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Abstract

In this chapter, size-dependent axial vibration response of micro-sized rods is
investigated on the basis of modified strain gradient elasticity theory. On the
contrary to the classical rod model, the developed nonclassical micro-rod model
includes additional material length scale parameters and can capture the size
effect. If the additional material length scale parameters are equal to zero, the
current model reduces to the classical one. The equation of motion together with
initial conditions, classical and nonclassical corresponding boundary conditions,
for micro-rods is derived by implementing Hamilton’s principle. The resulting
higher-order equation is analytically solved for clamped-free and clamped-
clamped boundary conditions. Finally, some illustrative examples are presented
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to indicate the influences of the additional material length scale parameters, size
dependency, boundary conditions, and mode numbers on the natural frequencies.
It is found that size effect is more significant when the micro-rod diameter is
closer to the additional material length scale parameter. In addition, it is observed
that the difference between natural frequencies evaluated by the present and
classical models becomes more considerable for both lower values of slenderness
ratio and higher modes.

Keywords

Micro-rod - Size dependency - Axial vibration - Small-scale effect - Modified
strain gradient theory - Length scale parameter - Higher-order rod model -
Natural frequency

Introduction

Nowadays, due to the rapid advances in technologies, micro- and nano-sized
mechanical systems like microbeams, microbars, biosensors, nanowires, atomic
force microscope, nanotubes, micro actuators, nano probes, micro- and nano-
electromechanical systems (MEMS and NEMS), and ultra-thin films have been
widely used in modern applications such as mechanical, biomedical, chemical,
and biological applications (Fu et al. 2003; Li et al. 2003; Najar et al. 2005;
Faris and Nayfeh 2007; Moser and Gijs 2007; Kahrobaiyan et al. 2011a). The
insight of the mechanical behavior characteristics of micro- and nanostructures
is very important for the optimum design of such structures. Bending, buckling,
and vibration responses of these structures can be investigated by experimental
studies and computer simulation techniques at atomistic levels. The effects of size
dependency on the deformation behaviors of the aforementioned structures have
been experimentally observed (Fleck et al. 1994; Chong and Lam 1999; Senturia
2001; Haque and Saif 2003; Lam et al. 2003; Lou et al. 2006).

Due to the difficulty and computationally expensiveness of experimentation and
simulation techniques at atomistic levels (e.g., molecular dynamic simulation),
many scientists and researchers tended the continuum mechanics modeling as an
alternative. However, the classical continuum mechanics approaches do not the
ability for interpretation and explanation of the microstructural dependency of
small-sized structures due to the lack of any additional (intrinsic) material length
scale parameters. Then, higher-order (nonclassical) continuum theories, which
include at least one additional material length scale parameter in addition to classical
ones, have been proposed to predict the microstructure-dependent behavior of these
small-scale structures.

Higher-order continuum theories include Cosserat elasticity by Cosserat and
Cosserat (1909), strain gradient elasticity of Mindlin (1964,1965), micropolar
theory (Eringen and Suhubi 1964), nonlocal elasticity (Eringen 1983), couple stress
theory by Mindlin and Tiersten (1962), Toupin (1962), and Koiter (1964), strain
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gradient theory (Fleck and Hutchinson 1993), simple gradient elasticity with surface
energy (Vardoulakis and Sulem 1995; Altan et al. 1996; Altan and Aifantis 1997),
modified couple stress (Yang et al. 2002), and modified strain gradient theories (Lam
et al. 2003). Some earlier studies based on these theories available in the literature
have been briefly given here.

Peddieson et al. (2003) formulated a nonlocal Bernoulli-Euler beam model with
nonlocal elasticity theory. Also, Reddy (2007a) investigated bending, buckling, and
free vibration analysis of nonlocal beams for different beam theories. Wang et al.
(2008) studied bending problem of micro- and nano-sized beams based on nonlocal
Timoshenko beam theory. Aydogdu (2009) investigated the small-scale effect on
longitudinal vibration of a nanorod on the basis of Eringen’s nonlocal elasticity
theory.

The classical couple stress theory has been used to investigate the bending anal-
ysis of a circular cylinder by Anthoine (2000). Tsepoura et al. (2002) investigated
static and dynamic analysis of bars based on simple gradient elasticity theory with
surface energy. Papargyri-Beskou et al. (2003a) and Lazopoulos (2012) observed
dynamic analysis of gradient elastic beams. Bending and buckling analysis of
gradient elastic beams is studied on the basis of Bernoulli-Euler beam model by
Papargyri-Beskou et al. (2003b) and Lazopoulos and Lazopoulos (2010).

Modified couple stress theory is a higher-order continuum theory that has
been elaborated by Yang et al. (2002) which contains the symmetric rotation
gradient tensor and one additional material length scale parameter in addition to
the conventional (classical) strain tensor. Park and Gao (2006) and Ma et al. (2008)
developed new size-dependent Bernoulli-Euler and Timoshenko beam models,
respectively. Kong et al. (2008) investigated free vibration analysis of the Bernoulli-
Euler microbeam model based on this theory.

The modified strain gradient elasticity theory is one of the popular higher-
order continuum theories, which was proposed by Lam et al. (2003), that includes
dilatation and deviatoric stretch gradient tensors besides the symmetric rotation
gradient and classical strain tensor and also three additional material length scale
parameters for linear elastic isotropic materials. Kong et al. (2009), Akgoz and
Civalek (2011), and Wang et al. (2010) used modified strain gradient elasticity for
static and dynamic analyses of microbeams on the basis of Bernoulli-Euler and
Timoshenko beam models, respectively. Furthermore, static torsion and torsional
free vibration analyses of microbars based on this theory were presented by
Kahrobaiyan et al. (2011b) and Narendar et al. (2012). Recently, longitudinal
vibration responses of microbars were investigated by Akgéz and Civalek (2013,
2014), Kahrobaiyan et al. (2013), and Giiven (2014).

In this chapter, size-dependent axial vibration response of micro-sized rods is
investigated on the basis of modified strain gradient elasticity theory. The equation
of motion together with initial conditions, classical and nonclassical corresponding
boundary conditions, for micro-rods is derived with the aid of Hamilton’s principle.
The resulting higher-order equation is solved for two different boundary condi-
tions as clamped-free and clamped-clamped. Influences of micro-rod characteristic
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lengths, slenderness ratio, additional material length scale parameters, and mode
number on the vibrational response of the size-dependent micro-rod are investi-
gated.

Formulation for Modified Strain Gradient Theory
The strain energy U in a linear elastic isotropic material occupying volume V based

on the modified strain gradient elasticity theory can be written by Lam et al. (2003)
and Kong et al. (2009).

1
U = 5/ (Oijs,-j + piyi + Ti(jllzng}])f + m;jxij) dv M
vV
1
gij =35 (uij +uj.i) @
Yi = Emm,i ©)

1 1
'7,(,111 =3 (S_jk,i + &kij + Eij,k) 15 [51'_/ (Emmi + 28mkem)

“)
+ 8_/'/( (Smm.i + 28mi,m) + 8ki (Emm.j + 2£mj,m)]
s 1
X =5 (6 +6.) )
1
0 = Eeijkuk,j (6)

where u;, &, Vi, 7}5},)(, X i and 6; are the components of the displacement vector, the
strain tensor, the dilatation gradient vector, the deviatoric stretch gradient tensor, the
symmetric rotation gradient tensor, and the rotation vector, respectively. Also d;; is
the Kronecker delta, and ey is the permutation symbol. The stress measures o, p;,
ti(.l ,g, and mj; are the components of classical and higher-order stresses defined as

Lam et al. (2003).

Oij = ASijemm + 208, (7N

pi = 2ulgyi ®)
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z

Fig. 1 Geometry and coordinate system of a straight micro-rod

1 1
Tl = 2ulinf) ©

mi; = Z/lez)(fj (10)

where A and p are the well-known Lamé constants and [y, ;, [, are additional
material length scale parameters which represent the size dependency and related to
dilatation gradients, deviatoric stretch gradients, and rotation gradients, respectively.

Microstructure-Dependent Rod Model

It is considered that the case of axial vibration of a straight thin micro-rod (see
Fig. 1). Due to axial vibrations take place in x— direction, the deformation of the
cross section in y— and z— directions is assumed to be negligible by a simple theory
for axial vibration of thin rods. The components of displacement vector can be
expressed as Rao (2007).

wuy =u(x,t),up =0,u3 =0 (11)

where u;, u,, and u3 are the components of displacement vector in x—, y—, and z—
directions, respectively.
In view of Egs. (2) and (11), the non-zero strain component of the micro-rod is

ou
XX — 5. 12
& dax (12)

Use of Egs. (12) into (3), the non-zero component of dilatation gradient vector is
obtained as

0%u

Pyl 13)

Yy =
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From Egs. (2) and (4), non-zero components of deviatoric stretch gradient tensor
are achieved as

2 2
20 4y _ ooy oy oy oy oy L9

m _ 2w _ _ ) _ 1
5.2 Ty = ez = Myxey = My = Moxz = Mz 5 0x2

Nyxx =

(14)

Furthermore, all components of rotation vector and so symmetric rotation
gradient tensor are equal to zero as

6; =0, =x,y,2) (15)

X =0.G,j =x,y.2) (16)

The non-zero stress o; can be obtained by neglecting Poisson’s effect in Eq. (7)
as

o = E— 17
o ox 17

where E is the elastic modulus. By inserting Egs. (13) into (8) and Eqgs. (14) into

(9), the non-zero components of higher-order stresses p; and ri(jl,z can be expressed
as

9%u
Py =2ul5 5 (18)

2 2
e £ XA 1 1 ) S} SR\ O B S C XA

= Zuli o=, 1) oy ; o = 7> (19)
XXX 3 1 axz Xyy xzz yXy yyx Xz zx 5 1 axg

Substituting above equations into Eq. (1), the strain energy U can be rewritten as
1 r* "2 ) 4 2 2
U= 3 EA(W) + ZMAZO+§/LA11 (u")"¢ dx (20)
0
where A is the cross-sectional area of the micro-rod and

., ou o, u

The first variation of strain energy U in Eq. (20) on the time interval [7y, #;] can
be calculated as following expression
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1

151 L
sU :/ / {Bu® — EAu") (Sudxa’t—l—/ {[(EAu’—Bu”’) Suly
tod 0 fo 22)
ne 1L
+[Bu Su ]0 } dt
where
u *u 2
’ _ 4) _ _ 2 2
e _W,B_M,A(lo—i-gl,) 23)

On the other hand, the first variation of the work done by external force ¢ ,
axial force N, and higher-order axial force N" on the time interval [, #;] takes the
following form

1 L 1 L
SW = / / qSudxdt +/ {[NSu]é + [Nh&/]o } dt (24)
1o 0 to

Also, the first variation of kinetic energy K of the micro-rod on the time interval
[0, 1] reads as

I3 L L
SK = —/ / miudxdt +/ [mlkfgu]ﬁ‘)dx (25)
o/ 0 0

where m is the mass per unit length and

ou . 0u
—, U= —
ot or?

u=

(26)

The following relation is written by employing Hamilton’s principle with Eqs.
(22, 24, and 25)

S{IZI[K—(U—W)]dtgzo Q27)

t L t
/ ' / [EAu" — Bu® — mit + q] Sudxds + / [N = (EAW — Bu")) $u]ld1
o/ 0

fo

t L
+ / 1[{Nh — B} 8], di +f [midu)}dx = 0
o 0

(28)

According to the fundamental lemma of calculus of variation (Reddy 2007b), the
equation of motion for the micro-rod reads as

EAW" — Bu™ + ¢ = mii (29)
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Also, initial conditions and boundary conditions satisfy the following equations,
respectively, as

it (x, 1) Su (x, t1) — it (x, o) Su (x, 1) = 0 (30)

[N (L,t)— (EAM’ (L,1)— Bu”’(L, z))] Su(L.1)
- [N 0,1) — (EAu’ 0,1) — Bu’”(o,z))] 81 (0,1) = 0 oY

[Nh (L.1)— Bu”(L, t)] S/ (L, 1) — [N" 0,1) — Bu”(o, r)] 8 (0,1) = 0
(32)

Solution of Axial Vibration Problem

u can be expressed as the following form by employing separation of variables
method

u(x,t) =U(x)e' (33)
By substituting above equation into Eq. (29) in the absence of ¢ yields

4 2
d*u EAdU

B _
dx* dx?

—o’mU =0 (34)

Analytical solution of Eq. (34) can be obtained as follows

U(x) = D;sinax + Djcosax + D3 sinh Bx 4+ D4 cosh Bx 35)
where
1/2 1/2
[ —EA+ V(EA)? + 4Bmw? g = EA+ /(EA)? + 4Bmw?
N 2B e 2B
(36)

and D; (i = 1, 2, 3, 4) are constants which can be determined by corresponding
boundary conditions. For a micro-rod that both ends are clamped, classical and
nonclassical boundary conditions are

U@©)=0and U(L) =0 (37)

BU"(0) = 0and BU"(L) = 0 (38)
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By using of above boundary conditions in Eq. (35), solution can be written in a
matrix form as

0 1 0 1 D,
sinaL cosaL sinhBL  coshBL D,
=0 39
0 —Ol2 0 ,32 D3 ( )

—o?sinal —a?cosal B%sinh BL B%cosh BL D,

For a nontrivial solution, the determinant of coefficient matrix of above equation
must be vanished. This leads to the following condition as

. nm
sinaeL = 0 namely o = T,(n: 1,2,...) (40)

By inserting Eqgs. (40) in (36), the natural longitudinal frequencies of a clamped-
clamped micro-rod are obtained as

nr 1 ey BT (41)
Wy = — | —
L \\m L2

For a clamped-free micro-rod, classical and nonclassical boundary conditions are

U(0) =0and EAU'(L) — BU" (L) =0 (42)

BU"(0) =0and U'(L) = 0 (43)

By using of above boundary conditions in Eq. (35), solution can be given in a
matrix form as

Table 1 Comparison of dimensionless natural frequencies (w =wlL \/g) of clamped-free
micro-rod for the first three modes with various values of I/D

/D Mode 1 Mode Mode 3
2

CT MSGT CT MSGT CT MSGT
0 1.5708 1.5708 47124 47124 7.8540 | 7.8540
0.3 1.5708 1.5712 4.7124 | 4.7243 7.8540 | 7.9091
0.6 1.5708 1.5726 4.7124 | 4.7599 7.8540 |8.0721
0.9 1.5708 1.5748 4.7124 | 4.8187 7.8540 | 8.3368
1.2 1.5708 1.5779 4.7124 | 4.8998 7.8540 | 8.6938

1.5 1.5708 | 1.5818 4.7124 | 5.0021 7.8540 1 9.1323
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Table 2 Comparison of dimensionless natural frequencies (w =wlL %) of clamped-clamped

micro-rod for the first three modes with various values of I/D

IID

0
0.3
0.6
0.9
1.2
1.5

Mode 1

CT
3.1416
3.1416
3.1416
3.1416
3.1416
3.1416

MSGT
3.1416
3.1451
3.1557
3.1733
3.1977
3.2288

Fig. 2 Variations of the
frequency ratio with respect
to D/l for the first three
modes. (a) Clamped-free (b)
clamped-clamped

aAjcosal —aA;sinel BA,cosh BL BA,sinh BL
—a

acosal. —asinal PBcoshfL BsinhfL

0

0

1

2

O. Civalek et. al

Mode Mode 3
2
CT MSGT CT MSGT
6.2832 | 6.2832 9.4248 1 9.4248
6.2832 | 6.3114 9.4248 1 9.5198
6.2832 | 6.3954 9.4248 | 9.7995
6.2832 | 6.5330 9.4248 10.2487
6.2832 | 6.7209 9.4248 10.8463
6.2832 | 6.9550 9.4248 11.5694
a :
1 ,'—:-—‘-—-_.ﬂrlrln
IR
Iy /
I -
0.8 H-#
g 06 :
===1st mode
0 ) - RO SAR——" e T 2nd mode |-
l = 3rd mode
0.2 i
0 1 2 3
D/l
b
\3(/)
8(.)

===1st mode
----- 2nd mode |-

04+
/ —3rd mode
0.2 i
0 2 3 4
D/l
0 1 D,
D,
—0 (44
0 B2 Ds (44)
D,
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Fig. 3 Variations of the first
three frequency ratios versus a rmegrmoeessssnoo

I/D. (a) Clamped-free (b) \~. T
clamped-clamped T,
P! p 09 \ .

0
.,
.
‘e

=== 1st mode \
0.7 | nnmns 2nd mode N
= 3rd mode \

oJog
o
)
3
4
J
5
J
J
5
J

0.6
0 0.5 1 1.5 2 2.5 3
I/D
b 1 —‘%.:--..-__
0.9 S =
2 08 N\ aey
3 \ .'0,.
=== 1st mode T,
0.7f|====*2nd mode AN
= 3rd mode \\
0.6 N\
0 0.5 1 1.5 2 2.5 3
I/D
where
M =(EA+a’B) A, = (EA—B’B) (45)

Similarly, the determinant of coefficient matrix of Eq. (44) must be vanished for
a nontrivial solution. This leads to the following condition as

2n—1Dmn

cosaL = 0 namely « =
2L

(n=12..) (46)

By inserting Egs. (46) in (36), the natural longitudinal frequencies of a clamped-
free micro-rod are achieved as

_@n-Dr |1

- (EA +B 47)

n

2n —1)*n2
2L m

412
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Fig. 4 Effect of slenderness :
a 1 i s s e ciririE
ratio of the micro-rod on the e emnnniet —
frequency ratios for the first 0.9 ( o
three modes (I = D). (a) K /
Clamped-free (b) 08 .:'
clamped-clamped P : /V
Sorf
] / ===+1st mode
0.6 Fffoeioivncio annna 2nd mode |
/ = 3rd mode
0.5 ,
04
10 20 30 40 50
L/D
b S
| e e—
09 l/ ““u

0.8 s
4

g 07 s
2oeli/
06
/ ===1st mode
0.5 Ff i mmmmn 2nd mode |-
04 ==23rd mode
0.3
10 20 30 40 50
L/D

It is evident that if the additional material length scale parameters /o and /| are
equal to zero, the natural longitudinal frequencies w, in Egs. (41) and (47) will be

transformed those in classical theory.

Numerical Results and Discussion

In this section, some illustrative examples for clamped-free and clamped-clamped
micro-sized rods are presented. In the figures, the natural longitudinal frequencies
obtained by MSGT and CT represented by w; and w,, respectively, and unless
otherwise stated, L = 20D, I, = [, = [ are considered, and Poisson’s ratio is chosen
as 0.38.

A comparison of nondimensional first three natural frequencies of the micro-rod
corresponding to various values of the additional material length scale parameters-
to-diameter ratio is tabulated in Tables 1 and 2 for clamped-free and clamped-
clamped boundary conditions, respectively. It is seen from the tables that the results
of classical and newly developed model are identical for /D = 0. It can be said
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that the nondimensional natural frequencies obtained by the new model increase
gradually for bigger values of I/D, while those obtained by a classical model are not
affected by the variation in I/D. It is also notable that differences between the results
of the classical model and the current model are more prominent for larger values
of I/D and higher modes.

Variations of the frequency ratios (@, /w,) with respect to D/I for the first three
modes are illustrated in the Fig. 2 for clamped-free and clamped-clamped boundary
conditions, respectively. It is evident that an increase in the values of D/ leads to
an increment in the frequency ratios, and the frequency ratios are nearly equal to
one for D/l > 4. Also, higher values of w, /w, are obtained for lower modes. It can
be concluded that the divergence between classical and size-dependent frequencies
becomes more significant for higher modes.

Variations of the first three frequency ratios are plotted versus //D in Fig. 3 for
clamped-free and clamped-clamped micro-rods, respectively. When the values of
I/D increases, the frequency ratios for first, second, and third modes decrease. Also,
it is noted that the frequency ratios are equal one for //D = 0.

Influences of slenderness ratio on the frequency ratios are depicted for the first
three modes in Fig. 4. It can be interpreted that the difference between natural
frequencies predicted by the newly developed and classical models becomes more
prominent for both lower slenderness ratios and higher modes. In addition, it can be
said that the size dependency of the micro-rod diminishes due to an increase in the
slenderness ratio.

It can be seen clearly from the present results that additional material length
scale parameters are more important both clamped-free and clamped-clamped cases
for smaller sizes and higher modes. Also, the values of the frequency ratios for
clamped-clamped boundary condition are smaller than those of the other case.

Conclusion

A higher-order continuum theory is used for modeling of longitudinal vibration
problem of micro-sized rod. Some parametric results have been presented in order to
show the effect of additional length scale parameters. The results of modified strain
gradient theory (MSGT) compared with those obtained by classical theory (CT). It
has been seen that the frequency ratios decrease when I/D increases. It is also shown
that the length scale parameters have some notable influences on axial vibration
of the micro-sized rod. It is also possible to say that the effect of the length scale
parameters is more significant for slender rods. An increase in slenderness ratio
of the micro-rod leads to a decrease in the difference between natural frequencies
predicting by the newly developed and classical models. It is also observed that
additional material length scale parameters play an important role for smaller size
of the micro-rod and higher modes. It is also notable that when additional material
length scale parameters are zero, the present model directly becomes the classical
model.
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