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Abstract. A homomorphism from a graph G to a graph H is a vertex
mapping f from the vertex set of G to the vertex set of H such that
there is an edge between vertices f(u) and f(v) of H whenever there is
an edge between vertices u and v of G. The H-Colouring problem is
to decide whether or not a graph G allows a homomorphism to a fixed
graph H. We continue a study on a variant of this problem, namely the
Surjective H-Colouring problem, which imposes the homomorphism
to be vertex-surjective. We build upon previous results and show that this
problem is NP-complete for every connected graph H that has exactly
two vertices with a self-loop as long as these two vertices are not adjacent.
As a result, we can classify the computational complexity of Surjective
H-Colouring for every graph H on at most four vertices.

1 Introduction

The well-known Colouring problem is to decide whether or not the vertices of
a given graph can be properly coloured with at most k colours for some given
integer k. If we exclude k from the input and assume it is fixed, we obtain
the k-Colouring problem. A homomorphism from a graph G = (VG, EG) to
a graph H = (VH , EH) is a vertex mapping f : VG → VH , such that there
is an edge between f(u) and f(v) in EH whenever there is an edge between
u and v in EG. We observe that k-Colouring is equivalent to the problem
of asking whether a graph allows a homomorphism to the complete graph Kk

on k vertices. Hence, a natural generalization of the k-Colouring problem is
the H-Colouring problem, which is to decide whether or not a graph allows
a homomorphism to an arbitrary fixed graph H. We call this fixed graph H
the target graph. Throughout the paper we consider undirected graphs with no
multiple edges. We assume that an input graph G contains no vertices with self-
loops (we call such vertices reflexive), whereas a target graph H may contain
such vertices. We call H reflexive if all its vertices are reflexive, and irreflexive
if all its vertices are irreflexive.
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For a survey on graph homomorphisms we refer the reader to the textbook
of Hell and Nešetřil [10]. Here, we will discuss the H-Colouring problem, a
number of its variants and their relations to each other. In particular, we will
focus on the surjective variant: a homomorphism f from a graph G to a graph H
is (vertex-)surjective if f is surjective, that is, if for every vertex x ∈ VH there
exists at least one vertex u ∈ VG with f(u) = x.

The computational complexity of H-Colouring has been determined com-
pletely. The problem is trivial if H contains a reflexive vertex u (we can map
each vertex of the input graph to u). If H has no reflexive vertices, then the
Hell-Nešetřil dichotomy theorem [9] tells us that H-Colouring is solvable in poly-
nomial time if H is bipartite and that it is NP-complete otherwise.

The List H-Colouring problem takes as input a graph G and a function
L that assigns to each u ∈ VG a list L(u) ⊆ VH . The question is whether G
allows a homomorphism f to the target H with f(u) ∈ L(u) for every u ∈ VG.
Feder, Hell and Huang [2] proved that List H-Colouring is polynomial-time
solvable if H is a bi-arc graph and NP-complete otherwise (we refer to [2] for
the definition of a bi-arc graph). A homomorphism f from G to an induced sub-
graph H of G is a retraction if f(x) = x for every x ∈ VH , and we say that G
retracts to H. A retraction from G to H can be viewed as a list-homomorphism:
choose L(u) = {u} if u ∈ VH , and L(u) = VH if u ∈ VG \VH . The corresponding
decision problem is called H-Retraction. The computational complexity of
H-Retraction has not yet been classified. Feder et al. [3] determined the com-
plexity of the H-Retraction problem whenever H is a pseudo-forest (a graph
in which every connected component has at most one cycle). They also showed
that H-Retraction is NP-complete if H contains a connected component in
which the reflexive vertices induce a disconnected graph.

We impose a surjective condition on the graph homomorphism. An impor-
tant distinction is whether the surjectivity is with respect to vertices or edges.
Furthermore, the condition can be imposed locally or globally. If we require
a graph homomorphism f to be vertex-surjective when restricted to the open
neighbourhood of every vertex u of G, we say that f is an H-role assignment. The
corresponding decision problem is called H-Role Assignment and its compu-
tational complexity has been fully classified [6]. We refer to the survey of Fiala
and Kratochv́ıl [5] for further details on locally constrained homomorphisms and
from here on only consider global surjectivity.

It has been shown that deciding whether a given graph G allows a surjective
homomorphism to a given graph H is NP-complete even if G and H both belong
to one of the following graph classes: disjoint unions of paths; disjoint unions of
complete graphs; trees; connected cographs; connected proper interval graphs;
and connected split graphs [7]. Hence it is natural, just as before, to fix H which
yields the following problem:

Surjective H-Colouring
Instance: a graph G.
Question: does there exist a surjective homomorphism from G to H?
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We emphasize that being vertex-surjective is a different condition than being
edge-surjective. A homomorphism from a graph G to a graph H is called edge-
surjective or a compaction if for any edge xy ∈ EH with x �= y there exists an edge
uv ∈ EG with f(u) = x and f(v) = y. Note that the edge-surjectivity condition
does not hold for any self-loops xx ∈ EH . If f is a compaction from G to H,
we say that G compacts to H. The corresponding decision problem is known as
the H-Compaction problem. A full classification of this problem is still wide
open. However partial results are known, for example when H is a reflexive
cycle, an irreflexive cycle, or a graph on at most four vertices [13–15], or when
G is restricted to some special graph class [16]. Vikas also showed that whenever
H-Retraction is polynomial-time solvable, then so is H-Compaction [14].
Whether the reverse implication holds is not known. A complete complexity
classification of Surjective H-Colouring is also still open. Below we survey
the known results.

We first consider irreflexive target graphs H. The Surjective H-
Colouring problem is NP-complete for every such graph H if H is non-
bipartite, as observed by Golovach et al. [8]. The straightforward reduction is
from the corresponding H-Colouring problem, which is NP-complete due to
the aforementioned Hell-Nešetřil dichotomy theorem. However, the complexity
classifications of H-Colouring and Surjective H-Colouring do not coin-
cide: there exist bipartite graphs H for which Surjective H-Colouring is
NP-complete, for instance when H is the graph obtained from a 6-vertex cycle
to each of which vertices we add a path of length 3 [1].

We now consider target graphs with at least one reflexive vertex. Unlike the
H-Colouring problem, the presence of a reflexive vertex does not make the
Surjective H-Colouring problem trivial to solve. We call a connected graph
loop-connected if all its reflexive vertices induce a connected subgraph. Golovach,
Paulusma and Song [8] showed that if H is a tree (in this context, a connected
graph with no cycles of length at least 3) then Surjective H-Colouring is
polynomial-time solvable if H is loop-connected and NP-complete otherwise. As
such the following question is natural:
Is Surjective H-Colouring NP-complete for every connected graph H that is
not loop-connected?
The reverse statement is not true (if P�= NP): Surjective H-Colouring is NP-
complete when H is the 4-vertex cycle C∗

4 with a self-loop in each of its vertices.
This result has been shown by Martin and Paulusma [11] and independently
by Vikas, as announced in [16]. Recall also that Surjective H-Colouring is
NP-complete if H is irreflexive (and thus loop-connected) and non-bipartite.

It is known that Surjective H-Colouring is polynomial-time solvable
whenever H-Compaction is [1]. Recall that H-Compaction is polynomial-
time solvable whenever H-Retraction is [14]. Hence, for instance, the afore-
mentioned result of Feder, Hell and Huang [2] implies that Surjective H-
Colouring is polynomial-time solvable if H is a bi-arc graph. We also recall
that H-Retraction is NP-complete whenever H is a connected graph that
is not loop-connected [3]. Hence, an affirmative answer to the above question
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would mean that for these target graphs H the complexities of H-Retraction,
H-Compaction and Surjective H-Colouring coincide.

In Fig. 1 we display the relationships between the different problems dis-
cussed. In particular, it is a major open problem whether the computational com-
plexities of H-Compaction, H-Retraction and Surjective H-Colouring
coincide for each target graph H. Even showing this for specific cases, such as
the case H = C∗

4 , has been proven to be non-trivial. If it is true, it would relate
the Surjective H-Colouring problem to a well-known conjecture of Feder
and Vardi [4], which states that the H-Constraint Satisfaction problem has
a dichotomy when H is some fixed finite target structure and which is equiva-
lent to conjecturing that H-Retraction has a dichotomy [4]. We refer to the
survey of Bodirsky, Kara and Martin [1] for more details on the Surjective
H-Colouring problem from a constraint satisfaction point of view.

List H-Colouring H-Retraction H-Compaction Surj H-Colouring H-Colouring

Fig. 1. Relations between Surjective H-Colouring and its variants. An arrow from
one problem to another indicates that the latter problem is polynomial-time solvable
for a target graph H whenever the former is polynomial-time solvable for H. Reverse
arrows do not hold for the leftmost and rightmost arrows, as witnessed by the reflexive
4-vertex cycle for the rightmost arrow and by any reflexive tree that is not a reflexive
interval graph for the leftmost arrow (Feder, Hell and Huang [2] showed that the only
reflexive bi-arc graphs are reflexive interval graphs). It is not known whether the reverse
direction holds for the two middle arrows.

1.1 Our Results

We present further progress on the research question of whether Surjective
H-Colouring is NP-complete for every connected graph H that is not loop-
connected. We first consider the case where the target graph H is a connected
graph with exactly two reflexive vertices that are non-adjacent. In Sect. 2 we
prove that Surjective H-Colouring is indeed NP-complete for every such
target graph H. In the same section we slightly generalize this result by show-
ing that it holds even if the reflexive vertices of H can be partitioned into two
non-adjacent sets of twin vertices. This enables us to classify in Sect. 3 the com-
putational complexity of Surjective H-Colouring for every graph H on at
most four vertices, just as Vikas [15] did for the H-Compaction problem. A
classification of Surjective H-Colouring for target graphs H on at most four
vertices has also been announced by Vikas in [16], and it is interesting to note
that NP-hardness proofs for H-Compaction of [15] may lift to NP-hardness for
Surjective H-Colouring. However, this is not true for the reflexive cycle C∗

4 ,
where a totally new proof was required.
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1.2 Future Work

To conjecture a dichotomy of Surjective H-Colouring between P and NP-
complete seems still to be difficult. Our first goal is to prove that Surjec-
tive H-Colouring is NP-complete for every connected graph H that is not
loop-connected. However, doing this via using our current techniques does not
seem straightforward and we may need new hardness reductions. Another way
forward is to prove polynomial equivalence between the three problems Sur-
jective H-Colouring, H-Compaction and H-Retraction. However, com-
pletely achieving this goal also seems far from trivial. Our classification for target
graphs H up to four vertices does show such an equivalence for these cases (see
Sect. 3).

2 Two Non-adjacent Reflexive Vertices

We say that a graph is 2-reflexive if it contains exactly 2 reflexive vertices that
are non-adjacent. In this section we will prove that Surjective H-Colouring
is NP-complete whenever H is connected and 2-reflexive. The problem is readily
seen to be in NP. Our NP-hardness reduction uses similar ingredients as the
reduction of Golovach, Paulusma and Song [8] for proving NP-hardness when H
is a tree that is not loop-connected. There are, however, a number of differences.
For instance, we will reduce from a factor cut problem instead of the less gen-
eral matching cut problem used in [8]. We will explain these two problems and
prove NP-hardness for the former one in Sect. 2.1. Then in Sect. 2.2 we give our
hardness reduction, and in Sect. 2.3 we extend our result to be valid for target
graphs H with more than two reflexive vertices as long as these reflexive vertices
can be partitioned into two non-adjacent sets of twin vertices.

2.1 Factor Cuts

Let G = (VG, EG) be a connected graph. For v ∈ VG and E ⊆ EG, let dE(v)
denote the number of edges of E incident with v. For a partition (V1, V2) of VG,
let EG(V1, V2) denote the set of edges between V1 and V2 in G.

Let i and j be positive integers, i ≤ j. Let (V1, V2) be a partition of VG and
let M = EG(V1, V2). Then (V1, V2) is an (i, j)-factor cut of G if, for all v ∈ V1,
dM (v) ≤ i, and, for all v ∈ V2, dM (v) ≤ j. Observe that if a vertex v exists
with degree at most j, then there is a trivial (i, j)-factor cut (V \ {v}, {v}). Two
distinct vertices s and t in VG are (i, j)-factor roots of G if, for each (i, j)-factor
cut (V1, V2) of G, s and t belong to different parts of the partition and, if i < j,
s ∈ V1 and t ∈ V2 (of course, if i = j, we do not require the latter condition as
(V2, V1) is also an (i, j)-factor cut). We note that when no (i, j)-factor cut exists,
every pair of vertices is a pair of (i, j)-factor roots. We define the following
decision problem.

(i, j)-Factor Cut with Roots

Instance: a connected graph G with (i, j)-factor roots s and t.
Question: does G have an (i, j)-factor cut?
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We emphasize that the (i, j)-factor roots are given as part of the input. That is,
the problem asks whether or not an (i, j)-factor cut (V1, V2) exists, but we know
already that if it does, then s and t belong to different parts of the partition.
That is, we actually define (i, j)-Factor Cut with Roots to be a promise
problem in which we assume that if an (i, j)-factor cut exists then it has the
property that s and t belong to different parts of the partition. The promise
class may not itself be polynomially recognizable but one may readily find a
subclass of it that is polynomially recognizable and includes all the instances we
need for NP-hardness. In fact this will become clear when reading the proof of
Theorem 1 but we refer also to [8] where such a subclass is given for the case
(i, j) = (1, 1). A (1, 1)-factor cut (V1, V2) of G is also known as a matching cut,
as no two edges in EG(V1, V2) have a common end-vertex, that is, EG(V1, V2) is
a matching. Similarly (1, 1)-Factor Cut with Roots is known as Matching
Cut with Roots and was proved NP-complete by Golovach, Paulusma and
Song [8] (by making an observation about the proof of the result of Patrignani
and Pizzonia [12] that deciding whether or not any given graph has a matching
cut is NP-complete). The proof of Theorem 1 has been omitted.

Theorem 1. Let i and j be positive integers, i ≤ j. Then (i, j)-Factor Cut
with Roots is NP-complete.

2.2 The Hardness Reduction

Let H be a connected 2-reflexive target graph. Let p and q be the two (non-
adjacent) reflexive vertices of H. The length of a path is its number of edges.
The distance between two vertices u and v in a graph G is the length of a
shortest path between them and is denoted distG(u, v). We define two induced
subgraphs H1 and H2 of H whose vertex sets partition VH . First H1 con-
tains those vertices of H that are closer to p than to q; and H2 contains
those vertices that are at least as close to q as to p (so contains any vertex
equidistant to p and q). That is, VH1 = {v ∈ VH : distH(v, p) < distH(v, q)} and
VH2 = {v ∈ VH : distH(v, q) ≤ distH(v, p)}. See Fig. 2 for an example. The fol-
lowing lemma follows immediately from our assumption that H is connected.

Lemma 1. Both H1 and H2 are connected. Moreover, distH1(x, p) = distH(x, p)
for every x ∈ VH1 and distH2(x, q) = distH(x, q) for every x ∈ VH2 .

A clique is a subset of vertices of G that are pairwise adjacent to each other.
Let ω denote the size of a largest clique in H.

From graphs H1 and H2 we construct graphs F1 and F2, respectively, in the
following way:

1. for each x /∈ {p, q}, create a vertex t1x;
2. for p, create ω vertices t1p, . . . , t

ω
p ;

3. for q, create ω vertices t1q, . . . , t
ω
q ;

4. for i = 1, 2, add an edge in Fi between any two vertices thx and tjy if and only
if xy is an edge of EHi

.
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p q

H1

H2

Fig. 2. An example of the construction of graphs H1 and H2 from a connected 2-
reflexive target graph H with ω = 3.

We observe that since p and q are reflexive, there are edges pp and qq, hence
t1p, . . . , t

ω
p and t1q, . . . , t

ω
q form cliques of size ω. Note also that F1 is the graph

obtained by taking H1 and replacing p by a clique of size ω. Similarly, F2 is the
graph obtained by taking H2 and replacing q by a clique of size ω. We say that
t1p, . . . , t

ω
p are the roots of F1 and that t1q, . . . , t

ω
q are the roots of F2. Figure 3

shows an example of the graphs F1 and F2 obtained from the graph H in Fig. 2.

Fig. 3. The graphs F1 (left) and F2 (right) resulting from the graph H in Fig. 2.

Let � = distH(p, q) ≥ 2 denote the distance between p and q. Let Np be the
set of neighbours of p that are each on some shortest path (thus of length �)
from p to q in H. Let rp be the size of a largest clique in Np. We define Nq and
rq similarly. We will reduce from (rp, rq)-Factor Cut with Roots, which is
NP-complete due to Theorem 1. Hence, consider an instance (G, s, t) of (rp, rq)-
Factor Cut with Roots, where G is a connected graph and s and t form
the (ordered) pair of (rp, rq)-factor roots of G. Recall that we assume that G is
irreflexive.

We say that we identify two vertices u and v of a graph when we remove them
from the graph and replace them with a single vertex that we make adjacent to
every vertex that was adjacent to u or v. From F1, F2, and G we construct a
new graph G′ as follows:

1. For each edge e = uv ∈ EG, we do as follows. We create four vertices, gru,e,
gbu,e, grv,e and gbv,e. We also create two paths P 1

e and P 2
e , each of length � − 2,

between gru,e and gbv,e, and between grv,e and gbu,e, respectively. If � = 2 we
identify gru,e and gbv,e and grv,e and gbu,e to get paths of length 0.
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2. For each vertex u ∈ VG, we do as follows. First we construct a clique Cu on ω
vertices. We denote these vertices by g1u, . . . , gω

u . We then make every vertex
in Cu adjacent to both gru,e and gbu,e for every edge e incident to u; we call
gru,e and gbu,e a red and blue neighbour of Cu, respectively; if � = 2, then the
vertex obtained by identifying two vertices gru,e and gbv,e, or grv,e and gbu,e is
simultaneously a red neighbour of one clique and a blue neighbour of another
one. Finally, for every two edges e and e′ incident to u, we make gru,e and gru,e′

adjacent, that is, the set of red neighbours of Cu form a clique, whereas the
set of blue neighbours form an independent sets.

3. We add F1 by identifying tip and gi
s for i = 1, . . . , ω, and we add F2 by

identifying tiq and gi
t for i = 1, . . . , ω. We denote the vertices in F1 and F2 in

G′ by their label tix in F1 or F2.

See Fig. 4 for an example of a graph G′.

s

t

(a) An example of a graph G with
a (1, 2)-factor cut with (1, 2)-factor
roots s and t.

F2

F1

(b) The corresponding graph G′ where H is a
2-reflexive target graph with � = 3 and ω = 3.

Fig. 4. An example of a graph G and the corresponding graph G′. (Color figure online)

The next lemma describes a straightforward property of graph homomor-
phisms that will prove useful.

Lemma 2. If there exists a homomorphism h : G′ → H then distG′(u, v) ≥
distH (h(u), h(v)) for every pair of vertices u, v ∈ VG′ .

Here is the key property of our construction (proof omitted).

Lemma 3. For every homomorphism h from G′ to H, there exists at least one
clique Ca with p ∈ h(Ca) and at least one clique Cb with q ∈ h(Cb).

Proof Sketch. Since for each u ∈ VG and any edge e incident to u, every clique
Cu ∪ {gru,e} in G′ is of size at least ω + 1, we find that h must map at least two
of its vertices to a reflexive vertex, so either to p or q. Hence, for every u ∈ VG,
we find that h maps at least one vertex of Cu to either p or q.

We prove the lemma by contradiction. We will assume that h does not map
any vertex of any Cu to q, thus p ∈ h(Cu) for all u ∈ VG. We will note later
that if instead q ∈ h(Cu) for all u ∈ VG we can obtain a contradiction in the
same way.
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We consider two vertices tip ∈ F1 and tjq ∈ F2 such that h(tip) = h(tjq) = p.
Without loss of generality let i = j = 1. We shall refer to these vertices as
tp and tq respectively. We now consider a vertex v ∈ VF1∪VF2 . By Lemma 2,
distG′(v, tp) ≥ distH(h(v), p) and distG′(v, tq) ≥ distH(h(v), p). In other words:

min (distG′(v, tp),distG′(v, tq)) ≥ distH(h(v), p).

In fact by applying Lemma 2 we can generalize this further to any vertex mapped
to p by h:

min
w∈h−1(p)

(distG′(v, w)) ≥ distH(h(v), p). (1)

For every v ∈ VG′ we define a value D(v) as follows:

D(v) =

⎧
⎨

⎩

distF1(v, tp) if v ∈ F1

distF2(v, tq) if v ∈ F2

	�/2
 otherwise

As h(tp) = h(tq) = p and any vertex not in F1 ∪F2 is either in a clique or on
a path of length � between two cliques, we can use inequality (1) to prove that
the following inequality holds for any distance d ≥ �:

∣
∣
{
t1w ∈ VF1∪VF2 : D(t1w) ≥ d

}∣
∣ ≥ |{w ∈ VH : distH(w, p) ≥ d}| . (2)

In the remainder we only present the intuition behind the final part of the proof.
Consider the graphs F1, F2 and H in the example shown in Fig. 5. We recall that
every vertex v (other than p or q) has a single corresponding vertex tv in F1 or
F2. We may naturally want to map the vertices of F1 onto the vertices of H1,

p

q

q′

distH(p, v) = 1

distH(p, v) = 2

distH(p, v) = 3

distH(p, v) = 4

distH(p, v) = 5

H

t1p t1qt2p t2q

tq′
D(tv) = 1

D(tv) = 2

D(tv) = 3

D(tv) = 4

D(tv) = 5

F1 F2

Fig. 5. An example of a graph H with corresponding graphs F1 and F2. Vertices in H
equidistant from p are plotted at the same vertical position and likewise vertices tv ∈ F1

and tw ∈ F2 with D(tv) = D(tw) are plotted at the same vertical position. The vertices
q′ ∈ H and corresponding tq′ ∈ F2 are highlighted.
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which is possible by definition of F1. However, when we try to map the vertices
of F2 onto the vertices of H2, with h(tiq) = p (for some i), we will prove that
there is at least one vertex q′ in H2 which is further from p in H than it is from
q and that cannot be mapped to and thus violates the surjectivity constraint.
In Fig. 5 this vertex, which will play a special role in our proof, is shown in red.
In the example of this figure, � = 3 and we observe that there are ten vertices
(including q′) in H with distH(p, v) ≥ 3 but only nine vertices (excluding q′) in
F1∪F2 with D(tv) ≥ 3 which could be mapped to these vertices. This contradicts
inequality (2). ��

We are now ready to state and prove our main result.

Theorem 2. For every connected 2-reflexive graph H, the Surjective H-
Colouring problem is NP-complete.

Proof. Let H be a connected 2-reflexive graph with reflexive vertices p and q at
distance � ≥ 2 from each other. Let ω be the size of a largest clique in H. We
define the graphs H1, H2, F1 and F2 and values rp, rq as above. Recall that the
problem is readily seen to be in NP and that we reduce from (rp, rq)-Factor
Cut with Roots. From F1, F2 and an instance (G, s, t) of the latter problem
we construct the graph G′. We claim that G has an (rp, rq)-factor cut (V1, V2)
if and only if there exists a surjective homomorphism h from G′ to H.

First suppose that G has an (rp, rq)-factor cut (V1, V2). By definition, s ∈ V1

and t ∈ V2. We define a homomorphism h as follows. For every x ∈ VF1 ∪ VF2 ,
we let h map t1x to x. This shows that h is surjective. It remains to define h on
the other vertices. For every u ∈ VG, let h map all of Cu to p if u is in V1 and
let h map all of Cu to q if u is in V2 (note that this is consistent with how we
defined h so far). For each uv ∈ EG with u, v ∈ V1, we map the vertices of the
paths P 1

e and P 2
e to p. For each uv ∈ EG with u, v ∈ V2, we map the vertices of

the paths P 1
e and P 2

e to q. We are left to show that the vertices of the remaining
paths P 1

e and P 2
e can be mapped to appropriate vertices of H.

Note that the red neighbours of each Cu form a clique (whereas all blue
vertices of each Cu form an independent set and inner vertices of paths P 1

e and
P 2

e have degree 2). However, as (V1, V2) is an (rp, rq)-factor cut of G, all but at
most rp vertices of these red cliques have been mapped to p already if u ∈ V1

and all but at most rq vertices have been mapped to q already if u ∈ V2. By
definition of rp and rq, this means that we can map the vertices of the paths P 1

e

and P 2
e with e = uv for u ∈ V1 and v ∈ V2 to vertices of appropriate shortest

paths between p and q in H, so that h is a homomorphism from G′ to H (recall
that we already showed surjectivity). In particular, the clique formed by the red
neighbours of each Cu is mapped to a clique in Np ∪ {p} or Nq ∪ {q}.

Now suppose that there exists a surjective homomorphism h from G′ to H.
For a clique Cu, we may choose any edge e incident to u, such that C ′

u =
Cu ∪ {gru,e} is a clique of size ω + 1. Since H contains no cliques larger than ω,
we find that h maps each clique C ′

u (which has size ω + 1) to a clique in H that
contains a reflexive vertex. Note that at least two vertices of C ′

u are mapped
to a reflexive vertex. Hence we can define the following partition of VG. We let
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V1 = {v ∈ VG : p ∈ h(Cv)} and V2 = VG \ V1 = {v ∈ VG : q ∈ h(Cv)}. Lemma 3
tells us that V1 �= ∅ and V2 �= ∅. We define M = {uv ∈ EG : u ∈ V1, v ∈ V2}.

Let e = uv be an arbitrary edge in M . By definition, h maps all of Cu to
a clique containing p and all of Cv to a clique containing q. Hence, the vertices
of the two paths P 1

e and P 2
e must be mapped to the vertices of a shortest path

between p and q. At most rp red neighbours of every Cu with u ∈ V1 can be
mapped to a vertex other than p. This is because these red neighbours form a
clique. As such they must be mapped onto vertices that form a clique in H. As
such vertices lie on a shortest path from p to q, the clique in H has size at most
rp. Similarly, at most rq red neighbours of every Cu with u ∈ V2 can be mapped
to a vertex other than q. As such, (V1, V2) is an (rp, rq)-factor cut in G. ��

2.3 A Small Extension

Two vertices u and v in a graph G are true twins if they are adjacent to each other
and share the same neighbours in VG\{u, v}. Let H(i,j) be a graph obtained from
a connected 2-reflexive graph H with reflexive vertices p and q after introducing
i reflexive true twins of p and j reflexive true twins of q. In the graph G′ we
increase the cliques Cu to size ω + max(i, j). We call the resulting graph G′′.
Then it is readily seen that there exists a surjective homomorphism from G′

to H if and only if there exists a surjective homomorphism from G′′ to H(i,j).

Theorem 3. For every connected 2-reflexive graph H and integers i, j ≥ 0,
Surjective H(i,j)-Colouring is NP-complete.

3 Target Graphs of at Most Four Vertices

For proving Theorem 4 we use Theorem 3 combined with known results [11,15];
we omit the details. In Fig. 6, the three graphs C∗

4 , D and paw∗ are displayed.

Fig. 6. The graphs C∗
4 , D and paw∗.

Theorem 4. Let H be a graph with |VH | ≤ 4. Then Surjective H-
Colouring is NP-complete if some connected component of H is not loop-
connected or is an irreflexive complete graph on at least three vertices, or
H ∈ {C∗

4 ,D,paw∗}. Otherwise Surjective H-Colouring is polynomial-time
solvable.
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Theorem 4 corresponds to Vikas’ complexity classification of H-Compaction
for targets graphs H of at most four vertices. Vikas [15] showed that H-
Compaction and H-Retraction are polynomially equivalent for target
graphs H of at most four vertices. Thus, we obtain the following corollary.

Corollary 1. Let H be a graph on at most four vertices. Then the three prob-
lems Surjective H-Colouring, H-Compaction and H-Retraction are
polynomially equivalent.
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10. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press, Oxford
(2004)

11. Martin, B., Paulusma, D.: The computational complexity of disconnected cut and
2K2-partition. J. Comb. Theory Ser. B 111, 17–37 (2015)

12. Patrignani, M., Pizzonia, M.: The complexity of the matching-cut problem. In:
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