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Abstract

In this chapter, two cases of thermodynamic-based higher order gradient plastic-
ity theories are presented and applied to the stretch-surface passivation problem
for investigating the material behavior under the nonproportional loading con-
dition. This chapter incorporates the thermal and mechanical responses of
microsystems. It addresses phenomena such as size and boundary effects and
in particular microscale heat transfer in fast-transient processes. The stored
energy of cold work is considered in the development of the recoverable
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counterpart of the free energy. The main distinction between the two cases is
the presence of the dissipative higher order microstress quantities Sdis

ijk . Fleck

et al. (Soc. A-Math. Phys. 470:2170, 2014, ASME 82:7, 2015) noted that Sdis
ijk

always gives rise to the stress jump phenomenon, which causes a controversial
dispute in the field of strain gradient plasticity theory with respect to whether
it is physically acceptable or not, under the nonproportional loading condition.
The finite element solution for the stretch-surface passivation problem is also
presented by using the commercial finite element package ABAQUS/standard
(User’s Manual (Version 6.12). Dassault Systemes Simulia Corp., Providence,
2012) via the user-subroutine UEL. The model is validated by comparing with
three sets of small-scale experiments. The numerical simulation part, which is
largely composed of four subparts, is followed. In the first part, the occurrence
of the stress jump phenomenon under the stretch-surface passivation condition
is introduced in conjunction with the aforementioned three experiments. The
second part is carried out in order to clearly show the results to be contrary to
each other from the two classes of strain gradient plasticity models. An extensive
parametric study is presented in the third part in terms of the effects of the
various material parameters on the stress-strain response for the two cases of
strain gradient plasticity models, respectively. The evolution of the free energy
and dissipation potentials are also investigated at elevated temperatures. In the
last part, the two-dimensional simulation is given to examine the gradient and
grain boundary effect, the mesh sensitivity of the two-dimensional model, and
the stress jump phenomenon. Finally, some significant conclusions are presented.

Keywords
Higher order gradient plasticity · Energetic · Dissipative · Stress jump ·
Non-proportional loading

Introduction

It is well known that the classical continuum plasticity theory cannot capture the size
effect of the microstructure during the course of plastic deformation. Aifantis (1984)
incorporated a material length scale into the conventional continuum plasticity
model to capture the size effect and proposed a modified flow rule by including
the gradient term ˇr2"p into the conventional flow rule as follows:

�eff D R ."p/ � ˇr2"p (1)

where � eff is the effective stress and is calculated by �eff D
p

3�ij �ij =2 with the
deviatoric stress tensor � ij, R("p) > 0 is the conventional flow resistance, "p is the
accumulated plastic strain, ˇ >0 is a material coefficient, and r2 D Divr is the
Laplacian operator. Hereafter, a number of mechanisms associated with geomet-
rically necessary dislocations (GNDs) have been proposed within the framework
of the strain gradient plasticity (SGP) theory. Generally, there are two different
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kinds of viewpoints in SGP theory in terms of the origin of the strengthening effect.
Firstly, there is a specific argument that the strain gradient strengthening is purely
energetic in the sense that GNDs originate in the blockage by grain boundaries
and the pile-ups of dislocations has a backstress associated with the energetic
strengthening (Fleck and Willis 2015). For example, Kuroda and Tvergaard (2010)
argued that the term � eff C ˇr2"p calculated in Eq. 1 represents a total stress at the
material point that activates the plastic straining, i.e., the generation and movement
of dislocations. They also pointed out that the thermodynamic requirement on
the plastic dissipation D is evaluated by D D

�
�eff C ˇr2"p

�
P"p > 0. This

demonstration shows that the nonlocal term ˇr2"p is naturally interpreted as an
energetic quantity, which is consistent with the interpretation in Gurtin and Anand
(2009) that the nonlocal term in Aifantis’ formulation should be energetic. Secondly,
there is another point of view that GNDs combine with the statistically stored
dislocations (SSDs) to provide the forest hardening, which in turn, lead to the
dissipative strengthening. For example, in Fleck and Hutchinson (2001), gradient
term is implicitly considered as a dissipative quantity that causes the theory to
violate the thermodynamic requirement on plastic dissipation. Fleck and Willis
(2009a) developed a mathematical basis for phenomenological gradient plasticity
theory corresponding to both rate dependent/independent behavior with the scalar
plastic multiplier. The plastic work in Fleck and Willis (2009a) is taken to be
purely dissipative in nature, and the thermodynamic microstresses are assumed to be
dissipative. In their incremental form of plasticity theory, an associated plastic flow
rule is assumed by means of the convex yield function, consequently, the positive
plastic work is ensured. Fleck and Willis (2009b) developed a phenomenological
flow theory version of SGP theory by extending their theory in Fleck and Willis
(2009a) to isotropic and anisotropic solids with tensorial plastic multiplier. Fleck
and Willis (2009b) argued that the microstress quantities should include a dissipative
part; thus, it has been proposed that the term ˇr2"p is additively decomposed into an
energetic (�)en and dissipative (�)dis in order to develop a kinematic hardening theory.
The dissipative stresses satisfy a yield condition with an associated flow plastic rule,
while the free energy provides the standard kinematic hardening.

There has been a debate between Fleck, Willis, and Hutchinson (Fleck et al. 2014,
2015; Hutchinson 2012) and Gudmundson et al. (Gudmundson 2004; Gurtin and
Anand 2009) for the last 15 years or so. Fleck and Hutchinson (2001) developed a
phenomenological SGP theory using higher order tensors with a similar framework
to that proposed by Aifantis (1984) and Muhlhaus and Aifantis (1991). Higher order
stresses and additional boundary conditions have been involved in the theory to
develop a generalization of the classical rate-independent J2 flow theory of gradient
plasticity. However, they do not discuss the compatibility of their theory with
thermodynamic requirements on the plastic dissipation. Gudmundson (2004) and
Gurtin and Anand (2009) pointed out that the formulation of Fleck and Hutchinson
(2001) violates thermodynamic requirements on the plastic dissipation. Gurtin
and Anand (2009) discussed the physical nature of nonlocal terms in the flow
rules developed by Fleck and Hutchinson (2001) under isothermal condition and
concluded that the flow rule of Fleck and Hutchinson (2001) does not always satisfy
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the thermodynamic requirement on plastic dissipation unless the nonlocal term is
dropped. A formulation of Fleck and Hutchinson (2001) has been modified to meet
this thermodynamic requirement by partitioning the higher order microstresses into
energetic and dissipative components (Hutchinson 2012). In addition, Hutchinson
(2012) classified the strain gradient version of J2 flow theories into two classes:
incremental theory developed by Fleck and Hutchinson and nonincremental theory
developed by Gudmundson et al. (c.f. see Fleck et al. (2014, 2015), Gudmundson
(2004), Gurtin and Anand (2005, 2009), and Hutchinson (2012) for details). The
specific phenomenon in the nonincremental theory that exhibits a finite stress jump
due to infinitesimal changes in plastic strain that may occur under the nonpropor-
tional loading is noted and its physical acceptance is also discussed in the work of
Fleck et al. (2014, 2015). Hutchinson (2012) concluded that discontinuous changes
with infinitesimal changes in boundary loads are physically suspect. (Despite the
argument of J.W. Hutchinson, Acta Mech. Sin. 28, 4 (2012), there is another
viewpoint to look at the stress jump phenomenon. The perspective taken in N.A.
Fleck, J.R. Willis, ibid. 31, (2015) is that it is premature at this moment in time to
judge whether a formulation associated with the stress jump is physically acceptable
or not, therefore, an in-depth study of dislocation mechanism and microscale exper-
iments with non-proportional loading history is needed.) Fleck et al. (2014, 2015)
have shown this phenomenon with two plane strain problems, stretch-passivation
problem, and stretch-bending problem, for nonproportional loading condition. In
their work, it is noted that the dissipative higher order microstress quantities Sdis

ijk

always generate the stress jump for nonproportional loading problems.
In this chapter, two different cases of the high order SGP model with and without

the dissipative higher order microstress quantities Sdis
ijk are presented based on the

new forms of the free energy and the dissipation potentials for eliminating an
elastic loading gap. The presented model is applied to the stretch-surface passivation
problem in order to compare the behavior of each case under the nonproportional
loading condition. For this, the finite element solution for the stretch-surface
passivation problem is presented by using the commercial finite element package
ABAQUS/standard (2012) via the user-subroutine UEL and validated by comparing
with three sets of small-scale experiments, which have been conducted by Han et al.
(2008), Haque and Saif (2003), and Xiang and Vlassak (2006). An extensive numer-
ical work is also carried out based on the one-dimensional and two-dimensional
codes in order to compare the results from the two cases of the SGP model and to
analyze the characteristics of the stress jump phenomenon.

Principle of Virtual Power

The principle of virtual power is used to derive the local equation of motion
and the nonlocal microforce balance for volume V as well as the equations for
local traction force and nonlocal microtraction condition for the external surface
S, respectively. In the presence of varying temperature fields at the microstructure
level, the formulation should incorporate the effects of the temperature gradient
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on the thermo-mechanical behavior of the material due to the microheterogeneous
nature of material (Forest and Amestoy 2008). In this sense, it is assumed here
that the plastic strain, plastic strain gradient, temperature, and temperature gradient
contribute to the power per unit volume.

Moreover, as it is mentioned in section “Introduction,” the effect of the interface
plays a crucial role for the plastic behavior of the material at the microscale. An
interface (grain boundary) separating grains G1 and G2 is taken into account here,
and it is assumed that the displacement field is continuous, i.e. uG1

i D uG2

i , across the
grain boundary (Fig. 1). As shown in this figure, a dislocation moving toward the
grain boundary in grain G1 cannot pass through the grain boundary, but it is trapped
and accumulated at the grain boundary due to the misalignment of the grains G1

and G2 that are contiguous to each other. In this sense, the grain boundary acts as
an obstacle to block the dislocation movement; therefore, the yield strength of the
material increases as the number of grain boundaries increases. By assuming that
the interface surface energy depends on the plastic strain rate at the interface of
the plastically deforming phase, the internal part of the principle of virtual power
for the bulk Pint and for the interface P I

int are expressed in terms of the energy
contributions in the arbitrary subregion of the volume V and the arbitrary subsurface
of the interface SI , respectively, as follows:

Pint D

Z

V

�
�ij P"e

ij C Xij P"
p
ij C Sijk P"

p

ij;k C A PT C Bi
PT;i

�
dV (2)

Fig. 1 The schematic illustration of the spatial lattice of two contiguous grains, G1 and G2, along
with a single slip in grain G1 (Reprinted with permission from Voyiadjis et al. 2017)
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P I
int D

Z

SI

�
M

IG1

ij P"
pIG1

ij C M
IG2

ij P"
pIG2

ij

�
dSI (3)

where the superscripts “e,” p,” and “I” are used to express the elastic state, the
plastic state, and the interface, respectively. The internal power for the bulk in the
form of Eq. 2 is defined using the Cauchy stress tensor � ij, the backstress Xij

conjugate to the plastic strain rate P"
p
ij , the higher order microstress Sijk conjugate

to the gradients of the plastic strain rate P"
p

ij;k , and the generalized stresses A and

Bi conjugate to the temperature rate PT and the gradient of the temperature rate PT;i ,
respectively. The internal power for the interface in the form of Eq. 3 is defined using
the interfacial microscopic moment tractions MIG1

ij and M
IG2

ij expending power over

the interfacial plastic strain rates P"
pIG1

ij at SIG1 and P"
pIG2

ij at SIG2 , respectively.
Moreover, since the plastic deformation, which is accommodated by the gener-

ation and motion of the dislocation, is influenced by the interfaces, Eq. 3 results
in higher order boundary conditions generally consistent with the framework of a
gradient type theory. These extra boundary conditions should be imposed at internal
and external boundary surfaces or interfaces between neighboring grains (Aifantis
and Willis 2005; Gurtin 2008). The internal power for the bulk is balanced with the
external power for the bulk expended by the tractions on the external surfaces S and
the body forces acting within the volume V as shown below:

Pext D

Z

V

bi vi dV C

Z

S

�
ti vi C mij P"

p
ij C a PT

�
dS (4)

where ti and bi are traction and the external body force conjugate to the macroscopic
velocity vi, respectively. It is further assumed here that the external power has terms
with the microtraction mij and a, conjugate to the plastic strain rate P"

p
ij and the

temperature rate PT , respectively, since the internal power in Eq. 2 contains the terms
of the gradients of the plastic strain rate P"

p

ij;k and the gradients of the temperature

rate PT;i , respectively.
Making use of the principle of virtual power that the external power is equal to

the internal power (Pint D Pext) along with the integration by parts on some terms
in Eq. 2, and utilizing the divergence theorem, the equations for balance of linear
momentum and nonlocal microforce balance can be represented, respectively, for
volume V, as follows:

�ij;j C bi D 0 (5)

Xij � �ij � Sijk;k D 0 (6)

divBi � A D 0 (7)

where � ij D � ij � �kkıij/3 is the deviatoric part of the Cauchy stress tensor and ıij is
the Kronecker delta.
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On the external surface S, the equations for local surface traction conditions and
nonlocal microtraction conditions can be written, respectively, with the outward unit
normal vector to S, nk, as follows:

tj D �ij ni (8)

mij D Sijknk (9)

a D Bi ni (10)

In addition, the interfacial external power P I
ext, which is balanced with the

interfacial internal power P I
int, is expended by the macrotractions �

G1

ij .�nI
j / and

�
G2

ij .nI
j / conjugate to the macroscopic velocity vi, and the microtractions SIG1

ijk

�
�nI

k

�

and S
IG2

ijk

�
nI

k

�
that are conjugate to P"

pIG1

ij and P"
pIG2

ij , respectively, as follows:

P I
ext D

Z

SI

n�
�
G2

ij nI
j � �

G1

ij nI
j

�
vi C S

IG2

ijk nI
k P"

pIG2

ij � S
IG1

ijk nI
k P"ij pIG1

o
dSI (11)

By equating P I
int D P I

ext with considering the arbitrary variation of the plastic
strain at the interface, the interfacial macro- and microforce balances can be
obtained as follows:

�
�
G1

ij � �
G2

ij

�
nI

j D 0 (12)

M
IG1

ij C S
IG1

ijk nI
k D 0 (13)

M
IG2

ij � S
IG2

ijk nI
k D 0 (14)

The microforce balance conditions in Eqs. 13 and 14 represent the coupling
behavior in the grain interior at the interface to the behavior of the interface, since
the microtractions SIG1

ijk nI
k and S

IG2

ijk nI
k are the special cases of Eq. 8 for the internal

surface of the interface.

Thermodynamic Formulation with Higher Order Plastic Strain
Gradients

The first law of thermodynamics, which encompasses several principles including
the law of conservation of energy, is taken into account in this chapter in order
to develop a thermodynamically consistent formulation accounting for the thermo-
mechanical behavior of small-scale metallic volumes during the fast transient
process. In order to consider micromechanical evolution in the first law of thermody-
namics, the enhanced SGP theory with the plastic strain gradient is employed for the
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mechanical part of the formulation, whereas the micromorphic model is employed
for the thermal counterpart as follows (see the work of Forest and co-workers (Forest
and Amestoy 2008; Forest and Sievert 2003)):

�Pe D �ij P"e
ij C Xij P"

p
ij C Sijk P"

p

ij;k C A PT C Bi
PT;i � divqi (15)

PeI D M
I
ij P"

pI
ij C qI

i nI
i (16)

where � is the mass density, e is the specific internal energy, eI is the internal surface
energy density at the contacting surface, and qi and qI

i are the heat flux vectors of
the bulk and the interface, respectively.

The second law of thermodynamics, or entropy production inequality as it is
often called, yields a physical basis that accounts for the distribution of GNDs within
the body along with the energy carrier scattering and requires that the free energy
increases at a rate not greater than the rate at which work is performed. Based on
this requirement, entropy production inequalities for the bulk and the interface can
be expressed, respectively, as follows:

(17)

(18)

where S is the specific entropy and S
I is the surface density of the entropy of the

interface.

The Energetic and Dissipative Components
of the Thermodynamic Microstresses

Internal energy e, temperature T, and entropy S describing the current state of the
material can be attributed to the Helmholtz free energy � (per unit volume) such as

� PST � �Pe C �ij P"e
ij C Xij P"

p
ij C Sijk P"

p

ij;k � qi

T;i

T
C A PT C Bi

PT;i � 0: (19)

By taking the time derivative of Eq. 19 for the bulk and the interface and
substituting each into Eqs. 17 and 18, respectively, the nonlocal free energy (i.e.,
Clausius-Duhem) inequality for the bulk and the interface can be obtained as
follows:

�ij P"e
ij C Xij P"

p
ij C Sijk P"

p

ij;k C A PT C Bi
PT;i � � P‰ � �S PT � qi

T;i

T
� 0 (20)

M
I
ij P"

pI
ij � P‰I � S

I PT I � 0 (21)
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In order to derive the constitutive equations within a small-scale framework, an
attempt to account for the effect of nonuniform distribution of the microdefection
with temperature on the homogenized response of the material is carried out in this
chapter with the functional forms of the Helmholtz free energy in terms of its state
variables. By assuming the isothermal condition for the interface (i.e., PT I D 0), the
Helmholtz free energy for the bulk and the interface are given, respectively, by

‰ D ‰
�
"e

ij ; "
p
ij ; "

p

ij;k; T; T;i

�
(22)

‰I D ‰I
�
"

pI
ij

�
(23)

where the function ‰ is assumed to be smooth and the function ‰1 is assumed to be
convex with respect to a plastic strain at the interface "

pI
ij .

Taking time derivative of the Helmholtz free energy for the bulk P‰ and the
interface P‰I give the following expressions, respectively

P‰ D
@‰

@"e
ij

P"e
ij C

@‰

@"
p
ij

P"
p
ij C

@‰

@"
p

ij;k

P"
p

ij;k C
@‰

@T
PT C

@‰

@T;i

PT;i (24)

P‰I D
@‰I

@"
pI
ij

P"
pI
ij (25)

By substituting Eq. 24 into Eq. 20 for the bulk and Eq. 25 into Eq. 21 for
the interface, and factoring out the common terms, one obtains the following
inequalities:

�
�ij � � @‰

@"e
ij

�
P"e
ij C

�
Xij � � @‰

@"
p
ij

�
P"
p
ij C

�
Sijk � � @‰

@"
p

ij;k

�
P"
p

ij;k

C
�
A � �S � � @‰

@T

�
PT C

�
Bi � � @‰

@T;i

�
T;i � qi

T
T;i � 0

(26)

M
I
ij P"

pI
ij � �

@‰I

@"
pI
ij

P"
pI
ij � 0 (27)

Guided by Eqs. 26 and 27, it is further assumed that the thermodynamic
microstress quantities Xij , Sijk , A, and M

I
ij are decomposed into the energetic and

the dissipative components such as (Voyiadjis and Deliktas 2009; Voyiadjis and
Faghihi 2012; Voyiadjis et al. 2014):

Xij D X en
ij C X dis

ij (28)

Sijk D Sen
ijk C Sdis

ijk (29)
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A D Aen C Adis (30)

M
I
ij D M

I;en
ij C M

I;dis
ij (31)

The components M
I;en
ij and M

I;dis
ij represent the mechanisms for the pre- and

postslip transfer and thus involve the plastic strain at the interface prior to the slip

transfer "
pI.pre/

ij and the one after the slip transfer "
pI.post/

ij , respectively. The overall
plastic strain at the interface can be obtained by the summation of both plastic strains
such as:

"
p
ij

I
D "

pI.pre/

ij C "
pI.post/

ij (32)

Substituting Eqs. 28, 29, and 30 into Eq. 26 for the bulk and Eq. 31 into Eq.
27 for the interface and rearranging them in accordance with the energetic and the
dissipative parts give the following expressions:

�
�ij � � @‰

@"e
ij

�
P"e
ij C

�
X en

ij � � @‰

@"
p
ij

�
P"
p
ij C

�
Sen

ijk � � @‰

@"
p

ij;k

�
P"
p

ij;k

C
�
Aen � �S � � @‰

@T

�
PT C

�
Bi � � @‰

@T;i

�
PT;i C X dis

ij P"
p
ij

C Sdis
ijk P"

p

ij;k C Adis PT � qi

T
T;i � 0

(33)

 

M
I;en
ij � �

@‰I

@"
pI
ij

!

P"
pI
ij C M

I;dis
ij P"

pI
ij � 0 (34)

From the above equations with the assumption that the fifth term in Eq. 33
is strictly energetic, one can retrieve the definition of the energetic part of the
thermodynamic microstresses as follows:

�ij D � @‰
@"e

ij
IX en

ij D � @‰

@"
p
ij

ISen
ijk D � @‰

@"
p

ij;k

I

Aen D �
�

S C @‰
@T

�
IBi D � @‰

@T;i

(35)

M
I;en
ij D �

@‰I

@"
pI
ij

(36)

Hence, the residual respective dissipation is then obtained as:

D D X dis
ij P"

p
ij C Sdis

ijk P"
p

ij;k C Adis PT �
qi

T
T;i � 0 (37)

DI D M
I;dis
ij P"

pI
ij � 0 (38)

where D and DI are the dissipation densities per unit time for the bulk and
the interface, respectively. The definition of the dissipative thermodynamic
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microstresses can be obtained from the complementary part of the dissipation

potentials D
�

P"
p
ij ; P"

p

ij;k; PT ; T;i

�
and DI

�
P"
pI
ij

�
such as

X dis
ij D

@D
@P"

p
ij

ISdis
ijk D

@D
@P"

p

ij;k

IAdis D
@D
@ PT

I �
qi

T
D

@D
@T;i

(39)

M
I;dis
ij D

@DI

@P"
pI
ij

(40)

One now proceeds to present the constitutive laws for both the energetic and
the dissipative parts which are achieved by employing the free energy and the
dissipation potentials, which relate the stresses to their work-conjugate generalized
stresses. The functional forms of the Helmholtz free energy and dissipation potential
and the corresponding energetic and dissipative thermodynamic microstresses for
the aforementioned two different cases of the model, i.e., the case with the
dissipative higher order microstress quantities Sdis

ijk and the one without Sdis
ijk , are

presented in the following sections.

Helmholtz Free Energy and Energetic Thermodynamic
Microstresses

Defining a specific form of the Helmholtz free energy function � is tremendously
important since it constitutes the bases in deriving the constitutive equations. In
this chapter, the Helmholtz free energy function is put forward with three main
counterparts, i.e., elastic, defect, and thermal energy, as follows (Voyiadjis and Song
2017):

‰ D

�
1

2�
"e

ij Eij kl "
e
kl �

˛t

�
.T � Tr / "e

ij ıij
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(41)

where Eijkl is the elastic modulus tensor, ˛t is the coefficient of linear thermal
expansion, Tr is the reference temperature, h is the hardening material constant
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corresponding to linear kinematic hardening, r (0 < r < 1) is the isotropic hardening

material constant, "p D
q

"
p
ij "

p
ij is the accumulated plastic strain, Ty and n are

the thermal material constants that need to be calibrated by comparing with the
experimental data, `en is the energetic length scale that describes the feature of
the short-range interaction of GNDs, G is the shear modulus for isotropic linear
elasticity, c" is the specific heat capacity at constant stress, and a is a material
constant accounting for the interaction between energy carriers such as phonon-
electron. The term (1 � (T/Ty)n) in Eq. 41 accounts for the thermal activation
mechanism for overcoming the local obstacles to dislocation motion.

The first term of the defect energy ‰d
1 characterizes the interaction between

slip systems, i.e., the forest dislocations leading to isotropic hardening. This term
is further assumed to be decomposed into the recoverable counterpart ‰

d;R
1 and

nonrecoverable counterpart ‰
d;NR
1 . The establishment of the plastic strain gradient

independent stored energy of cold work with no additional material parameters is
achievable with this decomposition.

The recoverable counterpart, ‰
d;R
1 , accounts for the stored energy of cold work.

When the elasto-plastic solid is cold-worked, most of the mechanical energy is
converted into heat, but the remaining contributes to the stored energy of cold work
through the creation and rearrangement of crystal defects such as dislocations, point
defects, line defects, and stacking faults (Rosakis et al. 2000). In this chapter, the
plastic strain-dependent free energy, ‰

d;R
1 , accounting for the stored energy of cold

work is derived by assuming that the stored energy is related to the energy carried by
dislocations. Mollica et al. (2001) investigated the inelastic behavior of the metals
subject to loading reversal by linking the hardening behavior of the material to
thermo-dynamical quantities such as the stored energy due to cold work and the
rate of dissipation. In the work of Mollica et al. (2001), it is assumed that the
stored energy depends on the density of the dislocation network that increases with
monotonic plastic deformation until it is saturated at some point. This points out that
the material stores this energy for a certain range of the accumulated plastic strain,
after which the material will mainly dissipate the external work supply.

For the derivation of the stored energy of cold work, one assumes that the
energetic microstress X en

ij , given later by Eq. 52, can be expressed by separation
of variables as follows:

X en
ij

�
"

p
ij ; T

�
D
X�

"
p
ij

�
T .T / (42)

with
P�

"
p
ij

�
D h"

p
ij "r�1

p and T .T / D
�
1 �

�
T =Ty

�n�
.

On the other hand, instead of using the plastic strain at the macroscale level to
describe the plastic deformation, † can be defined at the microscale level using
the Taylor law, which gives a simple relation between the shear strength and the
dislocation density, as follows:

X
D &Gb

p
�t (43)
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where − is the statistical coefficient accounting for the deviation from regular spatial
arrangements of the dislocation populations, b is the magnitude of the Burgers
vector, and �t is the equivalent total dislocation density and can be obtained by
(†/−Gb)2 from Eq. 43.

Here, it is assumed that the stored energy of cold work, the result of energy
carried by each dislocation, results in an extra latent hardening which is recoverable
and temperature independent. Thus, the recoverable energy of cold work can be put
forward as follows:

‰
d;R
1 D U�t (44)

where U is the elastic deformation energy of a dislocation and can be approximately
given by

U D
Gb2

4�
ln

�
R

R0

�
(45)

where R is the cut-off radius (R � 103b) and R0 is the internal radius (b < R0 < 10b)
(Meyers and Chawla 2009). By substituting �t D (†/−Gb)2 into Eq. 45 along with
Eq. 42, one can obtain the stored energy of cold work as follows:

‰
d;R
1 D #h2"2r

p (46)

where by comparing the aforementioned ranges for R, R0, and − to the shear modulus
G, ª can be expressed by

# D
1

4�&2G
ln

�
R

R0

�
�

1

G
(47)

The nonrecoverable counterpart ‰
d;NR
1 accounting for the energetically based

hardening rule that mimics the dissipative behavior by describing irreversible
loading processes can then be derived as follows (Gurtin and Reddy 2009):

‰
d;NR
1 D

h

r C 1

�
1 �

�
T

Ty

�n�
"rC1

p � #h2"2r
p (48)

where ª is a constant that depends on the material microstructure.
The second term of the defect energy ‰d

2 characterizes the short-range interac-
tions between coupling dislocations moving on close slip planes and leads to the
kinematic hardening. This defect energy ‰d

2 is recoverable in the sense that by
starting at any value of the accumulated plastic strain gradients, ‰d

2 returns to its
original value as the accumulated plastic strain gradients return to their original
value.
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One can now obtain the energetic thermodynamic forces by using the definitions
in Eq. 35 along with the Helmholtz free energy given by Eq. 41 as follows:

�ij D Eij kl"
e
kl � ˛t .T � Tr/ ıij (49)

Aen D �S � ˛t .T � Tr/ "e
ij ıij �

c"

Tr

.T � Tr/ �
h"rC1

p

r C 1

n

Ty

�
T

Ty

�n�1

(50)

Bi D �aT ;i (51)

X en
ij D h"

p
ij

�
1 �

�
T

Ty

�n�
"r�1

p (52)

Sen
ijk D G`2

en"
p

ij;k (53)

Here, according to the aforementioned decomposition of the first term of
the defect energy into the recoverable and nonrecoverable counterparts, X en

ij can

be further decomposed into recoverable
�
X en;R

ij

�
and nonrecoverable

�
X en;NR

ij

�

counterparts as follows:

X en;R
ij D 2r#h2"

p
ij "2r�2

p (54)

X en;NR
ij D h"

p
ij

�
1 �

�
T

Ty

�n�
"r�1

p � 2r#h2"
p
ij "2r�2

p (55)

From the aforementioned physical interpretations of ‰
d;R
1 and ‰

d;NR
1 , as well

as X en;R
ij and X en;NR

ij can be defined as the terms describing the reversible loading
due to the energy carried by dislocations and the energetically based hardening
rule that mimics dissipative behavior by describing irreversible loading processes,
respectively.

Meanwhile, it is well known that the interface plays a role as the barrier to plastic
slip in the early stages of plastically deforming phase, while it acts as a source of the
dislocation nucleation in the later stages. The energetic condition in the area around
the interface is affected by the long-range internal stress fields associated with
constrained plastic flow which leads to the accumulated and pile-up of dislocations
near the interface. Thus, the condition at the interface is determined by a surface
energy that depends on the plastic strain state at the interface (Fredriksson and
Gudmundson 2005).

The interfacial Helmholtz free energy per unit surface area of the interface is put
forward under the guidance of Fredriksson and Gudmundson (2005) work such as
(It should be noted that it is possible to introduce another form of the surface energy
if it is convex in, "

pI
ij .):
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‰I D
1

2
G`I

en"
pI.pre/

ij "
pI.pre/

ij (56)

where `I
en is the interfacial recoverable length scale.

By substituting the interfacial Helmholtz free energy per unit surface given by
Eq. 56 into Eq. 36, the interfacial recoverable microstresses MI;en

ij can be obtained
as follows:

M
I;en
ij D G`I

en"
pI.pre/

ij (57)

As can be seen in Eq. 57, MI;en
ij does not involve the plastic strain rate, which is

related to the dislocation slip, and the temperature since the interfacial recoverable
microstresses are activated by the recoverable stored energy.

Dissipation Potential and Dissipative Thermodynamic
Microstresses

In this section, the dissipation potential functions for the aforementioned two cases
of the SGP model are postulated, respectively. The first case is derived from the
dissipation potential dependent on the plastic strain gradient, which leads to the
nonzero dissipative thermodynamic microstress Sdis

ijk ¤ 0, while the other case
is derived from the dissipation potential that is independent on the plastic strain
gradient, which leads to Sdis

ijk D 0.
Coleman and Gurtin (1967) pointed out that the dissipation potential function is

composed of two parts, the mechanical part which is dependent on the plastic strain
and its gradient and the thermal counterpart which shows the purely thermal effect
such as the heat conduction. In this sense, and in the context of Eq. 37, the functional
form of the dissipation potential, which is dependent on P"

p

ij;k , for the former class
can be put forward as (Voyiadjis and Song 2017):

(58)

where � y is a material constant accounting for the yield strength, m is a nonnegative
material constant for the rate sensitivity parameter, in which the limit m ! 0
corresponds to rate-independent material behavior, 0 is a constant for the reference
flow rate, `dis is the dissipative length scale that corresponds to the dissipative effects
in terms of the gradient of the plastic strain rate, b is the material constant accounting
for the energy exchange between phonon and electron, and k(T) is the thermal
conductivity coefficient. The generalized dissipative effective plastic strain measure

is defined as a function of the plastic strain rate, the gradient of the plastic strain
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rate, and the dissipative length scale as follows:

(59)

By using the dissipation potential given in Eq. 58 along with Eq. 39 and the
assumption k(T)/T D k0 D constant, the dissipative thermodynamic forces for the
former case (Case I) can be obtained as follows:

(60)

(61)

Adis D �b PT (62)

qi D �k0T;i (63)

On the other hand, the functional form of the dissipation potential, which is
independent of P"

p

ij;k , for the latter case (Case II) can be postulated by setting `dis D 0
in Eq. 58 as follows:

(64)

where `disD0 is given by
q

P"
p
ij P"

p
ij by setting `dis D 0 in Eq. 59. By substituting Eq. 64

into Eq. 39, the dissipative thermodynamic forces for the latter case (Case II) can be
obtained as follows:

(65)

Sdis
ijk D 0 (66)

Adis D �b PT (67)

qi D �k0T;i (68)

Meanwhile, Gurtin and Reddy (2009) pointed out that the classical isotropic
hardening rule, which is dissipative in nature, may equally well be characterized
via a defect energy since this energetically based hardening rule mimics the
dissipative behavior by describing loading processes that are irreversible. In this
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sense, as it was mentioned previously in this chapter, the energetic microstress X en
ij

is further decomposed into X en;NR
ij that describes an irreversible loading process

and X en;R
ij that describes a reversible loading process due to the energy carried by

the dislocations. The present framework follows the theorem of Gurtin and Reddy
(2009) in that the theory without a defect energy is equivalent to the theory with a
defect energy by replacing the dissipation D by an effective dissipation Deff, which
is defined as follows:

Deff D
�
X dis

ij C X en;NR
ij

�
P"
p
ij C Sdis

ijk P"
p

ij;k C Adis PT �
qi

T
T;i (69)

where X en;NR
ij may be viewed as the effectively dissipative microforce since it

satisfies an effective dissipation inequality.
There are two main mechanisms affecting the energy dissipation during the

dislocation movement in the grain boundary area. The first mechanism is related
to an energy change in the grain boundary region. The macroscopic accumulated
plastic strain at the grain boundary can be connected to the microscopic deformation
of the grain boundary through the quadratic mean of the deformation gradient. Thus,
the energy change after the onset of slip transmission to the adjacent grain is able to
be approximately determined by a quadratic function of the deformation gradient at
the microscale and hence the interfacial plastic strain at the macroscale. The other
mechanism introduces the energy involved in the deformation of the grain boundary.
This energy is mainly due to the energy dissipation during the dislocation movement
and can be taken as a linear function of the interfacial plastic strain.

The interfacial dissipation potential DI in the current study is postulated by
combing the above-mentioned mechanisms as follows:

(70)

where `I
dis is the interfacial dissipative length scale, mI and I

0 are the viscous
related material parameters, �I

y is a constant accounting for the interfacial yield
stress at which the interface starts to deform plastically, hI is an interfacial hardening
parameter representing the slip transmission through the interface, T I

y is the scale-
independent interfacial thermal parameter at the onset of yield, nI is the interfacial

thermal parameter, and "
I.post/
p D

q
"

pI.post/

ij "
pI.post/

ij and P"
I.post/
p D

q
P©
pI.post/

ij P"
pI.post/

ij

are defined, respectively, with the plastic strain at the interface after the slip transfer

"
pI.post/

ij and its rate P"
pI.post/

ij . The rate-dependency and temperature-dependency of
the interfacial dissipation energy are clearly shown in Eq. 70 through the terms

and
�
1 � T I =T I

y

�nI

, respectively.
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The interfacial dissipative microstresses M
I;dis
ij can be obtained by substituting

Eq. 70 into Eq. 40 as follows:

(71)

By substituting Eqs. 71 and 57 into Eq. 31, one can obtain the interfacial
microtraction M

I
ij as follows:

(72)

As can be seen in Eq. 72, a free surface, i.e., microfree boundary condition, at the
grain boundary can be described by setting `I

en D `I
dis D 0 and it is also possible

to describe a surface passivation, i.e., microclamped boundary condition, by setting
`I

en ! 1 and `I
dis ! 1.

Flow Rule

The flow rule in the present framework is established based on the nonlocal
microforce balance, Eq. 6, augmented by thermodynamically consistent constitutive
relations for both energetic and dissipative microstresses. By substituting Eqs. 51,
53, 60, and 61 into Eq. 6, one can obtain a second-order partial differential form
of the flow rule as follows (The flow rule, Eq. 73, corresponds to the SGP model
(Case I), in which the functional form of the dissipation potential is dependent on

P"
p

ij;k

�
Sdis

ijk ¤ 0
�

. One can easily obtain the flow rule for the other case (Case II) of

the SGP model, i.e. with Sdis
ijk D 0, by setting `dis D 0.) (Voyiadjis and Song 2017):

(73)

where the under-braced term Sen
ijk;k represents a backstress due to the energy stored

in dislocations and results in the Bauschinger effect observed in the experiments
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(Liu et al. 2015; Nicola et al. 2006; Xiang et al. 2005; Xiang and Vlassak 2006) and
discrete dislocation plasticity (Nicola et al. 2006; Shishvan et al. 2010, 2011).

Thermo-mechanical Coupled Heat Equation

The evolution of the temperature field is governed by the law of conservation of
energy (the first law of thermodynamics). The terms addressing heating as a result of
the inelastic dissipation and thermo-mechanical coupling are involved for describing
the evolution of the temperature field. The equation for the conservation of energy
in this chapter is put forward as follows:

�ij P"e
ij C Xij P"

p
ij C Sijk P"

p

ij;k C A PT C Bi
PT;i � div qi C �HEXT � � Pe D 0 (74)

where HEXT is the specific heat from the external source.
By considering the effective dissipation potential given in Eq. 69 along with the

equations for the entropy production (the second law of thermodynamics) previously
described in Eq. 17, the relationship for the evolution of the entropy, which describes
the irreversible process, can be derived as follows:

(75)

By using Eq. 50 for solving the rate of the entropy PS, the evolution of the
temperature field can be obtained as follows:
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(76)

where c0 is the specific heat capacity at constant volume and is given by
c0 D constant Š c"T/Tr. As shown in Eq. 76, the following terms are depicted, ①

irreversible mechanical process, ② generalized heat conduction, ③ thermo-elastic
coupling, ④ thermo-plastic coupling, and ⑤ heat source, which are involved in the
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evolution of the temperature. The third-order mixed derivation term aTrT;ii in part
② introduces the microstructural interaction effect into the classical heat equation,
in addition, the second-order time derivative term bTr

RT gives the thermal wave
behavior effect in heat propagation.

By substituting the constitutive equations of the energetic microstresses given by
Eqs. 49, 50, 51, 52, and 53 and the dissipative microstresses given by Eqs. 60, 61,
62, and 63 into Eq. 76 and defining three additional terms eff D k0=�cv , en D

aTr=k0, and dis D bTr=�cv , the evolution of temperature for the model, in which
the functional form of the dissipation potential dependent on P"

p

ij;k , i.e., Sdis
ijk ¤ 0,

can be obtained as follows (Voyiadjis and Song 2017):

(77)

In the absence of the mechanical terms, Eq. 77 turns to the generalized heat
equation including en and dis. The evolution of temperature for the other case
(Case II) of SGP model, i.e., with Sdis

ijk D 0 can be obtained by setting `dis D 0 in
Eq. 77.

Finite Element Implementation of the Strain Gradient Plasticity
Model

In this section, first a one-dimensional finite element model for the SGP model
by Voyiadjis and Song (2017) is presented to investigate the size dependent
behavior in the microscopic structures under macroscopically uniform uniaxial
tensile stress. In a one-dimensional finite element implementation, the macroscopic
partial differential equations for balance of linear momentum Eq. 5 with the
macroscopic boundary conditions, ux D 0 D 0 and ux D L D u� (prescribed), and the
microscopic partial differential equations for nonlocal force balance Eq. 6 with the
microscopic boundary conditions,

�
M

I � S
�

xD0
D 0 and

�
M

I � S
�

xDL
D 0, yield

the following expressions in a global weak form, respectively (The finite element
solutions, in this section, depend on the x-direction. A single crystal with the size
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of L bounded by two grain boundaries is analyzed (see Fig. 7 for details). Also a
two dimensional case is presented for solving the problem of the square plate in the
latter part of this chapter:

LR

0
.� Qu;x/ dx D 0 (78)

Z L

0



.X � �/ Q"p C S Q"p

;x

�
dx C M

I Q"
p
xDL � M

I Q"
p
xD0 D 0 (79)

where the arbitrary virtual fields Qu and Q"p are assumed to be kinematically
admissible weighting functions in the sense that QuxD0 D QuxDL D 0. (In the case
of micro-clamped boundary condition, Q"

p
xD0 D Q"

p
xDL D 0 is imposed at the grain

boundaries to enforce the complete blockage of dislocations at the interface. In the
case of micro-free boundary condition, on the other hand, the dislocations are free
to move across the interface, which in turn, the present grain boundary flow rule is
imposed.)

The user-element subroutine UEL in the commercial finite element package
ABAQUS/standard (2012) is presented in this chapter in order to numerically solve
the weak forms of the macroscopic and microscopic force balances, Eqs. 78 and
79, respectively. In this finite element solution, the displacement field u and the
plastic strain field "p are discretized independently and both of the fields are taken
as fundamental unknown nodal degrees of freedom. In this regard, the displacement
field and corresponding strain field ", and the plastic strain field and corresponding
plastic strain gradient field "

p
;x can be obtained by using the interpolation as follows:

u.x/ D

nuX

�D1

N
�
uU �

u ".x/ D
@u.x/

@x
D

nuX

�D1

N
�
u;xU �

u (80)

"p.x/ D
n"pP

�D1

N
�
"pE �

"p "
p
;x.x/ D @"p.x/

@x
D

n"pP

�D1

N
�
"p;xE �

"p (81)

where N
�
u and N

�
"p are the shape functions, and U �

u and E �
"p are the nodal values of

the displacements and the plastic strains at node � , respectively. The terms nu and
n"p represent the number of nodes per a single element for the displacement and the
plastic strain, respectively. (If a one-dimensional three-noded quadratic element is
employed, nu and n"p are set up as three. On the other hand, these parameters are
set up as two in the case that a one-dimensional two-noded linear element is used. It
should be noted that nu and n"p do not necessarily have to be same as each other in
the present finite element implementation, even though both the displacement field
and the plastic strain fields are calculated by using the standard isoparametric shape
functions.)

Substituting Eqs. 80 and 81 into Eqs. 78 and 79 give the nodal residuals for the
displacement ru and the plastic strain r"p for each finite element el as follows:
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.ru/� D

Z

el

�
�N�

u;x

�
dx (82)

.r"p /� D

Z

el

h
.X � �/N

�
"p C SN�

"p ;x

i
dx C M

I
N

�
"p (83)

where the term M
I
N

�
"p is applied only for the nodes on the interface which is at

x D 0 and x D L.
The global coupled system of equations, (ru)� D 0 and .r"p /� D 0, are solved

using ABAQUS/standard (2012) based on the Newton-Raphson iterative scheme.
Occasionally, the modified Newton-Raphson method, referred to as quasi Newton-
Raphson method, is employed in the case that the numerical solution suffers a
divergence during the initial increment immediately after an abrupt change in
loading. The Taylor expansion of the residuals with regard to the current nodal
values can be expressed by assuming the nodal displacement and the plastic strain
in iteration — as U —

u and E —
"p , respectively, as follows:
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where 	U �
u D

�
U —C1

u
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�
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�

are the big O notation to represent the terms of higher

order than the second degree. The residual is ordinarily calculated at the end of
each time step, and the values of the nodal displacements and the plastic strains are
updated during the iterations. The increments in nodal displacements and the plastic
strains can be computed by solving the system of linear equations shown in Eq. 86
with the Newton-Raphson iterative method:
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where Kel is the Jacobian (stiffness) matrix that needs to be defined in the user-
subroutine for each element.

From Eqs. 84 and 85 along with the discretization for the displacements given
by Eq. 80 and the plastic strains given by Eq. 81 at the end of a time step, and the
functional forms of the energetic and dissipative higher order stresses defined in the
previous sections, the Jacobian matrix for the case of the SGP model with Sdis

ijk ¤ 0

can be obtained as follows:
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(90)

where 	t is a time step. The Jacobian matrix for the other case, i.e.
�
Kel

"p"p

�
Sdis

ijkD0
,

can be obtained by setting `dis D 0 in Eq. 90. The interfacial terms in
�
Kel

"p"p

�
Sdis

ijk¤0

and
�
Kel

"p"p

�
Sdis

ijkD0
are applied only for the nodes on the interface which is at x D 0

and x D L in this chapter.

Experimental Validation of the Strain Gradient Plasticity Model

In this section, the present SGP model and corresponding finite element code by
Voyiadjis and Song (2017) are validated by comparing with the experimental results
from three sets of size effect experiments. In addition, the comparison between the
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SGP model by Voyiadjis and Song (2017) and Voyiadjis and Faghihi (2014) is car-
ried out to show the increase in accuracy of the model by Voyiadjis and Song (2017).
To examine the applicability of the present finite element implementation to the var-
ious kinds of materials, it is considered that each set of three experiments involves
the three different materials, viz. aluminum (Al), copper (Cu), and nickel (Ni).

Haque and Saif (2003) developed Micro-Electro Mechanical Systems (MEMS)-
based testing techniques for uniaxial tensile testing of nanoscale freestanding Al
thin films to explore the effect of strain gradient in 100 nm, 150 nm, and 485 nm
thick specimens with average grain size of 50 nm, 65 nm, and 212 nm, respectively.
The specimens with 99.99% pure sputter-deposited freestanding Al thin films are
10 
m wide and 275 
m long. All experiments are carried out in situ in SEM and
the stress and strain resolutions for the tests are set 5 Mpa and 0.03%, respectively.
In particular, the comparison between the present SGP model by Voyiadjis and Song
(2017) and Voyiadjis and Faghihi (2014) is carried out to show the increase in
accuracy of the present model. The calibrated material parameters as well as the
general material parameters for the Al are presented in Table 1, and the numerical
results from both the present model by Voyiadjis and Song (2017) and Voyiadjis
and Faghihi (2014) are shown in Fig. 2 in conjunction with the experimental data of
Haque and Saif (2003). As it is clearly shown in this figure, the size effect: Smaller is
Stronger is observed on the stress-strain curves of the Al thin films. Furthermore, the
calculated results of the present SGP model by Voyiadjis and Song (2017) display a

Table 1 The general and calibrated material parameters used for the validation of the proposed
strain gradient plasticity model (Reprinted with permission from Voyiadjis and Song 2017)

General Aluminum Copper Nickel
E (GPa) Elastic modulus for isotropic

linear elasticity
110 70 115

G (GPa) Shear modulus for isotropic linear
elasticity

48 27 44

� (g cm�3) Density 8.960 2.702 8.902
c3(J/g K) Specific heat capacity at constant

stress
0.385 0.910 0.540

Calibrated Aluminum Copper Nickel
� y (MPa) Yield stress 195 700 950
h (MPa) Hardening material parameter 600 1,700 3,500

0

�
s�1

�
Reference effective plastic strain
rate

0.04 0.04 0.04

r Nonlinear hardening material
parameter

0.6 0.2 0.2

m Non-negative rate sensitivity
parameter

0.05 0.05 0.05

Ty (
ı

K) Thermal material parameter 1,358 933 890
n Temperature sensitivity parameter 0.3 0.3 0.3
`en (
m) Energetic length scale 1.5 (1.0 
m) 0.9 (100 nm) 1.0
`dis (
m) Dissipative length scale 2.5(1.0 
m) 8.0 (100 nm) 0.1
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Fig. 2 The validation of the present strain gradient plasticity model by comparing the numerical
results from the present model by Voyiadjis and Song (2017) with those from Voyiadjis and
Faghihi (2014) and the experimental measurements from Haque and Saif (2003) on the stress-
strain response of the sputter-deposited Al thin films (Reprinted with permission from Voyiadjis
and Song 2017)

Fig. 3 Schematic representation of the plane strain bulge test technique presented by Xiang and
Vlassak (2006). The stress-strain response of either a single material membrane or a stack of mul-
tiple material membranes adhered on a rigid Si frame is able to be obtained by using the following
equations: � D P(d2 C 	2)/2t	 and" D "r C f(d2 C 	2)/2d	g arcsin(2d	/d2 C 	2) � 1 where "r

is a residual strain in the membrane (Reprinted with permission from Voyiadjis and Song 2017)

tendency to be more coincident to the experimental data than those of Voyiadjis and
Faghihi (2014).

Xiang and Vlassak (2006) investigated the size effects with a variety of film
thicknesses on the plastic behavior of the freestanding electroplated Cu thin films by
performing the plane strain bulge test. In this plane strain bulge test, the rectangular
freestanding membranes surrounded by a rigid silicon (Si) frame are deformed in
plane strain by applying a uniform pressure to one side of the membrane as shown
in Fig. 3. The displacement and pressure resolutions for this bulge tests system are
0.3 
m and 0.1 kpa, respectively.



572 G. Z. Voyiadjis and Y. Song

As can be seen in the work of Xiang and Vlassak (2006), the stress-strain curves
of the Cu thin films with a passivation layer on both surfaces clearly show the size
effects due to the presence of a boundary layer with high dislocation density near
the film-passivation layer interfaces. In this sense, the bulge test of electroplated Cu
thin films with both surfaces passivated by 20 nm of titanium (Ti) is considered here
for the experimental validation of the present SGP model. In order to describe the
passivation effect, the microclamped condition, which causes the dislocations to be
completely blocked at the grain boundary, is imposed at both surfaces of the Cu thin
films. Meanwhile, the experiments are performed with the various thicknesses of the
Cu thin films of 1.0 
m, 1.9 
m, and 4.2 
m. The average grain sizes in all cases
are given by 1.5 ˙ 0.05 
m, 1.51 ˙ 0.04 
m, and 1.5 ˙ 0.05 
m, respectively,
which mean almost equal to each other.

The calibrated and general material parameters for the copper are presented in
Table 1, and the comparison between the experimental measurements from the bulge
tests and the calculated results from the present SGP model by Voyiadjis and Song
(2017) is shown in Fig. 4. As it is clearly shown in this figure, the size effects
according to the variation of the Cu thin film thicknesses is well observed in both
the present SGP model and the experimental work of Xiang and Vlassak (2006).
Moreover, the numerical results of the present model by Voyiadjis and Song (2017)
are in good agreement with the experimental measurements.

Han et al. (2008) developed the microscale tensile testing system, which is
composed of a high temperature furnace, a micro motor actuator and the Digital

Fig. 4 The validation of the present strain gradient plasticity model by comparing to the
experimental measurements from Xiang and Vlassak (2006) on the stress-strain response of the
electroplated Cu thin films with the passivated layers on both sides (Reprinted with permission
from Voyiadjis and Song 2017)
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Image Correlation (DIC) system, for evaluating the mechanical properties of the
Ni thin films at high temperatures. Dogbone-shaped specimens used in their
experiments were made by Micro-electro mechanical system (MEMS) processes
and the primary dimensions of the specimen are shown in Fig. 5.

The calibrated material parameters as well as the general parameters for Ni are
presented in Table 1. The results of the microscale tensile tests at four different
temperatures, i.e., 25 ıC, 75 ıC, 145 ıC, and 218 ıC, and corresponding numerical
results from the present model (Voyiadjis and Song 2017) are shown in Fig. 6. As
shown in this figure, it is clear from both the experimental and numerical results that

Fig. 5 The specimen dimensions for the experimental validation (Reprinted with permission from
Voyiadjis and Song 2017)

Fig. 6 The validation of the present strain gradient plasticity model (Voyiadjis and Song 2017)
by comparing the numerical results with the model by Voyiadjis and Faghihi (2014) and the
experimental measurements from Han et al. (2008) on the stress-strain response of Ni thin films
(Reprinted with permission from Voyiadjis and Song 2017)



574 G. Z. Voyiadjis and Y. Song

the Young’s modulus is not affected by variations in temperature, while the yield and
tensile strength decrease as the specimen temperature increases. In addition, Fig. 6
clearly shows that the Bauschinger effect is not affected very much by variations in
the specimen temperature. Meanwhile, the calculated results of the present model
(Voyiadjis and Song 2017) compare better to the experimental data than those of
Voyiadjis and Faghihi (2014) (Fig. 6).

Stretch-Passivation Problem

The numerical solutions for the stretch-passivation problem with the two cases of
the SGP model are presented in this section. The frameworks presented in this
chapter represent the nonlocal flow rules in the form of partial differential equations
when the microscopic force balances are integrated with the thermodynamically
consistent constitutive equations. To interpret and analyze the physical phenomena
characterized by the current frameworks is very complicated; in this sense, a
one-dimensional numerical solution is presented first and extended to the two-
dimensional one later in this chapter.

An initially uniform single grain with the size of L is used with two grain
boundaries as shown in Fig. 7. The grain is assumed to be infinitely long along
the x-direction and initially homogeneous; therefore, the solution depends only
on the x-direction. In the one-dimensional stretch-passivation problem, the grain
is deformed into the plastic regime by uniaxial tensile stretch with no constraint
on plastic flow at the grain boundaries. At a certain point, the plastic flow
is then constrained by blocking off the dislocations from passing out of the
grain boundary, which leads the further plastic strain not to occur at the grain
boundary.

Fig. 7 One-dimensional model for a single grain with two grain boundaries (Reprinted with
permission from Voyiadjis et al. 2017)
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Numerical Results

In this section, an extensive numerical work is carried out based on the validated
code in order to compare the results from the aforementioned two cases of the
SGP model and to analyze the characteristics of the stress jump phenomenon.
This section is largely composed of four subparts. In the first part, the occurrence
of the stress jump phenomenon under the stretch-surface passivation condition is
introduced in conjunction with three experiments used in section “Experimental
Validation of the Strain Gradient Plasticity Model.” The second part is focused on
indicating that the results are contrary to each other for the two cases of the SGP
model. An extensive parametric study is also conducted in terms of the various
material parameters, and the evolution of the free energy involving the stored
energy of cold work and the dissipation potentials during the plastic deformation
are discussed in the third part. In the last part, the two-dimensional simulation is
also given to examine the gradient and grain boundary effect, the mesh sensitivity
of the two-dimensional model, and the stress jump phenomenon.

The numerical results on the stress-strain behaviors of Al and Cu thin films
for the SGP model with the corresponding dissipative microstress quantities are
presented in Figs. 8 and 9, respectively. In both simulations, a significant stress jump

Fig. 8 A finite stress jump due to infinitesimal changes in the plastic strain. The numerical
implementation of the SGP model with the dissipative potential dependent on P"

p

ij;k , i.e., Sdis
ijk ¤ 0,

is carried out based on the experiments of Haque and Saif (2003) with the various thicknesses of
the Al thin films of 100 nm, 150 nm, and 485 nm (Reprinted with permission from Voyiadjis and
Song 2017)
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Fig. 9 A finite stress jump due to infinitesimal changes in the plastic strain. The numerical
implementation of the SGP model with the dissipative potential dependent on P"

p

ij;k , i.e., Sdis
ijk ¤ 0,

is carried out based on the experiments of Xiang and Vlassak (2006) with the various thicknesses
of the Cu thin films of 1.0 
m, 1.9 
m, and 4.2 
m (Reprinted with permission from Voyiadjis
and Song 2017)

is observed at the onset of passivation. In particular, it is shown that the very first
slopes immediately after the passivation increase as the film thicknesses decrease,
viz. the dissipative length scales increase, in both simulations. Thus, the stress jump
phenomenon is revealed to be highly correlated with the dissipative higher order
microstress quantities Sdis

ijk .
Figure 10 shows the numerical results on the stress-strain behavior of Ni thin

films for the SGP model with the dissipative microstress quantities. As shown in
this figure, the magnitudes of the stress jump are less than expected in all cases since
the dissipative length scale `dis is set 0.1 which is much smaller than the energetic
length scale `en D 1.0. Nevertheless, the very first slopes immediately after the pas-
sivation are calculated as E25°C D 58.0 GPa, E75°C D 59.2 GPa, E145°C D 72.6 GPa,
and E218°C D 105.0 GPa, respectively, and this shows the responses immediately
after the passivation gets gradually closer to the elastic response E D 115 GPa as
the temperature increases.

The numerical implementations to specify whether or not the stress jump phe-
nomenon occurs under the stretch-surface passivation have been hitherto conducted
within the framework of the SGP model with Sdis

ijk ¤ 0. Hereafter, the numerical
simulations are given more focus on the direct comparison of the material response
on the stress-strain curves between the two cases of the SGP models. The material
parameters used for these implementations are presented in Table 2.
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Fig. 10 A finite stress jump due to infinitesimal changes in the plastic strain. The numerical
implementation of the SGP model with the dissipative potential dependent on P"

p

ij;k , i.e., Sdis
ijk ¤ 0,

is carried out based on the experiments of Han et al. (2008) at the various temperatures of the Ni
thin films of 25 ıC, 75 ıC, 145 ıC, and 218 ıC. The circles on the curve indicate the passivation
point (Reprinted with permission from Voyiadjis and Song 2017)

Table 2 Material parameters for the numerical simulation (Reprinted with permission from
Voyiadjis and Song (2017))

For grain (bulk)
E Elastic modulus for isotropic linear elasticity 100 (GPa)
� y Yield stress 100 (MPa)
h Hardening material parameter 200 (MPa)

0 Reference effective plastic strain rate 0.04
r Nonlinear hardening material parameter 0.1
m Non-negative rate sensitivity parameter 0.3
T0 Initial temperature 77 (K)
Ty Thermal material parameter 1,000 (K)
n Temperature sensitivity parameter 0.6
� Density 0.8570 g • cm�3

c" Specific heat capacity at constant stress 0.265 (J/g K)
For grain boundary (interface)
� I

y Interfacial Yield stress 150 (MPa)
hI Interfacial hardening material parameter 300 (MPa)

I
0 Interfacial reference effective plastic strain rate 0.04

nI Interfacial temperature sensitivity parameter 0.1
mI Interfacial rate sensitivity parameter 1.0
TI

y Interfacial thermal material parameter 700 (K)
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Fig. 11 Comparison of the results from two different cases of the present SGP model with
the dissipation potential dependent on P"

p

ij;k , i.e., Sdis
ijk ¤ 0; and with the dissipative potential

independent on P"
p

ij;k , i.e., Sdis
ijk D 0. The results for the latter case are computed with three different

values of energetic length scales `en D 0.1 , 0.2 and 0.3 (Reprinted with permission from Voyiadjis
and Song 2017)

Figure 11 clearly shows this point by comparing the results from the two cases.
The behavior of the SGP model with Sdis

ijk ¤ 0 is in stark contrast with that of the

SGP case with Sdis
ijk D 0 after the passivation point. A significant stress jump with

the slope Epassivation similar to the modulus of elasticity E is shown in the SGP case
with Sdis

ijk ¤ 0. On the other hand, no elastic stress jump is observed in the SGP

case with Sdis
ijk D 0. This result is exactly in agreement with the prediction in Fleck

et al. (2014, 2015). In the case that the dissipative potential is independent of P"
p

ij;k ,
the contribution from the plastic strain gradients is entirely energetic as can be seen
in section “Dissipation Potential and Dissipative Thermodynamic Microstresses.”
Both the increase in the yield strength in the early stages of passivation and
subsequent hardening due to the effects of the plastic strain gradient are observed
along with the increase of the energetic length scale as shown in Fig. 11.

The comparison of the results from the case of the present SGP model by
Voyiadjis and Song (2017) with the dissipative potential dependent on P"

p

ij;k is shown
in Fig. 12a with various dissipative length scales, i.e., `dis D 0.1 , 0.3 , 0.5 , 1.0 ,
1.5 , and 2.0. As can be seen in this figure, the magnitude of the stress jump
significantly increases as the dissipative length scale increases, on the other hand,
the stress jump phenomenon disappears as the dissipative length scale tends to zero.
This is because the dissipative higher order microstress quantities Sdis

ijk , which is
the main cause of the stress jump, vanishes when the dissipative length scale `dis is
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Fig. 12 Comparison of the results from the case of the present SGP model with the dissipative
potential dependent on P"

p

ij;k , i.e., Sdis
ijk ¤ 0: (a) with various dissipative length scales (`dis D 0.1 ,

0.3 , 0.5 , 1.0 , 1.5 , and 2.0) and (b) for various passivation points (" D 20.2%, 0.3%, 0.4%,
0.5%, and 0.6% with identical energetic and dissipative length scales) (Reprinted with permission
from Voyiadjis and Song 2017)
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equal to zero. It is worth noticing that the very first behavior immediately after the
passivation indicates a substantial difference with varying dissipative length scales.
As the dissipative length scales increase from 0.1 to 2.0, the corresponding slopes
of the very first response E also increase from 13.3 to 198.4 GPa. The main reason
of this phenomenon in terms of the dissipative length scale is also because the
dissipative higher order microstress quantities Sdis

ijk sharply increases with increasing
`dis.

The comparison of the results from the case of the SGP model with the dissipative
potential dependent on P"

p

ij;k is shown in Fig. 12b for various passivation points. The
energetic and dissipative length scales are set identical in all cases. The magnitudes
of the stress jump with the magnitudes of " D 20.2%, 0.3%, 0.4%, 0.5%, and
0.6% are obtained as 13.8 MPa, 16.2 MPa, 18.6 MPa, 21.1 MPa, and 23.5 MPa,
respectively, and the values normalized by the value of the magnitude " D 20.2% are
calculated as 1.00, 1.17, 1.35, 1.52, and 1.70, respectively. The normalized higher
order microstress quantities Sdis

ijk with the magnitudes of " D 20.2%, 0.3%, 0.4%,
0.5%, and 0.6% are obtained as 1.00, 1.17, 1.30, 1.40, and 1.48, respectively, as
shown in Fig. 12b. Thus, it is worth noticing that the stress jump phenomenon
is highly correlated with the dissipative higher order microstress quantities Sdis

ijk .
In addition, the very first responses immediately after the passivation also make
a substantial difference with varying passivation points. The slopes of the very
first responses for the magnitudes of " D 0.2%, 0.3%, 0.4%, 0.5%, and 0.6%
are calculated as 64.8 GPa, 87.1 GPa, 109.7 GPa, 132.5 GPa, and 155.5 GPa,
respectively.

The effects of various parameters on the mechanical behavior of the stretch-
surface passivation problem are investigated by using a one-dimensional finite
element. The numerical results reported in this parametric study are obtained by
using the values of the material parameters in Table 2 unless it is differently
mentioned.

The stress-strain graphs for various values of the hardening material parameter
h are shown in Fig. 13a with two different cases of the SGP model. For the
case with Sdis

ijk ¤ 0, the slopes of the very first response immediately after the
passivation are obtained as Eh D 109.7 GPa in all simulations, and the corresponding
magnitudes of the stress jump for each simulation are, respectively, obtained as
� 0

hD100MPa D 18:6 MPa, � 0
hD200MPa D 18:6 MPa, � 0

hD300MPa D 18:7 MPa,
� 0

hD400MPa D 18:7 MPa, and � 0
hD500MPa D 18:7 MPa. There is little difference

between all the simulations. For the case with Sdis
ijk D 0, no stress jump phenomena

are observed in all simulations.
The effects of the nonnegative rate sensitivity parameter m on the stress-strain

behavior for the two cases of the SGP model are represented in Fig. 13b. It is clearly
shown in this figure that by increasing the rate sensitivity parameter, the stress jump
phenomena are significantly manifested in the case of the SGP model with Sdis

ijk ¤ 0

in terms of both the slope of the very first response immediately after the passivation
and the corresponding magnitude of the stress jump. In the case of the SGP model
with Sdis

ijk D 0, on the other hand, the material behavior is not affected a lot by

the rate sensitivity parameter m. In the SGP model with Sdis
ijk ¤ 0, the slopes of
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the very first response immediately after the passivation (Em) and the corresponding
magnitudes of the stress jump .� 0

m/ are obtained as Em D 0.2 D 96.7 GPa, Em D 0.25 D

103.0 GPa, Em D 0.3 D 109.7 GPa, Em D 0.35 D 116.5 GPa and � 0
mD0:2 D 14:8 MPa,

� 0
mD0:25 D 16:7 MPa, � 0

mD0:3 D 18:6 MPa, � 0
mD0:35 D 20:6 MPa, respectively.

Thus, it is clearly shown that both the slope of the very first response immediately
after the passivation and the corresponding magnitude of the stress jump increase as
the nonnegative rate sensitivity parameter m increases.

Fig. 13 (continued)
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Fig. 13 (continued)
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Fig. 13 Comparison of the results from the case of the present SGP model with the dissipative
potential dependent on P"

p

ij;k , i.e., Sdis
ijk ¤ 0 with the effects of: a the hardening material parameter

h (100 MPa, 200 MPa, 300 MPa, 400 MPa, and 500 MPa), b the nonnegative rate sensitivity
parameter m (0.2, 0.25, 0.3, and 0.35), c the temperature sensitivity parameter n (0.4, 0.6, 0.8,
and 1.0), d the thermal material parameter Ty (500ıK, 1,000ıK, 1,500ıK, and 2,000ıK), e the
interfacial temperature sensitivity parameter nI (0.1, 0.2, 0.3 and 0.5), f the interfacial thermal
material parameter T I

y (600ıK, 700ıK, 1,000ıK, and 11,300ıK) (Reprinted with permission from
Voyiadjis and Song 2017)
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The effects of the temperature sensitivity parameter n on the stress-strain
behavior for the two cases of the SGP model are represented in Fig. 13c. It is clearly
shown in this figure that the yield stress significantly increases as the temperature
sensitivity parameter n increases, while the strain hardening is not influenced a
lot by this parameter. This is because the temperature affects the strain hardening
mechanism through the dislocation forest barriers, while the backstress, i.e., ener-
getic gradient hardening, is almost independent of the temperature. Meanwhile, the
temperature sensitivity parameter n significantly affects the stress-strain response in
the case of the SGP model with Sdis

ijk ¤ 0. In this case, the slopes of the very first
response immediately after the passivation are obtained as En D 0.4 D 112.5 GPa,
En D 0.6 D 109.7 GPa, En D 0.8 D 107.8 GPa, and En D 1.0 D 106.6 GPa, and the
corresponding magnitudes of the stress jump are obtained as � 0

nD0:4 D 16:6 MPa,
� 0

nD0:6 D 18:6 MPa, � 0
nD0:8 D 19:7 MPa, and � 0

nD1:0 D 20:4 MPa, respectively.
Thus, in contrast with the rate sensitivity parameter m, the slope of the very
first response immediately after the passivation decreases, while the corresponding
magnitude of the stress jump increases as the temperature sensitivity parameter n
increases.

The effects of the thermal material parameter Ty on the stress-strain behavior
with the two cases of the SGP model are represented in Fig. 13d. Similar to the
temperature sensitivity parameter n, the yield stress significantly increases as the
thermal material parameter Ty increases, while the strain hardening is not influenced
a lot by this parameter. In the case of the SGP model with Sdis

ijk ¤ 0, the slopes of the
very first response immediately after the passivation .ETy / and the corresponding
magnitudes of the stress jump .� 0

Ty
/ are obtained as ETyD500ıK D 111:9 GPa,

ETyD1000ıK D 109:7 GPa, ETyD1500ıK D 108:7 GPa, ETyD2000ıK D 108:1 GPa
and � 0

TyD500ıK
D 17:1 MPa, � 0

TyD1000ıK
D 18:6 MPa, � 0

TyD1500ıK
D 19:2 MPa,

� 0
TyD2000ıK

D 19:6 MPa, respectively. These results from the simulations with
various thermal material parameter Ty are very similar to those with the temperature
sensitivity parameter n, in the sense that the slope of the very first response
immediately after the passivation decreases, while the corresponding magnitude of
the stress jump increases as the temperature sensitivity parameter n increases.

The effects of the interfacial temperature sensitivity parameter nI on the stress-
strain behavior for the two cases of the SGP model are presented in Fig. 13e. It
is clearly shown in this figure that increasing interfacial temperature sensitivity
parameter makes the grain boundary (interface) harder and results in less variation
of the stress jump in both cases of the SGP model with Sdis

ijk ¤ 0 and Sdis
ijk D

0. In the case of the SGP model with Sdis
ijk ¤ 0, the slopes of the very first

response immediately after the passivation are obtained as EnI D0:1 D 109:7 GPa,
EnI D0:2 D 80:4 GPa, EnI D0:3 D 70:3 GPa, and EnI D0:5 D 62:1 GPa, and the
corresponding magnitudes of the stress jump are obtained as � 0

nI D0:1
D 18:6 MPa,

� 0
nI D0:2

D 17:6 MPa, � 0
nI D0:3

D 17:1 MPa, and � 0
nI D0:5

D 16:4 MPa, respectively.
From these results, it is easily observed that the slope of the very first response after
the passivation and the corresponding magnitude of the stress jump increase as the
interfacial temperature sensitivity parameter nI decreases. In addition, the variations
along with the different cases are shown to be more drastic by decreasing the
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interfacial temperature sensitivity parameter nI . Similarly, for the case of the SGP
model with Sijk D 0, decreasing the interfacial temperature sensitivity parameter
makes the variation more radically as shown in Fig. 13e.

The effects of the interfacial thermal material parameter T I
y on the stress-strain

behavior for the two cases of the SGP model are represented in Fig. 13f. As can be
seen in this figure, the overall characteristic from the simulation results with various
T I

y is similar to those with various nI in the sense that increasing T I
y makes the grain

boundary (interface) harder and results in less variation of the stress jump in both
cases of the SGP model with Sdis

ijk ¤ 0 and Sdis
ijk D 0. In the case of the SGP model

with Sdis
ijk ¤ 0, the slopes of the very first response immediately after the passivation

are obtained as ET I
y D600ıK D 114:0 GPa, ET I

y D700ıK D 109:7 GPa, ET I
y D1000ıK D

101:7 GPa, and ET I
y D1300ıK D 97:1 GPa, and the corresponding magnitudes of

the stress jump are obtained as � 0
T I

y D600ıK
D 18:7 MPa, � 0

T I
y D700ıK

D 18:6 MPa,

� 0
T I

y D1000ıK
D 18:4 MPa, and � 0

T I
y D1300ıK

D 18:3 MPa, respectively.

Based on the calibrated model parameters of Ni (Table 1), the evolution of the
various potentials during the plastic deformation are investigated with four different
temperatures, i.e., 25 ıC, 75 ıC, 145 ıC, and 218 ıC, in this section. Figure 14 shows
(a) the variation of the plastic strain dependent free energies .‰d

1 ; ‰
d;R
1 and‰

d;NR
1 /,

(b) plastic strain dependent dissipation rate D1 (i.e., plastic strain dependent term in
Eq. 58), (c) plastic strain gradient-dependent free energy .‰d

2 / and dissipation rate
D2 (i.e., plastic strain gradient dependent term in Eq. 58), and (d) amount of stored
energy .‰d

1 C ‰d
2 / and dissipated energy .D D

R
.D1 C D2/dt/.

As can be seen in Fig. 14a, both free energies ‰d
1 and ‰

d;NR
1 decrease as the

temperature increases. The stored energy of cold work ‰
d;R
1 is also presented in this

figure. One can observe that ‰d
1 and ‰

d;NR
1 have a strong temperature dependency,

while the stored energy of cold work has no variation with varying temperatures. In
addition, the stored energy of cold work tends to saturate after some critical point
since the stored energy of cold work is proportional to the dislocation density that
remains constant after the aforementioned critical point. Meanwhile, it is shown in
Fig. 14b,c that rates of dissipation, D1 and D2, are dependent on the temperature
such that both D1 and D2 increase with decreasing temperatures while ‰d

2 shows no
temperature dependency. The amount of stored and dissipated energies is shown in
Fig. 14d. As it is shown in this figure, the amount of stored energy is larger than the
dissipated energy and both decrease as the temperature increases.

Lastly, the one-dimensional finite element implementation is extended to the
two-dimensional one. The simple tension problem of the square plate is solved to
study the strain gradient effects, the mesh sensitivity of the model with the three
cases according to the number of elements (100, 400, and 1,600 elements), and the
stress jump phenomena under the abrupt surface passivation. Each edge of the plate
has a length of w and the material parameters in Table 2 are used again for these
simulations.

Figure 15a, b shows the stress-strain behavior of the plate with the
various energetic length scales (`en/w D 0.0, 0.1, 0.3, 0.5, 0.7, and 1.0 with
`dis/w D 0.0) and dissipative length scales (`dis/w D 0.0, 0.1, 0.2, 0.3, 0.4,
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Fig. 14 The evolution of free energy and dissipation potentials based on the calibrated model
parameters (Han et al. 2008): (a) plastic strain-dependent free energy, (b) plastic strain-dependent
dissipation rate, (c) plastic strain gradient-dependent free energy and dissipation rate (The primary
y-axis on the LHS: D2, the secondary y-axis on the RHS: ‰d

2 ), and (d) amount of stored and
dissipated energies (Reprinted with permission from Voyiadjis and Song 2017)

and 0.5 with `en/w D 0.0), respectively. In common with the one-dimensional
simulations, the numerical results show the energetic hardening as the energetic
length scale increases as well as the dissipative strengthening as the dissipative
length scale increases.

Figure 15c shows the grain boundary effect of the square plate. It is well known
that the grain boundary blocks the dislocation movement, which, in turn, leads to the
strengthening of the material. The energetic and dissipative length scales reported
in these simulations are set zero and the microclamped condition is imposed at the
grain boundary, which is indicated by the bold line in the figure. The strengthening
caused by increasing the grain boundary area is well observed as expected. For the
simulations presented in Fig. 15a–c, 20 � 20 elements are used.

The mesh sensitivity of the two-dimensional numerical model is examined in
terms of the energetic and dissipative length scales with 10 � 10, 20 � 20 and
40 � 40 mesh elements in Fig. 15d, e, respectively. Figure 15d shows the stress-
strain behavior of the plate with the various energetic length scales (`en/w D 0.1, 0.5
and 1.0 with `dis/w D 0) compared to those in the absence of the gradient effects
(`en/w D `dis/w D 0). The numerical results without the gradient terms significantly
show the mesh sensitivity as expected, while for all nonzero values of `en/w, the
numerical solutions show the mesh-independent behavior. In addition, Fig. 15d
also shows the energetic hardening as the energetic length scale increases. The
mesh-independent behavior is also observed with varying dissipative length scales
`dis/w D 0.1 , 0.2 and 0.3 with `en/w D 0 in Fig. 15e as with the case for the
energetic length scale. The dissipative strengthening is also observed in this figure.

The stress jump phenomenon hitherto extensively studied in the one-dimensional
finite element implementation is also examined for the two-dimensional simulation;
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Fig. 15 (continued)
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Fig. 15 (continued)
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Fig. 15 The stress-strain behavior of the square plate: (a) the energetic hardening, (b) the
dissipative strengthening, (c) the grain boundary effect, (d) the mesh sensitivity with varying
`en, (e) the mesh sensitivity with varying `dis, and (f) the stress jump phenomenon (Fig. 15c, f:
Reprinted with permission from Voyiadjis and Song (2017))



16 Higher Order Thermo-mechanical Gradient Plasticity Model:: : : 591

20 � 20 elements with `en/w D 0.0 and `dis/w D 0.2 are used for this simulation.
Figure 15f shows the material behaviors of the unpassivated plate, the passivated
plate, and the plate abruptly passivated at some point. As can be seen in this figure,
the stress jump is significantly observed by the numerical results, which are identical
to the one-dimensional case.

Conclusions

In this chapter, a phenomenological thermodynamic-based higher order gradient
plasticity theory is presented and applied to the stretch-surface passivation problem
for investigating the material behavior under the nonproportional loading condition.
The thermodynamic potentials such as the Helmholtz free energy and the dissipation
potential are established based on the concepts of the dislocation interaction
mechanism and the thermal activation energy. The microstructural interface effect
between two grains is also incorporated into the formulation, such that the present
interfacial flow rule is able to account for the energy storage at the interface caused
by the dislocation pile up as well as the energy dissipation through the interface
caused by the dislocation transfer. The formulation is tested for two cases in the
presence of the dissipative higher order microstress quantities Sdis

ijk . In the first case,

the dissipation potential is dependent on the gradients of the plastic strain rate P"
p

ij;k ;

as a result, Sdis
ijk does not have a value of zero in this formulation. In the second case

the dissipation potential is independent of P"
p

ij;k , which in turn, Sdis
ijk does not exist.

It is noticed by Fleck et al. (2014, 2015) that Sdis
ijk always gives rise to the stress

jump phenomenon, which causes a controversial dispute in the field of SGP theory
with respect to whether it is physically acceptable or not, under the nonproportional
loading condition.

Prior to exploring the effect of the dissipative higher order microstress quantities
Sdis

ijk on the stress-strain behavior for the two cases of the SGP model with

and without Sdis
ijk , the present model and corresponding finite element code by

Voyiadjis and Song (2017) are validated by comparing with three sets of small-scale
experiments. Particularly, each set of three experiments involving Al, Cu, and Ni
are selected, respectively, to examine the applicability of the present finite element
implementation to the various kinds of materials. The first experiment, which was
performed by Haque and Saif (2003), is the uniaxial tensile testing of nanoscale
freestanding Al thin films to explore the effect of strain gradient in 100 nm, 150 nm,
and 485 nm thick specimens with average grain size of 50 nm, 65 nm, and 212 nm,
respectively. The results clearly show the size effect on the stress-strain curves of the
Al thin films; in addition, the calculated results of the present SGP model display a
tendency to be more coincident to the experimental data than those of Voyiadjis and
Faghihi (2014). For the second experimental validation, the experimental work of
Xiang and Vlassak (2006) on the size effect in electroplated Cu thin films with
various microscale thicknesses is selected since the effect of passivation on the
stress-strain behavior of the Cu thin film is also considered in their work. The
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stress-strain curves from the numerical results of the present SGP (Voyiadjis and
Song 2017) model are in good agreement with the experimental measurements. The
size effect according to the variation of the film thicknesses is also well observed
from the results. For the third experimental validation, the microtensile test on the
temperature effect on Ni thin films by Han et al. (2008) is employed since, in the
nano- or microsystems, the effect of the higher order gradient on temperature also
needs to be considered for the fast transient behavior. From both the experimental
and numerical results, it is shown that the Young’s modulus is not affected by
the variations in temperature, while the yield and tensile strength decrease as
the specimen temperature increases. The calculated results of the present model
(Voyiadjis and Song 2017) compare better to the experimental data than those of
Voyiadjis and Faghihi (2014).

The numerical simulation part is largely composed of four subparts. The
main purpose of the first part is to examine the occurrence of the stress jump
phenomenon under the stretch-surface passivation condition in conjunction with
the aforementioned three experiments. In all simulations, a stress jump is clearly
observed at the onset of passivation. The second part is carried out in order to clearly
show the results to be contrary to each other from the two cases of the SGP model.
The conclusion in this part is drawn such that a significant stress jump with the
slope Epassivation similar to the modulus of elasticity E is shown in the case of the
SGP model with Sdis

ijk ¤ 0, on the other hand, no elastic stress jump is observed in

the case of the SGP model with Sdis
ijk D 0. This result is exactly in agreement with

the predictions in Fleck et al. (2014, 2015).
In the third part, an extensive parametric study is presented in terms of the effects

of the dissipative length scale `dis, the onset point of passivation, the hardening
material parameter h, the nonnegative rate sensitivity parameter m, the temper-
ature sensitivity parameter n, the thermal material parameter Ty, the interfacial
temperature sensitivity parameter nI , and the interfacial thermal material parameter
T I

y on the stress-strain response for the two SGP cases, respectively. There are
a number of conclusions worth mentioning here, namely: (1) the magnitude of
the stress jump significantly increases as the dissipative length scale increases, on
the other hand, the stress jump phenomenon disappears as the dissipative length
scale comes closer to zero, (2) the slopes of the very first response E immediately
after the passivation also increase as the dissipative length scales increase, (3)
the stress jump phenomenon is highly correlated with the dissipative higher order
microstress quantities Sdis

ijk , in addition, the very first responses immediately after
the passivation also make a substantial difference with varying passivation points,
(4) the hardening material parameter h does not affect the stress jump significantly
in the case of the SGP model with Sdis

ijk ¤ 0, (5) both the slope of the very first
response immediately after the passivation and the corresponding magnitude of the
stress jump substantially increase as the nonnegative rate sensitivity parameter m
increases in the case of the SGP model with Sdis

ijk ¤ 0, (6) as the temperature-
related parameters for the bulk such as the temperature sensitivity parameter n and
the thermal material parameter Ty increase, the slope of the very first response
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immediately after the passivation decreases and the corresponding magnitude of
the stress jump increases in the case of the SGP model with Sdis

ijk ¤ 0, (7) the
slope of the very first response after the passivation, the corresponding magnitude
of the stress jump increases and the variations along with the cases are shown more
drastically by decreasing the temperature-related parameters for the interface, such
as the interfacial temperature sensitivity parameter nI and the interfacial thermal
material parameter T I

y in the case of the SGP model with Sdis
ijk ¤ 0, and finally (8)

no stress jump is observed in all cases with Sdis
ijk D 0.

Meanwhile, the plastic strain-dependent free energy accounting for the stored
energy of cold work is derived in this chapter by assuming that the stored energy
is related to the energy carried by dislocations. Accordingly, the variation of free
energies and dissipation potentials during the plastic deformation are investigated
with four different temperatures, i.e. 25 ıC, 75 ıC, 145 ıC, and 218 ıC. From the
numerical results, it is shown that the stored energy of cold work has no temperature
dependency; in addition, the stored energy of cold work tends to saturate after some
critical point since the stored energy of cold work is proportional to the dislocation
density that remains constant after the aforementioned critical point.

Lastly, the two-dimensional tension problem of the square plate (Voyiadjis and
Song 2017) is solved to examine the mesh sensitivity of the model. The effects of
the strain gradient and grain boundary are also studied. As expected, a strong mesh-
dependence stress-strain behavior is observed in the case of no gradient effects,
while the numerical results with the gradient effects show the mesh-independent
behavior. The energetic hardening, the dissipative strengthening, the grain boundary
strengthening, and the stress jump phenomena are well observed in common with
the results from the one-dimensional simulation.
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