply is too large, to quickly transit from our data structure to a more efficient one,
e.g., the interval tree [4,6]. Clearly, such transition should be made in o(n log n)
time, i.e., faster than building an interval tree from the scratch.

1.1 The Problem Statement and Our Result

Given a set S of intervals in R
1, we aim to maintain S subject to fast stabbing

queries and local updates, as well as fast insertions and deletions of the intervals.
We assume that at all times the intervals in S are contained in a bounding box,1

i.e., they are contained in a large interval B ⊂ R
1.

To state the problem formally, we need some definitions.

Definition 1 (Stabbing query). Given a query point q, return all the inter-
vals in S that contain q, or report that there is no such interval.
1 If an update of S violates this bounding box condition, B can easily be enlarged.

Thus our assumption does not restrict the setting, but rather simplifies the descrip-
tion.

178 E. Khramtcova and M. Löffler

I1 I2|I2||I1 ∪ I2|

Fig. 1. 4-similar intervals I1, I2: the diameter |I2| is less than |I1| and |I1 ∪ I2| = 4|I2|.

For a closed, bounded, possibly disconnected region R ⊂ R
1, the diameter of

R is |R| = maxp,q∈R |q−p| (The diameter of an interval I = [a, b] is |I| = |b−a|.)
Definition 2 ([8]). For a pair I1, I2 of intervals in R

1, and a real number
ρ > 0, intervals I1, I2 are called ρ-similar, if |I1 ∪ I2| ≤ ρmin{|I1|, |I2|}. See
Fig. 1.

Definition 3 (Local update [8]). Given an interval I ∈ S and a pointer to
an interval I ′ ⊂ B that is ρ-similar to I for some constant ρ, replace I by I ′.

Definition 4 (Ply). For a point p ∈ R
1, the ply of S at p is the number of

intervals in S that contain p. The ply of S is the maximum ply of S at any point
in R

1.

Now we are ready to formulate our main problem.

Problem 1. Given a set S of n intervals in R
1 that can possibly overlap, a bound-

ing interval B ∈ R
1 that contains each interval in S, and a real constant ρ > 0,

preprocess S subject to fast stabbing queries, insertions and deletions of inter-
vals, and local updates with parameter ρ.

We show how to solve Problem 1, such that the resulting data structure
requires O(n) space, and the following holds:

– If the ply of S is always at most some constant number, then stabbing queries,
insertions and deletions of intervals require O(log n) time; local updates
require O(log n/ log log n) time.

– Otherwise, stabbing queries, insertions and deletions of intervals require
O(log n + k log n/ log log n) time; local updates require O(k log n/ log log n)
time. Here k is the ply of S at the moment when the operation is performed.

In both cases, the time complexity bound for insertion of an interval is amortized;
all other time bounds are worst-case.

We begin by reviewing an existing solution to Problem1 for disjoint inter-
vals [8], see Sect. 1.2. In Sect. 2 we give an alternative solution for disjoint inter-
vals, that contains the ideas important for our data structure for overlapping
intervals, which we present in Sect. 3. Section 4 discusses compression of the
quadtree, an additional detail deferred to the end of the paper to ease the
exposition.

Dynamic Stabbing Queries for Intervals with Sub-logarithmic Local Updates 179

1.2 A Data Structure for Disjoint Intervals (Ply = 1) [8]

Below we review the data structure for disjoint intervals by Löffler et al. [8]. It
consists of two trees: one for performing updates, and one for performing queries.

The first tree, further referred to as the quadtree, is a one-dimensional com-
pressed balanced quadtree on the center points of the intervals in S. In particular,
an interval I is stored in the largest quadtree cell C such that C contains the
center point of I and does not contain the center point of any other interval
in S. Such cell C is a quadtree leaf. Further, since the intervals in S are dis-
joint, |I| ≤ 4|C|. The quadtree is additionally augmented with level links, i.e.,
each quadtree cell has a pointer to its adjacent cells of the same size (if they
exist). The quadtree is compressed, i.e., it contains a-compressed cells for some
large constant a. An a-compressed cell C has only one child C ′, the size of C ′

is at most |C|/a, and C\C ′ contains no central points of intervals in S. Each
non-compressed cell has zero or two children (in the former case it is a leaf).

The second tree, referred to as the query tree, is a balanced binary tree over
the subdivision of R1 induced by the leaves of the quadtree. The leaves of the
query tree store pointers to the corresponding leaves of the quadtree.

Stabbing Queries. Given a query point q ∈ R
1, we must return the interval in S

that contains q (if it exists), see Definition 1. To do this, we use the following:

Property 1 ([8]). For a quadtree leaf C, any interval that intersects C is either
stored in C, or it is stored in the closest to C non-empty quadtree leaf2 either
to the left, or to the right of C.

The stabbing query is performed by checking whether q is contained in one
of the intervals stored in the three candidate cells from Property 1. The leaf C
is found in O(log n) time by a binary search for q in the query tree. To find the
other two leaves in O(1) time, we store with each leaf the pointers to the two
closest non-empty leaves from both sides. Checking if a given interval contains
q takes O(1) time. Thus the stabbing query requires O(log n) time in total.

Local Updates. For an interval I ∈ S, we need to replace I with a new interval I ′

that is O(1)-similar to I, see Definitions 2 and 3. To do this, we follow pointers
in the quadtree to find the cell that must store I ′. Since I and I ′ are O(1)-
similar, such cell is at most a constant number of cells away from the one that
stores I, and thus can be determined in O(1) time. We remove I from the
old cell and insert I ′ into the new cell, performing the necessary compression,
decompression, and balancing in the quadtree. This requires O(1) worst-case
time. The corresponding deletion and insertion in the query tree is done in O(1)
time, since the pointers are given and no search is needed. After each insertion
or deletion the balance in the search tree is restored in worst-case O(1) time [5].
Thus, a local update operation can be completed in O(1) worst-case total time.

2 Such leaves are not necessarily adjacent to C, as the adjacent ones might be empty.

180 E. Khramtcova and M. Löffler

Classic Updates. Intervals can be inserted or deleted from the data structure in
O(log n) time: First, the insertion/deletion in the query tree is performed. This
provides a pointer to the place in the quadtree where the insertion/deletion
should be done.

We conclude this overview with stating the result.

Theorem 1 ([8]). A set of n non-overlapping intervals can be stored in a data
structure of size O(n), subject to stabbing queries, insertion and deletion of inter-
vals in O(log n) worst-case time, and local updates in O(1) worst-case time.

2 An Alternative Data Structure for Disjoint Intervals

Below we describe another solution to Problem 1 for disjoint intervals. This solu-
tion is less efficient than the one summarized in Sect. 1.2: it ignores Property 1,
and it rather can be seen as a version of the data structure for 2-dimensional
disjoint fat regions [8]. The main goal of this section is to simplify the latter data
structure as much as possible, still making sure it contains the ideas, useful for
our solution for overlapping intervals.

The data structure, similarly to the one of Sect. 1.2, contains the quadtree and
the query tree built on its leaves, but they are now defined differently. Moreover,
we use an additional type of structure: a marked-ancestor tree built on top of
the quadtree cells.

The Quadtree. We maintain a compressed (but not balanced) quadtree that
stores the intervals in S. Notice that sometimes we need to create the cells that
would automatically exist, should the quadtree be balanced or non-compressed.
We defer the discussion on handling this to Sect. 4, and until then we assume
that the quadtree does not contain compressed nodes. The quadtree cells store
intervals according to the following:

Condition 1. An interval I ∈ S is stored in a cell C if and only if C is the
largest cell that contains I’s center point and is entirely covered by I. See Fig. 2.

Fig. 2. A quadtree storing a set of disjoint intervals according to Condition 1

The above condition implies that if an interval I is stored in a quadtree cell
C, then |C| ≤ |I| < 4|C|. In Fig. 2, the diameter of interval I3 equals the size of
its cell, and the diameter of interval I2 is almost four times the size of its cell.

Dynamic Stabbing Queries for Intervals with Sub-logarithmic Local Updates 181

For the purpose which will be evident soon, we add more cells to the quadtree:
For each interval I stored in a cell C according to Condition 1, we make sure
that all (at most four) the cells of size |C| intersected by I exist in the quadtree.

Figure 2 shows the quadtree for a set of five intervals. Black lines indicate the
existing quadtree cells, and the light-gray lines indicate their further subdivision.

Marked-Ancestor Trees. We maintain three marked-ancestor trees built on cells
of the quadtree. We denote these trees L-MAT , R-MAT , and C -MAT , standing
for the left, the right, and the center marked-ancestor tree.

The quadtree cells are marked according to the following criteria:

Condition 2. A quadtree cell C is marked in one of the marked-ancestor trees,
if there is an interval I ∈ S such that I intersects C, and the cell that stores I
has size |C|. Specifically:
(i) If C contains I’s right endpoint (and thus I’s center is to the left of C),

then C is marked in L-MAT.
(ii) If C contains I’s left endpoint then C is marked in R-MAT.
(iii) If I covers C entirely, then C is marked in C -MAT.

We say that C is marked by I, or that I marks C. See Fig. 3.

Each interval I marks either three or four quadtree cells: the cell C that
stores I, the cells of size |C| that contain respectively the left and the right
endpoint of C, and possibly C’s neighbor of size |C| entirely covered by I. Note
that, by the way we have defined the quadtree in the beginning of this section,
such quadtree cells are always present in it.

Fig. 3. Marking the cells of the quadtree from Fig. 2 in L-MAT , C -MAT , and R-MAT

Below Lemmas 1 and 2 are useful properties of the marked-ancestor trees,
which are not hard to see. Lemma 3 provides an implementation of these struc-
tures.

Lemma 1. Let C and Ca be two quadtree cells, such that Ca is an ancestor of C,
and Ca is marked in C -MAT by some interval Ia. Then Ia entirely covers C.

Lemma 2. Let C and Ca be two quadtree cells that are both marked in L-MAT
by an interval I and by an interval Ia, respectively. If Ca is an ancestor of C,
then Ia lies to the left of I. A symmetric property holds for R-MAT.

182 E. Khramtcova and M. Löffler

Lemma 3 ([2]). For any rooted tree T , a data structure over the nodes of T can
be maintained, supporting insertions and deletions of leaves in O(1) time, mark-
ing and unmarking nodes in O(log log n) time, and O(log n/ log log n)-time low-
est marked-ancestor queries. The time bound for insertions is amortized; other
bounds are worst-case.

If T is a path, then marking, unmarking, and answering a marked-successor
(or a marked-predecessor) query require O(log log n) time each.

The Query Tree. The query tree is a balanced binary tree whose leaves corre-
spond to leaves of the quadtree, ordered as they appear on R

1. Unlike Sect. 1.2,
the leaves of the query tree do not have pointers to their non-empty neighbors.

Stabbing Queries. Given a query point q, we need to return an interval in S that
contains q, if such interval exists. By locating q in the query tree, we find the
quadtree leaf C that contains q. If C is marked in C -MAT by some interval I
(C may or may not store I), then we report I. Otherwise, we find the lowest
marked ancestor Ca of C in L-MAT , and check whether the interval that marks
Ca contains q. We do the same in R-MAT .

Lemma 4. The above procedure is correct and requires O(log n) time.

Proof. Let C be the quadtree leaf that contains q. If C is marked by an interval
I in C -MAT then by definition I covers C, and thus it contains q. Let I be an
interval in S that intersects C, but does not cover it. Then I intersects one of the
borders of C, say, the left border. Thus I marks an ancestor Ca of C in L-MAT .
Moreover, Ca is the lowest marked ancestor of C in L-MAT : suppose that some
C ′

a �= Ca is the lowest marked ancestor of C; let I ′ be the interval that marks
C ′

a. Then both I and I ′ contain the left border of C ′
a. We obtain a contradiction

to the disjointness of the intervals in S. The argument for R-MAT is symmetric.
By Lemma 3, the lowest marked ancestor of C in L-MAT and the one in

R-MAT can be determined in O(log n/ log log n) time. Therefore, the total time
required for the stabbing query is dominated by the time required for point
location in the query tree, and thus it is O(log n). ��

Local Updates. Given a pointer to an interval I stored in cell C, we need to
replace it with a O(1)-similar interval I ′. Let C ′ be the quadtree cell that needs
to store I ′, see Condition 1. Assume that the pointer to C ′ is available.

Deleting I and inserting I ′ then reduces to repairing the data structures.
Modifying the quadtree and the query tree is done as in Sect. 1.2. Deleting I
requires unmarking the quadtree cells marked by I. The latter cells are easy to
find in constant time as they are the cells of size |C| that intersect I. If these
unmarked cells are leaves, they may get deleted from the quadtree. Inserting I ′

requires the reverse manipulations: marking the cells of size |C ′| intersected by
I, and adding them if they do not yet exist.

Lemma 5. A local update requires O(log n/ log log n) time.

Dynamic Stabbing Queries for Intervals with Sub-logarithmic Local Updates 183

Proof. Intervals I and I ′ mark at most four quadtree cells each; such cells can be
found in constant time. To insert and to delete a quadtree leaf is a constant-time
operation. Thus the time required by the local update (after C ′ is available) is
dominated by the time for a constant number of marking and unmarking oper-
ations, each of which by Lemma 3 requires O(log log n) time. The overhead due
to compression of the quadtree for finding C ′ is O(log n/ log log n), see Lemma 8.
The claim follows. ��

Classic Updates. Insertion (resp., deletion) of an interval requires an insertion
(resp., deletion) in the query tree, and an update to marked-ancestor structures.
The former two operations require worst-case O(log n) time (including the over-
head due to compression, see Lemma 8). The latter operation requires O(1) time,
amortized for insertions and worst-case for deletions. Therefore we say that the
classic updates require O(log n) time per operation, amortized for insertion and
worst-case for deletions.

3 A Data Structure for Overlapping Intervals

In this section we present our solution to Problem1 for sets of intervals that may
overlap. Section 3.1 considers the case when the ply of the interval set is always
at most two. Generalization of the data structure to the case of higher ply is
quite intuitive, and we sketch it briefly due to the space constraints.

3.1 Intervals with Ply ≤ 2

Now we are given a set S of intervals that may overlap, such that the ply of S
is guaranteed to be at most two at any moment. We solve Problem1 for such S.

We remark that partitioning S into a constant number of layers, such that
at each layer the intervals are disjoint, does not seem to work.

Should we do this, we would need to restore the properties of the layers when
after a local update two intervals of the same layer start overlapping. A natural
way to handle this, i.e., to assign the interval that just has been updated the
next possible layer, does not work: Fig. 4 shows three intervals and a sequence
of local updates, where every local update causes a change of the layer for the
updated interval. Thus we need a more involved data structure for solving our
problem.

Our starting point is the data structure of Sect. 2. Note that a single L-MAT
(and a single R-MAT) is not enough for our setting: It can happen that the
quadtree leaf that contains a query point q has linearly many marked ances-
tors in L-MAT before the one marked by the interval that actually contains q.
Figure 5 shows such situation with three marked ancestors; the construction can
be continued to increase this sequence arbitrarily, using intervals and cells of
smaller size. To overcome this issue, we use marked-ancestor trees of two levels.
Below we discuss the modifications to the data structure of Sect. 2 in detail.

184 E. Khramtcova and M. Löffler

I1
I2
I3

t = t1
t = t2
t = t3
t = t4

Fig. 4. Subdividing intervals in two layers of disjoint intervals is not efficient: A set
of three intervals {I1, I2, I3}, and a sequence of local updates that would cause linear
number of layer changes. We illustrate here the first three updates in this sequence,
i.e., the segment set in each of the first four time moments t1, . . . , t4.

Fig. 5. A set of intervals with ply two, and a query point q, such that the cell of q
has many marked ancestors in L-MAT (the shaded cells), but only the largest one is
marked by the interval that contains q. This cell must be marked in L-MAT 2.

The Quadtree. The rule to store intervals in the quadtree cells is still provided
by Condition 1. Since intervals are now allowed to overlap, they may be stored
in intermediate cells of the quadtree. If an interval I ∈ S does not overlap any
other intervals, then I is stored in a quadtree leaf. The inverse is not true. Notice
that since ply of S is at most two, one cell C stores at most two intervals. If C
stores two intervals, then C is a leaf.

Marked-Ancestor Trees. We maintain two levels of the left and the right marked-
ancestor trees, denoted by L-MAT i,R-MAT i, i ∈ {1, 2}. The center marked-
ancestor tree (C -MAT) is unique, and is defined in the same way as previously.

Marking the quadtree cells in the left marked-ancestor trees is now done
according to the following (marking in the right trees is symmetric):

Condition 3. For a cell C, if there is an interval I such that Condition 2(i)
holds for C and I, then C is marked in one of the left marked-ancestor trees.
Specifically (See Figs. 5 and 6):

– C is marked in L-MAT 2 if there is a descendant C ′ of C and an interval I ′

such that Condition 2(i) holds for C ′ and I ′, and I entirely covers I ′.
– C is marked in L-MAT 1, otherwise.

Since C -MAT is defined in the same way as in Sect. 2, Lemma 1 still holds.
The following lemma generalizes Lemma 2.

Lemma 6. Let C and Ca be two quadtree cells that are both marked in L-MAT i

for some level i ∈ {1, 2} respectively by interval I and by interval Ia. If Ca is an
ancestor of C, then the right endpoint of Ia lies to the left of the right endpoint
of I. A symmetric property holds for R-MAT i.

Dynamic Stabbing Queries for Intervals with Sub-logarithmic Local Updates 185

Fig. 6. A set of four intervals with ply 2; marking in L-MAT 1 and L-MAT 2 induced
by them

Proof. Suppose for the sake of contradiction, that there are two quadtree cells
C and Ca that are both marked in L-MAT 1 or both in L-MAT 2 by intervals I
and Ia respectively, such that Ca is an ancestor of C, and the right endpoint of
Ia is to the right of the right endpoint of I. Then I is covered entirely by Ia.
It is not possible that both C and Ca are marked in L-MAT 1: by definition Ca

must be marked in L-MAT 2, since Ia covers I. If both C and Ca were marked in
L-MAT 2, then there would be an interval I ′ entirely covered by I. This would
contradict the ply ≤ 2 condition for S. ��

Marked-Descendant Trees. To update the marked-ancestor trees efficiently, we
need a data structure built on the quadtree, that would quickly answer the
following queries.

Definition 5 (Leftmost/rightmost marked-descendant query). The left-
most marked-descendant query for an intermediate quadtree cell C is as follows.
If the subtree of C contains cells marked in L-MAT 1, among these cells, return
the one that comes first after C in the pre-order traversal of the quadtree.3 Other-
wise return nil. The rightmost marked-descendant query for C is: If the subtree
of C contains cells marked in R-MAT 1, among these cells, return the one that
precedes C in the post-order traversal of the quadtree.4 Otherwise return nil.

The following lemma justifies the use of marked-descendant queries to manip-
ulate the marked-ancestor trees.

Lemma 7. Suppose a quadtree cell C and an interval I satisfy Condition 2(i).
Cell C is marked in L-MAT 2 if and only if (1) the leftmost marked descendant
Cd of C exists, and (2) Id ⊂ I, where Id is the interval that marks Cd.

Same holds for a cell marked in R-MAT 2 and its rightmost marked descen-
dant.

Proof. If items (1) and (2) hold, then C is marked in L-MAT 2 by Condition 3.
Suppose C is marked in L-MAT 2. Then there is a descendant C ′ of C marked

in L-MAT 1 by an interval I ′ such that I ′ ⊂ I. First note that C ′ is a marked
descendant of C, thus the leftmost marked descendant Cd of C exists. Suppose
Cd �= C ′. Since Cd appears before C ′ in the pre-order traversal of the quadtree,
3 The pre-order traversal of a binary tree first visits the root, then it recursively visits

the left subtree, and finally it recursively visits the right subtree.
4 The post-order traversal of a binary tree first recursively visits the left subtree, then

it recursively visits the right subtree, and finally it visits the root.

186 E. Khramtcova and M. Löffler

the left border of Cd either coincides with left border of C ′, or lies to the left of
it. Thus Id is completely to the left of I ′. Since Id is stored in a cell whose size
is less than |C|, the left border of Id cannot be to the left of the left border of
I, and thus Id ⊂ I. ��

To efficiently answer the above queries, we maintain a pair of data structures,
which we call the left and the right marked-descendant tree, respectively. The
left marked-descendant tree is implemented by maintaining the path induced by
the pre-order traversal of the quadtree, and the marked-successor data structure
of Lemma 3 on top of this path for the cells marked in L-MAT 1. Maintaining
the path can be done by augmenting each node with a pointer to its successor
in the traversal. The leftmost marked-descendant query is then performed by
querying the marked successor of C in the pre-order, and checking whether the
returned cell is in the subtree of C. If no cell is returned, or if the returned
cell is not a descendant of C, then we return nil. Otherwise we return that cell.
The marked-successor queries require worst-case O(log log n) time per query by
Lemma 3.

The right marked-descendant tree is symmetric: we maintain the reversed
post order, (i.e., determine the pointers for the post-order traversal and reverse
all of them), and the marked-successor data structure on top of this path.

Stabbing Queries. Given a query point q, we need to report all intervals in S
that contain q. To do that, we should first find the quadtree leaf C that contains
q. If C or C’s ancestor(s) are marked in C -MAT , we report the interval(s) that
mark them, similar to Sect. 2. After that we query left and right marked-ancestor
trees: We check the intervals that mark the lowest and the second lowest marked
ancestor of C in L-MAT 1 (in case C is marked in L-MAT 1, we check its marking
interval too). We report those of the above intervals that contain q. We repeat
the procedure for L-MAT 2, R-MAT 1, and R-MAT 2.

The above procedure requires O(log n) time, as it is dominated by the time
for point location in the query tree.

Local Updates. We need to move an interval I stored in a cell C so that it
becomes an interval I ′, O(1)-similar to I. As in Sect. 2, we assume that we have
a pointer to the cell C ′ that must store I ′. Below we describe updating of the
left marked-ancestor and marked-descendant trees only, as all other structures
are either symmetric to those, or are updated exactly as in Sect. 2.

The deletion of I causes the following modifications. Let C� be the cell such
that |C�| = |C| and C� contains the right endpoint of I. Cell C� is marked by I in
either L-MAT 1 or in L-MAT 2. In the latter case C� gets unmarked, and nothing
else should be done. In the former case, in addition to unmarking C� we must
check whether such unmarking causes some cell marked in L-MAT 2 to change
the marking level and start being marked in L-MAT 1 instead. Observe, that
the only cell that could possibly change the marking level is the lowest marked
ancestor Ca of C� in L-MAT 2. To check whether Ca changes the marking level,
we perform the leftmost marked-descendant query for Ca. If that query returned

Dynamic Stabbing Queries for Intervals with Sub-logarithmic Local Updates 187

a cell Cd, and Ia entirely covers Id, where Ia and Id are the intervals that mark
Ca and Cd respectively, then Ca stays marked in L-MAT 2. Otherwise (i.e., if Ia

does not cover Id, or if Ca does not have the leftmost marked descendant), we
unmark Ca in L-MAT 2 and mark it in L-MAT 1.

The insertion of I ′ causes the following modifications. The quadtree cells of
size |C ′| intersected by I ′ get marked. Let C ′

� be the quadtree cell such that
|C ′

�| = |C ′| and C ′
� contains the right endpoint of I ′. Cell C ′

� should be marked
in one of the levels of the left marked-ancestor trees. To decide in which, we
perform the leftmost marked-descendant query for C ′

�. If the query returns a
cell C ′

d, we check whether I ′ covers the interval I ′
d that marks C ′

d. If this is the
case, C ′

� should be marked in L-MAT 2. Otherwise, C ′
� gets marked in L-MAT 1.

In the latter case, we also check for the lowest ancestor C ′
a of C ′

� in L-MAT 1,
whether the marking of C ′

� causes a change of marking level of C ′
a. Namely, if I ′

is contained in the interval I ′
a that marks C ′

a, then C ′
a gets unmarked in L-MAT 1

and marked in L-MAT 2 instead.
Whenever a cell C is marked or unmarked in L-MAT 1, it is marked or

unmarked in the left marked-descendant tree.
Correctness of the above procedure follows from Lemma 7. The time required

by the procedure is dominated by the time for a constant number of lowest
marked-ancestor queries and thus is O(log n/ log log n), including the overhead
due to compression, see Lemma 8. Classic updates are exactly the same as in
Sect. 2. We conclude.

Theorem 2. A set S of n intervals in R
1, such that the ply of S is at

most two, can be stored in a data structure of size O(n), subject to stabbing
queries, insertion and deletion of intervals in O(log n) time, and local updates
in O(log n/ log log n) time. The bound is amortized for the insertion, and worst-
case for all other operations.

3.2 Intervals with Higher Ply

For a set of intervals with ply k ≥ 2, the above data structure can be generalized,
resulting in the following.

Theorem 3. A set S of n intervals in R
1, that may overlap, can be stored

in a data structure of size O(n), subject to stabbing queries, insertion and
deletion of intervals in O(log n + k log n/ log log n) time, and local updates in
O(k log n/ log log n) time, where k is the ply of S at the time of the operation.
The bound is amortized for the insertion, and worst-case for all other operations.

Proof. (sketch). We maintain k levels of marked-ancestor trees. For a quadtree
cell C, if there is an interval I such that Condition 2(i) is satisfied for C and
I, then C is marked in L-MAT j , for some 1 ≤ j ≤ k. Cell C is marked in
L-MAT i, 1 < i ≤ k, if there is a sequence C1, . . . , Ci−1 of descendants of C and
a sequence I1, . . . , Ii−1 of intervals in S such that I1 ⊂ I2 ⊂ . . . ⊂ Ii−1 ⊂ I and
Condition 2(i) is satisfied for each pair Cj , Ij , 1 ≤ j ≤ i − 1. Otherwise, C is
marked in L-MAT 1.

188 E. Khramtcova and M. Löffler

We also maintain k − 1 marked-descendant trees, where the left marked-
descendant tree of level i, 1 ≤ i < k is defined as in Sect. 3.1 for the cells marked
in L-MAT i.

The operations and queries are simple generalizations of the ones from
Sect. 3.1. For example, while doing the stabbing queries for a point q, we search
in each marked-ancestor tree for at most k lowest marked ancestors of C, where
C is the quadtree leaf containing q; the total number of marked-ancestor queries
performed is O(k) due to a generalization of Lemma6. ��

4 Compressing the Quadtree

The compressed quadtree contains a-compressed cells for some large constant
a. An a-compressed cell C has only one child C ′, such that |C ′| ≤ |C|/a, and
for any interval I in S whose center point is contained in C\C ′, I entirely
covers C. The compressed nodes cut the quadtree into several regular compo-
nents that are smaller (uncompressed) quadtrees. We need to modify our data
structure from Sects. 2 and 3 to handle the presence of compressed cells in the
quadtree. Lemma 8 discusses the complexity of such modifications. In particu-
lar, each update operation needs additional time to restore the properties of a
compressed quadtree. We refer to such additional time as overhead.5 Notice that
stabbing queries do not modify the quadtree, therefore they do not cause any
overhead.

Fig. 7. Regular components of the quadtree (bounded by bold lines), and paths that
connect the compressed nodes with their unique children (zigzag lines). Cell Cb is
marked in L′-MAT by the compressed cell Ca. For the cell C, its lowest marked ancestor
in L′-MAT is Cb.

Lemma 8. Compression in the quadtree for intervals that possibly overlap, can
be maintained in O(n) space. The time overhead is O(log n/ log log n) per local
update operation, and O(log log n) per classic update operation.

Proof. Consider a local update that turns an interval I into an interval I ′, O(1)-
similar to I. We need to quickly find the cell where I ′ should be stored. That
cell should be a constant number of cells away from C, and in a non-compressed
(or in a balanced) quadtree it (or the leaf where it should be inserted) could be

5 Note that the analysis in Sects. 2 and 3 already takes Lemma 8 into account.

Dynamic Stabbing Queries for Intervals with Sub-logarithmic Local Updates 189

found by following the level links from C to the cells of size |C| adjacent to C. In
our setting, it may happen that such cell C ′′ does not exist, and the smallest cell
Ca above C ′′ is a compressed cell. In that case, once Ca is found, the necessary
decompression can be done in O(1) time.

To perform the search for Ca efficiently, we maintain two additional marked-
ancestor trees on top of the quadtree. These trees are denoted L′-MAT and
R′-MAT , and correspond to the following marking rule. A cell Ca is marking a
cell Cb in L′-MAT if Ca is the rightmost leaf in its regular quadtree component,
and Cb is the largest cell adjacent to the right border of Ca, such that |Cb| ≤ |Ca|,
and Cb is to the right of Ca. See Fig. 7. Marking in R′-MAT is symmetric.

For a cell C (see Fig. 7), going to the lowest marked ancestor Cb of C in
L′-MAT , and then to the cell that marks Cb, results exactly in the sought com-
pressed cell Ca. Thus the time needed to restore the properties of a compressed
quadtree after a local update is dominated by the time to find the lowest marked
ancestor in L′-MAT or R′-MAT . By Lemma 3, this is O(log n/ log log n).

A classic update causes O(1) compression/decompression operations like in
the case of non-overlapping intervals [8], which requires O(1) time, and O(1)
marking/unmarking operations in L′-MAT and R′-MAT , which by Lemma 3
can be performed in O(log log n) time in total. ��

Acknowledgements. We wish to thank Irina Kostitsyna for helpful discussions.

References

1. Agarwal, P.K., Arge, L., Kaplan, H., Molad, E., Tarjan, R.E., Yi, K.: An optimal
dynamic data structure for stabbing-semigroup queries. SIAM J. Comput. 41(1),
104–127 (2012)

2. Alstrup, S., Husfeldt, T., Rauhe, T.: Marked ancestor problems. In: 39th Annual
Symposium on Foundations of Computer Science, pp. 534–543 (1998)

3. Arge, L., Vitter, J.S.: Optimal dynamic interval management in external memory.
In: 37th Conference on Foundations of Computer Science, pp. 560–569 (1996)

4. Berg, M., Cheong, O., Kreveld, M., Overmars, M.: Computational Geometry -
Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

6. Edelsbrunner, H.: Dynamic data structures for orthogonal intersection queries.
Report F59. Technische Universität Graz (1980)

7. Kaplan, H., Molad, E., Tarjan, R.: Dynamic rectangular intersection with priorities.
In: 35th ACM Symposium on Theory of Computing (STOC), pp. 639–648 (2003)

8. Löffler, M., Simons, J.A., Strash, D.: Dynamic planar point location with sub-
logarithmic local updates. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS
2013. LNCS, vol. 8037, pp. 499–511. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40104-6 43

9. McCreight, E.M.: Efficient algorithms for enumerating intersecting intervals and
rectangles. report csl-80-9. Technical report, Xerox Palo Alto Res. Center (1980)

10. McCreight, E.M.: Priority search trees. SIAM J. Comput. 14(2), 257–276 (1985)

http://dx.doi.org/10.1007/978-3-642-40104-6_43
http://dx.doi.org/10.1007/978-3-642-40104-6_43

190 E. Khramtcova and M. Löffler

11. Nekrich, Y.: Data structures with local update operations. In: Gudmundsson, J.
(ed.) SWAT 2008. LNCS, vol. 5124, pp. 138–147. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-69903-3 14

12. Nekrich, Y.: A dynamic stabbing-max data structure with sub-logarithmic query
time. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.) ISAAC
2011. LNCS, vol. 7074, pp. 170–179. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25591-5 19

13. Thorup, M.: Space efficient dynamic stabbing with fast queries. In: 35th ACM
Symposium on Theory of Computing (STOC), pp. 649–658. ACM Press (2003)

http://dx.doi.org/10.1007/978-3-540-69903-3_14
http://dx.doi.org/10.1007/978-3-642-25591-5_19
http://dx.doi.org/10.1007/978-3-642-25591-5_19

The Transformation Monoid
of a Partially Lossy Queue

Chris Köcher(B) and Dietrich Kuske

Institut für Theoretische Informatik,
Technische Universität Ilmenau, Ilmenau, Germany
{chris.koecher,dietrich.kuske}@tu-ilmenau.de

Abstract. We model the behavior of a lossy fifo-queue as a monoid of
transformations that are induced by sequences of writing and reading. To
have a common model for reliable and lossy queues, we split the alphabet
of the queue into two parts: the forgettable letters and the letters that
are transmitted reliably.

We describe this monoid by means of a confluent and terminating
semi-Thue system and then study some of the monoids algebraic prop-
erties. In particular, we characterize completely when one such monoid
can be embedded into another as well as which trace monoids occur as
submonoids. The resulting picture is far more diverse than in the case of
reliable queues studied before.

1 Introduction

Queues (alternatively: fifo queues or channels) form a basic storage mechanism
that allows to append items at the end and to read the left-most item from
the queue. Providing a finite state automaton with access to a queue results in a
Turing complete computation model [2] such that virtually all decision problems
on such devices become undecidable.

Situation changes to the better if one replaces the reliable queue by some
forgetful version. The most studied version are lossy queues that can nondeter-
ministically lose any item at any moment [1,3,7,13]: in that case reachability,
safety properties over traces, inevitability properties over states, and fair ter-
mination are decidable (although of prohibitive complexity, see, e.g., [4]). A
practically more realistic version are priority queues where items of high priority
can erase any previous item of low priority. If items of priority i can be erased by
subsequent items of priority at least i, then safety and inevitability properties
are decidable, if items of priority i can be erased by subsequent items of priority
strictly larger than i, only, then these problems become undecidable [8].

In this paper, we study partially lossy queues that can be understood as
a model between lossy and priority queues. Seen as a version of lossy queues,
their alphabet is divided into two sets of reliable and forgettable letters where

C. Köcher and D. Kuske—Supported by the DFG-Project “Speichermechanismen
als Monoide”, KU 1107/9-1.

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 191–205, 2017.
DOI: 10.1007/978-3-319-58747-9 18

192 C. Köcher and D. Kuske

only items from the second set can be lost. Seen as a version of priority queues,
partially lossy queues use only two priorities (0 and 1) where items of priority 0
can be erased by any item of priority at least 0 (i.e., by all items) and items of
priority 1 can only be erased by items of strictly larger priority (which do not
exist).

We describe the behavior of such a partially lossy queue by a monoid as was
done, e.g., for pushdowns in [10] and for reliable queues in [9,12]: A partially lossy
queue is given by its alphabet A as well as the subset X ⊆ A of letters that the
queue will transmit reliably. Note that writing a symbol into a queue is always
possible (resulting in a longer queue), but reading a symbol is possible only if the
symbol is at the beginning of the queue (or is preceded by forgettable symbols,
only). Thus, basic actions define partial functions on the possible queue contents.
The generated transformation monoid is called partially lossy queue monoid or
plq monoid Q(A,X). Then Q(A,A) models the behaviour of a reliable queue
with alphabet A [9,12] and Q(A, ∅) the fully lossy queue that can forget any
symbol [11].

The first part of this paper presents a complete infinite semi-Thue system for
the monoid Q(A,X). The resulting normal forms imply that two sequences of
actions are equivalent if their subsequences of write and of read actions, respec-
tively, coincide and if the induced transformations agree on the shortest queue
that they are defined on.

This result is rather similar, although technically more involved, than the
corresponding result on the monoid Q(A,A) of the reliable queue from [9]. In
that paper, it is also shown that Q(A,A) embeds into Q(B,B) provided B is
not a singleton. This is an algebraic formulation of the wellknown fact that
the reliable queue with two symbols can simulate any other reliable queue. The
second part of the current paper is concerned with the embeddability relation
between the monoids Q(A,X). Clearly, the monoid Q(A, ∅) of the fully lossy
queue embeds into Q(B, ∅) whenever |A| ≤ |B| by looking at A as a subset of B.
Joining this almost trivial idea with the (nontrivial) idea from [9], one obtains
an embedding of Q(A,X) into Q(B, Y) provided the second queue has at least
as many forgettable letters as the first and its number of unforgettable letters is
at least the number of unforgettable letters of the first queue or at least two (i.e.,
|A\X| ≤ |B\Y | and min{|X|, 2} ≤ |Y |). We prove that, besides these cases, an
embedding exists only in case the second queue has precisely one non-forgettable
letter and properly more forgettable letters than the first queue (i.e., |Y | = 1
and |A\X| < |B\Y |). As for the reliable queue, this algebraically mirrors the
intuition that a partially lossy queue can simulate another partially lossy queue
in these cases, only. In particular, a reliable queue does not simulate a fully lossy
queue and vice versa and a fully lossy queue cannot simulate another fully lossy
queue with more (forgettable) letters.

These results show that the class of submonoids of a plq monoid Q(A,X)
depends heavily on the number of forgettable and non-forgettable letters. In [9],
it is shown that the direct product of two free monoids embeds into the monoid of
the reliable queue Q(A,A) (with |A| ≥ 2). The paper [12] elaborates on this and

The Transformation Monoid of a Partially Lossy Queue 193

characterizes the class of trace monoids M(Γ, I) [6] that embed into Q(A,A). In
particular, it shows that N

3 is not a submonoid of Q(A,A). The final section of
this paper studies this question for plq monoids. The – at least for the authors –
surprising answer is that, provided the queue has at least one non-forgettable
or at least three forgettable letters, a trace monoid embeds into Q(A,X) if
and only if it embeds into Q(A,A). By [12], this is the case if all letters in the
independence alphabet (Γ, I) have degree at most 1 or the independence alphabet
is a complete bipartite graph with some additional isolated vertices. We provide
a similar characterization for trace monoids embedding into Q({a, b}, ∅): here,
the complete bipartite component is replaced by a star graph. In any case, the
direct product of (N,+) and {a, b}∗ embeds into Q(A,X). Since in this direct
product, the inclusion problem for rational sets is undecidable (cf. [15]), the same
applies to Q(A,X).

In summary, we study properties of the transformation monoid of a par-
tially lossy queue that were studied for the reliable queue in [9,12]. We find
expected similarities (semi-Thue system), differences (embeddability relation)
and surprising similarities (trace submonoids).

2 Preliminaries

At first we need some basic definitions. So let A be an alphabet. A word u ∈ A∗

is a prefix of v ∈ A∗ iff v ∈ uA∗. Similarly, u is a suffix of v iff v ∈ A∗u.
Furthermore u is a subword of v iff there are k ∈ N, a1, . . . , ak ∈ A and
w1, . . . , wk+1 ∈ A∗ such that u = a1 . . . ak and v = w1a1w2a2 . . . wkakwk+1,
i.e., we obtain u if we drop some letters from v. In this case we write u � v. Note
that � is a partial ordering on A∗. Let X ⊆ A. Then we define the projection
πX : A∗ → X∗ on X by

πX(ε) = ε and πX(au) =

{
aπX(u) if a ∈ X

πX(u) otherwise

for each a ∈ A and u ∈ A∗. Moreover, u is an X-subword of v (denoted u �X v)
if πX(v) � u � v, i.e., if we obtain u from v by dropping some letters not in X.
Note that �∅ is the subword relation � and �A is the equality relation.

2.1 Definition of the Monoid

We want to model the behaviour of an unreliable queue that stores entries from
the alphabet A. The unreliability of the queue stems from the fact that it can
forget certain letters that we collect in the set A\X. In other words, letters from
X ⊆ A are non-forgettable and those from A\X are forgettable. Note that this
unreliability extends the approach from [9] where we considered reliable queues
(i.e., A = X).

So let A be an alphabet of possible queue entries and let X ⊆ A be the
set of non-forgettable letters. The states of the queue are the words from A∗.

194 C. Köcher and D. Kuske

Furthermore we have some basic controllable actions on these queues: writing of
a symbol a ∈ A (denoted by a) and reading of a ∈ A (denoted by a). Thereby we
assume that the set A of all these reading operations a is a disjoint copy of A. So
Σ := A ∪ A is the set of all controllable operations on the partially lossy queue.
For a word u = a1 . . . an ∈ A∗ we write u for the word a1 a2 . . . an.

Formally, the action a ∈ A appends the letter a to the state of the queue.
The action a ∈ A tries to cancel the letter a from the beginning of the current
state of the queue. If this state does not start with a then the operation a is not
defined. The lossiness of the queue is modeled by allowing it to forget arbitrary
letters from A\X of its content at any moment.

This semantics is similar to the “standard semantics” from [4, Appendix A]
where a lossy queue can lose any message at any time. The main part of that
paper considers the “write-lossy semantics” where lossiness is modeled by the
effect-less writing of messages into the queue. The authors show that these
two semantics are equivalent [4, Appendix A] and similar remarks can be made
about priority queues [8]. A third possible semantics could be termed “read-lossy
semantics” where lossiness is modeled by the loss of any messages that reside
in the queue before the one that shall be read. In that case, the queue forgets
letters only when necessary and this necessity occurs when one wants to read a
letter that is, in the queue, preceded by some forgettable letters.

In the complete version of this paper, we define both, the “standard seman-
tics” and the “read-lossy semantics” and prove that the resulting transformation
monoids are isomorphic; here, we only define the “read-lossy semantics” as this
semantics is more convenient for our further considerations.

Definition 2.1. Let X ⊆ A be two finite sets and ⊥ /∈ A. Then the map ◦X :
(A∗ ∪ {⊥}) × Σ∗ → (A∗ ∪ {⊥}) is defined for each q ∈ A∗, a ∈ A and u ∈ Σ∗ as
follows:

(i) q ◦X ε = q
(ii) q ◦X au = qa ◦X u

(iii) q ◦X au =

{
q′ ◦X u if q ∈ (A\(X ∪ {a}))∗ a q′

⊥ otherwise

(iv) ⊥ ◦X u = ⊥
Consider the definition of q◦X au. There, the word aq′ is the smallest suffix of

q that contains all the occurrences of the letter a (it follows that the operation ◦X
is welldefined) and the complementary prefix consists of forgettable entries, only.
Hence, to apply a, the queue first “forgets” the prefix and then “delivers” the
letter a that is now at the first position.

Lemma 2.2. Let q, u ∈ A∗ such that q ◦X u �= ⊥. Then q ◦X u is the longest
suffix of q with πX(p) � u � p where p is the complementary prefix.

The Transformation Monoid of a Partially Lossy Queue 195

Example 2.3. Let a ∈ A\X, b ∈ X, q = aabaabba and u = aba. Then we have
q ◦X u = abaabba ◦X ba = aabba ◦X a = abba.

On the other hand, the words aaba and aabaa are the only prefixes p′ of q
with πX(p′) � u � p′. Their complementary suffixes are abba and bba, the longer
one equals q ◦X u as claimed by the lemma.

Two sequences of actions that behave the same on each and every queue will be
identified:

Definition 2.4. Let X ⊆ A be two finite sets and u, v ∈ Σ∗. Then u and v act
equally (denoted by u ≡X v) if q ◦X u = q ◦X v holds for each q ∈ A∗.

The resulting relation ≡X is a congruence on the free monoid Σ∗. Hence,
the quotient Q(A,X) := Σ∗/≡X

is a monoid which we call partially lossy queue
monoid or plq monoid induced by (A,X).

Example 2.5. Let a, b ∈ A be distinct. Then we have ε ◦∅ baa = ba ◦∅ a = ε and
ε ◦∅ baa = ⊥ implying baa �≡∅ baa.

On the other hand, ε ◦A baa = ba ◦A a = ⊥ = ε ◦A baa. It can be verified
that, even more, q ◦A baa = q ◦A baa holds for all q ∈ A∗ (since a �= b) implying
baa ≡A baa.

General Assumption. Suppose A = {a} is a singleton. Then an+1 ◦X a = an for
any n ≥ 0 (independent of whether X = A or X = ∅). Hence Q(A,A) = Q(A, ∅)
is the bicyclic semigroup. From now on, we exclude this case and assume |A| ≥ 2.

2.2 A Semi-Thue System for Q(A,X)

Lemma 2.6. Let a, b ∈ A, x ∈ X and w ∈ A∗. Then the following hold:

(i) ba ≡X ab if a �= b
(ii) aab ≡X aab

(iii) xwaa ≡X xwaa
(iv) awaa ≡X awaa

At first we take a look at equations (i)–(iii) (with |w|a = 0 for simplicity). In
order for a queue q ∈ A∗ to be defined after execution of the actions, the letter
a must already be contained in q preceded by forgettable letters only. Since, in
all cases, a is the first read operation, a reads this occurrence of a from q. Hence
it does not matter whether we write b (a, resp.) before or after this reading
of a. In equation (iv) we are in the same situation after execution of the leading
write operation a. Therefore we can commute the read and write operations in
all these situations.

In case of X = A, (iv) is a special case of (iii). Furthermore (i), (ii), and (iii)
with w = ε are exactly the equations that hold in Q(A,A) by [9, Lemma 3.5].

Ordering the equations from Lemma2.6, the semi-Thue system RX consists
of the following rules for a, b ∈ A, x ∈ X and w ∈ A∗:

(a) ba → ab if a �= b
(b) aab → aab

(c) xwaa → xwaa
(d) awaa → awaa

196 C. Köcher and D. Kuske

Since all the rules are length-preserving and move letters from A to the left,
this semi-Thue system is terminating. Since it is also locally confluent, it is
confluent. Hence for any word u ∈ Σ∗, there is a unique irreducible word nfX(u)
with u →∗ nfX(u), the normal form of u. Let NFX denote the set of words in
normal form.

Proposition 2.7. Let u, v ∈ Σ∗. Then u ≡X v if, and only if, nfX(u) = nfX(v).

Recall that aab ≡X aab and aa �≡X aa, i.e., in general, we cannot cancel in
the monoid Q(A,X). Since rules from RX move letters from A to the left, we
obtain the following restricted cancellation property.

Corollary 2.8. Let u, v ∈ Σ∗ and x, y ∈ A∗ with xuy ≡X xvy. Then u ≡X v.

To describe the shape of words from NFX we use a special shuffle operation
on two words u, v ∈ A∗: Each symbol a of v is placed directly behind the first
occurrence of a such that we preserve the relative order of symbols in v and such
that there is no symbol from X between the preceding reading symbol and aa.

Example 2.9. Let a, b ∈ A with a �= b and q = aabbab. If a /∈ X then we have

aabbab → aababb → aaabbb → aaabbb → aaabbb

and therefore aaabbb = nfX(aabbab). Otherwise, i.e., if a ∈ X, we can apply rule
(c) to aaabbb and hence obtain nfX(aabbab) = abaabb.

The “special shuffle” alluded to above in these cases is 〈〈aabb, ab〉〉 = aaabbb
if a /∈ X and 〈〈aabb, ab〉〉 = abaabb otherwise.

The inductive definition of the special shuffle looks as follows:

Definition 2.10. Let u, v ∈ A∗ and a ∈ A. Then we set

〈〈u, ε〉〉 := u

〈〈u, av〉〉 :=

{
u1aa〈〈u2, v〉〉 if u = u1au2 where u1 ∈ (A\(X ∪ {a}))∗, u2 ∈ A∗

undefined otherwise.

By induction on the length of the word v, one obtains that 〈〈u, v〉〉 is defined if,
and only if, u has a prefix u′ with v �X u′. We denote this property by v ≤X u
and call v an X-prefix of u. Clearly, the binary relation ≤X is a partial order.
Note that ≤∅ is the subword relation � and ≤A is the prefix relation on A∗.

Definition 2.11. The projections π, π : Σ∗ → A∗ on write and read operations
are defined for any u ∈ Σ∗ by π(u) = πA(u) and π(u) = πA(u).

In a nutshell, the projection π deletes all letters from A from a word. Dually,
the projection π deletes all letters from A from a word and then suppresses the
overlines. For instance π(aab) = ab and π(aab) = a.

The Transformation Monoid of a Partially Lossy Queue 197

Remark 2.12. Since a word is in normal form if no rule from the semi-Thue
system RX can be applied to it, we get

NFX = {u〈〈v, w〉〉 | u, v, w ∈ A∗, v ≤X w} = A
∗
(⋃

a∈A

(A\(X ∪ {a}))∗aa

)∗
.

Thus, for u ∈ Σ∗, there are unique words u1, u2, u3 ∈ A∗ with nfX(u) =
u1〈〈u2, u3〉〉; we set π1(u) = u1 and π2(u) = u3. As a consequence, we get nfX(u) =
π1(u)〈〈π(u), π2(u)〉〉.

While π1(u) is defined using the semi-Thue system RX , it also has a natural
meaning in terms of the function ◦X : π1(u)◦Xu is defined and, if q◦Xu is defined,
then |π1(u)| ≤ |q|. Hence π1(u) is the shortest queue such that execution of u
does not end up in the error state.

Example 2.13. Recall Example 2.9. In case of a /∈ X we have π1(q) = ε and
π2(q) = ab. Otherwise we have π1(q) = ab and π2(q) = ε.

For words u, v ∈ A∗ with nfX(uv) = w1〈〈w2, w3〉〉, we have w2 = π(uv) = u
and w1w3 = π(uv) = v. Hence, to describe the normal form of uv, we have to
determine w3 = π2(uv) which is accomplished by the following lemma.

Lemma 2.14. Let u, v ∈ A∗. Then π2(uv) is the longest suffix v′ of v that
satisfies v′ ≤X u, i.e., such that 〈〈u, v′〉〉 is defined.

3 Fully Lossy Queues

The main result of this section is Theorem 3.4 that provides a necessary condition
on a homomorphism into Q(A,X) to be injective. We derive this condition by
considering first queue monoids where all letters are forgettable, i.e., monoids
of the form Q(A, ∅). Note that the relations �∅ and ≤∅ are both equal to the
subword relation �. Hence we will use this in the following statements.

The first result of this section (Theorem 3.2) describes the normal form
of the product of two elements from Q(A, ∅) in terms of their normal forms
(Lemma 2.14 solves this problem in case the first factor belongs to [A∗] and the
second to [A

∗
] for arbitrary sets X ⊆ A.)

Definition 3.1. Let u, v ∈ A∗. The overlap of u and v is the longest suffix
ol(u, v) of v that is a subword of u.

Assuming X = ∅ the relation ≤X equals the subword relation �. Hence, in this
situation, Lemma 2.14 implies π2(uv) = ol(u, v) for any words u, v ∈ A∗.

Recall that Lemma 2.14 describes the shape of nfX(uv) for arbitrary X, u ∈
A∗ and v ∈ A

∗
. The following Theorem describes this normal form for X = ∅,

but arbitrary u, v ∈ Σ∗.

198 C. Köcher and D. Kuske

Theorem 3.2. Let X = ∅, u, v ∈ Σ∗, and w = ol(π(u), π2(u)π1(v)). Then

π2(uv) = w π2(v) and
π(u)π1(v) = π1(uv) w.

We next infer that if u and v agree in their subsequences of read and write
operations, respectively, then they can be equated by multiplication with a large
power of one of them.

Proposition 3.3. Let u, v ∈ Σ∗ with π(u) = π(v), π(u) = π(v), and π1(u) ∈
π1(v)A∗. Then there is a number i ∈ N with nf∅(uivui) = nf∅(uiuui).

Proof. If there is i ≥ 1 with |π(v)| ≤ |π1(ui)|, then π2(vui) = π2(uui) can
be derived from Theorem 3.2 by inductively proving a similar statement for
powers of u. Otherwise, let i ≥ 1 such that |π1(ui)| is maximal (this max-
imum exists since |π1(uj)| < |π(v)| for any j ∈ N). Again by Theorem3.2,
one obtains π2(uiv) = π2(uiu). Hence, in any case, π2(uivui) = π2(uiuui).
Note that π(uivui) = π(uiuui) follows from π(u) = π(v) and similarly for
π(uivui) = π(uiuui). Consequently nf∅(uivui) = nf∅(uiuui). ��

From this proposition, we can infer the announced necessary condition for a
homomorphism into Q(A,X) to be injective. This condition will prove immensely
useful in our investigation of submonoids of Q(A,X) in the following two sec-
tions. It states that if the images of x and y under an embedding φ perform the
same sequences of read and write operations, respectively, then x and y can be
equated by putting them into a certain context.

Theorem 3.4. Let M be a monoid, φ : M ↪→ Q(A,X) an embedding, and
x, y ∈ M such that π(φ(x)) = π(φ(y)) and π(φ(x)) = π(φ(y)).

Then there is z ∈ M with zxz = zyz.

Proof. For notational simplicity, let φ(x) = [u] and φ(y) = [v].
We can, without loss of generality, assume that |π1(u)| ≤ |π1(v)|. Since

π(u) = π(v), the word π1(u) is a prefix of the word π1(v). By Proposition 3.3,
there is i ∈ N such that nf∅(uivui) = nf∅(uiuui). As the semi-Thue system RX

contains all the rules from R∅ we get nfX(uivui) = nfX(uiuui) and therefore
uivui ≡X uiuui. In other words, φ(xiyxi) = φ(xixxi). The injectivity of φ now
implies xiyxi = xixxi. Setting z = xi yields zxz = zyz as claimed. ��

4 Embeddings Between PLQ Monoids

We now characterize when the plq monoid Q(A,X) embeds into Q(B, Y).

Theorem 4.1. Let A,B be alphabets with |A|, |B| ≥ 2, X ⊆ A and Y ⊆ B.
Then Q(A,X) ↪→ Q(B, Y) holds iff all of the following properties hold:

(A) |A\X| ≤ |B\Y |, i.e., (B, Y) has at least as many forgettable letters
as (A,X).

The Transformation Monoid of a Partially Lossy Queue 199

(B) If Y = ∅, then also X = ∅, i.e., if (B, Y) consists of forgettable letters only,
then so does (A,X).

(C) If |Y | = 1, then |A\X| < |B\Y | or |X| ≤ 1, i.e., if (B, Y) has exactly
one non-forgettable letter and exactly as many forgettable letters as (A,X),
then A contains at most one non-forgettable letter.

In particular, Q(A,A) embeds into Q(B,B) whenever |B| ≥ 2, i.e., this theorem
generalizes [9, Corollary 5.4]. We prove it in Propositions 4.2 and 4.5.

4.1 Preorder of Embeddability

The embeddability of monoids is reflexive and tran-
sitive, i.e., a preorder. Before diving into the proof
of Theorem 4.1, we derive from it an order-theoretic
description of this preorder on the class of all plq
monoids (see the reflexive and transitive closure of
the graph on the right). The plq monoid Q(A,X) is,
up to isomorphism, completely given by the numbers
m = |X| and n = |A\X| of unforgettable and of for-
gettable letters, respectively. Therefore, we describe
this preorder in terms of pairs of natural numbers.
We write (m,n) → (m′, n′) if

Q([m + n], [m]) ↪→ Q([m′ + n′], [m′])

where, as usual, [n] = {1, 2, . . . , n}. Then
Theorem 4.1 reads as follows: If m,n,m′, n′ ∈ N with
m + n,m′ + n′ ≥ 2, then (m,n) → (m′, n′) iff all of
the following properties hold:

(A) n ≤ n′

(B) If m′ = 0, then m = 0
(C) If m′ = 1, then m ≤ 1 or n < n′

Then we get immediately for all appropriate nat-
ural numbers m,n, n′ ∈ N:

– if k ≥ 2, then (2, n) → (k, n) → (2, n)
– (2, n) → (2, n′) iff n ≤ n′

– (1, n) → (2, n′) iff n ≤ n′

– (0, n) → (2, n′) iff n ≤ n′

– (2, n) → (1, n′) iff n < n′

– (1, n) → (1, n′) iff n ≤ n′

– (0, n) → (1, n′) iff n ≤ n′

– (2, n) �→ (0, n′)
– (1, n) �→ (0, n′) iff n ≤ n′

– (0, n) → (0, n′) iff n ≤ n′

200 C. Köcher and D. Kuske

These facts allow to derive the above graph (where k stands for an arbitrary
number at least 3).

First look at the nodes not of the form (0, n). They form an alternating
chain of infinite equivalence classes {(k, n) | k ≥ 2} and single nodes (1, n).
The infinite equivalence class at the bottom corresponds to the monoids of fully
reliable queues considered in [9].

The nodes of the form (0, n) also form a chain of single nodes (these nodes
depict the fully lossy queue monoids from [11]). The single node number n (i.e.,
(0, 2 + n)) from this chain is directly below the single node number 2 + n (i.e.,
(1, 2 + n)) of the alternating chain.

4.2 Sufficiency in Theorem 4.1

Proposition 4.2. Let A,B be non-singleton alphabets, X ⊆ A, Y ⊆ B satisfy-
ing Conditions (A)–(C) from Theorem4.1. Then Q(A,X) embeds into Q(B, Y).

Proof. First suppose |X| ≤ |Y |. By Condition (A), we can assume A\X ⊆ B\Y
and X ⊆ Y . Then Proposition 2.7 implies that Q(A,X) is a submonoid of
Q(B, Y) since the rules of the semi-Thue system only permute letters in words.

Now assume |X| > |Y |. By Condition (A), there exists an injective mapping
φ1 : A\X ↪→ B\Y . Since |X| > |Y |, Condition (B) implies Y �= ∅. Let b1 ∈ Y be
arbitrary. If |Y | > 1, then choose b2 ∈ Y \{b1}. Otherwise, we have 1 = |Y | < |X|.
Hence, by Condition (C), the mapping φ1 is not surjective. So we can choose
b2 ∈ B\(Y ∪{φ1(a) | a ∈ A\X}). With X = {x1, x2, . . . , xn}, we set (for a ∈ A)

φ′(a) =

{
φ1(a) if a ∈ A\X

b
|A|+i
1 b2b

|A|−i
1 b2 if a = xi

and φ′(a) = φ′(a) .

Then φ′ maps (A ∪ A)∗, A∗, and A
∗

injectively into (B ∪ B)∗, B∗, and B
∗
,

respectively.
We prove that φ′ induces an embedding φ : Q(A,X) ↪→ Q(B, Y) by φ([u]) =

[φ′(u)].
First let u ≡X v with u, v ∈ (A ∪ A)∗ be any of the equations in Lemma 2.6.

In each of the four cases, one obtains φ′(u) ≡Y φ′(v). Consequently, u ≡X v
implies φ′(u) ≡Y φ′(v) for any u, v ∈ (A ∪ A)∗ by Proposition 2.7. Hence φ is
welldefined.

To prove its injectivity, let u, v ∈ (A ∪ A)∗ with φ′(u) ≡Y φ′(v).
Set nfX(u) = u1〈〈u2, u3〉〉 and similarly nfX(v) = v1〈〈v2, v3〉〉. The crucial part

of the proof demonstrates that φ′ commutes with the shuffle operation, more
precisely, φ′(〈〈u2, u3〉〉) ≡Y 〈〈φ′(u2), φ′(u3)〉〉 and similarly for v.

Since φ′ is a homomorphism, we then get

φ′(u1)〈〈φ′(u2), φ′(u3)〉〉 ≡Y φ′(u1 〈〈u2, u3〉〉) ≡Y φ′(u)

and similarly φ′(v) ≡Y φ′(v1)〈〈φ′(v2), φ′(v3)〉〉.

The Transformation Monoid of a Partially Lossy Queue 201

Thus the words φ′(u1)〈〈φ′(u2), φ′(u3)〉〉 and φ′(v1)〈〈φ′(v2), φ′(v3)〉〉 in normal
form are equivalent and therefore equal. Hence we get

φ′(u1) = φ′(v1), φ′(u2) = φ′(v2) and φ′(u3) = φ′(v3).

Since φ′ : (A ∪ A)∗ → (B ∪ B)∗ is injective, this implies u1 = v1, u2 = v2,
and u3 = v3 and therefore u ≡X nf(u) = nf(v) ≡X v. Thus, indeed, φ is an
embedding of Q(A,X) into Q(B, Y). ��

4.3 Necessity in Theorem 4.1

Now we have to prove the other implication of the equivalence in Theorem 4.1.
Recall the embedding φ we constructed in the proof of Proposition 4.2. In par-
ticular, it has the following properties:

(1) If a ∈ A, then φ(a) ∈ [B+] and φ(a) = φ(a). In particular, the image of every
write operation a performs write operations, only, and the image of every
read operation a is the “overlined version of the image of the corresponding
read operation” and therefore performs read operations, only.

(2) If a ∈ A\X, then φ(a) ∈ [B\Y]. In particular, the image of every write
operation of a forgettable letter writes only forgettable letters.

(3) If x ∈ X, then φ(x) ∈ [B∗Y B∗]. In particular, the image of every write
operation of a non-forgettable letter writes at least one non-forgettable letter.

The proof of the necessity in Theorem 4.1 first shows that any embedding satisfies
slightly weaker properties. We start with our weakenings of properties (1) and
(2). The first statement of the following lemma is a weakening of (1) since it
only says something about the letters in φ(a) and φ(a) but not that these two
elements are dual. Similarly the second statement is a weakening of (2) since it
does not say anything about the length of φ(a) but only something about the
letters occurring in φ(a).

Lemma 4.3. Let A,B be non-singleton alphabets, X ⊆ A, Y ⊆ B, and φ an
embedding of Q(A,X) into Q(B, Y). Then the following holds:

(i) φ(a) ∈ [B+] and φ(a) ∈ [B
+

] for each a ∈ A.
(ii) φ(a) ∈ [(B\Y)∗] for each a ∈ A\X.

Proof. To prove (i), let a ∈ A and suppose φ(a) /∈ [B∗]. One first shows that
φ(a) performs at least one write operation, i.e., φ(a) /∈ [B

∗
]. Let p, q ∈ B+ be

the primitive roots of the nonempty words π(φ(a)) and π(φ(a)), respectively.
Since |A| ≥ 2, there exist distinct letters a1, a2 ∈ A. A crucial property

of φ is that then π(φ(ai)) ∈ p∗ and π(φ(ai)) ∈ q∗. Consequently, π(φ(a1 a2)) =
π(φ(a1))π(φ(a2)) = π(φ(a2))π(φ(a1)) = π(φ(a2 a1)) (the equality π(φ(a1 a2)) =
π(φ(a2 a1)) follows similarly). Since φ is an embedding, Theorem 3.4 implies the
existence of u ∈ (A ∪ A)∗ with ua1 a2u ≡X ua2 a1u. It follows that these two
words have the same sequence of read operations and therefore in particular

202 C. Köcher and D. Kuske

a1 a2 = a2 a1. But this implies a1 = a2 which contradicts our choice of these
two letters. Hence, indeed, φ(a) ∈ [B∗] which proves the first claim from (i), the
second follows similarly.

Statement (ii) is shown by contradiction. Let a ∈ A\X with φ(a) /∈ [(B\Y)∗].
Since |A| ≥ 2, there exists a distinct letter b ∈ A\{a}. Using (i) and the assump-
tion on φ(a), one obtains φ(anbb) = φ(anbb) with n the length of φ(b). Injectivity
of φ and Proposition 2.7 lead to a contradiction. ��
We next come to property (3) that we prove for every embedding.

Lemma 4.4. Let A,B be non-singleton alphabets, X ⊆ A, Y ⊆ B, and φ an
embedding of Q(A,X) into Q(B, Y). Then we have φ(x) ∈ [B∗Y B∗] for each
x ∈ X.

Proof. Let x ∈ X. Since |A| ≥ 2, there is a distinct letter a ∈ A\{x}. By
Lemma 4.3, there are words u, v, w ∈ B+ with φ(a) = [u], φ(a) = [v] and
φ(x) = [w]. One then shows π2(wuv) = ε �= π2(uv).

By Lemma 2.14, v′ = π2(uv) �= ε is a suffix of v with v′ ≤X u′ for some prefix
u′ of u implying v′ � wu. Since π2(wuv) = ε, Lemma 2.14 implies πY (wu′) �=
πY (v′) = πY (u′), i.e., w contains some letter from Y . ��
Finally we obtain the remaining implication in Theorem 4.1.

Proposition 4.5. Let A and B be non-singleton alphabets, X ⊆ A and Y ⊆ B
such that Q(A,X) ↪→ Q(B, Y). Then the Conditions (A)–(C) from Theorem 4.1
hold.

Proof. First suppose X �= ∅. Then, Y �= ∅ by Lemma 4.4, i.e., we have (B).
Condition (A) is trivial if A\X = ∅. If A\X is a singleton, then Lemma 4.3(ii)

implies B\Y �= ∅ and therefore |A\X| ≤ |B\Y |. So it remains to consider the
case that A\X contains at least two elements. One then shows that the last
letters of the words π(φ(a)) for a ∈ A\X are mutually distinct.

To prove Condition (C), suppose Y = {y} and |A\X| = |B\Y |. One then
proves |X| ≤ 1 by considering the last letters of π(φ(x)) for x ∈ X. ��

5 Embeddings of Trace Monoids

Corollary 5.4 from [9] implies that all reliable queue monoids Q(A,A) for |A| ≥ 2
have the same class of submonoids. Our Theorem 4.1 shows that this is not the
case for all plq monoids Q(A,X) (e.g., Q(A,A) does not embed into Q(A, ∅)
and vice versa). This final section demonstrates a surprising similarity among
all these monoids, namely the trace monoids contained in them.

These trace (or free partially commutative) monoids are used for model-
ing concurrent systems where the concurrency is governed by the use of joint
resources (cf. [14]). Formally such a system is a so called independence alpha-
bet, i.e., a tuple (Γ, I) of a non-empty finite set Γ and a symmetric, irreflexive
relation I ⊆ Γ 2, i.e., (Γ, I) can be thought of as an undirected graph. Given an
independence alphabet (Γ, I), we define the relation ≡I ⊆ (Γ ∗)2 as the least
congruence satisfying ab ≡I ba for each (a, b) ∈ I. The induced trace monoid is
M(Γ, I) := Γ ∗/≡I

. See [5,6,14] for further information on trace monoids.

The Transformation Monoid of a Partially Lossy Queue 203

5.1 Large Alphabets

Theorem 2.7 from [12] describes when the trace monoid M(Γ, I) embeds into the
queue monoid Q(A,A) for |A| ≥ 2. The following theorem shows that this is the
case if, and only if, it embeds into Q(A,X) provided |A| + |X| ≥ 3.

Theorem 5.1. Let A be an alphabet and X ⊆ A with |A|+|X| ≥ 3. Furthermore
let (Γ, I) be an independence alphabet. Then the following are equivalent:

(A) M(Γ, I) embeds into Q(A,X).
(B) M(Γ, I) embeds into Q(A,A).
(C) M(Γ, I) embeds into {a, b}∗ × {c, d}∗.
(D) One of the following conditions holds:

(D.a) All nodes in (Γ, I) have degree ≤ 1.
(D.b) The only non-trivial connected component of (Γ, I) is complete

bipartite.

Since X ⊆ A, the condition |A| + |X| ≥ 3 implies in particular |A| ≥ 2. Hence
the equivalence between (B), (C), and (D) follows from [12, Theorem 2.7].

For the implication “(C) ⇒ (A)”, one considers the two cases |A| ≥ 3 and
|A| = 2, X �= ∅ separately. In the first case, one chooses pairwise distinct a, b, c ∈
A and sets φ(a, ε) = a, φ(b, ε) = b, φ(ε, c) = ac, and φ(ε, d) = bc. In the second
case, the embedding is similar to the one from [9, Proposition 8.3] (proving the
implication “(C) ⇒ (B)”).

The implication “(A) ⇒ (D)” is proved under the slightly more general
assumption |A| ≥ 2. It is, by far, more involved. We nevertheless only give an
overview here since it follows the proof of the implication “(B) ⇒ (D)” from [12]
rather closely:

Suppose φ embeds the trace monoid M(Γ, I) into the plq monoid Q(A,X)
with |A| ≥ 2. This defines a partition of the independence alphabet into the
sets Γ+ := {α ∈ Γ |φ(α) ∈ [A+]}, Γ− := {α ∈ Γ |φ(α) ∈ [A

+
]}, and Γ± :=

Γ\(Γ+ ∪ Γ−). The crucial steps are then to verify the following properties:

(i) (Γ+ ∪ Γ−, I) is complete bipartite with the partitions Γ+ and Γ−.
(ii) Let a ∈ Γ+ ∪ Γ− and b, c ∈ Γ with (b, c) ∈ I. Then (a, b) ∈ I or (a, c) ∈ I.
(iii) Let a ∈ Γ±. Then a has degree ≤ 1 in the undirected graph (Γ, I).
(iv) (Γ, I) is P4-free, i.e., the path on four vertices is no induced subgraph.

The proof of [12, Theorem 4.14] shows that any graph (Γ+ � Γ− � Γ±, I)
satisfying these graph theoretic properties also satisfies (D.a) or (D.b).

5.2 The Binary Alphabet

In Theorem 5.1 we have only considered partially lossy queues with |A| > 2 or
|X| �= 0. For a complete picture, it remains to consider the case |A| = 2 and
|X| = 0. The following theorem implies in particular that Q({α, β}, ∅) does not
contain the direct product of two free monoids, i.e., it contains properly less
trace monoids than Q(A,X) with |A| + |X| ≥ 3.

204 C. Köcher and D. Kuske

Theorem 5.2. Let A be an alphabet with |A| = 2 and (Γ, I) be an independence
alphabet. Then the following are equivalent:

(A) M(Γ, I) embeds into Q(A, ∅).
(B) One of the following conditions holds:

(B.1) All nodes in (Γ, I) have degree ≤ 1.
(B.2) The only non-trivial connected component of (Γ, I) is a star graph.

For the proof of the implication “(B) ⇒ (A)”, one provides the embeddings
as follows (with A = {α, β}):

(B.1) It suffices to consider the case that (Γ, I) is the disjoint union of the edges
(ai, bi) for 1 ≤ i ≤ n. Then we define wi = αiβ for 1 ≤ i ≤ n and the
embedding φ is given by φ(ai) = [wiwi] and φ(bi) = [wi wiwi].

(B.2) Let c be the center of the star graph, si for 1 ≤ i ≤ m its neighbors, and
ri for 1 ≤ i ≤ n the isolated nodes of (Γ, I). Then the embedding φ is
given by φ(c) = [α], φ(si) = [wi] and φ(rj) = [wjββ].

Note that these embeddings map letters to sequences containing both, read
and write operations.

For the more involved implication “(A) ⇒ (B)”, suppose Γ has a node of
degree ≥ 2 and, towards a contradiction, (B) does not hold. Since we proved
the implication “(A) ⇒ (D)” in Theorem 5.1 under the assumption |A| ≥ 2, we
obtain that (Γ, I) has a single nontrivial connected component C ⊆ Γ+ ∪ Γ−.
Furthermore, there are a, b ∈ Γ+ distinct and c ∈ Γ− such that (a, c), (c, b) ∈ I.
Using Lemma 2.14, one arrives at ab ≡I ba which contradicts a �= b.

References

1. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Com-
put. 127(2), 91–101 (1996)

2. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

3. Cécé, G., Finkel, A., Iyer, S.P.: Unreliable channels are easier to verify than perfect
channels. Inf. Comput. 124(1), 20–31 (1996)

4. Chambart, P., Schnoebelen, P.: The ordinal recursive complexity of lossy channel
systems. In: LICS 2008, pp. 205–216. IEEE Computer Society Press (2008)

5. Diekert, V.: Combinatorics on Traces, vol. 454. Springer, Heidelberg (1990)
6. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific, Singapore (1995)
7. Finkel, A.: Decidability of the termination problem for completely specified proto-

cols. Distrib. Comput. 7(3), 129–135 (1994)
8. Haase, C., Schmitz, S., Schnoebelen, P.: The power of priority channel systems.

Log. Methods Comput. Sci. 10(4), 4 (2014)
9. Huschenbett, M., Kuske, D., Zetzsche, G.: The monoid of queue actions. In: Semi-

group Forum (2017, to appear)
10. Kambites, M.: Formal languages and groups as memory. Commun. Algebra 37(1),

193–208 (2009)

The Transformation Monoid of a Partially Lossy Queue 205

11. Köcher, C.: Einbettungen in das Transformationsmonoid einer vergesslichen
Warteschlange. Master’s thesis, TU Ilmenau (2016)

12. Kuske, D., Prianychnykova, O., The trace monoids in the queue monoid, in the
direct product of two free monoids. arXiv preprint arXiv:1603.07217 (2016)

13. Masson, B., Schnoebelen, P.: On verifying fair lossy channel systems. In: Diks, K.,
Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 543–555. Springer, Heidelberg
(2002). doi:10.1007/3-540-45687-2 45

14. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI
Rep. Ser. 6(78), 1–51 (1977)

15. Muscholl, A., Petersen, H.: A note on the commutative closure of star-free lan-
guages. Inf. Process. Lett. 57(2), 71–74 (1996)

http://arxiv.org/abs/1603.07217
http://dx.doi.org/10.1007/3-540-45687-2_45

Approximation Algorithms for the Maximum
Carpool Matching Problem

Gilad Kutiel(B)

Department of Computer Science, Technion, Haifa, Israel
gkutiel@cs.technion.ac.il

Abstract. The Maximum Carpool Matching problem is a star pack-
ing problem in directed graphs. Formally, given a directed graph G =
(V,A), a capacity function c : V → N, and a weight function w : A → R,
a feasible carpool matching is a triple (P,D,M), where P (passengers)
and D (drivers) form a partition of V , and M is a subset of A∩ (P ×D),
under the constraints that for every vertex d ∈ D, degMin (d) ≤ c(d), and
for every vertex p ∈ P , degMout(p) ≤ 1. In the Maximum Carpool Ma-
tching problem we seek for a matching (P,D,M) that maximizes the
total weight of M .

The problem arises when designing an online carpool service, such as
Zimride [1], that tries to connect between passengers and drivers based
on (arbitrary) similarity function. The problem is known to be NP-hard,
even for uniform weights and without capacity constraints.

We present a 3-approximation algorithm for the problem and 2-
approximation algorithm for the unweighted variant of the problem.

1 Introduction

Carpooling, is the sharing of car journeys so that more than one person travels
in a car. Knapen et al. [7] describe an automatic service to match commuting
trips. Users of the service register their personal profile and a set of periodically
recurring trips, and the service advises registered candidates on how to combine
their commuting trips by carpooling. The service acts in two phases.

In the first phase, the service estimates the probability that a person a trav-
eling in person’s b car will be satisfied by the trip. This is done based on per-
sonal information and feedback from users on past rides. The second phase is
about finding a carpool matching that maximizes the global (total expected)
satisfaction.

The second phase can be modeled in terms of graph theory. Given a directed
graph G = (V,A). Each vertex v ∈ V corresponds to a user of the service and an
arc (u, v) exists if the user corresponding to vertex u is willing to commute with
the user corresponding to vertex v. A capacity function c : V → N is defined
according to the number of passengers each user can drive if she was selected
as a driver. A weight function w : A → R defines the amount of satisfaction
w(u, v), that user u gains when riding with user v.

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 206–216, 2017.
DOI: 10.1007/978-3-319-58747-9 19

Approximation Algorithms for the Maximum Carpool Matching Problem 207

A feasible carpool matching (matching) is a triple (P,D,M), where P and D
form a partition of V , and M is a subset of A ∩ (P × D), under the constraints
that for every driver d ∈ D, degMin (d) ≤ c(d), and for every passenger p ∈ P ,
degMout(p) ≤ 1. In the Maximum Carpool Matching problem we seek for a
matching (P,D,M) that maximizes the total weight of M . In other words, the
Maximum Carpool Matching problem is about finding a set of (directed
toward the center) vertex disjoint stars that maximizes the total weights on the
arcs. Figure 1 is an example of the Maximum Carpool Matching problem.

Fig. 1. A carpool matching example: (a) a directed graph with capacities on the vertices
and weights on the arcs. (b) a feasible matching with total weight of 26. P is the set
of blue vertices, and D is the set of red, dashed vertices. (Color figure online)

Hartman [5] introduced the Maximum Carpool Matching problem and proved
it to be NP-hard. She also proved that the problem remains NP-hard even for a
binary weight function when the capacity function c(v) ≤ 2 for every vertex in V .
It is also worth mentioning, that in the undirected, uncapacitated, unweighted
variant of the problem, the set of drivers in an optimal solution form a minimum
dominating set. When the set of drivers is known in advance, however, the prob-
lem becomes tractable and can be solved using a reduction to a flow network
problem.

Agatz et al. [2] outlined the optimization challenges that arise when develop-
ing technology to support ride-sharing and survey the related operations research
models in the academic literature. Hartman et al. [6] designed several heuristic
algorithms for the Maximum Carpool Matching problem and compared their
performance on real data. Other heuristic algorithms were developed as well [8].
Arkin et al. [3], considered other variants of capacitated star packing where a
capacity vector is given as part of the input and capacities need to be assigned
to vertices.

Nguyen et al. [9] considered the spanning star forest problem (the undi-
rected, uncapacitated, unweighted variant of the problem). They proved the

208 G. Kutiel

following results: 1. there is a polynomial-time approximation scheme for pla-
nar graphs; 2. there is a polynomial-time 3

5 -approximation algorithm for graphs;
3. there is a polynomial-time 1

2 -approximation algorithm for weighted graphs.
They also showed how to apply the spanning star forest model to aligning multi-
ple genomic sequences over a tandem duplication region. Chen et al. [4] improved
the approximation ratio to 0.71, and also showed that the problem can not be
approximated to within a factor of 31

32 + ε for any ε > 0 under the assumption
that P �= NP. It is not clear, however, if any of the technique used to address the
spanning star forest problem can be generalized to approximate the directed
capacitated variant.

In Sect. 3 we present an exact, efficient algorithm for the problem when the
set of drivers and passengers is given in advance. In Sect. 4 we present a 2-
approximation local search algorithm for the unweighted variant of the problem.
Finally in Sect. 5 we give a 3-approximation algorithm for the problem.

2 Maximum Weight Flow

A flow network is a tuple N = (G = (V,A), s, t, c), where G is a directed graph,
s ∈ V is a source vertex, t ∈ V is a target vertex, and c : A → R is a capacity
function. A flow f : A → R is a function that has the following properties:

– f(e) ≤ c(e), ∀e ∈ A
–

∑
(u,v)∈A f(u, v) =

∑
(v,w)∈A f(v, w), ∀v ∈ V \ {s, t}

Given a flow function f , and a weight function w : A → R, the flow weight
is defined to be:

∑
e∈A w(e)f(e). A flow with a maximum weight (maximum

weight flow) can be efficiently found by adding the arc (t, s), with c(t, s) = ∞,
and w(t, s) = 0 and reducing the problem (by switching the sign of the weights)
to the minimum cost circulation problem [10]. When the capacity function c is
integral, a maximum weight integral flow can be efficiently found.

3 Fixed Maximum Carpool Matching

In the Fixed Maximum Carpool Matching problem, P and D are given,
and the goal is to find M that maximizes the total weight. This variant of the
problem can be solved efficiently1, by reducing it to a maximum weight flow
(flow) problem as follow: Let (G = (V,A), c, w) be a Maximum Carpool Ma-
tching instance, let (P,D) be a partition of V , let N = (G′ = (V ′, A′), s, t, c′) be
a flow network, and let w′ : A → N be a weight function, where

1 A solution to this variant of the problem was already proposed in [6]. For the sake
of completeness, however, we describe a detailed solution for this variant. More
importantly, the described solution helps us develop the intuition and understand
the basic idea behind the approximation algorithm described in Sect. 5.

Approximation Algorithms for the Maximum Carpool Matching Problem 209

V ′ = P ∪ D ∪ {s, t}
A′ = Asp ∪ Apd ∪ Adt

Asp = {(s, p) : p ∈ P}
Apd = A ∩ (P × D)
Adt = {(d, t) : d ∈ D}

c′(u, v) =

{
c(u) if (u, v) ∈ Adt

1 otherwise

w′(e) =

{
w(e) if e ∈ Apd

0 otherwise

The flow network is described in Fig. 2.

Fig. 2. Illustration of a flow network corresponding to a Fixed Maximum Carpool
Matching instance.

Observation 1. For every integral flow f in N , there is a carpool matching M
on G with the same weight.

Proof. Consider the carpool matching (P,D,Mf), where

Mf = {(p, d) ∈ Apd : f(p, d) = 1}
one can verify that this is indeed a matching with the same weight as f .
�
Observation 2. For every carpool matching (P,D,M) on G, there exists a flow
f on N with the same weight.

Proof. Consider the flow function

f(s, pi) = degMout(pi)

f(pi, dj) =

{
1 if (pi, dj) ∈ M

0 otherwise

f(dj , t) = degMin (dj)

210 G. Kutiel

It is easy to verify, that f is indeed a flow function. Also, observe, that by
construction, the weight of f equals to the weight of the matching.
�
As we mentioned, the maximum weight flow problem can be solved efficiently,
and so is the Fixed Maximum Carpool Matching problem. It is worth mentioning,
that it is possible that in a maximum weight flow, some of the arcs will have no
flow at all, that is, it is possible that in a Fixed Maximum Carpool Matching
some of the passengers and drivers will be unmatched.

4 Unweighted Carpool Matching

In this section we present a local search algorithm for the unweighted variant of
the problem. We show that the approximation ratio of this algorithm is 2 and
give an example to show that our analysis is tight.

Given a directed graph G = (V,A), and a capacity function c : V → N, In
the Unweighted Carpool Matching problem, we seek for a matching that
maximizes the size of M .

We now present a simple local search algorithm for the problem. The algo-
rithm maintains a feasible matching through its execution. In every iteration
of the algorithm, the size of M increases. The algorithm terminates, when no
further improvement can be made.

Recall that the Fixed Maximum Carpool Matching can be solved efficiently.
Let M = optfixed(P,D) be an optimal solution of the Fixed Maximum Carpool
Matching problem. For a given matching M , define the following sets:

– PM = {v : degMout(v) = 1}
– DM = {v : degMin (v) > 0}
– DM

c = {v : degMin (v) = c(v)}
– FM = {v : degMin (v) = degMout(v) = 0}
We refer to the vertices in these sets as, passenger, driver, saturated driver, and
free vertex respectively. The local search algorithm, in every iteration, tries to
improve the current matching, by switching a passenger or a free vertex into a
driver and compute an optimal fixed matching. The local search algorithm is
described in Algorithm 1.

First, observe that the outer loop on line 2 of the local search algorithm
can be executed at most n times, where n is the total number of vertices, this
is because the loop is executed only when there was an improvement, and this
can happen at most n times. Also, observe that the body of this loop can be
computed in polynomial time, and we can conclude that Algorithm 1 runs in
polynomial time.

We now prove that the local search algorithm achieves an approximation
ratio of 2. Let M be a matching found by the local search algorithm, and let M∗

be an arbitrary but fixed optimal matching. Observe that the optimal solution
cannot match two free vertices to each other, formally:

Approximation Algorithms for the Maximum Carpool Matching Problem 211

Algorithm 1. Local Search
Input: G = (V,A), c : V → N

Output: M
1 M ← ∅
2 repeat
3 done ← true

4 for v ∈ (V \ DM) do
5 D ← DM ∪ {v}
6 P ← V \ D
7 M ′ = optfixed(P,D)

8 if |M ′| > |M | then
9 M ← M ′

10 done ← false
11 break

12 end

13 end

14 until done;
15 return M

Observation 3. If (u, v) ∈ M∗, then {u, v} ∩ (PM ∪ DM) �= ∅.
Proof. If this is not the case, Algorithm 1 can improve M by adding the arc
(u, v).

Now, with respect to M , the optimal solution can not match two free vertices
to the same passenger, formally:

Observation 4. If (p, d) ∈ M , f1, f2 ∈ FM , and (f1, p), (f2, p) ∈ M∗, then
f1 = f2.

Proof. If this is not the case, Algorithm 1 can improve M by removing the arc
(p, d) and adding the arcs (f1, p), (f2, p).

Finally, with respect to M , the optimal solution can not match a free vertex
to a driver that is not saturated, formally:

Observation 5. If (f, d) ∈ M∗, f ∈ FM , and d ∈ DM , then d ∈ DM
c .

Proof. If this is not the case, once again, Algorithm 1 can improve M by adding
the arc (f, d).

To show that Algorithm 1 is 2-approximation, consider the charging scheme
that is illustrated in Fig. 3: Load every arc (p, d) ∈ M with 2 coins, place one
coin on p and one coin on d. Observe that every vertex p ∈ PM is loaded with
one coin, and every vertex d ∈ DM is loaded with degMin (d) coins. Now, pay one
coin for every (u, v) ∈ M∗, charge u if u ∈ PM ∪DM , otherwise (v ∈ PM ∪DM)
charge v. Clearly, every arc in M∗ is paid. We claim that no vertex is overcharged.

212 G. Kutiel

Fig. 3. Charging Scheme: 1. vertices 1, 2, 4, 5 are loaded with 1$ each and vertices 3, 7
with 2$ each. 2. vertex 1 pays for the arc (1, 4). 3. vertex 5 pays for the arc (10, 5).
4. vertex 7 is saturated. It pays for arcs (8, 7) and (9,7).

Observation 6. If u ∈ PM , then u is not overcharged.

Proof. If u ∈ PM∗
, then it is only charged once, otherwise, if u ∈ DM∗

, then it
is only charged for arcs (w, u) where w ∈ FM , and by Observation 4, there is at
most one such arc.
�
Observation 7. If u ∈ DM , then u is not overcharged.

Proof. If u ∈ PM∗
, then it is only charged once, if u ∈ DM∗

, then it is only
charged for arcs (w, u) where w ∈ FM , if such arcs exists, then by observation 5,
u is saturated, and can not be overcharged.
�
Theorem 1. Algorithm 1 is 2-approximation.

Proof. We use a charging scheme where we manage to pay 1 coin for each arc
in M∗ by using at most 2|M | coins.
�

To conclude this section, we show that our analysis is tight. Consider the
example given in Fig. 4. Assume, in this example, that there are no capacity
constraints, if the local search algorithm starts by choosing vertex 3 to be a
driver, then the returned matching is the single arc (2, 3). At this point, no
further improvement can be done. The optimal matching, on the other hand, is
{(1, 2), (3, 2)}. The path in the example can be duplicated to form an arbitrary
large graph (forest).

1 2 3

Fig. 4. Local search - worst case example

Approximation Algorithms for the Maximum Carpool Matching Problem 213

5 Maximum Carpool Matching

5.1 Super Matching

A super-matching is a relaxed variant of the Maximum Carpool Matching prob-
lem where every node can act both as a driver and as a passenger. Formally,
given a directed graph G = (V,A), a capacity function c : V → N, and a weight
function w : A → R, a super-matching is a set M ⊆ A, under the constraint that
∀v ∈ V , degMin (v) ≤ c(v), and degMout(v) ≤ 1. Clearly, the following observation
holds:

Observation 8. Every matching (P, V,M) is a super-matching M .

A maximum super matching can be found efficiently by the following reduc-
tion to a maximum weight flow problem: Let N = (G′, s, t, c′, w′) be a flow
network, where

G′ = (P ∪ D ∪ {s, t}, Asp ∪ Apd ∪ Adt)
P = {pv : v ∈ V }
D = {dv : v ∈ V }

Asp = {(s, pv) : pv ∈ P}
Apd = {((pu, dv)) : (u, v) ∈ A}
Adt = {(dv, t) : dv ∈ D}

c′(s, pv) = c′(pu, dv) = 1
c′(dv, t) = c(v)

w′(pu, dv) =

{
w(u, v) if (pu, dv) ∈ Apd

0 otherwise

That is, we construct a bipartite graph where the left side represents each
vertex in V being a passenger, and the right side represents each vertex in V
being a driver. Figure 5 illustrates this flow network. One can verify that this is
indeed a (integral) flow network and that there is a straight forward translation
between a flow and a super matching with the same weight.

5.2 3-Approximation

We now present a 3-approximation algorithm for the Maximum Carpool Ma-
tching problem. This algorithm acts in two phases. In the first phase it com-
putes a maximum super-matching of G, in the second phase it decomposes the
super-matching into 3 feasible carpool matchings and outputs the best of them.

We now describe how a super-matching can be decomposed into 3 feasible car-
pool matching. First, consider the graph obtained by an optimal super-matching.
Recall that in a super matching the out degree of every vertex is at most 1, that
is, the graph obtained by an optimal super matching is a pseudoforest - every
connected component has at most one cycle. We now eliminate cycles from the

214 G. Kutiel

Fig. 5. Illustration of the flow network that is used to find a super-matching.

Algorithm 2. SuperMatching
Input: G = (V,A), c : V → N, w : A → R

Output: (M ⊆ A)
1 M ← ∅
2 G′ = (V,A′) ← superMatching(G)
3 for every connected component Ci = (Vi, Ai) ∈ G′ do
4 Eliminate the cycle in Ci by removing an arc ai

5 Decompose the remaining in-tree into two solutions, M i
1, M

i
2

6 M ← M ∪ argmaxF∈{{e},M1,M2}w(F)

7 end
8 return M

super-matching by removing one edge from every connected component. It is
easy to see that the resulting graph is a forest of in-trees. Each of these in-trees
can be, in turn, decomposed into two disjoint feasible carpool matchings. This
can be done, for example, by coloring each such in-tree with two colors, say red
and blue, and then consider the two solutions: one where the green nodes are
the drivers, and the other where the red nodes are the drivers. We describe the
algorithm in Algorithm 2, and illustrate it in Fig. 6.

Theorem 2. Algorithm 2 achieves a 3-approximation ratio.

Proof. Let Ma =
⋃

i{ai} be the set of all removed arcs in the cycle elimination
phase. Let M1 =

⋃
i M

i
1, and M2 =

⋃
i M

i
2. Clearly, Ma ∪ M1 ∪ M2 = A′, and

that max(w(Ma), w(M1), w(M2)) ≥ w(A′)
3 . The observation that the weight of

a maximum super-matching is an upper bound on the weight of a maximum
carpool matching finishes the proof.
�
To see that our analysis is tight, consider the example in Fig. 7. Assume, for the
given graph in the figure, that all weights are 1 and that there is no capacity
constraint. The maximum matching, then, is 3 ({(1, 4), (2, 4), (3, 4)}), but the
algorithm can return the super matching {(1, 2), (2, 3), (3, 1)} from which only
one arc can survive.

Approximation Algorithms for the Maximum Carpool Matching Problem 215

Fig. 6. Illustration of the SuperMatching algorithm: (a) a directed graph. (b) a maxi-
mum super-matching. (c) an in-tree: M1 is the set of arcs exiting red, dashed vertices,
and M2 is the set of arcs exiting blue vertices. (d) a feasible carpool matching with
total value of 6. (Color figure online)

Fig. 7. Super Matching algorithm, worst case example

6 Conclusion

We study the weighted and unweighted variants of the Maximum Carpool Ma-
tching problem and present a min-cost flow based 3-approximation, and a local
search based 2-approximation algorithms for the two variants of the problem
respectively. To the best of our knowledge, these are the first approximation
algorithms to the problem.

References

1. Zimride by enterprise. https://zimride.com/
2. Agatz, N., Erera, A., Savelsbergh, M., Wang, X.: Optimization for dynamic ride-

sharing: A review. Eur. J. Oper. Res. 223(2), 295–303 (2012)
3. Arkin, E.M., Hassin, R., Rubinstein, S., Sviridenko, M.: Approximations for max-

imum transportation with permutable supply vector and other capacitated star
packing problems. Algorithmica 39(2), 175–187 (2004)

4. Chen, N., Engelberg, R., Nguyen, C.T., Raghavendra, P., Rudra, A., Singh, G.:
Improved approximation algorithms for the spanning star forest problem. In:
Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) APPROX/RANDOM
-2007. LNCS, vol. 4627, pp. 44–58. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74208-1 4

https://zimride.com/
http://dx.doi.org/10.1007/978-3-540-74208-1_4
http://dx.doi.org/10.1007/978-3-540-74208-1_4

216 G. Kutiel

5. Hartman, I.B.-A.: Optimal assignment for carpooling-draft. Draft (2013)
6. Hartman, I.B.-A., Keren, D., Dbai, A.A., Cohen, E., Knapen, L., Janssens, D.,

et al.: Theory and practice in large carpooling problems. Procedia Comput. Sci.
32, 339–347 (2014)

7. Knapen, L., Keren, D., Cho, S., Bellemans, T., Janssens, D., Wets, G., et al.:
Estimating scalability issues while finding an optimal assignment for carpooling.
Procedia Comput. Sci. 19, 372–379 (2013)

8. Knapen, L., Yasar, A., Cho, S., Keren, D., Dbai, A.A., Bellemans, T., Janssens,
D., Wets, G., Schuster, A., Sharfman, I., et al.: Exploiting graph-theoretic tools for
matching in carpooling applications. J. Ambient Intell. Humaniz. Comput. 5(3),
393–407 (2014)

9. Nguyen, C.T., Shen, J., Hou, M., Sheng, L., Miller, W., Zhang, L.: Approximating
the spanning star forest problem and its application to genomic sequence align-
ment. SIAM J. Comput. 38(3), 946–962 (2008)

10. Tardos, É.: A strongly polynomial minimum cost circulation algorithm. Combina-
torica 5(3), 247–255 (1985)

The Conjugacy Problem in Free Solvable Groups
and Wreath Products

of Abelian Groups is in TC0

Alexei Miasnikov1, Svetla Vassileva2, and Armin Weiß1(B)

1 Stevens Institute of Technology, Hoboken, NJ, USA
weiss@fmi.uni-stuttgart.de

2 Champlain College, St-lambert, QC, Canada

Abstract. We show that the conjugacy problem in a wreath product
A � B is uniform-TC0-Turing-reducible to the conjugacy problem in the
factors A and B and the power problem in B. Moreover, if B is torsion
free, the power problem for B can be replaced by the slightly weaker
cyclic submonoid membership problem for B, which itself turns out to
be uniform-TC0-Turing-reducible to the conjugacy problem in A �B if A
is non-abelian.

Furthermore, under certain natural conditions, we give a uniform TC0

Turing reduction from the power problem in A �B to the power problems
of A and B. Together with our first result, this yields a uniform TC0

solution to the conjugacy problem in iterated wreath products of abelian
groups – and, by the Magnus embedding, also for free solvable groups.

Keywords: Wreath products · Conjugacy problem · Word problem ·
TC0 · Free solvable group

1 Introduction

The conjugacy problem is one of Dehn’s fundamental algorithmic problems in
group theory [2]. It asks on input of two group elements (given as words over
a fixed set of generators) whether the two group elements are conjugate. The
conjugacy problem can be seen as a generalization of the word problem, which
on input of one word asks whether the word represents the identity element of
the group. In recent years the conjugacy problem gained an increasingly impor-
tant role in non-commutative cryptography; see for example [4,9,22,26]. These
applications use the fact that it is easy to create elements which are conjugated,
but to check whether two given elements are conjugated might be difficult even
if the word problem is easy. In fact, there are groups where the word problem
is in polynomial time but the conjugacy problem is undecidable [16]. Moreover,
there are natural classes like polycyclic groups which have a word problem in
uniform TC0 [21], but conjugacy problem not even known to be in NP. Another
example for such a huge contrast is the Baumslag group, whose word problem

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 217–231, 2017.
DOI: 10.1007/978-3-319-58747-9 20

218 A. Miasnikov et al.

is decidable in polynomial time, but the conjugacy problem is conjectured to be
non-elementary [3].

The class TC0 is a very low complexity class consisting of those problems
which can be recognized by a family of constant depth and polynomial size
Boolean circuits which also may use majority gates. We only consider uniform
TC0 (and subsequently simply write TC0 for uniform TC0). The word problem
of abelian groups as well as integer arithmetic (iterated addition, multiplication,
division) are problems in TC0. However, there are not many groups known to
have conjugacy problem in TC0. Indeed, without the results of this paper, the
Baumslag-Solitar groups BS1,q [3] are the only natural examples we are aware of
besides abelian and nilpotent groups. On the other hand, there is a wide range
of groups having word problem in TC0: all polycyclic groups [21] and, more
generally, by a recent result all solvable linear groups [10]. Also iterated wreath
products of abelian groups are known to have word problem in TC0 [11].

The study of the conjugacy problem in wreath products has quite a long
history: in [15] Matthews proved that a wreath product A � B has decidable
conjugacy problem if, and only if, both A and B have decidable conjugacy prob-
lem and B has decidable cyclic subgroup membership problem (note that in [15]
this is called power problem). As a consequence, she obtained a solution to the
conjugacy problem in free metabelian groups. Kargapolov and Remeslennikov
generalized the result by establishing decidability of the conjugacy problem in
free solvable groups of arbitrary solvability degree [8].

A few years later Remeslennikov and Sokolov [20] also generalized Matthews
results to iterated wreath products by solving the cyclic subgroup membership
problem in these groups. They also showed that the Magnus embedding [14] of
free solvable groups into iterated wreath products of abelian groups preserves
conjugacy – thus, giving a new proof for decidability of the conjugacy problem
in free solvable groups.

Later, in [23] it is shown that the criterion of [15] can be actually checked
in polynomial time for iterated wreath products of abelian groups – this also
yields a polynomial time algorithm for the conjugacy problem in free solvable
groups. In [18] this has been further improved to LOGSPACE. Recently, in [5],
Matthews result has been generalized to a wider class of groups without giving
precise complexity bounds – see the discussion in last section.

In this work we use the same fundamental theoretical result as in [15,18]
in order to give a precise complexity version of Matthews result. Even though
we follow the same scheme as [18], we need to overcome additional technical
difficulties related to TC0 complexity. Moreover, we extend the result of [18]
also in several directions. At some points we need a stronger hypothesis than in
[15] though: it is not sufficient to assume that the cyclic subgroup membership
problem is decidable in TC0 in order to reduce the conjugacy problem in a wreath
product to the factors. Instead, we need the stronger power problem to be in
TC0: on input of two group elements b and c compute an integer k such that
bk = c. More precisely, we establish the following results:

The Conjugacy Problem in Wreath Products 219

– There is a uniform TC0 Turing reduction from the conjugacy problem in
A �B to the conjugacy problems in A and B together with the power problem
in B. If B is torsion-free, the power problem can be replaced by the cyclic
submonoid membership problem.

– Suppose the orders of torsion elements of B are β-smooth for some β ∈ N.
Then, the power problem in A � B is uniform-TC0-Turing-reducible to the
power problems in A and B. As a corollary we obtain that iterated wreath
products of abelian groups have conjugacy problem in uniform TC0. Using
the Magnus embedding [14,20], also the conjugacy problem in free solvable
groups is in uniform TC0.

Notice that images of group elements under the Magnus embedding can be
computed in TC0 (since any image under homomorphisms of finitely generated
monoids can be computed in TC0 [12]). Thus, for free solvable groups as well as
for iterated wreath products of abelian groups, our results nail down the complex-
ity of conjugacy precisely. This is because already the word problem in Z is hard
for TC0 (and so the conjugacy problem in free solvable groups is TC0-complete).
Also for wreath products A � B with A non-abelian and B torsion-free, we have
a tight complexity bound because in this case there is a reduction from the cyclic
submonoid membership problem in B to the conjugacy problem in A � B.

To solve the conjugacy problem, we first deal with the word problem. For a free
solvable group of solvability degree d, we obtain a circuit of majority depth d. It is
not clear howa circuit of smallermajority depth could be constructed.On the other
hand, the algorithm for the word problem in [17] runs in cubic time independently
of the solvability degree. This gives rise to the question whether the depth (or the
size) of circuits for the word and conjugacy problem of free solvable groups could
be bounded uniformly independent of the solvability degree. Note that a negative
answer to this question would imply that TC0 �= NC1.

We want to emphasize that throughout we assume that the groups are finitely
generated. As wreath products we consider only restricted wreath products, that
is the underlying functions are required to have finite support.

Outline. Section 2 introduces some notation and recalls some basic facts on
complexity. Then in Sect. 3, we define wreath products and discuss the solution
to the word problem. Sections 4 and 5, the main parts, examine the conjugacy
problem in wreath products resp. iterated wreath products. In order to do so,
we deal with the power problem in iterated wreath products in Sect. 5. Finally,
in Sect. 6, we discuss some open problems. Most proofs are omitted due to space
constraints – they can be found in the full version on arXiv [19].

2 Preliminaries

Words. An alphabet is a (finite or infinite) set Σ; an element a ∈ Σ is called a
letter. The free monoid over Σ is denoted by Σ∗; its elements are finite sequences
of letters and they are called words. The multiplication of the monoid is con-
catenation of words. The identity element is the empty word ε.

220 A. Miasnikov et al.

Groups. We consider a finitely generated (f. g.) group G together with a sur-
jective homomorphism η : Σ∗ → G (a monoid presentation) for some finite
alphabet Σ. Throughout, all groups we consider are finitely generated even if
not mentioned explicitly. In order to keep notation simple, we suppress the homo-
morphism η and consider words also as group elements. We write w =G w′ as
a shorthand for η(w) = η(w′) and w ∈G A instead of η(w) ∈ η(A) for A ⊆ Σ∗

and w ∈ Σ∗. Whenever it is clear that we deal with group elements g, h ∈ G, we
simply write g = h for equality in G.

We say two group elements g, h ∈ G are conjugate, and we write g ∼ h, if
there exists an element x ∈ G such that gx = x−1gx = h. Similarly, we say two
words u and v in generators of G are conjugate, and we write u ∼G v, if the
elements of G represented by u and v are conjugate as elements of G. We denote
by ord(g) the order of a group element g (i. e., the smallest positive integer d
such that gd = 1, or ∞ if no such integer exists). For g ∈ G, the cyclic subgroup
generated by g is denoted by 〈g〉. A d-fold commutator is a group element of
the form x−1y−1xy for (d − 1)-fold commutators x and y; a 0-fold commutator
is any group element. The free solvable group of solvability degree d is the group
subject only to the relations that all d-fold commutators are trivial.

2.1 Complexity

Computation or decision problems are given by functions f : Δ∗ → Σ∗ for some
finite alphabets Δ and Σ. A decision problem (or formal language) L is identified
with its characteristic function χL : Δ∗ → {0, 1} with χL(x) = 1 if, and only if,
x ∈ L.

Computational Problems in Group Theory. Let G be a group with finite
generating set Σ. We define the following algorithmic problems in group theory.

– The word problem WP(G) of G, is the set of all words representing the identity
in G.

– The conjugacy problem CP(G) is the set of all pairs (v, w) such that v ∼G w.
– The cyclic subgroup membership problem CSMP(G): the set of all pairs (v, w)

such that w ∈ 〈v〉 (i. e., there is some k ∈ Z with vk =G w).
– The cyclic submonoid membership problem CSMMP(G): the set of all pairs

(v, w) such that w ∈G {v}∗ (i. e., there is some k ∈ N with vk =G w).
– The power problem PP(G): on input of some (v, w) ∈ Σ∗×Σ∗ decide whether

w is a power of v that is whether there is some k ∈ Z such that vk =G w. In
the “yes” case compute this k in binary representation. If v has finite order
in G, the computed k has to be the smallest non-negative such k.

Whereas the first four of these problems are decision problems, the last one is an
actual computation problem. Be aware that sometimes in literature the power
problem is defined as what we refer to as cyclic subgroup membership problem.

The Conjugacy Problem in Wreath Products 221

Circuit Classes. The class AC0 is defined as the class of functions computed
by families of circuits of constant depth and polynomial size with unbounded
fan-in Boolean gates (and, or, not). TC0 additionally allows majority gates. A
majority gate (denoted by Maj) returns 1 if the number of 1s in its input is
greater or equal to the number of 0s. In the following, we always assume that
the alphabets Δ and Σ are encoded over the binary alphabet {0, 1} such that
each letter uses the same number of bits. Moreover, we assume that also the
empty word ε has such a encoding over {0, 1}, which is denoted by ε as well (be
aware of the slight ambiguity). The empty word letter is used to pad outputs
of circuits to fit the full number of output bits; still we do not forbid to use it
in the middle. We say a function f is AC0-computable (resp. TC0-computable) if
f ∈ AC0 (resp. f ∈ TC0).

In the following, we only consider Dlogtime-uniform circuit families. Dlogtime-
uniform means that there is a deterministic Turing machine which decides in
time O(log n) on input of two gate numbers (given in binary) and the string 1n

whether there is a wire between the two gates in the n-input circuit and also
decides of which type some gates is. Note that the binary encoding of the gate
numbers requires only O(log n) bits – thus, the Turing machine is allowed to
use time linear in the length of the encodings of the gates. For more details on
these definitions we refer to [24]. In order to keep notation simple we write AC0

(resp. TC0) for Dlogtime-uniform AC0 (resp. Dlogtime-uniform TC0) throughout.
We have the following inclusions (note that even TC0 ⊆ P is not known to be
strict):

AC0
� TC0 ⊆ LOGSPACE ⊆ P.

The following facts are well-known and will be used in the following without
further reference:

– Barrington, Immerman, and Straubing [1] showed that TC0 = FO(+, ∗,Maj)
i. e., TC0 comprises exactly those languages which are defined by some first
order formula with majority quantifiers where positions may be compared
using +, ∗ and <. In particular, if we can give a formula with majority
quantifiers using only addition and multiplication predicates, we do not need
to worry about uniformity.

– Homomorphisms can be computed in TC0 [12]: on input of two alphabets Σ
and Δ (coded over the binary alphabet), a list of pairs (a, va) with a ∈ Σ
and va ∈ Δ∗ such that each a ∈ Σ occurs in precisely one pair, and a word
w ∈ Σ∗, the image ϕ(w) under the homomorphism ϕ defined by ϕ(a) = va

can be computed in TC0. Moreover, if ϕ is length-multiplying (that is ϕ(a)
and ϕ(b) have the same length for all a, b ∈ Σ), the computation is in AC0.

– Iterated addition is the following problem: given n numbers a1, . . . , an (in
binary), compute

∑n
i=1 ai (as binary number). This is known to be in TC0.

Example 1. Finitely generated abelian groups have word problem in TC0: the
word problem of Z is in TC0 using iterated addition (since it is essentially sum-
ming up numbers 1 and −1), the word problem of finite cyclic groups is in TC0 by

222 A. Miasnikov et al.

then calculating modulo; and, finally, a word in a direct product is the identity
if, and only if, it is the identity in all components.

Reductions. Let K ⊆ Δ∗ and L ⊆ Σ∗ be languages and C a complexity class.
Then K is called C-many-one-reducible to L if there is a C-computable function
f : Δ∗ → Σ∗ such that w ∈ K if, and only if, f(w) ∈ L. In this case, we write
K ≤C

m L.
A function f is AC0 -(Turing)-reducible to a function g if there is a Dlogtime-

uniform family of AC0 circuits computing f which, in addition to the Boolean
gates, also may use oracle gates for g (i. e., gates which on input x output g(x)).
This is expressed by f ∈ AC0(g) or f ≤AC0

T g. For a group G, we write AC0(G) as
shorthand of AC0(WP(G)). Likewise TC0 (Turing) reducibility is defined. Note
that if L1, . . . , Lk are in TC0, then TC0(L1, . . . , Lk) = TC0 (see e. g. [24]).

Remark 1. The cyclic subgroup membership problem, in particular, allows to
solve the word problem: some group element is in the cyclic subgroup generated
by the identity if, and only if, it is the identity. Moreover, the cyclic subgroup
membership problem for (v, w) can be decided by two calls to the cyclic sub-
monoid membership problem (for (v, w) as well as for (v−1, w)). Also, the power
problem is a stronger version of the cyclic submonoid membership problem (sim-
ply check the sign of the output of the power problem). Thus, we have

WP(G) ≤AC0

m CSMP(G) ≤AC0

T CSMMP(G) ≤AC0

T PP(G).

Moreover, the power problem enables to decide whether an element is of finite
order (just compute the k such that gk = g−1 – if this is a positive number, then
g is of finite order, otherwise not).

3 Wreath Products and the Word Problem

Let A and B be groups. For a function f : B → A the support of f is defined as
supp(f) = {b ∈ B | f(b) �= 1}. For two groups A and B, the set of functions from
B to A with finite support is denoted by A(B); it forms a group under point-wise
multiplication. Mapping a ∈ A to the function a(b) which has a value of a if
b = 1 and 1 otherwise, gives an embedding of A into A(B), termed the canonical
embedding. In what follows we identify A with its canonical image in A(B). The
wreath product A �B of A and B is defined as the semi-direct product B � A(B),
where the action of b ∈ B on a function f ∈ A(B) is defined by f b(x) = f(xb−1)
(note that this is also sometimes referred to as restricted wreath product). We
identify B and A(B) (and hence also A) with their canonical images in A � B.
Thus, for the multiplication in A � B we have the following rules

(b, f)(c, g) = (bc, fcg), (b, f)−1 = (b−1, (f−1)b−1
)

for b, c ∈ B and f, g ∈ A(B). Here f−1 is the pointwise inverse (i. e., f−1(b) =
(f(b))−1 for all b ∈ B).

The Conjugacy Problem in Wreath Products 223

Let ΣA and ΣB be fixed generating sets of A and B, correspondingly. Then,
A � B is generated by Σ = ΣA ∪ ΣB (using the embedding of A into A � B).
Given a word w ∈ Σ∗ of length n, we can group it as w = a1b1 · · · ambm with
ai ∈ Σ∗

A, bi ∈ Σ∗
B and m ≤ n. Introducing factors bb−1 ∈ Σ∗

B , we can rewrite
this as follows:

w =G a1b1 · · · ambm =G b1b
−1
1 a1b1 · · · ambm =G b1a

b1
1 a2b2 · · · ambm

=G b1b2(ab1
1 a2)b2 · · · ambm =G b1b2(ab1b2

1 ab2
2) · · · ambm

=G b1 · · · bm · ab1···bm
1 · · · abm

m

Thus, we have w =G (b, f) with b = b1 · · · bm and f = ab1···bm
1 · · · abm

m . Since
ac and a′c′

commute for distinct c, c′ ∈ B and for any a, a′ ∈ A, we can
reorder this product to ensure that the exponents are distinct: whenever we
have bi · · · bm =B bj · · · bm for i < j, we combine the corresponding terms into a
single term (aiaj)bi···bm . Thus, we can rewrite f as the product ãb̃1

1 . . . ãb̃k
k , where

ã1, . . . , ãk ∈ Σ∗
A, and b̃1, . . . , b̃k ∈ Σ∗

B all represent distinct elements of B. More-
over, we can assume that all ãi represent non-trivial elements of A. With this
notation, we have f(b̃i) = ãi �= 1 and f(c) = 1 for c �∈ {b̃1, . . . , b̃k} = supp(f).
Furthermore, f is completely given by the set of pairs {(b̃1, ã1), . . . , (b̃k, ãk)}.

In the following, we always assume that functions f ∈ A(B) are represented
as a list of pairs f = ((b̃1, ã1), . . . , (b̃k, ãk)). The order of the pairs does not
matter – but they are written down in some order. We also assume for an input
w of length n, that k = m = n and that every word b̃i, ãi has length n. This
is achieved by padding with pairs (ε, ε) (where ε is the letter representing the
empty word).

Lemma 1. Let A and B be finitely generated groups and let G = A � B. There
is an AC0(A,B) circuit family which on input w ∈ Σ∗ computes (b, f) with
w =G (b, f).

Proof. For an input word w = w1 · · · wn ∈ Σ∗, we first calculate the image under
the projection πB : a �→ ε for a ∈ ΣA. Since ε is a letter in our alphabet, this is
a length-preserving homomorphism, and thus, can be computed in AC0 [12]. We
have b = πB(w). Next, define the following equivalence relation ≈ on {1, . . . , n}:

i ≈ j ⇐⇒ πB(wi+1 · · · wn) =B πB(wj+1 · · · wn)

After the computation of πB it can be checked for all pairs i, j whether i ≈ j using(
n
2

)
oracle calls in parallel to the word problem of B. Let [i] denote the equivalence

class of i. Now, b−1w is in the (finite) direct product
∏

[i] A
πB(wi+1···wn) ≤ A(B)

(this is well-defined by the definition of ≈). The projection to component asso-
ciated to [i] is computed by replacing all wj by ε whenever wj ∈ ΣB or j �≈ i.
As before, this computation is in AC0. As a representative of [i], we choose the
smallest i ∈ [i]. Now, the preliminary output is the pair (b, (f1, . . . , fn)) with

fi =

{(
πB(wi+1 · · · wn),

∏
j∈[i] wj

)
if i = min[i],

(ε, ε) otherwise.

224 A. Miasnikov et al.

Up to the calculation of ≈, everything can be done in AC0 (checking i = min[i]
amounts to

∧
j<i ¬(i ≈ j)). Finally, pairs fi = (bi, ai) with ai =A 1 are replaced

by (ε, ε). This requires an additional layer of calls to the word problem of A.
If we assign appropriate gate numbers corresponding to the description of

our circuit (e. g. concatenation of the number of the layer and the indices i, j),
it is easy to see that it can be checked in linear time on input of two binary
gate numbers if the two gates are connected. This establishes uniformity of the
circuit.

Theorem 1. WP(A � B) ∈ AC0(A,B).

Proof. This is an immediate consequence of Lemma 1 since (b, f) =G 1 if,
and only if, b =B 1 (can be checked using the word problem of B) and
f = ((ε, ε), . . . , (ε, ε)).

Note that Theorem 1 is a stronger version of [25] where NC1 reducibility is shown.

Definition 1. Let d ∈ N. We define the left-iterated wreath product, A d� B,
and the right-iterated wreath product A �dB of two groups A and B inductively:

– A 1� B = A � B
– A d� B = A � (A d−1� B)

– A �1 B = A � B
– A �d B = (A �d−1 B) � B

Let Sd,r denote the free solvable group of solvability degree d and rank r.
The Magnus embedding [14] is an embedding Sd,r → Z

r � Sd−1,r. By iterating
the construction, we obtain an embedding Sd,r → Z

r d� 1. For the purpose of
this paper, we do not need to know the homomorphism explicitly – it suffices to
know that it is an embedding and that it preserves conjugacy [20]. The following
corollary is also a consequence of [11] since a wreath product can be embedded
into the corresponding block product.

Corollary 1. Let A and B be f. g. abelian groups and let d ≥ 1. The word
problems of A �d B and of A d� B are in TC0. In particular, the word problem of
a free solvable group is TC0-complete.

Note that here the groups A, B and the number d of wreath products are fixed.
Indeed, if there were a single TC0 circuit which works for free solvable groups
of arbitrary solvability degree, this circuit would also solve the word problem of
the free group, which is NC1-hard – thus, showing TC0 = NC1.

Proof. The first statement follows from Theorem 1 because f. g. abelian groups
have word problem in TC0 (see Example 1). The second statement then follows by
the Magnus Embedding [14] and the fact that homomorphisms can be computed
in TC0. The hardness-part is due to the fact that the free solvable group has
an element of infinite order, i. e., a subgroup Z, whose word problem is hard for
TC0.

The Conjugacy Problem in Wreath Products 225

Remark 2. For a TC0 circuit, the majority depth is defined as the maximal num-
ber of majority gates on any path from an input to an output gate (see e. g. [13]).
Assume that WP(A),WP(B) ∈ TC0. The circuit in the proof of Lemma 1 con-
tains one layer of gates to the word problem of B followed by one gate to the
word problem of A. The additional check for b =B 1 in the proof of Theorem 1
can be done in parallel to the computation of Lemma 1; thus, it can be viewed
as part or the layer of calls to WP(B). Since Lemma 1 is an AC0 reduction, the
majority depth of the resulting circuit is at most mA + mB where mA (resp.
mB) is the majority depth of the circuit family for WP(A) (resp. WP(B)).

Starting with the word problem of free abelian groups, which is in TC0 with
majority depth one, we see inductively that a d-fold iterated wreath product –
and thus the free solvable group of solvability degree d – has word problem in
TC0 with majority depth at most d. On the other hand, we do not see a method
how to improve this bound any further. In [11] a similar observation was stated
for iterated block products (into which wreath products can be embedded).
There the question was raised how the depth of the circuit for the word problem
(or more general any problem recognized by the block product) is related to
the number of block products in an iterated block product (the so-called block-
depth).

Question 1. Can the word problem of a free solvable group of solvability degree
d be decided in TC0 with majority depth less than d?

We want to point out that Question 1 is related to an important question in
complexity theory: as outlined in [13], a negative answer would imply that TC0 �=
NC1. Nevertheless, the following observations point rather towards a positive
answer of Question 1: the word problem of free solvable groups is decidable
in time O(n3) – regardless of the solvability degree d [17,23]. Moreover, the
circuit for linear solvable groups (not for free solvable groups with d > 2) from
[10] can be arranged with majority depth bounded uniformly for all groups.
This is because every matrix entry in a product of upper triangular matrices
can be obtained as iterated addition of iterated multiplication of the entries of
the original matrices (for the precise formula, see [10]). These operations have
circuits of uniformly bounded depth (also for f.g. field extensions). Hence, only
the size of the circuits, but not the depth, depends on the solvability degree.

4 The Conjugacy Problem in Wreath Products

In order to decide conjugacy of two elements (b, f), (c, g) in a wreath product
A � B we will study the behavior of f and g on cosets of 〈b〉 ≤ B. A full system
of 〈b〉 -coset representatives is a set T ⊆ B of such that 〈b〉t ∩ 〈b〉t′ = ∅ for
t �= t′ ∈ T and B = 〈b〉T . Let T be a full system of 〈b〉-coset representatives in
B. For γ, b ∈ B, f ∈ A(B), and t ∈ T , we define

π
(γ)
t (f) =

⎧
⎪⎪⎨

⎪⎪⎩

N−1∏

j=0

f(tbjγ−1) if ord(b) = N < ∞,

∞∏

j=−∞
f(tbjγ−1) if ord(b) = ∞,

226 A. Miasnikov et al.

which is an element of A. We denote π
(1)
t (f) by πt(f). The definition of the πt

depends on the order of the element b. First, observe that in the case when the
order of b is infinite the product is finite, since the function f is of finite support.
In fact, it is the product of all possible non-trivial factors of the form f(tbjγ−1)
multiplied in increasing order of j. The same is true in the case when the order
of b is finite. So in order to compute π

(γ)
t , we need to find all the elements of the

form tbjγ−1 for which f is non-trivial, arrange them in increasing order of j and
concatenate the respective aj .

Lemma 2. The computation of π
(γ)
t (f) is in TC0(PP(B)) (more precisely, the

input is b, t, γ ∈ Σ∗
B and a function f = ((b1, a1), . . . , (bn, an)), the output is

π
(γ)
t (f) given as a word over ΣA). Moreover, if B is torsion-free, then it is

actually in TC0(CSMMP(B)).

The proof of Lemma 2 is easy: using oracle gates for PP(B), for all j some
kj ∈ Z such that t−1bjγ = bkj is computed (and checked if there is any); then
the tuples (bj , aj) are sorted with respect to that power kj . Notice that it suffices
to decide whether ki < kj for i �= j, which, in the torsion-free case, can be done
using the cyclic submonoid membership problem. For more details, see [19].

In [15], Matthews provides a criterion for testing whether two elements of
a wreath product are conjugate. Based on this criterion, in [18] the following
criterion for conjugacy is derived, which is more suitable for working in TC0 or
Logspace. Here, π̃s is defined analogously to πt, but with respect to a set of
〈c〉-coset representatives S. In the appendix of our full version [19] we show how
to derive Theorem 2 from [15].

Theorem 2 ([15]/[18]). Let x = (b, f) and y = (c, g) be two elements of A � B
and let T and S be full systems of 〈b〉- (resp. 〈c〉-) coset representatives. If b and
c are not conjugate in B, then x and y are not conjugate in A � B. Otherwise,
we distinguish the following cases:

(i) Suppose g = 1. Then x ∼ y if, and only if, πt(f) = 1 for all t ∈ T .
(ii) Suppose g �= 1, but πt(f) = 1 for all t ∈ T . Then x ∼ y if, and only if,

π̃s(g) = 1 for all s ∈ S.
(iii) Suppose g �= 1 and there exists a t ∈ T such that πt(f) �= 1. Denote

supp(g) = {β1, . . . , βm}. Then x ∼ y if, and only if, some d ∈{
β−1
1 t, . . . , β−1

m t
}
satisfies db = cd and

(a) πt′(f) = π
(d)
t′ (g) for all t′ ∈ T if ord(b) = ∞, or

(b) πt′(f) ∼ π
(d)
t′ (g) for all t ∈ T ′ if ord(b) is finite.

Since T and S in Theorem 2 are infinite in general, for algorithmic purposes we
need to restrict to a finite subset containing those t ∈ T where any of the πt(f)
or π

(d)
t (g) is non-trivial (and likewise or S):

Lemma 3. Let supp(f) = {b1, . . . , bn} and supp(g) = {β1, . . . , βm}. Theorem 2
is still true if we replace the full system of 〈b〉-coset representatives T by

T̃ =
{
βiβ

−1
j bk | 1 ≤ i, j ≤ m, 1 ≤ k ≤ n

}
.

The Conjugacy Problem in Wreath Products 227

Theorem 3. Let A and B be arbitrary finitely generated groups. Then, we have
CP(A � B) ∈ TC0(CP(A),CP(B),PP(B)). If, moreover, B is torsion-free, then
CP(A � B) ∈ TC0(CP(A),CP(B),CSMMP(B)).

The proof of Theorem 3 is straightforward (see [19]) because the condition of
Theorem 2 is a simple Boolean combination of several conditions which can be
all checked in parallel using the conjugacy problem of A and B after the values
πt(f), π

(d)
t (g), and π̃s(g) for t ∈ T̃ (as defined in Lemma 3) and s ∈ supp(g)

have been computed, which can be done in TC0 by Lemma 2. The following
quite trivial observation turns out to be very useful:

Lemma 4. Let G be f. g. by Σ and let the order of its torsion elements be uni-
formly bounded. Suppose there is a polynomial p(n) such that for every w ∈ Σ∗

which is non-torsion, the inequality k ≤ p(
∥
∥wk

∥
∥) is satisfied, where

∥
∥wk

∥
∥ denotes

the geodesic length of the group element wk. Then PP(G) ∈ AC0(WP(G)).

The second condition of Lemma 4 means that there is a uniform polynomial
bound on the distortion of infinite cyclic subgroups. This is satisfied by abelian
groups (with p being linear). Since the conjugacy problem in abelian groups is
in TC0 (as it is the word problem), we get the following corollary of Theorem 3.

Corollary 2. Let A and B be f. g. abelian groups. Then CP(A � B) ∈ TC0.

The following result shows that a weaker form of the power problem in B is
also necessary to solve the conjugacy problem in A �B. It is a complexity analog
of [15, Theorem B], which only considers decidability. It establishes that, at least
in the torsion-free case, Theorem 3 is the best that we can get. In the torsion
case, we need the power problem in Theorem 3 – on the other hand, we do not
see how to reduce PP(B) to CP(A � B) in TC0 (or even in polynomial time –
since the outputs of the power problem might be super- exponential). Note that
for pure decidability, it does not matter if we consider CSMP(B), CSMMP(B)
or PP(B) since they can all be reduced to each other.

Theorem 4. Let A be f. g. and non-trivial. Then CSMP(B) ≤AC0

m CP(A � B).
If, moreover, A is non-abelian, then CSMMP(B) ≤AC0

m CP(A � B).

Notice that Theorem 4 shows that in the case that A is non-abelian and B
torsion-free Theorem 3 is the best possible result one could expect.

Proof. The first statement is simply due to the observation that the construction
in [15, Thm. B] can be computed in AC0. Now, let A be non-abelian. In particular,
there are elements a1, a2 ∈ A with a1a2 �=A a2a1. For b, c ∈ Σ∗

B , we define two
functions f, g ∈ A(B) by

f(1) = a1a2, f(β) = 1 for β ∈ B {1} ,

g(1) = a1, g(c) = a2, g(β) = 1 for β ∈ B {1, c} .

Now, we have π1(f) = a1a2 and πt(f) = 1 for t �∈ 〈b〉. For g, according to
Theorem 2 (iii), we have to consider π

(1)
1 (g) and π

(c)
1 (g). If b has finite order,

228 A. Miasnikov et al.

then π1
1(g) and π

(c)
1 (g) are both one of a1a2 or a2a1 (which are conjugate) if,

and only if, c ∈ 〈b〉 =G {b}∗ (because b has finite order) – otherwise π1
1(g) = a1

and π
(c)
1 (g) = a2. On the other hand if b has infinite order, we have

π1
1(g) =

⎧
⎪⎨

⎪⎩

a1a2 if c =B bk, k > 0,

a2a1 if c =B bk, k < 0,

a1 otherwise,
π
(c)
1 (g) =

⎧
⎪⎨

⎪⎩

a1a2 if c =B bk, k > 0,

a2a1 if c =B bk, k < 0,

a2 otherwise.

Therefore, by Theorem 2, (b, f) ∼ (b, g) if, and only if, c ∈G {b}∗.

5 Conjugacy and Power Problem in Iterated Wreath
Products

In order to solve the conjugacy problem in iterated wreath products, we also
need to solve the power problem in wreath products. In general, we do not know
whether the power problem in a wreath product is in TC0 given that the power
problem of the factors is in TC0. The problem is that when dealing with torsion
it might be necessary to compute GCDs– which is not known to be in TC0. By
restricting torsion elements to have only smooth orders, we circumvent this issue.
Recall that a number is called β-smooth for some β ∈ N if it only contains prime
factors less than or equal to β. The proof of the following lemma is elementary.

Lemma 5. Let β ∈ N. Suppose the orders of all torsion elements in A and B
are β-smooth. Then the orders of all torsion elements in A � B are β-smooth.

Note that we are not aware of any finitely generated group with word problem
in TC0 and torsion elements which are not β-smooth for any β. On the other
hand, there are recursively presented such groups: for instance, take the infinite
direct sum of cyclic groups of arbitrary order. The next step is to show how to
reduce the power problem in A � B to the power problems of A and B.

Theorem 5. Let β ∈ N and suppose torsion elements in A are β-smooth. Then
we have PP(A � B) ∈ TC0(PP(A),PP(B)).

For a proof of Theorem 5 see our full version [19]. Here we give a short
outline: on input (b, f) and (c, g) first apply the power problem in B to b and
c. If there is no solution, then there is also no solution for (b, f) and (c, g).
Otherwise, the smallest k ≥ 0 with bk =B c can be computed. If b has infinite
order, it remains to check whether (b, f)k = (c, g). Since k might be too large,
this cannot be done by simply applying the word problem. Nevertheless, we only
need to establish equality of functions in A(B). We show that it suffices to check
equality on certain (polynomially many) “test points”. In the case that b has
finite order K, we know that if there is a solution to the power problem it must
be in k+KZ. Now, similar techniques as in the infinite order case can be applied
to find the solution.

The Conjugacy Problem in Wreath Products 229

By repeated application of Theorems 3, 5 and Lemma 5, we obtain the first
statement of Corollary 3 below. The second statement follows since the Magnus
embedding preserves conjugacy [20] (that means two elements are conjugate in
the free solvable group if, and only if, their images under the Magnus embedding
are conjugate).

Corollary 3. Let A and B be f. g. abelian groups and let d ≥ 1. The conjugacy
problems of A �d B and of A d� B are in TC0. Also, the conjugacy problem of free
solvable groups is in TC0.

6 Conclusion and Open Problem

As already discussed in Question 1, an important open problem is the depen-
dency of the depth of the circuits for the word problem on the solvability degree.

We have seen how to solve the conjugacy problem in a wreath product in TC0

with oracle calls to the conjugacy problems of both factors and the power prob-
lem in the second factor. However, we do not have a reduction from the power
problem in the second factor to the conjugacy problem in the wreath product:
we only know that the cyclic submonoid membership problem is necessary to
solve the conjugacy problem in the wreath product.

Question 2. Is CP(A �B) ∈ TC0(CP(A),CP(B),CSMMP(B)) in general? More-
over, in which cases is CP(A � B) ∈ TC0(CP(A),CP(B),CSMP(B))?

For iterated wreath products we needed the power problem to be in TC0 in
order to show that the conjugacy problem is in TC0. One reason was that we only
could reduce the power problem in the wreath product to the power problems of
the factors. However, we have seen that in torsion-free groups, we do not need the
power problem to solve conjugacy, as the cyclic submonoid membership problem
is sufficient. Therefore, it would be interesting to reduce the cyclic submonoid
membership problem in a wreath product to the same problem in its factors.

Question 3. Is CSMMP(A � B) ∈ TC0(CSMMP(A),CSMMP(B)) or similarly is
CSMP(A � B) ∈ TC0(CSMP(A),CSMP(B))?

In [5], Gul, Sohrabi, and Ushakov generalized Matthews result by considering
the relation between the conjugacy problem in F/N and the power problem in
F/N ′, where F is a free group with a normal subgroup N and N ′ is its derived
subgroup. They show that CP(F/N ′) is polynomial-time-Turing-reducible to
CSMP(F/N) and CSMP(F/N) is Turing-reducible to CP(F/N ′). Moreover, they
establish that WP(F/N ′) is polynomial-time-Turing-reducible to WP(F/N).

Question 4. What are the precise relations in terms of complexity between
CP(F/N ′) and CSMP(F/N) resp. WP(F/N ′) and WP(F/N)?

230 A. Miasnikov et al.

References

1. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC1. J.
Comput. Syst. Sci. 41(3), 274–306 (1990)

2. Dehn, M.: Über unendliche diskontinuierliche Gruppen. Math. Ann. 71(1), 116–144
(1911)

3. Diekert, V., Myasnikov, A.G., Weiß, A.: Conjugacy in Baumslag’s Group, generic
case complexity, and division in power circuits. In: LATIN Symposium, pp. 1–12
(2014)

4. Grigoriev, D., Shpilrain, V.: Authentication from matrix conjugation. Groups Com-
plex. Cryptology 1, 199–205 (2009)

5. Gul, F., Sohrabi, M., Ushakov, A.: Magnus embedding and algorithmic properties
of groups F/N (d). ArXiv e-prints, abs/1501.01001, January 2015

6. Hesse, W.: Division is in uniform TC0. In: Orejas, F., Spirakis, P.G., Leeuwen, J.
(eds.) ICALP 2001. LNCS, vol. 2076, pp. 104–114. Springer, Heidelberg (2001).
doi:10.1007/3-540-48224-5 9

7. Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth threshold
circuits for division and iterated multiplication. JCSS 65, 695–716 (2002)

8. Kargapolov, M.I., Remeslennikov, V.N.: The conjugacy problem for free solvable
groups. Algebra i Logika Sem. 5(6), 15–25 (1966)

9. Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W., Kang, J., Park, C.: New public-key
cryptosystem using braid groups. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol.
1880, pp. 166–183. Springer, Heidelberg (2000). doi:10.1007/3-540-44598-6 10

10. König, D., Lohrey, M.: Evaluating matrix circuits. CoRR, abs/1502.03540 (2015)
11. Krebs, A., Lange, K., Reifferscheid, S.: Characterizing TC0 in terms of infinite

groups. Theory Comput. Syst. 40(4), 303–325 (2007)
12. Lange, K.-J., McKenzie, P.: On the complexity of free monoid morphisms. In:

Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 247–256.
Springer, Heidelberg (1998). doi:10.1007/3-540-49381-6 27

13. Maciel, A., Thérien, D.: Threshold circuits of small majority-depth. Inf. Comput.
146(1), 55–83 (1998)

14. Magnus, W.: On a theorem of Marshall Hall. Ann. Math. 40, 764–768 (1939)
15. Matthews, J.: The conjugacy problem in wreath products and free metabelian

groups. Trans. Am. Math Soc. 121, 329–339 (1966)
16. Miller III, C.F.: On group-theoretic decision problems and their classification, vol.

68. Annals of Mathematics Studies. Princeton University Press (1971)
17. Myasnikov, A., Roman’kov, V., Ushakov, A., Vershik, A.: The word, geodesic prob-

lems in free solvable groups. Trans. Amer. Math. Soc. 362(9), 4655–4682 (2010)
18. Myasnikov, A.G., Vassileva, S., Weiß, A.: Log-space complexity of the conjugacy

problem in wreath products. Groups Complex. Cryptol. (2017, to appear)
19. Miasnikov, A., Vassileva, S., Weiß, A.: The conjugacy problem in free solv-

able groups and wreath product of abelian groups is in TC0. ArXiv e-prints,
abs/1612.05954 (2016)

20. Remeslennikov, V., Sokolov, V.G.: Certain properties of the Magnus embedding.
Algebra i logika 9(5), 566–578 (1970)

21. Robinson,D.: Parallel Algorithms for Group Word Problems. PhD thesis, Univer-
sity of California, San Diego (1993)

22. Shpilrain, V., Zapata, G.: Combinatorial group theory and public key cryptogra-
phy. Appl. Algebra Engrg. Comm. Comput. 17, 291–302 (2006)

http://dx.doi.org/10.1007/3-540-48224-5_9
http://dx.doi.org/10.1007/3-540-44598-6_10
http://dx.doi.org/10.1007/3-540-49381-6_27

The Conjugacy Problem in Wreath Products 231

23. Vassileva, S.: Polynomial time conjugacy in wreath products and free solvable
groups. Groups Complex. Cryptol. 3(1), 105–120 (2011)

24. Vollmer, H.: Introduction to Circuit Complexity. Springer, Berlin (1999)
25. Waack, S.: The parallel complexity of some constructions in combinatorial group

theory (abstract). In: Rovan, B. (ed.) MFCS 1990. LNCS, vol. 452, pp. 492–498.
Springer, Heidelberg (1990). doi:10.1007/BFb0029647

26. Wang, L., Wang, L., Cao, Z., Okamoto, E., Shao, J.: New constructions of public-
key encryption schemes from conjugacy search problems. In: Lai, X., Yung, M., Lin,
D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 1–17. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-21518-6 1

27. Weiß, A.: A logspace solution to the word and conjugacy problem of generalized
Baumslag-Solitar groups. In: Algebra and computer science, vol. 677. Contempo-
rary Mathematics, pp. 185–212. American Mathematical Society, Providence, RI
(2016)

http://dx.doi.org/10.1007/BFb0029647
http://dx.doi.org/10.1007/978-3-642-21518-6_1

On Algorithmic Statistics for Space-Bounded
Algorithms

Alexey Milovanov1,2,3(B)

1 National Research University Higher School of Economics, Moscow, Russia
almas239@gmail.com

2 Moscow Institute of Physics and Technology, Dolgoprudny, Russia
3 Moscow State University, Moscow, Russia

Abstract. Algorithmic statistics studies explanations of observed data
that are good in the algorithmic sense: an explanation should be simple
i.e. should have small Kolmogorov complexity and capture all the algorith-
mically discoverable regularities in the data. However this idea can not be
used in practice because Kolmogorov complexity is not computable.

In this paper we develop algorithmic statistics using space-bounded
Kolmogorov complexity. We prove an analogue of one of the main result
of ‘classic’ algorithmic statistics (about the connection between optimal-
ity and randomness deficiences). The main tool of our proof is the Nisan-
Wigderson generator.

Keywords: Algorithmic statistics · Kolmogorov complexity ·
Nisan-Wigderson generator · Computational complexity theory ·
Derandomization

1 Introduction

In this section we give an introduction to algorithmic statistics and present our
results.

We consider strings over the binary alphabet {0, 1}. We use |x| to denote the
length of a string x. All of the logarithms are base 2. Denote the conditional
Kolmogorov complexity1 of x given y by C(x|y).

1.1 Introduction to Algorithmic Statistics

Let x be some observation data encoded as a binary string, we need to find a
suitable explanation for it. An explanation (=model) is a finite set containing
x. More specifically we want to find a simple model A such that x is a typical
element in A. How to formalize that A is ‘simple’ and x is a ‘typical element’
in A? In classical algorithmic statistics a set A is called simple if it has small

1 The definition and basic properties of Kolmogorov complexity can be found in the
textbooks [5,13], for a short survey see [11].

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 232–244, 2017.
DOI: 10.1007/978-3-319-58747-9 21

On Algorithmic Statistics for Space-Bounded Algorithms 233

Kolmogorov complexity C(A)2. To measure typicality of x in A one can use the
randomness deficiency of x as an element of A:

d(x|A) := log |A| − C(x|A).

The randomness deficiency is always non-negative with O(log |x|) accuracy, as
we can find x from A and the index of x in A. For most elements x in any set A
the randomness deficiency of x in A is negligible. More specifically, the fraction
of x in A with randomness deficiency greater than β is less than 2−β .

There is another quantity measuring the quality of A as an explanation of x:
the optimality deficiency :

δ(x,A) := C(A) + log |A| − C(x).

It is also non-negative with logarithmic accuracy (by the same reason). This
value represents the following idea: a good explanation (a set) should not only
be simple but also should be small.

One can ask: why as explanations we consider only sets—not general proba-
bility distributions? This is because for every string x and for every distribution
P there exists a set A � x explaining x that is not worse than P in the sense of
deficiencies defined above3.

Theorem 1 ([15]). For every string x and for every distribution P there exists
a set A � x such that C(A|P) ≤ O(log |x|) and 1

|A| ≥ 1
2P (x).

Kolmogorov called a string x stochastic if there exists a set A � x such that
C(A) ≈ 0 and d(x|A) ≈ 0. The last equality means that log |A| ≈ C(x|A) hence
log |A| ≈ C(x) because C(A) ≈ 0. So, δ(x,A) is also small.

For example, an incompressible string of length n (i.e. a string whose com-
plexity is close to n) is stochastic—the corresponding set is {0, 1}n. Non-
stochastic objects also exist, however this fact is more complicated—see [12,15].

1.2 Space-Bounded Algorithmic Statistics

As mentioned by Kolmogorov in [4], the notion of Kolmogorov complexity C(x)
has the following minor point. It ignores time and space needed to produce x
from its short description. This minor point can be fixed by introducing space
or time bounded Kolmogorov complexity (see, for example, [2] or [14]). In this
paper we consider algorithms whose space (not time) is bounded by a polynomial
of the length of a string.

The distinguishing complexity of a string x with space bound m is defined
as the minimal length of a program p such that
2 Kolmogorov complexity of A is defined as follows. We fix any computable bijection

A �→ [A] from the family of finite sets to the set of binary strings, called encoding.
Then we define C(A) as the complexity C([A]) of the code [A] of A.

3 The randomness deficiency of a string x with respect to a distribution P is defined
as d(x|P) := − logP (x)−C(x|P), the optimality deficiency is defined as δ(x, P) :=
C(P) − logP (x) − C(x).

234 A. Milovanov

– p(y) = 1 if y = x;
– p(y) = 0 if y �= x;
– p uses at most m bits of memory on every input.

We denote this value by CDm(x). If for some x and m such a program p does
not exist then CDm(x) := ∞. We say that p distinguishes x (from other strings)
if p satisfies the first and the second requirements of the definition.

In this definition p(y) denotes V (p, y) for a universal Turing machine V . A
Turing machine is called universal if for every machine U and for every q there
exists p such that V (p, y) = U(q, y) for every y, |p| < |q| + O(1) and V uses
space at most O(m) if U uses space m on input (q, y). Here the constant in
O(m) depends on V and U but does not depend on q4.

Now we extend this notion to arbitrary finite sets. The distinguishing com-
plexity of a set A with space bound m is defined as the minimal length of a
program p such that

– p(y) = 1 if y ∈ A;
– p(y) = 0 if y /∈ A;
– p uses space m on every input.

Denote this value as CDm(A).
The value CDa(x|A) is defined as the minimal length of a program that

distinguishes x by using space at most m and uses A as an oracle. The value
CDa(B |A) for an arbitrary finite set B is defined the same way.

How to define typicality of a string x in a set A? Consider the following
resource-bounded versions of randomness and optimal deficiencies:

da(x|A) := log |A| − CDa(x|A),

δb,d(x,A) := CDb(A) + log |A| − CDd(x).

One can show that these values are non-negative (with logarithmic accuracy)
provided a ≥ p(|x|) and d ≥ p(|x| + b) for a large enough polynomial p.

We say that a set A is a good explanation for a string x (that belongs
to A) if CDr(A) ≈ 0 (with O(log |x|) accuracy) and log |A| ≈ CDm(x). Here r
and m are some small numbers. For such A the values dm(x|A) and δr,m(x,A)
are small.

It turns out that every string has a good explanation. Indeed, let x be a string
such that CDm(x) = k. Define a set A � x as {y | CDm(y) ≤ k}. The log-size of
this set is equal to k up to a non-negative constant and hence log |A| = CDm(x).
Note that A can be distinguished by a program of length O(log(k + m)) that
uses poly(m) space.

So, for space-bounded algorithms all strings have good explanations (in other
words, they are stochastic).

4 Such an universal machine does exist – see [5].

On Algorithmic Statistics for Space-Bounded Algorithms 235

1.3 Distributions and Sets

Recall that in the classical algorithmic statistics for every distribution P and
every x there is a finite set A � x that is not worse than P as an explanation for
x. It turns out that this the case also for space-bounded algorithmic statistics
(otherwise we could not restrict ourselves to finite sets).

Before we formulate this result we give a definition of the complexity of a
probability distribution P with space bound m that is denoted by Cm(P). This
value is defined as the minimal length of a program p without input and with
the following two properties. First, for every x the probability of the event [x
output by p] is equal to P (x). Second, p uses space at most m (always). If such
a program does not exist then Cm(P) := ∞.

Theorem 2. There exist a polynomial r and a constant c such that for every
string x, for every distribution P and for every m there exists a set A � x such
that CDr(m+n)(A) ≤ Cm(P) + c log(n + m) and 1

|A| ≥ P (x)2−c log n. Here n is
length of x.

The main tool of the proof of Theorem2 is the theorem of Nisan “RL ⊆ SC”,
more precisely its generalization—Theorem 1.2 in [8].

1.4 Descriptions of Restricted Type

So far we considered arbitrary finite sets (or more general distributions) as mod-
els (statistical hypotheses). We have seen that for such class of hypotheses the
theory becomes trivial. However, in practice we usually have some a priori infor-
mation about the data. We know that the data was obtained by sampling with
respect to an unknown probability distribution from a known family of distrib-
utions. For simplicity we will consider only uniform distributions i.e. a family of
finite sets A.

For example, we can consider the family of all Hamming balls as A. (That
means we know a priory that our string was obtain by flipping certain number
of bits in an unknown string.) Or we may consider the family that consists
of all ‘cylinders’: for every n and for every string u of length at most n we
consider the set of all n-bit strings that have prefix u. It turns out that for the
second family there exists a string that has no good explanations in this family:
the concatenation of an incompressible string (i.e. a string whose Kolmogorov
complexity is close to its length) and all zero string of the same length. (We omit
the rigorous formulation and the proof.)

Restricting the class of allowed hypotheses was initiated in [16]. It turns
out that there exists a direct connection between randomness and optimality
deficiencies in the case when a family is enumerable.

Theorem 3 ([16]). Let A be an enumerable family of sets. Assume that every
set from A consists of strings of the same length. Let x be a string of length n
contained in A ∈ A. Then:

236 A. Milovanov

(a) d(x|A) ≤ δ(x,A) + O(log(C(A) + n)).

(b) There exists B ∈ A containing x such that:

δ(x,B) ≤ d(x|A) + O(log(C(A) + n)).

In our paper we will consider families with the following properties:

– Every set from A consists of strings of the same length. The family of all
subsets of {0, 1}n that belong to A is denoted by An.

– There exists a polynomial p such that |An| ≤ 2p(n) for every n.
– There exists an algorithm enumerating all sets from An in space poly(n).

The last requirement means the following. There exists an indexing of An and
a Turing machine M that for a pair of integers (n; i) and a string x in the input
outputs 1 if x belongs to i-th set of An and 0 otherwise. On every such input M
uses at most poly(n) space.

Any family of finite sets of strings that satisfies these three conditions is
called acceptable. For example, the family of all Hamming balls is acceptable.
Our main result is the following analogue of Theorem3.

Theorem 4. (a) There exist a polynomial p and a constant c such that for every
set A � x and for every m the following inequality holds

dm(x|A) ≤ δm,p(x,A) + c log(Cm(A)).

Here p = p(m + n) and n is the length of x.
(b) For every acceptable family of sets A there exists a polynomial p such

that the following property holds. For every A ∈ A, for every x ∈ A and for
every integer m there exists a set B � x from A such that

– log |B| ≤ log |A| + 1;
– CDs(B) ≤ CDm(A) − CDs(A|x) + O(log(n + m)).

Here s = p(m + n) and n is the length of x.

A skeptical reader would say that an analogue of Theorem3(b) should has
the following form (and we completely agree with him/her).

Hypothesis 1. There exist a polynomial p and a constant c such that for every
set A � x from A and for every m there exists a set B ∈ A such that

δp,m(x,B) ≤ dp(x|A) + c log(n + m).

Here p = p(m + n), n is the length of x and A is an acceptable family of sets.

We argue in Subsect. 2.1 why Theorem 4(b) is close to Hypothesis 1.

On Algorithmic Statistics for Space-Bounded Algorithms 237

2 Proof of Theorem4

Proof (of Theorem 4(a)). The inequality we have to prove means the following

CDp(x) ≤ CDm(x|A) + CDm(A) + c log(CDm(A) + n)

(by the definitions of optimality and randomness deficiencies).
Consider a program p of length CDm(x|A) that distinguishes x and uses A

as an oracle. We need to construct a program that also distinguishes x but does
not use any oracle. For this add to p a procedure distinguishing A. There exists
such a procedure of length CDm(A). So, we get a program of the length that
we want (additional O(log(CDm(A))) bits are used for pair coding) that uses
poly(m) space.

So, for every x and A � x the randomness deficiency is not greater than
the optimal deficiency. The following example shows that the difference can be
large.

Example 1. Consider an incompressible string x of length n, so C(x) = n (this
equality as well as further ones holds with logarithmic precision). Let y be n-bit
string that is also incompressible and independent of x, i.e. C(y |x) = n. By
symmetry of information (see [5,13]) we get C(x|y) = n.

Define A := {0, 1}n\{y}. The randomness deficiency of x in A (without
resource restrictions) is equal to 0. Hence, this is true for any resource restrictions
(C(x|A) is not greater than CDm(x|A) for every m). Hence, for any m we have
dm(x|A) = 0. On the other hand δp

m(x,A) = n for all p and large enough m.
Indeed, take m = poly(n) such that CDm(x) = n. Since C(A) = n we have
CDq(A) = n for every q.

So, we can not just let A = B in Hypothesis 1. In some cases we have to
‘improve’ A (in the example above we can take {0, 1}n as an improved set).

2.1 Sketch of Proof of Theorem3(b)

The proof of Theorem 4(b) is similar to the proof of Theorem3(b). Therefore we
present the sketch of the proof of Theorem 3(b).

Theorem 3 states that there exists a set B ∈ A containing x such that
δ(x|B) ≤ d(x,A). (Here and later we omit terms of logarithmic order.) First
we derive it from the following statement.

(1) There exists a set B ∈ A containing x such that
|B| ≤ 2 · |A| and C(B) ≤ C(A) − C(A|x).
For such B the δ(x|B) ≤ d(x,A) easily follows from the inequality C(A) −

C(A|x) − C(x) ≤ −C(x|A). The latter inequality holds by symmetry of infor-
mation.

To prove (1) note that
(2) there exist at least 2C(A|x) sets in A containing x whose complexity and

size are at most C(A) and 2 · |A|, respectively.

238 A. Milovanov

Indeed, knowing x we can enumerate all sets from A containing x whose
parameters (complexity and size) are not worse than the parameters of A. Since
we can describe A by its ordinal number in this enumeration we conclude that
the length of this number is at least C(A|x) (with logarithmic precision).

Now (1) follows from the following statement.
(3) Assume that A contains at least 2k sets of complexity at most i and size

at most 2j containing x. Then one of them has complexity at most i − k.
(We will apply it to i = C(A), j =
log |A|� and k = C(A|x).)
So, Theorem 4(b) is an analogue of (2). Despite there is an analogue of

symmetry of information for space-bounded algorithms (see [6] and Appendix)
Hypothesis 1 does not follow Theorem 4(b) directly. (There is some problem with
quantifiers.)

Proof of (3) is the main part of the proof of Theorem3, the same thing holds
for Theorem 4.

In the next subsection we derive Theorem 4(b) from Lemma 1 (this is an ana-
logue of the third statement). In the proof of Lemma1 we use the Nisan-Wigderson
generator.

2.2 Main Lemma

We will derive Theorem 4(b) from the following

Lemma 1. For every acceptable family of sets A there exist a polynomial p and
a constant c such that the following statement holds for every j.

Assume that a string x of length n belongs to 2k sets from An. Assume
also that every of these sets has cardinality at most 2j and space-bounded by m
complexity at most i. Then one of this set is space-bounded by M complexity at
most i − k + c log(n + m). Here M = m + p(n).

Proof (Theorem 4(b) from Lemma 1).
Denote by A′ the family of all sets in An containing x whose parameters are

not worse than those of A.

A′ := {A′ ∈ An | x ∈ A′,CDm(A) ≤ CDm(A′), log |A′| ≤ �log |A|}.

Let k = log A′.
We will describe A in k + O(log(n + m)) bits when x is known. The sets in

A′ (more specifically, their programs) can be enumerated if n,m and log |A| are
known. This enumeration can be done in space poly(m + n). We can describe A
by its ordinal number of this enumeration, so

CDs(A|x) ≤ k + O(log(n + m)).

Here s = poly(m + n).
Theorem 4(b) follows from Lemma 1 for i = CDm(A) and j = �log |A|.

On Algorithmic Statistics for Space-Bounded Algorithms 239

2.3 Nisan-Wigderson Generator. Proof of the Main Lemma

Define
Ai,j

n,m := {A′ ∈ An | CDm(A′) ≤ i, log |A′| ≤ j}
for an acceptable family of sets A.

Define a probability distribution B as follows. Every set from Ai,j
n,m belongs

to B with probability 2−k(n + 2) ln 2 independently.
We claim that B satisfies the following two properties with high probability.
(1) The cardinality of B is at most 2i−k+2 · (n + k)2 ln 2.
(2) If a string of length n is contained in at least 2k sets from Ai,j

n,m then one
of these sets belongs to B.

Lemma 2. The family B satisfies the properties (1) and (2) with probability at
least 1

2 .

Proof. Show that B satisfies every of these two properties with probability at
least 3

4 .
For (1) it follows from Markov’s inequality: the cardinality of B exceeds the

expectation by a factor of 4 with probability less than 1
4 . (Of course we can get

a rather more stronger estimation.)
To prove it for (2) consider a string of length n that belongs to at least 2k

sets from Ai,j
n,m. The probability of the event [every of these 2k sets does not

belong to B] is at most

(1 − 2−k(n + 2) ln 2)2
k ≤ 2−n−2 (since 1 − x ≤ e−x).

The probability of the sum of such events for all strings of length n is at most
2n2−n−2 = 1

4 .

Using Lemma 2 we can prove existence of a required set whose unbounded
complexity is at most i − k + O(log(n + m)). Indeed, by Lemma 2 there exists
a subfamily that satisfies the properties (1) and (2). The lexicographically first
such family has small complexity—we need only know i, k, n and m to describe
it. Note, that k and i are bounded by poly(n): since A is acceptable log |An| =
poly(n) and hence k is not greater than poly(n). We can enumerate all sets from
An, so space-bounded complexity of every element of An (in particular, i) is
bounded by polynomial in n. Now we can describe a required set as the ordinal
number of an enumeration of this subfamily.

However, this method is not suitable for the polynomial space-bounded com-
plexity: the brute-force search for the finding a suitable subfamily uses too much
space (exponential). To reduce it we will use the Nisan-Wigderson generator.
The same idea was used in [7].

Theorem 5 ([9,10]). For every constant d and for every positive polyno-
mial q(m) there exists a sequence of functions Gm : {0, 1}f → {0, 1}m where
f = O(log2d+6 m) such that:

240 A. Milovanov

– Function Gm is computable in space poly(f);
– For every family of circuits Cn of size q(v) and depth d and for large enough

n it holds that:

|Pr
x

[Cm(Gm(x)) = 1] − Pr
y

[Cm(y) = 1]| <
1
m

,

where x is distributed uniformly in {0, 1}f , and y is distributed uniformly in
{0, 1}m.

We will use this theorem for m = 2i+n. Then f is a polynomial in i + n (if
d is a constant), hence f = poly(n). Every element whose complexity is at
most i corresponds to a string of length i in the natural way. So, we can assign
subfamilies of Ai,j

n,m to strings of length m.
Assume that there exists a circuit of size 2O(n) and constant depth that

inputs a subfamily of Ai,j
n and outputs 1 if this subfamily satisfies properties

(1) and (2) from Lemma 2, and 0 otherwise. First we prove Lemma 1 using this
assumption.

Compute Gm(y) for all strings y of length f until we find a suitable one,
i.e. whose image satisfies our two properties. Such a string exists by Lemma 2,
Theorem 5 and our assumption. Note that we can find the lexicographically first
suitable string by using space m+poly(n), so bounded by space m+poly(n) the
complexity of this string is equal to O(log(n + m)).

So, if we can construct a constant depth circuit of the needed size that verifies
properties (1) and (2) then we are happy. Unfortunately we do not know how
to construct such a circuit verifying the first property (there exist problems
with a computation of threshold functions by constant-depth circuits—see [3]).
However, we know the following result.

Theorem 6 ([1]). For every t there exists a circuit of constant depth and
poly(t) size that inputs binary strings of length t and outputs 1 if an input has
at most log2 t ones and 0 otherwise.

To use this theorem we make a little change of the first property. Divide Ai,j
n

into 2i−k parts of size 2k. The corrected property is the following.
(1)∗ The family of sets B contains at most (n + k)2 sets from each of these

parts.

Lemma 3. The family of sets B satisfies properties (1)∗ and (2) with probability
at least 1

3 .

The proof of this lemma is not difficult but uses cumbersome formulas. We
present the proof of Lemma 3 in Appendix.

Proof (of Lemma 1). It is clear that property (1)∗ implies property (1). Hence
by using Lemma 1 and the discussion above, it is enough to show that properties
(1)∗ and (2) can be verified by constant depth circuits of size 2O(i+n).

Such a circuit exists for property (1)∗ by Theorem 6.

On Algorithmic Statistics for Space-Bounded Algorithms 241

The second property can be verified by the following 2-depth circuit. For
every string of length n containing in 2k sets from Ai,j

n there exists a corre-
sponding disjunct. All of these disjuncts go to a conjunction gate.

3 Proof of Theorem2

Theorem 2 would have an easy proof if a program that corresponds to a distri-
bution P could use only poly(n) random bits. Indeed, in such case we can run
a program with all possible random bits and so calculate P (x) for every x in
polynomial space. Hence, we can describe A as the set of all strings whose the
probability of output is at least 2−k, where 2−k ≥ P (x) > 2−k−1.

In the general case (when the number of random bits is exponentially large)
we will use the following theorem.

Theorem 7 ([8]). Let f be a probabilistic program, that uses at most r(n) space
on inputs of length n for some polynomial r. Assume that f always outputs 0
or 1 (in particular, f never loops). Then there exists a deterministic program ̂f
with the following properties:

(a) ̂f uses at most r2(n) space on inputs of length n;
(b) if Pr[f(x) = 1] > 2

3 then ̂f(x) = 1. If Pr[f(x) = 1] < 1
3 then ̂f(x) = 0;

(c) | ̂f | ≤ |f | + O(1).5

Proof (of Theorem 2). If the complexity of distribution P (bounded by space m)
is equal to infinity then we can take {x} as A.

Else P can be specified by a program g. Consider the integer k such that:
2−k+1 ≥ P (x) ≥ 2−k. We can assume that k is not greater than n—the length
of x—else we can take {0, 1}n as A.

Note, that we can find a good approximation for P (y) running g exponentially
times.

More accurately, let us run g for 2100k2
times. For every string y denote by

ω(y) the frequency of output of y. The following inequality holds by Hoeffding’s
inequality

Pr[|w(y) − P (y)| > 2−k−10] <
1
3
.

Hence by using program g we can construct a program f that uses poly(n) space
(on inputs of length n) such that

(1) if P (y) > 2−k−1 and |y| = n then Pr[f(y) = 1] > 2
3 ;

(2) if P (y) < 2−k−2 then Pr[f(y) = 0] > 2
3 .

5 Theorem 1.2 in [8] has another formulation: it does not contain any information

about | ̂f |. However, from the proof of the theorem it follows that a needed program

(denote it as ̂f1) is got from f by using an algorithmic transformation. Therefore

there exists a program ̂f that works functionally like ̂f1 such that | ̂f | ≤ |f | + O(1).
Also, Theorem 1.2 does not assume that Pr[f(x)] can belong to [1

3
; 2
3
]. However,

this assumption does not used in the proof of Theorem 1.2.

242 A. Milovanov

Now using Theorem 7 for f we get a program ̂f such that | ̂f | ≤ |g|+O(log n).
By the first property of f we get ̂f(x) = 1. From the second property it follows
that the cardinality of the set {y | ̂f(y) = 1} is not greater than 2k+2. So, this
set satisfies the requirements of the theorem.

Remark 1. Another proof of Theorem2 was done by Ricky Demer at Stackex-
change – http://cstheory.stackexchange.com/questions/34896/can-every-distri
bution-producible-by-a-probabilistic-pspace-machine-be-produced.

Open question

Does Hypothesis 1 hold?

Acknowledgments. I would like to thank Nikolay Vereshchagin and Alexander Shen
for useful discussions, advice and remarks.

This work is supported by RFBR grant 16-01-00362 and supported in part by Young
Russian Mathematics award and RaCAF ANR-15-CE40-0016-01 grant. The study has
been funded by the Russian Academic Excellence Project ‘5-100’.

Appendix

Symmetry of Information

Define CDm(A,B) as the minimal length of a program that inputs a pair of
strings (a, b) and outputs a pair of boolean values (a ∈ A, b ∈ B) using space at
most m for every input.

Lemma 4 (Symmetry of information). Assume A,B ⊆ {0, 1}n. Then

(a) ∀m CDp(A,B) ≤ CDm(A) + CDm(B |A) + O(log(CDm(A,B) + m + n))

for p = m + poly(n + CDm(A,B)).

(b) ∀m CDp(A) + CDp(B |A) ≤ CDm(A,B) + O(log(CDm(A,B) + m + n))

for p = 2m + poly(n + CDm(A,B)).

Proof (of Lemma 4(a)). The proof is similar to the proof of Theorem4(a).

Proof (of Lemma 4(b)). Let k := CDm(A,B). Denote by D the family of sets
(U, V) such that CDm(U, V) ≤ k and U, V ⊆ {0, 1}n. It is clear that |D| < 2k+1.
Denote by DA the pairs of D whose the first element is equal to A. Let t satisfy
the inequalities 2t ≤ |DA| < 2t+1.

Let us prove that

– CDp(B |A) does not exceed t significantly;
– CDp(A) does not exceed k − t significantly.

http://cstheory.stackexchange.com/questions/34896/can-every-distribution-producible-by-a-probabilistic-pspace-machine-be-produced
http://cstheory.stackexchange.com/questions/34896/can-every-distribution-producible-by-a-probabilistic-pspace-machine-be-produced

On Algorithmic Statistics for Space-Bounded Algorithms 243

Here p = m + O(n).
We start with the first statement. There exists a program that enumerates

all sets from DA using A as an oracle and that works in space 2m+O(n). Indeed,
such enumeration can be done in the following way: enumerate all programs of
length k and verify the following condition for every pair of n-bit strings. First,
a program uses at most m space on this input. Second, if a second n-bit string
belongs to A then the program outputs 1, and 0 otherwise. Since some program
loops we need additional m + O(n) space to take it into account.

Append to this program the ordinal number of a program that distinguishes
(A,B). This number is not greater than t + 1. Therefore we have CDp(B |A) ≤
t + O(log(CDm(A,B) + m + n)).

Now let us prove the second statement. Note that there exist at most 2k−t+1

sets U such that |DU | ≥ 2t (including A). Hence, if we construct a program that
enumerates all sets with such property (and does not use much space) then we
will win—the set A can be described by the ordinal number of this enumeration.

Let us construct such a program. It works as follows:
enumerate all sets U that are the first elements from D, i.e. we enumerate

programs that distinguish the corresponding sets (say, lexicographically). We go
to the next step if the following properties holds. First, |DU | ≥ 2t, and second: we
did not meet set U earlier (i.e. every program whose the lexicographical number
is smaller does not distinguish U or is not the first element from a set from D).

This program works in 2m+poly(n+CDm(A,B)) space (that we want) and
has length O(log(CDm(A) + n + m)).

Proof (of Lemma 3). Let us show that B satisfies property (1)∗ with probability
at most 2−n. Since B satisfies property (2) with probability at most 1

4 (see the
proof of Lemma 2) it would be enough for us.

For this let us show that every part is ‘bad’ (i.e. has at least (n + k)2 + 1
sets from B) with probability at most 2−2n. The probability of such event is
equal to the probability of the following event: a binomial random variable with
parameters (2k, 2−k(n+2) ln 2) is greater than (n+k)2. To get the needed upper
bound for this probability is not difficult however the correspondent formulas are
cumbersome. Take w := 2k, p := 2−k(n + 2) ln 2 and v := (n + k)2. We need to
estimate

w
∑

i=v

(

w

i

)

pi(1 − p)w−i < w ·
(

w

v

)

pv(1 − p)w−v < w ·
(

w

v

)

pv < w
(wp)v

v!
.

The first inequality holds since wp = (n + 2) ln 2 ≤ (n + k)2 = v. Now note that
wp = (n + 2) ln 2 < 10n. So

w
(wp)v

v!
<

2k(10n)(n+k)2

((n + k)2)!
� 2−2n.

244 A. Milovanov

References

1. Ajtai, M.: Approximate counting with uniform constant-depth circuits. In:
Advanced in Computational Complexity Theory, pp. 1–20. American Mathemati-
cal Society (1993)

2. Buhrman, H., Fortnow, L., Laplante, S.: Resource-Bounded Kolmogorov complex-
ity revisited. SIAM J. Comput. 31(3), 887–905 (2002)

3. Furst, M., Saxe, J.B., Sipser, M.: Math. Syst. Theory 17(1), 13–27 (1984)
4. Kolmogorov, A.N.: Approaches, three approaches to the quantitative definition

of information. Problems Inf. Transmission 1(1), 4–11 (1965). English translation
published in Int. J. Comput. Math. 2, 157–168 (1968)

5. Li, P., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions, 3rd edn, p. 792. Springer, Heidelberg (1993). 1st edn. 1993; 2nd edn. 1997

6. Longpré, L.: Resource bounded kolmogorov complexity, a link between computa-
tional complexity and information theory. Ph. D. Thesis, Cornell University, Ithaca,
NY (1986)

7. Musatov, D.: Improving the space-bounded version of muchnik’s conditional com-
plexity theorem via “naive” derandomization. Theory Comput. Syst. 55(2), 299–
312 (2014)

8. Nisan, N.: RL ⊆ SC. J. Comput. Complex. 4, 1–11 (1994)
9. Nisan, N.: Pseudorandom bits for constant depth circuits. Combinatorica 11, 63–70

(1991)
10. Nisan, N., Wigderson, A.: Hardness vs randomness. J. Comput. Syst. Sci. 49(2),

149–167 (1994)
11. Shen, A., Kolmogorov, A.: Around kolmogorov complexity: basic notions and

results. In: Vovk, V., Papadoupoulos, H., Gammerman, A. (eds.) Measures of Com-
plexity: Festschrift for Alexey Chervonenkis. Springer, Heidelberg (2015)

12. Shen, A.: The concept of (α, β)-stochasticity in the Kolmogorov sense, and its
properties. Sov. Math. Doklady 271(1), 295–299 (1983)

13. Shen, A., Uspensky, V., Vereshchagin, N.: Kolmogorov complexity and algorithmic
randomness. In: MCCME 2013 (Russian). English translation http://www.lirmm.
fr/∼ashen/kolmbook-eng.pdf

14. Sipser, M.: A complexity theoretic approach to randomness. In: Proceedings of the
15th ACM Symposium on the Theory of Computing, pp. 330–335 (1983)

15. Vereshchagin, N., Vitányi, P.: Kolmogorov’s Structure Functions with an Appli-
cation to the foundations of model selection. IEEE Trans. Inf. Theory 50(12),
3265–3290 (2004). Preliminary version: Proceedings of 47th IEEE Symposium on
the Foundations of Computer Science, pp. 751–760 (2002)

16. Vereshchagin, N.K., Vitányi, P.M.B.: Rate distortion a nd denoising of individ-
ual data using kolmogorov complexity. IEEE Trans. Inf. Theory 56(7), 3438–3454
(2010)

http://www.lirmm.fr/~ashen/kolmbook-eng.pdf
http://www.lirmm.fr/~ashen/kolmbook-eng.pdf

Popularity in the Generalized Hospital
Residents Setting

Meghana Nasre and Amit Rawat(B)

Indian Institute of Technology Madras, Chennai, India
amit rawat@fastmail.fm

Abstract. We consider the problem of computing popular matchings in
a bipartite graph G = (R ∪ H, E) where R and H denote a set of res-
idents and a set of hospitals respectively. Each hospital h has a positive
capacity denoting the number of residents that can be matched to h. The
residents and the hospitals specify strict preferences over each other. This
is the well-studied Hospital Residents (HR) problem which is a generaliza-
tion of the Stable Marriage (SM) problem. The goal is to assign residents
to hospitals optimally while respecting the capacities of the hospitals. Sta-
bility is a well-accepted notion of optimality in such problems. However,
motivated by the need for larger cardinality matchings, alternative notions
of optimality like popularity have been investigated in the SM setting. In
this paper, we consider a generalized HR setting – namely the Laminar
Classified Stable Matchings (LCSM+) problem. Here, additionally, hospi-
tals can specify classifications over residents in their preference lists and
classes have upper quotas. We show the following new results: We define
a notion of popularity and give a structural characterization of popular
matchings for the LCSM+ problem. Assume n = |R| + |H| and m = |E|.
We give an O(mn) time algorithm for computing a maximum cardinality
popular matching in an LCSM+ instance. We give an O(mn2) time algo-
rithm for computing a matching that is popular amongst the maximum
cardinality matchings in an LCSM+ instance.

1 Introduction

Consider an academic institution where students credit an elective course from
a set of available courses. Every student and every course rank a subset of ele-
ments from the other set in a strict order of preference. Each course has a quota
denoting the maximum number of students it can accommodate. The goal is to
allocate to every student at most one course respecting the preferences. This is
the well-studied Hospital Residents problem [7]. We consider its generalization
where, in addition, a course can classify students – for example, the students
may be classified as under-graduates, post-graduates, department-wise, and so
on. Depending on the classifications, a student may belong to multiple classes.
Apart from the total quota, each course now has a quota for every class. An
allocation, in this setting, has to additionally respect the class quotas. This is
the Classified Stable Matching problem introduced by Huang [10].

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 245–259, 2017.
DOI: 10.1007/978-3-319-58747-9 22

246 M. Nasre and A. Rawat

Stability is a de-facto notion of optimality in settings where both set of partic-
ipants have preferences. Informally, an allocation of students to courses is stable
if no unallocated student-course pair has incentive to deviate from the allocation.
Stability is appealing for several reasons – stable allocations are guaranteed to
exist, they are efficiently computable and all stable allocations leave the same
set of students unallocated [9]. However, it is known [13] that the cardinality
of a stable allocation can be half the size of the largest sized allocation possi-
ble. Furthermore, in applications like student-course allocation, leaving a large
number of students unallocated is undesirable. Thus, it is interesting to consider
notions of optimality which respect preferences but possibly compromise stabil-
ity in the favor of cardinality. Kavitha and Huang [11,13] investigated this in the
Stable Marriage (SM) setting where they considered popularity as an alternative
to stability. At a high level, an allocation of students to courses is popular if no
majority wishes to deviate from the allocation. Here, we consider popularity in
the context of two-sided preferences and one-sided capacities with classifications.

We formally define our problem now – we use the familiar hospital residents
notation. Let G = (R ∪ H, E) be a bipartite graph where |R ∪ H| = n and
|E| = m. Here R denotes the set of residents, H denotes the set of hospitals and
every hospital h ∈ H has an upper quota q(h) denoting the maximum number
of residents h can occupy. A pair (r, h) ∈ E denotes that r and h are mutually
acceptable to each other. Each resident (resp. hospital) has a strict ordering of a
subset of the hospitals (resp. residents) that are acceptable to him or her (resp.
it). This ordering is called the preference list of a vertex. An assignment (or a
matching) M in G is a subset of E such that every resident is assigned to at most
one hospital and a hospital h is assigned at most q(h) residents. Let M(r) (resp.
M(h)) denote the hospital (resp. the set of residents) which are assigned to r
(resp. h) in M . A hospital h is under-subscribed if |M(h)| < q(h). A matching
M is stable if no unassigned pair (r, h) wishes to deviate from M . The goal is to
compute a stable matching in G. We denote this problem as HR+ throughout the
paper 1. The celebrated deferred acceptance algorithm by Gale and Shapley [7]
proves that every instance of the HR+ problem admits a stable matching.

A generalization of the HR+ problem is the Laminar Classified Stable Match-
ing (LCSM) problem introduced by Huang [10]. An instance of the LCSM+

problem is an instance of the HR+ problem where additionally, each hospital h
is allowed to specify a classification over the set of residents in its preference list.
A class Ch

k of a hospital h is a subset of residents in its preference list and has
an associated upper quota q(Ch

k) denoting the maximum number of residents
that can be matched to h in Ch

k . (In the LCSM problem [10], classes can have
lower quotas as well.) We assume that the classes of a hospital form a laminar
set. That is, for any two classes Ch

j and Ch
k , either the two classes are disjoint

(Ch
j ∩ Ch

k = ∅), or one is contained inside the other (Ch
j ⊂ Ch

k or Ch
k ⊂ Ch

j).
Huang suitably modified the classical definition of stability to account for the
presence of these classifications. He showed that every instance of the LCSM+

1 We use HR+ instead of HR for consistency with other problems discussed in the
paper. The + signifies that the hospitals do not specify a lower quota.

Popularity in the Generalized Hospital Residents Setting 247

problem admits a stable matching which can be computed in O(mn) time [10]. A
restriction of the LCSM+ problem, denoted by Partition Classified Stable Match-
ing (PCSM+), is where the classes of every hospital partition the residents in its
preference list. The classified versions of the HR problem are natural in scenar-
ios like course allocation, academic hiring [10] and in some of these applications
stability may be compromised in favour of cardinality. Motivated by this, we
consider computing popular matchings in the LCSM+ problem. The notion of
popularity uses votes to compare two matchings. Before we can define voting in
the LCSM+ setting, we discuss voting in the context of the SM problem.

Voting in the SM setting: Let G = (R ∪ H, E) be an instance of the SM
problem and let M and M ′ be any two matchings in G. A vertex u ∈ R ∪ H
(where each hospital h has q(h) = 1) prefers M over M ′ and therefore votes for
M over M ′ if either (i) u is matched in M and unmatched in M ′ or (ii) u is
matched in both M and M ′ and prefers M(u) over M ′(u). A matching M is more
popular than M ′ if the number of votes that M gets as compared to M ′ is greater
than the number of votes that M ′ gets as compared to M . A matching M is
popular if there does not exist any matching that is more popular than M . In the
SM setting it is known that a stable matching is popular, however it was shown
to be minimum cardinality popular matching [11]. Huang and Kavitha [11,13]
gave efficient algorithms for computing a max-cardinality popular matching and
a popular matching amongst max-cardinality matchings in an SM instance.

Voting in the capacitated setting: To extend voting in the capacitated set-
ting, we assign a hospital h as many votes as its upper quota q(h). This models
the scenario in which hospitals with larger capacity get a larger share of votes.
For the HR+ problem, a hospital h compares the most preferred resident in
M(h)\M ′(h) to the most preferred resident in M ′(h)\M(h) (and votes for M
or M ′ as far as those two residents are concerned) and so on.

We show that the straightforward voting scheme as defined in the HR+ does
not suffice for the LCSM+ problem. Therefore, we define a voting scheme which
takes into consideration the classifications provided by a hospital as well as
ensures that every stable matching in the LCSM+ instance is popular. We show
the following results:

– We define a notion of popularity for the LCSM+ problem. Since our definition
ensures that stable matchings are popular – this guarantees the existence of
popular matchings in the LCSM+ problem.

– We give a characterization of popular matchings for the LCSM+ problem,
which is an extension of the characterization result in the SM setting [11].

– We obtain the following algorithmic results. An O(m + n) (resp. O(mn))
time algorithm for computing a maximum cardinality popular matching in a
PCSM+ (resp. LCSM+) instance. An O(mn) (resp. O(mn2)) time algorithm
for computing a popular matching amongst maximum cardinality matchings
in a PCSM+ (resp. LCSM+) instance.

Very recently, independent of our work, two different groups [4,12] have con-
sidered popular matchings in the one-to-many setting. Brandl and Kavitha [4]

248 M. Nasre and A. Rawat

have considered computing popular matchings in the HR+ problem. In their work
as well as ours, a hospital h is assigned as many votes as its capacity to compare
two matchings M and M ′. In contrast, by the definition of popularity in [4], a
hospital h chooses the most adversarial ordering of residents in M(h)\M ′(h) and
M ′(h)\M(h) for comparing M and M ′. Interestingly, in an HR+ instance the
same matching is output by the algorithm in [4] and our algorithm in Sect. 4.
On the other hand, we remark that the model considered in our paper is a more
general one than the one considered in [4]. Kamiyama [12] has generalized our
work and the results in [4] using a matroid based approach.

We finally remark that one can consider voting schemes where a hospital
is given a single vote instead of capacity many votes. In one such scheme, a
hospital compares the set of residents in M(h) and M ′(h) in lexicographic order
and votes accordingly. However, when such a voting is used, it is possible to
construct instances where a stable matching is not popular. The techniques in this
paper use the fact that stable matchings are popular (for guaranteed existence),
therefore it is not clear if the same techniques apply for such voting schemes.

Related Work: The notion of popularity was introduced by Gärdenfors [8] in
the context of stable matchings. In [1] Abraham et al. studied popularity in the
one-sided preference list model. As mentioned earlier, our work is inspired by a
series of papers by Huang, Kavitha and Cseh [5,11,13] where popularity is con-
sidered as an alternative to stability in the stable marriage setting. Biró et al. [3]
give several practical scenarios where stability may be compromised in the favor
of size. The PCSM+ problem is a special case of the Student Project Allocation
(SPA) problem studied by Abraham et al. [2]. They gave a linear time algorithm
to compute a stable matching in an instance of the SPA problem. In this paper,
we use the algorithms of Abraham et al. [2] and Huang [10] for computing stable
matchings in the PCSM+ and LCSM+ problems. Both these algorithms follow
the standard deferred acceptance algorithm of Gale and Shapley with problem
specific modifications. We refer the reader to [2,10] for details.

Overview and Organization of paper: In Sect. 2 we define the notion of popularity,
and in Sect. 3 we present the structural characterization of popular matchings.
Our algorithms to compute popular matchings in the LCSM+ problem are based
on the idea of allowing residents to apply to hospitals multiple times, each time
with increased priority. In Sect. 4 we present these algorithms as a generic reduc-
tion (to be invoked with a suitable parameter) to the problem of computing a
stable matching in a modified LCSM+ instance.

2 Stability and Popularity in the LCSM+ Problem

Consider an instance G = (R ∪ H, E) of the LCSM+ problem. As done in [10],
assume that for every h ∈ H there is a class Ch

∗ containing all the residents in
the preference list of h and q(Ch

∗) = q(h). For a hospital h, let T (h) denote the
tree of classes corresponding to h where Ch

∗ is the root of T (h). The leaf classes

Popularity in the Generalized Hospital Residents Setting 249

in T (h) denote the most refined classifications for a resident whereas as we move
up in the tree from a leaf node to the root, the classifications gets coarser.

To define stable matchings in the LCSM problem, Huang introduced the
notion of a blocking group w.r.t. a matching. Later, Fleiner and Kamiyama [6]
defined a blocking pair which is equivalent to a blocking group as defined by
Huang. We use the definition of stability from [6] which we recall below. Con-
sider the following LCSM+ instance which will serve as an illustrative example
throughout the paper. Here R = {r1, . . . , r4} and H = {h1, . . . , h3} and the
preference lists of the residents and hospitals are as given in Fig. 1(a) and (b)
respectively. The preferences can be read as follows: resident r1 has h1 as his
top choice hospital. Resident r2 has h2 as its top choice hospital followed by h1

which is his second choice hospital and so on. For h ∈ {h2, h3} we have q(h) = 1
and both these hospitals have a single class Ch

∗ containing all the residents in the
preference list of h and q(Ch

∗) = q(h). For hospital h1 we have q(h1) = 2 and the
classes provided by h1 are Ch1

1 = {r1, r2}, Ch1
2 = {r3, r4}, Ch1∗ = {r1, r2, r3, r4}

with quotas as follows: q(Ch1
1) = q(Ch1

2) = 1 and q(Ch1∗) = 2. Note that the
example is indeed a PCSM+ instance. Figure 1(c) shows the tree T (h1).

r1 : h1

r2 : h2, h1, h3

r3 : h1, h2

r4 : h1

(a)

h1 : r2, r3, r4, r1
h2 : r3, r2
h3 : r2

(b)

r1, r2, r3, r4

r1, r2 r3, r4

Ch1∗

Ch1
1 Ch1

2

(c)

Fig. 1. (a) Resident preferences, (b) Hospital preferences, (c) T (h1). The match-
ings M = {(r1, h1), (r2, h2), (r3, h1)}, M ′ = {(r2, h1), (r3, h2), (r4, h1)}, and M ′′ =
{(r1, h1), (r2, h3), (r3, h2), (r4, h1)} are all feasible in the instance.

Consider the two feasible matchings M and M ′ defined in Fig. 1. Note that M
is stable in the instance whereas the edge (r3, h1) blocks M ′. While comparing M
and M ′, the vote for every vertex u in the instance except h1 is clear – u compares
M(u) with M ′(u) and votes accordingly. In order for h1 to vote between M and
M ′, the hospital compares between M(h1) = {r1, r3} and M ′(h1) = {r2, r4}.
A straightforward way is to compare r3 with r2 (the most preferred resident in
M(h1) to the most preferred resident in M ′(h1)) and then compare r1 with r4
(second most preferred resident in M(h1) to second most preferred resident in
M ′(h1)). Thus, both the votes of h1 are in favor of M ′ when compared with
M . Such a comparison has two issues – (i) it ignores the classifications given by
h1, and (ii) the number of votes that M ′ gets when compared with M is more
than the number of votes that M gets as compared to M ′. Therefore M ′ is more
popular than M which implies that M (a stable matching) is not popular.

250 M. Nasre and A. Rawat

We propose a comparison scheme for hospitals which addresses both the
issues. In the above example, we note that r1 ∈ M(h) has a corresponding
resident r2 ∈ M ′(h) to be compared to in one of the most refined classes Ch1

1 (see
Fig. 1(c)). Thus, we compare r1 with r2. The resident r3 ∈ M(h) is compared to
r4 ∈ M(h) another leaf class Ch1

2 . According to this comparison, h1 is indifferent
between M and M ′, and M ′ is no longer more popular than M . Note that,
although in the example, both the comparisons happen in a leaf class, this may
not be the case in a general instance. Finally, we note that the matching M ′′ is
a popular matching in the instance and is strictly larger in size than the stable
matching M .

A set S = {r1, . . . , rl} is feasible for a hospital h if |S| ≤ q(h) and for every
class Ch

j of h (including the root class Ch
∗), we have |Ch

j ∩S| ≤ q(Ch
j). A matching

M in G is feasible if every resident is matched to at most one hospital, and M(h)
is feasible for every hospital h ∈ H. A pair (r, h) /∈ M blocks M iff both the
conditions below hold:

– r is unmatched in M , or r prefers h over M(r), and
– either the set M(h)∪{r} is feasible for h, or there exists a resident r′ ∈ M(h),

such that h prefers r over r′, and (M(h)\{r′}) ∪ {r} is feasible for h.

A feasible matching M in G is stable if M does not admit any blocking pair.

2.1 Popularity

To define popularity, we need to specify how a hospital compares two sets M(h)
and M ′(h) in an LCSM+ setting, where M and M ′ are two feasible matchings
in the instance. Our example shows that if we use a simple voting scheme as
in the HR+ problem, a stable matching in the LCSM+ instance is not popular.
Intuitively, this is because such a voting scheme completely ignores the classifica-
tions. To take into account the classifications, for a hospital h and the matchings
M and M ′, we set up a correspondence between residents in M(h)\M ′(h) and
the residents in M ′(h)\M(h). That is, we define:

corr : M(h) ⊕ M ′(h) → M(h) ⊕ M ′(h) ∪ {⊥}

For a resident r ∈ M(h)⊕M ′(h) we denote by corr(r) the corresponding resident
to which r gets compared when the hospital h casts its votes. We let corr(r) = ⊥
if r does not have a corresponding resident to be compared to from the other
matching. The pseudo-code for the algorithm to compute the corr function is
given below.

Popularity in the Generalized Hospital Residents Setting 251

Algorithm 1. Correspondence between residents of M(h) and M ′(h)
1: procedure Find-Correspondence(h, M, M ′)
2: let T (h) be the classification tree associated with h
3: set corr(r) = ⊥ for each r ∈ M(h) ⊕ M ′(h)
4: Y = M(h)\M ′(h); Y ′ = M ′(h)\M(h)
5: while Y �= ∅ and Y ′ �= ∅ do
6: for each class Ch

j in T (h) do
7: Xj = Ch

j ∩ Y
8: X ′

j = Ch
j ∩ Y ′

9: Let Ch
f be one of the most refined classes for which Xf �= ∅ and X ′

f �= ∅.
10: for k = 1, . . . , min(|Xf |, |X ′

f |) do
11: let r be the k-th most preferred resident in Xf

12: let r′ be the k-th most preferred resident in X ′
f

13: set corr(r) = r′, and corr(r′) = r
14: Y = Y \{r}; Y ′ = Y ′\{r′}

The algorithm begins by setting corr for every r ∈ M(h) ⊕ M ′(h) to ⊥.
The algorithm maintains two sets of residents Y = M(h)\M ′(h) and Y ′ =
M ′(h)\M(h) for whom corr needs to be set. As long as the sets Y and Y ′ are
both non-empty, the algorithm repeatedly computes for every class Ch

j (including
the root class Ch

∗) the sets Xj = Ch
j ∩Y and X ′

j = Ch
j ∩Y ′. The algorithm then

chooses one of the most refined classes, say Ch
f in T (h), for whom Xf and X ′

f

are both non-empty. Finally, residents in Xf and X ′
f are sorted according to the

preference ordering of h and the corr of the k-th most preferred resident in Xf is
set to the k-th most preferred resident in X ′

f , where k = 1, . . . ,min{|Xf |, |X ′
f |}.

For r ∈ R, and any feasible matching M in G, if r is unmatched in M then,
M(r) = ⊥. A vertex prefers any of its neighbours over ⊥. For a vertex u ∈ R∪H,
let x, y ∈ N(u) ∪ {⊥}, where N(u) denotes the neighbours of u in G.

voteu(x, y) = +1 if u prefers x over y

= −1 if u prefers y over x

= 0 if x = y

Using the above notation, the vote of a resident is easy to define – a resident
r prefers M ′ over M iff the term Vr > 0, where Vr = voter(M ′(r),M(r)).
Recall that a hospital h uses q(h) votes to compare M and M ′. Let q1(h) =
|M(h) ∩ M ′(h)| (number of common residents assigned to h in M and M ′) and
q2(h) = q(h) − max{|M(h)|, |M ′(h)|} (number of unfilled positions of h in both
M and M ′). Our voting scheme ensures that q1(h) + q2(h) votes of h remain
unused when comparing M and M ′. A hospital h prefers M ′ over M iff the term
Vh > 0, where Vh is defined as follows:

Vh = (|M ′(h)| − |M(h)|) +
∑

r∈M ′(h)\M(h)
&&

corr(r) �=⊥

voteh(r, corr(r))

252 M. Nasre and A. Rawat

The first term in the definition of Vh counts the votes of h w.r.t. the residents
from either M or M ′ that did not find correspondence. The second term counts
the votes of h w.r.t. the residents each of which has a corresponding resident
from the other matching. We note that in the SM setting, corr(r) will simply
be M(h). Thus, our definition of votes in the presence of capacities is a natural
generalization of the voting scheme in the SM problem. Let us define the term
Δ(M ′,M) as the difference between the votes that M ′ gets over M and the votes
that M gets over M ′.

Δ(M ′,M) =
∑

r∈R
Vr +

∑

h∈H
Vh

Definition 1. A matching M is popular in G iff for every feasible matching
M ′, we have Δ(M ′,M) ≤ 0.

Decomposing M ⊕M ′: Here, we present a simple algorithm which allows us to
decompose edges of components of M ⊕M ′ in an instance into alternating paths
and cycles. This decomposition will be used in the subsequent sections and all
of our proofs. Consider the graph G̃ = (R ∪ H,M ⊕ M ′), for any two feasible
matchings M and M ′ in G. We note that the degree of every resident in G̃ is at
most 2 and the degree of every hospital in G̃ is at most 2 · q(h). Consider any
connected component C of G̃ and let e be any edge in C. We observe that it is
possible to construct a unique maximal M alternating path or cycle ρ containing
e using the following simple procedure. Initially ρ contains only the edge e.

1. Let r ∈ R be an end point of ρ, and assume that (r,M(r)) ∈ ρ. We grow
ρ by adding the edge (r,M ′(r)) if it exists. Similarly, if an edge from M ′ is
incident on r in ρ, we grow the path by adding the edge (r,M(r)) if it exists.

2. Let h ∈ H be one of the end points of the path ρ, and assume that (r, h) ∈
M\M ′ belongs to ρ. We extend ρ by adding (corr(r), h) if corr(r) is not
equal to ⊥. A similar step is performed if the last edge on ρ is (r, h) ∈ M ′\M .

3. During this procedure, we may encounter a hospital h which has already
occurred on ρ, leading to a possible cycle 〈h, r, . . . , r′, h〉. We complete the
cycle only if r and r′ are corr w.r.t. to h, else we grow the path by creating
a copy of the hospital h. We stop the procedure when we complete a cycle or
the path can no longer be extended. Otherwise, we go to Step 1 or Step 2 as
applicable and repeat.

The above procedure gives us a unique decomposition of a connected compo-
nent in G̃ into alternating paths and cycles. Note that a hospital may appear
multiple times in a single path or a cycle and also can belong to more than one
alternating paths and cycles. See [14] for an example. Let YM⊕M ′ denote the
collection of alternating paths and alternating cycles obtained by decomposing
every component of G̃. We now state a useful property about any alternating
path or cycle in YM⊕M ′ .

Lemma 1. If ρ is an alternating path or an alternating cycle in YM⊕M ′ , then
M ⊕ ρ is a feasible matching in G.

Popularity in the Generalized Hospital Residents Setting 253

Proof. Let 〈r′, h, r〉 be any sub-path of ρ, where r′ = corr(r), and (r, h) ∈ M .
We prove that (M(h)\{r}) ∪ {r′} is feasible for h. Let Ch

i (resp. Ch
j) be the

unique leaf class of T (h) containing r (resp. r′). We consider two cases. First,
assume that, r and r′ belong to the same leaf class in T (h), i.e. Ch

i = Ch
j . In

this case, it is easy to note that (M(h)\{r}) ∪ {r′} is feasible for h. Secondly
assume that, r and r′ belong to different leaf classes of T (h), i.e. Ch

i = Ch
j .

Observe that |(M(h)\{r}) ∪ {r′}| can violate the upper quota only for those
classes of T (h) which contain r′ but do not contain r. Let Ch

k be the least
common ancestor of Ch

i and Ch
j in T (h). It suffices to look at any class Ch

t

which lies in the path from Ch
k to Ch

j excluding the class Ch
k and show that

|(M(h) ∩ Ch
t) ∪ {r′}| ≤ q(Ch

t). As r′ = corr(r) and r /∈ Ch
t , we claim that

|M(h) ∩ Ch
t | < |M ′(h) ∩ Ch

t | ≤ q(Ch
t). The first inequality is due to the fact

that r′ did not find a corresponding resident in the set (M(h)\M ′(h))∩Ch
t . The

second inequality is because M ′ is feasible. Thus, (M(h) ∩ Ch
t) ∪ {r′} does not

violate the upper quota for Ch
t . Therefore (M(h)\{r}) ∪ {r′} is feasible for h.

We note that the hospital h may occur multiple times on ρ. Let M(h)ρ denote
the set of residents matched to h restricted to ρ. To complete the proof of the
Lemma, we need to prove that (M(h)\M(h)ρ) ∪ M ′(h)ρ is feasible for h. The
arguments for this follow from the arguments given above. ��
As was done in [13], it is convenient to label the edges of M ′\M and use these
labels to compute Δ(M ′,M). Let (r, h) ∈ M ′\M ; the label on (r, h) is a tuple:

(voter(h,M(r)), voteh(r, corr(r)))

Note that since we are labeling edges of M ′\M , both entries of the tuple come
from the set {−1, 1}. With these definitions in place, we are ready to give the
structural characterization of popular matchings in an LCSM+ instance.

3 Structural Characterization of Popular Matchings

Let G = (R ∪ H, E) be an LCSM+ instance and let M and M ′ be two feasible
matchings in G. Using the corr function, we obtain a correspondence of residents
in M(h) ⊕ M ′(h) for every hospital h in G. Let G̃ = (R ∪ H,M ⊕ M ′) and
let YM⊕M ′ denote the collection of alternating paths and cycles obtained by
decomposing every component of G̃. Finally, we label the edges of M ′\M using
appropriate votes. The goal of these steps is to rewrite the term Δ(M ′,M) as a
sum of labels on edges.

We note that the only vertices for whom their vote does not get captured on
the edges of M ′\M are vertices that are matched in M but not matched in M ′.
Let U denote the multi-set of vertices that are end points of paths in YM⊕M ′

such that there is no M ′ edge incident on them. Note that the same hospital can
belong to multiple alternating paths and cycles in YM⊕M ′ , therefore we need
a multi-set. All vertices in U prefer M over M ′ and hence we add a −1 while
capturing their vote in Δ(M ′,M). We can write Δ(M ′,M) as:

254 M. Nasre and A. Rawat

Δ(M ′, M) =
∑

x∈U
−1 +

∑

ρ∈YM⊕M′

⎛

⎝
∑

(r,h)∈(M′∩ρ)

{voter(h, M(r)) + voteh(r, corr(r))}
⎞

⎠

We now delete the edges labeled (−1,−1) from all paths and cycles ρ in YM⊕M ′ .
This simply breaks paths and cycles into one or more paths. Let this new col-
lection of paths and cycles be denoted by ỸM⊕M ′ . Let Ũ denote the multi-set of
vertices that are end points of paths in ỸM⊕M ′ such that there is no M ′ edge
incident on them. We rewrite Δ(M ′,M) as:

Δ(M ′, M) =
∑

x∈Ũ
−1 +

∑

ρ∈ỸM⊕M′

⎛

⎝
∑

(r,h)∈(M′∩ρ)

{voter(h, M(r)) + voteh(r, corr(r))}
⎞

⎠

Theorem below characterizes a popular matching (see [14] for the full proof).

Theorem 1. A feasible matching M in G is popular iff for any feasible matching
M ′ in G, the set ỸM⊕M ′ does not contain any of the following:

1. An alternating cycle with a (1, 1) edge,
2. An alternating path which has a (1, 1) edge and starts with an unmatched

resident in M or a hospital which is under-subscribed in M .
3. An alternating path which has both its ends matched in M and has two or

more (1, 1) edges.

We now prove that every stable matching in an LCSM+ instance is popular.

Theorem 2. Every stable matching in an LCSM+ instance G is popular.

Proof. Let M be a stable matching in G. For any feasible matching M ′ in G
consider the set YM⊕M ′ . To prove that M is popular it suffices to show that there
does not exist a path or cycle ρ ∈ YM⊕M ′ such that an edge of ρ is labeled (1, 1).
For the sake of contradiction, assume that ρ is such a path or cycle, which has
an edge (r′, h) ∈ M ′\M labeled (1, 1). Let r = corr(r′), where (r, h) ∈ M ∩ ρ.
From the proof of Lemma 1 we observe that (M(h)\{r}) ∪ {r′} is feasible for h,
therefore the edge (r′, h) blocks M contradicting the stability of M . ��

4 Popular Matchings in LCSM+ Problem

In this section we present efficient algorithms for computing (i) a maximum
cardinality popular matching, and (ii) a matching that is popular amongst all
the maximum cardinality matchings in a given LCSM+ instance. Our algorithms
are inspired by the reductions of Kavitha and Cseh [5] where they work with
a stable marriage instance. We describe a general reduction from an LCSM+

instance G to another LCSM+ instance Gs. Here s = 2, . . . , |R|. The algorithms
for the two problems are obtained by choosing an appropriate value of s.

Popularity in the Generalized Hospital Residents Setting 255

The graph Gs: Let G = (R ∪ H, E) be the input LCSM+ instance. The graph
Gs = (Rs ∪ Hs, Es) is constructed as follows: Corresponding to every resident
r ∈ R, we have s copies of r, call them r0, . . . , rs−1 in Rs. The hospitals in
H and their capacities remain unchanged; however we have additional dummy
hospitals each of capacity 1. Corresponding to every resident r ∈ R, we have
(s − 1) dummy hospitals d0r, . . . , d

s−2
r in Hs. Thus,

Rs = { r0, . . . , rs−1 | ∀r ∈ R}; Hs = H ∪ { d0r, . . . , d
s−2
r | ∀r ∈ R}

We use the term level-i resident for a resident ri ∈ Rs for 0 ≤ i ≤ s − 1. The
preference lists corresponding to s different copies of r in Gs are:

– For a level-0 resident r0, its preference list in Gs is the preference list of r in
G, followed by the dummy hospital d0r.

– For a level-i resident ri, where 1 ≤ i ≤ s − 2, its preference list in Gs is di−1
r

followed by preference list of r in G, followed by di
r.

– For a level-(s−1) resident rs−1, its preference list in Gs is the dummy hospital
ds−2

r followed by the preference list of r in G.

The preference lists of hospitals in Gs are as follows.

– The preference list for a dummy hospital di
r is ri followed by ri+1.

– For h ∈ H, its preference list in Gs, has level-(s − 1) residents followed by
level-(s − 2) residents, so on upto the level-0 residents in the same order as
in h’s preference list in G.

Finally, we need to specify the classifications of the hospitals in Gs. For
every class Ch

i in the instance G, we have a corresponding class C̄h
i =⋃

r∈Ch
i

{r0, . . . , rs−1} in Gs, such that q(C̄h
i) = q(Ch

i). We note that |C̄h
i | =

s · |Ch
i |. Then a stable matching Ms in Gs satisfies the following properties:

(I1) Each di
r ∈ Hs for 0 ≤ i ≤ s − 2, is matched to one of {ri, ri+1} in Ms.

(I2) The above invariant implies that for every r ∈ R at most one of
{r0, . . . , rs−1} is assigned to a non-dummy hospital in Ms.

(I3) For a resident r ∈ R, if ri is matched to a non-dummy hospital in Ms, then
for all 0 ≤ j ≤ i − 1, Ms(rj) = dj

r. Furthermore, for all i + 1 ≤ p ≤ s − 1,
Ms(rp) = dp−1

r . This also implies that in Ms all residents r0, . . . , rs−2 are
matched and only rs−1 can be left unmatched in Ms.

These invariants allow us to naturally map the stable matching Ms to a
feasible matching M in G. We define a function map(Ms) as follows.

M = map(Ms) = {(r, h) : h ∈ H and (ri, h) ∈ Ms for exactly one of 0 ≤ i ≤ s − 1}

We outline an algorithm that computes a feasible matching in an LCSM+

instance G. Given G and s, construct the graph Gs from G. Compute a sta-
ble matching Ms in Gs. If G is an LCSM+ instance we use the algorithm of
Huang [10] to compute a stable matching in G. If G is a PCSM+ instance, it

256 M. Nasre and A. Rawat

is easy to observe that Gs is also a PCSM+ instance. In that case, we use the
algorithm of Abraham et al. [2] to compute a stable matching. (There is a simple
reduction from the PCSM+ instance to SPA; see [14]). We output M = map(Ms)
whose feasibility is guaranteed by the invariants mentioned earlier. The complex-
ity of our algorithm depends on s and the time required to compute a stable
matching in the problem instance.

In the rest of the paper, we denote by M the matching obtained as map(Ms)
where Ms is a stable matching in Gs. For any resident ri ∈ R, we define map−1

function which maps a resident ri ∈ G to its unique level-ji copy in Gs.

map−1(ri, Ms) = rji
i where 0 ≤ ji ≤ s − 1 and Ms(r

ji
i) is a non-dummy hospital

= rs−1
i otherwise.

Recall by Invariant (I3), at most one of the level copy of ri in Gs is matched to
a non-dummy hospital in Ms. For any feasible matching M ′ in G consider the
set YM⊕M ′ – recall that this is a collection of M alternating paths and cycles in
G. For any path or cycle ρ in YM⊕M ′ , let us denote by ρs = map−1(ρ,Ms) the
path or cycle in Gs obtained by replacing every resident r in ρ by map−1(r,Ms).
Recall that if a resident r is present in the class Ch

j defined by a hospital h in
G, then in the graph Gs, ri ∈ C̄h

j for i = 0, . . . , s − 1. Using Lemma 1 and these
observations we get the following corollary.

Corollary 1. Let ρ be an alternating path or an alternating cycle in YM⊕M ′ ,
then Ms ⊕ ρs is a feasible matching in Gs, where ρs = map−1(ρ,Ms).

The following technical lemma is useful in proving the properties of the match-
ings produced by our algorithms. All omitted proofs can be found in [14].

Lemma 2. Let ρ be an alternating path or an alternating cycle in YM⊕M ′ , and
ρs = map−1(ρ,Ms).

1. There cannot be any edge labeled (1, 1) in ρs.
2. Let 〈rja

a , h, rjb
b 〉 be a sub-path of ρs, where h = Ms(r

jb
b). Then, the edge

(rj′
a

a , h) /∈ ρs cannot be labeled (1, 1), where j′
a < ja.

4.1 Maximum Cardinality Popular Matching

Let G = (R ∪ H, E) be an instance of the LCSM+ problem where we are inter-
ested in computing a maximum cardinality popular matching. We use our generic
reduction with the value of the parameter s = 2. Since G2 is linear in the size
of G, and a stable matching in an LCSM+ instance can be computed in O(mn)
time [10], we obtain an O(mn) time algorithm to compute a maximum cardinal-
ity popular matching in G. In case G is a PCSM+ instance, we use the linear time
algorithm in [2] for computing a stable matching to get a linear time algorithm
for our problem. We state the main theorem of this section below.

Popularity in the Generalized Hospital Residents Setting 257

Theorem 3. Let M = map(M2) where M2 is a stable matching in G2. Then
M is a maximum cardinality popular matching in G.

We break down the proof of Theorem 3 in two parts. Lemma 5 shows that the
assignment M satisfies all the conditions of Theorem 1 and therefore is popular
in G. Lemmas 3 and 4 show that the matching output is indeed the largest size
popular matching in the instance. Let M ′ be any assignment in G. Recall the
definition of ỸM⊕M ′ from Sect. 3.

Lemma 3. There is no augmenting path with respect to M in ỸM⊕M ′ .

Lemma 4. There exists no popular matching M∗ in G such that |M∗| > |M |.
Lemma 5. Let M = map(M2) where M2 is a stable matching in G2 and let
M ′ be any feasible assignment in G. Consider the set of alternating paths and
alternating cycles ỸM⊕M ′ . Then, the following hold:

1. An alternating cycle C in ỸM⊕M ′ , does not contain any edge labeled (1, 1).
2. An alternating path P in ỸM⊕M ′ that starts or ends with an edge in M ′, does

not contain any edge labeled (1, 1).
3. An alternating path P in ỸM⊕M ′ which starts and ends with an edge in M ,

contains at most one edge labeled (1, 1).

Proof (Sketch). Assume that ρ = 〈u0, v1, u1, . . . , vk, u0〉 is an alternating cycle
in ỸM⊕M ′ , where for each i = 0, . . . , k, vi = M(ui) (in case ui is a hospital,
vi ∈ M(ui)). We assume for contradiction that ρ contains an edge labeled (1, 1).
Using such an edge, we show the existence of an edge e2 ∈ E2\M2 which is
labeled (1, 1), contradicting the stability of M2. ��

4.2 Popular Matching Amongst Maximum Cardinality Matchings

In this section we give an efficient algorithm for computing a matching which is
popular amongst the set of maximum cardinality matchings. The matching M
that we output cannot be beaten in terms of votes by any feasible maximum
cardinality matching. Our algorithm uses the generic reduction with a value of
s = |R| = n1 (say). Thus, |Rn1 | = n2

1, and |Hn1 | = |H| + O(n2
1). Furthermore,

|En1 | = O(mn1) where m = |E|. Thus the running time of the generic algorithm
presented earlier with s = n1 for an LCSM+ instance is O(mn · n1) = O(mn2)
and for a PCSM+ instance is O(mn1) = O(mn).

To prove correctness, we show that the matching output by our algorithm
is (i) maximum cardinality and (ii) popular amongst all maximum cardinality
feasible matchings. Let M = map(Mn1) and M∗ be any maximum cardinality
feasible matching in G. Consider the set YM⊕M∗ , and let ρ be an alternating
path or an alternating cycle in YM⊕M∗ . Let ρn1 = map−1(ρ,Mn1) denote the
associated alternating path or cycle in Gn1 . We observe that every hospital on
the path ρn1 is a non-dummy hospital since ρn1 was obtained using the inverse-
map of ρ. We observe two useful properties about such a path or cycle ρn1 in
Gn1 . We show (using Lemma 6) that if for a hospital h ∈ ρn1 , the level of

258 M. Nasre and A. Rawat

the unmatched resident incident on h is greater than the level of the matched
resident incident on h, then such a level change is gradual, and the associated
edge in ρ has the label (−1,−1).

Lemma 6. Let ρn1 be an alternating path or an alternating cycle in Gn1 and
let h be a hospital which has degree two in ρn1 . Let 〈rja

a , h, rjb
b 〉 be the sub-path

containing h where M(rjb
b) = h. If ja > jb, we claim the following:

1. ja = jb + 1.
2. The associated edge (ra, h) ∈ ρ is labeled (−1,−1).

We use Lemma 7 to prove that M is a maximum cardinality matching in G.

Lemma 7. Let M∗ be any feasible maximum cardinality matching in G. Then
there is no augmenting path with respect to M in YM⊕M∗ .

Proof (Sketch). Assume there exists an augmenting path P with respect to M
and let Pn1 = map−1(P,Mn1). We show that the path Pn1 starts with two
consecutive residents which are level-(n1 − 1) residents; whereas the path Pn1

ends with a level-0 resident. For every hospital on Pn1 there can only be a
gradual increase in the level of the unmatched resident to the level of the matched
resident. Using this, and the fact that there are at most (n1 − 1) residents on
the path, we conclude that such a path Pn1 cannot exist. This contradicts the
existence of the augmenting path P . ��
We can now conclude that the set YM⊕M∗ is a set of alternating (and not
augmenting) paths and alternating cycles. It remains to show that M is popular
amongst all maximum cardinality feasible matchings in G. We show that in an
alternating path in YM⊕M∗ with exactly one endpoint unmatched in M or an
alternating cycle, the number of edges labeled (1, 1) cannot exceed the number
of edges labeled (−1,−1) (Lemma 8).

Lemma 8. Let ρ be an alternating path or an alternating cycle in YM⊕M∗ .
Then the number of edges labeled (1, 1) in ρ is at most the number of edges
labeled (−1,−1).

Thus, we get the following theorem:

Theorem 4. Let M = map(Mn1) where Mn1 is a stable matching in Gn1 . Then
M is a popular matching amongst all maximum cardinality matchings in G.

Acknowledgement. We thank Prajakta Nimbhorkar for helpful discussions. We
thank the anonymous reviewers whose comments have improved the presentation.

Popularity in the Generalized Hospital Residents Setting 259

References

1. Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings.
SIAM J. Comput. 37(4), 1030–1045 (2007)

2. Abraham, D.J., Irving, R.W., Manlove, D.F.: Two algorithms for the student-
project allocation problem. J. Discrete Algorithms 5(1), 73–90 (2007)

3. Biró, P., Manlove, D., Mittal, S.: Size versus stability in the marriage problem.
Theoret. Comput. Sci. 411(16–18), 1828–1841 (2010)

4. Brandl, F., Kavitha, T.: Popular Matchings with Multiple Partners. CoRR,
abs/1609.07531 (2016)

5. Cseh, Á., Kavitha, T.: Popular edges and dominant matchings. In: Proceedings of
the Eighteenth Conference on Integer Programming and Combinatorial Optimiza-
tion, pp. 138–151 (2016)

6. Fleiner, T., Kamiyama, N.: A matroid approach to stable matchings with lower
quotas. In: Proceedings of the Twenty-third Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 135–142 (2012)

7. Gale, D., Shapley, L.: College admissions and the stability of marriage. Am. Math.
Monthly 69, 9–14 (1962)

8. Gärdenfors, P.: Match making: assignments based on bilateral preferences. Behav.
Sci. 20, 166–173 (1975)

9. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, Boston (1989)

10. Huang, C.-C.: Classified stable matching. In: Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1235–1253 (2010)

11. Huang, C.-C., Kavitha, T.: Popular matchings in the stable marriage problem.
In: Proceedings of 38th International Colloquium on Automata, Languages and
Programming, pp. 666–677 (2011)

12. Kamiyama, N.: Popular matchings with two-sided preference lists and matroid
constraints. Technical report MI 2016–13 (2016)

13. Kavitha, T.: A size-popularity tradeoff in the stable marriage problem. SIAM J.
Comput. 43(1), 52–71 (2014)

14. Nasre, M., Rawat, A.: Popularity in the Generalized Hospital Residents Setting.
CoRR, abs/1609.07650 (2016)

Edit Distance Neighbourhoods of Input-Driven
Pushdown Automata

Alexander Okhotin1(B) and Kai Salomaa2

1 St. Petersburg State University, 14th Line V.O., 29B,
Saint Petersburg 199178, Russia
alexander.okhotin@spbu.ru

2 School of Computing, Queen’s University,
Kingston, ON K7L 2N8, Canada

ksalomaa@cs.queensu.ca

Abstract. Edit distance �-neighbourhood of a formal language is the set
of all strings that can be transformed to one of the strings in this language
by at most � insertions and deletions. Both the regular and the context-
free languages are known to be closed under this operation, whereas the
deterministic pushdown automata are not. This paper establishes the
closure of the family of input-driven pushdown automata (IDPDA), also
known as visibly pushdown automata, under the edit distance neigh-
bourhood operation. A construction of automata representing the result
of the operation is given, and close lower bounds on the size of any such
automata are presented.

1 Introduction

Edit distance is the standard measure of similarity between two strings: this is the
least number of elementary edit operations—such as inserting a symbol, remov-
ing a symbol or replacing a symbol with another symbol—necessary to transform
one string into another. Algorithms and methods related to the edit distance are
useful in numerous applications: whenever DNA sequences are checked for sim-
ilarity, misspelled words are matched to their most probable spelling, etc.

Many problems involving edit distance are formulated in terms of formal
languages. In particular, one can consider the edit distance between a string
and a language, which is relevant to assessing the number of syntax errors in
an input string, as well as to correcting those errors [13]. There is also a notion
of a distance between a pair of languages, studied, in particular, by Chatterjee
et al. [6]. The shortest distance between two languages is uncomputable if both
languages are given by grammars [11], whereas the distance between a grammar
and a regular language is computable [7].

In connection with the distance between a string and a language, there is a
convenient notion of edit distance �-neighbourhood of a given language: this is
a set of all strings at edit distance at most � from some element of that lan-
guage. The edit distance �-neighbourhood is then an operation on languages.

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 260–272, 2017.
DOI: 10.1007/978-3-319-58747-9 23

Edit Distance Neighbourhoods of Input-Driven Pushdown Automata 261

It is known that the regular languages are closed under this operation. In partic-
ular, Povarov [20] determined an optimal construction for the 1-neighbourhood
of a given automaton; this result was extended to the �-neighbourhood in the
papers by Salomaa and Schofield [21] and by Ng, Rappaport and Salomaa [12].

The edit distance operation is no less relevant in formal grammars. For
context-free grammars, the work by Aho and Peterson [1] on error recovery
in parsers contains a direct construction of a grammar, which is sufficient to
prove the closure under edit distance neighbourhood. Also, �-neighbourhood is
computable by a nondeterministic finite transducer (NFT), and by the closure of
grammars under all such transductions, the closure follows; the same argument
applies to all families closed under NFT, such as the linear grammars. On the
other hand, for deterministic pushdown automata (DPDA)—or, equivalently,
for LR(k) grammars—there is a simple example witnessing their non-closure
under the 1-neighbourhood operation: the language L = { canbn |n � 0 } ∪
{ danb2n |n � 0 } is recognized by a DPDA, whereas its 1-neighbourhood, under
intersection with a∗b∗, is the language { anbn |n � 0 } ∪ { anb2n |n � 0 }, which
is a classical example of a language not recognized by any DPDA.

This paper investigates �-neighbourhoods for an important subclass of
DPDA: the input-driven pushdown automata (IDPDA), also known under the
name of visibly pushdown automata. In these automata, the input symbol deter-
mines whether the automaton should push a stack symbol, pop a stack symbol
or leave the stack untouched. These symbols are called left brackets, right brack-
ets and neutral symbols, and the symbol pushed at each left bracket is always
popped when reading the corresponding right bracket. Input-driven automata
are important as a model of hierarchically structured data, such as XML docu-
ments or computation traces for recursive procedure calls. They are also notable
for their appealing theoretical properties, resembling those of finite automata.

Input-driven automata were first studied by Mehlhorn [10] and by von
Braunmühl and Verbeek [4], who determined that the languages they recog-
nize lie in logarithmic space. Von Braunmühl and Verbeek [4] also proved that
deterministic and nondeterministic variants of the model are equal in power.
Later, Alur and Madhusudan [2,3] reintroduced the model under the names
“visibly pushdown automata” and “nested word automata”, and carried out
its language-theoretic study, in particular, establishing the closure of the cor-
responding family under the basic operations on languages. Their contribution
inspired further work on the closure properties of input-driven automata and on
their descriptional complexity [8,16–18].

The main result of this paper, presented in Sect. 3, is that the family of
languages recognized by input-driven automata is closed under the edit distance
neighbourhood operation. The main difficulty in the construction is that when
the symbol inserted or deleted is a bracket, then adding or removing that symbol
changes the bracket structure of the string, so that other brackets may now be
matched not to the same brackets as before. It is shown how, given an NIDPDA
for the original language, to construct an NIDPDA with one edit operation
applied.

262 A. Okhotin and K. Salomaa

The question of whether these constructions are optimal in terms of the
number of states is addressed in Sect. 4, where some lower bounds on the worst-
case size of an NIDPDA representing the edit distance neighbourhood of an
n-state NIDPDA are established. These bounds confirm that the constructions
presented in this paper are fairly close to optimal.

In Sect. 5, a similar construction is presented for deterministic input-driven
automata. The construction uses exponentially many states, and is accompanied
with a fairly close lower bound, showing that a DIDPDA for the edit distance
neighbourhood requires 2Ω(n2) states in the worst case.

2 Input-Driven Automata

An input-driven pushdown automaton (IDPDA) [2,3,10] is a special case of a
deterministic pushdown automaton, in which the input alphabet Σ is split into
three disjoint sets of left brackets Σ+1, right brackets Σ−1 and neutral symbols
Σ0. If the input symbol is a left bracket from Σ+1, then the automaton always
pushes one symbol onto the stack. For a right bracket from Σ−1, the automaton
must pop one symbol. Finally, for a neutral symbol in Σ0, the automaton may not
use the stack. In this paper, symbols from Σ+1 and Σ−1 shall be denoted by left
and right angled brackets, respectively (<, >), whereas lower-case Latin letters
from the beginning of the alphabet (a, b, c, . . .) shall be used for symbols from Σ0.
Input-driven automata may be deterministic (DIDPDA) and nondeterministic
(NIDPDA).

Under the simpler definition, input-driven automata operate on input strings,
in which the brackets are well-nested. When an input-driven automaton reads a
left bracket <∈ Σ+1, it pushes a symbol onto the stack. This symbol is popped
at the exact moment when the automaton encounters the matching right bracket
> ∈ Σ−1. Thus, a computation of an input-driven automaton on any well-nested
substring leaves the stack contents untouched, as illustrated in Fig. 1.

The more general definition of input-driven automata assumed in this paper
also allows ill-nested input strings. For every unmatched left bracket, the symbol
pushed to the stack when reading this bracket is never popped, and remains in
the stack to the end of the computation. An unmatched right bracket is read
with an empty stack: instead of popping a stack symbol, the automaton merely

Fig. 1. The computation of an IDPDA on a well-nested string.

Edit Distance Neighbourhoods of Input-Driven Pushdown Automata 263

detects that the stack is empty and makes a special transition, which leaves the
stack empty.

Definition 1 (von Braunmühl and Verbeek [4]; Alur and Madhusudan
[2]). A nondeterministic input-driven pushdown automaton (NIDPDA) over an
alphabet ˜Σ = (Σ+1, Σ−1, Σ0) consists of

– a finite set Q of states, with set of initial states Q0 ⊆ Q and accepting states
F ⊆ Q;

– a finite stack alphabet Γ , and a special symbol ⊥ /∈ Γ for the empty stack;
– for a neutral symbol c ∈ Σ0, a transition function δc : Q → 2Q gives the set

of possible next states;
– for each left bracket symbol <∈ Σ+1, the behaviour of the automaton is

described by a function δ< : Q → 2Q×Γ , which, for a given current state,
provides a set of pairs (q, γ), with q ∈ Q and γ ∈ Γ , where each pair means
that the automaton enters the state q and pushes γ onto the stack;

– for every right bracket symbol > ∈ Σ−1, there is a function δ> : Q × (Γ ∪
{⊥}) → 2Q specifying possible next states, assuming that the given stack
symbol is popped from the stack (or that the stack is empty).

A configuration is a triple (q, w, x), with the current state q ∈ Q, remaining input
w ∈ Σ∗ and stack contents x ∈ Γ ∗. Possible next configurations are defined as
follows.

(q, cw, x) �A (q′, w, x), c ∈ Σ0, q ∈ Q, q′ ∈ δc(q)
(q,<w, x) �A (q′, w, γx), < ∈ Σ+1, q ∈ Q, (q′, γ) ∈ δ<(q)

(q,>w, γx) �A (q′, w, x), > ∈ Σ−1, q ∈ Q, γ ∈ Γ, q′ ∈ δ>(q, γ)
(q,>w, ε) �A (q′, w, ε), > ∈ Σ−1, q′ ∈ δ>(q,⊥)

The language recognized by A is the set of all strings w ∈ Σ∗, on which the
automaton, having begun its computation in the configuration (q0, w, ε), eventu-
ally reaches a configuration of the form (q, ε, x), with q ∈ F and with any stack
contents x ∈ Γ ∗.

An NIDPDA is deterministic (DIDPDA), if there is a unique initial state
and every transition provides exactly one action.

As shown by von Braunmühl and Verbeek [4], every n-state NIDPDA operat-
ing on well-nested strings can be transformed to a 2n2

-state DIDPDA. Alur and
Madhusudan [2] extended this construction to allow ill-nested inputs, so that a
DIDPDA has 22n2

states; in the worst case, 2Ω(n2) states are necessary.
Another basic construction for DIDPDA that will be used in this paper is

computing the behaviour function of a given DIDPDA by another DIDPDA.
When a DIDPDA with a set of states Q processes a well-nested string w and
begins in a state q, it finishes reading that string in some state f(q), where
f : Q → Q is its behaviour function on w, and the stack is left untouched. Thus,
f completely characterizes the behaviour of a DIDPDA on w. For any given

264 A. Okhotin and K. Salomaa

DIDPDA A, it is possible to construct an nn-state DIDPDA, where n = |Q|,
that reaches the end of an input w in a state representing the behaviour of A
on the longest well-nested suffix of w. This construction is necessary for optimal
constructions representing operations on DIDPDA [17].

For more details on input-driven automata and their complexity, the readers
are directed to a recent survey [15].

3 Edit Distance for Input-Driven Automata

Let Σ be an alphabet, let a ∈ Σ be a symbol. Then, for a string w ∈ Σ∗, the
set of strings obtained by inserting a at any position is denoted by inserta(w) =
{uav |w = uv }. Similarly, the set of strings obtained by erasing a is deletea(w) =
{uv |w = uav }. These operations are extended to any language L ⊆ Σ∗ elemen-
twise, with inserta(L) =

⋃

w∈L inserta(w) and deletea(L) =
⋃

w∈L deletea(w).
The set of strings at edit distance at most � from a given string w is called

its �-neighbourhood, denoted by E�(w) and defined as follows.

E0(w) = {w}
E�+1(w) = E�(w) ∪

⋃

w′∈E�(w)

⋃

a∈Σ

(

inserta(w′) ∪ deletea(w′)
)

The �-neighbourhood of a language L ⊆ Σ∗ is the set of strings at edit distance
at most � from any string in L.

E�(L) =
⋃

w∈L

E�(w)

The definition of edit distance often includes the operation of replacing one
symbol with another. According to the above definition, replacement can be
implemented as a combination of one deletion and one insertion. This difference
affects the resulting edit distance. In this paper, the simpler definition is assumed,
because it makes the constructions easier; however, the constructions in this
paper can be extended to implement replacement as well.

In this paper, the above definitions are applied to languages over an alphabet
Σ = Σ+1∪Σ−1∪Σ0 recognized by an IDPDA, with the intention of constructing
another IDPDA that recognizes the edit distance neighbourhood of the given
language. A construction shall be obtained by first implementing the elementary
operations of inserting or deleting a single symbol. According to the definition
of the neighbourhood, all three types of symbols in Σ can be either inserted
or deleted. However, since IDPDA handle different types of symbols differently,
these six cases generally require separate treatment.

Neutral symbols are the easiest to insert or delete, the construction is the
same as for finite automata.

Lemma 1. Let L be a language recognized by an NIDPDA, let Q be its set of
states, and Γ its stack alphabet. Let c ∈ Σ0 be a neutral symbol. Then, both

Edit Distance Neighbourhoods of Input-Driven Pushdown Automata 265

languages insertc(L) and deletec(L) are recognized by NIDPDA with the set of
states Q ∪ ˜Q, where ˜Q = { q̃ | q ∈ Q }, and with the stack alphabet Γ .

There is also an NIDPDA with the same set of states Q and the same set of
stack symbols Γ that recognizes the language

⋃

c∈Σ0

(

insertc(L) ∪ deletec(L)
)

.

The second case is that of inserting a left bracket. The main difficulty is,
that once a new left bracket is inserted into a given string, it may match some
existing right bracket, which was formerly matched to a different left bracket.
This disrupts the operation of the simulated NIDPDA, and requires some efforts
to re-create it.

Lemma 2. Let L be a language recognized by an NIDPDA over an alphabet
with the set of states Q and with the stack alphabet Γ . Let � ∈ Σ+1 be a left
bracket. Then, the language insert�(L) is recognized by an NIDPDA with the set
of states Q ∪ ˜Q ∪ (Q × Γ), where ˜Q = { q̃ | q ∈ Q }, and with the stack alphabet
Γ ∪ {�} ∪ (Γ × Γ).

There is also an NIDPDA with the same states Q and the same stack symbols
Γ that recognizes

⋃

�∈Σ+1
insert�(L).

Proof. The first two types of states in the new automaton are the states q and
q̃, for any q ∈ Q. In either state, the new automaton simulates the original
automaton being in the state q.

In the beginning, the new automaton uses the states from ˜Q to simulate the
operation of the original automaton before it encounters the new left bracket that
has been inserted. At some point, the new automaton guesses that the currently
observed left bracket is the new one, and executes a special transition: when
passing the inserted left bracket (�) in a state q̃, the new automaton pushes a
special box symbol (�) into the stack and enters the state q: in these states, the
new automaton knows that the inserted symbol has already been encountered,
and simulates the original automaton as it is.

Later, when the automaton pops the box (�) upon reading some right bracket
(>), it knows that the stack symbol in the original computation corresponding to
this bracket lies in its stack one level deeper. Being an input-driven automaton,
it cannot pop it yet, but it can guess what that symbol is going to be. If γ
is the guessed stack symbol, then the automaton simulates the transition upon
popping γ and enters a state of the form (q, γ), where q is the result of the
transition, and γ is remembered in the state for later verification.

In states of the form (q, γ), neutral symbols are being read without modifying
the remembered stack symbol. Whenever a left bracket (<) occurs, and the
original automaton would enter a state r and push a stack symbol σ, the new
automaton enters the state r and pushes a special stack symbol (σ, γ), which
maintains the remembered stack symbol in the second component, and restores
it upon reading the well-nested substring.

When, in a state of the form (q, γ), the new automaton reaches a right bracket
(>), first, it verifies that the symbol being popped is indeed γ. The stack symbol
needed to carry out the present transition is again located one level deeper in the

266 A. Okhotin and K. Salomaa

stack, and therefore the automaton has to guess another stack symbol γ′, and
store it in the second component of the pair, etc. This completes the construction.

Since the automaton does not need to know the particular bracket symbol
� ∈ Σ+1 that has been inserted before and after encountering it, the same
construction yields an NIDPDA for the language

⋃

�∈Σ+1
insert�(L). 	

The case of erasing a left bracket is carried out slightly differently.

Lemma 3. Let L be a language recognized by an NIDPDA with the set of states
Q and with the stack alphabet Γ . Let � ∈ Σ+1 be a left bracket. Then, the
language delete�(L) is recognized by an NIDPDA with the set of states Q ∪ ˜Q ∪
(Q × Γ) and with the stack alphabet Γ ∪ (Γ × Γ).

Also, the language
⋃

�∈Σ+1
delete�(L), is recognized by an NIDPDA with

the same states and stack symbols.

Proof. The plan is that the new automaton is in a state q̃ before passing the
place where a left bracket (�) was erased. State (q, γ) means the situation after
passing the erased left bracket (�), while remembering the stack symbol that
the original automaton would push when reading that erased bracket (�). This
state means that γ is an extra stack symbol simulated on the top of the actual
stack. In a state q, the new automaton operates normally, as the erased symbol
is no longer expected.

Transitions in the state q̃ are the same as those in q, except that, upon
reading any symbol, the new automaton may decide that directly after that
symbol there was a left bracket (�) that got erased. Then, the new automaton
simulates a transition by these two symbols at once, and, assuming that the
original automaton’s transition upon the left bracket (�) is to a state r along
with pushing a symbol γ, the new automaton enters the state (r, γ).

In a state of the form (q, γ̂), upon reading any left bracket (<), the automaton
pushes a pair of stack symbols (γ, γ̂), where γ is the symbol that the original
automaton would push, and enters the same state that the original automaton
would enter. Later, upon reading the matching right bracket (>) and popping
the pair (γ, γ̂), the automaton enters the state (r, γ̂), assuming that the original
automaton would enter the state r.

When the new automaton encounters a right bracket (>) in a state of the
form (q, γ̂), popping a stack symbol γ, it simulates the original automaton’s
transition in the state q upon popping the stack symbol γ̂, and enters the state
(r, γ), assuming that r is the state that the original automaton would enter.

In a state of the form (q, γ̂), upon reaching the bottom of the stack, the
automaton simulates the transition upon popping γ and enters a normal state
r, the same that the original automaton would enter. 	

The constructions for insertion and deletion of right brackets are symmetric, the
number of states is the same.

Now, an NIDPDA for edit distance 1-neighbourhood can be obtained by
using all the six constructions within a single automation.

Edit Distance Neighbourhoods of Input-Driven Pushdown Automata 267

Theorem 1. Let L be a language recognized by an NIDPDA with n states and
k stack symbols. Then there exists an NIDPDA recognizing the language E1(L)
that has 10n + 4kn + 1 states and k2 + k + 1 stack symbols.

The �-neighbourhood can be obtained by applying this construction � times.

4 Lower Bounds for the Nondeterministic Case

Several constructions of automata have been presented, and the question is,
whether those constructions are optimal. This is proved by presenting witness
languages, that is, families of languages Ln recognized by an NIDPDA of size
n, such that every NIDPDA for the corresponding edit distance operation on
Ln requires at least f(n) states. The methods for establishing such results were
originally developed for finite automata, and later were generalized for NIDPDA.

The stack height of a string w is the height of the stack of an NIDPDA after
reading w. The height of the stack depends only on w.

Definition 2. Let ˜Σ = (Σ+1, Σ−1, Σ0) be an alphabet and let L ⊆ Σ∗. A set of
pairs F = {(x1, y1), . . . , (xm, ym)} is said to be a fooling set of depth k for L,
if each string xi has stack height k and

(i) xiyi ∈ L for all i ∈ {1, 2, . . . ,m}, and
(ii) for all i, j with 1 � i < j � m, xiyj /∈ L or xjyi /∈ L.

Lemma 4 ([8,18]). Let A be a nondeterministic input-driven pushdown
automaton with a set of states Q and a set of stack symbols Γ . If L(A) has
a fooling set F of depth k, then |Γ |k · |Q| � |F |.

First consider the insertion or deletion of a single symbol.
Choose Σ+1 = {<}, Σ−1 = {>} and Σ0 = {a, b, c, $}. For n � 1 define

Ln = {ci<ckaibj$bj>ai | 1 � i, j � n, k � 0}.

Lemma 5. (i) There exists a constant C � 1, such that, for each n � 1, the
language Ln is recognized by a DIDPDA A with C · n states and n stack
symbols.

(ii) Any NIDPDA recognizing the language delete<(Ln) needs at least n2 states.

Proof. (i) The following discussion assumes that the input string is in
c+<c+a+b+$b+>a+. It is easy to see that by increasing the number of states
of A by a multiplicative constant, the computation can be made to reject all
strings not of this form.

The computation counts the length i of the prefix in c+ preceding the left
bracket < and pushes this value to the stack. If i > n, A rejects. Then A skips
the following symbols c, checks that the maximal substring in a+ has length i,
and counts the number of b’s preceding the marker $. This number is compared
with the number of b’s after $. At the right bracket > the stack is popped and
the computation verifies that the suffix of symbols a has length i.

268 A. Okhotin and K. Salomaa

(ii) Choose

Sn = {(cn+1aibj , $bj>ai) | 1 � i, j � n}.

For all i, j ∈ {1, . . . , n}, the string cn+1aibj · $bj>ai is obtained from a string
from Ln by deleting a left bracket. On the other hand, for (i, j) �= (i′, j′), with
i, j, i′, j′ ∈ {1, . . . , n}, the string cn+1aibj ·$bj′

>ai′
is not in delete<(Ln), because

i �= i′ or j �= j′. This means that Sn is a fooling set of depth 0 for delete<(Ln)
and, by Lemma 4, any NIDPDA for delete<(Ln) needs |Sn| = n2 states. 	

Lemma 6. Any NIDPDA recognizing the language insert>(Ln) needs at least
n2 states.

Proof. Define

S′
n = {(ci<>caibj , $bj>ai) | 1 � i, j � n}.

Again, for all 1 � i, j � n, ci<>caibj · $bj>ai is obtained from a string of
Ln by inserting a right bracket and, on the other hand, for (i, j) �= (i′, j′),
ci<>caibj · $bj′

>ai′ �∈ insert>(Ln). This means that S′
n is a fooling set for

insert>(Ln), and the claim follows from Lemma 4. 	

The reversal LR of the language L recognized by an NIDPDA A can be

recognized by an NIDPDA with the same number of states and stack symbols as
A, when the left brackets (respectively, right brackets) in the original string are
interpreted as right brackets (respectively, left brackets) in the reversed string [3].
Since inserting a left bracket into a language L is the same as inserting a right
bracket into LR, and deleting a right bracket from L is the same as deleting a
left bracket from LR, Lemmas 5 and 6 imply a tight bound on the complexity
of inserting left brackets and deleting right brackets in terms of the number of
states in NIDPDA.

Corollary 1. For each n � 1 there exists a language L′
n recognized by a

NIDPDA with O(n) states such that any NIDPDA for the neighbourhoods
delete>(L′

n) and insert<(L′
n) needs n2 states.

It remains to consider the cases of inserting and deleting a neutral symbol.
Povarov [20] has shown that the Hamming neighbourhood of radius r of an n
state NFA language can be recognized by an NFA with n · (r +1) states and this
number of states is needed in the worst case. Since an input-driven computation
on strings consisting of neutral symbols is just an NFA, the lower bound for
the number of states applies also for NIDPDAs. Together with Lemma 1 this
implies:

Proposition 1. For an NIDPDA A with n states and σ ∈ Σ0, the neighbour-
hoods deleteσ(L(A)) and insertσ(L(A)) can be recognized by an NIDPDA with
2 · n states and this number of states is needed in the worst case.

Edit Distance Neighbourhoods of Input-Driven Pushdown Automata 269

The construction of Lemma 5 can be extended to yield a lower bound for the
cost of deleting multiple symbols. The result is stated in terms of neighbourhoods
of a given radius.

Choose Σ+1 = {<}, Σ−1 = {>} and Σ0 = {a, b, c, $}. For n � 1 define

Hn = {<ai1c<ai2c · · · <aircbj$bj>air>air−1 · · · >ai1 |
r � 1, i1, . . . , ir, j ∈ {1, . . . , n} }.

Lemma 7. (i) The language Hn can be recognized by an NIDPDA with C · n
states and n stack symbols, for some constant C.

(ii) For r � 1, any NIDPDA for the neighbourhood Er(Hn) needs at least nr+1

states.

5 The Deterministic Case

The construction for the edit distance neighbourhood given in the previous
section produces an NIDPDA out of an NIDPDA. If the goal is to obtain a
deterministic automaton, then the resulting NIDPDA can of course be deter-
minized, at the cost of a 2Θ(n2) blow-up in size. This section presents some
preliminary results on a direct construction for this operation, which transforms
a DIDPDA to a DIDPDA for the language with one left bracket erased.

Lemma 8. Let L be a language recognized by a DIDPDA with the set of states
Q and with the stack alphabet Γ . Let �∈ Σ+1 be a left bracket. Then, the
language delete�(L) is recognized by a DIDPDA with the set of states Q′ = Q×
2Q×(Γ∪{⊥}) ×QQ and with the stack alphabet Γ ′ = Σ+1 ×Γ ×2Q×(Γ∪{⊥}) ×QQ,
where QQ denotes the set of all functions from Q to Q.

Proof (sketch). At each level of brackets, the new automaton simulates the nor-
mal operation of the first automaton (Q), as well as constructs two data struc-
tures. The first data structure (2Q×(Γ∪{⊥})) is a set of pairs of a state q and
a stack symbol γ, each representing a situation when the computation on this
level, having processed some erased bracket (�) at some position, has pushed
γ upon reading that bracket, and finished reading the substring on this level in
the state q. The second data structure (QQ) is the behaviour function for the
well-nested substring at the current level. 	

There is a close lower bound for this construction. Let the alphabet be Σ+1 =
{<}, Σ−1 = {>} and Σ0 = {a, b, c, d}. For each n � 1, the language Kn is
defined as follows.

Kn =
{

uc<vd|u|a+|v|b mod n>a|u|a mod n
∣

∣ u, v ∈ {a, b, c}∗}

Lemma 9. The language Kn is recognized by a DIDPDA with C · n states.

270 A. Okhotin and K. Salomaa

Proof. First, the DIDPDA counts the number of symbols a in u modulo n. Then,
upon encountering the left bracket (<) and verifying that it is preceded by c, it
pushes the count of symbols a modulo n to the stack, and continues the counting
modulo n on the string v, this time counting the symbols b. After reading v, the
automaton remembers the sum |u|a + |v|b modulo n, and can then test that
the number of symbols d is correct. Finally, upon reading the right bracket (>),
the automaton pops the number |u|a modulo n from the stack and checks this
number against the suffix a|u|a mod n. 	

Lemma 10. Every DIDPDA recognizing delete<(Kn) needs at least 2n2

states.

Proof (Sketch of proof). A DIDPDA is faced with recognizing the following lan-
guage.

K ′
n =

{

wdi+j>ai
∣

∣ w ∈ {a, b, c}∗, and there exists a partition w = ucv,

with i = |u|a mod n and j = |v|b mod n
}

In the absence of left brackets, the automaton is essentially a DFA. The idea
of the lower bound argument is that a DFA should remember all pairs (i, j)
corresponding to different partitions of w as w = ucv. 	

This was just one of the four interesting cases of edit operations on DIDPDA. The
other three cases shall be dealt with in the full version of this paper. However, this
single case alone already implies a lower bound on the complexity of edit distance
1-neighbourhood of DIDPDA: indeed, any DIDPDA recognizing E1(Kn) needs
at least 2n2

states.
It can be concluded that the edit distance neighbourhood can be efficiently

expressed in nondeterministic IDPDA, and incurs a significant blow-up in the
deterministic case.

6 Future Work

It would be interesting to consider the edit distance neighbourhood operation for
other automaton models related to IDPDA that are relevant to processing hier-
archical data. Among such models, there are, in particular, the transducer-driven
automata (TDPDA), introduced independently by Caucal [5] (as synchronized
pushdown automata) and by Kutrib et al. [9].

In addition to the input-driven automaton models, the same question of the
expressibility of edit distance neighbourhood would be interesting to investigate
for other families of formal grammars besides the ordinary “context-free” gram-
mars. The families proposed for investigation are the multi-component gram-
mars [22], which are an established model in computational linguistics and have
good closure properties, and the conjunctive grammars, which extend the ordi-
nary grammars with a conjunction operation. In particular, it would be inter-
esting to investigate the edit distance for the linear conjunctive grammars [14],
which are notable for their equivalence with one-way real-time cellular automata,
as well as for their non-trivial expressive power [23].

Edit Distance Neighbourhoods of Input-Driven Pushdown Automata 271

References

1. Aho, A.V., Peterson, T.G.: A minimum distance error-correcting parser
for context-free languages. SIAM J. Comput. 1(4), 305–312 (1972).
http://dx.doi.org/doi/10.1137/0201022

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: ACM Symposium on
Theory of Computing, STOC 2004, Chicago, USA 13–16 June 2004, pp. 202–211
(2004). http://dx.doi.org/10.1145/1007352.1007390

3. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3)
(2009). http://dx.doi.org/10.1145/1516512.1516518

4. von Braunmühl, B., Verbeek, R.: Input driven languages are recognized in
log n space. Ann. Discrete Math. 24, 1–20 (1985). http://dx.doi.org/10.1016/
S0304-0208(08)73072-X

5. Caucal, D.: Synchronization of pushdown automata. In: Ibarra, O.H., Dang, Z.
(eds.) DLT 2006. LNCS, vol. 4036, pp. 120–132. Springer, Heidelberg (2006). doi:10.
1007/11779148 12

6. Chatterjee, K., Henzinger, T.A., Ibsen-Jensen, R., Otop, J.: Edit distance for push-
down automata. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B.
(eds.) ICALP 2015. LNCS, vol. 9135, pp. 121–133. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-47666-6 10

7. Han, Y.-S., Ko, K., Salomaa, K.: Approximate matching between a context-
free grammar and a finite-state automaton. Inf. Comput. 247, 278–289 (2016).
http://dx.doi.org/10.1016/j.ic.2016.02.001

8. Han, Y.-S., Salomaa, K.: Nondeterministic state complexity of nested word
automata. Theoret. Comput. Sci. 410, 2961–2971 (2009)

9. Kutrib, M., Malcher, A., Wendlandt, M.: Tinput-driven pushdown automata. In:
Durand-Lose, J., Nagy, B. (eds.) MCU 2015. LNCS, vol. 9288, pp. 94–112. Springer,
Cham (2015). doi:10.1007/978-3-319-23111-2 7

10. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition.
In: Bakker, J., Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–435.
Springer, Heidelberg (1980). doi:10.1007/3-540-10003-2 89

11. Mohri, M.: Edit-distance of weighted automata: general definitions and algorithms.
Int. J. Found. Comput. Sci. 14(6), 957–982 (2003)

12. Han, Y.-S., Ko, S.-K., Salomaa, K.: Generalizations of code languages with mar-
ginal errors. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 264–275.
Springer, Cham (2015). doi:10.1007/978-3-319-21500-6 21

13. Ng, T., Rappaport, D., Salomaa, K.: Descriptional complexity of error detec-
tion. In: Adamatzky, A. (ed.) Emergent Computation. ECC, vol. 24, pp. 101–119.
Springer, Cham (2017). doi:10.1007/978-3-319-46376-6 6

14. Okhotin, A.: Input-driven languages are linear conjunctive. Theoret. Comput. Sci.
618, 52–71 (2016). http://dx.doi.org/10.1016/j.tcs.2016.01.007

15. Okhotin, A., Salomaa, K.: Complexity of input-driven pushdown automata.
SIGACT News 45(2), 47–67 (2014). http://doi.acm.org/10.1145/2636805.2636821

16. Okhotin, A., Salomaa, K.: Descriptional complexity of unambiguous input-driven
pushdown automata. Theoret. Comput. Sci. 566, 1–11 (2015). http://dx.doi.org/
10.1016/j.tcs.2014.11.015

17. Okhotin, A., Salomaa, K.: State complexity of operations on input-driven push-
down automata. J. Comput. Syst. Sci. 86, 207–228 (2017). http://dx.doi.org/
10.1016/j.jcss.2017.02.001

http://dx.doi.org/doi/10.1137/0201022
http://dx.doi.org/10.1145/1007352.1007390
http://dx.doi.org/10.1145/1516512.1516518
http://dx.doi.org/10.1016/S0304-0208(08)73072-X
http://dx.doi.org/10.1016/S0304-0208(08)73072-X
http://dx.doi.org/10.1007/11779148_12
http://dx.doi.org/10.1007/11779148_12
http://dx.doi.org/10.1007/978-3-662-47666-6_10
http://dx.doi.org/10.1016/j.ic.2016.02.001
http://dx.doi.org/10.1007/978-3-319-23111-2_7
http://dx.doi.org/10.1007/3-540-10003-2_89
http://dx.doi.org/10.1007/978-3-319-21500-6_21
http://dx.doi.org/10.1007/978-3-319-46376-6_6
http://dx.doi.org/10.1016/j.tcs.2016.01.007
http://doi.acm.org/10.1145/2636805.2636821
http://dx.doi.org/10.1016/j.tcs.2014.11.015
http://dx.doi.org/10.1016/j.tcs.2014.11.015
http://dx.doi.org/10.1016/j.jcss.2017.02.001
http://dx.doi.org/10.1016/j.jcss.2017.02.001

272 A. Okhotin and K. Salomaa

18. Piao, X., Salomaa, K.: Operational state complexity of nested word automata.
Theoret. Comput. Sci. 410, 3290–3302 (2009). http://dx.doi.org/10.1016/j.tcs.
2009.05.002

19. Pighizzini, G.: How hard is computing the edit distance? Inf. Comput. 165, 1–13
(2001)

20. Povarov, G.: Descriptive complexity of the Hamming neighborhood of a regular
language. In: LATA 2007, pp. 509–520 (2007)

21. Salomaa, K., Schofield, P.N.: State complexity of additive weighted finite automata.
Int. J. Found. Comput. Sci. 18(6), 1407–1416 (2007)

22. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free
grammars. Theoret. Comput. Sci. 88(2), 191–229 (1991). http://dx.doi.org/
10.1016/0304-3975(91)90374-B

23. Terrier, V.: Recognition of linear-slender context-free languages by real time one-
way cellular automata. In: Kari, J. (ed.) AUTOMATA 2015. LNCS, vol. 9099, pp.
251–262. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47221-7 19

http://dx.doi.org/10.1016/j.tcs.2009.05.002
http://dx.doi.org/10.1016/j.tcs.2009.05.002
http://dx.doi.org/10.1016/0304-3975(91)90374-B
http://dx.doi.org/10.1016/0304-3975(91)90374-B
http://dx.doi.org/10.1007/978-3-662-47221-7_19

The (Minimum) Rank of Typical
Fooling-Set Matrices

Mozhgan Pourmoradnasseri(B) and Dirk Oliver Theis

Institute of Computer Science, University of Tartu,
Ülikooli 17, 51014 Tartu, Estonia

{mozhgan,dotheis}@ut.ee
http://ac.cs.ut.ee/

Abstract. A fooling-set matrix is a square matrix with nonzero diag-
onal, but at least one in every pair of diagonally opposite entries is 0.
Dietzfelbinger et al. ’96 proved that the rank of such a matrix is at
least

√
n, for a matrix of order n. It is known that the bound is tight

(up to a multiplicative constant).
We ask for the typical minimum rank of a fooling-set matrix: For a

fooling-set zero-nonzero pattern chosen at random, is the minimum rank
of a matrix with that zero-nonzero pattern over a field F closer to its
lower bound

√
n or to its upper bound n? We study random patterns

with a given density p, and prove an Ω(n) bound for the cases when
(a) p tends to 0 quickly enough;
(b) p tends to 0 slowly, and |F| = O(1);
(c) p ∈]0, 1] is a constant.
We have to leave open the case when p → 0 slowly and F is a large or
infinite field (e.g., F = GF(2n), F = R).

1 Introduction

Let f : X × Y → {0, 1} be a function. A fooling set of size n is a family
(x1, y1), . . . , (xn, yn) ∈ X × Y such that f(xi, yi) = 1 for all i, and for i �= j,
at least one of f(xi, yj) or f(xj , yi) is 0. Sizes of fooling sets are important
lower bounds in Communication Complexity (see, e.g., [12,13]) and the study of
extended formulations (e.g., [1,4]).

There is an a priori upper bound on the size of fooling sets due to Dietzfelbinger
et al. [3], based on the rank of a matrix associated with f . Let F be an arbitrary
field. The following is a slight generalization of the result in [3].

Lemma 1. No fooling set in f is larger than the square of minA rkF(A), where
the minimum ranges1 over all X × Y -matrices A over F with Ax,y = 0 iff
f(x, y) = 0.

Supported by the Estonian Research Council, ETAG (Eesti Teadusagentuur),
through PUT Exploratory Grant #620, and by the European Regional Develop-
ment Fund through the Estonian Center of Excellence in Computer Science, EXCS.

1 This concept of minimum rank differs from the definition used in the context of index
coding [8,10]. It is closer to the minimum rank of a graph, but there the matrix A
has to be symmetric while the diagonal entries are unconstrained.

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 273–284, 2017.
DOI: 10.1007/978-3-319-58747-9 24

274 M. Pourmoradnasseri and D.O. Theis

Proof. Let (x1, y1), . . . , (xn, yn) ∈ X × Y be a fooling set in f , and let A be a
matrix over F with Ax,y = 0 iff f(x, y) = 0. Consider the matrix B := A ⊗ A�.
This matrix B contains a permutation matrix of size n as a submatrix: for
i = 1, . . . , n, B(xi,xi),(yi,yi) = Axi,yi

Ayi,xi
= 1 but for i �= j, B(xi,xi),(yj ,yj) =

Axi,yj
Ayi,xj

= 0. Hence,

n ≤ rk(B) = rk(A)2.

It is known that, for fields F with nonzero characteristic, this upper bound is
asymptotically attained [6], and for all fields, it is attained up to a multiplicative
constant [5]. These results, however, require sophisticated constructions. In this
paper, we ask how useful that upper bound is for typical functions f .

Put differently, a fooling-set pattern of size n is a matrix R with entries in
{0, 1} ⊆ F with Rk,k = 1 for all k and Rk,�R�,k = 0 whenever k �= �. We say that
a fooling-set pattern of size n has density p ∈]0, 1], if it has exactly �p(

n
2

)	 off-
diagonal 1-entries. So, the density is roughly the quotient (|R| − n)/

(
n
2

)
, where

|·| denotes the Hamming weight, i.e., the number of nonzero entries. The densest
possible fooling-set pattern has

(
n
2

)
off-diagonal ones (density p = 1).

For any field F and y ∈ F, let σ(y) := 0, if y = 0, and σ(y) := 1, otherwise.
For a matrix (or vector, in case n = 1) M ∈ F

m×n, define the zero-nonzero
pattern of M , σ(M), as the matrix in {0, 1}m×n which results from applying σ
to every entry of M .

This paper deals with the following question: For a fooling-set pattern chosen
at random, is the minimum rank closer to its lower bound

√
n or to its trivial

upper bound n? The question turns out to be surprisingly difficult. We give
partial results, but we must leave some cases open. The distributions we study
are the following:

Q(n) denotes a fooling-set pattern drawn uniformly at random from all fooling-
set patterns of size n;

R(n, p) denotes a fooling-set patterns drawn uniformly at random from all
fooling-set patterns of size n with density p.

We allow that the density depends on the size of the matrix: p = p(n). From now
on, Q = Q(n) and R = R(n, p) will denote these random fooling-set patterns.

Our first result is the following. As customary, we use the terminology
“asymptotically almost surely, a.a.s.,” to stand for “with probability tending
to 1 as n tends to infinity”.

Theorem 1. (a) For every field F, if p = O(1/n), then, a.a.s., the minimum
rank of a matrix with zero-nonzero pattern R(n, p) is Ω(n).

(b) Let F be a finite field and F := |F|. (We allow F to grow with n.) If
100max(1, ln lnF)/n ≤ p ≤ 1, then the minimum rank of a matrix over F

with zero-nonzero pattern R(n, p) is

Ω
(log(1/p)

log(1/p) + log(F)
n
)

= Ω(n/ log(F)).

The (Minimum) Rank of Typical Fooling-Set Matrices 275

(c) For every field F, if p ∈]0, 1] is a constant, then the minimum rank of
a matrix with zero-nonzero pattern R(n, p) is Ω(n). (The same is true for
zero-nonzero pattern Q(n).)

Since the constant in the big-Ω in Theorem 1(c) tends to 0 with p → 0,
the proof technique used for constant p does not work for p = o(1); moreover,
the bound in (b) does not give an Ω(n) lower bound for infinite fields, or for
large finite fields, e.g., GF(2n). We conjecture that the bound is still true (see
Lemma 2 for a lower bound):

Conjecture 1. For every field F and for all p = p(n), the minimum rank of a
fooling-set matrix with random zero-nonzero pattern R(n, p) is Ω(n).

The bound in Theorem 1(b) is similar to that in [8], but it is better by roughly
a factor of log n if p is (constant or) slowly decreasing, e.g., p = 1/ log n. (Their
minrank definition gives a lower bound to fooling-set pattern minimum rank.)

The next three sections hold the proofs for Theorem 1.

2 Proof of Theorem 1(a)

It is quite easy to see (using, e.g., Turán’s theorem) that in the region p =
O(1/n), R(n, p) contains a triangular submatrix with nonzero diagonal entries
of order Ω(n), thus lower bounding the rank over any field. Here, we prove the
following stronger result, which also gives a lower bound (for arbitrary fields) for
more slowly decreasing p.

Lemma 2. For p(n) = d(n)/n = o(1), if d(n) > C for some constant C, then
zero-nonzero pattern R(n, p) contains a triangular submatrix with nonzero diag-
onal entries of size

Ω

(
ln d

d
· n

)
.

We prove the lemma by using the following theorem about the independence
number of random graphs in the Erdős-Rényi model. Let Gn,q denote the ran-
dom graph with vertex set [n] where each edge is chosen independently with
probability q.

Theorem 2 (Theorem 7.4 in [11]). Let ε > 0 be a constant, q = q(n), and
define

k±ε :=
⌊2
q
(ln(nq) − ln ln(nq) + 1 − ln2 ± ε)

⌋
.

There exists a constant Cε such that for Cε/n ≤ q = q(n) ≤ ln−2 n, a.a.s.,
the largest independent set in Gn,q has size between k−ε and k+ε.

276 M. Pourmoradnasseri and D.O. Theis

Proof (of Lemma 2). Construct a graph G with vertex set [n] from the fooling-set
pattern matrix R(n, p) in the following way: There is an edge between vertices k
and � with k > �, if and only if Mk,� �= 0. This gives a random graph G = Gn,m,1/2

which is constructed by first drawing uniformly at random a graph from all
graphs with vertex set [n] and exactly m edges, and then deleting each edge,
independently, with probability 1/2. Using standard results in random graph
theory (e.g., Lemma 1.3 and Theorem 1.4 in [7]), this random graph behaves
similarly to the Erdős-Rényi graph with q := p/2. In particular, since Gn,p/2 has
an independent set of size Ω(n), so does Gn,m,1/2.

It is easy to see that the independent sets in G are just the lower-triangular
principal submatrices of Rn,p.

As already mentioned, Theorem 1(a) is completed by noting that for p <
C/n, an easy application of Turán’s theorem (or ad-hoc methods) gives us an
independent set of size Ω(n).

3 Proof of Theorem 1(b)

Let F be a finite field with F := |F|. As mentioned in Theorem 1, we allow
F = F (n) to depend on n. In this section, we need to bound some quantities
away from others, and we do that generously.

Let us say that a tee shape is a set T = I × [n] ∪ [n] × I, for some I ⊂ [n]. A
tee matrix is a tee shape T together with a mapping N : T → F which satisfies

Nk,k = 1 for all k ∈ I, and Nk,�N�,k = 0 for all (k, �) ∈ I × [n], k �= �. (1)

The order of the tee shape/matrix is |I|, and the rank of the tee matrix is the
rank of the matrix NI×I .

For a matrix M and a tee matrix N with tee shape T , we say that M contains
the tee matrix N , if MT = N .

Lemma 3. Let M be a matrix with rank s := rk M , which contains a tee
matrix N of rank s. Then M is the only matrix of rank s which contains N .

In other words, the entries outside of the tee shape are uniquely determined by
the entries inside the tee shape.

Proof. Let T = I × [n] ∪ [n] × I be the tee shape of a tee matrix N contained
in M .

Since NI×I = MI×I and rk NI×I = s = rk M , there is a row set I1 ⊆ I
of size s = rk M and a column set I2 ⊆ I of size s such that rk MI1×I2 = s.
This implies that M is uniquely determined, among the matrices of rank s, by
MT ′ with T ′ := I1 × [n] ∪ [n] × I2 ⊆ T . (Indeed, since the rows of MI1×[n]

are linearly independent and span the row space of M , every row in M is a
unique linear combination of the rows in MI1×[n]; since the rows in MI1×I2 are
linearly independent, this linear combination is uniquely determined by the rows
of M[n]×I2 .)

Hence, M is the only matrix M ′ with rk M ′ = s and M ′
T ′ = MT ′ . Trivially,

then, M is the only matrix M ′ with rk M ′ = s and M ′
T = MT = N .

The (Minimum) Rank of Typical Fooling-Set Matrices 277

Lemma 4. For r ≤ n/5 and m ≤ 2r(n − r)/3, there are at most

O(1) ·
(

n

2r

)
·
(

2r(n − r)
m

)
· (2F)m

matrices of rank at most r over F which contain a tee matrix of order 2r with
at most m nonzeros.

Proof. By the Lemma 3, the number of these matrices is upper bounded by the
number of tee matrices (of all ranks) of order 2r with at most k nonzeros.

The tee shape is uniquely determined by the set I ⊆ [n]. Hence, the number
of tee shapes of order 2r is

(
n

2r

)
. (∗)

The number of ways to choose the support of a tee matrix. Suppose that
the tee matrix has h nonzeros. Due to (1), h nonzeros must be chosen from(
2r
2

)
+ 2r(n − 2r) ≤ 2r(n − r) opposite pairs. Since h < 2r(n − r)/2, we upper

bound this by
(

2r(n − r)
h

)
.

For each of the h opposite pairs, we have to pick one side, which gives a factor of
2h. Finally, picking, a number in F for each of the entries designated as nonzero
gives a factor of (F − 1)h.

For summing over h = 0, . . . ,m, first of all, remember that
∑(1−ε)j/2

i=0

(
j
i

)
=

Oε(1) · (
j

(1−ε)j/2

)
(e.g., Theorem 1.1 in [2], with p = 1/2, u := 1 + ε). Since

m ≤ 2r(n − r)/3, we conclude

m∑

h=0

(
2r(n − r)

h

)
= O(1) ·

(
2r(n − r)

m

)

(with an absolute constant in the big-Oh). Hence, we find that the number of
tee matrices (with fixed tee shape) is at most

m∑

h=0

(
2r(n − r)

h

)
2h(F − 1)h ≤ (2F)m

m∑

h=0

(
2r(n − r)

h

)
= O(1) · (2F)m ·

(
2r(n − r)

m

)
.

Multiplying by (∗), the statement of the lemma follows.

Lemma 5. Let r ≤ n/5. Every matrix M of rank at most r contains a tee
matrix of order 2r and rank rk M .

Proof. There is a row set I1 of size s := rk M and a column set I2 of size s such
that rk MI1×I2 = s. Take I be an arbitrary set of size 2r containing I1 ∪ I2, and
T := I × [n] ∪ [n] × I. Clearly, M contains the tee matrix N := MT , which is of
order 2r and rank s = rk M .

278 M. Pourmoradnasseri and D.O. Theis

Lemma 6. Let 100max(1, ln lnF)/n ≤ p ≤ 1, and n/(1000(max(1, ln F)) ≤
r ≤ n/100. A.a.s., every tee shape of order 2r contained in the random matrix
R(n, p) has fewer than 15pr(n − r) nonzeros.

Proof. We take the standard Chernoff-like bound for the hypergeometric distrib-
ution of the intersection of uniformly random p

(
n
2

)
-element subset (the diagonally

opposite pairs of R(n, p) which contain a 1-entry) of a
(
n
2

)
-element ground set

(the total number of diagonally opposite pairs) with a fixed 2r(n − r)-element
subset (the opposite pairs in T) of the ground set:2 With λ := p2r(n − r) (the
expected size of the intersection), if x ≥ 7λ, the probability that the intersection
has at least x elements is at most e−x.

Hence, the probability that the support of a fixed tee shape of order 2r is
greater than than 15pr(n − r) ≥ 14pr(n − r) + r is at most

e−14pr(n−r) ≤ e−r·14·99·max(1,ln lnF) ≤ e−r·1000·max(1,ln lnF))

Since the number of tee shapes is
(

n

2r

)
≤ er(1+ln(n/r)) ≤ er(11+lnmax(1,lnF)) ≤ er(11+max(1,ln lnF))

we conclude that the probability that a dense tee shape exists in R(n, p) is at
most e−Ω(r).

We are now ready for the main proof.

Proof (of Theorem 1(b)). Call a fooling-set matrix M regular, if Mk,k = 1 for
all k. The minimum rank over a fooling-set pattern is always attained by a
regular matrix (divide every row by the corresponding diagonal element).

Consider the event that there is a regular matrix M over F with σ(M) =
R(n, p), and rk M ≤ r := n/(2000 ln F). By Lemma 5, M contains a tee
matrix N of order 2r and rank rk M . If the size of the support of N is larger
than 15pr(n − r), then we are in the situation of Lemma 6.

Otherwise, M is one of the

O(1) ·
(

n

2r

)
·
(

2r(n − r)
15pr(n − r)

)
· (2F)15pr(n−r)

matrices of Lemma 4.
Hence, the probability of said event is o(1) (from Lemma 6) plus at most an

O(1) factor of the following (with m := pn2/2 and � := r/n) a constant

2 Specifically, we use Theorem 2.10 applied to (2.11) in [11].

The (Minimum) Rank of Typical Fooling-Set Matrices 279

(
n

2r

)
·
(

2r(n − r)
15pr(n − r)

)
· (2F)15pr(n−r)

((
n
2

)

p
(
n
2

)
)

2p(n
2)2−O(pn)

≈

(
n

2r

)
·
(

2r(n − r)
15pr(n − r)

)
· (2F)15pr(n−r)

(
n2/2
pn2/2

)
2pn2/2−O(pn)

=

(
n

2�n

)
·
(

4�(1 − �)n2/2
30p�(1 − �)n2/2

)
· (2F)30p�(1−�)n2/2

(
n2/2
pn2/2

)
2pn2/2−O(pn)

=

(
n

2�n

)
·
(

4�(1 − �) n2/2
30�(1 − �) pn2/2

)
· (2F)30�(1−�) pn2/2

(
n2/2
pn2/2

)
2pn2/2−O(pn)

=: Q.

Abbreviating α := 30�(1−�) < 30�, denoting H(t) := −t ln t−(1−t) ln(1−t),
and using

(
a

ta

)
= Θ

(
(ta)−1/2

)
eH(t)a, for t ≤ 1/2 (2)

(for a large, “≤” holds instead of “= Θ”), we find (the O(pn) exponent comes
from replacing

(
n
2

)
by n2/2 in the denominator)

(
n

2�n

)
230�(1−�) pn2/2

2pn2/2−O(pn)
≤ eH(2�)n−(ln 2)(1−α)pn2/3

≤ eH(2�)n−(ln 2)(1−α)pn2/3

= en
(
H(2�)−(ln 2)(1−α)pn/3

)

≤ en
(
H(2�)−(ln 2)33(1−30�)

)

= o(1),

as pn/2 ≥ 30 and 1 − α > 1 − 30�, and the expression in the parentheses is
negative for all � ∈ [0, 3/100].

For the rest of the fraction Q above, using (2) again, we simplify
(

4�(1 − �) n2/2
30�(1 − �) pn2/2

)
F 30�(1−�) pn2/2

(
n2/2
pn2/2

) ≤

(
α n2/2
α pn2/2

)
F 30�(1−�) pn2/2

(
n2/2
pn2/2

)

= O(1) · en2/2·
(
(α−1)H(p)+pα lnF

)
.

280 M. Pourmoradnasseri and D.O. Theis

Setting the expression in the parentheses to 0 and solving for α, we find

α ≥ ln(1/p)
ln(1/p) + lnF

suffices for Q = o(1); as α ≤ �, the same inequality with α replaced by � is
sufficient.

This completes the proof of the theorem.

4 Proof of Theorem 1(c)

In this section, following the idea of [9], we apply a theorem of Ronyai, Babai,
and Ganapathy [15] on the maximum number of zero-patterns of polynomials,
which we now describe.

Let f = (fj)j=1,...,h be an h-tuple of polynomials in n variables x =
(x1, x2, · · · , xn) over an arbitrary field F. In line with the definitions above,
for u ∈ F

n, the zero-nonzero pattern of f at u is the vector σ(f(u)) ∈ {0, 1}h.

Theorem 3 ([15]). If h ≥ n and each fj has degree at most d then, for all m,
the set

∣
∣
∣
∣
{

y ∈ {0, 1}h
∣
∣
∣ |y| ≤ m and y = σ(f(u)) for some u ∈ F

n
}∣

∣
∣
∣ ≤

(
n + md

n

)
.

In other words, the number of zero-nonzero patterns with Hamming weight at
most m is at most

(
n+md

n

)
.

As has been observed in [9], this theorem is implicit in the proof of Theorem 1.1
of [15]. Since it is not explicitly proven in [15], for the sake of completeness, we
repeat the proof here with slight modification of the proof of Theorem 1.1 from
Theorem 3 which proves Theorem 3. The only difference between the following
proof and that in [15] is where the proof below upper-bounds the degrees of the
polynomials gy.

It has been used in the context of minimum rank problems before (e.g.,
[9,14]), but our use requires slightly more work.

Proof (of Theorem 3). Consider the set

S :=
{

y ∈ {0, 1}h
∣
∣
∣ |y| ≤ m and y = σ(f(u)) for some u ∈ F

n
}

.

For each such y, let uy ∈ F
n be such that σ(f(uy)) = y, and let

gy :=
∏

j,yj=1

fj .

Now define a square matrix A whose row- and column set is S, and whose (y, z)
entry is gy(uz). We have

gy(uz) �= 0 ⇐⇒ z ≥ y,

The (Minimum) Rank of Typical Fooling-Set Matrices 281

with entry-wise comparison, and “1 > 0”. Hence, if the rows and columns are
arranged according to this partial ordering of S, the matrix is upper triangular,
with nonzero diagonal, so it has full rank, |S|. This implies that the gy, y ∈ S,
are linearly independent.

Since each gy has degree at most |y| · d ≤ md, and the space of polynomials
in n variables with degree at most md has dimension

(
n+md

md

)
, it follows that S

has at most that many elements.

Given positive integers r < n, let us say that a G-pattern is an r × n matrix
P whose entries are the symbols 0, 1, and ∗, with the following properties.

(1) Every column contains at most one 1, and every column containing a 1
contains no ∗s.

(2) In every row, the leftmost entry different from 0 is a 1, and every row contains
at most one 1.

(3) Rows containing a 1 (i.e., not all-zero rows) have smaller row indices than
rows containing no 1 (i.e., all-zero rows). In other words, the all-zero rows
are at the bottom of P .

We say that an r × n matrix Y has G-pattern P , if Yj,� = 0 if Pj,� = 0, and
Yj,� = 1 if Pj,� = 1. There is no restriction on the Yj,� for which Pj,� = ∗.

“G” stands for “Gaussian elimination using row operations”. We will need
the following three easy lemmas.

Lemma 7. Any r × n matrix Y ′ can be transformed, by Gaussian elimination
using only row operations, into a matrix Y which has some G-pattern.

Proof. If Y ′ has no nonzero entries, we are done. Otherwise start with the left-
most column containing a nonzero entry, say (j, �). Scale row j that entry a 1,
permute the row to the top, and add suitable multiples of it to the other rows
to make every entry below the 1 vanish.

If all columns 1, . . . , � have been treated such that column � has a unique 1
in row, say j(�), consider the remaining matrix {j(�) + 1, . . . r} × {� + 1, . . . , n}.
If every entry is a 0, we are done. Otherwise, find the leftmost nonzero entry in
the block; suppose it is in column �′ and row j′. Scale row j′ to make that entry
a 1, permute row j′ to j(�)+1, and add suitable multiples of it to all other rows
{1, . . . , r} \ {j(�) + 1} to make every entry below the 1 vanish.

Lemma 8. For every r × n G-pattern matrix P , the number of ∗-entries in P
is at most r(n − r/2).

Proof. The G-pattern matrix P is uniquely determined by c1 < · · · < cs, the
(sorted) list of columns of P which contain a 1. With c0 := 0, for i = 1, . . . , s, if
ci−1 < ci − 1, then replacing ci by ci − 1 gives us a G-pattern matrix with one
more ∗ entry. Hence, we may assume that ci = i for i = 1, . . . , s. If s < r, then
adding s + 1 to the set of 1-columns cannot decrease the number of ∗-entries
(in fact, it increases the number, unless s + 1 = n). Hence, we may assume that
s = r. The number of ∗-entries in the resulting (unique) G-pattern matrix is

282 M. Pourmoradnasseri and D.O. Theis

n − 1 + · · · + n − r = rn − r(r + 1)/2 ≤ r(n − r/2),

as promised.

Lemma 9. Let � ∈]0, .49]. The number of n×�n G-pattern matrices is at most

O(1) ·
(

n

�n

)

(with an absolute constant in the big-O).

Proof. A G-pattern matrix is uniquely determined by the set of columns contain-
ing a 1, which can be between 0 and �n. Hence, the number of n×�n G-pattern
matrices is

�n∑

j=0

(
n

j

)
. (∗)

From here on, we do the usual tricks. As in the previous section, we use the
helpful fact (Theorem 1.1 in [2]) that

(∗) ≤ 1
1 − �

1−�

(
n

�n

)
.

A swift calculation shows that 1/(1−�/(1−�)) ≤ 30, which completes the proof.

We are now ready to complete the Proof of Theorem 1(c).

Proof (of Theorem 1(c)). Let M be a fooling-set matrix of size n and rank
at most r. It can be factored as M = XY , for an n × r matrix X and an
r × n matrix Y due to rank factorization. By Lemma 7, through applying row
operations to Y and corresponding column operations to X, we can assume
that Y has a G-pattern.

Now we use Theorem 3, for every G-pattern matrix separately. For a fixed
G-pattern matrix P , the variables of the polynomials are

– Xk,j , where (k, j) ranges over all pairs [n] × [r]; and
– Yj,�, where (j, �) ranges over all pairs [r] × [n] with Pj,� = ∗.

The polynomials are: for every (k, �) ∈ [n]2, with k �= �,

fk,� =
∑

j
Pj,�=1

Xk,j +
∑

j
Pj,�=∗

Xk,jYj,�.

Clearly, there are n(n−1) polynomials; the number of variables is 2rn−r2/2, by
Lemma 8 (and, if necessary, using “dummy” variables which have coefficient 0
always). The polynomials have degree at most 2.

The (Minimum) Rank of Typical Fooling-Set Matrices 283

By Theorem 3, we find that the number of zero-nonzero patterns with
Hamming weight at most m of fooling-set matrices with rank at most r which
result from this particular G-pattern matrix P is at most

(
2rn − r2/2 + 2m

2rn − r2/2

)
.

Now, take a � < 1/2, and let r := �n. Summing over all G-pattern matrices P ,
and using Lemma 9, we find that the number of zero-nonzero patterns with
Hamming weight at most m of fooling-set matrices with rank at most �n is at
most an absolute constant times

(
n

�n

)(
(2� − �2/2)n2 + 2m

(2� − �2/2)n2

)
.

Now, take a constant p ∈]0, 1], and let m := �p(
n
2

)	. The number of fooling-
set patterns of size n with density p is

((
n
2

)

m

)
2m, (3)

and hence, the probability that the minimum rank of a fooling-set matrix with
zero-nonzero pattern R(n, p) has rank at most r is at most

(
n

�n

)(
(2� − �2/2)n2 + 2m

(2� − �2/2)n2

)

((
n
2

)

m

)
2m

≤

(
n

�n

)(
(2� − �2/2)n2 + 2pn2/2

(2� − �2/2)n2

)

(
n2/2
pn2/2

)
2pn2/2+O(pn)

=

(
n

�n

)(
αn2 + pn2

αn2

)

(
n2/2
pn2/2

)
2pn2/2+O(pn)

where we have set α := 2� − �2/2. As in the previous section, we use (2) to
estimate this expression, and we obtain

ln

⎛

⎜⎜⎜⎜⎝

(
n

�n

)(
αn2 + pn2

αn2

)

(
n2/2

pn2/2

)
2pn2/2+O(pn)

⎞

⎟⎟⎟⎟⎠
= nH(�)

+ n2
(
αH
(
α/(α + p)

)− 1
2
H(p) − (ln 2)p/2

)
+ O(pn).

The dominant term is the one where n appears quadratic. The expression
1
2H(p) + (ln 2)p/2 takes values in]0, 1[. For every fixed p, the function g : α �→
αH

(
α/(α + p)

)
is strictly increasing on [0, 1/2] and satisfies g(0) = 0. Hence, for

every given constant p, there exists an α for which the coefficient after the n2

is negative. (As indicated in the introduction, such an α must tend to 0 with
p → 0.)

284 M. Pourmoradnasseri and D.O. Theis

The proof for the distribution Q(n) follows in the same way, in fact easier: For
the uniform distribution, the expression in (3) is replaced by the larger number
of all fooling-set patterns, 3(

n
2), and it is most convenient to use another theorem

directly from Theorem 1.1 in [15] (without going through the version proved in
the Theorem 3).

Acknowledgments. The second author would like to thank Kaveh Khoshkhah for
discussions on the subject.

References

1. Beasley, L.B., Klauck, H., Lee, T., Theis, D.O.: Communication complexity, linear
optimization, and lower bounds for the nonnegative rank of matrices (Dagstuhl
Seminar 13082). Dagstuhl Rep. 3(2), 127–143 (2013)

2. Bollobás, B.: Random Graphs. Cambridge Studies in Advanced Mathematics, 2nd
edn., vol. 73. Cambridge University Press, Cambridge (2001)

3. Dietzfelbinger, M., Hromkovič, J., Schnitger, G.: A comparison of two lower-bound
methods for communication complexity. Theoret. Comput. Sci. 168(1), 39–51
(1996). 19th International Symposium on Mathematical Foundations of Computer
Science (Košice, 1994)

4. Fiorini, S., Kaibel, V., Pashkovich, K., Theis, D.O.: Combinatorial bounds on
nonnegative rank and extended formulations. Discrete Math. 313(1), 67–83 (2013)

5. Friesen, M., Hamed, A., Lee, T., Theis, D.O.: Fooling-sets and rank. Eur. J. Comb.
48, 143–153 (2015)

6. Friesen, M., Theis, D.O.: Fooling-sets and rank in nonzero characteristic. In:
Nešetřil, J., Pellegrini, M. (eds.) The Seventh European Conference on Combi-
natorics, Graph Theory and Applications. CRM series, vol.16, pp. 383–390. CRM
(2013)

7. Frieze, A., Karoński, M.: Introduction to Random Graphs. Cambridge University
Press, Cambridge (2015)

8. Golovnev, A., Regev, O., Weinstein, O.: The minrank of random graphs. Preprint
arXiv:1607.04842 (2016)

9. Tracy Hall, T., Hogben, L., Martin, R., Shader, B.: Expected values of parameters
associated with the minimum rank of a graph. Linear Algebra Appl. 433(1), 101–
117 (2010)

10. Haviv, I., Langberg, M.: On linear index coding for random graphs. In: 2012 IEEE
International Symposium on Information Theory Proceedings (ISIT), pp. 2231–
2235. IEEE (2012)

11. Janson, S., �Luczak, T., Rucinski, A.: Random Graphs. Wiley-Interscience Series
in Discrete Mathematics and Optimization. Wiley-Interscience, New York (2000)

12. Klauck, H., de Wolf, R.: Fooling one-sided quantum protocols. In: 30th Interna-
tional Symposium on Theoretical Aspects of Computer Science (2013)

13. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1997)

14. Mallik, S., Shader, B.L.: On graphs of minimum skew rank 4. Linear Multilinear
Algebra 64(2), 279–289 (2016)

15. Rónyai, L., Babai, L., Ganapathy, M.: On the number of zero-patterns of a sequence
of polynomials. J. Am. Math. Soc. 14(3), 717–735 (2001)

http://arxiv.org/abs/1607.04842

On Probabilistic Algorithm for Solving Almost
All Instances of the Set Partition Problem

Alexandr V. Seliverstov(B)

Institute for Information Transmission Problems of the Russian Academy of Sciences
(Kharkevich Institute), Bolshoy Karetny per. 19, build. 1, Moscow 127051, Russia

slvstv@iitp.ru

Abstract. Earlier, I.V. Latkin and the author have shown the set par-
tition problem can be reduced to the problem of finding singular points
of a cubic hypersurface. The article focuses on the new link between
two different research areas as well as on methods to look for singular
points or to confirm the smoothness of the hypersurface. Our approach
is based on the description of tangent lines to the hypersurface. The exis-
tence of at least one singular point imposes a restriction on the algebraic
equation that determines the set of tangent lines passing through the
selected point of the space. This equation is based on the formula for the
discriminant of a univariate polynomial. We have proposed a probabilis-
tic algorithm for some set of inputs of the set partition problem. The
probabilistic algorithm is not proved to have polynomial complexity.

Keywords: Set partition · Cubic hypersurfaces · Smoothness · Tangent
line · Polynomial · Discriminant · Computational complexity

1 Introduction

The set partition problem is NP -complete [1]. Let us recall its definition. Given a
multiset of positive integers {α0, . . . , αn}. Can it be partitioned into two subsets
with equal sums of elements? Points with coordinates ±1 are called (−1, 1)-
points. Obviously, this problem is to recognize whether a (−1, 1)-point belongs
to the hyperplane given by α0 + α1x1 + · · · + αnxn = 0. So, it is hard to find
a (−1, 1)-point belonging to the hyperplane in high dimensions. The problem is
to solve the system that consists of one linear equation and the set of quadratic
equations x2

1 = 1,. . . , x2
n = 1. If there is no solution, then a direct proof of

the unsolvability of the system by means of Hilbert’s Nullstellensatz requires to
produce polynomials of very high degree [2]. The informal explanation is that
many (−1, 1)-points can lie on a hyperplane. In case n = 2k, the number of
(−1, 1)-points belonging to the hyperplane given by x1 + · · ·+xn = 0 is equal to
n!/(k!)2. The full description of a large number of solutions requires polynomials

The research has been carried out at the expense of the Russian Science Foundation,
project no. 14–50–00150.

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 285–293, 2017.
DOI: 10.1007/978-3-319-58747-9 25

http://orcid.org/0000-0003-4746-6396

286 A.V. Seliverstov

of high degree. There are known randomized algorithms for solving some systems
of algebraic equations [3]. But their applicability in this case is doubtful.

There are other methods for solving integer linear programming prob-
lems [1,4]. One can find (−1, 1)-points belonging to the hyperplane given by
a linear function with integer coefficients near zero, using dynamic program-
ming [5,6]. There is also the related optimization problem. So, there are well
known both fully polynomial time approximation scheme and pseudo-polynomial
time algorithm for solving the problem. The obstacle for solving the optimiza-
tion problem is a large number of values of the linear functional at different
(−1, 1)-points.

In this paper, we focus on an algorithm for solving all but an exponentially
small fraction of inputs; these inputs are incorrectly accepted without any warn-
ing. In accordance with the Schwartz–Zippel lemma [7], if the stupid algorithm
rejects all inputs, then it works correctly on a strongly generic set of inputs [8,9].
But our algorithm can make errors of another type only.

Our method is based on the reduction of the set partition problem to the
recognition problem for hypersurface singularities [10,11]. Two viewpoints may
clarify each other. Other geometric formulations of related problems have already
appeared in the literature [12,13]. For example, maximization of cubic form over
the Euclidean ball is NP -hard too. Of course, we consider a very special type
of singularities. In general the problem is very hard [14]. Singular points on the
variety corresponds to roots of a system of algebraic equations. The best methods
for solving the system require at least exponential time in general case [3,15]. A
solution to n algebraic equations in n variables can be obtained by a series of
hypergeometric type [16]. Methods based on the computation of Gröbner bases
are widely used in small dimensions [17–19], but the computational complexity
quickly increases in high dimensions [20]. Some examples have been computed
by means of the cloud service MathPartner [21].

2 Preliminaries

The binary representation of a positive integer n has the length �log2(n + 1)�,
where �t� is the smallest integer not less than t. We denote by C and Q the fields
of complex and rational numbers, respectively.

The discriminant Δd of a univariate polynomial of degree d is a homoge-
neous function of its coefficients. The discriminant vanishes if and only if the
polynomial has a multiple root. For example, the discriminant Δ3 of the cubic
polynomial at3 + bt2 + pt + q is equal to b2p2 − 4ap3 − 4b3q − 27a2q2 + 18abpq.
Moreover, Δd(g0, g1, . . . , gd−1, gd) = Δd(gd, gd−1, . . . , g1, g0). If the leading coef-
ficient vanishes, then the value of the function Δd is equal to the discriminant
of another polynomial without the constant term. If the degree is equal to d−1,
then Δd vanishes if and only if the polynomial has a multiple root. If the degree
is less than d − 1, then Δd = 0.

A square-free polynomial is a polynomial that does not have as a factor any
square of a polynomial of positive degree. An affine hypersurface is the vanishing
locus of a square-free polynomial over the field of complex numbers.

On Probabilistic Algorithm 287

Let us consider an affine hypersurface given by a square-free polynomial f . A
straight line passing through the selected point U in n-dimensional affine space is
defined as the set of points with coordinates ((x1−u1)t+u1, . . . , (xn−un)t+un),
where (u1, . . . , un) are coordinates at U , and t is a parameter. Let us denote by
r(t) a univariate polynomial that is the restriction of the polynomial f to the
line, and by D[f, U] the discriminant of r(t). If deg r(t) < d, then we use the
formula for Δd by means of substitution the zero as the leading coefficient. At the
general point U the degree of D[f, U](x1, . . . , xn) is equal to d2 − d. If the line is
a tangent line to the hypersurface, then the discriminant of the polynomial r(t)
vanishes. If U is not a singular point of the hypersurface, then D[f, U](x1, . . . , xn)
defines a cone. If U is a smooth point of the hypersurface, the cone is reducible
and contains a tangent hyperplane at the point U . If U is singular, then D[f, U]
vanishes identically.

If the selected point U is a smooth point of the hypersurface, then let us
denote by B[f, U] the discriminant of r(t)/t. Since r(0) = 0, r(t)/t is a poly-
nomial of degree at most d − 1, where d = deg f . If deg r(t) < d − 1, then we
use the formula for degree d − 1 by means of substitution the zero as the lead-
ing coefficient. Of course, the polynomial B[f, U] is a divisor of the polynomial
D[f, U].

To study generic-case complexity of an algorithm, let us recall the definition
of the generic set [8,9]. For every positive n, let Bn denote the set of all inputs
of length at most n. Let us define the asymptotic density ρ(S) for S as

ρ(S) = lim
n→∞ ρn(S),

where

ρn(S) =
|S ∩ Bn|

|Bn| .

If ρ(S) = 1, then the subset S is called generic. If in addition ρn(S) converges
to 1 exponentially fast, then S is called strongly generic.

For example, hard inputs are rare for the simplex algorithm for linear pro-
gramming [22,23].

3 Results

In this section let us denote

f = α0 + α1x
3
1 + · · · + αnx3

n

h = α0 + α1x1 + · · · + αnxn,

where all coefficients α0,. . . , αn are nonzero. Of course, the hypersurface f = 0
is smooth. The following theorem is a reformulation of the result from [11].

Theorem 1. Given a multiset of positive integers {α0, . . . , αn}, where n ≥ 2.
There exists a one-to-one correspondence between singular points of the affine
variety given by two equations f = h = 0 and (−1, 1)-points belonging to the
hyperplane given by the equation h = 0.

288 A.V. Seliverstov

Proof. If both polynomials f and h vanish simultaneously at a (−1, 1)-point,
then the hyperplane h = 0 is tangent to the hypersurface f = 0 at this point.
Thus, the hyperplane section is singular.

At a singular point of the section, the hyperplane h = 0 coincides with the
tangent hyperplane to the hypersurface f = 0. Since all the coefficients αk are
nonzero, both gradients ∇f and ∇h can be collinear only at the points whose
coordinates satisfy the system of the equations x2

k = x2
j for all indices k and j.

All the points are (−1, 1)-points. ��
The polynomial D[f, U] is equal to the discriminant of a univariate polynomial
at3 + bt2 +pt+ q. That is, D[f, U] = b2p2 −4ap3 −4b3q −27a2q2 +18abpq, where
the coefficients are sums of univariate polynomials a = a1(x1) + · · · + an(xn),
b = b1(x1) + · · · + bn(xn), p = p0 + p1x1 + · · · + pnxn, and the constant term q.
Each monomial from D[f, U](x1, . . . , xn) is dependent on at most four variables.

The polynomial B[f, U] is equal to the discriminant of a univariate polyno-
mial at2 + bt + c. That is, B[f, U] = b2 − 4ac, where the coefficients are sums of
univariate polynomials a = a1(x1) + · · · + an(xn), b = b1(x1) + · · · + bn(xn), and
c = c0+c1x1+ · · ·+cnxn. Each monomial from B[f, U](x1, . . . , xn) is dependent
on at most two variables.

Let us consider the factor ring C[x1, . . . , xn]/〈x2
1−1, . . . , x2

n−1〉. It is referred
to as the set of multilinear polynomials. In this way, we have a surjective map
ϕ from the set of all polynomials onto the set of multilinear polynomials.

Let us denote by M [f, U](x1, . . . , xn−1) a multilinear polynomial that is an
image of the restriction to the hyperplane h = 0 of the multilinear polynomial
ϕ(B[f, U]). The restriction to the hyperplane h = 0 means that we substitute
xn = −(α0 +α1x1 + · · ·+αn−1xn−1)/αn. Unfortunately, it is hard to compute a
Gröbner basis of the ideal 〈h, x2

1 − 1, . . . , x2
n − 1〉. Instead, we use computations

over the set of multilinear polynomials.
Let us denote by L or Lα0,...,αn

a linear space spanned by all multilinear
polynomials M [f, U](x1, . . . , xn−1), where U belongs to the section f = h = 0.

A polynomial vanishes at a (−1, 1)-point if and only if its multilinear image
vanishes at this point. Thus, if the hyperplane section given by f = h = 0 con-
tains a (−1, 1)-point, then all multilinear polynomials from L vanish at the point.
Contrariwise, if L coincides with the linear space of all multilinear polynomials
of degree at most two, then the section does not contain any (−1, 1)-point. Of
course, all such (−1, 1)-points are singular.

Lemma 1. If n = 2 and α0 = 1, then there exist infinitely many values of two
coefficients α1 and α2 such that the linear space L coincides with the linear space
of all multilinear polynomials of degree at most two. In particular, the same is
true for all algebraically independent numbers α1 and α2.

Proof. Let us consider a plane curve defined by f = 3x3
1 + 2x3

2 + 1. The inter-
section of the line 3x1 + 2x2 + 1 = 0 and the curve f = 0 consist of two
points U(−1, 1) and V (15 ,− 4

5). The union of all tangent lines passing through
the point U is defined by the polynomial B[f, U] = −3x4

2 − 36x3
2x1 − 24x3

2 −

On Probabilistic Algorithm 289

54x2
2x

2
1 + 36x2

2 − 36x2x
3
1 − 24x2 − 27x4

1 − 72x3
1 − 108x2

1 − 72x1 − 12. Its multi-
linear image is ϕ(B[f, U]) = −72x2x1 − 48x2 − 144x1 − 168. The substitution
x2 = − 3x1+1

2 yields a univariate polynomial 108x2
1 − 36x1 − 144. Its multilinear

image M [f, U] = −36x1 −36. At the second point V the multilinear polynomial

M [f, V] =
26172
3125

x1 +
428292
15625

.

Two polynomials M [f, U] and M [f, V] together span the whole linear space
of univariate linear polynomials. The same is true for almost all cubic curves
because the first-order theory of the field of complex numbers admits quantifier
elimination. ��
Remark 1. Let us consider an affine plane curve defined by f = x3

1 + x3
2 + 1.

The intersection of the curve and the line defined by h = x1 + x2 + 1 consists
of two points U(0,−1) and V (−1, 0). The third point does not belong to the
affine plane. So, B[f, U] = −12x1x2 − 24x2 − 12x1 − 24; the multilinear polyno-
mial M [f, U] = 24x1 + 12. On the other hand, at the point V the polynomial
B[f, V] = −12x1x2 − 12x2 − 24x1 − 24; the multilinear polynomial M [f, V] van-
ishes identically. Thus, L is a proper subspace in the two-dimensional space of
univariate linear polynomials.

Lemma 2. For all n ≥ 2, if there exist nonzero numbers β0,. . . , βn such that the
linear space Lβ0,...,βn

coincides with the linear space of all multilinear polynomials
of degree at most two, then for almost all nonzero integers α0,. . . , αn, the linear
space Lα0,...,αn

coincides with the linear space of all multilinear polynomials of
degree at most two. Moreover, if for all indices k the numbers 1 ≤ αk ≤ S, then
the upper bound on the fraction of the exception set of (n+1)-tuples {α0, . . . , αn}
is equal to 2poly(n)/S.

Proof. All coefficients from M [f, U] are continuous functions on the open set
α0 �= 0,. . . ,αn �= 0. The matrix determinant is continuous too. Let us consider
a set of points {U (k)} on the hypersurface f = 0 for a set {α0, . . . , αn}. If
all polynomials {M [f, U (k)]} are linearly independent, then under a sufficiently
small change of αk there exists a set of points {V (k)}, such that for all indices
V (k) belongs to a small polydisk near U (k), V (k) belongs to the new hypersurface
f̌ = 0, and all polynomials {M [f̌ , V (k)]} are linearly independent. This property
is satisfied on a nonempty open set of (n + 1)-tuples {α0, . . . , αn} because the
first-order theory of the field of complex numbers admits quantifier elimination.
Thus, dim L is a lower semi-continuous function.

In accordance with our premise, the fraction of the exception set is less than
one. In accordance with Lemma 1, in case n = 2, the premise holds.

There exists a nontrivial polynomial g(α0, . . . , αn) of degree at most 2poly(n)

such that if L does not coincide with the linear space of all multilinear poly-
nomials of degree at most two, then g vanishes. (The converse implication is
not necessary true.) Vanishing of the polynomial g is equivalent to inconsistency
of a system of O(n2) algebraic equations, where the degree of each algebraic

290 A.V. Seliverstov

equations is poly(n). In accordance with [15], the polynomial g can be chosen so
that its degree deg(g) ≤ 2poly(n). Thus, in accordance with the Schwartz–Zippel
lemma [7], the fraction is less than 2poly(n)/S. ��

Let us denote by π the projection of the hyperplane section f = h = 0 that
forgets two coordinates xn−1 and xn. Let us define

λ(n) =
n(n + 1)

2
+ 1

that is the upper bound on dimL for all n ≥ 3.

Lemma 3. Given a multiset of positive integers α0,. . . , αn, and a real ε > 0.
Let us consider the multilinear polynomials mk = M [f, U (k)] for random points
U (k) of the hyperplane section given by f = h = 0, where the index k runs the
segment 1 ≤ k ≤ λ(n). If all coordinates of their images π(U (k)) are independent
and uniformly distributed on the set of integers from one to �2180n4

/ε�, then the
probability of spanning the whole linear space L is at least 1 − ε.

Proof. All polynomials m1,. . . , mλ(n) belong to L. If the polynomials are lin-
early dependent, then the determinant of the matrix, whose entries are coeffi-
cients, vanishes. The order of the matrix is equal to λ(n). Each matrix entry is
a polynomial of degree at most six. The determinant of the matrix is a polyno-
mial of degree at most 6λ(n). Let us denote the polynomial by g. The resultant
resxn−1(g, f(x1, . . . , xn−1,− (α0+α1x1+· · ·+αn−1xn−1)/αn) vanishes with prob-
ability at most ε. Else it vanishes identically. The resultant degree is less than
(3 + deg g) deg g ≤ 9n4 + 18n3 + 54n2 + 45n + 54 < 180n4. The upper bound on
the probability of vanishing the resultant is calculated by the Schwartz–Zippel
lemma [7]. ��

Remark 2. The enormous integer �2180n4
/ε� has a binary representation of poly-

nomial length. But we assume it is only very rough upper bound. Another app-
roach to prove Lemma 3 is briefly discussed in the next section.

Theorem 2. There exists a function S(n) of the type 2poly(n) such that for
any real ε > 0 there exists a probabilistic algorithm for solving the set partition
problem in certain sense.

– The algorithm receives as the input a set of positive integers α0, . . . , αn from
one to S(n);

– The algorithm executes O(n6) arithmetic operations over algebraic numbers
as well as square root or cube root extraction operations;

– If a solution exists, then the probability of accepting is at least 1 − ε;
– Else if there exist nonzero numbers β0, . . . , βn such that the linear space

Lβ0,...,βn
coincides with the linear space of all multilinear polynomials of

degree at most two, then the probability of rejecting is at least 1 − ε except an
exponentially small fraction of inputs, i.e., on a strongly generic set of inputs.

On Probabilistic Algorithm 291

Proof. Let us consider the cubic hypersurface given by f = 0. In accordance
with Theorem 1, a singular point of its hyperplane section given by f = h = 0
corresponds to a solution to the set partition problem [10,11].

In case n ≤ 1, the algorithm simply checks all (−1, 1)-points.
In case n ≥ 2, the algorithm picks up λ(n) random points on the section.

In this way, it picks up a random point P from the coordinate subspace, whose
n − 2 coordinates are independently and uniformly distributed on the set of
integers from one to a large number as in Lemma 3. A preimage U ∈ π−1(P)
belongs to the section. Both points P and U have the same n − 2 coordinates.
Other two coordinates are calculated as a solution of the system of two equations
f = h = 0. They can be irrational.

If a (−1, 1)-point is picked up, then the input is accepted. Else the algorithm
calculates a spanning set of the linear space L in accordance with Lemma 3.
If L does not coincide with the linear space of all multilinear polynomials of
degree at most two, then the input is accepted because a solution gives a linear
dependence of polynomials. Else the input is rejected.

The total number of random bits used by the algorithm is bounded by a
polynomial in n and 1/ε; it does not depend on the values α0, . . . , αn. The total
number of the arithmetic operations over algebraic numbers is bounded by a
polynomial in n.

In accordance with Lemma 2, if there exist nonzero numbers α0, . . . , αn such
that the linear space L coincides with the linear space of all multilinear polyno-
mials of degree at most two, then the error probability is small for a generic set
of inputs. ��
Remark 3. Instead of computation dimL it is sufficient to check whether a
nonzero constant belongs to the linear space L. Moreover, if the linear space
L contains a linear polynomial, one can reduce the dimension of the initial task.

4 Discussion

In fact, the algorithm from Theorem 2 computes the determinant of a matrix
with irrational entries. Its value is an algebraic number that is result of poly(n)
arithmetic operations over roots of cubic polynomials. Unfortunately, there are
such algebraic numbers whose both length and degree can be large [24]. On the
other hand, if the determinant does not belong to a very small polydisk near
zero, then one can use Diophantine approximation to prove that it is nonzero.
Thus, we have a sufficient condition over Q for the absence of any solution for
the set partition problem.

In Lemma 3, we pick up a point from the preimage π−1(P) containing three
points. But we need only one point. Instead, the point on the cubic hypersurface
can be computed in more deterministic way using a rational parameterization
of the variety. All cubic surfaces as well as hypersurfaces in higher dimensions
are unirational over C, although any smooth cubic curve is not unirational.
Moreover, such a cubic hypersurface defined over Q is unirational over Q if
and only if it has a Q-point [25]. Obviously, the same result is true for the

292 A.V. Seliverstov

hyperplane section f = h = 0 that is hypersurface inside the hyperplane. Thus,
if the section contain a Q-point, then we have not only a lot of rational points but
also a rational map from the set of points with integer coordinates to the variety
defined by both polynomials f and h. In this case, one can modify Lemma 3 as
well as Theorem 2 to eliminate irrational numbers.

The number of arithmetic operations in the algorithm depends on the com-
putational complexity of a method for solving systems of linear equations. We
adopt Gaussian elimination. Some upper bounds can be improved by means of
asymptotically more efficient methods [26].

The algorithm works correctly on a strongly generic set of inputs. Maybe
the exception set is empty, but this hypothesis is not obvious. Although two
smooth hypersurfaces are diffeomorphic each other, their algebraic properties
can differ. For example, there exists an exotic smooth complex affine variety
which is diffeomorphic to an affine space, but is not algebraically isomorphic to
it [27]. In case n = 2, see also Remark 1. But in accordance with Lemma 1, the
method can be used for smoothness recognition of almost all cubic curves.

In Theorem 2, all α0, . . . , αn are integers with binary representations of
length poly(n). One can consider the continuous version, where all α0, . . . , αn

are nonzero complex numbers (or algebraic numbers having finite descriptions).
In this case, the exception set has measure zero.

The same method can be applied to find additional algebraic equation that
vanishes at all singular points of an arbitrary algebraic variety of degree d. In
the case, a polynomial of the type D[f, U] can be computed using finitely many
tangent lines passing through the selected point U . The approach based on the
description of tangent lines to the surface can be useful for solving some problems
of machine vision and image recognition.

Acknowledgements. The author would like to thank Mark Spivakovsky, Sergei P.
Tarasov, Mikhail N. Vyalyi, and the anonymous reviewers for useful comments.

References

1. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
2. Margulies, S., Onn, S., Pasechnik, D.V.: On the complexity of Hilbert refutations

for partition. J. Symbolic Comput. 66, 70–83 (2015). doi:10.1016/j.jsc.2013.06.005
3. Herrero, M.I., Jeronimo, G., Sabia, J.: Affine solution sets of sparse polynomial

systems. J. Symbolic Comput. 51, 34–54 (2013). doi:10.1016/j.jsc.2012.03.006
4. Bodur, M., Dash, S., Günlük, O.: Cutting planes from extended LP formulations.

Math. Program. 161(1), 159–192 (2017). doi:10.1007/s10107-016-1005-7
5. Tamir, A.: New pseudopolynomial complexity bounds for the bounded and other

integer Knapsack related problems. Oper. Res. Lett. 37(5), 303–306 (2009). doi:10.
1016/j.orl.2009.05.003

6. Claßen, G., Koster, A.M.C.A., Schmeink, A.: The multi-band robust knapsack
problem — a dynamic programming approach. Discrete Optimization. 18, 123–
149 (2015). doi:10.1016/j.disopt.2015.09.007

7. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM 27(4), 701–717 (1980). doi:10.1145/322217.322225

http://dx.doi.org/10.1016/j.jsc.2013.06.005
http://dx.doi.org/10.1016/j.jsc.2012.03.006
http://dx.doi.org/10.1007/s10107-016-1005-7
http://dx.doi.org/10.1016/j.orl.2009.05.003
http://dx.doi.org/10.1016/j.orl.2009.05.003
http://dx.doi.org/10.1016/j.disopt.2015.09.007
http://dx.doi.org/10.1145/322217.322225

On Probabilistic Algorithm 293

8. Kapovich, I., Myasnikov, A., Schupp, P., Shpilrain, V.: Generic-case complexity,
decision problems in group theory, and random walks. J. Algebra 264, 665–694
(2003). doi:10.1016/S0021-8693(03)00167-4

9. Rybalov, A.N.: A generic relation on recursively enumerable sets. Algebra Logic
55(5), 387–393 (2016). doi:10.1007/s10469-016-9410-9

10. Latkin, I.V., Seliverstov, A.V.: Computational complexity of fragments of the the-
ory of complex numbers. Bulletin of University of Karaganda. Ser. Mathematics,
vol. 1, pp. 47–55 (2015). (in Russian)

11. Seliverstov, A.V.: On cubic hypersurfaces with involutions. In: Vassiliev, N.N. (ed.)
International Conference Polynomial Computer Algebra 2016, St. Petersburg, 18–
22 April 2016, pp. 74–77. VVM Publishing, Saint Petersburg (2016)

12. Nesterov, Y.: Random walk in a simplex and quadratic optimization over convex
polytopes. CORE Discussion Paper 2003/71 (2003)

13. Hillar, C.J., Lim, L.H.: Most tensor problems are NP-hard. J. ACM 60(6), 45
(2013). doi:10.1145/2512329

14. Gel’fand, I.M., Zelevinskii, A.V., Kapranov, M.M.: Discriminants of polynomials
in several variables and triangulations of Newton polyhedra. Leningrad Math. J.
2(3), 499–505 (1991)

15. Chistov, A.L.: An improvement of the complexity bound for solving systems
of polynomial equations. J. Math. Sci. 181(6), 921–924 (2012). doi:10.1007/
s10958-012-0724-4

16. Kulikov, V.R., Stepanenko, V.A.: On solutions and Waring’s formulae for the sys-
tem of n algebraic equations with n unknowns. St. Petersburg Math. J. 26(5),
839–848 (2015). doi:10.1090/spmj/1361

17. Bokut, L.A., Chen, Y.: Gröbner-Shirshov bases and their calculation. Bull. Math.
Sci. 4(3), 325–395 (2014). doi:10.1007/s13373-014-0054-6

18. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of the F5 Gröbner basis
algorithm. J. Symbolic Comput. 70, 49–70 (2015). doi:10.1016/j.jsc.2014.09.025

19. Eder, C., Faugère, J.-C.: A survey on signature-based algorithms for computing
Gröbner bases. J. Symbolic Comput. 80(3), 719–784 (2017). doi:10.1016/j.jsc.2016.
07.031

20. Mayr, E.W., Ritscher, S.: Dimension-dependent bounds for Gröbner bases of poly-
nomial ideals. J. Symbolic Comput. 49, 78–94 (2013). doi:10.1016/j.jsc.2011.12.018

21. Malaschonok, G., Scherbinin, A.: Triangular decomposition of matrices in a
domain. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.)
CASC 2015. LNCS, vol. 9301, pp. 292–306. Springer, Cham (2015). doi:10.1007/
978-3-319-24021-3 22

22. Vershik, A.M., Sporyshev, P.V.: An estimate of the average number of steps in the
simplex method, and problems in asymptotic integral geometry. Sov. Math. Dokl.
28, 195–199 (1983)

23. Smale, S.: On the average number of steps of the simplex method of linear pro-
gramming. Math. Program. 27(3), 241–262 (1983). doi:10.1007/BF02591902

24. Dubickas, A., Smyth, C.J.: Length of the sum and product of algebraic numbers.
Math. Notes. 77, 787–793 (2005). doi:10.1007/s11006-005-0079-y

25. Kollár, J.: Unirationality of cubic hypersurfaces. J. Inst. Math. Jussieu. 1(3), 467–
476 (2002). doi:10.1017/S1474748002000117

26. Cenk, M., Hasan, M.A.: On the arithmetic complexity of Strassen-like matrix mul-
tiplications. J. Symbolic Comput. 80(2), 484–501 (2017). doi:10.1016/j.jsc.2016.
07.004

27. Hedén, I.: Russell’s hypersurface from a geometric point of view. Osaka J. Math.
53(3), 637–644 (2016)

http://dx.doi.org/10.1016/S0021-8693(03)00167-4
http://dx.doi.org/10.1007/s10469-016-9410-9
http://dx.doi.org/10.1145/2512329
http://dx.doi.org/10.1007/s10958-012-0724-4
http://dx.doi.org/10.1007/s10958-012-0724-4
http://dx.doi.org/10.1090/spmj/1361
http://dx.doi.org/10.1007/s13373-014-0054-6
http://dx.doi.org/10.1016/j.jsc.2014.09.025
http://dx.doi.org/10.1016/j.jsc.2016.07.031
http://dx.doi.org/10.1016/j.jsc.2016.07.031
http://dx.doi.org/10.1016/j.jsc.2011.12.018
http://dx.doi.org/10.1007/978-3-319-24021-3_22
http://dx.doi.org/10.1007/978-3-319-24021-3_22
http://dx.doi.org/10.1007/BF02591902
http://dx.doi.org/10.1007/s11006-005-0079-y
http://dx.doi.org/10.1017/S1474748002000117
http://dx.doi.org/10.1016/j.jsc.2016.07.004
http://dx.doi.org/10.1016/j.jsc.2016.07.004

Dag-Like Communication and Its Applications

Dmitry Sokolov(B)

St. Petersburg Department of V.A. Steklov Institute of Mathematics
of the Russian Academy of Sciences,

27 Fontanka, St. Petersburg 191023, Russia
sokolov.dmt@gmail.com

http://logic.pdmi.ras.ru/~sokolov

Abstract. In 1990 Karchmer and Widgerson considered the follow-
ing communication problem Bit: Alice and Bob know a function f :
{0, 1}n → {0, 1}, Alice receives a point x ∈ f−1(1), Bob receives
y ∈ f−1(0), and their goal is to find a position i such that xi �= yi. Karch-
mer and Wigderson proved that the minimal size of a boolean formula for
the function f equals the size of the smallest communication protocol for
the Bit relation. In this paper we consider a model of dag-like commu-
nication complexity (instead of classical one where protocols correspond
to trees). We prove an analogue of Karchmer-Wigderson Theorem for
this model and boolean circuits. We also consider a relation between this
model and communication PLS games proposed by Razborov in 1995
and simplify the proof of Razborov’s analogue of Karchmer-Wigderson
Theorem for PLS games.

We also consider a dag-like analogue of real-valued communication
protocols and adapt a lower bound technique for monotone real circuits
to prove a lower bound for these protocols.

In 1997 Kraj́ıček suggested an interpolation technique that allows
to prove lower bounds on the lengths of resolution proofs and Cutting
Plane proofs with small coefficients (CP∗). Also in 2016 Kraj́ıček adapted
this technique to “random resolution”. The base of this technique is an
application of Razborov’s theorem. We use real-valued dag-like commu-
nication protocols to generalize the ideas of this technique, which helps
us to prove a lower bound on the Cutting Plane proof system (CP) and
adapt it to “random CP”.

Our notion of dag-like communication games allows us to use a
Raz-McKenzie transformation [5,17], which yields a lower bound on the
real monotone circuit size for the CSP-SAT problem.

1 Introduction

In 1990 Karchmer and Wigderson [9] introduced the following communication
problem Bit: Alice receives a point u from a set U ⊆ {0, 1}n, Bob receives a point
v from a set V ⊆ {0, 1}n, U ∩ V = ∅, and their goal is to find a position i such
that ui �= vi. There is also a monotone version of this communication problem,
called MonBit, in this case the goal of Alice and Bob is to find a position i such
that ui = 1 and vi = 0. In [9] Karchmer and Wigderson proved the following
c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 294–307, 2017.
DOI: 10.1007/978-3-319-58747-9 26

Dag-Like Communication and Its Applications 295

Theorem: for every function f , there is a (monotone) boolean formula of size S
iff there is a communication protocol of size S for the problem Bit (MonBit),
where U = f−1(1) and V = f−1(0). Since then, a lot of results about the
formula complexity of functions has been obtained by using this theorem, for
example, a lower bound 2Ω(n

log n) on the monotone formula complexity for an
explicit function [5], and a lower bound n3−o(1) on the formula complexity in de
Morgan basis for an explicit function [4]. Karchmer-Wigderson Theorem gives
a characterization of boolean formulas in terms of communication complexity,
however, it does not work in the context of boolean circuits.

In 1995 Razborov [18] introduced a model of communication Polynomial
Local Search games (PLS). He gave a generalization of Karchmer-Wigderson
Theorem replacing classical communication protocols by PLS games, and
boolean formulas by boolean circuits. In this paper we consider a simplifica-
tion of communication PLS games that is called boolean communication games
(an analogue of this definition was also studied in [16]). We show that for any
communication problem there is a boolean communication game of size S iff
there is a PLS game of size Θ(S) for the same communication problem. We also
show a simple proof of a generalization of Karchmer-Wigderson result in the
case of using boolean communication games and boolean circuits.

Razborov’s result about the connection between PLS games and boolean cir-
cuits was used in 1997 by Kraj́ıček [10], who introduced a so-called “interpolation
technique” for proving lower bounds on the size of propositional proof systems.
In order to describe the essence of this technique let us consider a monotone
function f : {0, 1}n → {0, 1} from the class NP such that there is a lower bound
T (n) on the monotone circuit complexity of f . For example, one can use a func-
tion from [1]: let formula Zero(x, r) encode with additional variables r, the fact
that x ∈ f−1(0), and let formula One(x, q) encode with additional variables q,
the fact that x ∈ f−1(1). Kraj́ıček has shown that if a proof system operates
with clauses such that the communication complexity of evaluating these clauses
(Alice knows the values of a part of variables, and Bob knows the values of the
other part of variables) is bounded by parameter t, and in this proof system
there is a proof of size S of the unsatisfiable formula Zero(x, r)∧ One(x, q), then
one can create a PLS game of size S · 2t for the Karchmer-Wigderson problem
for function f . If the formulas Zero and One satisfy certain natural properties
then this PLS game also solves a monotone version of the Karchmer-Wigderson
problem for the function f . Thus we have a lower bound S ≥ T (n)

2t . There are
proof systems for which lower bounds can be obtained by using this technique,
for example, resolution, CP∗, subsystems of LK, OBDD(∃,weakening) [12]. How-
ever, if we cannot bound the parameter t then this technique does not give us
any bounds, in particular we cannot use this technique for the CP proof system
(without restrictions on the size of coefficients).

The second important communication problem is a canonical search problem
Searchφ for an unsatisfiable formula φ(x, y) in CNF [2]: Alice receives values for
the variables x, Bob receives values for the variables y, and their goal is to find
a clause of φ such that it is unsatisfied by this substitution. In the paper [2],

296 D. Sokolov

the authors present a technique of constructing communication protocols of size
poly(S) (in various classical communication models) for the Searchφ problem,
where S is the size of a tree-like proof of φ in the proof system Th(k) for fixed
k that operates with polynomial inequalities of degree at most k over integer
numbers. These proof systems cover a huge class of known proof systems (for
example, CP is a special case of Th(1)). In [2,5,8] the authors prove lower bounds
on the communication complexity of the Searchφ problem and, as a corollary,
a lower bound on the size of tree-like proofs in Th(k). This technique allows to
prove lower bounds only for tree-like versions of proof systems; general lower
bounds are still unknown even for Th(2). Also in [5] the authors demonstrate a
version of Raz-McKenzie transformation [17] that reduces the problem Searchφ

to the problem MonBit for a certain function SATG (see Definition 12). As a
corollary the authors obtain a lower bound on the monotone formula complexity
of the function SATG.

Remark 1. Although in Kraj́ıček’s paper [10] the problem Searchφ is not used,
in fact all PLS games in that paper with little modification solve this problem.
As a corollary, these games also solve the Karchmer-Wigderson problem.

In this paper we also consider real communication games that generalize
boolean communication games (which are a dag-like analogue of real-valued
classical communication protocols [11]). We prove an analogue of Kraj́ıček’s The-
orem: we show how to construct a real communication game of size S for the
problem Searchφ from a proof of φ in the CP proof system (and, as a corollary,
from a proof in any proof system used in Kraj́ıček’s paper). Instead of construct-
ing a circuit from a game we directly give a lower bound for real communication
protocols. This result generalizes Cook and Haken’s result [6] for monotone real
circuits. As a corollary of this result we apply a Raz-McKenzie transformation
and obtain a lower bound on the monotone real circuit size of the function SATG.

In [3] the authors introduce a random resolution proof system. A δ-random
resolution proof distribution for a formula φ is a random distribution (πs,Δs)
such that Δs is a CNF formula, πs is a resolution proof of φ∧Δs, and every fixed
truth assignment of all variables satisfies Δs with probability at least 1 − δ. We
can consider a natural generalization of this definition to other proof systems and
look at lower bounds for it. The only known technique for proving lower bounds
for the CP proof system is the reduction, due to Pudlák [15], to lower bounds
on the size of real monotone circuits; Hrubeš [7] generalizes this technique for
the semantic version of CP. The exponential lower bounds on these circuits are
given in [6,15]. The reduction of lower bounds on the CP proof size to lower
bounds on the size of real monotone circuits uses substantially the structure of
the initial formula, and so it is unclear how to generalize them for a random
CP proof system. In this paper we show that lower bounds that are obtained by
using real communication games can be generalized for random CP by using a
technique that has been recently introduced by Kraj́ıček in [13]. Unfortunately,
this technique gives us a lower bound only for small values of the parameter δ.

Dag-Like Communication and Its Applications 297

Organization of the paper. In Sect. 2 we give definitions of boolean and real com-
munication games and prove basic properties of these games. In Sect. 3 we define
PLS games and prove a relation between PLS games and boolean communica-
tion games, also we give a simplification of Razborov’s Theorem. In Sect. 4 we
consider a construction of communication games from semantic CP proofs. In
Sect. 5 we give a lower bound on the size of real communication games. In Sect. 6
we prove a lower bound on random CP proof system. In Sect. 7 we give a lower
bound on the real circuit complexity of the function SATG.

Remark 2. Definition 1 was introduced independently by Pavel Pudlák and Pavel
Hrubeš. Also Pavel Pudlák in a private communication announced a proof of the
opposite direction of the statement of Lemma 2.

2 Preliminaries

2.1 Games

The following definition has been also independently introduced by Pavel Pudlák
and Pavel Hrubeš.

Definition 1. Let U, V ∈ {0, 1}n be two sets. Let us consider a triple (H,A,B),
where H is a directed acyclic graph, A : H × U → R and B : H × V → R. We
say that a vertex v ∈ H is valid for a pair (x, y) iff A(v, x) > B(v, y). We
call this triple a real communication game for the pair (U, V) and some relation
N : U × V × T → {0, 1}, where T is a finite set of “possible answers”, if the
following holds:

– H is an acyclic graph and the out-degree of all its vertices is at most 2;
– the leaves of H are marked by element of T ;
– there is a root s ∈ H with in-degree 0 and this vertex is valid for all pairs

from U × V ;
– if v ∈ H is valid for (x, y) and v is not a leaf then at least one child of v is

valid for (x, y);
– if v ∈ H is valid for (x, y), v is a leaf and v is marked by t ∈ T then

N(x, y, t) = 1.

The size of the game is the size of the graph H.
We call it a boolean communication game if A : H × U → {0, 1} and B :

H × V → {0, 1}. (An analogue of boolean communication games was studied in
[16]).

Remark 3. It is useful to think that if we have a boolean communication game
(H,A,B) for sets U, V then we mark each vertex h ∈ H by rectangle Rh ∈ U ×V
of valid inputs, where (x, y) ∈ Rh iff A(h, x) = 1 and B(y, h) = 0. So, if s is the
root then it is marked by the rectangle U × V . If h has two children h′ and h′′,
then Rh ⊆ Rh′ ∪ Rh′′ .

298 D. Sokolov

Lemma 1. Let U, V ∈ {0, 1}n. If Alice receives x ∈ U , Bob receives y ∈ V and
we have a classical communication protocol of size S for some relation N , then
we have a boolean communication game (H,A,B) of size S for sets U, V and
relation N . Moreover, H is a tree.

Proof. Let us consider a tree K that corresponds to a classical communication
protocol. Vertices of this tree correspond to the values of transmitted bits. We
consider a vertex k ∈ K and mark it by rectangle Rk ∈ U ×V , where (x, y) ∈ Rk

iff we run protocol on inputs x, y and come to vertex k at some moment. This
tree with rectangles defines a boolean communication game (see Remark 3), the
root of this tree is the root of the game. All required properties follow from the
definition of rectangles Rk. �
Definition 2. Let φ(x, y) be an unsatisfiable CNF formula, U be an arbitrary
subset of assignments to variables x, and V be an arbitrary subset of assignments
to variables y. A canonical search problem (relation) Searchφ : U × V × C →
{0, 1}, where C is the set of clauses of formula φ, contains all triples (u, v, c)
such that c(u, v) = 0.

Definition 3. Let U, V ⊆ {0, 1}n, U ∩ V = ∅. Relation BitU,V : U × V × [n] →
{0, 1} contains all triples (u, v, i) such that ui �= vi. If there is a function f such
that U = f−1(1) and V = f−1(0) we write Bitf .

Let U, V ⊆ {0, 1}n, U ∩ V = ∅ and ∀ x ∈ U, y ∈ V ∃i xi = 1 ∧ yi = 0.
Relation MonBitU,V : U × V × [n] → {0, 1} contains all triples (u, v, i) such that
ui = 1 ∧ vi = 0. If there is a monotone function f such that U = f−1(1) and
V = f−1(0) we write MonBitf .

Lemma 2. Let f : {0, 1}n → {0, 1} be a monotone function. If there is a
monotone (boolean) real circuit for f of size S then there is a (boolean) real
communication game of size S for sets (f−1(1), f−1(0)) and relation MonBitf .

Proof. A graph H of our real communication game is a graph of the minimal
monotone real circuit for function f with inverted edges. A(e, u) returns the
value of the gate that corresponds to the vertex e on the input u. We define
B(e, v) in the same way. If a leaf h ∈ H corresponds to an input variable xi then
mark this leaf by i.

Let us check all the required properties:

– H is an acyclic and all leaves are marked;
– the root s ∈ H corresponds to the output gate of the circuit;
– note that A(s, f−1(1)) = 1 and B(s, f−1(0)) = 0, hence the root is valid for

all pairs from f−1(1) × f−1(0);
– if h ∈ H is an inner vertex and A(h, u) > B(h, v), then it has a child h′

such that A(h′, u) > B(h′, v) since a gate that corresponds to h computes a
monotone function;

– if h ∈ H is a leaf with label i then A(h, u) = ui and B(h, v) = vi. Hence if
A(h, u) > B(h, v) then ui = 1 and vi = 0. �

Dag-Like Communication and Its Applications 299

2.2 Semantic Cutting Planes

We consider a semantic version of the Cutting Plane (CP) proof system.

Definition 4 (Hrubeš [7]). A proof in semantic CP for CNF formula φ is a
sequence of linear inequalities with real coefficients C1, C2, . . . , Ck, such that Ck

is the trivially unsatisfiable inequality 0 ≥ 1 and Ci can be obtained by one of
the following rules:

– Ci is a linear inequality that encodes a clause of formula φ;
– Ci semantically follows on {0, 1} values from Cj , Ck where j, k < i.

The size of proof is the number of inequalities k. We say that we have a proof
in CP∗ if coefficients in the proof are integer and bounded by a polynomial in
the number of variables of φ.

2.3 Broken Mosquito Screen

Definition 5 (Cook, Haken [6]). An instance of the Broken Mosquito Screen
(BMS) problem encodes a graph with m2−2 vertices, where m ≥ 3 is a convenient
parameter for indexing. The graphs are represented in a standard way, as a string
of bits that indicates for each pair of vertices whether there is an edge between
them, with value 1 for the edge being present and value 0 for the edge being
absent.

The graph is good, or accepted, if there is a partition of its vertices into m−1
sets of size m and one set of size m − 2 such that each of these subsets forms a
clique. A graph is bad, or rejected if there is a partition of its vertices into m−1
sets of size m and one set of size m− 2 such that each of these subsets forms an
anticlique.

Lemma 3 (Cook, Haken [6]). No instance of BMS can be good and bad simul-
taneously. Furthermore, each element in good set is not less (as a vector) than
any element in bad set.

Definition 6 (Cook, Haken [6]). Let G0 be a set of good instances of the BMS
problem that are minimal: only the edges that are explicitly needed to meet the
acceptance condition are present. Let B0 be a set of bad instances of the BMS
problem that are maximal: all edges are present except those that are explicitly
required to be absent to meet the rejection condition.

Now we describe unsatisfiable formulas that are based on the BMS problem.
BMS(x, q, r) = Part(x, q) ∧ Part(¬x, r), where x ∈ {0, 1}(m2−2)(m2−3)/2 are vari-
ables that correspond to a graph, ¬x means that we substitute the negation of
the respective literals, q = {qijk | i, j ∈ [m], k ∈ [m2 − 2]}, r = {rijk | i, j ∈
[m], k ∈ [m2 −2]}. Part(x, y) equals true iff x is a good instance of BMS problem,
yijk = 1 iff we put a vertex k on the j-th place in the i-th component, and the
formula Part(x, y) consists of the following clauses:

– ∀i, j ∈ [m], k1, k2 ∈ [m2 − 2], k1 �= k2 : (¬yijk1 ∨ ¬yijk2);

300 D. Sokolov

– ∀i < m, j ≤ m :
∨

k∈[m2−2]

yijk;

– ∀j ≤ m − 2 :
∨

k∈[m2−2]

ymjk;

– ∀j ∈ {m − 1,m}, k ∈ [m2 − 2] : (¬ymjk);
– ∀i, j1 < j2, k1 �= k2 : (¬yij1k1 ∨ ¬yij2k2 ∨ xk1k2).

We also need a variant of this formula in 3-CNF, denote it by Part′. It can be
obtained by replacing long clauses by a standard procedure: if we have a clause
C of the form (a ∨ b ∨ c ∨ D) then we replace it by two new clauses (a ∨ b ∨ �)
and (¬� ∨ D), where � is a new variable.

BMS′(x, q, r, z) = Part′(x, q, z) ∧ Part′(¬x, r, z)

.

3 Bit Relation and Circuits

In this section we prove a generalization of Kachmer-Wigderson Theorem. This
Theorem relates the size of classic communication protocols for the relation Bit
to the size of boolean formulas. We prove a similar result for boolean communica-
tion games and boolean circuits. We also consider a model of PLS communication
games [18] with a fixed graph and prove its equivalence to boolean communi-
cation games, hence we give a simple proof of Razborov’s Theorem about the
relation between communication PLS games and boolean circuits.

3.1 PLS Games and Boolean Circuits

We start with a model of PLS games. We use a bit simpler notion of PLS games
from Kraj́ıček’s paper [10], where the graph of game is fixed.

Definition 7 (Razborov [18], Kraj́ıček [10]). Let U, V ∈ {0, 1}n be two sets
and let N : U × V × T → {0, 1} be a relation, where T is a finite set of “possible
answers”. A communication PLS game for sets U, V and relation N is a labelled
directed graph G satisfying the following four conditions:

– G is acyclic and has a root (the in-degree 0 node) denoted ∅;
– each leaf is labelled by some t ∈ T ;
– there is a function S(g, x, y) (the strategy) that given a node g ∈ G and a pair

x ∈ U, y ∈ V , outputs the end of an edge leaving the node g;
– for every x ∈ U, y ∈ V , there is a set F (x, y) ∈ G such that:

• ∅ ∈ F (x, y);
• if g ∈ F (x, y) is not a leaf then S(g, x, y) ∈ F (x, y);
• if g ∈ F (x, y) is a leaf and it is marked by t ∈ T then N(x, y, t) = 1.

The communication complexity of G is the minimal number t such that for
every g ∈ G the players (one knowing x and g, the other one, y and g) decide
whether g ∈ F (x, y) and compute S(g, x, y) with at most t bits exchanged in the
worst case. The size of the game is defined as |G|.

Dag-Like Communication and Its Applications 301

Remark 4. We remove the cost function from the original definition in [18] since
if a graph is fixed then the cost function can be replaced by the topology number
of vertex.

Theorem 1. Let U, V ⊆ {0, 1}n, and N : U × V × N → {0, 1} be a relation.

1. If there is a communication PLS game of size L and communication complex-
ity t for sets U, V and a relation N then there is a boolean communication
game of size at most L · 23t for the same sets and relation.

2. If there is a boolean communication game of size L for sets U, V and a relation
N then there is a communication PLS game of size L and communication
complexity two for the same sets and relation.

Proof. See full version [20]. �

3.2 Games and Circuits

The proof of the following theorem generalizes a result from [9] and uses a similar
proof strategy. The sketch of circuits construction from protocols was given in
[16] (Lemma 1), for protocols construction from circuits we will use combination
of Razborov’s Theorem [18] and Theorem 1.

Theorem 2. Let f : {0, 1}n → {0, 1} be a function. There is a boolean com-
munication game for Bitf of size S iff there is a circuit for f of size O(S).
Moreover there is a boolean communication game for MonBitf of size S iff there
is a monotone circuit for f of size S.

Proof. See full version [20]. �
Corollary 1 (Razborov [18]). Let f : {0, 1}n → {0, 1} be a function. If there
is a PLS communication game for (MonBitf) Bitf of size S and communication
complexity t then there is a (monotone) circuit for f of size S · 2O(t). If there is
a (monotone) circuit for f of size S then there is a PLS communication game
for (MonBitf) Bitf of size S and communication complexity two.

Proof. Follows from Theorems 1 and 2. �

4 From Proofs to Games

In this section we relate real communication games to proofs in the semantic CP
proof system.

At first we consider a connection between MonBit relation and Searchφ

problem.

Lemma 4. Let U, V ⊆ {0, 1}n, U ∩ V = ∅ and ∀ x ∈ U, y ∈ V ∃i xi =
1 ∧ yi = 0. Let Q(z, q) be a boolean CNF formula such that x ∈ U iff the
formula ∃q Q(x, q) is true. Let R(z, r) be a boolean CNF formula that satisfies
the following properties:

302 D. Sokolov

– there is at most one variable z in each clause;
– all variables z occur with negative signs;
– y ∈ V iff the formula ∃r R(y, r) is true.

For each x ∈ U one can fix arbitrary qx such that Q(x, qx) = 1, and for
each y ∈ V fix arbitrary ry such that R(y, ry) = 1. Let L = {(x, qx) | x ∈ U},
and L′ = {(y, ry) | y ∈ V }. If there is a real (boolean) communication game
for sets L,L′ and SearchQ(z,q)∧R(z,r) of size S then there is a real (boolean)
communication game for sets U, V and MonBitU,V of size S.

Proof. See full version [20]. �
Lemma 5. Let φ(x, y) be an unsatisfiable CNF formula, U be an arbitrary sub-
set of substitutions to variables x and V is an arbitrary subset of substitutions to
variables y. If there is a semantic CP proof of this formula of size S then there
is a real communication game of size S for the sets (U, V) and the canonical
search problem Searchφ.

Proof. Let H be the graph of the semantic CP proof of the formula φ with
inverted edges. There is a correspondence between vertices and inequalities of
the proof. Consider a vertex h ∈ H, this vertex corresponds to inequalities
f(x) + �(y) ≥ c, define the functions A,B in the following way A(h, u) = −f(u)
and B(h, v) = �(v) − c. Note that a vertex is valid for pair (u, v) iff A(h, u) >
B(h, v), hence f(u) + �(v) < c, i.e. in this case the inequality is falsified by the
substitution (x, y).

The root of our game corresponds to the trivially false inequality 0 ≥ 1,
hence the root is valid for any pair (u, v) ∈ U × V . If a substitution satisfies all
inequalities in the children of some vertex h ∈ H then this substitution satisfies
the inequality in h. Thus, if h is valid for some pair then at least one child of h
is valid for this pair.

If a leaf h is valid for the pair (u, v) then the inequality in h is falsified by
the substitution (u, v).

Lemma 6. Let U, V ⊆ {0, 1}n, U ∩ V = ∅ and ∀ x ∈ U, y ∈ V ∃i xi =
1 ∧ yi = 0. Let Q(z, q) be a boolean CNF formula such that x ∈ U iff the
formula ∃q Q(x, q) is true. Let R(z, r) be a boolean CNF formula that satisfies
the following properties:

– there is at most one variable z in each clause;
– all variables z occur with negative signs;
– y ∈ V iff the formula ∃r R(y, r) is true.

If there is a proof of formula Q(z, q) ∧ R(z, r) in semantic CP of size S then
there is a real communication game for (U, V) and relation MonBitU,V of size S.

Proof. Follows from Lemmas 4 and 5.

Dag-Like Communication and Its Applications 303

5 Lower Bound

We remind that G0 is the set of minimal good instances of BMS and B0 is the set
of maximal bad instances of BMS.

Lemma 7 (Cook, Haken [6], Sect. 4.4). |G0| = |B0| = (m2−2)!
(m!)m−1(m−2)!(m−1)! .

For the rest of the section we fix some subsets U0 ⊆ G0, V0 ⊆ B0 of size at
least |G0|

2 , w.l.o.g. |U0| = |V0|.
Theorem 3. The size of any real communication game for pair U0, V0 and rela-

tion MonBitU0,V0 is at least 1.8
√

m/8

4 .

Before we prove this theorem we need to present a notion of fences [6]. For
the rest of this section we fix some real communication game (H,A,B) for pair
(U0, V0) and relation MonBitU0,V0 . Our goal is to construct a partial map μ :
(U0 ∪V0) → H such that the domain of μ is big enough and the size of preimage
of any element of H is small. We create this map step by step. At the step
i ∈ 0, 1, . . . (we say that i is the current time) we consider the sets Ui ⊆ U0,
Vi ⊆ V0 and pick some element g ∈ Ui ∪ Vi and put it to some vertex from
H, after that we increase the time and proceed with sets Ui+1 = Ui \ {g} and
Vi+1 = Vi \ {g}. Note that either Ui+1 = Ui or Vi+1 = Vi.

Definition 8. Let h be a vertex in a real communication game (H,A,B) and
let g ∈ Ui. A fence around graph g in the vertex h at time i is a conjunction C =
z1 ∧ · · · ∧ zq where z1, . . . , zq are bits of the input of BMS problem. Furthermore,
C(g) = 1, and if h is a valid vertex for pair (g, g′) for some g′ ∈ Vi then
C(g′) = 0. The length of fence is the number of variables q. A minimal fence
around g in h at time i is a fence of minimal length around g in h at time i.

Dually, a fence around g ∈ Vi in h at time i is a disjunction D = z1∨· · ·∨zq,
where z1, . . . , zq bits of the input of BMS problem. Furthermore, D(g) = 0 and if
h is a valid vertex for pair (g′, g) for some g′ ∈ Ui then D(g′) = 1.

Proposition 1. The length of minimal fence around g ∈ U0 ∪ B0 in h is not
increasing in time.

Proof. Follows from the definition of fence.

Definition 9 (Cook, Haken [6]). Let k = m
2 . We call a fence long if it is

longer than k
2 , otherwise we call it short.

5.1 Construction of a Mapping µ

Definition 10 (Cook, Haken [6]). Let us fix some topological sorting of the
graph H so that the children of some vertex h ∈ H have bigger numbers than h.
At time i let hi ∈ H be the vertex with the maximum topological number such
that there is a graph di ∈ Gi ∪ Bi such that di requires a long fence at hi at
time i. Define μ(di) = hi and delete di from Gi ∪Bi to get Gi+1 ∪Bi+1 (if there
is more than one such di then we choose some from Gi first). This process stops
when the remaining graphs have short fences at all gates.

304 D. Sokolov

The following lemmas are proved by analogy with the paper [6].

Lemma 8 (Cook, Haken [6], Lemma 2). The size of the domain of μ is at
least |U0|.
Proof. See full version [20]. �

The next lemma is an analogue of Lemma 4 from [6].

Lemma 9. The number of graphs from U0 ∪ V0 that can be mapped by μ to any
single h ∈ H is at most

2
(km)r/2(m2 − m)r/2(m2 − 2 − r)!

(m!)m−1(m − 2)!(m − 1)!
,

where r is the greatest even number that is less or equal to
√

m
2 .

Proof. See full version [20]. �
Proof (Proof of Theorem 3). The size of real communication game is at least the
size of the domain of μ divided by the maximum size of preimage of the elements
in the image of μ, hence from Lemmas 8 and 9 we conclude that the size is at
least

2
|U0|(m!)m−1(m − 2)!(m − 1)!

(km)r/2(m2 − m)r/2(m2 − 2 − r)!
≥ |G0|(m!)m−1(m − 2)!(m − 1)!

(km)r/2(m2 − m)r/2(m2 − 2 − r)!
≥ 1.8

√
m/8

4
.

The last inequality follows from [6], Sect. 4.6.

Corollary 2. Let Q(z, q) be a boolean CNF formula that x ∈ G0 iff the formula
∃q Q(x, q) is true. Let R(z, r) be a boolean CNF formula that satisfy the following
properties:

– there is at most one variable z in each clause;
– all variables z occur with negative signs;
– y ∈ B0 iff the formula ∃r R(y, r) is true.

Let L be a set of substitution to variable z, q and L′ be a set of substitution
to variable r. The size of any real communication game for the pair L,L′ and

the relation SearchQ(z,y)∧R(z,r) is at least 1.8
√

m/8

4 .

Proof. Follows from Theorem 3 and Lemma 4.

6 Random Cutting Planes

Definition 11. A δ-random CP proof distribution of formula φ is a random
distribution (πs,Δs) such that Δs is a CNF formula, πs is a CP proof of φ∧Δs,
and every fixed truth assignments of all variables satisfies the formula Δs with
probability at least 1 − δ.

The size of distribution is the maximum size of πs.

Dag-Like Communication and Its Applications 305

Theorem 4. Let (πs,Δs) be a δ-random CP proof distribution of the formula
BMS for a convenient parameter m. Let d be the maximum number of clauses
in formulas Δs. If d

√
δ ≤ 1

2 then the size of this distribution is at least (1 −
d
√

δ) 1.8
√

m/8

4 .

For (g, h) ∈ G0 × B0 define w(g, h) = (g, qg, rh) such that Part(g, qg) = 1
and Part(¬h, rh) = 1. Let us assume that w is an injective map (since G0 and
B0 are extremal instances we can choose w in such a way).

Let (πs,Δs) be an arbitrary δ-random CP proof. Denote the size of πs by k.
For a sample s define a set Bads ⊆ G0 × B0 to be the set of all pairs (g, h) such
that w(g, h) falsifies Δs.

Lemma 10 (Kraj́ıček [13], Lemma 2.1). There exists a sample s such that
|Bads| ≤ δ|G0 × B0|.

Let us fix s from this Lemma. Let d be the number of clauses in Δs.

Lemma 11 (Kraj́ıček [13], Lemma 2.2). There exist subsets U ⊆ G0 and
V ⊆ B0 such that

– U × V ∩ Bads = ∅;
– |U | ≥ (1 − d

√
δ)|G0|;

– |V | ≥ (1 − d
√

δ)|B0|.
Lemma 12. Consider a pair (U, V) from Lemma 6. There is a real communi-
cation game for (U, V) and relation MonBitU,V of size that equals the size of
πs.

Proof. See full version [20]. �
Proof (Proof of Theorem 4). Consider s from Lemma 10. By Lemma 12 and
Lemma we have a real communication game for sets (U, V) and relation
MonBitU,V of size that equals the size of πs where U ⊆ G0, V ⊆ B0 and
|U | ≥ |G0|

2 , |V | ≥ |B0|
2 . Hence the statement of the Theorem follows from

Theorem 3.

7 Monotone CSP-SAT

In this section we consider a monotone function called CSP-SAT. This function
was defined in [5,14]; in [19] the authors gave a fully exponential lower bound
on the size of monotone boolean formulas for this function. We prove that this
function requires an exponential monotone real circuit size.

Definition 12 (Göös, Pitassi [5]). The function CSP-SAT is defined relative
to some finite alphabet Σ and a fixed constraint topology given by a bipartite
graph G with left vertices V (variable nodes) and right vertices U (constraint
nodes). We think of each v ∈ V as a variable taking on values from Σ, an edge

306 D. Sokolov

(v, u) ∈ E(G) indicates that variable v is involved in constraint node u. Let d be
the maximum degree of a node in U . We define SAT = SATG,Σ : {0, 1}N → {0, 1}
on N ≤ |U | · |Σ|d bits as follows. An input α ∈ {0, 1}N describes a CSP instance
by specifying, for each constraint node u ∈ U , its truth table: a list of at most
|Σ|d bits that record which assignments to the variables involved in u satisfy
u. Then SAT(α) := 1 iff the CSP instance described by α is satisfiable. This
encoding of CSP satisfiability is indeed monotone: if we flip any 0 in a truth table
of a constraint into a 1, we are only making the constraint easier to satisfy.

The proof of the following theorem use a simplification of analogy of reduction
from [5,17].

Theorem 5. Let Φ be an unsatisfiable d-CNF formula on n variables and m
clauses with the variables splitted into sets X,Y . Let G be a constraint topol-
ogy of Φ. If there is a real (boolean) communication game of size S for sets
SAT−1

G,{0,1}(1), SAT−1
G,{0,1}(0) and MonBitSATG,{0,1} relation then there is a real

(boolean) communication game of size S for sets {0, 1}|X|, {0, 1}|Y | (sets of all
possible substitution to variables X and Y) and Searchφ relation.

Proof. See full version [20]. �
Corollary 3. Let G be a constraint topology of BMS′. The size of any monotone
real circuit that computes SATG,{0,1} : {0, 1}N → {0, 1} is at least 2Ω(N1/8).

Proof. Follows from Theorem 5 and Corollary 2.

Acknowledgements. This research is supported by Russian Science Foundation
(project 16-11-10123).

The author is grateful to Pavel Pudlák and Dmitry Itsykson for fruitful discussions.
The author also thanks Edward Hirsch, Dmitry Itsykson and anonymous reviewers for
error correction.

References

1. Alon, N., Boppana, R.B.: The monotone circuit complexity of boolean functions.
Combinatorica 7(1), 1–22 (1987). http://dx.doi.org/10.1007/BF02579196

2. Beame, P., Pitassi, T., Segerlind, N.: Lower bounds for Lovász-Schrijver systems
and beyond follow from multiparty communication complexity. SIAM J. Comput.
37(3), 845–869 (2007). http://dx.doi.org/10.1137/060654645

3. Buss, S.R., Kolodziejczyk, L.A., Thapen, N.: Fragments of approximate counting.
J. Symb. Log. 79(2), 496–525 (2014). http://dx.doi.org/10.1017/jsl.2013.37

4. Dinur, I., Meir, O.: Toward the KRW composition conjecture: Cubic formula
lower bounds via communication complexity. In: 31st Conference on Computa-
tional Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pp. 3:1–3:51
(2016). http://dx.doi.org/10.4230/LIPIcs.CCC.2016.3

5. Göös, M., Pitassi, T.: Communication lower bounds via critical block sensitivity. In:
Symposium on Theory of Computing, STOC 2014, New York, NY, USA, 31 May–
03 June, 2014, pp. 847–856 (2014). http://doi.acm.org/10.1145/2591796.2591838

http://dx.doi.org/10.1007/BF02579196
http://dx.doi.org/10.1137/060654645
http://dx.doi.org/10.1017/jsl.2013.37
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.3
http://doi.acm.org/10.1145/2591796.2591838

Dag-Like Communication and Its Applications 307

6. Haken, A., Cook, S.A.: An exponential lower bound for the size of monotone real
circuits. J. Comput. Syst. Sci. 58(2), 326–335 (1999)

7. Hrubeš, P.: A note on semantic cutting planes. Electron. Colloquium Comput.
Complex. (ECCC) 20, 128 (2013). http://eccc.hpi-web.de/report/2013/128

8. Huynh, T., Nordström, J.: On the virtue of succinct proofs: amplifying communi-
cation complexity hardness to time-space trade-offs in proof complexity. In: Pro-
ceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012,
New York, NY, USA, 19–22 May 2012, pp. 233–248 (2012). http://doi.acm.org/
10.1145/2213977.2214000

9. Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require super-
logarithmic depth. SIAM J. Discrete Math. 3(2), 255–265 (1990). http://dx.doi.
org/10.1137/0403021

10. Kraj́ıček, J.: Interpolation theorems, lower bounds for proof systems, and indepen-
dence results for bounded arithmetic. J. Symb. Log. 62(2), 457–486 (1997). http://
dx.doi.org/10.2307/2275541

11. Kraj́ıček, J.: Interpolation by a game. Math. Log. Q. 44, 450–458 (1998). http://
dx.doi.org/10.1002/malq.19980440403

12. Kraj́ıček, J.: An exponential lower bound for a constraint propagation proof system
based on ordered binary decision diagrams. J. Symb. Log. 73(1), 227–237 (2008).
http://dx.doi.org/10.2178/jsl/1208358751

13. Kraj́ıček, J.: A feasible interpolation for random resolution. CoRR abs/1604.06560
(2016). http://arxiv.org/abs/1604.06560

14. Oliveira, I.: Unconditional lower bounds in complexity theory. Ph.D. thesis,
Columbia university (2015)

15. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symb. Log. 62(3), 981–998 (1997). http://dx.doi.org/10.2307/
2275583

16. Pudlák, P.: On extracting computations from propositional proofs (a survey). In:
IARCS Annual Conference on Foundations of Software Technology and Theo-
retical Computer Science, FSTTCS 2010, 15–18 December 2010, Chennai, India,
pp. 30–41 (2010). http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.30

17. Raz, R., McKenzie, P.: Separation of the monotone NC hierarchy. Combinatorica
19(3), 403–435 (1999). http://dx.doi.org/10.1007/s004930050062

18. Razborov, A.A.: Unprovability of lower bounds on circuit size in certain fragments
of bounded arithmetic. Izvestiya RAN. Ser. Mat. 59, 201–224 (1995)

19. Robert, R., Pitassi, T.: Strongly exponential lower bounds for monotone compu-
tation. ECCC Report: TR16-188 (2016)

20. Sokolov, D.: Dag-like communication and its applications. Electronic Colloquium
on Computational Complexity (ECCC) (2016). http://eccc.hpi-web.de/report/
2016/202

http://eccc.hpi-web.de/report/2013/128
http://doi.acm.org/10.1145/2213977.2214000
http://doi.acm.org/10.1145/2213977.2214000
http://dx.doi.org/10.1137/0403021
http://dx.doi.org/10.1137/0403021
http://dx.doi.org/10.2307/2275541
http://dx.doi.org/10.2307/2275541
http://dx.doi.org/10.1002/malq.19980440403
http://dx.doi.org/10.1002/malq.19980440403
http://dx.doi.org/10.2178/jsl/1208358751
http://arxiv.org/abs/1604.06560
http://dx.doi.org/10.2307/2275583
http://dx.doi.org/10.2307/2275583
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.30
http://dx.doi.org/10.1007/s004930050062
http://eccc.hpi-web.de/report/2016/202
http://eccc.hpi-web.de/report/2016/202

The Descriptive Complexity of Subgraph
Isomorphism Without Numerics

Oleg Verbitsky1(B) and Maksim Zhukovskii2

1 Institut für Informatik, Humboldt-Universität zu Berlin,
Unter den Linden 6, 10099 Berlin, Germany

verbitsk@informatik.hu-berlin.de
2 Department of Discrete Mathematics,

Moscow Institute of Physics and Technology (State University),

Dolgoprudny, Moscow Region, Russia

Abstract. Let F be a connected graph with � vertices. The existence
of a subgraph isomorphic to F can be defined in first-order logic with
quantifier depth no better than �, simply because no first-order formula
of smaller quantifier depth can distinguish between the complete graphs
K� and K�−1. We show that, for some F , the existence of an F subgraph
in sufficiently large connected graphs is definable with quantifier depth
�−3. On the other hand, this is never possible with quantifier depth bet-
ter than �/2. If we, however, consider definitions over connected graphs
with sufficiently large treewidth, the quantifier depth can for some F be
arbitrarily small comparing to � but never smaller than the treewidth
of F .

We also prove that any first-order definition of the existence of an
induced subgraph isomorphic to F requires quantifier depth strictly more
than the density of F , even over highly connected graphs. From this
bound we derive a succinctness result for existential monadic second-
order logic: A usage of just one monadic quantifier sometimes reduces
the first-order quantifier depth at a super-recursive rate.

1 Introduction

For a fixed graph F on � vertices, let S(F) denote the class of all graphs con-
taining a subgraph isomorphic to F . The decision problem for S(F) is known as
Subgraph Isomorphism problem. It is solvable in time O(n�) on n-vertex input
graphs by exhaustive search. Nešetřil and Poljak [15] showed that S(F) can be
recognized in time O(n(ω/3)�+2), where ω < 2.373 is the exponent of fast square
matrix multiplication. Moreover, the color-coding method by Alon, Yuster and
Zwick [2] yields the time bound

2O(�) · ntw(F)+1 log n,

The first author was supported by DFG grant VE 652/1–2. He is on leave from the
IAPMM, Lviv. The second author was supported by grants No. 15-01-03530 and
16-31-60052 of Russian Foundation for Basic Research.

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 308–322, 2017.
DOI: 10.1007/978-3-319-58747-9 27

The Descriptive Complexity of Subgraph Isomorphism Without Numerics 309

where tw(F) denotes the treewidth of F . On the other hand, the decision problem
for S(K�), that is, the problem of deciding if an input graph contains a clique of
� vertices, cannot be solved in time no(�) unless the Exponential Time Hypothesis
fails.

We here are interested in the descriptive complexity of Subgraph Isomor-

phism. A sentence Φ defines a class of graphs C if

G |= Φ ⇐⇒ G ∈ C, (1)

where G |= Φ means that Φ is true on G. For a logic L, we let DL(C) (resp.
WL(C)) denote the minimum quantifier depth (resp. variable width) of Φ ∈ L
defining C. Note that WL(C) ≤ DL(C). We simplify notation by writing

WL(F) = WL(S(F)) and DL(F) = DL(S(F)). (2)

We are primarily interested in the first-order logic of graphs with relation
symbols for adjacency and equality of vertices, that will be denoted by FO. We
suppose that the vertex set of any n-vertex graph is {1, . . . , n}. Seeking the
adequate logical formalism for various models of computation, descriptive com-
plexity theory considers also more expressive logics involving numerical relations
over the integers. Given a set N of such relations, FO[N] is used to denote the
extension of FO whose language contains symbols for each relation in N . Of
special interest are FO[<], FO[+,×], and FO[Arb], where Arb indicates that
arbitrary relations are allowed. It is known [10,14] that FO[Arb] and FO[+,×]
capture (non-uniform) AC0 and DLOGTIME-uniform AC0 respectively.

We will simplify the notation (2) further by writing D(F) = DFO(F) and
W (F) = WFO(F). Dropping FO in the subscript, we also use notation like
D<(F) or WArb(F). In this way we obtain two hierarchies of width and depth
parameters. In particular,

WArb(F) ≤ W<(F) ≤ W (F) and DArb(F) ≤ D<(F) ≤ D(F).

The relation of FO[Arb] to circuit complexity implies that S(F) is recognizable
by bounded-depth unbounded-fan-in circuits of size nWArb(F)+o(1); see [10,18].
The interplay between the two areas has been studied in [12,13,18,19]. Notewor-
thy, the parameters WArb(F) and DArb(F) admit combinatorial upper bounds

WArb(F) ≤ tw(F) + 3 and DArb(F) ≤ td(F) + 2 (3)

in terms of the treewidth and treedepth of F ; see [20].1

The focus of our paper is on FO without any background arithmetical rela-
tions. Our interest in this weakest setting is motivated by the prominent problem

1 In his presentation [20], Benjamin Rossman states upper bounds WFO(F) ≤ tw(F)+
1 and DFO(F) ≤ td(F) for the colorful version of Subgraph Isomorphism studied
in [13]. It is not hard to observe that the auxiliary color predicates can be defined
in FO[Arb] at the cost of two extra quantified variables by the color-coding method
developed in [2]; see also [3, Theorem4.2].

310 O. Verbitsky and M. Zhukovskii

on the power of encoding-independent computations; see, e.g., [9]. It is a long-
standing open question in finite model theory as to whether there exists a logic
capturing polynomial time on finite relational structures. The existence of a logic
capturing polynomial time would mean that any polynomial-time computation
could be made, in a sense, independent of the input encoding. If this is true,
are the encoding-independent computations necessarily slower than the stan-
dard ones? This question admits the following natural variation. Suppose that
a decision problem a priori admits an encoding-independent polynomial-time
algorithm, say, being definable in FO, like Subgraph Isomorphism for a fixed
pattern graph F . Is it always true that the running time of this algorithm can
be improved in the standard encoding-dependent Turing model of computation?

A straightforward conversion of an FO sentence defining S(F) into an algo-
rithm recognizing S(F) results in the time bound O(nD(F)) for Subgraph Iso-

morphism, which can actually be improved to O(nW (F)); see [14, Proposition 6.6].
The same applies to FO[<]. The last logic is especially interesting in the context
of order-invariant definitions. It is well known [14,21] that there are properties
of (unordered) finite structures that can be defined in FO[<] but not in FO.
Even if a property, like S(F), is definable in FO, one can expect that in FO[<]
it can be defined much more succinctly. As a simple example, take F to be the
star graph K1,s and observe that D<(K1,s) ≤ log2 s+3 and W<(K1,s) ≤ 3 while
W (K1,s) = s + 1.

The main goal we pose in this paper is examining abilities and limitations
of the “pure” FO in succinctly defining Subgraph Isomorphism. Actually, if a
pattern graph F has � vertices, then the trivial upper bound D(F) ≤ � cannot
be improved. We have W (F) = � simply because no first-order formula with
less than � variables can distinguish between the complete graphs K� and K�−1.
Is this, however, the only reason preventing more succinct definitions of S(F)?
How succinctly can S(F) be defined on large enough graphs? The question can
be formalized as follows. We say that a sentence Φ defines S(F) on sufficiently
large connected graphs if there is k such that (1) with C = S(F) is true for
all connected G with at least k vertices. Let Wv(F) (resp. Dv(F)) denote the
minimum variable width (resp. quantifier depth) of such Φ.

Throughout the paper, we assume that the fixed pattern graph F is con-
nected. Therefore, F is contained in a host graph G if and only if it is contained
in a connected component of G. By this reason, the decision problem for S(F)
efficiently reduces to its restriction to connected input graphs. Since it suffices to
solve the problem only on all sufficiently large inputs, S(F) is still recognizable
in time O(nWv(F)), while Wv(F) ≤ W (F).

A further relaxation is motivated by Courcelle’s theorem [6] saying that every
graph property definable by a sentence in monadic second-order logic can be
efficiently decided on graphs of bounded treewidth. More precisely, for Sub-

graph Isomorphism Courcelle’s theorem implies that S(F) is decidable in time
f(�, tw(G)) · n, which means linear time for any class of input graphs having
bounded treewidth.

The Descriptive Complexity of Subgraph Isomorphism Without Numerics 311

Now, we say that a sentence Φ defines S(F) on connected graphs with suf-
ficiently large treewidth if there is k such that (1) with C = S(F) is true for
all connected G with treewidth at least k. Denote the minimum variable width
(resp. quantifier depth) of such Φ by Wtw (F) (resp. Dtw (F)). Fix k that ensures
the minimum value Wtw (F) and recall that, by Courcelle’s theorem, the sub-
graph isomorphism problem is solvable on graphs with treewidth less than k in
linear time. Note that, for a fixed k, whether or not tw(G) < k is also decidable
in linear time [4]. It follows that S(F) is recognizable even in time O(nWtw (F)),
while Wtw (F) ≤ Wv(F).

The above discussion shows that the parameters Wv(F), Dv(F), Wtw (F),
and Dtw (F) have clear algorithmic meaning. Analyzing this setting, we obtain
the following results.

– We demonstrate that non-trivial definitions over sufficiently large graphs are
possible by showing that Dv(F) ≤ v(F) − 3 for some F , where v(F) denotes
the number of vertices in F . On the other hand, we show limitations of this
approach by proving that Wv(F) ≥ (v(F) − 1)/2 for all F .

– The last barrier (as well as any lower bound in terms of v(F)) can be overcome
by definitions over graphs with sufficiently large treewidth. Specifically, for
every � and a ≤ � there is an �-vertex F such that Dtw (F) ≤ a and, moreover,
tw(F) = a − 1. On the other hand, Wtw (F) ≥ tw(F) for all F . Note that,
along with (3), this implies that WArb(F) ≤ Wtw (F) + 3.

We also address the descriptive complexity of the Induced Subgraph Isomor-

phism problem. Let I(F) denote the class of all graphs containing an induced
subgraph isomorphic to F . The state-of-the-art of the algorithmics for Induced

Subgraph Isomorphism is different from Subgraph Isomorphism. Floderus
et al. [8] collected evidence in favor of the conjecture that I(F) for F with �
vertices cannot be recognized faster than I(Kc �), where c < 1 is a constant.

Similarly to D(F), we define D[F] = D(I(F)), where the square brackets
indicate that the case of induced subgraphs is considered. The trivial argument
showing that D(F) = v(F) does not work anymore unless F is a complete graph
(whereas K� contains every �-vertex F as a subgraph, it contains no induced
copy of F unless F = K�). Proving or disproving that D[F] = v(F) seems to be
a subtle problem. Our results on Induced Subgraph Isomorphism are as follows.

– We prove a general lower bound D[F] > e(F)/v(F), where e(F) denotes the
number of edges in F . In fact, the bound holds true even for Dtw [F].

– From this bound we derive a succinctness result for existential monadic
second-order logic: A usage of just one monadic quantifier sometimes reduces
the FO quantifier depth at a super-recursive rate. More precisely, let
D∃MSO[F] denote the minimum quantifier depth of a second-order sentence
with a single existential monadic quantifier that defines I(F). Then D∃MSO[F]
can sometimes be so small comparing to D[F] = DFO[F] that there is no total
recursive function f such that f(D∃MSO[F]) ≥ D[F] for all F .

312 O. Verbitsky and M. Zhukovskii

2 Preliminaries

First-Order Complexity of Graph Properties. We consider first-order sen-
tences about graphs in the language containing the adjacency and the equality
relations. Let C be a first-order definable class of graphs and π be a graph
parameter. Let Dk

π(C) denote the minimum quantifier depth of a first-order
sentence Φ such that, for every connected graph G with π(G) ≥ k, Φ is true
on G exactly when G belongs to C. Note that Dk

π(C) ≥ Dk+1
π (C), and define

Dπ(C) = mink Dk
π(C). In other words, Dπ(C) is the minimum quantifier depth

of a first-order sentence defining C over connected graphs with sufficiently large
values of π.

The variable width of a first-order sentence Φ is the number of first-order
variables used to build Φ; different occurrences of the same variable do not
count. By Wπ(C) we denote the minimum variable width of Φ defining C over
connected graphs with sufficiently large π. Note that Wπ(C) ≤ Dπ(C).

Recall that a graph is k-connected if it has more than k vertices, is connected,
and remains connected after removal of any k−1 vertices. The connectivity κ(G)
of G is equal to the maximum k such that G is k-connected. We will consider the
depth Dπ(C) and the width Wπ(C) for three parameters π, namely the number
of vertices v(G), the treewidth tw(G), and the connectivity κ(G). It is not hard
to see that

Dv(C) ≥ Dtw (C) ≥ Dκ(C) and Wv(C) ≥ Wtw (C) ≥ Wκ(C).

As it was discussed in Sect. 1, the values of Dv(C) and Dtw (C), as well as Wv(C)
and Wtw (C), are related to the time complexity of the decision problem for C.
Consideration of Dκ(C) and Wκ(C) is motivated by the fact that some lower
bounds we are able to show for Dv(C) and Dtw (C) actually hold for Dκ(C) or
even for Wκ(C), and it is natural to present them in this stronger form.

Recall that S(F) denotes the class of graphs containing a subgraph isomor-
phic to F . Simplifying the notation, we write Dv(F) = Dv(S(F)), Wv(F) =
Wv(S(F)), etc.

Given two non-isomorphic graphs G and H, let D(G,H) (resp. W (G,H))
denote the minimum quantifier depth (resp. variable width) of a sentence that
is true on one of the graphs and false on the other.

Lemma 1. 1. Dπ(C) ≥ d if there are connected graphs G ∈ C and H /∈ C with
arbitrarily large values of π(G) and π(H) such that D(G,H) ≥ d.

2. Wπ(C) ≥ d if there are connected graphs G ∈ C and H /∈ C with arbitrarily
large values of π(G) and π(H) such that W (G,H) ≥ d.

3. Dπ(C) ≤ d if D(G,H) ≤ d for all connected graphs G ∈ C and H /∈ C with
sufficiently large values of π(G) and π(H).

Lemma 1 reduces estimating Dπ(C) to estimating D(G,H) over connected
G ∈ C and H /∈ C with large values of π. Also, proving lower bounds for Wπ(C)
reduces to proving lower bounds for W (G,H). For estimating D(G,H) and
W (G,H) we will use the well-known characterization of these parameters in
terms of the k-pebble Ehrenfeucht-Fräıssé game [10]:

The Descriptive Complexity of Subgraph Isomorphism Without Numerics 313

1. D(G,H) is equal to the minimum k such that Spoiler has a winning strategy
in the k-round k-pebble game on G and H.

2. W (G,H) is equal to the minimum k such that, for some d, Spoiler has a
winning strategy in the d-round k-pebble game on G and H.

Graph-Theoretic Preliminaries. Recall that v(G) denotes the number of
vertices in a graph G. The treewidth of G is denoted by tw(G). The neighborhood
N(v) of a vertex v consists of all vertices adjacent to v. The number deg v =
|N(v)| is called the degree of v. The vertex of degree 1 is called pendant.

We use the standard notation Kn for complete graphs, Pn for paths, and Cn

for cycles on n vertices. Furthermore, Ka,b denotes the complete bipartite graph
whose vertex classes have a and b vertices. In particular, K1,n−1 is the star graph
on n vertices. The subscript in the name of a graph will almost always denote
the number of vertices. If a graph is indexed by two parameters, their sum is
typically equal to the total number of vertices in the graph.

L4,2 S4,2 J4,3 M3,2

Fig. 1. Special graph families: Lollipops, sparklers, jellyfishes, and megastars.

The following definitions are illustrated in Fig. 1. Let a ≥ 3 and b ≥ 1.
The lollipop graph La,b is obtained from Ka and Pb by adding an edge between
an end vertex of Pb and a vertex of Ka. We also make a natural convention
that La,0 = Ka. Furthermore, the sparkler graph Sa,b is obtained from K1,a−1

and Pb by adding an edge between an end vertex of Pb and the central vertex
of K1,a−1. The jellyfish graph Ja,b is the result of attaching b pendant vertices
to a vertex of Ka. Finally, the megastar graph Ms,t is obtained from the star
K1,s by subdividing each edge into Pt+1; thus v(Ms,t) = st + 1.

3 Definitions over Sufficiently Large Graphs

Our first goal is to demonstrate that non-trivial definitions over large connected
graphs are really possible. The lollipop graphs La,1 give simple examples of
pattern graphs F with Dv(F) ≤ v(F)−1. Though not so easily, the same can be
shown for the path graphs P�. We are able to show better upper bounds using
sparkler graphs.

314 O. Verbitsky and M. Zhukovskii

Theorem 2. There is a graph F with Dv(F) ≤ v(F) − 3. Specifically,
Dv(S4,4) = 5.

For the proof we need two technical lemmas.

Lemma 3. Suppose that a connected graph H contains the 4-star K1,4 as a
subgraph but does not contain any subgraph S4,4. Then H contains a vertex of
degree more than (v(H)/2)1/7.

Proof. H cannot contain P15 because, together with K1,4, it would give an S4,4

subgraph. Consider an arbitrary spanning tree T in H and denote its maximum
vertex degree by d and its radius by r. Note that v(T) ≤ 1 + d + d(d − 1) +
. . . + d(d − 1)r−1. Since T contains no P15, we have r ≤ 7. It follows that
v(H) = v(T) < 2d7. ��

Let ∼ denote the adjacency relation.

Lemma 4. Let y0 ∈ V (H) and assume that

– H is a sufficiently large connected graph,
– H does not contain S4,4,
– deg y0 ≥ 4,
– y0y1y2y3y4 is a path in H.

Then (see Fig. 2)

1. deg y0 = 4,
2. y0 ∼ y2, y0 � y3, y0 � y4,
3. if N(y0) = {y1, y2, y

′, y′′}, then y1 � y′ and y1 � y′′.

x0

x1

x2

x3

x4

x′ x′′
x′′′

S4,4 in G

y0

y1

y2

y3

y4

y′ y′′

H

Fig. 2. Proof of Theorem 2.

The Descriptive Complexity of Subgraph Isomorphism Without Numerics 315

Proof. By Lemma 3 we know that H must contain a vertex z of large degree,
namely deg z ≥ 7. We have y0 � y4 for else H would contain a cycle C5 and,
together with z, this would give us a subgraph S4,4 (because, by connectedness of
H, we would have a path P5 emanating from z). Therefore, y0 has a neighbor y′ /∈
{y1, y2, y3, y4}. Furthermore, y0 � y3 for else, considering a path from z to one of
the vertices y′, y0, y1, y2, y3, y4, we get a P5 emanating from z and, hence, an S4,4.
Therefore, y0 has another neighbor y′′ /∈ {y′, y1, y2, y3, y4}. Furthermore, y0 ∼
y2 for else y0 would have three neighbors y′, y′′, y′′′ different from y1, y2, y3, y4,
which would give S4,4. By the same reason, y0 has no other neighbors, that is,
N(y0) = {y1, y2, y

′, y′′} and deg y0 = 4. Note that z ∈ {y0, y1, y2, y3, y4} for else
we easily get an S4,4 by considering a path from z to one of these vertices. It is
also easy to see that z
= y0, y4, y3, y1 (for example, if deg y1 ≥ 7, then it would
give an S4,4 with tail y1y0y2y3y4). Therefore, z = y2. If y1 ∼ y′ or y1 ∼ y′′, we
would have an S4,4 with tails y2y1y

′y0y′′ or y2y1y
′′y0y′ respectively. ��

Proof (of Theorem 2). We are now ready to prove the upper bound Dv(S4,4) ≤ 5.
Consider sufficiently large connected graphs G and H and suppose that G contains
an S4,4, whose vertices are labeled as in Fig. 2, and H contains no copy of S4,4. We
describe a winning strategy for Spoiler in the game on G and H.

1st round. Spoiler pebbles x0. Denote the response of Duplicator in H by y0.
Assume that deg y0 ≥ 4 for else Spoiler wins in the next 4 moves. Assume that
x0 ∼ x2 for else Spoiler wins by pebbling x1, x2, x3, x4 (if Duplicator responds
with a path y0y1y2y3y4, she loses by Condition 2 in Lemma4).

2nd round. Spoiler pebbles x1. Denote the response of Duplicator in H by
y1. Assume that there is a path y0y1y2y3y4 for else Spoiler wins in the next 3
moves.

Case 1: x1 is adjacent to any of the vertices x′, x′′, x′′′, say, to x′. Spoiler
pebbles x2 and x′ and wins. Indeed, Duplicator has to respond with two vertices
in H both in N(y0) ∩ N(y1), which is impossible by Conditions 1 and 3 of
Lemma 4.

Case 2: x1 � x′, x1 � x′′, x1 � x′′′. Spoiler wins by pebbling x′, x′′, x′′′.
Duplicator has to respond with three vertices in N(y0)\N(y1), which is impos-
sible by Conditions 1 and 2 of Lemma4.

This completes the proof of the upper bound. On the other hand, we have
Dv(S4,4) > 4 by considering the jellyfish graphs G = J5,n and H = J4,n. ��

We now show general lower bounds for Dv(F) and Wv(F). For this, we need
some definitions. Let v0v1 . . . vt be an induced path in a graph G. We call it
pendant if deg v0
= 2, deg vt = 1 and deg vi = 2 for all 1 ≤ i < t. Furthermore,
let S be an induced star K1,s in G with the central vertex v0. We call S pendant
if all its pendant vertices are pendant also in G, and in G there are no more than
s pendant vertices adjacent to v0. The definition ensures that a pendant path
(or star) cannot be contained in a larger pendant path (or star). As an example,
note that the sparkler graph Ss+1,t has a pendant Pt+1 and a pendant K1,s.

Let p(F) denote the maximum t such that F has a pendant path Pt+1.
Similarly, let s(F) denote the maximum s such that F has a pendant star K1,s.
If F has no pendant vertex, then we set p(F) = 0 and s(F) = 0.

316 O. Verbitsky and M. Zhukovskii

Theorem 5. Dv(F) ≥ (v(F) + 1)/2 and Wv(F) ≥ (v(F) − 1)/2 for every con-
nected F unless F = P2 or F = P3.

Proof. Denote

� = v(F), t = p(F) and s = s(F).

We begin with noticing that

Dv(F) ≥ � − t and Wv(F) ≥ � − t − 1. (4)

Indeed, this is obvious if F is a path, that is, F = Pt+1. If F is not a path, we
consider lollipop graphs G = L�−t,n and H = L�−t−1,n for each n ≥ t (note that
� ≥ t+3 and, if � = t+3, then H = L2,n = Pn+2). Obviously, G contains F , and
H does not. It remains to note that D(G,H) ≥ � − t and W (G,H) ≥ � − t − 1.

We also claim that

Dv(F) ≥ � − s and Wv(F) ≥ � − s − 1. (5)

This is obvious if F is a star, that is, F = K1,s. If F is not a star, we consider
jellyfish graphs G = J�−s,n and H = J�−s−1,n for each n ≥ s (note that � ≥ s+3
and, if � = s + 3, then H = J2,n = K1,n+1). Clearly, G contains F , and H does
not. It remains to observe that D(G,H) ≥ � − s and W (G,H) ≥ � − s − 1.

Let F = K1,�−1 or F = P�, where � ≥ 4. Using (4) and (5) respectively,
we get Dv(F) ≥ � − 1 ≥ �+1

2 and, similarly, Wv(F) ≥ � − 2 ≥ �−1
2 . Assume,

therefore, that F is neither a star nor a path. In this case we claim that

t + s < �. (6)

This is obviously true if F has no pendant vertex, that is, t = s = 0. Suppose
that F has a pendant vertex and, therefore, both t > 0 and s > 0. Consider an
arbitrary spanning tree T of F and note that T contains all pendant paths and
stars of F . Fix a longest pendant path P and a largest pendant star S in F . If
P and S share at most one common vertex, we readily get (6). If they share two
vertices, then S = K1,1, i.e., s = 1, and t + 1 < � follows from the assumption
that F is not a path.

The theorem readily follows from (4)–(6). ��

4 Definitions over Graphs of Sufficiently Large
Treewidth

Theorem 5 poses limitations on the succinctness of definitions over sufficiently
large graphs. We now show that there are no such limitations for definitions over
connected graphs with sufficiently large treewidth.

The Grid Minor Theorem says that every graph of large treewidth contains a
large grid minor; see [7]. The strongest version of this result belongs to Chekuri
and Chuzhoy [5] who proved that, for some ε > 0, every graph G of treewidth

The Descriptive Complexity of Subgraph Isomorphism Without Numerics 317

k contains the m × m grid as a minor with m = Ω(kε). If m > 2b, then G
must contain M3,b as a subgraph. This applies also to all subgraphs of M3,b. The
following result is based on the fact that a graph of large treewidth contains a
long path.

Theorem 6. For all a and � such that 3 ≤ a ≤ � there is a graph F with
v(F) = � and tw(F) = a − 1 such that Dtw (F) ≤ a. Specifically, Dtw (La,b) =
Wκ(La,b) = a if a ≥ 3 and b ≥ 0.

Note for comparison that Wv(La,b) ≥ a + b − 2, as follows from the bound
(5) in the proof of Theorem5.

Proof. We first prove the upper bound Dtw (La,b) ≤ a. If a connected graph H
of large treewidth does not contain La,b, it cannot contain even Ka for else Ka

could be combined with a long path to give La,b. Therefore, Spoiler wins on
G ∈ S(La,b) and such H in a moves.

For the lower bound Wκ(La,b) ≥ a, consider G = K(a, n) and H = K(a −
1, n), where K(a, n) denotes the complete a-partite graph with each part having
n vertices. Note that this graph is (a − 1)n-connected. If n > b, then G contains
La,b, while H for any n does not contain even Ka. It remains to note that
W (G,H) ≥ a if n ≥ a − 1. ��
We now prove a general lower bound for Wtw (F) in terms of the treewidth
tw(F). Using the terminology of [11, Chap. 5], we define the core F0 of F to be
the graph obtained from F by removing, consecutively and as long as possible,
vertices of degree at most 1. If F is not a forest, then F0 is nonempty; it consists
of all cycles of F and the paths between them.

We will use the well-known fact that there are cubic graphs of arbitrary
large treewidth. This fact dates back to Pinsker [17] who showed that a random
cubic graph with high probability has good expansion properties, implying linear
treewidth.

Theorem 7. If F is connected, then

1. Wtw (F) ≥ v(F0), and
2. Wtw (F) ≥ tw(F) + 1 unless F is contained in some 3-megastar M3,b.

Note that the bound in part 2 of Theorem7 is tight by Theorem 6.

Proof. 1. Denote v(F) = � and v(F0) = �0. If F is a tree, then �0 = 0, and the
claim is trivial. Suppose, therefore, that F is not a tree. In this case, �0 ≥ 3.

We begin with a cubic graph B of as large treewidth tw(B) as desired. Let
(B)� denote the graph obtained from B by subdividing each edge by � new
vertices. Since B is a minor of (B)�, we have tw((B)�) ≥ tw(B); see [7].

Next, we construct a gadget graph A as follows. By a k-uniform tree we
mean a tree of even diameter where every non-leaf vertex has degree k and
all distances between a leaf and the central vertex are equal. The graph A is
obtained by merging the �-uniform tree of radius � and (B)�; merging is done by
identifying one leaf of the tree and one vertex of (B)�.

318 O. Verbitsky and M. Zhukovskii

We now construct G by attaching a copy of A to each vertex of K�0 . Specif-
ically, a copy Au of A is created for each vertex u of K�0 , and u is identified
with the central vertex of (the tree part of) Au. Let H be obtained from G by
shrinking its clique part to K�0−1. Since both G and H contain copies of (B)�,
these two graphs have treewidth at least as large as tw(B).

The clique part of G is large enough to host the core F0, and the remaining
tree shoots of F fit into the A-parts of G. Therefore, G contains F as a subgraph.
On the other hand, the clique part of H is too small for hosting F0, and no cycle
of F fits into any A-part because A has larger girth than F . Therefore, H does
not contain F . It remains to notice that W (G,H) ≥ �0.

2. Suppose first that F is not a tree. By part 1, we then have

Wtw (F) ≥ v(F0) ≥ tw(F0) + 1 = tw(F) + 1.

If F is a tree not contained in any 3-megastar, then there are connected graphs
of arbitrarily large treewidth that do not contain F as a subgraph (for example,
consider (B)� for a connected cubic graph B as in part 1). Trivially, there are also
connected graphs of arbitrarily large treewidth that contain F as a subgraph.
Since one pebble is not enough for Spoiler to distinguish the latter from the
former, we have Wtw (F) ≥ 2 = tw(F) + 1 in this case. ��

5 Induced Subgraphs: Trading Super-Recursively Many
First-Order Quantifiers for a Single Monadic One

By I(F) we denote the class of all graphs containing an induced subgraph iso-
morphic to F . Similarly to D(F), we use the notation D[F] = D(I(F)), where
the square brackets indicate that only induced subgraphs are considered. In the
same vein, Dκ[F] = Dκ(I(F)).

Unlike the case of (not necessarily induced) subgraphs, where the equality
D(F) = v(F) is trivial, determining and estimating the parameter D[F] seems
to be a subtle problem. In this section we prove a lower bound for D[F] in terms
of the density of F ; this bound actually holds for Dκ[F]. The proof will use
known facts about random graphs in the Erdős-Rényi model G(n, p), collected
below. It should be stressed that, whenever the term subgraph stands alone, it
refers to a not necessarily induced subgraph. With high probability means that
the probability approaches 1 as n → ∞.

The density of a graph K is defined to be the ratio ρ(K) = e(K)/v(K). The
maximum ρ(K) over all subgraphs K of a graph F will be denoted by ρ∗(F). The
following fact from the random graph theory was used also in [13] for proving
average-case lower bounds on the AC0 complexity of Subgraph Isomorphism.

Lemma 8 (Subgraph Threshold, see [11, Chap. 3]).

1. If α = 1/ρ∗(F), then the probability that G(n, n−α) contains F as a subgraph
converges to a limit different from 0 and 1 as n → ∞.

2. If α > 1/ρ∗(F), then with high probability G(n, n−α) does not contain F as
a subgraph.

The Descriptive Complexity of Subgraph Isomorphism Without Numerics 319

Let α > 0. Given a graph S and its subgraph K, we define fα(S,K) =
v(S) − v(K) − α(e(S) − e(K)).

Lemma 9 (Generic Extension, see [1, Chap. 10]). Let F be a graph with
vertices v1, . . . , v� and K be a subgraph of F with vertices v1, . . . , vk. Assume that
fα(S,K) > 0 for every subgraph S of F containing K as a proper subgraph. Then
with high probability every sequence of pairwise distinct vertices x1, . . . , xk in
G(n, n−α) can be extended with pairwise distinct xk+1, . . . , x� such that xi ∼ xj

if and only if vi ∼ vj for all i ≤ � and k < j ≤ �.

Lemma 10 (Zero-One d-Law [23]). Let 0 < α < 1
d−2 , and Ψ be a first-order

statement of quantifier depth d. Then the probability that Ψ is true on G(n, n−α)
converges either to 0 or to 1 as n → ∞.

We are now ready to prove our result.

Theorem 11. If e(F) > v(F), then Dκ[F] ≥ e(F)
v(F) + 2 and Dκ(F) ≥ e(F)

v(F) + 2.

Proof. We prove the bound for Dκ[F]. The same proof works as well for Dκ(F)
(and is even simpler as the equality (7) below is only needed in the induced
case).

Set α = 1/ρ∗(F) and denote Gn = G(n, n−α). We begin with proving that

P[Gn ∈ I(F)] = P[Gn ∈ S(F)] − o(1). (7)

Let K be a maximal subgraph of F with ρ(K) = ρ∗(F). Note that K is an
induced subgraph of F . Note also that, if F is balanced, i.e., ρ∗(F) = ρ(F),
then K = F . The graph K has less than

(
v(K)
2

)
supergraphs K ′ obtainable by

adding an edge to K, and every K ′ has density strictly larger than K, that is,
ρ(K ′) > 1/α. By part 2 of Lemma 8, each such K ′ appears as a subgraph in Gn

with probability o(1). It follows that

P[Gn ∈ I(K)] = P[Gn ∈ S(K)] − o(1). (8)

which readily implies (7) in the case that F is balanced.
Suppose now that F is not balanced. In this case, for every subgraph S of

F containing K properly we have v(S)/e(S) > α, which implies fα(S,K) > 0.
Lemma 9 ensures that, with probability 1−o(1), every induced copy of K in Gn

extends to an induced copy of F . Therefore,

P[Gn ∈ S(F)] ≥ P[Gn ∈ I(F)] ≥ P[Gn ∈ I(K)] − o(1)
≥ P[Gn ∈ S(K)] − o(1) ≥ P[Gn ∈ S(F)] − o(1), (9)

where the last but one inequality is due to (8). Equality (7) is proved.
By part 1 of Lemma 8, limn→∞ P[Gn ∈ S(F)] exists and equals neither 0 nor

1. It follows from (7) that P[Gn ∈ I(F)] converges to the same limit, different
from 0 and 1.

320 O. Verbitsky and M. Zhukovskii

Now, assume that a first-order sentence Φ of quantifier depth d defines S(F)
over k-connected graphs for all k ≥ k0. We have to prove that d ≥ e(F)

v(F) + 2,
whatever k0.

By the assumption of the theorem, ρ∗(F) ≥ ρ(F) > 1. Fix k such that
1 + 1/k < ρ(F) and k ≥ k0. Lemma 9 implies that with high probability every
two vertices in Gn can be connected by k vertex-disjoint paths (of length k each).
Therefore, Gn is k-connected with high probability.

Since Φ correctly decides the existence of an induced copy of F on all k-
connected graphs,

P[Gn |= Φ] = P[Gn ∈ I(F)] + o(1).

Therefore, P[Gn |= Φ] converges to the same limit as P[Gn ∈ I(F)], which, as
we have seen, is different from 0 and 1. By Lemma 10, this implies that α ≥ 1

d−2 .
From here we conclude that

d ≥ ρ∗(F) + 2 ≥ e(F)
v(F)

+ 2,

as required. ��
We now turn to existential monadic second-order logic, denoted by ∃MSO,

whose formulas are of the form

∃X1 . . . ∃Xm Φ, (10)

where a first-order subformula Φ is preceded by (second-order) quantification
over unary relations (that is, we are now allowed to use existential quantifiers
over subsets of vertices X1,X2, . . .). The second-order quantifiers contribute to
the quantifier depth as well as the first-order ones. Thus, the quantifier depth
of the sentence (10) is larger by m than the quantifier depth of the formula
Φ. If a graph property C is definable in ∃MSO, the minimum quantifier depth
of a defining formula will be denoted by D∃MSO(C). Furthermore, we define
D∃MSO[F] = D∃MSO(I(F)).

It is very well known that ∃MSO is strictly more expressive than first-order
logic. For example, the properties of a graph to be disconnected or to be bipar-
tite are expressible in ∃MSO but not in FO. We now show that ∃MSO is also
much more succinct than FO, which means that some properties of graphs that
are expressible in FO can be expressed in ∃MSO with significantly smaller quan-
tifier depth. In fact, this can be demonstrated by considering the properties of
containing a fixed induced subgraph. It turns out that, if we are allowed to use
just one monadic second-order quantifier, the number of first-order quantifiers
can sometimes be drastically reduced.

Theorem 12. There is no total recursive function f such that

f(D∃MSO[F]) ≥ D[F]

for all graphs F . Moreover, this holds true even for the fragment of ∃MSO where
exactly one second-order quantifier is allowed.

The Descriptive Complexity of Subgraph Isomorphism Without Numerics 321

The proof, which can be found in a long version of this paper [22], is based
on Theorem 11 and [16, Theorem 4.2].

Acknowledgements. We would like to thank Tobias Müller for his kind hospitality
during the Workshop on Logic and Random Graphs in the Lorentz Center (August
31–September 4, 2015), where this work was originated. We also thank the anonymous
referee who provided us with numerous useful comments on the manuscript.

References

1. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, Chichester (2016)
2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
3. Amano, K.: k-Subgraph isomorphism on AC0 circuits. Comput. Complex. 19(2),

183–210 (2010)
4. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small

treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)
5. Chekuri, C., Chuzhoy, J.: Polynomial bounds for the grid-minor theorem. In: Pro-

ceedings of the 46th ACM Symposium on Theory of Computing (STOC 2014), pp.
60–69 (2014)

6. Courcelle, B.: The monadic second-order logic of graphs I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

7. Diestel, R.: Graph Theory. Springer, New York (2000)
8. Floderus, P., Kowaluk, M., Lingas, A., Lundell, E.: Induced subgraph isomorphism:

are some patterns substantially easier than others? Theor. Comput. Sci. 605, 119–
128 (2015)

9. Grädel, E., Grohe, M.: Is polynomial time choiceless? In: Beklemishev, L., Blass,
A., Dershowitz, N., Finkbeiner, B., Schulte, W. (eds.) Fields of Logic and Com-
putation II. LNCS, vol. 9300, pp. 193–209. Springer, Cham (2015). doi:10.1007/
978-3-319-23534-9 11

10. Immerman, N.: Descriptive Complexity. Springer, New York (1999)
11. Janson, S., �Luczak, T., Ruciński, A.: Random Graphs. Wiley, New York (2000)
12. Koucký, M., Lautemann, C., Poloczek, S., Thérien, D.: Circuit lower bounds via

Ehrenfeucht-Fräıssé games. In: Proceedings of the 21st Annual IEEE Conference
on Computational Complexity (CCC 2006), pp. 190–201 (2006)

13. Li, Y., Razborov, A.A., Rossman, B.: On the AC0 complexity of subgraph isomor-
phism. In: Proceedings of the 55th IEEE Annual Symposium on Foundations of
Computer Science (FOCS 2014), pp. 344–353. IEEE Computer Society (2014)

14. Libkin, L.: Elements of Finite Model Theory. Springer, Berlin (2004)
15. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Commentat.

Math. Univ. Carol. 26, 415–419 (1985)
16. Pikhurko, O., Spencer, J., Verbitsky, O.: Succinct definitions in the first order

theory of graphs. Ann. Pure Appl. Log. 139(1–3), 74–109 (2006)
17. Pinsker, M.S.: On the complexity of a concentrator. In: Proceedings of the 7th

Annual International Teletraffic Conference, vol. 4, pp. 1–318 (1973)
18. Rossman, B.: On the constant-depth complexity of k-clique. In: Proceedings

of the 40th Annual ACM Symposium on Theory of Computing (STOC 2008),
pp. 721–730. ACM (2008)

19. Rossman, B.: An improved homomorphism preservation theorem from lower
bounds in circuit complexity (2016). Manuscript

http://dx.doi.org/10.1007/978-3-319-23534-9_11
http://dx.doi.org/10.1007/978-3-319-23534-9_11

322 O. Verbitsky and M. Zhukovskii

20. Rossman, B.: Lower bounds for subgraph isomorphism and consequences in first-
order logic. In: Talk in the Workshop on Symmetry, Logic, Computation at the
Simons Institute, Berkeley, November 2016. https://simons.berkeley.edu/talks/
benjamin-rossman-11-08-2016

21. Schweikardt, N.: A short tutorial on order-invariant first-order logic. In: Bula-
tov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 112–126. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38536-0 10

22. Verbitsky, O., Zhukovskii, M.: The descriptive complexity of subgraph isomorphism
without numerics. E-print (2016). http://arxiv.org/abs/1607.08067

23. Zhukovskii, M.: Zero-one k-law. Discrete Math. 312, 1670–1688 (2012)

https://simons.berkeley.edu/talks/benjamin-rossman-11-08-2016
https://simons.berkeley.edu/talks/benjamin-rossman-11-08-2016
http://dx.doi.org/10.1007/978-3-642-38536-0_10
http://arxiv.org/abs/1607.08067

On a Generalization of Horn Constraint Systems

Piotr Wojciechowski1, R. Chandrasekaran2, and K. Subramani1(B)

1 LDCSEE, West Virginia University, Morgantown, USA
pwjociec@mix.wvu.edu, k.subramani@mail.wvu.edu

2 Computer Science and Engineering, University of Texas at Dallas, Richardson, USA
chandra@utdallas.edu

Abstract. In this paper, we study linear constraint systems in which
each constraint is a fractional Horn constraint. A constraint is fractional
horn, if it can be written in the form:

∑n
i=1 ai · xi ≥ c, where the ai and

c are integral, and at most one of the ai > 0 and all negative ai are equal
to −1. A conjunction of fractional Horn constraints is called a Fractional
Horn Systems (FHS). FHSs generalize a number of specialized constraint
systems such as Difference Constraint Systems and Horn Constraint Sys-
tems. We show that the problem of checking linear feasibility in these
systems is in P, whereas the problem of checking lattice point feasibility
is NP-complete. We then study a sub-class of fractional horn systems
called Binary fractional horn systems (BFHS) in which each constraint
has at most two non-zero coefficients with at most one being positive. In
this case, we show that the problem of lattice point feasibility is in P.

Keywords: Fractional horn · Integer feasibility · Linear constraints

1 Introduction

In this paper, we focus on analyzing Fractional Horn Systems (FHS) from the
perspectives of linear and integer feasibilities. A constraint is fractional Horn, if
it can be written in the form:

∑n
i=1 ai · xi ≥ c, where the ai and c are integral,

and at most one of the ai > 0 and all negative ai are equal to −1. A conjunction
of such constraints is called a Fractional Horn System. FHSs generalize sev-
eral commonly occurring linear constraint systems such as Difference constraint
systems [2] and Horn constraint systems [3].

FHSs find applications in a number of domains, but primarily in program ver-
ification (abstract interpretation). Our goal in this paper is to establish bound-
aries between sub-classes of FHSs, which are computationally hard and those

P. Wojciechowski—This research was supported in part by the National Science
Foundation through Award CCF-1305054.
K. Subramani—This work was supported by the Air Force Research Laboratory
under US Air Force contract FA8750-16-3-6003. The views expressed are those of
the authors and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

c© Springer International Publishing AG 2017
P. Weil (Ed.): CSR 2017, LNCS 10304, pp. 323–336, 2017.
DOI: 10.1007/978-3-319-58747-9 28

324 P. Wojciechowski et al.

which are solvable in polynomial time. Towards this end, we study Binary frac-
tional horn systems (BFHS). These are Fractional Horn Systems, in which there
are at most two non-zero entries per constraint. Our work is closely related
to Lattice programming. Lattice programming is concerned with predicting
the direction of change in global optima and equilibria resulting from chang-
ing conditions based on problem structure alone without data gathering or
computation [11].

Associated with the polyhedra discussed in this paper are two related prob-
lems, viz., the linear feasibility problem (LF) and the integer feasibility problem
(IF). In case of Difference Constraint systems (DCS) and Horn Constraint Sys-
tems (HCS), these two problems coincide. However, in case of Fractional Horn
Systems, these problems are not identical in that there exist instances for which
the LF problem is feasible, while the IF problem is not. Note that if the IF
problem is feasible the LF problem is trivially feasible.

The LF problem can be solved in polynomial time by use of an algorithm
for linear programming problems. Finding a strongly polynomial combinatorial
algorithm for this problem is a known open problem at this time and would con-
stitute a very significant achievement in the progress towards obtaining such an
algorithm for general linear programs – a longstanding open problem of impor-
tance.

The principal contributions of this paper are as follows:

1. Showing that the IF problem in FHSs is NP-hard (see Sect. 4).
2. Designing a polynomial time combinatorial algorithm for solving the IF

problem in BFHS (see Subsect. 5.2).
3. Proving several properties of the greatest integer point (GIP) of a bounded

BFHS (see Subsect. 5.2).
4. Proving several properties of the least point (LLP) and least integer point

(LIP) of a BFHS (see Subsect. 5.3).

The rest of this paper is organized as follows: The problems under consider-
ation are formally described in Sect. 2. The motivation for our work and related
approaches in the literature are described in Sect. 3. The computational com-
plexity of the IF problem for FHS is detailed in Sect. 4. In Sect. 5, we discuss
the IF problem for BFHS. Finally, in Sect. 6, we summarize our results and
discuss avenues for future research.

2 Statement of Problems

We now define the various specialized constraint systems discussed in this paper.
Let

Ax ≥ c (1)

denote a polyhedral system. In System (1), A is an m × n integral matrix, c is
an integral m-vector and x = [x1, x2, . . . xn]T is a variable n-vector. We use X
to denote the set of all the variables in System (1), i.e., X = {x1, x2, . . . , xn}.

On a Generalization of Horn Constraint Systems 325

Definition 1. System (1) is said to be a Difference Constraint System (DCS),
if each row of A contains at most one positive entry which is a 1 and at most
one negative entry which is a −1.

Definition 2. System (1) is said to be a Horn Constraint system or a Horn
polyhedron if

1. The entries in A belong to the set {0, 1,−1}.
2. Each row contains at most one positive entry.

Definition 3. System (1) is said to be a Fractional Horn Constraint system
(FHS) or a Fractional Horn polyhedron if

1. Each row contains at most one positive entry which is an integer.
2. All negative entries of the matrix are −1.

Example 1. The following is a Fractional Horn Constraint.

5 · x1 − x2 − x3 − x5 ≥ 9

Definition 4. System (1) is said to be a Binary Fractional Horn Constraint
System (BFHS), if each row of A contains at most one positive entry (which
might be an arbitrary positive integer) and at most one negative entry which is
a −1.

Example 2. The following is a Binary Fractional Horn Constraint.

5 · x1 − x5 ≥ 9

Definition 5. System (1) is said to be an Extended Difference Constraint Sys-
tem (EDCS), if each row of A contains at most one positive entry, which is 1,
and at most one negative entry, which can be an arbitrary negative integer.

Example 3. The following is an Extended Difference Constraint.

x1 − 5 · x5 ≥ 9

Definition 6. Let U represent the set of solutions to System (1). x is the least
point (LLP) of System (1) if, x ∈ U and ∀y ∈ U x ≤ y. x is the least integer
point (LIP) of System (1) if, x ∈ U ∩ Z

n and ∀y ∈ U ∩ Z
n x ≤ y. We can

similarly define the greatest point (GLP) and greatest integer point (GIP) of
System (1).

FHS systems do have least points when they are linearly feasible but these
need not be integral. Moreover, it is possible to have an FHS that has a frac-
tional feasible solution but no integer feasible solution. The following example
illustrates this property.

326 P. Wojciechowski et al.

Example 4. Consider the system:

x1 − x2 ≥ 1 −x1 + x2 ≥ −1
x3 − x4 ≥ 1 −x3 + x4 ≥ −1

2 · x1 − x3 − x4 ≥ 0 −x1 − x2 + 2 · x4 ≥ 0 (2)

It is easy to check that x = [1, 0, 3
2 ,

1
2] is a linear solution to System (2). We now

show that there is no integer feasible solution.
The first and second constraints of System (2) imply:

x1 − x2 = 1.

Similarly, the third and fourth constraints imply:

x3 − x4 = 1.

Combining these results with the fifth and sixth constraints, we get:

2 · (1 + x2) − (1 + x4) − x4 ≥ 0
−(1 + x2) − x2 + 2 · x4 ≥ 0.

This in turn implies:

2 · x2 − 2 · x4 ≥ −1
−2 · x2 + 2 · x4 ≥ 1.

Thus, we get:

2 · x2 − 2 · x4 = −1

x2 − x4 = −1
2
.

This implies that there is no integer feasible solution to System (2).

This paper is concerned with the LF and IF problems in FHS and BFHS.

3 Motivation and Related Work

Since the IF problem is NP-hard for general polyhedra (A · x ≥ c) a fair
amount of research has been devoted towards the design of polynomial time
algorithms for various special cases, restricting the structure of A.

It is well-known that, if the constraint matrix A is Totally Unimodular
(TUM) and the vector b is integral, then the system A · x ≥ c has integral
extreme point solutions [8]. Recall that a matrix A is totally unimodular if the
determinant of every square sub-matrix of A is 0, 1, or −1. Difference constraint
systems are a sub-class of TUM systems, in which each constraint has at most
one positive entry and one negative entry, with the positive entry being 1 and
the negative entry being −1.

On a Generalization of Horn Constraint Systems 327

A related constraint system is the Unit Two Variables per Inequality
(UTVPI) system in which both sum and difference relationships can be
expressed. The IF feasibility problem for this class was shown to be in P [5].
Unlike DCSs though, in a UTVPI system the answers to the LF and IF problems
do not coincide in that such a system could be linear feasible but not integer fea-
sible. UTVPI systems find applications in a host of verification-related problems
such as abstract interpretation and array-bounds checking [1,7].

Horn Constraint Systems generalize difference constraints in that multiple
negative unity entries are permitted in a row. It is easy to see that Horn systems
are not TUM. However, a Horn constraint system always has a least element (if
it is feasible) and the least element of a Horn system is always integral. It follows
that the LF and IF problems coincide in case of Horn Constraint systems [3].
Veinott [9,10] has a non-polynomial algorithm for the LF problem of Horn type
programs where the positive and negative elements can take any value.

Our work is closely related to Lattice programming. Lattice programming is
concerned with predicting the direction of change in global optima and equilib-
ria resulting from changing conditions based on problem structure alone without
data gathering or computation. Rooted in the theory of lattices, this work is also
useful for characterizing the form of optimal and equilibrium policies, improv-
ing the efficiency of computation and suggesting desirable properties of heuris-
tics. Applications range widely over dynamic programming, statistical decision-
making, cooperative and noncooperative games, economics, network flows, Leon-
tief substitution systems, production and inventory management, project plan-
ning, scheduling, marketing, and reliability and maintenance [11].

In this paper, we focus on yet another generalization of DCS; viz., Fractional
Horn systems. Here the positive entry does not have to be unity, although the
negative entries are −1. In this case, the LF and IF problems do not coincide;
indeed, the IF problem is NP-hard. We also analyze a special sub-class of FHSs
and show that the IF problem can be decided in polynomial time in this case.

4 Integer Feasibility of Fractional Horn Constraints

We now show that the problem of finding an integer solution to an FHS is
NP-complete. We do this via a reduction from monotone TVPI.

Definition 7. System (1) is said to be a monotone two variables per
inequality (TVPI), if each row of A contains at most one positive and at most
one negative entry (both of which can be arbitrary integers).

It is known that finding an integer solution to a monotone TVPI system is
NP-complete [4,6].

Theorem 1. Finding an integer solution to an FHS is NP-complete.

Proof. First observe that the problem of finding an integer solution to a FHS
is in NP. This is because this problem is a special case of integer programming
and it is well-known that integer programming is in NP [8].

328 P. Wojciechowski et al.

We show NP-hardness by reducing IF for Monotone TVPI to IF for FHS.
A system of Monotone TVPI constraints consists of constraints of the form
ak · xi − bk · xj ≥ ck where ak, bk ∈ Z

+ and ck ∈ Z. Let M = �max log2 bk�, for
each xi in the monotone TVPI system we construct (2 · M + 2) variables. Let
xi,l,1 and xi,l,2 for l = 0, . . . ,M be these variables.

We add the following constraints:

xi,l,1 − xi,l,2 ≥ 0 l = 0, . . . ,M
xi,l,2 − xi,l,1 ≥ 0 l = 0, . . . ,M

xi,l+1,1 − xi,l,1 − xi,l,2 ≥ 0 l = 0, . . . ,M − 1
2 · xi,l,1 − xi,l+1,1 ≥ 0 l = 0, . . . ,M − 1

From the first two groups of constraints we get:

xi,l,1 = xi,l,2 l = 0, . . . ,M.

Combining this result with the third group of constraints yields:

xi,l+1,1 − 2 · xi,l,1 ≥ 0 l = 0, . . . ,M − 1.

Combining this result with the fourth group of constraints yields:

xi,l+1,1 = 2 · xi,l,1 l = 0, . . . ,M − 1.

This is equivalent to:

xi,l,1 = 2l · xi,0,1 l = 0, . . . ,M

Let us consider the constraint ak · xi − bk · xj ≥ ck. Let Sk ⊆ Z be such that
∑

l∈Sk

2l = bk.

Note that, Sk represents the binary expansion of bk. We now add the following
constraint to the FHS:

ak · xi,0,1 −
∑

l∈Sk

xj,l,1 ≥ ck.

When we simplify this constraint, we get:

ak · xi,0,1 −
∑

l∈Sk

xj,l,1 = ak · xi,0,1 −
∑

l∈Sk

2l · xj,0,1 = ak · xi,0,1 − bk · xj,0,1 ≥ ck.

Thus, if the FHS is integer feasible we can satisfy the original monotone TVPI
system by setting xi = xi,0,1 for i = 1, . . . , n. Similarly, if the monotone TVPI
system is integer feasible we can satisfy the FHS by setting xi,l,1 = xi,l,2 = 2l ·xi

for i = 1, . . . , n and l = 0, . . . ,M .
�

On a Generalization of Horn Constraint Systems 329

Despite IF being NP-hard for FHS, if an FHS has an integral solution then
it is unbounded or it has a least integer point. This is a direct consequence of
Theorem 2.

Definition 8. Let y and z be two n dimensional vectors. We have that w =
min[y, z] if wi = min[yi, zi] for each i = 1 . . . n. Similarly, w = max[y, z] if
wi = max[yi, zi] for each i = 1 . . . n.

Theorem 2. If y and z are feasible solutions to the FHS system

A · x ≥ c,

then so is w = min[y, z].

Proof. Consider an arbitrary constraint

a · xi −
∑

xj ≥ c.

We have that wi is either equal to yi or equal to zi. If wi = yi, then

a · wi −
∑

wj = a · yi −
∑

wj ≥ a · yi −
∑

yj ≥ c

Similarly, if wi = zi, then

a · wi −
∑

wj = a · zi −
∑

wj ≥ a · zi −
∑

zj ≥ c

Thus, w is feasible.
�

5 Binary Fractional Horn Constraints

We now study systems of binary fractional horn constraints. First, we will provide
an algorithm for solving BFHSs which are unbounded from above (Subsect. 5.1).
Then, we will extend this algorithm to BFHSs which have upper bounds
(Subsect. 5.2). Finally, we will prove several properties of least points of BFHSs
(Subsect. 5.3).

5.1 BFHS Systems Unbounded from Above

Let us first consider BFHS systems in which there is no row of the matrix A
that has −1 as its only nonzero element. This means that there is no constraint
of the form −xj ≥ ck in the system.

Theorem 3. A BFHS with no row whose only nonzero element is −1, is either
unbounded or infeasible.

330 P. Wojciechowski et al.

Proof. Given the conditions on the matrix A, it follows that A · e ≥ 0 where
e = (1, 1, ..., 1) ∈ R

n. It follows that A and c can be written after permuting
their rows as:

A =
A1

A2
, c =

c1

c2

such that the following relations hold:

A1 · e > 0
A2 · e = 0

Hence, given any vector x such that A2 · x ≥ c2, letting y = x + M · e yields:

A1 · y = A1 · (x + M · e) = A1 · x + M · A1 · e ≥ c1

A2 · y = A2 · (x + M · e) = A2 · x + M · A2 · e = A2 · x ≥ c2

for sufficiently large positive values of M . Hence, y is a feasible solution for large
values of M . If the vector x in the above is integral, then, by choosing M to
be an integer, we can guarantee that y is also integral. Moreover, if the system
is feasible it is unbounded. Checking whether there exists an integral vector x
such that A2 · x ≥ c2 can be done in P since this is a DCS system. A process
for determining an exact value for M can be found in Subsect. 5.2.
�

5.2 BFHS Systems with Upper Bounds

Now we consider systems that do have constraints of the form −xj ≥ ck. This
is an integral upper bound for the variable xj . This in turn may imply integral
upper bounds for other variables. For example, if there is a constraint of the
form ak′ · xj − xi ≥ ck′ , then combining the two constraints yields an integral
upper bound for xi.

Thus, we can divide the variables into two sets – those with a derivable upper
bound and those without. Let S be the set of variables which have no derivable
upper bound.

We will show that any BFHS, A · x ≥ c, can be solved in the following
manner:

1. Determine the set S of variables with no derivable upper bound.
2. If every variable is in S, solve using the method detailed in Subsect. 5.1.
3. Otherwise, solve the subsystem of constraints involving variables not in S.

Then, extend to a full solution.

First, we need to prove several theorems.

Lemma 1. There are no constraints of the form:

ak · xi − xj ≥ ck i /∈ S; j ∈ S

On a Generalization of Horn Constraint Systems 331

Proof. Since xi �∈ S, we can derive an upper bound on xi. Let x∗
i be this upper

bound. Thus we can derive the constraint −xi ≥ −x∗
i . Together with the con-

straint ak · xi − xj ≥ ck, this lets us derive the constraint −xj ≥ ck − ak · x∗
i .

However, this places an upper bound on xj , which contradicts the fact that
xj ∈ S.
�
Theorem 4. Every variable in S can be increased uniformly without violating
any constraints.

Proof. Let x′ be a feasible solution to the BFHS and x′′ be the vector obtained
from x′ by adding 1 to every variable in S. We show that x′′ is also a solution
to the BFHS.

Let xi, xj , and xl be variables such that xi, xj ∈ S and xl �∈ S. Thus,
x′′
i = x′

i + 1, x′′
j = x′

j + 1 and x′′
l = x′

l. From Lemma 1, we know that there are
no constraints of the form ak · xl − xi ≥ ck or ak · xl − xj ≥ ck. We also know
that there are no constraints of the form −xi ≥ ck or −xj ≥ ck. Otherwise, xi

or xj would not be in S.
Thus, we only need to consider the following constraints.

1. ak · xi − xj ≥ ck where ak ≥ 1: We have that

ak · x′′
i − x′′

j = ak · (x′
i + 1) − (x′

j + 1) = ak · x′
i − x′

j + (ak − 1) ≥ ak · x′
i − x′

j ≥ ck

2. ak · xi − xl ≥ ck: We have that

ak · x′′
i − x′′

l = ak · (x′
i + 1) − x′

l = ak · x′
i − x′

l + ak ≥ ak · x′
i − x′

l ≥ ck

Thus, x′′ is still a valid solution to the BFHS. This means that we can increase
each variable in S uniformly without bound.
�

From the preceding theorem, we have that if a variable has no derivable
upper bound, then it is unbounded.

This allows us to rewrite the system in the following form:

A1 0
A2 0
B A3

· x
1

x2 ≥
c1

c2

c3
(3)

such that:

1. The variables in x1 are in the set S and those in x2 are not.
2. The sum of the elements in each row of A1 is positive.
3. The sum of the elements in each row of A2 is zero.
4. Each row of B may have a positive entry but no negative entries.

From Lemma 1, we know that there is no constraint such that a variable
in x1 has a negative coefficient and a variable in x2 has a non-zero coefficient.
Thus, A · x ≥ c can be divided as described.

332 P. Wojciechowski et al.

We already know how to solve the problem:

A1

A2
· x1 ≥ c1

c2

From Theorem 3, if this system is feasible, then it is unbounded. Thus, what
remains is the problem:

B · x1 + A3 · x2≥ c3

Since x1 is unbounded, the constraints corresponding to rows of B which have
a positive entry can eventually be made feasible by uniformly increasing all
components of x1. Thus, we can remove these constraints from the system. This
yields a subsystem of the form

D · x2≥ c4 (4)

where D is a row submatrix of A3 and c4 is the corresponding part of c3. In
this system, every variable is bounded from above. We now show how to solve
this particular type of system.

Theorem 5. If a BFHS system is bounded from above, then the system is fea-
sible if and only if it has an integer valued greatest point.

Proof. Let x∗ be the least upper bound on x that can be derived by combining
the inequalities in System (4). Since the only negative entries in A are −1, x∗

is integral. If x∗ is feasible, then

D · x∗≥ c4.

Thus, the system has integer solution and x∗ is the greatest point since we can
derive the constraints:

−x ≥ −x∗

If x∗ is not feasible, then there is a constraint of the form

ak · xi − xj ≥ ck

such that

ak · x∗
i − x∗

j < ck

which implies that

x∗
j > ak · x∗

i − ck

But we can derive the constraint:

−xi ≥ −x∗
i

On a Generalization of Horn Constraint Systems 333

Combining this with constraint

ak · xi − xj ≥ ck

we get

−xj ≥ ck − ak · x∗
i

Thus, ak · x∗
i − ck is a derivable upper bound on xj . But x∗

j is the least upper
bound for xj . Hence we have

x∗
j ≤ ak · x∗

i − ck

which is a contradiction. Thus, x∗ is feasible.
If x∗ does not exist, then for some variable there is no least upper bound

which implies that the system is not feasible whether we seek integer or linear
solutions. Thus, if the system is feasible, there exists an integer solution which
is the greatest point.
�
The existence of a greatest point, but not its integrality, is also a direct result
of Theorem 6.

Theorem 6. If y and z are feasible solutions to the BFHS system Ax ≥ c, then
so is w = max[y, z].

Proof. Consider an arbitrary constraint

a · xi − xj ≥ c.

We have that wj is either equal to yj or equal to zj . If wj = yj , then

a · wi − wj = a · wi − yj ≥ a · yi − yj ≥ c

Similarly, if wj = zj , then

a · wi − wj = a · wi − zj ≥ a · zi − zj ≥ c

Thus, w is feasible. Moreover, if y, z are integral, then so is w.
�
Remark 1. Unlike Theorem 2, Theorem 6 does not hold for general FHS systems.
For example consider the constraint

5x1 − x2 − x3 ≥ 0.

Both vectors [1, 0, 5] and [1, 5, 0] are feasible but [1, 5, 5] = max{[1, 0, 5], [1, 5, 0]}
is not feasible.

This allows us to obtain an integer solution to a general BFHS system.

1. First, we determine the variables in S as follows.
(a) Start with all variables xi ∈ S.

334 P. Wojciechowski et al.

(b) Remove each xi such that −xi ≥ ck is a constraint in the BFHS.
(c) Remove each xj such that ak · xi − xj ≥ ck is a constraint in the BFHS

and xi �∈ S.
(d) Continue until no further variables can be removed. This can be done by

a breadth-first search from each xi �∈ S.
2. Construct A1, A2, A3, B, c1, c2, c3, c4 and D as specified in Systems (3)

and (4).
3. Let x′1 be an integer solution to the DCS A2 · x1 ≥ c2.
4. Let x′2 be the greatest point of D · x2≥ c4.
5. Let M be an integer such that:

(a) For all constraints ak · xi − xj ≥ ck where xi, xj ∈ S and ak > 1 (this
constraint is in A1 · x1 ≥ c1)

M ≥ ck − ak · x′
i + x′

j

ak − 1
.

Note that, this guarantees ak · (x′
i + M) − (x′

j + M) ≥ ck.
(b) For all constraints ak · xi − xj ≥ ck where xi ∈ S, xj �∈ S, and ak ≥ 1

(this constraint is in B · x1 + A3 · x2 ≥ c3)

M ≥ ck − ak · x′
i + x′

j

ak
.

Note that, this guarantees ak · (x′
i + M) − x′

j ≥ ck.
6. Thus,

x =
x′1 + M · e
x′2

is a feasible solution to the BFHS.

Note that, each part of this process can be performed in polynomial time.

1. Finding S: Accomplished using a breadth first search starting from the explic-
itly bounded variables. This can be done in O(m) time.

2. Determining the subformulas: Once S is known, this can be done by checking
whether each constraint belongs to:
(a) A1 · x1 ≥ c1,
(b) A2 · x1 ≥ c2,
(c) B · x1 − A3 · x2 ≥ c3,
(d) or D · x2 ≥ c4.
This can be done in O(m) time.

3. Solving the DCS, A2 · x1 ≥ c2: This can be done in O(m · n) time.
4. Finding the greatest point of D · x2 ≥ c4: Letting y = −x2 changes this

system to −D · y ≥ c4 and this system is an EDCS system which has a least
point y∗. It should be clear that (x2)∗ = −y∗ is the required greatest point
of D · x2 ≥ c4. In [3], the lifting algorithm is shown to produce this point in
O(m · n) time.

5. Finding M : This is done by performing constant time checks on every con-
straint. This can be done in O(m) time.

Thus, this entire procedure runs in O(m · n) time.

On a Generalization of Horn Constraint Systems 335

5.3 Least Point

We now see what happens when a BFHS is bounded from below. We show
that while the system does have a least point, the least point is not necessarily
integral. However, the set of integral solutions does have a least point solution.
First, we show that any feasible solution to a BFHS can be rounded up to obtain
a feasible lattice point solution.

Theorem 7. Let A · x ≥ c represent a BFHS. If x̂ is a feasible solution, then
so is x̂�.
Proof. Let us look at each type of constraint separately:

1. If the constraint is of the form: −xi ≥ c, then −x̂i ≥ c which implies that
− x̂i� ≥ c.

2. If the constraint is of the form a · xi − xj ≥ c, we have

a · x̂i� ≥ a · x̂i� ≥ c + x̂j� = c + x̂j�

Thus, x̂� satisfies all constraints that x̂ satisfies. Thus, if the system is fea-
sible, it has an integer feasible solution.

�
Theorem 8. If a BFHS system is bounded from below, then it is feasible and
has a least point.

Proof. If the system is bounded from below, then for each variable xi we can
derive a greatest lower bound x̂i. Consider the point x̂. If x̂ is feasible, it is the
least point. Suppose x̂ is not feasible; there are two cases to consider:

1. There is a constraint of the form −xi ≥ c such that −x̂i < c. However, we
can derive the constraint xi ≥ x̂i which when combined with the violated
constraint yields 0 ≥ x̂i + c which is equivalent to −x̂i ≥ c which leads to a
contradiction.

2. There is a constraint of the form a · xi − xj ≥ c with a ≥ 1 such that
a · x̂i − x̂j < c. This is equivalent to x̂i <

c+x̂j

a . However, we can derive the
constraint xj ≥ x̂j which when combined with the violated constraint yields
a · xi ≥ c + x̂j . Thus, c+x̂j

a is a derivable lower bound on xi and this means
x̂i ≥ c+x̂j

a . This also leads to a contradiction.

Hence, x̂ is a feasible solution to the system and also the least point.
�
x̂ may not be integral in general. But, Theorem 7 shows that x̂� is integral and
feasible and a least integer point if the system is bounded from below.

336 P. Wojciechowski et al.

6 Conclusion

In this paper, we studied a class of constraints called Fractional Horn Con-
straints. These constraints generalize difference constraints and are closely
related to horn constraints. While in Horn constraint systems, the linear fea-
sibility and integer feasibility coincide, the situation is quite different in FHSs.
In case of FHSs, the LF problem is solvable in polynomial time, whereas the
IF problem is NP-complete. Despite IF being NP-hard for FHS, if an FHS
has an integral solution then it has a least integer point. We also analyzed a
sub-class of FHSs called Binary Fractional Horn constraints and showed that
the IF problem is in P, in this case.

References

1. Bagnara, R., Hill, P.M., Zaffanella, E.: Weakly-relational shapes for numeric
abstractions: improved algorithms and proofs of correctness. Formal Methods Syst.
Des. 35(3), 279–323 (2009)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2001)

3. Chandrasekaran, R., Subramani, K.: A combinatorial algorithm for horn programs.
Discrete Optim. 10, 85–101 (2013)

4. Hochbaum, D.S., (Seffi) Naor, J.: Simple and fast algorithms for linear and integer
programs with two variables per inequality. SIAM J. Comput. 23(6), 1179–1192
(1994)

5. Jaffar, J., Maher, M.J., Stuckey, P.J., Yap, R.H.C.: Beyond finite domains. In:
Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 86–94. Springer, Heidelberg
(1994). doi:10.1007/3-540-58601-6 92

6. Lagarias, J.C.: The computational complexity of simultaneous Diophantine approx-
imation problems. SIAM J. Comput. 14(1), 196–209 (1985)

7. Lahiri, S.K., Musuvathi, M.: An efficient decision procedure for UTVPI con-
straints. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 168–183.
Springer, Heidelberg (2005). doi:10.1007/11559306 9

8. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1987)
9. Veinott, A.F.: Representation of general and polyhedral subsemilattices and sub-

lattices of product spaces. Linear Algebra Appl. 114(115), 681–704 (1989)
10. Veinott, A.F., LiCalzi, M.: Subextremal functions and lattice programming, July

1992. Unpublished Manuscript
11. Veinott, A.F., Wagner, H.M.: Optimal capacity scheduing: Parts i and ii. Oper.

Res. 10, 518–547 (1962)

http://dx.doi.org/10.1007/3-540-58601-6_92
http://dx.doi.org/10.1007/11559306_9

Author Index

Adamczyk, Michał 48
Alzamel, Mai 48

Babenko, Maxim 62
Béal, Marie-Pierre 99
Bodini, Olivier 71
Brand, Cornelius 85

Chandrasekaran, R. 323
Charalampopoulos, Panagiotis 48
Coquand, Thierry 1

Dien, Matthieu 71

Esparza, Javier 7

Fleischer, Lukas 112

Gainutdinova, Aida 126
Geffert, Viliam 141
Genitrini, Antoine 71
Gheorghiu, Alexandru 15

Heller, Pavel 99
Hochman, Michael 154

Iliopoulos, Costas S. 48

Kapourniotis, Theodoros 15
Kashefi, Elham 15
Khadiev, Kamil 162
Khadieva, Aliya 162
Khramtcova, Elena 176
Köcher, Chris 191
Kolesnichenko, Ignat 62
Kufleitner, Manfred 112
Kuske, Dietrich 191
Kutiel, Gilad 206

Löffler, Maarten 176

McGregor, Andrew 20
Miasnikov, Alexei 217
Milovanov, Alexey 232

Nasre, Meghana 245

Okhotin, Alexander 260

Peschanski, Frédéric 71
Place, Thomas 25
Pourmoradnasseri, Mozhgan 273

Radoszewski, Jakub 48
Rawat, Amit 245
Roth, Marc 85
Rubinfeld, Ronitt 38

Salomaa, Kai 260
Seliverstov, Alexandr V. 285
Smirnov, Ivan 62
Sokolov, Dmitry 294
Subramani, K. 323

Theis, Dirk Oliver 273

Vanier, Pascal 154
Vassileva, Svetla 217
Verbitsky, Oleg 308

Weiß, Armin 217
Wojciechowski, Piotr 323

Yakaryılmaz, Abuzer 126

Zeitoun, Marc 25
Zhukovskii, Maksim 308

	Preface
	Organization
	Contents
	Type Theory and Formalisation of Mathematics
	1 Equality and Collections in Mathematics
	2 Dependent Type Theory
	3 Logical Laws of Identifications
	4 Mathematical Law of Identifications: The Axiom of Univalence
	5 Actual Formalization of Mathematics
	References

	Advances in Parameterized Verification of Population Protocols
	References

	Verification of Quantum Computation and the Price of Trust
	References

	Graph Sketching and Streaming: New Approaches for Analyzing Massive Graphs
	1 Motivation and Definitions
	2 Some Results and References
	References

	Concatenation Hierarchies: New Bottle, Old Wine
	1 Historical Background and Motivations
	1.1 The Dot-Depth and the Straubing-Thérien hierarchies
	1.2 Quantifier Alternation Hierarchies

	2 Generic Concatenation Hierarchies
	3 Decision Problems
	4 Conclusion
	References

	Can We Locally Compute Sparse Connected Subgraphs?
	1 Introduction
	2 Local Computation Algorithms
	3 Designing LCAs for Sparse Approximating Subgraphs
	4 Final Words
	References

	Palindromic Decompositions with Gaps and Errors
	1 Introduction
	2 Notation and Terminology
	3 Palindromic Decomposition with Gaps
	4 Computing Maximal Palindromes with Errors
	5 Maximal Palindromic Decomposition with Gaps and Errors
	6 Conclusions
	A Appendix
	References

	Cascade Heap: Towards Time-Optimal Extractions
	1 Introduction
	2 Preliminaries
	2.1 Binary Heaps
	2.2 Recursive Heaps

	3 Cascade Heaps
	3.1 Separating Insertions and Extractions
	3.2 Amortized CascadeHeap

	4 Deamortization
	4.1 Delayed Insertions
	4.2 Deamortizing CascadeHeap

	5 Conclusions
	References

	Entropic Uniform Sampling of Linear Extensions in Series-Parallel Posets
	1 Introduction
	2 Canonical Representation of Series-Parallel Posets
	3 Random Generation of Linear Extensions
	4 Entropic Sampling Core
	References

	Parameterized Counting of Trees, Forests and Matroid Bases
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Parameterized Counting Complexity
	2.2 Matroids
	2.3 Graphs and Matrices

	3 Counting Trees
	4 Counting Forests
	5 Counting Matroid Bases
	References

	Generalized Dyck Shifts
	1 Introduction
	2 Background on Shifts
	3 Generalized Dyck Words
	4 Zeta Function of Generalized Dyck Shifts
	4.1 Multivariate Zeta Functions
	4.2 Encoding of Periodic Sequences of a Generalized Dyck Shift
	4.3 Computation of the Zeta Function

	References

	Green's Relations in Finite Transformation Semigroups
	1 Introduction
	2 Preliminaries
	3 Bounds for the Number of Classes
	4 Bounds for the Length of Chains
	4.1 Token Computations in Transformation Semigroups
	4.2 Lower Bounds over a Growing Instruction Set
	4.3 Tapes and Binary Counters
	4.4 Main Result

	References

	Nondeterministic Unitary OBDDs
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 Some Facts from Linear Algebra

	3 Our Results
	3.1 A Lower Bound for NUOBDDs
	3.2 Function notPerm
	3.3 Function EXACT
	3.4 Function MOD
	3.5 Hierarchy for NUOBDDs
	3.6 Union, Intersection, and Complementation

	4 Concluding Remarks
	References

	Unary Coded PSPACE-Complete Languages in ASPACE(loglog n)
	1 Introduction and Preliminaries
	2 Input Head as an Additional Memory
	3 Machine Models for Binary Inputs
	4 Consequences
	References

	Turing Degree Spectra of Minimal Subshifts
	1 Preliminary Definitions
	1.1 Words and Languages
	1.2 Subshifts
	1.3 Computability

	2 Minimal Subshifts with Several Cones
	References

	Reordering Method and Hierarchies for Quantum and Classical Ordered Binary Decision Diagrams
	1 Introduction
	2 Preliminaries
	3 Reordering Method and Exponential Gap Between Quantum and Classical OBDD
	4 Hierarchy for Probabilistic and Quantum OBDDs
	5 Extension of Hierarchy for Deterministic and Probabilistic k-OBDD
	References

	Dynamic Stabbing Queries with Sub-logarithmic Local Updates for Overlapping Intervals
	1 Introduction
	1.1 The Problem Statement and Our Result
	1.2 A Data Structure for Disjoint Intervals (Ply = 1) [8]

	2 An Alternative Data Structure for Disjoint Intervals
	3 A Data Structure for Overlapping Intervals
	3.1 Intervals with Ply 2
	3.2 Intervals with Higher Ply

	4 Compressing the Quadtree
	References

	The Transformation Monoid of a Partially Lossy Queue
	1 Introduction
	2 Preliminaries
	2.1 Definition of the Monoid
	2.2 A Semi-Thue System for Q(A,X)

	3 Fully Lossy Queues
	4 Embeddings Between PLQ Monoids
	4.1 Preorder of Embeddability
	4.2 Sufficiency in Theorem4.1
	4.3 Necessity in Theorem4.1

	5 Embeddings of Trace Monoids
	5.1 Large Alphabets
	5.2 The Binary Alphabet

	References

	Approximation Algorithms for the Maximum Carpool Matching Problem
	1 Introduction
	2 Maximum Weight Flow
	3 Fixed Maximum Carpool Matching
	4 Unweighted Carpool Matching
	5 Maximum Carpool Matching
	5.1 Super Matching
	5.2 3-Approximation

	6 Conclusion
	References

	The Conjugacy Problem in Free Solvable Groups and Wreath Products of Abelian Groups is in TC0
	1 Introduction
	2 Preliminaries
	2.1 Complexity

	3 Wreath Products and the Word Problem
	4 The Conjugacy Problem in Wreath Products
	5 Conjugacy and Power Problem in Iterated Wreath Products
	6 Conclusion and Open Problem
	References

	On Algorithmic Statistics for Space-Bounded Algorithms
	1 Introduction
	1.1 Introduction to Algorithmic Statistics
	1.2 Space-Bounded Algorithmic Statistics
	1.3 Distributions and Sets
	1.4 Descriptions of Restricted Type

	2 Proof of Theorem4
	2.1 Sketch of Proof of Theorem3(b)
	2.2 Main Lemma
	2.3 Nisan-Wigderson Generator. Proof of the Main Lemma

	3 Proof of Theorem2
	References

	Popularity in the Generalized Hospital Residents Setting
	1 Introduction
	2 Stability and Popularity in the LCSM+ Problem
	2.1 Popularity

	3 Structural Characterization of Popular Matchings
	4 Popular Matchings in LCSM+ Problem
	4.1 Maximum Cardinality Popular Matching
	4.2 Popular Matching Amongst Maximum Cardinality Matchings

	References

	Edit Distance Neighbourhoods of Input-Driven Pushdown Automata
	1 Introduction
	2 Input-Driven Automata
	3 Edit Distance for Input-Driven Automata
	4 Lower Bounds for the Nondeterministic Case
	5 The Deterministic Case
	6 Future Work
	References

	The (Minimum) Rank of Typical Fooling-Set Matrices
	1 Introduction
	2 Proof of Theorem 1[thm:main:tinyspsp](a)
	3 Proof of Theorem 1[thm:main:smallspsp](b)
	4 Proof of Theorem 1[thm:main:constspsp](c)
	References

	On Probabilistic Algorithm for Solving Almost All Instances of the Set Partition Problem
	1 Introduction
	2 Preliminaries
	3 Results
	4 Discussion
	References

	Dag-Like Communication and Its Applications
	1 Introduction
	2 Preliminaries
	2.1 Games
	2.2 Semantic Cutting Planes
	2.3 Broken Mosquito Screen

	3 Bit Relation and Circuits
	3.1 PLS Games and Boolean Circuits
	3.2 Games and Circuits

	4 From Proofs to Games
	5 Lower Bound
	5.1 Construction of a Mapping

	6 Random Cutting Planes
	7 Monotone CSP-SAT
	References

	The Descriptive Complexity of Subgraph Isomorphism Without Numerics
	1 Introduction
	2 Preliminaries
	3 Definitions over Sufficiently Large Graphs
	4 Definitions over Graphs of Sufficiently Large Treewidth
	5 Induced Subgraphs: Trading Super-Recursively Many First-Order Quantifiers for a Single Monadic One
	References

	On a Generalization of Horn Constraint Systems
	1 Introduction
	2 Statement of Problems
	3 Motivation and Related Work
	4 Integer Feasibility of Fractional Horn Constraints
	5 Binary Fractional Horn Constraints
	5.1 BFHS Systems Unbounded from Above
	5.2 BFHS Systems with Upper Bounds
	5.3 Least Point

	6 Conclusion
	References

	Author Index

