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Abstract

In this chapter, a new microstructure-dependent higher-order shear deforma-
tion beam model is introduced to investigate the vibrational characteristics of
microbeams. This model captures both the size and shear deformation effects
without the need for any shear correction factors. The governing differential
equations and related boundary conditions are derived by implementing Hamil-
ton’s principle on the basis of modified strain gradient theory in conjunction
with trigonometric shear deformation beam theory. The free vibration problem
for simply supported microbeams is analytically solved by employing the Navier
solution procedure. Moreover, a new modified shear correction factor is firstly
proposed for Timoshenko (first-order shear deformation) microbeam model.
Several comparative results are presented to indicate the effects of material
length-scale parameter ratio, slenderness ratio, and shear correction factor on the
natural frequencies of microbeams. It is observed that effect of shear deformation
becomes more considerable for both smaller slenderness ratios and higher modes.
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Introduction

The miniaturized (small-sized) structures have a wide range of applications in
nano- and micro-electromechanical systems (NEMS andMEMS) due to the rapid
improvements in technology (Younis et al. 2003; Li and Fang 2010; Wu et al. 2010).
Microbeamis one of the essential structures frequently used in MEMS/NEMS such
as micro-resonators (Zook et al. 1992), atomic force microscopes (Torii et al. 1994),
micro-actuators (Hung and Senturia 1999), and microswitches (Xie et al. 2003).
Because of the characteristics dimensions of the microbeams (thickness, width,
and length) are on the order of microns and submicrons, size effects should be
taken into consideration on the determination of the mechanical characteristics of
such structures. However, it has been experimentally observed for several materials
that microstructural effects appear and have considerable effect on mechanical
properties and deformation behavior for smaller sizes (Poole et al. 1996; Lam et
al. 2003; McFarland and Colton 2005). Unfortunately, the well-known classical
continuum theories, which are independent of scale of the structure’s size, fail
to estimate and explain of size dependency in micro- and nanoscale structures.
Subsequently, various nonclassical continuum theories, which include at least one
additional material length-scale parameter, have been developed like couple stress
theory (Mindlin and Tiersten 1962; Koiter 1964; Toupin 1964), micropolar theory
(Eringen 1967), nonlocal elasticity theory (Eringen 1972, 1983), and strain gradient
theory (Fleck and Hutchinson 1993; Vardoulakis and Sulem 1995; Altan et al. 1996).

One of the higher-order continuum theories, named as strain gradient theory,
developed by Fleck and Hutchinson (1993, 2001), can be viewed as extended
form of the Mindlin’s simplified theory (Mindlin 1965). This theory requires five
additional material length-scale parameters related to second-order deformation
gradients. Subsequently, Lam et al. (2003) proposed a more useful form of the
strain gradient theory which is named as modified strain gradient theory (MSGT)
and includes three additional material length-scale parameters for linear elastic
isotropic materials.

This theory has been employed by many researchers to analyze size-dependent
microbeams. For instance, Bernoulli-Euler and Timoshenko models were intro-
duced for static bending, free vibration, and buckling behaviors of microbeams
by Kong et al. (2009), Wang et al. (2010), and Akgöz and Civalek (2012,
2013a). Furthermore, Kahrobaiyan et al. (2012) and Ansari et al. (2011) introduced
Bernoulli-Euler and Timoshenko beam models for functionally graded microbeams,
respectively. Artan and Batra (2012) employed the method of initial values for the
free vibration of Bernoulli-Euler strain gradient beams with four different boundary
conditions as simply supported-simply supported, clamped-free, clamped-clamped,
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and clamped-simply supported. Approximate solutions for static and dynamic
analyses of microbeams were also carried out by finite element method based on
Bernoulli-Euler and Timoshenko beam theories, respectively (Kahrobaiyan et al.
2013; Zhang et al. 2014a).

Presently, various beam theories have been proposed and used to investigate the
mechanical behaviors of beams. Influences of shear deformation can be neglected
for slender beams with a large aspect ratio. However, effects of shear deformation
and rotary inertia become more prominent and cannot be ignored for moderately
thick beams and vibration responses on higher modes. In this manner, several
shear deformation beam theories have been developed to account for the effects
of transverse shear. One of the earlier shear deformation beam theories is the first-
order shear deformation beam theory (commonly named as Timoshenko beam
theory (TBT)) (Timoshenko 1921). This theory assumes that shear stress and strain
are constant along the height of the beam. In fact, the distributions of these are
not uniform, and also there are no transverse shear stress and strain at the top and
bottom surfaces of the beam. For this reason, a shear correction factor is needed,
as a disadvantage of the theory. After that, some higher-order shear deformation
beam theories, which satisfy the condition of no shear stress and strain without
any shear correction factors, have been presented such as parabolic (third-order)
beam theory (Levinson 1981; Reddy 1984), trigonometric (sinusoidal) beam theory
(Touratier 1991), hyperbolic beam theory (Soldatos 1992), exponential beam theory
(Karama et al. 2003), and general exponential beam theory (Aydogdu 2009a).
These theories have been used less than Euler-Bernoulli beam theory (EBT) and
TBT on prediction of the mechanical responses of microstructures on the basis of
the nonclassical continuum theories (Aydogdu 2009b; Salamat-talab et al. 2012;
Şimşek and Reddy 2013a, b; Thai and Vo 2012, 2013; Akgöz and Civalek 2013b,
2014a, b, c, 2015; Zhang et al. 2014b).

In the present study, a new size-dependent trigonometric (sinusoidal) shear
deformation beam model in conjunction with modified strain gradient theory is
developed. This model captures both the microstructural and shear deformation
effects without the need for any shear correction factors. The governing differential
equations and related boundary conditions are derived by using Hamilton’s princi-
ple. The free vibration response of simply supported microbeams is investigated.
Analytical solutions for the first three natural frequencies are presented. In order to
indicate the accuracy and validity of the present model, the results are comparatively
presented with the results of other beam theories. A detailed parametric study is
carried out to indicate the influences of material length-scale parameter, slenderness
ratio, and shear correction factors on the natural frequencies of microbeams.

Modified Strain Gradient Theory

The modified strain gradient elasticity theory was proposed by Lam et al. (2003)
in which contains not only classical strain tensor but also second-order deformation
gradients (first-order strain gradients) such as dilatation gradient vector and devia-
toric stretch gradient and symmetric rotation gradient tensors. The strain energy U



1126 Ö. Civalek and B. Akgöz

on the basis of the modified strain gradient elasticity theory can be written by (Lam
et al. 2003; Kong et al. 2009):
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where ui, � i, "ij, � i, �
.1/

ijk and �s
ij denote the components of the displacement vector

u, the rotation vector ™, the strain tensor ©, the dilatation gradient vector ”, the
deviatoric stretch gradient tensor ˜(1), and the symmetric rotation gradient tensor
¦s, respectively. Also, ı is the symbol of Kronecker delta and eijk is the permutation
symbol.

Furthermore, the components of the classical stress tensor ¢ and the higher-order
stress tensors p, £(1), and ms defined as (Lam et al. 2003).
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where l0,l1,l2 are additional material length-scale parameters related to dilatation
gradients, deviatoric stretch gradients, and rotation gradients, respectively. Further-
more, � and 	 are the Lamé constants defined as
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; 	 D
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where E is Young’s modulus and v is Poisson’s ratio.
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Trigonometric Shear Deformation Microbeam Model

The displacement components of an initially straight beam on the basis of trigono-
metric shear deformation beam theory (see Fig. 1) can be written as (Touratier
1991).

u1.x; z; t / D u.x; t/ � z
@w.x; t/

@x
C R.z/
.x; t/

u2.x; z; t / D 0

u3.x; z; t / D w.x; t/

(12)

in which


 .x; t/ D
@w .x; t/

@x
� ' .x; t/ (13)

where u1, u2 and u3 are the x�, y� and z� components of the displacement vector,
and also u and w are the axial and transverse displacements, ' is the angle of
rotation of the cross section about y� axis of any point on the midplane of the beam,
respectively. R(z) is a function which depends on z and plays a role in determination
of the transverse shear strain and stress distribution throughout the height of the
beam. In order to satisfy no shear stress and strain condition at the upper (z D �h/2)
and lower (z D h/2) surfaces of the beam, R(z) is selected as following without need
for any shear correction factors:
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It can be noted that the displacement components for EBT and TBT will be
obtained by setting R(z) in Eq. 12 equal to (0) and (z), respectively. With the use
of Eqs. 12, 13, and 14 into Eq. 2, the nonzero strain components are obtained as
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Fig. 1 Geometry, coordinate system, and cross section of a simply supported microbeam
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where
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and from Eq. 15 and Eq. 3, the components of dilatation gradient vector ” are
expressed as
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By inserting Eq. 15 in Eq. 4, the nonzero components of deviatoric stretch
gradient tensor ˜(1) can be obtained as
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Also, the use of Eq. 12 in Eq. 6 gives
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With the use of Eq. 15 in Eq. 7, the nonzero components of classical stress tensor
¢ can be written as
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It is notable that Poisson’s effect is neglected by choosing � D 1 in Eq. 22 (Reddy
2011). From Eq. 8 and Eq. 15, the nonzero components of higher-order stress tensor
p are obtained as
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By inserting Eq. 18 in Eq. 9, the nonzero components of higher-order stress
tensor £(1) are written as
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Similarly, the nonzero components of higher-order stress tensor ms are deter-
mined by using of Eq. 20 into Eq. 10:
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With the substitution of Eqs. 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, and 25 into
Eq. 1, the first variation of strain energy of microbeam is expressed as
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where L is length of the microbeam, A is the area of cross section, I is the second
moment of area:
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The kinetic energy of the microbeam is given by
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where � is the mass density. From Eqs. 12 and 28, the first variation of the kinetic
energy can be expressed as
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where (m0, m2) are the mass inertias as.
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The first variation of the work done by external forces can be written as
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where f (x, t) and q(x, t) are the axial and transverse distributed loads, respectively.
In addition, bQi .i D 1; 2; : : : ; 7/ are the specified forces or moment of forces at the
end of the microbeam. After that, with the aid of Hamilton’s principle as
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and by substituting Eqs. 26, 29, and 31 into Eq. 32, integrating by parts, and setting
the coefficients ıu, ıw, and ı
 equal to zero, the governing equations of motion of
the microbeam based on SBT can be obtained as (Akgöz and Civalek 2013b).
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Analytical Solutions for Free Vibration Problem of Simply
Supported Microbeams

Here, in order to solve free vibration problem of simply supported microbeams, the
Navier solution procedure is used. The well-known geometric boundary conditions
for a simply supported end can be defined as zero deflection and nonzero slope
and/or rotation of the cross section as

w D 0;
@w

@x
¤ 0; 
 ¤ 0 (43)

In view of Eq. 43, the left sides of Eqs. 39 and 41 must vanish. Hence, the
following relations can be written by Eqs. 36, 37, 38, 39, 40, 41, 42, and 43 as

@u

@x
D 0; @2w

@x2 D 0;
@


@x
D 0; bQ1 D 0; bQ4 D 0; bQ6 D 0 (44)

The following expansions of generalized displacements which include undeter-
mined Fourier coefficients and certain trigonometric functions can be successfully
employed as

w .x; t/ D

1X
nD1

Wn sin ˛x ei!nt (45)


 .x; t/ D

1X
nD1

Hn cos ˛x ei!nt (46)

where Wn and Hn are the undetermined Fourier coefficients, !n is natural frequency,
and ˛ D n�

L
. This means that Eqs. 45 and 46 must satisfy the corresponding

boundary conditions. Substituting Eqs. 45 and 46 into Eqs. 35 and 36 as the
governing equations for free vibration, the following equation is obtained as

��
K11 K12

K21 K22

�
� !2

�
M11 M12

M21 M22

�	 

Hn

Wn


D



0

0


(47)

where.

K11 D k2 C ˛2k3 C ˛4 12

�2
	Ik1; K12 D K21 D �˛3

�
k4 C ˛2 48

�3
	Ik1

	
;

K22 D ˛4
�
k5 C ˛22	Ik1

�

M11 D
6

�2
m2; M12 D M21 D �˛

24

�3
m2; M22 D

�
m0 C ˛2m2

� (48)
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For a nontrivial solution, the determinant of coefficient matrix must be vanished
and the characteristic equation can be reached by providing this condition. The
eigenvalues are obtained by solving the characteristic equation. It can be noted that
the smallest root of the characteristic equation gives the first natural (fundamental)
frequency.

Numerical Results and Discussion

In this section, free vibration problem of a simply supported microbeam is analyti-
cally solved with the Navier-type solution based on trigonometric shear deformation
beam theory in conjunction with modified strain gradient theory. For illustration
purpose, the microbeam is taken to be made of epoxy with the following material
properties: Young’s modulus E D 1.44 GPa, Poisson’s ratio v D 0.38, the mass
density � D 1,220 kg/m3 and the material length-scale parameter l D 11.01 	m
(Kahrobaiyan et al. 2013). The microbeam has a rectangular cross section, and the
width-to-thickness ratio is taken to be constant as b/h D 2, while the length-to-
thickness ratio is taken several values as L/h D 5�80. All material length-scale
parameters are considered to be equal to each other as l0 D l1 D l2 D l.

As stated before, Timoshenko beam theory (TBT) needs a shear correction
factor to take into consideration the nonuniformity of transverse shear strain and
stress throughout the beam thickness. For rectangular cross-section beams, the
most commonly used shear correction factors can be defined as ks D 5/6 (used
here) and ks D (5 C 5v)/(6 C 5v). The classical results evaluated by TBT and other
shear deformation beam theories such as third-order (parabolic), trigonometric
(sinusoidal), hyperbolic, and exponential shear deformation beam theories are in
good agreement. However, this agreement may decrease for the results of higher-
order continuum theories, and this situation can be seen from the previous works
(Akgöz and Civalek 2013b; Şimşek and Reddy 2013a, b). Consequently, a new
modified shear correction factor

�
k�

s

�
is used for Timoshenko microbeam model

(TBT*)-based MSGT as follows (Akgöz and Civalek 2014a):

k�
s D ksk

MSGT
ac (49)

where

kMSGT
ac D 15

�
l0Cl1Cl2

3

�a.
ha

a D 3

0
@h

��
l0Cl1Cl2

3

� 1
A

0:08

� 0:45 (50)

It can be noted that k�
s will be equal to ks by setting material length-scale

parameters equal to zero in Eq. 50. In order to demonstrate the accuracy and validity
of the present analysis, some illustrative examples are comparatively given with
other beam theories.
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Table 1 Dimensionless fundamental frequencies
�
!1 D !1L2

p
m0=EI

�
l/h Beam

theory
L D 8 h L D 40 h L D 80 h

CT MSGT CT MSGT CT MSGT

0 EBT 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696
TBT 9.6094 9.6094 9.8587 9.8587 9.8669 9.8669
TBT* 9.6094 9.6094 9.8587 9.8587 9.8669 9.8669
SBT 9.6098 9.6098 9.8587 9.8587 9.8669 9.8669

0.5 EBT 9.8696 21.8020 9.8696 21.7179 9.8696 21.7153
TBT 9.6094 19.7861 9.8587 21.6223 9.8669 21.6913
TBT* 9.6094 21.2380 9.8587 21.6944 9.8669 21.7094
SBT 9.6098 21.2186 9.8587 21.6933 9.8669 21.7091

1 EBT 9.8696 40.1133 9.8696 39.9305 9.8696 39.9248
TBT 9.6094 31.3909 9.8587 39.3696 9.8669 39.7817
TBT* 9.6094 38.9701 9.8587 39.8826 9.8669 39.9128
SBT 9.6098 39.0201 9.8587 39.8843 9.8669 39.9132

*Timoshenko beam model with the new shear correction factor

Table 2 Dimensionless second natural frequencies
�
!2 D !2L2

p
m0=EI

�
l/h Beam

theory
L D 8 h L D 40 h L D 80 h

CT MSGT CT MSGT CT MSGT

0 EBT 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784
TBT 35.8237 35.8237 39.3048 39.3048 39.4348 39.4348
TBT* 35.8237 35.8237 39.3048 39.3048 39.4348 39.4348
SBT 35.8329 35.8329 39.3050 39.3050 39.4348 39.4348

0.5 EBT 39.4784 88.2502 39.4784 86.9138 39.4784 86.8718
TBT 35.8237 66.0744 39.3048 85.4193 39.4348 86.4892
TBT* 35.8237 80.2054 39.3048 86.5394 39.4348 86.7776
SBT 35.8329 80.1416 39.3050 86.5229 39.4348 86.7733

1 EBT 39.4784 162.7167 39.4784 159.8137 39.4784 159.7222
TBT 35.8237 95.8638 39.3048 151.4933 39.4348 157.4783
TBT* 35.8237 146.5687 39.3048 159.052 39.4348 159.5306
SBT 35.8329 147.5984 39.3050 159.0795 39.4348 159.5373

*Timoshenko beam model with the new shear correction factor

Dimensionless first three natural frequencies for various values of l/h and slen-
derness ratios corresponding to different beam theories are tabulated in Tables 1, 2,
and 3, respectively. It can be clearly observed from the tables that the dimensionless
natural frequencies predicted by both CT and TBT are lower than the other ones,
while those obtained by both MSGT and EBT are larger than the other ones. Also,
an increase in l/h leads to an increment in the difference between dimensionless
natural frequencies corresponding to classical and nonclassical models, and also
this difference becomes more prominent for higher modes. On the other hand,
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Table 3 Dimensionless third natural frequencies
�
!3 D !3L2

p
m0=EI

�
l/h Beam

theory
L D 8 h L D 40 h L D 80 h

CT MSGT CT MSGT CT MSGT

0 EBT 88.8264 88.8264 88.8264 88.8264 88.8264 88.8264
TBT 73.2989 73.2989 87.9565 87.9565 88.6060 88.6060
TBT* 73.2989 73.2989 87.9565 87.9565 88.6060 88.6060
SBT 73.3581 73.3581 87.9576 87.9576 88.6062 88.6062

0.5 EBT 88.8264 202.4110 88.8264 195.7139 88.8264 195.5009
TBT 73.2989 126.2815 87.9565 188.4270 88.6060 193.5834
TBT* 73.2989 167.4196 87.9565 193.8353 88.6060 195.0255
SBT 73.3581 168.1073 87.9576 193.7568 88.6062 195.0041

1 EBT 88.8264 374.4469 88.8264 359.9240 88.8264 359.4607
TBT 73.2989 186.4415 87.9565 322.3023 88.6060 348.4635
TBT* 73.2989 304.9236 87.9565 356.1056 88.6060 358.4933
SBT 73.3581 310.7247 87.9576 356.2506 88.6062 358.5275

*Timoshenko beam model with the new shear correction factor
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Fig. 2 Variations of the dimensionless natural frequency versus slenderness ratio (first mode).
(a) CT (b) MSGT

difference between the results corresponding to EBT and shear deformation beam
theories (TBT, TBT*, and SBT) is more significant for short beams. This situation
can be interpreted as the effect of shear deformation is minor for slender beams
with a large slenderness ratio. In addition, it can be clearly seen from the tables that
the natural frequencies predicted by SBT and TBT* are in good agreement, while
the divergence between the natural frequencies of SBT and TBT is considerable
especially for bigger values of l/h.

Variations of the dimensionless first three natural frequencies of the simply sup-
ported microbeam with respect to the slenderness ratio corresponding to different
beam models are depicted in Figs. 2, 3, and 4, respectively. It is observed that an



1136 Ö. Civalek and B. Akgöz

5 10 15 20 25 30 35 40 45 50
30

32

34

36

38

40

L/h

di
m

en
si

on
le

ss
 n

at
ur

al
 fr

eq
ue

nc
y

EBT
TBT
TBT*
SBT

5 10 15 20 25 30 35 40 45 50
80

100

120

140

160

180

L/h

di
m

en
si

on
le

ss
 n

at
ur

al
 fr

eq
ue

nc
y

EBT
TBT
TBT*
SBT

a b

Fig. 3 Variations of the dimensionless natural frequency versus slenderness ratio (second mode).
(a) CT (b) MSGT
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Fig. 4 Variations of the dimensionless natural frequency versus slenderness ratio (third mode).
(a) CT (b) MSGT

increase in slenderness ratio leads to a decrement on effects of shear deformation,
and differences between the dimensionless natural frequencies based on EBT, TBT,
TBT*, and SBT are diminishing for L/h � 50. Moreover, it can be concluded that
the dimensionless natural frequencies evaluated by TBT, TBT*, and SBT are nearly
equal to each other for CT, but the difference between TBT and SBT is more
considerable in the higher-order models for lower slenderness ratios and higher
modes.

Influences of h/l ratio on the first three dimensionless natural frequencies for
L D 7h are illustrated in Figs. 5, 6, and 7, respectively. These figures reveal that
natural frequencies based on MSGT are always bigger than CT. Also, it is found
that the effects of shear deformation and small size are more considerable for smaller
values of h/l and higher modes.
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Fig. 5 Effects of
thickness-to-material
length-scale parameter ratio
on the first dimensionless
natural frequency (L D 7 h)
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Fig. 6 Effects of thickness-to-material length-scale parameter ratio on the second dimensionless
natural frequency (L D 7 h)

Conclusion

In this study, a size-dependent sinusoidal shear deformation beam model in
conjunction with modified strain gradient elasticity theory (MSGT) is developed.
The model captures both the microstructural and shear deformation effects without
any shear correction factors. The governing differential equations and corresponding
boundary conditions are derived by using Hamilton’s principle. The free vibration
behavior of simply supported microbeams is investigated. Analytical solutions for
the first three natural frequencies are presented by the Navier solution technique.
The results are compared with other beam theories for the validation of the
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Fig. 7 Effects of
thickness-to-material
length-scale parameter ratio
on the third dimensionless
natural frequency (L D 7 h)
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present model. A detailed parametric study is carried out to show the influences
of thickness-to-material length-scale parameter ratio, slenderness ratio, and shear
deformation on the free vibration response of simply supported microbeams. The
obtained results can be summarized as:

• Microbeams based on MSGT are stiffer than based on the classical theory.
• The natural frequencies obtained by both MSGT and EBT are always greater

than those predicted by the other considered beam models and theories.
• The difference between the natural frequencies decreases as the thickness-to-

material length-scale parameter ratio increases.
• Effect of shear deformation becomes more considerable for both smaller slender-

ness ratios and higher modes.
• Use of modified shear correction factors is more suitable for Timoshenko

microbeam models based on higher-order continuum theories.
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