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Abstract

We present novel governing operators in arbitrary dimension for nonlocal
diffusion in homogeneous media. The operators are inspired by the theory of
peridynamics (PD). They agree with the original PD operator in the bulk of
the domain and simultaneously enforce local boundary conditions (BC). The
main ingredients are periodic, antiperiodic, and mixed extensions of kernel
functions together with even and odd parts of bivariate functions. We present
different types of BC in 2D which include pure and mixed combinations of
Neumann and Dirichlet BC. Our construction is systematic and easy to follow.
We provide numerical experiments that validate our theoretical findings. When
our novel operators are extended to vector-valued functions, they will allow the
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extension of PD to applications that require local BC. Furthermore, we hope
that the ability to enforce local BC provides a remedy for surface effects seen
in PD.

We recently proved that the nonlocal diffusion operator is a function of the
classical operator. This observation opened a gateway to incorporate local BC
to nonlocal problems on bounded domains. The main tool we use to define
the novel governing operators is functional calculus, in which we replace the
classical governing operator by a suitable function of it. We present how to apply
functional calculus to general nonlocal problems in a methodical way.

Keywords
Nonlocal wave equation · Nonlocal operator · Peridynamics · Boundary
condition · Integral operator

Introduction

We construct novel governing operators for nonlocal diffusion (Andreu-Vaillo
et al. 2010; Du et al. 2012) in arbitrary dimension. The operators are inspired by
the theory of peridynamics (PD), a nonlocal extension of continuum mechanics
developed by Silling (2000). By suppressing the time variable t , we take the
following operator as the original governing operator, and, in 1D, it corresponds
to the original bond-based PD operator for homogeneous media. We choose the 2D
domain as ˝ WD Œ�1; 1� � Œ�1; 1� and for .x; y/ 2 ˝,

Lorigu.x; y/ WD

“

˝

bC .x0 � x; y0 � y/u.x; y/dx0dy0

�

“

˝

bC .x0 � x; y0 � y/u.x0; y0/dx0dy0: (1)

We define the operator that is closely related to Lorig as

Lu.x; y/ WD cu.x; y/ �

“

˝

bC .x0 � x; y0 � y/u.x0; y0/dx0dy0; .x; y/ 2 ˝: (2)

where C WD bC j˝ and c WD
’
˝

C .x0; y0/dx0dy0. Since bC enters into the formulation

only as a function of .x0 � x; y0 � y/, the operator L also assumes a homogeneous
medium. We will show that the two operators agree in the bulk. As the main
contribution, we prove that the novel governing operators we construct agree with
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Lorig in the bulk of ˝ and, at the same time, enforce local pure and mixed Neumann,
Dirichlet, periodic, and antiperiodic BC.

When PD is considered, the dimension of u must be equal to that of x. In that
case, the governing operator in (1) restricted to 1D corresponds to the bond-based
linearized PD; see Silling et al. (2003, Eq. 23) and Weckner and Abeyaratne (2005,
Eq. 3). For the discussion of PD, it is implied that u; x 2 R. The case of u 2 R and
x 2 R

d corresponds to nonlocal diffusion (Du et al. 2012; Seleson et al. 2013).
Our approach to nonlocal problems is fundamentally different because we

exclusively want to use local BC. In Beyer et al. (2016), one of our major results was
the finding that the governing operator of PD equation in R and nonlocal diffusion
in R

d are functions of the Laplace operator. This result opened the path to the
introduction of local boundary conditions into PD theory. Since PD is a nonlocal
theory, one might expect only the appearance of nonlocal BC while employing Lorig

as the governing operator. In the original PD formulation, the concept of local BC
does not apply to PD. Instead, external forces must be supplied through the loading
force density (Silling 2000, p.201). On the other hand, we demonstrate that the
anticipation that local BC are incompatible with nonlocal operators is not quite
correct. Our novel operators present an alternative to nonlocal BC, and we hope
that the ability to enforce local BC will provide a remedy for surface effects seen
in PD; see Madenci and Oterkus (2014, Chaps. 4, 5, 7, and 12) and Kilic (2008),
Mitchell et al. (2015). Furthermore, our approach will provide us the capability to
solve important elasticity problems that require local BC such as contact, shear, and
traction.

We studied various aspects of local BC in nonlocal problems (Aksoylu et al.
2017a,b, 2016, 2017, Submitted; Beyer et al. 2016). Building on Beyer et al. (2016),
we generalized the results in R to bounded domains (Aksoylu et al. 2017a,b), a
critical feature for all practical applications. In Aksoylu et al. (2017b), we laid the
theoretical foundations, and in Aksoylu et al. (2017a), we applied the foundations
to prominent BC such as Dirichlet and Neumann, as well as presented numerical
implementation of the corresponding wave propagation. In Aksoylu et al. (2017),
we constructed the first 1D operators that agree with the original bond-based PD
operator in the bulk of the domain and simultaneously enforce local Neumann
and Dirichlet BC which we denote by MN and MD, respectively. We carried out
numerical experiments by utilizing MN and MD as governing operators in Aksoylu
et al. (2017a). In Aksoylu et al. (2016), we studied other related governing operators.
In Aksoylu and Kaya (2018), we study the condition numbers of the novel governing
operators. Therein, we prove that the modifications made to the operator Lorig to
obtain the novel operators are minor as far as the condition numbers are concerned.

Our approach is not limited to PD; the abstractness of the theoretical methods
used allows generalization to other nonlocal theories. Our approach presents a
unique way of combining the powers of abstract operator theory with numerical
computing (Aksoylu et al. 2017a). Similar classes of operators are used in numerous
applications such as nonlocal diffusion (Andreu-Vaillo et al. 2010; Du et al. 2012;
Seleson et al. 2013), image processing (Gilboa and Osher 2008), population models,
particle systems, phase transition, and coagulation. See the review and news articles
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Du et al. (2012, 2014), and Silling and Lehoucq (2010) for a comprehensive
discussion and the book (Madenci and Oterkus 2014). In addition, see the studies
dedicated to conditioning analysis, domain decomposition and variational theory
(Aksoylu and Kaya 2018; Aksoylu and Mengesha 2010; Aksoylu and Parks 2011;
Aksoylu and Unlu 2014), discretization (Aksoylu and Unlu 2014; Emmrich and
Weckner 2007; Tian and Du 2013), and kernel functions (Mengesha and Du 2013;
Seleson and Parks 2011).

The rest of the paper is structured as follows. In section “The Novel Operators in
2D,” first we prove that the operators Lorig and L agree in the bulk in 2D. We define
the novel operators using orthogonal projections on bivariate functions for which
we utilize the periodic, antiperiodic, and mixed extensions of the kernel function
C .x/. We give the main theorem in 2D. In section “Operators in 1D”, first we
prove that the novel operators are self-adjoint. In 1D, we give the main theorem
which states they all agree with Lorig in the bulk and simultaneously enforce the
corresponding local BC. In section “The Construction of 2D Operators,” we exploit
the properties of the operators in 1D to construct the novel operators in 2D. We
transfer the agreement in the bulk property established for univariate functions to
bivariate ones and eventually prove that the novel operators agree with Lorig in the
bulk in 2D. In section “Verifying the Boundary Conditions,” we make use of the
Leibniz rule, the Fubini theorem, and the Lebesgue dominated convergence theorem
to prove that the novel operators enforce the local BC stated in the main theorem. In
section “Operators in Higher Dimensions,” we present the operators in 3D which can
be easily extended to arbitrary dimension. In section “Numerical Experiments,” we
report the numerical experiments. In section “The Treatment of General Nonlocal
Problems Using Functional Calculus,” we present the treatment of general nonlocal
problems using functional calculus. We conclude in section “Conclusion.”

The Novel Operators in 2D

For .x; y/; .x0; y0/ 2 ˝1, it follows that .x0 � x; y0 � y/ 2 Œ�2; 2� � Œ�2; 2�. Hence,
in (1), the domain of bC .x0 � x; y0 � y/ is b̋ WD Œ�2; 2� � Œ�2; 2�. Furthermore, the
kernel function bC .x; y/ is assumed to be even. Namely,

bC .�x; �y/ D bC .x; y/:

The important choice of bC .x; y/ is the canonical kernel function b�ı.x; y/ whose
only role is the representation of the nonlocal neighborhood, called the horizon, by
a characteristic function. More precisely, for .x; y/ 2 b̋ ,

1We do not explicitly denote the dimension of the domain ˝. The dimension is implied by the
number of iterated integrals present in the operator. The domain ˝ is equal to Œ�1; 1�, Œ�1; 1� �
Œ�1; 1�, and Œ�1; 1� � Œ�1; 1� � Œ�1; 1� in 1D, 2D, and 3D, respectively.
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b�ı.x; y/ WD

�
1; .x; y/ 2 .�ı; ı/ � .�ı; ı/

0; otherwise.
(3)

The size of nonlocality is determined by ı and we assume ı < 1. Since the horizon
is constructed by b�ı.x; y/, a kernel function used in practice is in the form

bC .x; y/ D b�ı.x; y/b�.x; y/; (4)

where b�.x; y/ 2 L2.b̋/ is even.
Throughout the paper, we assume that

u.x; y/ 2 L2.˝/ \ C 1.@˝/: (5)

Inspired by the projections that give the even and odd parts of a univariate function,
we define the following operators that act on a bivariate function:

Pe;x0 ; Po;x0 ; Pe;y0 ; Po;y0 W L2.˝/ ! L2.˝/;

whose definitions are

Pe;x0u.x0;y0/ WD
u.x0;y0/Cu.�x0;y0/

2
; Po;x0u.x0;y0/ WD

u.x0;y0/�u.�x0;y0/

2
; (6)

Pe;y0u.x0;y0/ WD
u.x0;y0/Cu.x0;�y0/

2
; Po;y0u.x0;y0/ WD

u.x0;y0/�u.x0;�y0/

2
: (7)

Each operator is an orthogonal projection and possesses the following decomposi-
tion property:

Pe;x0 C Po;x0 D Ix0 ; Pe;y0 C Po;y0 D Iy0 : (8)

One can easily check that all four orthogonal projections in (6) and (7) commute
with each other. We define the following new operators obtained from the products
of these projections:

Pe;x0Pe;y0u.x0; y0/ WD
1

4

˚
Œu.x0; y0/ C u.x0; �y0/� C Œu.�x0; y0/ C u.�x0; �y0/�

�
;

Pe;x0Po;y0u.x0; y0/ WD
1

4

˚
Œu.x0; y0/ � u.x0; �y0/� C Œu.�x0; y0/ � u.�x0; �y0/�

�
;

Po;x0Po;y0u.x0; y0/ WD
1

4

˚
Œu.x0; y0/ � u.x0; �y0/� � Œu.�x0; y0/ � u.�x0; �y0/�

�
;

Po;x0Pe;y0u.x0; y0/ WD
1

4

˚
Œu.x0; y0/ C u.x0; �y0/� � Œu.�x0; y0/ C u.�x0; �y0/�

�
:
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Due to the aforementioned commutativity property, these are also orthogonal
projections and satisfy the following decomposition property:

Pe;x0Pe;y0 C Pe;x0Po;y0 C Po;x0Pe;y0 C Po;x0Po;y0 D Ix0;y0 : (9)

These will be used in the definition of the novel operators in 2D.
Reflecting on the square support of the restricted kernel function �ı.x; y/, we

define the bulk of the domain as follows:

bulk D f.x; y/ 2 ˝ W .x; y/ 2 .�1 C ı; 1 � ı/ � .�1 C ı; 1 � ı/g:

We first prove that the operators L and Lorig agree in the bulk. Throughout the paper,
we denote the restriction of a function bZ W b̋ ! R to ˝ as Z, i.e., Z WD bZj˝ .

Lemma 1.

Lu.x; y/ D Lorigu.x; y/; .x; y/ 2 bulk:

Proof. For .x; y/ 2 bulk, we have

.x � ı; x C ı/ � .y � ı; y C ı/ \ ˝ D .x � ı; x C ı/ � .y � ı; y C ı/:

Hence,

“

˝

bC .x0 � x; y0 � y/dx0dy0 D

“

˝

b�ı.x
0 � x; y0 � y/b�.x0 � x; y � y0/dx0dy0

D

xCıZ

x�ı

yCıZ

y�ı

b�.x0 � x; y0 � y/dx0dy0 D

ıZ

�ı

ıZ

�ı

�.x0; y0/dx0dy0

D

“

˝

�ı.x
0; y0/�.x0; y0/dx0dy0 D

“

˝

C .x0; y0/dx0dy0:

The result follows. ut

In the construction of the novel operators, a crucial ingredient is first restrictingbC to ˝ and then suitably extending it back to b̋ . To this end, we define the periodic,
antiperiodic, and mixed extensions of C .x/ from Œ�1; 1� to Œ�2; 2�, respectively, as
follows:
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bC p.x/ WD

8<
:

C .x C 2/; x 2 Œ�2; �1/;

C .x/; x 2 Œ�1; 1�;

C .x � 2/; x 2 .1; 2�;

bC a.x/ WD

8̂
<̂
ˆ̂:

�C .x C 2/; x 2 Œ�2; �1/;

C .x/; x 2 Œ�1; 1�;

�C .x � 2/; x 2 .1; 2�:
(10)

We also utilize the following mixed extensions of C .x/:

bC pa.x/ WD

8̂
<̂
ˆ̂:

C .xC2/; x 2 Œ�2; �1/;

C .x/; x 2 Œ�1; 1�;

�C .x � 2/; x 2 .1; 2�;

bC ap.x/ WD

8̂
<̂
ˆ̂:

�C .xC2/; x2Œ�2; �1/;

C .x/; x2Œ�1; 1�;

C .x � 2/; x2.1; 2�:

Building on our 1D construction in Aksoylu et al. (2017), in higher dimensions,
we discovered the operators that enforce local pure and mixed Neumann and
Dirichlet BC. We present the main theorem in 2D with the following 4 types of
BC.

Theorem 1 (Main Theorem in 2D). Let ˝ WD Œ�1; 1� � Œ�1; 1� and the restricted
kernel function be separable in the form

C .x; y/ D X.x/Y .y/; (11)

where X and Y are even functions. Then, the operators MN, MD, MND;ND, and
MN;DN defined by

�
MN � c

�
u.x; y/ WD �

“

˝

�bXp.x0 � x/Pe;x0 C bXa.x0 � x/Po;x0

�

�bY p.y0 � y/Pe;y0 C bY a.y0 � y/Po;y0

�
u.x0; y0/dx0 dy0;

�
MD � c

�
u.x; y/ WD �

“

˝

�bXa.x0 � x/Pe;x0 C bXp.x0 � x/Po;x0

�

�bY a.y0 � y/Pe;y0 C bY p.y0 � y/Po;y0

�
u.x0; y0/dx0 dy0;

�
MND;ND � c

�
u.x; y/ WD �

“

˝

�bXap.x0 � x/Pe;x0 C bXpa.x0 � x/Po;x0

�

�bY ap.y0 � y/Pe;y0 C bY pa.y0 � y/Po;y0

�
u.x0; y0/dx0 dy0;

�
MN;DN � c

�
u.x; y/ WD �

“

˝

�bXp.x0 � x/Pe;x0 C bXa.x0 � x/Po;x0

�

�bY pa.y0 � y/Pe;y0 C bY ap.y0 � y/Po;y0

�
u.x0; y0/dx0 dy0;
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agree with Lu.x; y/ in the bulk, i.e., for .x; y/ 2 .�1 C ı; 1 � ı/ � .�1 C ı; 1 � ı/.
Furthermore, the operators MN and MD enforce pure Neumann and Dirichlet BC,
respectively:

@

@n

��
MN � c

�
u
�
.x; ˙1/ D

@

@n

��
MN � c

�
u
�
.˙1; y/ D 0;

�
MD � c

�
u.x; ˙1/ D

�
MD � c

�
u.˙1; y/ D 0:

The operators MND;ND and MN;DN enforce mixed Neumann and Dirichlet BC,
respectively, in the following way:

@

@n

��
MND;ND � c

�
u
�
.�1; y/ D

@

@n

��
MND;ND � c

�
u
�
.x; �1/ D 0;

�
MND;ND � c

�
u.C1; y/ D

�
MND;ND � c

�
u.x; C1/ D 0;

and

@

@n

��
MN;DN � c

�
u
�
.˙1; y/ D

@

@n

��
MN;DN � c

�
u
�
.x; C1/ D 0;

�
MN;DN � c

�
u.x; �1/ D 0:

Proof. The proofs of agreement in the bulk and the verification of BC are given
in sections “The Construction of 2D Operators” and “Verifying the Boundary
Conditions,” respectively. ut

Remark 1. Although we assume a separable kernel function as in (11), note that we
do not impose a separability assumption on the solution u.x; y/.

Operators in 1D

The construction in higher dimensions is inspired by the one in 1D. Hence, it is
more instructive to provide the construction in 1D. For the convolution present in
the governing operators, we use a shorthand notation and define

Cu.x/ WD

Z
˝

bC .x0 � x/u.x0/dx0:

Furthermore, for each extension type utilized, we define the following operators
which will be useful in the exposition. Following the construction in Aksoylu et al.
(2017a), we assume that u; C 2 L2.˝/ and define
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Cpu.x/ WD

Z
˝

bC p.x0 � x/u.x0/dx0; Cau.x/ WD

Z
˝

bC a.x0 � x/u.x0/dx0;

(12)

Cpau.x/ WD

Z
˝

bC pa.x0 � x/u.x0/dx0; Capu.x/ WD

Z
˝

bC ap.x0 � x/u.x0/dx0:

(13)

The only difference in the operators Cp, Ca, Cpa, and Cap is the extension utilized for
the kernel functions. We prove that the operators agree in the bulk by investigating
how the corresponding kernel functions behave in the bulk.

Lemma 2. Let the kernel function bC .x/ be in the form

bC .x/ D b�ı.x/b�.x/;

where b�.x/ 2 L2.b̋/ is even. Let bC p.x/, bC a.x/, bC pa.x/, and bC ap.x/ denote the
periodic, antiperiodic, and mixed extensions of C .x/ to b̋ , respectively. Then,

bC .x/ D bC p.x/ D bC a.x/ D bC pa.x/ D bC ap.x/; x 2 .�2 C ı; 2 � ı/:

Furthermore, we have the following agreement in the bulk. Namely, for
x 2 .�1 C ı, 1 � ı/,

bC .x0�x/ D bC p.x0�x/ D bC a.x0�x/ D bC pa.x0�x/ D bC ap.x0�x/; x0 2 Œ�1; 1�:

(14)

Proof. Let us study the definition of bC p.x/ given in (10) by explicitly writing the
expression of practical kernel (4) as follows:

bC p.x/ D

8̂
<
:̂

�ı.x C 2/�.x C 2/; x 2 Œ�2; �1/;

�ı.x/�.x/; x 2 Œ�1; 1�;

�ı.x � 2/�.x � 2/; x 2 .1; 2�:

Let us closely look at the first expression in the above definition of bC p.x/:

bC p.x/jx2Œ�2;�1/ D �ı.x C 2/�.x C 2/: (15)

The expression in (15) is equivalent to

bC p.x/jx2Œ�2;�1/ D

(
�.x C 2/; x C 2 2 .�ı; ı/ and x 2 Œ�2; �1/;

0; x C 2 … .�ı; ı/ and x 2 Œ�2; �1/:
(16)
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Table 1 The value of each extension of the function C

Interval bC p.x/ bC a.x/ bC pa.x/ bC ap.x/

x 2 Œ�2; �2 C ı/ �.x C 2/ ��.x C 2/ �.x C 2/ ��.x C 2/

x 2 Œ�2 C ı; �ı� 0 0 0 0

x 2 .�ı; ı/ �.x/ �.x/ �.x/ �.x/

x 2 Œı; 2 � ı� 0 0 0 0

x 2 .2 � ı; 2� �.x � 2/ ��.x � 2/ ��.x � 2/ �.x � 2/

Due to the following set equivalence

fx W x C 2 2 .�ı; ı/ and x 2 Œ�2; �1/g

D fx W x 2 .�2 � ı; �2 C ı/ \ Œ�2; �1/ D Œ�2; �2 C ı/g;

the expression (16) reduces to

bC p.x/jx2Œ�2;�1/ D

�
�.x C 2/; x 2 Œ�2; �2 C ı/;

0; x 2 Œ�2 C ı; �1/:
(17)

Similar to (17), for x 2 .1; 2�, we have

bC p.x/jx2.1;2� D

�
0; x 2 .1; 2 � ı�;

�.x � 2/; x 2 .2 � ı; 2�:
(18)

Combining (17) and (18), for x 2 Œ�2; 2�, we obtain the expression for bC p.x/.
Similarly, we obtain the expressions for the antiperiodic and the mixed extensions.
We collect all the expressions in Table 1.

Clearly, all of the extensions agree for x 2 Œ�2 C ı; 2 � ı�. Also, see Figs. 1
and 2. ut

Using (14), we immediately obtain the following equivalence of operators in the
bulk:

Cu.x/ D Cpu.x/ D Cau.x/ D Cpau.x/ D Capu.x/; x 2 .�1 C ı; 1 � ı/: (19)

Even and odd parts of a univariate function u.x/ are used in the governing operators
MN, MD, MND, and MDN. We define the orthogonal projections that give the even
and odd parts, respectively, of a univariate function by Pe; Po W L2.˝/ ! L2.˝/;

whose definitions are

Peu.x/ WD
u.x/ C u.�x/

2
; Pou.x/ WD

u.x/ � u.�x/

2
:
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We present a commutativity property that allows us to identify the kernel
functions associated with the operators MN and MD.

Lemma 3.

CpPe D PeCp; CpPo D PoCp; CaPe D PeCa; CaPo D PoCa: (20)

Proof. We present the proof for CpPe D PeCp. The other results easily follow. We
recall the definition of Cpu.x/ in (12). We explicitly write PeCpu.x/, and the result
follows by utilizing the evenness of bC p and a change of variable:

PeCpu.x/ D
1

2

�Z
˝

bC p.x0 � x/u.x0/dx0 C

Z
˝

bC p.x0 C x/u.x0/dx0

	

D
1

2

�Z
˝

bC p.x0 � x/u.x0/dx0 C

Z
˝

bC p.x0 � x/u.�x0/dx0

	

D

Z
˝

bC p.x0 � x/Peu.x0/dx0

D CpPeu.x/:

ut

Remark 2. The above commutativity property plays an important role in determin-
ing the spectrum of the operators MN and MD; see Aksoylu and Kaya (2018).
It also helps in identifying the associated kernel functions; see (22) and (23).
Note that the above commutativity property does not hold for the operators Cpa
and Cap. Identification of the associated kernel functions can be done by direct
manipulation.

Theorem 2 (Main Theorem in 1D). Let c D
R

˝
C .x0/dx0. The following

operators MN, MD, MND, and MDN defined by

�
MD � c

�
u.x/ WD �

Z
˝

�bC a.x0 � x/Peu.x0/ C bC p.x0 � x/Pou.x0/
�
dx0;

�
MN � c

�
u.x/ WD �

Z
˝

�bC p.x0 � x/Peu.x0/ C bC a.x0 � x/Pou.x0/
�
dx0;

�
MND � c

�
u.x/ WD �

Z
˝

�bC ap.x0 � x/Peu.x0/ C bC pa.x0 � x/Pou.x0/
�
dx0;

�
MDN � c

�
u.x/ WD �

Z
˝

�bC pa.x0 � x/Peu.x0/ C bC ap.x0 � x/Pou.x0/
�
dx0
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agree with Lu.x/ in the bulk, i.e., for x 2 .�1Cı; 1�ı/. Furthermore, the operators
MN and MD enforce pure Neumann and Dirichlet BC, respectively:

d

dx

��
MN � c

�
u
�
.˙1/ D 0;

�
MD � c

�
u.˙1/ D 0:

The operators MND and MDN enforce mixed Neumann and Dirichlet BC, respec-
tively:

�
MND � c

�
u.C1/ D

d

dx

��
MND � c

�
u
�
.�1/ D 0;

�
MDN � c

�
u.�1/ D

d

dx

��
MDN � c

�
u
�
.C1/ D 0:

We define the operators MN, MD, MND, and MDN as bounded, linear operators.
More precisely, MD; MN; MND; MDN 2 L.X; X/ where X D L2.˝/ \ C 1.@˝/.
For MD, the choice of X can be relaxed as L2.˝/\C 0.@˝/. This choice is implied
when we study MD. The assumptions for the operators MND and MDN are also
implied in a similar way.

Imposing Neumann (also periodic and antiperiodic) BC requires differentiation.
For technical details regarding differentiation under the integral sign, see the
discussion on the Leibniz rule in Aksoylu et al. (2017) whose proof relies on the
Lebesgue dominated convergence theorem. In addition, the limit in the definition of
the Dirichlet BC can be interchanged with the integral sign, again by the Lebesgue
dominated convergence theorem.

Remark 3. When we assume homogeneous Neumann and Dirichlet BC on u,
then the operators MN and MD enforce homogeneous Dirichlet and Neumann
BC, respectively. More precisely, for u.˙1/ D 0 and u0.˙1/ D 0, we obtain
d

dx
MNu.˙1/ D 0 and MDu.˙1/ D 0, respectively. The same line of argument

applies to the operators MND and MDN.
Using the operators Cp, Ca, Cpa, and Cap given in (12) and (13), we can express

the operators MN, MD, MND, and MDN in the following way:

�
MN � c

�
D �

�
CpPe C CaPo

�
;

�
MD � c

�
D �

�
CaPe C CpPo

�
;

�
MND � c

�
D �

�
CapPe C CpaPo

�
;

�
MDN � c

�
D �

�
CpaPe C CapPo

�
:

Using the commutativity property (20), we arrive at the following representation:

�
MN � c

�
D �

�
PeCp C PoCa

�
;

�
MD � c

�
D �

�
PeCa C PoCp

�
:
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Now, we can identify the kernel functions associated with operators MN and MD:

�
MN�c

�
u.x/ D�

Z
˝

KN.x; x0/u.x0/dx0;

�
MD�c

�
u.x/ D �

Z
˝

KD.x; x0/u.x0/dx0;

(21)

where

KN.x; x0/ WD
1

2

˚�bC p.x0 � x/ C bC p.x0 C x/
�

C
�bC a.x0 � x/ � bC a.x0 C x/

��
;

(22)

KD.x; x0/ WD
1

2

˚�bC a.x0 � x/ C bC a.x0 C x/
�

C
�bC p.x0 � x/ � bC p.x0 C x/

��
:

(23)

We also want to identify the integrands associated with the operators MND and
MDN. We proceed by direct manipulation. By writing Pe and Po explicitly and
utilizing a simple change of variable, we arrive at the following expressions:

�
MND � c

�
u.x/ D �

Z
˝

KND.x; x0/u.x0/dx0;

�
MDN � c

�
u.x/ D �

Z
˝

KDN.x; x0/u.x0/dx0;

where

KND.x; x0/ WD
1

2

˚�bCpa.x0 � x/ C bC pa.x0 C x/
�

C
�bC ap.x0 � x/ � bC ap.x0 C x/

��
;

KDN.x; x0/ WD
1

2

˚�bC ap.x0 � x/ C bC ap.x0 C x/
�

C
�bC pa.x0 � x/ � bC pa.x0 C x/

��
:

In order to align with the construction given in Aksoylu et al. (2017a), we assume
that

bC .x/; bC a.x/; bC p.x/; bC pa.x/; and bC ap.x/ 2 L2.b̋/: (24)

Remark 4. The boundedness of MN, MD, MND, and MDN follow from the choices
of (5) and (24). In addition, all of them fall into the class of integral operators;
hence, their self-adjointness follows from the fact that the corresponding kernels
are symmetric (due to evenness of C ), i.e., KBC.x; x0/ D KBC.x0; x/ and BC 2

fN;D;ND;DNg. The cases of BC 2 fND;DNg are more involved than the rest. One
useful identity is bC ap.x0 � x/ D bC pa.�x0 C x/.
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In the upcoming proofs, we want to report a minor caveat. We use bC a.x0 C 1/ D

�bC a.x0 � 1/ which holds for x0 ¤ 0. For x0 D 0, i.e., bC a.x0 C 1/ D C .1/ ¤

�C .�1/ D �bC a.x0 � 1/. Since x0 D 0 is only a point, it does not change the value
of the integral. We choose not to point it out each time we run into this case.

Proof (Proof of Theorem 2). The key observation that leads to the agreement of the
operators MN, MD, MND, and MDN with the operator L is the agreement of kernel
functions in (14). The property (14) leads to the equivalence (19). Hence, we arrive
at the following equivalence for x 2 .�1 C ı; 1 � ı/:

�
L � c

�
D � C
D �C.Pe C Po/ (using u D Peu C Pou/

D �
�
CPe C CPo

�
D �

�
CpPe C CaPo

�
(using (19)) (25)

DW
�
MN � c

�
:

Similar to (25), we can show that the other operators agree in the bulk as well:

�
L � c

�
D � C

D �
�
CaPe C CpPo

�
DW

�
MD � c

�
(26)

D �
�
CapPe C CpaPo

�
DW

�
MND � c

�
(27)

D �
�
CpaPe C CapPo

�
DW

�
MDN � c

�
(28)

First, we prove that the operators MN and MD enforce pure Neumann and Dirichlet
BC, respectively. Next, we will prove that the operators MND and MDN enforce
mixed Neumann and Dirichlet BC, respectively.

• The operator MN: First we remove the points at which the partial derivative
of KN.x; x0/ does not exist from the set of integration. Note that such points
form a set of measure zero and, hence, do not affect the value of the integral.
We differentiate both sides of (21). In Aksoylu et al. (2017), we had proved that
the differentiation in the definition of the Neumann BC can interchange with the
integral. We can differentiate the integrand KN.x; x0/ piecewise and obtain

d

dx

��
MN � c

�
u
�
.x/ D �

Z
˝

@KN

@x
.x; x0/u.x0/dx0; (29)

where

@KN

@x
.x; x0/ D

1

2

˚�
�bC 0

p.x0 �x/CbC 0

p.x0 Cx/
�
C

�
�bC 0

a.x0 �x/�bC 0

a.x0 Cx/
��

:
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We check the boundary values by plugging x D ˙1 in (29).

d

dx

��
MN � c

�
u
�
.˙1/ D �

Z
˝

@KN

@x
.˙1; x0/u.x0/dx0: (30)

The functions bC 0

p and bC 0

a are 2-periodic and 2-antiperiodic because they are the
derivatives of 2-periodic and 2-antiperiodic functions, respectively. Hence,

bC 0

p.x0 � 1/ D bC 0

p.x0 ˙ 1/ and bC 0

a.x0 � 1/ D �bC 0

a.x0 ˙ 1/:

Hence, the integrand in (30) vanishes, i.e.,

@KN

@x
.˙1; x0/ D 0:

Therefore, we arrive at

d

dx
MNu.˙1/ D cu0.˙1/:

When we assume that u satisfies homogeneous Neumann BC, i.e., u0.˙1/ D 0,
we conclude that the operator MN enforces homogeneous Neumann BC as well.

• The operator MD: By the Lebesgue dominated convergence theorem, the limit
in the definition of the Dirichlet BC can be interchanged with the integral. Now,
we check the boundary values by plugging x D ˙1 in (23).

�
MD � c

�
u.˙1/ D �

Z
˝

KD.˙1; x0/u.x0/dx0: (31)

Since bC p and bC a are 2-periodic and 2-antiperiodic, respectively, we have

bC p.x0 � 1/ D bC p.x0 ˙ 1/ and bC a.x0 � 1/ D �bC a.x0 ˙ 1/:

Hence, the integrand in (31) vanishes, i.e., KD.˙1; x0/ D 0. Therefore, we arrive
at

MDu.˙1/ D cu.˙1/:

When we assume that u satisfies homogeneous Dirichlet BC, i.e., u.˙1/ D 0,
we conclude that the operator MD enforces homogeneous Dirichlet BC as well.

• The operator MND: First we prove that CapPeu.C1/ D 0. We use a change of
variable in the second piece.

CapPeu.C1/ D
1

2

�Z
˝

bC ap.x0 � 1/Peu.x0/dx0 C

Z
˝

bC ap.�x0 � 1/Peu.x0/dx0

	
:
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Then, we split the integrals into two parts as follows:

CapPeu.C1/ D
1

2

Z 0

�1

�bC ap.x0 � 1/ C bC ap.�x0 � 1/
�
Peu.x0/dx0

C
1

2

Z 1

0

�bC ap.x0 � 1/ C bC ap.�x0 � 1/
�
Peu.x0/dx0:

(32)

For x0 2 Œ�1; 0�, we have x0 � 1 2 Œ�2; �1�. By using the definition of bC ap and
the evenness of C , we obtain

bC ap.x0 �1/ D �bC ap.x0 C1/ D �C .x0 C1/ D �C .�x0 �1/ D �bC ap.�x0 �1/:

(33)
For x0 2 Œ0; 1�, we have x0 � 1 2 Œ�1; 0�. By using the definition of bC ap and the
evenness of C , we obtain

bC ap.x0 � 1/ D C .x0 � 1/ D C .�x0 C 1/ D �bC ap.�x0 � 1/: (34)

Combining (33) and (34) with (32), we conclude that CapPeu.C1/ D 0.
Similarly, we can conclude that CpaPou.C1/ D 0. Consequently, we arrive at

CNDu.C1/ D 0:

We prove that
d

dx
CpaPou.�1/ D 0. We use a change of variable in the second

piece.

d

dx
CpaPou.�1/ D �

1

2

�Z
˝

bC 0

pa.x0 C 1/Pou.x0/dx0

�

Z
˝

bC 0

pa.�x0 C 1/Pou.x0/dx0

	
:

Then, we split the integrals into two parts as follows:

d

dx
CpaPou.�1/ D �

1

2

Z 0

�1

�bC 0

pa.x0 C 1/ � bC 0

pa.�x0 C 1/
�
Pou.x0/dx0

�
1

2

Z 1

0

�bC 0

pa.x0 C 1/ � bC 0

pa.�x0 C 1/
�
Pou.x0/dx0:

(35)

For x0 2 Œ�1; 0�, we have x0 C 1 2 Œ0; 1�. By using the definition of bC pa and the
oddness of C 0, we obtain

bC 0

pa.x0 C1/ D C 0.x0 C1/ D �C 0.�x0 �1/ D �bC 0

pa.�x0 �1/ D bC 0

pa.�x0 C1/:

(36)
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For x0 2 Œ0; 1�, we have x0 C 1 2 Œ1; 2�. By using the definition of bC pa and the
oddness of C 0, we obtain

bC 0

pa.x0 C 1/ D �bC 0

pa.x0 � 1/ D �C 0.x0 � 1/ D C 0.�x0 C 1/ D bC 0

pa.�x0 C 1/:

(37)

Combining (36) and (37) with (35), we conclude that d
dx
CpaPou.�1/ D 0.

Similarly, we can conclude that d
dx
CapPeu.�1/ D 0. Consequently, we arrive at

d

dx
CNDu.�1/ D 0:

• The operator MDN: The proof is similar to the case of MND.
ut

Remark 5. As we prepare to construct the operators in 2D, it is useful to explicitly
denote the variable x0 on which Pe and Po act in the following way.

CNu.x/ WD
�
CpPe;x0 C CaPo;x0

�
u.x/

CDu.x/ WD
�
CaPe;x0 C CpPo;x0

�
u.x/

CNDu.x/ WD
�
CapPe;x0 C CpaPo;x0

�
u.x/

CDNu.x/ WD
�
CpaPe;x0 C CapPo;x0

�
u.x/:

Consequently, checking if the operators enforce the BC reduces to obtaining

d

dx
CNu.˙1/ D 0; CDu.˙1/ D 0

d

dx
CNDu.�1/ D 0; CNDu.C1/ D 0

d

dx
CDNu.C1/ D 0; CDNu.�1/ D 0:

(38)

The Construction of 2D Operators

For the convolution present in the governing operators, we use a shorthand notation
and define the operator

Cu.x; y/ WD

“

˝

bC .x0 � x; y0 � y/u.x0; y0/dx0dy0: (39)
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We also define the following auxiliary operators that act on a bivariate function.

XEu.x; y/ WD

Z
˝

bXE.x0 � x/u.x0; y/dx0; YEu.x; y/ WD

Z
˝

bY E.y0 � y/u.x; y0/dy0;

where E 2 fp;a;pa;apg.
Using the separability assumption (11) on the kernel function, we have the

following:

bC .x; y/ D bX.x/bY .y/: (40)

The separability of the kernel function leads to the following important property.
Using (40) and the Fubini theorem, we rewrite the operator C in (39).

Cu.x; y/ D

“

˝

bX.x0 � x/bY .y0 � y/u.x0; y0/dx0dy0

D

Z
˝

bX.x0 � x/

 Z

˝

bY .y0 � y/u.x0; y0/dy0
�
dx0

D

Z
˝

bX.x0 � x/


Yu.x0; y/

�
dx0

D X
�
Yu

�
.x; y/ (41)

In other words, we proved that C can be decomposed into a product of two 1D
operators where the action of X and Y is on the variables x and y, respectively.
Furthermore, a change in the order of integration leads to

Cu.x; y/ D YXu.x; y/: (42)

Similar to (19), we also obtain the following equivalence of operators in the bulk.
For fixed y0, we have

Xu.x; y0/ D Xpu.x; y0/ D Xau.x; y0/

D Xpau.x; y0/ D Xapu.x; y0/; x 2 .�1 C ı; 1 � ı/:

Also, for fixed x0, we have

Yu.x0; y/ D Ypu.x0; y/ D Yau.x0; y/ D Ypau.x0; y/

D Yapu.x0; y/ y 2 .�1 C ı; 1 � ı/:

The choice made in (25) leads to the construction of the operator that enforces pure
Neumann BC in the x- and y-variable as follows:
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XN WD XpPe;x0 C XaPo;x0 (in the x-variable) (43)

YN WD YpPe;y0 C YaPo;y0 (in the y-variable): (44)

Similarly, the choice made in (26) leads to the construction of the operator that
enforces pure Dirichlet BC in the x- and y-variable as follows:

XD WD XaPe;x0 C XpPo;x0 (in the x-variable) (45)

YD WD YaPe;y0 C YpPo;y0 (in the y-variable): (46)

Similarly, the choices made in (27) and (28) lead to the construction of the operators
that enforce mixed Neumann-Dirichlet and Dirichlet-Neumann BC in the x- and y-
variable as follows:

XND WD XapPe;x0 C XpaPo;x0 (in the x-variable) (47)

YND WD YapPe;y0 C YpaPo;y0 (in the y-variable) (48)

XDN WD XpaPe;x0 C XapPo;x0 (in the x-variable) (49)

YDN WD YpaPe;y0 C YapPo;y0 (in the y-variable): (50)

We want to construct an operator that enforces pure Neumann BC on the square.
We make the choice that gives the 1D Neumann operator both in x- and y-variables.
Hence, combining (43) and (44), we define the 2D pure Neumann operator as

�
MN � c

�
WD �XNYN D �

�
XpPe;x0 C XaPo;x0

��
YpPe;y0 C YaPo;y0

�
: (51)

Similarly, combining (45) and (46), we define the 2D pure Dirichlet operator as

�
MD � c

�
WD �XDYD D �

�
XaPe;x0 C XpPo;x0

��
YaPe;y0 C YpPo;y0

�
: (52)

Similarly, combining (47), (48), (49), and (50), we define the 2D mixed operators
as follows:

�
MND;ND � c

�
WD �XNDYND D �

�
XapPe;x0 C XpaPo;x0

��
YapPe;y0 C YpaPo;y0

�
(53)�

MN;DN � c
�

WD �XN YDN D �
�
XpPe;x0 C XaPo;x0

� �
YpaPe;y0 C YapPo;y0

�
:

(54)

Recalling (2), we immediately see that the operator L agrees in the bulk with the
given operators above. Namely,
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�
L � c

�
D �C D

�
MN � c

�
�
L � c

�
D �C D

�
MD � c

�
�
L � c

�
D �C D

�
MND;ND � c

�
�
L � c

�
D �C D

�
MN;DN � c

�
:

Remark 6. The operator C in (2) utilizes a 2D computational domain which is
indicated by the integration variable dx0dy0 D d.x0; y0/. We can show the
construction of each operator by paying attention to the computational domain of
each operator and rearranging (41) using the agreement of operators in the bulk in
the following way:

C D CIx0;y0 D X Ix0 YIy0

D X .Pe;x0 C Po;x0/ Y.Pe;y0 C Po;y0/

D
�
XPe;x0 C XPo;x0

� �
YPe;y0 C YPo;y0

�
D

�
XpPe;x0 C XaPo;x0

� �
YpPe;y0 C YaPo;y0

�
DW �

�
MN � c

�
D

�
XaPe;x0 C XpPo;x0

� �
YaPe;y0 C YpPo;y0

�
DW �

�
MD � c

�
D

�
XapPe;x0 C XapPo;x0

� �
YapPe;y0 C YapPo;y0

�
DW �

�
MND;ND � c

�
(55)

D
�
XpPe;x0 C XaPo;x0

� �
YapPe;y0 C YpaPo;y0

�
DW �

�
MN;ND � c

�
: (56)

We construct the operators in higher dimensions by using the corresponding rear-
rangement; see section “Operators in Higher Dimensions” for the 3D construction.
In addition, the 2D decomposition operator Ix0;y0 given in (9) is indeed the product
of the 1D decomposition operators Ix0 and Iy0 given in (8). More precisely,

Ix0;y0 D Ix0 Iy0

D
�
Pe;x0 C Po;x0

��
Pe;y0 C Po;y0

�
D Pe;x0Pe;y0 C Pe;x0Po;y0 C Po;x0Pe;y0 C Po;x0Po;y0 :

Verifying the Boundary Conditions

The operators
�
MN � c

�
,

�
MD � c

�
,

�
MND;ND � c

�
, and

�
MN;DN � c

�
given

in (51), (52), (53), and (54), respectively, are the product of two 1D operators. As
we mentioned, the limit in the definition of the BC can be interchanged with the
integral sign due to the Lebesgue dominated convergence theorem and the Leibniz
rule. Then, using the change in the order of integration as in (42) and (38), we can
prove that the pure and mixed Neumann and Dirichlet BC are enforced.

First, we prove that the operators MN and MD enforce pure Neumann and pure
Dirichlet BC in 2D:
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@

@n

�
.MN � c/ u

�
.x; C1/ D �

�
@

@y
XNYN

	
u.x; C1/

D �XN

�
d

dy
YN

	
u.x; C1/ D 0

@

@n
Œ.MN � c/ u� .x; �1/ D

�
@

@y
XNYN

	
u.x; �1/

D XN

�
d

dy
YN

	
u.x; �1/ D 0

@

@n
Œ.MN � c/ u� .C1; y/ D �

�
@

@x
YNXN

	
u.C1; y/

D �YN

�
d

dx
XN

	
u.C1; y/ D 0

@

@n
Œ.MN � c/ u� .�1; y/ D

�
@

@x
YNXN

	
u.�1; y/

D YN

�
d

dx
XN

	
u.�1; y/ D 0:

�
MD � c

�
u.x; ˙1/ D �XDYDu.x; ˙1/ D 0

�
MD � c

�
u.˙1; y/ D �YDXDu.˙1; y/ D 0:

Then, we prove that the operator MND;ND enforces mixed (2+2) Neumann-
Dirichlet, i.e., the West and South edges have Neumann and the East and North
edges have Dirichlet BC:

@

@n
Œ.MND;ND � c/ u� .�1; y/ D

�
@

@x
YNDXND

	
u.�1; y/

D YND

�
d

dx
XND

	
u.�1; y/ D 0

@

@n
Œ.MND;ND � c/ u� .x; �1/ D

�
@

@y
XNDYND

	
u.x; �1/

D XND

�
d

dy
YND

	
u.x; �1/ D 0:

�
MND;ND � c

�
u.C1; y/ D �XNDYNDu.C1; y/ D 0�

MND;ND � c
�
u.x; C1/ D �XNDYNDu.x; C1/ D 0:



1316 B. Aksoylu et al.

Finally, we prove that the operator MN;DN enforces mixed Neumann-Dirichlet
(3+1), i.e., the East, West, and North edges have Neumann and the South edge have
Dirichlet BC:

@

@n

�
.MN;DN � c/ u

�
.C1; y/ D �

�
@

@x
YDNXN

	
u.C1; y/

D YDN

�
d

dx
XN

	
u.C1; y/ D 0

@

@n

�
.MN;DN � c/ u

�
.�1; y/ D

�
@

@x
YDNXN

	
u.�1; y/

D YDN

� d

dx
XN

�
u.�1; y/ D 0

@

@n
Œ.MN;DN � c/ u� .x; C1/ D �

�
@

@y
XNYDN

	
u.x; C1/

D �XN

�
d

dy
YDN

	
u.x; C1/ D 0:

�
MN;DN � c

�
u.x; �1/ D �XNYDNu.x; �1/ D 0:

Operators in Higher Dimensions

Let us consider the convolution in 3D and the domain be ˝ WD Œ�1; 1� � Œ�1; 1� �

Œ�1; 1�: We define the convolution in 3D similarly using notation in (39).

Cu.x; y/ D

•

˝

bC .x0 � x; y0 � y; z0 � z/u.x0; y0; z0/dx0dy0d z0:

Note that C D �
�
L � c

�
. Hence we concentrate on finding suitable operators that

agree with C in the bulk. Assuming a separable restricted kernel function similar
to (11),

C .x; y; z/ D X.x/Y .y/Z.z/;

the operators MN and MD in 3D defined below enforce pure Neumann and Dirichlet
BC and simultaneously agree with the operator L in the bulk. The construction
process is an extension of the 2D case:
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C D CIx0;y0;z0 D X Ix0 YIy0 ZIz0

D X .Pe;x0 C Po;x0/ Y.Pe;y0 C Po;y0/Z.Pe;z0 C Po;z0/

D
�
XPe;x0 C XPo;x0

� �
YPe;y0 C YPo;y0

� �
ZPe;z0 C ZPo;z0

�
D

�
XpPe;x0 C XaPo;x0

� �
YpPe;y0 C YaPo;y0

� �
ZpPe;z0 C ZaPo;z0

�
DW �

�
MN�c

�
D

�
XaPe;x0 C XpPo;x0

� �
YaPe;y0 C YpPo;y0

� �
ZaPe;y0 C ZpPo;z0

�
DW �

�
MD�c

�
:

The operators that enforce mixed Neumann and Dirichlet BC can be constructed in
a similar fashion to the operators given in (55) and (56). The extension to arbitrary
dimension can be performed by the same line of argument.

Numerical Experiments

We numerically solve the following nonlocal wave equation:

ut t .x; t / C MBCu.x; t / D b.x; t /; .x; t / 2 ˝ � Œ0; T �; (57)

u.x; 0/ D u0.x/;

ut .x; 0/ D 0

by employing the governing operators MN and MD in 1D, i.e., BC 2

fN;Dg, and the operators MN, MD, MND;ND, and MN;DN in 2D, i.e., BC 2

fN;D; .ND; ND/; .N; DN/g, with discontinuous and continuous initial displacement
u0.x/; see the definition of the governing operators in Theorem 1. For the
discretization of the 1D problem, we use the Galerkin projection method with
piecewise polynomials. For implementation details and theoretical construction, see
Aksoylu et al. (2017a). Note that, for all time, BC are satisfied; see Fig. 3.

In 1D, as far as the boundary behavior goes, in nonlocal problems, we observe
a similar wave reflection pattern from the boundary as in classical problems. In the
classical case, we see that the Neumann and the Dirichlet BC create reflections of
same and opposite signs, respectively; for the Neumann BC, see Fig. 4. A parallel
behavior is observed for the nonlocal Neumann and Dirichlet cases; see Fig. 3.

For the discretization of the 2D problem, we use the Nyström method with the
quadrature chosen as the trapezoidal rule (Fig. 5). For implementation details, see
Aksoylu et al. (Submitted). We depict the solutions to the nonlocal wave equation
domain with homogeneous pure Neumann, pure Dirichlet, and mixed Neumann-
Dirichlet with vanishing initial velocity and discontinuous initial displacement; see
Figs. 6, 7, 8, and 9. Also, for continuous initial displacement, see Fig. 10. The
initial solutions are depicted in Fig. 5. Notice that, for all time, local BC are clearly
satisfied. Furthermore, for pure Neumann problem, we have numerically verified
that

’
˝

u.x; t /dx remains constant for all t . This is in agreement with the physical
implication that homogeneous Neumann BC model insulated boundaries.
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Fig. 3 Solution to the nonlocal wave equation on a 1D domain with discontinuous (top) and
continuous (bottom) initial solution and vanishing initial velocity with Neumann (left) boundary
condition using the governing operator MN and Dirichlet (right) boundary condition using the
governing operator MD. Note that, for all time, BC are satisfied and discontinuities remain
stationary

The Treatment of General Nonlocal Problems Using Functional
Calculus

Our main tool that allows us to incorporate local BC into nonlocal operators is
functional calculus. More precisely, the novel governing operators are obtained by
employing the functional calculus of self-adjoint operators, i.e., by replacing the
classical governing operator A by a suitable function of A, f .A/. We call f the
regulating function. Since classical BC is an integral part of the classical operator,
these BC are automatically inherited by f .A/. One advantage of our approach is
that every symmetry that commutes with A also commutes with f .A/. As a result,
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Fig. 4 Solution to the classical wave equation with Neumann (left) and Dirichlet (right) boundary
conditions with the same continuous initial displacement as in Fig. 3 and vanishing initial velocity

Fig. 5 Initial solutions to the nonlocal wave equation on a 2D domain with discontinuous (left)
and continuous (right) initial solutions

required invariance with respect to classical symmetries such as translation, rotation,
and so forth is preserved.

We illustrate the benefit of functional calculus, for instance, by comparing the
Laplace operator � to the biharmonic operator �2. By simply inspecting how the
biharmonic operator is connected to the Laplace operator, one can guess that the
regulating function would be f .�/ D �2. Before making a rigorous connection,
one has to prescribe the BC for each operator. We choose the Laplace operator with
homogeneous Dirichlet and Neumann BC and compare it to the biharmonic operator
with simply supported (SS) and Cahn-Hilliard (CH) type BC for plate vibration
utilizing the weak formulation of the following eigenvalue problems where the BC
used are precisely the following:
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SS-BC: u D �u D 0 on @˝; CH-BC:
@u

@n
D

@�u

@n
D 0 on @˝:

L.u; v/ WD

Z
˝

ru � rv dx D �R.u; v/ WD �

Z
˝

uv dx; v 2 VL;D or VL;N

B.u; v/ WD

Z
˝

r2u W r2v dx D �R.u; v/; v 2 VB;SS or VB;CH ;

VL;D WD H 1
0 .˝/; VL;N WD

n
v 2 H 1.˝/ W

@v

@n
D 0

o
;

VB;SS WD H 1
0 .˝/ \ H 2.˝/; VB;CH WD

n
v 2 H 2.˝/ W

@v

@n
D 0

o
:

Indeed, the eigenvalues of the biharmonic operator with SS-BC and CH-BC
are the squares of those of the Laplace operator with Dirichlet and Neumann
BC, respectively. Furthermore, the eigenfunctions are identical for Dirichlet and
Neumann BC with SS and CH, respectively. We have provided this example as a
proof of concept and, hence, chosen the BC carefully to establish the connection.
One may not obtain such connection with arbitrary BC.

The convolution operators in (12) in the form of integrals are derived from their
(original) series representation. We defined generalized convolution operators in
Aksoylu et al. (2017a,b) in the following series form:

CBCu.x/ WD
X

k

heBCk jC i heBCk jui eBCk ; (58)

where BC D p;a and h�j�i denotes the inner product in L2
C
.˝/ and is defined by

heBCk jui WD

Z
˝

�
eBCk

��
.x0/u.x0/dx0:

In addition,
�
eBCk

�
k

is chosen to be a basis associated with a multiple of the Laplace
operator with appropriate BC, which we call as the classical operator and denote
by �BC. The spectrum of �BC with classical BC such as periodic, antiperiodic,
Neumann, and Dirichlet is purely discrete. Furthermore, we can explicitly calculate
the eigenfunctions eBCk corresponding to each BC. These eigenfunctions form a
Hilbert (complete and orthonormal) basis for L2

C
.˝/ through which the generalized

convolution operator is defined. The main reason why we discuss �BC is the fact
that the governing operator (1) turns out to be a function of �BC (Aksoylu et al.
2017a,b; Beyer et al. 2016). Since the classical operator ABC is defined through local
BC, the eigenfunctions inherit this information. This observation opened a gateway
to incorporate local BC to nonlocal theories on bounded domains (Aksoylu et al.
2017b).
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The normalized eigenfunctions of the classical operators are as follows:

e
p
k .x/ WD

1
p

2
ei�kx; k 2 N; eak .x/ WD

1
p

2
ei�.kC 1

2 /x; k 2 N;

(59)

eNk .x/ WD

(
1p
2
; k D 0;

cos
�

k�
2

.x C 1/
�
; k 2 N

�;
eDk .x/ WD sin


k�

2
.x C 1/

�
; k 2 N

�:

Plugging the eigenfunctions in (59) into (58) and after hefty calculation, we proved
that the operators Cp and Ca have integral representations given (12). For more
details, see Aksoylu et al. (2017a).

Next, we present the steps how to apply functional calculus (FC). We denote a
nonlocal operator by NL and its local counterpart by A. Note that both nonlocal
diffusion and PD operators are defined initially on R

d and contain convolution. The
size of nonlocality is determined by the parameter ı which is encoded in the kernel
function.

FC-1. Apply limit to the horizon parameter, i.e., ı ! 0, to identify a local
counterpart A of NL.

FC-2. Apply the Fourier transform to “diagonalize” NL and A to obtain the
corresponding spectra.

FC-3. Read off the regulating function f by comparing the spectra of NL and A.
Spectra on R

d are continuous.

We apply the above steps to the concrete example of nonlocal diffusion on R
d

where the classical operator A is the Laplace operator �� W W 2.Rd / ! L2.Rd /.

NLu.x; t / D f .A/u.x; t / WD

 Z

Rd

C .x0/dx0
�

u.x; t / �

Z
Rd

C .x0 � x/u.x0; t /dx0:

(60)

We connect the nonlocal operator to A through Fourier transforms. Let F1 W

L1.Rd / ! C1.Rd /, F2 W L2.Rd / ! L2.Rd / be the Fourier transforms and the
kernel function C 2 L1.Rd / be even:

A D F �1
2 ı T� ı F2;

f .A/ D F �1
2 ı Tf .�/ ı F2; (61)

where Th.�/ denotes the maximal multiplication operator by h.�/: Then, we directly
diagonalize f .A/ by using the expression given in (60):

f .A/ D F �1
2 ı TF1C .0/�F1C .�/ ı F2: (62)
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Therefore, a comparison of (61) and (62) yields

f .�/ D F1C .0/ � F1C .�/:

We explicitly identify to which function of the classical operator the nonlocal
operator corresponds:

f .�/ D F1C .0/ � F1C .�/ D h1jC i � he�jC i; he�jC i WD

Z
Rd

e�.x0/�C .x0/dx0;

where the spectral value of the classical operator � 2 Œ0; 1/. Now, we extend the
construction on R

d to a bounded domain ˝.

FC-4. Restrict A to ˝ with a prescribed BC. Denote the new operator by ABC.
Spectrum of ABC, �.ABC/ is now discrete. Find the eigenfunctions of ABC.

FC-5. Define a generalized convolution as in (58) by using eigenfunctions of ABC.
FC-6. Rewrite (recycle) the regulating function with discrete spectrum.

fBC W �.ABC/ ! R; fBC.�BCk / D h1jC i � heBCk jC i; BC 2 fp;ag: (63)

FC-7. Construct fBC.ABC/ using the spectral theorem. Namely, for
u D

P
k heBCk jui eBCk , we have

fBC.ABC/u D
X

k

fBC.�BCk / heBCk jui eBCk : (64)

FC-8. Find a computationally feasible expression of fBC.ABC/ such as an integral
representation.

Now, we show how we use the FC steps to construct the governing operators
MBC; BC 2 fp;ag in 1D. Namely, we want to verify fBC.ABC/u D MBCu.

Using (63) and (64), we have the following:

fBC.ABC/u D
X

k

Œh1jC i � heBCk jC i� heBCk jui eBCk

D h1jC i
X

k

heBCk jui eBCk �
X

k

heBCk jC i heBCk jui eBCk

D cu � CBCu

D MBC; BC 2 fp;ag:

Expressing the regulating function for the case of BC 2 fN;Dg requires nontrivial
manipulation of series and is more involved than the case of BC 2 fN;Dg. We simply
report them here:
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fN W �.AN/ ! R; fN.�Nk/ D h1jC i �

(
he

p
k=2jC i if k 2 N is even,

hea.k�1/=2jC i if k 2 N is odd.

fD W �.AD/ ! R; fD.�Dk/ D h1jC i �

(
he

p
k=2jC i if k 2 N

� is even,

hea.k�1/=2jC i if k 2 N is odd.

In Aksoylu et al. (2017a), we showed that

fN.AN/u D
�
c � CpPe � CaPo

�
u D MNu

fD.AD/u D
�
c � CaPe � CpPo

�
u D MDu:

The operators MN and MD were used as governing operator in (57) to perform the
numerical experiments in 1D.

Remark 7. Fractional diffusion and fractional PDEs also fall into the class of
nonlocal problems; see some of the recent developments (Andreu-Vaillo et al. 2010;
Caffarelli et al. 2007; Di Nezza et al. 2012; Nochetto et al. 2015). There is a
fundamental difference between these operators and ours: our governing operators
are bounded. Note that the regulating function in (63) is bounded and that is why
the application of the spectral theorem in (64) is valid. Since our ultimate goal is to
capture discontinuities or cracks, we are mainly interested in bounded governing
operators. Fractional operators become unbounded for such discontinuities, and
hence, we exclude them from our discussion.

Conclusion

We presented novel governing operators in arbitrary dimension for nonlocal diffu-
sion. The operators agree with the original PD operator in the bulk of the domain
and simultaneously enforce local BC. We presented methodically how to verify
the BC by using a change in the order of integration. We presented different
types of BC in 2D which include pure and mixed combinations of Neumann
and Dirichlet BC. We presented numerical experiments for the nonlocal wave
equation. We verified that the novel operators enforce local BC for all time. We
also observed that the property we proved for 1D, namely, discontinuities remain
stationary, also holds for 2D.

Our ongoing work aims to extend the novel operators to vector-valued problems
which will allow the extension of PD to applications that require local BC.
Furthermore, we hope that our novel approach potentially will avoid altogether the
surface effects seen in PD.
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