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Abstract

Indentation is widely used to extract material elastoplastic properties from the
measured load-displacement curves. One of the most well-established inden-
tation technique utilizes dual (or plural) sharp indenters (which have different
apex angles) to deduce key parameters such as the elastic modulus, yield
stress, and work-hardening exponent for materials that obey the power-law
constitutive relationship. Here we show the existence of “mystical materials,”
which have distinct elastoplastic properties, yet they yield almost identical
indentation behaviors, even when the indenter angle is varied in a large range.
These mystical materials are, therefore, indistinguishable by many existing
indentation analyses unless extreme (and often impractical) indenter angles are
used. Explicit procedures of deriving these mystical materials are established,
and the general characteristics of the mystical materials are discussed. In many
cases, for a given indenter angle range, a material would have infinite numbers
of mystical siblings, and the existence maps of the mystical materials are also
obtained. Furthermore, we propose two alternative techniques to effectively
distinguish these mystical materials. In addition, a critical strain is identified as
the upper bound of the detectable range of indentation, and moderate tailoring
of the constitutive behavior beyond this range cannot be effectively detected by
the reverse analysis of the load-displacement curve. The topics in this chapter
address the important question of the uniqueness of indentation test, as well as
providing useful guidelines to properly use the indentation technique to measure
material elastoplastic properties.

Keywords
Indentation · Elastoplastic properties · Unique solution · Numerical study ·
Indistinguishable load-displacement curve · Reverse analysis · Detectable
strain range · Critical strain · Loading curvature · Indenter angle

Introduction

Instrumented indentation is widely used to probe the constitutive relationships of
engineering materials. Without losing generality, the uniaxial true stress-strain curve
of a stress-free elastoplastic solid can be expressed in a power-law form, which is a
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good approximation for most metals and alloys (Cheng and Cheng 2004).

� D E" for " �
�y

E
and � D �y

�
E

�y

�n

"n D R"n; (1)

where E is the Young’s modulus, �y is the yield stress, and n is the work-hardening
exponent. For most metals and alloys, n is between 0.0 and 0.5, E is between 10
and 600 GPa, �y is between 10 and 2000 MPa, and E/�y is between 100 and 5000
(Ashby 1999) – this is a technical range of the engineering materials suitable for the
conventional indentation analysis where finite strains are involved.

Four independent parameters (E, �, �y, n) are needed to completely characterize
the elastoplastic properties of a power-law stress-free material. Probing these
material parameters by indentation has become a focal point of interest in the
indentation literature, and various techniques were proposed; see the review by
Cheng and Cheng (2004). However, even for some of the existing techniques
that are considered as “well-established,” the fundamental question of whether the
elastoplastic properties of a specimen can be uniquely determined is still open.

For any indentation technique, the existence of a unique solution requires that
the indentation response must be unique for a given material, i.e., one-to-one
correspondence between the shape factors of the measured indentation load-
displacement curves and material elastoplastic properties. For example, when the
apex angle of a sharp indenter is fixed, several research groups have shown that a set
of special materials with distinct elastoplastic properties may yield almost the same
indentation load-displacement curves (Cheng and Cheng 1999; Capehart and Cheng
2003; Tho et al. 2004; Alkorta et al. 2005). Therefore, the mechanical properties of
these specimens cannot be uniquely determined by using one sharp indenter.

In this chapter based on Chen et al. (2007) and Liu et al. (2009), we carry out
a systematic numerical study to correlate the indentation responses with a wide
range of material properties and a variety of indenter geometries and present an
explicit formulation to determine the special sets of materials with distinct elasto-
plastic properties yet exhibit indistinguishable indentation behaviors even when
different indenters are employed. We call such sets of special materials as mystical
materials – i.e., they are beyond the previous (and conventional) understanding
of this topic. For many power-law materials, they have infinite mystical siblings
that have indistinguishable loading and unloading behaviors during the indentation
test, for a wide range of indenter geometries. Due to the lack of unique solutions,
theoretically, these mystical materials are unable to be distinguished by many
previously established techniques, including the dual (or plural) sharp indentation
method and the conventional spherical indentation analysis with small penetration.
The existence map of and the common characteristics of the mystical materials are
also established. We then illustrate that the properties of these mystical materials
may still be distinguishable by alternative indentation techniques, for example, a
film indentation analysis (Zhao et al. 2006a) and an improved spherical indentation
technique (Zhao et al. 2006a), which are suitable for specimens with finite thickness
and bulk materials, respectively.
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Challenging the Uniqueness of Indentation Load-Displacement
Curve vs. Material Property

Most indentation techniques, the sharp indentation analysis, the spherical indenta-
tion analysis, the film indentation analysis, etc., in essence, require numerical analy-
ses to correlate various shape factors of the P-ı curve with the specimen elastoplastic
properties. In doing so, a critical theoretical question emerges: is there a one-to-one
correspondence between indentation load-displacement curves (for loading and/or
unloading) and material properties (E, �, �y, n)? The uniqueness of the solution of
the reverse analysis is the key verification for all indentation analyses – although
some of those methods are now widely used in practice and cited in literature,
unfortunately, the uniqueness of their solutions has been rarely challenged.

The fundamental question is, does a set of mystical materials which will yield
indistinguishable indentation load-displacement curves for not only one particular
indenter angle, but also another indenter angle exist? If this is true, then the dual
(or plural) indenter method, regardless of the detail of the theory, cannot be used
to distinguish these mystical materials. Such a fundamental question is not only the
basis for the dual (or plural) sharp indenter method but also the foundation of the
spherical indentation and film indentation techniques, as well as most indentation
analyses which rely on the load-displacement curves.

In what follows, we will first present a simple and explicit technique to derive
special sets of materials (with different elastoplastic properties) that lead to the same
loading curves during sharp indentation when different indenter angles are used.
Next, we show another technique to derive special sets of materials that yield almost
same loading and unloading curves for a given indenter angle. We then extend
our analysis to predict the mystical materials that have indistinguishable loading
and unloading curves when different sharp indenters are used. Consequently, many
of the previously established indentation analyses would fail to distinguish these
materials. The existence range, trend, and special features of the mystical materials
are discussed. We also show that these mystical materials may still be distinguished
by using the improved spherical indentation and film indentation techniques.

Computation Method

In this chapter, the relationships between indentation responses, material properties,
and indenter geometries are established from extensive finite element analyses. FEM
calculations are performed using the commercial code. The rigid contact surface
option is used to simulate the rigid indenter, and the option for finite deformation
and strain is employed. A typical mesh for the axisymmetric indentation model
comprises about 10,000 4-node elements with reduced integration. The Coulomb’s
friction law is used between contact surfaces, and the friction coefficient is taken
to be 0.15 (Bowden and Tabor 1950), which is a minor factor for indentation
(Mesarovic and Fleck 1999; Cheng and Cheng 2004) as long as this value is rel-
atively small. The strain gradient effect is ignored by assuming that the indentation



6 Uniqueness of Elastoplastic Properties Measured by Instrumented Indentation 215

Fig. 1 The relationship
between C/�R and E=�R as n
is varied, for ˛ D 70.3. The
numerical results (symbols)
are shown with both elastic
and rigid plastic limits, and
the empirical fitting function
incorporating these limits is
given in Eq. 6 (which can be
extended to other angles)
(Chen et al. 2007)

depth is sufficiently deep so that the continuum mechanics still applies to the bulk
specimen. In addition, the strain rate effect is also ignored. In order to obtain both
complete and robust numerical results, the material parameters are varied over a
large range to cover essentially all engineering materials with E=�R D 3 � 3900

and n D 0–0.5, where E is the plane-strain modulus and �R is the representative
stress, see (Ogasawara et al. 2005, 2007a) for details. And, for the same reason, a
large indenter angle range is also used, from 60ı to 80ı, which covers most of the
angle range used in literature. To be consistent with most literature, Poisson’s ratio
is fixed at 0.3.

Determine Special Materials with Same Loading Curves for Dual
Sharp Indenters

A Simple Relationship Between the Loading Curvature and Material
Properties

When a sharp indenter is penetrating a bulk specimen, the loading P-ı relationship is
always quadratic, i.e., PDCı2. Therefore, two materials must have the same loading
curvature C in order to have the same loading P-ı curve. A simple relationship, not
a high-order fitting polynomial function, between C and E=�R must be established
on a physical basis.

Note that the specimen is essentially elastic when the variable E=�R D> 0,
whereas the material approaches to rigid plastic when E=�R D> 1 – the functional
form

Q�
E=�R

�
should incorporate the limits of both mechanisms, such that it

remains valid for all materials regardless of the range of data used for fitting. In
the representative case of ˛ D 70.3 (Fig. 1), both of the elastic and rigid plastic
limits can be well defined:

(a) When E=�R D> 0(elastic), C =�R D
Q�

E=�R

�
varies linearly with E=�R:

C

�R

D me

E

�R

as E=�R D> 0; (2)
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where me can be derived from the classic solution of indentation on elastic materials
(Sneddon 1965), and it agrees well with FEM calculations (Ogasawara et al. 2006):

me D
2� tan ˛

�
: (3)

(b) When E=�R D> 1(rigid plastic), C/�R approaches a constant:

C

�R

D mp as E=�R D> 1; (4)

where mp is the rigid plastic limit of conical indentation into a material that obeys
the Mises yield criterion.

mp D 13:2tan2˛ C 6:18 tan ˛ � 8:54 (5)

for 50o � ˛ � 80o. mp is equal to 112.1 for the Berkovich indenter. In view of the
importance of these two limits, we have proposed a very simple empirical form ofQ�

E=�R

�
to incorporate both limits (Ogasawara et al. 2006, 2007a):

Y
D

C

�R

D

 
1

me
E
�R

C
1

mp

!�1

; (6)

from which the representative stress can be obtained as �RDmeC E=mp

�
meE�C

�
without iteration. The above equation not only incorporates the elastic and plastic
limits (thus having physical meaning and wider range of application), but it also
involves no fitting parameter if mp could be solved analytically.

Special Materials with Same Loading Curvature for Dual Sharp
Indenters

With the simple Eq. 6 relating C and material properties, it is now possible to
explicitly derive material combinations that have the same loading curvature. First
consider the case with one indenter (#A) whose half-apex angle is fixed: once ˛A

is specified, its related elastic limit mA
e , rigid plastic limit mA

p , and representative
strain "A

R D 0:0319 cot ˛A can be fixed. For two materials, #1 with elastoplastic
property (E1, �y1, n1) and #2 with elastoplastic property (E2, �y2, n2), to have the
same loading P-ı curve they must satisfy

C A
1 D

mA
e mA

pE1

mA
e

E1

�A
R1

C mA
p

D C A
2 D

mA
e mA

pE2

mA
e

E2

�A
R2

C mA
p

; (7)
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where the representative stresses are

�A
R1 D R1

�
2

�A
R1

E1

C 2"A
R

�n1

(8)

and

�A
R2 D R2

�
2

�A
R2

E2

C 2"A
R

�n2

(9)

respectively, and they need to satisfy

1

�A
R2

D
1

�A
R1

C
mA

p

mA
e

�
1

E1

�
1

E2

�
: (10)

Similarly, for another sharp indenter (#B) with a different angle ˛B, its elastic
limit is mB

e , rigid plastic limit is mB
p , and representative strain is "B

R . If the two
materials will again have the same loading curvature, their representative stresses
need to satisfy

1

�B
R2

D
1

�B
R1

C
mB

p

mB
e

�
1

E1

�
1

E2

�
(11)

with

�B
R1 D R1

�
2

�B
R1

E1

C 2"B
R

�n1

(12)

and

�B
R2 D R2

�
2

�B
R2

E2

C 2"B
R

�n2

: (13)

The procedure of deriving two materials with different elastoplastic properties
yet with the same loading curvature (for both indenters #A and #B) can be
concluded as

(a) Choose any E1 and E2 that are different (with fixed �1 D �2 D 0.3).
(b) Choose any value of �y1 and n1, and derive R1 D �y1

�
E1=�y1

�n1 .
(c) Calculate �A

R1 from Eq. 8 and solve for �A
R2 from Eq. 10.

(d) Obtain one flow stress-total strain pair of the uniaxial stress-strain curve for
material #2 as �A

2 D �A
R2 and "A

2 D 2"A
R C 2�A

R2=E2.
(e) Calculate �B

R1 from Eq. 12 and solve for �B
R2 from Eq. 13.

(f) Obtain another flow stress-total strain pair for material #2 as �B
2 D �B

R2 and
"B

2 D 2"B
R C 2�B

R2=E2.
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(g) From both flow stress-total strain pairs, solve n2 D ln
�
�A

2 =�B
2

�
= ln

�
"A

2 ="B
2

�
,

R2 D �A
2 =
�
"A

2

�n2 , and �y2 D
�
.E2/n2=.n2�1/

=.R2/1=.n2�1/
�

. Finally, from the

numerical indentation test, confirm that C A
1 D C A

2 and C B
1 D C B

2 .

Therefore, for any given material #1 with elastoplastic property (E1, �y1, n1),
we can explicitly derive a special material #2 with elastoplastic property (E2, �y2,
n2) such that they not only yield the same loading curvature when indenter #A is
used but also have the same loading curvature when indenter #B is used. There
are infinite numbers of such special siblings. The procedure outlined above can be
readily extended to identify materials with indistinguishable indentation loading P-ı
curves for three different sharp indenters (#A, #B, #C).

An example of the set of special materials is given in Fig. 2: for the five materials
(mat1–mat5) that have distinct elastoplastic properties, their uniaxial stress-strain
relationships are given in the inset of Fig. 2. These materials not only have the same
loading curvature for the Berkovich indenter but are also the same when ˛D63.14ı,
75.79ı, and 80.0ı are used; moreover, for any indenter angle between 63.14ı and
80ı, their loading curvatures are also the same. From Eqs. 10 and 11, if E1 > E2

then �A
R1 < �A

R2 and �B
R1 < �B

R2 – this can be verified from the inset where for the
special sets of materials, the ones with larger moduli have smaller representative
stresses. Moreover, when ˛B > ˛A, we have "B

R < "A
R and mB

p =mB
e < mA

p=mA
e .

Therefore, for a pair of such special materials, if E1 > E2, the difference between
�B

1 and �B
2 is larger than that of �A

1 and �A
2 , and thus n1 > n2 and � y1 < � y2, all can

be verified from Fig. 2. In this case, the uniaxial stress-strain curves of these special
two materials must intersect outside "A

2 :

From Fig. 2, during unloading the contact stiffness (and thus unloading work)
of these special materials are different, which means that if their Young’s moduli
are known (with a fixed �), their plastic properties (� y, n) can still be uniquely
determined from the loading curvature by using the dual (or plural) indenter method,
under the important premise that the two indenter angles are distinct enough such
that the two determined total strains "A

2 and "B
2 are separated sufficiently apart

(to ensure numerical accuracy) (Ogasawara et al. 2006).

Determine Special Materials with Same Loading and Unloading
Curves for one Conical Indenter

Relating the Unloading Work with Material Properties

While the normalized C (or equivalently, loading work Wt) is the only shape
factor during loading, in principle, there are three shape factors for unloading: the
normalized ıf , contact stiffness S, and unloading work We. However, only one of
them is completely independent; this is because the curvature of the unloading
curve of conical indentation (c.f. Fig. 2) is usually very small (except by the end
of the unloading process). Therefore, if either one of the variables (ıf , S, We) is
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Fig. 2 A set of special materials with same loading curvatures when different indenter angles
(63.14ı, 70.3ı, 75.79ı, 80.0ı) are used. The five materials have elastoplastic properties
(E, �y, n) as mat1 (100 GPa, 1022 MPa, 0.05), mat2 (105.0GPa, 911.4 MPa, 0.10), mat3
(120.0 GPa, 678.3 MPa, 0.19), mat4 (200.0 GPa, 299.8 MPa, 0.33), and mat5 (300.0 GPa,
185.0 MPa, 0.37), respectively. The uniaxial stress-strain curves of these special materials are
given in the inset on the top-left corner (Chen et al. 2007)

known, from the unloading triangle (plus the knowledge of C), the other two shape
factors can be approximately derived. In order to make the best overall matching of
the unloading curves, we take the normalized unloading work We as the governing
unloading shape factor.

Since the unloading work depends on both the contact stiffness (which is related
with E) and the maximum load (which is related with C), a new representative stress
for unloading, � r, is sought such that the normalized unloading work is related with
both E and C, but is essentially independent of n. A representative example is given
in Fig. 3 for the Berkovich indenter where the unloading work is fitted by

ı3�r

We

D �1

E

�r

C �0 (14)



220 L. Liu et al.

Fig. 3 The relationship
between ı3� r/We and E=�r

for plastic materials, with
E=�r > 30 or so (Chen
et al. 2007)

for plastic material with E=�r > 30. �1 D 0.0009322 and �0 D 0.1402 for ˛D70.3ı,
and they take different values for other ˛. The representative stress � r is given by

�r D R
�
1:3

�r

E
C 2:6"R

�n

; (15)

which is valid for ˛ between 60ı and 80ı. The simple functional forms derived
in this section permit an explicit derivation of special materials with almost same
unloading work, elaborated below.

Special Materials with Same Loading and Unloading Curves for
a Sharp Indenter

Although Alkorta et al. (2005) have determined special materials with the same
loading and unloading curves for one particular indenter, here we report an improved
procedure to explicitly derive such materials, which also sets a part of the basis
for finding the mystical materials. Based on Eq. 14, for a given indenter #A with
half-apex angle ˛A and two materials with elastoplastic properties (E1, � y1, n1) and
(E2, � y2, n2), if they are to have the same unloading work, they need to satisfy

ı3

W A
e1

D �1

E1�
�A

r1

�2 C �0

1

�A
r1

D
ı3

W A
e2

D �1

E2�
�A

r2

�2 C �0

1

�A
r2

; (16)

where "A
R D 0:0319 cot ˛A, and �A

r1 D R1

�
1:3�r1=E1 C 2:6"A

R

�n1 and �A
r2 D

R2

�
1:3�r2=E2 C 2:6"A

R

�n2 are the unloading representative stresses for materials #1
and #2 of indenter #A, respectively. Thus,
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�A
r2 D

�0 C

s
�2

0 C 4

�
�1

E1

.�A
r1/

2 C �0
1

�A
r1

� �
�1E2

�

2

�
�1

E1

.�A
r1/

2 C �0
1

�A
r1

� : (17)

Therefore, the procedure of deriving two materials with different elastoplastic
properties yet with almost the same loading and unloading curves (for indenter #A)
can be concluded as

(a) Choose any E1 and E2 that are different (with fixed �1 D �2 D 0.3).
(b) Choose any value of �y1 and n1 (as long as material #1 remains sufficiently

plastic), and derive R1 D �y1

�
E1=�y1

�n1 .
(c) Calculate �A

R1 from Eq. 8 and solve for �A
R2 from Eq. 10.

(d) Obtain a flow stress-total strain pair of the uniaxial stress-strain curve for
material #2 as �A

2 D �A
R2 and "A

2 D 2"A
R C 2�A

R2=E2.
(e) Calculate �A

R1from Eq. 15 and solve for �A
R2 from Eq. 17.

(f) Obtain another flow stress-total strain pair for material #2 as �a
2 D �A

r2 and
"a

2 D 2:6"A
R C 1:3�A

r2=E2.
(g) From the stress-strain pairs, solve n2 D ln

�
�A

2 =�a
2

�
= ln

�
"A

2 ="a
2

�
,

R2 D �A
2 =
�
"A

2

�n2 , and �y2 D
�
.E2/n2=.n2�1/

=.R2/1=.n2�1/
�

. Finally, carry

out a numerical test to verify that indeed C A
1 D C A

2 and W A
e1 D W A

e2 .

Therefore, for any material #1 with (E1, � y1, n1), a special material #2 with
(E2, � y2, n2) can be explicitly derived such that they yield indistinguishable loading
and unloading curves for a given conical indenter. There are infinite sets of such
special materials, and identification of these is no longer based on “trial and error.”
An example of such is given in Fig. 4, where the effectiveness of the proposed
approach is validated (with the difference of C and We less than 0.5% – such very
small difference is due to the error of fitting functions and numerical solutions
which is inevitable). This pair of material cannot be distinguished by only using the
Berkovich indenter, yet their P-ı curves may become separable with other distinct
indenter angles.

According to Eq. 16, if E1 > E2 it can be shown that �A
r1 > �A

r2, whereas from
Eq. 10, �A

R1 > �A
R2. For most plastic materials, the representative strain is much

larger than yield strain; thus, the two identified total strains satisfy "a
2 > "A

2 – this
implies that for a pair of special materials, if E1 > E2, then n1 > n2 and � y1 < � y2;
in addition, the stress-strain curves of material #1 and #2 must intersect between
"a

2 and "A
2 . Thus, if two special materials also have the same loading and unloading

curves for indenter #B, their intersection point must also be placed between "b
2 and

"B
2 ; this is only possible when the difference between ˛A and ˛B is not too extreme

(since both "A
R and "B

R vary as indenter angle changes, and such variation is more
prominent for sharper angles). That is, the mystical materials, if they exist, should
be valid within a specified range of indenter angles – more discussions are given in
the next subsection.



222 L. Liu et al.

Fig. 4 A pair of special materials with indistinguishable loading and unloading curves when
˛D70.3. The black solid curve represents the material with (E, � y, n) D (100.0GPa, 500.0 MPa,
0.0), and the red dash curve represents the material with (E, � y, n) D (110.0GPa, 295.0 MPa, 0.2).
The uniaxial stress-strain curves of these special materials are given in the inset on the top-left
corner (Chen et al. 2007)

Determine Mystical Materials with Same Loading and Unloading
Curve for Dual Indenters

Weak-Form Mystical Materials and Their Possible Existence

In most previous dual (or plural) indentation approaches with Poisson’s ratio
fixed, the material elastic modulus is first obtained from the unloading curve
of one particular indenter (e.g., ˛D70.3ı). Next, the representative stress-based
approach is used to determine two (or more) flow stress-total strain points on the
uniaxial stress-strain curve, by utilizing the loading curvatures obtained from dual
(or plural) sharp indenters. Therefore, if we could identify a pair of special materials
with elastoplastic properties (E1, �y1, n1) and (E2, �y2, n2) (their Poisson’s ratio
�1 D �2 D 0.3), such that they yield indistinguishable loading and unloading P-ı
curves for indenter #A (e.g., ˛D70.3ı), and also almost identical loading curvature
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for another indenter #B, then the conventional dual (or plural) indentation analysis
would fail since it cannot promise unique solution. This pair of special materials,
which does not require their unloading works to match for indenter #B, may be
termed as the weak-form mystical materials.

Meanwhile note that in a displacement-controlled experiment where the max-
imum penetration is fixed, if C A

1 D C A
2 and C B

1 D C B
2 , then the maximum

indentation load for these two materials are also the same. Thus, to make their
unloading works to match for indenter #A

�
W A

e1 D W A
e2

�
, their contact stiffness

must be fairly close
�
SA

1 � SA
2

�
, the two materials must have close Young’s moduli�

E1 � E2

�
, and this also implies their unloading works for indenter #B must also

be very close
�
W B

e1 � W B
e2

�
. Thus, the weak-form mystical materials are very close

to the mystical materials we are looking for.
What general properties must the weak-form mystical materials satisfy (assum-

ing they are sufficiently plastic such that Eq. 14 applies)? Since these materials must
be a subset of the special materials derived from the above procedures, therefore,
with (˛B > ˛A), if

�
E1 < E2

�
, the two mystical materials must satisfy n1 < n2 and

� y1 > � y2; moreover, the uniaxial stress-strain curves of these two materials must
intersect outside 2"A

R but inside 2:6"A
R. A schematic showing of the relative status

of the two mystical materials is given in Fig. 5a. Since these two candidates need
to intersect within a relatively small region, this implies that the mystical materials
would only exist for a specified range of indenter angle (with ˛B > ˛A) and material
properties. For the current case, the difference between ˛B and ˛A cannot be too
extreme, and the materials need to be sufficiently plastic (with large E1/� y1 and
E2/� y2) so as to leave enough possible space for materials #1 and #2 to intersect
within the desired region.

Next, we consider the case with ˛B < ˛A, but the difference is not so much such
that 2"A

R < 2"B
R < 2:6"A

R. If E1 < E2, then from the above procedures, �A
R1 D

�A
1 > �A

R2 D �A
2 and �B

R1 D �B
1 > �B

R2 D �B
2 ; since mA

p=mA
e > mB

p =mB
e , so

the difference between �A
1 and �A

2 is larger than that of �B
1 and �B

2 ; moreover, the
unloading representative stresses satisfy �A

r1 D �a
1 > �A

r2 D �a
2 . All these features

lead to n1 < n2 and � y1 > � y2, and a possible solution for the mystical pair #1 and
#2 is sketched in Fig. 5b. In this case, the uniaxial stress-strain curves of these two
materials must intersect between 2"B

R and 2:6"A
R, and such range is even narrower

than that in Fig. 5a. That is, the mystical materials may exist in a small space of
material properties and indenter angles; nevertheless, such solution is possible.

When ˛B is much smaller than ˛A such that 2"B
R > 2:6"B

R , all the relative
magnitudes of the representative stresses discussed in the last paragraph still hold,
except that now those related with 2"B

R are moved to the right side of those related
with 2:6"A

R – according to the new schematic in Fig. 5c, it is impossible to find
a solution for the mystical material. This implies that if the indenter #A is the
Berkovich tip, the indenter #B must be larger than about 64.88ı such that the
mystical materials may exist according to Fig. 5a, b. Similarly, if #B is taken to be
the Berkovich tip (since the weak-form mystical material is very close to the desired
mystical material), then #A must be smaller than 74.50ı. Therefore, rigorously
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Fig. 5 Schematics of
possible solutions of a pair of
weak-form plastic mystical
materials; assuming
E1 < E2, then n1 < n2 and
� y1 > � y2. The indenter angle
A(˛A) is fixed (which equals
to 70.3ı in many existing
dual indenter techniques). (a)
When ˛B > ˛A solution is
possible. (b) When ˛B < ˛A

but 2"B
R < 2:6"A

R, solution is
possible. (c) When ˛B < ˛A

and the difference between
these two angles is large such
that 2"B

R > 2:6"A
R, rigorous

solution is not possible (Chen
et al. 2007)

speaking, under the premise that Poisson’s ratio is always fixed at 0.3, if a Berkovich
tip is used in the dual indenter method, the mystical materials would only be possible
if the other indenter angle is between 64.88ı and 74.50ı. Moreover, such mystical
materials need to be relatively plastic.



6 Uniqueness of Elastoplastic Properties Measured by Instrumented Indentation 225

Fig. 6 The schematic of the
possible existence of the
mystical materials and
relevant indenter angle
ranges – they correspond to
the plateaus on the
multidimensional surface of
the shape factors of the P-ı
curves (Chen et al. 2007)

In a short summary, there is no pair of mystical materials that would be applicable
to arbitrary large range of indenter angles, and only for limited material space-
indenter angle combinations can the mystical siblings be found – this is part of the
reason the mystical materials were not discovered in the past. The current problem
of finding the mystical materials is analogous to a multivariable problem (Fig. 6),
where the indentation shape factors (the general z-axis) are related with the material
elastoplastic properties (the general x-axis) and indenter angle ranges (the general
y-axis) through a multidimensional surface. On such surface, the slope may not
be large and distinct everywhere, and small regions that are relatively flat may
exist, as sketched in Fig. 6. The mystical materials and the relevant indenter angle
ranges would correspond to such plateaus (with zero or almost zero slope) of the
multidimensional surface – although these plateaus are small compared with the
entire parameter space, they may still exist and thus have important theoretical value
for probing the uniqueness of indentation analysis. The search of such plateaus is
elaborated next.

Search for Mystical Materials with Fixed Poisson’s Ratio

In most literature of indentation analysis, Poisson’s ratio was fixed by neglecting its
influence. In order to challenge the basis of the uniqueness solution and be consistent
with the literature, a fixed � D 0.3 is used in most part of this chapter.

For a given pair of indenters #A and #B, and a given material #1 which is
sufficiently plastic, in order to identify the weak-form mystical siblings, Eqs. 10,
11, and 17 need to be satisfied rigorously, from which �A

R2, �B
R2, and �A

r2 can
be derived (with any specified E2), respectively. Unfortunately, the only solution
that rigorously satisfies all these equations is exactly material #1. On the other
hand, note that there are no perfect finite element solution and numerical fitting,
and all numerical results are subject to small error. It is then acceptable if small
errors are added to fitting functions Eqs. 10, 11, and 17, such that the resulting
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loading/unloading P-ı curves of material #2 would be indistinguishable to that
of material #1, with the difference between their shape factors below several
percent – such small perturbation is also inevitable in the data measured from any
real experiment. Another advantage is that, when small perturbation to the shape
function is allowed, the existence range of the mystical material is significantly
enlarged, in terms of both the material property and indenter angle space. In essence,
although it is difficult to search for perfect plateaus (with exactly zero slope) on
the multidimensional surface describing the indentation shape factors, it is possible
to search for plateaus with slopes that are very close to zero through a numerical
algorithm – the results are still the indistinguishable mystical materials given the
inevitable small perturbations in numerical and experimental indentation tests.
The search process is also relatively straightforward since the simple and explicit
formulations of the primary shape factors of loading/unloading P-ı curves are
established earlier. Of course, with Poisson’s ratio fixed at 0.3, such identification
procedure is no longer explicit.

The numerical search process is the following (with fixed�1 D �2 D 0.3):

(a) Choose any E1 and ˛A (e.g., the Berkovich tip).
(b) Choose any initial value of ˛B and then iterate such that its difference with

respect to ˛A is increased.
(c) Choose initial values of n1 and � y1 and then iterate, preferably in the plastic

material range.
(d) Choose an initial value of E2 which is at least 5% different than E1 and then

iterate, such that the difference could become bigger. This ensures that the initial
guesses of material #1 and #2 are sufficiently different.

(e) From Eqs. 10, 11, and 17, solve for �A
R2, �B

R2, and �A
r2.

(f) Give small errors (few percent) to Eqs. 10, 11, and 17. For example, if we wish
to increase �A

R2 by ! times (e.g., !D1.01 for a 1% error), then from Eq. 6 the
new representative stress of material #2 that is related with loading for indenter
#A becomes

�A
R2�error D

 
1

!�A
R2

C
mA

p

mA
e

1

E2

�
1

!
� 1

�!�1

(18)

Similarly, when error is permitted, the two other representative stresses are

�B
R2�error D

 
1

!�B
R2

C
mB

p

mB
e

1

E2

�
1

!
� 1

�!�1

(19)

and
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R2�error D
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respectively. Therefore, by plus or minus several percent of error, the upper and
lower bounds of the error bars of �A

R2, �B
R2, and �A

r2 can be derived – when the three
error bars are combined, an error band can be formed.

(g) For all possible combinations of �A
R2, �B

R2, and �A
r2 within the error band, the

admissible solutions of material #2 are sought; since �A
R2, �B

R2, and �A
r2 and

E2 must satisfy certain compatibility, only a small portion of the combinations
within the error band could become candidate materials. For any admissible
solution, their loading curvatures for indenters #A and #B can be estimated from
Eq. 6, and their unloading work for indenter #A is obtained from Eq. 14; the
results are then compared with that of material #1, and the more promising pairs
with smaller errors are recorded along with the current indenter angle range. A
candidate pair of mystical materials is found if the computed error is smaller
than 2% for all shape factors.

(h) Iterate E2.
(i) Iterate n1 and � y1.
(j) Iterate ˛B.
(k) Lastly, numerical indentation analyses are performed on the most promising

candidate mystical material pairs using finite element simulations, to confirm
that their loading and unloading curves are visually indistinguishable (i.e., the
shape factors of their indentation curves are sufficiently close).

The existence range of the mystical materials is first explored through a series
of maps in terms of materials space (E/� y, n). In Fig. 7a, b, the pairs of identified
mystical materials are shown in line segments – both ends of each segment represent
two mystical materials with different elastoplastic properties, yet they yield almost
indistinguishable loading/unloading P-ı curves. For a given line segment, any sets
of materials along the length of the segment are also mystical materials, and the
most distinct mystical materials can be found at the ends of the longest segment.
The area where the density of the segments is large indicates a possible gold mine
of mystical materials.

For any given indenter angle range, the mystical materials can only exist within
a certain region. As the difference between the dual indenters becomes larger, the
existence range of the mystical material becomes smaller; moreover, the segments
are shorter which also indicates the differences between their elastoplastic properties
are smaller. Therefore, if a pair of extreme indenter angles (very sharp and very
blunt) is used, the mystical materials do not exist (however, in experiments, the
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Fig. 7 The existence maps of
mystical materials for given
indenter angle ranges, (˛A,
˛B) D (a) (70.3ı, 73ı), (b)
(70.3ı, 80ı). Each segment
links a pair of mystical
materials within the material
space (E/�y, n). A gold mine
of mystical materials is
discovered when E/�y is
about 100 and when n is
small (Chen et al. 2007)

use of a pair of extreme sharp indenters is often impractical). In the examples
illustrated in Fig. 7, ˛A D 70.3ı is always used because many previous studies rely
on measuring the elastic modulus from a Berkovich indentation.

When the indenter angle range is relatively small, e.g., (˛A, ˛B) D (70.3ı, 73ı)
(Fig. 7a), the mystical materials can be found in a large range, but notably for
materials with smaller n. Quite a few of the more plastic mystical materials can
exist with large differences of their elastoplastic properties. No mystical materials
are available with both large n and large E/� y.

By contrary, when the indenter angle difference becomes larger, e.g.,
(˛A, ˛B) D (70.3ı, 80ı) (Fig. 7b), then the survival range of mystical materials
are confined to the lower-left corner of the materials space map. Mystical materials
become possible only for materials with n D 0–0.2 and E/� y � 100. Note that
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if a pair of mystical materials is identified for a larger angle range, they are still
mystical siblings for any subrange of indenter angles. Moreover, once a map for
(˛A, ˛B) D (70.3ı, 60ı) is made and combined with Fig. 7b, their common elements
are the extreme mystical materials that are effective when (˛A, ˛B) D (60ı, 80ı).
Therefore, the materials with small n and with E/� y around 100 represent the gold
mine around which many mystical materials can be identified. In fact, there are
quite a few important engineering metals and alloys near this area, for example, Ti
alloys, Ni alloys, Mg alloys, and high strength steel, in addition to a few ceramics
and polymers (Ashby 1999) – extra care is needed for the measurement of their
elastoplastic properties.

For the mystical materials identified in this section, with � D 0.3 but without
knowing other information in advance, within the specified dual indenter angle
range, their elastoplastic properties cannot be uniquely determined from the inden-
tation analysis since their loading and unloading curves are indistinguishable.

Numerical indentation tests are carried out on these materials, and their P-ı
curves are compared, which also reveal the characteristics of the mystical materials.

In Fig. 8a, for the indenter angle range (˛A, ˛B) D (70.3ı, 74ı), a pair of plastic
mystical materials is chosen, with E1 D 100 GPa, �y1 D 50 MPa, n1 D 0.06, and
E2 D 110 GPa, �y2 D 29.336 MPa, and n2 D 0.17277, respectively. Their uniaxial
stress-strain curves are shown in the inset, and their corresponding indentation load-
displacement curves are given. It is apparent that their indentation behaviors are
almost identical (for both loading and unloading curves); specifically, the difference
between C A

1 and C A
2 is about 2%, the difference between C B

1 and C B
2 is about

1%, and the difference between W A
e1 and W A

e2 is about 2%. The difference between
W B

e1 and W B
e2 is about 4%; nevertheless, during the search of weak-form mystical

materials, the matching criterion is not applied to the unloading curves with indenter
#B. Note that when a larger indenter angle range is used, such as 63.14ı and 75.79ı,
their P-ı curves become quite separable, and therefore it is still possible to use the
established dual indenter method to measure the elastoplastic properties of these
two materials with the wider indenter angle ranges.

In fact, a wider indenter angle separation also means that the two identified total
strains are further apart, which also gives better numerical accuracy – a rule of
thumb is that the two identified total strain should be separated by at least 30%,
which is qualified for most plastic materials with indenter angles 63.14ı and 75.79ı

(Ogasawara et al. 2007b), including the example in Fig. 8a. On the other hand,
for the more elastic materials, the separation between the identified total strain
points becomes smaller for a given indenter angle range. To ensure accuracy, a large
indenter angle range �˛ D j˛A � ˛Bj is recommended for more elastic materials
with E/�y < 100 or so.

Figure 8b gives an intriguing example, which corresponds to E1 D 100 GPa,
�y1 D 872.47 MPa, n1 D 0.0, and E2 D 103.75 GPa, �y2 D 715.61 MPa, and
n2 D 0.10663. This pair of extreme mystical material leads to almost the same
indentation loading/unloading behaviors when the indenter angle changes from 60ı

to 80ı, which has reached the limit of the sharp indenter angles used in this study.
Apparently, many existing dual (or plural) indentation methods in the literature
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Fig. 8 (continued)
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would fail to distinguish them, and more extreme indenters are needed. However,
this is often not practical because without advanced knowledge, one could not
predetermine what kind of �˛ needs to be used in an experiment. Moreover, when
extreme indenter angles are used, the measured hardness would differ by orders
of magnitude, and new problems such as those associated with the resolution of the
instrument, size effect, indenter tip alignment, and indentation cracking will emerge.
In the next section, we will introduce how to use alternative methods to distinguish
such extreme mystical pair.

For a pair of mystical materials near or inside the gold mine, their stress-strain
curves tend to intersect around a total strain of 0.05. Moreover, if one material has a
larger plane-strain modulus, then it always has larger work-hardening exponent and
smaller yield stress.

Alternative Methods to Distinguish Mystical Materials

Improved Spherical Indentation

Spherical indenter has the unique advantage that with one penetration, the loading
curvature is reduced as if the indenter angel becomes smaller. Since the mystical
materials may be eventually distinguishable by a large �˛, we only need to
control the ımax during spherical indentation. For that matter, the penetration depth
has to be sufficiently deep and a few previous studies (e.g., Cao and Lu 2004)
where ımax/r D 0.1) do not qualify; indeed, if ımax/r is small (such as 0.1), the
spherical indenter method still cannot distinguish the mystical materials because
the effective �˛ is small. Alternatively, in one of our works (Zhao et al. 2006b),
an improved spherical indentation technique was proposed, which seems promising
since ımax/r D 0.3, which mimics a very sharp indenter angle.

Figure 9a shows the spherical indentation result on the extreme mystical
material pair derived from Fig. 8b. Initially, when the penetration is shallow,
which is analogous to the blunter indenter angles, the two P-ı curves cannot
be separated. However, when ı/r is larger than about 0.15, these two materials
become distinguishable. Finally, at the maximum penetration, there is about 8%
difference between their C. Although these two materials have very close contact
stiffness and also C measured at ı/r D 0.13, the relatively large difference at

J
Fig. 8 Representative case studies of mystical materials: the P- ı curves of mystical materials and
the uniaxial �- " curves of mystical materials are given in inset on the top-left corner. (a) A pair
of plastic mystical materials for (˛A, ˛B) D (70.3ı, 74ı), with E1 D 100 GPa, �y1 D 50 MPa,
n1 D 0.06 (solid curve), and E2 D 110GPa, �y2 D 29.336 MPa, n2 D 0.17277 (dash curve). They
can be distinguished when more different indenter angles are used. (b) A pair of extreme mystical
materials with E1 D 100 GPa, � y1 D 872.47 MPa, n1 D 0.0 (solid curve), and E2 D 103.75 GPa,
�y2 D 715.61 MPa, n2 D 0.10663 (dash curve). They cannot be effectively distinguished by
indenter angles from 60ı and 80ı (Chen et al. 2007)
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ımax/r D 0.3 is sufficient to make the spherical indentation technique work well.
By following the reverse analysis procedure in Zhao et al. (2006b), the determined
values are E1 D 102.5 GPa, �y1 D 828.85 MPa, n1 D 0.024, and E2 D 106.34 GPa,
�y2 D 701.30 MPa, and n2 D 0.108, respectively. All errors (except that for n1

cannot be counted since its true value is 0.0) are smaller than about 2% (except �y1

which is about 5% and still within reasonable range). Finally, the identified uniaxial
stress-strain curve from the reverse analysis of the improved spherical indentation
method (Zhao et al. 2006b) is given in the inset, and its excellent capability of
distinguishing the mystical material is justified. The improved spherical indentation
technique proposed by Zhao et al. (2006b) only requires one simple indentation test,
and thus it is convenient and reliable. This technique is therefore recommended for
materials inside or near the gold mine of mystical materials.

Film Indentation

When an elastoplastic film with finite thickness is bonded to a rigid substrate, the
increased conical penetration dramatically increases the loading curvature as if the
sharp indenter angle is increased. Thus, the substrate effect provides an alternative
way of obtaining extreme indenter angles to distinguish the mystical materials. We
have proposed a theory, where the loading curvatures at the penetration of 1/3 and
2/3 of film thickness (h), along with the unloading work, are used to obtain the
material elastoplastic properties from one fil indentation test (Zhao et al. 2006a).
When this technique is applied to the extreme mystical materials (found in Fig. 8b,
in Fig. 9b), it can be readily seen that their loading curvatures become quite different
at ımax/h D 2/3, which is again sufficient to distinguish the extreme mystical pair
although their loading curvatures at ı/r D 1/3 are close. In addition, their unloading
works are also different.

By following the reverse analysis described in Zhao et al. (2006a), finally the
determined properties of the extreme pair of mystical materials are E1 D 97.5 GPa,
�y1 D 872.47 MPa, n1 D 0.0 and E2 D 103.75 GPa, �y2 D 719.19 MPa, n2 D 0.105,
respectively. All errors (except that for n1 cannot be counted since its true value
is 0.0) are smaller than 1.5% except E1 which is only �2.5%. The identified
uniaxial stress-strain curve from the film indentation technique (Zhao et al. 2006a)
is given in the inset of Fig. 10, and it is demonstrated to be able to distinguish
the mystical materials with high accuracy. Note that the advantage of the film
indentation technique is that it may be applied to specimens with finite thickness;
however, it also requires the testing platform (i.e., the substrate) to be sufficiently
stiff and hard, which may not be practical in some cases (see Zhao et al. (2006a) for
discussions). Nevertheless, it could be used as an alternative method to distinguish
the mystical materials and is proven to work well.

In fact, from the error analysis of both the improved spherical indentation and
film indentation methods (Zhao et al. 2006a, b), both techniques have the best
accuracy for materials inside or near the gold mine of mystical materials, which
make them complementary to the dual (or plural) sharp indentation analysis.
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Fig. 9 The P-ı curves of two alternative indentation on the extreme mystical materials found
in Fig. 8b. (a) Improved spherical indentation method (Zhao et al. 2006b). (b) Film indentation
method (Zhao et al. 2006a). These methods can distinguish the extreme mystical materials – in the
inset on top-left corner, the uniaxial stress-strain curves obtained from reverse analysis (symbols)
are compared with the input (true) data and show excellent agreement (Chen et al. 2007)
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Fig. 10 Materials tailoring of two power-law materials (a) E/�y D 2500 and
n D 0.1 and (b) E/�y D 2500 and n D 0.5. Thick lines are the uniaxial true stress-strain
curves of untailored materials, and each thin line presents a modified material. Every modified
material is defined as initially having the same constitutive curve with the original power-law
material but becomes perfectly plastic beyond a bifurcation strain, "b. In the examples in both (a)
and (b), "b equals 0.05, 0.1, 0.2, and 0.35 for the four tailored materials (Liu et al. 2009)

Detectable Strain Range of Indentation Test

The Critical Strain

When a sharp indenter penetrates a bulk specimen, the loading curvature C is only
a function of the material elastoplastic; theoretically, any variation of the material
constitutive relationship (the stress-strain curve) can, to a certain degree, cause C
to deviate from its original value. However, there exists a critical strain beyond
which tailoring material properties will no longer induce prominent variation to
the indentation response (e.g., less than 1% deviation in the measured C). [The 1%
threshold is set because it is a typical order-of-magnitude intrinsic error associated
with numerical indentation analyses: below this critical level, one can hardly tell
whether the difference is caused by material tailoring or by numerical error. Of
course it could set a different threshold (e.g., 0.5%), but the critical strains derived
from the new threshold are not going to be much different from the ones identified in
this study, and the relevant conclusions still hold.] Therefore, indentation is limited
to probing material elastoplastic properties within a particular strain range below
critical, and the tailoring of the stress-strain curve beyond this range cannot be
detected by indentation reverse analysis, leading to a non-unique solution.

To verify the existence of the critical strain and identify its dependence on
material properties and indenter angles, without losing generality, we consider six
representative power-law materials with E/�y D 2500, 1000, and 100 and n D 0.1
and 0.5. Two example stress-strain curves are given as thick lines in Fig. 10a, b. To
tailor the constitutive relationship, one could choose any bifurcation strain "b > "y
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Fig. 11 (a) Indentation loading curves (with ˛D70.3ı) for a representative power-law material
and four artificial materials tailored at different "b. The error of C is calculated as the difference of
loading curvatures between each tailored materials and the untailored material. (b) The evolution
of the error of C (with ˛D70.3ı) as a function of "b induced by material tailoring. A critical strain
"c can be defined when the error of C falls below 1% (Liu et al. 2009)

and assign perfect plastic behavior after this point (the flat thin line in Fig. 10).
In other words, the tailored stress-strain relationship becomes

� D E"; for " � "y

� D R"n; for "y � " � "b

� D R"n
b D constant; for " � "b:

(21)

Such a tailoring strategy provides a rough upper bound of the moderate mod-
ifications of the hardening function. For the selected cases shown in Fig. 10, "b

equals 0.05, 0.1, 0.2, and 0.35 for the four modified materials. Upon indentation,
the modified material will in principle show a different C from that of the
original (unmodified) material, but S remains essentially unchanged since the elastic
modulus is unaffected; thus, we only focus on the perturbation of C during loading.

Numerical indentation tests are carried out on the original power-law materials as
well as their modified counterparts (with "b varying over a large range and example
load-displacement curves given in Fig. 11a). The indenter angle ˛ is also varied. The
percentage error of C (between the original and modified materials) can be plotted
as a function of "b, given in Fig. 11b for a representative indenter angle ˛ D 70.3ı.
Each line in this Figure represents modifications of one of the six original materials,
and each symbol in that line denotes the percentage error of C for a tailored material
characterized by a particular "b. The error decreases quickly with "b, since a higher
"b means that the constitutive relationship of the modified material is closer to the
original one (Fig. 10). In addition, the error of C is smaller when n is smaller or
when E/�y is smaller (and the effect of n is more prominent), and this is also related
to the fact that the difference between the stress-strain curves of the original and
tailored materials are smaller when n and/or E/�y is smaller (Fig. 10 and Eq. 21).
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Fig. 12 The dependency of
the critical strain"c on the
half-apex angle, ˛, of sharp
indenters. Also shown is the
linear fitting Eq. 22 (Liu et al.
2009)

The most important finding is, regardless of the original material, the percentage
error of C tends to be lower than the 1% threshold when "b exceeds a critical
value, "c. For ˛ D 70.3ı, the critical strain "c is identified as 0.20 – any modification
of the plastic behavior beyond this point cannot be effectively reflected on the
P-ı curve, and the modified material would exhibit an indistinguishable indentation
response with respect to the original material as long as "b > "c; under this
circumstance, both the original and modified materials are possible solutions of
the reverse analysis of the same P-ı curve. Note that the difference between the
constitutive relationships of the original material and modified material can be
substantial especially when n is large and/or when the critical strain is small.

Using the sharp indentation technique, the stress-strain curve may only be probed
when the strain is between 0 and "c (the detectable strain range or sometimes the
detectable range for short). When ˛ is fixed, "c is essentially material-independent,
and this is verified by numerical analyses using a wide range of materials with
diverse elastoplastic properties (as long as "y is not too large, which is satisfied
for most metals and alloys). (Although we derived the critical strain by modifying
the power-law material model in this section, the approach can be extended to other
material models, and we have verified that the value of critical strain is not sensitive
to the material model used.) In Fig. 12, the critical strain "c is presented as a function
of the indenter angle, where the relationship is almost linear and can be fitted as

"c D 1:139 � 0:7615˛ (22)

within the indenter angle range in this chapter (where ˛ is in radians in Eq. 22).
It is interesting that the detectable range of sharp indenters can be small for blunt
indenters, and one of the popular indenters with ˛ D 80ı could only prove strain
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up to about 8% and thus is sensitive to the non-uniqueness issue; the use of sharper
indenters could partially reduce this concern. However, sharp indenters may cause
cracking, and the results may be sensitive to friction in practice. In addition, even
the sharpest indenter used in this study (˛ D 60ı) could only detect up to 35% of
strain, and this performance falls well below common expectations. We therefore
conclude that it is impossible to measure the entire stress-strain curve uniquely via a
sharp indentation test. (Although the plural indenter technique, especially those with
sharper indenters (e.g., using ˛ D 60ı and 70.3ı), could alleviate the non-uniqueness
problem than those with blunter indenters (e.g., using ˛ D 80ı and ˛ D 70.3ı), none
of them would work well outside the critical strain range.)

Besides challenging the uniqueness of indentation test, the discovery of the crit-
ical strain has several other impacts. First, during the verification of an established
indentation method, often the stress-strain curve of a real engineering material
needs to be fitted into power-law form and serve as a benchmark for examination
(Guelorget et al. 2007); however, a different fitting range of the stress-strain curve
would lead to different fitted results of the plastic parameters, and the fitting range
should be consistent with the detectable range of indentation test, otherwise a large
bias would occur (Ogasawara et al. 2008). Second, the critical strain could also
guide numerical indentation analyses. From either the stress-strain curve measured
in a lab experiment or with respect to a specific material model, a data set of the
uniaxial stress and strain is needed as the input for material properties to be used
in an FEM program/simulation. Sometimes there is a concern as to how many data
points are needed and how refined they need to be. Here we show that regardless
of the details, only the input stress-strain data within the detectable strain range is
relevant, and outside this range, the data is essentially unimportant (in terms of the
resulting P-ı curves).

Variation of Critical Strain: A Qualitative Explanation

A qualitative explanation of the critical strain, along with its dependency on the
indenter geometry, lies in the nonuniform plastic deformation below the indenter.
Since the work done by the indenter during the penetration of a sharp indenter
is Wt D Cı3/3, the perturbation of C may be understood from that of Wt, which
equals the total deformation energy. The material deformation energy includes two
parts: the recoverable strain energy and the plastic dissipation; the later part equals
(Wt-We).

The influence of tailoring the material constitutive behavior is nonuniform in
the indented solid. Within the field of equivalent plastic strain ("e) produced by
indentation, only the regions with "e > "b are more sensitive to the modification of
plastic properties beyond "b. Figure 13 shows the contour plots of "e in the deformed
unmodified power-law solid (with E/�y D 2500, and n D 0.5), and the contour
lines of "e D 0.1 and 0.2 are given when ˛ D 70.3ı and 75.79ı, respectively. For
fair comparison, the contours shown in Fig. 13 are taken at the instants when the
indenters have done the same amount of work. The material enclosed roughly by
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Fig. 13 The contour plot of
the equivalent plastic strain,
"e, in a semi-infinite solid
indented by two sharp
indenters. The superimposed
contours are taken from
independent tests at the
instants when the indenters
have done the same amount
of work (Liu et al. 2009)

the solid contour lines (e.g., "e D 0.2) may be perturbed if the stress-strain curve is
modified beyond the corresponding value, for example, "b D 0.2. Within the area
where "e < "b, if the deformation energy is relatively small, material tailoring would
not yield prominent variation of the overall indentation response.

For ˛ D 70.3ı for example, the deformation energy in the region enclosed by
the contour of "e D 0.2 is only about 22% of the energy enclosed by the contour
of "e D 0.1. Therefore, tailoring the material beyond "b D 0.1 will include a larger
variation to the overall P-ı curve than tailoring above "b D 0.2. This is qualitatively
consistent with the descending trend of the error of C due to tailoring Fig. 11b. When
the indenter angle is varied, for ˛ D 75.79ı, the fraction of deformation energy
of the region enclosed by the contour of "e D 0.2 is only 3% of its counterpart
for ˛ D 70.3ı, and the fraction of deformation energy of the region surrounded
by the contour of "e D 0.1 is about half that for ˛ D 70.3ı. This suggests that
material tailoring beyond the same strain ("b D 0.1 or 0.2) could influence C more
significantly for the sharper indenter, and thus qualitatively speaking, "c is larger for
a sharper indenter and smaller for a blunter indenter.

Conclusion

Although indentation tests have been long used to measure the elastoplastic
properties of engineering materials, a systematic study on the uniqueness of
indentation analysis, i.e., on the possible existence of the one-to-one correspondence
between the indentation load-displacement curves, material parameters, and inden-
ter geometries, is still lacking. Among the available indentation techniques, the dual
(or plural) sharp indenter method is often considered as well established, and it is
also the foundation of many other similar indentation analyses and has been widely



6 Uniqueness of Elastoplastic Properties Measured by Instrumented Indentation 239

used in practice. In this chapter, through a comprehensive numerical study, the
primary shape factors of the indentation load-displacement curves are related with
the material properties and indenter angles through simple functional forms. Both
explicit and numerical procedures are established to search for mystical materials
with distinct elastoplastic properties yet yield indistinguishable load-displacement
curves, even when the indenter angles are varied. Consequently, these mystical
materials cannot be distinguished by many of the existing dual (or plural) indenter
methods or spherical indenter methods (if the indentation depth is shallow). The
properties and the existence of such mystical materials are discussed.

In addition, a critical strain is identified as the upper bound of the detectable
range of indentation, and moderate tailoring of the constitutive behavior beyond this
range cannot be effectively detected by the reverse analysis of the load-displacement
curve. That is, for a given indenter geometry, beyond the critical strain, there is no
unique solution of the material plastic behavior from the reverse analysis of the
load-displacement curve. The critical strain is identified as a function of the sharp
indenter angle, through which the analysis of sharp indentation may be qualitatively
correlated to some extent – this link also enriches the indentation theory and
applications.

The topics in this chapter address the important question of the uniqueness
of indentation test, as well as providing useful guidelines to properly use the
indentation technique to measure material elastoplastic properties.
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