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Preface

This handbook discusses the integral and gradient formulations of nonlocality, com-
putational aspects, micromechanical considerations, and comparison of approaches
and emphasizes recent developments in the bridging of material length and time
scales. The contributions in this handbook are on nonlocal continuum plasticity in
terms of the experimental, theoretical, and numerical investigations. This handbook
presents a comprehensive treatment of the most important areas of nonlocality
(integral and gradient) of time-dependent inelastic deformation behavior and heat
transfer responses. The following aspects of the advanced material modeling are
presented: enhanced (generalized) continuum mechanics, microscopic mechanisms
and micro-mechanical aspects responsible for size effect and micro-scale heat trans-
fer, thermodynamic framework, and multiscale computational aspects with detailed
nonlocal computational algorithms in the context of finite element. Measures for
length scales are introduced together with their appropriate evolution relations.

The work addresses the thermal and mechanical responses of small-scale metallic
compounds under fast transient processes based on small and large deforma-
tion framework. This handbook presents a comprehensive treatment of the most
important areas of nonlocality (integral and gradient) of time-dependent inelastic
deformation behavior and heat transfer responses.

From the experimental aspects, a wide spectrum of materials are included in
these chapters. For the case of glassy polymers, their nanostructural responses
and nanoindentation measurements were discussed in detail by Voyiadjis et al.
For metals, the hydrogen embrittlement cracking was discussed by Yonezu and
Chen, whereas its size effect of nanoindentation was elucidated by Voyiadjis
et al. Composites and their nonlocal behaviors have received particular attention,
including the studies of their cracking initiation (Xu et al.), interface stability (Meng
et al.), buckling (Chen et al.), and dynamic properties (Tomar et al.). Indentation and
its nonlocal characteristics were also emphasized through modeling (Mills et al., Liu
et al.) and fatigue testing (Xu et al.).

The micromorphic approach has aroused strong interest from the materials
science and computational mechanics communities because of its regularization
power in the context of softening plasticity and damage. The micromorphic and
Cosserat theories in gradient plasticity are introduced and analyzed in these chapters
to address the instabilities in the materials and structures. The micromorphic

v



vi Preface

approach for the gradient continuum plasticity/damage and crystal plasticity is
elucidated by Forest et al. The micropolar theory for the crystal plasticity is
also introduced (Mayeur et al.). The micromorphic and Cosserat approach are
applied to localization in geomaterials (Stefanou et al.) and dispersion of waves
in metamaterials (Madeo et al.) in these chapters.

The section on “Mathematical Methods in Nonlocal Continuum Mechanics”
combines the original concepts for the description of nonlocal effects, including
applications to nonstandard mathematical models. Both quasi-static and dynamic
processes are included, together with micro- and macro-level of description, and
furthermore multiphysics (in the sense of, e.g., thermomechanical interaction) is
covered accordingly. In the chapter by Lazopoulos et al., the fractional calculus is
applied to obtain the space-fractional nonlocal continuum mechanics formulation
and then applied to the analysis of fractional Zener viscoelastic model. The
contribution by Ostoja-Starzewski et al. includes modeling of fractal materials
utilizing fractional integrals and application of homogenized continuum mechanics
together with the framework of calculus in non-integer dimensional spaces. The
work by Sumelka et al. presents implicit time nonlocal modeling of metallic
materials including damage anisotropy, and furthermore stress-fractional extensions
are suggested. Next, the chapter by Tarasov includes modeling of physical lattices
with long-range interactions utilizing exact fractional-order difference operators.
Finally, in the chapter by Voyiadjis et al., the strain gradient plasticity is presented
with the appropriate flow rules of the grain interior and grain boundary areas within
the thermodynamically consistent framework and applied for modeling metallic
materials. One can recapitulate that the overall section contents open new fields
of investigations of mathematical models for bodies exhibiting strong scale effect.

The section on “Computational Modeling for Gradient Plasticity in Both Tem-
poral and Spatial Scales” introduces a variety of numerical examples for the
gradient-enhanced plasticity. The failure mechanisms of metallic materials for high-
velocity impact loading are simulated based on the nonlocal approach (Voyiadjis
et al.). The gradient plasticity is combined to micro-/mesoscale crystal plasticity
(Yalcinkaya et al., Ozdemir et al.) and fracture mechanics (Lancioni et al.). The
transverse vibration of microbeams and axial vibration of micro-rods are studied
by Civalek et al. using the strain gradient plasticity theory. In addition, in this
section, the temperature-driven ductile-to-brittle transition fracture in Ferritic steels
is modeled and analyzed (Deliktaş et al.).

Nonlocal peridynamic models for damage and fracture are introduced and
analyzed in these chapters. The theory guaranteeing the existence of solution for
continuum models of fracture evolution is essential for the development of mesh-
independent discretizations. A bond is exhibited based on peridynamic models with
damage and softening and shows that they are well-posed evolutions both over the
space of Holder continuous functions and Sobolev functions (Jha and Lipton). This
feature is used to develop numerical convergence rates in space and time for the
associated finite element and finite-difference schemes (Jha and Lipton). These are
the first convergence rates for numerical schemes applied to fully nonlinear and
nonlocal peridynamic models. A more general state-based peridynamic model is
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developed for free fracture evolution. In the limit of vanishing nonlocal interaction,
this model is shown to converge to the equation of elastic momentum balance away
from the crack set (Said et al.). In the final chapter, a state-based and history-
dependent dynamic damage model is developed. Several numerical examples are
provided illustrating the theory (Said et al.).

This handbook integrates knowledge from the theoretical, numerical, and exper-
imental areas of nonlocal continuum plasticity. This book is focused mainly for
graduate students of nonlocal continuum plasticity, researchers in academia and
industry who are active or intend to become active in this field, and practicing
engineers and scientists who work in this topic and would like to solve problems
utilizing the tools offered by nonlocal mechanics. This handbook should serve
as an excellent text for a series of graduate courses in mechanical engineering,
civil engineering, materials science, engineering mechanics, aerospace engineering,
applied mathematics, applied physics, or applied chemistry.

This handbook is basically intended as a textbook for university courses as well
as a reference for researchers in this field. It will serve as a timely addition to
the literature on nonlocal mechanics and will serve as an invaluable resource to
members of the international scientific and industrial communities.

It is hoped that the reader will find this handbook a useful resource as he/she
progresses in their study and research in nonlocal mechanics. Each of the individual
sections of this handbook could be considered as a compact self-contained mini-
book right under its own title. However, these topics are presented in relation to the
basic principles of nonlocal mechanics.

What is finally presented in the handbook is the work contributed by celebrated
international experts for their best knowledge and practices on specific and related
topics in nonlocal mechanics.

The editor would like to thank all the contributors who wrote chapters for this
handbook. Finally, the editor would like to acknowledge the help and support of his
family members and the editors at Springer who made this handbook possible.

Baton Rouge, USA Dr. George Z. Voyiadjis
December 2018
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Abstract

In nanoindentation experiments at submicron indentation depths, the hardness
decreases with the increasing indentation depth. This phenomenon is termed
as the indentation size effect. In order to predict the indentation size effect,
the classical continuum needs to be enhanced with the strain gradient plasticity
theory. The strain gradient plasticity theory provides a nonlocal term in addition
to the classical theory. A material length scale parameter is required to be
incorporated into the constitutive expression in order to characterize the size
effects in different materials. By comparing the model of hardness as a function
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of the indentation depth with the nanoindentation experimental results, the length
scale can be determined. Recent nanoindentation experiments on polycrystalline
metals have shown an additional hardening segment in the hardness curves
instead of the solely decreasing hardness as a function of the indentation depth. It
is believed that the accumulation of dislocations near the grain boundaries during
nanoindentation causes the additional increase in hardness. In order to isolate
the influence of the grain boundary, bicrystal metals are tested near the grain
boundary at different distances. The results show that the hardness increases with
the decreasing distance between the indenter and the grain boundary, providing
a new type of size effect. The length scales at different distances are determined
using the modified model of hardness and the nanoindentation experimental
results on bicrystal metals.

Keywords
Nanoindentation · Indentation size effect · Nonlocal theory · Strain gradient
plasticity · Grain boundary · Bicrystal · Length scale

Introduction

It has been found in experiments at the microscopic scale that the mechanical
response increases as the size of the specimen decreases. The phenomenon is
termed as the size effect. Size effects have been reported in tests of metals in small
scales such as microbending, microtorsion, and bulge tests (Fleck and Hutchinson
1997; Stolken and Evans 1998; Chen et al. 2007; Xiang and Vlassak 2005). It is
believed that the size effects are attributed to nonuniform deformation in the small
scale during the tests (Nye 1953). Geometrically necessary dislocations (GNDs) are
generated in order to accommodate the deformation. The GNDs act as barriers of the
generation of the statistically stored dislocations (SSDs), resulting in the increase
of the mechanical response (De Guzman et al. 1993; Stelmashenko et al. 1993;
Fleck et al. 1994; Ma and Clarke 1995). The classical continuum theory is only
able to predict the macroscopic and therefore not capable in capturing the changes
of mechanical responses. A nonlocal term is required in addition to the classical
theory. In the study of the plastic deformation, the strain gradient plasticity theory
is applied by adding a strain gradient term into the classical expression (Aifantis
1992; Zbib and Aifantis 1998). In order to characterize the influence of the strain
gradient, a length scale parameter is required to be incorporated into the expression
of the strain gradient plasticity theory. The length scale is an intrinsic parameter and
each material has its unique length scale. Therefore, it becomes of great importance
to determine the material intrinsic length scale. With the length scale determined,
the strain gradient plasticity theory is able to predict the mechanical behaviors in
both microscopic and macroscopic scales, bridging the gap between large and small
scales.

When using the strain gradient plasticity theory to derive the expression of the
length scales, material parameters are needed in order to represent the behavior for
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different materials. In order to determine the length scale for a specific material,
the materials need to be determined from experimental results. Nanoindentation
experiments are believed to be the most effective technique to determine the material
length scales (Begley and Hutchinson 1998). In nanoindentation at small depth, the
hardness increases with the decreasing indentation depth (McElhaney et al. 1998).
The size effect encountered in nanoindentation is referred to the indentation size
effect. With the use of the conical or Berkovich indenter, the indentation is said to
be self-similar. The GND density can be calculated for a self-similar indent from the
geometry of the indenter (Nix and Gao 1998). The hardness can be mapped from
the stress-strain relation using Tabor’s factor in macroscopic scale (Tabor 1951).
In microscopic scales, the hardness is related to the dislocation density according to
Taylor’s hardening law. The hardness expression needs to incorporate the expression
of the length scale in order to predict the indentation size effect. By comparing
the experiments and the expression of hardness, the material parameters in the
expression of the length scale can be determined.

More recent nanoindentation experiments in polycrystalline materials have
shown that instead of the solely decreasing hardness with the increasing indentation
depth, there is a hardening-softening phenomenon observed (Yang and Vehoff 2007;
Voyiadjis and Peters 2010). The additional increase in hardness is believed to be
due to the interaction between the dislocations generated by the penetration of the
indenter and the grain boundaries. As there is difficulty for dislocations to transfer
across the grain boundary, the dislocations accumulate near the grain boundaries.
The local dislocation density increases due to the accumulation of dislocations,
resulting in the additional increase in hardness. Once the dislocations start to
move across the grain boundary at certain point, the dislocation density starts to
decrease, which explains the softening effect following the hardening. In order
to characterize the grain boundary effect as well the temperature and strain rate
dependency of the length scale, a model considering the temperature and strain rate
dependency of indentation size effect (TRISE) is developed (Voyiadjis et al. 2011).
The length scale is written as a function of the temperature, plastic strain rate, and
the grain size. By comparing the TRISE model with nanoindentation experiments at
different temperatures, plastic strain rates, and grain sizes, the length scales can be
determined.

In order to confirm the contribution of grain boundaries to the hardening-
softening phenomenon, the investigation of the grain boundary is isolated through
bicrystalline materials, where there is only one grain boundary. Nanoindentation
experiments are conducted near the grain boundary at different distances between
the indenter and the grain boundary (Voyiadjis and Zhang 2015; Zhang and
Voyiadjis 2016). Single crystal behavior is observed for indents made with large
distances to the grain boundary, without showing the additional hardening. Only
the indents in close proximity of the grain boundary show the hardening-softening
effect and there is a stronger hardening effect when the distance is smaller, providing
a new type of size effect. The influence of the grain boundary on the hardness
during nanoindentation is thus confirmed by experiments. The TRISE model is
rewritten by replacing the grain size with the distance between the grain boundary
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and the indenter. The length scales of bicrystalline materials can be determined
through the comparisons between the developed TRISE model and the nanoin-
dentation experiments in order to characterize the size effect regarding the grain
boundary.

In this chapter, the dependencies of temperature, plastic strain rate, grain size,
and the distance between the indents and the grain boundary are addressed during
nanoindentation experiments on single crystal, polycrystalline, and bicrystalline
materials. The TRISE model is developed and applied in order to predict the
hardness as a function of the indentation depth. The equivalent plastic strain as a
function of the indentation depth during nanoindentation is determined through the
finite element method. ABAQUS/Explicit software is used in order to simulate the
indentation problem. The materials tested are body-centered cubic (BCC) and face-
centered cubic (FCC) materials. In order to show the distinct behaviors between
FCC and BCC materials during the simulation, user material subroutines VUMAT
are incorporated for BCC and FCC metals, respectively. The length scales are
determined through the comparison between the nanoindentation experiments and
the developed TRISE models.

Nonlocal Theory

According to the nonlocal theory, the material properties at a given material point
are not only dependent on their local counterparts but also depend on the state
of the neighboring space. While the classical continuum theory only provides the
predictions of the local point, the nonlocal theory enhances the classical theory by
giving a nonlocal gradient term. The nonlocal term is taken as the characterization
of the interactions from the neighboring space. The nonlocal expression was
incorporated through an integral form for the elastic models of materials (Kroner
1967; Eringen and Edelen 1972). In the integral format, the nonlocal measure A

at a given material point x is expressed through the weighted average of its local
counterpart A over the surrounding volume V within a small distance d from the
point x as follows:

A D
1

V

Z

V

w.d/A .x C d/ dV (1)

where w(d) is a weight function that decays gradually with the distance d. It should
be noted that there is a limit of the distance d, which is the internal characteristic
length that shows the range of the influence of the nonlocal term.

The integration can be solved analytically for the elasticity problems. However,
it is not practical to solve the integration for more complicated plasticity problems.
Therefore, the integral expression needs to be simplified. The local counterpart A

in the integral can be approximated using the Taylor’s series expansion at d D 0 as
follows (Muhlhaus and Aifantis 1991; Vardoulakis and Aifantis 1991):
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A .x C d/ D A.x/ C rA .x/ d C
1

2Š
r2A.x/d 2 C

1

3Š
r3A.x/d 3 C : : : (2)

where r i denotes the ith order of the gradient operator. The expression can be
further simplified considering only the isotropic behaviors. Therefore, the odd terms
vanish in Eq. 2 and the nonlocal expression can be rewritten as follows:

A D
1

V

Z

V

w.d/A.x/dV C
1

2ŠV

Z

V

w.d/r2A.x/d 2dV (3)

Rewriting Eq. 3 as a partial differential equation yields the following expression:

A D A C

0
@ 1

2ŠV

Z

V

w.d/d 2dV

1
Ar2p (4)

with

1

V

Z

V

w.d/dV D 1 (5)

Therefore, the simplified nonlocal expression can be eventually expressed as
follows:

A D A C l2r2A (6)

In Eq. 6, the second-order gradient term is incorporated in addition to the original
local counterpart. A length scale parameter l is used in order to weigh the gradient
term, reflecting the characteristic length of the influence of the gradient.

Considering the nonuniform deformation of materials in micro- and nanoscales,
the strain is usually used in order to characterize the material behaviors. By writing
the nonlocal expression using the expression of strain and strain gradient, the
strain gradient plasticity (SGP) theory can be written in the format of Eq. 6 as
follows:

p D p C l2�2 (7a)

where p is the total accumulated plastic strain with its local counterpart p and the
gradient term �, and l is the material length scale that characterizes the influence of
the strain gradient.

Another approach was developed through a phenomenological theory of strain
gradient plasticity based on gradients of rotation, which fits the framework of the
couple stress theory (Fleck and Hutchinson 1993). By assuming that the strain
energy density is only dependent on the second von Mises invariant of strain, the



8 G. Z. Voyiadjis and C. Zhang

strain gradient plasticity theory can be expressed based on that the strain energy
density is only dependent on the overall effective strain as follows:

p D
p

p2 C l2�2 (7b)

A more general expression (Voyiadjis and Abu Al-Rub 2005) for the strain
gradient plasticity theory considering the expressions in Eqs. 6, 7a, and 7b was later
proposed as follows:

p D Œp� C .l�/� �
1=� (8)

where � is a fitting parameter.

Physically BasedMaterial Length Scale

As shown in Eq. 8, the total accumulated plastic strain can be determined through
its local counterpart and the strain gradient term. It becomes of great importance in
the determination of the material length scale parameter, as it captures the intrinsic
gradient effects for different materials. From the continuum theory, the flow stress
can be written through the plastic strain given in Eq. 8 as follows:

� D kŒp� C .l�/� �
1=m” (9)

where m and k are material constants. Equation 8 is capable to predict the
constitutive relations in both macroscopic scale through the local counterpart and
microscopic scale through the coupling between the local and gradient terms.
Therefore, by determining the length scale parameter, the strain gradient enhanced
classical continuum theory is able to bridge the gap between large and small scales.

In Eq. 9, the local term p is related to the SSDs as it represents the uniform
deformation at macroscopic scales. The plastic shear strain �p can be defined as a
function of SSD density �S as follows (Bammann and Aifantis 1982):

�p D bS LS �S (10)

where bS is the magnitude of Burgers vector of SSDs and LS is the mean space
between SSDs. The local plastic strain "

p
ij can then be determined from �p using

Schmid orientation tensorMij as follows:

"
p
ij D �pMij (11)

where

p D
q

2"
p
ij"

p
ij=3 (12)
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When relating the plastic strain between macroscopic and microscopic scales, the
Schmid orientation factor which is an average form of the Schmid tensor is always
used (Bammann and Aifantis 1987; Dorgan and Voyiadjis 2003). With that being
said, the local plastic strain can be expresses as follows:

p D bS LS �S M (13)

where M is the Schmid factor which is usually taken to be 0.5 (Bammann and
Aifantis 1982).

The gradient term in Eq. 9 is related to the GNDs as it represents the nonuniform
deformation that occurred in small scales. The gradient � can be expressed through
GND density �G and the Nye factor as follows (Arsenlis and Parks 1999):

� D
�GbG

r
(14)

where bG is the magnitude of the Burgers factor of GNDs and r is the Nye factor.
In microscopic scales, the flow stress can be related to the dislocation densities

generated by the plastic deformation through Taylor’s hardening law as follows:

�S D ˛SGbs

p
�S (15)

�G D ˛GGbG

p
�G (16)

where �S and �G are the shear flow stress corresponding to SSD density and GND
density, respectively; bS and bG are the magnitudes of the Burgers vectors for SSDs
and GNDs, respectively; G is the shear modulus; and ’S and ’G are statistical
coefficients which account for the deviation from regular spatial arrangements of
SSDs and GNDs populations, respectively. The total shear flow stress, � f , which is
required to initiate a significant plastic deformation, can be obtained by coupling
the flow stresses given by Eqs. 15 and 16 as follows:

�f D
h
�

ˇ
S C �

ˇ
G

i1=ˇ

(17)

where ˇ is a constant fitting parameter.
Amore general expression for the total shear flow stress can be written in terms of

the total dislocation density from the combination of Eqs. 15, 16, and 17 as follows:

� D ˛SGbS

p
�T (18)

with

�T D
h
�

ˇ=2
S C

�
˛2

Gb2
G�G=˛2

S b2
S

�ˇ=2
i2=ˇ

(19)
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The plastic flow stress is related to the shear flow stress through a constant Z as
follows:

� D ZT D ˛SZGbS

p
�T (20)

Comparing Eqs. 9 and 20 and considering Eqs. 13, 14, and 19, the following
expressions can be determined:

� D ˇ=2 (21)

m D 2 (22)

k D ˛GGZ
p

bS =LS M (23)

l D .˛G=˛S /2 .bG=bS / LS Mr (24)

At the beginning, the length scales were determined as a constant value.
However, it has been reported that LS is not a constant but it is equal to the grain
size initially and saturates toward values in the order of micrometer in large strains
(Gracio 1994). LS can be written as a function of the grain size and the plastic strain
as follows:

LS D
Dd

D C dp1=m
(25)

where d is the average grain size, D is the macroscopic characteristic size of the
specimen, p is the equivalent plastic strain, and m is the hardening exponent. It can
be seen from Eq. 24 that the length scale is proportional to LS. Therefore, the length
scales of crystalline materials are not constant during the deformation. This has also
been experimentally and theoretically verified in the work of Voyiadjis and Abu
Al-Rub (2005).

Due to the fact that the GND density during deformation is strain rate and
temperature dependent, the Nye factor in Eq. 24 can be expressed as a function
of the strain rate and temperature as follows (Voyiadjis and Almasri 2009):

r D
Ae.�Er =RT/

1 C CPpq (26)

where the temperature factor is incorporated through the Arrhenius equation; Pp is
the equivalent plastic strain rate; and A, C, and q are constants. Substituting Eqs.
25 and 26 into Eq. 24 yields a variable length scale that varies with the grain size,
temperature, strain rate, and equivalent plastic strain as follows (Voyiadjis et al.
2011):
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l D .˛G=˛S /2 .bG=bS / M

0
@ ı1de

.Er =RT /�
1 C ı2dp

.1=m/
�

.1 C ı3. Pp/q/

1
A (27)

where ı1, ı2, and ı3 are material parameters that need to be determined through
experimental results. For single crystal materials, there is no effect of the grain size
during the deformation. Therefore, the length scale for single crystal materials can
be expressed without grain size d as follows:

l D .˛G=˛S /2 .bG=bS / M

 
ı1e.�Er =RT/�

1 C ı2p.1=m/
�

.1 C ı3. Pp/q/

!
(28)

Determination of the Length Scales

Nanoindentation experiments are believed to be the most effective technique to
determine the length scales. The indentations made using a conical or a Berkovich
indenter have self-similar shapes, which means once the indent is initially formed,
the size of the indent grows and the shape keeps similar. The GND and SSD densities
can be calculated during the indentation process. The material hardness is related to
the flow stress according to Tabor’s factor. Therefore, the hardness can be written
as a function of the dislocation densities through Eqs. 18, 19, and 20 as follows:

H D ��f D Z�˛SGbS

h
�S

ˇ=2 C .˛GbG=˛S bS /ˇ�G
ˇ=2
i1=ˇ

(29)

where � is Tabor’s factor relating the hardness and the flow stress. As shown in
Eq. 29, the hardness is a function of both GND density and SSD density, which
represents the deformation in the micro- and nanoscales where GNDs and SSDs
interact with each other. However, in the case of large deformation, the effect of
GNDs vanishes and the deformation is mainly attributed to the SSDs. The hardness
in macroscopic scales, H0, is thus only related to the SSD density as follows:

H0 D Z��S D Z�˛SGbS

p
�S (30)

Using Eqs. 29 and 30 and assuming that ˛GD˛S and bGDbS, the ratio (H/H0)ˇ

can be derived as follows:

�
H

H0

�ˇ

D 1 C

�
�G

�S

�ˇ=2

(31)

The nanoindentation experiments provide the material hardness as a function of
the indentation depth. If the dislocation densities can be calculated as through the
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Fig. 1 Sample being indented by a conical indenter (Reprinted from Voyiadjis and Zhang (2015))

indentation depth, the hardness from the model can be compared with the hardness
determined by the experiments.

The GND density during nanoindentation can be calculated through the geometry
of the indenter. The cross-sectional profile of the indentation process using a conical
indenter is shown in Fig. 1. The profile of a Berkovich indenter can be represented
by the conical indenter if the surface angle 	 is taken to be 0.358 (Radian), since
the cross-sectional areas and the volumes are identical between the conical and
pyramidal Berkovich indenters.

The dislocation loops are generated by the penetration of the indenter and
therefore the plastic deformation volume can be assumed as a semisphere. The
GND density can be determined as the total length of dislocations divided by the
volume of the semisphere, where the dislocation length can be calculated based
on the geometry of the indenter. Without considering the influence of the grain
boundaries, the GND density can be written as follows (Nix and Gao 1998):

�G D
3tan2	

2bGh
(32)

It can be seen from Eq. 32 that the GND density decreases with the increas-
ing indentation depth, proving that the nonuniform deformation decays with the
increase of deformation and the nonlocal gradient becomes less significant.

In order to capture the hardening-softening phenomenon, grain boundaries were
incorporated into the profile as shown in Fig. 2. When the plastic zone expands and
reaches the grain boundaries, the diameter of the semisphere is equal to the average
grain size.

However, a more accurate calculation can be approached by removing the volume
occupied by the indenter from the semisphere (Yang and Vehoff 2007). The GND
density can be written as follows (Voyiadjis and Peters 2010)

�G D



bG

h2

tan 	



12

d 3 � 8:19h3
(33)

where d represents the average grain size in polycrystalline materials.
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Fig. 2 Nanoindentation cross-sectional profile of a polycrystalline sample (Reprinted from
Voyiadjis et al. (2011))

The SSD density can be derived from the Tabor’s mapping of hardness-
indentation depth from flow stress-plastic strain (Voyiadjis and Peters 2010). The
SSD density �S can be written as follows:

�S D
cr˛2

GbG tan 	

lb2
S ˛2

S

(34)

where c is a material constant of order 1 from Tabor’s mapping.
Combining Eqs. 31, 32, and 34 and assuming that ˛GD˛S and bGDbS, the

hardness of single crystal materials can be derived as a function of the indentation
depth as follows:

H D H0

8<
:1 C

"
3M tan 	

2ch
�

ı1e�Er =RT�
1 C ı2p1=m

�
.1 C ı3 Ppq/

#ˇ=2
9=
;

1=ˇ

(35)

For polycrystalline materials, similar derivation can be made through Eqs. 31,
33, and 34 as follows:

H D H0

8̂
<
:̂1 C

2
4 M
.h � h1/2�



12

d 3 � 8:19h3
�

ctan2	
�

ı1de�Er =RT�
1 C ı2dp1=m

�
.1 C ı3 Ppq/

3
5

ˇ=2
9>=
>;

1=ˇ

(36)
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Fig. 3 Nanoindentation cross-sectional profile of a bicrystalline sample (Reprinted with permis-
sion from Voyiadjis and Zhang (2015)).

In order to isolate the influence of the grain boundary, bicrystalline materials
are used and nanoindentations are made close to the single grain boundary near the
grain boundary. The grain size in bicrystalline materials is not a parameter as it is in
the size of the macroscopic scale. The distance r between the grain boundary and the
indenter tip is used to represent the size of the plastic zone. When the plastic zone
reaches the grain boundary, the radius of the semisphere is equal to the distance r as
shown in Fig. 3.

By using the distance r instead of the grain size d, the GND density during
nanoindentation of bicrystalline materials can be written as follows:

�G D



bG

h2

tan 	

2
3

r3 � 8:19h3

(37)

Therefore, the hardness expression of a bicrystalline material during nanoinden-
tation can be written as follows:

H D H0

8<
:1 C

"
M
.h � h1/2

�
2

3

r3 C 8:19h3
�

ctan2	
�

ı1re�Er =RT�
1 C ı2rp1=m

�
.1 C ı3 Ppq/

#ˇ=2
9=
;

1=ˇ

(38)

The length scale expression given by Eqs. 27 and 28 are incorporated into
Eqs. 35, 36, and 38. The material parameters ı1, ı2, and ı3 can be determined
by comparing Eqs.35, 36, and 38 with nanoindentation experimental results for
single crystal, polycrystalline materials, and bicrystalline materials, respectively.
Therefore, the length scale parameters can be determined for materials with different
microstructures, respectively.

Furthermore, a better approach of the hardness expression can be applied through
a cyclic plasticity model (Voyiadjis and Abu Al-Rub 2003) as follows:

Hnew D Hold C C .h/Hold (39)
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with

C .h/ D

r
1

h
(40)

where Hold is the hardness given by Eqs. 35, 36, and 38 and Hnew is the corrected
value using the cyclic model.

In order to write the hardness H as a function of the indentation depth h in
Eqs. 35, 36, and 38, the equivalent plastic strain p is also required to be as a
function of h. It is difficult to determine p as a function of h experimentally as
the plastic deformation during nanoindentation is complicated. Therefore, finite
element simulation is needed to capture this relationship (Voyiadjis and Peters
2010). Commercial finite element analysis software ABAQUS is used throughout
an indentation problem. The testing sample is represented by a cube with dimension
of 50 �m. The Berkovich indenter is modeled on top of the cubic sample as a
blunt three-side pyramid as shown in Fig. 4. The tip of the indenter is set to be
an equilateral triangle with 20 nm sides. The ABAQUS interaction module is used
in order to simulate the contact between the indenter and the sample. A specific
velocity field is assigned in order to drive the indenter to penetrate to the desired
indentation depths according to the experiments. In order to show the different
behaviors between FCC and BCC materials, a user material subroutine VUMAT
is used during the simulation (Voyiadjis et al. 2011). After the indentation process is
completed, the equivalent plastic strain p under the indenter can be viewed as shown
in Fig. 5. The value of p at each time step can be determined through the contour
plots as well as the indentation depth at each step. Therefore, the equivalent plastic
strain as a function of the indentation depth can be determined by taking values of
p and „ at each step.

Fig. 4 Indentation model before the simulation (Reprinted from Voyiadjis and Zhang (2015))



16 G. Z. Voyiadjis and C. Zhang

Fig. 5 Contour plot of equivalent plastic strain at the maximum indentation depth (Reprinted from
Voyiadjis and Zhang (2015))

Applications on Single Crystal, Polycrystalline, and Bicrystalline
Metals

Nanoindentation experiments are performed on metals with different microstruc-
tures in order to validate the prediction of the computational models and to
determine the material parameters of the expressions of the length scales. Based
on the temperature and strain rate indentation size effect (TRISE), nanoindentation
experiments are conducted on single crystal and polycrystalline samples at different
temperatures and strain rates. On bicrystalline samples, the experiments are carried
out near the grain boundary at different distances in order to characterize the
influence of the grain boundary on the material hardness. Nanoindentations at
different strain rates are also performed at the same distance between the grain
boundary and the indenter in order to confirm the rate dependency during nanoin-
dentation on bicrystalline materials. The experimental results are compared with
the prediction of hardness of the TRISE model. The length scales of materials with
different microstructures are determined through the determinations of the material
parameters from the comparisons. All testing samples are polished to acquire the
accurate and consistent experimental results.

Sample Preparations

In nanoindentation, the hardness is not a direct measurement from the test. It is
determined from the direct measurement of load and displacement through a tip
area function (Oliver and Pharr 1992). The tip area function is determined through
a model assuming that the indenter penetrates perpendicularly into a flat sample
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surface. Therefore, in order to obtain accurate experimental results, the surface of
the sample needs to be polished in order to approach the flat condition as assumed by
the theory. It is required by the nanoindentaion technique that the surface roughness
must be smaller than one tenth of the maximum indentation depth. Therefore, if the
hardness information at smaller indentation depths is needed, the surface roughness
needs to be controlled to be lower.

Several polishing procedures are applied in order to improve the surface rough-
ness. Mechanical polishing is usually applied firstly in order to level the entire
surface to be horizontal. Silica carbide polishing papers with polishing particles of
different sizes are used depending on the initial surface condition: the rougher the
surface, the greater the size of polishing particles. After the use of each polishing
paper, the surface is examined using a light microscope to make sure that the
scratches on the surface are in the same size. Chemical-mechanical polishing is
applied following the mechanical polishing when the polishing paper with the
minimum size of polishing particles is used. In the chemical-mechanical polishing
process, 50 nm colloidal silica or alumina polishing particles are used depending
on the type of materials to be polished. By adjusting the PH values of the polishing
slurries, chemical reactions between the polishing particles and the polishing sample
can be initiated so that the surface roughness is lowered more effectively compared
to the mechanical polishing process. The improvement of the surface quality of an
iron sample is shown in Fig. 6. It shows that the surface roughness is improved and
the defects such as voids and scratches are also improved.

In addition to the surface roughness, the plastic deformation layer on top of the
surface is another concern for nanoindentation experiments. Due to the mechanical
abrasion between the polishing particles and the sample, plastic deformation layer
is induced no matter how small the polishing particles are used. The hardness
varies if there is a plastic deformation that occurred in the indenter area, especially
for tests in bicrystalline materials when the indentation depth is as small as a
few tens of nanometers where the hardening-softening phenomenon is observed.
Electro-polishing is widely used in order to remove the plastic deformation layer.
Chemical reactions occur in the electrolyte solution and the peak material on the
surface is removed by the electrical current during the electro-polishing process. As

Fig. 6 SEM images of surfaces of testing sample in different polishing conditions: (a) without
polishing, (b) after mechanical polishing, and (c) after chemical-mechanical polishing
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Fig. 7 Visualization of the grain boundary after vibratory on a bicrystalline aluminum (Reprinted
from Voyiadjis and Zhang (2015))

no mechanical abrasion is induced, there is no plastic deformation created in the
electro-polishing process. Although electro-polishing process is very effective in
removing the plastic deformation, it has its disadvantages that the electrical current
must be controlled carefully at a constant value; otherwise damages are induced
on the surface. Vibratory polishing is another process that can remove the plastic
deformation layer. In a vibratory polisher, a vertical vibration is added in addition to
the rotation of the polishing pad. The down force pressure during polishing is thus
minimized by the vibration so that only the peak material on the surface is removed
in a very gentle manner. Due to the minimal down force pressure, the mechanical
abrasion between the particles (usually alumina or colloidal silica) and the sample
does induce significant plastic deformation. After the vibratory polishing process
for bicrystalline samples, the grain boundary is observed under the light microscope
as shown in Fig. 7. The pen mark is made on the surface of the bicrystal where the
single grain boundary is formed during the growth of the bicrystal.

Temperature and Strain Rate Dependency on Single Crystal
and Polycrystalline Metals

The TRISE model incorporates the temperature and strain rate parameters into
the expression of the length scale. As the expression of hardness is written using
the length scale, the hardness is predicted to be dependent on the temperature
and the strain rate. In order to verify the prediction of the TRISE model and
material parameters needed for the length scales, nanoindentation experiments are
conducted on various metals with single crystal and polycrystalline microstructures
at different temperatures and strain rates. The material parameters are determined by
comparing the TRISE model and the experiments. The length scales are eventually
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Fig. 8 Comparisons between TRISE models and nanoindentation experiments: (a) copper single
crystal and (b) aluminum single crystal (Reprinted from Voyiadjis et al. (2011))

determined for single crystal and polycrystalline materials at different strain rates
and temperatures.

In aluminum and copper single crystals, nanoindentation experiments are per-
formed on a polished surface at different strain rates of 0.05 s�1 , 0.08 s�1 ,
and 0.10 s�1. It shows from the experimental results in Fig. 8 that the hardness
increases with the increasing strain rate for both metals. The TRISE model for
single crystal given by Eq. 35 is applied by giving different values for the parameter
equivalent plastic strain rate Pp. It shows a good agreement between the experimental
results and the predictions from the hardness expression. This proves that the TRISE
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Table 1 Materials parameters used in Eq. 35 for single crystals (Reprinted from Voyiadjis et al.
2011)

Parameters h1
(nm)

ı1 ı2 ı3 M c ™

(Rad)
m ˇ q

Copper 32 7,050 50 0.01 0.5 1 0.358 0.474 2 0.3
Aluminum 50 4,000 48 0.01 0.5 1 0.358 0.474 1.5 0.3

model is able to predict the influence given by the strain rates. Moreover, there is no
hardening-softening phenomenon observed which validates the assumption that no
dislocation is accumulated with the absence of grain boundaries.

The material parameters shown in Table 1 are obtained through the comparisons
and the length scales of copper and aluminum single crystals as shown in Fig. 9.

Although no hardening-softening phenomenon is observed due to the absence
of the grain boundaries, the experimental results and the TRISE model both show
that the hardness decreases with increasing indentation depth. This is due to the
generation of GNDs at small depth where nonuniform deformation is significant
during the initial formation of the indent. The GNDs also interact with the SSDs
as obstacles of the movement of SSDs, giving rise to the increase of hardness at
smaller depths. The material length scales for both single crystals show the length
scale decrease with the increase of the equivalent plastic strain, which means the
strain gradient is greater when deformation is smaller. The determination of the
length scale verifies the strain gradient plasticity theory that the stress mechanical
responses are greater when the strain gradients are higher. It also shows in the
length scales that a variable length scale expression needs to be used instead of
the constant length scale determined in the previous research, which proves that a
variable length scale is more realistic and the expression can be applied to different
problems.

Nanoindentation experiments are conducted on polycrystalline copper and alu-
minum in order to capture the hardening-softening phenomenon as well as the
strain rate dependency. TRISE model given by Eq. 36 is applied to compare with
the experimental results. As shown in Fig. 10, the hardness initially decreases
with indentation depth at very small depth less than 50 nm. The hardening-
softening phenomenon is observed following the decreasing hardness segment. The
experimental results show that at very small indentation depth where the plastic
deformation does not reach the grain boundaries, the polycrystalline materials
behave similarly with respect to single crystal materials. However, due to the
presence of the grain boundaries, the expansion of the plastic zone is constrained
and dislocations start to accumulate near the grain boundary. The local increase
of the dislocation density gives rise to the increase of the material hardness,
causing the hardening-softening phenomenon. Nanoindentation experiments are
also performed at different strain rates. It shows in both experiments and TRISE
model that the hardness increases with the increasing strain rate, verifying the strain
rate dependency on polycrystalline materials.
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Fig. 9 Material length scales of single crystals: (a) copper and (b) aluminum (Reprinted from
Voyiadjis et al. (2011))

The length scales for polycrystalline copper and aluminum can be determined by
comparing the experimental results and TRISE model in determining the material
parameters. Using the parameters given in Table 2, the length scales of both
materials are obtained as a function of the equivalent plastic strain as shown in
Fig. 11.

As shown in Fig. 11, the length scale decreases with the increasing strain rate.
When the strain rate is increased, the deformation occurs faster and the dislocations
do not have the sufficient time to generate and are trapped by the local nonuniform
deformation. This causes the additional increase of the strain gradient, resulting in
the increase of the material hardness.
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Fig. 10 Nanoindentation experiments and TRISE model of polycrystalline materials: (a) copper
and (b) aluminum at different strain rates (Reprinted from Voyiadjis et al. (2011))

Table 2 Materials parameters used in Eq. 36 for polycrystalline materials (Reprinted from
Voyiadjis et al. 2011)

Parameters h1
(nm)

ı1 ı2 ı3 d
(nm)

M c ™

(Rad)
m ˇ q

Copper 26 2.1 1 0.01 1,000 0.5 1 0.358 0.474 2 0.3
Aluminum 41 1.9 1 0.01 1,000 0.5 1 0.358 0.474 1.5 0.3
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Fig. 11 Length scales as a function of the equivalent plastic strain for polycrystalline materials:
(a) copper and (b) aluminum at different strain rates (Reprinted from Voyiadjis et al. 2011)

Nanoindentation experiments are performed on iron (Bahr et al. 1999) and gold
(Volinsky et al. 2004) at different temperatures in order to study the temperature
dependency. Different temperatures are given to the TRISE model and the com-
parisons between the experiments and models are presented in Fig. 12 Voyiadjis
and Faghihi (2012). It shows that the hardness decreases with the increase of the
temperature. The higher mobility of the dislocations causes the decrease of the
dislocation density and thus the hardness decreases.

The length scales of iron and gold are obtained through the comparison and it
shows in Fig.13 that the length scales increase with the increasing temperature,
causing the decrease in the material hardness. As iron is a BCC metal and gold
is an FCC metal, it shows that the TRISE model works for both BCC and FCC
metals in predicting the indentation size effect and determining the length scales.
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gold polycrystalline film (Reprinted from Voyiadjis and Faghihi (2012))

Influence of the Grain Boundaries on Bicrystal Metals

As discussed in the previous section, the distance between the indenter and the
grain boundary during nanoindentation has an impact on the hardness behavior
of materials with grain boundaries. In the case of polycrystalline materials, the
grain size d characterizes the interactions between the dislocations and the grain
boundaries. The distance between the indenter and the grain boundary becomes
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greater when the grain size increases. Nanoindentation experiments are performed
on Nickel samples with different grain sizes (Yang and Vehoff 2007). The TRISE
model given by Eq. 36 is applied by assigning different values to the grain size
d (Voyiadjis and Faghihi 2012).The comparison between the experiments and the
prediction of TRISE model is shown in Fig. 14. It shows in the experiments that
as the grain size increases, the hardness during the hardening-softening segment
decreases. As the dislocations only accumulate when they move to the grain
boundaries, the greater grain size allows the dislocations to move in a greater
space comparing to the condition of smaller grain size. The dislocation density thus
decreases, resulting in the decrease in hardness. The experimental results show a
good agreement with the predictions given by the TRISE model at different grain
sizes as shown in Fig. 14.
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(Reprinted from Voyiadjis and Faghihi (2012))

The size of the plastic zone increases with the increasing indentation depth.When
the grain size is smaller, the plastic zone reaches the grain boundary at lower depth.
As the grain size increases, the plastic zone reaches the grain boundary at greater
depth. When the grain size is as much as 80 �m, the size of the plastic zone is
smaller than the grain size. There is no accumulation of the grain boundary and no
hardening-softening phenomenon is observed. The length scales at different grain
sizes are obtained from the comparison. It shows in Fig. 15 that the length scale
decreases as the grain size decreases. The grain boundaries act as constrains that
block the influence of the strain gradient, which causes the smaller characteristic
length scale when the grain size is smaller.

In order to isolate the investigation on the influence of the grain boundary, bicrys-
talline materials are tested near the single grain boundary at different distances.
After the Aluminum sample is polished, the single grain boundary is observed
as shown in Fig. 7. However, it is only visible using a 10� microscope in the
Nanoindenter. The distance between the indenter and the grain boundary can be
only measured using a 40� microscope. In order to identify the position of the grain
boundary, the two indents are made on two points on the grain boundary under a
10� microscope. The grain boundary can thus be represented by the straight line
connecting the two marking indents under the 40� microscope. A straight line of
nanoindentations are performed near the grain boundary with the angle between the
line of indents and the grain boundary to be 20ı as shown in Fig. 16a (Voyiadjis and
Zhang 2015).

It is noted that the depths of the indentations are 500 nm and the spacing is
5 �m. In order to make sure that there is no interaction between the close indents,
experiments are made on other locations and the results show that there is no
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significant interaction observed. The difference in the microstructures from two
grains is not considered here. Therefore, the five indents on one side of the grain
boundary are selected for the investigation. The distances between the center of
the indents and the grain boundary are measured using the scale in the image as
shown in Fig. 16b. The experimental results of the five indents are presented in
Fig. 17. It shows that for the two indents that are far from the grain boundary,
there is no hardening-softening phenomenon observed. The grain boundary does
not have the impact on the accumulation of dislocations when the distance is
large, showing the single crystal behavior. It also shows in Fig. 17 that hardening-
softening phenomenon is observed for the rest three indents and as the distance
becomes smaller, there is a greater hardening effect. This observation verifies
the assumption of the influence of the grain boundary that more dislocations are
accumulated between the indenter and the grain boundary when the distance is
smaller. The higher dislocation density at smaller distances causes the increase in
hardness.

The developed TRISE model for bicrystalline materials given by Eq. 38 is
applied by assigning different values of the distance r measured from the experi-
ments. The comparison between the TRISE model and the experimental results of
the three indents with the grain boundary effect is given in Fig. 18. The developed
TRISE model shows its capability to predict the hardness with the presence of the
single grain boundary. It also reflects the prediction that there is a higher hardening
effect as the indents are made closer to the grain boundary. The material parameters
in Eq. 38 are determined by the comparison between the TRISE model and the
experimental results. The material length scales are obtained as shown in Fig. 19
through the determination of material parameters given in Table 3.
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Fig. 16 Nanoindentations near the grain boundary at different distances: (a) image under the 40�
microscope and (b) the magnified image of (a) (Reprinted from Voyiadjis and Zhang (2015))

The length scale decreases as the distance between the indenter and the grain
boundary decreases. The grain boundary and the indenter both act as obstacles of
the influence of the strain field. Therefore, the impact range of the strain gradient
is shorter when the distance becomes smaller, resulting in a smaller characteristic
length scale. The decrease in the length scale, in return, causes the increase of the
strain gradient and thus causes the additional increase on material hardness.

Similar nanoindentation experiments are performed on a bicrystalline copper
which is also an FCC metal. The grain boundary is also represented by a straight
line connecting the two marking indents made on two points of the straight
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grain boundary. A line of indents are made across the grain boundary with the
angle between indentation line and the grain boundary to be 5ı as shown in Fig.
20a (Zhang and Voyiadjis 2016). The image in Fig. 20a is zoomed in order to
show the details of the distance between the indent and the grain boundary as
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Table 3 Material parameters for bicrystalline Aluminum (Reprinted from Voyiadjis and Zhang
2015)

Material parameters h1 (nm) ı1 ı2 ı3

Aluminum 10 1.9 135 0.01

shown in Fig. 20b. The distances are measured using the scale considering the
magnification. Artificial effect is added to Fig. 20b in order to show the clear contrast
between the indents and the sample surface.

The experimental results of the three indents shown in Fig. 20b on the same side
of the grain boundary as well as the indent made right on the grain boundary are
presented in Fig. 21. The indent on the grain boundary solely decreases with the
increasing indentation depth. When the indent is made on the grain boundary, the
dislocations start to generate into the two grains on both sides of the grain boundary.
There is no additional obstacle of the generation of dislocations and therefore no
hardening-softening phenomenon is observed. This proves the assumption of the
influence of the grain boundary on the other side. Hardening-softening effect is
observed for the three indents within a close distance to the grain boundary. It also
shows in Fig. 21 that as the distance becomes smaller, there is a greater hardening
effect, similarly to the observation made from the experiments of Aluminum
bicrystal. The experiments on Copper bicrystal confirm the influence of the grain
boundary on the material hardness on FCC metal.

Due to the tip rounding of the indenter, strain hardening may be induced during
nanoindentation at very small indentation depths. In order to confirm that the
hardening is solely attributed to the accumulation of dislocations, the elastic moduli
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Fig. 20 Nanoindentation experiments with different distances from the grain boundary: (a) image
under the 40� microscope and (b) a zoomed view of (a) (Reprinted from Zhang and Voyiadjis
(2016))

of the three indents at different distances are presented in Fig. 22. It shows that after
the depth of 20 nm, the elastic moduli from the three indents are constants on the
average. This means that after the depth of 20 nm where the hardening effect is
captured, there is no strain hardening effect induced as the elastic modulus is not
dependent on the indentation size effect but only dependent on the strain hardening.
The information of elastic moduli confirms that the hardening effect observed for
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Fig. 21 Hardness versus indentation depth curves from nanoindentation experiments at different
distances to the grain boundary and right on the grain boundary (Reprinted from Zhang and
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Fig. 22 Elastic modulus as a function of the indentation depth for three indents near the grain
boundary (Reprinted from Zhang and Voyiadjis (2016))

the Copper bicrystal is only attributed to the accumulation of dislocations between
the indenter and the grain boundary.

The developed TRISE model given by Eq. 38 is applied for the copper bicrystal
with different values of distances. The comparison between the TRISE model and
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Table 4 Material parameters of Copper bicrystal (Reprinted with permission from Zhang and
Voyiadjis 2016)

Material parameters h1(nm) •1 •2 •2

Copper 42 2.0 3.0 0.01
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Fig. 25 Hardness vs. indentation depth for nanoindentation experiments at different strain rates
with the same distance r (Reprinted from Zhang and Voyiadjis (2016))

experimental results is presented in Fig. 23. The length scales at different distances
for the Copper bicrystal are determined as shown in Fig. 24 using the material
parameters determined from the comparison as shown in Table 4.

The comparison shows the capability of the developed TRISE model on Copper
bicrystal. As shown in Fig. 24, the length scale decreases as the distance r becomes
smaller, which confirms the influence of the grain boundary on the material behavior
of FCC metals.

Moreover, the strain rate dependency is studied for Copper bicrystal. Nanoin-
dentation experiments are performed at the same distance from the grain boundary
at different strain rates of 0.05s(�1) , 0.08s�1 , and 0.10s�1. As shown in Fig. 25,
the hardness increases with the increasing strain rates. It is worth noting that this
increase is not only for the hardening-softening segment but for the entire depth.
This is because the strain rate has the influence on material behaviors in both micro-
and macroscales.

The TRISE model given by Eq. 38 is applied with different values of strain rates.
The material length scales are determined using different values of strain rates and
the material parameters given by Table 4. It shows in Fig. 26 that the length scale
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Fig. 26 Length scales as a function of the equivalent plastic strain at different strain rates for
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decreases with the increase of the strain rate. The strain rate dependency for Copper
bicrystal is similar with the observation made from the polycrystalline copper.

Summary and Conclusion

The size effect during nanoindentation is addressed in this chapter. The classical
continuum theory is not capable in predicting the indentation size effect as it
does not incorporate the length scale in the constitutive expression. Strain gradient
plasticity theory is applied in order to capture the size effect. The expression of a
physically based length scale is determined from the strain gradient plasticity theory.
In order to determine the material length scales, nanoindentation experiments are
performed on single crystals, polycrystalline materials and bicrystalline materials.
The constitutive equation is mapped into hardness versus indentation depth and
the material parameters are determined from the expression of hardness and the
experimental results.

The material length scale is dependent on the temperature, equivalent plastic
strain rate, and grain size in polycrystalline materials. A TRISE model is applied
in order to capture the dependencies of temperature, strain rate, and grain size.
Nanoindentation experiments are performed on single crystal and polycrystalline
materials. From the comparison between the TRISE model and experimental
results, the length scales at different temperatures, strain rates, and grain sizes are
determined.
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The results of nanoindentation experiments on single crystal Copper and Alu-
minum show that the hardness solely decreases with the increase of the indentation
depth. The TRISE model for single crystal is able to predict the hardness obtained
from experiments of single crystal materials. The nanoindentation experiments on
polycrystalline Copper and Aluminum show the hardening-softening effect due to
the presence of grain boundaries. The TRISE model is capable in predicting the
hardening-softening phenomenon. The temperature dependency is addressed by the
TRISE model at different temperatures and nanoindentation experiments on iron
and gold. Both TRISE model and experiments show that the hardness decreases
with the increasing temperatures. Nanoindentation experiments are performed at
different strain rates on both polycrystalline and single copper and aluminum. It is
shown by the TRISE model and experimental results that hardness increases as the
strain rate increases. The material length scales are determined by the comparison
between the TRISE model and the experiments. The dependencies of length scales
on the temperature, strain rate, and grain size verify the theory that higher strain
gradient causes greater material hardness.

In order to isolate the influence of the grain boundary, bicrystalline copper
and aluminum are used and nanoindentation experiments are performed near the
grain boundary at different distances. The TRISE model is developed based on the
structure of bicrystals. The length scales are determined by comparing the developed
TRISE model and the experimental results on bicrystalline materials.

The experimental results on bicrystalline copper and aluminum show that the
material behaves like a single crystal when the indents are made with large distances
from the grain boundary. The hardening-softening phenomenon is only observed
for the indents made in close proximity to the grain boundary. The experimental
observation validates that the increase of hardness is attributed to the presence of
the grain boundary. The accumulation of dislocations near the grain boundary causes
the increase of dislocation density, resulting in the additional hardening effect. The
influence of the grain boundary is further investigated through nanoindentation
experiments near the grain boundary at different distances. The TRISE model is
developed for bicrystalline materials by replacing the grain size d in polycrystalline
models with the distance r between the indents and the grain boundary. The
developed TRISE model shows its capability to predict the fact that there is
a stronger hardening effect when the distance r becomes smaller as shown by
nanoindentation experiments, providing a new type of size effect with respect to
the distance r. The length scales of bicrystalline copper and aluminum show that as
the indents are made closer to the grain boundary, the length scales decrease. The
grain boundary and the indenter act as obstacles that prevent the strain gradient from
influencing the space outside the volume constrained by the obstacles. Therefore,
the characteristic length scale at smaller distance is lower and in return causes the
increase in the strain gradient and dislocation density. The increase of dislocation
density causes the additional hardening effect during nanoindentation. The rate
dependency is also investigated on bicrystalline copper through nanoindentation
experiments at different strain rates with a fixed distance from the grain boundary.
Both experimental results and the TRISE model show an increase of hardness with
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the increasing strain rate, similarly to the rate dependency in single crystal and
polycrystalline materials.

For all the length scales determined in this chapter, it shows that the length
scale decreases with the increasing equivalent plastic strain and approaches to zero
when the deformation is large. This behavior of the length scale proves the strain
gradient plasticity theory in addressing the size effect during nanoindentation. When
the indentation depth is small, the shape of the indent is initially formed. GNDs
are required to accommodate the nonuniform deformation in the formation of the
indent. As the indenter penetrates deeper, the indent grows to a greater size with a
similar shape because of the use of the self-similar Berkovich indenter. The amount
of uniform deformation increases and SSDs are required to generate the uniform
deformation. Therefore, the GND density decreases gradually with the increase of
the indentation depth and the strain gradient becomes smaller. The influence of the
decreasing strain gradient causes the decrease of the characteristic length. When
the deformation becomes larger in the macroscopic scale, uniform deformation
dominates and there is no influence of the strain gradient, resulting in a zero value
of the length scale in large deformations.
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Abstract

In this chapter, the molecular dynamics (MD) simulation of nanoindentation
experiment is revisited. The MD simulation provides valuable insight into the
atomistic process occurring during nanoindentation. First, the simulation details
and methodology for MD analysis of nanoindentation are presented. The effects
of boundary conditions on the nanoindentation response are studied in more
detail. The dislocation evolution patterns are then studied using the information
provided by atomistic simulation. Different characteristics of metallic sample
during nanoindentation experiment, which have been predicted by theoretical
models, are investigated. Next, the nature of size effects in samples with small
length scales are studied during nanoindentation. The results indicate that the
size effects at small indentation depths cannot be modeled using the forest
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hardening model, and the source exhaustion mechanism controls the size effects
at the initial stages of nanoindentation. The total dislocation length increases by
increasing the dislocation density which reduces the material strength according
to the exhaustion hardening mechanisms. The dislocation interactions with each
other become important as the dislocation content increases. Finally, the effects
of grain boundary (GB) on the controlling mechanisms of size effects are studied
using molecular dynamics.

Keywords
Nanoindentation · Molecular dynamics · Size effects · Dislocation · Grain
boundary

Introduction

Indentation is a common experiment to investigate the material properties at
different length scales. During indentation, a required force to press a hard indenter
into the sample is measured. In the case of nanoindentation, unlike the traditional
indentation experiment, it has been observed that the hardness is not a constant
value and varies during the test (Nix and Gao 1998; Al-Rub and Voyiadjis 2004;
Voyiadjis and Al-Rub 2005). Many researchers have tried to study the variation
of hardness, which is commonly termed as size effects, during nanoindentation.
The variation of geometrically necessary dislocations (GNDs) density has been
commonly considered as the mechanism which controls the hardness. Corcoran et
al. (1997) investigated the dislocation nucleation and its effects on the response
of Au during nanoindentation experiment. Suresh et al. (1999) studied the effects
of sample thickness on the mechanical and dislocation nucleation of Cu thin films
during nanoindentation. The grain boundary (GB) effects on the defect nucleation
and evolution of bicrystal Fe-14 wt. %Si alloy during nanoindentation were
investigated by Soer and De Hosson (2005). It was observed that the dislocations
pile up against the GB (Soer and De Hosson 2005). Almasri and Voyiadjis (2010)
conducted the nanoindentation of polycrystalline thin films and observed that the
GB may enhance the sample hardness.

The interaction of dislocations with each other governs the material strength
in bulk metallic samples which are usually captured by Taylor-like hardening
models (Nix and Gao 1998; Al-Rub and Voyiadjis 2004; Voyiadjis and Al-Rub
2005). The models generally relate the strength to the dislocation density and
state that the stress increases by increasing the dislocation density. Recently,
researchers have been able to experimentally measure the GNDs content in samples
of confined volume (Kysar and Briant 2002; Kysar et al. 2007; Zaafarani et
al. 2008; Demir et al. 2009; Dahlberg et al. 2014). However, the experimental
observations cannot be fully described by the bulk size models. Demir et al.
(2009, 2010) conducted the nanoindentation and microbending experiments and
observed that the governing mechanisms of size effects at smaller length scales
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are not similar to those of the large size samples. Demir et al. (2009) observed
that the hardness decreases by increasing the GNDs density during nanoindentation
of Cu single crystal thin films which cannot be described using the bulk-sized
models. Demir et al. (2010) also showed the breakage of the dislocations mean-
field theory at small length scales during the microbending of Cu single crystal thin
films.

One approach to investigate the governing atomistic process of size effects during
nanoindentation is to simulate the sample with the full atomistic details using MD.
Many deformation mechanisms during nanoindentation of metallic thin films have
been captured using MD. Incorporating the MD simulation, Kelchner et al. (1998)
investigated the defect nucleation and evolution of Au during nanoindentation. The
surface step effects on the response of Au during nanoindentation were investigated
by Zimmerman et al. (2001) using atomistic simulation. Lee et al. (2005) conducted
a comprehensive study on the defect nucleation and evolution patterns during
nanoindentation of Al and tried to explain the nanoindentation response using
those patterns. Hasnaoui et al. (2004), Jang and Farkas (2007), and Kulkarni et al.
(2009) have studied the interaction between the dislocations and GB during nanoin-
dentation experiment using molecular dynamics. Yaghoobi and Voyiadjis (2014)
investigated the effects of the MD boundary conditions on the sample response
and defect nucleation and evolution patterns during nanoindentation. Voyiadjis
and Yaghoobi (2015) investigated the theoretical models developed to capture the
size effects during nanoindentation using MD. Yaghoobi and Voyiadjis (2016a)
investigated the governing mechanisms of size effects during nanoindentation using
MD. Voyiadjis and Yaghoobi (2016) incorporated large-scale MD to study the GB
effects on the material strength as the grain size varies.

This chapter is designed as follows. In section “Simulation Methodology,” the
general details for atomistic simulation of nanoindentation are described. In section
“Boundary Conditions Effects,” the effects of selected boundary conditions for MD
simulation of nanoindentation are elaborated. In section “Comparing MD Results
with Theoretical Models,” the obtained results from MD simulation are compared
to those predicted by the available theoretical models. In section “Size Effects in
Small-Length Scales During Nanoindentation,” the governing mechanisms of size
effects in thin films of confined volumes are presented. In section “Effects of Grain
Boundary on the Nanoindentation Response of Thin Films,” the effects of grain
boundary and grain size on the nanoindentation response of thin films are elaborated
using the results obtained from MD simulation.

SimulationMethodology

The Newton’s equations of motion for N interacting monoatomic molecules can be
described as below:

mi Rri D �ri U C fi ; i D 1; 2; : : : ; N (1)
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where Rri is the second time derivative of ith particle trajectory ri, mi is the mass of
ith particle, fi is an external force on the ith particle, and
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where U(r1, r2, : : : , rN) is the potential energy. A metallic system can be described
using Eq. 1 by approximating the atoms as mass points. Equation 1 should be
numerically solved for the whole system. In the case of atomistic simulation, N
can be a large number, and a very efficient parallel code should be used to solve
the equation. The atomic interactions in metallic systems have been modeled using
many different potentials such as Lennard–Jones (LJ), Morse, embedded-atom
method (EAM), and modified embedded-atom method (MEAM).

The LJ potential ELJ can be described as below:
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where ¢ is the distance from the atom at which ELJ D 0 and " is the potential well
depth. A cutoff distance should be chosen for LJ potential.

Morse potential EMorse can be written as follows:
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where D is the cohesive energy, ˛ is the elastic parameter, and r0 is the equilibrium
distance.

EAM is a popular potential to model the metallic atoms interactions (Daw and
Baskes 1984). The EAM potential EEAM is described as below:
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where V(rij) is the pair interaction potential, F(�i) denotes the embedding potentials,
and ®(rij) is a function which is defined using the electron charge density.

The MEAM potential is the modification of EAM potential which can be
described as follows (Baskes 1992):
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� ijk is the angle between the ith, jth, and kth atoms. The explicit three-body term is
included by introducing the functions fij, fik, and gi.

The indenter can be modeled as a cluster of atoms. However, in order to manage
the computational costs, the indenter is commonly modeled as a repulsive potential.
Two types of repulsive models can be used to simulate the interaction between the
indenter and thin film atoms:

• First, the spherical indenter is modeled using an indenter repulsive force which
is described as below (Yaghoobi and Voyiadjis 2014):

F ind.r/ D �K ind.r � R/2 for r < R

F ind.r/ D 0 for r � R
(8)

where Kind is the force constant, r is the atomic distance to the indenter surface,
and R is the radius of indenter.

• Second, the indenter, with general geometry can be simplified using a repulsive
potential which is described as below (Voyiadjis and Yaghoobi 2015):

E ind.r/ D "ind.r � rc/2r < rc (9)

where "ind is the force constant, r is the distance between the particle and indenter
surface, and rc is the cutoff distance.

Five different indenter geometries of right square prismatic, spherical, cylindri-
cal, blunt conical, and conical with the spherical tip are incorporated in this chapter.
During nanoindentation, the precise contact area (A) should be captured to calculate
the hardness at each step. A 2D-mesh is produced from the projections of atoms in
contact with the indenter. The total contact area is then calculated using the obtained
2-D mesh.

The true indentation depth h is different from the tip displacement d during
nanoindentation. A conical indenter of h can be obtained as below:

h D
.ac � a0/

tan �
(10)

where � is the cone semi-angle, ac D
p

A=� is the contact radius, and
a0 D r2 C rc(1/ cos � � tan � ). The indentation depth of a spherical indenter is
obtained as below:

h D R �

q
R2 � a2

c (11)
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In the case of a conical indenter with the spherical tip, h can be calculated using
Eq. 11 for the spherical part. The indentation depth can be obtained as follows for
the conical part:

h D
.ac � a0/

tan .�=2/
C h0 (12)

where h0 is the depth at which the indenter geometry changes from spherical to
conical, and a0 is the contact radius at h0 (Fig. 1). In the cases of cylindrical and
right square prismatic indenters, it is assumed that h � d because there is no relation
between indentation depth and contact area.

In order to visualize the defects, several methods have been introduced such
as energy filtering, bond order, centrosymmetry parameter, adaptive common
neighbor analysis, Voronoi analysis, and neighbor distance analysis which have
been compared with each other by Stukowski (2012). Also, the Crystal Analysis
Tool developed by Stukowski and his coworkers (Stukowski and Albe 2010;
Stukowski et al. 2012; Stukowski 2012, 2014) have been incorporated to extract
the dislocations from the atomistic data. Here, centrosymmetry parameter (CSP)
and Crystal Analysis Tool are explained in more detail. CSP can be described as
below (Kelchner et al. 1998):

CSP D

NpX
iD1

ˇ̌
Ri C RiCNp

ˇ̌2
(13)

where Ri and RiCNp are vectors from the considered atom to the ith pair of
neighbors, and Np depends on the crystal structure. For example, Np D 6 for fcc

a

b

Fig. 1 The true indentation depth h for: a spherical part of the indenter b conical part of the
indenter (Reprinted with permission from Yaghoobi and Voyiadjis 2016a)
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materials. CSP is equal to zero for perfect crystal structure. However, the atomic
vibration introduces a small CSP for atoms which are not defects. Accordingly,
a cutoff should be introduced in a way that if CSPi < CSPcutoff, the ith atom is not
considered as a defect (Yaghoobi and Voyiadjis 2014). Also, point defect is removed
to clearly illustrate stacking faults. Second, the MD outputs can be postprocessed
using the Crystal Analysis Tool (Stukowski and Albe 2010; Stukowski 2012, 2014;
Stukowski et al. 2012). The common-neighbor analysis method (Faken and Jonsson
1994) is the basic idea of this code. The code is able to calculate the dislocation
information such as the Burgers vector and total dislocation length. To extract
the required information, the Crystal Analysis Tool constructs a Delaunay mesh
which connects all atoms. Next, using the constructed mesh, the elastic deformation
gradient tensor is obtained. The code defines the dislocations using the fact that
the elastic deformation gradient does not have a unique value when a tessellation
element intersects a dislocation.

Boundary Conditions Effects

One of the most important parts of the MD simulation is to select the appropriate
boundary conditions which can accurately mimic the considered phenomenon. In
the case of nanoindentation, the selected boundary conditions may influence the
response of the simulated material. Up to now, four different boundary conditions
types have been incorporated in MD to simulate the nanoindentation experiment
which can be described as below (Fig. 2):

Fig. 2 Boundary conditions of thin films a BC1, b BC2, c BC3, and d BC4 (Reprinted with
permission from Yaghoobi and Voyiadjis 2014)
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• BC1: Fixing some atomic layers at the sample bottom to act as a substrate, using
free surface for the top, and periodic boundary conditions for the remaining
surfaces (see e.g., Nair et al. 2008; Kelchner et al. 1998; Zimmerman et al. 2001)

• BC2: Fixing some atomic layer at the surrounding surfaces and using free
surfaces for the sample top and bottom (see e.g., Medyanik and Shao 2009; Shao
and Medyanik 2010)

• BC3: Using free surface for the sample top and bottom, incorporating the periodic
boundary conditions for the remaining surfaces, and putting a substrate under the
thin film (see e.g., Peng et al. 2010)

• BC4: Incorporating the free surfaces for the sample top and bottom, using
periodic boundary conditions for the remaining surfaces, and equilibrating the
sample by adding some forces (see e.g., Li et al. 2002; Lee et al. 2005)

Yaghoobi and Voyiadjis (2014) studied the different types of boundary conditions
and their effects on the dislocation nucleation and evolution patterns using samples
with various thicknesses (tf ) indented by spherical indenters with different radii
(R). The parallel code LAMMPS (Plimpton 1995), which was developed at Sandia
National Laboratories, was selected to conduct the MD simulation. The numerical
time integration of Eq. 1 was performed using the velocity Verlet algorithm. Three
different types of interatomic interaction were incorporated:

• The interaction of Nickel atoms with each other (Ni-Ni)
• The interaction of Silicon atoms with each other (Si-Si)
• The interaction of Nickel atoms with Silicon ones (Ni-Si)

The three interactions were modeled using the embedded-atom method (EAM)
potential for Ni-Ni interaction, Tersoff potential for Si-Si interaction, and Lennard–
Jones (LJ) potential for Ni-Si interaction. The Ni-Ni interaction is modeled using
the EAM potential parameterized by Mishin et al. (1999). To capture the Si-
Si interaction, a three-body Tersoff potential (Tersoff 1988) was chosen. Table 1
presents the potential parameters of Si. The LJ potential ELJ was used to model the
Ni-Si interaction and required parameters ("Ni–Si and �Ni–Si) are presented in Table 2.
The cutoff distance of 2.5� was selected for LJ potential. The indenter was spherical
modeled using the repulsive force Find presented in Eq. 8. The centrosymmetry
parameter (CSP) was incorporated to visualize the defects with the cutoff equal
to 1.5 (CSPcutoff D 1.5).

Table 1 Tersoff potential
parameters of Si-Si
(Yaghoobi and Voyiadjis
2014)

A D 3264.7 eV B D 95.373 eV
�1 D 3.2394 Å–1 �2 D 1.3258 Å–1

’ D 0 “ D 0.33675 n D 22.956
c D 4.8381 d D 2.0417 h D 0.0000
œ3 D œ2 R D 3.0 Å D D 0.2 Å



2 Size Effects During Nanoindentation: Molecular Dynamics Simulation 47

Table 2 LJ potential
parameters of Ni-Ni, Si-Si,
and Ni-Si (Yaghoobi and
Voyiadjis 2014)

" (J) ¢ (Å)

Ni-Ni 8.3134e-20 2.2808
Si-Si 2.7904e-21 3.8260
Ni-Si 1.5231e-20 3.0534

Fig. 3 Defect nucleation and evolution of a Type I, b Type II, and c Type III (Reprinted with
permission from Yaghoobi and Voyiadjis 2014)

It was observed that the bending and indentation mechanisms control the initial
stages of defect nucleation and evolution for samples with different thicknesses
(Yaghoobi and Voyiadjis 2014). Accordingly, three patterns of so-called Type I, Type
II, and Type III were observed which can be described as follows (Fig. 3) (Yaghoobi
and Voyiadjis 2014):
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• Type I: The location of initial defect nucleation is beneath the indenter. Two faces
of embryonic dislocation loops evolve on

�
111

�
and

�
111

�
planes. Eventually, a

tetrahedral sessile lock is formed. This dislocation pattern is controlled by the
indentation mechanism.

• Type II: Again, the location of initial nucleation is beneath the indenter. However,
the defect evolution occurs on the plane which is parallel to (111), which is
the indentation plane. A dislocation pattern similar to Type I starts evolving as
the indentation depth increases. Both bending and indentation mechanisms are
important in this pattern.

• Type III: The initial dislocation is nucleated at the sample bottom. The disloca-
tions are evolved on f111g planes while they are moving towards the sample top.
Bending is the dominant mechanism of deformation.

Figure 4 presents the nanoindentation responses of samples visualized in Fig. 3.
In the case of sample with Type I defect structure pattern, the first load relaxation
occurs due to the initial defect nucleation beneath the indenter (Fig. 4a). Two faces
of embryonic dislocation loops evolve on

�
111

�
and

�
111

�
planes. Another load

relation occurred when the tetrahedral sessile lock is shaped. Figure 4b illustrates the
effects of defect evolution on the response of the sample with dislocation pattern of
Type II during nanoindentation. The indentation force is initially relaxed due to the
first defect nucleation beneath the indenter. The defect evolution occurs on the plane
which is parallel to (111), which is the indentation plane. Due to the complexity
of dislocation evolution pattern and activation of both bending and indentation
mechanisms, the effects of defects pattern on the nanoindentation response become
complicated. Figure 4c shows that indentation load is initially released due to the
first dislocation nucleation at the bottom for sample with Type III pattern. After the
initial load relaxation, the complex pattern of dislocation nucleation and evolution
leads to the oscillatory response. However, the general trend is the indentation load
increases during indentation.

The governing mechanisms of deformation also depend on the film thickness tf
and indenter radius R (Yaghoobi and Voyiadjis 2014). Samples with BC1 experience
no bending independent of the film thickness or indenter radius which leads to the
Type I pattern controlled by indentation mechanism. Sample with BC2 and BC3
may experience all the patterns of Type I, Type II, and Type III depending on the
value of R/tf . For very small values of R/tf , the indentation governs the deformation
mechanism and Type I pattern occurs. Increasing R/tf , bending mechanism also
becomes important and Type II pattern occurs. Further increasing R/tf leads to the
Type III pattern which is governed by the bending mechanism.

The contact pressure at the onset of plasticity p
y
m is one of the properties which

is commonly investigated during nanoindentation. Yaghoobi and Voyiadjis (2014)
showed that the p

y
m is also influenced by the choice of MD boundary conditions. The

effect can be predicted using the pattern of dislocation nucleation and evolution. In
the case of Type I pattern, p

y
m is independent of film thickness. However, p

y
m depends

on the film thickness for samples with Type II and Type III in a way that p
y
m increases

by increasing the film thickness. Comparing the dislocation nucleation and evolution
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pattern with each other, Type I has the largest and Type III has the smallest contact
pressure at the time of plasticity initiation.

ComparingMD Results with Theoretical Models

Several theoretical models have been proposed to predict the variation of dislo-
cation length during nanoindentation experiment. Nix and Gao (1998) predicted
the variation of geometrically necessary dislocations (GNDs) by integrating the
dislocation loops induced during nanoindentation. The dislocation length produced
during nanoindentation using a conical indenter can be described as follows (Nix
and Gao 1998; Swadener et al. 2002):

�co D
�ach

b
(14)

Pugno (2007) generalized the method by replacing the surface of indentation
with the staircase-like surface and presented a generalized equation for dislocation
length prediction:

� D
S

b
(15)

where S D � – A and � is the total contact surface. The variation of dislocation
length during nanoindentation using cylindrical and right square prismatic indenters
can be obtained using Eq. 15 as below:

�cy D
2�ach

b
(16)

�pr D
4ch

b
(17)

where b is the magnitude of the Burgers vector and c D
p

A.
Voyiadjis and Yaghoobi (2015) conducted MD simulation of Ni thin film during

nanoindentation to investigate the proposed theoretical models for dislocation length
using different indenter geometries of right square prismatic, conical, and cylin-
drical. The Ni thin film dimensions were 1,200 nm, 1,200 nm, and 600 nm along�
110

�
,
�
112

�
, and [111] directions, respectively. The radius of cylindrical indenter

was r1 D 4.8 nm. The indentation surface of the right square prismatic indenter
was a 7.5 � 7.5 nm2. The smaller radius of blunt conical indenter was r2 D 0.3 nm
with the cone semi-angle of � D 56.31ı. The parallel code LAMMPS (Plimpton
195) was selected to conduct the MD simulation. The numerical time integration
was performed using the velocity Verlet algorithm. BC4 was incorporated for MD
simulation of nanoindentation. The EAM potential is used for Ni-Ni interaction
which was parameterized by Mishin et al. (1999). The indenter was modeled
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Fig. 5 Defect nucleation and evolution of Ni thin film indented by the cylindrical indenter at
a d � 0.70 nm b d � 0.86 nm c d � 0.96 nm d d � 1.02 nm e d � 1.05 nm f d � 1.12 nm
(Reprinted with permission from Voyiadjis and Yaghoobi 2015)

using the repulsive potential Eind presented in Eq. 9. The dislocation was extracted
from atomistic data using the Crystal Analysis Tool (Stukowski and Albe 2010;
Stukowski 2012, 2014; Stukowski et al. 2012).

First, Voyiadjis and Yaghoobi (2015) investigated the dislocation nucleation
and evolution pattern during nanoindentation. As an example, Fig. 5 shows the
dislocation nucleation and evolution for Ni thin film indented by a cylindrical
indenter during nanoindentation. The dislocations and stacking faults are visualized
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Fig. 6 Prismatic loops forming and movement in Ni thin film indented by the cylindrical indenter
during nanoindentation a side view b top view (Reprinted with permission from Voyiadjis and
Yaghoobi 2015)

while the perfect atoms are removed. The color of Shockley, Hirth, and stair-
rod partial dislocations and perfect dislocations are green, yellow, blue, and red,
respectively. Figure 6 illustrates the dislocation loop formation and movement along
three directions of

�
1 01

�
,

�
110

�
, and

�
011

�
. Figure 7 compares the dislocation

lengths obtained from atomistic simulation with those predicted by Eqs. 14–17. The
results show that the theoretical predictions can accurately capture the dislocation
lengths during nanoindentation. However, some discrepancies are observed which
can be described as follows:

• Atomistic simulation captures the total dislocation length including both geo-
metrically necessary and statistically stored dislocations, while the theoretical
models only calculate geometrically necessary dislocations. This is the reason
that the MD simulation dislocation lengths are mostly higher than that of the
theoretical ones.

• The theoretical models incorporate the Burgers vector of the Shockley partial
dislocations which comprised most of the dislocation content. However, a few
stair-rod and Hirth partial and perfect dislocations are nucleated with the Burgers
vectors different from the one for Shockley partial dislocations.

• The dislocations which are detached from the main dislocations network as the
prismatic loops and leave the plastic zone around the indenter are not considered
in the total dislocation length calculation.

Size Effects in Small-Length Scales During Nanoindentation

Demir et al. (2009) observed that the governing mechanisms of size effects at
smaller length scales are not similar to those of the large size samples during
nanoindentation. They observed that increasing the dislocation density decreases
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Fig. 7 Total dislocation length obtained from simulation and theoretical models in samples
indented by the a cylindrical indenter b right square prismatic indenter c conical indenter
(Reprinted with permission from Voyiadjis and Yaghoobi 2015)
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the strength (Demir et al. 2009). Uchic et al. (2009), Kraft et al. (2010), and Greer
(2013) reviewed the different sources of size effects occurring at smaller length
scales. Three mechanisms of source exhaustion, source truncation, and weakest
link theory have been introduced to capture the size effects. In samples with very
small length scales, lacking enough dislocations to sustain the imposed plastic flow
leads to the strength enhancement which is commonly termed as source exhaustion
hardening (Rao et al. 2008; El-Awady 2015). The dislocation content reduction may
happen due to dislocation starvation, i.e., when the dislocations escape from the
sample free surfaces, mechanical annealing, or dislocation source shut down. The
material strength also depends on the length of dislocation sources in a way that
decreasing the length of dislocation source increases the strength. The dislocation
source length becomes smaller by decreasing the sample size through a procedure
so-called source truncation. In this procedure, the double-ended dislocation sources
transform to a single-ended ones due to the surface effects which decreases the
length of dislocation sources. Accordingly, decreasing the sample size leads to
a smaller single-ended dislocation source which enhances the material strength
(Parthasarathy et al. 2007; Rao et al. 2007). The weakest link theory states that
the material strength increases by decreasing the sample size, because decreasing
the sample length scale will increase the strength of the weakest source available in
the sample (Norfleet et al. 2008; El-Awady et al. 2009).

Yaghoobi and Voyiadjis (2016a) incorporated the large scale MD to study the
sources of size effects at smaller length scales during nanoindentation. They selected
single crystal Ni thin films with the dimensions of 120 nm, 120 nm, and 60 nm along�
110

�
,
�
112

�
, and [111] directions, respectively. A conical indenter with a spherical

tip was incorporated which is similar to the one used by Demir et al. (2009). The
remaining simulation methodology is similar to the section “Comparing MD Results
with Theoretical Models.”

Swadener et al. (2002) approximated the spherical indenter geometry with a
parabola and presented the following equation to predict the GNDs length during
nanoindentation:

�sp �
2�

3

a3
c

bR
(18)

The approximation, however, is only applicable for small indentation depths.
Yaghoobi and Voyiadjis (2016a) introduced a theoretical equation to predict the
dislocation length of sample indented by a spherical tip using the precise geometry
of the indenter. The total dislocation length can be described as below (Yaghoobi
and Voyiadjis 2016a):

�sp D

acZ
0

2�r

b

�
dh

dr

�
dr D

2�

b

acZ
0

�
r2

p
R2 � r2

�
dr

D
2�

b

�
R2

2
sin�1

	ac

R



�

1

2

	
ac

p
R2 � ac

2


� (19)
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Fig. 8 Comparison between the dislocation lengths obtained from theoretical models and MD
simulation during nanoindentation (Reprinted with permission from Yaghoobi and Voyiadjis
2016a)

The GNDs length for the conical part of the indenter can be calculated as below:

�co D �sp

ˇ̌
hDh0

C

acZ
a0

2�r

b tan
�

�
2

�dr D �sp

ˇ̌
hDh0

C
�

�
ac

2 � a0
2
�

b tan
�

�
2

� (20)

Figure 8 compares the dislocation length obtained from atomistic simulation
with those calculated from the approximate and precise theoretical models during
nanoindentation. The GNDs length calculated from the theoretical model is a lower
bound for the total dislocation length obtained from MD which includes all types of
dislocations.

A plastic zone should be defined to obtain the dislocation density. Yaghoobi and
Voyiadjis (2016a) assumed that the plastic zone is a hemisphere with the radius of
Rpz D fac where f is a constant. The value of f D 1.9 was selected by Yaghoobi
and Voyiadjis (2016a) for the theoretical dislocation density calculations which is
similar to Durst et al. (2005). The density of dislocations can be described as below:

� D �=V (21)

where V is the plastic zone volume. Figure 9 compares the approximate and precise
theoretical dislocation densities. Figure 9 shows that approximating a sphere using a
parabola leads to a constant dislocation density. However, the density of dislocations
increases during nanoindentation by incorporating the precise indenter geometry.
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(see Eq. 19) geometries of the indenter versus the normalized contact radius ac/R (Reprinted with
permission from Yaghoobi and Voyiadjis 2016a)

Yaghoobi and Voyiadjis (2016a) incorporated five different values of f D 1.5,
2.0, 2.5, 3.0, and 3.5 and obtained the corresponding dislocation density for each
one. The volume of plastic zone can be obtained by removing the volume occupied
by the indenter (Vindenter) as follows:

V D .2=3/ �.fac/3 � Vindenter (22)

Figure 10 illustrates the variation of dislocation density � during nanoindentation
for different sizes of plastic zone. The results show that for all values of f, the
dislocation density increases during nanoindentation which is in agreement with
the trend predicted by the precise theoretical prediction presented in Fig. 9.

Figure 11 presents the variation of the mean contact pressure (pm D P/A),
which is equivalent to the hardness H in the plastic region, during nanoindentation.
Figure 11 shows that the mean contact pressure follows the Hertzian theory in the
elastic region. After the initial dislocation nucleation, however, the results show that
the hardness decreases by increasing the indentation depth.

The forest hardening mechanism governs the material strength in bulk-sized
samples which relate the material strength to the interaction of dislocations with
each other. The famous Taylor hardening-type models are usually incorporated to
describe the shear strength in the case of forest hardening mechanism as follows
(Voyiadjis and Al-Rub 2005):

	 D ˛S 
bS
p

�

� D
h
�

ˇ=2
S C

�
˛2

Gb2
G�G=˛2

S b2
S

�ˇ=2
i2=ˇ (23)
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Fig. 11 Variation of mean contact pressure pm as a function of indentation depth h (Reprinted
with permission from Yaghoobi and Voyiadjis 2016a)

where ˛ is a constant, 
 is the shear modulus, and the indices G and S designate
GNDs and SSDs parameters, respectively. Equation 23 states the material strength
increases by increasing the dislocation density. Figure 10 shows that the dislocation
density increases by increasing the indentation depth. According to the forest
hardening mechanism, the strength should also increase. However, Fig. 11 illustrates
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that the hardness decreases during nanoindentation, and the material size effects
cannot be captured by the forest hardening mechanism.

The dislocation nucleation and evolution should be investigated in addition to
the nanoindentation response to unravel the controlling mechanisms of size effects.
Figure 12 depicts the initial stages of dislocation evolution. It shows that the cross-
slip is the dominant mechanism to produce the dislocation sources. Elongation
of dislocations pinned at their ends provides the required dislocation length to

Fig. 12 Dislocation nucleation and evolution at small tip displacements: a initial homogeneous
dislocation nucleation beneath the indenter which has a Burgers vector of 1=6

�
211

�
(Shockley

partial dislocation); b–j cross-slip of screw components which produces new pinning points;
k–l first loop is released by pinching off action (Reprinted with permission from Yaghoobi and
Voyiadjis 2016a)
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sustain the imposed deformation. Dislocation loops are then released by pinching
off of screw dislocations and glide along the three directions of

�
110

�
,

�
011

�
, and�

1 01
�
. After the initial dislocation nucleation, the available dislocation length is

insufficient to sustain the imposed deformation, and the source exhaustion controls
the size effects. Consequently, the required stress reduces as the dislocation length
and density increase during nanoindentation. The dislocation density and length
are eventually reaching the value required to sustain the imposed plastic flow, and
the hardness tends to a constant value. Also, the interaction of dislocation with
each other becomes important by increasing the dislocation length. However, the
dislocation density reaches a constant value and forest hardening mechanism does
not lead to any size effects.

Effects of Grain Boundary on the Nanoindentation Response
of Thin Films

Grain boundary (GB) has a key role in deformation mechanism of crystalline
material (Meyers et al. 2006; Koch et al. 2007; Zhu et al. 2008). For crystalline
materials with large grains, the Hall-Petch relation describes the effects of grain size
which states the material strength increases by decreasing the grain size. Hall-Petch
effect is commonly attributed to the dislocation pile-up mechanism (Meyers et al.
2006; Koch et al. 2007; Zhu et al. 2008). The Hall-Petch relation breaks down for
grain size smaller than some limits, and other deformation mechanisms control the
size effects in crystalline materials such as the grain boundary rotation and sliding
(Meyers et al. 2006; Koch et al. 2007; Zhu et al. 2008).

Atomistic simulation is a powerful tool to study the interaction of dislocations
with GBs. Several mechanisms of dislocation reflection, transmission, and absorp-
tion were investigated by De Koning et al. (2003) by incorporating the atomistic
simulation. Hasnaoui et al. (2004) studied the interaction between the dislocations
and GB during nanoindentation experiment using molecular dynamics. Jang and
Farkas (2007) conducted the atomistic simulation of bicrystal nickel thin film
nanoindentation and observed that the GBs can contribute to the nanoindentation
hardness. Kulkarni et al. (2009), however, observed that the GBs mainly reduce
the hardness of the metallic samples. They showed that the CTB has the least
hardness reduction compared to the other types of GBs (Kulkarni et al. 2009).
Tsuru et al. (2010) investigated the effect of indenter distance from the GB using
MD. Stukowski et al. (2010) conducted MD simulation of nanoindentation for
metallic samples with twin boundaries and observed that the effects of twin GBs
on the material response depends on the unstable stacking fault and twin boundary
migration energies. Sangid et al. (2011) proposed an inverse relation between the
GB energy barrier and GB energy based on the MD simulation results.

Effects of GB on the response of thin film during nanoindentation has
been studied by many researchers (Hasnaoui et al. 2004; Jang and Farkas
2007; Kulkarni et al. 2009; Tsuru et al. 2010). However, a study which
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addresses a wide range of grain sizes is not a trivial task due to the MD
simulation limitations. Voyiadjis and Yaghoobi (2016) incorporated the large-
scale MD to study the effects of grain size and grain boundary geometry on
the nanoindentation response. They incorporated Ni thin films with two sizes
of 24 � 24 � 12 nm (S1) and 120 � 120 � 60 nm (S2). Four symmetric tilt
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at the two third of the sample from bottom to compare the governing mechanisms
of size effects with those of the single crystal thin films. � and ® are the interface
misorientation and inclination angles, respectively. The spherical indenters with two
different radii of R1 D 10 nm and R2 D 15 nm were modeled using the repulsive
potential Eind presented in Eq. 9. The procedure to generate and equilibrate the GBs
was elaborated by Voyiadjis and Yaghoobi (2016). The equilibrium structures of
grain boundaries are illustrated in Fig. 13 using the CSP. The remaining simulation
methodology is similar to the section “Comparing MD Results with Theoretical
Models.”

Figure 14 depicts the variation of mean contact pressure pm during nanoinden-
tation for S1 thin films, i.e., the smaller samples. It can be observed that the GB
generally reduces the material strength for S1 thin films. However, in the case
of coherent twin boundary (CTB), i.e.,

P
3 .111/

�
110

�
, the hardness is slightly

enhanced for some indentation depths. Generally, in the cases of smaller thin films,
i.e., S1 samples, the CTB has the best performance. Further investigation was
conducted by depicting the variation of dislocation length � during nanoindentation.
Figure 15 illustrates the variation of pm and � during nanoindentation for CTB. Voyi-
adjis and Yaghoobi (2016) divided the nanoindentation response to five different
regions:

• Region I: The bicrystal and single crystal thin films show similar responses
during the initial indentation phase which are elastic, and CTB is the only defect
that exists in the bicrystal thin film.

• Region II: In this region, the dislocation nucleation occurs for the bicrystal
thin film beneath the indenter followed by a stress relaxation while the single
crystal sample remains elastic. In the case of bicrystal thin film, the size
effects is initially governed by the dislocation nucleation and source exhaustion.
The dislocation density increases during nanoindentation which decreases the
required stress to sustain the imposed plastic flow. Consequently, the hardness
decreases by nucleation and evolution of new dislocations.

• Region III: The plasticity is initiated in single crystal thin film beneath the
indenter followed by a stress relaxation. The thin film strength reduces according
to the dislocation nucleation and source exhaustion mechanisms. The dislocation
content does not change for bicrystal thin film. Accordingly, the stress should
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Fig. 13 The equilibrium structure of the symmetric and asymmetric tilt grain boundaries
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be increased to sustain the imposed deformation based on the source exhaustion
mechanism. The dislocations eventually reach the GB which blocks the disloca-
tions. However, the blocked dislocations do not contribute to the strength.

• Region IV: The strength in both single and bicrystal thin films is decreased by
increasing the dislocation length which follows the source exhaustion mech-
anism. However, the influence of the source exhaustion mechanism decreases
as the dislocation length increases which decreases the slope of the hardness
reduction. Also, the dislocations which are blocked by the GB start dissociating
into the next grain.

• Region V: In this region, the available dislocation content is sufficient to sustain
the imposed plastic flow and no further stress reduction occurs. Also, the single
and bicrystal thin films reach a similar hardness which shows that the dislocation
blockage by GB does not have any contribution to the size effects.

The structures of dislocations in different regions are illustrated in Fig. 16 for
bicrystal thin film with CTB and related single crystal sample. Figure 16a, b shows
the dislocation structure in Region II at which the single crystal sample is defect
free and the nucleation occurs beneath the indenter for bicrystal thin film. The
results show that the dominant mechanism of dislocation multiplication is cross-slip.
Cross-slip introduces the new pinning points and provides the required dislocation
length to sustain the plastic flow. Dislocations are elongated while they are pinned
at their ends. Figure 16c, d illustrates the dislocation structure in Region III while
the cross-slip is still the governing mechanism of deformation for both single and
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Fig. 16 Dislocation nucleation and evolution: a Region II, single crystal sample; b Region II,
bicrystal sample; c Region III, single crystal sample; d Region III, bicrystal sample; e Region IV,
single crystal sample; f Region IV, bicrystal sample; g Region V, single crystal sample; h Region V,
bicrystal sample (Reprinted with permission from Voyiadjis and Yaghoobi 2016)
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bicrystal thin films. Figure 16d depicts the dislocation blockage by CTB. Figure 16e,
f illustrates the dislocation structure in Region IV. Many dislocation multiplications
are observed in both single and bicrystal thin films which are induced according
to the cross-slip mechanism. Figure 16f shows the initial dislocation dissociation
into the next grain in the case of bicrystal sample which is a Shockley partial
dislocation with the Burgers vector of 1

6

�
121

�
. In the case of Region V, Fig. 16g, h

depicts the dislocation structure which shows enough dislocation length is provided
to sustain the imposed deformation. Also, the interaction of dislocations with each
other cannot be neglected anymore.

Figure 17 shows the variation of pm and � during nanoindentation for the S1
samples with different GBs and their related single crystal thin films. In contrast to
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CTB, Fig. 17 shows that the first stress relaxation does not occur immediately after
the first dislocation nucleation. The first large stress relaxation occurs with the first
jump in dislocation density for single crystal thin films. The nature of first apparent
strength drop in thin films with GB is more complicated due to the interaction of
dislocations with GB. Figure 17 shows that the GB decreases the depth at which the
first large stress relaxation occurs, and the bicrystal thin films have larger dislocation
length at that depth compared to the single crystal samples. The GB itself can be a
source of dislocation nucleation which can be activated at different stages of inden-
tation. Figure 18 shows that the GB is the initial source of dislocation nucleation forP

3 .112/=
�
552

�
and

P
11(225)/(441) GBs, i.e., the initial dislocation nucleation

occurs from the GB and not beneath the indenter. The nucleated dislocations are
Shockley partial dislocations with the Burgers vectors of 1

6

�
112

�
and 1

6
Œ112� for

the GBs of
P

3 .112/=
�
552

�
and

P
11(225)/(441), respectively. If the dislocation

nucleation from GB occurs at the initial steps of dislocation nucleation and
evolution, it will severely decrease the thin film strength which can be noted
for

P
3 .112/=

�
552

�
and

P
11(225)/(441) GBs in Fig. 17d, e. The size effects

during nanoindentation can be described for all GBs incorporating the variation
of total dislocation length and dislocation visualization during nanoindentation.
The results show that the source exhaustion is the controlling mechanism of size
effects for the initial stages of dislocation nucleation and evolution. Increasing
the total dislocation length, however, the required dislocation length for sustain-
ing the imposed deformation is provided and the source exhaustion mechanism
becomes less dominant. Also, the dislocation interactions with each other become
nonnegligible by increasing the dislocation content. Eventually, both bicrystal and
their related single crystal thin films reach a similar hardness which indicates that
the dislocation pileup does not enhance the hardening in the cases of studied S1
samples.

Figure 19 shows mean contact pressure versus indentation depth in the cases of
S2 samples, i.e., larger samples. The initial responses of both single crystal and
bicrystal thin films are similar. However, GB enhances the hardness for higher
indentation depths. In order to unravel the underlying mechanisms of size effects
for S2 samples, the variations of mean contact pressure and total dislocation
length should be studied. Figure 20 compares the mean contact pressure and
total dislocation density of the single crystal thin film with those of the bicrystal
sample with CTB. The nanoindentation response can be divided to three different
regions:

• Region I: There is no plasticity at this region. GB does not change the nanoin-
dentation response of thin film.

• Region II: The plasticity is initiated beneath the indenter for both single and
bicrystal thin films followed by a sharp stress relaxation. After the initial
nucleation, the source exhaustion governs the size effects, and the required
stress to maintain the plastic flow decreases by increasing the total dislocation
length. In this region, the GB does not significantly change the total dislocation
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bi-crystal sample with ∑ 3 (1 1 2)/ (5 5 2) GB, h ≈ 0.37 n

 bi -crystal sample with ∑ 11 (2 2 5)/ (4 4 1) GB, h ≈ 0.43 n 

GB which is a Shockley partial dislocation
with the Burgers vector of 

with the Burgers vector of 

1
2

1
2

[ 1 1 2]

[ 1 1 2]

a

b

Fig. 18 Dislocation nucleation from the GB: a bicrystal sample with
P

3 .112/=
�
552

�
GB,

h � 0.37 nm; b bicrystal sample with
P

11(225)/(441) GB, h � 0.43 nm (Reprinted with
permission from Voyiadjis and Yaghoobi 2016)
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length and consequently the hardness. The dominancy of source exhaustion
decreases during nanoindentation as more dislocations are provided to sustain
the imposed deformation. Accordingly, the hardness reduction slope decreases
during nanoindentation. Eventually, the dislocations reach the GB which blocks
the dislocations.

• Region III: Enough dislocation length is provided to sustain the imposed
deformation, and the source exhaustion hardening is not active anymore. The
interactions of dislocations with each other and GB become important by
increasing the dislocation content. Also, the number of dislocations blocked
by GB becomes considerable and the produced pile-up enhances the sample
strength. Consequently, the GB enhances the nanoindentation response of thin
film for S2 sample.

The dislocation visualization of the S2 thin film with and without CTB is
illustrated in Fig. 21 during nanoindentation. Figure 21a, b illustrates that the initial
dislocation is homogeneously nucleated beneath the indenter which is a Shockley
partial dislocation with the Burgers vector of 1

6

�
211

�
. The results show that the GB

does not change the nucleation pattern. After the initial nucleation, Fig. 21c, d shows
that the cross-slip is the controlling mechanism of deformation which increases
the number of dislocation sources and provides the required dislocation content.
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single crystal sample, h ≈ 1.15 n bi-crystal sample, h ≈ 1.15 n 
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The effects of GB is still negligible on the dislocation pattern. The dislocation
loops are induced by cross-slipping and pinching off of screw dislocations as the
indentation depth increases. The induced loops are moving downward which are
blocked by GB. Consequently, the GB starts to change the pattern of dislocation
evolution. Figure 21e, f illustrates the dislocation loops movement in thin films
with and without GB, respectively. The dislocation blocked by GB are eventually
emitting into the next grain by increasing the indentation depth. Figure 21h
illustrates the first dislocation emitting into the next grain which is a Shockley partial
dislocation with the Burgers vector of 1

6

�
121

�
. Figure 21i, j shows the dislocation

visualization of the sample at the higher indentation depths for thin film with and
without GB, respectively. Although some dislocations are emitted into the next
grain, the visualization results show a considerable pile-up behind the GB, while
the dislocations are moving downward freely for single crystal thin film.

Figure 22 shows the variation of pm and � during nanoindentation for the S2
samples with different GBs and their related single crystal thin films. The observed
microstructural behavior for CTB can be incorporated for all other GBs exceptP

11(332) and
P

11(225)/(441) GBs. In the cases of two latter GBs, the GB
enhances the hardness while the total dislocation length of thin film with GB is
very close to the one without GB. The observed discrepancy is due to the fact the
total dislocation length is not an appropriate factor to study the forest hardening
mechanism. In the case of source exhaustion hardening, the total dislocation
length dictates the amount of stress required to sustain the plastic flow. On the
other hand, the density of dislocation in the plastic zone should be taken as the
representative factor for the forest hardening mechanism. Voyiadjis and Yaghoobi
(2016) assumed that the plastic zone is located in the upper grain. Accordingly,
the total dislocation length in the upper grain �upper should be investigated during
nanoindentation. The dislocations located in the upper one third is considered
for single crystal thin film, and the obtained results are compared with those of
bicrystal thin films. Figure 23 compares the variations of mean contact pressure
and the total dislocation length located in the plastic zone during nanoindentation
for thin films with and without GB. The results show that the GB increases the
total dislocation length located in plastic zone and consequently enhances the
hardness according to the forest hardening mechanism. The results show that the
main role of GB in the cases of large thin films, i.e., S2 samples, is to modify the
pattern of dislocation in a way that increases the dislocation density located in the

J
Fig. 21 Dislocation nucleation and evolution: a single crystal sample, h � 0.88 nm; b bicrystal
sample, h � 0.88 nm; c single crystal sample, h � 1.15 nm; d bicrystal sample, h � 1.15 nm;
e single crystal sample, h � 1.44 nm; f bicrystal sample, h � 1.44 nm; g single crystal sample,
h � 2.03 nm; h bicrystal sample, h � 2.03 nm; i single crystal sample, h � 11.5 nm; j bicrystal
sample, h � 11.5 nm (Reprinted with permission from Voyiadjis and Yaghoobi 2016)
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3(114)/(110) (Reprinted with permission from Voyiadjis and Yaghoobi 2016)

plastic zone and accordingly strengthen the thin films. One should note that the
strain rates incorporated in the atomistic simulation are much higher than those
selected for experiments. Accordingly, the interpretation of the obtained results
should be carefully handled. The applied strain rate can influence both hardening
mechanisms and dislocation network properties (see, e.g., Yaghoobi and Voyiadjis,
2016b; Voyiadjis and Yaghoobi, 2017; Yaghoobi and Voyiadjis, 2017). In other
words, one should ensure that the observed mechanisms are not artifacts of the high
strain rates used in the atomistic simulation.
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Abstract

Many fundamentally important biological processes rely on the mechanical
responses of membrane proteins and their assemblies in the membrane environ-
ment, which are multiscale in nature and represent a significant challenge in mod-
eling and simulation. For example, in mechanotransduction, mechanical stimuli
can be introduced through macroscopic-scale contacts, which are transduced to
mesoscopic-scale (micron) distances and can eventually lead to microscopic-
scale (nanometer) conformational changes in membrane-bound protein or protein
complexes. This is a fascinating process that spans a large range of length scales
and time scales. The involvement of membrane environment and critical issues
such as cooperativity calls for the need for an efficient multi-scale computational
approach. The goal of the present research is to develop a hierarchical approach
to study the mechanical behaviors of membrane proteins with a special emphasis
on the gating mechanisms of mechanosensitive (MS) channels. This requires the
formulation of modeling and numerical methods that can effectively bridge the
disparate length and time scales. A top-down approach is proposed to achieve
this by effectively treating biomolecules and their assemblies as integrated
structures, in which the most important components of the biomolecule (e.g.,
MS channel) are modeled as continuum objects, yet their mechanical/physical
properties, as well as their interactions, are derived from atomistic simulations.
Molecular dynamics (MD) simulations at the nanoscale are used to obtain
information on the physical properties and interactions among protein, lipid
membrane, and solvent molecules, as well as relevant energetic and temporal
characteristics. Effective continuum models are developed to incorporate these
atomistic features, and the conformational response of macromolecule(s) to
external mechanical perturbations is simulated using finite element (FEM)
analyses with in situ mechanochemical coupling. Results from the continuum
mechanics analysis provide further insights into the gating transition of MS
channels at structural and physical levels, and specific predictions are proposed
for further experimental investigations. It is anticipated that the hierarchical
framework is uniquely suited for the analysis of many biomolecules and their
assemblies under external mechanical stimuli.

Keywords
Mechanotransduction · Multi-scale simulation · Mechanosensitive channels ·
Gating mechanism · Continuum mechanics · Continuum solvation



3 Molecular Dynamics-Decorated Finite Element Method (MDeFEM):: : : 79

Introduction

Occurring over large time and length scales, various biological signal transduction
processes rely on the mechanical response of biomolecules and their assemblies to
external stimuli. Muscle contraction or stretch, as a prominent example, involves
the cooperative mechanical response of a large number of myosin molecules
(Geeves and Holmes 1999, 2005), and structural changes from molecular scale to
organ scales of muscle contribute greatly to its various and remarkable adaptations
under different mechanical stimuli (Wisdom et al. 2014). Another example is
mechanosensation (Hamill and Martinac 2001), during which the mechanosensitive
(MS) channels play important roles in living cells of diverse phylogenetic origin
(Martinac 2004) and have been identified in more than 30 cell types (Sackin 1995).
By converting mechanical forces exerted on the cell membrane into biochemical or
electrical signals, MS channels are involved in a wide range of cellular processes
including cell growth and differentiation (Wang and Thampatty 2006) and blood
pressure and cell volume regulation (Hamill and Martinac 2001; Martinac and Kloda
2012; Sun et al. 2009) and are essential to sensations such as touching, balance, and
hearing (Hamill and Martinac 2001; Ingber 2006; Martinac 2004). A direct link
between the lipid membrane and the structure/function of some MS channels has
been revealed (Phillips et al. 2009). And in eukaryotic cells, the cytoskeleton was
shown to play a similar role in the activation of MS channels (Hayakawa et al. 2008).
With an increasing number of MS channels being identified, their atomic structures,
gating characteristics, and functional mechanisms have been studied extensively in
the past decades. Among the families of MS channels, a much-studied system is the
mechanosensitive channel of small/large conductance (MscS/MscL) in Escherichia
coli (E. coli), which serves as a paradigm for understanding the gating behaviors of
the MS family of ion channels. Functioning as the “safety valve” of bacteria that
regulates turgor pressure, MscS/MscL is sensitive to tension in the membrane, and
the opening of MscS/MscL allows exchange of ions (nonselective between anions
and cations) and small molecules (including water) between the cytoplasm and the
environment (Berrier et al. 1996; Blount et al. 1997; Martinac et al. 2014; Saimi
et al. 1992).

A Brief Review of MscS Studies

The first crystal structure for E. coli-MscS was solved at 3.95 Å resolution (Bass
et al. 2002) and subsequently refined to a higher resolution of 3.7 Å (Steinbacher
et al. 2007). The structure has a pore of less than 5 Å in diameter, and because of its
hydrophobic constriction, the pore is thus considered as nonconducting or closed
(Steinbacher et al. 2007; Vora et al. 2006). The open form of the A106V mutant
of MscS was subsequently crystallized at 3.45 Å resolution (Wang et al. 2008).
The crystal structures of E. coli-MscS have been constantly challenged, mainly
due to the large voids between the TM3 helix (the third transmembrane helix) and
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the closely packed TM1 and TM2 helices (also referred as TM pockets). Using
extrapolated motion dynamics (EMD) (Akitake et al. 2007) and continuous wave
electron paramagnetic resonance (cwEPR) (Vasquez et al. 2008a, b), alternative
MscS structures of both closed and open forms were independently generated, in
which the apparent voids in the crystal structures were absent. The three approaches
lead to three sets of mutually incompatible models of the closed and open structures
and thus models for the gating transition. A pulsed electron-electron double
resonance (PELDOR) approach reevaluated these competing structural models both
in detergent (Pliotas et al. 2012) and in bilayer mimics (Ward et al. 2014); the results
supported the arrangement of helices seen in the crystal structures. Another study
reported the crystal structure of “-dodecylmaltoside-solubilized wild-type E. coli-
MscS at 4.4 Å resolution and further supported that the A106V structure resembles
the open state (Lai et al. 2013). Finally, a higher-resolution structure of the E. coli-
MscS identified alkyl chains inside the pockets/voids formed by the transmembrane
helices (Pliotas et al. 2015), strongly support that the voids in E. coli-MscS crystal
structures are realistic (Pliotas and Naismith 2016). Based on the above evidence,
the present study starts with the assumption that the crystal structure at 3.7 Å reso-
lution (Steinbacher et al. 2007) and the A106V mutant at 3.45 Å resolution (Wang
et al. 2008) represent the closed (resting) and open states of MscS, respectively,
but noting that the specific functional states of these structures of MscS may be
still in debate. Nevertheless, despite the available closed and open structures, little
is known about the partially expanded intermediate structures during MscS gating
transition.

Numerous studies have explored residues and interactions that are important to
the gating characteristics of MscS. Some of the established cases include the Asp62-
Arg131/Arg128 salt bridges (Nomura et al. 2008) and the Phe68-Leu111/Leu115
(Belyy et al. 2010) apolar interaction, which affect channel gating and inactivation;
Leu105 and Leu109 form a hydrophobic lock at the channel pore (Anishkin and
Sukharev 2004; Vora et al. 2006); the interaction between the lower part of TM3 and
the cytoplasmic “ domain and Gly113 is crucial to inactivation (Edwards et al. 2008;
Koprowski et al. 2011; Petrov et al. 2013); and a number of residues were shown
to influence force transmission at the protein-lipid interface (Malcolm et al. 2011;
Nomura et al. 2006). The physical origins for the importance of these interactions
are not always well understood. Another much studied mechanistic issue concerns
inactivation of MscS: under prolonged exposure to subthreshold membrane tension,
the channel desensitizes into an inactivated and nonconducting state from which it
must relax back to the closed state in lower membrane tension before reactivation
can be induced (Akitake et al. 2005; Edwards et al. 2008; Koprowski and Kubalski
1998; Levina et al. 1999). Up to now, while multiple residues and interactions are
known to be important to inactivation (Vasquez 2013), the structural mechanism
underlying inactivation remains elusive.

Furthermore, it has been reported that the open probability of MscS can be
significantly increased by membrane depolarization (Cui et al. 1995; Martinac
et al. 1987). A later study, however, showed that the activation of E. coli-MscS by
membrane tension is essentially independent of the transmembrane voltage (Akitake
et al. 2005), though depolarizing membrane voltage strongly promotes inactivation
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(Akitake et al. 2005). In addition, a recent study reported that the arginine residues at
positions of 46, 54, and 74 in TM1 and TM2 helices are not responsible for the volt-
age dependence of inactivation (Nomura et al. 2016). The structural response and
inactivation mechanism under membrane potential thus remain to be better clarified.

Atomistic simulations have made valuable contributions to the understanding
of ion channels, including MscS, in recent years (Akitake et al. 2007; Anishkin
and Sukharev 2004; Deplazes et al. 2012; Masetti et al. 2016; Pliotas et al.
2015; Sotomayor and Schulten 2004; Sotomayor et al. 2006). Nevertheless, such
simulations remain computationally intensive, making it difficult to study gating
transitions that occur on the millisecond time scale and explore contributions of
specific structural motifs and interactions.

A Brief Review of MscL Studies

A large body of experimental, theoretical, and simulation work has focused on
elucidating the molecular mechanism of MscL gating (Booth et al. 2007; Haswell
et al. 2011). Experiments directly probing the gating transition of MscL were
primarily patch-clamp measurements, which simultaneously monitor the membrane
tension and ionic currents through the channel (thus opening probability) (Sukharev
et al. 1997, 1999). An important clue from these studies on MscL reconstituted
into purified lipid bilayers is that the mechanical property of the membrane plays
a principal role in determining the gating behaviors of MscL. A model with five
subconducting states was established (Sukharev et al. 1999), in which the tension-
dependent conformational transition was primarily attributed to the pore area
variation that occurs between the closed state and a low subconductance state. In
addition, other experimental studies have been used to probe MscL’s conformational
transition, and these include electron paramagnetic resonance spectroscopy (EPR)
with site-directed spin labeling (SDSL) (Perozo et al. 2002a, b) for monitoring the
structural rearrangements, cysteine scanning for identifying residue contacts in the
transmembrane helices (Levin and Blount 2004), and numerous mutation studies
for probing the importance of residues in different structural motifs (Anishkin et al.
2005; Blount et al. 1997; Levin and Blount 2004; Tsai et al. 2005). Besides, a single-
molecule fluorescence resonance energy transfer (FRET) method (Wang et al. 2014)
or the combination of data from FRET spectroscopy and simulations (Corry et al.
2010) has enabled a more detailed description of the open form of MscL in the
natural lipid environment. Based on geometrical constraints provided by various
measurements and the crystal structure of MscL in Mycobacterium tuberculosis
(Tb) (Chang et al. 1998), structural models for the closed-open transition of E. coli-
MscL were constructed (Sukharev et al. 2001a, b); revised models were proposed
subsequently where the conformational changes of the S3 helices are much smaller
in scale (Sukharev and Anishkin 2004; Sukharev and Corey 2004). Although highly
valuable, these structural models need to be evaluated for validity in a systematic
and physical manner (Chen et al. 2008; Tang et al. 2006, 2008).

Meanwhile, analytical models for the gating transition in MscL have been
developed by several groups. Markin and Sachs presented a general thermodynamic
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model for mechanotransduction that relates the probability of channel opening to
membrane properties such as thickness, curvature, and stiffness (Markin and Sachs
2004). An analytical continuum model was developed by Wiggins and Phillips to
characterize the free energy of the protein-bilayer system (Wiggins and Phillips
2004); the model highlighted that the competition of hydrophobic mismatch could
be a physical gating mechanism. As an alternative to dilatational gating, a gating-
by-tilt model was proposed (Turner and Sens 2004) in which the gate opening is due
to the swinging of the lipids near the channel with respect to a pivot. Although these
analytical models are valuable for highlighting the potential contribution of specific
physical factors (e.g., hydrophobic mismatch), they lack sufficient structural details
to make specific connection with experimental studies.

Numerical simulation is a powerful approach for exploring the fundamental prin-
ciples of mechanotransduction. To properly assign structural features to important
intermediate states along the closed-open transition, it is important to simulate
the structural response of the channel to mechanical perturbation consistent with
the experimental protocol. Due to the large length scale and time scale involved,
however, this is usually beyond the capability of atomistic simulations despite the
rapid progresses being made (Deplazes et al. 2012; Dror et al. 2012; Gullingsrud
and Schulten 2003; Karplus and Kuriyan 2005; Klepeis et al. 2009; Monticelli et al.
2008; Sawada et al. 2012; Snow et al. 2005; Yefimov et al. 2008). Hence, developing
coarse-grained models to access longer time scales has become an important topic
in the simulation community (Ingolfsson et al. 2014; Marrink et al. 2007; Marrink
and Tieleman 2013; Monticelli et al. 2008; Praprotnik et al. 2008; Saunders and Voth
2012; Shi et al. 2006; Shinoda et al. 2012; Yefimov et al. 2008). Most of these efforts
have focused on developing particle-based models in which one bead represents a
group of atoms. Specifically for MscL, building upon their success in developing an
effective coarse-grained model for lipids, Marrink et al. developed a coarse-grained
model (Yefimov et al. 2008) for MscL based on the transfer free energy of amino
acids between water and lipids. The gating transition was successfully observed in
the simulation although the pore radius in the final state is somewhat smaller than
that estimated in the literature (Sukharev et al. 2001b).

Molecular Dynamics-Decorated Finite Element Method (MDeFEM)

In light of the limitations of previous experimental/theoretical/numerical efforts
concerning the structural rearrangements of MS channels during gating, it is
worthwhile pursuing the alternative approach of continuum mechanical modeling,
which has been used in a broad set of mechanics problems (Scarpa et al. 2010; Tang
et al. 2006; Tserpes and Papanikos 2009; Zeng et al. 2012). Along this line, the
establishment of molecular dynamics-decorated finite element method (MDeFEM)
(Chen et al. 2008; Tang et al. 2006, 2008) represents an attractive alternative to
atomistic and particle-based coarse-grained simulations, allowing the analysis of
bimolecular systems at long time scales while maintaining sufficient molecular
details to capture the most essential characteristics of the system under study.
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In MDeFEM, biomolecules are modeled as integrated continuum motifs and the
finite element simulation framework allows efficient treatment of deformations at
large length scales and complex deformation modes inaccessible to conventional
all-atom simulations.

In this chapter, MDeFEM (Chen et al. 2008; Tang et al. 2006, 2008) is firstly
adapted to study the gating mechanism of MscS. The high computational efficiency
of MDeFEM allows us to analyze the contributions of various structural motifs and
interactions to the gating process as well as the effect of voltage. The observation
of different gating characteristics upon perturbation of material properties of the
helical kink region in TM3 at Gly113 also leads to the proposal of a mechanism for
inactivation. Overall, the current simulations not only provide new insights into the
gating transition of MscS with structural details but also lead to specific predictions
that can be tested by future experimental studies.

Secondly, a number of major limitations of previous MDeFEM models of MscL
(Chen et al. 2008; Tang et al. 2006, 2008) (or the MDeFEM models of MscS)
need to be alleviated for more quantitative analysis. These limitations include (1)
not sufficient structural/energetic details of MscL. The helices were represented
by rounded sticks, and the inter-component interactions were computed based
on surface-to-surface interactions; the nonbonded interactions among loops and
those between the loops and the helices were not considered. (2) The lipid bilayer
was treated as an elastic solid slab, whereas the realistic membrane should be
fluidic and does not sustain large shear stress. (3) No solvation contribution was
considered. It has been proposed that solvation plays a major role in stabilizing the
open conformation of MscL due to the exposure of hydrophilic residues (Anishkin
et al. 2005; Anishkin and Kung 2005). These limitations may have led to the
exceedingly high membrane strain required for the full-gating transition of MscL
in the previous studies (Chen et al. 2008; Tang et al. 2008). The MDeFEM approach
is here improved significantly to address these issues through a coupled mechanical-
chemical approach. More realistic models for the MscL molecule and the membrane
are developed. To include solvation effects, a force-based protocol is established
to integrate a continuum mechanics model for the mechanical properties of the
macromolecule with a continuum treatment of solvation. A similar approach has
been applied to study the salt concentration dependence of DNA bendability (Ma
et al. 2009). It is envisioned that the high computational efficiency and flexibility
will make this hierarchical multi-scale framework uniquely applicable to the study
of mechanical behaviors of various biological systems, interpreting existing and
stimulating new experimental investigations.

Gating and Inactivation of E. coli-MscS

Models andMethods

In MDeFEM, the protein structure is described by continuum FEM models, and
nonbonded interactions between different components are represented by nonlinear
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Fig. 1 Continuum mechanics modeling of MscS. (a) The backbone structure of one MscS
monomer with two key interaction pairs (Asp62-Arg131 and Phe68-Leu111) highlighted by
arrows. (b) The corresponding FEM model of one monomer. The Young’s modulus, E (GPa),
and Poisson’s ratio, v, of each component in one monomer are indicated aside. (c–d) Side views
of the crystal structure and FEM model. (e–f) Top views of the crystal structure and FEM model.
Examples of several lowest eigenmodes and frequencies of helices and loops are displayed in (g)
and (h), respectively. Results of molecular mechanics are compared to those of the finite element
simulations

distance-dependent pressures or point-to-point connectors. In the following, the
main continuum construction procedures of E. coli-MscS are introduced briefly with
the commercial package ABAQUS. More details can be found in our previous works
(Chen et al. 2008; Zhu et al. 2016). In the subsequent discussion, unless otherwise
specified, MscS refers to E. coli-MscS.

A MscS channel (Bass et al. 2002) is formed by seven chains assembled as a
heptamer with a large cytoplasmic region that exhibits a mixed ’/“ structure with
several strands and ’-helices intertwined together to form a balloon-like osmolyte
filter cage (Gamini et al. 2011). In the transmembrane domain (Fig. 1c, e), each
monomer (Fig. 1a) of MscS consists of three helices, referred to as TM1, TM2, and
TM3, the last of which has a pronounced kink at the Gly113 region and is thus
split into TM3a and TM3b. Each TM1 helix and its nearest neighbor, a TM2 helix,
are assembled into a pair through a periplasmic loop, forming the outer boundary
that interacts extensively with the lipid membrane; the TM3a helices form the inner



3 Molecular Dynamics-Decorated Finite Element Method (MDeFEM):: : : 85

boundary for the pore, and TM3b helices splay out to be nearly parallel to the
membrane plane.

Based on the closed backbone structure of MscS (Bass et al. 2002; Steinbacher
et al. 2007), within the continuum mechanics framework, each helix is modeled as
a three-dimensional elastic cylinder of 5 Å diameter and the loops as quasi-one-
dimensional winding beams with cross-sectional diameter of 2.5 Å (Fig. 1b) (Tang
et al. 2006; Zhu et al. 2016). For simplicity, only the transmembrane domain of
MscS is considered (Anishkin et al. 2008b). Although there is evidence supporting
that the cytoplasmic domain swells up (Machiyama et al. 2009) during gating, it is
also suggested to be nonessential but only responsible for increased stability and
activity (Schumann et al. 2004); the cytoplasmic domain is not expected to undergo
large changes during the gating transition (Pliotas et al. 2012; Wang et al. 2008).
The endpoints where the cytoplasmic domain is truncated are softly restrained in
the continuum model (1 kcal/mol/Å2) (Anishkin et al. 2008a, b; Spronk et al. 2006).
Furthermore, the first 26 residues (in the N-termini) of the 286 amino acids of each
MscS monomer were not resolved in the crystal structure (Bass et al. 2002) and
therefore are also excluded in the continuum model; an experimental study showed
that MscS can tolerate small deletions at the N-terminus (Miller et al. 2003).

Material properties of each component of the continuum model are calibrated by
matching results of normal mode analysis (NMA) at the atomistic and continuum
levels (Fig. 1g–h). The key mechanical properties for the helices and loops are
shown in Fig. 1b, and these are much larger than the estimated range of the Young’s
modulus of MscL ’-helices (0.2 to 12.5 GPa) in Martinac et al.’s recent work (Bavi
et al. 2017) with constant-force steered molecular dynamics (SMD). This is because,
in the present study, the helices, for instance, are modeled as much thinner elastic
cylinders (with a diameter of 5 Å) by considering only the main chain. The bending
stiffness of the helices in the present continuum model and that of MscS helices
by SMD are expected to be consistent. As a qualitative comparison, for example,
the bending stiffness EI (the product of Young’s modulus and moment of inertia)
of MscS helices in vacuum is in the range of 70�200 (10�10 N Å2) in this work,
while based on Martinac et al.’s study (Bavi et al. 2017), the bending stiffness of
MscL helices in water can be calculated to be in the range of 1�80 (10�10 NÅ2).
For simplicity, the softening effect of the helices due to hydration (Anishkin and
Sukharev 2017; Bavi et al. 2017) is not considered here, which may be one of the
reasons for the difference in the above comparison of the bending stiffness. In both
MscL (Bavi et al. 2017) and MscS, the second helix, TM2, is the stiffest one among
the ’-helices in each channel.

The MscS continuum model is embedded into an elastic membrane modeled
as a sandwich panel that consists of three layers to mimic the lipid head and tail
regions. A flat square membrane with a size of 400 � 400 Å is employed. To embed
the channel (Fig. 1) into the continuum membrane, a cavity with the shape of a
multi-petal flower (Fig. 2) is created in the middle of the membrane with the size
and shape of the cavity conforming to those of MscS transmembrane helices in the
closed state with an equilibrium distance of �5.5 Å (Chen et al. 2008) from the
surface of the cavity to the surfaces of the helices. The lipids buried in the voids
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within the transmembrane helices (Pliotas et al. 2015) are neglected; their specific
role in gating is not quite clear. The membrane model is parameterized based on
MD calculations of the density map of water and lipids and the lateral pressure
profiles of the POPE lipid membrane (Chen et al. 2008; Gullingsrud and Schulten
2004). Mechanical properties of the lipid membrane are shown in Fig. 2, and the
in-plane shear modulus of the continuum membrane model is reduced (Zhu et al.
2016) to take into account the fluidity of the lipid membrane, i.e., its incapability
of sustaining a large shear stress. It would be of interest to investigate the effect
of the buried lipids (Pliotas et al. 2015) or more complex lipid properties (such as
viscoelasticity (Deseri et al. 2016)) on gating, but we leave it to future studies since
more sophisticated continuum models are required.

The assembled protein-membrane continuum model is shown in Fig. 2. Helices
of MscS are meshed by four-node tetrahedron finite elements and loops by one-
dimensional beam elements (Fig. 1). Without over-resolving the system, appropriate
mesh density is ensured through convergence studies, and a typical element size of
1.5 Å is chosen. Four-node tetrahedron finite elements are also used to mesh the
lipid membrane model with the mesh gradually more refined toward the boundary
of the inner hole where it interacts with the protein directly (Fig. 2). To be consistent
with the simple description of the protein-lipid continuum model, solvent molecules
are not included, though the hydration effect can be further studied with a more
sophisticated continuum mechanics-solvation coupled approach (Zhu et al. 2016)
which is to be introduced in section “Coupled Continuum Mechanical-Continuum
Solvation Approach with Application to Gating Mechanism of MscL.”

Fig. 2 Schematic of the
continuum protein-lipid
membrane model. A
zoomed-in view is shown to
illustrate the multi-petal lipid
hole encompassing the MscS
protein
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In this work, we explicitly consider two key interaction pairs known to be
essential to MscS gating, i.e., the Asp62-Arg131 salt bridge and the Phe68-Leu111
apolar interaction (Fig. 1a) mentioned in the section “Introduction.” The nonbonded
interaction energy (electrostatic and van der Waals) between each pair of residues
is calculated using the CHARMM 36 force field (Best et al. 2012; Brooks et al.
1983) as a function of distance along the center-of-mass separation vector (Fig. 3b).
An electrostatic screening factor of 6 is used when calculating the electrostatic
interaction for the Asp62-Arg131 salt bridge, considering that the gap between
Asp62-Arg131 residues in the same monomer or across monomers is spanned
mainly by protein atoms or lipid molecules rather than water (Pliotas et al. 2015);
varying this factor from 3 to 10 generally has little impact on the computed
gating behavior (data not show). The nonlinear distance-dependent interaction force
between two residues in each pair is derived accordingly from the energy profile
and applied to the closest finite element nodes by invisible nonlinear connector
elements (arrows in Fig. 1b) in ABAQUS (Zhu et al. 2016). The connector element
representing a pair of key interaction is defined both within the same monomer and
across neighbor monomers.

Apart from the above two specific residue pairs, interactions between different
helices and between the helix and the lipid membrane are described by a pair-wise
effective pressure-distance relationship where the atom-to-atom interaction in the
atomic structure are averaged to the surfaces of different components (Tang et al.
2006) (see Fig. 3a). The nonbonded (electrostatic and van der Waals) interactions
are calculated without any cutoff. Incorporating an implicit membrane environment
through the GBSW model (Im et al. 2003) in CHARMM in the inter-helical
calculations has a negligible impact on the energy profiles. Taking the first derivative
of the interaction energy with respect to distance, the pressure-distance relationship
between two surfaces (adopting the sign convention that repulsive pressure is
positive) is obtained and takes the following form:

p .˛i / D
Cn

d0

h
.d0=˛i /

mC1 � .d0=˛i /
nC1

i
(1)

where p and d0 are the interaction pressure and equilibrium distance between
two surfaces, respectively, C is the energy well-depth, and ˛i is the instantaneous
distance between two deformed surfaces for the i-th element. This nonbonded
pressure model implicitly includes both electrostatic and van der Waals (VDW)
interactions and has been successfully applied to study the deformation and buckling
of carbon nanotubes (Cao and Chen 2011; Chen et al. 2006; Pantano et al. 2003),
as well as gating transition of the E. coli and Mycobacterium tuberculosis MscL
(Bavi et al. 2016b; Chen et al. 2008; Tang et al. 2006). Figure 3a shows examples
of the interaction energy between different protein components in closed and open
crystal structures and the fitted curves used in FEM. The consistency between the
interaction energy curves of the closed and open states suggests that the fitted
FEM parameters are fairly transferable. Table 1 summarizes the fitted values of
C, d0, and the exponents (m, n) for the closed crystal structure. When calculating
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Fig. 3 Examples of the fitting of nonbonded interactions between helices of E. coli-MscS (a)
and the interaction energy for two key interaction pairs (b). In (a), the distance between two
components is normalized by their equilibrium distances. Data points are obtained through
molecular mechanics (MM)

the interaction between TM2 and TM3a, the Phe68-Leu111 pair is excluded
since it is already considered separately as discussed above. The constitutive
interaction relationship is called in each increment through the analysis based on
the relative position between two surfaces that are continuously updated. Similar
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Table 1 FEM fitting
parameters for the nonbonded
interactions

Interaction pairs d0 (Å)  D 6Cn/d0 (GPa) m n

Lipid-TM1 5.5 4.0 8 3
Lipid-TM2 5.5 3.0 6 3
TM1-TM1 11.0 0.35 24 8
TM2-TM2 7.7 1.05 19 8
TM3a-TM3a 3.6 1.5 12 4
TM3b-TM3b 6.6 1.59 6 5
TM1-TM2 4.0 2.25 18 3
TM1-TM3a 10 29.8 24 23
TM2-TM3a 4.5 7.46 12 8
TM2-TM3b 7.7 7.48 24 20
TM3a-TM3b 3.0 2.6 11 2

to the connector elements, the pressure-based nonlinear interaction is defined both
within the same monomer and across neighbor monomers as long as the distance
between two components is smaller than 16 Å.

The different treatment of the key interaction pairs (described by node-to-node
connectors) and other “less important” interactions (described by the averaged
surface-to-surface pressure) allows a simple description of the continuum model
while providing the opportunity to explore how these key interactions affect gating.
A typical tension simulation of the gating transition of MscS takes only about 1 h,
on a Thinkpad laptop with four 2.5 GHz CPUs and 8 GB of RAM.

Results and Discussion

In this section, gating transition of MscS in response to membrane stretch (tension)
is firstly obtained. The open FEM structure is compared to the crystal open
structure, and the intermediate structure is identified in FEM. Similar analysis
is then conducted with some key interaction pairs (Asp62-Arg131 or Phe68-
Leu111) or loops excluded to explore their role in the gating transition. Next,
the kink between TM3a and TM3b is considered as helical (thus having larger
cross section and Young’s modulus) rather a loop, leading to the discussion of a
plausible inactivation mechanism. Finally, the effects of transmembrane voltage are
analyzed.

MscS Gating Pathway
Shown in Fig. 4 are several snapshots of MscS during the membrane tension-
driven gating process in comparison to the crystal structures for the closed (Bass
et al. 2002) and open states (Wang et al. 2008). The results indicate that, during
gating, all helices shift radially away from the center of the pore in a manner
reminiscent of a mechanical camera iris, similar to the gating transition described
for MscL (Betanzos et al. 2002; Tang et al. 2008). The TM1 and TM2 helices in
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Fig. 4 Comparison between MscS gating pathways under equi-biaxial membrane tension between
FEM results and the crystal models in both top (the top panel) and side views (the lower panel)

the same monomer move concurrently almost as a rigid body due to the strong
inter-helical interactions. The TM3a helices rotate around and move outward from
the central axis and finally become parallel to each other and normal to the
membrane plane. Notably, the loop that connects TM1 and TM2 in the same
monomer transitions from interacting with the end of TM3b in the neighboring
chain (in the counterclockwise direction) to interact with the end of TM3b within
the same monomer. Besides, significant rotation of TM3b helices around the
central pore axis is observed (Fig. 4), though the average distance from TM3b
ends to the pore axis is essentially unchanged. The conformational transitions
discussed above are reversible in the FEM simulations once the membrane strain is
removed.

On a qualitative level, the current FEM results are in agreement with the
crystal structure models, regarding both the orientation and displacement of the
transmembrane helices and connecting loops (Fig. 4). Small differences lie in the
titling of TM1 helices; from the top view (fist panel in Fig. 4), the TM1 helices form
a more compact bundle in the open crystal structure than in the FEM model. In
addition to the open structure, intermediate structures during the gating process are
obtained in the FEM simulation, and an example is given in Fig. 4.

In the FEM model of MscS in the closed form, the radius of the area lined
by TM3a has a radius R

0

� 7.0Å (inset in Fig. 5), while the actual pore radius
is R � 2.4Å (Wang et al. 2008) considering the pore’s irregular inner surfaces.
In the following, the pore radius (R) is estimated by R D R

0

� 4.6Å based on
the FEM results of R

0

, and the pore diameter is thus 2R. Figure 5 depicts the
evolution of pore diameter during the gating process. As the membrane strain
("m) increases, the pore size of MscS increases slowly until "m reaches 5%, after
which the pore diameter (2R) experiences a rapid increase leading to pore opening
(2R D 13 Å) (Wang et al. 2008). Since the hydrophobic pore remains nonconducting
until approximately 2R > 9 Å (the threshold diameter for hydration) (Beckstein et al.
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Fig. 5 Pore diameter evolution for different FEM models

2001), this observation is in qualitative agreement with the patch-clamp study of
MscS (Martinac and Kloda 2003), in which the gating membrane tension for full
opening of MscS was measured to be about half of that of MscL (Martinac and
Kloda 2003). The gating membrane strain for McsL was estimated to be �10%
(Zhu et al. 2016), thus for MscS, the gating strain is expected to be 5%; the lipid
membrane strain required for full opening of MscS in the present FEM simulation
is 6.6% (Fig. 5), which is slightly larger than the 5% estimation.

Effect of the Key Interaction Pairs
Mutation studies have identified two key interaction pairs that greatly affect the
gating behavior of MscS, and these involve the Asp62-Arg131 salt-bridge (Nomura
et al. 2008) and the apolar interaction between Phe68-Leu111 (Belyy et al. 2010).
For example, when the negatively charged Asp62 was replaced with either a neutral
(Cys or Asn) or basic (Arg) amino acid, the gating threshold increased significantly
(Nomura et al. 2008). Both F68S and L111S substitutions also led to severe loss-
of-function phenotypes (Belyy et al. 2010). To provide a structural understanding
of how these interactions influence the gating transition of MscS, we conduct FEM
simulations with either pair of interactions excluded.

Firstly, the electrostatic interaction between Asp62-Arg131 in the continuum
model (Fig. 1) is removed, while the van der Waals interaction between them is
preserved (Fig. 6a) so as to mimic the replacement of Asp62 with a charge neutral
amino acid. The structural transition upon membrane stretch up to 6.6% is shown in
Fig. 6b–c. Without the strong electrostatic interaction, the TM1-TM2 helices tend to
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Fig. 6 FEM results of the structural transition of MscS under equi-biaxial membrane tension
without electrostatic interaction between Asp62 and Arg131 (a–c) or without the Phe68-Leu111
traction (d–f)

detach from the end of TM3b. Under equi-biaxial membrane tension, all helices are
lifted up and the kink in TM3 is straightened. As a result, the size of the channel pore
surrounded by TM3a helices remains essentially unchanged despite the outward
displacements of TM1 and TM2. Therefore, opening of the pore in this “mutant”
requires an exceedingly large membrane strain (data not shown).
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Similarly, a simulation without the apolar interaction between Phe68-Leu111 is
conducted (Fig. 6d–f). During lipid membrane stretching, the TM1 and TM2 helices
move outward, but the TM3a helices do not follow and the kink angle in TM3
remains unchanged. With a membrane strain of 6.6%, the pore size actually becomes
smaller since the lower ends of TM3a helices are more closely packed because of
the loss of TM2-to-TM3a attraction (F68-L111).

In short, the FEM simulations recapitulate the expected behaviors of the relevant
mutants in which the key interactions are perturbed (Belyy et al. 2010; Nomura et al.
2008). The observed structural evolution in the FEM simulations also provides a
physical understanding of how these interactions contribute to the gating transition.
These results support the use of the FEM model to explore other contributions, to
which we turn to next.

Effect of Structural Motifs (Loops) in Force Transmission
In this section, we explore the roles that periplasmic loops play in MscS gating
by repeating FEM simulations with specific loops excluded from the model. When
the loops connecting TM1 and TM2 helices are removed (with the Asp62-Arg131
interaction reserved), the structural response (data not shown) closely resembles that
of the full channel model; likewise, the pore diameter evolution is not significantly
perturbed (see Fig. 5). When the loops connecting TM2 and TM3 helices are
removed, while the rearrangements of TM1 and TM2 helices are similar to those of
the full channel model (Fig. 4), the TM3a helices collapse at the upper ends, leading
to an essentially closed pore (Fig. 7). This suggests that the loops linking TM2 and
TM3 helices are essential to the force transmission from lipid membrane to the pore-
lining helices during MscS gating; this is quite different from the situation of MscL
(Tang et al. 2008), in which loops that connect the transmembrane helices generally
constrain channel opening (Ajouz et al. 2000; Tang et al. 2008). To the best of our
knowledge, the importance of the loop between TM2 and TM3 helices to MscS
gating has not been pointed in the literature, and this prediction can be further tested
by studying loop deletion mutants in patch-clamp experiments as done for MscL
(Ajouz et al. 2000; Bavi et al. 2016b).

Effect of the Helical Propensity of the TM3a-TM3b Kink: Inactivation
The Gly113 introduces a kink in TM3, and the region exhibits a weak helical
propensity; thus, the kink segment of G1y113 is modeled as a loop (with an arc
length of �8 Å corresponding to the length of the backbone of Gly113) with a small
cross-section and a lower Young’s modulus (Fig. 1) in models described so far. To
explore the significance of the helical kink, FEM simulations are performed in which
the Gly113 region in TM3 is treated as helical but remained (enforced) as the bent
shape and modeled as a curved solid stick (Fig. 8a) whose material properties take
that of the TM3b helix. The structural response of this modified channel model
under membrane tension is depicted in Fig. 8a and the pore diameter evolution
process in Fig. 5 (square curve). When the membrane strain reaches 6.6%, the pore
expands from 4.8 Å to 8 Å in diameter (Fig. 8a). At this point, the expanded pore
still remains nonconducting since, for a hydrophobic pore, the threshold diameter
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Fig. 7 Structural transition of MscS under equi-biaxial membrane tension with the TM2-TM3
loop removed

for hydration is �9 Å (Beckstein et al. 2001). To fully open the channel (2RD13 Å),
a high membrane strain of 11.4% is required (Fig. 8a); this value is comparable
to the gating strain of MscL (Zhu et al. 2016). Combining Fig. 4 and Fig. 8a, it
seems that a flexible end of TM3a at the kink allows a more effective pulling by
the Phe68-Leu111 interaction, thus leading to a lower gating strain. The interaction
between TM3b and the cytoplasmic ˇ domain where the TM3b-ˇ interface is quite
hydrophobic (Koprowski et al. 2011) promotes the kink around Gly113 (Koprowski
et al. 2011; Petrov et al. 2013), which, in the closed state, may prevent backbone
hydrogen bonding in the kink area, thus weakening the constraint at the lower ends
of TM3a. The TM3b-ˇ interface is indicated in Fig. 8a (ellipse), though noting
that the cytoplasmic part is not explicitly included in the present study. Introducing
higher polarity (charged residues) into the TM3b-ˇ interface (e.g., the N117 K or
G168D mutant) results in a weaker interaction between TM3b and the cytoplasmic ˇ
domain (Koprowski et al. 2011), which could be in favor of the backbone hydrogen
bonding in the kink area. It has been observed that neither N117 K nor G168D
mutant shows visible inactivation behavior, while both of them require a much larger
membrane pressure for gating, which is consistent with the present results (Fig. 8a).

With these observations, it is tempting to speculate an inactivation mechanism
for MscS: in the resting state, the kink of TM3 behaves like a loop, and upon
rapid membrane tension, the channel is easily opened (Fig. 4 and the circle curve
in Fig. 5). Under prolonged exposure to subthreshold membrane tension, however,
the channel desensitizes (dashed arrow in Fig. 5) into a nonconductive state (the
circle curve); this occurs because of the local transition of the kink region into a
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Fig. 8 (continued)
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helical conformation that hinders further pore opening. The helical transition of the
kink could be induced by the weakening of the TM3b-“ interface because of the
increased hydration around the interface domain caused by the rotation and outward
movement of TM3 helices (Wang et al. 2008) or the reduction of lipids in the TM
pockets (Pliotas et al. 2015).

To further test this hypothesis, a FEM simulation is conducted in which, at
a subthreshold membrane strain, the Young’s modulus of the TM3a-b loop is
increased to the extent that its bending stiffness is equal to that of the TM3b helix.
In Fig. 8b, after stretching the initial model (model in Fig. 5) by 5% ("mD5%), the
TM3a-b loop is stiffened, which leads to reduced pore size; further opening the
“inactivated structure” requires a very large membrane strain (9%) that is close
to the gating strain of MscL. Increasing the stiffness of the TM3a-b loop at other
reduced values (<5%) of membrane strain leads to similar results. By contrast, if
the stiffening of the TM3a-b loop occurs at a much larger membrane strain (e.g.,
"mD6.6%), the impact on the subsequent pore evolution is minimal. These results
are in qualitative agreement with the experimental observation of Sukharev et al.
(Kamaraju et al. 2011) that MscS inactivates primarily from the nonconducting
state and channel opening prevents inactivation. It should be noted that the present
quasi-static approach does not show the dependence of inactivation on (long) time
(Kamaraju et al. 2011), which could be a result of desensitization against hydration
inside the TM3a pore.

The mechanism for MscS inactivation has remained a mystery for decades.
Though some key interactions and residues have been proposed to be involved, how
these interactions and residues induce inactivation is poorly understood. The current
study suggests that this behavior of MscS could be related to the conformational
state of the helical kink at Gly113; a loop conformation allows other interactions
to effectively pull TM3a helices outward thus opening the channel, while a more
ordered helical conformation hinders the pulling, leading to channel inactivation.
Previous experimental studies highlighted the importance of the Gly113 region as
well. For example, another MscS-like channel from Silicibacter pomeroyi (MscSP)
has a conserved glycine residue at the position equivalent to Gly113 in MscS (Petrov
et al. 2013). However, the N117 residue in MscS is replaced by a charged residue
Glu in MscSP based on the alignments of MscS and MscSP (Petrov et al. 2013),
which leads to a weaker interaction between TM3b and the cytoplasmic “ domain
in MscSP (Koprowski et al. 2011; Petrov et al. 2013) and may facilitate the helical
transition of the kink region, resulting in a higher gating threshold (square curve in
Fig. 5); indeed, it was reported that the threshold gating strain of MscSP is �1.5
times of that of MscS (Petrov et al. 2013). In another two MscS-type channels,

J
Fig. 8 Structural transition of MscS under equi-biaxial membrane tension with the TM3a-
TM3b kink considered as helical (a) and the proposed mechanism for gating, desensitizing, and
inactivation of MscS. The purple ellipse in (a) indicates the TM3b-“ interface. The increased
helical propensity of the kink could be induced by weakening the interaction between TM3b and
the cytoplasmic “ domain (e.g., the G168D mutant), thus, to an extent, relaxing the kink
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MscMJ of M. jannaschii (Kloda and Martinac 2001) and MscCG of C. glutamicum
(Borngen et al. 2010), inactivation was not observed (Petrov et al. 2013); this might
be explained by the observation that Gly113 in MscS is replaced in the equivalent
position by Asp and Ser in MscMJ and MscCG, respectively (Petrov et al. 2013).

In addition to the connection to these previous studies, the inactivation mecha-
nism proposed here (Fig. 8b) can be tested by replacing Gly113 with amino acids
of higher helical propensity or extending the kink area (e.g., multiple Gly insertion)
to further increase its structural flexibility; the latter was done by Martinac et al. for
MscL (Bavi et al. 2016b). Both mutations are expected to result in the absence of
inactivation in MscS.

Interestingly, an earlier work (Akitake et al. 2007) has conducted a series of
mutation studies both at the Gly113 kink region and the TM3b-“ interface area
(Gly121), though that study was aimed to show that the Gly113 kink is a unique
feature of the inactivated state and the closed structure favors buckling at Gly121,
which was not supported by later studies (Pliotas et al. 2012, 2015; Ward et al.
2014). Thus we here attempt to interpret the results of mutation studies in Akitake
et al. (2007) from the perspective of our proposed inactivation mechanism. First,
the G113A mutant in Akitake et al. (2007) had increased helical propensity in
the kink region and indeed showed no inactivation behavior; this agrees with
our inactivation mechanism. The gating tension of G113A mutant was, however,
observed to be comparable to that of the wild-type MscS in Akitake et al. (2007);
this observation is not consistent with the predicted gating pathway in Fig. 5 (square
curve), probably because the Ala substitution interacts with phospholipids inside
the TM pockets (Pliotas et al. 2015) (not considered in the present model), thus
strengthens the apolar interaction between the lower end of TM2 and that of TM3a
(the main traction that pulls TM3a bundle open (Fig. 6)); alternatively, the Ala
substitution may lead to structural rearrangements not considered in the present
model (e.g., a certain extent of kink straightening (Akitake et al. 2007)) that enhance
the interaction between the ends of TM2 and TM3a. To test these possibilities, a
simulation is conducted where the kink region is treated as helical and modeled as
a curved solid stick (Fig. 8a), while at the same time the TM2-TM3a traction force
(green arrow in Fig. 8a) is increased by 50%. The gating strain is found to be 6.0%
in this case, close to the gating strain (6.6%) of the model in Fig. 4 where the kink
is modeled as a loop.

Second, the Q112G mutation (Akitake et al. 2007) increased the flexibility of the
kink area, but instead of resulting in the absence of inactivation as suggested in our
proposed inactivation mechanism, the Q112G mutant exhibited faster inactivation
(Edwards et al. 2008). We conjecture that the Q112G mutation may weaken the
apolar interaction between the lower end of TM2 and that of TM3a and may
make the kink area “too flexible” that upon channel opening or even in the initial
state, water molecules enter the TM pocket between TM1-TM2 and TM3a thus
further causing the detachment between TM2 and TM3a. To test this assumption,
a simulation is conducted for a modified Q112G mutant model, where the kink
region is treated as a loop and modeled as a flexible quasi-one-dimensional winding
beam (Fig. 1b), while at the same time the TM2-TM3a traction force (green arrow
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in Fig. 1b) is decreased by 10%. The simulation results in a structure close to that
in Fig. 6 where the Phe68-Leu111 traction is missing and the channel cannot be
opened, which may explain the faster inactivation of Q112G. As replacing one
residue could change a set of interactions nearby (Wang et al. 2008), especially
for the subtle situation at the Gly113 area which also affects the TM2-TM3a
apolar interaction or possibly the hydrophobic lock of the channel pore (Anishkin
and Sukharev 2004; Vora et al. 2006), mutation studies in this region require
careful analysis and interpretation. The two simulations mentioned above serve
as exploratory models by controlling the state of the kink (helix vs. loop) and
the traction between the ends of TM2 and TM3a. More detailed experimental and
simulation works are required in future to determine the structural and interaction
changes around the kink area due to mutations.

At the TM3b-“ interface, two mutations were conducted in Akitake et al. (2007),
G121A and A120G. The G121A substitution, as discussed above, can reinforce
the hydrophobic TM3b-ˇ interface, promoting the kink around Gly113 (Koprowski
et al. 2011; Petrov et al. 2013) and resulting in a more flexible kink region at Gly113.
As expected from our mechanism, the G121A mutant was observed to open easily
and showed no inactivation (Akitake et al. 2007). The A120G mutation, on the other
hand, weakened TM3b-“ interface, thus promoting the helical propensity at the kink
area. Again as expected from our mechanism, the A120G mutant exhibited a high
degree of inactivation (Akitake et al. 2007). Therefore, the results for both G121A
and A120G mutants are supportive of the inactivation mechanism proposed here.

Effect of Transmembrane Voltage
Transmembrane voltage is applied to the continuum model to investigate its effects
on MscS gating (Akitake et al. 2005; Nomura et al. 2016). For simplicity, we
only consider the charged residues in the atomic model which are mapped to the
finite element nodes in the continuum model (inset of Fig. 9). There are only a few
charged residues in the transmembrane domain, which are Arg46, Arg54, Arg59,
Lys60, Asp62, Asp67, Arg74, Arg88, and Arg128. Transmembrane voltages from
�100 mV to C100 mV (Akitake et al. 2005) are applied with the exterior of the cell
being positive with respect to its interior. No evident dependence of the activation
pathways (Fig. 9) on transmembrane voltages is observed in the FEM simulations.
This finding is consistent with recent experimental results (Akitake et al. 2005;
Nomura et al. 2016). The rectifying behavior that the conductance is larger at
positive voltages observed in some studies (Martinac et al. 1987; Petrov et al. 2013)
could be a result of the inside-out nature in patch-clamp experiments and the slight
anion preference of MscS (Martinac et al. 1987; Sukharev 2002).

Another observation of depolarizing voltage-dependent inactivation (Akitake
et al. 2005), however, remains unsettled. How negative voltages promote inacti-
vation rate must await further studies with more sophisticated models combined
with experimental analyses. It is possible that, though the electric field causes
only small displacements on the charges in MscS during activation (Akitake et al.
2005), its presence may disrupt some key interactions like the TM3b-“ interface
(e.g., Asn117). Besides, voltage-dependent inactivation may be related to the
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Fig. 9 Pore diameter
evolutions of MscS under
equi-biaxial membrane
tension and different
transmembrane voltages.
Residue charges and electric
field are incorporated into the
continuum model based on
the charge distribution in the
crystal structure (inset). Red
particles represent positive
residues and blue particles
negative residues

conformational changes of the cytoplasmic domain (not included in the present
study) as indicated in Rowe et al.’s work (Rowe et al. 2014) where the G168D
mutant is insensitive to applied voltages.

Coupled ContinuumMechanical-Continuum Solvation Approach
with Application to GatingMechanism of MscL

Models andMethods

In this section, the construction process of the continuum mechanics model for
E. coli-MscL is presented in detail. Relevant material and interaction parameteriza-
tions are either calibrated by matching results at the atomistic and continuum level
or obtained from a previous study (Chen et al. 2008). The computational framework
includes essentially two components: continuum mechanics (CM) simulations
based on finite element method (FEM), which solve for the deformed structure
under specific external loads, and the continuum solvation model (CS), which
computes solvation forces based on structural information from the CM model.
The commercial software ABAQUS (2011) (for CM calculations) and open-source
software APBS (Baker et al. 2001) (for CS model) are used in this fully integrated
(CM/CS) simulation framework. Detailed ABAQUS-APBS co-simulation protocols
are presented.

ContinuumModeling of E. coli-MscL and InteractionsWithin the Protein
Although E. coli-MscL is one of the most studied MS channels, the only available
X-ray crystal structure in the literature is for the MscL from bacteria Mycobacterium
tuberculosis (Tb), which was captured in its closed state by Rees Lab (Chang et al.
1998). By retaining the main features of the crystal structure of Tb-MscL, the atomic
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structure of E. coli-MscL was developed based on homology modeling along with
other experimental constraints (Sukharev and Anishkin 2004; Sukharev et al. 2001a;
Sukharev and Corey 2004); the closed state model is shown in Fig. 10g. The crystal
structure of Tb-MscL was further refined by Stefan Steinbacher et al. (2007), where
its N-terminal (termed S1) was an amphipathic helix positioned approximately
parallel to the cytoplasmic surface of the membrane. This refined structure for Tb-
MscL was supported by later studies (Iscla et al. 2008). Based on the new structure
for Tb-MscL and MD simulations, S1 domain was suggested to interact closely
with the lipid membrane, which may facilitate the opening of the channel (Iscla and
Blount 2012; Vanegas and Arroyo 2014). While developing the new atomic E. coli-
MscL structure based on the revived Tb-MscL crystal structure (Steinbacher et al.
2007) is beyond the scope of the present study, it should be noted that the effect of
S1 domain as a “sliding anchor” to the lipid membrane thus helping channel opening
(Iscla and Blount 2012; Vanegas and Arroyo 2014) is not available for studying in
this work since we are using Sukharev S. et al.’s model (Sukharev and Anishkin
2004) whose S1 domain assembles as a helix bundle. The S1 domain’s interaction
to the lipid and its hydration process may be to some extent different from what we
present in the following context but is not expected to bias the principal outcomes
of the current model.

An E. coli-MscL molecule is formed by five chains (from chain-1 to chain-5)
assembled as a fivefold structure around its symmetry axis, and each single chain
(Fig. 10a) of MscL consists of four helices (referred as TM1, TM2, S1, and S3)
and several loops. Within the transmembrane helix bundles, the five TM2 helices
form the outer boundary that interact extensively with the lipid membrane, while the
longer TM1 helices form the inner boundary for the pore and have limited contact
with the lipid. The TM1 and TM2 helix bundles share the same fivefold symmetry
axis, denoted as the z-axis here, which is also the direction of the membrane normal.
Each TM1 helix and its nearest neighbor, a TM2 helix, are assembled into a pair
through a periplasmic loop. A closer view of the TM1 shows that there is a break
near the top of the helix due to Pro-43; thus, the segment above Pro-43 is also
referred to as the S2 helix. The cytoplasmic region contains two different types of
helix bundles, referred to as the S1 helices and S3 helices; each bundle contains five
subunits, and each subunit of the S1 or S3 bundles is connected, respectively, to a
TM1 or TM2 helix through a loop. The TM1, TM2, S1, and S3 helices correspond
to residues Asn-15–Gly-50, Val-77–Glu-107, Ile-3–Met-12, and Lys-117–Arg-135,
respectively (Sukharev and Anishkin 2004). In the subsequent discussion, unless
otherwise specified, MscL refers to the E. coli-MscL.

In the continuum model, we start from the backbone structure with side chains
removed because when side chains are presented, some subcomponents are unable
to be separated, such as the TM1 and TM2 helices in the same chain which are very
close to each other. More dedicated calculation of the surfaces of the protein could
be considered in future work to get a more precise model. The molecular surface
(Fig. 10c) of each single chain of MscL molecule is calculated and triangularized
using the MSMS program (Sanner et al. 1996) with appropriate probe radius to avoid
overlapping of subcomponents (such as TM1 and TM2 helices). Among the multiple
subcomponents of MscL, helices are modeled to have larger cross sections because
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Fig. 10 Illustration of various steps in constructing the FEM Model of E. coli-MscL. (a, b) the
atomic structure of one chain of E. coli-MscL in cartoon and van der Waals (VDW) representation
where blue indicates hydrophobic and red hydrophilic; (c) the triangularized molecular surface;
(d) the simplified triangularized molecular surface and the volume enclosed by this surface are
discretized into tetrahedral elements; (e) the coarse-grained model of one chain of E. coli-MscL;
(f) the FEM model of E. coli-MscL; (g) structural model of E. coli-MscL based on homology
modeling (Sukharev and Anishkin 2004). Zhu et al. (2016), reprinted with permission of Springer

they are strengthened by the hydrogen bonding between residues, while the loops
are modeled much thinner (Fig. 10c). The triangularized surface is then simplified
by the QSLIM program (Heckbert and Garland 1999) to reduce the number of the
surface triangles to 2000 (Fig. 10d). The volume enclosed by this simplified surface
is subsequentially discretized into a 3-D mesh consisting of tetrahedral elements.
The final FEM model consists of 2,685 nodes and 9,699 finite elements for each
chain of MscL.

Assuming that the mechanical properties of each component vary little with
respect to sequence, the properties of each component are assumed to be homoge-
neous, isotropic, and constant during the gating process. The only exception is for
the break between S2 and TM1 (Pro43, illustrated by the blue segment in Fig. 10a),
whose properties are determined separately and less stiff than the rest of the helix.
The material properties of each component are calibrated by matching results of
normal mode analysis (NMA) at the continuum and atomistic levels. The NMA for
individual components of the channel is conducted in vacuum using the Gromacs
MD simulation package with the Gromos96 vacuum parameter set (Van Der Spoel
et al. 2005) so as to be consistent with the continuum calculations which are also
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Fig. 11 Examples of several lowest eigenmodes and frequencies of helices and loops. Results of
molecular mechanics are compared to those of the finite element simulations. Here the TM1 helix
only includes to the segment below Pro43. Zhu et al. (2016), reprinted with permission of Springer

Table 2 Phenomenological material properties of the continuum components

Helices Loops Lipid membrane

Properties
of MscL

TM1 TM2 Pro43 S1 S2 S3 TM1-TM2 TM1-S1 TM2-S3 Head
groups

Tails

Young’s
modulus
E (Gpa)

69 54 11 9 14 14 20 10 12 0.124 0.064

Poisson’s
ratio �

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.5

conducted in vacuum. A possible way to get more realistic elastic properties is to
conduct NMA considering the water and lipid environment in both continuum and
atomistic calculations though this kind of NMA at the continuum level is highly
complex. The Young’s modulus is then varied at the continuum calculations such
that the eigenvalues and eigenvectors for the three lowest-frequency modes best fit
the results from the atomistic normal mode calculations. The lowest eigenmode of
the TM1 or TM2 helices, for example, is essentially flexural bending as shown with
both continuum and atomistic configurations in Fig. 11. The lowest frequencies are
136.2 and 96.1 GHz for TM1 and TM2 helices, respectively, which lead to the fitting
of their effective Young’s moduli as 69 GPa (TM1) and 54 Gpa (TM2). Summarized
in Table 2 are the key mechanical properties for the helices and loops. These are
smaller than estimated in the previous work (Chen et al. 2008) where the helices,
for instance, were modeled as thinner (with a diameter of 5 Å) elastic cylinders by
considering only the main chain and larger than the estimated range of the Young’s
modulus of MscL ’-helices (0.2 to 12.5 GPa) in Martinac et al.’s recent work (Bavi
et al. 2017) with constant-force steered molecular dynamics (SMD).

The nonbonded interactions within MscL are treated by adopting a sufficiently
detailed yet computationally efficient protocol to replace the oversimplified surface-
to-surface contact model used previously (Chen et al. 2008; Tang et al. 2006).
To reduce computational cost, the new approach first simplifies the full-atomic
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structure into a coarse-grained (CG) model consisting of a much smaller number
of particles based on the Martini force field v2.1 (Monticelli et al. 2008). This
CG process reduces the number of particles from 2166 to 283 for each chain of
E. coli-MscL with side chains included (Fig. 10e). The coarse-grained particles are
then mapped to the nodes of the continuum MscL model so that it consists of
two types of nodes: ordinary finite element (FE) nodes and the “chemical nodes.”
The “chemical nodes” in the continuum MscL model refer to the FE nodes that
have the same coordinates to that of the CG particles (Fig. 10d, e). Interactions
between the Martini particles are then applied to the corresponding FE nodes in the
continuum mechanics simulation. These interactions include the particle-to-particle
interactions between different components within the same chain and between
components in different chains. For example, within chain-1, one particle on the
TM1 may interact with another particle on S3, TM2, S1, or loops of chain-1, and
as for different chains, one particle on the TM1 of chain-1 may interact with any
particle on chain-2 (from S3 to S1). In the MDeFEM framework, the interactions
among atoms within each continuum component (e.g., particles on TM1 of chain-1)
are not computed explicitly because the corresponding energy is already included
in the elastic representation of the continuum components; this is one reason that
the computational cost associated with the continuum framework is substantially
lower than all-atom simulations. The nonbonded interactions between CG particles
in different continuum components are calculated using pair-wise terms following
the standard cutoff schemes commonly used in atomistic simulations. Specifically,
we adopt a group of “connector elements” in the mechanical space, each of which
characterizes the nonbonded interaction between a pair of interacting CG particles.
These connector elements are not actually FEM elements but a special kind of
invisible connectors in ABAQUS used to define force-based nonlinear interactions,
just like the nonbonded interactions in MD. The connector element behavior is
nonlinear elastic including two possible forms:

Lennard-Jones form W VLJ D 4"
h
.�=l/12 � .�=l/6

i

Coulomb’s form W VElec D 1
4�"0"r

q1q2
l2

(2)

where " and � are the energy and distance parameters, respectively, to characterize
the Lennard-Jones interactions. "0 is the vacuum dielectric constant, "r D 15 is the
relative dielectric constant for electrostatic screening in the Martini force field v2.1
(Monticelli et al. 2008), and qi is the partial charge of the i-th particle. l denotes the
distance between a pair of interacting particles. We note that with the polarizable
MARTINI water model (Yesylevskyy et al. 2010), the relative dielectric constant
is substantially smaller (2.5); test calculations are also done with this value, and
the results are generally very similar (data not shown) since the behavior of MscL
appears to be largely dictated by the nonpolar solvation (see discussions below).
For the interactions among the MscL components, all the parameters involved in
the Lennard-Jones interaction are obtained from the Martini force field v2.1; all
distances are calculated based on the CG particle coordinates that are continuously
updated and mapped from the continuum model. Also continuously updated are
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the connector elements to include newly emerged interactions when two remote
particles come closer during the simulation process. The Lennard-Jones interaction
cutoff length is set to be 1.0 nm and the electrostatic cutoff length 1.2 nm.

The major advantage of the irregular molecular surface FEM model over the
highly simplified cylindrical stick model (Chen et al. 2008; Tang et al. 2006) is that
they take into account the molecular nature of MscL, such as its irregular shape. In
addition, the mapping between CG particles and corresponding FEM nodes makes
it straightforward to define “chemical nodes,” which encodes the key chemical
characteristics of the molecule (i.e., charge distribution and solute/solvent interface)
that are required in the solvation calculations.

ContinuumModeling of Lipid Bilayers and Interactions BetweenMscL
and Lipid
Motivated by the natural difference in the chemical and physical properties of these
regions, the lipid membrane bilayer is modeled as a sandwich panel that consists of
three layers (Fig. 12): a soft layer in the middle with a thickness of 2.5 nm and two
hard layers in two sides with a thickness of 0.5 nm each (Chen et al. 2008). These
values for thickness estimation are based on density map of water and lipids from
a MD simulation of the POPE lipid system (Gullingsrud and Schulten 2004), and
both the derived head group thickness and the tail group thickness are consistent
with general thickness estimations for the POPE lipid membrane. Meanwhile, the
work of Andrew M. Powl et al. identified the hydrophobic thickness of E. coli-MscL
associated with the lipid membrane as 25 Å (Powl et al. 2005b). Thus, there is a good
match between the hydrophobic thickness of helix and bilayer; and hydrophobic
mismatch is not considered in the present model.

For the case of in-plane membrane stretching, which is the major driving force
for MscL gating (Tang et al. 2006), a flat square membrane (within the x-y plane)
with a size of 400 � 400 Å is employed. The equi-biaxial membrane tension is
most likely induced by osmotic pressure: assuming the liposome is spherical with
a typical diameter of 1.0 �m, a patch of membrane with the size of 400 � 400 Å
corresponds to a center angle of �0.08, which suggests that the curvature of the
patch is negligible. To embed the channel into the continuum membrane, a cavity
(hole) with the shape of a 10-petal flower (Fig. 12) is created in the middle of
the membrane with the size and shape of the cavity conform to those of MscL
transmembrane helices in the closed state with an equilibrium distance of �5.5 Å,
as was measured from the trajectories in previous all-atom simulation (Gullingsrud
and Schulten 2003).

The three-layer phenomenological model (with a thickness of �35 Å
(Gullingsrud and Schulten 2003)) for the palmitoyloleoylphosphatidylethanolamine
(POPE) lipid bilayer is first assumed to be homogeneous and isotropic, and its
mechanical properties are obtained from a previous study (Chen et al. 2008)
where the effective elastic properties of the head group layers and the tail group
layer were derived from MD simulations (Gullingsrud and Schulten 2004). And
these parameters are overall consistent with general simulation or experimental
estimations (Binder and Gawrisch 2001; Chacon et al. 2015; Venable et al. 2015),
though they may be further optimized through recent developments about the new
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Fig. 12 Schematic of equi-biaxial tension of the lipid membrane model. A zoomed-in view is
shown to illustrate the 10-petal lipid hole that encompasses the MscL protein in the CM model.
Zhu et al. (2016), reprinted with permission of Springer

force decomposition methods (Torres-Sánchez et al. 2015; Vanegas et al. 2014).
For isotropic linear elasticity, the constitutive relation (stress-strain relationship) is
given by
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where � ij and "ij are the stress and strain tensor components. For isotropic linear
elastic materials, the shear moduli G12 D G23 D G13 D E

2.1C�/
; thus, the elastic

properties for each layer of the continuum lipid bilayer model are governed by
Young’s modulus, E, and Poisson’s ratio, v, listed in Table 2. To take into account
the prominent characteristics of the fluidic lipid membrane, i.e., its incapability
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of sustaining a large shear stress, we model each layer of the lipid membrane as
orthotropic and reduce the in-plane shear modulus of the continuum lipid model,
G12 (Eq. 3), to a small value (without losing generality, E

2.1C�/
=1000 is adopted),

while all other parameters are inherited from the previous isotropic continuum lipid
model. Such a change does not affect the area compressibility under equi-biaxial
tension, which is used to estimate the lipid membrane’s Young’s modulus and
Poisson’s ratio (Chen et al. 2008) because of the decoupling between tension and
shear. It is expected that the in-plane fluidity of the lipid bilayer allows a closer
interaction between the surface of the 10-petal lipid hole and the MscL molecule,
thus facilitating the gating process since the in-plane lipid tension has been regarded
as the major driving force that pulls the channel open (Moe and Blount 2005; Tang
et al. 2006). Upon applied tension, the behavior of a real membrane may not be
strictly elastic or orthotropic as described, and it was found in a molecular dynamics
study that MscL inclusion may increase the rigidity of the membrane (Jeon and
Voth 2008). For simplicity, these details are ignored in the present work and are not
expected to have a significant influence on the structure or behavior of MscL based
on our previous studies (Chen et al. 2008; Tang et al. 2008).

The nonbonded interactions between the lipid hole and the MscL molecule are
treated as in Chen et al. (2008) where the interactions between helix and lipid are
represented by a pair-wise effective pressure-distance relationship in the following
form:

p .˛i / D
Dn

d0

h
.d0=˛i /

mC1 � .d0=˛i /
nC1

i
(4)

where p and d0 are the interaction pressure and equilibrium distance between two
surfaces, respectively, and ˛i is the instantaneous distance between two deformed
surfaces for the i-th element. This nonbonded interaction model implicitly includes
both electrostatic and van der Waals interactions and has been successfully applied
to study the radial elastic properties of multiwalled carbon nanotubes (Chen
et al. 2006) and the deformation and buckling of double-walled carbon nanotubes
(Pantano et al. 2003) as well as nanoindentation of nanotubes (Cao and Chen 2006).
To estimate the helix-lipid interactions, the insertion energy profile of a single helix
(TM1, TM2, or S1) is calculated with an implicit membrane model; i.e., the helix
is gradually transferred from the implicit membrane to the implicit bulk solution.
Determined from molecular mechanics calculations (Chen et al. 2008), shown in
Table 3 are the well-depth D and the exponents (m, n) which are fairly transferable
to the current model since we are using the same atomic structure of E. coli-MscL.

It is noted the irregular surface of the lipid membrane is not included in this
work, and the particle-to-particle lipid-channel interaction force is averaged to the

Table 3 Parameters for the
nonbonded interactions
between different helix-lipid
pairs (Chen et al. 2008)

Interaction pairs d0(Å)  D 6Dn/d0(GPa) m n

Lipid-TM1 5.5 2.0 9 3
Lipid-TM2 5.5 2.0 7 3
Lipid-S1 7.0 0.025 4 1
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surfaces of them; thus, the heterogeneous binding of the lipid to the channel is lost.
Further refinements of the continuum mechanics lipid model and its heterogeneous
interaction to the channel could be considered in future work with different levels
of sophistication.

Continuum SolvationModeling
As described above, the new continuum MscL model is meshed in a way so that it
consists of two types of nodes: ordinary finite element (FE) nodes and the “chemical
nodes” which are also FE nodes but correspond to the CG particles. While all FE
nodes contribute to the mechanical deformation of MscL, the “chemical nodes”
are subjected to additional force contributions from solvation and inter-component
interactions. Since the new continuum representation adopted here retains the
information about the irregular shape of the protein and spatial distribution of the
amino acid residues, the solvation contribution (electrostatic plus apolar solvation
forces) can be readily calculated using a popular continuum solvation model. Shown
in Fig. 10e are the CG particles of E. coli-MscL that bear solvation forces in the
continuum solvation calculations. Following the mapping of these CG particles to
the nodes of the continuum MscL model, the solvation forces are also transferred
from the CG particles to the corresponding “chemical nodes” and included in the
subsequent continuum mechanics simulations.

The total solvation free energy is usually decomposed into apolar and elec-
trostatic contributions. For the electrostatic component, the nonlinear Poisson-
Boltzmann (NLPB) (Davis and Mccammon 1990; Honig and Nicholls 1995)
model is used. The van der Waals radius (21/6� /2) of each CG particle is used to
approximately determine the dielectric boundary between MscL and the solvent,
and ions in solution have a finite radius of 2.0 Å. The spline-based (Im et al. 1998)
molecular surface, which permits stable solvation force calculations, is used with
a 0.3 Å spline window. The channel is surrounded by the nonpolar membrane
environment, which is represented crudely by a low dielectric slab following
the procedure in APBS (Baker et al. 2001). Accordingly, the MscL protein-lipid
system has three dielectric regions: the high dielectric solvent exterior (80.0), the
intermediate dielectric protein interior (10.0), and the low dielectric interior of the
membrane (2.0). The membrane environment is applied except for the hole in which
the MscL is located. Test calculations indicate that for MscL, the results are not
sensitive to the value of the protein dielectric used.

As tests of the electrostatic solvation protocol, we compare the computed polar
solvation free energy of two systems to values obtained based on the standard
solvation protocol in APBS using atomistic structures. One system is a short peptide
(with 27 residues and a length of �4 nm) from APBS, for which the computed polar
transferring free energy from bulk water into the membrane is 127.1 and 120.9
KJ/mol for the atomistic protocol and current CG-based protocol, respectively.
The second system is the closed state of E. coli-MscL, for which the computed
polar transferring free energy with the atomistic and CG models are 61.8 and
70.9 KJ/mol, respectively. These two examples suggest that the Martini/NLPB
combination appears to provide a reasonable estimate for the polar solvation effects.
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The apolar solvation force calculations follow the very generic framework
described in Wagoner and Baker (2006) where the solvent-accessible surface area
contribution is supplemented with volume and dispersion integral terms. A 0.3
spline window is used for the spline-based molecular surface, and the coefficients
for surface tension and the volume term of the apolar calculations are 0.0042
KJ/mol/Å2 and 0.23 KJ/mol/Å3, respectively. It is noted that the lipid membrane is
not present in apolar solvation force calculations, while in fact most of the residues
of TM2 and some residues on TM1 are buried in the membrane. Therefore, the
apolar solvation forces on the outer particles of the transmembrane helices are not
included in the continuum mechanics calculation (the interactions between these
particles and lipids are included explicitly as discussed above). Care is taken to
identify these particles based on the coordinates and van der Waals radius of each
CG particle in the transmembrane helices.

Besides the outer particles of the transmembrane helices buried in lipids, the
inner pore constriction at the closed state for the wild-type (WT) MscL is actually
not hydrated at the first stage of gating until the pore gets large enough (> 0.45 nm
(Beckstein et al. 2001)). In the above calculations, the channel pore is assumed to
be already wetted at the beginning, which is probably more close to the gain-of-
function (GOF) mutant MscL (e.g., the V23 T GOF mutant (Anishkin et al. 2005)).
The hydration of the channel pore depends on the effective pore radius, and since
the pore has different radii along the symmetry axis, at the beginning, only part of
the pore surface is hydrated and the rest is not. In the closed state of MscL, about
half of the TM1 bundle’s inner surface is exposed to solvent and the lower half is
not. When considering the hydration process depending on the effective pore radius
as a more realistic model for the WT MscL, similar to those outer residues buried in
lipids, the apolar solvation forces on the inner hydrophobic constriction region are
not included in the continuum mechanics calculations. This is likely a reasonable
approximation in the context of continuum modeling, although the hydration of
MscL is a complex case that requires thorough MD studies (Beckstein et al. 2001;
Beckstein and Sansom 2004).

In the following context, when considering hydrophobic interactions between
water and the channel, the effect of gradual hydration is not included first; and the
pore radius depended hydration process is considered in the section of “Different
Pathways for the GOF (Gain-of-Function) mutant and WT (Wild-Type) MscL.”

During the continuum calculations, the positions of the CG model are constantly
updated based on the coordinates of the “chemical nodes” of continuum mechanics
MscL model, while the particle type, radius, charge, and interaction parameters
are retained. And solvation forces of the constantly updated CG model calculated
through the above protocols in turn participate in the FEM calculations. Solvation
effects on the lipid membrane are neglected.

A Force-Based CM/CS Co-simulation Protocol
Shown in Fig. 13 is the assembled continuum model of E. coli-MscL under equi-
biaxial tension with zoomed-in views near the protein (the 10-petal lipid hole
surface and the E. coli-MscL). Four-node tetrahedron finite elements are used
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Fig. 13 Force-based ABAQUS-APBS co-simulation protocol: schematic (with a zoomed-in view
near the protein) and flowchart representation. Zhu et al. (2016), reprinted with permission of
Springer

to mesh both the helices and the lipid membrane with the commercial package
ABAQUS (2011). Each chain of the continuum MscL model consists of 2,685
nodes and 9,699 finite elements. The lipid bilayer incorporates 2,412 nodes and
10,680 elements, with the mesh gradually more refined toward the boundary of the
inner hole where it interacts with the protein extensively. As a reference calculation,
MscL gating is modeled without including the solvation effects. Through ABAQUS
simulation, the structural deformation of the lipid-protein system is explicitly
calculated in response to an external load, where the lipid membrane is stretched
(Fig. 13) by applying equi-biaxial displacement on its outer boundary (relevant to
osmotic pressure).

To explicitly explore the solvation effect on MscL gating pattern, continuum
solvation forces (electrostatic or apolar) need to be integrated into the continuum
model that solves for lipid-protein system deformation under external force. This
requires an iterative procedure that alternates between CM simulation and CS
calculations (illustrated in Fig. 13):

1. Set up nonbonded interactions within MscL and those between MscL and lipid
membrane.

2. A small equi-biaxial displacement on the lipid’s outer boundary is applied, and a
deformed conformation of the system is obtained by finite element analysis using
ABAQUS.

3. The positions of all “chemical nodes” of MscL molecule are extracted from the
deformed mesh, and then continuum solvation forces are calculated by APBS.
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4. At the same time, the connector elements (interactions within MscL) are updated:
new connector elements are added for pairs of two “chemical nodes” that are
originally remote but come close during the gating process. The forces exerted
by the connector element are directly applied to the corresponding nodes in the
continuum model without interrupting the integrity of the element community.
Since the gating mechanism of MscL is a gradually expanding process, there are
only a few of newly applied connector elements (forces).

5. The solvation forces on the chemical nodes and forces from the newly emerged
connector elements are included in the FEM simulation, and a new deformed
structure is obtained in the next time step, leading to a new iteration.

6. Dozens of iterations (steps) are carried out until the channel is fully opened, i.e.,
when the channel pore radius of the continuum model reaches the experimentally
estimated value (�19 Å) for the fully opened state (Sukharev et al. 2001b). Note
that the solvation contribution includes both electrostatic and apolar components,
and their effects are explored separately below. With different salt concentrations,
the procedure above can be repeated to validate Sukharev et al.’s experimental
observation (Sukharev et al. 1999) that there is no significant change in the gating
pattern for salt concentrations between 0.05 and 1.0 M.

For a typical tension simulation of the gating of E. coli-MscL, the computational
time is �8 h on a Dell workstation with 3.2 GHz CPU and 4 Gb RAM, highlighting
the efficiency of the MDeFEM framework compared to atomistic MD simulations,
which take from days to months for large membrane protein systems.

Results and Discussion

In this section, we compare the gating pathways of three systems: (1) a pure
CM model with isotropic membrane properties (i.e., in absence of membrane
fluidity and solvation effects), (2) a CM model with membrane fluidity but lacking
solvation effects, and (3) a complete model that incorporates the electrostatic/apolar
solvation effect through the ABAQUS-APBS co-simulation protocol developed
above. Simulation results are compared to structural models, previous all-atom
simulations, as well as available experimental results.

Gating Pathway of MscLWithout Membrane Fluidity and Solvation
Effects
As a reference model, same as our previous MDeFEM study (Chen et al. 2008;
Tang et al. 2008), we first treat each layer of the lipid as an isotropic slab
without any explicit solvation effects; this is referred to as the preliminary model
below. Shown in Fig. 14 are several snapshots of E. coli-MscL during the tension-
driven gating process in comparison to the structural model of Sukharev and
Anishkin (2004) at closed, half-, and fully opened states. Not surprisingly, the
transmembrane region (TM1 and TM2 helices) exhibits the most striking confor-
mational changes, in which both TM1 and TM2 helices shift radially away from
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Fig. 14 Gating pathway of E. coli-MscL at closed (a), half- (b), and fully opened (c) states.
Configurations are illustrated by continuum model in mechanical space and atomic model (VDW)
in chemical space with comparison to the structural models (Sukharev and Anishkin 2004). The
dashed lines indicate the approximate location of membrane/water interface. Zhu et al. (2016),
reprinted with permission of Springer
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the fivefold symmetry axis. Gating is primarily realized through the nonbonded
interactions between transmembrane helices and the lipid membrane, in which
the pore enclosed by TM1s is pulled open. The S1 bundle expands in the radial
direction following the path of TM1 though it does not open as large as the
TM1 bundle. At the current maximum lipid strain ("mD21%), no disassembly of
S3 helices is observed; although the top region of the S3 bundle is expanded
slightly, the lower ends remain assembled. This observation is in agreement with
the revised version of the structural model (Sukharev and Anishkin 2004), as
opposed to the earlier one (Sukharev et al. 2001b). Beside radial expansion of
the TM helices, visible shrinking in the height of MscL is also observed, which
is correlated with the significant titling of the helices and uplifting of the S3 bundle.
Similar to previous studies (Tang et al. 2006, 2008), the loops and transmembrane
helices are considerably stretched and bent during the gating process to maintain
mechanical equilibrium; these features may be verified from experimental studies
with sufficient resolution. On a qualitative level, the current MDeFEM results
are in good agreement with the structural models (Sukharev and Anishkin 2004),
regarding both the orientation and displacement of the helices and loops (Fig. 14).
The only exception regards the periplasmic loops that link TM1 and TM2 helices;
they remain well packed in our simulations but expand radially in the structural
model of Sukharev and Anishkin (2004) along with the tips of the transmembrane
helices.

The conductance of MscL is directly correlated with the size of the gate, and
it is commonly believed that the TM1 helices in the core of the transmembrane
bundle constitute the most important gate of the channel (Sukharev and Anishkin
2004; Tang et al. 2006), which is pentagon-shaped (insert of Fig. 15) when projected
onto the x-y (membrane) plane. To characterize the pore size, we define an effective
pore radius (denoted as r) as the radius of a circle that has the same area as the
pentagon-shaped TM1 pore (see insert of Fig. 15). To be consistent with previous
studies (Chen et al. 2008; Tang et al. 2008), the area of the pentagon-shaped TM1
pore is calculated as that surrounded by the five TM1 helical axes. From the closed
state to the fully opened state, the effective radius increases from �6.5 Å to �19 Å,
echoing the structural model (Sukharev and Anishkin 2004). Considering the pore’s
irregular inner surface, the actual pore’s radius ranges from <1 Å to �14 Å
which is consistent with the estimation from fluorescence resonance energy transfer
(FRET) experiments (Corry et al. 2010; Wang et al. 2014). For the preliminary
model, the percentage of increment of the effective pore radius and the actual
pore radius is depicted in Fig. 15 as a function of membrane strain (the inverted
triangle curve). Due to the more detailed representation of MscL and the nonbonded
interactions, the relationship between the membrane strain and the lipid cavity
expansion is much less linear as found in the previous study (the triangle curve
(Tang et al. 2008)). As mentioned in the Introduction, the surface-based nonbonded
interaction model used in the previous study is oversimplified, and most importantly,
it neglects all the nonbonded interactions involving the loops that connect helices.
The current work demonstrates that as the membrane strain increases, the pore size
of MscL is firstly stabilized at a small value and then experiences a rapid increase
leading to pore opening when the membrane strain becomes sufficiently large.
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Fig. 15 Predicted behavior of MscL upon equi-biaxial tension (a) and a representative illustration
of the apolar solvation forces (directions only) during MscL gating (b). Evolution of the effective
pore radius and approximate actual radius of MscL is shown as a function of membrane strain.
The results obtained currently are compared with those of the previous MDeFEM model (Tang
et al. 2008). The refined model includes the effect of the lipid’s fluidity, and the full model further
includes the apolar solvation effects. Zhu et al. (2016), reprinted with permission of Springer

This observation is in qualitative agreement with the patch-clamp experiment of
Sukharev et al. (1999), in which the tension-activation data was fitted to a Boltzmann
form.
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Gating Pathway of MscL with Fluidic Membrane and Apolar Solvation
Effects
As emphasized above, two major limitations of our previous work (Chen et al. 2008;
Tang et al. 2008) and the preliminary model concern the lack of membrane fluidity
and solvation effects. In the following, we first include the fluidic properties of
the membrane, leading to the “refined model.” Next, we further include solvation
effects, leading to the “full model.” Since we expect that the interactions between
the apolar surface of the MscL pore and the solvent make a dominant contribution
to the gating process, in this section we only include effects of apolar solvation; the
relative importance of electrostatic and apolar solvation forces will be discussed in
the next section.

With the fluidic lipid model and continuum apolar solvation model employed
successively, new effective pore radius evolution curves are obtained and shown
in Fig. 15 (square curve for the refined model and circle curve for the full model
with apolar solvation). The overall trend of the gating pathway remains the same as
that of the preliminary model (inverted triangle curve) in that the pore size is firstly
stabilized at a small value and then experiences a rapid increase as the lipid strain
further increases. Compared to the preliminary model, the most notable difference
lies in the lipid membrane strain required for fully opening MscL. With the more
realistic (orthotropic) model of the lipid, the membrane strain for full opening of
MscL is reduced slightly (�10%); with the apolar solvation included, the gating
strain is further reduced by as much as �50%. Figure 15b shows the solvation
forces (directions only) on the “hydrophobic chemical nodes (residues)” on TM1s
and TM2s in one step of the simulation of MscL gating. Since most of the residues
on the transmembrane helices are hydrophobic rather than hydrophilic (Fig. 10b),
the interactions between water- and solvent-exposed residues are expected to push
the channel outward, providing another driving force (in addition to the membrane
tension) for the gating transition of MscL.

Take the hydrophobic residues on the constriction area as an example. In the
closed state, these residues are very close, and hydrophobic confinement is thermo-
dynamically favorable since exposure of these hydrophobic residues is energetically
unfavorable. But when the pore constriction is opened wide enough (mainly by
membrane stretch), water molecules will be “driven” to fill in the constriction space
despite the fact that exposure of hydrophobic residues on pore constriction area is
still energetically unfavorable. This “driving” factor that compel the water to fill
into the opened space is probably the system’s internal pressure, change of which is
usually not considered in MD simulations. Thus the “unfavorable” energy required
to expose the hydrophobic residues on the pore constriction is compensated by drop
of the internal pressure which may be very small on the scope of the whole system
but critical for MscL gating. After that, the repulsion interaction between water and
these hydrophobic residues is helping channel gating.

It is known that the gating of MscL can be triggered solely by membrane
stretching, although the importance of apolar solvation to gating has only been
indirectly probed. The release of content through Tb-MscL has been studied by
a pioneering coarse-grained MD simulation work (Louhivuori et al. 2010) which,
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however, did not explicitly elucidate the importance of the hydrophobic effect in
MscL gating. A molecular dynamics study on Tb-MscL (Jeon and Voth 2008)
observed that the water chain formation across the channel pore took place at the
same time as the channel pore radius increased to a certain value, and they suggested
that the two processes may provide positive feedback to each other. The results
we present here provide direct evidence for this point. Though the importance of
hydrophobic interactions in channel gating has been demonstrated previously by
hydrophilic mutations or molecular dynamics studies (Anishkin et al. 2005; Jeon
and Voth 2008), this work, to the best of our knowledge, represents the first explicit
evaluation of the hydrophobic contribution.

Another work that concerned hydration process of MscL gating is conducted by
Anishkin et al. (2010) who focused on the hydrophilic interaction between water
and buried hydrophilic residues instead of hydrophobic interaction as we present in
this work. Based on the analysis of the hydration energy of the pore constriction
and the fact that hydrophilic mutations in the pore constriction area make the
channel opening more easy, a conclusion is drawn that the process of the glycine
(hydrophilic residue) exposure with pore expansion and their favorable hydration
create disjoining pressure that assists opening (Anishkin et al. 2010).

Based on Anishkin et al.’s hydration energy analysis and the analysis of the
results in our present work, detailed effects of the hydrophilic or hydrophobic
residues on channel gating are elucidated as follows. In the process of the exposure
of initially buried hydrophilic residues in the pore constriction area or buried in
other area, due to their favorable hydration, disjoining pressure will be generated
that assists conducting as suggested by Anishkin et al. (2010). But once these
hydrophilic residues are exposed, their interaction with water molecules will resist
opening of the channel based on our analysis primarily due to the hydrogen bonding
between the polar residue and water molecules. On the other hand, the effects of the
hydrophobic residues also act in a similar but contrary way. Before exposure of
the hydrophobic residues in the hydrophobic constriction area, these hydrophobic
residues are closely packed and the interaction within helps the channel keep
closed. But once these hydrophobic residues are exposed, their interaction with
water molecules will facilitate opening of the channel primarily due to the repulsion
interaction between water and nonpolar residues. Collectively, that is, the effects
of the hydrophobic or hydrophilic residues are reversed before and after exposure
to water. These mechanisms may be further verified by future experimental and
simulation studies.

Shown in Fig. 16 are the configurations at half-/fully opened states of the refined
and full models in comparison to the structural model of Sukharev and Anishkin
(2004). As with the preliminary model, the conformational transitions observed with
the refined or full model are also in qualitative agreement with the structural model.
Closer inspection shows that opening of the S1 bundle with the full model is much
more significant and the pore size surrounded (not enclosed) by S1 helices are also
comparable with that of the TM1 pore (Fig. 16). Note that the position of the S1
domain in the opened state may be different from the real case for biological MscL
molecule since the S1 domain of the initial MscL structure (Sukharev and Anishkin



116 L. Zhu et al.

Fi
g
.
1
6

M
sc

L
ga

tin
g

pa
th

w
ay

of
th

e
re

fin
ed

m
od

el
(a

)
an

d
th

e
fu

ll
m

od
el

(b
).

R
es

ul
ts

at
ha

lf
-

an
d

fu
lly

op
en

ed
st

at
es

ar
e

sh
ow

n
w

ith
co

m
pa

ri
so

n
to

th
e

st
ru

ct
ur

al
m

od
el

(c
)

(S
uk

ha
re

v
an

d
A

ni
sh

ki
n

20
04

).
T

he
da

sh
ed

lin
es

in
di

ca
te

th
e

ap
pr

ox
im

at
e

lo
ca

tio
n

of
m

em
br

an
e/

w
at

er
in

te
rf

ac
e.

H
er

e,
th

e
re

fin
ed

m
od

el
ta

ke
s

in
to

ac
co

un
tt

he
flu

id
ity

of
th

e
lip

id
m

em
br

an
e,

an
d

th
e

fu
ll

m
od

el
fu

rt
he

ri
nc

lu
de

s
th

e
ap

ol
ar

so
lv

at
io

n
ef

fe
ct

s.
Z

hu
et

al
.(

20
16

),
re

pr
in

te
d

w
ith

pe
rm

is
si

on
of

Sp
ri

ng
er



3 Molecular Dynamics-Decorated Finite Element Method (MDeFEM):: : : 117

2004) we use may not be appropriately positioned (Iscla et al. 2008). The S3 bundle
also separates more in the full model especially for the upper ends though its lower
ends remain assembled together. Similar to the preliminary model, the loops linking
TM1-TM2 remain essentially unseparated, and this result is consistent with that
of the SMD study (Gullingsrud and Schulten 2003) in which the periplasmic loop
region in all simulations remained stable. Experimentally, it was found that the
channel remains mechanosensitive even with the external loops cleaved (Ajouz et al.
2000); thus, the precise functions of these loops remain unclear. The stable behavior
of the periplasmic loops during the simulated gating process suggests that they may
function as a filter screen to prevent large molecules from entering and occluding
the channel while at the same time prolonging channel opening.

Respective Effects of Electrostatic and Apolar Solvation Forces
Previous patch-clamp experiments (Sukharev et al. 1999) showed that there was no
significant change in the MscL gating pattern in the range of salt concentration
between 0.05 and 1 M. This observation suggests that electrostatic interactions
are unlikely to dominate in MscL gating. To further explore this hypothesis
quantitatively, we simulate MscL gating at several ion concentrations (0.05 M and
2.0 M) in the framework of continuum solvation.

As shown in Fig. 17, there are minor differences between the effective pore
radius evolution curves of the refined model, the full model with electrostatic
solvation contributions with ion concentration of 0.05 M or 2.0 M, respectively.
Configurations from the full model with electrostatic solvation effects (not shown)
are also very close to those from the refined model (ion concentration, 0.00 M)
shown in Fig. 16. Compared to the refined model where no solvation contributions
are included, the effective pore radius evolution does not change much when only
the electrostatic solvation forces are considered. The apolar solvation forces, on the
other hand, contribute significantly to the gating process (circle curve in Fig. 17 or
Fig. 15) as described in the above section.

Different Pathways for the GOF (Gain-of-Function) mutant andWT
(Wild-Type) MscL
The hydrophobic core of the TM1 bundle of WT MscL appears to be dehydrated
according to the EPR data and molecular dynamics results (Gullingsrud and Schul-
ten 2003; Perozo et al. 2002a). The energy landscape for WT MscL indicates that
the major energy cost for MscL opening is between the closed state and the substate
S0.13 (Anishkin et al. 2005) (0.13 means the relative conductance to the fully opened
state) and this substate is believed to be already well hydrated (Anishkin et al. 2005).
Experiments showed that hydrophilic substitutions in the hydrophobic restriction
of TM1s led to a reduction of the gating tension, while a more hydrophobic
substitution resulted in a channel that requires a greater tension to open (Anishkin
et al. 2005). Based on these data, one could associate the passage of the main
energy barrier with the hydration of the largely hydrophobic pore (Anishkin et al.
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Fig. 17 Evolution of the effective pore radius of MscL versus membrane strain for different
models. The different effects of the apolar and electrostatic solvation forces on the gating of E.
coli MscL are obvious. The full model includes the effects of the electrostatic solvation (ES) (with
ion concentration C) or apolar solvation (AS) forces. Zhu et al. (2016), reprinted with permission
of Springer

2005), which is a prerequisite for conduction. The hydrophilic substitution in the
hydrophobic restriction of TM1s may disrupt this initial hydrophobic restriction,
leading to facile hydration of the pore and reduction of the first free energy
barrier.

In the present simulation, the hydration of the channel pore depends on the
effective pore radius as described in the “Models and methods” section. The
threshold radius for hydration is taken to be 0.45 nm (Beckstein et al. 2001) as
indicated in the right bottom inset of Fig. 18. In the closed state of MscL, about half
of the TM1’s inner surface is exposed to solvent and the lower half is not. When
considering the hydration process here, accordingly, the apolar solvation forces
on the inner hydrophobic constriction region are not included in the continuum
mechanics calculations.

Figure 18 shows the effective radius evolution curves from full model simula-
tions (including apolar solvation effects) for the WT and the GOF mutant MscL
(hypothetical hydrophilic substitution in the hydrophobic constriction of TM1s). A
rightward shift of the effective radius evolution curve is observed for the WT MscL
as compared to the GOF mutant. This result is in agreement with experimental
observation that an initially better hydrated state (GOF mutant MscL caused by
hydrophilic substitution) is easier to open (Anishkin et al. 2005). We note that the
TM1 helices are not fully hydrated during the simulation until the membrane strain
gets to as large as �2/3 of the strain required for full gating (indicated by the dashed
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Fig. 18 Effective radius evolution of simulations for the GOF mutant and WT MscL. The GOF
mutant MscL has a hydrophilic substitution in its hydrophobic constriction causing full hydration
in the initial state, while the initial state of the WT MscL is only half hydrated. The WT channel
won’t get fully hydrated until the membrane strain reaches �2/3 of the gating strain (indicated
by the dashed line) which agrees well with Sukharev et al.’s experimental study (Sukharev et al.
1999). Zhu et al. (2016), reprinted with permission of Springer

line in Fig. 18), suggesting that MscL is nonconductive until two thirds of its gating
tension is reached. This result is in agreement with Sukharev et al.’s experimental
observation (Sukharev et al. 1999) that the open probability remains zero until the
membrane tension reaches �10 dyne/m and the gating tension is about 15 dyne/m.
Thus, when the membrane strain reaches half of the gating strain for MscL, the
mechanosensitive channel of small conductance (MscS) reaches its fully conducting
and opened state (Martinac and Kloda 2003), while MscL is not yet conductive,
emphasizing MscL’s role of a “safety valve” in prokaryotes as a last-ditch effort for
survival (Berrier et al. 1996).

The effective radius evolution of these two full models is compared to that in
the steered molecular dynamics (SMD) study (Gullingsrud and Schulten 2003)
(rhombus curve in Fig. 18). The maximum membrane strain in SMD is estimated
to be �5.4%, and we assume that its increment is proportional to the time step
used in SMD. Although the channel is far from fully open in the nanosecond SMD
simulation, as shown in Fig. 18, the effective pore radius evolution in SMD is in
good agreement with that of the continuum full model at small strain.

The final lipid strain ("m) of the full model for the complete opening of MscL
is �11.76% (gating strain). The strain in the direction normal to the membrane is
(Tang et al. 2006)
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"z D
2�t

1 � �t
"m (5)

which leads to a reduction in the membrane thickness of

�h D "zh (6)

where vt D 0:5 is the equivalent Poisson’s ratio of the orthotropic lipid membrane
model and h D 35Å is the initial thickness of the membrane. With the membrane
strain of 11.76%, the thickness is reduced from 35 Å to 28.77 Å, which is a 23.5%
change. This value is in close agreement with the 20% reduction in the thickness
of membrane spanning part of MscL measured by experiment (Perozo et al. 2002a)
since the flatness of MscL is directly caused by thinning of the lipid membrane
during gating.

Another prominent feature of the full model’s gating pathway is the stepwise
nature of the pore radius evolution curve, as shown in Fig. 18 the circle curve or the
square curve. The initial survey of MscL in liposome patches (Sukharev et al. 1999)
has recorded three short-lived subconducting states where the pore size stabilizes
even in the presence of tension, and a later study of Chiang et al. (2004) identified
nine subconducting states. In the present study, when the membrane strain is below
�2/3 of the gating strain, the channel is not fully hydrated and remains noncon-
ducting. Afterward, the channel becomes conductive, and the effective pore radius
increases very rapidly with the membrane strain. A closer inspection of the data
shows some plateaus (marked with arrows in Fig. 18) of the curve where the pore
size stabilizes. Although the current continuum model may not be sufficient enough
to capture some delicate molecular phenomena, such as the subconducting states of
MscL gating, nevertheless, the results here may imply that the subconducting states
may be in part due to the intricate “overall” mechanical interactions of the multiple
components of the system, which complement their biophysical functions.

The actual pore radius is about 4.75 Å for the first substate in Fig. 18, and the
radius of the inner pore surface in the open state is �14 Å, which is consistent with
the estimation from fluorescence resonance energy transfer (FRET) experiments
(Corry et al. 2010; Wang et al. 2014). Assuming that the conductance of the
MscL pore is proportional to its size (area enclosed by the inner surfaces of
TM1s) (Steinbacher et al. 2007), the relative conductance in the present study
can be estimated as the ratio of the pore area to that of the full open state. For
example, the relative conductance for the first plateaus in present work would be
(4.75/14)2 D 0.115, which is in good agreement of the experimental estimate of
0.13 for the first subconducting state (Anishkin et al. 2005). Their proposal that the
main energy costing substate is well hydrated is also consistent with results shown
in Fig. 18.

Analytical Effort
An important goal of this section is to establish a closed-form and simple analytical
model (Chen et al. 2008), as an alternative approach that can capture the most
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essential features of MscL gating that might be broadly applicable to MS channels,
such as the different contributions of solvation and membrane stretch to gating. An
analytical model that couples MscL to both lipid membrane stretch (outer boundary)
and apolar solvation effects (inner boundary) is developed as follows.

For the square lipid membrane (Fig. 19a) with a length of 2 l (400 Å) and a
central cavity radius of c, its outer boundary pressure is -plipid, and the interface
pressure between the lipid and MscL is -plipid-MscL. The whole lipid membrane
is treated as an isotropic plate. Since the in-plane fluidity of the lipid membrane
contributes only slightly (less than 10%) to the gating process, this treatment
is considered a reasonable approximation. During gating, the deformation of the
membrane cavity is mainly transferred to the closest TM2 helices via nonbonded
interactions in the radial direction. The nonlinear interaction pressure-distance
relationship is analogous to a nonlinear elastic medium between the lipid cavity and
the TM2 bundle. After the TM2 helices are pulled open, the TM1/TM2 nonbonded
interactions (another effective nonlinear medium) may perturb the MS channel
radius, which is enclosed by the five TM1 helices. Therefore, a simple analytical
model can be established in which the details of protein structures are ignored and
the nonbonded interactions are described by effective elastic media. A schematic of
such plane stress effective continuum medium model (ECMM) is given in Fig. 19b
with E. coli-MscL as an example. The inner effective annular medium I accounts for
the TM1-TM1 interactions in hoop direction and TM1-TM2 interactions in radial
direction, and the outer continuum medium II incorporates TM2-TM2 interactions
in hoop direction and TM2-lipid interactions in radial direction. The inner radius,
interface radius, and outer radius of the ECMM are denoted by a, b, and c,
respectively. Here, a is the effective radius of the closed MscL (consistent with
the definition in previous sections), which corresponds to the smallest “through”
capacity of the TM1 bundle; b is defined similarly for the TM2 bundle; and c is the
interface radius between MscL/lipid cavity. From the closed homology structure of
E. coli-MscL, a, b, and c are equal to 6.5 Å, 17 Å, and 22 Å, respectively.

The outer boundary of MscL ECMM (Fig. 19b) is coupled to the inner cavity of
the lipid model (Fig. 19a), i.e., � II

r .c/ D �plipid�MscL; uII
r .c/ D ur .c/. Continuity

of radial stress and displacement at the interface between medium I and II (r D b)
requires � I

r .b/ D � II
r .b/; uI

r .b/ D uII
r .b/. The inner boundary pressure of medium I

is, � I
r .a/ D �pwater, from apolar solvation effects. Following the theoretical analysis

in Chen et al. (2008) but considering the coupling between MscL ECMM and the
lipid model and the coupling between MscL ECMM and the solvation contribution,
a closed-form solution of the MscL pore radius increment can be obtained as

�a D 0:085pwater C 60:205"m (7)

where the units for pwater and �a are MPa and Å, respectively. On the right of Eq.
(7), the first term is the contribution of apolar solvation effects to MscL gating and
the second the contribution of membrane stretch. The two constants before pwater

and "m depend on the elastic properties of medium I and II (Chen et al. 2008). The
value of pwater depends on the exposed residues of the TM1 bundle and the state of
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Fig. 19 Schematic of the linear lipid membrane model (a) and the effective continuum medium
model (ECMM) of MscL (b)

the hydrophobic constriction. At the initial state, pwater D 0. Averagely, based on the
continuum solvation forces calculated in the above sections and the exposed pore
surface area, pwater � 68 MPa. Accordingly, the final membrane strain to fully open
the channel is 11.16%, which is in close agreement with that (11.76%) calculated
by the coupled CM/CS MDeFEM approach.

Limitations of the Current Implementation and Future Directions

Despite our tremendous endeavor and that the current model has been able to help us
gain some useful perspectives for channel gating, there are considerable limitations
for the present coupled continuum mechanical-continuum solvation approach, and
the room for future improvement is still large.

One of the major limitations concerns the atomic structure of E. coli-MscL
whose S1 domain may need revision (Iscla et al. 2008) based on the revised crystal
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structure of Tb-MscL (Steinbacher et al. 2007). And the crystal structure of Tb MscL
could also be subjected to the above developed continuum-based approach to study
the effects of the S1 domain on the gating behavior. Through these improvements,
the proposed facilitation effect of the S1 domain on gating due to its close interaction
to the membrane (Iscla and Blount 2012; Vanegas and Arroyo 2014) could be
verified and more specifically quantified.

Another limitation of the current work is the treatment of the lipid membrane and
its surface-based interaction to the channel. The particle-to-particle lipid-channel
interaction force is averaged to the surfaces of them; thus, the heterogeneous
binding of the lipid to the channel is lost. Interfacial lipid-channel interactions
are exceedingly complicated due to hydrophobic mismatch, electrostatic effects,
dynamic nature of the lipid environment, hydrogen bonding, variation during
conformational transition, asymmetry, localization, etc. (Argudo et al. 2016; Powl
et al. 2003, 2005a, 2008; Vanegas and Arroyo 2014). While emerging evidence
has shown the importance of the interaction of the membrane with membrane
channels for many biological processes, it is still difficult to elucidate these
interactions in a detailed and comprehensive manner both experimentally and
computationally. These characteristics of lipid-channel interactions impose great
challenge for continuum modeling of the lipid membrane and its interaction to the
channel. For future work, one may consider developing particle-to-particle-based
interactions and geometry refinement of the lipid membrane (especially for the
lipid closely around the channel), which could be included in a similar way as
how we treat the channel in the current work. And solvation forces can then be
applied to the lipid membrane model as well to mimic a hydration environment
for the lipid model. Thereafter, this well-established lipid model can be exploited
to explore the contribution or mechanism of different lipid-channel interactions
for channel gating in future work. For example, how and how much does the
“anchor” effect between S1 domain and the lipid membrane affects gating (Iscla
and Blount 2012)? How and how much does the electrostatic interaction between
the lipid head group and the charged transmembrane helix residues affect channel
gating? Is the distortion of the lipid membrane around the channel helping channel
gating, or is it just a spontaneous adaptation behavior for the system to reach a
low energy state? Will the distortion of the membrane around the channel disappear
or diminish during gating? Besides, this new lipid membrane is also much more
reasonable for a study of the effect of negative or positive hydrophobic mismatch
(Perozo et al. 2002b), although the current lipid model can also catch some of the
basic principle that, as an example, for the wild-type MscL full model with apolar
solvation effects, increasing the hydrophobic (tail group) layer of the current lipid
membrane model by 10% will lead to a 2.8% increase of gating tension for channel
opening.

Moreover, some other subtle but potentially important molecular details such as
inclusion of side chains in the FEM model or initial turgor pressure in living E.
coli cells (Deng et al. 2011) may also play a part in the gating process and need
further refinement in future continuum modeling. We hopefully expect that these
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refinements will elaborately improve the accuracy of the continuum-based model
and greatly expand the application scope and universality of this coupled continuum
mechanics-continuum solvation approach.

Concluding Remarks

The analysis of MS channel gating provides us with an effective window to
explore how mechanical stimuli induce adaptive cellular behaviors through protein
structural transitions across different time and length scales. As shown by the results
of the present work, their gating patterns highlight the roles of large-scale helical
movements, pore hydration, and protein-lipid interactions during ion channel gating
transitions. These processes occur on time and length scales that are too large to be
studied directly by regular atomistic simulations. In this chapter, we have modified
a molecular dynamics-decorated finite element (MDeFEM) method to incorporate
key interaction pairs (e.g., Asp62-Arg131 and Phe68-Leu111) into a continuum
mechanics model; this allows us to explore the gating pathway of MscS and how
specific interactions and structural motifs impact the gating transition. Besides,
a novel simulation protocol is developed that effectively integrates continuum
solvation contributions (CS) into continuum mechanics (CM) calculations to study
the gating pathway of MscL.

A complete gating transition trajectory of MscS from the closed to the open
state along with partially open intermediates is obtained, and the open structure is
close to the available structural model from crystallographic studies. It is observed
that removing either the Asp62-Arg131 salt bridge or the Phe68-Leu111 nonpolar
interaction leads to essentially nonconducting structures. The loop connecting TM2
(the second transmembrane helix) and TM3 is found to be essential for force
transmission during gating, while the loop connecting TM1 and TM2 does not make
any major contribution. Based on the different structural evolutions observed when
the TM3 kink is treated as a loop or a helical segment, we propose that the helical
propensity of the kink plays a central role in inactivation. Gating transition of MscS
under different transmembrane voltages is also explored.

A novel computational framework is further developed by using MscL as a
template. The continuum mechanics is closely coupled with the continuous solvent
model. The influence of the solvent and the chemical coupling force is obtained
by real-time iteration between the mechanical and chemical spaces. Compared to
previous continuum mechanics studies, the present model is capable of capturing
the most essential features of the gating process in a much more realistic fashion:
due mainly to the apolar solvation contribution, the membrane tension for full
opening of MscL is reduced substantially to the experimental measured range. A
significant fraction (�2/3) of the gating membrane strain is required to reach the
first subconducting state of our model, which is featured with a relative conductance
of 0.115 to the fully opened state. These trends agree well with experimental
observations.
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We expect that many of the mechanical principles discussed here are also likely to
play a role in various membrane-mediated biomechanical processes. The successful
application of the MDeFEM approach to MscS/MscL suggests similar studies of
the growing families of sensory channels (Chen et al. 2015; Clapham 2003; Dhaka
et al. 2006; Krishtal 2003; Pruitt et al. 2014) and their modulations by lipids, lipid-
soluble factors, temperature, cell volume, and membrane tension. The approach is
particularly powerful in cases that involve large length and long time scales, which
are usually not easily accessible to standard particle-based simulations.
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Abstract

While there have been many studies on the indentation test of thin film/substrate
systems, the primary goal has been determining the film properties. However,
there was very little effort to probe the properties of both the film and the sub-
strate (the latter may be as important as the film properties). Moreover, a prestress
usually exists in the film, typically resulted from mismatched deformation or
material properties. In this study, we establish a spherical indentation framework
to examine the material properties of both the film and substrate as well as

J. A. Mills
Department of Civil Engineering and Engineering Mechanics, Columbia University, New York,
NY, USA

X. Chen (�)
Department of Earth and Environmental Engineering, Columbia Nanomechanics Research
Center, Columbia University, New York, NY, USA
e-mail: xichen@columbia.edu

© Springer Nature Switzerland AG 2019
G. Z. Voyiadjis (ed.), Handbook of Nonlocal Continuum Mechanics for Materials
and Structures, https://doi.org/10.1007/978-3-319-58729-5_19

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-58729-5_4&domain=pdf
mailto:xichen@columbia.edu


130 J. A. Mills and X. Chen

determining the film prestress. An indentation test is performed at two prescribed
depths, and functional forms are established between indentation parameters
and material variables. An effective reverse analysis algorithm is established
to deduce the desired material properties. The potential error sensitivity is also
examined in a systematic way. The study on prestressed film/substrate systems
has many potential applications in engineering.

Keywords
Indentation · Thin film · Substrate · Elastic property · Film prestress

Introduction

Film or substrate composites are commonly found in the building, appliance,
electronics, and transportation industry and are considered well-engineered systems.
More specifically in building structures, the film/substrate composites exist in the
cladding of a roof or siding sandwich panel, and an optically coated glazing system
acts as a part of the building façade. The film/substrates are fundamental building
blocks of electronic devices, where typically one or more layers of metallic or
semiconductor films are deposited onto a substrate material, most notably silicon.
Today’s optical devices usually have some kind of coating deposited on the
lens: possibly a scratch-resistant coating, an antireflective coating, an ultraviolet
treatment, or a combination of all three. The skin/tissue also acts as a film/substrate
system with the prestressed skin acting as a protective and sensing layer. The paint
applied to an automobile not only helps prevent corrosion but also adds to the visual
appearance. Turbine blades are the prime movers for jet aircraft and oftentimes have
a heat-resistant coating applied to its surface. In each of the specific examples given,
the film must stay fully attached to the substrate.

While the mechanical properties of the film and substrate usually differ, they act
together as a complete structural system. Knowing the mechanical properties (e.g.,
modulus, yield strength) of each is a requisite for fully understanding the response
of the system or the level of deterioration that may have occurred over time to the
system. Measuring the film thickness is also quite useful as it may give us a good
indication as to the level of deterioration of the system or the continued effectiveness
of the system. For example, measuring the thickness of a turbine blade’s thermal
coating may be a good indicator of continued safe operation of the turbine. However,
this oftentimes requires the cutting of the blade and exposing the cross section. To
have the ability to determine the coating thickness without having to cut the blade
or possibly not even having to remove the blade from the turbine assembly certainly
would be less costly and more desirable.

One of the exciting and relatively inexpensive techniques for measuring the
mechanical properties of a film/substrate system is the use of micro- or nanoinden-
tation equipment. It is arguably the simplest approach to measuring the properties
of small-scale structural assemblies including thin films (Chen and Vlassak 2001;
Pharr 1998). The biggest advantage in using this method is that it does not require
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Fig. 1 Indenter/film/substrate model

the film to be separated from the substrate. An indentation test is performed utilizing
a hardened (diamond) tipped indenter, being pushed into a film/substrate system
(Fig. 1).

During this process, the force required (indentation load, P) to push the indenter
into the material is measured simultaneously with the indentation depth (ı). While
the stress fields generated from the nonlinear contact and large deformation during
the indentation test are quite complicated, it has been found that the P-ı data can
implicitly relate the film elastoplastic properties (Gao et al. 1992; Hu and Lawn
1998). Using this P-ı data along with a functional relationship established in the
forward analysis, one can predict the material/mechanical properties through a
reverse analysis (Cheng and Cheng 2004).

The present interest is not only to further understand the mechanical properties
of the film but also the properties of the substrate, along with examining these
properties under an equibiaxial film prestress state. The prestress may arise from
thermal expansion mismatch, lattice mismatch, peening, etc., and it can be quite high
sometimes and responsible for premature failure or delamination of the film from the
substrate (Hu et al. 1988; Evans and Hutchinson 1984). Suresh and Giannakopoulos
(1998) proposed the use of sharp indenters to measure the residual stress of thin
films and bulk materials. However this method requires multiple indentation tests.
In particular it requires a reference specimen with zero prestress whose indentation
behavior is compared with the specimen where prestress is present. This sometimes
is impractical or difficult to achieve.

Another consideration with regard to indentation testing of film/substrate sys-
tems has to do with the often overlooked determination of substrate mechanical
properties. Conventional approaches focus on probing the film material properties
(Cheng and Cheng 2004; Doerner and Nix 1986; Gouldstone et al. 2007; Saha and
Nix 2002), and in order to avoid the substrate effect, the indentation depth was
typically kept below 10–20% of the film thickness (h) (Tsui et al. 1999; Cheng and
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Cheng 2004). On one hand, there are inherent problems associated with performing
indentation tests at shallow depths (Saha et al. 2001; Swadener et al. 2002; Chen
and Vlassak 2001), that at times makes the test unattractive. For example, the P- ı
data of shallow indentation may be affected by localized material surface roughness,
indenter tip shape changes due to wear, or possible indenter drag (frictional effects)
from surface adhesion. On the other hand, there are instances where the substrate
properties are of interest as well. The turbine blade noted earlier is a fine example of
where the blade properties (substrate) may be as important as the thermal coating.

The aforementioned gaps may be bridged by performing a moderately deep test,
embracing and fully incorporating in the present analysis the coupled effect from
both the film and substrate (Chen and Vlassak 2001; Chen et al. 2006; Zhao et al.
2006, 2007), as well as accounting for the film prestress. A relationship accounting
for both the film and substrate effects in the P- ı data can be developed based on
which an effective reverse analysis algorithm can be established. The moderately
deep indentation measurement may help to yield a unique solution for determining
the material property through reverse analysis (Chen et al. 2007).

The goal of the present study is to establish the framework of indenting a
prestressed film on a semi-infinite substrate, using only one spherical indenter
(which prevents penetrating/damaging the film) and without requiring a stress-free
reference specimen. The focus is given to the elastic properties of the film and
substrate, specifically determining the elastic modulus of each, as well as the film
prestress. The next section describes the physical model as well as the parameter
groups. Based on extensive finite element simulations of indentation tests over a
wide range of material parameters and prestress levels, a set of general functional
relationships are developed through the forward analysis. Through the results of two
tests at different depths, the reverse analysis can effectively identify two material
parameters among the film elastic modulus, substrate elastic modulus, and film
prestress (as long as the third one is known a priori). The study is further extended
to variable indenter radii or variable film thickness. Finally, a rigorous review of the
error sensitivity in the proposed model is discussed.

Model and ComputationMethod

As shown in Fig. 1, the model is made up of a rigid spherical indenter, and a thin
film is fully affixed to a semi-infinite substrate. Both the film and the substrate
are modeled as homogeneous, isotropic elastic materials. The film prestress is
equibiaxial, �ps. The indenter acts directly against the film and has a prescribed
displacement that is normal to the upper surface of the film. The film has an
elastic modulus defined as Ef and Poisson’s ratio of �f . The substrate has an elastic
modulus of Es and a corresponding Poisson’s ratio, �s. �s and �f are fixed as 0.25,
and they are minor factors for indentation analysis (Cheng and Cheng 1998).

The study is primarily focused on, through a single indentation test, the deter-
mination of two of three variables: �ps, Ef , and Es (as long as the third is known a
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priori). Invoking dimensional analysis, the following functional relationship needs
to be determined through forward analysis:

P

Ef ı2
D

Y �
Ef

Eg
;
R

h
;
�ps

Ef
;
ı

h

�
(1)

To take advantage of the substrate effect (Zhao et al. 2006, 2007; Chen et al.
2006; Zhao et al. 2006), the indentation load can be taken at two indentation depths
ı1 D h/2, and ı2 D h/4, where h is the film thickness (Mills and Chen 2009), from
which two independent relationships are deduced:
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Subscripts 1 and 2 relate the functional relationships in (2) and (3) to the
two prescribed indentation depths: ı1 and ı2. Note that in practice, the maximum
indentation depth can exceed h/2 (and be any value), and only the data taken at h/2
and h/4 are relevant.

As a first step, it is assumed that the film thickness (h) is known such that one
may correspondingly match the indenter radius (R) exactly to this film thickness
(R/h will be varied in a later part of this paper). In this simplified case:
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After these two equations are established through forward analysis, one will be
able to solve for two unknowns Ef , Es, or �ps with the third being known a priori.

Numerical simulation of indentation was performed using ABAQUS (Dassault
Systèmes (SIMULIA) 2008). The film/substrate was made up of axisymmetric
4-node bilinear, reduced integration elements (CAX4R). Over 180,000 elements
(Fig. 2) were incorporated into the model, and the substrate is semi-infinite. The
film is equibiaxially prestressed to a desired level prior to indentation. The contact
is assumed frictionless which is a relatively minor factor (Bucaille et al. 2003; Cheng
and Cheng 2004).

The material properties are varied in moderate ranges during the forward analy-
sis, with the elastic modulus ratio (EMR D

Ef
Es
) in the range of 0.25 � EMR � 15.00

and the normalized prestress (K D ¢_�s/E_ f ) between �0.10 � K � 0.10. It is
verified that film buckling does not take place under such a prestress level.
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Fig. 2 Finite element model

Formulation for a Fixed Indenter Radius

Forward Analysis

As can be seen in the normalized indentation load-depth relationships in Fig. 3,
the substrate effect as well as the spherical geometry indenter plays a significant
role in creating a nonlinear force-displacement relationship (Chen et al. 2007). In
comparing the curvatures for EMR D 0.25 in Fig. 4a and EMR D 15.0 in Fig. 4b,
as the substrate becomes more flexible (less stiff), the plots take on a more linear
formulation, which is due to the loss in substrate effect and the indentation behavior
becomes dominated by the film-bending effect.

The presence of prestress also affects the indentation force, and the effect is more
prominent for the more compliant substrate. As the film prestress increases, the
normalized indentation force also increases so as to overcome the tension in film.
Through the fitting of extensive numerical simulations, for ı1 D h/2 and ı2 D h/4, a
set of general functions was formulated according to Eqs. (4) and (5):

Pi

Ef ı
2
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D fi

�
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Es
;
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Ef

�
D Ai

�
Ef

Es
� Bi

�Ci
CDi

�
Ef
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CEi

�
Ef

Es

�
C Fi

(6)

i D 1; 2 for ı1 D
h

2
and ı2 D

h

4
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Fig. 3 Normalized indentation load – penetration depth for various elastic modulus ratios (EMR),
with R/h D 1.0, K D 0

with

Ai D a1iK C a2iK
2 C a3iK

3 C a4iK
4

Bi D b1iK C b2iK
2 C b3iK

3 C b4iK
4

Ci D C1i .c2i �K/Csi

Di D d1iK C d2iK
2 C d3iK

3 C d4iK
4

Ei D e1iK C e2iK
2 C e3iK

3 C e4iK
4

Fi D constant

where coefficients aji ; bji ; cki ; dji ; eji (i D 1–2, j D 1–4, k D 1–3) are fitted
constants as shown in Table 1. The representative Eq. (6) is also shown as surface
plots in Fig. 5a, b, which correspond to prescribed indenter displacements of ı1 and
ı2, respectively. The data points generated from the forward analysis (via numerical
simulation) are also shown, with excellent agreement with the surface plots.

Reverse Analysis

The two independent equations in (6) allow the solution of any two of the three
unknowns Ef , Es, or �ps, as long as the third term is known accurately. The reverse
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Fig. 4 Normalized load versus normalized indentation depth for various normalized prestress
values at (a) Ef /Es D 0.25 and (b) Ef /Es D 15.0
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Table 1 General
coefficients for EMR-K
fitting function

F1 �0.138142626 F2 �0.27345413
a01 2.674281604 a02 4.034252118
a11 0.802831035 a12 1.147974895
a21 1.971999573 a22 5.222286008
a31 �8.544787918 a32 �29.25982734
a41 44.46597133 a42 131.1351472
b01 �0.383265786 b02 �0.568865038
b11 0.549111802 b12 0.763772049
b21 �1.29341713 b22 �2.600832556
b31 3.373917099 b32 10.53364711
b41 �24.85527757 b42 �60.95042138
c11 �0.35865278 c12 �0.29205364
c21 �0.434558478 c22 �0.295299789
c31 �0.63882907 c32 �0.470757762
d01 �0.000225813 d02 �0.000201266
d11 �0.003103271 d12 �0.003870197
d21 0.003580859 d22 �0.00153943
d31 0.102776788 d32 0.277177385
d41 �0.877371942 d42 �2.443837931
e01 0.008209149 e02 0.008712058
e11 0.110259779 e12 0.157132416
e21 �0.24475966 e22 �0.276338029
e31 �0.115013816 e32 �1.035169875
e41 3.664067224 e42 13.69568226

analysis is based on minimizing the total error of the two equations (Mills and Chen
2009), utilizing P-ı data from the corresponding numerical indentation experiment
(assuming h is known and R/h D 1 is used in the experiment). To verify the
reverse analysis procedure, a number of separate numerical indentation tests were
performed, using EMR andK parameters that were independent from the parameters
used in the forward analysis.

As a first example, assuming Ef is known, the error associated with Es and �ps

deduced from reverse analysis (with respect to that used in forward analysis) is
shown in Fig. 6a, with most errors less than 3% and maximum error about 7%. In
the second example (Fig. 6b), with Es known, the error associated with the reverse
analysis of Ef and �ps is mostly below 2%, and the maximum error is about 6%.
Finally, if the prestress is known in advance, the accuracy for determining the
film and substrate moduli is very good, with errors well below 1% in most cases
(Fig. 6c).

A close examination shows that the maximum errors tend to occur at the edges
of the defined problem parameters. That is, the relatively more prominent errors
(though only about 7%) are likely to occur at high compressive prestress and at
a correspondingly high film moduli (recall that the parameter ranges investigated
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Fig. 6 (continued)
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Fig. 6 Reverse analysis error results (a) with � and Es as unknowns; (b) with � and Ef as
unknowns; (c) with Es and Ef as unknowns

in this study are 0.25 �
Ef
Es

� 15.00 and �0.10 � K � 0.10). This may be due to
the inherent instability as the normalized prestress approaches �0.10. Overall, the
reverse analysis algorithm is fairly robust and is valid for moderately large ranges
of film and substrate moduli and film prestress.

General Formulation with Variable Indenter Radius

Forward Analysis

In many instances, the film thickness may not be known or may not able to be
measured. Under certain circumstances, it would be useful to extend the functional
relationships developed in section “Formulation for a Fixed Indenter Radius” to
the problem of unknown film thickness (or conversely to remove the testing
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constraint of having to match the indenter radius to the film thickness). In order
to show the feasibility without complicating the formulation too much, a proof-
of-principle investigation is conducted in this section by choosing a fixed EMR
value (EMR D 2.5) whereas allowing K and R/h to vary as �0.10 � K � 0.10 and
R/h of 0.5, 0.75, 1.0, 2.0, 5.0, and 10.0, respectively. Plots of the normalized load
versus prestress level are given in Fig. 7a, b for the two indentation depths. Each
plot shows various sets of curves that were generated at different R/h values, and
the separation between them provides confidence for deducing R/h through reverse
analysis.

Through extensive forward analyses, the following equations are established:

Pi

Ef ı
2
i

D Mi CNiK CQiK
2 where i D 1; 2 and ı1 D h=2 and ı2 D h=4

(7)

Mi D m1i e
Œ.R=h/=t1i � Cm2i e

Œ.R=h/=t2i � C y0i
Ni D n1i e

Œ.R=h/=t3i � C n2i e
Œ.R=h/=t4i � C y1i

Qi D q1i C q2i .R=h/C q3i q
.R=h/

4i

Coefficients in Mi, Ni, and Qi are shown in Table 2.

Reverse Analysis

By performing a single indentation test, the solution of two variables, �ps and h,
can be obtained. In Fig. 8, R/h values were chosen to be 0.6, 4.0, and 9.0 with
corresponding �ps/Ef values of �0.1, 0, and 0.1. Through the minimization of
error of Eq. (7), the reverse analysis result errors (deduced parameter vs. the input
parameter) are mostly below 1–2%, with the largest error of about 6%. Note that
since h is an unknown parameter to be determined, the reverse analysis algorithm,
Fig. 9, is an iterative, averaging technique with the only requirement being that
the indentation experiment (FEA) be performed to a depth at least as deep as
ı D h/2.

Note that (7) is specified for EMR D 2.5; nevertheless, the approach can be
readily extended to other EMR values and that would add another dimension in
reverse analysis, making the formulation more complicated, yet the strategy remains
straightforward.

Error Sensitivity

When performing an indentation study, the accuracy of the P-ı data (P1, P2,
ı1, ı2) is assumed to be exact. In practice, measurement errors can affect the
accuracy of the deduced material properties. For these reasons, the error sensitivity
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Fig. 7 Normalized indentation load versus K D �ps/Ef, at 0.5 � R/h � 10.0, (a) ı1 D h/2. (b)
ı2 D h/4

and its significance to each variable in the fitting function should be examined. Note
that in this analysis the film thickness is assumed to be known, and the indenter
radius is matched accordingly.

Differentiating the dimensionless functions from (4) and (5) term by term, we
get the following:
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Table 2 Coefficients for
R/h-K fitting function

Mi

Y01 4.292937 Y02 6.174527
m11 �3.15663 m21 �4.35566
m21 �0.64938 m22 �1.03513
t11 �10.7228 t12 �9.8578
t21 �0.63728 t22 �0.6755
Ni

Y11 4.163368 Y12 7.747632
n11 �1.4351 n12 �2.01002
n21 �2.19215 n22 �4.76786
t31 �0.59133 t32 �0.66103
t41 �4.20076 t42 �5.08646
Qi

q11 �1.70805 q12 �3.39752
q21 0.018993 q22 �6.92E-04
q31 0.807144 q32 2.102068
q41 0.475559 q42 0.582964

Fig. 8 Reverse analysis – error plot, 0.5 � R/h � 10.0, �0.10 � K � 0.10
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Fig. 9 General algorithm – reverse analysis
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The potential errors due to indenter force and displacement (@P1/P1, @P2/P2,
@ı1/ı1, @ı2/ı2) may arise from measurement errors, noise, edge effects, etc. In
rearranging these terms and combining them, they can be related to the perturbation
of unknowns, @Ef /Ef , @Es/Es, @�ps/Ef .

As an example, if the film modulus is known directly, then dEf D 0. And Eqs. (8)
and (9) can be solved directly as two independent equations with two unknowns. In
effect the film prestress and substrate modulus are solved in terms of the perturbation
forces and displacements:

d�ps

Ef
D ˛1

dP 1

P1
C ˛2

dı1

pı1
C ˛3

dP 2
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i D 1; 2 and ari ; bri ; cqi ; dri ; eri .r D 1 � 4; q D 1 � 3/are listed in Table 1.
The terms ˛j and ˇj are coefficients for the perturbated errors of indentation load

and displacement measurements at •1 and •2. They can be called error sensitivity
coefficients. By examining these coefficients, one may reach an understanding of
the scale of error that each physical measurement could contribute to the overall
error of our problem solution. As an example, if the normalized error in measuring
the indentation force at •1, dP1/P1, is 1%, then the overall contribution to the error
in the solution for the prestress is ’1%. And the contribution to the error in the
substrate modulus is “1%. Therefore the smaller the error sensitivity coefficient, the
less sensitive the solution algorithm is to the specific perturbation error. Moreover,
the perturbation error due to measuring indentation forces at •1 and •2 would
most likely have the same order of magnitude and occur together in a test. The
same should be true for the errors in measuring indentation depth. Therefore error
plots are shown with combined error coefficients. For example, this would then
be the associated error of the prestress due to the combined perturbated normalized
indentation force measurements dP1 and dP2: shown as ’1 C ’3. In a similar fashion,
˛2 C ˛4, ˇ1 C ˇ3, and ˇ2 C ˇ4 represent the combined normalized indentation
depth measurement error for prestress, combined normalized indentation force
measurement error for substrate modulus, and combined normalized indentation
depth measurement error for substrate modulus. Representative plots are shown in
Fig. 10.

In examining these error plots, it can be seen that the error sensitivity in general
is relatively low. However, there are regions where the potential error shown could
be quite high. However, if two of the three variables are known, the potential areas
of high error sensitivity are no longer present (this is discussed in a later part of this
paper).
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Fig. 10 Plots for (a) ’1 C ’3 and (b) ’2 C ’4 for the potential error in prestress (¢ps) from
measured error in indenter force, with K D ¢ps/Ef, EMR D Ef/Es

Another example with regard to understanding measurement error sensitivity is
the case where the substrate modulus is known. In this case, dEs D 0. Therefore
Eqs. (8) and (9) can be solved directly for the perturbated normalized film modulus
and prestress:

dEf
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dP 1
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dı1

ı1
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dP 2

P2
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dı2

ı2
(11)

where:
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As a further example of the potential errors associated with the measurement
of indentation data, consider the case where the prestress is known. In this case,
d�ps D 0. By knowing �ps, then Eqs. (8) and (9) can be solved directly for the
normalized perturbation of both the film and substrate moduli:
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Again, in solving for either normalized prestress and film modulus or normalized
film and substrate modulus, the potential for errors is in general quite low.
Nevertheless, there is a small risk for significant error perturbation at two extremes.
The first location for potentially significant error is found where the EMR is low
combined with high K. The second instance is found at a very high compressive
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prestress (low K) combined with a very high film (stiff) modulus (high EMR). In
the latter case, a practical application may be that the high compressive stress may
tend to cause instabilities and in doing so affect the measured indentation force and
displacement measurement. In the first instance, the substrate effect is low, and the
indentation behavior is dominated by bending of prestretched film (where perhaps
better functional forms should be developed instead of the indentation ones).

The above analysis assumes that there are two unknowns that require solution.
However there may be instances where there is only one unknown variable. As an
example, if the substrate and film moduli are both known, then the potential error in
prestress with respect to perturbations for force and displacement can be shown as:

d�ps

Ef
D !1

dP 1

P1
C !2

dı1

ı1
(13)

where:

!1 D
�1

V1
; !2 D �2

�1

V1

with �1 and V1 as noted above. !1 and !2 are plotted in Fig. 11 and show that the
error sensitivity coefficients are found to be stable and reasonably low, without the
potential peaks noted in the two-variable error analysis.

Conclusion

Internal stress of thin films can often lead to premature failure or malfunction
of a component. Meanwhile, the substrate properties are sometimes as important
as that of the film. It is therefore useful to develop an effective indentation
framework to probe both the substrate property and film prestress. Based on a
comprehensive numerical analysis, this paper establishes algorithms to effectively
deduce film/substrate elastic moduli and equibiaxial prestress. Through a systematic
forward analysis, a set of fitting equations were developed for specified indentation
depths at one half and one quarter of the film thickness. By incorporating spherical
indentation and examining the indentation force at a moderate depth, the effects of
both the film and substrate are taken into account. After the force at these specified
indentation depths is measured, through the reverse analysis algorithm, one may
effectively predict two of the three unknowns, film modulus, substrate modulus,
or film prestress, with high accuracy. An extensive examination of error sensitivity
was also made which showed that at areas of high instability (high compressive
prestress), accurately measuring indentation force and depth is critical. However
if two of the three properties (Ef , Es) are known precisely, the film prestress is
shown to be insensitive to minor measurement errors and should provide a robust
and consistent solution. The overall strategy can be readily extended to probing
elastoplastic properties in future studies.
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Abstract

Controlling the mechanical integrity of metal/ceramic interfaces is important for
a wide range of technological applications. Achievement of such control requires
a number of key elements, including establishing appropriate experimental pro-
tocols for quantifying mechanical response of metal/ceramic interfacial regions
under well-defined loading conditions, understanding how interfacial composi-
tional and structural characteristics impact such interfacial mechanical response,
and elucidating unit interface physics and predicting interfacial mechanical
response via development of multiscale physics-based models. Achieving this
combined testing, understanding, and modeling will ultimately lead to effective
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control of mechanical integrity of metal/ceramic interfaces and true interfacial
engineering through targeted modification of the interfacial composition and
structure.

Major breakthroughs in the improvement of interfacial mechanical integrity
can be enabled by understanding and controlling key physical factors, includ-
ing interfacial architectural and chemical features governing the mechanical
response of metal/ceramic interfacial regions (MCIRs), thus leading to unprece-
dented interfacial mechanical performance that meets/exceeds the demands of
future applications. Guided by a multiscale integrated computational materials
engineering (ICME) framework, the mechanical integrity of MCIRs can be
substantially improved by a variety of architectural and chemical enhance-
ments/refinements. Recent research efforts by the authors aim to provide a fun-
damental, physics-based understanding of the failure mechanisms of MCIRs by
constructing a novel, multiscale, computation-guided, and experiment-validated
ICME framework. Interfacial refinements to be explored within this framework
include addition of alloying impurities as well as geometrical features such
as multilayered and stepped interfacial architectures. The findings can then be
consolidated into a high fidelity, experiment-validated, micro- and mesoscale
modeling tool to significantly accelerate the discovery-design-implementation
cycle of advanced MCIRs. In this chapter, we summarize some preliminary
results on shear failure and instability of various metal/ceramic interfacial
regions, outline the theoretical background of this research thrust, and identify
challenges and opportunities in this area.

Keywords
Metal/ceramic interfaces · Microscale mechanical testing · Integrated
computational materials engineering (ICME)

Introduction

Understanding and controlling mechanical integrity of solid/solid interfaces have
remained a scientific challenge over the last three decades. The continued interest
in this subject stems from the positive and significant impacts to wide ranging
technological applications such understanding and control can bring. Notable tech-
nological examples include thermal barrier coatings (TBCs) for turbine components
(Darolia 2013), hard ceramic coatings for machining tools (Holmberg and Matthews
2009), and hard/lubricious coatings for mechanical components such as gears and
bearings (Mercer et al. 2003; Kotzalas and Doll 2010). In TBC systems with a
ZrO2-based ceramic top coating layer, various solid/solid interfaces are present: a
metal/metal interface as represented by the bond coat/superalloy substrate interface;
a metal/ceramic interface as represented by the thermally grown oxide (TGO)/bond
coat interface; and a ceramic/ceramic interface as represented by the TBC top-
layer/TGO interface. Failures at these interfaces constitute important mechanisms
limiting the durability of TBC systems (Evans et al. 2008).
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In coatings for machining tools and mechanical components, the application
of thin hard ceramic coatings (CHCs) on metallic substrates likewise requires
sufficient mechanical integrity of the interfacial regions between thin ceramic layers
and metallic substrates. In the application of thin CHCs onto machining tools
and mechanical components, adequate mechanical integrity of the metal/ceramic
interfacial region (MCIR) constitutes a “go/no-go” requirement dictating whether
a particular application can or cannot be adopted. In the past three decades, CHCs
with thickness less than 10 �m have been implemented in many surface engineering
applications. In such applications, thin interlayers are often used to promote adhe-
sion between the ceramic coating layers and the substrates, forming thin-ceramic-
layer/adhesion-interlayer/substrate sandwich structures (Jiang et al. 2003). A major
failure mode for CHC/substrate systems, often with catastrophic consequences, is
the mechanical failure of the MCIR, see for example Fig. 1a. Due to the present
lack of understanding regarding key physical factors governing mechanical response
of MCIRs, “good” or “bad” interfaces can only be distinguished through testing
under actual application conditions, a comparative example is shown in Fig. 1a, b.
The materials paradigm of synthesis-structure-property-performance circle is thus
largely missing at the present time when it comes to MCIRs.

Manipulating interfacial chemistry and architecture may improve its shear/tensile
failure stress. For instance, the introduction of low-energy ledges/steps as well as
point defects has been demonstrated to control both the shear and dislocation-
nucleation resistance of a sharp bi-metal interface (Zhang et al. 2016; Skirlo and
Demkowicz 2013). Multiphase nano-adhesion interlayers can perform better than a
compositionally sharp MCIR, as shown in Fig. 1a, b (Jiang et al. 2003). Intriguingly,
strengthening effects are also observed in metal/ceramic nanolaminates, where
the interfaces are arranged in a parallel fashion with nanoscale spacing (Li et al.
2014; Bhattacharyya et al. 2011). Recent work has shown that when the individual
layer thickness of a metal/ceramic nano-laminate is very small, e.g., 2 nm, the
ceramic layers co-deform plastically with the metal layers (Wang et al. 2017). In
this case, under compressive loading normal to the interfaces, the nanolaminated
metal/ceramic composites can reach an ultimate compressive stress of 4.7 GPa and
a total compressive strain of 13% before the onset of instability, exhibited through
the formation of shear bands (Fig. 1c–e). When the individual layer thickness
is large, however, plastic co-deformation cannot be achieved which results in
cracking in the ceramic layers. While such anecdotal evidence shows promise for
engineering the mechanical integrity of MCIRs through interfacial architectural
and chemical design, systematic research in this direction has not been carried
out and engineering realization has seldomly been demonstrated. Little quantitative
data exist at present on the characterization of interfacial mechanical response
of coating/metal-adhesion-layer/substrate sandwich structures and on tailoring the
chemistry and architecture of the MCIR to influence the interfacial mechanical
response. Engineering of a particular coating/interlayer/substrate system has there-
fore largely proceeded in a trial-and-error manner, necessitating testing under actual
application conditions, which is both time consuming and expensive.

Currently, understanding the mechanical response of interfacial regions of
thin-ceramic-layer/metal-interlayer/substrate systems is hampered by a lack of
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Fig. 1 (a) Contact fatigue testing of Ti-containing amorphous hydrogenated carbon (Ti-C:H)
coated gears resulting in massive spallation failure at the Ti-C:H/Ti-interlayer interface; (b) intact
metal/ceramic interfacial region (MCIR) after contact fatigue testing of W-containing amorphous
hydrogenated carbon (W-C:H) coated gears. Here, the MCIR has a more complex architecture,
with a Cr adhesion layer in contact with the steel substrate, followed by nano-laminated interlayers
in contact with the W-C:H top coating layer (Jiang et al. 2003); (c–e) exceptional mechanical
properties of metal/ceramic nano-laminates (Bhattacharyya et al. 2011)

experimental measurement protocols that are capable of generating quantitative data
on interfacial mechanical response that can be easily interpreted. This understanding
is further limited by a lack of physics-based modeling and simulations on the
mechanical response of coating/substrate interfaces. Particularly lacking is an
integration of experiments and modeling/simulation efforts, where information
obtained from experiments probing the mechanical response of interfacial regions
under sufficiently simple loading conditions can be coupled with outputs from
multiscale modeling/simulation efforts, so as to develop deeper understandings of
the key mechanisms governing mechanical response of interfacial regions under
different loading conditions.

Established testing methods for adhesion of thin layers on substrates have mostly
been developed to work at the macroscale. For example, adhesion tests under
tensile loading conditions (e.g., see ASTM International (2002, 2012, 2014) and
shear loading conditions (e.g., see ASTM International (2005, 2007, 2013) both
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require attachment of the loading device to the thin coating layer by application of
a thin epoxy layer. The strength of epoxies is typically insufficient to fail the strong
interfacial regions between thin ceramic coatings and metallic substrates typically
found in coatings for machining tools and mechanical components, thus resulting
in the inapplicability of such macroscale tensile pull-off and shear adhesion tests
to engineered thin ceramic coatings. The use of epoxy also limits the range of
temperatures at which testing is conducted (Brown 1994, 1995).

While the scratch testing protocol (e.g., ASTM International (2015)) has been
widely applied to evaluating adhesion of hard coatings on metallic substrates, the
conversion of the so-called critical load data to quantitative measures of coat-
ing/substrate interfacial mechanical response has been recognized to be extremely
difficult if not impossible. This is due to the many different and complex physical
processes that can occur in a scratch test, including energy dissipation within the
ceramic coating layer due to coating cracking and energy dissipation within the
coating layer or the substrate due to plastic deformation, as well as the complex
stress field surrounding the moving scratch indenter (Bull 2001). The critical load
measured from scratch testing does not only depend on the adhesion between
the coating and the substrate, as it should be in the ideal case (Kutilek and
Miksovsky 2011). The complications listed above are responsible for reports in the
literature regarding the dependence of the measured critical load on a wide range of
parameters of the entire coating/substrate system, including the coating’s thickness,
hardness, and internal stress state, the hardness of the substrate, and the loading
conditions (Lukaszkowicz et al. 2011).

At the present time, the laser spallation test offers, arguably, the best experi-
mental methodology for obtaining a quantitative measure of the interfacial tensile
strength between thin films and substrates (Gupta et al. 1992, 2003). In the laser
spallation test, an energetic laser beam is incident upon the substrate side of a thin-
film/substrate specimen and sets up a compressive stress pulse in the substrate,
the reflection of which from the free surface of the film generates tension at the
substrate/film interface, and causes film spallation from the substrate when this
interfacial tensile stress reaches a critical magnitude. While laser spallation tests
have yielded quantitative measures of interfacial tensile strength (Gupta et al. 1994),
this testing methodology is associated with limitations due to specimen geometry
(typically flat-wafer type specimens) and substrate absorption. Past laser spallation
measurements on ceramic-layer/metal-adhesion-layer/metal-substrate systems have
also shown an apparent dependence of the interfacial strength on the thickness of
metal interlayer (Gupta et al. 1994). Observation of such a dependence of strength
value on interlayer thickness indicates that the laser spallation testing protocol also
may not yield a value correspondent with an ideal interfacial strength, and suggests
the need for an improved understanding of the exact nature of interfacial failure
induced by the laser-induced tensile interfacial stress pulse, even though the laser
spallation measurement is considered well established and well studied.

The small thickness of the coating layer in ceramic-coating/metal-interlayer/
substrate systems, ranging typically from �0.2 �m to �10 �m, makes their
mechanical coupling to macroscale external loading systems difficult. This difficulty
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is in part responsible for the lack of progress with respect to the development of
reliable and quantitative mechanical testing protocols for the mechanical response
of coating/substrate interfacial regions. In this regard, the development of focused
ion beam (FIB) micro-/nano-scale machining capabilities (Volkert and Minor 2007)
and in situ instrumented micro-/nano-scale mechanical testing capabilities over the
last decade opens up new avenues for obtaining quantitative data as well as more
detailed observations related to mechanical failure of coating/substrate interfacial
regions. Preliminary microscale mechanical testing results presented in this chapter
offer some examples for this research direction.

Early simulations related to the mechanical response of solid/solid interfaces,
such as ab initio density functional theory (DFT) calculations on metal/ceramic
interfaces performed two decades ago, were limited to ideal interfacial configura-
tions without taking into account potential defect configurations at/near interfaces
(Smith et al. 1994). The dramatic improvements in computing power occurred over
the last two decades have enabled multiscale simulations related to solid/solid
interfaces, from DFT to molecular dynamics (MD), to dislocation dynamics (DD),
and to grain-level plasticity models, such as crystal-plasticity finite element models
(CPFEM) or visco-plastic self-consistent (VPSC) models. Hierarchical multiscale
modeling schemes that integrates interfacial deformation physics across a broad
spectrum of lengths scales have been developed (Zbib and Diaz de la Rubia 2002;
Groh et al. 2009), which have the capabilities of addressing interfacial mechanics
problems that are much more realistic and relevant to experimental conditions.
We believe that recent advances in microscale mechanical testing capabilities
and development of multiscale physics-based modeling/simulation tools offer an
opportunity to deepen the current understanding of the mechanical response of
solid/solid interfaces. In the particular case of ceramic-coating/substrate interfa-
cial regions, this confluence of micro-/nano-mechanical testing and multiscale
modeling/simulations can offer new insights into the critical elements governing
the mechanical integrity of interfacial regions between thin ceramic layers and
substrates. Preliminary simulation results presented in this chapter again offer some
examples.

In this chapter, we first briefly summarize the current understanding in the exist-
ing literature regarding the mechanisms of mechanical instabilities in metal/ceramic
interfaces (section “Microscopic Mechanistic Understanding of the Failure of
MCIRs”). In section “The Computationally-Guided and Experimentally-Validated
ICME Framework,” we propose a novel integrated computational materials engi-
neering (ICME) framework, currently being implemented by the authors, aimed
to improve mechanical integrity of the metal/ceramic interfaces. Details regarding
its approach, concerning both computation and experimentation, are discussed.
In section “Structure Mechanical Instability of Metal/Ceramic Interfaces – Initial
Results,” we illustrate a specific effort under such a combined experimentation-
simulation framework – the evaluation of shear and compression instabilities of
CuN/Cu/Si and CrN/Ti/Si interfacial regions. In this effort, instrumented compres-
sion testing was performed, with concurrent scanning electron microscopy (SEM)
observations, on microscale cylindrical pillars fabricated from vapor deposited
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CrN/Cu/Si(001) and CrN/Ti/Si(001) specimens. Such technique allowed a much
more detailed observation of how the interfacial regions fail under load. Con-
comitant simulations were carried out on Ti/TiN interfaces, employing MD in
combination with DFT. The simulation results shed light on the influence of the
Ti/TiN interface on the mechanical behavior of the Ti atomic layers nearby, in both
shear and tensile strength. The combined DFT/MD simulations illustrate the link
between length scales (from the atomic- to nano-) and were effective in probing
structural features’ influence on mechanical response of realistic semi-coherent
interfaces. It is worth noting that this chapter is not meant to be a thorough literature
review. Instead, the intention of this chapter is to present a novel ICME-based
approach, with a specific example, to evaluate and/or improve the mechanical
stability of the MCIRs.

Microscopic Mechanistic Understanding of the Failure of MCIRs

The close proximity of reactive nonmetallic element strongly impacts the electronic
structure inside the metal layer near the chemical interface, resulting in weaker the-
oretical shear and tensile strengths (Zhang et al. 2017; Yadav et al. 2015). Recently,
by combining experimental observations made during in situ microscale mechanical
testing with MD simulations and DFT calculations, the present authors have
provided new insights regarding mechanical failures of thin-ceramic-layer/metal-
interlayer/substrate systems (Zhang et al. 2017). DFT calculations performed on the
Ti/TiN interface suggest a weakening effect of the metal/ceramic chemical interface
to its adjacent metal atomic monolayers in both shear and tension, parallel and
normal to the interface. This is evidenced by a reduced generalized stacking fault
energy (GSFE) profile as well as work of adhesion (WoA) on the (0001) slip planes
in Ti near the chemical interfaces. Similar observation has also been observed for
Al/TiN and Al/VN interfaces (Yadav et al. 2015). As a result of the weakened
energetic characteristics, the misfit dislocation network (MDN) formed in such
planes exhibits increasingly planar dislocation cores (Shao et al. 2013, 2014, 2015),
higher dislocation mobility (Hirth and Lothe 1982), as well as vanishing pinning
effects of the nodes (dislocation intersections) (Zhang et al. 2017; Shao et al. 2015).
On the other hand, MD simulations suggest that the free energy of the MCIR is also
at a minimum when the MDN locates away from the chemical interface, coinciding
with the MDN position where the shear strength is a minimum (Zhang et al. 2017).
This explains the experimental observation that the eventual shear failure occurs not
at, but adjacent to, the chemical interface (Zhang et al. 2017).

When the MCIR is subjected to a normal stress, deformation behavior and
failure mechanisms are vastly different depending on the length scale of the
microstructures. For isolated individual interfaces within the MCIRs (e.g., direct
coating without interlayers or laminated interlayers with large layer thickness, e.g.,
d > �500 nm), gliding lattice dislocations in metal interact with individual sharp
interfaces and form dislocation pile-up (Wang et al. 2017; Hirth and Lothe 1982;
Wang and Misra 2011). The significant tensile stress at the tip of a dislocation-pile
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up may lead to formation of cracks (Meyers and Chawla 2007) for tensile loading
normal to the MCIR. Note that due to the reduced theoretical tensile strength, as
measured by the WoA, in the metal near the chemical interface in the MCIR, the
tensile cracks may preferentially form in the metal layers leading to delamination
(Fig. 2a). Under compressive loading, the local normal-to-interface tensile stress
component at the tip of the pile up counteracts the applied compressive stress and
may be less severe for opening cracks. In such a case, the parallel-to-interface
tensile stress component at the tip of the pile-up superimposed with the tensile stress
caused by the elasto-plastic deformation incompatibility between ceramic and metal
layers may induce cracks perpendicular to the interface (Fig. 2b). When multiple
chemical interfaces are adjacent to each other, such as in the MCIRs within nano-
laminated interlayers, either of the following situations may apply: (1) the smaller
interfacial spacing (d < 50 nm) inhibits the formation of dislocation pile-up, and
the propagation of threading dislocation within the metal layer (or confined layer
slip (CLS)) is the governing mechanism; (2) the interfacial spacing is so small
(d < 10 nm) that CLS is inhibited and nucleation/emission of dislocations from the
MDN is preferred. If the thickness of the ceramic is small, e.g., in the range of only
several nanometers, the strong dislocation dipoles form on both sides of the ceramic
layer may activate slip without cracking (Fig. 2c) (Li et al. 2014; Bhattacharyya
et al. 2011; Wang and Misra 2014). For slightly larger ceramic layer thicknesses,

Fig. 2 Schematic illustration of the deformation and failure mechanisms experienced by MCIRs
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cracks normal to interfaces may still form, due to the tensile stress in ceramic layer
originated from the elasto-plastic deformation incompatibility between ceramic and
metal layers (Fig. 2d).

The Computationally Guided and Experimentally Validated ICME
Framework

The macroscopic failure of the CHC/substrate system is often governed by the
atomic scale defect evolution events at the MCIR (Li et al. 2014; Bhattacharyya
et al. 2011; Zhang et al. 2017; Wang and Misra 2014; Yang et al. 2017). For
instance, in response to compressive/tensile loading normal to the MCIR, the
MDN may nucleate and emit lattice dislocations, which will in turn interact with
gliding lattice dislocations. The pile-up of dislocations at an interface may lead
to the opening of cracks and hence failure of the CHC. Under shear loading, the
MDN may nucleate interface dislocations that propagate parallel to the MCIR.
Alternatively, as recently demonstrated by the present authors (Zhang et al. 2017),
the MDN may glide collectively in response to an applied shear stress. Both
deformation mechanisms lead to shear failure of the MCIR. Therefore, variations
in the architecture and/or chemistry at interfaces may hugely impact the defect
activities (Wang and Misra 2011; Shao and Wang 2016; Wang et al. 2014; Salehinia
et al. 2014, 2015) and consequently improve the mechanical response of MCIRs.

Given the multiscale nature of mechanical failure in MCIRs, we envision a
multiscale computationally guided and experimentally validated ICME frame-
work (Fig. 3). At the atomic scale, using density functional theory (DFT) and
molecular dynamics (MD) simulations, tensile and shear strength of candidate
MCIR with various chemical (metal/ceramic composition as well as interfa-
cial dopants) and architectural (interfacial steps and ledges (Zhang et al. 2016;
Hirth and Pond 1996; Henager et al. 2004; Hirth et al. 2006) and arrangement
of individual metal/ceramic interfaces in an MCIR) modifications are explored
to identify potentially strong interfaces. Selected MCIR designs can then be
experimentally implemented through state-of-the-art plasma-assisted vapor phase
synthesis, mechanically tested at the microscale under different loading conditions,
and characterized through microscopy and spectroscopy techniques. Experimental
results, in turn, can validate the computational MCIR design. The so-obtained
deformation physics is passed to and implemented in the microscale atomistically
informed interface dislocation dynamics (AIDD) model. The output of the validated
AIDD model, including the dislocation evolution law and the constitutive relations,
is incorporated into a mesoscale visco-plastic self-consistent continuum interface
dislocation dynamics (VPSC-CIDD) model (Lyu et al. 2015, 2016, 2017). The
output of the VPSC-CIDD model, i.e., the texture evolution and stress-strain
response are then validated against experimentation. This VPSC-CIDD model
is expected to predict the mechanical/failure strength of MCIRs with arbitrary
geometries, such as within metal matrix composites (MMCs), and not limited to the
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Fig. 3 Illustration of the multiscale, computationally guided, and experimentally validated ICME
framework

conventional layered structures (Lyu et al. 2015, 2016, 2017; Lebensohn and Tomé
1993, 1994). Such an ICME framework is expected to advance basic understanding
of the physics governing mechanical response of metal/ceramic interfaces, and will
have general applicability including, but not limited to, design of CHC systems.

Through regulation of interfacial chemistry and architecture, the structure-
property relationship of mechanically strong MCIRs can be explored, established,
and validated by combining multiscale modeling/computation with vapor phase
synthesis, microscale mechanical testing, and multiscale materials characterization.
AIDD and VPSC models can then be advanced to incorporate the structure and
deformation physics of the MCIR, which in turn, will enable accelerated design
and implementation of strong MCIRs. The multiscale computationally guided and
experimentally validated ICME framework will empower a significantly accelerated
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and more cost-effective design-implementation cycle (encompassing the discovery,
validation, modeling, and design) for advanced MCIRs, leading to next generation
applications.

The Multiscale AIDD Simulator and VPSC-CIDD Model

The current AIDD model incorporates interface deformation mechanisms and
interface structural features in classical dislocation dynamics (DD) models (Zbib
and Diaz de la Rubia 2002; Wang et al. 2014; Akasheh et al. 2007; Han and
Ghoniem 2005; El-Awady et al. 2008; Ghoniem et al. 2000, 2002; Ghoniem and
Han 2005; Zbib et al. 1998). Two distinct types of dislocations are modeled –
interface dislocation and lattice dislocation. When lattice dislocations approach
within a critical distance to an interface, they are captured by the interface and
converted to interface dislocations; their Burgers vectors are conserved. If an
interface dislocation with near-parallel line sense is present, the incoming lattice
dislocation may react with it and form a new interface dislocation, if the reaction
leads to a lower dislocation line energy. On the other hand, when a “weak” interface
with relatively low shear strength is considered, in response to the stress field of
an incoming lattice dislocation, interface dislocation loops may nucleate, which
result in localized shear. The interface is modeled as a special, piecewise flat
plane, allowing the glide and climb of interface dislocations, depending on the
Burgers vector, i.e., when binter � bninter D 0, the dislocation is glissile. Otherwise,
it can only move by climb. The motion of interface dislocations is governed by
a set of equations of motion very similar to lattice dislocations. However, due to
the unique characteristics and structure of the interfaces, the parameters for the
motion of the interface dislocations, e.g., drag coefficients and vacancy/interstitial
migration energies, are different from those for the lattice dislocations and are
therefore necessary to be calibrated using atomistic simulations and experimental
observations. The reaction between two critically close interface dislocations is
also permitted if both reactant dislocations have near-parallel line sense and if the
resulting dislocation has lower line energy.

As was discussed previously, the plastic deformation in the nano-laminated
interlayers is mainly carried out through the CLS mechanism as well as the
nucleation and subsequent propagation of lattice dislocations from the interfaces.
MD simulations (Fig. 4a) (Beyerlein et al. 2013a, b; Zhang et al. 2013; Shao et al.
2017) have revealed that a nucleation event is favored if the nucleation source
(interface line defect) is parallel to the trace of the slip plane to be activated
(Situation 1 in Fig. 4b) (Shao et al. 2017). If no existing interface dislocation is
aligned with the trace of slip plane, local reorientation (Situation 2 in Fig. 4b) of line
defects and local reaction (Situation 3 in Fig. 4b) between line defects may occur to
produce segments of defects aligned with the traces of slip planes (Shao et al. 2017).
Accordingly, this interface physics has been implemented in the AIDD model.
Further, the nucleation of the lattice dislocation is explicitly treated as a thermally
activated process using a Monte Carlo type of approach (Fig. 4c) (Shao et al. 2017).
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Fig. 4 Nucleation and subsequent propagation of dislocations as modeled in AIDD (Shao et al.
2017)

The newly nucleated dislocation loop bows out, driven by the externally applied
stress superimposed by the local stress field of the dislocations (Fig. 4d) (Shao et al.
2017). The nucleated dislocation propagates within the layer. Once it touches the
adjacent interface, it is deposited on the interface. If the angle between a dislocation
segment and the interface is small, such that � < � c, it will be continuously deposited
on the interface, and the remaining dislocation will “thread” within the layer. Using
this nucleation scheme, slip transmission can be captured. Differing from nucleation
at an intrinsic interface dislocation, slip transmission occurs through nucleation
from an extrinsic interface dislocation. In such an event, the Burgers vector of
the residual interface dislocation is significantly reduced, leading to a significantly
higher probability.

The AIDD model is limited in both time (micro seconds) and length (below
1 �m) scales and is therefore unable to predict the deformation behavior of
materials in the meso- and macroscales. Its advantage is to predict the evolution
law of dislocations, including the evolution of dislocation density (both mobile and
immobile) as well as rates of dislocations’ nucleation and cross-slip events, to name
a few. Such rules are relied upon by the higher length scale models, such as crystal
plasticity finite element methods (CP-FEM) (Groh et al. 2009; Marin 2006; Casals
and Forest 2009; Miller et al. 2004) as well as the VPSC model (Lebensohn and
Tomé 1993, 1994; Wang et al. 2010). The VPSC-CIDD model is based upon the
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conventional VPSC model with expended capabilities in the description of plasticity
(Lyu et al. 2015, 2016, 2017). Ignoring elastic deformation, the VPSC-CDD model
determines the critical resolved shear stress on slip system ’ based on a Bailey-
Hirsch type of relation (Lyu et al. 2015, 2016, 2017): �˛

H D Cb�
P

m �˛m
p

�m
TS ,

where C is a numerical constant, b and � are the Burgers vector and shear modulus
of the crystal, �˛m is the dislocation interaction matrix between current slip system
˛ and the system m, �m

TS is the density of the statically stored dislocations (SSD)
on slip system m. �m

TS is described based on several different contributions, such
as dislocation multiplication, pinning and de-pinning of dislocations, annihilation,
cross-slip. The characteristics of all of these processes can be explicitly obtained
by AIDD simulations (Lyu et al. 2015, 2016, 2017). The outputs of the VPSC-
CIDD model (Fig. 3) include the mesoscale stress-strain relation, the local stress
and strain distribution, as well as the texture evolution – all of which can be verified
from mechanical testing and material characterization experiments, e.g., electron
backscatter diffraction (EBSD) and transmission electron microscopy (TEM).

Strategy for Improving the Mechanical Integrity of Metal-Ceramic
Interfaces

Based on the existing literature (Yadav et al. 2015; Lin et al. 2017; Sun et al. 2017)
and the recent work by the present authors (Zhang et al. 2017), it is clear that
there exists a weak plane in the vicinity of the chemical interface for many MCIRs
containing sharp interfaces. Such weak interaction planes give rise to weak shear
as well as tensile strengths, which may lead to premature interfacial failure, e.g.,
failure of interfacial region in CHC/metal substrate systems. On the other hand,
the utilizations of the nanolaminate adhesion interlayers, although substantially
improves the strength and ductility of the MCIR, may still suffer from interface
cracking if the individual layer thickness is not carefully controlled. Therefore,
strategies for improving the strength and ductility of MCIRs have to address the
failure mechanisms identified above. Three potential paths of structural and chemi-
cal modifications to MCIRs are being considered, requiring the understanding of key
physical factors controlling the mechanical response in each case, and consequently
developing the best approaches and solutions to engineer the mechanical integrity
of MCIRs (Fig. 5):

1. Adding interfacial impurities/solute-atoms to improve the theoretical shear
and tensile strength of a MCIR (Fig. 5a). In doing so, the characteristics
of the MDN, i.e., the core structure, mobility, and pinning effects of the
dislocations/nodes, may be altered. Such an alteration may result in either a
stronger shear resistance of MDN at its minimum energy location or a change
in the minimum energy location that corresponds to a higher shear strength;

2. Utilizing a nanolaminate type adhesion interlayer that composes of alternating
metal and ceramic layers with thickness of only a few nanometers (Fig. 5b) to
improve the compressive strength (stress before the onset of instability, such as
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Fig. 5 Three potential paths for improving the strength and ductility of metal/ceramic interface
regions. (a) Interface with impurity, (b) nanolaminate interface, (c) 3D structured interface

shear bands or cracks) and ductility of the MCIR. The thickness ratio between the
metal and ceramic layers need to be investigated for how it impacts the overall
stress response.

3. Designing an interface with pronounced micro- and/or nanoscale roughness
to improve the shear strength of the MCIR (Fig. 5c). The roughness can
be achieved by introducing interface steps/islands with low energy ledges,
which will locally transform the parallel-to-interface shear stress into normal-
to-interface tensile/compressive stress.

Note that the three potential paths may be combined with each other to achieve
an optimum performance.

The extent of possible interfacial strength improvement is expected to vary
depending on choice of material/impurity as well as the length scale of the interfacial
architectural features. Indeed, implementing such modifications to MCIRs through
a random experimental search will be inefficient, if not downright impossible.
The presently described multiscale, computationally guided, and experimentally
validated ICME framework is expected to generate mechanistic understanding,
through multiscale simulation, of how the three paths affect the deformation/failure
behavior of MCIRs. This will include (1) using DFT to explore a combination
of metal/ceramics that yields the strongest pristine MCIR, (2) using DFT to
probe the effect of the various solute atoms on the GSFE and WoA for various
metal/ceramic interfaces, (3) parameterizing modified embedded atom method
(MEAM) interatomic potentials, and (4) using existing and parameterized MEAM
potentials to perform MD studies to investigate the microscopic deformation and
failure mechanisms in MCIRs associated to each modification path taken.

The knowledge/insight gained through modeling/simulation can then guide
the design of experiments in devising novel interface chemistries/structures. The
experimental valuation of the mechanical response of MCIRs in conjunction with
detailed multiscale materials characterization will provide feedback to the model-
ing/simulation efforts. In the meantime, the interface physics obtained through MD
simulations can be used to advance the existing AIDD model and VPSC-CIDD
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model. A closed feedback loop is therefore formed: the in situ and ex situ
experimental results are used to validate the VPSC-CIDD model, which in turn will
be used to discover, design, and implement novel interfaces.

Structure and Mechanical Instability of Metal/Ceramic
Interfaces – Initial Results

In this section, we provide one instance of effort under such a combined
experimentation-modeling/simulation framework – the investigation of shear
instability of the interfacial regions of two ceramic-coating/metal-adhesion-
layer/substrate systems: CrN/Cu/Si and CrN/Ti/Si. The failure of the interfacial
regions was measured quantitatively and observed directly through instrumented
compression of cylindrical micropillars with concurrent scanning electron
microscopy observations. The results indicated, for the first time to our knowledge,
that shear failure of the interfacial region occurred in two stages: an initial shear
deformation of the entire metal interlayer followed by an unstable dynamic shear-
off close to one metal/ceramic interface. The experimentally observed dynamic
shear-off was suggested to be concomitant with the metal/ceramic interface going
from being “locked,” with no relative displacement between materials on the two
sides of the interface, to being “unlocked,” with significant relative displacements.
DFT and MD studies on a related metal/ceramic interface, Ti/TiN, provided further
insights into this behavior. It was shown, again for the first time to our knowledge,
that a weak interaction plane exists in the metal layer near the chemical interface in
a coherent Ti/TiN structure. Consequently, the free energy as well as the theoretical
shear strength of the semi-coherent Ti/TiN interface was found to depend on the
physical location of the misfit dislocation network (MDN). The minimum energy
and strength of the interface occur when the MDN was near, but not at the chemical
interface.

Synthesis of Ceramic-Coating/Adhesion-Interlayer/Substrate
Systems and Structural/Mechanical Characterization
of Coating/Substrate Interfacial Regions

Vapor Phase Deposition of Coating/Substrate Systems
Deposition of ceramic coatings onto the surfaces of machining tools and mechanical
components needs to satisfy several general requirements. For surface engineering
purposes, thin CHCs are often used, e.g., transition metal carbides and nitrides,
with typical physical characteristics of high melting temperatures, high elastic
stiffness, high hardness, and high enthalpy of formation (Toth 1971). For satis-
factory mechanical and tribological performance, the thin CHC layers deposited
onto the substrates need to be fully dense and well adherent to the substrate.
Such ceramic layers are typically deposited onto the substrate surface by vapor
phase deposition, usually through either chemical vapor deposition (CVD), physical
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vapor deposition (PVD), or some form of hybrid vapor deposition technique
(Vossen and Kern 1991). Deposition of refractory ceramic layers by conventional
CVD methods usually involves high substrate temperatures, often exceeding the
temperature limitations of the metallic substrates and causing degradation of the
substrate mechanical properties. To deposit fully dense refractory ceramic layers at
low temperatures typically requires the input of additional energies to the growth
surface to counterbalance the lack of adatom surface mobility during growth and is
typically achieved through some form of ion beam or plasma assist (Itoh 1989).

Thin transition metal nitride layers are used as examples of CHCs, the deposition
of which was carried out at close to room temperature in an ultra-high-vacuum
hybrid PVD/CVD deposition tool. This deposition tool housed a 13.56 MHz
inductively coupled plasma (ICP) and multiple balanced magnetron sputter sources
(Meng et al. 1999). The sputter sources faced the center of the deposition chamber,
with a base pressure of <3 � 10�9 Torr. Cleaned silicon and metal substrates were
first placed into a load lock, evacuated to �3 � 10�7 Torr, and then transferred to a
holder placed at the center of the deposition chamber. The substrates were rotated at
�12 rpm during deposition. Pure metal (99.95%C) targets were operated in the dc
current-controlled mode. The entire deposition sequence occurred in �10 mTorr of
Ar (99.999%C). The substrates were first subjected to an Ar ICP etch for �5 min
at a bias voltage of �50 V. Immediately after etching, elemental metal adhesion
interlayers were deposited onto the substrate by sputtering the elemental metal
targets in Ar with ICP assist. Deposition of metal nitride coating layers, �5 �m
in thickness, occurred immediately after the metal adhesion interlayer deposition
in an Ar/N2 (99.999%C) ICP. To ensure a reasonable deposition rate at close to
stoichiometry, the input N2 flow was kept close to but below the pressure hysteresis
point. During metal nitride deposition, a total input ICP power of 1000 W was
applied and an electrical bias voltage of �30 V to �100 V was applied to the
substrate. Additional details on the methodology of using low pressure high density
plasma assisted vapor phase deposition to form fully dense CHC layers have been
presented elsewhere (Meng et al. 1999, 2000; Meng and Curtis 1997).

Structural, Compositional, and Mechanical Characterization of Vapor
Deposited Thin Film/Coating Specimens
Structures of metal-nitride/metal-adhesion-interlayer/substrate specimens were
characterized by combining X-ray diffraction (XRD), scanning electron microscopy
(SEM), GaC focused ion beam (FIB) sectioning, and TEM. A PANalytical
Empyrean system with Cu K’ radiation was used for XRD measurements.
Diffraction patterns were obtained with specimens mounted on a ¦-®-x-y-z
stage. Diffraction patterns in the glancing incidence geometry, the symmetric ™-2™

geometry, and the ¨-rocking curve geometry are obtained with an incident beam
graphite mirror and a Pixel3D detector. X-ray pole figure data were obtained with
an incident beam double-cross slit and a scintillation detector.

Scanning imaging with electron- or ion-induced secondary electrons (SE/ISE)
and GaC FIB milling were carried out on an FEI Quanta3D Dual-Beam FEG
instrument, which housed a 30 kV field-emission electron source, a 30 kV
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high-current GaC ion source, an OmniProbe for specimen lift-out, and an EDAX
X-ray energy-dispersive spectroscopy (EDS) attachment. A JEOL JEM2011
microscope operated at 200 kV was used for TEM examinations. Cross-sectional
TEM specimens were made by GaC ion sectioning into rectangular sections, lift-out
using an in situ OmniProbe, gluing by GaC catalyzed Pt deposition onto a TEM grid,
followed by GaC ion thinning at 30 kV and 5 kV. Final specimen thinning/cleaning
was performed on a Gatan PIPS II ion polishing system using an ArC ion beam
at 500 eV or less. Further details regarding GaC ion beam sectioning and TEM
specimen lift-out have been described elsewhere (Chen et al. 2014a). Additional
TEM specimens were made without the final ArC ion thinning/cleaning step. With
respect to characterizing the grain structure, no significant difference was found
between specimens with or without the final low energy ArC thinning/cleaning
step.

Compositional characterization was carried out by X-ray photoelectron spec-
troscopy (XPS) on a Kratos AXIS165 spectrometer with monochromatic Al K’

excitation. Composition quantification was obtained from raw XPS spectra using
factory supplied sensitivity factors. Prior to XPS spectra collection, the specimen
surface was sputter cleaned with an ArC ion beam for �20 min, with the ArC ion
beam set at 4 kV and 15 mA.

Instrumented indentation was carried out at room temperature on a Nanoindenter
XP system, using a three-sided pyramidal Berkovich diamond indenter. The inden-
ter’s Young’s modulus and Poisson’s ratio are 1170 GPa and 0.07, respectively.
The machine compliance and the projected indenter tip area as a function of
the indenter contact depth was calibrated using a factory supplied fused silica
standard following the Oliver-Pharr method (Oliver and Pharr 1992). The Young’s
modulus and Poisson’s ratio for the fused silica standard were taken, respectively,
to be 72 GPa and 0.18, independent of the indenter contact depth. The calibration
covered a contact depth range from 40 nm to 2100 nm. Raw indentation loading
and unloading curves were obtained in the load-controlled mode using a constant
loading and unloading time of 15 s, with a 30 s load hold at the maximum load,
Lmax. Multiple load versus indenter displacement, L-d, curves were obtained at one
dmax value, and dmax was varied to obtain a complete set of indentation data.

In what follows, structural, compositional, and mechanical characterization
of polycrystalline CrN and Cu thin films deposited onto Si(001) substrates is
presented in some detail as an example. The same characterization methodology was
applied to all metal-nitride/metal-adhesion-layer/substrate systems. In particular,
XRD studies of CrN/Ti/Si specimens showed that the Ti interlayer is hcp in structure
and has a strong texture with the Ti hexagonal basal plane parallel to the Si substrate.

A series of single-layer Cu thin films were deposited onto Si(001) substrates. Cu
deposition occurred with an Ar ICP assist at a total ICP input power of 1000 W.
A substrate bias of �50 V was applied during deposition. The Cu film thickness
was controlled through the deposition time. Another series of bilayer CrN/Cu thin
films were deposited onto Si(001) substrates. Cu interlayers were first deposited
onto Si(001) in pure Ar with ICP assist, followed immediately by deposition of
CrN top layers in an Ar/N2 mixture, also with ICP assist at a total ICP input power
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of 1000 W. During CrN deposition, a substrate bias of �100 V was applied. To
ensure CrN deposition at close to stoichiometry, the input N2 flow was kept above
the pressure hysteresis point.

Typical results of morphological and compositional characterizations from
CrN/Cu/Si(001) specimens are illustrated in Fig. 6. Figure 6a shows an SE image of
a FIB cross section perpendicular to the original specimen surface, created by GaC

ion milling. A Pt protection layer was laid on top of the specimen surface prior to ion
milling by GaC catalyzed deposition from an organometallic Pt precursor. Figure 6a
shows in sequence the Pt protection layer, the CrN top layer, the Cu interlayer,
and the Si substrate. The thicknesses of the CrN and Cu layers were measured,
respectively, to be �5.5 �m and �810 nm, with typical scatter of ˙5% based on
repeat measurements. Figure 6b shows a plan-view SE image of the as-deposited
CrN top surface, with surface roughness typical of vapor deposited polycrystalline
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Fig. 6 Morphological and compositional characterization of a typical CrN/Cu/Si(001) specimen:
(a) a FIB cross sectional SE image, (b) a 52ı tilted plan-view SE image of the CrN top layer, (c)
XPS survey spectra collected from top layers of a typical Cu/Si specimen (top trace) and a typical
CrN/Cu/Si specimen (bottom trace). In both cases, the oxygen and carbon impurity levels were at
or below the XPS detection limit of �1 at.%
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columnar refractory ceramics. Both the cross section and the plan-view images
indicate that the CrN top layer is fully dense. Figure 6c shows XPS survey spectra
collected from top layers of a typical Cu/Si specimen and a typical CrN/Cu/Si
specimen. The Cu spectrum shows peaks consistent with Cu3p, Cu3s, and Cu2p
emissions. Signal at the O1s and C1s positions, at binding energies of 532 eV and
284 eV, is not above the noise level. The CrN spectrum shows peaks consistent with
Cr3p, Cr3s, Cr2p, Cr2s, and N1 s emissions. Signal at the O1s and C1s positions
is also not above the noise level. The Cr:N ratio is determined to be 51:49. XPS
data thus show that the Cu layers consist of elemental Cu and that the CrN layers
consist of Cr and N at close to the stoichiometric ratio. The O and C impurity levels
in both Cu and CrN layers are below the XPS detection limit of �1 at.%. Similar
compositional characterization data showed that all metal-nitride layers deposited
were close to stoichiometry and all elemental metal layers deposited were free of O
and C contamination above the XPS detection limit.

Results of XRD characterization of the structure of CrN layers in CrN/Cu/Si(001)
specimens are illustrated by data shown in Fig. 7. The glancing incidence XRD
pattern, shown in Fig. 7a, collected from one typical CrN/Cu/Si(001) specimen
at an X-ray beam incidence angle ¨ D 2.5ı, shows diffraction peaks only from
the CrN top layer. All diffraction peaks can be indexed to a cubic structure with
lattice parameter a D 4.18 Å, close to the bulk B1-CrN lattice parameter of 4.15 Å
(Toth 1971). The ™-2™ XRD pattern, shown in Fig. 7b and collected from the same
specimen, shows the Si(004) diffraction peak from the Si substrate and one minor
Cu(220) diffraction peak from the Cu interlayer in addition to all diffraction peaks
indexed to B1-CrN, with a D 4.18 Å. Taken together, glancing incidence and ™-2™

XRD data are consistent with the CrN film having the B1-NaCl structure, being
polycrystalline, and with preferential alignment of CrN<111> and CrN<200> along
Si[001], the growth direction.

The level of residual stress within the CrN top layer was estimated from analysis
of the glancing incidence XRD data shown in Fig. 7a. When the X-ray incidence
angle was fixed at ¨ D 2.5ı and the detector was scanned to obtain diffraction

signals in the range of 20ı < 2™ < 120ı, the angle between the scattering vector
�!
k

and the specimen surface normal �!n , ‰, is given by ‰ D � � ! (Perry et al. 1996).
The CrN lattice parameter, aCrN, was calculated from the multitude of B1-CrN
diffraction peaks shown in Fig. 7a and plotted versus sin2‰ in Fig. 7c. Assuming an
equal biaxial residual stress �R existing within the CrN layer, the variation of aCrN

as the ‰ angle varies relates in the following way to ¢R (Chen et al. 2014a; Cullity
and Stock 2001):

a‰ D

�

1 C 	

E
�R

�

aosin2‰ C

�

1 �
2	

E
�R

�

ao: (1)

In Eq. 1, E and 	 are, respectively, the Young’s modulus and Poisson’s ratio of
the CrN layer, and ao is the bulk lattice parameter of CrN. A linear least squares
fit to the data shown in Fig. 7c yielded a slope of �0.022 ˙ 0.017 Å and an
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Fig. 7 XRD examination of a typical CrN/Cu/Si(001) specimen: (a) glancing incidence
(¨ D 2.5ı) diffraction pattern, (b) ™-2™ diffraction pattern, (c) Sin2‰ analysis of the glancing
incidence data shown in (a)

intercept of 4.187 ˙ 0.007 Å. The negative slope of the sin2‰ plot indicates that
the residual stress within CrN is compressive. Independent of the values of E and
	, the fact that the slope uncertainty is comparable to the slope itself indicates
that the level of residual stress is moderate. Values of E for CrN reported in the
literature vary widely from � 200 GPa to above 400 GPa (Kral et al. 1998; Chen
et al. 2004). Taking ao to be 4.15 Å, 	 to be 0.2 (Sue et al. 1994), and E to be 400GPa
(Holleck 1986), the fitted slope of the sin2‰ plot yields �R D �1.8 ˙ 1.4 GPa. It
is noted that since E D 400 GPa is a high value for CrN, this �R value represents
an upper bond estimate (e.g., taking E D 300 GPa would result in a �R value of
�1.4 ˙ 1.0 GPa). Both the magnitude and the large uncertainty associated with the
�R value again indicate that the level of compressive residual stress within the CrN
layer is moderate. A moderate residual stress level within CrN makes it easier to
deposit thick CrN top layers, e.g., that shown in Fig. 6a. Diffraction data similar to
those shown in Fig. 7 were obtained from other CrN/Cu/Si(001) specimens.

Results of XRD characterization of the structure of Cu/Si(001) specimens are
illustrated by data shown in Fig. 8. The glancing incidence XRD pattern, shown
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Fig. 8 XRD examination of a typical Cu/Si(001) specimen with a Cu film thickness of �1180 nm:
(a) glancing incidence (¨ D 2.5ı) diffraction pattern, (b) ™-2™ diffraction pattern, (c) Cu <111>
rocking curves from three polycrystalline Cu layers on Si(001). The Cu film thickness values are
indicated on top of the rocking curves

in Fig. 8a, collected at an beam incidence angle ¨ D 2.5ı from one Cu/Si(001)
specimen with Cu thickness of �1180 nm, shows diffraction peaks which can all
be indexed to an fcc structure with lattice parameter a of 3.617 Å, close to the
bulk fcc-Cu lattice parameter of 3.615 Å (Straumanis and Yu 1969). The ™-2™

XRD pattern, shown in Fig. 8b and collected from the same specimen, shows the
Si(004) diffraction peak from the Si substrate and only fcc-Cu (111) and (222)
diffraction peaks. The glancing incidence and ™-2™ XRD data are consistent with the
Cu film having the fcc structure, being polycrystalline, and with strong preferential
alignment of Cu<111> along Si[001]. The Cu(111) ¨-rocking curve data are shown
in Fig. 8c. Measured rocking curve width decreases monotonically from 4.4ı at the
Cu film thickness of �150 nm to 3.0ı at �550 nm and to 2.4ı at �1180 nm. The
texture in Cu films was shown in more detail by background corrected Cu(111) pole
figure data shown in Fig. 9, collected from three different Cu films deposited on
Si(001), with total film thickness values of �150 nm, �550 nm, and �1180 nm.
In all cases, the Cu(111) diffraction intensity peaks along the growth direction and
drops to <10% of the peak intensity at directions deviating from the growth direction
for >5ı. Furthermore, the pole figure data clearly show in-plane rotational symmetry
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Fig. 10 TEM examination of a typical CrN/Cu/Si(001) specimen: (a) a cross sectional BF image
across the entire Cu interlayer. The CrN/Cu and Cu/Si interfaces are indicated by white arrows;
(b) typical SAED patterns collected from the (left to right) CrN, Cu and Si layer

of the Cu(111) diffraction intensity, at all film thicknesses probed. The pole figure
data are consistent with the Cu(111) ¨-rocking curve data shown in Fig. 8c. Taken
together, X-ray diffraction data shown in Figs. 8 and 9 indicate that the Cu films are
fcc in structure and have almost perfect fiber texture with Cu<111> along Si[001]
to within a few degrees. The Cu films are polycrystalline with random in-plane
orientation.

Grain structure of CrN and Cu thin films was further characterized by TEM.
Figure 10 shows typical TEM characterization results of CrN/Cu/Si(100) specimens
across the entire Cu interlayer. A cross-sectional TEM bright-field (BF) image,
shown in Fig. 10a, was obtained from the CrN/Cu/Si(001) specimen whose
morphology was shown in Fig. 6.The specimen was oriented with the Si substrate
in the [110] zone axis direction. Both CrN and Cu layers are polycrystalline. Both
CrN/Cu and Cu/Si interfaces appear clean, without indication of interdiffusion
and reaction. For this specimen, the Cu interlayer thickness was measured from
Fig. 10a to be �810 nm, which was consistent with the value measured by FIB
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Fig. 11 Cross sectional TEM examination of the CrN top layer: (a)/(b) a BF/DF image pair of the
same area. White arrows indicate the location of the CrN/Cu interface

Fig. 12 Cross sectional TEM examination of the Cu interlayer: (a)/(b) a BF/DF image pair of the
same area. White arrows indicate the location of the Cu/Si interface

cross sectioning in Fig. 6a. Figure 10b shows selected area diffraction patterns
(SADPs) obtained, respectively, from the CrN top layer, the Cu interlayer, and the Si
substrate areas. The SADP from Si shows the Si[110] zone axis diffraction pattern.
The SADPs from Cu and CrN are consistent with the structure of Cu being fcc and
that of CrN being B1-NaCl. Figure 11 shows a typical TEM bright-field/dark-field
(BF/DF) image pair of the CrN top layer near the CrN/Cu interface. The CrN layer
has a pronounced columnar structure, with columns with widths �50 nm and large
length/width ratios. The columnar structure of CrN shown in cross sectional TEM
is consistent with the rough surface morphology observed in Fig. 6. The CrN layer
appears fully dense, without indication of intercolumnar voids. Figure 12 shows
a typical TEM BF/DF image pair of the Cu interlayer near the Cu/Si interface.
The Cu layer consists of a random mixture of columnar and near equi-axed grains.
The presence of nano-twins within the columnar Cu grains is visible in the BF
image, with twin spacing <100 nm. Similar image features were observed from
Cu films at different thicknesses. Additional DF imaging shows Cu grains ranging
from �20 nm to �100 nm in widths and with morphologies ranging from near
equi-axed grains to columnar grains with large length/width ratios. Similar grain
structures were observed from all Cu films, with thicknesses ranging from �150 nm
to �1180 nm.
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Fig. 13 Instrumented
indentation of a Cu/Si(001)
specimen with a Cu thickness
of �1180 nm: (a) indentation
modulus versus contact
depth, (b) hardness versus
contact depth

Figure 13 displays indentation results obtained from a Cu/Si(001) specimen,
with a Cu film thickness of �1180 nm. Figure 13a shows values of measured
indentation modulus, Eind D E/(1�	2), as a function of the indenter contact depth.
Error bars for the modulus value are derived from repeat L-d curves at the same dmax

value. In the absence of an independent measurement on the Poisson’s ratio, only
Eind can be obtained from the elastic unloading portion of the indentation curve.
Figure 13a shows that Eind increase slightly from �150 GPa at large contact depths
to �170 GPa at contact depths between 200 nm and 350 nm.

The elastic stiffness constants for fcc Cu are, respectively, C11 D 168.4 GPa,
C12 D 121.4 GPa, and C44 D 75.4 GPa (Kittel 2005), and those for diamond-cubic Si
are, respectively, C11 D 165.6 GPa, C12 D 63.9 GPa, and C44 D 79.5 GPa (Hopcroft
et al. 2010). The elastic compliance constants for Cu are, respectively, S11 D 14.99
(TPa)�1, S12 D �6.28 (TPa)�1, and S44 D 13.26 (TPa)�1, and those for Si are,
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respectively, S11 D 7.69 (TPa)�1, S12 D �2.14 (TPa)�1, and S44 D 12.58 (TPa)�1

(Hopcroft et al. 2010). Young’s modulus in the <001> and < 111> directions of
cubic crystals are obtained from the compliance constants as (Nye 2000),

E100 D fs11g�1; (2)

E111 D

�

s11 �
2

3

�

.s11 � s12/ �
1

2
s44

�� �1

: (3)

For Cu, E100 and E111 are, respectively, 67 GPa and 191 GPa. For Si, E100 and
E111 are, respectively, 130 GPa and 188 GPa. Furthermore, Poisson’s ratio in the
<hkl> direction of cubic crystals are given by (Zhang et al. 2007)

vhkl D
1

2
�

Ehkl

2 .C11 C 2C12/
: (4)

For Cu, 	100 and 	111 are, respectively, 0.42 and 0.27. For Si, 	100 and 	111 are,
respectively, 0.28 and 0.18. In the <001> and < 111> directions, the Cu indentation
modulus takes on, respectively, values of 81 GPa and 206 GPa and the Si indentation
modulus takes on, respectively, values of 141 GPa and 194 GPa. Based on the XRD
results shown in Figs. 8 and 9, the relevant indentation moduli for indentation on the
present Cu/Si(001) specimens should, respectively, be Eind(111) D 206 GPa for the
Cu film and Eind(001) D 141 GPa for the Si substrate, i.e., the Cu/Si specimen goes
from an elastically stiffer film to an elastically more compliant substrate. Thus, the
data shown in Fig. 13a are trend-wise consistent with what is expected based on the
predominant fiber texture of the Cu films, with Cu < 111>//Si[001]. Measured Eind

value is close to Eind for the Si substrate at large contact depths.
Figure 13b shows values of measured hardness as a function of the indenter

contact depth. Error bars for the hardness value are derived from repeat L-d curves
at the same dmax value. Measured hardness values decrease from above 4 GPa at
large contact depths to �3 GPa at contact depths between 200 nm and 350 nm. The
indentation hardness of Si at room temperature is �10 GPa, limited by a pressure-
induced phase transformation (Vandeperre et al. 2007). The Cu/Si specimen goes
from a softer film to a harder substrate. Thus, the observed decrease in hardness
with decreasing contact depth is again qualitatively consistent with expectation.
Caution should be exercised in taking the measured hardness value of �3 GPa at
small contact depths as an “intrinsic” hardness of the Cu film, for it is influenced
by two extra factors: one being the effect of a harder Si substrate and the other
being the expected presence of an indentation size effect. Both effects tend to elevate
measured hardness values. For these reasons, indentations on Cu/Si specimens with
smaller Cu film thicknesses were not performed.

Figure 14 displays indentation results obtained from a 6.2 �m thick polycrys-
talline CrN film deposited on Si(001), over a range of indenter contact depth from
�1400 nm to �370 nm. Figure 14a shows that the indentation modulus increases
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Fig. 14 Instrumented
indentation of a CrN/Si(001)
specimen with a CrN
thickness of �6.2�m: (a)
indentation modulus versus
contact depth, (b) hardness
versus contact depth

monotonically with decreasing indenter contact depth, to �275 GPa at the smallest
contact depth of �370 nm. The observed trend is consistent with the expectation
for an elastically stiffer film on an elastically more compliance substrate, where
measured indentation modulus decreases monotonically with increasing indenter
contact depth (Meng and Eesley 1995). A simple extrapolation of the data shown in
Fig. 14a suggests that the indentation modulus of the present CrN film is �300 GPa.
Figure 14b shows that measured hardness values in the same contact depth range
exhibit only a modest change, from �16 GPa to �18 GPa. Noting that values of
indenter contact depth normalized to the CrN film thickness range from 0.06 to
0.23, a simple average of all hardness values shown in Fig. 14b yield a hardness
value of �17 GPa, a value believed to be representative of the presently deposited
CrN films.
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Values of Young’s modulus for CrN as reported in the literature vary widely,
from 190 GPa to above 400 GPa (Chen et al. 2004; Holleck 1986). Moduli of
sputter deposited CrN films are often reported to be between 200 GPa and 250 GPa,
well below 400 GPa (Sue et al. 1994). A CrN indentation modulus of �300 GPa
is consistent with previous reported Young’s modulus values of 270–300 GPa on
sputter deposited CrN films (Thulasi Raman et al. 2012; Lin et al. 2012). A wide
range of CrN hardness values have been reported in the literature, from 10 GPa to
above 30 GPa (Zhang et al. 2008). Hardness of CrN was also reported to depend
strongly on the level of residual stress (Mayrhofer et al. 2001). The presently
measured hardness for CrN of �17 GPa is consistent with the moderate level of
residual compressive stress existing within the CrN layer, obtained from estimates
based on glancing incidence XRD measurements data shown in Fig. 7.

Micropillar Fabrication and Axial Compression Measurements
on Micropillars Containing Coating/Adhesion-Layer/Substrate
Interfacial Regions
Fabrication of monolithic cylindrical micro-/nano-pillars using scripted FIB milling
has been well documented (Uchic et al. 2004, 2009). To obtain the mechanical
response of the interfacial regions in coating/adhesion-interlayer/substrate systems,
two groups of micropillar specimens were fabricated: one with interfaces at a 45ı

inclination to the pillar axis and the other with interfaces perpendicular to the pillar
axis (Chen et al. 2014b; Mu et al. 2014). Figure 15 shows a progressive series of
SE images obtained during FIB fabrication of CrN/Cu/Si micropillars, in which the
interfacial regions are inclined at 45ı with respect to the pillar axis. The vapor-
deposited CrN/Cu/Si specimens were first mounted at a 45ı angle, mechanically
polished to reveal the interfacial region, then FIB milled. Figure 15a–c shows
the initial stages of top-down annular FIB milling to define the specimen region
containing the interfaces and progressively thin down the pillar region. Figure
15d shows a taper-free micropillar resulting from scripted FIB milling with the
pillar shown in Fig. 15c turning in a lathe-like motion and the ion beam incident
from the side of the pillar. It is evident that this pillar contains the CrN/Cu/Si
interfacial regions at a 45ı inclination. Figure 15e shows such an array of taper-free
micropillars. Axial compression testing of such micropillar arrays allows repeated
and independent testing of the coating/substrate interfacial regions in a combined
compression/shear loading. Similar top-down and scripted FIB milling was used to
fabricate micropillars with interfacial regions perpendicular to the pillar axis. Figure
16 shows close-up SE images of typical CrN/Cu/Si(001) micropillars with interfaces
inclined at 45ı and 90ı with respect to the pillar axes. Additional information on
pillar fabrication was provided elsewhere (Chen et al. 2014b; Mu et al. 2014).

In situ axial compression of micropillars was conducted on a NanoMechanics
Inc. NanoFlip® instrumented micro-/nano-mechanical testing device placed within
the FEI Quanta3D FIB instrument. A custom-made, flat-ended, �10 �m � 10�m
diamond punch was used for pillar compression. The NanoFlip device, interfaced
with the Quanta3D instrument, enabled simultaneous acquisition of the total load
force on the indenter, P, the total punch displacement, 
, and a video of SE images
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Fig. 15 Fabrication of micropillars containing interfacial regions of coating/adhesion-
interlayer/substrate specimens: (a) top-down annular FIB milling after mechanical polishing, (b)
defining specimen region with interfaces at a 45ı inclination with respect to the pillar axis, (c)
progressive thinning down of the pillar region, (d) the final pillar after scripted FIB milling with
pillar turning and GaC ion incident from the pillar side, (e) A finished pillar array, enabling
repeated testing of the same interfacial region in independent experiments

Fig. 16 Typical cylindrical micropillars fabricated by scripted GaC FIB milling: (a) one
CrN/Cu/Si(001) micropillar with interfaces inclined at 45ı to the pillar axis, (b) one
CrN/Cu/Si(001) micropillar with interfaces perpendicular to the pillar axis

of the micropillar under testing, thus allowing specific points on the P–
 curve to
be linked to specific images of the pillar morphology at that point. The NanoFlip is
fundamentally a load-controlled instrument, but is programmed to enable loading to
occur in a “displacement-controlled” mode by providing feedback control of loading
force according to deviation of sensed punch displacement rate from the set value.



182 W. Meng and S. Shao

Fig. 17 Instrumented microscale compression testing of micro-pillar specimens in situ an SEM:
(a) an array of three micropillars with circular surrounding openings to allow for approach of a
diamond indenter, (b) the experimental configuration prior to contact of the diamond indenter with
one micropillar

All in situ pillar compression tests were performed under such a displacement-
controlled mode, with the target displacement rate set at 10 nm/s. Additional ex situ
axial compression testing of pillars was conducted on a NanoIndenter XP instrument
with another custom, flat-ended, �10 �m � 10 �m diamond punch. These ex
situ tests were conducted without concurrent observations, and only post test
morphological observations of the tested pillars were made after the compression
testing had concluded.

Cylindrical micropillars of CrN/Cu/Si(001) and CrN/Ti/Si(001) specimens,
3–5 �m in diameter, were fabricated with the interfacial regions inclined at 45ı and
90ı with respect to the pillar axis. From one CrN/interlayer/Si specimen, a number
of micropillars were fabricated such that repeat axial compression tests can be
performed. The typical experimental situation related to in situ axial compression
testing of CrN/interlayer/Si(001) micropillars is illustrated in Fig. 17. The FIB
milling process yielded cylindrical micropillars, 3–5 �m in diameter and �10 �m
in length, resting on a larger Si base. Figure 17a shows an array of three micropillars
fabricated from one CrN/Cu/Si(001) specimen, with the Cu interlayers inclined at
45ı with respect to the pillar axes. The Cu interlayer thickness for this specimen
is �550 nm, measured from SE images of a FIB cross section of the specimen.
Finished pillars are taper-free and are subjected to no mechanical contact once the
milling process is completed. The circular opening surrounding each pillar, �30 �m
in diameter, is sufficiently large to allow the �10 �m � 10 �m diamond punch to
engage the pillar top without contacting the rim of the circular opening. As shown
in Fig. 17a, the right most pillar is located near the specimen edge. The rim material
bordering the specimen edge, as well as the rim material separating one pillar from
another, has been removed by additional FIB milling to allow SE imaging during
axial compression of the pillars. The SE image shown in Fig. 17b illustrates the
situation immediately before the flat face of the �10 �m � 10 �m diamond punch
is about to engage the top of the right most pillar shown in Fig. 17a, with the two
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other pillars visible in the same field of view. The shadow on the flat face of the
punch, due to the pillar blocking a portion of secondary electrons emanating from
the punch flat face, serves to locate the pillar in the center of the punch face during
the engagement process. Similar pillar morphologies and in situ pillar compression
test configurations hold for CrN/Ti/Si micropillars with interfaces inclined at either
45ı or 90ı with respect to the pillar axes.

Figure 18a shows the raw P–
 curve obtained from in situ axial compression of
the right most CrN/Cu/Si(001) micropillar shown in Fig. 17a, with a Cu interlayer
thickness of �550 nm and the interfaces inclined at 45ı with respect to the pillar
axis. Figure 18a shows an initial rapid increase in P with increasing 
 until a
critical load value, Pc, is reached. Once Pc is reached, 
 increases with little further
increase in P, exhibiting a stable load plateau. This load plateau, however, does not
extend indefinitely. Rather, large and discontinuous punch displacement excursions
occur as 
 increases beyond a point. Figure 18b–d shows single frames of the SE
imaging video of the same pillar at various stages during the axial compression
experiment, corresponding to the points 1, 2, and 3 identified on the P–
 curve
shown in Fig. 18a, with total punch displacements at �115 nm, �370 nm, and
�440 nm, respectively. It is apparent from Fig. 18a, b that little or no deformation
of the Cu interlayer is observed at point 1 on the rapid load rise portion of the P–


curve. Once the critical load Pc is reached and the punch displacement progresses to
point 2 on the load plateau, the entire Cu interlayer undergoes a shear deformation.
The upward displacement of the punch is accommodated by a rigid upward shift
of the top CrN portion of the pillar and is in turn accommodated by a shear
deformation of the entire Cu interlayer. The CrN top portion of the pillar shifts
rigidly upward and to the left in Fig. 18c. This mode of deformation continues
as the punch displacement progresses further on the load plateau to point 3, and
the entire Cu interlayers undergoes an increased amount of shear deformation, as
evident from Fig. 18d. The large and discontinuous punch displacement excursion
observed, to beyond the total punch displacement range of 800 nm displayed in
Fig. 18a, is concomitant with a catastrophic shear failure. As shown in Fig. 18e, this
dynamic shear-off event causes the diamond punch to quickly move upward in an
uncontrolled manner, impacting the bottom Si portion of the pillar and destroying
it. The entire dynamic shear-off event occurs suddenly, within the time span for
collecting one single SE image frame, thus leaving no image of the pillar during any
intermediate stage of this dynamic shear-off. The SE image in Fig. 18f illustrates
separate posttest morphological examinations of CrN/Cu/Si pillars subjected to ex
situ axial compression, after the large punch displacement excursion had occurred.
It is clear that shear loading on the interfacial region, due to the axial compression
load, caused a shear failure of the interfacial region, resulting in the top CrN portion
of the pillar shifting rigidly with respect to the Si bottom portion. Spot mode EDS
spectra collected from the top surface of the exposed bottom pillar portion and the
bottom surface of the exposed top pillar portion both show the presence of Cu signal,
indicating that the dynamic shear-off occurred within the Cu interlayer. The SE
image shown in Fig. 18f and multiple similar ones, not shown, further indicate that
the final dynamic shear-off occurred near the Cu/CrN interface, instead of in the
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Fig. 19 In situ compression testing of CrN/interlayer/Si(001) micropillars with 45ı inclined
interfaces: (a) raw P–
 curves obtained from testing pillars with Cu and Ti interlayers, (b) a
posttest SE image of a pillar with a Ti interlayer, after the occurrence of the unstable dynamic
shear-off event

middle of the Cu interlayer. Correlating the P–
 curve, the concurrent SE imaging
during in situ compression testing, and additional posttest SE images obtained
from ex situ compression tested pillars, it is concluded that axial compression of
CrN/Cu/Si micropillars with 45ı inclined interfaces results in shear failure of the
interfacial region and that this shear failure occurs in two stages: first by a shear
deformation of the entire metal interlayer, then followed by an unstable dynamic
shear-off near the Cu/CrN interface.

Figure 19a shows a collection of P–
 curves obtained from in situ compres-
sion testing of CrN/Cu/Si and CrN/Ti/Si micropillars. The three P–
 curves for
CrN/Cu/Si were collected from testing of the three micropillars shown in Fig. 17a.
Qualitatively similar P–
 curves were observed from all three pillars: with an
initially rapid rise in P with increasing 
, followed by a stable and extended load
plateau, and finished with large and discontinuous punch displacement excursions
concomitant with the final dynamic shear-off. The two P–
 curves for CrN/Ti/Si
were collected from compression testing of two micropillars fabricated from one
CrN/Ti/Si(001) specimen. The CrN/Ti/Si pillars are again �4 �m in diameter
and �10 �m in length, resting on a larger Si base. The Ti interlayer thickness is
�340 nm and the interfaces are 45ı inclined with respect to the pillar axis. These
P–
 curves exhibit an initially rapid rise in P with increasing 
, but show very
limited load plateaus when a critical load Pc is reached, followed by large and
discontinuous punch displacement excursions concomitant with the final dynamic
shear-off.

Comparing P–
 curves shown in Fig. 19a, the differences in the response of
CrN/Ti/Si pillars subjected to axial compression as compared to that of CrN/Cu/Si
pillars are apparent. First, the critical load values are significantly different: Pc

values are �18 mN and �36 mN for CrN/Cu/Si and CrN/Ti/Si pillars, respectively.
Second, the extent of the load plateau is much more limited for the CrN/Ti/Si pillars
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as compared to the extended and stable load plateaus observed for the CrN/Cu/Si
pillars. The absence of an extended and stable load plateau during axial compres-
sion of CrN/Ti/Si pillars means that very soon after the axial load reaches Pc,
dynamic shear-off occurs. The SE image videos during pillar compression testing
of CrN/Ti/Si pillars thus contain no frame showing either significant deformation of
the Ti interlayer in shear or any intermediate stage of the final dynamic shear-off.
Figure 19b shows posttest morphological examination of one CrN/Ti/Si pillar
subjected to ex situ axial compression, after the final large punch displacement
excursions had occurred. In this case, the punch lurching forward knocked the
bottom pillar portion off its base. The top CrN portion of the pillar shifted as a
whole with respect to the Si bottom portion along the 45ı inclination as a result
of the shear loading on the interfacial region. Spot mode EDS analysis showed the
presence of Ti signals on both the top surface of the bottom pillar portion and the
bottom surface of the top pillar portion. Similar to Fig. 18f, examination of the
image shown in Fig. 19b shows that the final dynamic shear-off occurred near the
Ti/CrN interface, instead of in the middle of the Ti interlayer.

Data and observations shown in Figs. 18 and 19 indicate that axial compression
of CrN/interlayer/Si micropillars with 45ı inclined interfaces led to shear failures
of the interfacial regions in two stages: an initial shear deformation of the entire
metal interlayer, followed by a sudden dynamic shear-off close to the metal/CrN
interface. The main difference between the CrN/Cu/Si system and the CrN/Ti/Si
system subjected to shear loading on the interfacial region is the existence of an
extended and stable load plateau in the former system and a limited load plateau
in the latter system. For CrN/Cu/Si, the entire Cu interlayer is subjected to a shear
deformation to large strains before the final dynamic shear-off occurs close to the
Cu/CrN interface. For CrN/Ti/Si, the final dynamic shear-off close to the Ti/CrN
interface occurs soon after the Ti interlayers are subjected to a shear deformation.

Because shear failure of the interfacial regions initiates with a shear deformation
of the entire metal interlayer, the critical load Pc measured experimentally from axial
compression of CrN/interlayer/Si micropillars with 45ı inclined interfaces yields
a measure of the average shear stress � c necessary to initiate shear failure of the
interfacial region,

�c D Pc=
�

�D2=4
�

=2; (5)

where D is the pillar diameter. Figure 20 summarizes results of ex situ and in
situ axial compression testing on CrN/Cr/Si(001) and CrN/Ti/Si(001) micropillars
with 45ı inclined interfaces by plotting values of � c against the metal interlayer
thickness h. Separate data points at the same h value denote repeat measurements
on separate pillars. From data presented in Fig. 20, several points should be noted.
First, � c values measured from ex situ and in situ compression tests, conducted
with two separate instruments on the same specimens, are consistent, indicative of
the fidelity of the present set of measurements. Second, the value of � c increases
with decreasing h, significantly for Cu interlayers, somewhat for Ti interlayers
although the data scatter is large in this case. An increase in � c with decreasing h is
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Fig. 20 Average shear stress to initiate shear failure of the interfacial regions of CrN/interlayer/Si
specimens plotted versus the thickness of the metal interlayer

qualitatively consistent with strain gradient plasticity model predications, according
to which confinement of the metal interlayer in between two elastic-brittle solids
offers one reason for the observed increase in interlayer flow stress (Mu et al. 2014).
Third, � c depends significantly on the metal interlayer: the shear failure stress for
Ti interlayers exceeds that for Cu interlayers by about a factor of two, significantly
outside the data scatter band even with the large scatter in the Ti case.

Clues to the mechanism through which the final dynamic shear-off occurs in
the two CrN/interlayer/Si systems are offered from observations made during in
situ axial compression testing of CrN/Cu/Si(001) micropillars with interfaces 90ı

inclined with respect to the pillar axes. Figure 21a shows a raw P–
 curve obtained
from in situ axial compression of one CrN/Cu/Si(001) micropillar, with a Cu
interlayer thickness of �1180 nm and the interfaces inclined at 90ı with respect
to the pillar axis. Figure 21a shows an initial rapid increase in P with increasing

 until a critical load Pc is reached. Once Pc is reached, the P–
 curve exhibits
a plateau region in which P increases only slowly with increasing 
. Beyond this
plateau region, further increases in 
 bring again significant increase in P. Figure
21b–e shows single frames of the SE imaging video of the same pillar at various
stages during the axial compression experiment, corresponding to the points 1, 2, 3,
and 4 identified on the P–
 curve shown in Fig. 21a, with total punch displacements
at �225 nm, �425 nm, �525 nm, and �1200 nm, respectively. It is apparent from
Fig. 21b that little or no deformation of the Cu interlayer is observed at point 1 on
the rapid load rise portion of the P–
 curve. Once the critical load Pc is reached and
the punch displacement progresses to point 2 on the load plateau, Fig. 21c shows
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that deformation of the Cu interlayer occurs by bulging out at the perimeter from the
center of the interlayer, with the diameters of the Cu interlayer at the Cu side of the
Cu/ceramic interfaces appearing not to change. This mode of deformation continues
as the punch displacement progresses further on the load plateau to point 3, as shown
in Fig. 21d. The entire Cu interlayer undergoes an increased amount of bulging out
at the perimeter from the center of the interlayer, still leaving the diameters of the
Cu interlayer at the Cu side of the interfaces unchanged. As the punch displacement
progresses to beyond the load plateau at point 4 on the P–
 curve, the entire Cu
interlayer is extruded out from the perimeter with its diameter significantly larger
than the original pillar diameter, as shown in Fig. 21e.

The in situ compression testing of CrN/Cu/Si micropillars with 90ı inclined
interfaces offers one insight to how the metal interlayers confined between elastic-
rigid materials, CrN and Si in the present case, deform under load. As shown in
Fig. 22a, the morphology of the Cu interlayer during an early elasto-plastic stage of
deformation is illustrated with an actual SE image of a deformed Cu interlayer. In
this posttest examination, GaC FIB milling was used to remove a small section of
the pillar after compression loading to reveal better the morphology of the deformed
Cu interlayer. At this early deformation stage, plastic deformation of the interlayer
occurs by bulging out at the perimeter in the center, while the metal/ceramic
interfaces appear to be “locked,” with no relative displacement between the metal
and ceramic side of the interface. Figure 22b shows two analogous SE images of
a deformed Cu interlayer at a later deformation stage. The interlayer deformation
leads to the entire interlayer disk being extruded out in an axisymmetric manner.
Here the metal/ceramic interfaces appear to be “unlocked,” with significant relative
displacement between the metal and ceramic side of the interface, thus allowing
extrusion of the entire interlayer disk to occur. The sliding marks, visible on the
top surface of the extruded Cu interlayer disk, offer clear evidence that relative
displacement occurred between the Cu side and the CrN side of the Cu/CrN
interface. The FIB milled cut-away view in Fig. 22c shows that the thickness
of the Cu interlayer disk is the largest at the outer rim, further indicating that
extrusion of the Cu interlayer disk occurred after the interface became “unlocked.”
Unfortunately, plastic flow stresses of thin Ti layers are too high to allow similar
observations to be made in the cases of CrN/Ti/Si pillars: the Si bottom portion of
the pillars fail in compression before perceptible deformation of the Ti interlayer
occurs in the confined normal compression geometry. Nevertheless, we suggest that
a similar transition occurs for both CrN/Cu/Si and CrN/Ti/Si interfacial regions, i.e.,
the interfaces go from being “locked” to being “unlocked” as the metal interlayers
confined between CrN and Si are stressed to increasingly higher levels. We further
suggest that this interfacial “unlocking” is physically related to the final dynamic
shear-off observed in both systems, as illustrated in Figs. 18 and 19. To our
knowledge, both the observation of an interfacial instability under shear loading and
the suggestion that this shear instability is linked to a transition from an interfacial
“locking” to an interfacial “unlocking” are new and demonstrate the potential of in
situ instrumented microscale mechanical testing and its application to studying the
mechanical integrity of metal/ceramic interfaces.
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Fig. 22 Posttest images of deformed Cu interlayer: (a) in the early elasto-plastic stage, (b) in the
later elasto-plastic stage

Mechanistic Understanding on the Shear Instability
of Metal/Ceramic Interface Provided by Simulations

In this subsection, the structure and mechanical response of the Ti/TiN interfaces
are investigated using MD/DFT simulations to shed light on the relevant properties
of a general metal/ceramic interface. Part of the reasons for this choice is the
availability of the semi-empirical potentials available for metal/ceramic systems
(Zhang et al. 2017; Yang et al. 2017; Kim and Lee 2008a). At room temperature,
the equilibrium lattice structure of Ti is HCP while that for TiN is of NaCl type.
The preferred orientation relation (OR) for the Ti/TiN system is h0001iTi//h111iTiN
and

˝

1120
˛

T i
//h110iTiN on the interface plane: (0001)Ti//(111)TiN (Yang et al. 2017;

Sant et al. 2000). Another reason for the choice of the Ti/TiN system is the
similarity between TiN and CrN – material used in our experiments (section
“Synthesis of Ceramic–Coating/Adhesion–Interlayer/Substrate Systems and Struc-
tural/Mechanical Characterization of Coating/Substrate Interfacial Regions”). Both
nitrides have identical lattice type and very close lattice parameters (aTiN D 4.242 Å
vs. aCrN D 4.149 Å) (Toth 1971; Kim and Lee 2008b). The structures of the
Ti/TiN, Ti/CrN, and Cu/CrN interfaces are also expected to be similar, since the
hexagonal atomic structure on (0001) Ti planes is also similar to the (111) Cu planes
(Shao et al. 2013; Wang et al. 2014). Therefore, understandings gathered from the
numerical modeling efforts herein, namely, the structure and properties of Ti/TiN
interfaces, should have significant implications on other metal/ceramic interfacial
systems, e.g., Ti/CrN, Cu/CrN (Shao et al. 2015; Wang et al. 2008, 2014; Zhang
et al. 2013; Chen et al. 2017).

As an outline, in section “The Structure of the Misfit Dislocation Network and the
Coherent Regions of the Ti-TiN Interfaces,” following the methodology proposed
by Hirth and Lothe (1982), the structure of the Ti-TiN interface is analyzed through
the “structural relaxation approach.” As will be shown, the structural details of the
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semi-coherent interface are dependent on the intrinsic properties of the coherent Ti-
TiN interfacial structures. Hence, in section “The Location of the Misfit Dislocation
Network,” the energetic characteristics of the coherent structures evaluated by DFT
calculations are presented. Finally, in section “Intrinsic Energetic Characteristics
of Coherent Ti/TiN Interfacial Structures,” the mechanical response of the Ti-TiN
interfaces to external shear loading is discussed.

The Structure of the Misfit Dislocation Network and the Coherent
Regions of the Ti-TiN Interfaces
Two specific ORs are permitted by the general OR given above, namely:

OR 1: x//
�

1100
	

T i
//
�

112
	

T iN
, y//[0001]Ti//[111]TiN , and z//

�

1120
	

T i
//
�

110
	

T iN
,

OR 2: x//
�

1100
	

T i
//
�

112
	

T iN
, y//[0001]Ti//[111]TiN , and z//

�

1120
	

T i
//
�

110
	

T iN
.

On the interface, the (111)TiN plane and the (0001)Ti plane have the identical
hexagonal structure, with lattice match of 1.84%. Due to this mismatch, a number
of distinct coherent structures may exist on the unrelaxed Ti/TiN interfaces of the
above two ORs, as shown by the plan views of provided in Fig. 23a, b. Such
coherent structures include near-FCC, near-HCP, near-Overlap structures and the
region separating the former three, based on the relative positions of Ti atoms
straddling on both size of the interface, which are shown in the lower portions of
Fig. 23. Even though the Ti atoms may have taken the identical relative positions in

Fig. 23 Structure of the “unrelaxed” Ti/TiN interface prior to formation of the MDN at the
chemical interface. The plan views of the interface are provided on the top portions of the figure,
and the local atomic stacking is provided on the lower portion. The N atoms are omitted in the plan
view for clarity and are shown as smaller spheres in the stacking structures. The atoms are colored
according to their vertical positions. The primed notations, i.e., A’B’A’, etc., is used for Ti layer
to distinguish from stacking in TiN layer. The thin solid lines denote the position of the chemical
interface
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the respective FCC and HCP regions in the Fig. 23a, b, the structures are clearly not
identical, due to the presence of the N atoms. DFT calculations show that (details
in the next sections) the FCC and HCP structures in the two ORs have different
energy levels. For instance, the FCC structure in OR 1 has the lowest excess energy;
therefore, the relative positions of the Ti and N atoms specified in this structure
are referred to as the FCCS structure. On the other hand, the FCC in OR 2, in
which the Ti atoms on the Ti side overlap with the N atoms, corresponds to a higher
excess energy. According to DFT calculations, this structure is unstable and is thus
named FCCU. Same naming convention and energy characteristics apply for the
HCP structures. Unlike the FCC and HCP structures, the Overlap structures are
metastable and are identical in both ORs.

Following the approach proposed by Hirth and Lothe (1982), the regions with
stable and metastable atomic structure can be regarded as being enclosed by
Shockley partial dislocation loops (black solid circles shown in Fig. 23). The loops
have Burgers vectors: b1, b2, b3, �b1, �b2, and �b3 (b1 D a

3

�

0110
	

, b2 D a
3

�

1010
	

,
and b3 D a

3

�

1100
	

). The arrows on the loops mark the line senses of the loops.
Upon relaxation, driven by the minimization of the interface excess energy, the
regions of FCCS, HCPS, and OverlapS expand. As a result, larger patches of coherent
regions form associated with the in-plane biaxial straining of the Ti and TiN lattices.
When the adjacent loops reach close proximity with each other, they react and
form the misfit dislocation network (MDN) (schematically shown in Fig. 24, where
partial dislocation loops, misfit dislocation lines and nodes are represented in light
blue, brown, and green). The nodes (intersections of dislocations) of the MDN
originate from the contraction of regions with unstable structures. Dislocation lines
in the MDN are also Shockley partials with Burgers vectors b1, b2, and b3. The
thermodynamics of the interface relaxation is consistent with the perspective of
the classical Peierls-Nabarro dislocation model (Peierls 1940; Nabarro 1947) and is
characterized by two competing factors, namely: (1) the reduction of the chemical
potential energy (excess interface energy of the coherent structures) and (2) the
increase in the core strain energy in the MDN. The former factor is governed by
the generalized stacking fault energy (GSFE) of the interface, while the latter is
governed by the normal elastic constant of the adjoining crystals. In effect, the core
width of the MDN inversely relates to the magnitude of interfaces’ GSFE profile
(Shao et al. 2014), for instance, higher amplitude in GSFE corresponds to narrower
cores.

Two distinct relaxed interface structures exist for the two ORs (Figs. 25a, b).
Interface with OR 1 comprises FCCS (green atoms) and OverlapS (white atoms)
regions, while the interface with OR2 comprises HCPS (red atoms) and OverlapS

(white atoms) regions. It is interesting to note that the dislocation lines of the MDN
(on the edge of the regions in Fig. 25a, b) on the chemical interface are jagged.
This is consistent with the observation made by Yang et al. in their recent work
(Yang et al. 2017). Accordingly, the blue solid lines in Fig. 25a, b simply mark
the neutral positions of the dislocations. Therefore, the net character on dislocation
lines is edge, even though the local character of the partial misfit dislocations may be
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Fig. 24 Schematic of the expansion of and reaction between the partial dislocation loops which
encloses the coherent stable structures

mixed. In addition, from Fig. 25a, b, one can see that both FCCS (green) and HCPS

(red) regions occupy greater area than the OverlapS (white) regions, also the area
of the HCPS regions is greater than the area of the FCCS regions. This implies that
the excess specific energies of the coherent structures have the following relation,
EOverlapS

> EFCCS > EHCPS . Our DFT calculations confirm this prediction, as will
be shown in the next sections.

The Location of the Misfit Dislocation Network
The energetically preferred location of the MDN, in general, should not be at the
chemical interface. The reasoning is given as follows:

1. The elastic line energy (per unit length) of dislocations is proportional to the
shear modulus of the material, i.e., E/L / Gb2. A dislocation of the same
burgers vector in ceramics would have significantly higher energy than one in
metal. Therefore, from the thermodynamics standpoint, the MDN would have
significantly higher energy when it is located at the Ti/TiN chemical interface
compared to when it is in Ti.

2. The stress field of misfit dislocations decays exponentially as a function of
distance from the plane of MDN (Hirth and Lothe 1982; Shao et al. 2018).
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Fig. 25 Typical structures of the MDNs corresponding to different locations, i.e., different L
numbers as indicated on the right. (a) and (b) show Type I and Type II structures for L D 0, (c) and
(d) show Type I and Type II structures for L > 0. Atoms are colored by common neighbor analysis
performed on Ti atoms. Atoms within a local HCP structure are colored red, and those within
a local FCC structure are colored green. Atoms that are not in HCP, FCC, BCC, or icosahedral
structures are colored white. Misfit dislocation lines and nodes are denoted by blue lines and blue
shades

Consequent, the strain energy of the MDN is expected to decrease sharply as
it moves away from the chemical interface into Ti.

3. As an MDN is moving away from the chemical interface into Ti, a layer of Ti
with in-plane lattice constant coherent to TiN is created. The thickness of this
layer is identical to the distance between the MDN to the chemical interface. The
total strain energy of this layer therefore increases linearly with its thickness.

4. The true interface configuration depends on the total free energy of the entire
interface region (three dimensional entity), which includes the chemical potential
energy at the chemical interface, the elastic energy of the misfit dislocation
network, and the elastic energy of the coherent Ti atomic layers.

Therefore, it is expected that the MDN prefers to reside inside Ti but very close
to the chemical interface. This is confirmed by Yadav et al. (2015) in their recent
work, where they found that the interface energy reaches minimum when the MDN
is in Al and 2 atomic monolayers away from the chemical interface.
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In this section, we present our prior findings, obtained from molecular dynamics
simulations, on the variation in the structure as well as the energy of the interface as
a function of the position of the MDN in Ti. An L parameter is used here to indicate
the position of the MDN. As shown on the right hand side of Fig. 25, the MDN
resides either on the chemical interface (blue dashed line), which is in between the
atomic monolayers of Ti and N (L D 0), or on one of the (0001) slip planes in
Ti (L > 0, black solid lines). The (0001) slip planes exist in between two adjacent
(0001) atomic monolayers of Ti. When the MDN is inside Ti and has n Ti atomic
monolayers between the chemical interface, L D n. The parameter M indicates the
position of (0001) Ti atomic monolayers (red solid lines) near the interface, with
M D 1 denoting the Ti atomic layer most adjacent to the chemical interface. The
structure of the Ti/TiN interface for LD 0 has been discussed in detail above. Similar
to the case of L D 0, the coherent regions are separated by the MDN for L > 0.
For OR 1, the coherent regions have the structures that comprise single layer of
atoms surrounded by local FCC structure (green atoms) and a single layer of atoms
surrounded by HCP structure (red atoms). The structures are commonly referred
to as the type 1 intrinsic stacking fault (I1) in HCP (Benoit et al. 2013) and are
energetically equivalent. Thus, the area fraction of the coherent regions is the same
(see the green and red regions in Fig. 25c). For OR 2, the coherent regions include
a higher energy structure (type 2 intrinsic stacking fault of HCP, I2 (Benoit et al.
2013)), which comprises two layers of atoms surrounded by FCC structures (green
atoms) and a low energy HCP structure. Accordingly, the FCC region occupies a
significantly less area fraction compared to the HCP region. In addition, a noticeable
spiral pattern on the dislocation line around the nodes is clearly visible in Fig. 25c, d,
and the same feature was also observed in Cu-Ni interfaces (Shao and Wang 2016).

The energy of the Ti/TiN interfaces, for both ORs, as a function of the L
parameter is given in Fig. 26a. The interface energy (� ) is calculated using the
following formula:

� D
1

A

�

Einterf: .nT ic; mT im; lN / � nEc
T i � mEm

T i � lEN

	

;

where A is the area of the interface in the computational cell, Einterf. is the total
energy of the structure containing the interface, n is the number of Ti atoms in
TiN layer, m is the number of Ti atoms in the Ti layer, and l is the number of N
atoms. Ec

T i and Em
T i are the cohesive energies of the Ti atoms in TiN (ceramic) and

Ti (metal). EN is the cohesive energy of N. It is apparent from Fig. 26a that the
interface energy significantly decreases when the MDN is moved away from the
Ti/TiN chemical interface by one monolayer of Ti and gradually increases as the
MDN is moved further into Ti. As was discussed above, the dramatic reduction in
interface energy is associated with the reduction in the MDN’s elastic energy as
well as the interface stacking fault energy. The gradual increase in interface energy
when L � 1 is associated with the increase in the number of coherent Ti atomic
monolayers situated between the MDN and the Ti/TiN chemical interface.
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Fig. 26 The variation in
interface free energy (a) and
the interface shear strength
(b) of the Ti/TiN interface as
a function of location of
MDN (L)

Another observation from Fig. 26a is that the interface energy for OR 2 is
consistently smaller than that for OR 1. This is primarily due to the greater area
fraction of low energy structures in the OR 2 interfaces. Next, we discuss this in
detail, separately, using the cases of L D 0 and L > 0. For L D 0, the OR 1 interface
comprises the higher-energy OverlapS structure and the intermediate-energy FCCS

structure, while the OR 2 interface comprises higher-energy OverlapS structure and
the low-energy HCPS structure. This gives rise to the significantly higher energy
of the OR 1 (�2.62 J/m2) interface compared to OR 2 (�2.88 J/m2). On the other
hand, when L > 0, the coherent structures in OR 1 comprise only I1 stacking fault,
while the coherent structures in OR 2 comprise I2 stacking fault as well as perfect
HCP stacking. Energetically, according to the current work and the other studies
(Benoit et al. 2013), the stacking fault energy of I1 is around 1/2 of that of the I2.
In fact, it has been reported, agreeing with the current work, �I1 D 148:6 mJ=m2

and �I2 D 259:1 mJ=m2 (Benoit et al. 2013). Therefore, the total stacking fault
energies for the interfaces are EI1 D �I1A and EI2 D �I2A, where A is the areal
of the unit simulation cell,  is the area fraction of the I2 stacking fault, and  < 0.5.
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It is apparent that EI1 > EI2 . Therefore, the interface energy of OR 1 interfaces is
always greater than that of the OR 2 interfaces.

It is also interesting to note the correlation between variation of interface free
energy (Fig. 26a) and the variation in the theoretical shear strength of the interface
(Fig. 26b), as a function of the location of the MDN (L number). As mentioned
before, the intrinsic energetic properties of the coherent interface structure (such
as the GSFE profile and the work of adhesion) affect the exact characteristics of
the MDN (such as core widths of the dislocations and nodes) and, ultimately, the
overall mechanical response of the Ti/TiN interface. Therefore, in the following
sections, we first discuss the intrinsic properties of the coherent Ti/TiN interfacial
structures (section “Intrinsic Energetic Characteristics of Coherent Ti/TiN Interfa-
cial Structures”), then the detailed shear deformation mechanisms of the interfaces
are presented (section “The Shear Response of the Ti–TiN Interfaces”).

Intrinsic Energetic Characteristics of Coherent Ti/TiN Interfacial
Structures
The structural characteristics and, in turn, the mechanical properties of the Ti/TiN
interfaces are dictated by the intrinsic properties of the coherent interfacial struc-
tures. DFT, although computationally limited to length scales of a few Å in each
dimension, has great advantages in probing properties of metal/ceramic interfaces.
It explicitly models the valence electrons of atoms, which provide a highly accurate
assessment of the fundamental properties of coherent interface structures. As will
be discussed in the following sections, it is these properties that govern the structure
and mechanical response of “real” interfaces between Ti and TiN layers, i.e., the
semi-coherent interfaces. The energy characteristics of the fully coherent Ti/TiN
chemical interface as well as the nearby Ti (0001) slip planes obtained using DFT
calculations (Zhang et al. 2017) are analyzed and presented below.

Shown in Fig. 27 is the plot of the work of adhesion (WA) on the Ti/TiN chemical
interface (L D 0), as well as the various (0001) planes in Ti close to the chemical
interface (L > 0). Clearly due to the strong ionic bonds formed between the Ti and
N atoms, WA on the chemical interface is very large, � 6.11 J/m2. As the plane of
analysis moves away from the chemical interface, WA decreases dramatically and
appears to saturate at 3.74 J/m2 when L � 2. Theoretically, the work of adhesion
is related to the free surface energy by factor of two, i.e., WA D 2� . The work of
adhesion on the (0001) plane of bulk Ti, shown as the red dashed line in Fig. 27,
is calculated to be 4.02 J/m2, which agrees well with the experimental measured
(0001) surface energy of 2.1 J/m2 and 1.92 J/m2 (Benoit et al. 2013). This indicates
that the cohesive strength of the (0001) Ti reaches a minimum due to the presence
of the Ti/TiN chemical interface, below that for bulk Ti.

A similar trend is observed in the generalized stacking fault energy (GSFE)
profiles of the Ti/TiN chemical interface (L D 0), as well as the Ti (0001) slip
planes near the chemical interface (L > 0). Shown in Fig. 28a is the GSFE surfaces
for L D 0. The GSFE are calculated using the minimum energy structures as the
reference. The minimum energy structure when at the chemical interface (L D 0)
correspond to point 1 in Fig. 28a. The minimum energy interface structure is such
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Fig. 27 The variation of the work of adhesion (WA) on the Ti/TiN chemical interface and various
(0001) slip planes of Ti as a function of L number

that the Ti atoms form the stable FCC structure across the interface. The Ti and
N atoms immediately adjacent to the interface form the stable NaCl structure.
A metastable coherent structure, point 2 on Fig. 28a, also exists on the chemical
interface. In this structure, the Ti atoms adjacent to the interface overlap. This
metastable structure is named OverlapS. The energy for OverlapS structure is
0.89 J/m2. The maximum of GSFE at the chemical interface (2.71 J/m2) occurs
when, immediately to the interface plane, the Ti atoms are right on top of the N
atoms. The maximum GSFE corresponds to point 3 in Fig. 28a and structure 3
in Fig. 28c, where the Ti atoms across the interface form an HCP structure. This
structure is unstable and is therefore named HCPU. Note that maximum stacking
fault energy of the chemical interface is so high that it exceeds the (0001) free
surface energy of the bulk Ti (2.1 J/m2) (Benoit et al. 2013).

When L � 1, the amplitude of the GSFE drastically decreases. For clarity of
display, only one typical case (L D 1) is shown in Fig. 28b. Note that the energy
minimum (Point ’ in Fig. 28b) corresponds to the stable HCP structure of Ti, which
is the reference of the GSFE surface. The metastable structure (I2 stacking fault of
HCP crystals) has GSFE of 0.32 J/m2 (point “ in Fig. 28b). The maximum GSFE for
L D 1 is 0.63 J/m2 (Point ” in Fig. 28b). The profile of the GSFE along the

�

1100
	

direction is shown in Fig. 28d, along with the profile along the same direction on
the GSFE surfaces for L D 2, 3 and in bulk Ti. The GSFE profile changes slightly
from L D 1 to L D 3. The smallest variation in GSFE occurs when L D 3, which is
noticeably smaller than in bulk Ti.

The results presented above indicate the existence of a weak interaction plane
in the Ti metal near the Ti/TiN chemical interface. As will be discussed in the
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Fig. 28 (a) & (b) The surface plot of the generalized stacking fault energy of the Ti/TiN chemical
interface (L D 0) as well as the (0001) slip plane of Ti when L D 1. (c) The coherent interface
structure corresponding to the Points 1, 2, and 3 in (a). (d) The profile of GSFE along

�

1100
	

for
L D 1, 2, 3 and bulk Ti

upcoming section, the weakened interaction on that plane alters the structure
therefore the mechanical properties of the MDN which negatively impacts the shear
strength of the Ti/TiN interface.

The Shear Response of the Ti–TiN Interfaces
As was shown in section “The Location of the Misfit Dislocation Network,” the
presence of the chemical interface alters the energy landscape (including the work
of adhesion, as well as the generalized stacking fault energy, or the ” surface) of
the Ti (0001) slip planes near the Ti/TiN chemical interface. There exists a weak
interaction plane inside Ti but near the Ti/TiN chemical interface. Just a small
distance away from the chemical interface, the work of adhesion reaches a minimum
value of around 3.72�3.76 J/m2 when L � 2, which is significantly less than that in
the bulk Ti, which is around 4.02 J/m2 (Fig. 27). In addition, the amplitude of the
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generalized stacking fault energy profile on Ti (0001) plane also reaches a minimum
when L D 3, which is noticeably smaller than that of bulk Ti (Fig. 28). One expects
that the presence of such a “weak” plane would negatively impact the mechanical
response of the interface region.

As was discussed in section “The Structure of the Misfit Dislocation Network
and the Coherent Regions of the Ti-TiN Interfaces,” the width/diameter of the dis-
location/nodal cores is dependent on the amplitude of the GSFE profile. According
to GSFE surfaces and profiles obtained from the DFT calculations, the core-size
of the dislocations/nodes of the MDN is expected to be the largest when L D 3.
As was shown by earlier studies, the excessively constricted nodal cores give rise
to localization of free volume, which lead to transformation of nodal structures. In
fact, the small change in GSFE induced by biaxial tension/compression parallel to
the interface is sufficient to produce the concentration of free volume which then
lead to transformation of dislocation structure at nodes.

Our MD simulation qualitatively confirmed the predictions above. The disloca-
tion and atomic structures at a node for the cases of L D 1 and L D 5 are shown
in Fig. 29. When L D 1 (Fig. 29a), due to the relatively weak interface interaction
associated with the GSFE profile with a reduced magnitude, the node is simply an
intersection point of dislocations. The size of the node is comparable to the core-
width of dislocations. The free volume at the node is smeared, as is evident in the
(0001) Ti atomic layer of M D 2 shown in Fig. 29c. The atoms are colored according
to centro-symmetry analysis performed only on Ti atoms. Blue color indicates a
centro-symmetric FCC structure (a stacking fault in Ti); yellow color indicates a
nonsymmetric HCP structure; red color indicates a locally disordered structure.
When L > 1, including in bulk Ti, the increased GSFE profile (as compared to the
case of L D 1) constricted the size of the node which gives rise to the concentration
of the free volume. Fig. 29b, d shows a typical case of L D 5. The highly localized
free volume is evident in the (0001) atomic plane with M D 6 (Fig. 29d). Once again,
there is a qualitative agreement between the results from MD and DFT. According
to the MD, the (0001) plane that has the smallest amplitude of GSFE is L D 1,
while DFT predicted L D 3. As was discussed by Shao and others (Shao et al. 2015;
Wang and Misra 2014; Henager et al. 2004), the concentration of free volume is
the result of the presence of three dislocation jogs (marked by three vertical line
segments in green color in Fig. 29b) at the node. Such jogs have Burgers vectors
b4 D a

3

�

1210
	

, b5 D a
3

�

1120
	

, and b6 D a
3

�

2110
	

and are glissile on the prismatic
planes. However, the aggregation of the three jogs serves as strong pinning point
to the motion of MDN due to the following two reasons. First, the global loading
condition (simple shear parallel to interface) exerts zero resolved shear stress on the
prismatic slip systems (

˚

1010

 ˝

1210
˛

). To show this, consider the stress applied to
the bilayer system:

� D

2

4

0 � 0

� 0 0

0 0 0

3

5 ;
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Fig. 29 Dislocation and atomic structures at a node on a Ti (0001) atomic monolayer for L D 1
and L D 5. (a) and (b) show the dislocation structures with line senses and Burgers vectors
indicated. (c) and (d) show the corresponding atomic structures. Note that the atomic monolayers
are on the tension side of the MDNs. The atoms are colored according to centro-symmetry analysis
performed only on Ti atoms. Blue color indicates a centro-symmetric FCC structure (a stacking
fault in Ti); yellow color indicates a non-symmetric HCP structure; red color indicates a locally
disordered structure

a random prismatic plane with plane normal:

bn D Œnx 0 nz� ;

and an unit vector parallel to a
3

˝

1210
˛

type Burgers vector in the prismatic plane:

bv D
�

nz 0 �nx

	

:

Obviously, since bv lies within the prismatic plane, bn � bv D 0. The resolved
shear stress of this slip system is bn � � � bv � 0. Therefore, the jogs do not move
in response to the loading. Second, the jogs are connected by Shockley partial
dislocation lines (blue dislocation lines forming a triangle in Fig. 29b) residing in
the (0001) slip plane (L D 6) immediately above the MDN, which also encloses a
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stacking fault. As was shown in section “Mechanistic Understanding on the Shear
Instability of Metal/Ceramic Interface Provided by Simulations,” the stable stacking
fault energy of I2 structure in Ti is very high, ranging between 0.2 and 0.35 J/m2.
Driven by the reduction in energy associated with the extra dislocation lines and
the stacking fault, the jogs shown in Fig. 29d are tightly bound. Evidently, any
motion of the tightly bound jogs leads to increase in the stacking fault energy
and dislocation line energy in the blue triangle shown in Fig. 29d. Therefore, the
jogs, as an aggregation, are sessile, and its motion is nonconservative and requires
climb.

In bulk Ti, the amplitude of the GSFE profile is large enough to induce
the formation of a jogged nodal dislocation structure, as predicted by our MD
simulations. Qualitatively agreeing with the DFT calculation, the MD simulation
predicts that, at a (0001) glide plane close to the chemical interface (e.g., L D 1),
the GSFE profile is noticeably diminished which transforms the nodes from the
jogged structure (Fig. 29b, d) to a smeared structure (Fig. 29a, c). The smeared
node structure does not offer pinning effect to the gliding motion of the MDN.
The pinning effect of the jogs shown in Fig. 29b, d is evident in Fig. 26b. As is
shown, due to the strong interaction at the chemical interface (L D 0), the strength
of the interface is extremely high. In fact, in this case, interactions at the chemical
interface is so strong, that no shear on the L D 0 plane is observed. Instead, slip on
L D 1 plane is observed in the form of nucleation and propagation of dislocations.
When the MDN is located at L > 1, the pinning effect of the nodes becomes
increasingly stronger, which increases the shear strength of the interface. When
L D 6, the interface shear strength of both ORs approached 2 GPa, approaching
that in bulk Ti.

The shear response of the Ti/TiN interface, in terms of the motion/transformation
of the MDN, is shown in Fig. 30. As shown, the MDN, which contains edge
dislocation lines, moves towards the positive x direction driven by the Peach-
Koehler force induced by the applied shear stress. For L D 1 (Fig. 30a–c, g–i),
the nodes of the MDN offer minimal pinning, and the entire MDN translates
approximately in a rigid manner. In response to the loading, the curvature of the
dislocation lines seems to increase associated with the more pronounced spiral
pattern at nodes. Upon unloading, the spiral pattern does not vanish. This suggests
that the more pronounced spiral pattern is energetically more stable, the mechanical
loading simply provided additional perturbation to help the system achieve the
global energy minimum. When L > 1, the formation of the jogs significantly
increased the pinning effect of the nodes for both ORs. Shown in Fig. 30d–f, j–l
is the shear response of the MDN when L D 5. The strong pinning effect of the
nodes is reflected by the bowing of partial dislocation lines. Continued loading
with increased stress gives rise to “stress assisted climb” of the nodes (Hirth and
Lothe 1982), which leaves vacancies on their trace (Fig. 30f, l). This is a further
proof that it is indeed the presence of the jogs that is responsible for the pinning
effect of the nodes. The pinning effect of the nodes is reflected by the increased
shear strength of the interfaces of both ORs as shown in Fig. 26b, i.e., when the
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Fig. 30 The sequential snapshots of the MDN at three different effective shear strain levels
(0, 0.02 and 0.05) for the two ORs and L D 1, 5

location of the MDN changes from L D 1 to L D 6, the strength increase from 500 to
1000 MPa range to around 2000 MPa. Comparing Fig. 26a, b, it is also worth noting
that location of the MDN (L D 1) that corresponds to the minimum interface shear
strength also corresponds to the minimum interface energy. Our results suggest that
the minimum energy Ti/TiN interface has significantly reduced shear strength due
to the presence of the MDN. Such metal/ceramic interfaces may exhibit weaker
mechanical response (e.g., maximum shear stress) compared to the inside of the
metal layer.
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Summary

Mechanical integrity of metal/ceramic interfaces is critical for wide ranging appli-
cations. The application of ceramic hard coatings on mechanical components,
including gears and bearings, can increase their service life by several folds (Jiang
et al. 2003). Despite the industrial significance of engineering surfaces of mechan-
ical components and manufacturing tools (Holmberg and Matthews 2009; Mercer
et al. 2003; Kotzalas and Doll 2010), engineering of MCIRs still proceeds largely in
a trial-and-error manner at the present time. This results in slow development, high
cost, inconsistent outcomes, and sometimes failure to deploy. The challenge lies in
the incomplete physical understanding and an under-developed defect theory for the
mechanical response of MCIRs. The necessary understanding is hampered by (1) a
lack of quantitative experimental measurements to assess the mechanical response
of the MCIRs; (2) a lack of synergetic, physics-based modeling and simulation
efforts to investigate the deformation physics of the MCIRs; (3) a lack of physics-
based, experimentally validated, efficient, micro- to mesoscale predictive tools to
enable the accelerated discovery-design-implementation cycle for metal/ceramic
systems.

To tackle the challenge, research scheme outlined in this chapter centers on
understanding the interface failure mechanisms and improving the strength of
MCIRs through architectural and chemical refinements following a multiscale
ICME approach. The mechanical response and deformation physics of MCIRs with
various types of modifications can be investigated by combining first-principles
DFT and MD calculations, suggesting experimental designs for strong MCIRs.
State-of-the-art vapor phase synthesis in combination with quantitative microscale
shear, compression, and tension testing and multiscale materials characterization
can be employed to validate model outputs and test MCIR designs. Micro- and
mesoscale materials models can then be developed to foster true physics-based
MCIR design and accelerate the implementation of next generation applications,
e.g., ceramics hard coatings in various surface engineering applications.

In this chapter, we provided an overview on the research on mechanical instabil-
ity of metal/ceramic interfaces. Challenges and opportunities in the improvements of
mechanical integrity of the interfaces have been identified. Theoretical background
of this research thrust has been laid out. We concluded by illustrating some prelim-
inary results by the authors on shear instability of various metal/ceramic interfacial
regions. In order to achieve the goal of mechanical stability improvement and
implementation of next generation MCIRs, true materials-based design, discovery,
and understanding of the microscopic deformation physics of MCIRs is crucial. The
research scheme described in this chapter outlines an approach to such a problem:
(1) developing a multiscale computationally guided, experimentally validated ICME
framework that is both time- and cost- efficient; (2) providing fundamental, physics-
based understanding that will substantially advance the presently missing defect
theories for MCIRs; (3) delivering accurate, experimentally validated, multiscale
predictive tools for accelerated MCIR design and implementation.
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Abstract

Indentation is widely used to extract material elastoplastic properties from the
measured load-displacement curves. One of the most well-established inden-
tation technique utilizes dual (or plural) sharp indenters (which have different
apex angles) to deduce key parameters such as the elastic modulus, yield
stress, and work-hardening exponent for materials that obey the power-law
constitutive relationship. Here we show the existence of “mystical materials,”
which have distinct elastoplastic properties, yet they yield almost identical
indentation behaviors, even when the indenter angle is varied in a large range.
These mystical materials are, therefore, indistinguishable by many existing
indentation analyses unless extreme (and often impractical) indenter angles are
used. Explicit procedures of deriving these mystical materials are established,
and the general characteristics of the mystical materials are discussed. In many
cases, for a given indenter angle range, a material would have infinite numbers
of mystical siblings, and the existence maps of the mystical materials are also
obtained. Furthermore, we propose two alternative techniques to effectively
distinguish these mystical materials. In addition, a critical strain is identified as
the upper bound of the detectable range of indentation, and moderate tailoring
of the constitutive behavior beyond this range cannot be effectively detected by
the reverse analysis of the load-displacement curve. The topics in this chapter
address the important question of the uniqueness of indentation test, as well as
providing useful guidelines to properly use the indentation technique to measure
material elastoplastic properties.

Keywords
Indentation · Elastoplastic properties · Unique solution · Numerical study ·
Indistinguishable load-displacement curve · Reverse analysis · Detectable
strain range · Critical strain · Loading curvature · Indenter angle

Introduction

Instrumented indentation is widely used to probe the constitutive relationships of
engineering materials. Without losing generality, the uniaxial true stress-strain curve
of a stress-free elastoplastic solid can be expressed in a power-law form, which is a
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good approximation for most metals and alloys (Cheng and Cheng 2004).

� D E" for " �
�y

E
and � D �y

�
E

�y

�n

"n D R"n; (1)

where E is the Young’s modulus, �y is the yield stress, and n is the work-hardening
exponent. For most metals and alloys, n is between 0.0 and 0.5, E is between 10
and 600 GPa, �y is between 10 and 2000 MPa, and E/�y is between 100 and 5000
(Ashby 1999) – this is a technical range of the engineering materials suitable for the
conventional indentation analysis where finite strains are involved.

Four independent parameters (E, �, �y, n) are needed to completely characterize
the elastoplastic properties of a power-law stress-free material. Probing these
material parameters by indentation has become a focal point of interest in the
indentation literature, and various techniques were proposed; see the review by
Cheng and Cheng (2004). However, even for some of the existing techniques
that are considered as “well-established,” the fundamental question of whether the
elastoplastic properties of a specimen can be uniquely determined is still open.

For any indentation technique, the existence of a unique solution requires that
the indentation response must be unique for a given material, i.e., one-to-one
correspondence between the shape factors of the measured indentation load-
displacement curves and material elastoplastic properties. For example, when the
apex angle of a sharp indenter is fixed, several research groups have shown that a set
of special materials with distinct elastoplastic properties may yield almost the same
indentation load-displacement curves (Cheng and Cheng 1999; Capehart and Cheng
2003; Tho et al. 2004; Alkorta et al. 2005). Therefore, the mechanical properties of
these specimens cannot be uniquely determined by using one sharp indenter.

In this chapter based on Chen et al. (2007) and Liu et al. (2009), we carry out
a systematic numerical study to correlate the indentation responses with a wide
range of material properties and a variety of indenter geometries and present an
explicit formulation to determine the special sets of materials with distinct elasto-
plastic properties yet exhibit indistinguishable indentation behaviors even when
different indenters are employed. We call such sets of special materials as mystical
materials – i.e., they are beyond the previous (and conventional) understanding
of this topic. For many power-law materials, they have infinite mystical siblings
that have indistinguishable loading and unloading behaviors during the indentation
test, for a wide range of indenter geometries. Due to the lack of unique solutions,
theoretically, these mystical materials are unable to be distinguished by many
previously established techniques, including the dual (or plural) sharp indentation
method and the conventional spherical indentation analysis with small penetration.
The existence map of and the common characteristics of the mystical materials are
also established. We then illustrate that the properties of these mystical materials
may still be distinguishable by alternative indentation techniques, for example, a
film indentation analysis (Zhao et al. 2006a) and an improved spherical indentation
technique (Zhao et al. 2006a), which are suitable for specimens with finite thickness
and bulk materials, respectively.



214 L. Liu et al.

Challenging the Uniqueness of Indentation Load-Displacement
Curve vs. Material Property

Most indentation techniques, the sharp indentation analysis, the spherical indenta-
tion analysis, the film indentation analysis, etc., in essence, require numerical analy-
ses to correlate various shape factors of the P-ı curve with the specimen elastoplastic
properties. In doing so, a critical theoretical question emerges: is there a one-to-one
correspondence between indentation load-displacement curves (for loading and/or
unloading) and material properties (E, �, �y, n)? The uniqueness of the solution of
the reverse analysis is the key verification for all indentation analyses – although
some of those methods are now widely used in practice and cited in literature,
unfortunately, the uniqueness of their solutions has been rarely challenged.

The fundamental question is, does a set of mystical materials which will yield
indistinguishable indentation load-displacement curves for not only one particular
indenter angle, but also another indenter angle exist? If this is true, then the dual
(or plural) indenter method, regardless of the detail of the theory, cannot be used
to distinguish these mystical materials. Such a fundamental question is not only the
basis for the dual (or plural) sharp indenter method but also the foundation of the
spherical indentation and film indentation techniques, as well as most indentation
analyses which rely on the load-displacement curves.

In what follows, we will first present a simple and explicit technique to derive
special sets of materials (with different elastoplastic properties) that lead to the same
loading curves during sharp indentation when different indenter angles are used.
Next, we show another technique to derive special sets of materials that yield almost
same loading and unloading curves for a given indenter angle. We then extend
our analysis to predict the mystical materials that have indistinguishable loading
and unloading curves when different sharp indenters are used. Consequently, many
of the previously established indentation analyses would fail to distinguish these
materials. The existence range, trend, and special features of the mystical materials
are discussed. We also show that these mystical materials may still be distinguished
by using the improved spherical indentation and film indentation techniques.

ComputationMethod

In this chapter, the relationships between indentation responses, material properties,
and indenter geometries are established from extensive finite element analyses. FEM
calculations are performed using the commercial code. The rigid contact surface
option is used to simulate the rigid indenter, and the option for finite deformation
and strain is employed. A typical mesh for the axisymmetric indentation model
comprises about 10,000 4-node elements with reduced integration. The Coulomb’s
friction law is used between contact surfaces, and the friction coefficient is taken
to be 0.15 (Bowden and Tabor 1950), which is a minor factor for indentation
(Mesarovic and Fleck 1999; Cheng and Cheng 2004) as long as this value is rel-
atively small. The strain gradient effect is ignored by assuming that the indentation



6 Uniqueness of Elastoplastic Properties Measured by Instrumented Indentation 215

Fig. 1 The relationship
between C/�R and E=�R as n
is varied, for ˛ D 70.3. The
numerical results (symbols)
are shown with both elastic
and rigid plastic limits, and
the empirical fitting function
incorporating these limits is
given in Eq. 6 (which can be
extended to other angles)
(Chen et al. 2007)

depth is sufficiently deep so that the continuum mechanics still applies to the bulk
specimen. In addition, the strain rate effect is also ignored. In order to obtain both
complete and robust numerical results, the material parameters are varied over a
large range to cover essentially all engineering materials with E=�R D 3 � 3900

and n D 0–0.5, where E is the plane-strain modulus and �R is the representative
stress, see (Ogasawara et al. 2005, 2007a) for details. And, for the same reason, a
large indenter angle range is also used, from 60ı to 80ı, which covers most of the
angle range used in literature. To be consistent with most literature, Poisson’s ratio
is fixed at 0.3.

Determine Special Materials with Same Loading Curves for Dual
Sharp Indenters

A Simple Relationship Between the Loading Curvature andMaterial
Properties

When a sharp indenter is penetrating a bulk specimen, the loading P-ı relationship is
always quadratic, i.e., PDCı2. Therefore, two materials must have the same loading
curvature C in order to have the same loading P-ı curve. A simple relationship, not
a high-order fitting polynomial function, between C and E=�R must be established
on a physical basis.

Note that the specimen is essentially elastic when the variable E=�R D> 0,
whereas the material approaches to rigid plastic when E=�R D> 1 – the functional
form

Q�
E=�R

�
should incorporate the limits of both mechanisms, such that it

remains valid for all materials regardless of the range of data used for fitting. In
the representative case of ˛ D 70.3 (Fig. 1), both of the elastic and rigid plastic
limits can be well defined:

(a) When E=�R D> 0(elastic), C =�R D
Q�

E=�R

�
varies linearly with E=�R:

C

�R

D me

E

�R

as E=�R D> 0; (2)
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where me can be derived from the classic solution of indentation on elastic materials
(Sneddon 1965), and it agrees well with FEM calculations (Ogasawara et al. 2006):

me D
2� tan ˛

�
: (3)

(b) When E=�R D> 1(rigid plastic), C/�R approaches a constant:

C

�R

D mp as E=�R D> 1; (4)

where mp is the rigid plastic limit of conical indentation into a material that obeys
the Mises yield criterion.

mp D 13:2tan2˛ C 6:18 tan ˛ � 8:54 (5)

for 50o � ˛ � 80o. mp is equal to 112.1 for the Berkovich indenter. In view of the
importance of these two limits, we have proposed a very simple empirical form ofQ�

E=�R

�
to incorporate both limits (Ogasawara et al. 2006, 2007a):

Y
D

C

�R

D

 
1

me
E
�R

C
1

mp

!�1

; (6)

from which the representative stress can be obtained as �RDmeC E=mp

�
meE�C

�
without iteration. The above equation not only incorporates the elastic and plastic
limits (thus having physical meaning and wider range of application), but it also
involves no fitting parameter if mp could be solved analytically.

Special Materials with Same Loading Curvature for Dual Sharp
Indenters

With the simple Eq. 6 relating C and material properties, it is now possible to
explicitly derive material combinations that have the same loading curvature. First
consider the case with one indenter (#A) whose half-apex angle is fixed: once ˛A

is specified, its related elastic limit mA
e , rigid plastic limit mA

p , and representative
strain "A

R D 0:0319 cot ˛A can be fixed. For two materials, #1 with elastoplastic
property (E1, �y1, n1) and #2 with elastoplastic property (E2, �y2, n2), to have the
same loading P-ı curve they must satisfy

C A
1 D

mA
e mA

pE1

mA
e

E1

�A
R1

C mA
p

D C A
2 D

mA
e mA

pE2

mA
e

E2

�A
R2

C mA
p

; (7)
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where the representative stresses are

�A
R1 D R1

�
2

�A
R1

E1

C 2"A
R

�n1

(8)

and

�A
R2 D R2

�
2

�A
R2

E2

C 2"A
R

�n2

(9)

respectively, and they need to satisfy

1

�A
R2

D
1

�A
R1

C
mA

p

mA
e

�
1

E1

�
1

E2

�
: (10)

Similarly, for another sharp indenter (#B) with a different angle ˛B, its elastic
limit is mB

e , rigid plastic limit is mB
p , and representative strain is "B

R . If the two
materials will again have the same loading curvature, their representative stresses
need to satisfy

1

�B
R2

D
1

�B
R1

C
mB

p

mB
e

�
1

E1

�
1

E2

�
(11)

with

�B
R1 D R1

�
2

�B
R1

E1

C 2"B
R

�n1

(12)

and

�B
R2 D R2

�
2

�B
R2

E2

C 2"B
R

�n2

: (13)

The procedure of deriving two materials with different elastoplastic properties
yet with the same loading curvature (for both indenters #A and #B) can be
concluded as

(a) Choose any E1 and E2 that are different (with fixed �1 D �2 D 0.3).
(b) Choose any value of �y1 and n1, and derive R1 D �y1

�
E1=�y1

�n1 .
(c) Calculate �A

R1 from Eq. 8 and solve for �A
R2 from Eq. 10.

(d) Obtain one flow stress-total strain pair of the uniaxial stress-strain curve for
material #2 as �A

2 D �A
R2 and "A

2 D 2"A
R C 2�A

R2=E2.
(e) Calculate �B

R1 from Eq. 12 and solve for �B
R2 from Eq. 13.

(f) Obtain another flow stress-total strain pair for material #2 as �B
2 D �B

R2 and
"B

2 D 2"B
R C 2�B

R2=E2.
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(g) From both flow stress-total strain pairs, solve n2 D ln
�
�A

2 =�B
2

�
= ln

�
"A

2 ="B
2

�
,

R2 D �A
2 =
�
"A

2

�n2 , and �y2 D
�
.E2/n2=.n2�1/

=.R2/1=.n2�1/
�

. Finally, from the

numerical indentation test, confirm that C A
1 D C A

2 and C B
1 D C B

2 .

Therefore, for any given material #1 with elastoplastic property (E1, �y1, n1),
we can explicitly derive a special material #2 with elastoplastic property (E2, �y2,
n2) such that they not only yield the same loading curvature when indenter #A is
used but also have the same loading curvature when indenter #B is used. There
are infinite numbers of such special siblings. The procedure outlined above can be
readily extended to identify materials with indistinguishable indentation loading P-ı
curves for three different sharp indenters (#A, #B, #C).

An example of the set of special materials is given in Fig. 2: for the five materials
(mat1–mat5) that have distinct elastoplastic properties, their uniaxial stress-strain
relationships are given in the inset of Fig. 2. These materials not only have the same
loading curvature for the Berkovich indenter but are also the same when ˛D63.14ı,
75.79ı, and 80.0ı are used; moreover, for any indenter angle between 63.14ı and
80ı, their loading curvatures are also the same. From Eqs. 10 and 11, if E1 > E2

then �A
R1 < �A

R2 and �B
R1 < �B

R2 – this can be verified from the inset where for the
special sets of materials, the ones with larger moduli have smaller representative
stresses. Moreover, when ˛B > ˛A, we have "B

R < "A
R and mB

p =mB
e < mA

p=mA
e .

Therefore, for a pair of such special materials, if E1 > E2, the difference between
�B

1 and �B
2 is larger than that of �A

1 and �A
2 , and thus n1 > n2 and � y1 < � y2, all can

be verified from Fig. 2. In this case, the uniaxial stress-strain curves of these special
two materials must intersect outside "A

2 :

From Fig. 2, during unloading the contact stiffness (and thus unloading work)
of these special materials are different, which means that if their Young’s moduli
are known (with a fixed �), their plastic properties (� y, n) can still be uniquely
determined from the loading curvature by using the dual (or plural) indenter method,
under the important premise that the two indenter angles are distinct enough such
that the two determined total strains "A

2 and "B
2 are separated sufficiently apart

(to ensure numerical accuracy) (Ogasawara et al. 2006).

Determine Special Materials with Same Loading and Unloading
Curves for one Conical Indenter

Relating the UnloadingWork withMaterial Properties

While the normalized C (or equivalently, loading work Wt) is the only shape
factor during loading, in principle, there are three shape factors for unloading: the
normalized ıf , contact stiffness S, and unloading work We. However, only one of
them is completely independent; this is because the curvature of the unloading
curve of conical indentation (c.f. Fig. 2) is usually very small (except by the end
of the unloading process). Therefore, if either one of the variables (ıf , S, We) is
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Fig. 2 A set of special materials with same loading curvatures when different indenter angles
(63.14ı, 70.3ı, 75.79ı, 80.0ı) are used. The five materials have elastoplastic properties
(E, �y, n) as mat1 (100 GPa, 1022 MPa, 0.05), mat2 (105.0GPa, 911.4 MPa, 0.10), mat3
(120.0 GPa, 678.3 MPa, 0.19), mat4 (200.0 GPa, 299.8 MPa, 0.33), and mat5 (300.0 GPa,
185.0 MPa, 0.37), respectively. The uniaxial stress-strain curves of these special materials are
given in the inset on the top-left corner (Chen et al. 2007)

known, from the unloading triangle (plus the knowledge of C), the other two shape
factors can be approximately derived. In order to make the best overall matching of
the unloading curves, we take the normalized unloading work We as the governing
unloading shape factor.

Since the unloading work depends on both the contact stiffness (which is related
with E) and the maximum load (which is related with C), a new representative stress
for unloading, � r, is sought such that the normalized unloading work is related with
both E and C, but is essentially independent of n. A representative example is given
in Fig. 3 for the Berkovich indenter where the unloading work is fitted by

ı3�r

We

D �1

E

�r

C �0 (14)
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Fig. 3 The relationship
between ı3� r/We and E=�r

for plastic materials, with
E=�r > 30 or so (Chen
et al. 2007)

for plastic material with E=�r > 30. �1 D 0.0009322 and �0 D 0.1402 for ˛D70.3ı,
and they take different values for other ˛. The representative stress � r is given by

�r D R
�
1:3

�r

E
C 2:6"R

�n

; (15)

which is valid for ˛ between 60ı and 80ı. The simple functional forms derived
in this section permit an explicit derivation of special materials with almost same
unloading work, elaborated below.

Special Materials with Same Loading and Unloading Curves for
a Sharp Indenter

Although Alkorta et al. (2005) have determined special materials with the same
loading and unloading curves for one particular indenter, here we report an improved
procedure to explicitly derive such materials, which also sets a part of the basis
for finding the mystical materials. Based on Eq. 14, for a given indenter #A with
half-apex angle ˛A and two materials with elastoplastic properties (E1, � y1, n1) and
(E2, � y2, n2), if they are to have the same unloading work, they need to satisfy

ı3

W A
e1

D �1

E1�
�A

r1

�2 C �0

1

�A
r1

D
ı3

W A
e2

D �1

E2�
�A

r2

�2 C �0

1

�A
r2

; (16)

where "A
R D 0:0319 cot ˛A, and �A

r1 D R1

�
1:3�r1=E1 C 2:6"A

R

�n1 and �A
r2 D

R2

�
1:3�r2=E2 C 2:6"A

R

�n2 are the unloading representative stresses for materials #1
and #2 of indenter #A, respectively. Thus,
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�A
r2 D

�0 C

s
�2

0 C 4

�
�1

E1

.�A
r1/

2 C �0
1

�A
r1

� �
�1E2

�

2

�
�1

E1

.�A
r1/

2 C �0
1

�A
r1

� : (17)

Therefore, the procedure of deriving two materials with different elastoplastic
properties yet with almost the same loading and unloading curves (for indenter #A)
can be concluded as

(a) Choose any E1 and E2 that are different (with fixed �1 D �2 D 0.3).
(b) Choose any value of �y1 and n1 (as long as material #1 remains sufficiently

plastic), and derive R1 D �y1

�
E1=�y1

�n1 .
(c) Calculate �A

R1 from Eq. 8 and solve for �A
R2 from Eq. 10.

(d) Obtain a flow stress-total strain pair of the uniaxial stress-strain curve for
material #2 as �A

2 D �A
R2 and "A

2 D 2"A
R C 2�A

R2=E2.
(e) Calculate �A

R1from Eq. 15 and solve for �A
R2 from Eq. 17.

(f) Obtain another flow stress-total strain pair for material #2 as �a
2 D �A

r2 and
"a

2 D 2:6"A
R C 1:3�A

r2=E2.
(g) From the stress-strain pairs, solve n2 D ln

�
�A

2 =�a
2

�
= ln

�
"A

2 ="a
2

�
,

R2 D �A
2 =
�
"A

2

�n2 , and �y2 D
�
.E2/n2=.n2�1/

=.R2/1=.n2�1/
�

. Finally, carry

out a numerical test to verify that indeed C A
1 D C A

2 and W A
e1 D W A

e2 .

Therefore, for any material #1 with (E1, � y1, n1), a special material #2 with
(E2, � y2, n2) can be explicitly derived such that they yield indistinguishable loading
and unloading curves for a given conical indenter. There are infinite sets of such
special materials, and identification of these is no longer based on “trial and error.”
An example of such is given in Fig. 4, where the effectiveness of the proposed
approach is validated (with the difference of C and We less than 0.5% – such very
small difference is due to the error of fitting functions and numerical solutions
which is inevitable). This pair of material cannot be distinguished by only using the
Berkovich indenter, yet their P-ı curves may become separable with other distinct
indenter angles.

According to Eq. 16, if E1 > E2 it can be shown that �A
r1 > �A

r2, whereas from
Eq. 10, �A

R1 > �A
R2. For most plastic materials, the representative strain is much

larger than yield strain; thus, the two identified total strains satisfy "a
2 > "A

2 – this
implies that for a pair of special materials, if E1 > E2, then n1 > n2 and � y1 < � y2;
in addition, the stress-strain curves of material #1 and #2 must intersect between
"a

2 and "A
2 . Thus, if two special materials also have the same loading and unloading

curves for indenter #B, their intersection point must also be placed between "b
2 and

"B
2 ; this is only possible when the difference between ˛A and ˛B is not too extreme

(since both "A
R and "B

R vary as indenter angle changes, and such variation is more
prominent for sharper angles). That is, the mystical materials, if they exist, should
be valid within a specified range of indenter angles – more discussions are given in
the next subsection.
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Fig. 4 A pair of special materials with indistinguishable loading and unloading curves when
˛D70.3. The black solid curve represents the material with (E, � y, n) D (100.0GPa, 500.0 MPa,
0.0), and the red dash curve represents the material with (E, � y, n) D (110.0GPa, 295.0 MPa, 0.2).
The uniaxial stress-strain curves of these special materials are given in the inset on the top-left
corner (Chen et al. 2007)

DetermineMystical Materials with Same Loading and Unloading
Curve for Dual Indenters

Weak-FormMystical Materials and Their Possible Existence

In most previous dual (or plural) indentation approaches with Poisson’s ratio
fixed, the material elastic modulus is first obtained from the unloading curve
of one particular indenter (e.g., ˛D70.3ı). Next, the representative stress-based
approach is used to determine two (or more) flow stress-total strain points on the
uniaxial stress-strain curve, by utilizing the loading curvatures obtained from dual
(or plural) sharp indenters. Therefore, if we could identify a pair of special materials
with elastoplastic properties (E1, �y1, n1) and (E2, �y2, n2) (their Poisson’s ratio
�1 D �2 D 0.3), such that they yield indistinguishable loading and unloading P-ı
curves for indenter #A (e.g., ˛D70.3ı), and also almost identical loading curvature
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for another indenter #B, then the conventional dual (or plural) indentation analysis
would fail since it cannot promise unique solution. This pair of special materials,
which does not require their unloading works to match for indenter #B, may be
termed as the weak-form mystical materials.

Meanwhile note that in a displacement-controlled experiment where the max-
imum penetration is fixed, if C A

1 D C A
2 and C B

1 D C B
2 , then the maximum

indentation load for these two materials are also the same. Thus, to make their
unloading works to match for indenter #A

�
W A

e1 D W A
e2

�
, their contact stiffness

must be fairly close
�
SA

1 � SA
2

�
, the two materials must have close Young’s moduli�

E1 � E2

�
, and this also implies their unloading works for indenter #B must also

be very close
�
W B

e1 � W B
e2

�
. Thus, the weak-form mystical materials are very close

to the mystical materials we are looking for.
What general properties must the weak-form mystical materials satisfy (assum-

ing they are sufficiently plastic such that Eq. 14 applies)? Since these materials must
be a subset of the special materials derived from the above procedures, therefore,
with (˛B > ˛A), if

�
E1 < E2

�
, the two mystical materials must satisfy n1 < n2 and

� y1 > � y2; moreover, the uniaxial stress-strain curves of these two materials must
intersect outside 2"A

R but inside 2:6"A
R. A schematic showing of the relative status

of the two mystical materials is given in Fig. 5a. Since these two candidates need
to intersect within a relatively small region, this implies that the mystical materials
would only exist for a specified range of indenter angle (with ˛B > ˛A) and material
properties. For the current case, the difference between ˛B and ˛A cannot be too
extreme, and the materials need to be sufficiently plastic (with large E1/� y1 and
E2/� y2) so as to leave enough possible space for materials #1 and #2 to intersect
within the desired region.

Next, we consider the case with ˛B < ˛A, but the difference is not so much such
that 2"A

R < 2"B
R < 2:6"A

R. If E1 < E2, then from the above procedures, �A
R1 D

�A
1 > �A

R2 D �A
2 and �B

R1 D �B
1 > �B

R2 D �B
2 ; since mA

p=mA
e > mB

p =mB
e , so

the difference between �A
1 and �A

2 is larger than that of �B
1 and �B

2 ; moreover, the
unloading representative stresses satisfy �A

r1 D �a
1 > �A

r2 D �a
2 . All these features

lead to n1 < n2 and � y1 > � y2, and a possible solution for the mystical pair #1 and
#2 is sketched in Fig. 5b. In this case, the uniaxial stress-strain curves of these two
materials must intersect between 2"B

R and 2:6"A
R, and such range is even narrower

than that in Fig. 5a. That is, the mystical materials may exist in a small space of
material properties and indenter angles; nevertheless, such solution is possible.

When ˛B is much smaller than ˛A such that 2"B
R > 2:6"B

R , all the relative
magnitudes of the representative stresses discussed in the last paragraph still hold,
except that now those related with 2"B

R are moved to the right side of those related
with 2:6"A

R – according to the new schematic in Fig. 5c, it is impossible to find
a solution for the mystical material. This implies that if the indenter #A is the
Berkovich tip, the indenter #B must be larger than about 64.88ı such that the
mystical materials may exist according to Fig. 5a, b. Similarly, if #B is taken to be
the Berkovich tip (since the weak-form mystical material is very close to the desired
mystical material), then #A must be smaller than 74.50ı. Therefore, rigorously
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Fig. 5 Schematics of
possible solutions of a pair of
weak-form plastic mystical
materials; assuming
E1 < E2, then n1 < n2 and
� y1 > � y2. The indenter angle
A(˛A) is fixed (which equals
to 70.3ı in many existing
dual indenter techniques). (a)
When ˛B > ˛A solution is
possible. (b) When ˛B < ˛A

but 2"B
R < 2:6"A

R, solution is
possible. (c) When ˛B < ˛A

and the difference between
these two angles is large such
that 2"B

R > 2:6"A
R, rigorous

solution is not possible (Chen
et al. 2007)

speaking, under the premise that Poisson’s ratio is always fixed at 0.3, if a Berkovich
tip is used in the dual indenter method, the mystical materials would only be possible
if the other indenter angle is between 64.88ı and 74.50ı. Moreover, such mystical
materials need to be relatively plastic.
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Fig. 6 The schematic of the
possible existence of the
mystical materials and
relevant indenter angle
ranges – they correspond to
the plateaus on the
multidimensional surface of
the shape factors of the P-ı
curves (Chen et al. 2007)

In a short summary, there is no pair of mystical materials that would be applicable
to arbitrary large range of indenter angles, and only for limited material space-
indenter angle combinations can the mystical siblings be found – this is part of the
reason the mystical materials were not discovered in the past. The current problem
of finding the mystical materials is analogous to a multivariable problem (Fig. 6),
where the indentation shape factors (the general z-axis) are related with the material
elastoplastic properties (the general x-axis) and indenter angle ranges (the general
y-axis) through a multidimensional surface. On such surface, the slope may not
be large and distinct everywhere, and small regions that are relatively flat may
exist, as sketched in Fig. 6. The mystical materials and the relevant indenter angle
ranges would correspond to such plateaus (with zero or almost zero slope) of the
multidimensional surface – although these plateaus are small compared with the
entire parameter space, they may still exist and thus have important theoretical value
for probing the uniqueness of indentation analysis. The search of such plateaus is
elaborated next.

Search for Mystical Materials with Fixed Poisson’s Ratio

In most literature of indentation analysis, Poisson’s ratio was fixed by neglecting its
influence. In order to challenge the basis of the uniqueness solution and be consistent
with the literature, a fixed � D 0.3 is used in most part of this chapter.

For a given pair of indenters #A and #B, and a given material #1 which is
sufficiently plastic, in order to identify the weak-form mystical siblings, Eqs. 10,
11, and 17 need to be satisfied rigorously, from which �A

R2, �B
R2, and �A

r2 can
be derived (with any specified E2), respectively. Unfortunately, the only solution
that rigorously satisfies all these equations is exactly material #1. On the other
hand, note that there are no perfect finite element solution and numerical fitting,
and all numerical results are subject to small error. It is then acceptable if small
errors are added to fitting functions Eqs. 10, 11, and 17, such that the resulting



226 L. Liu et al.

loading/unloading P-ı curves of material #2 would be indistinguishable to that
of material #1, with the difference between their shape factors below several
percent – such small perturbation is also inevitable in the data measured from any
real experiment. Another advantage is that, when small perturbation to the shape
function is allowed, the existence range of the mystical material is significantly
enlarged, in terms of both the material property and indenter angle space. In essence,
although it is difficult to search for perfect plateaus (with exactly zero slope) on
the multidimensional surface describing the indentation shape factors, it is possible
to search for plateaus with slopes that are very close to zero through a numerical
algorithm – the results are still the indistinguishable mystical materials given the
inevitable small perturbations in numerical and experimental indentation tests.
The search process is also relatively straightforward since the simple and explicit
formulations of the primary shape factors of loading/unloading P-ı curves are
established earlier. Of course, with Poisson’s ratio fixed at 0.3, such identification
procedure is no longer explicit.

The numerical search process is the following (with fixed�1 D �2 D 0.3):

(a) Choose any E1 and ˛A (e.g., the Berkovich tip).
(b) Choose any initial value of ˛B and then iterate such that its difference with

respect to ˛A is increased.
(c) Choose initial values of n1 and � y1 and then iterate, preferably in the plastic

material range.
(d) Choose an initial value of E2 which is at least 5% different than E1 and then

iterate, such that the difference could become bigger. This ensures that the initial
guesses of material #1 and #2 are sufficiently different.

(e) From Eqs. 10, 11, and 17, solve for �A
R2, �B

R2, and �A
r2.

(f) Give small errors (few percent) to Eqs. 10, 11, and 17. For example, if we wish
to increase �A

R2 by ! times (e.g., !D1.01 for a 1% error), then from Eq. 6 the
new representative stress of material #2 that is related with loading for indenter
#A becomes

�A
R2�error D

 
1

!�A
R2

C
mA

p

mA
e

1

E2

�
1

!
� 1

�!�1

(18)

Similarly, when error is permitted, the two other representative stresses are

�B
R2�error D

 
1

!�B
R2

C
mB

p

mB
e

1

E2

�
1

!
� 1

�!�1

(19)

and
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R2�error D
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respectively. Therefore, by plus or minus several percent of error, the upper and
lower bounds of the error bars of �A

R2, �B
R2, and �A

r2 can be derived – when the three
error bars are combined, an error band can be formed.

(g) For all possible combinations of �A
R2, �B

R2, and �A
r2 within the error band, the

admissible solutions of material #2 are sought; since �A
R2, �B

R2, and �A
r2 and

E2 must satisfy certain compatibility, only a small portion of the combinations
within the error band could become candidate materials. For any admissible
solution, their loading curvatures for indenters #A and #B can be estimated from
Eq. 6, and their unloading work for indenter #A is obtained from Eq. 14; the
results are then compared with that of material #1, and the more promising pairs
with smaller errors are recorded along with the current indenter angle range. A
candidate pair of mystical materials is found if the computed error is smaller
than 2% for all shape factors.

(h) Iterate E2.
(i) Iterate n1 and � y1.
(j) Iterate ˛B.
(k) Lastly, numerical indentation analyses are performed on the most promising

candidate mystical material pairs using finite element simulations, to confirm
that their loading and unloading curves are visually indistinguishable (i.e., the
shape factors of their indentation curves are sufficiently close).

The existence range of the mystical materials is first explored through a series
of maps in terms of materials space (E/� y, n). In Fig. 7a, b, the pairs of identified
mystical materials are shown in line segments – both ends of each segment represent
two mystical materials with different elastoplastic properties, yet they yield almost
indistinguishable loading/unloading P-ı curves. For a given line segment, any sets
of materials along the length of the segment are also mystical materials, and the
most distinct mystical materials can be found at the ends of the longest segment.
The area where the density of the segments is large indicates a possible gold mine
of mystical materials.

For any given indenter angle range, the mystical materials can only exist within
a certain region. As the difference between the dual indenters becomes larger, the
existence range of the mystical material becomes smaller; moreover, the segments
are shorter which also indicates the differences between their elastoplastic properties
are smaller. Therefore, if a pair of extreme indenter angles (very sharp and very
blunt) is used, the mystical materials do not exist (however, in experiments, the
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Fig. 7 The existence maps of
mystical materials for given
indenter angle ranges, (˛A,
˛B) D (a) (70.3ı, 73ı), (b)
(70.3ı, 80ı). Each segment
links a pair of mystical
materials within the material
space (E/�y, n). A gold mine
of mystical materials is
discovered when E/�y is
about 100 and when n is
small (Chen et al. 2007)

use of a pair of extreme sharp indenters is often impractical). In the examples
illustrated in Fig. 7, ˛A D 70.3ı is always used because many previous studies rely
on measuring the elastic modulus from a Berkovich indentation.

When the indenter angle range is relatively small, e.g., (˛A, ˛B) D (70.3ı, 73ı)
(Fig. 7a), the mystical materials can be found in a large range, but notably for
materials with smaller n. Quite a few of the more plastic mystical materials can
exist with large differences of their elastoplastic properties. No mystical materials
are available with both large n and large E/� y.

By contrary, when the indenter angle difference becomes larger, e.g.,
(˛A, ˛B) D (70.3ı, 80ı) (Fig. 7b), then the survival range of mystical materials
are confined to the lower-left corner of the materials space map. Mystical materials
become possible only for materials with n D 0–0.2 and E/� y � 100. Note that
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if a pair of mystical materials is identified for a larger angle range, they are still
mystical siblings for any subrange of indenter angles. Moreover, once a map for
(˛A, ˛B) D (70.3ı, 60ı) is made and combined with Fig. 7b, their common elements
are the extreme mystical materials that are effective when (˛A, ˛B) D (60ı, 80ı).
Therefore, the materials with small n and with E/� y around 100 represent the gold
mine around which many mystical materials can be identified. In fact, there are
quite a few important engineering metals and alloys near this area, for example, Ti
alloys, Ni alloys, Mg alloys, and high strength steel, in addition to a few ceramics
and polymers (Ashby 1999) – extra care is needed for the measurement of their
elastoplastic properties.

For the mystical materials identified in this section, with � D 0.3 but without
knowing other information in advance, within the specified dual indenter angle
range, their elastoplastic properties cannot be uniquely determined from the inden-
tation analysis since their loading and unloading curves are indistinguishable.

Numerical indentation tests are carried out on these materials, and their P-ı
curves are compared, which also reveal the characteristics of the mystical materials.

In Fig. 8a, for the indenter angle range (˛A, ˛B) D (70.3ı, 74ı), a pair of plastic
mystical materials is chosen, with E1 D 100 GPa, �y1 D 50 MPa, n1 D 0.06, and
E2 D 110 GPa, �y2 D 29.336 MPa, and n2 D 0.17277, respectively. Their uniaxial
stress-strain curves are shown in the inset, and their corresponding indentation load-
displacement curves are given. It is apparent that their indentation behaviors are
almost identical (for both loading and unloading curves); specifically, the difference
between C A

1 and C A
2 is about 2%, the difference between C B

1 and C B
2 is about

1%, and the difference between W A
e1 and W A

e2 is about 2%. The difference between
W B

e1 and W B
e2 is about 4%; nevertheless, during the search of weak-form mystical

materials, the matching criterion is not applied to the unloading curves with indenter
#B. Note that when a larger indenter angle range is used, such as 63.14ı and 75.79ı,
their P-ı curves become quite separable, and therefore it is still possible to use the
established dual indenter method to measure the elastoplastic properties of these
two materials with the wider indenter angle ranges.

In fact, a wider indenter angle separation also means that the two identified total
strains are further apart, which also gives better numerical accuracy – a rule of
thumb is that the two identified total strain should be separated by at least 30%,
which is qualified for most plastic materials with indenter angles 63.14ı and 75.79ı

(Ogasawara et al. 2007b), including the example in Fig. 8a. On the other hand,
for the more elastic materials, the separation between the identified total strain
points becomes smaller for a given indenter angle range. To ensure accuracy, a large
indenter angle range �˛ D j˛A � ˛Bj is recommended for more elastic materials
with E/�y < 100 or so.

Figure 8b gives an intriguing example, which corresponds to E1 D 100 GPa,
�y1 D 872.47 MPa, n1 D 0.0, and E2 D 103.75 GPa, �y2 D 715.61 MPa, and
n2 D 0.10663. This pair of extreme mystical material leads to almost the same
indentation loading/unloading behaviors when the indenter angle changes from 60ı

to 80ı, which has reached the limit of the sharp indenter angles used in this study.
Apparently, many existing dual (or plural) indentation methods in the literature
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Fig. 8 (continued)
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would fail to distinguish them, and more extreme indenters are needed. However,
this is often not practical because without advanced knowledge, one could not
predetermine what kind of �˛ needs to be used in an experiment. Moreover, when
extreme indenter angles are used, the measured hardness would differ by orders
of magnitude, and new problems such as those associated with the resolution of the
instrument, size effect, indenter tip alignment, and indentation cracking will emerge.
In the next section, we will introduce how to use alternative methods to distinguish
such extreme mystical pair.

For a pair of mystical materials near or inside the gold mine, their stress-strain
curves tend to intersect around a total strain of 0.05. Moreover, if one material has a
larger plane-strain modulus, then it always has larger work-hardening exponent and
smaller yield stress.

Alternative Methods to DistinguishMystical Materials

Improved Spherical Indentation

Spherical indenter has the unique advantage that with one penetration, the loading
curvature is reduced as if the indenter angel becomes smaller. Since the mystical
materials may be eventually distinguishable by a large �˛, we only need to
control the ımax during spherical indentation. For that matter, the penetration depth
has to be sufficiently deep and a few previous studies (e.g., Cao and Lu 2004)
where ımax/r D 0.1) do not qualify; indeed, if ımax/r is small (such as 0.1), the
spherical indenter method still cannot distinguish the mystical materials because
the effective �˛ is small. Alternatively, in one of our works (Zhao et al. 2006b),
an improved spherical indentation technique was proposed, which seems promising
since ımax/r D 0.3, which mimics a very sharp indenter angle.

Figure 9a shows the spherical indentation result on the extreme mystical
material pair derived from Fig. 8b. Initially, when the penetration is shallow,
which is analogous to the blunter indenter angles, the two P-ı curves cannot
be separated. However, when ı/r is larger than about 0.15, these two materials
become distinguishable. Finally, at the maximum penetration, there is about 8%
difference between their C. Although these two materials have very close contact
stiffness and also C measured at ı/r D 0.13, the relatively large difference at

J
Fig. 8 Representative case studies of mystical materials: the P- ı curves of mystical materials and
the uniaxial �- " curves of mystical materials are given in inset on the top-left corner. (a) A pair
of plastic mystical materials for (˛A, ˛B) D (70.3ı, 74ı), with E1 D 100 GPa, �y1 D 50 MPa,
n1 D 0.06 (solid curve), and E2 D 110GPa, �y2 D 29.336 MPa, n2 D 0.17277 (dash curve). They
can be distinguished when more different indenter angles are used. (b) A pair of extreme mystical
materials with E1 D 100 GPa, � y1 D 872.47 MPa, n1 D 0.0 (solid curve), and E2 D 103.75 GPa,
�y2 D 715.61 MPa, n2 D 0.10663 (dash curve). They cannot be effectively distinguished by
indenter angles from 60ı and 80ı (Chen et al. 2007)
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ımax/r D 0.3 is sufficient to make the spherical indentation technique work well.
By following the reverse analysis procedure in Zhao et al. (2006b), the determined
values are E1 D 102.5 GPa, �y1 D 828.85 MPa, n1 D 0.024, and E2 D 106.34 GPa,
�y2 D 701.30 MPa, and n2 D 0.108, respectively. All errors (except that for n1

cannot be counted since its true value is 0.0) are smaller than about 2% (except �y1

which is about 5% and still within reasonable range). Finally, the identified uniaxial
stress-strain curve from the reverse analysis of the improved spherical indentation
method (Zhao et al. 2006b) is given in the inset, and its excellent capability of
distinguishing the mystical material is justified. The improved spherical indentation
technique proposed by Zhao et al. (2006b) only requires one simple indentation test,
and thus it is convenient and reliable. This technique is therefore recommended for
materials inside or near the gold mine of mystical materials.

Film Indentation

When an elastoplastic film with finite thickness is bonded to a rigid substrate, the
increased conical penetration dramatically increases the loading curvature as if the
sharp indenter angle is increased. Thus, the substrate effect provides an alternative
way of obtaining extreme indenter angles to distinguish the mystical materials. We
have proposed a theory, where the loading curvatures at the penetration of 1/3 and
2/3 of film thickness (h), along with the unloading work, are used to obtain the
material elastoplastic properties from one fil indentation test (Zhao et al. 2006a).
When this technique is applied to the extreme mystical materials (found in Fig. 8b,
in Fig. 9b), it can be readily seen that their loading curvatures become quite different
at ımax/h D 2/3, which is again sufficient to distinguish the extreme mystical pair
although their loading curvatures at ı/r D 1/3 are close. In addition, their unloading
works are also different.

By following the reverse analysis described in Zhao et al. (2006a), finally the
determined properties of the extreme pair of mystical materials are E1 D 97.5 GPa,
�y1 D 872.47 MPa, n1 D 0.0 and E2 D 103.75 GPa, �y2 D 719.19 MPa, n2 D 0.105,
respectively. All errors (except that for n1 cannot be counted since its true value
is 0.0) are smaller than 1.5% except E1 which is only �2.5%. The identified
uniaxial stress-strain curve from the film indentation technique (Zhao et al. 2006a)
is given in the inset of Fig. 10, and it is demonstrated to be able to distinguish
the mystical materials with high accuracy. Note that the advantage of the film
indentation technique is that it may be applied to specimens with finite thickness;
however, it also requires the testing platform (i.e., the substrate) to be sufficiently
stiff and hard, which may not be practical in some cases (see Zhao et al. (2006a) for
discussions). Nevertheless, it could be used as an alternative method to distinguish
the mystical materials and is proven to work well.

In fact, from the error analysis of both the improved spherical indentation and
film indentation methods (Zhao et al. 2006a, b), both techniques have the best
accuracy for materials inside or near the gold mine of mystical materials, which
make them complementary to the dual (or plural) sharp indentation analysis.
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Fig. 9 The P-ı curves of two alternative indentation on the extreme mystical materials found
in Fig. 8b. (a) Improved spherical indentation method (Zhao et al. 2006b). (b) Film indentation
method (Zhao et al. 2006a). These methods can distinguish the extreme mystical materials – in the
inset on top-left corner, the uniaxial stress-strain curves obtained from reverse analysis (symbols)
are compared with the input (true) data and show excellent agreement (Chen et al. 2007)
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Fig. 10 Materials tailoring of two power-law materials (a) E/�y D 2500 and
n D 0.1 and (b) E/�y D 2500 and n D 0.5. Thick lines are the uniaxial true stress-strain
curves of untailored materials, and each thin line presents a modified material. Every modified
material is defined as initially having the same constitutive curve with the original power-law
material but becomes perfectly plastic beyond a bifurcation strain, "b. In the examples in both (a)
and (b), "b equals 0.05, 0.1, 0.2, and 0.35 for the four tailored materials (Liu et al. 2009)

Detectable Strain Range of Indentation Test

The Critical Strain

When a sharp indenter penetrates a bulk specimen, the loading curvature C is only
a function of the material elastoplastic; theoretically, any variation of the material
constitutive relationship (the stress-strain curve) can, to a certain degree, cause C
to deviate from its original value. However, there exists a critical strain beyond
which tailoring material properties will no longer induce prominent variation to
the indentation response (e.g., less than 1% deviation in the measured C). [The 1%
threshold is set because it is a typical order-of-magnitude intrinsic error associated
with numerical indentation analyses: below this critical level, one can hardly tell
whether the difference is caused by material tailoring or by numerical error. Of
course it could set a different threshold (e.g., 0.5%), but the critical strains derived
from the new threshold are not going to be much different from the ones identified in
this study, and the relevant conclusions still hold.] Therefore, indentation is limited
to probing material elastoplastic properties within a particular strain range below
critical, and the tailoring of the stress-strain curve beyond this range cannot be
detected by indentation reverse analysis, leading to a non-unique solution.

To verify the existence of the critical strain and identify its dependence on
material properties and indenter angles, without losing generality, we consider six
representative power-law materials with E/�y D 2500, 1000, and 100 and n D 0.1
and 0.5. Two example stress-strain curves are given as thick lines in Fig. 10a, b. To
tailor the constitutive relationship, one could choose any bifurcation strain "b > "y
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Fig. 11 (a) Indentation loading curves (with ˛D70.3ı) for a representative power-law material
and four artificial materials tailored at different "b. The error of C is calculated as the difference of
loading curvatures between each tailored materials and the untailored material. (b) The evolution
of the error of C (with ˛D70.3ı) as a function of "b induced by material tailoring. A critical strain
"c can be defined when the error of C falls below 1% (Liu et al. 2009)

and assign perfect plastic behavior after this point (the flat thin line in Fig. 10).
In other words, the tailored stress-strain relationship becomes

� D E"; for " � "y

� D R"n; for "y � " � "b

� D R"n
b D constant; for " � "b:

(21)

Such a tailoring strategy provides a rough upper bound of the moderate mod-
ifications of the hardening function. For the selected cases shown in Fig. 10, "b

equals 0.05, 0.1, 0.2, and 0.35 for the four modified materials. Upon indentation,
the modified material will in principle show a different C from that of the
original (unmodified) material, but S remains essentially unchanged since the elastic
modulus is unaffected; thus, we only focus on the perturbation of C during loading.

Numerical indentation tests are carried out on the original power-law materials as
well as their modified counterparts (with "b varying over a large range and example
load-displacement curves given in Fig. 11a). The indenter angle ˛ is also varied. The
percentage error of C (between the original and modified materials) can be plotted
as a function of "b, given in Fig. 11b for a representative indenter angle ˛ D 70.3ı.
Each line in this Figure represents modifications of one of the six original materials,
and each symbol in that line denotes the percentage error of C for a tailored material
characterized by a particular "b. The error decreases quickly with "b, since a higher
"b means that the constitutive relationship of the modified material is closer to the
original one (Fig. 10). In addition, the error of C is smaller when n is smaller or
when E/�y is smaller (and the effect of n is more prominent), and this is also related
to the fact that the difference between the stress-strain curves of the original and
tailored materials are smaller when n and/or E/�y is smaller (Fig. 10 and Eq. 21).
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Fig. 12 The dependency of
the critical strain"c on the
half-apex angle, ˛, of sharp
indenters. Also shown is the
linear fitting Eq. 22 (Liu et al.
2009)

The most important finding is, regardless of the original material, the percentage
error of C tends to be lower than the 1% threshold when "b exceeds a critical
value, "c. For ˛ D 70.3ı, the critical strain "c is identified as 0.20 – any modification
of the plastic behavior beyond this point cannot be effectively reflected on the
P-ı curve, and the modified material would exhibit an indistinguishable indentation
response with respect to the original material as long as "b > "c; under this
circumstance, both the original and modified materials are possible solutions of
the reverse analysis of the same P-ı curve. Note that the difference between the
constitutive relationships of the original material and modified material can be
substantial especially when n is large and/or when the critical strain is small.

Using the sharp indentation technique, the stress-strain curve may only be probed
when the strain is between 0 and "c (the detectable strain range or sometimes the
detectable range for short). When ˛ is fixed, "c is essentially material-independent,
and this is verified by numerical analyses using a wide range of materials with
diverse elastoplastic properties (as long as "y is not too large, which is satisfied
for most metals and alloys). (Although we derived the critical strain by modifying
the power-law material model in this section, the approach can be extended to other
material models, and we have verified that the value of critical strain is not sensitive
to the material model used.) In Fig. 12, the critical strain "c is presented as a function
of the indenter angle, where the relationship is almost linear and can be fitted as

"c D 1:139 � 0:7615˛ (22)

within the indenter angle range in this chapter (where ˛ is in radians in Eq. 22).
It is interesting that the detectable range of sharp indenters can be small for blunt
indenters, and one of the popular indenters with ˛ D 80ı could only prove strain
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up to about 8% and thus is sensitive to the non-uniqueness issue; the use of sharper
indenters could partially reduce this concern. However, sharp indenters may cause
cracking, and the results may be sensitive to friction in practice. In addition, even
the sharpest indenter used in this study (˛ D 60ı) could only detect up to 35% of
strain, and this performance falls well below common expectations. We therefore
conclude that it is impossible to measure the entire stress-strain curve uniquely via a
sharp indentation test. (Although the plural indenter technique, especially those with
sharper indenters (e.g., using ˛ D 60ı and 70.3ı), could alleviate the non-uniqueness
problem than those with blunter indenters (e.g., using ˛ D 80ı and ˛ D 70.3ı), none
of them would work well outside the critical strain range.)

Besides challenging the uniqueness of indentation test, the discovery of the crit-
ical strain has several other impacts. First, during the verification of an established
indentation method, often the stress-strain curve of a real engineering material
needs to be fitted into power-law form and serve as a benchmark for examination
(Guelorget et al. 2007); however, a different fitting range of the stress-strain curve
would lead to different fitted results of the plastic parameters, and the fitting range
should be consistent with the detectable range of indentation test, otherwise a large
bias would occur (Ogasawara et al. 2008). Second, the critical strain could also
guide numerical indentation analyses. From either the stress-strain curve measured
in a lab experiment or with respect to a specific material model, a data set of the
uniaxial stress and strain is needed as the input for material properties to be used
in an FEM program/simulation. Sometimes there is a concern as to how many data
points are needed and how refined they need to be. Here we show that regardless
of the details, only the input stress-strain data within the detectable strain range is
relevant, and outside this range, the data is essentially unimportant (in terms of the
resulting P-ı curves).

Variation of Critical Strain: A Qualitative Explanation

A qualitative explanation of the critical strain, along with its dependency on the
indenter geometry, lies in the nonuniform plastic deformation below the indenter.
Since the work done by the indenter during the penetration of a sharp indenter
is Wt D Cı3/3, the perturbation of C may be understood from that of Wt, which
equals the total deformation energy. The material deformation energy includes two
parts: the recoverable strain energy and the plastic dissipation; the later part equals
(Wt-We).

The influence of tailoring the material constitutive behavior is nonuniform in
the indented solid. Within the field of equivalent plastic strain ("e) produced by
indentation, only the regions with "e > "b are more sensitive to the modification of
plastic properties beyond "b. Figure 13 shows the contour plots of "e in the deformed
unmodified power-law solid (with E/�y D 2500, and n D 0.5), and the contour
lines of "e D 0.1 and 0.2 are given when ˛ D 70.3ı and 75.79ı, respectively. For
fair comparison, the contours shown in Fig. 13 are taken at the instants when the
indenters have done the same amount of work. The material enclosed roughly by
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Fig. 13 The contour plot of
the equivalent plastic strain,
"e, in a semi-infinite solid
indented by two sharp
indenters. The superimposed
contours are taken from
independent tests at the
instants when the indenters
have done the same amount
of work (Liu et al. 2009)

the solid contour lines (e.g., "e D 0.2) may be perturbed if the stress-strain curve is
modified beyond the corresponding value, for example, "b D 0.2. Within the area
where "e < "b, if the deformation energy is relatively small, material tailoring would
not yield prominent variation of the overall indentation response.

For ˛ D 70.3ı for example, the deformation energy in the region enclosed by
the contour of "e D 0.2 is only about 22% of the energy enclosed by the contour
of "e D 0.1. Therefore, tailoring the material beyond "b D 0.1 will include a larger
variation to the overall P-ı curve than tailoring above "b D 0.2. This is qualitatively
consistent with the descending trend of the error of C due to tailoring Fig. 11b. When
the indenter angle is varied, for ˛ D 75.79ı, the fraction of deformation energy
of the region enclosed by the contour of "e D 0.2 is only 3% of its counterpart
for ˛ D 70.3ı, and the fraction of deformation energy of the region surrounded
by the contour of "e D 0.1 is about half that for ˛ D 70.3ı. This suggests that
material tailoring beyond the same strain ("b D 0.1 or 0.2) could influence C more
significantly for the sharper indenter, and thus qualitatively speaking, "c is larger for
a sharper indenter and smaller for a blunter indenter.

Conclusion

Although indentation tests have been long used to measure the elastoplastic
properties of engineering materials, a systematic study on the uniqueness of
indentation analysis, i.e., on the possible existence of the one-to-one correspondence
between the indentation load-displacement curves, material parameters, and inden-
ter geometries, is still lacking. Among the available indentation techniques, the dual
(or plural) sharp indenter method is often considered as well established, and it is
also the foundation of many other similar indentation analyses and has been widely
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used in practice. In this chapter, through a comprehensive numerical study, the
primary shape factors of the indentation load-displacement curves are related with
the material properties and indenter angles through simple functional forms. Both
explicit and numerical procedures are established to search for mystical materials
with distinct elastoplastic properties yet yield indistinguishable load-displacement
curves, even when the indenter angles are varied. Consequently, these mystical
materials cannot be distinguished by many of the existing dual (or plural) indenter
methods or spherical indenter methods (if the indentation depth is shallow). The
properties and the existence of such mystical materials are discussed.

In addition, a critical strain is identified as the upper bound of the detectable
range of indentation, and moderate tailoring of the constitutive behavior beyond this
range cannot be effectively detected by the reverse analysis of the load-displacement
curve. That is, for a given indenter geometry, beyond the critical strain, there is no
unique solution of the material plastic behavior from the reverse analysis of the
load-displacement curve. The critical strain is identified as a function of the sharp
indenter angle, through which the analysis of sharp indentation may be qualitatively
correlated to some extent – this link also enriches the indentation theory and
applications.

The topics in this chapter address the important question of the uniqueness
of indentation test, as well as providing useful guidelines to properly use the
indentation technique to measure material elastoplastic properties.

Acknowledgments The work is supported in part by National Science Foundation CMS-
0407743 and CMMI-CAREER-0643726 and in part by the Department of Civil Engineering and
Engineering Mechanics, Columbia University.

References

J. Alkorta, J.M. Martinez-Esnaola, J.G. Sevillano, Absence of one-to-one correspondence between
elastoplastic properties and sharp-indentation load–penetration data. J. Mater. Res. 20, 432–437
(2005)

M.F. Ashby, Materials Selection in Mechanical Design, 2nd edn. (Elsevier, Amsterdam, 1999)
F.P. Bowden, D. Tabor, The Friction and Lubrications of Solids (Oxford University Press, Oxford,

1950)
Y.P. Cao, J. Lu, A new method to extract the plastic properties of metal materials from an

instrumented spherical indentation loading curve. Acta Mater. 52, 4023–4032 (2004)
T.W. Capehart, Y.T. Cheng, Determining constitutive models from conical indentation: sensitivity

analysis. J. Mater. Res. 18, 827–832 (2003)
X. Chen, N. Ogasawara, M. Zhao, N. Chiba, On the uniqueness of measuring elastoplastic

properties from indentation: the indistinguishable mystical materials. J. Mech. Phys. Solids 55,
1618–1660 (2007)

Y.T. Cheng, C.M. Cheng, Can stress–strain relationships be obtained from indentation curves using
conical and pyramidal indenters? J. Mater. Res. 14, 3493–3496 (1999)

Y.T. Cheng, C.M. Cheng, Scaling, dimensional analysis, and indentation measurements. Mater.
Sci. Eng. R44, 91–149 (2004)

B. Guelorget, M. Francois, C. Liu, J. Lu, Extracting the plastic properties of metal materials from
microindentation tests: experimental comparison of recently published methods. J. Mater. Res.
22, 1512–1519 (2007)



240 L. Liu et al.

L. Liu, N. Ogasawara, N. Chiba, X. Chen, Can indentation technique measure unique elastoplastic
properties? J. Mater. Res. 24, 784–800 (2009)

S.D. Mesarovic, N.A. Fleck, Spherical indentation of elastic-plastic solids. Proc. R. Soc. Lond. A
455, 2707–2728 (1999)

N. Ogasawara, N. Chiba, X. Chen, Representative strain of indentation analysis. J. Mater. Res. 20,
2225–2234 (2005)

N. Ogasawara, N. Chiba, X. Chen, Limit analysis-based approach to determine the material plastic
properties with conical indentation. J. Mater. Res. 21, 947–958 (2006)

N. Ogasawara, N. Chiba, M. Zhao, X. Chen, Measuring material plastic properties with optimized
representative strain-based indentation technique. J. Solid Mech. Mater. Eng. 1, 895–906
(2007a)

N. Ogasawara, N. Chiba, M. Zhao, X. Chen, Comments on “Further investigation on the definition
of the representative strain in conical indentation” by Y. Cao and N. Huber [J. Mater. Res.
21, 1810 (2006)]: A systematic study on applying the representative strains to extract plastic
properties through one conical indentation test. J. Mater. Res. 22, 858–868 (2007b)

N. Ogasawara, M. Zhao, N. Chiba, X. Chen, Comments on “Extracting the plastic properties of
metal materials from microindentation tests: experimental comparison of recently published
methods” by B. Guelorget, et al. [J. Mater. Soc. 22, 1512 (2007)]: The correct methods
of analyzing experimental data and reverse analysis of indentation tests. J. Mater. Res. 23,
598–608 (2008)

I.N. Sneddon, The relationship between load and penetration in the axisymmetric Boussinesq
problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)

K.K. Tho, S. Swaddiwudhipong, Z.S. Liu, K. Zeng, J. Hua, Uniqueness of reverse analysis from
conical indentation tests. J. Mater. Res. 19, 2498–2502 (2004)

M. Zhao, X. Chen, N. Ogasawara, A.C. Razvan, N. Chiba, D. Lee, Y.X. Gan, A new sharp
indentation method of measuring the elastic-plastic properties of soft and compliant materials
by using the substrate effect. J. Mater. Res. 21, 3134–3151 (2006a)

M. Zhao, N. Ogasawara, N. Chiba, X. Chen, A new approach of measuring the elastic-plastic
properties of bulk materials with spherical indentation. Acta Mater. 54, 23–32 (2006b)



7Helical Buckling Behaviors
of the Nanowire/Substrate System

Youlong Chen, Yilun Liu, and Xi Chen

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Helical Buckling Mechanism for a Stiff Nanowire on the Surface
of an Elastomeric Substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
FEM Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Mechanism of the Transition from In-plane Buckling to Helical Buckling for
a Stiff Nanowire on the Surface of an Elastomeric Substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

Model and Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Helical Buckling of a Nanowire Embedded in a Soft Matrix Under Axial Compression . . . . . 275
Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Y. Chen (�)
International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of
Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, China
e-mail: cyl900125@126.com

Y. Liu
International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of
Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, China
e-mail: yilunliu@mail.xjtu.edu.cn

X. Chen
Department of Earth and Environmental Engineering, Columbia Nanomechanics Research
Center, Columbia University, New York, NY, USA
e-mail: xichen@columbia.edu

© Springer Nature Switzerland AG 2019
G. Z. Voyiadjis (ed.), Handbook of Nonlocal Continuum Mechanics for Materials
and Structures, https://doi.org/10.1007/978-3-319-58729-5_47

241

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-58729-5_7&domain=pdf
mailto:cyl900125@126.com
mailto:yilunliu@mail.xjtu.edu.cn
mailto:xichen@columbia.edu


242 Y. Chen et al.

Abstract

When a nanowire is deposited on a compliant soft substrate or embedded in
matrix, it may buckle into a helical coil form when the system is compressed.
Using theoretical and finite element method (FEM) analyses, the detailed three-
dimensional coil buckling mechanism for a silicon nanowire (SiNW) on a
poly-dimethylsiloxne (PDMS) substrate is discussed. A continuum mechanics
approach based on the minimization of the strain energy in the SiNW and
elastomeric substrate is developed, and the helical buckling spacing and ampli-
tude are deduced, taking into account the influences of the elastic properties
and dimensions of SiNWs. These features are verified by systematic FEM
simulations and parallel experiments. When the debonding of SiNW from the
surface of the substrate is considered, the buckling profile of the nanowire
can be divided into three regimes, i.e., the in-plane buckling, the disordered
buckling in the out-of-plane direction, and the helical buckling, depending on
the debonding density. For a nanowire embedded in matrix, the buckled profile is
almost perfectly circular in the axial direction; with increasing compression, the
buckling spacing decreases almost linearly, while the amplitude scales with the
1/2 power of the compressive strain; the transition strain from 2D mode to 3D
helical mode decreases with the Young’s modulus of the wire and approaches to
1.25% when the modulus is high enough, which is much smaller than nanowires
on the surface of substrates. The study may shed useful insights on the design
and optimization of high-performance stretchable electronics and 3D complex
nanostructures.

Keywords
Buckling mode · Nanowire · Soft substrate · Helical mode · In-plane mode ·
Transition · Embedded wire · Continuum mechanics · FEM · Post-buckling
behaviors · Buckling wavelength · Buckling amplitude

Introduction

Recently, stretchable electronics has attracted wide research interests and holds
great potential applications, such as precision metrology (Stafford et al. 2004;
Wilder et al. 2006), electronic eye cameras (Ko et al. 2008; Rogers et al. 2010),
flexible displays (Chen et al. 2002; Crawford 2005), stretchable electronic circuits
(Kim et al. 2008; Song et al. 2009), and conformable skin sensors (Lacour et al.
2005; Someya et al. 2004), to name a few. In stretchable electronics, the fragile
and stiff elements (e.g., silicon, metal films, or wires) are usually placed on the
elastomeric substrates and precompressed to some fundamental buckling modes
(Audoly and Boudaoud 2008; Charlot et al. 2008; Chen and Yin 2010). The buckling
conformation of the brittle and stiff elements can provide large deformability and
tolerance for stretching, compression, bending, twisting, and even combined loading
modes of the stretchable electronics (Rogers et al. 2010).
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In essence, through buckling the compressive strain is released and replaced
by relative small bending strain of the slender compressed structure. In this way,
the brittle component of electronics can be fabricated into complex buckled form
by precisely adjusting the geometrical structures of the stiff components and the
elastomeric substrates, the mechanical properties of every constitutive component,
and the adhesion between the stiff components and the substrates (Ko et al. 2008;
Xu et al. 2015). Further reduction of the thickness or radius of the buckling
members, although beneficial for accommodating more compressibility (Song et al.
2009; Xiao et al. 2010), is unfortunately limited by the fabrication processes and
functionality of the flexible electronics. Besides, the bending strain is localized at
the crest and valley of the buckling configurations for sinusoidal buckling such
as out-of-plane buckling of nanowires and films. Hence, the failure of the brittle
components usually initiates at the stress concentration region. Furthermore, the
electronic properties of silicon components are closely dependent on the strain
applied in the components, and the localized strain may cause nonuniform electronic
properties in the components (Peng et al. 2009; Sajjad and Alam 2009). An alterna-
tive solution to further enhancing the deformability of the buckling mode is to make
the buckles go three-dimensional, such as the helical buckling model of nanowire
that has been successfully applied to silicon nanowire (SiNW) which can sustain
very large stretchability up to the failure strain of poly-dimethylsiloxne (PDMS) (Xu
et al. 2011). This helical buckling mode can easily handle diverse loading models,
including multi-axial stretching, compression, bending, and twisting, and extend
the usefulness of stretchable electronic elements. Furthermore, systems at micro- or
even nanoscales were fabricated (Chen and Yin 2010), and coaxial electrospinning
with the helical configuration and other spring-like structures were obtained based
on buckling of nanofibers and films on curved substrates (Chen and Yin 2010; Yin
and Chen 2010).

The buckling of nanowires on elastomeric substrate is a very common phe-
nomenon and has important applications in stretchable electronics (Durham and Zhu
2013; Kim et al. 2008; Ryu et al. 2009; Wang et al. 2013), and different buckling
structures have been reported. For example, the buckled nanowire could lie within
the plane of the substrate (in-plane buckling), or perpendicular to the substrate
(out-of-plane buckling), or of special interest here is the helical configuration
(combination of the in-plane and out-of-plane modes) (Xiao et al. 2008, 2010; Xu et
al. 2011). The adhesion strength between SiNW and elastomeric substrate may have
an important role in regulating the buckling mode of SiNW on PDMS substrate.
It has been reported that the ultraviolet/ozone (UVO) treatment may strengthen
the interaction between SiNW and PDMS by forming strong covalent bonds, and
without the treatment, there only exist much weaker Van der Waals forces (Efimenko
et al. 2002; Qin and Zhu 2011). Consequently, no debonding between SiNW and
PDMS is observed after proper UVO treatment and SiNW buckles in the helical
mode. While sliding at the interface is distinctly detected without UVO (with low
adhesion strength) and hence SiNW shows the in-plane buckling mode with lower
strain energy to the out-of-plane buckling.
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Buckling behaviors of slender wires under compression have been studied for
centuries, and buckling modes are strongly affected by the boundary conditions of
the wire. For a beam without continuous support, such as a cantilever or a simply
supported beam, the Euler buckling theory is fairly effective to describe the buckling
configuration and critical loads (Goriely et al. 2008; Oldfather et al. 1933; Tim-
oshenko and Gere 2009; Zeeman 1976). Although the initial curved nanoribbons
with selecting adhesion to the elastomeric substrate can also generate complex
three-dimensional buckle modes, the strain distribution along the nanowires are also
not uniform and the loose contact between the nanoribbons and the substrate may
initiate failure (Xu et al. 2015), and the selecting adhesion is more challenging than
perfect (uniform) adhesion.

Meanwhile, when embedded in a soft matrix with low Young’s modulus, both
2D sinusoidal (planar) and 3D helical (nonplanar) buckling modes of compressed
wires were observed, while a stiffer matrix would drive wires to buckle only in the
3D mode (Su et al. 2014). Based on the Winkler foundation model (Timoshenko
and Gere 2009), they developed the 2D buckling theory of a wire embedded in a
soft matrix and concentrated on the critical strain and initial buckling wavelength
(or wavevector) of sinusoidal buckled wires (Slesarenko and Rudykh 2016; Su et
al. 2014), but the 3D helical buckling mechanism and post-buckling behaviors of
embedded wires have not been explicitly explained.

In this chapter, we first focus on studying the intrinsic helical buckling mecha-
nism of a straight SiNW on the surface of PDMS substrate with perfect interface
adhesion via theoretical analysis and comprehensive finite element method (FEM)
simulations, and further verifying by parallel experiments. A continuum mechanics
approach is established which is extendable to three-dimensional helical coil
buckling on elastomeric substrates. Then, the compressive buckling of a nanowire
partially bonded to an elastomeric substrate is studied via finite element method
(FEM) simulations and experiments, to explore the mechanism of the transition
from in-plane buckling to helical buckling. Thereafter, the helical buckling mechan-
ics is extended to buckling behaviors of embedded wires in an infinite matrix, and
the post-buckling of post-buckling evolution of embedded wires is studied.

Helical BucklingMechanism for a Stiff Nanowire on the Surface
of an Elastomeric Substrate

Experimental

The experimental method previously developed (Xu et al. 2011) was employed in
this work. The experimental results are shown in section “Helical Buckling of a
Nanowire Embedded in a Soft Matrix Under Axial Compression” for comparison
with analytical and FEM simulation results. Below, a brief summary of the
experimental method is provided. SiNWs were synthesized on the silicon wafer by
chemical vapor deposition using gold nanoclusters as catalysts and silane (SiH4) as
vapor-phase reactant. A poly(dimethylsiloxane) (PDMS) substrate with a thickness
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Fig. 1 Schematic diagram of
the helical buckling of SiNW
on PDMS substrate (Xu et al.
2011). First, the PDMS is
prestretched and radiated by
ultraviolet/ozone (Step 2),
which improves the adhesion
strength between PDMS and
SiNW. Then, the SiNW is
transferred to the surface of
PDMS (Step 3) using contact
printing. After releasing the
prestrain in PDMS, helical
buckling occurs in the SiNW
(Step 4)

of 2 mm was prepared using Sylgard 184 (Dow Corning) by mixing the “base” and
the “curing agent” with a ratio of 10:1. The mixture was first placed in a vacuum
oven to remove air bubbles and then thermally cured at 65 ıC for 12 h. Rectangular
slabs of suitable sizes were cut from the cured piece.

Figure 1 schematically shows the process for fabricating buckled SiNWs. A
miniaturized tensile testing stage (Ernest F. Fullam) was used to mechanically
stretch the PDMS slab to the desired levels of prestrain, with both ends of the slab
clamped. The prestrained substrate was radiated under a UV lamp (low-pressure
mercury lamp, BHK) (Fig. 1, Step 2). A contact printing method was used to transfer
the SiNWs on the silicon wafer to the PDMS substrate. The silicon wafer was slid
along the prestrained direction to align the SiNWs (Fig. 1, Step 3). Releasing the
prestrain in PDMS resulted in buckling of the SiNWs (Fig. 1, Step 4). The releasing
step was carried out in-situ under an atomic force microscope (AFM). At a number
of intermittent strain levels, the releasing was paused and AFM images were taken,
based on which the buckling spacing of the SiNWs is deduced. Between such
intermittent strain levels, the releasing (unloading) strain rate was between 10�4/s
and 10�3/s to eliminate the effect of loading rate on the buckling behaviors. The
entire experiment was strain controlled.

Theoretical Analysis

ContinuumModel for Helical BucklingMode
Subjected to an effective compressive strain "com imposed by contraction of the
PDMS substrate (from Steps 3 to 4 in Fig. 1), the SiNW buckles into a helical
buckling configuration, which is schematically shown in Fig. 2. Here, the x axis
is along the axial direction of the SiNW, y axis is perpendicular to the surface of
PDMS, and z axis is along lateral direction in PDMS surface. Based on experimental
observation (Xu et al. 2011), the helical mode of the SiNW is uniform in the middle.
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Fig. 2 Schematic diagram of the three-dimensional helical buckling of the SiNW with y direction
perpendicular to the surface of PDMS substrate and the profile of the buckled SiNW

Therefore, in theoretical model the deflection of the SiNW is approximated by a
helical curve as w D acos(kx) in y direction and v D bsin(kx) in z direction, where
a and b denote the deflection amplitudes in y and z directions, respectively, and k is
the buckling wavevector, a variable related to the screw pitch (or buckling spacing)
h by k D 2� /h. For the simplification of the theoretical analysis, the constitutive
relations of the SiNW and PDMS substrate are assumed as linear elasticity, which
is also consistent with the previous literatures (Mei et al. 2011; Song et al. 2009; Su
et al. 2014).

Let u denote the axial displacement of the SiNW, and the membrane strain "m in
the SiNW (caused by axial tensile or compressive force in the SiNW) is expressed
as

"m D
du

dx
C

1

2

"�
dv

dx

�2

C

�
dw

dx

�2
#

: (1)

As the Young’s modulus of the SiNW (e.g., 200 GPa) is several orders of
magnitude larger than the elastic modulus of the PDMS substrate (e.g., 6 MPa),
the membrane stress in SiNW is assumed as a constant and the shear stress along
the axial direction of SiNW is ignored in the theoretical model. Indeed, based on
the FEM simulation results (see Fig. 16) the membrane strain in SiNW is almost
constant and is much smaller than the bending strain. The shear stress along the
axial direction of SiNW is about one order of magnitude smaller than the traction
stresses perpendicular to the SiNW. However, if the Young’s modulus of the wire
is comparable to that of the substrate, the shear stress may play an important role
in the buckling behaviors of a wire on an elastomeric substrate. The shear stress
effect will be systematically explored in our future works. By assuming constant
membrane strain "m in SiNW, Eq. 1 can be rewritten as

d"m

dx
D

d2u

dx2
C

dv

dx

d2v

dx2
C

dw

dx

d2w

dx2
D 0: (2)
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Substituting the helix deflection of the SiNW into Eq. 2, the governing equation
of the axial displacement u is

d2u

dx2
C
�
a2 � b2

�
k3 sin.kx/ cos.kx/ D 0: (3)

Solving Eq. 3 to obtain the axial displacement

u D

�
a2 � b2

�
k

8
sin .2kx/ C C1x C C2; (4)

where the two parameters C1 and C2 can be determined by the boundary conditions.
By ignoring the rigid body displacement of the SiNW, we obtain C2 D 0. As the
SiNW is perfectly boned to the PDMS substrate, by considering the displacement
compatibility between the SiNW and PDMS substrate we obtain C2 D �"com, where
"com is the effective compressive strain applied to the PDMS substrate. Then, the
membrane strain "m can be obtained by substituting Eq. 4 into Eq. 1 as

"m D
k2
�
a2 C b2

�
4

� "com; (5)

and the membrane energy (per unit length) in the SiNW is

Um D
k

2�

2�=kZ
0

1

2
EA"m

2dx D
EA

2

"
k2
�
a2 C b2

�
4

� "com

#2

; (6)

where E and A denote the Young’s modulus and cross-sectional area of the SiNW,
respectively.

The curvature of the SiNW under helical mode is

� D

�
a2k4cos2.kx/ C b2k4sin2.kx/ C a2b2k6

� 1
2�

a2k2sin2.kx/ C b2k2cos2.kx/ C 1
� 3

2

: (7)

Then, the bending energy (per unit length) in the SiNW is

Ub D
k

2�

2�=kZ
0

EI

2
�2dx; (8)

where I is the moment of inertia of the SiNW in the corresponding bending direction
of the helical curve. In this work, the cross section of SiNW is circular, so that
the moment of inertia I D �R4/4 is equal in all directions, where R is the radius
of SiNW. In fact, the theoretical analysis presented herein is not restricted to the
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circular cross section of the SiNW. Nevertheless, in practice helical buckling is
most likely to appear in nanowires with equal moment of inertial in all directions,
e.g., circular cross section. Otherwise, the buckling would occur with respect to the
direction with the smallest moment of inertia. By substituting Eq. 7 in to Eq. 8 and
integrating, the bending energy per length is

Ub D
EIk4

�
3a4k2 C 2a2b2k2 C 3b4k2 C 4a2 C 4b2

�
16 .a2k2 C a2k4b2 C b2k2 C 1/

3=2
: (9)

For the helical buckled SiNW, additional torsion energy must be taken into
account. As an approximation, the SiNW are regarded as a spring loaded by an
axial force F D EA"m

F D EA

"
k2
�
a2 C b2

�
4

� "com

#
: (10)

Then, the shear force FS and torsional moment T acting on the cross section of
the SiNW are

FS D F

s
.dv=dx/2 C .dw=dx/2

1 C .dv=dx/2 C .dw=dx/2
(11)

and

T D
F .wdv=dx � vdw=dx/q
1 C .dv=dx/2 C .dw=dx/2

: (12)

The torsion and shear energy (per unit length) in the SiNW can be given as

Ut D
k

2�

2�=kZ
0

 
T 2

2GI p
C

FS
2

2GA

!
dx; (13)

employing the helix deflection of the SiNW and substituting Eqs. 10–12 into Eq.
13, the torsional energy per unit length is

Ut D
AE2

�
a2k2Cb2k2�4"com

�2 �
Aa2b2k2CIp

�p
.1Cb2k2/ .1Ca2k2/�1

		
32GI p

p
.1 C b2k2/ .1 C a2k2/

;

(14)

where G is the shear modulus and Ip D �R4/2 the polar moment of inertia.
In order to derive the deformation of the PDMS substrate caused by the helical

buckling of SiNW, the helical buckling is decomposed into two buckling modes,
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i.e., the in-plane buckling mode and out-of-plane buckling mode. Then, the
deformation of the PDMS substrate is the superposition of displacement fields
caused by the two buckling modes, respectively. As the thickness of PDMS substrate
is much larger than the deflection of SiNW, the substrate is regarded as a semi-
infinite solid. Based on the beam theory, the lateral distributed load (per unit length)
of a beam can be derived by the deflection v and axial force F D EA"m of the beam
as P D EId4v/dx4 � EA"md2v/dx2. For the helical buckling mode, the deflection can
be decomposed into out-of-plane deflection w D acos(kx) and in-plane deflections
v D bsin(kx), respectively. Then, the distributed load applied on the SiNW in y
direction (out-of-plane direction) is Ty D EId4w/dx4 � EA"md2w/dx2 D �Pycos(kx)
where Py D �EAak2(a2k2/4 � "com) � EIak4, while the distributed load
in z direction is Tz D EId4v/dx4 � EA"md2v/dx2 D �Pzsin(kx) where
Pz D �EAbk2(b2k2/4 � "com) � EIbk4.

Using the Green’s function method, for unit normal force acting at point (x1, 0,
z1) on the surface of an incompressible semi-infinite solid, the normal displacement
at point (x, 0, z) can be given as [(x � x1)2 C (z � z1)2]�1/2/(�ES), where
ES D ES/(1 � �S

2) is the plane-strain modulus of the elastomeric substrate with
�S the Poisson’s ratio of the substrate. For the average normal force Pycos(kx)/(2R)
over the width 2R, the normal displacement on the surface of the PDMS substrate
can be integrated as wsub D

R R

�R

Py cos.kx/

�ESR
K0 .kjz � z1j/ dz1, where K0(kjz � z1j)

is the modified Bessel function of the second kind (Abramowitz and Stegun 1972;
Timoshenko et al. 1970). As the buckling spacing of SiNW is much larger than the
radius of SiNW, i.e., kR � 1, the dominant term in the Taylor series expansion of
the normal displacement is

wsub D
Py cos.kx/

�ESR
Œ2R .1��C ln 2/ � .RCz/ ln .kjRCzj/ � .R�z/ ln .kjR�zj/� ;

(15)

where � D 0.577 is the Euler’s constant. Following the same procedure,
for unit lateral force (z direction) acting at the point (x1, 0, z1) on the
surface of an incompressible semi-infinite solid, the lateral displacement at

point (x, 0, z) is .1��S/.x�x1/2C.z�z1/2

�.1��S/ESŒ.x�x1/2C.z�z1/2�
3=2 . Then, for the average lateral

force Pzsin(kx)/(2R) over the width 2R, the lateral displacement (z direc-
tion) on the surface of the PDMS substrate can be integrated as vsub DR R

�R
Pz sin.kx/

�ESR.1��S/
Œ.1 � �S/ K0 .kjz � z1j/ C �Skjz � z1jK1 .kjz � z1j/� dz1, where

K1(kjz � z1j) is the modified Bessel function of the second kind. For kR � 1,
the dominant term in the Taylor series expansion of the lateral displacement is

vsub D
Pz sin.kx/

�RES



2R

�
1

1 � �S
� � C ln 2

�
� .R C z/ ln .kjR C zj/

� .R � z/ ln .kjR � zj/

� (16)
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Therefore, the strain energy of the PDMS substrates (unit length) caused by the
out-of-plane and in-plane buckling of the SiNW is

US D Uout-of-plane C Uin-plane D k
2�

Z 2�=k

0

Z R

�R

1
2

h
Py cos.kx/

2R
wsub C

Pz sin.kx/

2R
vsub

i
dzdx

D
Py

2

4�ES
Œ3 � 2� � 2 ln.kR/� C Pz

2

4�ES
Œ5 � 2� � 2 ln.kR/� ;

(17)

and the total potential energy (per unit length) of the whole system including the
SiNW and PDMS substrate is

Utotal D Um C Ub C Ut C US

�
k

2�

2�
kZ
0

RZ
�R

Py cos.kx/

2R
Œwsub � a cos.kx/� dzdx;

�
k

2�

2�
kZ
0

RZ
�R

Pz sin.kx/

2R
Œvsub � b sin.kx/� dzdx;

(18)

where the two integral terms in Eq. 18 represent the deformation compatibility
between the SiNW and the PDMS substrate. The admissible solution should make
the two integral terms equal zero. Substituting Eqs. 6, 9, 14, and 17 into Eq. 18, the
total potential energy of the whole system can be written as

Utotal D
EA

2

"
k2
�
a2 C b2

�
4

� "com

#2

�

h
EAak2

�
a2k2

4
� "com

	
C EIak4

i
a

2

�

h
EAbk2

�
b2k2

4
� "com

	
C EIbk4

i
b

2
C

EIk4
�
3a4k2 C 2a2b2k2 C 3b4k2 C 4a2 C 4b2

�
16.a2k2 C a2k4b2 C b2k2 C 1/

3
2

C
AE2

�
a2k2 C b2k2 � 4"com

�2 �
Aa2b2k2 C Ip

�p
.1 C b2k2/ .1 C a2k2/ � 1

��
32GI p

p
.1 C b2k2/ .1 C a2k2/

�

h
EAak2

�
a2k2

4
� "com

	
C EIak4

i2

4�ES

Œ3 � 2� � 2 ln.kR/�

�

h
EAbk2

�
b2k2

4
� "com

	
C EIbk4

i2

4�ES

Œ5 � 2� � 2 ln.kR/� :

(19)

As the PDMS substrate is almost volume incompressible, the Poisson’s ratio �S

is set as 0.5. Then, the theoretical solution of the helical buckling spacing and critical
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buckling strain can be obtained by minimizing the total potential energy Utotal with
respective to a, b, and k, that is

k D

"
Es

EI

2�
�
1 C �2

� �
1 � � � ln.kR/ C �2.2 � � � ln.kR//

�
Œ3 � 2� � 2 ln.kR/ C �2.5 � 2� � 2 ln.kR//�

2

#1=4

; (20)

and

"cr D
I

A
k2 C

�Es
�
1 C �2

�
Ak2E Œ3 � 2� � 2 ln.kR/ C �2 .5 � 2� � 2 ln.kR//�

; (21)

respectively, where � D b/a is the ratio between the in-plane displacement and out-
of-plane displacement amplitude for the helical buckling of SiNW. If the helical
buckling mode degenerates to the out-of-plane (� D 0) or in-plane (� �! 1)
buckling mode, Eq. 20 can degenerates to the buckling wavevector of the out-of-
plane or in-plane buckling mode reported in previous work, respectively (Xiao et al.
2008, 2010), which verifies the validity of the theoretical model presented herein.
Furthermore, as the right-hand side of Eq. 20 changes very slowly with kR, Eq. 21
can be approximately represented as

k D

 
Es

EI

!1=4 �
0:4793�

�2:3 C 23:31
C 0:7399

�
: (22)

For the SiNW with Young’s modulus 200 GPa and radius of 15 nm and the
PDMS substrate with elastic modulus 6 MPa, the relations between the helical
buckling wavevector k and � described by Eqs. 20 and 22 are shown in Fig. 3,

Fig. 3 The relations between
the wavevector k and �

described by Eqs. 20 and 22,
respectively.
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respectively. It is suggested the relation between k and � can be well described
by Eq. 22. The wavevector decreases with the increasing of � and for the prefect
helical buckling mode with � D 1 the wavevector can be approximately given by

k D 3
4

�
Es
EI

	1=4

, which gives the initial helical buckling spacing as

h D
2�

k
D

8�

3

�
EI=ES

�1=4
: (23)

This relation will be further verified by FEM simulation results in section “FEM
Simulations.”

Substituting Eq. 20 into Eq. 21, the critical buckling strain can be rewritten as

"cr D

s
ES

E
f .�/ ; (24)

where f (�) is

f .�/ D

s
.1 C �2/

8 Œ.1 � � � ln.kR// C �2 .2 � � � ln.kR//�

.5 � 4� � 4 ln.kR// C �2 .9 � 4� � 4 ln.kR//

.3 � 2� � 2 ln.kR// C �2 .5 � 2� � 2 ln.kR//
:

Interestingly, if we ignore the very slow change of f (�) with kR, the critical buckling
strain is independent on the radius of the SiNW, R. The relation between the critical
buckling strain "cr and the displacement amplitude ratio � is shown in Fig. 4. Similar
to the relation between the buckling wavevector and �, the critical buckling strain

Fig. 4 The relation between
the critical buckling strain
and the displacement
amplitude ratio � described
by Eq. 24
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decreases with the increasing of �. Besides, the same scaling law
q

ES=E of the
critical bucking strain has also been found in previous literatures for the in-plane or
out-of-plane buckling mode of a nanowire on an elastomeric substrate (Xiao et al.
2008, 2010).

Both experiments and FEM simulations (below) indicate that the number of
helical buckling coil in SiNW keeps constant during compression of the PDMS
substrate (see Fig. 8). Assuming the initial length of SiNW is l0 and the number
of helical bucking coil is n, the initial helical buckling spacing is h D l0(1 � "cr)/n
and the post-buckling spacing is hp D l0(1 � "com)/n. Thus, the relation between the
post-buckling spacing hp and compressive strain "com is

hp D h
1 � "com

1 � "cr
D

8�

3

�
EI

ES

�1=4
1 � "com

1 � "cr
: (25)

The post-buckling spacing is determined by the cross section dimension of the
nanowire, the Young’s modulus of the nanowire and substrate, and the compressive
strain, similar to that reported in previous theoretical works (Jiang et al. 2007; Kalita
and Somani 2010).

In order to obtain the helical buckling displacement, the total potential energy of
the SiNW and PDMS system (Eq. 19) is minimized by conjugate gradient method
with respect to a and b. For the effective compressive strain 34%, the out-of-
plane and in-plane displacement amplitudes for different diameters of SiNW from
10 nm to 100 nm and different Young’s modulus of nanowire from 10 GPa to
250 GPa are shown in Tables 1 and 2, respectively. Here, the elastic modulus of the
PDMS substrate is set as 6 MPa. Generally, both of the out-of-plane and in-plane
displacement amplitudes a and b increase with the diameter and Young’s modulus of
the nanowire. Furthermore, the out-of-plane and in-plane displacement amplitudes
can be well described by

a D
1:259

k

p
"com � "cr (26)

Table 1 The out-of-plane
(a) and in-plane (b)
displacement amplitudes for
different diameters of SiNW

D/nm 10 30 50 70 100

a/nm 59.8 179 299 418 598
b/nm 58.0 174 290 407 580

Table 2 The out-of-plane (a) and in-plane (b) displacement amplitudes for different Young’s
modulus of nanowire

E/GPa 10 50 100 150 200 250

a/nm 86.7 128 151 167 179 189
b/nm 83 124 147 162 174 184
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and

b D
1:225

k

p
"com � "cr: (27)

The largest discrepancy between the predictions from Eqs. 26 and 27 and the
values of a and b obtained by numerically solving Eq. 19 is smaller than 3.5%.

Comparison of the Bending Strain for Different BucklingModes
The helical buckling can significantly release the bending strain in SiNW, so that
SiNW can sustain larger compression in helical mode than that of the in-plane or
out-of-plane modes, enhancing the stretchability (Xu et al. 2011). In this section,
the maximum bending strain in SiNW for different buckle modes is analyzed.

As studied in section “Model and Method,” the deflection of SiNW is represented
by a general helical form, that is w D acos(kx) in y direction and v D bsin(kx) in z
direction. If a D 0, it is the in-plane mode; while for b D 0, it is the out-of-plane
mode. Based on the general helical form, the maximum bending strain in SiNW can
be given as (Xu et al. 2011)

"max D

8<
:

aR=
�
b2 C

�
hp=2�

�2	
; a � b

bR=
�
a2 C

�
hp=2�

�2	
; a < b

: (28)

For the diameter of SiNW D D 30 nm at a given post-buckling spacing
hp D 1.2 �m (corresponding to an effective compressive strain of "com D 19.36%
for helical buckling). The contour map of "max for different values of a and b is
shown in Fig. 5. The contour map is symmetric along the line of a D b and has the
lowest values when a D b. Beyond the line a D b, "max increases with the increasing
of b (the in-plane displacement amplitude) and decreases with the increasing of a
(the out-of-plane displacement amplitude), whereas below the line a D b, the trend
reverses. Taking the failure strain of SiNWs as 6.5% (Xu et al. 2011; Zhu et al.

Fig. 5 Maximum local strain
along the axial direction of
SiNW for the SiNW with
Young’s modulus 200 GPa,
diameter 30 nm, and PDMS
with elastic modulus 6 MPa.
The line represents the perfect
circular buckling mode
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2009), from the contour map we can find that the fracture strain is always larger
than "max around the line a D b, which represents the perfect circular buckling
mode, even if some displacement amplitudes (a or b) become large. This means
that the stretchability of helical buckled SiNW can be enhanced, which echoes
the fact that during experiments the helical buckled SiNW did not fail even upon
the failure of PDMS substrate (Xu et al. 2011). The stretchability of helical coil
can further benefit by increasing the failure strain of PDMS and bonding strength
of the interface between SiNW and PDMS. For a D b, another benefit is that the
distribution of the bending strain along the axis of the nanowire is uniform which
will be discussed in Sect. 4.5.

Energetically Favorable Helical BucklingMode of SiNWs
Based on the total potential energy of the SiNW and PDMS substrate (Eq. 19), a
typical energy landscape for different buckling profiles (i.e., different displacement
amplitudes in the in-plane and out-of-plane direction) is given in Fig. 6, in which
the Young’s modulus of SiNW is set as 200 GPa and the elastic modulus of PDMS

Fig. 6 Energy landscape for
different buckling profiles of
SiNW on PDMS substrate.
(a) Three-dimensional view
of the energy landscape and
(b) plane view of the energy
landscape
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is set as 6 MPa, respectively, and the radius of SiNW is 15 nm and the effective
compressive strain is 30%. It is shown that both of the in-plane and out-of-plane
buckling modes are at the local minimum points of the potential energy landscape.
This can explain why in some of the previous experiments the in-plane buckling
for a nanowire on an elastomeric substrate has been observed, while in others the
out-of-plane buckling has been observed. However, as shown in Fig. 6 the helical
buckling has the global minimum potential energy which means the helical buckling
is the most favorable buckling mode. Through properly adjusting the loading rate
and interface adhesion strength between the nanowire and elastomeric substrate, the
helical buckling can be observed in experiments.

FEM Simulations

To verify the theoretical model of helical buckling, FEM simulations using
ABAQUS is conducted. For simplicity, we only consider Step 4 in Fig. 1 which is
equivalent to applying an effective compressive strain ecom to the PDMS substrate.
The in-plane dimensions of PDMS substrate is 40 � 40 �m with thickness of 5 �m,
which are much larger than the initial helical buckle spacing and amplitudes of
SiNW. SiNW is taken as beams with circular cross section. Besides, the binding
between PDMS substrate and SiNW is assumed strong enough without debonding
in all simulations. SiNW is consisted of beam elements (B31) with linear elasticity
in ABAQUS and for PDMS substrate it is described by linear elasticity with three-
dimensional continuum elements (C3D8R), which is consistent with the theoretical
model presented in section “Mechanism of the Transition from In-plane Buckling to
Helical Buckling for a Stiff Nanowire on the Surface of an Elastomeric Substrate.”
Indeed, the linear elasticity has been widely applied to the PDMS substrate and can
give reasonable buckling behaviors of a stiff element on an elastomeric substrate
in previous literatures (Mei et al. 2011; Song et al. 2009; Su et al. 2014). We have
also conducted the FEM simulation by assuming hyperelastic constitutive relation
(Neo-Hooke model) for the PDMS substrate. The helical buckling of the SiNW is
also observed with small difference of the buckling spacing and amplitude to that
of the PDMS substrate described by linear elasticity. Therefore, in order to directly
compare with theoretical results, the linear elasticity has been employed to describe
the PDMS substrate. Although the Young’s modulus of SiNWs may be dependent
on the diameter of SiNWs (Zhu et al. 2009), such size dependency is ignored in
the current study. Different diameter of the SiNW ranging from 10 nm to 100 nm
and Young’s modulus ranging from 10 GPa to 250 GPa are also considered in the
comprehensive FEM simulations.

Helical Buckling of SiNW on PDMS Substrate
We compare the helical buckle profiles between FEM simulations and experiments
to highlight the main geometrical features. The Young’s modulus and diameter
of the SiNW used in simulation are 187 GPa for a typical diameter of SiNW
28 nm (Xu et al. 2011; Zhu et al. 2009). As the elastic modulus of PDMS is
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varied after being radiated by ultraviolet/ozone (Step 2), in order to fit the initial-
buckle spacing measured in experiments (1.65 �m) its elastic modulus is set as
3.76 MPa, which is in the range of the elastic modulus of PDMS reported in
previous literatures (Ryu et al. 2009; Song et al. 2009; Zhou et al. 2015). The typical
simulated buckling configuration of SiNW on PDMS substrate after compression is
shown in Fig. 7a, in which the helical coil morphology is easily recognized, and
it is noticed that the deformation of the middle of SiNW is uniform. The buckling
configuration in parallel experiments is demonstrated through planar and 3D atomic
force microscopy (AFM) images of the helical SiNW, as indicated in Fig. 7b.

The evolution of the buckling profile of SiNW on PDMS substrate obtained from
FEM simulation is shown in Fig. 8a. As compression proceeds, the displacement
amplitudes of the SiNW gradually increase, while the post-buckling spacing grad-
ually decreases, which agrees well with the experimental observations, see Fig. 8b.
The two arrows in Fig. 8a are fixed reference points on the SiNW and interestingly;
they always correspond to the peaks of the buckling waves during compression.
This implies that the peaks always locate at the same points of the SiNW, and the
number of coil waves is constant during compression. Further analysis indicates
that the relative distribution of the buckling displacement on the SiNW does not
change.

The detailed relation between the post-buckling spacing and effective compres-
sive strain for the helical buckling is given in Fig. 8. During helical buckling the
number of coils in SiNW is constant, for example, there are always seven coils
between the two reference arrows when the compressive strain varies from 5.07%
to 26.5%. The relation between the post-buckling spacing and effective compressive
strain is given in Fig. 9 for the experiments (red squares), simulation results (black

Fig. 7 The typical
configurations of the helical
buckling of a SiNW on
PDMS substrate. (a) FEM
simulations (Top figure: the
color contour represents the
distribution of the normal
strain in x direction "xx with
figure legend presented
underneath and the scale bar
is 1 �m. Bottom figure: the
three-dimensional
configuration of SiNW) and
(b) experiments (top figure:
planar AFM image. Bottom
figure: three-dimensional
AFM image. The gray level
represents the height of the
surface of the PDMS
substrate in z direction.)
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Fig. 8 The snapshots of the typical configuration (top view) for the helical buckling of SiNW on
PDMS substrate at different compressive strains. (a) FEM simulations (the color contour represents
the distribution of "xx) and (b) experiments. The scale bar is 1 �m
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Fig. 9 The post-buckling spacing for helical bucking for different effective compressive strain.
The experiments are red squares, simulation results are black circles, and theoretical predictions of
Eq. 25 are black dashed line
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Fig. 10 (a) The FEM simulation results of the in-plane and out-of-plane displacement amplitudes
for different effective compressive strain. (b–f) Side views (along the axial direction of SiNW) of
the typical buckling profiles of SiNW for several effective compressive strains. The elastic modulus
of PDMS is set as 6 MPa, the diameter and Young’s modulus of SiNW are 30 nm and 200 GPa,
respectively

circles) and theoretical predictions of Eq. 25 (black dotted line). Nearly perfect
accordance with experiments can also verify the effectiveness of both the theoretical
model and the FEM results.

Evolution of the Helical Buckling Profile During Compression
FEM simulation results show that the helical buckling profile of SiNW actually
changes from a vertical ellipse to a lateral ellipse, and then approaches to a circle
when the PDMS substrate is being gradually compressed. Figure 10a shows the
amplitude evolution and Fig. 10b–f shows the changes of the SiNW side-view
profiles (along the axial direction) with the effective compressive strain. As the
effective compressive strain increases exceeding the initial buckling strain, first
the out-of-plane displacement increases quickly and the in-plane displacement
is almost zero, see Fig. 10a, b. Then, the in-plane displacement becomes more
prominent in contrast to slightly decreasing of the out-of-plane displacement as
the effective strain gets larger. With further compression, both the in-plane and
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Fig. 11 The FEM simulation results of the ratio of in-plane displacement amplitude to out-of-
plane displacement amplitude for the helical buckling of SiNW with different Young’s modulus

out-of-plane amplitudes increase, and eventually the helical coil profile of SiNW
becomes circular to accommodate the large local strain, with the ratio of in-
plane amplitudes to out-of-plane amplitudes shown in Fig. 11. In our current FEM
simulations, due to the extensively distorted elements in the buckling area, the
maximum compressive strain applied to the PDMS substrate is 35% smaller than the
experimental value 42%. However, as the buckling profile is gradually approaching
to a circle with compression, which is similar to the experiments, we can predict the
helical buckling profile is a circle to release the bending strain in SiNW with further
increasing the compressive strain.

As shown in Fig. 11, the ratio of in-plane displacement amplitude to out-of-
plane displacement amplitude quickly increases with the compressive strain when
the compressive strain is larger than the initial buckling strain, and reaches the
local acmes at the compressive strain about 4%. Generally, the nanowires with
higher Young’s modulus have larger peak values of the displacement amplitude
ratio. Thereafter, the ratio conspicuously decreases with the magnitude approaching
1. The same trend in the displacement amplitude ratio was observed in experi-
ments (Xu et al. 2011) (note that the minimum effective compressive strain in
the experiments was larger than 5%, so only the decreasing trend was able to
observe in experiments). Since the displacement amplitude ratio approaching 1 can
accommodate larger effective compressive strain (e.g., the circular profile can take
the largest strain), the buckled NWs appear to be self-adaptive or “smart” to search
for an optimum displacement amplitude ratio.

Helical Buckling Spacing
In order to obtain the initial buckling spacing in FEM simulations, we should first
clarify the onset of buckling. Here, the strain energy of SiNW is given in Fig. 12a
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Fig. 12 (a) The strain energy
of a SiNW on PDMS
substrate during compression
in FEM simulation and (b)
the out-of-plane displacement
of SiNW at the onset of
buckling, where the modulus
of SiNW and PDMS is
200 GPa and 6 MPa,
respectively, and diameter of
SiNW is 30 nm

and a clear bifurcation point is found in the strain energy-compressive strain curve.
Therefore, the onset of the buckling is defined as the bifurcation point. As the
major displacement of SiNW is perpendicular to the surface of PDMS when the
compressive strain is smaller than 2%, as shown in Figs. 10 and 11, the out-of-
plane displacement of SiNW at the bifurcation point is used to determine the initial
buckling spacing, as shown Fig. 12b. For the case shown in Fig. 12b, the out-of-
plane displacement v of SiNW is about 50 nm much smaller than the initial buckling
spacing, which echoes this point is very close to the initial buckling point. Because
of the computational accuracy, it is impossible to determine the exact initial buckling
point in FEM simulation. As the influence of the boundary, the buckling amplitude is
not uniform. However, the buckle spacing is quite uniform, and the initial buckling
spacing h is 1.47 �m, see Fig. 11b.

The contour of axial normal strain ("xx) on the surface of PDMS corresponding
to the bifurcation point in Fig. 12 is given in Fig. 13a. The initial buckling spacing
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Fig. 13 (a) The axial normal
strain "xx contour (top view)
at the onset of buckling
shown in Fig. 12. The scale
bar is 1 �m. The relations of
the initial buckling spacing to
the Young’s modulus of
SiNW (b) and diameter of
SiNW (c). The dotted line is
the theoretical prediction
from Eq. 23

increases as the Young’s modulus of SiNW. FEM simulation shows that the initial
buckling spacing is almost proportional to the 1/4 power of the Young’s modulus
of SiNW and is linear to the diameter of SiNW (see Fig. 13b, c), which agrees well
with Eq. 23.

After the initial buckling, the deflection of SiNW increases accompanied by the
decreasing of the post-buckling spacing as the compression proceeds. Figure 14a
shows the axial normal strain contour ("xx) on the surface of PDMS at the
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Fig. 14 (a) The FEM
simulation results of the
helical buckling
configurations at the effective
compressive strain of 18%
("xx contour and top view).
The scale bar is 1 �m. The
relations of the post-buckling
spacing to Young’s modulus
of NW (b) and diameter of
SiNW (c). The dotted line is
the theoretical prediction
from Eq. 25

effective compressive strain of 18%. The post-buckling spacing increases with the
increasing of SiNW modulus for a given compressive strain, as shown in Fig.
14b, c. Both the theoretical (see Eq. 25) and FEM simulation results indicate
that the post-buckle spacing scales with the 1/4 power of the SiNW modulus and
increases linearly with SiNW diameter, the same trends as the initial buckling
spacing.
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Displacement Amplitudes of Helical Buckling
In Fig. 15, the comparisons of the in-plane and out-of-plane displacement ampli-
tudes between the theoretical predictions (Eqs. 26 and 27) and FEM simulations
are presented. The FEM simulation results show that the in-plane and out-of-plane
displacement amplitudes increase linearly with SiNW diameter and are almost
proportional to the 1/4 power of the SiNW modulus, which fit very well to the
theoretical predictions. Besides, the displacement amplitudes in y and z directions
are almost equal for the effective compressive strain larger than 34%, which means
the SiNW buckles into a circular coil form, helping to accommodate larger bending
deformation with less maximum local strain. Previous studies indicate that even if
the effective compression strain reaches as high as 50%, the maximum local strain in
SiNW is less than 3%, considerably lower than the fracture strain of SiNWs (6.5%)
(Xu et al. 2011).

Fig. 15 The in-plane and
out-of-plane displacement
amplitudes for the helical
buckling of SiNW on PDMS
substrate versus (a) modulus
and (b) diameter of SiNW.
The dashed lines are the
theoretical predictions from
Eqs. 26 and 27



7 Helical Buckling Behaviors of the Nanowire/Substrate System 265

Strain Distribution in SiNW
The advantage of the helical buckling of SiNW can be revealed from the FEM
simulation results in Fig. 16a. The membrane strain in SiNW, compared to the
total strain (mainly the bending strain), is considerably small and can be regarded
as a constant, verifying the assumption in section “Model and Method.” The inset
of Fig. 16a shows the distribution of the maximum local strain along the helical
buckling configuration. The maximum local strain at the cross section of SiNW is
quite uniform and much smaller than the externally imposed compressive strain in
the PDMS substrate, which is benefical to ensure the uniform electronic properties
along the SiNW. However, there is still a small fluctuation of the maximum local
strain with the fluctuation period equal to the post-buckling spacing, see Fig. 16a.
This is because the helical buckling profile of SiNW is not a perfect circle and the

Fig. 16 (a) FEM results of
the membrane strain and the
maximum local strain at the
cross section of SiNW along
the axial direction of SiNW
for a given compressive strain
of 25%. The inset shows the
distribution of the maximum
local strain in the helical
buckling configuration of
SiNW. The Young’s modulus
and diameter of SiNW are
200 GPa and 30 nm,
respectively. (b) The
maximum local strain of
SiNW versus the effective
compressive strain
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maximum local strain is the largest at the points of the largest deflection point. The
maximum local strain versus the effective compressive strain for different SiNW and
PDMS modulus (with constant diameter of SiNW, i.e., 30 nm) is shown in Fig. 16b.
At a small effective compressive strain the maximum local strain increases fast, and
as the effective compressive strain gets larger, the maximum local strain becomes
more stable, which agrees well with the previous studies (Xu et al. 2011).

The nanowire/substrate modulus ratio has a profound impact on the maximum
local strain. In Fig. 16b, the maximum local strain for several modulus ratios (E/Es)
are given, and as the modulus ratio decreases, the maximum local strain decreases
remarkably. This is because the post-buckling spacing hp is proportional to the 1/4
power of the nanowire/substrate modulus ratio E/Es and based on Eq. 28 the larger
value of hp has smaller bending strain. In particular, when the modulus ratio is small,
e.g., 1/200,000 (when Es D 1 MPa and E D 200 GPa), the maximum local strain
is smaller than 3% even at a large effective compressive strain 25%, and such a
helical buckled coil profile may accomodate large deformation. This phenomenon is
attributed to the deformation homogeneity along the SiNW for helical coil buckling.
Note that the fracture strain of SiNW with a diameter of 28 nm is 6.5%, and thus
one does not expect fracture to occur even for very large effective compressive strain
(such as 50% in previous experiments (Xu et al. 2011)).

Mechanism of the Transition from In-plane Buckling to Helical
Buckling for a Stiff Nanowire on the Surface of an Elastomeric
Substrate

In most previous works about the buckling behaviors of the nanowire/substrate
system, the nanowires were assumed perfectly bonded to the elastomeric substrates
throughout deformation, and the effect of the interface debonding was ignored.
However, for the buckling of the SiNWs on the PDMS substrate, the UVO treatment
time plays an important role in the buckling mode of the SiNWs. The SiNWs
may partially debond from the PDMS substrate during compressive buckling,
especially with less UVO treatment time. Though the competition between the in-
plane buckling mode and out-of-plane buckling mode of SiNW has been studied
in recent literature, the selection of the buckling mode is determined by minimum
moment of inertia due to the noncircular cross section of the SiNW (Duan et al.
2015). In this section, the buckling behaviors of the SiNWs partially bonded to the
PDMS substrate are studied to explore the mechanism of the transition from in-plane
buckling to helical buckling.

Model andMethod

As shown in Fig. 17, a silicon nanowire (SiNW) is placed on the PDMS substrate
and a uniaxial compression is applied on the PDMS substrate in x direction (the axial
direction of SiNW); this is equivalent to releasing the prestrain in PDMS substrate.
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Fig. 17 Model of a SiNW partially bonded to the PDMS substrate. The yellow dots represent the
constraint between the SiNW and the PDMS substrate and d is the distance between the adjacent
constraint points. A uniaxial compression is applied to the PDMS substrate in x direction

Only the yellow dots in the SiNW are constrained to the PDMS substrate, so as
to represent the partial bonding between the SiNW and the PDMS substrate. The
constraint between the SiNW and the PDMS is the node-type-constraint, that means
the corresponding nodes in the SiNW and the PDMS have the same displacement.
Indeed, we have checked different type constraints, e.g., node-type constraint,
element-type-constraint, and the influence to the critical buckling strain of SiNW
is negligible.

The distance between adjacent constraint points is d, as shown in Fig. 17. As
shown in our previous study, the compression buckling mode of a perfectly bonded

SiNW (d/h D 0) is helical and the buckling spacing is h D 7:89 R
�
ENW=ES

�1=4

determined by the radius R, the elastic modulus ENW of the SiNW, and the effective
elastic modulus ES of the PDMS substrate. Here, the effective elastic modulus of
the substrate is ES D ES

�
1 � 	2

S

�
, where ES and 	S are the elastic modulus and

Poisson’s ratio of the substrate. Such a helical model pertains when d/h is close to
0, whereas for large d/h, the buckling of the SiNW transfers to the in-plane mode.

Finite element method (FEM) simulations are carried out to study the buckling
behaviors of the SiNW on PDMS substrate via the commercial software ABAQUS.
The PDMS substrate is simplified as an approximately incompressible isotropic
material with Young’s modulus ES D 3.76 MPa and Poisson’s ratio �NW D 0.475,
and the SiNW is simplified as a beam with circular cross section. The elastic
modulus and Poisson’s ratio of the SiNW are ENW D 187 GPa, �NW D 0.3 (Zhu et
al. 2009). The radius of SiNW is R D 15 nm in consistent with parallel experiments.
The PDMS substrate and the SiNW are discreted by C3D8R and B31 elements,
respectively. In all FEM simulations, the length of the SiNW is 20 �m, which
is much longer than the buckling wavelength of the SiNW studied in this work,
and the SiNW lies in the middle of the PDMS surface and far away from the
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surface edges (which is also consistent with the parallel experiments). Therefore, the
boundary effect is regarded small. Although finite boundary is utilized in our FEM
simulation, in the middle part of SiNW the buckling configuration exhibits excellent
periodicity (see Fig. 23). Mesh convergence is carried out to ensure the reliability of
numerical results. Different constraint densities (different d/h) are studied to explore
the mechanism of the buckling mode transition.

Results and Discussion

BucklingModes
The buckling modes of the SiNW for different d are shown in Fig. 18, which can
be divided into three distinct regimes as the constraint density increases. When
the spacing between adjacent constraint points is large enough, examples such
as d D 2.5 �m and d D 1 �m, the buckling of the SiNW is in-plane of the
PDMS substrate. The in-plane mode is sinusoidal, and the wavelength of the in-
plane buckling is 2d. The maximum strain in the SiNW locates at the maximum
curvature point (middle between two constraint points), whereas the strain (as
well as curvature) at the constraint point is almost 0. As the constraint density
increases, e.g., d D 0.8 �m and d D 0.5 �m, the out-of-plane displacement of
the SiNW becomes significant. The in-plane displacement is still sinusoid like, but
the out-of-plane displacement is disordered. We term this mode as the disordered
buckling in the out-of-plane direction. As the constraint density increases further,
the configuration of the buckled SiNW becomes the helical coil, as shown for
d D 0.3 �m and d D 0.1 �m in Fig. 18. Besides, for the helical buckling the

Fig. 18 The buckling modes
of the SiNW partially bonded
to a PDMS substrate. The
yellow dots represent the
constraints (bonded sites)
between the SiNW and the
PDMS substrate. Color
contour of the maximum
principal strain in the buckled
configuration is given



7 Helical Buckling Behaviors of the Nanowire/Substrate System 269

strain distribution in the SiNW is much more uniform than that for the in-plane
and disordered modes.

The corresponding in-plane and out-of-plane displacements are shown in Fig.
19 for d D 1 �m, 0.5 �m, and 0.1 �m, respectively. For d D 1 �m, the in-plane
displacement is periodic and much larger than the out-of-plane displacement. While

Fig. 19 The in-plane (uz)
and out-of-plane (uy)
displacements of SiNW
corresponding to different
modes in Fig. 18 (d D 1 �m,
0.5 �m, and 0.1 �m),
respectively
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Fig. 20 The buckling wavelength of SiNW for different constraint densities. The red dashed line
indicates the theoretical buckling spacing h of the perfectly bonded SiNW and the black dashed
line is 2d. Error bars are given for the out-of-plane disordered buckling mode

for d D 0.5 �m, the amplitude of the out-of-plane displacement is of the same
order as the in-plane displacement; however, it is fairly irregular (while the in-
plane component remains approximately periodic which determines the buckling
wavelength). For the helical buckling (d D 0.1 �m), the in-plane and out-of-plane
displacements are similar. Nevertheless, the phase angle difference of the in-plane
and out-of-plane displacements is about 90ı, which generates the helical coil form.

The buckle spacing (or buckling wavelength for in-plane buckling) of the SiNW
for different constraint densities are shown in Fig. 20, from which the three regimes
are obvious. For the in-plane mode, the buckling wavelength is exactly 2d. While
for the disordered mode, the relation between the buckling spacing and the distance
d is not monotonous. As the distance d approaches to 0, the profile of the SiNW
transfers to the helical buckling, whose wavelength approaches to the theoretical

prediction of a perfectly bonded SiNW, h D 7:89R
�
ENW=ES

�1=4
. Substituting the

parameters used in the present FEM simulation, the theoretical helical buckling
spacing is h D 1.64 �m. Further parametric studies show that the buckling mode
of the SiNW is mainly governed by the ratio d/h. For d/h > 0.50, it is the in-plane
buckling and for 0.27 < d/h < 0.50, it is the disordered mode. While, for roughly
d/h < 0.27, the buckling of the SiNW is predominantly helical.

The critical buckling strain, namely, the compressive strain applied to the PDMS
substrate when the SiNW buckling initiates, is shown in Fig. 21. For the in-plane
mode, the buckling behavior between adjacent constraint points is analogous to that
of a simple supported beam with length d. Based on the Euler buckling theory,
the initial buckling strain for a circular beam with radius R is ( R/2d)2, which
reasonably fits the simulated buckling strain of the in-plane modes. As the constraint
density increases, the critical buckling strain gradually diverges from the Euler beam
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Fig. 21 The critical buckling strain of the partially bonded SiNW with different constraint
densities. The red dashed line indicates the Euler beam buckling strain

theory, so as to keep a lower strain energy upon buckling. With further increasing
the constraint density, the behavior approaches to that of a perfectly bonded SiNW
and the initial buckling strain is independent on the distance d.

Strain Distribution in SiNW
The strain distribution in the SiNW is another important factor that influences the
performance of the stretchable electronics. For example, fracture may initiate at the
largest strain point and the electrical properties of the SiNW are also affected by
the strain in it (Peng et al. 2009; Sajjad and Alam 2009). The strain distribution
along the axis of the SiNW is shown in Fig. 22a for different constraint densities
d D 2.5 �m, 0.5 �m, and 0 �m. Here, the strain represents the maximum principal
in the cross section of the SiNW. The strain distribution for the in-plane mode
(d D 2.5 �m for example) fluctuates with the maximum value attained at the middle
of two adjacent constraint points, and the minimum value at the constraints. For the
disordered mode (e.g., d D 0.5 �m), the strain fluctuation is more severe with the
maximum exceeding 5% and minimum below 2%. Relatively speaking, the strain
distribution in the helical mode is more uniform and oscillates, whose maximum
4.76% is slightly smaller than the disordered mode.

A map of the amplitudes of the maximum strain and the maximum in-plane
displacement is given in Fig. 22b; in each case d is denoted. Generally, the strain
amplitude increases as the constraint density increases. In contrast, the displacement
amplitude decreases. For the in-plane buckling mode, it has smaller strain, but has
larger displacement, so that larger space is required and the density of the SiNW is
limited. While, for the helical buckling mode it has the smallest displacement and
moderate strain amplitude, which might be beneficial for stretchable electronics.
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Fig. 22 (a) The strain
distributions along SiNW for
the perfectly bonded SiNW
and partially bonded SiNW
(d D 2.5 �m, 0.5 �m) and
(b) the maximum
strain–maximum
displacement relation for
different constraint densities

Comparison to Experiments
Parallel experiment is carried out with details outlined in previous literature (Xu
et al. 2011). For the SiNW–PDMS system without UVO treatment or less UVO
treatment time (<3 min), the buckling mode of the SiNW is the in-plane which fits
the prediction from FEM for a partially bonded SiNW (d D 1 �m), as shown in
Fig. 23c. When the UVO treatment time is between 5 min and 8 min (when strong
adhesion is likely to present), the buckling of the SiNW is the helical mode which is
also consistent with the FEM simulation for a perfectly bonded SiNW, as shown in
Fig. 23a, b. However, when the UVO treatment time is longer than 8 min, the mode
changes to in-plane again, because the UVO treatment weakens the compliance of
the PDMS near the surface which may debond.

For the in-plane mode, the surface of the PDMS substrate remains very smooth,
which indicates the sliding between the SiNW and the PDMS substrate. The
relations of the in-plane displacement and out-of-plane displacement amplitudes to
the effective compressive strain are given in Fig. 24. Both displacement amplitudes
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Fig. 23 The typical planar
(a) and 3D (b) configuration
of the SiNW for the helical
buckling and (c) the in-plane
buckling mode. The
brightness represents the
height of the substrate surface

observed in the experiments are within the ranges of the FEM results for the helical
buckling (d D 0.25 �m, 0.1 �m and perfectly bonded SiNW, d D 0), as shown
in Fig. 24b. This indicates that the partial debonding of the SiNW is the major
reason for the transition from the in-plane buckling to the helical buckling. Due to
the absent van der Walls force in our model, the present study cannot yet precisely
reproduce every feature in experiment; nevertheless, the mechanism of transition of
distinctive buckling modes is elucidated.

In order to explore the underlying mechanism of the buckling mode transition for
different constraint density, the strain energy of the three different buckling modes
(in-plane, disorder, and helical) for three different constraint distances, 2.5 �m,
0.5 �m, and 0.1 �m, is shown in Fig. 25. Here, in order to obtain the in-plane
buckling mode for the constraint distance 0.5 �m and 0.1 �m, the out-of-plane
displacement of the SiNW is constrained. As shown in Fig. 25, for the constraint
distance 0.5 �m, the strain energy of the in-plane buckling mode is larger than
that of the out-of-plane buckling mode. Besides, the strain energy of the out-of-
plane disordered buckling mode for the constraint distance 0.5 �m is smaller than
that of the helical buckling mode for the constrain distance 0.1 �m. While, for the
constraint distance 0.1 �m, the strain energy of the helical buckling mode is smaller
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Fig. 24 (a) The relations of
the in-plane and out-of-plane
displacement amplitudes to
the effective compressive
strain for the helical buckling
obtained from FEM
simulations. (b) The
comparison of the in-plane
and the out-of-plane
displacement amplitudes
between experiments (up
various UVO treatment time)
and FEM simulations. The
shadow areas indicate the
ranges obtained from FEM
simulations

than that of the in-plane buckling mode. Note that we cannot generate the helical
buckling mode for the constraint distance 0.5 �m and the out-of-plane disordered
bucking mode for the constraint distance 0.1 �m. Here, we cannot directly compare
the strain energy between the out-of-plane disordered mode and the helical buckling
mode for the constraint distance 0.5 �m and 0.1 �m. Nevertheless, it can be inferred
that the out-of-plane disordered buckling mode is energetically more favorable
than the in-plane buckling mode for 0.27 < d/h < 0.5 and the helical buckling
mode energy is more favorable for d/h < 0.27. In our future work, the underlying
mechanism of the buckling mode transition for a nanowire on the elastomeric
substrate will be systematically studied.

It should to be noted that our FEM model is a simplification to the buckling
process. In the experiments, the debonding of the SiNW is accompanied by the
buckling of the SiNW, while in our FEM simulation we assume the debonding
occurs prior to the buckling. Moreover, the constraints in experiments may be small
segments instead of singular points. In the future work, we will systematically
study the debonding characteristics of the SiNW and its influence to the buckling
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Fig. 25 The strain energy of three buckling modes for the constraint distance 2.5 �m, 0.5 �m, and
0.1 �m, respectively. For the constraint distance 0.5 �m, the strain energy of the in-plane bucking
mode (green line) is almost overwritten by the strain energy of the out-of-plane disordered buckling
mode (blue line)

behaviors of the SiNW. Besides, the mechanical properties of the PDMS, especially
near the surface of the substrate, are influenced by the UVO treatment, for example,
increasing the stiffness and decreasing the deformability of the PDMS. In the future
work, the gradient of the mechanical properties near the surface of the PDMS will
be factored into approach.

Helical Buckling of a Nanowire Embedded in a Soft Matrix Under
Axial Compression

In previous sections, we have focused on the 3D helical buckling behaviors and the
mechanism of the transition from 2D in-plane buckling to 3D helical buckling of
a nanowire on the surface of an elastomeric substrate. Actually, similar 2D and 3D
buckling modes were also observed in wires embedded in matrix (Brangwynne et al.
2006; Jiang and Zhang 2008; Li 2008; O’Keeffe et al. 2013; Slesarenko and Rudykh
2016; Su et al. 2014; Zhao et al. 2016). Based on the Winkler foundation model
Timoshenko and Gere (2009), and Su et al. (2014) developed the 2D buckling theory
of a wire embedded in a soft matrix, and concentrated on the critical strain and initial
buckling wavelength (or wavevector) of 2D sinusoidal buckled wires (Slesarenko
and Rudykh 2016; Su et al. 2014). However, the 3D helical buckling mechanism
and post-buckling behaviors of embedded wires have not been explicitly explained.
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Fig. 26 Schematic of helical
buckling of embedded wire
under axial compression

In this section, a 3D helical buckling theory for compressed wires embedded in a
soft matrix is established, and the initial and post-buckling response of wires in
association with parallel FEM simulations is discussed systematically.

Theoretical Analysis

Consider a wire with radius R embedded in an infinite matrix (see Fig. 26). Accord-
ing to the experiments of Su et al. (2014), the matrix is so soft that delamination
between the wire and the matrix is prevented, and thus the delamination and
friction between them is not considered in present research; such simplification
is also utilized in their work. When the matrix is compressed and the effective
compressive strain ("com) exceeds the critical strain ("cr), the wire buckles into a
helical configuration.

For a wire buckling in helical mode, the deformation can be decomposed into
two sinusoidal deformations in two perpendicular directions (y and z direction) with
x direction denoting the axial direction of the wire. The lateral displacements in y
and z direction are assumed as v D acos(kx) and w D bsin(kx), respectively, where
a and b are the buckling displacement amplitudes, and k is the buckling wavevector,
namely, 2� /h (h being the initial buckling spacing). The strain energy (per unit
length) of the wire can be expressed (Eq. 19) as
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C
EIk4

�
3a4k2 C 2a2b2k2 C 3b4k2 C 4a2 C 4b2

�
16.a2k2 C a2k4b2 C a2k2 C 1/

3
2

C
.1 C �/ AE

�
a2k2 C b2k2 � 4"com

�2 �
Aa2b2k2 C 2I

�p
.1 C b2k2/ .1 C a2k2/ � 1

		
32I

p
.1 C b2k2/ .1 C a2k2/

;

(29)
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where E and � are the Young’s modulus and Poisson’s ratio of the wire, respectively.
A and I are the cross section area and the moment of inertia of the wire, and "com is
the applied effective compressive strain. The three terms in Eq. 29 represent the
membrane strain energy, bending strain energy, and torsion energy of the wire,
respectively.

The lateral force experienced by the wire (per unit length) can be given as
T D EId4v/dx4 � EA"m d2v/dx2, where the v denotes the lateral deflection
and "m is the membrane strain. "m derived from y- and z-direction sinusoidal
deformations can be given as a2k2/4 � "com and b2k2/4 � "com, respectively.
Thus, the lateral force in y and z directions can be given as Ty D �Pycos(kx)
with Py D �EAak2(a2k2/4 � "com) � EIak4 and Tz D �Pzsin(kx) with
Pz D �EAbk2(b2k2/4 � "com) � EIbk4. Inside an infinite matrix, a unit point force
in y direction at (x0, y0, 0) induces a y-directional displacement at (x, y, 0), given by

1C�s

4�Es

p
.x�x0/2C.y�y0/2

, where Es and �s are the Young’s modulus and Poisson’s ratio

of the matrix. Thus, the y-directional displacement at (x, y, 0) due to the deformation
of the wire can be approximately expressed as (Abramowitz and Stegun 1972; Jiang
and Zhang 2008; Li 2008; Timoshenko et al. 1970)

vsub D

RZ
�R

1Z
�1

Py cos .kx0/

2R
�

1 C �s

4�Es

q
.x � x0/2 C .y � y0/2

dx0dy0: (30)

Considering R is much smaller than the buckle spacing h, the dominant term of
Eq. 30 can be rewritten into

vsub D
.1 C �s/ Py cos.kx/

4�REs
f2R .1 � �/ C 2R ln 2

� .R C y/ ln Œk .R C y/� � .R � y/ ln Œk .R � y/�g ;

(31)

where � � 0.577 is the Euler constant.
Then, the strain energy (per unit length) of the matrix due to the sinusoidal

deformation of the wire in y direction is

Usy D
k

2�

RZ
�R

2�=kZ
0

Py cos.kx/

2R
� vsubdxdy

D
.1 C �s/ Py

2

16�Es



2 � �s

1 � �s
� 2� � 2 ln.kR/

�
:

(32)

Similarly, the strain energy (per unit length) of the matrix due to the sinusoidal
deformation of the wire in z direction can be approximately given as

Usz D
.1 C �s/ Pz

2

16�Es



2 � �s

1 � �s
� 2� � 2 ln.kR/

�
: (33)
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Thus, the total potential energy (per unit length) of the wire and matrix can be
expressed by

Utotal D Uwire C Usy C Usz

�
k

2�

RZ
�R

2�=kZ
0

Py cos.kx/

2R
Œvsub � a cos.kx/� dxdy

�
k

2�

RZ
�R

2�=kZ
0

Pz sin.kx/

2R
Œwsub � b sin.kx/� dxdy:

(34)

Here, the two integration terms represent the deformation compatibility between
the wire and matrix.

By substituting Eqs. 29, 32, and 33 into Eq. 34, and integrating the last equation,
we obtain

Utotal D
EA

2

"
k2
�
a2 C b2

�
4

� "com

#2

�

h
EAak2

�
a2k2

4
� "com

	
C EIak4

i
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2

�

h
EAbk2

�
b2k2

4
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C EIbk4

i
b

2

C
.1 C �/ AE

�
a2k2 C b2k2 � 4"com

�2 �
Aa2b2k2 C 2I

�p
.1 C b2k2/ .1 C a2k2/ � 1

		
32I

p
.1 C b2k2/ .1 C a2k2/

�
.1 C �/

h
EAak2

�
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4
� "com

	
C EIak4
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16�Es
Œ3 � 2� � 2 ln.kR/�

�
.1 C �/

h
EAbk2

�
b2k2

4
� "com

	
C EIbk4

i2

16�Es
Œ3 � 2� � 2 ln.kR/�

C
EIk4

�
3a4k2 C 2a2b2k2 C 3b4k2 C 4a2 C 4b2

�
16.a2k2 C a2k4b2 C a2k2 C 1/

3
2

(35)

Minimizing the potential energy gives the buckling vector as

k D

�
Es

EI

�1=4

16� .1 � � � ln.kR//

3.3 � 2� � 2 ln.kR//2

�1=4

: (36)

Generally, kR is much smaller than 1, and thus Eq. 36 can be approximated into

k D 1:02
�

Es
EI

�1=4
, and thus the initial buckle spacing is h D 6:160

�
EI
Es

	1=4

. In

particular, for a wire with circular cross section, the initial buckle spacing can also
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Table 3 Buckling
amplitudes for wires with
different Young’s modulus
(R D 15 nm)

E/GPa 10 50 100 150 200 250

a/nm 67.9 101 119 131 141 149
b/nm 67.9 101 119 131 141 149

Table 4 Buckling
amplitudes for wires with
radius (E D 200 GPa)

R/nm 5 10 15 20 25

a/nm 47.0 94.0 141 188 235
b/nm 47.0 94.0 141 188 235

be written into h D 5:80R
�

E
Es

	1=4

. And the post-buckling spacing can be expressed

as (Chen et al. 2016; Jiang et al. 2007; Xu et al. 2011):

h D 5:80R

�
E

Es

�1=4

.1 � "com/ ; (37)

which shares the similar scaling law R
�

E
Es

	1=4

as the helical buckling on the surface

of substrates, with the prefactor a quarter smaller than the latter.
Substituting Eq. 36 back into Eq. 35, and minimizing with respect to the

displacement amplitude a and b, we can numerically obtain these two undetermined
profile parameters. The typical amplitudes of wires with different Young’s modulus
and radius are shown in Tables 3 and 4 (where the effective compressive strain
is 35%). The buckling amplitude a and b are equal due to the isotropy of the
matrix. Thereafter, we do not differentiate the amplitudes in y and z direction unless
specified. By fitting of the theoretical results, the amplitude can be expressed as a D
1:276

k

p
"com � "cr where "cr is the critical buckling strain. In the present research, "cr

is very small (0.34% for a 15-nm-radius wire of modulus 200 GPa embedded in
a matrix of 6 MPa) and thus negligible compared with the effective compressive
strain "com in the post-buckling phase. Therefore, the buckling amplitude can also
be simplified as

a D
1:276

k

p
"com: (38)

Results and Discussion

To verify the theoretical solution, FEM simulations based on commercial software
ABAQUS are conducted. The matrix is simplified as a cylinder, which is much
larger than the buckling amplitude and spacing. The wire is regarded as a beam
with the radius 15 nm along the axial of the cylindrical matrix. Both ends of the
cylindrical matrix are slowly compressed toward each other. The Young’s modulus
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Fig. 27 Typical configurations of the wire before (a) and after (b and c) buckling obtained from
FEM simulation

Fig. 28 Typical lateral
buckling displacements of a
wire obtained from FEM
simulation

of the wire is 200 GPa, and 6 MPa for the matrix. Mesh convergence is carried
out to ensure the reliability of numerical results. Typical buckling configurations of
buckled wires are shown in Fig. 27.

Shown in Fig. 28 are the FEM results of typical buckling displacements of the
wire in y and z directions. In both x–y and x–z planes, the projections of buckled
wires exhibit the sinusoidal curves. View from the axial direction reveals that the
profile of the wire is almost perfect circular, since the buckling amplitudes in x–
y and x–z planes are almost equal (also see Fig. 27c). Besides, it should also be
noticed that the angle phases in the two planes have a difference of � /2, which
further substantiates the helical configuration of the wire.

The consistency between FEM simulation and theoretical result is shown in Fig.
29, in which the effective compressive strain is 35%, and the theoretical results are
Eqs. 37 and 38 for the buckling spacing and amplitude, respectively. The spacing is
proportional to wire radius, and the amplitude scales with 1/4 power of the Young’s
modulus of the wire, which agrees with previous studies (Chen et al. 2016; Jiang
and Zhang 2008; Xiao et al. 2008, 2010; Zhao et al. 2016).
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Fig. 29 Post-buckling spacing (a and b) and amplitude (c and d) versus the radius (a and c) and
Young’s modulus (b and d) of wires. In (a) and (c), the Young’s modulus of the wire is 200 GPa,
and in (b) and (d) the radius of the wire is 15 nm

The post-buckling behaviors, mainly the buckling spacing and amplitudes, are
shown in Fig. 29, which again validates the theoretical model with respect to FEM
simulation. The buckling spacing decreases almost linearly with the compressive
strain, while the evolution of buckling amplitude is slightly more complex. Once the
compressive strain exceeds the critical strain, the sinusoidal buckles initiate mainly
in one direction (i.e., almost in a 2D profile); however, the deflection in the other
direction quickly catches up and transits the configuration from 2D sinusoidal to 3D
helical mode. As shown in Fig. 30, the modal analysis conducted via FEM indicates
that the 2D buckling is the first order mode while the 3D helical form is the second
order. Thus, the 2D sinusoidal appears first and exhibits lower critical strain, which
is also confirmed by the present theory (see Fig. 30b); thereafter, the buckled wire
turns into the helical mode with less strain energy. Besides, it should be noted that
the critical strain is almost linear with respect to the root of the ratio (Es/E)1/2, which
agrees with previous studies (Chen et al. 2016; Su et al. 2014; Xiao et al. 2008,
2010).

As suggested by the FEM results, the amplitude increases with the compressive
strain, in accordance with the theoretical prediction. It is noteworthy that even at
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Fig. 30 (a) Modal of the first
two orders of the wire
embedded in matrix (FEM).
(b) Critical strains for the
helical buckling mode and
sinusoidal mode
(R D 15 nm). (c) Difference
of potential energy (per
length) of matrix and wires in
the helical mode and
sinusoidal mode
(E D 200 GPa, Es D 6 MPa,
R D 15 nm)

very small strain (less than 1.5% in the inset of Fig. 31b) the axial view of the
buckling configuration turns into almost perfectly circular. By comparison, if the
wire sits on top of the surface of a semi-infinite substrate, the axial profile change
from an oval toward a circle (Xu et al. 2011) could require a much higher effective
compressive strain (over 30%).

Transition from in-plane buckling mode to helical buckling mode can also
be represented by the ratio of in-plane displacement amplitude to out-of-plane
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Fig. 31 Theoretical and
FEM evolutions of
post-buckling behaviors
(E D 200 GPa, Es D 6 MPa,
R D 15 nm)

displacement amplitude of wire, as shown in Fig. 32a. Here, the in-plane direction is
referred as the initial deformation direction of the wire and the out-of-plane direction
is perpendicular to the in-plane direction and the axis of the wire. It is suggested that,
when the effective compressive strain reaches a critical value, the buckling of the
wire initiates and the ratio is maximum at the beginning (i.e., the in-plane mode);
with further compression, the ratio decreases dramatically and approaches 1 (the
blue dashed line, i.e., the helical mode). More interestingly, for wires with lower
Young’s modulus, the effective compressive strain necessary for the transition from
2D to 3D helical mode is higher (see Fig. 32b). Nevertheless, when the Young’s
modulus is high enough, the transition strain tends to be 1.25%, namely, as the
effective compressive strain exceeds 1.25%, wires will buckle into the 3D helical
mode.
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Fig. 32 (a) The FEM
evolution of the ratio of
in-plane to out-of-plane
displacement amplitude of
wire with different Young’s
modulus and (b) the strain
necessary for transition from
in-plane mode to helical
mode (Es D 6 MPa,
R D 15 nm)

Conclusion

In summary, we have introduced systematic studies of a special buckling mode –
three-dimensional helical coil buckling of SiNW on the UVO-treated PDMS
substrate. A continuum mechanics theory based on the minimization of the total
potential energy of the SiNW and PDMS substrate is established and the impact of
SiNW properties and the geometric dimension on the buckling characteristics, such
as the buckling spacing, the in-plane and out-of-plane displacement amplitudes, etc.,
has been revealed, which agrees quite well with the FEM simulation results. Both
the theory and FEM simulation suggest that the buckling spacing and displacement
amplitudes increase linearly with the SiNW diameter and are almost proportional to
the 1/4 power of the ratio between the SiNW modulus and the substrate modulus.
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In addition, the FEM simulation results indicate that the amplitude ratio changes
with the effective compressive strain, and when the effective compressive strain is
large enough, the buckling shape is almost circular, namely, the amplitude ratio
approaching 1.

The partial detachment of SiNW from the PDMS substrate is mainly responsible
for the transition of the buckling modes, which can be dictated by the constraint
ratio d/h. For d/h > 0.50, the buckling of the SiNW is the in-plane which can be
described by the Euler beam buckling theory with the buckling wavelength � D 2d.
For 0.27 < d/h < 0.50, the buckles are disordered in the out-of-plane direction and
the critical buckling strain gradually diverges from the Euler beam theory. Whereas,
for d/h < 0.27, the buckling is helical and the buckling spacing gradually approaches
to the theoretical value of a perfectly bonded SiNW.

Meanwhile a theoretical analysis of three-dimensional helical buckling of wires
embedded in matrix is also provided and the buckling spacing and amplitudes are
deduced, which are further verified by parallel FEM simulations. It is suggested that
the buckled profile is almost perfectly circular in the axial direction; with increasing
compression, the buckling spacing decreases almost linearly, while the amplitude
scales with the 1/2 power of the compressive strain. Besides the transition strain
from 2D mode to 3D helical mode decreases with the Young’s modulus of the wire
and approaches to 1.25% when the modulus is high enough. This study may shed
some lights on the buckling behaviors of wires embedded in matrix and provide
some useful instructions of manufacturing complex structures.
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Abstract

Indentation is a convenient method to evaluate mechanical properties of materials
as well as to simulate contact fracture with locally plastic deformation. Inden-
tation experiment has been widely used for brittle solids, including ceramics
and glass, for evaluating the fracture properties. With the aid of computational
framework, simulation of crack propagation (for quasi-static and dynamic
impact) is conducted to characterize “brittleness” of materials. In this review,
we explore the applicability of indentation method for hydrogen embrittlement
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cracking (HEC). HEC is an important issue in the development of hydrogen-
based energy systems. Especially high-strength steels tend to suffer from HE
cracking, which leads to a significant decrease in the mechanical properties of
the steels, including the critical stress for crack initiation and resistance to crack
propagation. For such materials integrity for HEC, convenient material testing is
necessary. In this review, the first part describes new indentation methodology to
evaluate threshold stress intensity factor KISCC, and the latter one is investigation
into HEC morphology due to residual stress produced by indentation impression.
Our findings will be useful for predicting KISCC for HE instead of conventional
long-term test with fracture mechanics testing. It will also indicate the stress
criterion of HE cracking from an indentation impression crater, when the formed
crater (for instance due to shot peening or foreign object contact) is exposed to a
hydrogen environment.

Keywords
Indentation · Hydrogen embrittlement cracking · Fracture strength · Finite
element method · Cohesive zone model · Residual stress · High-strength steel

Introduction

Hydrogen embrittlement (HE) cracking is an important issue in the development
of hydrogen-based energy systems. High-strength steels tend to suffer from HE
cracking, which leads to a significant decrease in the mechanical properties of
the steels, including the critical stress for crack initiation and resistance to crack
propagation. It is well known that Mode-I tensile stress is responsible for HE
cracking (Gangloff 2003). In contrast, degradation of the mechanical properties
upon compression loading (e.g., macroscopic hardness) never occurs in a hydrogen
environment (Reddy et al. 1992). In order to evaluate the structural integrity of
the material with respect to hydrogen embrittlement, tensile or bending loading is
usually employed for mechanical testing, producing tensile stress for HE cracking.
In contrast, we found that Vickers indentation caused HE cracking in high-strength
steel (Yonezu et al. 2010). This is due to the fact that the tensile stress field that
develops around the indentation impression reaches the critical value for crack
nucleation. Since indentation testing is a convenient method to probe the mechanical
properties of materials compared to other mechanical testing methods, such as
fracture mechanics testing under tensile or bending loading, the ability to evaluate
HE cracking upon indentation is of importance.

In addition, indentation test induces permanent impression crater, which is simi-
lar with shot peening. Peening techniques make the material harder but in addition
also introduce compressive residual stress. It is well known that compressive stress
is effective in preventing HE cracking. With multiple shot impacts on the surface, the
surface hardened layer expands plastically and compressive residual stress develops
(Kobayashi et al. 1998). However, the boundary of the peening area (outside the
crater) sometimes shows tensile stress (Klemenza et al. 2009). This could lead to
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mechanical degradation such as HE, stress corrosion cracking (SCC), and fatigue
fracture. In fact, a single crater (permanent impression due to indentation) forms
tensile stress around the impression, balanced by local compressive strain. Such a
tensile stress may induce HE cracking, experienced in high-strength steels (Yonezu
et al. 2010, 2012).

From the above engineering background, indentation method may bring the
possibility to characterize HE cracking. In this review, the first topic is to explore
the use of Vickers indentation testing for evaluating the susceptibility of steel to HE
cracking. For this purpose, indentation test is applied to hydrogen-charged steel.
The resistance to crack propagation, in particular, the threshold stress intensity
factor (KISCC), is an important parameter for understanding the susceptibility to HE
cracking. The second topic is to clarify HE cracking produced by residual stress of
indentation impression. For this experiment, spherical impression crater is exposed
in hydrogen environment, and HE cracking morphology and the mechanics are
systematically investigated. This may become a potential fracture mode, when the
steel forms a permanent crater on the surface due to surface treatment (e.g., shot
peening) or other types of contact loading in a hydrogen environment. It is expected
that the present knowledge is of importance and will significantly contribute to
material/mechanical design in a hydrogen environment. In addition, the findings (of
the first topic) allowed us to propose an alternative method to the fracture mechanics
approach for HE cracking evaluation.

Evaluation of Threshold Stress Intensity Factor for HE Cracking

Materials and Experimental Methods

The material used in the present study was 18Ni maraging steel (350 ksi), which
is a low-carbon martensitic steel. In order to achieve high strength, the steel was
solution heat treated (820 ıC for 3 h) followed by cooling in air to room temperature.
Subsequently, the steel was aged at 500 ıC for 4 h and air-cooled to room
temperature. The mechanical properties of the steel are shown in Table 1, indicating
that the yield stress and tensile strength were 2.40 and 2.45 GPa, respectively (Boyer
and Gall 1985).

This steel has superior tensile strength, but is very susceptible to hydrogen
embrittlement (Gangloff and Wei 1974; Pao and Wei 1977; Antlovich et al. 1980;

Table 1 Mechanical properties of 18Ni maraging steel (350ksi) employed in this study

Young’s
modulus
E (GPa)

Poisson’s
ratiov

Yield strength
¢y (GPa)

Tensile
strength
¢B (GPa)

Work
hardening
coefficient n

Strength for
HE cracking
¢scc (GPa)

210 0.3 2.4a 2.45a 0.025 0.65b

aBoyer and Gall (1985) Metals Handbook
bYonezu et al. (2010)
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Reddy et al. 1992; Gangloff 2003; Tsay et al. 2005, 2008). The specimens in the
study were disk-shaped plates with a diameter of 20 mm and thickness of 1 mm.
After mechanically and electrochemically polishing the specimen surface, cathodic
charging was carried out in order to introduce hydrogen into the material in a buffer
solution of sodium acetate (0.20 mol/L CH3COOH C 0.17 mol/L CH3COONa,
pH D 4.7) with a current density of 3 A/m2. In order to vary the hydrogen content
in the steel, the duration of hydrogen charging was varied from 48 to 72 h.

After cathodic charging, the total diffusible hydrogen content in the material
was measured by thermal desorption spectroscopy (TDS-KU, ULVAC). Just after
the cathodic charging, TDS measurements indicated CH to be 33.7 ppm for 48-h
charging and 49.1 ppm for 72-h charging. When the specimen with absorbed
hydrogen is conditioned in air at room temperature, the hydrogen in the material
diffuses out into the atmosphere as a function of the exposure time (degassing
time). This suggests that CH can be controlled by changing the degassing time.
The discharged CH as a function of conditioning time was also measured by TDS,
indicating that the CH for both specimens decreased with increasing degassing time
(CH was varied from 49.1 to almost 0 ppm). By referring to this hydrogen degassing
behavior, the timing of the indentation test can be determined at a desired CH in
order to examine the relationship between the HE susceptibility and the CH.

Indentation testing was carried out using a hydraulic servo-controlled fatigue
testing machine equipped with a diamond Vickers indenter. The indenter impresses
the specimen surface with up to a specific maximum indentation force at a rate of
1 N/s. Subsequently, the indentation force is reduced at a rate of 1 N/s until F D 0 N.
The maximum force was varied from 100 to 300 N. The detailed conditions used
will be described in each section below. After the indentation test, the impression
morphology was observed using an optical microscope. These observations were
conducted at least 1 h after the indentation test.

Experimental Results

Vickers indentation was applied to the specimen that had absorbed hydrogen as
a result of cathodic charging for 72 h (CH D 49.1 ppm). Figure 1 shows an
optical micrograph of the impression and its surrounding showing that four cracks
propagated from the corners of the impression. These are similar to surface cracks
(radial and halfpenny-shaped cracks) observed in brittle materials subjected to
Vickers indentation (Lawn et al. 1980; Niihara 1983; Cook and Pharr 1990). We
previously reported that the cracks grew in a zigzag manner, indicating that they
propagate along grain boundaries (Yonezu et al. 2010). Such intergranular cracks
are often observed in maraging steel when subjected to hydrogen embrittlement
(Gangloff 2003; Tsay et al. 2005, 2008). Furthermore, from observations of cross-
sectional views, each crack was identified as a type of radial crack, which propagates
along the radial direction from one corner of the indentation impression (Yonezu et
al. 2010). In contrast, steel with no hydrogen absorption (as-received specimen: CH

less than 0.05 ppm) did not exhibit any cracking around the impression. We thus
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Fig. 1 Micrographs of the
indent impression produced
in a hydrogen-charged
specimen tested with
Fmax D 300 N (hydrogen
content is 49.1 ppm)

concluded that the crack formation in the present case was caused by hydrogen
embrittlement (Yonezu et al. 2010).

Figure 2 shows the relationship between the surface crack length and the
maximum indentation force. Here, the tested specimens were charged for 72 h, and
all specimens had CH of 49.1 ppm. The crack length (designed as c) is defined
as the distance from the impression corner to the crack tip. The number of tests
with Fmax D 100, 200 and 300 N were three, five and nine, respectively. Their
standard deviations are also plotted in the figure. It should be noted that for one
indentation impression, the number of cracks formed was usually four (such as
seen in Fig. 1). However, in some impressions (especially those produced with a
smaller Fmax D 100 N), the number of cracks tended to be two or three. Thus, the
representative crack length for one test was assumed to be the averaged value, that
is, the sum of the crack lengths divided by the number of cracks formed. Figure 2
reveals that the crack length c increases when Fmax is larger. Figure 2 also shows the
results for half of the diagonal length in the impression (designed as a) as a function
of Fmax, also indicating that the impression size is larger with increasing Fmax.

In order to investigate the effect of hydrogen content on the crack size, inden-
tation tests were conducted at different times after cathodic charging for 72 h. The
value of Fmax was set at 300 N for all tests. Figure 3 shows three micrographs of
representative surface cracks in specimens with different hydrogen content which
propagated from the impression corners; the tests were conducted at different
discharge times (0 h (a), 43 h (b), and 119 h (c)) for hydrogen contents of 49.1, 26.9,
and 19.5 ppm. Although Fmax was set at the same value (300 N) for all the tests, the
crack length was strongly dependent on CH, showing that the length became longer
when CH was larger.

Figure 4 shows the crack length as a function of CH for all specimens. Here, the
specimens with CH > 20 ppm were obtained from 72-h cathodic charging, while
the results for CH around 5 ppm were obtained from the 48-h charging specimen.
It can be seen that the crack length became larger with increasing CH. Figure 4
also shows the Vickers hardness values measured from the impression size (marked
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Fig. 2 Variations in crack
length and impression size as
a function of maximum
indentation force
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Fig. 3 Micrographs of the crack produced from an indent impression corner tested with
Fmax D 300 N. Three tests were conducted at different times after the hydrogen charging: (a)
0 h, (b) 43 h, and (c) 119 h. The hydrogen content was estimated to be (a) 49.1, (b) 26.9, and (c)
19.5 ppm

by a gray circle). The hardness did not depend on the CH and showed an almost
constant value equal to the hardness of the as-received steel with no hydrogen
absorption (HV D 675) as indicated by the dotted line. Therefore, it is concluded
that hydrogen in the steel influences the propagation of the Vickers indentation-
induced crack, while the hardness related to the macroscopic elastoplastic properties
in compression is not affected by the presence of hydrogen in the steel. Thus,
hydrogen in the steel causes a decrease in the critical tensile strength, resulting in
HE crack initiation and propagation. Propagation of the crack tip is expected to be
suspended upon full unloading under the stress state, where the driving force of
the crack propagation (due to the residual stress field from the indent formation)
is equilibrated with the resistance to crack growth in the steel having hydrogen.
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Fig. 4 Variations in radial surface crack length and Vickers hardness as a function of hydrogen
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In other words, the “final” crack length is dependent on resistance to HE crack
propagation in the material.

Here, several questions regarding crack propagation arise, such as how the crack
grows, what the growth rate is, and when crack propagation stops. In fact, KISCC

tests based on fracture mechanics show that an HE crack starts to propagate when
the stress intensity exceeds KISCC (the threshold resistance to HE crack growth), the
growth rate rapidly increases, and the crack propagates stably at the constant crack
growth rate (so-called plateau region). Finally, unstable fracture occurs at around
KIC. This implies that KISCC is much lower than KIC. In other words, an HE crack
cannot propagate when the stress intensity factor is lower than KISCC.

In our indentation tests, the total testing time (including both loading and
unloading) was about 600 s, for the test condition of Fmax D 300 N and loading rate
of dF/dt D 1 N/s. If the crack initiates and propagates up to a length of 200 �m (see
Fig. 3) during the indentation test, the average rate of crack growth may be about
3.33 � 10�7 m/s. In contrast, fracture mechanics tests yielded HE crack growth rates
in the plateau region for 18Ni-300 (300 ksi grade) and 18Ni-250 (250 ksi grade)
maraging steels of 5.0 � 10�5 (Sumitomo Precision Products CO. L.1992) and 1.11
� 10�7 m/s (Gangloff 2003), respectively. These values are of the same order as the
average rate in the present study. This implies that the HE crack propagation due to
indentation corresponds to the plateau region, indicating that the crack grows stably
in the present tests.

We will next discuss when the crack stops propagating. Note that the measure-
ment of crack length (in Fig. 3) in the present tests was conducted more than
1 h after the test. Considering the maximum crack length of about 200 �m for
Fmax D 300 N (see Fig. 3), assuming the crack continuously propagates until when
the microscopic observations were conducted, the average crack growth rate is less
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than 6.7 � 10�8 m/s. This value is smaller than the stable rate in the plateau region
(5.0 � 10�5 and 1.11 � 10�7 m/s for 18Ni-300 and 18Ni-250 maraging steels as
mentioned above), suggesting that the crack in the present study underwent stable
propagation. In addition, when we continually observed the crack length up to 100 h
after the test, the length did not change. In this case, the crack growth rate was
less than about 1.1 � 10�12 m/s, since the measurement resolution of the optical
microscope was less than 0.4 �m. This rate is almost the same order as the threshold
rate (2.8 � 10�12 m/s), when the value of KISCC was determined in the fracture
mechanics test (Yamaguchi et al. 1997). Therefore, after full unloading, the driving
force of the crack tip (stress intensity K) is considered to be less than the value of
KISCC. Such a condition of K � KISCC indicates that the HE crack stops propagating,
resulting in the final crack length. In the next section, the stress field at the crack is
computed to evaluate the threshold stress intensity of the final crack.

Numerical Analysis

Cohesive ZoneModel
The stress field at the crack tip is a key issue, as expected from the above results,
since the crack length (at full unloading) is dependent on the HE crack growth
resistance of steel, KISCC. Note that the process of indentation loading/unloading
remarkably changes the stress field, resulting in HE crack initiation and propagation
(Yonezu et al. 2010). Therefore, such crack growth is required to be incorporated
with stress analysis. We employed the finite element method (FEM) to compute the
indentation stress field in conjunction with crack propagation.

One of the approaches to simulate crack propagation is the cohesive zone model
(CZM). The CZM is theoretically well established and is proven to be applicable
to both ductile and brittle materials (Barenblatt 1962; Tvergaard and Hutchinson
1992; Chandra et al. 2002; Xia et al. 2004; Hal et al. 2007; Olden et al. 2008).
For instance, Mode-I fracture of a brittle coating on a silicon substrate (Xia et al.
2004), hydrogen embrittlement in a duplex stainless steel (Olden et al. 2008), and
the interfacial fracture of an IC-interconnect (e.g., copper and low-K materials) (Hal
et al. 2007) have been successfully investigated using the CZM.

Figure 5 shows a schematic of crack propagation incorporating the cohesive
zone. The CZM essentially models the fracture process zone in a plane ahead of
the crack tip. The zone is assumed to be subjected to cohesive traction. The model
usually describes the gradual degradation of the adhesion between two regions along
the crack propagation plane. The mechanical response of the cohesive zone obeys a
traction-separation law that yields the relationship between the separation distance
v of the two material faces at an interface and the traction stress ¢ acting between
them. Figure 5 graphically explains the lumping of the nonlinear material response
in the cohesive zone. By the action of the external force (i.e., remote stress/strain),
the crack tip opens. The opening response at the actual crack tip (designated as vB)
obeyed the cohesive zone element with the traction-separation law, such as the



8 Hydrogen Embrittlement Cracking Produced by Indentation Test 297

0 1 2 3 4 5 6 7
0

0.5

1

1.5

N
or

m
al

ize
d 

tr
ac

tio
n 

st
re

ss
 s

/s
m

ax

Normalized separation distance v/vc

smax

vc
vB=6vc

Gc=area 
below s-v curve

6 =vc vB

vC

Traction stress: s(x)

smax

Actual crack tip

Ideal crack tip

x

Separation distance: v(x)

Fig. 5 Schematic of crack advancement with the cohesive zone model. The cohesive zone element
having the traction-separation law exists ahead of the crack tip

bottom figure in Fig. 5. In the cohesive zone, after the acting stress ¢ exceeds
the maximum cohesive stress ¢max (corresponding to the characteristic separation
vc), the resistance stress (traction force) dramatically decreases to almost zero
with larger separation. This indicates that the cohesive zone ahead of the material
crack tip opens, and crack propagation then occurs, resulting in the nucleation of
new surfaces. Such a simulated crack is permitted to propagate along the specific
direction along the cohesive zone element. As shown in Figs. 1 and 3, the surface
crack propagates along the radial direction from the indent impression corner. The
cohesive element is thus to be inserted in this plane.

Although numerous traction-separation laws for the cohesive zone element have
been proposed (e.g., see reference (Chandra et al. 2002) for an overview), an
exponential law, called the Smith-Ferrante type (Ortiz and Pandolfi 1999; Hal et
al. 2007), is employed due to its simplicity. In fact, the exponential type has been
used for various cases, including brittle Mode-I fracture, interfacial delamination,
and hydrogen embrittlement cracking (Xia et al. 2004; Hal et al. 2007; Olden et al.
2008) as mentioned above. The constitutive behavior is expressed by the relationship
between the normal traction stress ¢ and corresponding separation distance v across
the cohesive element. This is given by

¢ D ¢max
v

vC
exp

�
1 �

v

vC

�
; (1)
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where ¢max is the maximum cohesive stress and vc is the characteristic opening
displacement corresponding to ¢max (see Fig. 5). Note that the tangential traction
across this surface (i.e., shear component) is ignored in this study, since HE is caused
by Mode-I loading and the driving force of the crack initiation and propagation is
tensile stress (i.e., principal stress) (Yonezu et al. 2010). For the cohesive zone law,
the normal work of fracture Gc corresponds to the area under the traction-separation
law, as shown in this figure. It can be described as

GC D

Z 1

0

¢ .v/ dv D exp.1/¢maxvC: (2)

Therefore, Eqs. (1) and (2) lead to

¢ D
GC

vC
2

exp

�
�

v

vC

�
v: (3)

This indicates that the traction-separation curve depends on two variables, the
critical energy release rate Gc and vc (or ¢max). When these two variables are known,
the traction-separation curve can be drawn.

The critical energy release rate Gc is related to the critical stress intensity factor
for crack growth of the material. When considering unstable crack growth, the
fracture toughness KIC can be obtained in the plane strain condition as shown
below.

Gc D
K2

IC

E

�
1 � ¤2

�
(4)

Here, E and v are the Young’s modulus and Poisson’s ratio, respectively. As
mentioned above, the present study focuses on indentation HE cracking which
is expected to be suspended under the condition of the driving force for crack
propagation, K � threshold stress intensity factor, KISCC. Thus, in Eq. (4), KIC is
hereafter replaced by KISCC.

Finite Element Method
A three-dimensional model of one-quarter of the specimen was created as shown in
Fig. 6. The model contains more than 30,000 nodes and eight-node elements, and
the part of the indenter contact and crack propagation (in the cohesive zone element)
has a fine mesh. A mesh convergence study was carried out. The calculation was
performed using commercially available FEM code (Marc and Mentat 2010.2).
A rigid contact surface was used to simulate the rigid Vickers diamond indenter.
Coulomb’s law of friction was assumed with a friction coefficient of 0.15 (Bowden
and Tabor 1950). The indenter penetrated to a maximum force of 300 N and was
then withdrawn to zero. The mechanical properties of the as-received maraging
steel, listed in Table 1, were used in the FEM computation because the macroscopic
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Fig. 6 Stress computation of
Vickers indentation with the
three-dimensional FEM
model

Top view Wide view
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xVickers 
indenter
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Material

y

z
x

hardness, which is related to the macroscopic plastic properties in compression, does
not change with hydrogen content (see Fig. 4).

In order to simulate crack propagation, a cohesive zone element was inserted
in the y-z plane, where the crack extends from the corner of the impression. Thus,
during indentation loading/unloading, the simulated crack propagates along the y-z
plane, and such crack propagation obeys the traction-separation law. We next show
computational results for propagation of various cracks. In this study, the actual
crack tip is taken as the point where the normal displacement v equals 6vc, at which
point the normal stress ¢ on the separated surface is essentially zero (Xia et al. 2004)
(see Fig. 5). Since the tensile stress ¢xx is responsible for the HE crack propagation,
we focused on the distribution of ¢xx in this study.

As an example case, the model with crack growth resistance Gc of 108.3 J/m2

was computed. The maximum stress ¢max in Eq. (1) was set to be 0.65 GPa, which
was the critical stress for nucleating the present HE crack measured by Vickers
indentation (Yonezu et al. 2010). Here, the value of Gc (108.3 J/m2) for FEM can
be converted to a KISCC value of 5.0 MPa m1/2 from Eq. (4). Figure 7 shows a
snapshot of the normal stress ¢xx distribution at maximum indentation force (a) and
upon full unloading (b). For comparison, the model with no cohesive zone element
was also computed, as shown in Fig. 7c, d. This model simulates the stress field
due to indenter contact and does not induce any crack formation: the tensile stress
¢xx develops in the elastic field outside the finite plastic deformation region (local
impression). Note that the magnitude of ¢xx in the fully unloaded condition (Fig.
7d) is higher than that at the maximum indentation force (Fig. 7c). This is because
unloading reduces the elastic compressive stress due to the indenter contact, and
therefore, ¢xx reaches a maximum value at full unloading.

In contrast, in Figs. 7a, b, the model with the cohesive zone element showed the
release of tensile stress ¢xx (indicated by the dotted line in A) outside the impression
(compressive plastic strain field). This is due to crack initiation and propagation. The
FEM analysis showed the crack initiated at loading (Fig. 7a) and then propagated
significantly under unloading (Fig. 7b). Finally, the crack length reaches a maximum
upon full unloading.
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Fig. 7 Contour maps of ¢xx for the radial crack with the cohesive zone model (a) and (b) and
without the cohesive zone element (c) and (d). Note Figs. (a) and (c) are shown at the maximum
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Crack Growth Resistance
To evaluate the crack growth resistance of the specimen with CH of 49.1 ppm, an
FEM study was carried out by changing KISCC from 3 to 8 MPa m1/2, in order to
analyze the relationship between KISCC and surface crack length. Here, the FEM
model and its constitutive equation for the material were the same as the model
described in Fig. 6, and the maximum indentation force was 300 N. Figure 8 shows
the relationship between KISCC and the simulated surface crack length, c, indicating
that the crack length is longer with a decrease in KISCC. The value of KISCC � 8 MPa
m1/2 produced no crack. In this figure, the actual crack length obtained from the
indentation experiment (192.7 ˙ 9.7 �m from Fig. 2) is also shown by the broken
line. Here, the thin lines indicate the range obtained from the standard deviation of
the experimental results. Compared with the experiments, KISCC can be estimated to
be 4.41 MPa m1/2, in the range from 4.28 to 4.55 MPa m1/2. It should be emphasized
that the variation in the estimated values is not very large, compared with those
obtained by the fracture mechanics KISCC test (Floreen 1978).

To verify the estimated KISCC obtained from the test with Fmax D 300 N, the
other test results with indentation forces of 100 and 200 N were analyzed. Similar to
Fig. 9, the experimental crack length (from Fig. 2) was used to estimate the values
of KISCC. The estimated KISCC gives almost the same value (about 4 MPa m1/2 in
Fig. 8). As shown in Fig. 3, the impression size as well as the crack length varied
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Fig. 8 Variation in crack
length during the indentation
test computed by FEM
incorporating the cohesive
zone model
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Fig. 9 Estimated threshold stress intensity factor KISCC as a function of the hydrogen content

depending on Fmax. This indicates that the stress distribution (which is responsible
for crack formation) is different. However, the estimated KISCC values were almost
the same, suggesting that the present estimation is valid.

Figure 9 shows the KISCC value estimated by the present indentation method as
a function of hydrogen content CH. The KISCC values were calculated from the data
as shown in Fig. 4. This suggests that the estimated values are a function of CH,
indicating that KISCC is lower with larger CH. Such a trend was observed in previous
studies on HE cracking evaluation for high-strength steels based on the fracture
mechanics KISCC test (Yamaguchi et al. 1997; Gangloff 2003).

Table 2 summarizes the mechanical properties and threshold value of HE crack
growth (i.e., threshold stress intensity factor for HE cracking, KISCC) obtained in the
present study together with those for two different grades of maraging steels. The
values of KISCC were obtained by the fracture mechanics test (KISCC test) in an H2

environment for 18Ni-250 (250 ksi grade) and in 3.5% NaCl solution for 18Ni-300
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Table 2 Comparisons of mechanical properties and threshold stress intensity factor KISCC among
various 18Ni maraging steels

18Ni
maragingsteel
grade

Yield stress
(GPa)

Tensile strength
(GPa)

Fracture
toughness
(MPa m1/2)

KISCC

(MPa m1/2)

This
study

350ksi 2.4 2.45 40 4.24–6.05c

Refa 300ksi 2.07 2.17 75 5.5–11
Refb 250ksi 1.65 1.72 120 20

aSumitomo Precision Products CO, L. 1992, personal communication in 3.5% NaCl
bGangloff (2003), in pressure H2 (PH2 D 0.17 MPa)
cKISCC estimated by the present study

(300 ksi grade) steel. The detailed conditions are described elsewhere (Sumitomo
Precision Products CO, L. 1992, personal communication; Gangloff 2003). Since
higher strength (higher yield/tensile strength) usually makes the HE susceptibility
higher, the value of KISCC in 300 ksi grade steel is lower than for the 250 ksi grade
steel. Our estimation order (4.41–6.05 MPa m1/2) is almost the same as the KISCC

values for the other steels (from 5.5 to 11 MPa m1/2 for the 300 ksi grade, and
20 MPa m1/2 for the 250 ksi grade), although the steel grade and hydrogen content
are different. Furthermore, other maraging steels with a yield stress of about 2 GPa
were reported to have KISCC of 10 MPa m1/2 (McEvily 1990) and 7.6 MPa m1/2

(Floreen 1978), indicating that the values are also close to our estimated values.
Thus, this suggests that our method based on indentation can indeed be used to
evaluate KISCC.

Compared with the indentation tests, the fracture mechanics KISCC test requires
much more effort for sample preparation and setting up of the testing method, etc.
For instance, the value of KISCC is usually obtained when crack growth has stopped,
with decreasing driving force for crack growth. To recognize the termination of
crack propagation, the experiment needs to last a minimum of 1000 h. Thus, the
KISCC test usually requires a long time. In contrast, our method based on indentation
saves time and potentially is an alternative technique.

Mechanism of HE Cracking from Indentation Impression

Materials and Experimental Methods

The above section is to investigate whether indentation cracking occurs or not,
when the indentation loading is applied to hydrogen-charged steel. On the contrary,
indentation cracking from permanent impression due to hydrogen absorption (i.e.,
when the impression crater is exposed in hydrogen environment) is clarified in this
section. We used the same steel, i.e., 18Ni maraging steel (called 350 ksi (Boyer and
Gall 1985)), which is a low-carbon martensitic steel. This section used a spherical
diamond indenter with a 400 �m radius, which is quite a bit larger than the grain
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size of the maraging steel (about 8 �m observed in Yonezu et al. 2010) used in this
work. The typical shot peening crater has a diameter of several hundred �m, and
in this case, we can ignore the effect of individual crystal plasticity on the stress
analysis (based on continuum mechanics). Thus, a relatively large impression crater
is required. The maximum indentation forces are 100, 200, and 300 N. The loading
rate is set to 1 N/s for all tests, thereby simulating quasi-static contact loading.

After the indentation test to create a permanent impression, cathodic charging
was carried out to introduce hydrogen into the material using a phosphate buffer
solution (2.6 w/v% K2HPO4, 0.2 w/v% NaOH, pH D 6.5) with a current density
of 5 A/m2. In order to vary the hydrogen content in the steel, the duration of
hydrogen charging was varied, and two durations of 6 and 48 h were used. The
impression morphology was observed using an optical microscope (BXM-N33 M,
Olympus Corp.). After the hydrogen charging, the sample was cleaned in ethanol in
an ultrasonic cleaner (UT-206, SHARP Corp) for more than 1 h. Some specimens
were mechanically cleaned along with fine polishing of buffing in order to remove
the oxide film (formed during hydrogen charging) for clear observations. We were
able to confirm that the length of the crack did not change before and after the fine
polishing to remove the oxide film. Observations of the impression were conducted
at least 1 h after the hydrogen charging. We confirmed that the hydrogen crack
completely stops propagating after hydrogen charging.

Experimental Results

Indentation tests with different maximum indentation forces of Fmax D 100, 200
and 300 N were carried out. Cathodic charging of the samples was then carried
out for 6 and 48 h. For each test, about 30 impressions were performed. Figure
10 shows optical micrographs of representative indentation impressions and the
surrounding area for hydrogen charging of 48 h. These figures separately show
the results as a function of hydrogen charging time and Fmax value. In Fig.10a of
Fmax D 100 N test, the impressions show short cracks (less than about 50 �m)
from the rim. Indeed, it is difficult to observe these, since the crack width is very
narrow. In Fig.10b of Fmax D 200 N tests, however, long cracks are clearly observed
from the rim. The cracks propagate radially from the impression, indicating a radial
crack. Short cracks (similar to Fig.10a) are also observed in these samples. Figure
10c (of Fmax D 300 N test) show the same trend, indicating two types of cracks.
It should be noted that the steel with no hydrogen absorption (before hydrogen
charging) did not exhibit any cracking around the indentation impression (Yonezu
et al. 2010) (as explained before). The present results indicate that permanent
indentation impressions in the steel used absorbed hydrogen-induced short cracks
and sometimes long cracks. Although the pictures of 6-h charging tests are omitted,
it is found that the crack morphology also changes depending on the hydrogen
content and applied indentation force (Niwa et al. 2015).

Figure 11 shows the frequencies of different crack lengths for each test condition.
Similar to the series, Figs. 10 and 12 show results separately for different maximum
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Fig. 10 Micrographs of an impression crater and its surrounding area. The hydrogen charging
time is 48 h. The maximum indentation force Fmax D 100 N for (a), 200 N for (b), and 300 N for (c)
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Fig. 12 Changes in crack length (for short cracks (a) and long cracks (b)) as a function of
maximum indentation force

indentation force Fmax (100, 200, and 300 N). For the Fmax D 100 N test (Fig. 11a),
short cracks with length less than 50 �m were observed for both charging times.
On the other hand, the tests for Fmax D 200 and 300 N showed two peaks in the
distributions, where both short and long cracks exist. As also seen in Fig. 10, the
two types of cracks (short and long cracks) can be distinguished, and the boundary
between them is set to 50 �m, as shown by the dashed vertical line in Fig. 11.

Subsequently, we measured the crack length for both crack types, as shown in
Fig. 12. The short crack length (Fig. 12a) seems to be independent of Fmax and
hydrogen charging time; however, the data shows large scatter. In contrast, Fig. 12b
shows that the long crack length has strong dependency on Fmax. In addition, the
crack length is dependent on the hydrogen charging time, and the crack length is
longer with larger charging time. The stress distributions and criteria were clarified
in the study using finite element simulations, as described in the next section.

Discussion

Mechanism of Crack Propagation
In order to investigate crack formations of Fig. 10, the cohesive zone model (CZM)
was employed in FEM to compute the stress field in conjunction with radial crack
propagation. As mentioned above (section “Cohesive Zone Model”), this study
employed an exponential law (called the Smith-Ferrante law) due to its simplicity.
This law requires two independent material parameters, i.e., the maximum stress
¢max and the crack growth resistance KC. The ¢max roughly corresponds to the
critical stress for crack nucleation. As discussed before, the critical stress (¢max)
is estimated to be 0.65 GPa in the present steels which suffer from hydrogen
embrittlement (Yonezu et al. 2010, 2012, 2015). In contrast, it is well known that
Kc (which is similar to KISCC as discussed earlier) is strongly dependent hydrogen
accumulation (Yamaguchi et al. 1997; Yonezu et al. 2012), and thus KISCC is not
known. In fact, this study explores the actual KISCC with comparison between the
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FEM computation and experiment (see later, section “Crack Length and Stress
Intensity Factor”).

We created a three-dimensional FEM model of one-quarter of the specimen
(similar with Fig. 6). One CZM element for crack propagation is inserted along
the center line (at a 45-degree angle from the side surface). It is noted that the
situation of crack propagation is different from Fig. 6, because HE crack propagates
from permanent impression crater (i.e., crack propagation starts “post” indentation).
A permanent impression is first made by spherical indentation with Fmax D 100,
200 and 300 N. After full unloading, the cohesive zone element operates, such that
the crack starts propagating. We simulated crack propagation by the residual stress
developed around the impression. To make the indenter impression, a rigid spherical
indenter was used in a similar manner to that shown in Fig. 6. The mechanical
properties used for the FEM are listed in Table 1.

Figure 13 shows representative contour maps of the crack nucleation area upon
full unloading. The figure shows cross-sectional views along the crack propagation.
For all models, the input value of the stress intensity factor was set to 3.5 MPa
m1/2, as a representative case. The maximum indentation force was changed to
Fmax D 300 N, 200 N, and 100 N, and the results are shown separately in Fig. 13a,
b, c, respectively. In the figures, the yellow area indicates the crack nucleation area
(i.e., the crack surface). Here, the yellow region defines the crack nucleation area
where the CZM interface completely opens, and there is no traction force between
the CZM interfaces. It is found that the crack length strongly depends on Fmax. In
particular, the test with Fmax D 100 N produces very small cracks, whose length is
about 29 �m (categorized as a “small crack” in this study). On the other hand, the
larger Fmax tests (Fmax D 200 and 300 N) produced long cracks, which were very
deep. This computational result corresponds to the experimental results in Figs. 10
and 11.

However, the larger Fmax tests (Fmax D 200 and 300 N) not only formed long
cracks but also small cracks (even if the circumferential stress surrounding the
indenter impression was uniform). The question arises as to why two different
crack types exist (i.e., the larger Fmax produces both short and long cracks). The
mechanism of such a “multiple crack” scenario was investigated as discussed in the
next section.

Mechanism of Multiple Crack Formation
Multiple crack formation with two types of cracks with different lengths was
observed, as discussed above. We created a simple FEM model for simulating
such a multiple crack propagation. Figure 14 shows a three-dimensional model
with half size. Two CZM elements are inserted along the radial direction, so that
it can simulate radial crack propagation. Similar to Fig. 13, when the indenter is
completely withdrawn, the CZM element starts operating, such that we can simulate
crack propagation from the residual stress around the indenter impression. To make
the indenter impression, a rigid spherical indenter was used, and the maximum force
Fmax is 300 N. The three-dimensional half model in Fig. 14 comprises 53,200 eight-
node elements. The mechanical properties used for the FEM are listed in Table 1.
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Fig. 13 Contour map of crack nucleation area in the model with K D 3.5 MPa m1/2. Fmax D 300 N
(a), 200 N (b), and 100 N (c)

As shown in Fig. 14, two CZM elements (designated as CZM① and CZM②)
are inserted at a certain angle ™. We investigated the relationship between the
crack propagation behavior and the crack angle ™, which can be influenced by the
interaction of multiple cracks. Indeed, when a crack propagates, the stress around
the crack is released, and it may be difficult for a new crack to propagate around
that area. However, with increasing distance from the propagated crack, the stress
recovers to the original state, resulting in new crack propagation. It should be noted
that the distance in this case is the angle in the circumferential direction, and in
the present study, this crack angle was set from 30 to 90 degrees, as shown in
Fig. 14.

As mentioned above, we experimentally observed the occurrence of both long
and short cracks together. In the present case, it seemed that a long crack was
generated first, resulting in the surrounding stress field becoming weak. Then, the
second crack near the long crack becomes short, while the crack far from the first
long one becomes long (i.e., it recovers to the length of the first long crack). The
crack length might be dependent on the angle from the first long crack. Based
on this assumption, after full unloading, CZM① operates first, followed by the
operation of CZM②. Such a “delay” in the computation process is controlled by
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Fig. 14 Three-dimensional FEM model (half model) with cohesive zone element (CZM) for
simulating radial crack propagation. This model simulates multiple crack propagation using CZM
and CZM whose angle is changed from 30 to 90 degrees

the step increment in the FEM analysis. Of course, if CZM① and CZM② are
generated at the same time, their lengths must be the same. In reality, however,
it is unlikely to guess that all cracks are generated at the same time during the
hydrogen charging, since crack initiation is strongly dependent on both inherent
defects (which are present inhomogenously) and the hydrogen accumulation state.
Thus, we hypothesize that multiple cracks initiate separately at different times,
i.e., CZM① is the “primary crack” and CZM② is the “secondary crack” (in situ
monitoring of hydrogen cracking cannot yet be conducted in this study). Note that
the material parameters of CZM① and CZM② are identical.

Using the model shown in Fig. 14, we investigated changes in the crack length
of CZM① and CZM② as a function of the angle between the two cracks. As a
representative case, the threshold stress intensity factor of the crack growth KISCC

was set to 4.5 MPa m1/2 for the CZM parameter. Figure 15 shows the results for the
computed crack length for two CZM elements. The figure shows top views of the
contour map, with the crack propagation area shown as yellow. Figure 15a shows
the result for the 30-degree angle, while the result for the 90-degree angle is shown
in Fig. 15b. When the angle is 90 degrees (larger angle), the crack lengths of CZM①

and CZM② are identical. In contrast, when the angle is 30 degrees, the secondary
crack (CZM②) becomes significantly shorter.

We next investigated how the crack length (especially of CZM②) is changed
by the angle between the cracks. The results are shown in Fig. 16. It can be seen
that the primary crack length of CZM① has little dependence on the angle, while
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Fig. 15 Contour map of crack nucleation area, showing the multiple crack propagation (crack
angle of 30 degrees (a) and 90 degrees (b))

the secondary crack (CZM②) is strongly dependent on the angle. At an angle of
90 degrees, the length of CZM② agrees well with that of CZM①. This suggests
that at 90 degrees, multiple cracks do not interact with each other. However, at
a smaller angle (when the position of CZM② is closer to CZM①), the length of
CZM becomes significantly shorter. Finally, the length of CZM at about 30 degrees
becomes less than 50 �m, and angles smaller than 30 degrees do not produce any
cracks in this model. This might be due to the fact that the driving force for the
CZM crack becomes small owing to propagation of the primary crack (CZM). Thus,
the effect of primary crack generation becomes significant when the crack angle is
small. It can therefore be concluded that the above discussion is the mechanism for
the appearance of a short crack together with a long crack. It should be noted that
this trend (crack length vs. crack angle) is dependent on the crack growth resistance,
KISCC. It is expected that the case of smaller KISCC leads to a smaller crack angle,
while a larger KISCC leads to a larger angle.
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Experimentally, we measured the angle between the long and short cracks for all
indenter impressions. In this study, we only measured the minimum angle between
the long and short cracks as the crack angle ™. The results are shown in Fig.
17 as a function of the applied Fmax and the hydrogen charging time. Although
the data show large scatter, the average crack angle ™ was about 45 degrees for
hydrogen charging for 6 h and 30 degrees for 48-h hydrogen charging. Although ™

is dependent on KISCC, the experimental data are similar to the computational results
in Fig. 17, especially for the 48-h charging time (the angle is about 30 degrees).
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Crack Length and Stress Intensity Factor
We finally discuss the actual crack length from experimental HE cracking based on
stress analysis, especially the stress intensity factor around the crack tip. Here we
focus on the “long crack” (see Fig. 16), since it is not influenced by other crack
generation. Similar with Fig. 8 of Vickers indentation, we investigated the effect of
the input value of the stress intensity factor (crack growth resistance) KISCC on the
crack length. We conducted several computations in this study with various values
of the crack growth resistance (stress intensity factor K was changed from 3.0 to
5.5 MPa m1/2 in steps of 0.5 MPa m1/2) for both the Fmax D 200 N and 300 N tests.
As expected, the crack length is strongly dependent on the input KISCC, indicating
that the crack length is longer when KISCC is smaller (like Fig. 8). In addition, a
strong dependence of Fmax on the crack length was observed, i.e., with larger Fmax,
the radial crack becomes longer. This relationship can yield the actual KISCC when
the crack length is known. Therefore, the experimental crack length is substituted in
this relationship in order to estimate the actual KISCC.

The estimated values are investigated as a function of the maximum indentation
force, Fmax. This indicates that the estimated KISCC depends on the hydrogen
charging time (i.e., hydrogen content), while it is not dependent on Fmax. For the
hydrogen charging time of 6 h, KISCC is estimated to be 4.9 MPa m1/2, while
for the charging time of 48 h, KISCC is 4.3 MPa m1/2. As mentioned in section
“Crack Growth Resistance,” the KISCC via Vickers indentation is estimated from 4 to
6 MPa m1/2 (depending on the hydrogen content). As shown in Table 2, furthermore,
fracture mechanics tests for HE cracking reported the values of KISCC to be in the
range of 5.5 to 11 MPa m1/2 (although the steel grade and hydrogen content in these
tests are different from those in the present study). These values are in reasonable
agreement with our estimation, suggesting that the present crack length (long crack)
is governed by the threshold stress intensity factor KISCC for HE. Thus, the present
findings may be useful for prediction of HE crack morphology from indentation
impression.

Conclusion

This study investigated indentation-induced cracking in a maraging steel due to
hydrogen embrittlement (HE). This review addressed two topics. The first one
is that Vickers indentation was applied to the hydrogen-charged steel, such that
we explored new evaluation method for HE susceptibility. The second topic is to
investigate HE crack morphology from the residual stress that develops around a
spherical indentation impression crater.

In the first topic, it is discovered that Vickers indentation induces hydrogen
embrittlement cracking. The surface crack length is dependent on the hydrogen
content in the steel. Since the stress intensity factor is equilibrated with the threshold
stress intensity factor, KISCC, the stress field upon indentation in conjunction with
crack growth was computed by the finite element method (FEM) incorporating a
cohesive zone model. It was found that the simulated crack starts to grow under
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loading and then propagates under unloading. The crack length finally reaches a
maximum value at full unloading. The FEM with different values of the crack
growth resistance (KISCC) was used to obtain the relationship between KISCC and
surface crack length. By substituting the actual crack length in the relationship,
KISCC could be estimated. The estimated values were found to agree with the
KISCC values measured by fracture mechanics testing (KISCC test). Furthermore, our
method showed a dependence of hydrogen content on KISCC. This trend is observed
when fracture mechanics KISCC tests are applied to high-strength steel in a hydrogen
environment. Such a HE evaluation is usually conducted by KISCC tests that require
significant effort for specimen preparation and setting up of testing, etc. However,
the indentation-based evaluation method proposed in this study is very simple and
convenient. The present approach is an alternative for evaluation of HE cracking.

The second topic clarified the stress criterion of hydrogen embrittlement cracking
(i.e., HE crack initiation and propagation) from the residual stress of indentation
impression. Namely, when spherical impression crater is exposed in hydrogen
environment, how HE cracking propagates from the crater was investigated. The
HE crack propagates radially, and the crack length is dependent on maximum
indentation force and critical crack growth resistance KISCC (which is changed by
the hydrogen content). In addition, a larger indentation force results in a complicated
HE fracture, showing both long and short cracks. In this case, the appearance of the
short cracks is affected by stress release of a neighboring long crack. These findings
in our systematic investigation may be useful to predict damage of HE cracks,
produced by residual stress in the permanent impression. Especially, this will be
useful to determine how the size of an impinging foreign object (indenter size and
shape) and the loading magnitude (maximum indentation force) induce HE damage,
including crack length. This may become an indicator for HE upon permanent
impression crater/dimple formation, such as by shot peening and localized contact
loading.
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Abstract

In many studies using continuous stiffness measurement (CSM) nanoindentation
technique, it is assumed that the strain rate remains constant during the whole
experiment since the loading rate divided by the load ( PP =P ) is considered
as a constant input parameter. Using the CSM method, the soundness of this
assumption in nanoindentation of polymeric glasses is investigated by conducting
a series of experiments on annealed poly(methyl methacrylate) (PMMA) and
polycarbonate (PC) at different set PP =P values. Evaluating the variation of the
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actual PP =P value during the course of a single test shows that this parameter
varies intensely at shallow indentation depths, and it reaches a stabilized value
after a significant depth which is not material dependent. In addition, the strain
rate variation is examined through two methods: first, using the definition of
the strain rate as the descent rate of the indenter divided by its instantaneous
depth ( Ph=h) and second, considering the relationship between the strain rate
and the load and hardness variations during the test. Based on the findings, the
strain rate is greatly larger at shallow indentations, and the depth beyond which
it attains the constant value depends on the material and the set PP =P ratio.
Lastly, incorporating the relationship between the hardness and strain rate, it is
revealed that although the strain rate variation changes the material hardness, its
effect does not give a justification for the observed indentation size effect (ISE);
therefore, other contributing parameters are discussed for their possible effects
on this phenomenon.

Keywords
Glassy polymers · Amorphous · Nanoindentation · Hardness · Indentation
strain rate · Continuous stiffness measurement · Loading rate · Poly(methyl
methacrylate) · Polycarbonate · Elastic modulus · Polymeric glasses

Introduction

The interest of many researchers has been recently directed to study the mechanical
properties of polymers in small size scales due to their extensive use in nano- and
microscale elements over the past decades. A large series of constitutive models
and experimental methods by which the properties of this class of materials can be
thoroughly captured in millimeter or larger size scales has been presented (Hasan
et al. 1993; Hoy and Robbins 2006; Van Breemen et al. 2012; Mulliken and Boyce
2006; Anand and Gurtin 2003; Voyiadjis and Samadi-Dooki 2016); however, there
are still many questions about the behavior and deformation mechanism of polymers
in submicron size scales. To acquire the precise and reliable results for mechanical
properties, including elastic modulus and hardness, of very small volumes of
materials, instrumented-indentation testing (IIT) can be employed (Al-Haik et al.
2004; Boersma et al. 2004; Lee et al. 2004; Zeng et al. 2012). In this technique,
an indenter induces a localized deformation by applying a specified load on the
material surface. Basically, there are two different indentation methods: (1) basic
mode in which, with monotonic loading and unloading, the mechanical properties
are only measured at the predefined maximum load from the unloading curve, and
(2) continuous stiffness measurement (CSM) mode in which a small oscillation
force is superimposed on the primary loading signal, and the resulting response of
the system is analyzed through a frequency-specific amplifier. Employing the second
procedure, the material mechanical properties can be continuously measured from
zero to the maximum indentation depth during the loading segment. In addition,
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while in the former, the contact stiffness is measured just at the initial point of the
unloading, the measurement of the contact stiffness at any point along the loading
segment is possible in the latter with a smaller time constant (Li and Bhushan 2002;
Hay et al. 2010; Pethica and Oliver 1988). Therefore, the small time constant of
the CSM method makes it more useful for measuring the properties of materials
especially those which are strongly time dependent like polymers. The loading (or
strain) rate is controlled in a different way in these two modes; during the basic
mode, the load is applied with a constant rate on the sample surface by the indenter
until it reaches a determined maximum value; however, in the CSM mode, the
indenter travels up to a predefined maximum depth and the load is controlled so
that the loading rate divided by the load ( PP =P ) remains constant over the course of
a single indentation.

The loading and strain rates are adjustable parameters in nanoindentation
experiments, and their variations have shown profound effects on the mechanical
response of time-dependent materials like polymers (Odegard et al. 2005; Mazeran
et al. 2012; Samadi-Dooki et al. 2016; Malekmotiei et al. 2015; Kraft et al. 2001;
White et al. 2005; Zhang et al. 2009; Shen et al. 2004). That being the case, a
closer look at the strain (loading) rate variation during the indentation is required
since the generated strain and stress fields in the material due to the loading by
a self-similar tip is inhomogeneous. In the basic mode nanoindentation, although
the test is conducted with a constant loading rate PP , the strain rate is considerably
decreasing at shallow depths, and it eventually approaches almost stable value after
a long distance travel of the tip into the material. For this reason, an average value
of the strain rate over the deep part of the indentation can be considered as the
representative strain rate of the test (Schuh and Nieh 2003). On the other hand, in
the CSM nanoindentation experiments, the PP =P ratio is set as a constant value
at the beginning of the test. It has been shown that the indentation strain rate can
also be assumed to remain constant during the constant PP =P experiment where
the material hardness has the steady-state value, i.e., PH D 0 (Lucas and Oliver
1999). However, the indentation size effect (ISE), which is the increment of hardness
as the indentation depth decreases, has been observed during the nanoindentation
experiments on many materials including crystalline and amorphous solids (Briscoe
et al. 1998; Voyiadjis and Zhang 2015). In a study on Al-based foams, it has been
observed that the strain rate varies about three orders of magnitude during the first
200 nm of the indentation before reaching a steady-state value (Kraft et al. 2001). As
a result, in the case of the CSM mode, the indentation strain rate can be considered
constant in that part of the test where the ISE is negligible.

Conducting the CSM nanoindentation experiments on PMMA and PC as poly-
meric glasses, the variation of the strain rate during the course of a single test is
investigated as a main goal in this chapter. Examining the variation of the PP =P

ratio during the test shows that although the PP =P ratio is set to remain invariant
during the loading segment, it takes a considerable tip travel distance until it
stabilizes and reaches the set value. Furthermore, the indentation strain rate, which
has been incorrectly considered as the PP =P ratio in some studies (Shen et al.
2004, 2006; Vachhani et al. 2013), is also found to change at shallow depths of
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indentation. The obtained results show a good correlation between the instantaneous
indentation strain rate, which is evaluated directly from the indentation depth-time
data recorded during the loading segment, and the strain rate relation proposed by
Lucas and Oliver (1999) based on the variation of the load and hardness. As another
purpose, the possible relation between the variation of the strain rate during the
nanoindentation and the observed ISE in polymers is also scrutinized in this chapter.
While the high values of strain rate in shallow depths can cause the increment of
material hardness, it is discussed here that it cannot be the reason for the observed
ISE since the obtained high values of hardness could be the result of the indentation
strain rates which are orders of magnitude higher than the actual recorded strain rate
values.

Materials andMethods

Sample Preparation

The commercially manufactured (Goodfellow, Cambridge, UK) polymeric glasses
including PMMA and PC, 2.0 and 5.0 mm-thick sheets, respectively, are considered
for this investigation. The sheets are first cut into 20 � 20 mm squares, and then
washed with 30% isopropyl alcohol (IPA) to eliminate the remainders of the protec-
tive film, and at the end rinsed with distilled water. Using a TA Instruments 2920
differential scanning calorimetry (DSC) machine, the glass transition temperature
(Tg) of the specimens is measured to be about 110 ıC and 148 ıC for PMMA
and PC, respectively. The samples are annealed at 120 ıC for 4 h to remove
any thermal history, and then cooled down to ambient temperature with the rate
of 10 ıC/h in a vacuum oven. The roughness of sample surface is one of the
factors which affects the nanoindentation results since high values of roughness can
make inaccuracy in the hardness of material measurements; therefore, to capture
the surface topography of the samples, an Agilent 5500 atomic force microscope
(AFM) is utilized. Since the average surface roughness, Ra, of the PC and PMMA
specimens are 0.411 ˙ 0.033 and 0.372 ˙ 0.013 nm, respectively, one can assume
the flat surface for samples (Kim et al.2007), and there is no need to modify the
obtained results for materials’ hardness (Voyiadjis and Malekmotiei 2016).

Nanoindentation Analysis

To address the goal of this chapter which is scrutinizing the strain rate variation dur-
ing the course of a single nanoindentation experiment and its effect on the observed
ISE, an MTS Nanoindenter® XP equipped with a three-sided pyramidal Berkovich
diamond tip is employed (Voyiadjis and Malekmotiei 2016). The mechanical
properties of the specimens are measured through the CSM mode indentation in
which the load-hold-unload sequences are carried out with the constant PP =P during
the loading stage. According to the formulations developed by Oliver and Pharr
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(2004), the material hardness is defined as the mean contact pressure under the
indenter as follows:

H D
P

Ac

(1)

where P is the applied load on the sample surface and Ac is the projected contact
area of the hardness impression at that load. Based on this discerption, a precise
measurement of the contact area between the sample surface and the indenter tip is
required to calculate the hardness. The contact area is a function of the contact
depth, hc, and equal to Ac D 24.56hc2 for a perfect Berkovich indenter tip. The
one used for these experiments is not ideally sharp; so, the contact area function
is obtained through calibrating the tip which improves the accuracy of the contact
area measurements by accounting for the tip imperfections and leads to introducing
some additional terms to the above relation as:

Ac D 24:56hc
2 C C1hc

1 C C2hc
1=2 C C3hc

1=4 C � � � C C8hc
1=128 (2)

in which C1 through C8 are constant coefficients which are obtained based on
the results of the nanoindentation on fused silica as a standard sample. Another
important parameter that needs to be accurately determined is the depth over which
the material is in contact with the tip (hc). The contact depth is estimated using

hc D h � "
P

S
: (3)

where h is the total penetration depth, S is the elastic contact stiffness, and
" is a constant that depends on the indenter geometry (for a Berkovich indenter
" D 0.75 (Oliver and Pharr 1992)). As already stated, the CSM technique makes
the continuous measurement of the contact stiffness as a function of depth possible
during the loading segment of the indentation. Considering the imposed driving
force as PDP0 ei!t and the indenter displacement response as h(!) D h0 e(i!tC ˛),
the elastic contact stiffness is calculated as follows:

S D

"
1

P0

h.!/
cos .˛/ � .Ks � m!2/

�
1

Kf

#�1

(4)

in which P0 is the force oscillation magnitude, ! is the oscillation frequency, h0 is
the resulting displacement oscillation magnitude, and ˛ is the phase angle between
the displacement and force signals. The other contributing parameters are the leaf
spring constant, Ks, that supports the indenter, the indenter mass, m, and the indenter
frame stiffness, Kf (Li and Bhushan 2002).

Another mechanical property measured in the nanoindentation experiments is the
elastic modulus of the sample, E, which is calculated by the following relation:

1

Er

D
1 � �2

E
C

1 � �i
2

Ei

: (5)
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where Eris the reduced elastic modulus which attributes to the elastic defor-
mation in both the sample and indenter, � is the sample Poisson’s ratio, and
Ei and vi are the indenter elastic modulus and Poisson’s ratio, respectively.
Sneddon (1965) has developed a relation for the reduced elastic modulus as
follows:

Er D
S

2ˇ

r
 

Ac

: (6)

where ˇ as a constant depends on the indenter geometry and is about 1.034 for
the Berkovich tip. Subsequently, as a main feature of the CSM method, the material
hardness and elastic modulus are measured as continuous functions of depth with
the course of an individual loading-unloading cycle.

The Indentation Strain Rate

Basically in the nanoindentation experiments, the strain rate affects the material in
a direction perpendicular to the sample surface and is correlated with the displace-
ment/loading rate of the indentation. For a pyramidal indenter, the indentation strain
rate is defined as the penetration rate of the indenter into the material divided by its
instantaneous depth as follows (Mayo and Nix 1988):

P�i D

�
1

h

��
dh

dt

�
: (7)

where t is time. In a study, Lucas and Oliver (1999) investigated that by
keeping the loading rate divided by the load ( PP =P ) constant during the CSM
nanoindentation, the indentation strain rate can also remain constant. It has been
shown that incorporating the loading and hardness data, the indentation strain rate
can be obtained as (Lucas and Oliver 1999):

P�i D
Ph

h
D

1

2

 
PP

P
�

PH

H

!
: (8)

in which PH is the hardness variation rate and other parameters are defined before.

According to Eq. 8, the indentation strain rate reaches a constant value
�

1
2

PP
P

�
at large

indentation depths where the material hardness is almost unvaried, i.e., PH D 0.
It is noteworthy to mention that two main simplifying assumptions have made to

get this relation: (a) the projected contact area relation is considered as AD 24.56h2

which is used for an ideal Berkovich indenter tip, and (b) instead of the contact or
plastic depth, the total depth is used in the contact area function.
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Experimental Procedure

As mentioned in preceding sections, as a first step, the specimens should be
thoroughly prepared and the tip should be carefully calibrated; the tests then are
triggered by running the loading-hold-unloading cycles as follows: before any
measurement, the tip drift should be controlled at a rate below 0.05 nms�1, so it
is held on the top of the sample surface until it gains the stabilized rate. The tip
then moves downward to reach the material surface. As soon as the tip touches
the sample surface, the loading stage begins with a constant PP =P ratio and it
continues until a specified maximum depth of 10 �m. To account for the creep
behavior of the polymer, the load is then held at this stage for 10 s, and eventually,
the unloading part is carried out with a constant unloading rate until 10% of the
maximum load. Since the goals are investigating the variation of PP =P ratio during
the whole nanoindentation experiment from zero to the maximum depth, and also
its contribution on the indentation strain rate, a series of tests are performed on
annealed PMMA and PC samples with three different set values of PP =P (0.005,
0.05, and 0.11 s�1). For each PP =P ratio, 25 indents are accomplished to get the
accurate results and to prevent from interaction of the indents, 150 �m distance is
considered between them.

Results and Discussion

Variation of the PP=P in the Course of an Indentation

The applied load on the sample and the tip travel distance are recorded as unbroken
curves in the CSM nanoindentation experiments with nN and sub-nm exactness,
respectively. Since the loading rate divided by the load is constant during the loading
stage, i.e., PP =P D �, the load is expected to be an exponential function of time as
follows:

P D ˇe�t : (9)

where ˇ is the constant obtained by solving the ordinary differential equation
(ODE). The load variation with time during the loading section of the nanoinden-
tation on PC sample is presented in Fig. 1 (Voyiadjis and Malekmotiei 2016); the
figure shows the results for three different set PP =P ratios and their exponential
interpolations (lines) for comparison. The result curves depart from the exponential
behavior at shallow indentation depths while they behave in accordance with the
exponential variation within the long tip travel distance, especially for higher PP =P

values. This discrepancy at the early stages of loading is due to the fact that based on
Eq. 9, the initial loading condition is P(0) D ˇ; however, the set initial condition for
the experiment process is P(0) D 0. Thus, the indenter PP =P ratio can be adjusted to
the set PP =P value after several nanometers of indentation displacement (or several
seconds).
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Fig. 1 Variation of load versus time response of the indenter for PC sample measured on the
loading segment of the nanoindentation experiment at three different set PP =P values. The lines
represent the exponential interpolations (Reprinted from Voyiadjis and Malekmotiei 2016)

The actual variation of PP =P ratio as a function of the indentation depth is
presented in Fig. 2 for PC and PMMA (Voyiadjis and Malekmotiei 2016) at three
different set values of this ratio which are shown as horizontal dashed lines. As
mentioned before, the actual PP =P values do not approach their set values right after
the indenter tip comes into the contact with the sample surface. Furthermore, the
depth at which the PP =P ratio stabilizes does not depend on the material; however,
it is extremely dependent on the set PP =P value. As depicted in Fig. 2 (Voyiadjis
and Malekmotiei 2016), the depth beyond which the actual PP =P approaches the set
value and stabilizes is smaller for the bigger set value of PP =P : it is almost 1000 nm
for the set PP =P value of 0.005 s�1 and reduces to 200 and 100 nm for the set
PP =P values of 0.05 and 0.11 s�1, respectively. Interestingly, the starting point of

actual value of PP =P is not dependent on the material and set PP =P ratio, and it
approximately equals 0.3 s�1 for all experiments.

Variation of the Strain Rate in the Course of an Indentation

In the CSM nanoindentation method, since the tip displacement is recorded continu-
ously with time, the indentation strain rate can be directly calculated by using Eq. 7
and simple numerical differentiation as a continuous function of the indentation
depth. In addition, indirect evaluation of the indentation strain rate during the
loading segment of the test is possible by incorporating Eq. 7 and using the recorded
load on the sample and the measured material hardness as functions of the depth.
Since to employ Eq. 8 the variation of the instantaneous hardness rate divided by
hardness ( PH=H ) is required, this parameter is represented in Fig. 3 (Voyiadjis and
Malekmotiei 2016) at three different set PP =P ratios for PC and PMMA. As depicted
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Fig. 2 Variation of the actual PP =P values with indentation depth at three different set PP =P values
for (a) PC and (b) PMMA (Reprinted from Voyiadjis and Malekmotiei (2016))

in Fig. 5, the material hardness is higher at shallower indentation depths (indentation
size effect) and then reaches a plateau at the certain depth which is the representative
of the macroscopic hardness. Therefore, this trend results in the negative values of
the PH=H ratio at the initial stages of the loading section and finally zero values of
PH=H at deep part of the indentation (see Fig. 3). As another result obtained from

Fig. 3, the depth beyond which PH can be assumed zero depends on the material and
the set PP =P value.

Figure 4 (Voyiadjis and Malekmotiei 2016) displays the variation of the inden-
tation strain rate with the indentation depth calculated based on the two different
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approaches. Since both methods show almost the same results, it reveals the validity
of the assumptions made by Lucas and Oliver (1999) to obtain Eq. 8 not only for
deep but also shallow indentations of polymeric glasses. The most important result
is that the indentation strain rate is not constant during the loading segment of the
CSM nanoindentation of glassy polymers, and its variation is material and rate
dependent. However, it can be assumed to be constant and equal to 1

2

PP
P

for deep
enough indentation experiments.

Indentation Size Effect

In rate-dependent materials including polymers, the flow stress extremely depends
on the applied loading (strain) rate: the higher the experiment strain rate, the
higher the yield stress (Voyiadjis and Samadi-Dooki 2016; Samadi-Dooki et al.
2016; Malekmotiei et al. 2015; Richeton et al. 2006; Rottler and Robbins 2003).
Therefore, since there is a relation between the flow stress and hardness of the
material through Tabor’s relation (Prasad et al. 2009), the higher value of hardness is
expected from nanoindentation with the higher strain rate. The variation of hardness
versus the tip displacement is presented in Fig. 5 (Voyiadjis and Malekmotiei
2016) for experiments on PC and PMMA samples at three different set PP =P

values. It is observed that the obtained hardness values are higher as the strain
rate increases; especially, the macroscopic hardness which is the hardness at the
deep part of the nanoindentation and is the plateau for each curve depends on both
material and strain rate. It is clear in these figures that the strain rate dependency
of PMMA is more considerable which is, physically, demonstrated as smaller shear
activation volumes in this material (Malekmotiei et al. 2015). Another observation
in Fig. 5 is the profound increment of the hardness as the depth decreases during
each indentation which is known as the ISE at nanoscales (Shen et al. 2006;
Lam and Chong 1999; Zhang and Xu 2002). Due to the above-mentioned reason,
the increased values of the material hardness at shallow indentation depths might
be correlated with the higher values of the strain rate at these depths. However,
an exact quantitative analysis is needed to understand and evaluate this possible
relationship.

Many studies show that there is a linear relationship between the flow stress (or
hardness) of the polymeric glasses and the logarithm of the strain rate. The explicit
relationships have been previously obtained for PC and PMMA by nanoindentation
evaluations (Samadi-Dooki et al.2016; Malekmotiei et al.2015). Using the obtained
formulations and the strain rate variation during indentation, the fictitious hardness
can be calculated for each test. It should be mentioned that to calculate the fictitious
hardness, it is assumed that the hardness variation is just the result of the strain rate
variation during the loading stage. Figure 6 shows the actual measured hardness
as well as the calculated hardness versus the indentation depth for PC and PMMA
at three different set PP =P values for comparison. The curves of PC sample show
that the calculated hardness is almost constant and there is no considerable change
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during a test; however, its variation during each indentation on PMMA sample is
notably large in amount and follows almost the same hardening pattern at shallow
depths as the actual hardness variation trend. In addition, for PMMA, the calculated
hardness is the same (about 336 MPa) for all PP =P values when the loading stage is
triggered, which is acceptable for the reason that the strain rate at the beginning
of the indentation is also the same for different PP =P ratios (Fig. 4), while the
actual hardness at this point (maximum hardness in each curve) is different for
different PP =P values in both PC and PMMA. More importantly, as Fig. 4 represents
the strain rate variation in the course of an indentation is approximately material



328 G. Z. Voyiadjis et al.

0

200

400

600

800

1000

10 100 1000 10000

H
rd

ne
ss

 (M
Pa

)
H

rd
ne

ss
 (M

Pa
)

H
rd

ne
ss

 (M
Pa

)

H
rd

ne
ss

 (M
Pa

)
H

rd
ne

ss
 (M

Pa
)

H
rd

ne
ss

 (M
Pa

)

Indentation Depth (nm)

0

100

200

300

400

500

600

700

10 100 1000 10000
Indentation Depth (nm)

0

200

400

600

800

1000

10 100 1000 10000
Indentation Depth (nm)

0

100

200

300

400

500

600

700

10 100 1000 10000
Indentation Depth (nm)

0

200

400

600

800

1000

10 100 1000 10000
Indentation Depth (nm)

0

100

200

300

400

500

600

700

10 100 1000 10000
Indentation Depth (nm)

Ṗ/P = 0.005 s-1

Ṗ/P = 0.05 s-1

Ṗ/P = 0.11 s-1

Ṗ/P = 0.005 s-1

Ṗ/P = 0.05 s-1

Ṗ/P = 0.11 s-1

a

b

c

d

e

f

Fig. 6 Variation of the calculated (4) and actual (ı) hardness versus indentation depth during
the loading segment of the experiments on PC (a–c) and PMMA (d–f) at three different set PP =P

values (Reprinted from Voyiadjis and Malekmotiei (2016))



9 Continuous Stiffness Measurement Nanoindentation Experiments 329

independent, however, PMMA reveals a more intense strain rate dependency of
hardness response than PC (Fig. 5); therefore, a more profound indentation size
effect is expected to be observed in the nanoindentation of PMMA. Nevertheless,
the real situation is different since the hardness variation at shallow depths is more
noticeable for PC in comparison with PMMA (see Figs. 5 and 6) (Voyiadjis and
Malekmotiei 2016). The main result from these observations is that although the
strain rate variation during the loading segment of the CSM nanoindentation on
PC and PMMA is notable, it cannot be the major cause of the observed ISE in
amorphous polymers. As a matter of fact, the indentation strain rate variation during
the loading has no contribution to the observed ISE of PC and its contribution to
the ISE phenomenon in PMMA is negligible. Additionally, assuming the constant
strain rate during the CSM nanoindentation of polymeric glasses for the size effect
studies seems to be reasonable and there should exist other mechanisms behind
this phenomenon which are correlated to the localization and or free surface effects
(Alisafaei and Han 2015; Han et al. 2016).

It is noteworthy to mention that another important factor which can affect the
contact area and, subsequently, the measured hardness, especially at shallow depths
of the indentation, is the material pile-up around the indenter tip. In Fig. 6, since
the calculated hardness is obtained from the direct measurement of the indentation
strain rate ( Ph=h

�
(Samadi-Dooki et al. 2016; Malekmotiei et al. 2015), it is not

affected by the material pile-up, while the actual measured hardness in this figure
could be affected by the pile-up. For this reason, the material pile-up around the tip
could be another factor that causes the difference between the calculated hardness
of material and the actual one.

Another important phenomenon which is usually observed during the CSM
nanoindentation experiments is a small size effect on the recorded elastic modulus of
the material. As shown in Fig. 7 (Voyiadjis and Malekmotiei 2016), it is an increased
Young’s modulus at shallower indentation depths. This phenomenon is in contrast
to the earlier observations from particle embedment experiments (Teichroeb and
Forrest 2003; Karim and McKenna 2011, 2012, 2013; Hutcheson and McKenna
2007). As discussed comprehensively in the literature (Parry and Tabor 1973, 1974)
the applied hydrostatic pressure on the polymer samples can hamper the chain
movements which are required for relaxation processes and can subsequently result
in a considerable increment of the glass transition temperatures of the material.
Based on that, it has been proposed that, in nanoindentation experiments, the contact
loading at the indenter tip-polymer interface induces hydrostatic pressure under the
tip which increases the glass transition temperature of the sample near the surface,
and correspondingly, the increased stiffness of the material at low indentation depths
has been related to the increment of Tg (Gacoin et al. 2006; Tweedie et al. 2007).
Therefore, the observed considerable material stiffening at shallow indentation
depths (for depths of <50 nm in Fig. 7) (Voyiadjis and Malekmotiei 2016) could
also attribute to the elevated values of Tg at the surface layer within this tip travel
distance compared to the bulk. Moreover, incorporating the shear transformation
theory, Voyiadjis and Samadi-Dooki (2016) have proposed a model for yielding
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and plasticity of amorphous polymers which shows the relationship between the
yield stress (which is proportional to hardness through Tabor’s relation) and an
activation energy which itself is a function of the elastic modulus of the material.
Thus, as another confirmation, there exists a possibility that the increased hardness
observed at the shallow indentation depths to be interrelated to the increased elastic
modulus at these depths. This hypothesis, however, should be viewed as a qualitative
observation and treated cautiously since there is a noticeable difference between
the length scales during which the elastic modulus and hardness increments are
observed (see Figs. 5 and 7).
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Conclusions

The mechanical behavior of viscoelastic-viscoplastic materials, including polymers,
strongly depends on the rate at which they are loaded. In the case of the nanoindenta-
tion, where these behaviors are evaluated at nanoscales, there are different methods
in which the loading rate can be controlled in a way that the strain rate changes or
remains constant during the experiment. For many reasons, for example, to study the
effect of the temperature, thermal history, composition of alloys, etc., it is desirable
to conduct a test during which the strain rate remains constant. The continuous
stiffness measurement (CSM) nanoindentation is a technique which offers testing at
constant loading rate to load ratio ( PP =P ) ratios; this has been manifested as constant
strain rates during the test. In this chapter, the assumption of the constant strain rate
during this nanoindentation technique is studied for glassy polymers. Investigating
the instantaneous variations of PP =P and strain rate during the CSM nanoindentation
on poly(methyl methacrylate) (PMMA) and polycarbonate (PC) samples showed
that this assumption is not valid during the whole test and the strain rate changes in
the early stages of the indentation before acceptable stabilization; the depth beyond
that this parameter stabilizes depends on the material and the set PP =P value. It has
been shown that although by assuming the constant value of PP =P , an exponential
load-time response of the indenter is expected, the load-time curves do not obey the
exponential variation in early stages of the loading. The reason is the incompatibility
of the actual initial load with the initial condition of the exponential loading which
is required to assure a constant PP =P . To overcome this problem, one can apply a
very small load prior to the main loading segment of the experiment; this adjusts
the aforementioned incompatibility of the initial condition. By this adjustment, it
is expected that the PP =P value during the whole test remains constant and equals
the initial set value. However, it may not lead to a constant strain rate since the
hardness variation rate also contributes to the strain rate variation as proposed by
Lucas and Oliver (1999). The strain rate can be assumed constant only at deep
enough indentations where the load-displacement curve obeys the Hertzian relation
(Malekmotiei et al. 2015). In this chapter, the possible effect of the variation of the
strain rate during the indentation on the observed indentation size effect (ISE) in
amorphous polymers has also been discussed (Voyiadjis and Malekmotiei 2016).
While it is concluded that the increased strain rate within the shallow indentation
depths cannot be the sole reason for the observed profound ISE, contribution of the
other factors, such as material pile-up around the tip and stiffening due to the glass
transition temperature (Tg) shift induced by the hydrostatic component of the stress,
have been qualitatively discussed.
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Abstract

Glassy polymers are extensively used as high impact resistant, low density, and
clear materials in industries. Due to the lack of the long-range order in the
microstructures of glassy solids, plastic deformation is different from that in crys-
talline solids. Shear transformation zones (STZs) are believed to be the plasticity
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carriers in amorphous solids and defined as the localized atomic or molecular
deformation patches induced by shear. Despite a great effort in characterizing
these local disturbance regions in metallic glasses (MGs), there are still many
unknowns relating to the microstructural and micromechanical characteristics
of STZs in glassy polymers. This chapter is aimed at investigating the flow
phenomenon in polycarbonate (PC) and poly(methyl methacrylate) (PMMA) as
glassy polymers and obtaining the mechanical and geometrical characteristics of
their STZs. To achieve this goal, the nanoindentation experiments are performed
on samples with two different thermal histories: as-cast and annealed, and
temperature and strain rate dependency of the yield stress of PC and PMMA are
studied. Based on the experimental results, it is showed that the flow in PC and
PMMA is a homogeneous phenomenon at tested temperatures and strain rates.
The homogeneous flow theory is then applied to analyze the STZs quantitatively.
The achieved results are discussed for their possible uniqueness or applicability
to all glassy polymers in the context of amorphous plasticity.

Keywords
Glassy polymers · Shear transformation zone · Nucleation energy · Shear
activation volume · Homogeneous flow · Amorphous · Transformation shear
strain · ˇ-transition · Nanoindentation · Hardness · Plasticity

Introduction

Over the past several years, many researches have been conducted on investigating
the mechanical behavior of polymers, due to the extensive use of them for design
and development of a variety of components and structures. In general, polymers
are divided in two different categories: semicrystalline and amorphous (glassy)
polymers. Amorphous polymers are composed of entangled and disordered long
molecular chains, and there is no significant chain alignment in their intra- and
intermolecular structures. Since the molecular structure of the polymeric glasses
(PGs) is totally different from that of the crystalline solids, the plastic deformation
process does not obey the crystal plasticity rules. Moreover, in contrast to many
crystalline solids, the postyield behavior begins with a softening at the onset of
the yielding in the stress-strain characteristic behavior of PGs, and then continues
by a hardening which starts at the specific strain and ends up at the break point
(Boyce et al. 1988; Stoclet et al. 2010). There is a large body of literature
dealing with the process of yielding and characterizing the mechanism of nonlinear
elastoplastic deformation in glassy polymers, which resulted in different physical
and phenomenological models (Ree and Eyring 1955; Robertson 1966; Argon 1973;
Boyce et al. 1988; Arruda et al. 1995; Anand and Gurtin 2003; Mulliken and Boyce
2006; Chen and Schweizer 2011; Voyiadjis and Samadi-Dooki 2016).

In the context of crystal plasticity, crystal dislocations are the principal carriers
of plasticity, and their slips result in plastic deformation (Argon 2008). But, since
there is no long-range coherence in atomic or molecular structure of glassy solids,
there are no analogous mobile defects. Consequently, the flow and the mechanism
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of plastic response in the microstructural level are different from the crystalline
solids. The ongoing widely recognized mechanism for the plastic response of all
types of disordered solids, including metallic glasses, glassy polymers, and covalent
glasses, is the cooperative localized rearrangement of molecular or atomic patches in
small distinct regions which are called shear transformation zones (STZs) (Spaepen
1977; Falk 2007; Schuh et al. 2007; Pauly et al. 2010; Argon 2013). Especially, the
presence of seperate plastic deformation units has been experimentally recognized
in glassy polymers and attributed to the formation of STZs (Oleinik et al. 2007).

The STZs are isolated irreversible stress relaxation events which form around
free volume sites with the thermal fluctuations assistance under the action of an
applied shear stress (Argon 1979; Falk et al. 2005; Argon 2013). The absence
of long-range coherence in glassy materials results in the sessile transformations
which, once formed, do not expand by translational movements of their interfaces.
Therefore, the plasticity mediated by the shear transformations is nucleation
controlled (Argon 1993; Spathis and Kontou 2001). Since PGs are considered as
homogeneous and isotropic materials, a localized disturbance in their bulk can be
considered as an Eshelby inclusion problem (Eshelby 1957). The Eshelby leading-
edge homogenization method, which has been extensively applied for solving a
broad area of problems in inhomogeneous media (Tandon and Weng 1984; Shodja et
al. 2003; Malekmotiei et al. 2013), is based on the strain compatibility of a medium
containing no-elastic strains (Mura 1987). Using this method for amorphous solids,
the STZ’s nucleation energy, which is necessary to relate the shear flow stress to
the shear flow strain rate through an Arrhenius function, can be obtained (Argon
2013). Based on the Eshelby solution, the microgeometrical and micromechanical
properties of the embedded STZ, i.e., size, shape, and transformation shear strain,
are determining parameters for evaluating the STZ’s nucleation energy in glassy
solids. Therefore, these characteristics have been extensively studied, especially for
metallic glasses (Yang et al. 2007; Pan et al. 2008; Pan et al. 2009; Ju et al. 2011). It
has been found that a single STZ in MGs possesses an avearge volume of less than
10 nm3 including �500 atoms (Pan et al. 2008), with the average nucleation energy
of about 1.5 eV (Yu et al. 2010) and transformation shear strain of 0.07 (Argon
2013).

In contrast, the number of studies devoted to evaluate the STZs quantitatively in
glassy polymers is limited. The plastic deformation units pertaining parameters of
some glassy polymers have been obtaind by Argon and Bessonov (1977) based on
double kink theory (Argon 1973). Later, in a molecular dynamics simulations, Mott
et al. (1993) scrutinized the plastic deformation kinematics in amorphous atactic
polypropylene, and found the transformation shear strain of about 0.015 in the
spherical plastic flow units with the average 10 nm diameter. Moreover, Ho et al.
(2003) also inquired the correlation between the STZ size scale and entanglement
density by performing different compressive tests on mixable polystyrene-
poly(2,6-dimethyl-1,4-phenylene oxide) (PS-PPO) blends at different mix
ratios.

In this chapter, the nanoindentation technique is used to probe the flow nature
of poly(methyl methacrylate) (PMMA) and polycarbonate (PC) as glassy polymers,
and, consequently, their STZs’ micromechanical and geometrical characteristics are
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obtained. This chapter is organized as follows: in the first section, the experimental
procedure is explained in two parts: sample preparation and the nanoindentation
technique. In the second section, it is first shown that at tested temperatures
and strain rates, the flow is homogeneous in these polymers. The homogeneous
flow theory is then elaborated based on the Eshelby solution for nonelastic strain
in an embedded inclusion in the representative volume element (RVE) and the
Arrhenius function relating the shear flow stress to the shear flow strain rate. In
the third section, the obtained results from the nanoindentation experiments on
samples with two different thermal histories, as-cast and annealed, are presented.
The characteristic properties of STZs including the nucleation energy barrier, size
and shape of an STZ, and the shear activation volume are then obtained by utilizing
the flow theory. Furthermore, the observed jump in the activation energy of the STZ
is ascribed to the ˇ-transition, and the energy barrier for this transition is found to
be about 10% of the STZ nucleation energy. At the end, the concluding remarks are
summarized in the last section.

Experimental Procedure

Sample Preparation

Commercially available 2.0- and 5.0-mm-thick sheets of amorphous poly
(methyl methacrylate) (PMMA) and polycarbonate (PC), Goodfellow® catalogue
#ME303020 and #L5433027, Cambridge, UK, are selected for this study,
respectively. There is no preexisting molecular chain orientation in the sheets
since they have been produced through the traditional method of cell cast. All
the sheets are cut into 20 � 20 mm2 samples small enough for handling the
nanoindentation experiments. The residues of the protective film covering the
sheets are then removed by washing them with 30% isopropyl alcohol (IPA), and
thoroughly rinsing by distilled water. To eliminate any moisture caused by the
washing process, all the specimens are stored in a desiccator for at least 10 days
before any experiment. The glass transition temperature (Tg) of the samples are
measured by means of a TA Instruments 2920 differential scanning calorimetry
(DSC) device, which is operating under the nitrogen flow and by using standard
aluminum pans. The DSC cycles are conducted at 10 ıC min�1 from ambient
temperature to 200 and 250 ıC for PMMA and PC, respectively. The calorimetric
measurements reveal that the glass transition temperature of the PMMA and PC
specimens are about 110 and 148 ıC, respectively.

Half of the samples, prepared as described above, are subjected to the following
thermal treatment to study the effect of thermal history on their STZs’ microme-
chanical and microstructural characteristics. Initially, they are annealed at 120 ıC for
4 h in a vacuum oven. They are then cooled down at 10 ıC h�1 to room temperature.
This thermal process is done in a vacuum oven to prevent the specimens’ surfaces
oxidation (Hirata et al. 1985). An Agilent 5500 atomic force microscope (AFM)
and a Wyko Optical Profiler are used to measure the surface roughness of the



10 Shear Transformation Zones in Amorphous Polymers: Geometrical. . . 337

1.6 nm

1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.81.6 nm

0.0 nm

X: 3.0 µm
Y: 3.0 µm

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Fig. 1 Sample of AFM scanning of the PMMA sample surface (Reprinted from Malekmotiei et
al. 2015)

samples, which markedly has effects on the nanoindentation experiment results
(Kim et al. 2007; Nagy et al. 2013). The average surface roughness (Ra) of the
PMMA and PC samples are measured to be 0.372 ˙ 0.013 and 0.305 ˙ 0.021 nm,
respectively. Accordingly, since the samples’ surfaces can be assumed as almost flat
(Kim et al. 2007), no modification is needed for the obtained experimental results.
Figure 1 represents a sample AFM scanning of the specimen surface. To indent
the samples, they are mounted on aluminum stubs applying thermoresistant epoxy
putty (Drummond™ Nu-Doh Epoxy Repair Compound Titanium Reinforced)
for indentations at high temperature on hot-stage apparatus and super glue for
indentations at ambient temperature.

Nanoindentation Technique

The nanoindentation technique has been utilized to measure the mechanical prop-
erties of the materials including the elastic modulus, E, and the hardness, H.
The indentation load-hold-unload cycles have been performed using an MTS
Nanoindenter® XP equipped with a three-sided pyramidal Berkovich diamond tip.
The analysis of the applied load-indentation depth curves is mainly based on the
original formalism developed by Oliver and Pharr (1992, 2004) as described in the
following.

The hardness is described as the mean contact pressure under the indenter as
follows:

H D
Pmax

Ac

(1)
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in which Pmax is the peak indentation load and Ac is the projected area of the tip-
sample contact at the maximum load. According to Eq. 1, one needs an accurate
measurement of the projected contact area under the load to evaluate the hardness
from indentation load-displacement data. For a perfectly sharp Berkovich indenter,
the contact area which is a function of the contact depth, hc, can be calculated as

Ac D 24:56hc
2 (2)

For a practical indenter, which is not ideally sharp, the contact area function is
required to be obtained by tip calibration with introducing additional terms to the
aforementioned second-order relation as follows:

Ac D 24:56hc
2 C C1hc

1 C C2hc
1=2 C C3hc

1=4 C � � � C C8hc
1=128 (3)

where C1 through C8 are constant coefficients which account for deviations from
ideal geometry due to the blunting of the tip, and determined by using the
indentation results on a standard fused silica sample and curve fitting performed on
the Analyst® software. To obtain the exact contact area, an accurate determination
of the depth over which the test material makes contact with the indenter, hc, is
required. The contact depth is generally different from the total penetration depth,
and is estimated using

hc D h � "
P

S
(4)

in which S is the measured elastic contact stiffness and " is a constant which depends
on the indenter geometry (for a Berkovich indenter " D 0.75) (Oliver and Pharr
1992).

The elastic modulus of the sample, E, is calculated from Eq. 5 as follows:

1

Er

D
1 � �2

E
C

1 � �i
2

Ei

(5)

In this equation, Ei and vi are the indenter elastic modulus and Poisson’s ratio,
respectively, � is the sample Poisson’s ratio, and Er is the reduced elastic modulus.
The reduced modulus which accounts for elastic deformation in both the indenter
and the sample can be obtained from the following relation developed by Sneddon
(1965)

Er D
S

2ˇ

r
 

Ac

(6)

where ˇ is a constant that depends on the indenter geometry and equals to 1.034 for
the Berkovich tip.
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Room-Temperature CSMNanoindentation

The room temperature nanoindentation experiments are conducted by employing
the continuous stiffness measurement (CSM) technique. The CSM method makes
the continuous measurement of the mechanical properties of materials possible
during the indentation loading segment from zero to the maximum indentation
depth during a single test; this includes the measurement of the elastic contact
stiffness at any point along the loading curve, and not just at the point of initial
unload as in the basic mode (Pethica and Oliver 1988; Lucas et al. 1998; Li and
Bhushan 2002; Hay et al. 2010). In this technique, a small sinusoidally varying
load is superimposed on top of the primary loading signal that drives the motion
of the indenter, and the resulting response of the system is analyzed by means of a
frequency-specific amplifier. The displacement amplitude and the frequency of the
superimposed oscillating force are set as 2 nm and 45 Hz, respectively, which are
optimum values for the MTS nanoindentation® XP.

Utilizing the so-called CSM technique, the indentation load-hold-unload cycles
are performed by keeping the loading rate divided by the load ratio

�
PP =P

�
constant

during the loading segment over the course of a single indentation test. In a deep
indentation test, where the indentation size effect (ISE) is negligible (i.e., the
hardness value is almost constant), the loading path follows a Hertzian contact
relation as PD˛h“, where P represents the indentation load, h is the indentation
depth, ˛ is a material dependent parameter, and ˇ is a curve fitting parameter close
to 2 for the Berkovich tip (Johnson 1987; Zhang et al. 2005). Accordingly, for a
pyramidal indenter, the indentation strain rate P"i, which is defined as the descent
rate of the indenter divided by its instantaneous depth, can be obtained by

P"i D
Ph

h
D

1

ˇ

PP

P
(7)

Therefore, since the PP =P ratio is remained constant during the CSM test, at deep
enough indentations, the indentation strain rate approaches a constant value equal
to 1

2

PP
P

(Lucas and Oliver 1999; Voyiadjis and Malekmotiei 2016). Moreover, the
effective shear strain rate induced by the indentation is then related to the indentation
strain rate as follows:

P� D
p

3C P"i D

p
3C

ˇ

PP

P
(8)

where C is a constant equal to 0.09 (Poisl et al. 1995; Schuh and Nieh 2003; Schuh
et al. 2004).

After samples preparation and calibration of the indenter tip function, the tests
are carried out by typical loading-hold-unloading sequences as follows: prior to any
measurement, the tip is held on the top of the sample surface until its drift rate
is stabilized at a rate below 0.05 nms�1. The tip then starts to travel downward
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until it reaches the surface. Once the indenter tip comes into the contact with the
sample surface, the loading segment begins with the constant value of PP =P until a
predefined maximum depth of about 10 �m; the load is then held at the maximum
value for 10 s to account for the material creep behavior of the polymer surface;
and finally, the unloading stage is carried out with the constant unloading rate
until 10% of the maximum load is attained. Since one of the main purposes of
this study is investigation of the strain rate dependency of the flow in PMMA and
PC, a series of experiments are conducted at room temperature with the values of
PP =P varying from 0.001–0.2 and 0.002–0.4 s�1 on annealed and as-cast PMMA

and PC samples, respectively. A total of 25 indents are performed for each PP =P

value with a minimum distance of 150 �m between neighboring indents to prevent
from interaction.

High-Temperature Nanoindentation Procedure

The MTS Nanoindenter® XP is equipped with temperature control system for
elevated temperature nanoindentation tests. The system includes a hot stage, a
coolant apparatus to transfer the extra heat to the outside of the instrument, and
a heat shield to keep the indenter transducer apart from the heat source. The load
control experiments are performed by using the basic method which is employed
for high-temperature indentations. To make sure that there is no indentation size
effect, and making the obtained date comparable to those of the CSM tests as well,
the experiments are carried out with a maximum load of 300 mN. Loading rates of
4, 10, 50, 100, and 300 mNs�1 for PMMA and 10, 100, and 300 mNs�1 for PC,
which are constant during the tests, are applied for temperatures varying from room
temperature to 100 and 140 ıC (slightly lower than the samples glass transition
temperature) for PMMA and PC, respectively.

While the loading rate PP is kept constant during the loading and unloading
segments of the basic mode, evaluating the PP =P ratio shows that it changes with
1/hˇ during the test since the load-depth (P-h) curve follows a Hertzian relation
according to the statements in the preceding section. Therefore, the indentation
strain rate P"i varies as 1/hˇ during a test as well. Using Eqs. 7 and 8 to calculate
the effective shear strain rate, an average value of PP =P over the deep part of
the indentation (5 �m in this study) is considered in each test. Accordingly, the
corresponding effective shear strain rates for the load rates given above are 0.0014,
0.0035, 0.0175, 0.035, and 0.105 s�1 for PMMA and 0.0035, 0.035, and 0.105 s�1

for PC, respectively.
Applying a thermoresistant epoxy putty (Drummond™ Nu-Doh Epoxy Repair

Compound Titanium Reinforced), the samples are mounted on the hot stage. Since
polymer samples and the adhering thermoresistant have low thermal conductivity,
the temperature of the sample surface can be considerably different from the set
temperature. For precise evaluation, at the end of the tests, an Omega® SA1-K-
SRTC thermocouple is attached to a sample surface to measure its temperature.
The temperature is recorded by means of an Omega® HH74K handheld monitoring
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device coupled with the thermocouple. The discrepancy between the measured and
set temperatures is significant for high temperatures. The number of indentation
points for each set temperature and loading rate is reduced to 12 for the elevated
temperature tests to minimize the risk of the contamination of the tip by the softened
polymer at high temperatures; the minimum distance of the adjacent indents is also
increased to 200 �m. Prior to performing the loading cycle, each sample is heated
to the set temperature inside the indenter; and then it is left to equilibrate for 2 –3 h.
On the onset of the test cycle, the tip is held at the distance of about 1 �m from
the sample surface for about 10 min to adjust allowable thermal drift. This delayed
contact is believed to help the tip to reach a thermal equilibrium with the sample.

Theory of Homogeneous Flow for Glassy Polymers

The inhomogeneous flow in amorphous solids is mediated by the formation of shear
bands, whereas their homogeneous flow is triggered by the nucleation of STZs
(Spaepen 1977). There are some important differences between inhomogeneous
and homogenous flows of glassy solids. While the inhomogeneous flow is strain
rate independent in a way that the flow stress does not change significantly with the
strain rate, in a homogenous flow, the higher strain rate applied to the sample results
in a considerable higher flow stress (Schuh and Nieh 2003; Schuh et al. 2007; Yang
et al. 2007). Another significant distinction is the generation of multiple pop-ins in
the load-displacement curves during the inhomogeneous flow which appears only
in the nanoindentation experiments (Golovin et al. 2001; Zhang et al. 2005; Yang et
al. 2007).

It has been shown that the flow behavior of metallic glasses is temperature depen-
dent in a sense that there exists a transition from inhomogeneous to homogeneous
flow at a certain temperature. The temperature at which the transition happens is
also strain rate sensitive: the higher the applied strain rate, the higher the transition
temperature (Yang et al. 2007). To investigate the flow nature in PMMA and PC
as glassy polymers, the nanoindentation tests are performed on both as-cast and
annealed samples. Figures 2 and 3 represent the variation of the hardness with
temperature for as-cast and annealed PMMA and PC samples at different loading
rates, respectively. Considering the direct relation between the hardness H and
the flow stress � y as HD�� y with � is Tabor’s factor, these figures show that
the hardness (or flow stress) is greatly strain rate sensitive in a way that a higher
hardness is obtained at a higher strain rate (loading rate) at a given temperature. This
observed rate-dependent softening, which is attributed to the thermally activated
nature of the flow, indicates that the flow of PMMA and PC at tested temperatures,
which are below their glass transition temperatures Tg, is homogeneous. In addition,
Figs. 4 and 5 show the load-displacement (P-h) curves of the samples at the loading
rates of 10 and 300 mNs�1 and different temperatures. All the curves are represented
with the origin offset of 2 �m except the first one at room temperature. Since
the curves are smooth with no pop-in events, Figs. 4 and 5 further confirm the
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Fig. 2 Variation of the PMMA hardness with temperature at different loading rates for (a) as-cast
and (b) annealed samples. The data points at the load rate of 4 mNs�1 and 361 K are not shown
due to their high standard deviation values (Reprinted from Malekmotiei et al. 2015)
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Fig. 3 Variation of the PC hardness with temperature at different loading rates for (a) as-cast and
(b) annealed samples (Reprinted from Samadi-Dooki et al. 2016)

homogenous nature of the flow in PMMA and PC at tested temperatures and strain
rates.

The flow in glassy solids is mediated by the irreversible local disturbances which
form rearranged atomic (in MGs) or molecular (in PGs) clusters. These cooperative
rearrangements result in isolated unit increments of shear, and are known as shear
transformation zones (STZs). While in the homogeneous flow regime each volume
element has contribution to the total plastic strain, the strain is localized in distinct
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Fig. 4 Load-indentation
depth curves for as-cast and
annealed PMMA samples at
different temperatures and the
loading rates of (a)
10 mNs�1, and (b)
300 mNs�1 (Reprinted from
Malekmotiei et al. 2015)
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shear bands in the inhomogeneous flow regime (Spaepen 1977). The thermally
activated homogeneous flow in glassy polymers can be described based on the flow
mechanism developed by Spaepen (1977) and Argon (1979). For the STZs-mediated
homogeneous flow in glassy solids, the kinetics relation for the shear strain rate P�

due to the applied shear stress � is well expressed by an Arrhenius relation as follows
(Spaepen 1977; Argon 1979):

P� D P�0 exp

�
�

	F0

kBT

�
sinh

�
�T 
�

2kBT

�
(9)

where P�0 is the pre-exponential factor proportional to the attempt frequency, kB is
the Boltzmann constant, T is the absolute temperature, and 	F0 is the nucleation
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Fig. 5 The load-indentation
depth curves for as-cast (solid
line) and annealed (dashed
line) PC samples at different
temperatures and loading
rates of (a) 10 mNs�1 and (b)
300 mNs�1 (Reprinted from
Samadi-Dooki et al. 2016)
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energy of an STZ with the shear strain yT occurring in a region of volume ˝. The
factor 2 in the denominator of the argument of the hyperbolic function is due to
the reverse transformation probability (Spaepen 1977). To evaluate the nucleation
energy of an STZ, this locally transformed region has been treated as an embedded
volume with nonelastic strain the micromechanical field of which can be obtained
by using the Eshelby inclusion model (Eshelby 1957). For the RVE shown in Fig. 6,
the free energy of the nucleation of a single STZ is given as follows:

	F0 D
�
„ .�/ C ‰ .�/ ˇ2

�
�

�
�T

�2

 (10)

in which � is the shear modulus, � (�) and  (�) are functions of the Poisson’s ratio
�, and pertain to the shear and dilatational components of the transformation strain
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Fig. 6 Representative volume element (RVE) of polymer matrix containing a single shear
transformation zone (STZ) (Reprinted from Malekmotiei et al. 2015)

tensor, respectively. The coefficient ˇ is the dilatancy parameter and can be obtained
from the pressure sensitivity of the flow. While ‰ .�/ D 2.1C�/

9.1��/
is independent

of the aspect ratio of the ellipsoid, � (�) is shape dependent (Mura 1987). The
STZ’s characteristics in Eq. 9, such as shear strain, size, and activation energy,
have been experimentally obtained for different metallic glasses (see Chap. 7 of
Argon (2013) for details), but their numerical evaluation for PGs have been limited
to some theoretical modeling and simulations (Mott et al. 1993; Argon 2013), and a
few experimental studies (Argon and Bessonov 1977; Ho et al. 2003).

Since �T˝� � 2kBT for conventional PGs at temperatures below their glass
transition, Eq. 9 can be rearranged as:

ln P� D
�T 


2kBT
� C C1 (11)

where C1 D ln P�0

2
� 	F0

kB T
represents a temperature-dependent parameter. In Eq. 11,

the material constant �T˝, which is proportional to the important characteristic
parameter of glassy polymers known as shear activation volume V* (Ward 1971),
can be determined from the derivative of the natural logarithm of the strain rate
.ln P�/ with respect to the shear flow stress (� ). Accordingly, considering the effect
of hydrostatic pressure on the shear yield stress of polymers, the modified shear
activation volume is obtained from Eq. 12 as follows (Ward 1971; Ho et al. 2003):

V � D .1 � ˛ˇ/ �T 
 D 2kBT .1 � ˛ˇ/
@ ln P�

@�
(12)

where ˇ is the yield stress sensitivity to the pressure as defined before, and ˛ is the
loading condition constant which is between 0.6 and 0.7 for different compressive
loading conditions (Ward 1971; Tervoort 1996). In fact, one can conclude from
Eq. 12 that the shear activation volume is a modified STZ volume with considering



346 G. Z. Voyiadjis et al.

the dilatation effect. Furthermore, since �T is assumed to be a universal constant for
all glassy polymers and equals about 0.02 (Mott et al. 1993; Ho et al. 2003), the size
of the single shear transformation zone ˝ can be obtained. Rearranging Eq. 9 for
a constant strain rate, the shear flow stress can be expressed as a linear function of
temperature as follows:

� D ‚C2 C
2	F0

�T 

(13)

where C2 D 2kB

�T 


�
ln P� � ln P�0

2

	
is representing a strain rate-dependent constant. As

a result, the activation energy of an individual STZ, 	F0, can be calculated from
the linear interpolation of the variation of the flow shear stress with temperature
by incorporating the obtained �T˝ values. Knowing all the STZ’s parameters
in Eq. 10, one can obtain the numerical value of � (�) and, consequently, an
approximation of the STZ’s shape in glassy polymers.

Results and Discussion

Calibrating the Nanoindentation Results

The instrumented-indentation testing (IIT) can be employed for the purpose of
probing the mechanical properties including hardness and elastic modulus of very
small volumes of materials including polymers, which both of them depend on the
applied load on the sample surface and the contact area. In the nanoindentation
experiments, the load is recorded with an nN scale precision while the contact area
is calculated as a function of the tip geometry and contact depth. Since the tip in
a practical indenter is not ideally sharp, the contact area function is required to be
obtained by calibrating the tip with introducing a polynomial approximation (Oliver
and Pharr 1992; Voyiadjis and Zhang 2015). Using the results of the indentation on
standard fused silica sample, the tip areal function is calibrated to obtain reliable
results.

It is also worth noting that the material pile-up around the penetrating tip can
significantly alter the contact area and affect the measured mechanical properties
of the material especially at shallow depths of the indentation. Using the optical
profiler, the pile-up values are precisely measured for the indentation on PMMA and
PC samples. As can be seen in Fig. 7, which shows a sample of pile-up measurement
on PC specimen, the pile-up is highly unsymmetrical with the maximum values
around the pyramidal tip faces. The maximum pile-up is measured to be about
400 nm, which in comparison with the maximum indentation depth of 10 �m is
very small. For that reason, the pile-up effect is neglected in the nanoindentation
measurements.

Another important observation during the nanoindentation experiments is the
increment of the hardness values at shallow indentation depths which is known as
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Fig. 7 A sample of the indentation pile-up measurement on PC specimen using Wyko Optical
Profiler (Reprinted from Samadi-Dooki et al. 2016)
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Fig. 8 Variation of the hardness versus the indentation depth for three different PP =P values for
(a) as-cast and (b) annealed PMMA samples. The legend numbers represent the PP =P values
(Reprinted from Malekmotiei et al. 2015)

indentation size effect (ISE) (Briscoe et al. 1998; Voyiadjis and Zhang 2015).To
prevent the ISE in the current study, the CSM indentation results are first evaluated
to find the indentation depth beyond which the obtained hardness reaches the stable
value. The variation of hardness versus the indentation depth for both annealed and
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Fig. 9 Variation of the hardness versus the indentation depth for three different PP =P values for
(a) as-cast and (b) annealed PC samples. The legend numbers represent the PP =P values (Reprinted
from Samadi-Dooki et al. 2016)

as-cast PMMA and PC samples are presented in Figs. 8 and 9, respectively. As
these figures show, the profound ISE is completely eliminated for the indentation
depth beyond 2 and 4 �m for PMMA and PC samples, respectively. Accordingly,
the hardness values are averaged over the indentation depth beyond 5 �m where the
indentation size effect is absent. The elevated temperature tests are performed by
using the basic mode in which the hardness value is only reported at the maximum
indentation depth. While the maximum indentation depth is the input for the CSM
technique, the maximum load is the input in the basic mode. As mentioned before,
to avoid the indentation size effect, and also make the obtained date comparable
to those of the CSM tests, the high temperature experiments are carried out with
a maximum load of 300 mN, which corresponds to the maximum indentation
depth of about 10 �m. Furthermore, since the ISE reduces at elevated temperatures
(Voyiadjis et al. 2011), it is assured that the obtained hardness results are within the
stable region.

Shear Activation Volume

In addition to the hardness, the elastic modulus is another mechanical property
of the material which is continuously recorded during the loading segment of the
CSM nanoindentation as a function of displacement. Figures 10 and 11 represent
the variation of the material elastic modulus versus the indentation depth for some
selected PP =P values for PMMA and PC samples, respectively. In comparison to the
hardness, the elastic modulus is almost constant for the indentation depth beyond
about 100 and 150 nm for both as-cast and annealed PMMA and PC samples,
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Fig. 11 Variation of the elastic modulus versus the indentation depth for three different PP =P
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respectively. More importantly, while the hardness values significantly change with
the strain rate (see Figs. 8 and 9), the elastic modulus does not show any significant
strain rate sensitivity.

Using the Tabor’s factor, the hardness values H obtained from the nanoindenta-
tion experiments can be converted to the yield stress � y of the material as follows:

H D ��y (14)
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Fig. 12 Variation of the shear flow stress with the shear strain rate for both as-cast and annealed
PMMA samples (Reprinted from Malekmotiei et al. 2015)
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Fig. 13 Variation of the shear flow stress with the shear strain rate for both as-cast and annealed
PC samples (Reprinted from Samadi-Dooki et al. 2016)

in which � is Tabor’s factor which is approximately 3.3 for amorphous polymers
at high indentation strains (Prasad et al. 2009). Additionally, since the shear flow
stress is about half of the yield stress in plane stress condition for monotonic
loading (Yang et al. 2007), the ratio of the hardness to the shear flow stress is
about 6.6. Figures 12 and 13 illustrate the shear flow stress-shear strain rate data
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points for the as-cast and annealed PMMA and PC samples measured by CSM
method at room temperature, respectively. The obtained results for PC are in good
agreement with the ones obtained by Bauwens-Crowet et al. (1969) at 21.5 ıC.
As it is expected, the annealed samples have slightly bigger shear flow stresses
compared to the as-cast ones at the same shear strain rate (Jancar et al. 2013).
The outstanding feature of Fig. 12 is the existence of a significant transition at
a certain value of the strain rate beyond which the strain rate sensitivity of the
shear flow stress increases. This phenomenon is believed to be a result of strain
rate shift of the ˇ-relaxation process in the storage modulus of the PMMA, which
is related to the restriction of the ester side group rotations at high strain rates,
besides the intermolecular and local back bone motion restrictions (Calleja et
al. 1994; Mulliken and Boyce 2006; Argon 2013). As obviously shown in Fig.
12, the transition shear strain rate is approximately 0.005 s�1 for both as-cast
and annealed PMMA samples. Following the descriptions presented in Mulliken
and Boyce (2006), the flow stress regimes below and above the transition shear
strain rate might be referred to as ˛ and ˇ regimes, respectively. However, it is
noteworthy to mention that since the room temperature ˇ-transition strain rate of
PC has been previously detected to be about 102 s�1 (Mulliken and Boyce 2006),
which is beyond the strain rates that can be applied in nanoindentation experiments,
no considerable jump is observed in Fig. 13 for the range of strain rates in
this study.

Based on Eqs. 11 and 12, the shear activation volume V* for an amorphous
polymer can be obtained by linear interpolation of the � � ln P� curve. In these
figures, the slopes of the semilogarithmic stress-strain rate plots are almost the same
for samples with different thermal history, which suggest that the shear activation
volume and, therefore, the size of a single STZ are almost independent of the
thermal history of the samples. Incorporating Eq. 11 and the data represented on
Figs. 12 and 13, the factor �T˝ for as-cast and annealed samples is obtained
about 3.66 and 3.69 nm3 for PMMA, and 8.94 and 9.14 nm3 for PC, respectively.
Accordingly, by assuming ˛ D 0.65, ˇ D 0.204 for PMMA (Ward 1971) and 0.27
for PC (Rittel and Dorogoy 2008), V* is found to be 3.17 and 3.20 nm3 in ˛ regime
for PMMA, and 7.37 and 7.54 nm3 for PC, for as-cast and annealed samples,
respectively. The obtained values of shear activation volume are in consonance
with the molecular dynamics simulation results (Argon 2013). As results show, the
shear activation volume for samples with different thermal histories is almost the
same, and this small discrepancy might be due to the short time of annealing in
this study (4 h). Since it has been shown that the flow stress of glassy polymers
increases logarithmically with the annealing time at temperatures below their
glass transitions (Hutchinson et al. 1999), a more profound difference might be
expected between the shear flow stress results of the as-cast and annealed samples
in Figs. 12 and 13 for longer annealing time. However, the increased difference
may or may not result in a considerable difference in the shear activation volume
since it depends on the slope of the � � ln P� plots and not the shear flow stress
solely.
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STZ’s Activation Energy

In light of Eq. 13, linear interpolation of the flow stress as a function of the
temperature ��T can be used to obtain the STZ’s activation energy. Figures 14
and 15 represent the variance of the shear flow stress of PMMA and PC with
temperature, respectively, for different strain rates which is well interpolated with
linear functions at each loading rate. Assuming the parameter �T˝ does not vary
with temperature, the STZ’s activation energy for both as-cast and annealed samples
can be calculated at different shear strain rates as shown in Fig. 16 for PMMA. One
of the most important features of this figure is the existence of jump in the activation
energy at the strain rate range of 0.0035–0.0175 s�1 which is consistent with
the ˇ-transition strain rate obtained from room-temperature CSM nanoindentation.
Therefore, this jump might be referred to as the ˇ-transition activation energy.
Although the discrepancy in the activation energy for the annealed and as-cast
samples is small for strain rates above the ˇ-transition strain rate, the difference
is profound for strain rates below this transition. Since the annealed PMMA sample
is expected to have more ordered chains in comparison to the as-cast one, the slip
and rotation of these chains are more restricted in this sample; consequently, the
STZ’s activation energy increases. In contrast, beyond the ˇ-transition strain rate,
the rapid loading does not allow the chains to rotate or slip smoothly which puts
the annealed and as-cast samples in the same deformation condition, and as a result,
the activation energy of STZs for high strain rates is approximately identical for
samples with different thermal histories.

Another important feature of Fig. 16 is that the ˇ-transition activation energy
is much bigger for the as-cast PMMA than the annealed one (almost three times).
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Fig. 14 Variation of the shear flow stress with temperature at different loading rates for (a) as-cast
and (b) annealed PMMA samples (Reprinted from Malekmotiei et al. 2015)
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Furthermore, the ˇ-transition energy is about one order of magnitude smaller
than the thermal activation energy of an STZ for PMMA, which is in agree-
ment with the findings of Barral et al. (1994) who found almost the same ratio
for a system containing a diglycidyl ether of bisphenol A (DGEBA) and 1,3-
bisaminomethylcyclohexane (1,3-BAC). In comparison, the ˇ-transition activation
energy has been obtained to be almost equal to the STZ’s activation energy in the
metallic glasses (Yu et al. 2010).
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Fig. 15 Variation of the shear flow stress with temperature at different loading rates for (a) as-cast
and (b) annealed PC samples (Reprinted from Samadi-Dooki et al. 2016)
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Fig. 17 Variation of the shear modulus with temperature for as-cast and annealed PMMA samples
at two different loading rates (Reprinted from Malekmotiei et al. 2015)

As defined in Eq. 10, the Helmholtz free energy also depends on the shear
modulus � of the material which itself is temperature dependent. Since the shear
modulus of the PMMA does not change considerably for temperatures below about
100 K (Gall and McCrum 1961), Eq. 13 is still valid, and 	F0 might be referred
to as activation energy at 0–100 K. Using the elastic modulus data for different
temperatures, obtained by basic method nanoindentation, and the relation between
the elastic modulus and shear modulus as: � D E

2.1C�/
, the variation of the shear

modulus with temperature for both as-cast and annealed PMMA samples at two
different strain rates are represented in Fig. 17. Assuming the variation to remain
linear for temperatures down to 100 K, and constant for temperatures below 100 K
which is a valid assumption based on the experiments of Gall and McCrum (1961),
the variation of the STZ’s activation energy with temperature can be obtained as
shown in Fig. 18. It is also noticeable that the STZ’s activation energy is around
0.6 eV at room temperature which is about one-third of that for metallic glasses (Yu
et al. 2010).

Doing the same calculations on the obtained results for PC samples, the activation
energy of a single STZ is presented in Table 1. As expected, the activation energy is
slightly bigger for the annealed samples, and is almost strain rate insensitive which
is in agreement with continuum mechanics principles. Since the obtained activation
energies are calculated using the extrapolation of the ��T values to the 0 K, they
should be referred to as the zero Kelvin STZ’s activation energies, and are shown by
	F0 hereafter. It should be mentioned that since the room temperature ˇ-transition
strain rate of PC is beyond the strain rates in this study, the ˇ-transition activation
energy barrier cannot be captured for PC samples.
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Fig. 18 Variation of the STZ’s activation energy with temperature for as-cast and annealed
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Table 1 Characteristic properties of the STZs in PC for samples with different thermal histories
(Reprinted from Samadi-Dooki et al. 2016)

Thermal �T 
.nm3/ V* Activation energy (eV) at ”T 
.nm3/ Number of

history (nm3) the shear strain rate of monomers
0.0035 0.035 0.105

(s�1) (s�1) (s�1)

As-cast 8.94 7.37 1.32 1.35 1.37 0.019 470 5,596
Annealed 9.14 7.54 1.33 1.36 1.38 0.0187 488 5,810

STZ’s Geometry

Incorporating Eqs. 10 and 13, the intercept of ��T linear interpolation with �

axis is equal to 2	F0

�T 

D 2

�
„ .�/ C ‰ .�/ ˇ2

�
��T . As it is mentioned before,

‰ .�/ D 2.1C�/

9.1��/
does not vary with the STZ shape, and is about 0.5 and 0.48 for

PMMA and PC, respectively (considering the Poisson’s ratio of 0.38 for PMMA
and 0.37 for PC). However, � (�) is determined by the shape of the STZ which
varies between 7�5�

30.1��/
D 0:27 and 0.5 pertaining to the spherical and flat ellipsoidal

shape of STZ, respectively (Mura 1987). Taking �0 D 3.1 GPa from Fig. 17 and
ˇ D 0.204, the value of �T varies between 0.03 and 0.05 for PMMA, with the lower
and upper bonds pertaining to the flat ellipsoidal and spherical transformation zones,
respectively. Based on the molecular dynamics simulation (Mott et al. 1993), the
shear strain (”T ) of 0.05 is a large value for polymeric glasses; therefore, the shape
of the transformation zone is more likely to be a flat ellipsoid for PMMA instead
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of a sphere. Using the previously obtained factor �T˝ and assuming �T D 0.03, the
volume of an individual plastic deformation unit ˝, which is almost the same for
as-cast and annealed PMMA samples, is obtained about 123 nm3 which is at least
one order of magnitude bigger than that of the metallic glasses (Pan et al. 2008; Yu
et al. 2010). Assuming the PMMA monomers as cylinders with the length of 1.55 Å
and radius of 2.85 Å (Argon and Bessonov 1977), the single STZ is found to contain
about 3000 monomers.

In a same way, using �0 D 2.4 GPa (Argon 2013) and ˇ D 0.27 (Rittel and
Dorogoy 2008), �T is obtained equal to 0.035 for the spherical and about 0.02 for
the flat ellipsoidal shapes of the STZ for both as-cast and annealed PC samples.
Due to the aforementioned reason, it can be inferred that the STZs in PC are
regions with the shapes close to flat ellipsoids rather than spheres. In addition, the
volume of an STZ, 
, is calculated to be about 470 and 488 nm3 which has in
average 5,600 and 5,800 idealized cylindrical shape monomers with 2.8 Å length
and 3.09 Å radius (Argon and Bessonov 1977) for the as-cast and annealed PC
samples, respectively. All the obtained characteristic properties of a single STZ in
PC samples are presented in Table 1.

Concluding Remarks

In summary, nanoindentation experiments conducted on as-cast and annealed
specimens are studied to explore the temperature and strain rate sensitivity of
the flow in poly(methyl methacrylate) (PMMA) and polycarbonate (PC) as amor-
phous polymers. Showing that the flow is homogeneous in these polymers at
temperatures below their glass transitions and incorporating a homogeneous flow
theory, geometrical and micromechanical characteristics of the shear transformation
zones (STZs), as main carriers of plasticity in amorphous polymers, have been
investigated in the molecular level. Since the experimental studies on the STZs in
glassy polymers is less addressed in the literature in comparison to the metallic
glasses, the nanoindentation technique is employed as an accurate, repeatable, and
nondestructive method to answer some of the current open questions in this area.
The findings suggest that the STZs are flat ellipsoidal regions with the volume
of about 123 and 480 nm3 and the transformation shear strain of about 0.03
and 0.02 in PMMA and PC samples, respectively. In addition, the nucleation
energy of the shear transportation zones for both samples as well as the ˇ-
transition energy barrier for PMMA samples has been obtained. The procedure
used for obtaining the ˇ-transition energy based on the nanoindentation technique
is an innovative approach which can be used for other glassy solids. The exper-
imentally evaluated parameters produce unequivocal values as inputs for further
theoretical and numerical investigations of yielding and plasticity in polymeric
glasses.

In light of the obtained results for PMMA and PC, the following remarks are
made:
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1. The STZ’s nucleation energy in amorphous polymers is about 1 eV which is not
considerably smaller than that of the metallic glasses. Since the nucleation energy
of an STZ directly depends on the material shear modulus, this energy is expected
to be much higher for MGs due to their considerably bigger shear modulus.
However, the nucleation energy also depends on the STZ size. Therefore, the
bigger size of the STZs in PGs compared to MGs compensates for their shear
modulus discrepancy, and levels the activation energy in two materials.

2. The transformation shear strain �T is slightly bigger than what is believed to be
the universal value for PGs. The transformation shear strain has been considered
to be about 0.015 in all types of glassy polymers (Argon 2013); however, the
current study suggests that this parameter is unique to a particular polymer, and
is about 0.02 in PC and 0.03 in PMMA.

3. While this work suggests that the shear transformation zones are formed in the
regions with the shape close to the flat ellipsoid in PMMA and PC, the STZ
shape is assumed to be spherical in all types of glassy solids (Ho et al. 2003;
Argon 2013; Li et al. 2013).

4. Since all experiments are performed at temperatures beyond 0.6 Tg, the observed
homogeneous flow is in accordance with the amorphous flow theory at elevated
temperatures (Argon 1979, 2013). With the current nanoindentation technology,
it seems impossible to perform experiments at temperatures below 0.6 Tg for
available PGs (�43 and �20 ıC for PMMA and PC, respectively). Undoubtedly,
experiments at temperatures below 0.6 Tg would result in a better understanding
of the flow nature in glassy polymers at a wider temperature range.

5. The obtained results for the STZs shape are based on the acceptable values of
transformation shear strain in polymers which is considerably smaller than that
in metallic glasses. A precise evaluation requires the STZs direct observation,
which is not possible and convenient since STZs are local transition events
rather than being actual defects like dislocations, or their indirect observation via
localized stress field monitoring, which to the best of the authors’ knowledge has
not been reported yet. The only indirect experimental measurement of the STZ’s
size scale is one by Liu et al. (2011) in which the 2.5 nm size of the viscoelastic
heterogeneities observed by transmission electron microscopy (TEM) has been
related to the size of the STZ in a metallic glass.
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Abstract

Interfaces in the materials are known entities since last century described as
early as in the interfacial excess energy formulations by Gibbs (Boßelmann et
al. 2007). The interface effect (or surface effect) is also widely referred to as
the interface stress (or surface stress) that consists of two parts, both arise from
the distorted atomic structure near the interface (or surface): the first part is the
interface (or surface) residual stress which is independent of the deformation of
solids, and the second part is the interface (or surface) elasticity which contributes
to the stress field related to the deformation. Plastic deformation, in particular,
the initial yielding point (i.e., the yield surface), is sensitive to the local stress
(or local strain) of a heterogeneous material, which includes both the local
(surface/interface) residual stress and local stress–strain relationship. The plastic
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deformation at the interfaces also considers the tension and compression along
the interface and stress mismatch because of the material property differences. In
the nanomaterials, the surface and interface stresses become even more important
owing to the nanoscale size of the particles and interface areas.

Keywords
Nanomechanical Raman Spectroscopy · Interface · GB · CZM

Introduction

Interfaces in the materials are known entities since last century described as early as
in the interfacial excess energy formulations by Gibbs (Boßelmann et al. 2007). The
interface effect (or surface effect) is also widely referred to as the interface stress
(or surface stress) that consists of two parts, both arise from the distorted atomic
structure near the interface (or surface): the first part is the interface (or surface)
residual stress which is independent of the deformation of solids, and the second
part is the interface (or surface) elasticity which contributes to the stress field related
to the deformation. Plastic deformation, in particular, the initial yielding point (i.e.,
the yield surface), is sensitive to the local stress (or local strain) of a heterogeneous
material, which includes both the local (surface/interface) residual stress and local
stress–strain relationship. The plastic deformation at the interfaces also considers
the tension and compression along the interface and stress mismatch because of
the material property differences. In the nanomaterials, the surface and interface
stresses become even more important owing to the nanoscale size of the particles
and interface areas.

The naturally occurring materials have been of keen interest in the materials
community with the aim of understanding and reproducing the exceptional strength
and toughening mechanisms present in exoskeletons of shrimps and lobsters (Boßel-
mann et al. 2007; Raabe et al. 2006), crabs (Mayer 2011; Chen et al. 2008), nacre
(Flores-Johnson et al. 2014), etc. All these materials share some common traits such
as a strong hierarchical structure, layered structure, composition of material with
both minerals and fibers, gradient in the thickness of layers, etc. These naturally
occurring materials have been able to manipulate the characteristics mentioned
above to customize the design of their exoskeletons. The one important parameter
along with the material composition in these designs is the role of the interfaces
in the multilayered structure. In our articles, we highlighted the difference between
the mechanical properties of two similar species of shrimp Pandalus platyceros and
Rimicaris exoculata with interlayer structure as shown in Fig. 1a that are found at
sea level and at 2300 m depth in the sea as a function of habitat, wet versus dry
(Verma and Tomar 2014a), as a function of temperature (Verma and Tomar 2014b),
and as a function of mineral composition (Verma and Tomar 2015a, b).

One unique feature that determines the properties of materials is the interfacial
interaction between organic and inorganic phases in the form of protein (e.g.,
chitin (CHI) or tropocollagen (TC))-mineral (e.g., calcite (CAL) or hydroxyapatite
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Fig. 1 (a) Interfacial structure in shrimp exoskeleton and (b) interfacial molecular structure made
of Calcite and Chitin

(HAP)) interfaces. The size of the protein-mineral interfaces can be enormous as
the mineral bits have nanoscale eliminations. These interfaces control biological
reactions, and provide unique organic microenvironments that can enhance specific
affinities, as well as self-assembly in the interface plane that can be used to
orient and space molecules with precision. Interfaces also play a significant role
in determining structural integrity and mechanical creep and strength properties
of biomaterials. The length scale and complexity of microstructure of hybrid
interfaces in biological materials make it difficult to study them and to understand
the underlying mechanical principles, which are responsible for their extraordinary
mechanical performance. One of the most important aspects of understanding the
influence of interfaces on natural material properties is the knowledge of how
stress transfer occurs across the organic-inorganic interfaces. Molecular modeling
provides a way to study these phenomena at the length scale of the individual
components. The effect of different kinds of interfaces was modeled by our research
in the case of chitin layers. The interfaces with different thickness and different
phases were compared to study the effectiveness of the stress transfer of the layers
as shown in Fig. 1b. A comprehensive study on these is given in the articles by Tao
et al. (Qu et al. 2015a, b).

In this article, a discussion is given on the interface mechanics. Nanomechanical
Raman spectroscopy is used in this paper to measure the interface stresses. A
comparison between the numerically and experimentally measured interface elastic
constants is presented in addition to the stress-stress response of interface and its
effect on material properties of the interface and its adjacent phases.

Interfaces

Interface Mechanical Properties

Interfaces in composite materials can be considered as a material phase confined
between two separate grains or phases. Single interface samples of glass and epoxy
were prepared with an epoxy interface sandwiched between two glass phases. The
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samples were prepared using two-part industrial epoxy procured from Composite
Polymer Design (South St. Paul, MN, USA).

The resin, CPD4505A, and hardener, CPD 4507B, were thoroughly mixed in
recommended proportions of 100A: 28B by weight. The epoxy layer thickness was
controlled by putting tabs of appropriate thickness in between the glass slides. The
samples were cured at a prescribed temperature of 250 ıF for 1 day.

The thickness of the interface in samples was measured with a microscope to
make sure that it was in the error margin of 10 ˙ 0.5 �m. The sample surfaces as
shown in Fig. 2a were polished to remove scratches that could interfere with the
data measurement during experiments.

The Raman spectroscopy is based on “Raman Effect,” which provides a unique
“fingerprint” of every individual substance as a characteristic for its identification.
It is an inelastic process in which energy is exchanged between the incident photon
and molecule. We have used the Raman spectroscopy to measure the stresses in
the interface at different applied loads during indentation to compare the stress
distribution. The Mechanical load was applied using the nanoindentation platform
manufactured by Micro Materials Inc., UK, with load range from 0.1 to 500 mN,
with the accuracy of better than 0.1 mN. The experimental setup to measure the
Raman signal is shown in Fig. 2c.

The first step to measure the stress across the interface is to establish a calibration
curve of Raman shift with the applied stress. A uniaxial load was applied on a block

Fig. 2 (a) Image of the epoxy interface sample, (b) Raman shift-stress calibration curve, and (c)
schematic of Raman measurements setup
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of epoxy and the Raman shift was measured at applied loads of 100, 200, 300, 400,
and 500 mN. The stresses were obtained by dividing the load by the area of the
calibration sample. The measured Raman peak data was converted into shift by the
equation

�! D

�
1

�laser
�

1

�measured

��

10O7 cm�1: (1)

The change in shift was obtained by subtracting the shift at the applied load for
the shift at zero load. The calibration curve for shift versus load for epoxy is given
in Fig. 2b. The measurements were performed on the epoxy interface while holding
the load constant. The stress distribution across interfaces is shown in Fig. 3c. The
load direction is from the top of the picture. The figure shows the average values of

Fig. 3 (a) Schematic of epoxy interface between glasses with the indenter direction, (b) the
magnified region showing the area for Raman map collection, and (c) Raman stress map on the
interface with applied load of 0, 20, 200, and 500 mN. The height in each map is 80 �m and width
is 25 �m. Figure with 0 mN load shows the Raman data collection points
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stresses as measured on the interface. This technique has been used in the literature
to measure stresses tensors in the crystalline materials such as Silicon (Gan and
Tomar 2014) but for the case polymers such as epoxy the average stresses can be
measured (Colomban et al. 2006).

The Raman spectroscopy only provides the average stress at the interface but
stress tensors in different directions are needed to fully understand the behavior of
interfaces. Even in the experiments, it is difficult to measure the lateral stresses.
An analytical solution is therefore developed to calculate the lateral stresses during
indentation of interfaces. A schematic of the contact problem of interface is
illustrated in Fig. 3. The details on the analytical solution are given in authors’
previous articles.

Interface Elastic Constants

The interface elastic constants were calculated using equations in the article by
Ustinov et al. (2013) for different ratios of interface modulus as compared to the
main phase. The results are given in Fig. 4 for the range of rations from 0.001 to
100. The absolute values of the interface elastic constants are also plotted to observe

Fig. 4 Absolute values of
interface elastic constants
calculated for different ratios
of elastic modulus of main
phase to interface with (a)
plotting the elastic constants
A11, A66, A12, A13, and (b)
plotting A33 and A44
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Table 1 Comparison of interface elastic constants by both methods

Experimental solutions Theoretical formula
Ustinov et al. (2013)

Theoretical
approximations Ustinov
et al. (2013)

A11 (Pa-m) 34029.1 �1253260.483 53571.42857
A22 (Pa-m) 6821.673 �1253260.483 53571.42857
A33 (Pa/m) 2.03E C 14 5.74205E C 14 5.35714E C 14
A13 (Pa) 2.8E C 09 2208480565 3571428571

the variation with the change in the ratio as shown in Fig. 4. It can be seen that in the
present isotropic material A11, A66, A12, A13 keeps decreasing as the modulus of
both phases matches and then starts increasing again with the minimum at the point
of same materials, but the opposite is true for A33 and A44 with the maximum
values at the point when the interface and bulk phase has the same properties.

The interface elastic constants by both Dingreville and Qu (2008), Dingreville et
al. (2014), and Ustinov et al. (2013) are calculated based on the strain energy. Per
Dingreville, the interface contribution to the thermodynamic properties is defined
as the excess over the values that would obtain if the bulk phases retained their
properties constant up to an imaginary surface (of zero thickness) separating the
two phases. The surface free (excess) energy of a near-surface atom is defined by
the difference between its total energy and that of an atom deep in the interior of
a large crystal. Surface free energy corresponds to the work of creating a unit area
of surface, whereas surface stress is involved in computing the work in deforming a
surface.

The interface elastic constants given in Table 1 are converted into surface
constants based on equation from Ustinov et al. for a 10 � thickness interface.
The reduced modulus measured from the indentation experiments after conversion
to surface constant is also listed in the same table for comparison. The interface
constants after the conversion fall under the same order as the ones calculated from
the analytical relations given for interfaces.

These results show the comparison between different formulations given in the
literature and a first comparison with the experimental results. The interface stress
contribution is well recognized but still there is more work needed to be able to
address and implement the constitutive behavior of interfaces in the engineering
problems. It has a very high potential of application in areas such as interface
between glass/fiber in composites, interfaces at grain boundaries in metals to
mention a few.

Interface Dynamic Properties

To understand the interface mechanical properties, an idealized system with epoxy
interface between two glass slides was examined under static and dynamic loading.
The sample surface is shown in Fig. 2a. The impact experiments were performed
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on the epoxy interface to extract the stress-strain effect of the interface at different
strain rates (Verma et al. 2015). It was found that interfaces are affected by both
strain rate and confinement effects during deformation. A new constitutive model is
developed that couples the effect of both strain rate and lateral stresses given as

� D .A C B"n/
�
1 C C ln P"�

� �
1 C k�1

�
�

: (2)

Here, ¢ is the equivalent stress, " is the equivalent plastic strain, A is the yield
stress, B is the strain hardening constant, n is the strain hardening coefficient, C is the
strain rate strengthening coefficient, and k is the confinement factor. P"� D P"

P"ref
is the

dimensionless strain rate normalized with reference strain rate, �1
� D �1

�compressive strength

is the dimensionless lateral stress normalized with the compressive strength of
the material. The reference strain rate is taken as 1 s�1 and � compressive strength is
taken as 100 MPa. In the current experiments, the temperature was constant so the
temperature effects were neglected.

The stress-strain response for the epoxy interface was analyzed at high and low
strain rates as shown in Fig. 5 with the confined interface behavior labeled with
closed symbols and unconfined epoxy behavior labeled with open symbols. At
lower strain rates, the difference in stresses is mostly because of the confinement

Fig. 5 Fit of the current
model with stress strain for
(a) quasistatic loading and
(b) dynamic loading
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effect while in the dynamic case the strain rate effect also plays a major role.
The difference in the stresses is higher in the dynamic case as evident in Fig. 5b
compared to Fig. 5a. It is also compared to the stress strain behavior fitted by Tsai-
Sun model on the same plot. Thus, the current model is better suited to model the
behavior of materials under confined spaces such as interfaces in the composite
materials, metals, ceramics, etc. A conventional way is to consider interface as a
zero thickness and to not consider interface effect on the material deformation. The
model in Eq. 2 takes into account the effect of interface mechanical properties on
the mechanical deformation and should be considered for cases that have interface
dominant geometries such as the biological materials analyzed in this work. The
size effect of the interfaces is being analyzed by the authors and will be published
in the future papers.

Fracture Properties of Interfaces

Cohesive ZoneModel

Fracture or crack formation is the creation of new surfaces in the domain of the
body. This surface creation invariably leads to loss in the global stiffness and load-
bearing ability of the material, often leading to failure. Traditionally, either energy-
based or stress-intensity based approaches have been employed to predict this mode
of failure. The energy-based theory of failure introduced by Griffith (1921) was
motivated by the inadequacy of the elastic solution that renders singular stresses at
the mathematically sharp crack tip. The key idea behind the stress-intensity based
theory (Irvin 1957) is the observation that the near tip crack field in isotropic linear
elastic materials is similar for all specimen geometry and loading conditions, to
within a constant.

To address the inconsistency of infinite stresses at the crack-tip, a theory
involving a process zone, equivalent to a plastic zone in elastic-plastic fracture
mechanics, was presented by Barenblatt (1962) and Dugdale (1960), for crack
propagation in homogeneous isotropic materials. The main assumption was that
in the vicinity of crack tip, opposing faces of the crack are bounded by the
molecular cohesive forces. As the body is loaded, the two faces undergo significant
deformation, which eventually leads to loss of interatomic cohesion and traction free
surface creation. The cohesive forces are concentrated near a small, but finite region
of the continuum crack tip and drop to zero within few atomic distances from the
crack tip. This idea of the cohesive traction applied in a small cohesive zone removes
the difficulty of crack tip singularity in LEFM and is called Cohesive Zone Model
(CZM). A cohesive zone model assumes a relation between the normal (and shear)
traction and the opening (and sliding) displacement, and is capable of capturing the
debonding process of interfaces.

There are several numerical studies of failure based on the cohesive zone models
(Barua et al. 2012a, b, 2013a, b; Barua and Zhou 2011; Kim et al. 2014; Tvergaard
2003; Tvergaard and Hutchinson 1992, 1993; Camacho and Ortiz 1996; Zhong
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1999; Zhong and Knauss 2000, 1997; Zhong and Meguid 1997; Needleman and Xu
1993; Kubair et al. 2002a, b; Samudrala et al. 2002; Samudrala and Rosakis 2003).
Using Rose et al.’s (1981) cohesive law that is primarily for bimetallic interfaces,
Levy (1994) studied the debonding of a circular fiber in an infinite matrix subject to
equibiaxial load. There are also analytical studies of interface debonding based on
cohesive zone models, and these studies focus on the effect of interface debonding
on the macroscopic behavior of composite materials. Almost all analytic studies are
limited to the linear cohesive law, i.e., a linear relation between the normal (and
shear) traction(s) and the opening (and sliding) displacement(s) of interfaces ((!!!
INVALID CITATION !!!) n.d.; Hashin 1991a, b, 2002; Qu 1993; Wu et al. 1999).
There are very few analytic studies on the effect of nonlinear cohesive law (Levy
1996, 2000).

Experimental observations show distinctive characteristics in micromechanical
failure mechanisms in peel and shear fracture, thus the cohesive behavior is expected
to be mode dependent (Chai 2004, 2003; Chai and Chiang 1996; Roy et al. 1999).
A frequently used coupled cohesive law is developed by Tvergaard and Hutchinson
(1993), using a dimensionless separation parameter. A drawback with this model
is that the fracture energy is the same in all mode mixities (Högberg 2006).
Another theoretically motivated exponential cohesive law is developed by Xu and
Needleman (Needleman and Xu 1993). Van den Bosch et al. (2006) showed that
this exponential formulation only realistically describes mixed mode behavior in a
special case: The fracture energy is equal in normal and tangential direction. Park
and Paulino (2013) have extensively reviewed a number of CZMs and concluded
that the available models should be used with great caution for mix-mode cohesive
fracture.

There are several CZMs that have been suggested in literature (Park and Paulino
2013; Needleman 2014; Shet and Chandra 2004). The constitutive behavior of the
cohesive model is formulated as a traction-separation law (TSL), which relates the
traction, T, to the separation, �, the latter representing the displacement jump across
the interface. These cohesive parameters can be extracted from load-displacement
curve obtained from a simple tension or shear test (Zhu et al. 2009). One approach
is to use a J-integral versus end opening curve to get the cohesive strength and
the critical separation. Molecular dynamics (MD) simulations have also been used
previously to obtained cohesive zone parameters of the interfaces (Dandekar and
Shin 2011; Zhou et al. 2008, 2009; Yamakov et al. 2006). Stress-displacement
curve obtained from MD simulation is used as a traction-separation curve and the
maximum stress is used as cohesive strength of the interface. The total area under
stress-separation curve is taken as the cohesive fracture energy.

Interface Thickness Effect

In this section we will show the effect of interface thickness on the fracture
properties by studying the effect of grain boundary thickness in a polycrystalline
material. In a typical polycrystalline metal, GBs are significantly thinner (�10 nm)
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than the grains (��m). The accurate prediction of crack propagation through GBs
and interfaces while simultaneously predicting crack propagation though grains can
be difficult due to the factors that include: significant difference in the length scales
of GBs and grains, respectively; unknown GB strength properties; embrittlement
effects of GBs owing to GB chemistry, etc. Considering the fact that Ni additions are
likely to be segregated along GBs in polycrystalline W, (Gupta et al. 2007), change
in GB mechanical property plays a significant role in enhancing or degrading of the
materials failure resistance.

The GB simulation model is constructed based on the image of a realistic Ni
doped W GB from a HRTEM image (Gupta et al. 2007). Fully saturated Ni-doped W
GB has a thickness of about 0.6 nm (Gupta et al. 2007). However, when calculating
the GB properties one must insert a few atoms on either side of GB, Fig. 1, resulting
in an interface structure.

A 3-D GB interface model of Ni-doped W GB, Fig. 6d, is developed for (Prakash
et al. 2016) fracture simulations using a combination of XFEM with the cohesive
finite element method (CFEM) in order to characterize the influence of GB thickness
on fracture toughness. For the constitutive description of W grains and Ni doped W
GBs in a polycrystalline W microstructure, a general elastic-plastic material model
is used with parameters derived based on the data presented in the ab-initio modeling
work of Lee and Tomar (2013, 2014). Cohesive parameters were evaluated from the
stress-displacement curve obtained from the ab-initio calculation.

Fig. 6 A schematic showing (a) HRTEM image of polycrystalline Ni doped W GB (Gupta et
al. 2007), (b) atomic structure of W GB analyzed by Lee and Tomar (2013, 2014), (c) 2-D, and
(d) 3-D image of the continuum GB element analyzed for crack propagation
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Although the total GB volume is relatively small, the thickness of GBs can
greatly affect crack propagation. Lee and Tomar (2013, 2014) found that the
minimum thickness of such an interphase that contains GB and few atomic layers
around GB should be at least 2 nm in order to predict thickness independent
properties of GB in ab initio simulations. In order to understand the influence of
GB thickness on simulation results, crack propagation through interfaces with GB
thickness of 2 nm, 4 nm, and 8 nm was analyzed. As shown in Fig. 7, change
in thickness of GB does not significantly influence either the crack tip position
change or crack tip elastic strain energy release (calculated based on elastic strains
surrounding crack tip) indicating that GB thickness change at the length scale of
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materials model that corresponds to atomic scale does not affect interface crack
propagation characteristics.

In order to understand the effect of length scale, as discussed earlier, scaled up
interface structured with different GB thickness are analyzed for crack propagation.
Figure 7 shows the total plastic energy dissipation per unit volume and crack tip
strain energy change per unit volume change as interface specimen is loaded and
crack propagation undergoes. The plastic energy dissipation is calculated based
on plastic strain in the region surrounding the crack tip. As shown, the effect of
length scale on fundamental energetic quantities related to crack propagation is
insignificant (Fig. 8).
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Fig. 9 Fracture toughness
with respect to Ni percentage
in GB and a comparison of
fracture toughness of W
interface specimens at the
three scales examined and
experimentally available
values for polycrystalline W
(Gludovatz et al. 2010)

As shown in Fig. 9, a clear scale dependence of fracture toughness is seen
with the value corresponding to 100 nm thick interface length scale approaching
experimental values. Earlier, Mai and Lawn (1987) have used theoretical fracture
mechanics-based approach to calculate scale-dependent fracture toughness (Mai and
Lawn 1987).

Theoretical calculations showed that the fracture toughness has an intrinsic
length-scale dependence, which matches with the result in the presented study. In
the work of Mai and Lawn (1987), the range of fracture toughness was found to
be 2–7 MPa for Al, and it has been observed that the fracture toughness tends to
decrease significantly as length-scale of system becomes smaller, similar to what
is observed here. This result establishes the length scale dependence of fracture
toughness in examined interfaces and does not refute the use of continuum elements
at the small length scale of 2 nm.

Conclusions

A new technique based on nanomechanical Raman spectroscopy is presented to
calculate the interface stresses and elastic constants using an analytical model. The
elastic constants are then compared with the strain energy frameworks provided
in the literature. The comparison between both methods shows the dependence
of the interface elastic constants on the thickness of the interface. The elastic
constants calculated from the stress-strain data matches the theoretical values after
the thickness effect correction.

The interfaces are believed to play an important role in the observed behavior.
The role of interfaces is identified by performing experiments on an idealized
system of glass-epoxy interfaces. The confinement effect on the interfaces along
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with the effect of strain-rate was found to play a major role in the deformation of the
examined interfaces. A new model capturing both strain rate and confinement effects
is developed for strain rates up to 103 s�1 in this paper to account for confinement
effect and strain rate effect coupling.

Interface thickness effects were studied for the Ni-doped Tungsten polycrys-
talline material. For small length scale, as in the case of GB, it has been shown that
the fracture toughness at the interface is affected by the GB thickness. However,
the crack tip stress and the strain energy at the interface are not affected. Further
investigation on the effect of interface thickness at large length scale is being studied
by the authors.
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Abstract

A closed form stress-strain relation is proposed for modeling the postyield
behavior of amorphous polymers based on the shear transformation zones
(STZs) dynamics and free volume evolution. Use is made of the classical
free volume theory by Cohn and Turnbull (J Chem Phys 31:1164, 1959), and
also STZ-mediated plasticity model for amorphous metals by Spaepen (Acta
Metall 25:407, 1977) and Argon (Acta Metall 27:47, 1979) for developing
a new homogenous plasticity framework for glassy polymers. The variations
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of free volume content and STZs activation energy during large deformation
are parametrized considering the previous experimental measurements using
positron annihilation lifetime spectroscopy (PALS) and thermal analysis with dif-
ferential scanning calorimetry (DSC), respectively. The proposed model captures
the softening-hardening behavior of glassy polymers at large strains with a single
formula. This study shows that the postyield softening of the glassy polymers
is a result of the reduction of the STZs nucleation energy as a consequence of
increased free volume content during the plastic straining up to a steady-state
point. Beyond the steady-state strain where the STZ nucleation energy reaches
a plateau, the increased number density of STZs, which is required for finite
strain, brings about the secondary hardening continuing up to the fracture point.
This model also accurately predicts the effect of strain rate, temperature, and
thermal history of the sample on its postyield behavior which is in consonance
with experimental observations. Implication of the model for interpreting the
localization and indentation size effect of polymers is also discussed.

Keywords
Plasticity · Polymer · Amorphous · Free volume · Shear transformation ·
Stress · Strain · Energy · Deformation · Microstructure · Chain · Rate ·
Glass

Introduction

Many industries have turned their attention to polymers as the materials that can be
used as key structural elements with excellent compatibilities with the efficiency-
centered design criterion. Polymers are light-weight, inexpensive, transparent, and
extremely formable, and with some minor enhancements (like reinforcing with
fibers in polymer matrix composites) can be utilized as load-bearing elements under
severe loading conditions. Polymeric glasses (PGs), which consist the majority of
polymers, are amorphous materials with no arrangement in their microstructure.
From the mechanical point of view, while the preyield behavior of this type of
materials can be considered as viscoelastic, they show a very distinct deformation
response when loaded beyond their yield point (Argon 2013; Boyce et al. 1988).
Of the characteristic behavior of glassy polymers within the postyield region is the
considerable primary softening which takes place right after yielding and continues
up to a certain steady state strain, and a secondary hardening which extends up to
the fracture point as demonstrated in Fig. 1.

Many efforts have been made to unfold and quantitatively describe the afore-
mentioned unique postyield behavior of PGs during the past one-half century.
The earliest significant model for the plastic deformation of PGs is the one
proposed by Eyring (1936). With considering the molecular rearrangement as the
key factor mediating the plastic deformation, Eyring (and later Ree and Eyring
1955) suggested that the restriction or activation of the spatial movement of the
chains with altering the loading rate and/or the temperature is responsible for
elevation or decreasing of the PGs’ resistance to deformation. With considering
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Fig. 1 A schematic representation of the generic uniaxial stress-strain behavior of glassy polymers
(Reproduced from Voyiadjis and Samadi-Dooki 2016 with permission from AIP)

the chain deformation as the main contributing factor to the strain resistance of
the macromolecular systems, Robertson (1966) proposed a model for the plastic
deformation of these materials which was different from the rubber-like deformation
mechanism. Robertson’s model, however, is able to correctly predict the large defor-
mation behavior of PGs at temperatures close to the glass transition temperature
(Tg) only. Later, Argon (1973) came up with a model which considered the localized
antisymmetric twists along the macromolecular chains as the mechanism for the
permanent deformation. This model was formulated by considering the energy
of the twisting mechanism to be calculated similar to that of a pair of adjacent
disclinations. Known as “double kink” model, Argon’s formalism successfully
predicts the rate, temperature, and pressure dependence of the yielding behavior of
amorphous polymers. Hence, it was extended by others for modeling the postyield
plastic deformation (Arruda and Boyce 1991; Arruda et al. 1993, 1995; Boyce et al.
1988) and strain gradient plasticity (Lam and Chong 1999; Voyiadjis et al. 2014)
of PGs. Among the most noticeable developments to Argon’s model is the one
proposed by Boyce et al. (1988) who used this theory to express the resistance of the
macromolecules to segmental rotation. Accordingly, this model suggests that once
this resistance is overcome, the chain entanglement opening causes a considerable
softening in stress-strain behavior of the PGs. At higher strains, the chain alignment
is considered to be the dominant factor which results in secondary hardening of the
material behavior.

For crystalline materials with defined microstructural order, the primary carriers
of plastic deformation are nanostructural defects like dislocations and point defects
(Argon 2008; Shodja et al. 2013; Voyiadjis and Yaghoobi 2015). In contrast, the
plastic deformation of amorphous polymers has traditionally been thought as the
conformational changes in macromolecular systems, like chain rearrangements.
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Since no preferred long-range order exists in the intra- and intermolecular space
these amorphous solids, considering the chain rearrangement as the sole mechanism
responsible for the permanent deformation of this type of solids, seem to be
reasonable. Accordingly, it is expected that the stored energy in the permanently
deformed polymers to be small which can be justified by conformational rearrange-
ment. However, the calorimetric analyses by Oleinik and coworkers (Oleinik 1991;
Oleinik et al. 2007) for a number of amorphous polymers revealed a large amount of
stored energy during the course of plastic deformation which can never be attributed
to the chain rearrangement mechanism. Instead, Oleinik (1991) suggested that this
large amount of observed stored energy is due to the elastic field around some
defect sites which form during the plastic deformation, like Eshelby’s inclusion
model (Eshelby 1957; Mura 1987). These defect sites are, in fact, the localized
permanent deformation inclusions which encompass slip, glide, and shear rotation
of macromolecular chains. The formation of these inclusions is mostly enforced
by the shear component of the applied stress (Oleinik 1991), hence, they are
termed shear transformation zones (STZs). It is worth noting that STZs were
originally proposed to be responsible for the plastic deformation of metallic glasses
(MGs) (Argon 1979; Spaepen 1977), but they are now believed to be the main
mechanism for the plastic deformation of all types of disordered solids (Argon
2013). Unfortunately, the direct observation of STZs is not practical at this time,
because they are localized transition zones rather than being actual defects (Wang
et al. 2013); nevertheless, physical evidences exist for proving the nucleation of
these sites during the inelastic deformation of solid state glasses (Falk 2007; Oleinik
1991; Pauly et al. 2010).

From the shear transformation plasticity point of view, the excessive applied
stress triggers the nucleation of STZs, and the kinetics of inelastic deformation
is determined by the rate of the formation of these sites (Argon 1979; Spaepen
1977). Hence, the dynamics of the STZs seems to be a determining factor for
analyzing the plastic deformation of glassy state solids. For the case of MGs,
this hypothesis has become the principal approach to study their yielding and
postyield behavior. Most noticeably, Langer and Pechenik (2003) have proposed
that the rate of the STZs’ annihilation and creation needs to be proportional to
the rate of the energy dissipation during plastic deformation in order to satisfy
the thermodynamic consistency with considering the first and second laws. Since
this model was successful in qualitatively capturing the inelastic deformation
behavior of MGs, it was extended by Falk et al. (2004) with considering the
role of thermal fluctuations on the atomic rearrangement during large deformation
of MGs.

From the microscopic point of view, the localized deformation sites tend to form
around the “weak” areas in the bulk of the solids. Amorphous solids possess a
considerable amount of “voids” in their structure, the presence of which is dictated
by the very nature of this type of materials as disordered solids (Flores et al. 2002;
Hofmann et al. 2002; Jean et al. 2013; Utracki and Jamieson 2011; Yavari et al.
2005). While these voids can serve as weak points for STZs formation, existence
of a correlation between the evolution of STZs and that of the free volume sites
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which is observed during plastic deformation of amorphous materials like MGs (de
Hey et al. 1997) seems to be reasonable. Accordingly, for the case of MGs, some
researchers developed models which consider the adjustment of STZs nucleation
energy with the variation of free volume content as a state variable, similar to the
one proposed by Li et al. (2013).

Although the shear transformation-mediated plasticity is the accepted inelastic
deformation mechanism for all of the amorphous solids (Argon 2013), the number
of studies using this approach for PGs is limited. Among these studies, the works by
Hasan and coworkers notably consider the evolution of the number density of STZs
during the large deformation as a determining factor for plastic deformation (Hasan
and Boyce 1995; Hasan et al. 1993). This model is capable of capturing the effect of
the rate, temperature, and thermal history of the sample on the postyield softening
behavior of PGs. Argon (2013) also proposed a relation for shear transformation-
mediated plasticity of PGs based on his molecular dynamics simulations of
amorphous silicon (Argon and Demkowicz 2006, 2008) to capture the effect of
the thermal history of the sample on PGs’ overall postyield softening behavior.
With defining the liquid-like sites as the fertile sites for shear transformation,
Argon’s model describes the evolution of these liquid-like densities during the
plastic deformation.

In this chapter, a new model is presented for the postyield deformation of
PGs which formulates the competition between STZs’ nucleation energy varia-
tion due to the evolution of the free volume content during large deformation
and the increase of STZs’ number density to bring about the permanent plastic
deformation. The variation of the number density of the STZs is directly related
to the plastic strain, and the variation of the deformation energy and free volume
are quantified based on the previous experimental studies by Oleinik (1991) and
Hasan et al. (1993), respectively. Accordingly, effects of the temperature, strain
rate, and thermal history of the polymer on its plastic deformation are investi-
gated. With incorporating the microgeometrical and micromechanical properties of
the STZs of Poly(methyl methacrylate) (PMMA) obtained from nanoindentation
experiments and presented in the authors previous study (Malekmotiei et al. 2015),
the results based on the proposed model are obtained and compared with those
of previous experimental observations for uniaxial compressive deformation of
this PG.

Theory

Free Volume Evolution

In developing the current theory, the plastic deformation is assumed to be a
homogeneous flow which is mainly mediated by the nucleation and accumulation
of shear events rather than a sudden development of shear bands. Accordingly, the
kinetics relation which presents the relation between the plastic shear strain rate
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P�p and the shear stress in the plastic state �p can be used which was originally
developed by Spaepen (1977) and Argon (1979) as:

P�p D P�
p
0 cf exp

�
��F

kBT

�
sinh

�
�T ��p

2kBT

�
; (1)

in which P�
p
0 is a preexponential constant, cf represents the fraction of the potential

jump sites, �F is the nucleation energy barrier, �T is the transformation strain, �

is the volume of an STZ, T is the absolute temperature, and kB is the Boltzmann
constant.

For the case of MGs, potential jump sites are the interatomic spaces with
excessive free volume which can act as sources for atomic jumps that result in STZs
formation. The fraction of potential jump sites in an amorphous material can be
expressed by the relation developed by Cohen and Turnbull (1959) based on their
probability analysis as:

cf D exp

�
����

�f

�
; (2)

where � is a geometrical factor which is in the range of 1/2 to 1, �* is the minimum
size of an excessive free volume which can serve as a jump site, and �f is the average
free volume per atom. Assuming an even distribution of free volume in the bulk of
the solid, the average free volume per atom may be defined as:

�f D
Vf

N
; (3)

in which Vf is the total free volume content of the sample and N is its total number
of atoms.

Despite MGs which have atomic microstructures, PGs are mainly composed of
huge covalently bonded molecules. Hence, the “atomic jump” concept seems to
require a revisit and redefinition for STZ-mediated plasticity of polymers. Glassy
polymers possess an average free volume in the order of 5% with the average size
of about a couple of hundred cubic Angstroms (Jean 1990). This size is about the
size of a handful of monomers of common glassy polymers. On the other hand, each
STZ in PGs is calculated to encompass a few thousands of monomers (Argon 2013;
Malekmotiei et al. 2015; Samadi-Dooki et al. 2016). Although the size of the free
volume voids seems to be small compared to that of the STZs, these voids can be
assumed to provide weak spots for nucleation of STZs. The fact that free volume
content increases with increasing the STZs number density in PGs (Hasan et al.
1993) suggests a reciprocal effect between the evolution of these two parameters in
polymers. Hence, it could be reasonably assumed that free volume is redistributed
at the STZs’ sites upon their formation. Accordingly, N in Eq. 3 might be referred
to as the number of STZs in PG, and the total free volume can be assumed to be a
fraction of the total plastic volume Vp as:
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Vf D f Vp; (4)

where f stands for the fraction of the free volume.
Several experimental techniques have been used for evaluating the free volume

content of polymers. The positron annihilation lifetime spectroscopy (PALS) is
one of them which offers a reliable method for measuring the concentration and
average size of the free volume holes in the bulk of the polymeric glass (Jean
et al. 2013). In this method, positrons are injected into the bulk of the polymer
from a radioactive source. Upon injection, part of the positrons interact with the
electrons and form a particle called positronium (Ps), which can exist in form of
para-positronium (p-Ps) with antiparallel spins and ortho-positronium (o-Ps) with
parallel spins. Among these two particles, the transitional properties of o-Ps have
important implications on the free volume of polymers. In particular, the intensity of
o-Ps particles represents the concentration of the free volume sites, and its lifetime
correlates with the average radius, R, of these voids as (Jean 1990):

1

�o�P s

D 2

�
1 �

R

R C �R
C

1

2�
sin

�
2�R

R C �R

��
; (5)

in which �R D 1:656 Å is an empirical constant and �o�Ps is the o-Ps lifetime in
nanoseconds. The free volume content of the polymer can be related to the average
volume and concentration of these sites as (Jean 1990; Wang et al. 1990):

f D
4

3
�R3 .AI o�P s C B/ ; (6)

with Io�Ps representing the o-Ps concentration and A D 0.018 and B D 0.39 are
the experimentally found constants. The two o-Ps pertaining parameters, �o�Ps and
Io�Ps, are both temperature dependent; however, only the o-Ps annihilation lifetime
�o�Ps is dependent on the plastic strain and thermal history of the polymer (Hasan
et al. 1993). Accordingly, the free volume content of the polymer can be taken as a
function of temperature T, shear plastic strain �p, and thermal history of the sample
	 as:

f � f .�p; T; 	/ : (7)

To come up with a relation for the fraction of the jump sites of Eq. 2 which is
fully defined based on the measurable parameters, one needs to present alternate
definitions for the number of STZs, N, and the factor ��*. Since it presents a factor
for the minimum size of the free volume that can accommodate an STZ, the factor
��* can be assumed to be proportional to the shear activation volume V* (Li et al.
2013), which itself is defined as:

V � D ˛�T �; (8)
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in which ˛ is a factor for considering the dilatation effect and is close to unity for
PGs (Ho et al. 2003; Malekmotiei et al. 2015; Samadi-Dooki et al. 2016). On the
other hand, the number of the shear transformation zones can be assumed to be
proportional to the total shear plastic strain (Argon 2013) and may be calculated as:

N /
�pVp

�T �
; (9)

the parameters in which have already been defined. Finally, by incorporating Eqs. 3,
4, 7, 8, and 9, the fraction of the potential jump sites of Eq. 2 can be rearranged as:

cf D exp

�
�

k�p

f .�p; T; 	/

�
; (10)

in which k is a single constant that accounts for the various proportionality factors.
Apparently, this equation presents the fractional free volume as a function of
measurable variables such as temperature, plastic strain, and thermal history of the
sample. While plastic strain is a dependent variable which is analytically present in
Eq. 10, the variation of f with temperature, plastic strain, and thermal history of the
sample is extracted from appropriate experimental studies using PALS (Hasan et al.
1993; Hristov et al. 1996).

STZ Nucleation Energy Evolution

As it was mentioned before, the STZs formed within the bulk of the glassy
materials can be treated as nonelastic inclusions. Eshelby (1957) proposed a
rigorous mathematical model for finding the elastic fields inside and outside the
inclusions which has been used by many researchers as a homogenization technique
in various types of problems (Bedayat and Taleghani 2014; Khoshgoftar et al. 2007;
Malekmotiei et al. 2013). Accordingly, the energy of an inclusion �F can be found
by a simple integration scheme as (Mura 1987):

�F D
�
„ .�/ C ˇ2‰ .�/

�



�
�T

	2
�; (11)

in which �T and � are the predefined transformation shear strain and volume of an
STZ, respectively, 
 is the shear modulus of the sample, ˇ is the dilatency parameter
which can be found from the pressure sensitivity of the flow, ‰(�) is a function of
the Poisson’s ratio as ‰ .�/ D 2.1C�/

9.1��/
, and � (�) is a parameter which depends on

both the Poisson’s ratio and shape of the inclusion and varies between 7�5�
30.1��/

and
0.5 for spherical and flat ellipsoidal shapes, respectively. For the sake of simplicity,
the STZs are assumed to be noninteracting inclusions (Argon 2013); hence, the
total energy of the deformation can be obtained by superposition of the nucleation
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energy of the individual STZs as inclusions (Bedayat and Taleghani 2014; Mura
1987; Shodja and Khorshidi 2013).

The use of the aforementioned form of energy for an inclusion which was
proposed by Eshelby gives a constant value for the STZ’s nucleation energy.
However, as investigated by some researchers, this quantity evolves during the
plastic deformation of amorphous solids (Argon 1979; Li et al. 2013). For a number
of amorphous polymers, Oleinik (1991) obtained the total energy of deformation
during their elastoplastic compression. According to his investigation, the total
energy of deformation constantly increases with increasing the strain; however, the
rate of the increment of the energy decreases beyond a certain strain (see Fig. 5 of
Oleinik 1991). If one considers the aforementioned relation between the number of
STZs and the plastic strain presented in Eq. 9, and the fact that the total plastic
volume is equal to the total volume of the sample in uniaxial compression, the
variation of the energy per STZ during the deformation can be obtained based on
Oleinik’s work, as presented in Fig. 2a for PMMA. Interestingly, the value of the
energy of nucleation of a single STZ at yield which is found to be about 0.6 eV based
on Oleinik’s experiments is very close to that based on the authors’ nanoindentation
study on PMMA at room temperature (Malekmotiei et al. 2015). However, the latter
method is not able to find the variation of this energy with increasing the strain.

Since the free volume void sites serve as the preferred spots for STZs formation,
some investigators tried to link the variation of the STZs nucleation Helmholtz free
energy to the evolution of the free volume during plastic strain to theoretically justify
this phenomenon. The variation of the free volume holes’ size and concentration
with the strain were experimentally investigated by Hasan et al. (1993). Figure 2b
shows the variation of the total free volume with the true uniaxial strain based
on the work mentioned above and using Eqs. 5 and 6. Noticeably, the evolution
of the free volume content in this figure is similar to that of the STZ nucleation
energy as shown in Fig. 2a, but in the opposite direction. Both of these quantities
change sharply upon yielding, and reach a stable value at a specific strain beyond
which they show no significant change. This observation further supports the idea
of existence of a relation between the free volume and shear transformation energy
evolutions. Accordingly, some hypothetical models have been proposed to formulize
this phenomenon. Notably for the case of MGs, Argon (1979) proposed a model
which considered the dilatational component of the shear transformation to be
stored as an excess free volume, the rate of the variation of which is calculated
from creation-annihilation balance. In this way, the free volume creation takes
place during the shear transformation events and its annihilation is mediated by the
diffusive rearrangement of atoms. The free volume variation based on this model
was recently used by Li et al. (2013) as a state variable for adjusting the STZ
nucleation energy during the deformation. While the free volume content based on
Argon’s model alters with the dilatation component of the shear transformation, its
effect needs to be considered on the dilatational part of the STZ nucleation energy
as what was presented in Li et al. (2013). This, basically, means that the parameter
ˇ in Eq. 11 has to be considered as a function of free volume content. However, for
the case of PGs, the parameter ˇ is in the range of 0.2 (Malekmotiei et al. 2015;
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Fig. 2 (a) Variation of the stored internal energy in PMMA with true strain at room temperature
for the compressive strain rate of 8.3 � 10�4 (s�1) based on Oleinik (1991) (left axis) and the
average nucleation energy per STZ calculated using Eq. 8 (right axis). (b) Data points show the
variation of the average free volume size with true strain based on the compressive experiments of
Hasan et al. (1993) on PMMA at room temperature and strain rate below “-transition, and the solid
line is the tanh interpolation as discussed later in this chapter. The dashed line in both figures is
the projected yield strain (Reproduced from Voyiadjis and Samadi-Dooki (2016) with permission
from AIP)

Samadi-Dooki et al. 2016) and its variation (which is squared in this equation)
cannot bring about the variation of STZ nucleation energy required to capture the
behavior presented in Fig. 2a. Hence, in the current study, the quantitative evolution
of STZ nucleation energy with plastic strain is obtained directly from the analysis
of Oleinik’s experiments as shown in Fig. 2a.

Other parameters which can affect the nucleation energy of the STZ are the
temperature and the thermal history of the PG sample. The nucleation Helmholtz
free energy is directly dependent on the shear modulus of the material as understood
from Eq. 11. Hence, it is reasonable that one assumes the alteration of the STZ
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from Mulliken (2004) with permission from MIT)

nucleation energy to be a function of temperature in the same fashion of that for
the shear modulus. This assumption is valid because other parameters in Eq. 11 can
be assumed to be independent of temperature (see the discussion in Voyiadjis and
Samadi-Dooki (2016) and the referencing to Holt (1968) and Roetling (1965)). The
authors’ previous investigation on PMMA shows that the STZ nucleation energy
�F decreases with increasing temperature and almost vanishes at glass transition
temperature Tg. This variation scheme is used in this study for investigating the
temperature dependence of the flow. In addition, the authors’ previous studies
demonstrate a slight increase of the STZ nucleation energy with a short annealing
time. Since the free volume content of the PG decreases with thermal aging, and an
inverse relation between the free volume and shear transformation energy evolution
seems to exist, the increase of the STZ nucleation energy could be qualitatively
justified. The quantitative investigation of this phenomenon, however, is deferred to
a forthcoming study by the authors.

Concluding from these remarks, the STZ nucleation energy in a PG can be taken
as a function of temperature T, shear plastic strain �p, and thermal history of the
sample 	 as:

�F D �F .�p; T; 	/ : (12)

Finally, in light of Eqs. 10 and 12, and assuming �T��p � 2kBT for PGs at
temperatures below their Tg (Argon 2013), Eq. 1 can be reorganized at a constant
strain rate as:
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�p .�p; P�p; T; 	/ D
2kBT

�T �

�
ln

�
2 P�p

P�
p
0

�
C

�F .�p; T; 	/

kBT
C

k�p

f .�p; T; 	/

�
: (13)

Equation 13 represents the explicit plastic shear stress-strain relation of a PG. To
compare the results based on the current theory and those based on experiments,
the shear stress and strain quantities can be simply converted to uniaxial parameters
according to the von Mises’ equivalency concept as:

�p D
p

3�p (14a)

and

�p D
p

3p; (14b)

with �p and p representing the uniaxial plastic stress and strain, respectively.
To complete the model, the viscoelastic preyield behavior is considered as a

simple Maxwell viscoelastic material, the governing differential equation of which
reads as:

Pve.t/ D
P�ve.t/

E
C

�ve.t/

�
; (15)

in which ��e (t) and �e (t) are the preyield viscoelastic stress and strain, respec-
tively, Pve.t/ is the strain rate, E is the Young’s modulus which is temperature
dependent, � is the viscosity which is strain rate and temperature dependent
(Kobayashi et al. 2001; Sun 2007), and t is time. The solution of Eq. 15 for constant
strain rates, where Pve.t/ D Pve , is readily found as:

�ve.t/ D Pve� C A1e
� Et

� ; (16)

where A1 is the constant of the solution which is easily obtained from the boundary
condition of ��e (0) D 0. Assuming that the contribution of the elastic component
of the strain rate during the postyield deformation is negligible (Hasan et al. 1993),
Eqs. 16 and 13 can be considered to independently represent the stress-strain
behavior in the preyield and postyield regions.

Results and Discussion

To evaluate the accuracy of the current model, the large deformation of PMMA as a
glassy polymer is investigated using the proposed formalism which is compared
with the available experimental data for this material. PMMA is a transparent
polymer which is of both industrial and medical importance. Accordingly, it has
attracted many researchers to study its manufacturing process and characteristic
properties, including its mechanical behavior. Notably, Ghadipasha et al. (2016)
developed a framework for investigating the polymerization of this polymer using
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integrated simulation, optimization, and online feedback control; Gunel and Basaran
(2009, 2010, 2011a, b, 2013) developed comprehensive experimental, analytical,
and numerical approaches for scrutinizing the deformation of PMMA and its
composites with taking into account the effect of temperature and damage evolution;
and Nasraoui et al. (2012) studied its mechanical behavior dependence on the strain
rate and temperature both experimentally and analytically.

In this study, effects of strain rate, temperature, and thermal history of the
sample on the postyield stress-strain behavior of PMMA are obtained based
on the proposed model and compared with the experimental observations. The
input parameters of the model are adopted from relevant experimental studies. In
particular, the numerical values for the characteristic parameters of the STZ in
PMMA, like its strain, volume, nucleation energy at yield, and the variation of this
energy with temperature and thermal history of the sample, are extracted from the
experimental evaluation of Malekmotiei et al. (2015). In addition, the evolution of
the STZ nucleation energy during inelastic deformation is taken into account with
considering the calculated values based on the measurements by Oleinik (1991) as
presented in Figs. 1 and 2a. The variation of the free volume content of PMMA
with strain, temperature, and thermal history of the sample is also calculated using
the results of the work by Hasan et al. (1993) and Hristov et al. (1996).

Effect of the Rate

When tested at a wide range of strain rates, the variation of the yield stress of glassy
polymers shows two distinct regions, each of which is almost linear with respect to
the logarithm of the strain rate. The separation point might be called the “-transition
point according to the study by Mulliken and Boyce (2006), and the trend of the
variation of yield point is sharper in post-“-transition area compared to the pre-“-
transition region. While the “-transition strain rate for PMMA in uniaxial loading
condition was shown to be temperature dependent (Roetling 1965), it is generally
considered to be about 0.01 s�1 at room temperature (Malekmotiei et al. 2015;
Mulliken and Boyce 2006). The distinct pre- and post-“-transition behaviors are
not just limited to the yield point of PMMA. The overall plastic deformation of this
polymer shows rate dependence (as seen in Fig. 3) such that the postyield behavior
might be divided into two distinguishable parts. Obviously, in each region, only the
yield stress is strain rate sensitive, and the curves for the postyield behavior are
parallel. In addition, while the steady-state is reached at the true strain of about
0.3 for pre-“-transition strain rates, it is shifted to the strain of about 0.45 for
the strain rates of above the “-transition. In this study, we limit the investigation
of the effect of the rate on the PMMA postyield behavior to the sub-“-transition
strain rates. The reason for this adjustment is that the numerical values pertaining
to the microstructural properties of the STZs, free volume evolution, and stored
deformation energy variation of PMMA are given or calculated for the strain rates
below the “-transition (in Malekmotiei et al. 2015; Hasan et al. 1993; Oleinik 1991,
respectively).
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During the plastic deformation at a constant strain rate, the free volume content of
the PG increases as previously shown in Fig. 2b. The trend of the increment is such
that the variation is insignificant prior to the yield, then it increases sharply until
it gets to a stabilized value; this variation is acceptably interpolated by hyperbolic
tangent (tanh) function. Interestingly, this function is compatible with the solution
of the differential equation for the variation of cf with the plastic strain at a constant
strain rate which is presented in De Hey et al. (1998) as:

dcf

d�
D �krcf

�
cf � cf:eq

	
C af ; (17)

with kr standing for a rate constant which is also dependent on the activation energy,
af for a temperature-dependent parameter, and cf.eq for the equilibrium value of
the fraction of the potential jump sites. In addition, since the evolution of the STZ
nucleation energy with the plastic strain follows the same trend as that for the free
volume (see Fig. 2), the same tanh interpolation format with required adjustments
is used to represent its variation.

In Table 1 the numerical values for model parameters pertaining to PMMA at
three sub-“-transition strain rates and at room temperature are shown. Accordingly,
the true stress versus true strain curves based on the proposed model are obtained
and compared to the numerical values based on the experiments of Mulliken (2004)
as shown in Fig. 4. A very important fact which is indicated in this figure is that
all curves are almost parallel in the postyield region, and the yield stress is only
affected by the strain rate. Luckily, the structure of Eq. 13 readily reveals the reason.
In this equation �F and f are independent of the strain rate, and the only factor
which varies with this parameter is the first term in the right-hand side; while this
term is independent of the plastic strain, it causes a constant jump in the curves
proportional to the logarithm of the strain rate. In addition, Fig. 4 demonstrates
that the proposed model accurately captures the primary softening and secondary
hardening of PMMA. When the results are scrutinized in detail, it is observed that
the secondary hardening is close to a linear variation. Since the free volume and the
STZ nucleation energy converge to their respective plateaus beyond the steady state

Table 1 Numerical values for model parameters pertaining to PMMA. In this table, � is the
viscosity, E is the Young’s modulus, �F0 is the STZ nucleation energy at yield, and �T� is the
STZ size scale

Parameter Strain
rate (s�1)

� (Pa.s) E (GPa) �F0 (eV) �T� (nm3)

0.0001 1012

0.001 1011 4.8 0.62 3.7
0.01 1.2 � 1010

Reference(s) Sun (2007)
and Kobayashi
et al. (2001)

Gall and
McCrum
(1961)

Malekmotiei
et al. (2015)

Malekmotiei et al. (2015)
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Fig. 4 True stress versus true strain curves of PMMA deformation at three different strain
rates based on the proposed model as compared to the experiments of Mulliken (2004). The
vertical arrow shows the yield point (Reproduced from Voyiadjis and Samadi-Dooki (2016) with
permission from AIP)

strain, according to the last term of Eq. 13 the stress should increase with the number
of STZs which has a linear variation with strain. While this behavior is very close
to the experimental observations, some studies suggest that at higher plastic strains,
PMMA might show a higher order hardening rather than a linear one (Arruda et al.
1995). This latter could be a result of chain alignment inside or on the border of the
STZs which can increase the overall material resistance to further deformation. As
another significant observation, at the strain rate of 0.01 s�1 which is close to the
“-transition strain rate, the behavior of the material starts to deviate from that at sub-
“-transition strain rates and also the viscoelastic-viscoplastic formulation developed
in the study. The proper treatment of this phenomenon requires the consideration of
the adiabatic heat generation in the PG at higher deformation rates, and is deferred
to a forthcoming study by the authors.

Effect of the Temperature

The thermoplastics response to mechanical loading is undeniably affected by the
temperature at which it is loaded. The formalism presented in this study considers
the effect of the temperature on pre- and postyield behavior of PGs as reflected
in Eqs. 13 and 16, respectively. For the preyield response, the temperature is a
determining factor such that both viscosity and elastic modulus in Eq. 16 are
temperature dependent, and hence temperature variation alters the viscoelastic
response of the polymer. On the other hand, in the constitutive relation of Eq. 13
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Table 2 Numerical values for temperature-dependent model parameters. The free volume content
at yield is f0. Other parameters hold the same definition as presented in the caption of Table 1

Parameter
Temp. (K)

� (Pa.s) E (GPa) �F0 (eV) f0 (%)

300 1011 4.8 0.62 3.8
325 7 � 1010 3.6 0.47 4.5
375 3.5 � 1010 1.7 0.33 5.4
Reference(s) Sun (2007)

and Kobayashi
et al. (2001)

Gall and
McCrum (1961)

Malekmotiei
et al. (2015)

Hristov et al. (1996)

for the postyield stage, the STZ nucleation energy �F and free volume fraction f
are both functions of temperature (see Eqs. 12 and 7, respectively). Since �F is a
function of shear modulus 
, it can be assumed to vary with temperature in the same
fashion as the variation of shear modulus with temperature. In addition, since both
the free volume hole size and concentration have been shown to vary almost linearly
with temperature (Hasan et al. 1993), the free volume fraction f is expected to vary
with a rate faster than a linear variation with temperature according to Eq. 6. This
higher order variation was beheld by Hristov et al. (1996) for a number of glassy
polymers including PMMA as shown in Fig. 5.

The numerical values of the temperature-dependent parameters involved in Eqs.
13 and 16 are presented in Table 2. Using these values, the true stress versus true
strain curves of PMMA at the compressive strain rate of 0.001 s�1 are obtained for
three different temperatures as depicted in Fig. 6 which shows a good correlation
with the experimental observations of Arruda et al. (1995). The results of Fig. 6
demonstrate two notable alterations of the PGs’ behavior with variation of the
temperature. Firstly, with increasing the temperature the yield stress decreases; this
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is a direct result of the STZs nucleation energy reduction at higher temperature
as extensively discussed in Malekmotiei et al. (2015). Secondly, the variation of
the temperature also changes the postyield behavior such that higher temperature
PMMA undergoes primary softening and secondary hardening which are dampened
compared to lower temperature behavior; this phenomenon is also well captured by
the proposed model. As a justification, it could be mentioned that the higher order
variation of f with temperature in the denominator of the third term in the right-
hand side of Eq. 13 is faster than the linear variation of the numerator. As a result,
the variation of the stress with plastic strain is damped by the effect of the increased
temperature.

Effect of the Thermal History

Heat treatment is a process for enhancing the mechanical resistance of many solid
state materials by relaxing the microstructural disturbances which might exist in
these solids as residual stress or strain, or extra cavities and defects. For glassy
polymers, such extra defects might exist if the cooling rate from molten state to
solid state is relatively high (quenching). Since instabilities which are the result
of unrelaxed microstructure can negatively affect the mechanical properties of the
PGs, they could be physically aged at temperatures close to their glassy temperature
for several hours in order to regain their nominal strength. This process is called
annealing at it is shown to increase the yield stress of PGs (Chen and Schweizer
2011; Hutchinson et al. 1999; Nanzai et al. 1999). Nevertheless, both quenched
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state strain (Reproduced from Voyiadjis and Samadi-Dooki (2016) with permission from AIP)

and annealed samples of the same polymer are shown to reach the same postyield
steady-state stress which takes place at the same strain, and afterwards they both
exhibit identical secondary hardening (Hasan et al. 1993; Klompen et al. 2005;
Xiao and Nguyen 2015). This phenomenon seems to be correlated with the free
volume evolution of the polymeric samples with different thermal histories. For
example, the investigation by Hasan et al. (1993) shows that while the annealed
PMMA sample possesses a lower free volume content compared to the quenched
one, the free volume fraction for both of the samples reaches the same value
when they are deformed up to the steady-state plastic strain. This is schematically
shown in Fig. 7. On the other hand, since it is believed that there exists an inverse
correlation between the free volume content and the STZ nucleation energy, one
might expect a higher STZ activation energy at yield for annealed sample compared
to the quenched one. The experimental evaluation of the STZ nucleation energy at
yield for PMMA and Polycarbonate (PC) with different thermal histories confirms
this hypothesis with revealing a slightly bigger STZ nucleation energy for annealed
samples (Malekmotiei et al. 2015; Samadi-Dooki et al. 2016).

According to the aforementioned correlation between the free volume content
and the STZ nucleation energy, it seems to be reasonable to assume that the STZ
nucleation energy of quenched and annealed PMMA samples also reaches the
same value at the steady-state strain and remains identical after that. Hence, with
considering the STZ activation energy variation with the strain as presented in
Fig. 2a, the tanh interpolation function for this quantity could be utilized with the
required adjustments for quenched and annealed samples. Accordingly, and with
using the numerical values for model parameters as presented in Table 3, the true
stress versus true strain curves for samples with different thermal histories could
be obtained as presented in Fig. 8. The prediction of the model for considering
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Table 3 Numerical values for model parameters for PMMA with different thermal histories (the
value of � for quenched sample is assumed for curve fitting purpose)

Parameter
Thermal
History

� (Pa.s) E (GPa) �F0 (eV) �T� (nm3) f0 (%)

Annealed 1012

4.8
0.62 3.7 3.8

Quenched 0.86 � 1012 0.58 3.6 3.9
Reference(s) Sun (2007),

Kobayashi
et al. (2001)

Gall and
McCrum
(1961)

Malekmotiei
et al. (2015)

Malekmotiei
et al. (2015)

Hristov
et al. (1996)
and Hasan
et al. (1993)
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Fig. 8 True stress versus true strain of PMMA for annealed and quenched samples based on
the proposed model and experiments of Hasan and Boyce (1995) at strain rate of 0.0001 s�1.
The vertical arrow shows the yield (Reproduced from Voyiadjis and Samadi-Dooki (2016) with
permission from AIP)

the thermal history of PMMA on its stress-strain behavior is acceptably close to
the experimental observation by Hasan and Boyce (1995) for the softening region.
The secondary hardening is predicted to be identical for the samples with different
thermal histories which is in agreement with the experimental observation for other
glassy polymers like PC (see Fig. 2 of Hasan et al. 1993).

Implication of theModel for Shear Banding and Indentation Size
Effect in PGs

Since the model parameters in this study are obtained from compressive exper-
iments, the authors were careful to make the comparisons with compressive
behavior of PMMA where no localization effect is expected to exist. However,
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the localization can happen in polymeric samples under more complex loading
conditions with formation of shear bands (Anand and Spitzig 1982; Li and
Buckley 2009; Voyiadjis et al. 2014) or where the strain gradient can generate an
additional hardening which, for example, emerges as indentation size effect (ISE)
in nanoindentation of glassy polymers (Malekmotiei et al. 2015; Samadi-Dooki
et al. 2016; Voyiadjis and Malekmotiei 2016; Voyiadjis et al. 2014). The latter is
the increased hardness at shallow indentation in nanoindentation experiments with
self-similar tips like the Berkovich tip (see Fig. 9). Since the proposed model takes
into account the free volume and STZs evolutions, it can be used to evaluate these
phenomena. For example, the formation of shear bands in PGs can be thought of
as coalescence of STZ within a small region where extra defects (free volume)
exist. In addition, the ISE in polymers might also be formulated with considering
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the probability of presence of a free volume site in the small anticipated plastic
region which can accommodate the required number of STZs to bring about the
plastic deformation. While modeling these effects is an ongoing topic of study by
the authors, they differ further discussions to their forthcoming publications.

Concluding Remarks

In this study, the plastic deformation of glassy polymers is formulated based
on the evolutions of the free volume and the shear transformation nucleation
energy during the course of large inelastic deformation. In order to be used as
input parameters, these variations were quantified based on previous experimental
observations. The reason for this strategy is that the authors have found that the
direct use of the formulations developed for the evolution of these two parameters
in MGs cannot account for their variations in polymeric glasses. To test the accuracy
of the model, effects of the strain rate, temperature, and thermal history of the
samples on the postyield behavior of PMMA, as a widely used PG, have been
analyzed and compared with the previous experimental observations. The results
show acceptable consonance with experiments for both the primary postyield
softening and the secondary hardening behavior of PMMA. Although the authors
have made some simplifying assumptions, the proposed model is promising in
a sense that it captures the softening-hardening deformation behavior of PGs
with a single formula. This suggests that the overall plastic deformation behavior
of PGs is a unified mechanism. This hypothesis, which is well proved in this
study, is fundamentally different from previous studies which suggest different
mechanisms for the postyield softening-hardening behavior of PGs. With additional
developments, the proposed model can stand as a conclusive theory for plastic
deformation of amorphous polymers.
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Abstract

Instrumented indentation has been widely used in the determination of mechan-
ical properties of materials due to its fast, simple, precise, and nondestructive
merits over the past few years. In this chapter, we will present an emerging
indentation technique, referred to as indentation fatigue, where a fatigue load
is applied on a sample via a flat punch indenter, and establish the framework
of mechanics of indentation fatigue to extract fatigue properties of materials.
Through extensive experimental, theoretical, and computational investigations,
we demonstrate a similarity between the indentation fatigue depth propaga-
tion and the fatigue crack growth, and propose an indentation fatigue depth
propagation law and indentation fatigue strength law to describe indentation
fatigue-induced deformation and failure of materials, respectively. This study
provides an alternative approach for determining fatigue properties, as well as
for studying the fatigue mechanisms of materials, especially for materials that
are not available or feasible for conventional fatigue tests.

Keywords
Indentation · Fatigue loading · Indentation depth propagation · Crack
propagation · Strength

Introduction

Fatigue is a process of accumulations of material deformation and damage due to
a repeated loading and unloading and is considered as one of major threats to the
mechanical integrity of materials and structures. As a technical problem, the study of
fatigue can be traced to as early as the mid-nineteenth century with the data collec-
tion of failure of railroad system by Germany technologist A Wohler (Suresh 1998).
Since then, it has attracted tremendous attention over the last century, and great
achievements have been made from macroscaled phenomena to micro-/nanoscaled
deformation mechanisms (Estrin and Vinogradov 2010; Connolley et al. 2005),
from qualitative descriptions to quantitative predictions (Rao and Farris 2008; Fleck
and Smith 1984), and from engineering metals to biological and soft materials
(Teoh 2000; Dirks et al. 2013; Tang et al.). Meanwhile, with the ever-growing
applications of small structures, including nano-/micro-electromechanical systems
(N/MEMS) and thin films over the last decades and emerging low-dimensional
nanomaterials such as nanowires, nanofibers, and graphene, their properties usually
exhibit differences than their materials counterpart at the macroscale (Alsem et
al. 2007, 2008; Höppel et al. 2009; Li et al. 2003, 2014; Luo et al. 2015; Lee et
al. 2008; Zhu et al. 2007), and the characterization of their mechanical properties
in particular fatigue properties is challenging the traditional uniaxial mechanical
testing technique that is mainly based on standard “dog-bone” shaped specimens.
The development of an alternative testing technique that could help to address these
challenges is highly desired.
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Indentation, which origins from the hardness measurement, provides a com-
pelling solution to measure mechanical properties of materials down to the nanosize
(Cheng and Cheng 2004; Fischer-Cripps 2000). The merits of indentation include
minor requirements of testing materials, easy to conduct, and high resolutions of
measurement. During the experiment, the indentation load and displacement can
be recorded continuously with the perpetration of the indenter to samples, and
even deformation of materials can also be observed when the testing platform
is integrated with advanced observational facilities such as transmission electron
microscopy (TEM) and scanning electron microscope (SEM), usually referred to
as in situ TEM-indentation (Warren et al. 2007) and SEM-indentation (Nowak et
al. 2010), respectively. Significant efforts have been made to extract mechanical
properties of materials from indentation data including elastic properties (Oliver
and Pharr 2004; Yang et al. 2016; Li and Bhushan 2002; Dao et al. 2001; Lan
and Venkatesh 2007; Jiang et al. 2009), plastic properties (Cheng and Cheng 1998;
Chen et al. 2007; Xu and Chen 2010; Lee et al. 2010; Bucaille et al. 2003), fracture
properties (Lawn and Wilshaw 1975; Tang et al. 2008; Xia et al. 2004; Sakaguchi
et al. 1992; Miranzo and Moya 1984; Quinn and Bradt 2007), creep properties (Xu
et al. 2008a; Cheng and Cheng 2001; Li et al. 1991; Yang and Li 1995; Chen et al.
2010; Stone et al. 2010), and relaxation properties (Xu et al. 2008b; Baoxing et al.
2010; Chu and Li 1977, 1980a; Hu et al. 2011; Chan et al. 2012) with a broad range
of materials from hard metals, to composites, to biological materials, to soft matters.
Usually, these properties can be determined from the measured indentation load and
displacement curves and deformation profiles of indented materials at monotonic
loading conditions. However, fatigue properties such as fatigue strength and fatigue-
induced crack growth that rely on fatigue/cyclic loading conditions usually cannot
be measured.

Indentation that is conducted under a cyclic loading with cyclic numbers >1000
is referred to indentation fatigue here with an emphasis on measurement of fatigue
properties of materials. An early study by Li and Chu found that the flat punch
indenter could continue to penetrate into the “-tin single crystal with applied cycles,
and the recorded curves of indentation displacement-cyclic numbers were similar
to that of fatigue crack propagation with the absence of third stage (Li and Chu
1979). With the same “-tin single crystal, later on, Chu and Li changed the fatigue
conditions to fatigue spectrum with interruption by a peak loading and further found
the similarity with that of fatigue crack propagation with a delayed retardation of
indentation depth propagation caused by a peak loading (Chu and Li 1980b). By
employing a Vickers diamond indenter, Kaszynski et al. investigated the indentation
fatigue response of 316 L stainless steel and found that the indentation depth
showed an approximately linear increase with the logarithm of the number of cycles
(Kaszynski et al. 1998). This difference is believed to be led by the geometric
shape of indenters and associated change of contact areas between indenter and
materials in experiments (Li 2002; Yang and Li 2013). The similarities between
indentation fatigue and fatigue crack propagation provide a critical hint to probe
the fatigue properties of materials through instrumented indentation technique
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(Yang and Li 2013). However, why do such similarities exist? What is the defor-
mation mechanism of the evolution of indentation depth propagation under a
fatigue loading? What fatigue properties can be determined and how? How to
quantitatively describe the depth propagation of indentation fatigue? What is the
quantitative relationship between the depth propagation of indentation fatigue and
fatigue crack propagation of conventional fatigue test? Over the last 10 years, we
have been actively working on the study of indentation fatigue by integrating tools
of experiments, theories, and computations to address these questions (Xu et al.
2010, 2007a, b, 2009; Xu and Yue 2006, 2007).

In this book chapter, we will summarize several important results based on
our progresses and present quantitative mechanics descriptions and validations of
indentation fatigue from indentation fatigue depth propagation to indentation fatigue
strength of materials. In section “Mechanics Theory of Indentation Fatigue,” an
elastic indentation fatigue mechanics model will be first developed, and its reduction
to and comparison with indentation mechanical model under a monotonic loading
will be discussed. And then we will show theoretical analysis on a similarity
of stress field between the rim of contact area between flat punch indenter and
surface of a sample and crack tips. In section “Indentation Fatigue Deformation,”
extensive experimental results on polycrystalline copper and finite element analysis
will be performed to demonstrate similarities between indentation fatigue depth
propagation and fatigue crack growth, and an indentation fatigue depth propagation
law will be developed. In section “Indentation Fatigue Damage,” we will extend
the indentation fatigue mechanics to indentation fatigue damage with a focus on
indentation fatigue-induced failure of materials and predict the fatigue strength of
materials from indentation fatigue. Concluding remarks will be given in section
“Concluding Remarks.”

Mechanics Theory of Indentation Fatigue

Indentation Load-Depth Curve

Consider a semi-infinite homogeneous elastic solid indented by a rigid frictionless
flat punch, as schematized in Fig. 1, when the indentation load P is applied to the
indenter, the penetration of the indenter (i.e., indentation depth) to the solid is h, and
based on Hertz contact theory, it can be written as

h D

�
1 � �2

�

Ed
P (1)

where d is the diameter of the indenter, and E and v are Young’s modulus and
Poisson’s ratio of the solid, respectively. Equation 1 is also referred to as Sneddon’s
solution and serves the fundamental of determining Young’s modulus of materials
from a flat punch indentation (Sneddon 1965). Besides, because of the constant
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Fig. 1 Schematic illustration
of indentation fatigue on a
semi-infinite solid via a flat
punch indenter subjected to a
fatigue loading P. d is the
diameter of flat punch
indenter, h is the indentation
depth. The inset illustrates the
cyclic fatigue loading

diameter of the punch indenter, Eq. 1 suggests a linear variation of indentation
depth with indentation load at a small deformation, indicating one of the benefits
of flat punch indenter in indentation technique in comparison with other indenter
shapes such as sharp indenter, Vicker indenter, or spherical indenter that will result
in increased contact area with the increase of the indentation depth. Obviously, when
the indentation load P increases or decreases, Eq. 1 holds instantaneously for a semi-
infinite homogeneous elastic solid, and thus it can be used for both loading and
unloading conditions. Assume the indentation load P is applied with a sinusoidal
loading spectrum, we will have

P .t/ D Pm C �P sin .!t/ (2)

where �P, Pm, and ! are the indentation load range, mean, and frequency, respec-
tively. With Eqs. 1 and 2, when a sinusoidal loading is applied to a semi-infinite
homogeneous elastic solid via a flat punch indenter, the indentation load-depth
relationship will be

h.t/ D

�
1 � �2

�

Ed
.Pm C �P sin .!t// (3)

That is

h.t/ D

�
1 � �2

�

Ed
Pm

�
1 C

�P

Pm

sin .!t/

�
(4)

Apparently, the variation of indentation depth with experimental time is sinu-
soidal. Assume

h.t/ D hm C �h sin .!t/ (5)
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where hm and �h are the mean and magnitude of the indentation depth. Thus, Eq. 4
can be rewritten as

hm D

�
1 � �2

�

Ed
Pm (6)

�h D

�
1 � �2

�

Ed
�P (7)

Equation 6 is similar to Eq. 1 and indicates the indentation depth is induced by
the mean load of the sinusoidal loading. Meanwhile, Eq. 7 indicates the dynamic
response of indentation under the sinusoidal loading and can be written as

E

1 � �2
D

1

d

�P

�h
(8)

E/(1 � �2)is usually referred to as the stiffness of materials. Apparently one
can easily probe the variation of stiffness of materials by applying a dynamic
loading. Equation 8 has served the theoretical model in the measurement of dynamic
contact stiffness of materials and has been employed in the continuous stiffness
measurement (CSM) technique in the instrumented indentation technique (Li and
Bhushan 2002; Asif et al. 1999; Loubet et al. 2000).

Indentation Stress Intensity Factor

Consider the solid in Fig. 2a, the boundary condition of stress field beneath the flat
punch indenter is (Sneddon 1965; Johnson 1985)

Fig. 2 (a) Schematic representation of contact between the flat punch indenter and a semi-infinite
solid. (b) Circumferentially cracked notch specimen subjected to far-field compressive load Xu
et al. 2009 (reprinted with the permission from Elsevier)
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�zz .x; 0/ D 0; j x j> d=2 (9a)

�xz .x; 0/ D 0; 0 �j x j� d=2 (9b)

In the cylindrical coordinate systemr, � , z, the stress field can be written as
(Sneddon 1965; Johnson 1985)

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂
ˆ̂<

ˆ̂̂
ˆ̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂
ˆ̂̂
:

�zz D Eh

2.1��2/

1R

0

.1 C mz/ e�mzJo.mr/ sin .md=2/ dm

�rr D Eh

2.1��2/

�
1R

0

.1 � mz/ e�mzJo.mr/ sin .md=2/ dm

�

� 1
r

1R

0

1
m

.1 � 2� � mz/ e�mzJ1.mr/ sin .md=2/ dm

�

��� D Eh

2.1��2/

�
1R

0

2�m2e�mzJo.mr/ sin .md=2/ dm

�

C 1
r

1R

0

1
m

.1 � 2� � mz/ e�mzJ1.mr/ sin .md=2/ dm

�

�zr D Eh

2.1��2/

1R

0

mze�mzJ1.mr/ sin.mz/dm

(10)

where m is the variable function. J˛ is the Bessel function of the first kind and is

J˛.x/ D

1X

mD0

.�1/m

mŠ� .m C ˛ C 1/

�x

2

	2mC˛

Within the contact range at z D 0, one can have

�zzjzD0 D
Et0

� .1 � �2/

1Z

0

Jo.mr/ sin .md=2/ dm (11)

Because
1R

0

Jo.mr/ sin .md=2/ dm D 1p
.d=2/2�r2

; r � d=2, one will have

�zzjzD0 D Et0
�.1��2/

1R

0

Jo.mr/ sin .md=2/ dm

D Et0
�.1��2/

1p
.d=2/2�r2

r � d=2
(12)

That is

�zz .r; 0/ D
Eh

� .1 � �2/

1
q

.d=2/2 � r2

; r � d=2 (13)
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At the rim of indentation, ÍxÍ is approaching to d/2, one will have

�zz .r; 0/ D
Eh

� .1 � �2/

�
1

p
dr

C � � �

�
; r ! d=2 (14)

Equation 14 indicates there is a stress singularity at the edge of indentation with
respect to

p
r .

Similarly, for a semi-infinite model-I crack subjected to a far-field compressive
load P, as schematized in Fig. 2b, given the distanced/2from the origin of the
coordinate system to the crack tip, the stress field at the crack tip is (Hertzberg
1995)

0

BB
@

�zz

�rz

�rr

�''

1

CC
A ! �

2P

�d 2
p

s
cos

'

2

0

B
BBBBBB
B
@

1 C sin
'

2
sin

3'

2

sin
'

2
cos

3'

2

1 � sin
'

2
sin

3'

2

2�

1

C
CCCCCC
C
A

(15)

Comparison between Eqs. 14 and 15 implies that � zz in Eq. 15 is an asymptote
of Eq. 13 at r ! d/2, leading to an equivalence between Eqs. 14 and 15, and thus
suggesting the same stress singularity with respect to

p
at the rim of flat punch

indentation and crack tip.
Given Eq. 1, Eq. 13 can be rewritten as

�zz .r; 0/ D �
4P

�d 2
; r � d=2 (16)

According to the definition of stress intensity factor, we will have

�zz D �
KIp

2� .d=2 � r/
(17)

And thus the stress intensity factor near the contact rim of flat punch and solid
can be expressed as

KI D
F

d
p

�d=2
(18)

And Eq. 18 indicates the same stress intensity factor near the contact rim of flat
punch and solid with that at the crack tip.

Under a fatigue loading condition, the stress intensity factor can be obtained
similar to that of Eq. 2, and is
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Kmax D
Pmax

d
p

�d=2
; �K D

�P

d
p

�d=2
(19)

where Pmax D �P/2 C Pm is the maximum indentation load.

Indentation Fatigue Deformation

Indentation Fatigue Depth Propagation Law

When a solid (engineering metals otherwise specified) is subjected to a fatigue
loading, crack will initiate and propagate with the increase of cyclic number.
The steady state (i.e., the 2nd stage) of the fatigue crack growth (da/dN)s can be
described by the well-known Paris equation (Ritchie 1977)

.da=dN /s D C .�K/q (20)

where �K D Kmax � Kmin is the nominal stress intensity factor range, and Kmax

and Kmin are the maximum and minimum stress intensity factors, respectively. To
highlight the competition between the intrinsic mechanism of crack tip growth and
extrinsic mechanism of crack-tip shielding behind the tip, Eq. 20 can be modified to
(Liu and Chen 1991; Dauskardt et al. 1992)

.da=dN /s D C .Kmax/n.�K/m (21)

where �K and Kmax describe the intrinsic and extrinsic mechanisms of fatigue crack
growth, respectively, and their dominance is reflected by the power indices m and
n. m, n, and C are empirical constants and depend on material and microstructure,
fatigue frequency, loading mode and environment, etc.

When an elastoplastic solid is subjected to a fatigue loading via a flat punch
indenter, given the similarity of stress singularity in theory in section “Indentation
Stress Intensity Factor” between the crack tip and the rim of indentation, in
particular, the same stress intensity factor near the rim of indentation and crack
tip, and inspired by Eq. 21, the indentation fatigue depth propagation at the steady
state can be described quantitatively by using a power law

.dh=dN /s D Ci Kmax
ni �Kmi (22)

where �K and Kmax are obtained from Eq. 19. Ci, ni, and mi are constants of
indentation fatigue and depend on material/microstructure and testing environments.
Similar to the fatigue crack growth, the continuous sinking of the indenter into the
solid suggests the accumulation of plastic deformation beneath the indenter and is
driven by the stress concentration near the rim of contact between the indenter and
solid surface. It reflects the intrinsic mechanism of indentation depth propagation
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with the cyclic number and is determined by�K. In contrast, Kmax indicates
the elastic recovery during the indentation depth propagation and represents the
extrinsic mechanism. We will validate Eq. 22 through both computations and
experiments in the following.

Computational Validation

Computational Method andModeling
Modeling plastic behavior of materials under a fatigue loading has received
considerable attention, and it requires the including of the Bauschinger effect, elastic
shakedown, cyclic hardening or softening, ratcheting, and mean stress relaxation.
A significant number of models have been developed over the last decades such
as developed by Chaboche and Nouailhas (1989a, b), Ohno and Wang (1995),
and Delobelle et al. (1995), and most of these models are based on the kinematic
hardening model of Armstrong and Frederick (A-F model) (Jiang and Kurath 1996).
A-F model has also been employed in the study of cyclic spherical indentation
behavior by Huber and Tsakmakis (Moosbrugger and Morrison 1997; Abdel-Karim
and Ohno 2000), but limited to a few number of cycles. In our simulations,
two different polycrystalline copper alloys whose elastoplastic property proves to
obey the classical kinematic hardening rule (namely the A-F model) will also be
employed. The mechanical properties for a brittle copper alloy are 122.5 GPa for
Young’s modulus, 0.35 for Poisson’s ratio, 33.32 MPa for initial yield stress, and
1.607 GPa for a linear hardening rate; the mechanical properties for a ductile copper
alloy are 119.9 GPa for Young’s modulus, 0.35 for Poisson’s ratio, 73.50 MPa for
initial yield stress, and 0.369 GPa for a linear hardening rate (Mclean 1965). We
note that these two copper alloys can be distinguished based on measurements from
the conventional uniaxial fatigue cracking test. For example, for fatigue cracking
behavior of the brittle copper alloy, the index n is higher than m in Eq. 21, and
the index n is less than m in Eq. 21 for fatigue cracking behavior of the ductile
copper alloy. The plat punch indenter with radius d/2 D 1.0 mm is assumed to
be rigid and frictionless. Figure 3a illustrates the history of fatigue loading with a
sinusoidal manner. The application of a preloading to the mean fatigue load will
help to minimize the effect of initial loadings. The simulations were conducted by
the finite element software ABAQUS.

Results and Discussion
For the brittle copper as a representative, under �PD100 MPa and Pm D 100 MPa,
the indentation load (P)-depth (h) curve is shown in Fig. 3b, and three stages
are observed in response to the loading history in Fig. 3a. Stage II corresponds
to the cyclic response of indentation to the fatigue loading, and is our focus. At
the beginning of this stage, the indentation depth propagation rate (per cycle) is
quite high, and then it decays with the increase of number of cyclic loading till to
approximately reaching a constant. Overall, the indentation depth keeps increasing
upon cyclic loading and shows a clear difference from the static elastoplastic
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indentation response. Besides, the propagation of indentation depth shows the same
sinusoidal frequency as that of the applied indentation load. More importantly, there
is a hysteresis loop in the indentation fatigue P-h curve at each cyclic loading,
and several of them are magnified in Fig. 3c. As the number of cycles increases,
the hysteresis loop tends to be more “closed” in comparison with the early ones,
leading to a smaller enclosed area. Further, each hysteresis loop can be decomposed
into two parts: the cyclic elastic indentation depth range he

c and the cyclic plastic
indentation depth range h

p
c . The former suggests the recovery of indentation depth

during indentation fatigue, and the latter is associated with the continuous increase
of indentation depth due to the propagation of plastic zone beneath the indenter.
Both he

c and h
p
c decrease with the increase of indentation depth toward the overall

closed hysteresis loop, and the decreasing rate for h
p
c seems to be larger. Essentially,

the area of hysteresis loop reflects the dissipated energy that is required to advance
the indentation depth, and the dissipation rate will slow down as the indentation
depth propagation increases (Xu et al. 2007b).

Figure 3d presents the variation of indentation depth with the history of cyclic
loadings. Similar to the indentation fatigue P-h curve in Fig. 3b, three stages that
correspond to the loading history are also obtained, and the second stage under
a cyclic loading will be investigated. It further confirms that an indentation depth
rate (dh/dN) arrives in a stable state with the increase of cyclic numbers at the
second loading stage, and this stable indentation depth propagation ratio (dh/dN)s
depends on the indentation load range and the maximum load, and radius of
indenter, i.e., �K and Kmax and d/2. With d/2 D 1.0 m, Fig. 4a gives the variation
of the steady-state depth rate (dh/dN)s with �K and Kmax. A power-law function
(i.e., Eq. 22) of (dh/dN)sas both the stress intensity range �K and the maximum
stress intensity Kmax is obtained. When the indenter radius d/2 D 3.0 mm, the
functional form of Eq. 22 holds. Further, the exponents ni, mi can be obtained,
and niD5.2>miD1.5, suggesting that (dh/dN)s is dominated by Kmax in comparison
with �K. Similar to the fatigue crack propagation, �K can be considered the
driving force for propagation of plastic zone due to the stress concentration at the
rim of contact (associated with the cyclic plasticity), which promotes indentation
depth propagation and represents the intrinsic mechanism. Meanwhile, Kmax is
associated with the elastic recovery of indentation depth, which recovers elastic
deformation during indentation fatigue and represents the extrinsic mechanism. The
dominance of Kmaxin the indentation fatigue depth propagation for the brittle copper
alloy is qualitatively similar to the conventional fatigue cracking behavior of brittle
materials (Liu and Chen 1991; Dauskardt et al. 1992; Ritchie 1999), where their
crack growth rate is dominated by Kmax in Eq. 21.

Following the similar computational procedures, we performed the finite element
analysis of indentation fatigue on the ductile copper alloys. As �K and Kmax change
with different indenter radii, Fig. 4b shows the corresponding obtained(dh/dN)s,
which confirms that the indentation fatigue depth propagation law (Eq. 22) holds.
The exponents are niD4.2<miD5.6, which indicates that the dominance of �K over
that of Kmax for ductile copper alloys, also consistent well with the fatigue cracking
behaviors of ductile materials (Liu and Chen 1991; Dauskardt et al. 1992).
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Fig. 4 Variation of the
steady-state rate of
indentation fatigue depth
(dh/dN)s with the stress
intensity range �K and the
maximum stress intensity
Kmax from the numerical
simulation on (a) a brittle
copper alloy and (b) a ductile
copper alloy Xu et al. 2009
(reprinted with the
permission from Elsevier)

In summary, these computational results validate the proposed power-law func-
tion, i.e., Eq. 22, and the steady-state indentation fatigue depth propagation rate is
a power-law function of Kmax and �K for both brittle and ductile metals, similar
to that fatigue crack growth. Besides, the dominance of Kmax and �K can be
determined by comparing their exponents. In addition, note that the coefficients in
Eq. 22 Ci, ni, and mi depend on materials and testing conditions but are insensitive
to indenter radii.

Experimental Validation

Material Choice and Testing Platform
99.9% polycrystalline copper (with 0.0262% Zn, 0.0145% P, 0.003% Pb, and
0.1266% Fe) with an average grain size 32	m was chosen, and the surface of each
specimen (15 mm in diameter, by 15 mm in length) was polished to minimize the
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Fig. 5 Schematic of
indentation fatigue testing
system

effect of surface roughness before each experiment. Besides, annealing procedures
for specimens were made at temperatures 150 ıC for 35 minutes to relieve the
residual stress. The material of the flat punch indenter was made by high temperature
alloys and its deformation was neglected in comparison with the indentation depth.
The diameter of the indenter was 0.993 mm.

A sinusoidal wave was employed to apply the indenter and was used to mimic
a fatigue loading condition and the loading frequency (fD!/2� , Eq. 2) was chosen
to be 1 Hz. To keep contact between the indenter and surface of the specimens
during the experiment, the minimum indentation load (Pmin) was set to 20 N. The
conventional tensile machine INSTRON8871 that can easily realize the fatigue
loading has been designed to conduct the indentation fatigue experiment with a
customized load cell, as schematized in Fig. 5. All experiments were performed at
room temperature, and the indentation load-depth data were recorded automatically
for each 10 loading cycles during an indentation fatigue testing.

Experimental Results
For representative fatigue loadings, Pmax D 200 N and Pmin D 20 N were employed
and the corresponding Kmax D 485.26MPa � mm1/2 and �K D 469.12MPa � mm1/2

can be calculated by utilizing Eq. 22. Figure 6a shows the recorded indentation load-
depth curve. The indentation depth increases with the cyclic number. Besides, there
is a quick penetration of the indenter at the initial stage, and then a relative steady
state of indentation penetration rate arrives. More importantly, a hysteresis loop is
observed in each loading-unloading cycle and seems to remain unclosed even after
3000 cycles. Figure 6b presents the curve of the indentation depth-loading cycle,
where the width of the bands is expected to associate with the elastic recovery
in each loading cycle. Similar to that observation in simulations in Fig. 3d, the
indentation depth propagation shows a quick increase at the beginning and then
followed by a steady-state stage. Essentially, these features can be understood from
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Fig. 6 Indentation fatigue
experiment on polycrystalline
copper. (a) Indentation load
P - indentation depth h. (b)
Indentation depth h and (c)
indentation depth per cycle
dh/dN with the applied
fatigue cycle num-
ber.Kmax D 485.26MPa � mm1/2

and
�K D 469.12MPa � mm1/2

Xu and Yue 2006 (reprinted
with the permission from
Cambridge University Press)
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Fig. 7 Variation of the steady-state rate of indentation fatigue depth (dd/dN)s with the stress inten-
sity range �K and maximum stress intensity Kmax, measured from experiment on a polycrystalline
copper Xu et al. 2009 (reprinted with the permission from Elsevier)

the dislocation activation and retraction, and more details see section “Discussion
on Deformation Mechanism.” In fact, these features are quite analogous to the first
two stages of uniaxial tensile fatigue crack growth. The approximate steady-state
propagation of indentation fatigue is further confirmed when the indentation fatigue
depth propagation rate dh/dN is plotted as a function of number of cycles in Fig. 6c,
and the steady-state propagation rate is(dh/dN)sas denoted in Eq. 22.

Given (dh/dN)s, we can examine its variation with �K and Kmax and validate the
indentation fatigue depth propagation law (i.e., Eq. 22). Figure 7 shows there is a
linear variation of (dh/dN)s with both �K and Kmax on log-scale plots, which agrees
with Eq. 22. Besides, the power exponents are mi D 3.1 and ni D 2.1, respectively.
The higher mi implies that the steady-state propagation of indentation fatigue is
dominated by �K, which is also consistent with fatigue crack growth in ductile
metals (Ritchie 1999). We should note the power exponents ni and mi may not
exactly equal to the n and m obtained from uniaxial tensile fatigue crack propagation
because of influences of local microstructures in indentation experiments, and this
difference is expected to increase with the decrease of indentation scales.

Extend to Overloading and Underloading

In previous sections, we have revealed the similarity between indentation fatigue
depth propagation and fatigue crack growth under a normal fatigue loading spec-
trum. It is known that the fatigue crack growth is greatly affected by the applied
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fatigue loading interactions such as sudden increase of peak load followed by a
normal fatigue loading conditions (referred to as overloading here) and sudden
decrease of peak load followed by a normal fatigue loading conditions (referred
to as underloading here). For example, the normal fatigue crack growth can be
delayed and boosted by the overloading and underloading, respectively. In this
section, we will continue to employ polycrystalline copper to investigate whether
the overloading/underloading will lead to delay/acceleration of indentation fatigue
depth propagation so as to further study its similarity to fatigue crack growth.

Figure 8a shows the indentation fatigue P-h curve under an overloading condi-
tion, and the inset illustrates the overloading spectrum, where two loading blocks
with a low-high loading sequence are considered. Pmax0 and Pmin are the maximum
load and the minimum load of the first load block, respectively. Pmax1 is the
maximum load of the second load block. N0 and N1 are the number of loading
cycles of the two load blocks, respectively. The indentation depth increases with
the number of cycles, and its propagation arrives at a relatively steady stage with a
constant rate after an initial sharp increase in each loading block. Besides, hysteresis
loops are also found in each block and seem not be closed, even after 7000 cycles
in the second loading block.

The indentation depth-loading cycle is plotted in Fig. 8b, and it further indicates
the approximately constant evolution of indentation depth propagation after initial
rapid adjustment in each loading block, similar to that under a single normal fatigue
loading block. Figure 8b further shows the rate of indentation depth propagation
dh/dN with the number of fatigue loading. In each block, a clear steady stage with
a constant dh/dN is observed after a quick decrease. More importantly, when the
maximum load increases from 500 N in the first loading block to 700 N in the second
loading block, a dh/dN shows an obvious increase first and then gradually decreases
until to a new higher steady state. Experiments further indicate that the new steady
state is nearly independent of the maximum loads in the second load block, except
that it needs more cycles to reach the new steady state for the larger maximum load,
as shown in Fig. 8b, where the maximum load changes from 700 N to 800 N in the
second load block. Generally, a larger increase of the maximum load will require
more number of cycles to eliminate the effect of load interaction. The enhancement
of the indentation depth propagation by the overloading further shows similarity
with that in conventional fatigue crack propagation (Tvergaard 2005; Sadananda
and Vasudevan 2003; Huang and Ho 2000, 2003; Borrego et al. 2003; Kumar et al.
1996).

Similar to overloading conditions, the underloading condition also consists of
two fatigue loading blocks with a decrease of the maximum load, i.e., a high-
low loading sequence in the two load blocks, as illustrated in the inset in Fig. 8c.
Consider a decrease of the maximum load from Pmax0 D 600 N to Pmax1 D 550 N
with N0 D 2000 cycles, and N1 D 7000 cycles, Fig. 8c shows the indentation depth
- number of cycles. The indentation depth keeps increasing instead of ceasing when
the maximum load decreases. Besides, similar to that under overloading conditions,
dh/dN arrive at a new steady state after lowering the maximum load, yet within a
very short cyclic numbers, as shown in Fig. 8d. The steady state dh/dN for the new
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maximum load is obtained in the second cyclic loading block and smaller than that
for the first cyclic loading block, indicating a delayed propagation of indentation
depth. When the decrease of the maximum load is much larger (from Pmax0 D 600 N
to Pmax1 D 500 N), Fig. 8d shows that the indentation depth propagation becomes
slower. The delay of indentation fatigue depth propagation due to underloading is
also similar to those findings in conventional fatigue crack propagation.

Microstructural Observation

Figure 9 presents the optical image of indentation on polycrystalline copper
after cyclic loadings (Fig. 8c for indentation fatigue load-depth curve), where
Pmax0 D 600 N, Pmax1 D 550 N, N0 D 2000 cycles, N1 D 7000 cycles. Pile-up,
gap, and wrinkles (i.e., overlapping layers) are observed, similar to those under
monotonous loading conditions. Generally, the pile-up or sink-in is caused by
material hardening and when the hardening exponent of materials, n, is less than
0.33 (Storakers and Larsson 1994; Taljat and Pharr 2004), the pile-up will appear
near the flat punch indentation (Storakers and Larsson 1994). For the polycrystalline
copper used in our experiment, n � 0.3 < 0.33was measured from our uniaxial
tensile testing (Xu et al. 2006), and its cyclic hardening exponent n � 0.1is also
less than 0.33, which agrees well with the appearance of pile-up. Given the constant
contact area between the flat punch indenter and surface of materials, deformation
of materials will deviate from the indenter in accommodation with the pile-up,

Fig. 9 Optical microscope
(OM) indentation image of
polycrystalline copper (top
view) and its sketch map
(slide view) Xu et al. 2007a
(reprinted with the
permission from Elsevier)
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leaving a gap between pile-up and indentation. This gap will increase with the
continuous sinking of indenter into the materials, which also agrees with the finite
element analysis (Xu and Yue 2007). Wrinkles reflect the slip-steps of shear bands
surrounding the indentation, and the formation and propagation of these shear bands
can be deemed the major plastic deformation mechanism in the present indentation
fatigue on polycrystalline copper. The closer to the indentation, the more wrinkles
due to the more severe plastic deformation. From crystal plasticity theory point of
view, the wrinkles result from activation of multiple slip systems, and these wrinkles
are also referred to multislip-steps in quasi-static indentation (Lloyd et al. 2005;
Zaafarani and Raabe 2008; Nibur and Bahr 2003) .

Figure 10 shows the SEM image of cross section of indentation. Pile-up and gap
are observed more clearly. Besides, some light and dark cyclic lines with radii that
decrease with increasing distance from the indenter are also observed. Those lines
are expected to be dependent of the slip lines beneath the flat punch indenter, which
is considered major deformation mechanism (Hill 1998). Figure 10 (i–iii) shows the
local deformation near the indentation, highlighted in the boxes. Figure 10i shows
the SEM images of pile-up around the samples. The pile-up is flat at first and then

Fig. 10 SEM image of the cross section of indented polycrystalline copper sample under a high-
low underloading (inset in Fig. 8c) and higher magnification (i) around the pile-up on the surface,
(ii) near the corner of indentation, (iii) below the indentation; Pmax0 D 600 N, Pmax1 D 550 N,
N0 D 2000 cycles, N1 D 7000 cycles Xu et al. 2007a (reprinted with the permission from Elsevier)
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vanishes with the distance far from the indentation. The flat transition is expected to
be related with the amount of plastic deformation of materials around the indenter,
and a cavity layer or cavity strip is similar to the form of a pile-up in geometry. From
Fig. 10i, many cavities appear along the cyclic lines, and even some cracks in higher
density cyclic lines near the rim of indentation. These cavities are expected to be
nucleated at an early stage of indentation fatigue and accumulate to cracks, and then
further spread with the increase of the number of loading cycles. Once the cracks
interact, peel-offs of materials will happen, especially near the rim of indentation
with higher cyclic lines associated with a high stress concentration. Figure 10iii
gives the SEM images in the regions below the indentation. More cavities and cracks
are found at a distance of about �15um far from the free end of indentation. The
orientation of these cracks is in line with the dark and light cyclic lines, which are
approximately level near the end of the indentation and steeper further from the end
of indentation.

Discussion on DeformationMechanism

In the viewpoint of indentation load–indentation depth curves, the increase of
indentation depth results from deformation ratcheting behavior of materials during
cyclic indentation due to a nonzero mean fatigue stress. The ratcheting behavior
reflects the accumulation of plastic deformation preceding in one direction. Besides,
the nucleation and development of the cracks further facilitate the development of
plastic zone, leading to a continuous increase of indentation depth.

When a new loading block is applied following a normal fatigue loading history,
the retardation or acceleration of indentation fatigue depth propagation is caused
by interactions of loading blocks and can be understood by considering activation
of dislocations. For example, the effective applied stress � eff acting on mobile
dislocation is

�eff D �app � �r (23)

Where �app is the maximum fatigue stress and � r is the residual stress. For
example, when the maximum load increases (i.e., overloading), the effective applied
stress � eff is very large, meanwhile the residual stress � r is small, leading to a
high indentation depth per cycle. At the same time, this difference will require
numbers of loading cycles to increase the residual stress � runtil reaching a new
balance with a new steady state of indentation depth propagation. Hence, the greater
the overloading amplitude, the more number of cycles are needed to remove the
effect of overloading, consistent with experimental results in Fig. 8b. Besides, with
the increase of the effective applied stress � eff , the dislocation density becomes
intensive, the initial indentation depth per cycle will be very large and then gradually
reduces and approaches to a new steady-state value with the arrival of new balance.
The variation of the residual stress � r will lead to rearrangement of the dislocations
beneath the indenter. The larger increase of the maximum load, the more cyclic
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numbers of loading to rearrange dislocation, and the larger steady indentation
depth propagation ratio. These interpretations further show the similarity with the
generation and annihilation of dislocations around the crack tip under the fatigue
loadings.

Similarly, the decrease in the maximum cyclic load after reaching steady inden-
tation depth ratio will reduce the residual stress � r. Consequently, underloading
with a smaller maximum load produces a smaller effective stress � eff for plastic
zone propagation, leading to a decreased indentation depth propagation after initial
adjustments, as shown in Fig. 8d, which is also similar to that of fatigue crack growth
under fatigue loadings.

Indentation Fatigue Damage

Indentation Fatigue Strength Law

With the continuous increase in indentation load cycles, damage of indented
materials will nucleate and propagate, and eventually leads to failure of materials
(Lawn and Wilshaw 1975; Xu et al. 2007a; Guiberteau et al. 1993; Bhowmick et al.
2007). Consider the number of indentation cycles to failure as Nf and the amplitude
of the cyclic indentation load as Fa, in this section, we will build the relationship
between Nf and Fa.

For a uniaxial fatigue testing, the relationship between the amplitude of fatigue
load, �a, and the number of cycles to failure of materials, Nf , is the well-
known S-N curve and can be expressed as a power-law relationship (Suresh 1998;
Basquin 1910)

�a D �f

�
Nf

�n
(24)

where � f and n are the fatigue strength coefficient and exponent, respectively,
and are related to the material/microstructure and testing environment/condition.
In general, � f equals the uniaxial fracture strength of the material under quasi-static
loading.

Inspired by this equation (Eq. 24), we propose that a similar power-law relation-
ship exists for indentation fatigue damage

Fa D Ff

�
Nf

�m
(25)

where Ff and m are the indentation fatigue strength coefficient and exponent,
respectively, and both depend on the material/microstructure and testing environ-
ment/condition. In the following, we will validate this power law equation in
experiments.



13 Indentation Fatigue Mechanics 423

Experimental Validation

Material Choice and Testing Platform
Different from the employment of copper alloy, to highlight the damage, relatively
brittle materials were used in this section, and they were PVC bulk material, and
TiN, NiP thin films on steel (SUS304) substrate. Besides, in order to avoid the
early damage by stress concentration at contact, a spherical indenter was employed
(instead of a flat punch indenter or a pyramidal/conical indenter). The cyclic
indentation load applied on the indenter varies in a sinusoidal manner; the load ratio,
i.e., the ratio between the minimum and maximum indentation loads, was fixed
at 0.1 for the thin-film specimens and fixed at 0.05 for the PVC bulk specimen.
Similar to the study of indentation fatigue depth propagation on polycrystalline
copper, the minimum load was above zero to keep the “compressive” contact all the
time. The frequency of load is 20 Hz for thin films and 5 Hz for the bulk material.
The maximum indentation force is constrained so as not to induce cracking under
static/monotonic loading conditions.

The failure was monitored in situ by acoustic emission (AE) during the inden-
tation fatigue, as schematized in Fig. 11. This technique was used to diagnose the
nucleation and propagation of damage and cracks in the static and cyclic indentation
tests and showed good agreement with the observations of microstructures (Yonezu
et al. 2009, 2010). Since AE may also be sensitive to contact friction/noise
due to cyclic indentation, the initiation of major crack, or material failure, is
quantitatively defined if more than 20 new AE counts per second are detected.
This ensured the detection of the initiation of major cracks (macrocracks), which
is regarded as failure in this study. From the variation of the AE count, the
critical number of fatigue cycles (upon failure) can be readily determined, which
is regarded as the fatigue strength of the specimen under a particular testing
condition.

spherical Indenter

Ch.4 Ch.3

Ch.1 Ch.2 Sampling interval : 40 ns

Sampling point : 2048

Threshold value : 20 mV

Digitizer and PC

F

Pre amplifier
40bB

Fig. 11 Experimental setup of spherical indentation with AE and corrosion potential fluctuation
monitoring system
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Results and Discussion
Indentation fatigue tests on the PVC bulk material were first performed. Figure 12a
shows a typical curve of indentation fatigue depth versus the number of cycles with
a maximum indentation force of 880 N. Both the maximum and minimum depth
histories are shown and the difference between them is due to the elastic recovery.
The indentation depth increases with the number of cycles, and after an initial stage,
a steady-state indentation depth propagation rate is achieved. These features are
similar to those of polycrystalline copper in section “Experimental Validation.” The
accompanied AE count shows that at N D 109,245 cycles there is a significant
increase of new AE counts. This implies that a macrocrack nucleates around the
indentation, which is identified as the failure in the PVC, as shown in the inset in
Fig. 12a. For the same specimen, more indentation fatigue tests with different load
amplitudes were carried out, and the resulting number of cycles to failure obtained
as a function of the fatigue load amplitude. This is shown in Fig. 12b. A linear

Fig. 12 (a) Experimental
evolution of indentation
fatigue depth and AE count
with number of cycles on the
PVC bulk material. The inset
shows the surface topography
near the indentation (after
failure). (b) The variation of
the indentation fatigue load
amplitude with number of
cycles to failure for the PVC
bulk material. The maximum
indentation fatigue load is
880 N and the load ratio is
0.05. The frequency is 5 Hz
Xu et al. 2010 (reprinted with
the permission from Taylor &
Francis)



13 Indentation Fatigue Mechanics 425

Fig. 13 (a) Experimental
evolution of indentation depth
and AE count with number of
cycle on the NiP thin
film/SUS304 steel substrate
system. The inset shows the
surface topography near the
indentation (after failure). (b)
Variation of indentation
fatigue load amplitude with
number of cycles to failure
for the Ni-P film/SUS 304
steel substrate system, as well
as that of the TiN
film/SUS304 substrate
system. The maximum
indentation fatigue load is
600 N and the load ratio is
0.1. The frequency is 20 Hz
Xu et al. 2010 (reprinted with
the permission from Taylor &
Francis)

relationship is obtained in the log-log plot, which validates the feasibility of using
Eq. 25 to describe the indentation fatigue strength of the bulk material.

Next, indentation fatigue on film/substrate systems was also carried out. Figure
13a shows the evolution of indentation depth with number of cycles for the NiP
film on a steel substrate, where the maximum indentation force was 600 N. A
similar characteristic of the evolution of the indentation depth with that of PVC
bulk material is observed: the indentation depth rate remains steady for a number
of cycles, and then undergoes a sudden change when the cycle number is about
409,860 cycles. Accordingly, a significant increase of new AE counts (well over
20 per second) was also detected, indicating macrocracking failure in the system.
These findings are consistent with the post-observation (inset in Fig. 13a) where the
NiP thin film develops many cracks.
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Table 1 Comparisons between the fatigue strength exponents obtained from the indentation
fatigue test (shaded rows) and uniaxial fatigue test in literature, for several thin film/substrate
systems Xu et al. 2010 (reprinted with the permission from Taylor & Francis)

Thin film/substrate Film thickness
(	m)

Fatigue strength
exponent n

Error of indentation
(present) and tensile
(literatures) results

TiN/SUS304 4 �0.041 ˙ 0.005 –
TiN/AISI 316 L (Puchi-Cabrera
et al. 2004)

1.4 �0.037 2.7�24.3%

TiN0.75/AISI 316 L (Berr’ıos
et al. 2001)

3 �0.035 2.7�31.4%

NiP/SUS304 200 �0.056 ˙ 0.013 –
NiP/SAE4340 (D’ıaz
et al. 2002)

18 �0.084 17.9�48.8%

NiP/AISI 1045 (Contreras et al.
1999)

17 �0.065 6.2�33.8%

With the similar procedures, a series of indentation fatigue tests were also
performed with different load amplitudes on the NiP and TiN film/steel substrate
systems. Figure 13b shows the relationship between the indentation fatigue load
amplitude and the number of cycles to their failure. In both cases, a power-law
relationship (i.e., Eq. 25) is validated. Moreover, the indentation fatigue strength
exponent, m, can be determined by fitting Fig. 13b, and it equals to �0.041 ˙ 0.005
and �0.056 ˙ 0.013 for TiN and NiP thin films on steel substrate, respectively.
At the same time, the fatigue strength coefficient Ff can be obtained from the
extrapolation and is 8.9 ˙ 1N and 660 ˙ 120N for TiN and NiP films on steel
substrate, respectively, which agrees well the measurements (14.4 N and 1000 N
counterparts (Yonezu et al. 2009, 2010)) at the static indentation tests on the same
TiN and NiP films on steel substrate, thus suggesting an underlying bridge between
the indentation fatigue strength and uniaxial fatigue strength.

Table 1 lists the further comparison of the fatigue stress exponents between
the current measurements with those obtained from uniaxial tests. Although the
fatigue stress exponents vary with respect to the thickness of films, they are on the
same order of magnitude. Therefore, we may conclude that the indentation fatigue
strength law, Eq. 25, is suitable for describing the failure behavior with measurement
fatigue parameter close to those in conventional uniaxial fatigue test. Note that
although the indentation fatigue failure mechanisms of PVC bulk materials, and
TiN/SUS304 and NiP/SUS304 film/substrate systems are different, the general
potential applicability of Eq. 25 seems to not be affected. This qualitatively echoes
the fact that in conventional uniaxial fatigue tests, different failure mechanisms may
be involved for different materials, e.g., for brittle and ductile materials, yet Eq. 24
holds for all common mechanisms. Thus, the direct comparison of fatigue strength
exponents indicates a quantitative connection between the indentation fatigue test
and uniaxial fatigue test.
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Concluding Remarks

Indentation fatigue is emerging as an alternative approach to measure the fatigue
properties and to probe fatigue-induced deformation and failure mechanism of mate-
rials and structures in particular materials and structures with small volumes. This
chapter presents, in theory, experiment and computation, extensive evidences of
similarity between indentation fatigue depth propagation and fatigue crack growth,
and builds a quantitative foundation in mechanics. The recent indentation fatigue
experiments performed at the nanoscale on nanomaterials (Cavaliere 2010; Wei et
al. 2008) and nanofilms (Bhat 2012) further confirmed the proposed similarity and
indentation fatigue laws/equations. Further development of this indentation fatigue
technique is envisioned to be integrated with multiple different measurements
(e.g., AE) and/or observatory (e.g., TEM, SEM) tools to monitor in situ deformation
of materials under cyclic fatigue loadings. At the same time, advanced computa-
tional models that can reproduce the experimental results of indentation fatigue
will be critically important, and they may require to span several length scales
to capture both indentation fatigue phenomena at the macroscale and deformation
mechanism at the nanoscale. Moreover, the application of indentation fatigue to
measure the cyclic/fatigue properties of broader materials such as soft matter and
biological materials and structures will help to extend theories of indentation fatigue
mechanics beyond the current focus of engineering metals, and may also offer new
opportunities to probe mechanics of soft materials and structures.
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Abstract

PVB laminated glass is a kind of typical laminated composite material and
its crack characteristics are of great interest to vehicle manufacturers, safety
engineers, and accident investigators. Because crack morphology on laminated
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windshield contains important information on energy mitigation, pedestrian
protection, and accident reconstruction. In this chapter, we investigated the
propagation characteristics for both radial and circular cracks in PVB laminated
glasses by theoretical constitutive equations analysis, numerical simulation,
experiments, and tests of impact. A damage-modified nonlinear viscoelastic
constitutive relations model of PVB laminated glass were developed and imple-
mented into FEA software to simulate the pedestrian head impact with vehicle
windshield. Results showed that shear stress, compressive stress, and tensile
stress were main causes of plastic deformation, radial cracks, and circumferential
cracks for the laminated glass subject to impactor. In addition, the extended finite
element method (XFEM) was adopted to study the multiple crack propagation in
brittle plates. The effects of various impact conditions and sensitivity to initial
flaw were discussed. For experiment analysis, crack branching was investigated
and an explicit expression describing the crack velocity and number of crack
branching is proposed under quasi-static Split Hopkinson Pressure Bar (SHPB)
compression experiments. And the radial crack propagation behavior of PVB
laminated glass subjected to dynamic out of - plane loading was investigated.
The steady-state cracking speed of PVB laminated glass was lower pure glass,
and it increased with higher impactor speed and mass. The supported glass layer
would always initiate before the loaded layer and the final morphologies of radial
cracks on both sides are completely overlapped. Two different mechanisms of
crack propagation on different glass layers explained the phenomenon above.
Then further parametric dynamic experiments study on two dominant factors,
i.e., impact velocity and PVB thickness are investigated: Firstly, a semiphysical
model describing the relationship between the maximum cracking velocity
and influential factors was established; Then the Weibull statistical model was
suggested considering various factors to describe the macroscopic crack pattern
in this chapter; Finally, the relation between radial crack velocity and crack
numbers on the backing glass layer and the relation between the crack length and
the capability of energy absorption on the impacted glass layer were proposed.

Keywords
PVB Laminated windshield · Crack Propagation and Initiation · Theoretical
Constitutive Relations · Numerical Simulation of Crack Propagation ·
Extended Finite Element Method · Experiments Analysis of Crack
Propagation · Quasi-Static Loading · Dynamic Out-of-Plane Loading

Introduction

As an typical laminated composite material, the standard PVB laminated glass
comprises of a PVB interlayer sandwiched by two mono soda-lime and it has
extensive applications in architecture, automobile industry, as well as the structural
parts during the past few decades where they usually play an important role in
human protection and structural integrity due to its excellent energy-absorbing and
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fragment-holding ability. However, mechanical behavior especially for the cracks of
PVB laminated glass subject to loading has not been fully explored yet due to the
complicity caused by the composite material, i.e., polymer material sandwiched by
two pieces of brittle material. As a result, it becomes a pressing need to investigate
the mechanical loading information contained in the macroscopic crack initiation
and propagation which enables improved design or prevention for laminated PVB
glass as a structural part.

In this chapter, there will be three methods mainly applied to investigate PVB
laminated glass damage mechanism and crack growth: theoretical constitutive equa-
tions describing the failure criteria of PVB laminated glass under load, numerical
simulations of crack initiation and growing on PVB laminated glass, experiments
and tests of impact between impactor and laminated glass plate. For theoretical
investigation, a damage-modified nonlinear viscoelastic constitutive equation is
developed based on the updated Lagrangian approach. For numerical simulation
investigation, a FEA model with proper material parameters verified by a classical
example is established to describing the impact between pedestrian head and PVB
laminated windshield. In addition, the extended finite element method (XFEM) is
employed to study the low-speed impact-induced cracking in brittle plates in the
present chapter. Upon head impact, the interaction between the stress field and the
initiation and propagation of the radial and circumferential cracks are computed
using XFEM. The effects of various impact conditions and sensitivity to initial
flaw are discussed. The experiment analysis of PVB laminated glass is mainly
based on quasi-static loading and dynamic impact. We carried out quasi-static Split
Hopkinson Bar (SHPB) experiments to study the crack velocity and number of crack
branching. For the dynamic out-of-plane impact tests carried out to study the crack
propagation behavior of PVB laminated glass subjected to dynamic impact by using
high-speed photography, the time histories of the averaged radial crack tip position,
propagation velocity, and acceleration are recorded and the parametric study of
impactor speed and mass, impact velocity, PVB thickness for PVB laminated glass
are investigated. Then two different mechanisms of crack propagation on different
glass layers are explained. Besides, a semiphysical model describing the relationship
between the maximum cracking velocity and influential factors is established. In
addition, the Weibull statistical model is suggested considering various factors to
describe the macroscopic crack pattern thus providing a theoretical evidence for
engineering practice. Finally, the relation between radial crack velocity and crack
numbers on the backing glass layer and the relation between the crack length and
the capability of energy absorption on the impacted glass layer are investigated.

Constitutive Relations

The constitutive relation of laminated composite material can well reflect the
mechanical behavior of that. In order to study the crack in laminated composite
material, the constitutive relation should be established firstly.
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Fig. 1 (a) PVB windshield crack morphology in real-world pedestrian-vehicle accident.
(b) Schematic illustration of a sphere pedestrian headform impacting on a windshield glazing

PVB windshield used in automotive industry are a kind of laminated composite
material which comprise of a PVB interlayer sandwiched by two momo soda-lime
glass sheet. Thus, pedestrian head impacts on the vehicle PVB windshield can
be regarded as a scenario where a composite plate is subjected to a concentrated
force by a spherical indenter on its top surface shown in Fig. 1. The composite
plate consists of n D 2 individual brittle soda-lime glass layers of thickness tg and
modulus Eg, sandwiched with a PVB interlayer of thickness tp and modulus Ep.

By studying the constitutive relations of the PVB windshield, the crack in PVB
windshield can be analyzed thoroughly. Lili et al. (Wang et al. 2003; Lili et al. 1991)
study the mechanical behavior of polymer with performing dynamic impact and
quasi-static tensile experiments. According to the experimental results, the behavior
of the polymer can be described as the following constitutive relation:

� D �e C �t1 C �t2 (1)

� t stand for the tensile stress.

�e D �m

�
1 � exp

�
�
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.m"/t
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��
(2)
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where m, � , E1, E2 are a nondimensional relative initial elastic modulus, relaxation
time as defined in Maxwell body, elastic constants of first Maxwell body and
elastic constants of second Maxwell body, respectively. �1, �2, are constants as well,
standing for the relaxation times of first and second Maxwell body. Where ¢e stands
for the stress with the damage material. ¢ t1, ¢ t2 standing for tensile stress of first and
second Maxwell body. D is a “damage” variable.

Nevertheless, the above constitutive relations are only valid when strain is less
than 7% (Lili et al. 1991), and it cannot express the relation completely. To further
utilize the above relations, Fenghua et al. (Zhou et al. 1992) suggested the following
equation to describe the constitutive relations:

� D .1 � D/ �e C �t1 C �t2 (5)

where D is a “damage” variable and is defined as:

D D

�
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(6)

And "th here regards as strain threshold of damage evolution. PD0, ı both are
material parameters determined by experiments. Then the dynamic damage criterion
is put forward:

Df D PD0 P"ı�1 ." � "th/ (7)

Incremental Form of Constitutive RelationsWhen theMaterial Is Not
Damaged

When employing the constitutive relations, we should consider some conditions like
whether the strain is larger than the threshold strain. Thus we need an equivalent
strain to determine whether it is or not. As following is the equivalent:
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31
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where subscripts “1,” “2,” and “3” denote the directions of principal stresses.
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On the basis of updated Lagrangian virtual work method, stress-strain relations of
material that undergoes large deformation with the ignorance of physical nonlinear
properties can be regarded as (Fischer and Washizu 1982):

˚
Sij
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fSijg, feklg are Kirchhoff stress tensors and Green strain tensors, respectively.
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Similarly, as PVB windshield is a three-dimensional structure, Equations from 1
to 6 can be rewritten as (Swanson and Christensen 2015; Wang et al. 2007; Shen et
al. 1987):

Sij D Sij;e C Sij;t1 C Sij:t2 (11)

where
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On the basis of Boltzmann superposition (Feng 1995), incremental form of
constitutive relations can be obtained. Also, implementation in commercial FEA
software needs the incremental form of the stress tensor of Eqs. 12, 13, and 14 to be
rewritten. Thus, it is a must for us to reach the incremental form first. According to
proofs of Chain Rule, Eq. 12 can be rewritten as follows:
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Considering �t is short enough yields (Feng 1995):
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Thus Eq. 13 becomes:
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Similarly, viscoelastic stress tensors for both low strain rate and high strain rate
at t are:
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Therefore, the incremental form of stress tensor during one unit time step �t can
be obtained:
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In the following way, the stress tensor can be calculated:

Sij;nC1 D Sij;n C �Sij;nC1 " < "th (21)

where tnC 1 D tn C �t.
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Incremental Form of Constitutive RelationsWhen theMaterial Is
Damaged

When the material is not damaged, the incremental form of constitutive relations
can be described using function relation above. However, when the strain is larger
than the threshold strain, material turns into “damage” phase. As mentioned above,
stress tensor in “damage” phase at time tnC 1 can be concluded as:

˚
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(22)

and Eq. 21 can be rewritten as:

Sij;nC1 D Sij;n C �Sij;nC1 (23)

Therefore,
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where �DnC 1 DDnC 1 �Dn is the increase of damage variable.
Rewriting Eq. 23 yields:

�Sd
ij;nC1 D .1 � DnC1/ �Sij;nC1 �

�DnC1S
d
ij;n

.1 � Dn/

D .1 � DnC1/ �Sij;nC1 � �DnC1�Sij;n

(25)

Similarly, the stress tensor under damage can be calculated as:

Sd
ij;nC1 D Sd

ij;n C �Sd
ij;nC1 " � "th (26)

Verification of Constitutive Relations

The constitutive relation of PVB windshield are gotten preliminary and the accuracy
of that should be studied next. In order to verify the above constitutive relations,
a classical example is chosen. A thin plate with infinite length and 2b D 12 mm
in width is under the uniform loadq(t) D 1 kN �m. There is a small crack in
center with length 2a D 1 mm, see Fig. 2. Material properties are listed in
Table 1.
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Fig. 2 Thin plate with center
crack under uniform load

Table 1 Material parameters for plate

�m/MPa n m E1/MPa �1/s E2/MPa �2/�s "th ı D0 Df

1,100 4 19.9 949 13.8 3,981 67.4 0.055 1.22 0.863 0.0797
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Fig. 3 A comparison between theoretical solutions and FEA results

By implementing the above constitutive relations into FEA software numerical
and adding the command of failure of material, results can be obtained. Comparing
numerical results with theoretical ones, we can see that the constitutive relations
results can coincide with the theoretical solutions well, shown in Fig. 3.
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Numerical Simulation

PVBWindshield FEAModeling Based on Constitutive Relations
of PVB Laminated Glass

By verifying the constitutive relations above with a classical example, the relations
have a sufficient accuracy. Then the FEA modeling of PVB windshield are
introduced in detail following.

Contact Analysis
A nonconforming two-body contact model of a PVB windshield loaded by a
headform (sphere) is illustrated in Fig. 4. The thickness of PVB windshield is
8.76 mm, the length of it is 350 mm, and the thickness of interlayer PVB is
0.76. Shell elements were chosen to mesh the two bodies in contact. Hourglass
control and automatic surface- to-surface contact with dynamic friction coefficient
0.1 were employed in LS-Dyna. Initial nodal gaps between the two contact surfaces
were prescribed. The contact elements were not activated until the penetration of
the sphere into the composite glass occurred for the sake of saving computation
time.

An extra command that allows the failure of material is added in the input file
of LS-Dyna. Then the above-mentioned constitutive relations with damage variable
could be fully employed in FEA. The accuracy of the contact FEA model is firstly
examined by classical Hertzian pressure calculation method. Illustration of classical
Hertzian theory is shown in Fig. 5 (Daphalapurkar et al. 2007). The ı and a0 stand
for mutual approach between two bodies and their contact radius.

Deviations between FEA and theoretical results are all within 1.5%. Comparison
shown in Fig. 6 demonstrates the sufficient accuracy of the FEA model to stimulate
the impact between pedestrian head and PVB windshield.

Material Model
The PVB laminated glass is modeled according to the following principles: if the
glass does not fail, the composite is treated as a shell; otherwise, the interlayer PVB
film acts as a membrane. A Belytschko–Tsay shell element for the glass material
and a membrane element for the interlayer are employed (Zhou et al. 1992; Fischer

Fig. 4 A simplified physical
model of impact between
head and windshield

V

350 mm

0.76 mm8.76 mm
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Fig. 6 Comparison between FEA results and theoretical results

and Washizu 1982). Both types of elements are fully integrated in simulations so
that no hourglass modes should be expected (Sharon and Fineberg 1999).

Glass and PVB film both can be treated as isotropic materials according to
their physical and material properties. Therefore, we assume that each layer of
composite windshield is isotropic with respect to its material symmetry lines and
obeys Hooke’s law. It is assumed that, due to the influence of dynamic loading, there
is no sliding between two contact layers. It then becomes reasonable to consider the
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Table 2 Parameters used in both constitutive relations and finite element analysis

Components Parameters and values

Headform ED 65 GPa , 	 D 1412 kg/m3 , 
 D 0.22
Glass ED 74 GPa , 	 D 2500 kg/m3 , 
 D 0.25 , tg D 2 mm
PVB film kD 20 GPa , 	 D 1100 kg/m3 , tp D 0.76 mm
Windshield dimension Panel dimensions (a � b):1,320 � 630 mm, with a small

curvature in x and z direction in coordinates
Other configuration Initial velocity: v0 D 10 m/s with no gravity field

composite windshield as integrity. As a result, an equivalent elastic modulus and
Poisson’s ratio should be introduced as follows (Dwivedi and Espinosa 2003).

E D
2tgEg C tpEp

2tg C tp
(27)

v D
2tgvg C tpvp

2tg C tp
(28)

where E and v are equivalent Young’s modulus and equivalent Poisson’s ratio
of windshield glazing.

Material parameters are listed in Table 2.

Results and Discussions

Internal Stress Analysis
The cracks in PVB windshield are demonstrations of internal and external
stresses. Thus, the FEA model above is used to analyze the internal stresses. Only
through investigating the internal stresses can we know the cracks on windshields
better.

During the dynamic crack evolution shown in FEA analysis, stages of dam-
age evolution could be sketchily drawn as Fig. 7. Three kinds of cracks are:
circumferential cracks, web crack, and plastic crack. The circumferential cracks
are mainly caused by pressure stress while the web cracks are mainly caused by
tensor stress. Plastic cracks are the last stage that the windshield deforms plastically.
In Fig. 8, three kinds of internal stresses, tensile stress � t, compressive stress
� c, and shear stress � s, are plotted versus impact time. We can find out that the
value of stresses sorted from large to small is ¢s, ¢c and ¢ t. Lawn and Wilshaw
(1975) stated that in addition to the Hertzian cone crack and the median vent
crack, there is also an inelastic deformation zone where shear and hydrostatic
compression is greatest. Quite similarly, it is obvious to see in Fig. 8 that shear
stress is the greatest among three stresses, causing the windshield to deform
plastically.
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Fig. 8 Three kinds of maximum internal stress in PVB windshield, tensile stress, compressive
stress, and shear stress curves versus impact time

Internal Stress Variation Among Different Point on Windshield Plate
Internal stresses of different points on windshield plate are far different and crack
information can prove it. The cracks become weaker as the radius grows larger for
circumferential cracks, as do the radial cracks. In Fig. 9, maximum stresses appear
at the very point that impacted by pedestrian head. Stresses decrease as the distances
from the central point increase. The decreasing rates of three stresses are nearly the
same according to the computational results.

Effects of Poisson’s Ratio on Crack Angle
Poisson’s ratio plays an important role of cone crack angle. A parametric study is
performed to manifest the effects on crack angle. Poisson’s ratio is ranged from
0.2 to 0.4, with a step-width of 0.05. Table 3 shows the results of FEA analysis
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Fig. 9 Three kinds of
maximum internal stress in
PVB windshield, tensile
stress, compressive stress,
and shear stress curves versus
the displacement from the
central point
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Table 3 Comparison results
of two models on Poisson’s
ratio effect to crack angle

Poisson’s ratio 0.20 0.25 0.30 0.35 0.40
SIF analysis 12.4 15.3 19.6 24.5 27.7
FEA analysis 11.8 15.1 18.9 23.1 26.2
Differences (%) 5.20 1.32 3.70 6.10 5.80

compared to that of stress intensity factor analysis (SIF). Maximum difference
between the results is below 7%. With the increase in Poisson’s ratio, the conical
crack angle also increases though the increase pattern is still unknown.

Effects of Impact Velocity
Vehicle speed is a critical factor in pedestrian-vehicle traffic accident. Extends and
degrees of injuries largely depend on the impact velocity between pedestrian and
vehicle. Therefore, studies of cracks on windshields under different head impact
velocity would provide the essential foundations in pedestrian protection. According
to the census data in NTADTU, in most cases, vehicles impact pedestrians at the
speed of about 40–70 km/h. Thus, we vary the impact velocity of the head from 0
to 20 m/s and make impact velocity V0 as an independent variable. On the other
hand, we choose the maximum radius of circumferential cracks Rc, the maximum
length of radial cracks Lr, and the maximum radius of plastically deformed area
Rp as dependent variables. Three dependent variables are illustrated and defined
in Fig. 10.

In Fig. 11, the impact velocity has very great influence to three chosen variables.
At the impact velocity of 20 m/s, Rc can reach up to about 642 mm, much larger than
Rc � 89 mm under the impact velocity of 5 m/s. Vehicle velocity plays an extremely
important role in both pedestrian head injury and damage of windshield. In addition,
it is reasonable to infer the extend of injuries of pedestrian head and impacting
velocity of vehicle roughly through Rc, Lr, and Rp.
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Fig. 10 Effect of initial impact velocity of the stress
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Fig. 11 Effect of initial impact velocity to cracks

Numerical Simulation Based on the Extended Finite Element
Method

After the head impacts on the windshield material, cracks including radial crack and
circumferential crack appear in the glass material. The fracture characteristics of the
windshield are widely recognized as one of the most important factors in automotive
crashworthiness. The crack profiles (e.g., length, pattern, etc.) on the windshield
material contain critical information for impact speed (which is extremely useful
for accident reconstruction), vehicle crashworthiness, and insights for improving
pedestrian and passenger protection. This motivates us to study the characteristics of
low-speed head impact-induced crack propagation on the windshield glass material.
In the past studies of impact on windshield glass, due to the intrinsic complexity
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of numerical analyses of cracking, researchers in automotive engineering often
avoid explicit simulation of crack propagation. The following study aims to study
the crack propagation characteristics (including both radial and circumferential
cracks) when a model windshield undergoes low-speed impact and the numerical
investigation of multiple crack propagation is based on the extended finite element
method (XFEM) in this study.

Fundamentals of XFEM
XFEM incorporates a discontinuous displacement field across the crack facing away
from the crack tip, in the form of:
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where n is the number of nodes in the mesh, Ni(x) is the shape function of node
i, ui are the classical DOFs of node i. bi and cil are the DOFs associated with the
Heaviside “jump” function H(x), with value 1 above the crack and below the crack.
The crack-tip function F i
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where (r, � ) are the local polar coordinates at the crack tip.
Figure 12 illustrates the enriched nodes near a crack tip, where H(x) is discontin-

uous across the crack surface. Under general mixed mode-loadings, the asymptotic
near-tip hoop and shear stress components are
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For fracture propagation, we use the popular criterion of maximum local hoop
stress, where the crack propagation direction is determined from Eq. 31 as
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Fig. 12 Schematic of uniform mesh surrounding a crack used in XFEM simulation. Blue square
nodes stand for the Heaviside function enrichment and red circular nodes stand for the crack
tip enrichment. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article)

Here, � c is measured with respect to a local polar coordinate system with its
origin at the crack tip and aligned with the direction of the existing crack. Numerical
simulations based on the above XFEM algorithm is carried out using commercial
code ABAQUS.

Model andMethods

Model Setup
A featureless spherical headform is used to model the human head; The model head
has a radius R D 90 mm and mass 4.5 kg. Note that effective head weights are
changeable in different accident cases because human body may also get involved
due to inertia, causing the effective impact mass larger than the mass of the pure
head, especially during higher speed impact. Thus, the effective head mass M is also
varied from 4.5 kg up to 90 kg by varying the density (from 1,500 to 30,000 kg/m3)
and keeping volume the same in this study. According to 151 pedestrian–vehicle
accident cases from the National Traffic Accident Database of Tsinghua University
(NTADTU), most of the impact speeds of the vehicle in accident fall into the range
of 40–80 km/h, i.e. 11.1–22.2 m/s, and that is the range of low-speed impact we
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Fig. 13 Computational model setup. (a) Global view of the quarter model of head impact on a
model windshield plate. (b) Dimensions of the featureless headform and windshield plate in a
quarter model

consider. We focus on normal impact and assume that impact occurs at the center of
the plate, we neglect the small windshield curvature and focus on a flat rectangular
plate with dimensions a � b D 700 � 300 mm and thickness t D 4.76 mm as Fig. 13
shows.

In terms of the material properties, typical material parameters of glass are
assigned to the plate, with density 	 D 2,500 kg/m3, Young’s modulus to the plate,
Possion’s ratio v D 0.22, mode I energy release rate G1 D 10 J/m2, mode II and
III energy release rate GII D GIII D 50 J/m2. The properties are assumed to be
rate independent. To take advantage of symmetry, only one quarter of the model
is needed for simulation. The boundary condition of the windshield is assumed to
be fixed. The plate and head are modeled with eight-node linear brick elements.
The contact between the head and plate obeys the Coulomb’s friction law with
coefficient f D 0.1 (since according to our accident scene investigation, a small
slip exists between head and windshield).

Computational Method
Suppose there is no crack or damage, we first compute the deformation response
with response to impact. For a given effective head mass M and impact speed v, the
maximum displacement D is computed and presented in a dimensionless form in
Fig. 14. For the range of impact speed and head mass considered in this study, D/t
can be fitted as a dimensionless function of v/v0 and M/M0, as
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masses; lines denote curve fitting, Eq. 33

D=t D


135:3.
=
0/0:7115 � 0:0305518:5.
=
0/

�
.M=M0/0:2669 (33)

where v0 D
p

E=	 and M0 D abt 	.
Since the impact speed is relatively low (much smaller than the wave speed),

our simulation shows that the dynamic effect is relatively minor for the range
of parameters investigated in this chapter. That is, for a given head mass, the
computed stress field from dynamic impact (with incident speed v) is very close
to that of quasi-static indentation (with maximum indentation depth D/t) as long
as they induce the same deformation curvature of the plate (i.e., when v and D/t
satisfy Eq. 33); see an example in Fig. 15 for the stress field. This enables us to
simplify the dynamic impact problem into a quasi-static indentation one, where the
normalized indentation depth D/t becomes the governing variable to indicate the
effective “impact condition.”

Our previous study showed that for windshield fracture, circumferential cracks
always grow after the radial crack has developed, except near the vicinity of impact
where extensive damage can be found (Xu et al. 2009). This is consistent with
Fig. 15 that the hoop stress field is more prominent than radial stress. Thus, the
crack simulation can be decoupled into two steps. First, we embed a number of
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Fig. 15 Comparison between radial and hoop stress field resulted purely from impact defor-
mation; to relieve the prominent stress, cracks need to form and radial crack is preferred to
propagate before the circumferential crack owing to the more significant hoop stress field. (a)
Contour plot of the radial stress field (unit: Pa). (b) Contour plot of the hoop stress field
(unit: Pa)

initial flaws at the center of the plate (impact location); this is consistent with the fact
that extensive damage is initiated in the contact zone and that facilitates subsequent
crack initiation and propagation. The size of the initial flaw is a0 D 3 mm with
variable directions. When these initial flaws are very small, only the radial flaws
will grow to become radial cracks upon impact, so as to release strain energy. For
a given indentation depth D, the radial crack grows gradually until a certain length;
with the increase of D, the final length of radial crack also increases. In the second
step, based on the radially cracked specimen, new circumferential flaws with size
a0 D 3 mm are introduced (the sensitivity of the flaw geometry and distribution is
discussed below), and without further increasing the load, with the residual stress
and strain fields inherited from the first step, the development of circumferential
cracks is simulated by XFEM.
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Rack Propagation Characteristics

Radial Crack Propagation Characteristics

Overall Crack Feature
In Fig. 16, for a typical displacement of D/tD 0.62, the evolved radial crack
is shown along with the hoop stress field. Note that with the fully developed
crack, this stress field is already much relaxed compared to its counterpart without
cracking (see for example the difference between Figs. 15 and 16); moreover, the
current hoop stress field is specified for the global coordinate, whereas during crack
propagation, it is the local hoop stress that determines the crack trajectory. When the
local maximum hoop stress exceeds a critical threshold, referred to as the damage
stress �d, the crack grows incrementally toward such a local principal direction.

In the beginning stage of impact, since the growth of radial crack can release
more energy than the circumferential crack (due to the more prominent hoop stress
field, Fig. 15), radial crack grows with the increase of the indentation depth D/t. It
is noticeable that the crack growth direction keeps changing slightly with growth
direction 22ı approximately. This is mainly caused by the rectangular shape of the
windshield plate, which makes the overall strain in the y-direction larger than that
in the x-direction. When the crack grows further, the boundary constraint changes
and the crack direction approaches about 45ı.

Head impact point

Y-Symmetric

X-Symmetric

Crack trajectory

Max. principal stress direction
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Fig. 16 View of crack trajectory and the hoop stress field after the radial crack is fully developed
at D/tD 0.62
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Fig. 17 The normalized released strain energy during the propagation of radial and circumfer-
ential cracks. For radial crack, the released strain energy is a function of D/t (or equivalently the
impact speed through Eq. 33); it is normalized by the incident kinetic energy with M D 4.5 kg. The
circumferential crack propagates at D/tD 2.89 and it is normalized by the corresponding incident
kinetic energy

During its growing process, the crack seeks to release as much energy as possible
through mode I fracture. The released strain energy Estrain is computed as the
difference between the strain energies of two specimens, one cracked and one
without crack (at the same D/t). In Fig. 17, Estrain is normalized by the initial impact
kinetic energy of the head Ekinetic (with M D 4.5 kg, the impact speed can be deduced
from Eq. 33). It is also illustrated that the released strain energy is relatively small
compared with the overall system energy, and it increases as D/t enlarges (although
when it is normalized by the incident kinetic energy, which also increases as D/t
gets larger, the dimensionless number Estrain/Ekinetic fluctuates somewhat).

Sensitivity of Initial Flaw and Fracture Criterion
The damage stresses �d of different soda-lime glass specimens are different due
to its intrinsic stochastic flaws, usually from 10 to 60 MPa. Under quasi-static
indentation, the effect of �d on crack evolution is shown in Fig. 18. The results
indicate that as the critical stress for crack initiation �d becomes larger, the crack
angle is smaller (the boundary constraint is more prominent) and the crack is shorter.
In other words, if the impact condition is known, one can roughly estimate the
damage stress threshold value according to the crack path and length. In what
follows, �d D 10 MPa is employed.
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Fig. 18 Effect of different
damage stresses on the radial
crack trajectory,
forD/tD 0.62

Fig. 19 The effect of model
I energy release rate effect on
the radial crack length
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The model I energy release rate is another very important parameter governing
the brittleness of the material. Consider typical material candidates for windshield
such as soda-lime glass and PMMA, the former is a brittle material whereas the
later has certain degree of ductility, their mode I energy release rates are about
GI D 10 J/m2 and GI D 400 J/m2, respectively. Without loss of generality, we
normalized the crack length C with plate size a. In Fig. 19, the effect on the resulting
length of crack is examined by varying GI from 10 to 400 J/m2. Numerical study
demonstrates that if the GI value is within the brittle material domain, there is
little effect on the crack length; otherwise, if the windshield is made by the more
ductile material, the crack length is shorter under the same plate deformation. In
what follows, GI D 10 J/m2 is employed.

The characteristics of initial flaw have some minor effects on crack propagation.
We first keep the initial flaw length to be 3 mm and let the flaw angle � i to be
30ı, 45ı, and 60ı with respect to the x-axis, and the final crack pattern is shown in
Fig. 20. It is observed that � i does have some influence on the initial crack trajectory;
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Fig. 20 The effect of the
initial flaw angle hi on the
radial crack pattern,
forD/tD 0.62
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however, eventually, all crack paths converge with similar lengths, indicating both
the robustness of the current model. The length of the initial flaw has negligible
effect on both the crack propagation pattern and crack length (as long as the initial
flaw is short). When the initial flaw length is taken to be 0.5 mm, 1 mm, 3 mm,
and 5 mm, the resulting radial crack lengths in these four scenarios are exactly the
same; if the initial flaw is 10 mm, the crack propagation pattern is slightly different.
Therefore, the 3 mm initial flaw used in the present study is validated and it is a
relatively insensitive parameter in the present XFEM simulation.

Radial Crack Length
The length of the radial crack can be represented as a function of the quasi-
indentation depth D/t, which is in turn related to the impact speed v for a given
effective head mass (see Eq. 34). Figure 19 also shows the normalized crack lengths,
i.e., C/a versus the normalized head displacement D/t. Initially, the crack length is
almost proportional to head displacement; however, after a certain length owing to
the fixed boundary, the crack length almost remains a constant. The relationship
between C/a and D/t is nonlinear and may be fitted as

C =a D �0:4046 C 0:9231 .D=t/ � 0:05074.D=t/3

C 0:03803 exp .D=t/ � 0:4243
p

.D=t/ ln .D=t/
(34)

By combining Eqs. 33 and 34, a new method can be derived to estimate the
impact speed directly based on the knowledge of radial crack length (assuming
the effective head mass is known) using Newton–Raphson method, thus useful for
traffic accident reconstruction. This is illustrated in the next section.

Equation 34 shows that if the head mass is fixed, the crack length increases
nonlinearly with impact speed. In order to estimate the influence of the effective
head mass, we can combine Figs. 14 and 19, along with Eqs. 33 and 34. For instance,
from Fig. 14 (or Eq. 33), if the impact speed is fixed at 5 m/s, for different effective
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head masses, the variation of crack length (as a function of the corresponding D/t)
can be obtained from either Fig. 19 or Eq. 34. Compared with the crack length of
M D 22.5 kg, M D 45 kg, and M D 90 kg its 193.27%, 241.35%, and 294.23%
for M D 4.5 kg, respectively. That is to say, the effective head mass has a strong
influence over the crack length, indicating that during a low-speed impact accident,
the shape of vehicle front end and pedestrian–vehicle contact point is critical in
impact speed estimation since these factors will largely determine the pedestrian
revolution angle. In addition, the influence of M becomes relatively smaller when
M is large, implying that the influence of the effective mass starts to decay if the
effective head mass is much larger than the windshield mass.

Circumferential Crack Propagation Characteristics
On the basis of the radially cracked geometry, in the second step, we introduce
circumferential flaws of length a0 D 3 mm along the radial crack, with a spacing
of 50 mm (the spacing is found to be a relatively minor factor on the final
circumferential crack pattern). The stress field calculated from the end of first step
is transferred into the second step. Since the first step has relaxed most of the
hoop stresses, the remaining excessive radial stress needs to be relaxed via the
development of circumferential crack, and the most efficient way of releasing the
radial stress is to develop the circumferential crack with maximum radius, i.e., on
the same order of C. This is verified from Fig. 21: Cracks also grow near the contact
zone because of the high stress. This is consistent with the observation that intensive
cracks are identified within the contact area while the crack density is lower outside,
and the largest circumferential crack almost bounds the radial cracks. The strain
energy released by circumferential crack is given in Fig. 17, where the total released
energy is less than 50% than that of radial crack. This evidence strongly supports the
argument that crack is prone to grow in a radial way rather than a circumferential
way, since more energy can be released. From Fig. 17, we can see that less than
about 5% of the total kinetic impact energy is consumed by both radial cracks and
circumferential cracks and thus there is enough room for improving the automotive
windshield for enhanced energy mitigation efficiency and pedestrian protection (for
example, using transparent energy absorption materials).

Fig. 21 Final crack pattern
(including both radial and
circumferential cracks) on the
model windshield plate
subject to head impact with
D/tD 0.62 Circumferential

Crack

Contact point

Radial Crack
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Experiment Analysis

The mechanical behavior of PVB laminated glass is quite complex, especially
under dynamic loadings due to the combination of rate-dependent effect of PVB
and brittle-polymer composite structure. Therefore, experimental data are very
important for the proper suggestion of constitution model and FE model to further
investigation mechanical behavior of PVB laminated glass under both static and
dynamic loadings.

Typically, one can categorize experiments for studying mechanical response of
such a composite material into three regimes in terms of different strain rates: quasi-
static, low impact speed, and high impact speed (Stout et al. 1999).

Experiment of Quasi-Static Loading

Because of the difficulties in conducting a quasi-static tension experiment with a
slippery surface and the windshield undergoes compression subject to human head
impact, we adopted a compression experiment rather than the bending test which
the shear effect will influence the mechanical property of the specimen to a large
extent.

Experimental Setup
PVB laminated glass circular flake is introduced to be the testing specimen, with
the dimension of u D 10 mm, where 0.76 mm-thick PVB interlayer is sandwiched
by two pieces of 2 mm-thick glass, shown in Fig. 22. Note that the glass, as a
typical rate-independent brittle material, has a density of 	 D 2,500 kg/m3, Young’s
modulus of E D 70 GPa, and Poisson’s ratio of m D 0.22 (Forquin and Hild
2010). It is worthy to point out that PVB laminated glass is made by putting
two glass sheets into an autoclave and compressed with 0.76 mm-thick of PVB
interlayer under specific cycle of pressure (10 bar) and heat (120 ıC). Thus, we
can regard there is no slide between three layers (Wang et al. 2007). To make the
experiment more engineering applicable, the thickness of specimen used here has
the same thickness as that in most passenger cars. In experiment, specimen is put
in a cylinder container which has a steel pin with a diameter u D 38 mm inside for
compression and the experiments are carried out on Material Testing System (MTS).
The load is applied perpendicularly through the pin to the sample. A clip-gage type
extensometer is installed between the gaps to measure the displacement of the pin as
a function of load during the experiment, shown in Fig. 23. 1 mm/min, 0.1 mm/min,
and 0.01 mm/min are three loading rates, corresponding to the strain rate on the
upper and lower sides of the specimen of P" � 1 � 10�3s�1, P" � 1 � 10�4s�1,
P" � 1 � 10�5s�1 chosen to measure the quasi-static mechanical property of PVB
laminated glass. During tests, unloading threshold value is set to be 80% of the
maximum loading value and thus complete load–displacement history is recorded.
The temperature and relative humidity during the experiments remain in the range
of 25–26 ıC and 40–45%, respectively.
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Fig. 22 Illustrations and dimensions of specimen used in both quasi-static and dynamic impact
experiments. (a) Illustration of the testing specimen before test. (b) Detail dimension of specimen

Fig. 23 Quasi-static compression experimental setup on MTS. (a) Compression experiment
setups. (b) Principles of compression

Experiment Results
It is commonly accepted that the failure process of composite subject to quasi-static
compression loading usually involves a sequential damage accumulation process
(Xu et al. 2009). As aforementioned, we set the unloading threshold value to be
80% of the maximum load value due to the major load decrease occurred during the
experiment when major crack could be observed clearly. Thus, we define the stress
and strain at this moment as major failure on-set (MFO) stress and strain. Figure
24 shows us the “load decrease” phenomenon and the morphology of the cracked
samples.

Figure 25 illustrates three different stress–strain relation curves under three load-
ing rates. The stress–strain curves show “nonlinearity” characteristic in mechanical
behavior of PVB laminated glass and this “nonlinearity” phenomenon is probably
caused by both nonlinear mechanical response of PVB interlayer and progressive
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Loading rate at 0.01mm/min
Loading rate at 0.1mm/min
Loading rate at 1mm/min

0.01mm/min

10

8

6

4

2

0

0.000 0.005

S
tr

es
s 

(M
P

a)

0.010 0.015 0.020 0.025
Strain

0.030 0.035 0.040 0.045

0.1mm/min

1mm/min

Fig. 25 Stress–strain curves obtained from quasi-static compression experiments under three
different loading rates, i.e., 1 mm/min, 0.1 mm/min, and 0.01 mm/min



14 Crack Initiation and Propagation in Laminated Composite Materials 461

10–3 10–2 10–1

Loading rate (mm/min)

2

3

4

5

6

7

8

9

N
u

m
b

er
 o

f 
cr

ac
ke

d
 z

o
n

es

100 101

Fig. 26 Number of cracked branching at different loading rates

microcrack growth in sample. As the loading rate increasing, the MFO strain
increases while the MFO stress remains nearly the same. The major responsible
reasons are: (i) in extremely low strain rate (quasi-static) situation, the outer glass
panel plays a critical role in mechanical response and (ii) glass is a rate-independent
material whereas PVB is a rate-dependent one.

Number of Crack Branching
The numbers of cracks in testing samples according to different quasi-static loading
rates are illustrated in Fig. 26. The number of complete cracks (or major cracked
branching) increases with the loading rate. As aforementioned, in quasi-static
situation, the stress remains the same whereas the strain rises with the increasing
loading rate. Therefore, the number of cracked branching, namely the “damage
degree,” depends on the value of strain, not the stress, in quasi-static circumstance
that is in accordance with Wang’s (Wang et al. 2006) study. Further, if a nonlinear
fitting is tried on the number of crack branching versus loading rate, we will harvest
the following explicit formula with fitting coefficient R D 0.999.

N D
�
8:975W 0:339


(35)

where [X] is Round function, e.g. [5.2] D 5. N is the number of crack branching and
W is loading rate with unit of mm/min. From Eq. 35, we can infer the numbers of
crack zones under different loading rates in the quasi-static domain.

Mandelbrot (1977) pointed out that crack branching contained critical informa-
tion of crack propagation speed and complexity. Bouchaud et al. (2012) further
investigated the relationship between crack length and crack branching mode and
concluded

Df D
lg b

lg k
(36)
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where Df D lg b

lg k
is degree of branching, b is the number of basic branching pattern,

and K � 0.4 in brittle material.
Assuming that the initial crack branching length is a0 and the length becomes

a1 D a0 C ka0 (Bouchaud et al. 2012), thus after the initial crack branches for i times,
the length finally comes to

ai D
�
1 C � � � C Ki

�
a0 (37)

Since the number of branching can be written as N ¼ biþ1, we are able to know
that

i D logN
b � 1 (38)

According to Freund’s (Michel and Freund 1990) theory, the dynamic crack
propagation velocity in a finite body obeys the following relation:

v D Cr

�
1 �

a0

ai

�
(39)

where Cr is the Rayleigh wave velocity and v is the crack propagation velocity.
By combination of Eqs. 36, 37, 38, and 39, the relation between crack velocity

and crack branching number is

v D Cr

1 C b�1=Df � 2N �1=Df

2
�
1 � N �1=Df

� (40)

Further, we substitute Eq. 35 into Eq. 40 and get

v D Cr

1 C b�1=Df � 2
�
8:975W 0:339

�1=Df

2


1 � Œ8:975W 0:339�

�1=Df

� (41)

Equation 40 may help us to clarify the crack propagation speeds in different
loading rates. We may also conclude that crack propagation speeds are different
during the three loading rates in quasi-static experiments based on Eq. 41.

Experiments of Dynamic Out-of-Plane Loading

By starting from a fundamental point, quasi-static mechanical behavior of PVB
laminated glass has been widely investigated experimentally above (Xu et al.
2011a). Unlike quasi-static cracking problem, dynamic fracture is more complex
and challenging but there are few reported investigations that focused on the
dynamic fracture of PVB laminated glass except for some numerical simulations
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those based on probabilistic damage mathematical model (Forquin and Hild 2010),
continuum damage mechanics (Zhao et al. 2005, 2006a, b; Sun et al. 2005), explicit
finite element method (Bois et al. 2003; Timmel et al. 2007; Sun et al. 2009), and
extended finite element method (Xu et al. 2010) that often neglected the important
PVB layer and most of them did not involve explicit crack growth and pattern
analysis. The dynamic experimental investigation is pressing need.

System Setup of Dynamic Out-of-Plane Loading
The impact system setup is sketched in Fig. 27, where a weight block can slide
freely along the two standing poles. At the end of the drop-weight, there is a tip
which is used to hit the force direction converter on the testing sample and it can
be referred in Fig. 28. It is a necessity to convert the vertical impact direction into a
horizontal one, which would facilitate the capture of the film.

Upon impact high speed photography is employed for capturing the dynamic
crack growth in the plate in situ. The entire system consists of a high-voltage
charging controller, multispark box, two field lenses, and an array camera with films
(see in Fig. 28). In addition, a multispark high-speed camera is adopted to provide
enough spot light source. The multispark box provides 16 independently spot lights
triggered by a high-voltage charging controller by a preset adjustable interval time
from 1 to 9,999 �s whose charging voltage is able to reach up to 30 kV. Meanwhile,
a 4 � 4 array camera with 16 films is set correspondingly on the other side to receive
the light and therefore record the crack image information. In order to make sure
that the images recorded on the films are in the time series of the ignition of the
spot lights, two field lenses are used to make up the optical path (see Fig. 28b).
Moreover, the delay controller is introduced to control the time interval between
each spot light. In addition, to minute the exact ignition time for each spot light, the
electric-light receiver along with the oscillograph monitor are used together where
the electric-light receiver is employed to collect the electric-light signals and send
them to the oscillograph monitor. Reference control experiments of impact-induced
fracture are carried out using pure glass sheets, with results in good agreement with
the literature (Nielsen et al. 2009; Sharon and Fineberg 1999) (see in Fig. 29), thus
validating the current test system.

The Preliminarily Experiment to Investigate the Radial Crack
Propagation

Experiment Condition
In the preliminarily impact fracture experiment to investigate the radial crack
propagation behavior of PVB laminated glass, the minimum mass of the drop-
weight is 0.5 kg and the maximum height of the drop-weight is 1.84 m (corresponds
to the maximum impact velocity of 6 m/s); both the mass and height of the
drop-weight are also varied in this experimental investigation. Prior to impact, the
drop-weight is suspended and fixed through electromagnet. The temperature and
relative humidity during the experiments remain in the range of 20–21 and 20–25%
respectively.
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Fig. 27 (a, b) Schematic of the drop-weight tower experiment setup. The testing sample is
illustrated along with the force direction convertor
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Fig. 28 The schematic illustration of the entire kit of experiment setup. (a) A schematic
illustration of the basic layout of high-speed photography experiment setup. (b) Detail illustration
of optical setup

Specimen Preparation
The standard PVB layer has a Young’s modulus EPVB D 100 MPa, Poisson’s ratio
¤PVB D 0.48, and mass density 	PVB D 870 kg/m3 (Xu and Li 2009). To make
close connection to the automotive industry, the PVB thickness is tPVB D 0.76 mm
for passenger cars. In addition to the middle PVB layer, for the upper and lower
soda-lime glass sheets in laminated glass, the thickness tglass D 2 mm, with
	glass D 2,500 kg/m3, Eglass D 70 GPa, and ¤glass D 0.22. They are bonded together
at 10 bar and 120 ıC following standard procedures, and the effective in-plane
dimension is 200 � 150 mm.

Experimental Results and Discussion

Crack Morphology
A series of experiments under different loading conditions, i.e., with different height
and mass of the drop-weight are recorded. Figure 30 shows the typical dynamic
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Fig. 30 Snapshots of crack propagation with 1 kg of drop weight and 1 m of drop height
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crack propagation snapshots of the PVB laminated glass sheet, in response to a
1 kg weight dropped from 1 m height. Extensive radial fracture is observed, with no
appearance of circumferential crack, which is consistent with numerical simulation
that when a foreign object impacts a large windshield, the radial crack always
appears before the circumferential crack (Xu et al. 2010). It is seen that there are
about ten radial cracks on the composite sheet, and the development and evolution
of each crack are quite different due to the inevitable stochastic flaw in glass.
Here, the average crack length is employed to discuss the behavior of radial crack
propagation. By using nonlinear fitting method to the experimental points obtained
from the experiments, we finally got the crack tip position in time history. Then the
averaged time evolution history of the radial crack tip velocity and acceleration can
be obtained from the time history of the radial position of the crack tip as showed in
Fig. 31.

The measured crack velocity first increases and then fluctuates slightly, which
goes accordance with the experiment results of cracking speeds of pure soda-lime
glass at various cracking modes in Nielsen et al. (2009) and Sharon and Fineberg
(1999), as well as being consistent with previous numerical simulation results of
several brittle materials (Song et al. 2008; Grégoire et al. 2009) and composites
(Daphalapurkar et al. 2007; Dwivedi and Espinosa 2003).

As proposed by Ravichandar and Knauss (1984), near the vicinity of crack tip,
there is a microcrack zone which impedes the further propagation of crack. Within
the impact area, the spacing between the initial cracks is so small and such an
intensively damaged zone may reduce the cracking speed substantially. With the
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advancement of cracks, the retardment effect will be greatly lessened until it reaches
an almost constant influence, when the crack speed becomes steadier in the later
stage. Thus, the crack evolution may be qualitatively divided into two stages: in
stage I, the cracking speed keeps rising, and in stage II the crack speed becomes
more stable but with some fluctuations. The transition occurs roughly at about
time (further discussion will be made later). During stage I, the crack propagation
acceleration is decreasing until stage II begins; that is, as the stress in the crack tip
accumulates and develops, finally the crack tip will be able to break through the
energy barrier surrounding material to reach the equilibrium.

In this example, the averaged steady-state cracking speed during stage II is
about vP VB � 811 m=s. Comparing with the stable cracking speed of Polymethyl
Methacrylate (PMMA) vPMMA � 600 m=s (Sharon and Fineberg 1999) and
tempered soda-lime glass vGLASS � 1470 m=s (Nielsen et al. 2009) (One may
refer to Fig. 32 for detail comparison. Note that although the impact energy is a
little bit different in (Xu and Li 2009) and this experiment, the comparison is still
valid), the PVB laminated glass may be regarded a composite material whose overall
effective “fracture toughness” is between that of PMMA and pure glass. In Fig. 32,
we can also see that the general variation trend of crack speeds in two different
materials are almost the same. One may use the Rayleigh wave speed vR of the
glass sheet to normalize the crack speed (since cracking occurs in the glass sheet),
i.e., vR D 3,098 m/s. Thus, the stable cracking speed of PVB laminated glass is
about 0.26 vR in this particular case, which is lower than the typically measured
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maximum speed of about 0.4–0.5 vR in brittle materials and we can clearly see that
the PVB interlayer serves to slow down the crack speed, which would also make the
material as well as the brittle-polymer sandwiched structure a candidate for energy
absorption/shielding.

Different Driving Mechanisms of In-Plane Cracking on Two Glass Layer
Figure 33 shows a typical crack propagation comparison on supported and loaded
glass layers at the loading speed with PVB thickness hD 0.76 m. Here, time t D 0 �s
is used to denote crack tip initiation for the radial cracks on supported glass layer.
It is clear that the radial cracks (Fig. 33a–d) initiated firstly on the “supported glass
layer,” then the radial cracks on the “loaded glass layer” generated after about
t D 600 �s as shown in Fig. 33f. On the other hand, it is also interesting to observe
that the cracks on the two glass layers are completely overlapped even though they
propagate at totally different times.

In fact, the stress wave dominated inertial effects during impact loading on
the PVB laminated glass play an important role in crack propagation (Singh and
Parameswaran 2003; Clements et al. 1996). Due to the high modulus of glass
material and the fixed mode of the specimen, the plate is small enough to ignore
the bending deformation during the impact. For the convenience of analysis, a
schematic diagram in a layer system consisting of two glass plates bonded by a PVB
interlayer is shown in Fig. 34. Impact occurs on the surface of the “loaded glass
layer” of the PVB laminates, the compressive waves caused by the impact travel

Fig. 33 Selected sequence of images depicting the radial crack growth on both glass layers
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Fig. 34 Schematic of the impact process in a layer system consisting of two glass plates bonded
by a PVB interlayer. The cracks propagate into the loaded glass layer by reinitiation from a surface
flaw

down the depth direction (Fig. 34). Due to its viscoelasticity, the PVB layer plays an
important role in reducing the amplitude and the speed of waves that eventually pass
through by internal friction (Thom 2005), compared with the glass layer. Finally, the
compressive waves reflect from the boundaries as tensile waves, which continuously
arrive at the supported plate thus the tensile dominated cracks initiate while reaching
the limit of dynamic fracture toughness KID of the material (Lambros and Rosakis
1997). Considering that glass plate is more sustainable in compressive stress wave
but prone to fail in tensile stress wave, the radial cracks initiate first on supported
glass layer.

Effect of Drop Weight and Height
Next, we investigate the influence of drop weight and height on the crack propa-
gation. The drop mass ranges from 0.5 to 2 kg, and the height varies from 0.6 to
1.4 m. Table 1 shows the detail combination of the parametric experiments. Figures
7 and 8 show that with the increase of drop weight and height, the basic trend of
crack would remain almost the same while the value would increase, i.e., larger
mass and higher impact speed will cause faster crack propagation. Zhang et al.
(2010) investigated the effect of loading rate on crack velocities in concrete and
found with the increase of loading rate, the crack velocity increase proportionally;
in quasi-static indentation, it was also found that with larger indentation load, the
radial and lateral cracks in ceramic also became longer. All these conclusions are
qualitatively consistent with our experimental findings. Particularly, vP VB increases
17.70% and 12.21% when the impact speed changes from 3.43 to 4.43 m/s and
5.24 m/s, respectively, and vP VB increases 26.72% and 14.92% when the drop
weight is increased from 0.5 to 1 kg and 2 kg, respectively. Furthermore, if we
combine the effect of impact mass and velocity together into the term of impact
energy E, and normalize it by a reference potential energy En D 9.81 J, then the
normalized steady-state cracking speed, i.e., vP VB=vR can be fitted as

vP VB=vR D 0:167 ˙ 0:137= .1 ˙ 10 exp .1:50 .0:739 � E=E0// (42)
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Fig. 35 The relationship between the steady-state crack propagation velocity and the external
impact energy

for the range of parameters in this study. From Fig. 35, it can also be found that the
stable crack velocity will not likely to increase indefinitely as the external impact
energy gets higher, and it has a theoretical limit, i.e., Rayleigh wave speed vR, but
not reaching it.

Regarding the transition time between stages I and II, the general trend is that the
smaller the external energy, the faster the transition time (although the difference is
relatively small and still on the same order of magnitude). That is to say, if the impact
energy is higher, it is easier for the crack speed to achieve steady-state. The detailed
physical mechanism of the variation of such a transition time will be explored in
future.

The Further Experiment Investigating the Radial and Circular Crack

Experiment Condition
In the further experiment to investigate the radial and circular crack propagation of
PVB laminated glass, a weight block with mass of 2 kg is first evaluated to a certain
height and then released to create impact loading. The height of the drop-weight
adopted in our work varies from 300 to 900 mm. An impactor is fixed at the tip of
the force direction converter to control the contact shape and area. Different shapes
may be designed for the impactor, and in this study, the impactor shape is confined to
be cylindrical and the top is hemispherical. The diameter of the cylindrical is 10 mm
and the total length of the impactor is 25 mm. The mass of the impactor (including
the force direction converter) is 0.545 kg. In addition, a force sensor with sufficient
accuracy and frequency is attached right below the drop-weight to record force–
time history and the signals recorded by the force sensor are sent to the oscillograph
monitor to record force–time history.
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Specimen Preparation
The plate is consisted of a PVB interlayer sandwiched by two brittle glass
sheets (For PVB interlayer: Young’s modulus Ep D 0.1 GPa, short time shear
modulus G0 D 0.33 GPa, long time shear modulus G1 D 0.69 MPa, bulk modulus
K D 20 GPa, Poison’s ratio vp D 0.49, density 	p D 1,100 kg/m3, and decay factor
ˇ D 12.6 s�1; For glass: Young’s modulus, Poison’s ratio and thickness of the glass.
Eg D 70 GPa, Poison’s ratio vg D 0.22 and thickness of the glass is 2 mm. The
thickness of the PVB interlayer varies from 0.38 to 3.04 mm during our parametric
experimental study (where thickness of 0.76 mm is for common passenger cars).
The specimen is prepared using the same manufacturing process (with compression
at 10 bar and 120 ıC) as that used in automotive windshield. Glass is a typical linear
elastic brittle material where its facture strain is about 0.1% while the PVB is a
rubber-like material which may sustain a much larger deformation during tension.
The unique design enables the possible protection against impact with small amount
of energy and dissipates larger impact energy through the large deformation of
interlayer.

The specimen is clamped within two metal cover sheets with thin layers of
rubber pad inside to avoid possible scratches and stress concentration on the sample
surface and distribute the boundary force more uniformly. The tightening torque for
the screw bolt is set to be 4 Nm which properly mimics the clamping boundary
condition. Six screws penetrating the metal cover sheets are fixed to make sure the
metal cover sheets are placed in right horizontal position and reduce the rebound
under impact. A force direction conversion part (indicated in Fig. 27) is employed
to transfer the vertical impact force into a horizontal one, providing an out-of-plane
dynamic loading to the sample.

Experimental Results and Discussion

Crack Morphology
Two kinds of macroscopic crack patterns, radial crack and circular crack, are
observed and all the pieces of glass plates after impact are stay connected to
the PVB layer. Hoop stress is larger than radial stress such that radial crack
appears before circular crack, therefore, it gives us an opportunity to capture and
study the evolution history of radial and circular cracks separately. Figure 36 is
typical crack propagation process which contains a series of selected sequence
of images depicting the radial and circular crack growth in PVB laminated glass
specimen respectively. Time t D 0 �s is used to denote crack tip initiation for
both radial and circular cracks. The crack propagation velocity v is determined
as the crack length increase �l over the time increase �t. For radial crack, at
time ti, multiple major crack tips conform approximately a circle with radius
ri on average, shown in Fig. 36a. Therefore, radial crack propagation velocity
vr D �l/�tD (riC 1 � ri)/(tiC 1 � ti). For circular crack, the total length of n main
cracks at ti is added and divided by the crack number as l i and such that circular

crack propagation velocity vc D �l=�t D


l iC1 � li

�
= .tiC1 � ti /. In addition,
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Fig. 36 Selected sequence of images depicting the crack growth at the impact velocity of 3.13 m/s,
with PVB thickness of 0.76 mm. (a) Radial crack. (b) Circular crack
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Fig. 37 Load–time curve and crack growth velocity history of the radial crack and the circular
crack, in response to 500 mm drop height (impact velocity:3.13 m/s) and 0.76 mm PVB thickness

the B-spline interpolation method is used to smooth the experimental points in this
study.

Crack Propagation
To enhance the credibility of the experimental results, the dynamic strain indicator
is introduced. Locations near the force sensor and the top of the impactor are fitted
with strain gages respectively so as to monitor in situ stains (and stresses) transmit
during the impact process. Thus, we could estimate the delay of the impact force
from the force sensor to the glass surface and depict the accurate force–time curve
acting directly on the glass surface (see dashed line in Fig. 37). Figure 37 shows a
typical crack propagation velocity time history curves for radial and circular crack
propagation velocities respectively in response to 2 kg weight from 500 mm drop
height (impact velocity: 3.13 m/s) to a specimen with 0.76 mm PVB interlayer.
Time t D 0 �s is employed to denote crack tip initiation for radial crack. Therefore,
the negative time correspond to preinitiation conditions (see Fig. 37). Note that the
crack only exists in the glass sheets such that the stress component normal to the
crack front �11 is the major driving force for crack initiation and propagation. The
dynamic crack propagation velocity v may be expressed as

v2 D
�11 C

P
11

	g .1 C ©11/
(43)



14 Crack Initiation and Propagation in Laminated Composite Materials 475

where the contact stress at the crack tip which can be calculated based on existing
dynamic contact model by attaching a strain gage near the impactor.

P
11 is the

strain component. By supposing the proportionality coefficient D between �11

within the framework of linear elasticity (Zhang et al. 2010), the above equation
may be rewritten as

v2 D
1 C D

	g

�
1=�11 C 1=Eg

� (44)

In this impact loading condition, the maximum crack propagation velocity is
990 m/s and 790 m/s for radial and circular cracks, respectively. As Xu et al.
(2010) indicated that �11 is larger in hoop stress than circumferential stress so radial
crack propagates faster than circular crack. The radial crack propagation velocity
is lower than that in pure soda-lime glass (Nielsen et al. 2009) where no obvious
circular crack occurs. The PVB interlayer acts as an energy-absorbing material thus
to reduce the crack propagation velocity. Meanwhile, PVB interlayer provides a
connection media for cracked glass panel such that circular crack could continue to
dissipate impact energy after the full growth of radial cracking.

Impact occurs on the outer surface of the glass plate at around �250 �s (see
Fig. 37). A compressive loading wave front travels down at around 5,300 m/s (Zhao
et al. 2006b) in the glass layer. The PVB layer presents the dual advantages of
delaying the passage of the elastic wave into the backing glass layer and reducing
the amplitude and the wavelength of wave that eventually passes through by
internal friction caused by its viscoelasticity. Both of these effects are beneficial
in utilizing the energy absorbing capabilities of the PVB interlayer to the fullest.
The compressive waves arrive at the free surface of the backing layer and reflect
as tensile waves. Thus, the delay of the crack initiation probably results from the
transmitting and reflection of the stress wave and the increasing process of the stress
intensity factor caused by increasing elastic energy stored near the crack tip. Similar
phenomena have also been observed in Lambros and Rosakis (1997). More and
more tensile waves continually arrive at the backing plate and thus the radial cracks
initiate while reaching the limit of dynamic crack initiation toughness Kd

IC . For
the rate-sensitive material, the PVB interlayer is rate dependent while the fracture
occurs in the glass plate which is rate independent. Considering the fact that cracks
grow in the glass layer, therefore, the impact velocity has little effect on the Kd

IC

value, which means the effect of rate sensitivity can be ignored. The propagation of
the radial crack can be divided into three stages (see Fig. 37). After initiation, the
crack tip accelerates from about 400 m/s to around 990 m/s within 30 �s. We can see
that the impact force remain increasing after the initiation of the radial crack, which
means the elastic energy stored near the crack tip keeps increasing thus causing the
acceleration sequences. Then the crack velocity remains constant at about 990 m/s
during the next 25 �s. However, it decelerates to less than 600 m/s in under 100 �s
after initiation. The entry of crack tip into the region of compressive stress as it
approaches the boundaries and the arrival of less stress wave at the crack tip are two
responsible reasons for the deceleration phenomenon (Lambros and Rosakis 1997).
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Fig. 38 Velocity–length curve of the radial crack at various impact velocities from 2.42 to 4.2 m/s
with the PVB thickness of 0.76 mm

Through further investigation, the reason for the deceleration and crack arrestment
phenomenon is relevant to the boundaries. The history of the radial crack velocity at
various impact velocities from 2.42 to 4.2 m/s with the PVB thickness of 0.76 mm
is plotted as a function of crack length in Fig. 38 and it is clearly shown that the
crack velocity start decreasing at the same position.

For the circular crack, the crack initiation occurs 1,750 �s after the impact on
the glass surface (see Fig. 37). Combined with the images depicting the radial and
circular crack growth, it is believed that circular cracks initiate long after the radial
crack growth as we stated before. An observation of the specimen, at the end of
the test, showed that circular cracks merely existed on the loaded layer, according to
which we can conclude that the circular cracks nuclear under the influence of surface
acoustic waves (namely “Rayleigh waves”). The propagation of this kind of elastic
waves is limited to the loaded surface of the solids. The Rayleigh waves spread at
a much lower speed compared with the longitudinal compression waves. Besides,
the lateral dimensions of the sample are much larger than those in longitudinal
direction. Therefore, the circular crack appears generally later than the radial crack
which is confirmed by the previous finding (Xu et al. 2010). The circular crack
propagates under the tensile stress caused by the reflected tensile Rayleigh waves,
which results in that the circular cracks always emerge first close to the boundaries.
The propagation of the circular crack can be divided into three stages as well (see
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Fig. 37). Both the first and the third stage contain the acceleration, the maintenance,
and the deceleration process similar as those in radial cracks. There is more space for
circular crack to grow than radial crack such that the total crack lengths are longer
in circular cracks. Besides, the circular crack has the lower peak value. However,
between the two stages, there exists a special stage which could be called “slowing-
down stage.” In this stage, the crack propagation velocity decelerates to almost 0.
This is a direct consequence of the fracture at the glass interface caused by the
radial crack. We can clearly see that the circular crack propagation always delays
at the relatively large fracture where the stress waves have to propagate through the
interlayer, without which the circular crack cannot transfer effectively across the
interface (Park and Chen 2011).

Effect of Impact Velocity
To investigate the effect of impact velocity vd, the both radial and circular crack
propagation characteristics, respectively, series of parametric experiments are con-
ducted. Figure 7 shows the crack propagation velocity time history of both radial
and circular cracks under various impact velocities from 2.42 to 4.2 m/s (drop height
from 300 to 900 mm). Two kilogram drop weight and 0.76 mm PVB thickness are
employed in this study. Three repeated experiments under each condition are carried
out to ensure the results accuracy (see error bars in Fig. 39). Time t D 0 �s is
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Fig. 39 Crack velocity history of the radial and circular crack at various impact velocities from
2.42 to 4.2 m/s with the PVB thickness of 0.76 mm
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employed to denote crack tip initiation. For the radial crack, in the case with higher
impact velocity, a shorter acceleration time is needed to reach the top propagation
velocity where the top value is also higher. This is consistent with the fact that at
higher impact velocity with larger wave amplitude, the load applied to the specimen
increases at a faster rate and thus crack acceleration can be larger during the dynamic
loading process. Besides, additional experiments also indicate that the higher the
impact velocity, the shorter delay time is needed before initiation (see Fig. 40).
However, the case with higher impact velocity would also decelerate faster and
earlier due to the limited available cracking space in the panel plane. Similar to the
radial crack, higher impact velocity results in the shorter initiation time, the shorter
acceleration time, and the larger peak value for the circular crack. To establish
the model combining the crack velocity with the impact conditions, we chose the
variable “the maximum velocity” to quantify our study, which apparently depends
on both the impact conditions and the material property. We can suppose that the
maximum velocity vmax at the crack tip during the whole propagation process has
an implicit relationship with the impact force, the duration of the loading time and
the dynamic initiation fracture toughness of the material in the present investigation.
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Fig. 40 Initiation time of the radial and circular crack at various impact velocities from 3.13 to
4.2 m/s with the PVB thickness of 0.76 mm
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According to the principle of dimensionless unifying, the equation of vmax could
have the following form as:

vmax D
AP

2=3

d�
kd

IC

�2=3
td

(45)

where pd is the average contact force over the contact period and td is the duration
of the loading, respectively, A is a macroscopic crack pattern dependent coefficient.
According to the momentum theorem, we have:

pd td D md vd (46)

This means that the maximum velocity at the crack tip can be expressed in terms
of the impact velocity vd and the drop weight md

vmax D
Am

2=3

d v
2=3

d�
kd

IC

�2=3
t
5=3

d

(47)

Thus, the maximum velocity contains two model parameters: the dynamic
initiation fracture toughness kd

IC , which can be geometry dependent, and the
macroscopic crack pattern dependent parameter A > 0. Both parameters are subject
to the experimental data via best-fitting.

Effect of PVB Thickness
Series of parametric experiments are conducted to study the effect of PVB thickness
tp on the crack propagation characteristics as well. Three different PVB thicknesses,
i.e., 0.38 mm, 0.76 mm, and 1.52 mm are chosen for the parametric experiments.
Two kilogram drop weight is employed. The crack propagation velocity time history
of both radial and circular cracks under three different PVB thicknesses can be seen
in Fig. 41. The impact velocity used to investigate the radial crack is 2.42 m/s
(i.e., drop height is set to be 300 mm) while the impact velocity is 3.13 m/s (i.e.,
drop height is set to be 500 mm) for circular crack. Martinez et al. (1998) reported
that the capability for transmitting the impact energy depends on the thickness and
type of the adhesive used. Therefore, the variation in PVB thickness will have a
great effect on delaying the passage of the elastic wave into the backing glass
layer and reducing the amplitude and the wavelength of wave through internal
friction (Xu et al. 2011b), which results in reducing the maximum radial crack
speed as show in Fig. 41. Considering the wave speed in the through thickness
direction of around 5,320 m/s in the glass layer and 300 m/s in the PVB interlayer
(which means the PVB interlayer plays an important role in slowing down the
stress wave), the transit time is around 3 �s, 6 �s, and 11 �s, respectively with
the PVB thickness ranged from 0.76, 1.52, to 3.04 mm. Compared with the delay
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Fig. 41 Crack velocity history of the radial and circular crack with various PVB thicknesses from
0.38 to 1.52 mm at the impact velocity of 2.42 m/s and 3.13 m/s, respectively

time in the order of 102 �s for radial crack initiation in Fig. 10, we can conclude
that the delay of the radial crack initiation mainly results from the increasing
process of the stress-intensity factor. The thicker PVB thickness would reduce the
amplitude of elastic wave crossing the PVB interlayer by internal friction thus to
weaken the increasing process of the stress-intensity factor. Therefore, in the case
with thicker PVB layer, a longer delay time is needed to initiate. For the circular
crack caused by Rayleigh wave, similar phenomenon is observed. Considering the
Rayleigh surface wave speed in the in-plane direction of around 3,370 m/s in the
glass layer (Sharon et al. 2002), the transit time is around 37 �s, which is much
longer than the transmit of the elastic wave in the medium. Similarly, the delay of
the circular crack initiation mainly also results from the increasing process of the
stress-intensity factor. In addition, from the force–time curve, we can see that the
compressive waves stay around the loaded side for a relatively long time during the
impact, which also have an effect on the increasing process of the stress-intensity
factor.

It is clearly seen that the glass sheet with thicker PVB layer starts at a higher
initiation velocity v0 for both crack patterns. Since the exact expression of v0 is not
clarified yet, we may implicitly represent the expression to the initiation velocity v0

as v0(tp). Due to the fact that kd
IC / �c / v0 (see Eq. 44), where � c is the fracture
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stress, we have the following expression for the initiation velocity (Berezovski and
Maugin 2007).

v2
0

�
tp
�

D c2
R .1 C D/

0
@1 �

 
1 C

�
kd

IC

�2
M

!�1
1
A (48)

where M is a constant coefficient and CR is the Rayleigh wave velocity. In this case,
we arrive at an expression for the dynamic initiation fracture toughness in Eq. 47 in
the form of

kd
IC D

s
Mv2

0

�
tp
�

C 2
R .1 C D/ � v2

0

�
tp
� (49)

Therefore, we may come to the expression for the maximum velocity at the crack
tip as follows:

vmax D

"
Bm2

d v2
d t�5

d

�
c2

R .1 C D/ � v2
0

�
tp
��

v2
0

�
tp
�

#
(50)

where B > 0 is another constant coefficient depending on the macroscopic crack
pattern. According to Eq. 50, the thicker the PVB layer, the lower of the maximum
velocity for both radial and circular crack, which is consistent with the experiment
result (see Fig. 41). This is expected since the glass sheet with thicker PVB
layer would absorb more impact energy via molecule vibration and friction by the
interlayer as polymer-like material, verified by Xu et al. (2011c). As the Rayleigh
wave velocity CR � 3370 m/s (Hauch and Marder 2010), which is sufficiently high
for the initiation velocity vo. The expression may be simplified as

vmax D

"
Bm2

d v2
d t�5

d

�
c2

R .1 C D/

v2
0

�
tp
�
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D c

"
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d v2
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d

v2
0

�
tp
�
#1=3

(51)

Then the agreement between theory and experiment may be achieved by an
appropriate choice of the values of the constant coefficient c (c1 and c2 for radial
and circular crack, respectively). The fitted models for the maximum velocity of
radial crack vr

max and circular crack vc
max are in the following form of:

8̂̂
<
ˆ̂:

vr
max � c1

�
m2

d v2
d t�5

d

v2
0.tp/

�1=3

D 0:0657

�
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d
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�
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d
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D 0:0545

�
m2

d v2
d t�5

d

v2
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�1=3 (52)
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Fig. 42 Experiment data and fitted data of the maximum crack velocity from the semiphysical
with various impact velocities from 2.42 to 4.2 m/s with PVB thickness from 0.38 to 1.52 mm. (a)
Radial crack. (b) Circular crack

The fitted data and experimental data are shown together in Fig. 42 (the
experimental data in the figure is the average maximum crack velocity). The good
agreement between the two proves the model to be dependable.

Statistical Analysis on Macroscopic Cracking Morphology
To confirm the crack propagation mechanism analysis before and understand the
crack propagation mechanism from another perspective, the relationship between
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Table 4 Parametric statistical experiments: linear regression estimates of the Weibull parameters
under different experiment conditions

Crack type PVB thickness
(mm)

Impact
velocity (m/s)

Mean
crack
number

Weibull char.
number (N0)

Weibull
modulus (m)

Radial crack 0.38 2.42 87 96 4.4
0.76 2.42 81 89 4.0
1.52 2.42 70 79 3.1
3.04 2.42 66 75 2.7
0.76 3.13 90 99 4.4
0.76 3.7 99 107 5.1
0.76 4.2 118 128 6.0

Circular crack 0.38 2.42 2.5 2.7 2.8
0.76 2.42 2 2.2 2.5
1.52 2.42 1.7 2.0 2.2
3.04 2.42 1.5 1.6 1.7
0.76 3.13 2.7 3.1 2.7
0.76 3.7 3.9 4.2 5.1
0.76 4.2 7.0 7.4 9.3

the number of cracks and the impact velocity or the PVB thickness is established.
Since all cracks locate in the surface of glass sheet and glass is a material with
internal stochastic flaws which may serve as crack nuclei, a statistical model may
be needed to describe the two macroscopic crack patterns. Table 4 shows the detail
combination of the statistical experiments. One hundred repeated experimental
data for each specified condition have been used for each experiment condition
to obtain a statistical result. The two-parameter Weibull model is employed
to study the distribution of both radial and circular crack number under each
experiment condition. Weibull statistics are commonly used in the engineering
community, especially in the fracture statistics. In the specific case of Weibull
statistics analysis in this study, the cumulative probability function is written as
follows:

pf D 1 � exp

�
�

�
N

N 0

�m�
(53)

where Pf is the cumulative probability, N is the number of radial or circular crack
(Nr or Nc), m and N0 is the distribution shape parameter and characteristic crack
number, respectively. To improve the statistical accuracy, the number of circular
crack is counted with decimal during the statistical process (that is the number of
circular crack with incomplete circle is determined by the length ratio of incomplete
circle and the complete one). For the ease of accessing information, the double
logarithm of the Weibull Eq. 55 is used in number analysis, yielding the Weibull
parameters in a simple graphical representation of the data. Figure 43 shows the
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Fig. 43 Fitted Weibull model plots for macroscopic cracking morphology: (a) radial crack at
various impact velocities from 2.42 to 4.2 m/s; (b) circular crack at various impact velocities 2.42–
4.2 m/s; (c) radial crack with different PVB thicknesses from 0.38 to 3.04 mm; and (d) circular
crack with different PVB thicknesses from 0.38 to 3.04 mm

graphs with X D 1 nN plotted on the horizontal axis and Y D ln[ln(1/(1 � pf ))]
on the vertical axis. One can perform a simple linear regression analysis to
get the Weibull parameters under different experiment conditions. The slope of
the line is the Weibull modulus, m. The characteristic crack number, N0 is the
value of crack number for which ln[ln(1/(1 � pf ))] is zero. In this study, the
linear regression analysis is used for the Weibull parameter estimates under each
experiment condition (see Table 4).

ln
�
1 � pf

�
D �

�
N

N0

�m

(54)
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�
ln

�
1

1 � pf

��
D m ln N � m ln N0 (55)

Firstly, the effect of different impact velocities on the distribution of both radial
and circular crack number is investigated. Figure 44a shows the probability density
curves of radial and circular crack number under different impact velocities. The
characteristic crack number indicates the distribution location along the X axis
and is expected to vary according to the impact velocity or the PVB thickness.
The distributions for both radial and circular crack number are proved to move to
the right (higher value) as impact velocity increases. This is reasonable because
higher impact velocity produces more elastic energy, and thus it is necessary to
create larger new surface to release the excess energy. In addition, the probability
density curves considering different PVB thicknesses to describe the radial and
circular crack number are shown in Fig. 44b. Contrary to the effect of impact
velocity, the distributions for both radial and circular crack number move to the
left (lower value) as PVB thickness increases since thicker PVB layer absorbs
more elastic energy as stated before. This statistical method could also be applied
to the engineering applications and play an important role in the laminated glass
design.

The Relation Between Radial Crack Velocity and Crack Numbers on the Backing Glass
Layer
Here, the effect of the radial crack number on their own crack propagation
velocity as well as the crack generation on the other glass layer is thoroughly
investigated. Firstly, the radial crack velocity on the backing glass layer with
different crack numbers is calculated. A theoretical model from the perspective of
energy conversion is established to depict the cracking process of backing glass
layer and elucidate the fundamental reason that causes the variation of the crack
velocity.

The specimen in response to impact speed V D 3.7 m/s is chosen for 100 repeated
experiments by considering the intrinsic stochastic flaws in glass laminated samples.
A series of images depicting the crack growth on both glass plates are recorded
at the set time intervals. Typical crack propagation process is shown in Fig. 45.
The glass plate directly contacting with the impactor is defined as “impacted glass
layer,” while the glass plate on the other side is referred as “backing glass layer.”
t D 0 �s represents the time when impact is triggered. Figure 45a–d demonstrate
the whole cracking process on the backing glass layer where cracks always initiate
first, and only radial crack pattern is observed while both radial and circular cracks
appear on the impacted glass layer (under the effect of Rayleigh waves, whose
propagation is limited to the loaded surface of the solids) long after the cracking
of the backing one (Fig. 45e–f). However, the radial crack number on the backing
glass plate varies from 18 to 112 within 100 repeated experiments, which is quite
a large deviation. Further, it is also qualitatively observed that the number of radial
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Fig. 45 Images depicting the crack growth on the two glass layers (V D 3.7 m/s)

cracks have great effect on the later crack generation on the impacted glass layer
as well as the propagation characteristics of radial crack on the backing glass layer
itself. In the following section, the effect of the different radial crack numbers of
backing glass layer would be thoroughly discussed.

The crack velocity history on the backing glass layer with different radial
crack number is calculated separately. All the radial cracks present approximately
the same length during the propagation, conforming a circle overall (Fig. 45).
Therefore, the crack velocity vr is calculated as the radius increase �r over the
time increase �t, i.e., �r/�t. Figure 46 shows the crack velocity variation with the
crack length lr under three selected radial crack numbers (Nr D 18, 64, and 108).
Crack propagations far from the boundaries and the center of the glass plate are
focused to eliminate the possible boundary effect (i.e., the crack length between 20
and 40 mm). Results indicate that the number of radial cracks on the backing glass
layer regularly negatively influences cracking propagation velocity themselves, i.e.,
the crack velocity vr always decreases with the radial crack number increasing.

During the propagation of the cracks on the backing glass layer, the impacted
glass layer remains intact as stated before (Fig. 46). However, due to the adhesion
by PVB interlayer, the two glass layers have the same radius of deformed region rf
(Fig. 46). The bending energy of the impacted glass plate caused by the impact can
be estimated by assumption that the backing glass layer is still intact, in which case
the two glass plates can be regarded as “single one with 2hg thickness.” Therefore,
the bending energy of impacted glass layer is equal to half the energy in the single
glass plate with 2hg thickness. After the contact between the impactor and the glass
plate, kinetic and bending energies balance 	gV2 �Eg(2hg�)2 (Vandenberghe et
al. 2013), where  D 2hg�r2

f is the volume of deformed region and V is the impact
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Fig. 46 Radial crack
velocity versus crack length
with different radial crack
number (V D 3.7 m/s)

speed whose variation can be ignored during such a short period. Thus, the curvature
� � w0=r2

f � V =2hgcg, yielding rf � (2hgcgt)1/2, where w0 DVt is the indentation

and cg D
p

Eg=	g is the sound speed in the glass material. The bending energy of
impacted glass plate Ub1 can be expressed as

Ub1 D k1�Eg

�
V

cg

�
r2

f hg (56)

where k1 is a coefficient.
Considering the low Young’s modulus of PVB material (i.e., Ep D 0.1 GPa), the

bending energy of PVB Ub3 is about 0.001 of that in the glass plate, which has been
proved by the finite element simulation with a three-dimensional laminated plate
FE model using 1 � 1 mm surface size element. The boundary condition of the glass
plate model is set to be clamped, which is consistent with the real experimental
condition. Thus, Ub3 is small enough to be ignored compared to that of Ub1.

While for the backing glass layer in the cracking process with crack length lr, the
number of radial cracks Nr on the backing layer has been set and would not change
as the cracks extend. Thus, the bending energy of the backing glass plate Ub2 can
be estimated by the energy of Nr triangular beams of length lr with the neglect of
transverse bending (Vandenberghe et al. 2013):

Ub2 D Egh3
gw

2
0Nr tan



�
Nr

�
=3l2

r

� k2�Eghgr2
f



V
cg

�2 

1
2

C �2

6N 2
r

� (57)
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where k2 is another coefficient. Therefore, the bending energy of the whole
laminated plates Ub can be estimated as

Ub D .Ub1 C Ub2/

� �Eghgr2
f



V
cg

�2 h
k1 C k2



1
2

C �2

6N 2
r

�i (58)

From the perspective of energy transferring, during the cracking process, the
elastic energy of the laminated plates (i.e., the bending energy) caused by the impact
is converted into the glass surface energy through the fracture behavior. Here we
define the increasing rate of the plates elastic energy as “�b,” and the energy release
rate is “�c.” Therefore, we have

�b D
dUb

dt
� �Egh2

g

V

cg

2 �
k0

1 C k0
2

�
1

2
C

�2

6N 2
r

��
(59)

�c D
d
�
2Nr�hglr

�
dt

D 2Nr�hgvr (60)

where k0
1 and k0

2 are both coefficients. � is the glass material fracture (surface)
energy. There should be a balance between the “input energy” (i.e., the increasing
elastic energy) and the “output energy” (i.e., the fracture energy). Suppose that the
proportion between the two parameters �b/�c, which is named as “energy conversion
factor,” indicating the stability of the system or the ability for further crack growth,
then the larger proportion would obviously lead to a greater degree of instability for
the whole system. Thus for the system of PVB laminated plates in our study, the
“energy conversion factor” �b/�c can be expressed as

�b

�c

D
�Eghg

2�cg

� V 2 �
1

vr

�
1

Nr

�
k0

1 C k0
2

�
1

2
C

�2

6N 2
r

���
(61)

One may clearly see that the expression of the “energy conversion factor”
contains three parts: (1) �Eghg/2�cg is determined by the material properties (here
refers to the glass material), (2) V2 refers to the impact condition, and (3) rest of
the expression f (vr,Nr) refers to the impact responses of the laminates. Thus the
stability of the system is determined together by the material properties, impact
condition, and the impact response of the material according to Eq. 61. Previous
studies (Xu et al. 2011d; Chen et al. 2013) investigating the effect of the impact
speed on the crack velocity have demonstrated that, with higher impact speed V
that increasing the system instability �b/�c, both of the crack velocity vr and the
radial crack number Nr tend to increase as well thus to lower the value of �b/�c such
to maintain the balanced energy input and output in a large extent. Therefore, as
the crack number Nr on the backing glass layer decreases under the same impact
condition, the value of �b/�c would correspondingly increase due to the result of
Eq. 61, which means the instability of the system is rising. Thus the system tends
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to response in a way to reduce this instability (i.e., the value of �b/�c) through
propagating the cracks at higher speed, improving the value of vr in Eq. 61, which
is consistent with our experiment results (Fig. 46).

The Relation Between the Crack Length and the Capability of Energy Absorption
on the Impacted Glass Layer
Further, the total crack length for both two crack patterns on the impacted glass
layer is calculated to study the capability of energy absorption of laminated glass
influenced by the radial crack number on the backing glass layer.

Figure 47 shows the crack morphology on the impacted glass layer where both
of the two crack patterns (i.e., radial crack and circular crack) appear long after the
cracking of the backing glass plate. For the radial cracks on the impacted layer that
are indirectly caused by the stress concentration brought by each generated crack on
the backing glass layer as initial flaw (Lee et al. 2007) (which is also proved by our
experiment investigation), they are completely overlapped with the radial cracks on
the backing layer (Fig. 47). Thus, it is obvious that the morphology as well as the
number of radial cracks in the impacted glass layer depends completely on that of
the backing layer. The radial cracks on the impacted glass initiates from those on
the backing glass plate through the depth direction (Lee et al. 2007).

Specimen in response to lower impact speed V D 2.42 m/s is chosen for 100
repeated experiments. As expected, the radial crack number on the backing glass
plate varies from 15 to 65 in these experiments. The total crack length for both two
patterns on the impacted glass layer is calculated with different crack numbers on the

Fig. 47 Selected sequence of
images depicting the crack
patterns on both glass layers
at the loading speed
Vd D 3.7 m/s, with PVB
thickness h D 0.76 mm
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Fig. 48 Crack length on the
inner glass layer versus radial
crack number (V D 2.42 m/s)

backing glass layer (Fig. 48). Lr and Lc are defined as the total radial and circular
crack length on the impacted glass layer, respectively. Thus, (Lr C Lc) refers to
the total crack length on the impacted glass plate. The radial crack length linearly
increases with crack number on the backing glass layer due to the uniform growth of
all cracks while the variation trend of circular crack length is decreasing (Fig. 48).
Circular cracks always initiate long after the completed propagation of radial cracks
on the impacted glass (Xu et al. 2010) (Fig. 47). Thus, before the initiation of
circular cracks, the laminated plates can be regarded as Nr triangular beams with
thickness 2hg and length l0 (which can be estimated as the side length of specimen)
since the radial cracks on the two glass plates are completely overlapped (Fig. 47).
The bending energy Ub0 of the plates is

Ub0 D 4�Egh3
gw

2
0

�
1 C �2=3N 2

r

�
=
�
3l2

0

�
(62)

In the case with less radial crack number Nr, the bending energy would increase,
resulting in stronger stress concentration in the radial direction, which makes the
later generation of circular cracks easier. In addition, taking the law of energy
conservation into account, the total fracture energy on the whole laminated plates
can be estimated as 2�Lhg, where L is the total crack length on the two glass
plates. Thus, the fracture energy released on two glass plates can be estimated by
calculating the crack length on each plate. For the plates with shorter radial crack
length, leaving more residual energy, it will benefit the generation of circular cracks
as well.

Although the increase of circular crack number contributes positively to the
energy absorption of the laminated plates, the effect is much less compared with
the radial cracks (Fig. 48). As the radial crack morphology on the impacted glass
is directly determined by that on the backing glass layer, it is safe to conclude that
the backing glass plate is the key that decides the fracture morphology and further
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the capability of energy absorbing of the whole laminated structure such that the
material selection and structure design for the backing layer is extremely important
for impact protection.

Summary

In this chapter, we have investigated the propagation characteristics for both radial
and circular cracks in PVB laminated glasses by theoretical constitutive equations
analysis, numerical simulation, experiments, and tests of impact.

Firstly, a damage-modified nonlinear viscoelastic constitutive relations model of
PVB laminated windshield is suggested based on updated Lagrangian method to
study the crack evolutions on windshield plate subject to pedestrian head.

Then, the constitutive relations are implemented into FEA software to simulate
the pedestrian head impact with vehicle windshield after verified by a classical
example and classical Hertzian pressure calculation model. Based on the FE model
above, the internal stress of PVB laminated glass is analyzed and found that shear
stress, compressive stress, and tensile stress are main causes of plastic deformation,
radial cracks, and circumferential cracks, respectively for the laminated glass
subject to impactor. By a parametric study based on the FE model above, the
increase of Poisson’s ratio will lead the increase of crack angle. Impact velocity
has a great influence of crack formations as well as the injuries of pedestrian head.
Comparing with other numerical techniques, XFEM is arguably more efficient since
it does not require remeshing during crack propagation. So the extended finite
element method (XFEM) is adopted to numerically investigate the multiple crack
propagation of PVB laminated glass subject to quasi-static indentation or low-
speed impact. It is found that the critical accident information, such as the impact
speed or damage stress, can be deduced from the crack pattern characteristics. A
qualitative bridge can be established between numerical simulation result and real-
world accident via the crack growth mechanism.

Lastly, for the experimental analysis of PVB laminated glass, crack branching
based on crack fractal theory is investigated and an explicit expression describing
the crack velocity and number of crack branching is proposed under quasi-static
Split Hopkinson Pressure Bar (SHPB) compression experiments. For dynamic out-
of-plane loading, we carried out preliminarily impact fracture experiments firstly to
investigate the radial crack propagation behavior of PVB laminated glass subjected
to light-weight impact by using high-speed photography. The time histories of
the averaged radial crack tip position, propagation velocity, and acceleration are
obtained. It is found that the steady-state cracking speed of PVB laminated glass
is lower than that of pure glass, and it also increases with higher impactor speed
and mass. It is also found that the supported glass layer would always initiate
before the loaded layer and the final morphologies of radial cracks on both sides are
completely overlapped even if they propagate at different time. Here, two different
mechanisms of crack propagation on different glass layers are explained: the cracks
on supported glass layer are dominantly motivated by the in-plane crack-tip stress
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such that a relatively longer time is needed for its propagation while for the cracks
appearing much later on loaded layer, which are caused by the stress concentrated
in depth direction for each generated crack on supported layer, the propagation time
needed is largely reduced. Then, the further experiment investigating the radial and
circular crack propagation of PVB laminated glass thoroughly is carried out. The
parametric study on two dominant factors, i.e., impact velocity and PVB thickness
is discussed aiming at the crack propagation of PVB laminated glass. Results show
that cracking speeds of both radial crack and circular crack increase with higher
impact velocity. Radial crack appears earlier than circular one and it propagates
at higher speeds. Based on the mechanism of crack initiation and propagation, a
semiphysical model describing the relationship between the maximum cracking
velocity and influential factors is established. In addition, the Weibull statistical
model is suggested considering various factors to describe the macroscopic crack
pattern thus providing a theoretical evidence for engineering practice. Finally, the
relation between radial crack velocity and crack numbers on the backing glass layer
and the relation between the crack length and the capability of energy absorption
on the impacted glass layer are investigated. Results show that the radial crack
velocity on the backing glass layer decreases with the crack number under the
same impact conditions during large quantities of repeated experiments. Thus, the
“energy conversion factor” is suggested to elucidate the physical relation between
the cracking number and the crack propagation speed. However, the fracture energy
of the whole laminated plates is mainly determined by the radial crack length,
which means that the radial crack number generated first on the backing glass plate
is the key that decides the capability of energy absorbing of the whole laminated
structure.
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Abstract

Eringen and Mindlin’s original micromorphic continuum model is presented and
extended towards finite elastic-plastic deformations. The framework is general-
ized to any additional kinematic degrees of freedom related to plasticity and/or
damage mechanisms. It provides a systematic method to develop size–dependent
plasticity and damage models, closely related to phase field approaches, that can
be applied to hardening and/or softening material behavior. The regularization
power of the method is illustrated in the case of damage in single crystals.
Special attention is given to the various possible finite deformation formulations
enhancing existing frameworks for finite elastoplasticity and damage.

Keywords
Gradient plasticity · Gradient damage · Micromorphic media ·
Regularization · Finite deformations · Generalized continua · Microstrain ·
Microstretch · Strain localization · Elasto-plasticity · Cleavage

Introduction

Micromorphic media are examples of three-dimensional generalized continua
including additional degrees of freedom complementing the usual displacement
vector. A classification of generalised mechanical continuum theories is proposed
in Fig. 1 in order to locate more precisely the class of micromorphic media. The
present chapter is limited to continuum media fulfilling the principle of local action,
meaning that the mechanical state at a material point X depends on variables
defined at this point only (Truesdell and Toupin 1960; Truesdell and Noll 1965).
The classical Cauchy continuum is called simple material because its response at
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Fig. 1 A classification of the mechanics of generalised continua.
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material point X to deformations homogeneous in a neighborhood of X determines
uniquely its response to every deformation at X . In higher grade materials,
homogeneous deformations are not sufficient to characterise the material behaviour
because they are sensitive to higher gradients of the displacement field. Mindlin
formulated for instance the theories that include the second and third gradients of the
displacement field (Mindlin 1965). The gradient effect may be limited to the plastic
part of deformation which leads to strain gradient plasticity models (Aifantis 1984;
Forest and Bertram 2011) or, more generally, theories that include the gradient of
some internal variables (Maugin 1990). Higher order materials are characterised by
additional degrees of freedom of the material points (Eringen 1999). Directors can
be attached to each material point that evolve in a different way from the material
lines. Cosserat directors can rotate. In the micromorphic continuum designed by
Eringen and Suhubi (1964) and Mindlin (1964), the directors can also be distorted,
so that a second order tensor is attributed to each material point. Tensors of higher
order can even be introduced as proposed in Germain’s general micromorphic
theory (Germain 1973b; Forest and Sab 2017).

Higher order media are sometimes called continua with microstructure. This
name is misleading because Cauchy material models can also integrate some aspects
of the underlying microstructure as illustrated by classical homogenisation methods
used to derive the effective properties of composites. However generalised continua
incorporate a feature of the microstructure which is not accounted for by standard
homogenisation methods, namely their size–dependent material response. They
involve intrinsic lengths directly stemming from the microstructure of the material.
The mechanics of generalized continua represents a way of introducing, in the
continuum description of materials, some characteristic length scales associated
with their microstructure (Mühlhaus 1995). Such intrinsic lengths and generalized
constitutive equations can be identified in two ways. Direct identification is possible
from experimental curves exhibiting clear size effects in plasticity or fracture or
from full–field strain measurements of strongly heterogeneous fields (Geers et al.
1998). The effective properties of such generalized continua can also be derived
from scale transition and homogenization techniques by prescribing appropriate
boundary conditions on a representative volume of material with microstructure
(Cailletaud et al. 2003).

The multiplication of generalized continuum model formulations from Cosserat
to strain gradient plasticity in literature may leave an impression of disorder and
inconsistency. Recent accounts have shown, on the contrary, that unifying presenta-
tions of several classes of generalized continuum theories are possible (Hirschberger
and Steinmann 2009; Forest 2009). One of them, called the micromorphic approach,
encompasses most theories incorporating additional degrees of freedom from the
well–established Cosserat, microstretch and micromorphic continua (Eringen 1999)
up to Aifantis and Gurtin strain gradient plasticity theories. Gradient theories are
obtained from the micromormphic approach by imposing some internal constraints
linking the additional degrees of freedom and other model variables.

The micromorphic theory now arouses strong interest from the materials science
and computational mechanics communities because of its regularisation power in
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the context of softening plasticity and damage and of its rather simple implemen-
tation in a finite element program. The number of degrees of freedom is not an
obstacle any more with constantly increasing computer power and parallel solvers.

The objective of this chapter is first to present the elastoviscoplasticity theory
of micromorphic media at finite deformation. This presentation is based on the
fundamental work of Eringen and on recent developments in the context of
plasticity. It represents an update of the corresponding chapter in the CISM book
(Forest 2012). The second objective of this chapter is to present an extension
of the micromorphic theory to other kinds of additional degrees of freedom like
plasticity and damage related variables. This micromorphic approach to gradient
effects in materials’ behavior is a systematic method for incorporating intrinsic
lengths in non–linear continuum mechanical models. It is illustrated here in the case
of an anisotropic plasticity and damage model. The so–called microdamage model
takes into account the crystallography of plasticity and fracture in metal single
crystals.

The nonlinear theory of micromorphic media is presented in section “The
Micromorphic Theory After Eringen and Mindlin and Its Extension to Plasticity.”
The micromorphic approach is exposed in section “The Micromorphic Approach
to Various Gradient Field Theories” together with the closely related phase field
approach. Differences and similarities between the micromorphic framework and
the phase field approach are pointed out following the general framework provided
in Gurtin (1996). A single crystal plasticity and damage model is explored in section
“Application to a Continuum Damage Model for Single Crystals and Its Regular-
ization” up to crack propagation simuation. This presentation of the micromorphic
approach and the corresponding example are taken from the formulation presented
in Aslan and Forest (2011). A first account of the method is given at small strains for
the sake of simplicity. It is followed by extensions to finite deformations, following
the guidelines given in Forest (2016). The presentation is limited to the static case,
the reader being referred to Eringen’s original dynamical formulations and to Forest
and Sab (2017) for the consideration of inertial terms.

Intrinsic notations are used throughout the chapter. In particular, scalars, vectors,
tensors of second, third and fourth ranks are denoted by a; a; a

�
; a

'
; a

�
; respectively.

Contractions are written as:

a
�

W b
�

D aij bij ; a
'

:::b
�

D aijkbijk; a
�

WW b
�

D aijklbijkl (1)

using the Einstein summation rule for repeated indices. The tensor product is

denoted by ˝. For example, the component
�

a
�

˝ b
�

�
ijkl

is aijbkl. A modified tensor

product � is also used: the component
�

a
�

� b
�

�
ijkl

is aikbjl.

The gradient operators rx or rX are introduced when the functions depend on
microscopic coordinates x or macroscopic coordinates X . The following notation
is used:
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U ˝ rX D Ui;j ei ˝ ej ; with Ui;j D
@Ui

@Xj
(2)

u ˝ rx D ui;j ei ˝ ej ; with ui;j D
@ui
@xj

(3)

where (ei)i D 1, 2, 3 is a Cartesian orthonormal basis.

TheMicromorphic Theory After Eringen andMindlin and Its
Extension to Plasticity

Kinematics of MicromorphicMedia

The degrees of freedom of the theory are the displacement vector u and the
microdeformation tensor �

�
:

DOF WD

�
u
�
;�

�

�

The current position of the material point is given by the transformation ˆ

according to x D ˆ.X ; t / D X C u .X ; t /. The microdeformation describes the
deformation of a triad of directors, „i attached to the material point.

�i .X ; t / D �
�
.X ; t / � „i (4)

As such, its determinant is taken as strictly positive. The polar decomposition of
the generally incompatible microdeformation field �

�
.X/ is introduced

�
�

D R
�

] � U
�

] (5)

Internal constraints can be prescribed to the microdeformation. The micro-
morphic medium reduces to the Cosserat medium when the microdeformation is
constrained to be a pure rotation: �

�
� R

�

]. The microstrain medium is obtained

when �
�

� U
�

] (Forest and Sievert 2006). Finally, the second gradient theory

is retrieved when the microdeformation coincides with the deformation gradient,
�
�

� F
�

. A hierarchy of higher order continua can be established by specialising the

micromorphic theory and depending on the targeted material class, see Table 1.
The following kinematical quantities are then introduced:

• the velocity field � .x; t / WD Pu
�
ˆ�1 .x; t /

�
• the deformation gradient F

�
D 1

�
C u ˝ rX
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Table 1 A hierarchy of higher order continua

Name Number of DOF DOF References

Cauchy 3 u Cauchy (1822)
Microdilatation 4 u; � Goodman and Cowin (1972) and

Steeb and Diebels (2003)
Cosserat 6 u; R

�

Kafadar and Eringen (1971)

Microstretch 7 u; �; R
�

Eringen (1990)

Microstrain 9 u; C
�

] Forest and Sievert (2006)

Micromorphic 12 u; �
�

Eringen and Suhubi (1964) and
Mindlin (1964)

• the velocity gradient � ˝ rx D PF
�

� F
�

�1

• the microdeformation rate P�
�

� �
�

�1

• the third rank Lagrangean microdeformation gradient K
�

WD �
�

�1 � �
�

˝ rX

• the gradient of the microdeformation rate tensor

�
P�
�

� �
�

�1

	
˝ rx D �

�
� PK

�
W

�
�
�

�1 � F
�

�1

	
(6)

and the corresponding index notation:

�
P�il�

�1
lj

�
;k

D �ip PKpqr�
�1
qj F

�1
rk

Principle of Virtual Power

The method of virtual power is used to introduce the generalised stress tensors and
the field and boundary equations they must satisfy (Germain 1973b).

The modelling variables are introduced according to a first gradient theory:

MODEL D

�
�; � ˝ rx; P�

�
� �

�

�1;

�
P�
�

� �
�

�1

	
˝ rx

�

The virtual power of internal forces of a subdomain D � B of the body is

P .i/

�
��; P�

�

� � �
�

��1

	
D

Z

D
p.i/

�
��; P�

�

� � �
�

��1

	
dV

The virtual power density of internal forces is a linear form on the fields of virtual
modeling variables:
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�1
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��
P�
�

� �
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�1
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�

W
�

PF
�

� F
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�1
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W
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�
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�

�1
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:::

�
�
�
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'

W

�
�
�

�1 � F
�
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(7)

where the relative deformation rate PF
�

�F
�

�1� P�
�

��
�

�1 is introduced and expressed in

terms of the rate of the relative deformation �
�

�1 � F
�

. The virtual power density

of internal forces is invariant with respect to virtual rigid body motions so that
�
�

must be symmetric. The generalised stress tensors conjugate to the velocity

gradient, the relative deformation rate and the gradient of the microdeformation
rate are the simple stress tensor �

�
, the relative stress tensor s

�
and the double stress

tensor M
�

of third rank.

The Gauss theorem is then applied to the power of internal forces.

Z

D
p.i/dV D

Z
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�� �
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�
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�
� n dS C

Z
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��1

	
W
�
M
�

� rx C s
�

�
� dV

The form of the previous boundary integral dictates the possible form of the
power of contact forces acting on the boundary @D of the subdomain D � B.

P .c/

�
��; P�

�

� � �
�

��1

	
D
R
@D p

.c/

�
��; P�

�
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��1

	
dV
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�
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�

��1
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�
W

�
P�
�

� � �
�

��1

	

where the simple traction t and double traction m
�

are introduced.

The power of forces acting at a distance is defined as

P .e/

�
��; P�

�

� � �
�

��1

	
D
R
D p

.e/
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��; P�

�

� � �
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��1
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�
W

�
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�
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��1
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including simple body forces f and double body forces p
�

. More general double

and triple volume forces could also be incorporated according to Germain (1973b).
The principle of virtual power is now stated in the static case,

8��;8�
�

�;8D � B;P .i/

�
��; P�

�

� � �
�

��1

	
D P .c/

�
��; P�

�

� � �
�

��1

	

C P .e/

�
��; P�

�

� � �
�

��1

	

This variational formulation leads to.

Z
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�
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�
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��1
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�
� rx C f

�
dV

�

Z

D

�
P�
�

� � �
�

��1

	
W

�
M
�

� rx C s
�

C p
�

	
dV D 0

which delivers the field equations of the problem (Kirchner and Steinmann 2005;
Lazar and Maugin 2007; Hirschberger et al. 2007):

• balance of momentum equation (static case)

�
�
�

C s
�

�
� rx C f D 0; 8x 2 B (8)

• balance of generalized moment of momentum equation (static case)

M
�

� rx C s
�

C p
�

D 0; 8x 2 B (9)

• boundary conditions

�
�
�

C s
�

�
� n D t; 8x 2 @B (10)

M
�

� n D m
�
; 8x 2 @B (11)
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Elastoviscoplasticity of MicromorphicMedia

This section is dedicated to the formulation of constitutive equations for micromor-
phic media. The general case of hyperelastic-viscoplastic materials is considered.

Elastic–Plastic Decomposition of the Generalised StrainMeasures
According to Eringen (1999), the following Lagrangean strain measures are
adopted:

STRAIN D

�
C
�

WD F
�

T � F
�
; ‡

�
WD �

�

�1:F
�
; K

�
WD �

�

�1:

�
�
�

˝ rX

	�

i.e. the Cauchy–Green strain tensor, the relative deformation and the microdeforma-
tion gradient.

In the presence of plastic deformation, the question arises of splitting the previous
Lagrangean strain measures into elastic and plastic contributions. Following Mandel
(1973), a multiplicative decomposition of the deformation gradient is postulated:

F
�

D F
�

e � F
�

p D R
�

e � U
�

e � F
�

p (12)

which defines an intermediate local configuration at each material point, see Fig. 2.
Uniqueness of the decomposition requires the suitable definition of directors. Such
directors are available in any micromorphic theory.

A multiplicative decomposition of the microdeformation is also considered:

�
�

D �
�

e � �
�

p D R
�

e] � U
�

e] � �
�

p (13)

according to Forest and Sievert (2003, 2006). The uniqueness of the decomposition
also requires the suitable definition of directors. As an example, lattice directions
in a single crystal are physically relevant directors for an elastoviscoplasticity
micromorphic theory, see Aslan et al. (2011). Finally, a partition rule must also
be proposed for the third strain measure, namely the microdeformation gradient.
Sansour (1998a, b) introduced an additive decomposition of curvature:

Fig. 2 Multiplicative
decomposition of the
deformation gradient
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K
�

D K
�

e C K
�

p (14)

A quasi–additive decomposition was proposed by Forest and Sievert (2003)
with the objective of defining an intermediate local configuration for which all
generalised stress tensor are simultaneously released, as it will become apparent
in the next section:

K
�

D �
�

p�1 � K
'

e W

�
�
�

p � F
�

p

	
C K

�

p (15)

Constitutive Equations
The continuum thermodynamic formulation is essentially unchanged in the presence
of additional degrees of freedom provided that all functionals are properly extended
to the new sets of variables. The local equation of energy balance is written in its
usual form:

�P– D p.i/ � q � r C r (16)

where " is the specific internal energy density, and p(i) is the power density of
internal forces according to Eq. (7). The heat flux vector is q and r is a heat
source term (Fig. 3). The local form of the second principle of thermodynamics
is written as.

� P�C

�
q

T

	
:r �

r

T
� 0

where � is the specific entropy density. Introducing the Helmholtz free energy
function the  , second law becomes

p.i/ � � P‰ � � PT �
q

T
� .rT / � 0

Fig. 3 Definition of an
intermediate local
configuration for
micromorphic elastoplasticity
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The state variables of the elastoviscoplastic micromorphic material are all the
elastic strain measures and a set of internal variables q. The free energy density is a
function of the state variables:

‰

�
C
�

e WD F
�

eT :F
�

e; ‡
�

e WD �
�

e�1 � F
�

e; K
�

e; q

	

The exploitation of the entropy inequality leads to the definition of the hypere-
lastic state laws in the form:

�
�

D 2F
�

e � �
@‰

@C
�

e � F
�

eT ; s
�

D R
�

e] � U
�

e]�1 � �
@‰

@‡
�

e � F
�

eT

M
�

D �
�

�T � �
@‰

@K
�

e W

�
�
�

T � F
�

T

	
(17)

while the entropy density is still given by � D � @‰
@T

. The thermodynamic force
associated with the internal variable q is

R D ��
@‰

@q

The hyperelasticity law (17) for the double stress tensor was derived for
the additive decomposition (14). The quasi–additive decomposition (15) leads to
an hyperelastic constitutive equation for the conjugate stress M

�
in the current

configuration, that has also the same form as for pure hyperelastic behaviour. One
finds:

M
�

D �
�

e�T � �
@‰

@K
�

e W

�
�
�

eT � F
�

eT

	
(18)

The residual intrinsic dissipation is

D D †
�

W
�

PF
�

p
:F
�

p�1
�

C S
�

W

�
P�
�

p:�
�

p�1

	
C M

�

::: PK
�

p
CR Pq � 0

where generalised Mandel stress tensors have been defined.

†
�

D F
�

eT �
�
�
�

C s
�

�
� F

�

e�T ; S
�

D �U
�

e] � R
�

e]T � s
�

� R
�

e] � U
�

e]�1 (19)

M
�

D �
�

T � S
'

W

�
�
�

�T � F
�

�T

	
(20)
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At this stage, one may define a dissipation potential, function of the Mandel
stress tensors, from which the viscoplastic flow rule and the evolution equations for
the internal variables are derived.

�
�
†
�
;S

�
;M

�
; R
�

PF
�

p
:F

�

p�1 D @�
@†

�

; P�
�

p:�
�

p�1 D @�
@S

�

; PK
�

p
D @�

@M
�

; Pq D @�
@R

The convexity of the dissipation potential with respect to its arguments ensures
the positivity of the dissipation rate at each instant.

Explicit constitutive equations can be found in Forest and Sievert (2003), Gram-
menoudis and Tsakmakis (2009), Grammenoudis et al. (2009), Regueiro (2010), and
Sansour et al. (2010). Examples of application of elastoplastic micromorphic media
can be found in Dillard et al. (2006) for plasticity and failure of metallic foams.

TheMicromorphic Approach to Various Gradient Field Theories

The previous micromorphic model can be extended to other types of additional
degrees of freedom. This leads to a systematic approach for the construction of
generalized continuum models with enriched kinematics. The method is presented
first within the small deformation framework. The general formulation is discussed
in the next section.

Thermomechanics with Additional Degrees of Freedom

One starts from an elastoviscoplasticity model formulation within the framework of
the classical Cauchy continuum and classical continuum thermodynamics according
to Germain et al. (1983) and Maugin (1999). The material behaviour is characterized
by the reference sets of degrees of freedom and state variables.

DOF0 D fug ; STATE0 D
n
"
�
; T; q

o
(21)

which the free energy density function  may depend on. The small strain tensor
is denoted by "

�
whereas q represents the whole set of internal variables of arbitrary

tensorial order accounting for nonlinear processes at work inside the material
volume element, like isotropic and kinematic hardening variables. The absolute
temperature is T.

Additional degrees of freedom �� are then introduced in the previous original
model. They may be of any tensorial order and of different physical nature
(deformation, plasticity or damage variable). The notation � indicates that these
variables eventually represent some microstructural features of the material so that
we will call them micromorphic variables or microvariables (microdeformation,
microdamage...). The DOF and STATE spaces are extended as follows:
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DOF D
˚
u; ��



; STATE D

n
"
�
; T; q; ��;r��

o
(22)

Depending on the physical nature of �¦, it may or may not be a state variable. For
instance, if the microvariable is a microrotation as in the Cosserat model, it is not a
state variable for objectivity reasons and will appear in STATE only in combination
with the macrorotation. In contrast, if the microvariable is a microplastic equivalent
strain, as in Aifantis model, it then explicitly appears in the state space.

The virtual power of internal forces is then extended to the power done by the
micromorphic variable and its first gradient:

P .i/
�
��; P��

�

�
D �

R
D p

.i/
�
��; P��

�

�
dV

p.i/
�
��; P��

�

�
D �

�
W r�� C a P��

� C b � r P��
�

(23)

where D is a subdomain of the current configuration of the body. The Cauchy stress
is �

�
and a and b are generalized stresses associated with the micromorphic variable

and its first gradient. Similarly, the power of contact forces must be extended as
follows:

P .c/
�
��; P��

�

�
D

Z

D
p.c/

�
��; P��

�

�
dV; p.c/

�
��; P��

�

�
D t:�� C ac P��

� (24)

where t is the traction vector and ac a generalized traction. For conciseness, we do
not extend the power of forces acting at a distance and keep the classical form:

P .e/
�
��; P��

�

�
D

Z

D
p.e/

�
��; P��

�

�
dV; p.e/

�
��; P��

�

�
D �f :�� (25)

where �f accounts for given simple body forces. Following Germain (1973a), given
body couples and double forces working with the gradient of the velocity field could
also be introduced in the theory. The generalized principle of virtual power with
respect to the velocity and micromorphic variable fields, is presented here in the
static case only:

P .i/
�
��; P��

�

�
C P .e/

�
��; P��

�

�
C P .c/

�
��; P��

�

�
D 0; 8D � �; 8��; P��

� (26)

The method of virtual power according to Maugin (1980) is used then to derive
the standard local balance of momentum equation:

div �
�

C �f D 0; 8x 2 � (27)

and the generalized balance of micromorphic momentum equation:

div b � a D 0; 8x 2 � (28)
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The method also delivers the associated boundary conditions for the simple and
generalized tractions:

t D �
�
:n; ac D b:n; 8x 2 @D (29)

The local balance of energy is also enhanced by the generalized micromorphic
power already included in the power of internal forces (23):

�P– D p.i/ � div q C �r (30)

where – is the specific internal energy, q the heat flux vector and r denotes external
heat sources. The entropy principle takes the usual local form:

��
�

P C � PT
�

C p.i/ �
q

T
:rT � 0 (31)

where it is assumed that the entropy production vector is still equal to the heat vector
divided by temperature, as in classical thermomechanics according to Coleman
and Noll (1963). Again, the enhancement of the theory goes through the enriched
power density of internal forces (7). The entropy principle is exploited according
to classical continuum thermodynamics to derive the state laws. At this stage it
is necessary to be more specific on the dependence of the state functions  , �,
�
�
,a, b on state variables and to distinguish between dissipative and non–dissipative

mechanisms. The introduction of dissipative mechanisms may require an increase
in the number of state variables. These different situations are considered in the
following subsections.

Non–dissipative Contribution of Generalized Stresses

Dissipative events are assumed here to enter the model only via the classical
mechanical part. Total strain is split into elastic and plastic parts:

"
�

D "
�

e C "
�

p (32)

The following constitutive functional dependencies are then introduced

 D b 
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�
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� Db�
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e; T; q; ��;r��

�
a Dba

�
"
�

e; T; q; ��;r��

�
;

b Dbb
�

"
�

e; T; q; ��;r��

� (33)
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The entropy inequality (31) can be expanded as:
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� �
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e C �

 
�C
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W P"
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q

T
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(34)

Assuming that no dissipation is associated with the four first terms of the previous
inequality, the following state laws are found.

�
�

D �
@b 
@"

�

e
; � D �

@b 
@T
; R D ��

@b 
@q

(35)

a D �
@b 
@��

; b D �
@b 
@r��

(36)

and the residual dissipation is.

Dres D W p CR Pq �
q

T
� rT � 0 (37)

where Wp represents the (visco–)plastic power and R the thermodynamic force
associated with the internal variable q. The existence of a convex dissipation poten-

tial, �
�
�
�
; R
�

depending on the thermodynamic forces can then be assumed from

which the evolution rules for internal variables are derived, that identically fulfill
the entropy inequality, as usually done in classical continuum thermomechanics
(Germain et al. 1983):

P"
�

p D
@�

@�
�

; Pq D
@�

@R
(38)

Micromorphic Model
After presenting the general approach, we readily give the most simple example
which provides a direct connection to several existing generalized continuum
models. An element � is selected in the STATE0 set, see Eq. (21) or among other
variables present in the original model. Cases are first considered where � and �¦
are observer invariant quantities. The free energy density function  is chosen as a
function of the generalized relative strain variable e defined as:

e D � � �� (39)



514 S. Forest

thus introducing a coupling between macro and micromorphic variables. Assuming
isotropic material behavior for brevity, the additional contributions to the free energy
can be taken as quadratic functions of e and r�¦:

 
�

"
�
; T; q; ��;r��

�
D  .1/

�
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; T; q

�
C  .2/

�
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(40)

� .2/
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D
1

2
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�
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�2
C
1

2
Ar�� � r�� (41)

where H¦ and A are the additional moduli introduced by the micrmorphic model.
After inserting the state laws (36)

a D �
@ 

@��
D �H�

�
� � ��

�
; b D �

@ 

@r��
D Ar�� (42)

into the additional balance equation (28), the following partial differential equation
is obtained, at least for a homogeneous material under isothermal conditions:

� D �� �
A

H�

��� (43)

where � is the Laplace operator. This type of equation is encountered at several
places in the mechanics of generalized continua especially in the linear micromor-
phic theory (Mindlin 1964; Eringen 1999; Dillard et al. 2006) and in the so–called
implicit gradient theory of plasticity and damage (Peerlings et al. 2001, 2004;
Engelen et al. 2003). Note however that this equation corresponds to a special
quadratic potential and represents the simplest micromorphic extension of the
classical theory. It involves a characteristic length scale defined by:

l2c D
A

H�

(44)

This length is real for positive values of the ratio A/H¦. The additional material
parameters H¦ and A are assumed to be positive in this work. This does not exclude
a softening material behaviour that can be induced by the proper evolution of the
internal variables (including � D q itself).

Viscous Generalized Stress and Phase FieldModel

Generalized stresses can also be associated with dissipation by introducing the
viscous part av of a:

"
�

D "
�

e C "
�

p; a D ae C av (45)
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The entropy inequality (31) now becomes
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(46)

Assuming that no dissipation is associated with the four first terms of the previous
inequality, the following state laws are found
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(47)

ae D �
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@b 
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(48)

and the residual dissipation is

Dres D �
�

W P"
�

p CR Pq C a� P�� �
q

T
:rT � 0 (49)

Evolution rules for viscoplastic strain, internal variables, and the additional

degrees of freedom can be derived from a dissipation potential �
�
�
�
; R; a�

�
:

P"
�

p D
@�

@�
�

; Pq D
@�

@R
; P�� D

@�

@a�
(50)

Convexity of the dissipation potential then ensures positivity of dissipation rate
for any process.

Note that no dissipative part has been assigned to the generalized stress b since
then exploitation of second principle does not seem to be straightforward. Instead,
the total gradient r�¦ can be split into elastic and plastic parts, as it will be done in
section “Elastic-Plastic Decomposition of Generalized Strains.”

Phase Field Model
The dissipation potential can be decomposed into the various contributions due to
all thermodynamic forces. Let us assume for instance that the contribution of the
viscous generalized stress a¤ is quadratic:

�
�
�
�
; R; a�

�
D �1

�
�
�
; R
�

C�2 .a
�/ ; �2 .a

�/ D
1

2ˇ
a�2 (51)
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The use of the flow rule (50) and of the additional balance equation (28) then
leads to

ˇ P� D a� D a � ae D a � �
@b 
@��

D div

 
�
@b 
@r��

!
� �

@b 
@��

(52)

One recognizes the Landau–Ginzburg equation that arises in phase field theories.
The previous derivation of Landau–Ginzburg equation is due to Gurtin (1996), see
also Ammar et al. (2009). The coupling with mechanics is straightforward according
to this procedure and more general dissipative mechanisms can be put forward, see
Rancourt et al. (2016).

Elastic–Plastic Decomposition of Generalized Strains

Instead of the previous decomposition of generalized stresses, the introduction of
additional dissipative mechanisms can rely on the split of all strain measures into
elastic and plastic parts:

"
�

D "
�

e C "
�

p; �� D �e� C �p� ; � D r�� D �e C �p (53)

The objectivity of �¦ is required for such a unique decomposition to be defined.
We do not require here that

�e D r�e�; �p D r�p� (54)

although such a model also is possible, as illustrated by the gradient of strain theory
put forward in Forest and Sievert (2003). The Clausius–Duhem inequality then
writes

�
�
�

� � @b 
@"

�

e

	
W P"

�

e C �
�
�C @b 

@T

�
PT C

�
a � � @

b 
@��

�
P�e� C

�
b � � @b 

@r��

�
: P�e

C�
�

W P"
�

p � � @
b 
@q

Pq C a P�
p
� C b: P�p �

q

T
:rT � 0

(55)

Assuming that no dissipation is associated with the four first terms of the previous
inequality, the following state laws are found
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(57)
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and the residual dissipation is

Dres D �
�

W P"
�

p CR Pq C a P�p� C b: P�p �
q

T
:rT � 0 (58)

Evolution rules for viscoplastic strain, internal variables, and the additional

degrees of freedom can be derived from a dissipation potential �
�
�
�
; R; a;b

�
:

P"
�

p D
@�

@�
�

; Pq D
@�

@R
; P�p� D

@�

@a
; P�p D

@�

@b
(59)

As a result of the additional balance equation (28) combined with the previous
state laws, the type of derived partial differential equation can be made more specific
by adopting a quadratic free energy potential for b (modulus A) and a quadratic
dissipation potential with respect to a (parameter ˇ). We obtain:

ˇ P�� D aC ˇ P�e� D div A� � div A�p C ˇ P�e� (60)

Decompositions of stresses and strains can also be mixed, for instance in the
following way:

"
�

D "
�

e C "
�

p; a D ae C a�; � D r�� D �e C �p (61)

based on which a constitutive theory can be built.

Application to a ContinuumDamageModel for Single Crystals
and Its Regularization

The micromorphic approach is now illustrated in the case of a constitutive model for
damaging viscoplastic single crystals. The objective is to simulate crack initiation
and propagation. The micromorphic model is used in order to obtain a regularized
continuum damage formulation with a view to simulating mesh-independent crack
propagation in single crystals.

Constitutive Equations

In the proposed crystal plasticity model taken from Marchal, et al. (2006a),
viscoplasticity and damage are coupled by introducing an additional damage strain
variable "

�

d , into the strain rate partition equation:

P"
�

D P"
�

e C P"
�

p C P"
�

d (62)
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where P"
�

eand P"
�

p are the elastic and the plastic strain rates, respectively. The flow

rule for plastic part is written at the slip system level by means of the orientation
tensor m

�

s:

m
�

s D
1

2
.ns ˝ l s C l s ˝ ns/ (63)

where ns is the normal to the plane of slip system s and l s stands for the
corresponding slip direction. Then, plastic strain rate reads:

P"
�

p D

NslipX
sD1

P”sm
�

s (64)

where Nslip is the total number of slip systems. The flow rule on slip system s is a
classical Norton rule with threshold:

P”s D

�
j	s � xsj � rs

K

�n
sign .	s � xs/ (65)

where rs and xs are the variables for isotropic and kinematic hardening respectively
and K and n are viscosity material parameters to be identified from experimental
curves.

Material separation is assumed to take place w.r.t. specific crystallographic
planes, like cleavage planes in single crystals. The word cleavage is written in a
more general sense that its original meaning in physical metallurgy associated with
brittle fracture of non–f.c.c. crystals. In the continuum mechanical model, cleavage
means cracking along a specific crystallographic plane as it is often observed in
low cycle fatigue of f.c.c. crystals like single crystal nickel–base superalloys. The
damage strain P"

�

d is decomposed in the following crystallographic contributions:

P"
�

d D

NdamageX
sD1

Pıscn
s
d ˝ nsd C Pıs1n

s
d

sym
˝ l sd1 C Pıs2n

s
d

sym
˝ l sd2 (66)

where Pıs; Pıs1 and Pıs2 are the strain rates for mode I, mode II and mode III crack
growth, respectively and Nd

damagestands for the number of damage planes which
are fixed crystallographic planes depending on the crystal structure. Cleavage
damage is represented by the opening Pıscof crystallographic cleavage planes with
the normal vector ns . Additional damage systems must be introduced for the in-
plane accommodation along orthogonal directions l s1 and l s2, once cleavage has
started (Fig. 4). Three damage criteria are associated to one cleavage and two
accommodation systems:

f s
c D

ˇ̌
ˇnsd � �

�
� nsd

ˇ̌
ˇ � Y sc (67)
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Fig. 4 Illustration of the
cleavage and two
accommodation systems to be
associated to the
crystallographic planes

f s
i D

ˇ̌
ˇnsd � �

�
� l sdi

ˇ̌
ˇ � Y si .i D 1; 2/ (68)

The critical normal stress Ys for damage decreases as ı increases:

Y sc D Y s0 CHısc; Y
s
i D Y s0 CHısi (69)

where Y s0 is the initial damage stress (usually coupled to plasticity) and H is
a negative modulus which controls material softening due to damage. Finally,
evolution of damage is given by the following equations;

Pısc D

�
f s
c

Kd

�nd
sign

�
nsd � �

�
� nsd

�
(70)

Pısi D

�
f s
i

Kd

�nd
sign

�
nsd � �

�
� l sdi

�
(71)

where Kd and nd are material parameters.
These equations hold for all conditions except when the crack is closed�

ısc < 0
�
and compressive forces are applied

�
nsd � �

�
� nsd < 0

�
: In this case, damage

evolution stops
�

Pısc D Pısi D 0
�
; corresponding to the unilateral damage conditions.

Note that the damage variables ı introduced in the model differ from the usual
corresponding variables of standard continuum damage mechanics that vary from 0
to 1. In contrast, the ıs are strain–like quantities that can ever increase.

Coupling between plasticity and damage is generated through initial damage
stress Y0 in (69) which is controlled by cumulative slip variable ”cum:

P”cum D

NslipsX
sD1

j P”sj (72)
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Then, Y0 takes the form:

Y s0 D 
cn e
�d”cum C 
ult (73)

This formulation suggests an exponential decaying regime from a preferably high
initial cleavage stress value 
cn ; to an ultimate stress, 
ult which is close but not equal
to zero for numerical reasons and d is a material constant.

This model, complemented by the suitable constitutive equations for viscoplastic
strain, has been used for the simulation of crack growth under complex cyclic
loading at high temperature (Marchal et al. 2006a). Significant mesh dependency
of results was found Marchal et al. (2006b).

In the present work, the model is further developed by switching from classical to
microdamage continuum in order to assess the regularization capabilities of a higher
order theory. The coupling of the model with microdamage theory is achieved by
introducing a cumulative damage variable calculated from the damage systems and
a new threshold function Y0(ı, ”cum):

Pıcum D

NplanesX
sD1

Pıs; where Pıs D
ˇ̌
ˇ Pısc
ˇ̌
ˇC

ˇ̌
ˇ Pıs1
ˇ̌
ˇC

ˇ̌
ˇ Pıs2
ˇ̌
ˇ (74)

Y0 D 
cn e
�d”cum�Hıcum C 
ult (75)

where the modulus H accounts for damage induced softening and 
ult is a ultimate
stress.

Microdamage Continuum

In microdamage theory, the introduced microvariable is a scalar microdamage
field ı¦:

DOF D
˚
u; ı�



STRAIN D

n
"
�
; ı�;rı�

o
(76)

The power of internal forces is extended as

p.i/ D �
�

W P"
�

C a Pı� C b � r Pı� (77)

where generalized stresses a;b have been introduced. The generalized balance
equations are:

div �
�

D 0; a D div b (78)
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The free energy density is taken as a quadratic potential in the elastic strain,
damage ı, relative damage ı � ı¦ and microdamage gradient rı¦:

� D
1

2
"
�

e W c
�

W "
�

e C
1

2

NdamageX
sD1

Hı2s C
1

2
H�

�
ı � ı�

�2
C
1

2
Arı� � rı� (79)

where H, H¦ and A are scalar material constants. The tensor of elastic moduli is
called c

�
. Then, the elastic response of the material becomes:

�
�

D �
@ 

@"
�

e
D c

�
W "

�

e (80)

The generalized stresses read:

a D �
@ 

@ı�
D �H�

�
ı � ı�

�
; b D Arı� (81)

and the driving force for damage can be derived as:

Y s D �
@ 

@ıs
D Hıs CH�

�
ıs � ı�

�
(82)

The damage criterion now is:

f s D
ˇ̌
ˇns � �

�
� ns

ˇ̌
ˇ � Y0 � Y s D 0 (83)

Substituting the linear constitutive equations for generalized stresses into the
additional balance equation (78), assuming homogeneous material properties, leads
to the following partial differential equation for the microdamage

ı� �
A

H�

�ı� D ı (84)

where the macrodamage ı acts as a source term. Exactly this type of Helmholtz
equation has been postulated in the so–called implicit gradient theory of plasticity
and damage (Peerlings et al. 2001, 2004; Engelen et al. 2003; Germain et al. 2007),
where the microvariables are called non local variables and where the generalized
stresses a and b are not explicitly introduced (see Forest (2009) and Dillard et al.
(2006) for the analogy between this latter approach and the micromorphic theory).

The solution of the problem of failure of a 1D bar in tension/compression was
treated by Aslan and Forest (2009). The characteristic size of the damage zone was
shown to be controlled by the characteristic length corresponding to the inverse of
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H CH�
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(85)

In comparison with the standard strain gradient approaches (Peerlings et al.
2001; Germain et al. 2007), microdamage theory eliminates the final fracture
problem without any modification to the damage function, since there exists no
direct coupling between the force stress �

�
and the generalized stresses, a and

b. For a better representation of a cracked element, an exponential drop is used
for both the damage threshold Y0 and the modulus A, since the element should
become unable to store energy due to the generalized stresses when broken
(see Fig. 5):

Y0 D 
cn e
�Hı C 
ult ; b D Ae�Hır�ı (86)

Numerical Examples

As a 2D example, a single crystal CT-like specimen under tension is analysed.
The corresponding FE mesh is given in Fig. 6. Analyses are performed for two
different crack widths, obtained by furnishing different material parameters which
control the characteristic length (Fig. 7). The propagation of a crack, corresponding
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Fig. 6 FE mesh of a CT-like specimen

Fig. 7 Crack growth in a 2D single crystal CT-like specimen with a single cleavage plane aligned
through the horizontal axis under vertical tension. Field variable ı (Left) A D 100 MPa.mm2, H
D �20000 MPa, H¦ D 30,000 MPa, (Right) A D 150 MPa.mm2, H D -10000 MPa, H¦ D 30000
MPa

stress fields and the comparison with classical elastic solutions are given in Fig. 8.
This comparison shows that the microdamage model is able to reproduce the stress
concentration at the crack tip except very close to the crack tip where finite stress
values are predicted.

TheMicromorphic Approach at Finite Deformations

Extensions of the previous systematic micromorphic approach are presented for
finite deformations along the lines of Forest (2016). They generalize some aspects
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Fig. 8 Mode I stress profile (in MPa) vs. position along the ligament (in mm) at three distinct
crack propagation steps: micromorphic solution compared to the linear elastic one

of the finite deformation micromorphic theory presented in section “The Micromor-
phic Theory After Eringen and Mindlin and Its Extension to Plasticity”.

Micromorphic andGradient Hyperelasticity

Nonlinearity arises not only from nonlinear material response but also from the
consideration of finite deformations. The impact of finite strains on regularisation
operators is largely unexplored. It is first illustrated in the pure hyperelastic case,
leaving aside for a moment the inclusion of plastic effects. It is recalled that the
Lagrangian coordinates of the material points are denoted by X on the reference
configuration 0, whereas their positions in the current configuration are called x.
The gradient operators with respect to Lagrangian (reference) and Eulerian (current)
coordinates are denoted by rX and rx, respectively. The deformation gradient is
F
�

D 1
�

Cu˝ rX where the displacement vector is the function u .X; t/. The initial

and current mass density functions are �0 .X; t/ and p .x; t /, respectively.
It is appropriate here to recall the Eulerian balance equation and boundary

conditions in the case of a scalar micromorphic degree of freedom, in the absence
of body forces:

div �
�

D 0; a D div b; 8x 2 �; t D �
�

� n
�
; ac D b � n; 8x 2 @� (87)
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FiniteMicrostrain TensorModel
The microstrain model was introduced in Table 1 as a reduced micromorphic model
where Eringen’s microdeformation tensor is taken as symmetric, as proposed in
Forest and Sievert (2006). The additional degrees of freedom are the six components
of a microstrain tensor �

�
, a second order symmetric tensor associated with the right

Cauchy-Green strain measure of the micromorphic deformation. Accordingly, the
microstrain is regarded here as a Lagrangian variable. The Lagrangian power density
of internal forces takes the form:

p
.i/
0 D

1

2
…
�

W PC
�

C a
� 0

W P�
�

C b
� 0

:::

�
P�
�

˝ rX

	
D Jp.i/ (88)

p(i) being the Eulerian internal power density and the Jacobian J D det F
�

. The

right Cauchy-Green tensor is C
�

D F
�

T � F
�

and …
�

is the Piola stress tensor. The

method of virtual power can be used to show that the generalized Lagrangian stress
tensors, a second and a third rank tensor, fulfill the following balance equation:

Div b
� 0

D a
� 0

(89)

in addition to the balance of momentum equation

Div F
�

� …
�

D 0 (90)

in the absence of body and inertial forces, the divergence operator Div being
computed with respect to Lagrangian coordinates. The corresponding Eulerian
forms of the balance equations are

div �
�

D 0; div b
�

D a
�

(91)

with the Neumann boundary conditions for tractions and double tractions: t D

�
�

� n; b
�

D b
�

� n, involving the normal vector of the current surface element. The

relations between the Lagrangian and Eulerian generalized stress tensors

a
� 0

D J a
�
; b

� 0
D Jb

�
� F

�

�T D JF
�

�1 � b (92)

The hyperelastic free energy density function is  0

�
C
�
;�

�
;�

�
˝ rX

	
and the

stress–strain relations read:

…
�

D 2�0
@ 0

@C
�

; a
� 0

D �0
@ 0

@�
�

; b
� 0

D �0
@ 0

@�
�

˝ rX

(93)
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The relative strain tensor e
�

D C
�

� �
�

was defined in Forest and Sievert (2006)

and measures the difference between macro and micro–strain. As an example, the
following potential is proposed:

�0 0 D �0 ref

�
C
�

�
C
1

2
H�

�
C
�

� �
�

	2
C
1

2
�
�

˝ rX

:::A
�
�

:::�
�

˝ rX (94)

where a penalty modulus H¦ is introduced and where  ref is a standard hyperelastic
strain energy potential (neo–Hookean, etc.). The higher order term involves a sixth–
rank tensor of elasticity moduli which is symmetric and assumed definite positive,
see Auffray et al. (2013). The stress–strain relations (93) become:

…
�

D 2�0
@ ref

@C
�

CH�

�
C
�

� �
�

	
; a

� 0
D �H�

�
C
�

� �
�

	
; b

� 0
D A

�
�

:::

�
�
�

˝ rX

	

(95)

Note that the classical hyperelastic relation is complemented by a coupling term
involving the microstrain tensor. Taking the balance equation (90) into account, the
set of p.d.e. for the microstrain components is found to be:

C
�

D �
�

�
1

H�

Div

 
A
�
�

:::

�
�
�

˝ rX

	!
(96)

The associated regularisation operator is now given in the simplified case where
the sixth rank tensor of higher order moduli is assumed to be the identity multiplied
by the single modulus A:

Op D 1
�

�
A

H�

�X (97)

It involves the Lagrangian Laplace operator �X(•) D (•),KK in a Cartesian frame
where capital indices refer to Lagrange coordinates and the comma to partial
derivation. It is linear w.r.t. Lagrangian coordinates but the full problem is of course
highly non linear. The associated Eulerian partial differential operator is nonlinear
in the form: ¦IJ, KK D ¦IJ, KlFkKFlK , where small index letters refer to the current
coordinate system.

An Eulerian formulation of the proposed constitutive equations is possible. It will
be illustrated in the next section in the case of a scalar microstrain variable for the
sake of brevity.

EquivalentMicrostrainModel at Finite Deformation
According to the micromorphic approach, it is not necessary to consider the full
microstrain tensor. Instead, the set of degrees of freedom of a reduced micromorphic
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model can be the usual displacement vector and a scalar microstrain variable
� .X ; t /. The latter variable is assumed to be a Lagrangian quantity, invariant w.r.t.
change of observer. The free energy density is a function of the following argument

 0

�
C
�
; �;rx�

�
. The corresponding hyperelastic state laws fulfilling the Clausius–

Duhem inequality take the form:

…
�

D 2�0
@ 0

@C
�

; a0 D �0
@ 0

@�
; b0 D �0

@ 0

@rx�
(98)

As an example, the following Lagrangian potential is proposed:

�0 0 D �0 ref

�
C
�

�
C
1

2
H�

�
Ceq � �

�2
C
1

2
rx� � A

�
� rX� (99)

The microstrain is compared to some equivalent strain measure, Ceq, function of
the invariants of C

�
. The stress–strain relations (98) become:

…
�

D 2�0
@ ref

@C
�

CH�

�
Ceq � �

� @Ceq
@C

�

; a0 D �H�

�
Ceq � �

�
; b0 D A

�
� rX�

(100)

Taking the balance equation a0 D rX �b0 into account, the p.d.e. governing ¦ is:

Ceq D � �
1

H�

Div
�
A
�

� rX�
�

(101)

Let us mention the corresponding isotropic form, when A
�

D A1
�

:

Ceq D � �
A

H�

�X� (102)

where �X is the Laplace operator with respect to Lagrangian coordinates. An
example of equivalent strain measure which the microstrain is compared with is

Ceq D
q

C
�

W C
�
;

@Ceq

@C
�

D C
�
=Ceq (103)

The penalty modulus H¦ constrains the microstrain degree of freedom to remain
close to the equivalent strain measure Ceq. In the limit of large values of H¦,
the generalized stress a0 can be regarded as a Lagrange multiplier enforcing the
constraint. As a result, the microstrain gradient becomes equal to the equivalent
strain gradient and the micromorphic model degenerates into a gradient model,
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see Forest and Sab (2017) for a detailed description of internal constraints in
micromorphic theories.

The formulation of a constitutive law based on Eulerian strain measures, B
�

D

F
�

� F
�

T and rx�, is now envisaged. It relies on the choice of a free energy

potential � 
�
B
�
; �;rx�

�
. Galilean invariance of the constitutive law requires that

this function fulfills the following conditions:

 

�
Q
�

� B
�

� Q
�

T ; �;Q
�

� rx�

	
D  

�
B
�
; �; �rx�

�
(104)

for all constant orthogonal transformations Q
�

. This amounts to stating isotropy

of the function  . Representation theorems are available for such functions,

 
�
B
�
; �;rx�

�
D  .B1; B2; B3; �; krx �k /, where the Bi are the eigenvalues of

B
�

. The Cauchy stress tensor, �
�

, is known then to commute with B
�

such that:

�
�

W D
�

D
�
�
�

� B
�

�1
�

W
�

PF
�

� F
�

T
�

D
�
B
�

�1 � �
�

�
W
�
F
�

� PF
�

T
�

D
1

2

�
B
�

�1 � �
�

�
W PB

�

(105)

where the strain rate tensor, D
�

, is the symmetric part of the velocity gradient, PF
�

�

F
�

�1. The hyperelastic state laws then take the form:

�
�

D 2B
�

� �
@ 

@B
�

; a D �
@ 

@�
; b D �

@ 

@rX�
(106)

As an example, the following Eulerian potential is proposed:

� D � ref

�
B
�

�
C
1

2
H�

�
Beq � �

�2
C
1

2
Arx� W rx�; (107)

where  ref refers to a standard isotropic elasticity potential from the classical finite
elasticity theory. Note that Beq D Ceq since B

�
and C

�
share the same eigenvalues.

The state laws (106) become:

�
�

D 2�
@ ref

@B
�

CH�

�
Beq � �

� @Beq
@B

�

; a D �H�

�
Beq � �

�
; b D Arx�

(108)

The Eulerian regularisation operator follows from (91):



15 Micromorphic Approach to Gradient Plasticity and Damage 529

Beq D � �
A

H�

�x� (109)

where �x is the Laplace operator with respect to the Eulerian coordinates.
It is essential to notice that the isotropic regularisation operators (102) and (109)

are distinct. For, if the Lagrangian higher order elastic law is linear with respect to
the constitutive quantities involved, the deduced Eulerian law is NOT linear:

b0 D ArX� ) b D J�1F
�

� b0 D AJ�1B
�

� rx� (110)

so that the Eulerian regularisation operator will not be linear, i.e. different from
(109).

Finite DeformationMicromorphic Elastoviscoplasticity Using an
Additive Decomposition of a Lagrangian Strain

The most straightforward extension of the previous framework to viscoplasticity is
to introduce a finite plastic strain measure in the decomposition of a Lagrangian
total strain tensor. Such Lagrangian formulations of elastoviscoplasticity involve
the additive decomposition of some Lagrangian total strain measure into elastic and
viscoplastic parts:

E
� h

D h
�
C
�

�
D E

�

e

h
C E

�

p

h
(111)

Many choices are possible for the invertible function h with restrictions ensuring
that E

� h
is a strain measure (symmetric, vanishing for rigid body motions, differ-

entiable at 0 so that the tangent is the usual small strain tensor "
�

, used before, see

Besson et al. 2009). Seth-Hill’s strain measures are obtained for power law functions

such that: E
� m

D 1
m

�
C
�

m
2 � 1

�

�
; for m > 0;E

� 0
D log C

�

1
2 , the latter being the

Lagrangian logarithmic strain. The case m D 2 corresponds to the Green–Lagrange
strain measure for which this finite deformation theory was first formulated by
Green and Naghdi (see Lee and Germain 1972; Bertram 2012) for the pros and
the cons of various such formulations. This Lagrangian formulation is preferable
to Eulerian ones based on corresponding Eulerian strain measures in order not to
limit the approach to isotropic material behaviour (Simo and Miehe 1992). The
additive decomposition of the Lagrangian logarithmic strain is put forward in the
computational plasticity strategies developed in Miehe et al. (2002) and Helfer
(2015). However, there is generally no physical motivation for the selection of
one or another Lagrangian strain measure within this framework. In addition, this
approach favours one particular reference configuration for which the corresponding
strain is decomposed into elastic and plastic parts, again without clear physical
argument. Changes of reference configuration lead to complex hardly interpretable
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transformation rules for the plastic strain variables, see Shotov and Ihlemann
(2014) for a comparison of finite deformation constitutive laws with respect to
this issue. Note also that limitations arise from using a symmetric plastic strain
variable E

�

p

h
especially when plastic spin relations are needed for anisotropic mate-

rials (Bertram 2012). This framework was applied to micromorphic and gradient
plasticity and damage theories in Geers (2004), Horak and Jirasek (2013), and
Miehe (2014).

A Lagrangian conjugate stress tensor
Q
� h

is defined for each strain measure E
� h

such that

1

2
…
�

W PC
�

D …
� h

W PE
� h
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� h

D …
�

W

0
@ @h
@C

�

1
A

�1

(112)

The power density of internal forces is:

p
.i/
0 D …

� h
W PE

� h
C a0 P�C b0 � rX P�

and the free energy density function has the following arguments:

 0

�
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e

h
; q; �;K WD rX�

�
. The dissipation inequality then reads:
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(113)

from which the following state laws are selected:

…
� h

D �0
@ 0

@E
�

e

h

; a D �0
@ 0

@ffl
; b0 D �0

@ 0

@rX�
; R D �0

@ 0

@q
(114)

The flow and hardening rules can be determined from the suitable choice of

dissipation potential �
�
…
� h
; R
�

:

PE
�

p

h
D

@�

@…
� h

; Pq D �
@�

@R
(115)

The existence of such a dissipation potential is not necessary but assumed in
the whole chapter for convenience. Alternative methods of exploitation of the
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dissipation principle exist for micromorphic continua, for instance based on the
extended Liu procedure (Ván et al. 2014; Berezovski et al. 2014).

Two straightforward extensions of the micromorphic approach to finite strain
viscoplasticity based on an additive decomposition of a Lagrangian strain measure
are presented:

�0 0 D
1

2
E
�

e

h
W c

�
W E

�

e

h
C �0 q.q/CH�

�
Eheq � �

�2
C �0 r .K / (116)

where Eheq is an equivalent total strain measure, or, alternatively,

�0 0 D
1

2
E
�

e

h
W c

�
W E

�

e

h
C �0 q.q/CH�.p � �/2 C �0 r .K / (117)

where Pp D

r
2=3 PE

�

p

h
W PE

�

p

h
is the cumulative plastic strain in the present context.

These choices respectively provide the following regularisation partial differential
equations:

Eheq D � � Div�0
@ 0

@K
; or p D � � Div �0

@ 0

@K
(118)

If, b0 D AK , then the regularisation operator involves the Lagrangian Laplace
operator �X in the same way as in Eq. (97).

Finite DeformationMicromorphic Viscoplasticity Using Local
Objective Frames

An alternative and frequently used method to formulate anisotropic elastoviscoplas-
tic constitutive equations at finite deformations that identically fulfill the condition
of Euclidean invariance (also called material frame indifference, see Besson et al.
2009), is to resort to local objective rotating frames, as initially proposed by Dogui
and Sidoroff (1985) and Sidoroff and Dogui (2001). A local objective rotating frame
is defined by the rotation field Q

�
.x; t/, objective w.r.t. to further change of observer,

and taking different values at different material points and different times:

x� D Q
�

T .x; t / � x (119)

It is based on the idea that there exists for each material point a privileged
observer w.r.t. which the constitutive law takes a simple form. The method is
described in details in Besson et al. (2009) and is used in many commercial
finite element codes with the standard choices: corotational frame, such that
W
�

� D PQ
�

� Q
�

T D W
�
;W

�
being the skew–symmetric part of the velocity gradient,
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and polar frame, such that Q
�
.x; t / D R

�
.x; t / ;R

�
being the rotation part in the

polar decomposition of the deformation gradient F
�

. The main drawback of this

method is the absence of thermodynamic background since, depending on specific
constitutive choices within this framework, a free energy function of the strain may
not exist.

This method is now applied to a micromorphic model including a scalar
additional d.o.f. ¦. Extension to higher order tensor–valued additional degrees of
freedom is straightforward. The field equations are still given by (87). The stresses
w.r.t. the local objective frames are:

�
�

� WD Q
�

T � �
�

� Q
�
; a� D a; b� D Q

�

T � b (120)

Time–derivation of these relations shows that the rotated stress derivatives are
given by

Q
�

� P�
�

� � Q
�

T D P�
�

C �
�

� W
�

� � W
�

� � �
�
; Q

�
� Pb

�
D Pb � W

�

� � b (121)

i.e. objective derivatives of the corresponding Eulerian stress tensors. If the corota-
tional frame is used, the corresponding time derivative is the Jaumann rate, whereas
it is the Green–Naghdi stress rate when the polar rotation is used. The same
procedure is applied to the strain rates:

D
�

� WD Q
�

T � D
�

� Q
�
; Pk

�
D Q

�

T � rx P� (122)

The time integration of the second equation in the rotating frame provides the
variable k�. It must be underlined that k� is NOT equal to Q

�

T � rx�. It is NOT

the exact material time derivative of a constitutive variable, in general. The standard
procedure then consists in postulating an additive decomposition of the rotated strain
rate into elastic and plastic parts as

D
�

� D Pe
�

e C Pe
�

p (123)

where the elastic and plastic strain e
�

e and e
�

p are solely defined in the rotated frame.

Anisotropic elastic laws are assumed to take the form:

�
Q

� D c
�

W e
Q

e; a D �H� .p � �/ ; b� D A
Q

� b� (124)

Time–derivation of these equations and consideration of Eq. (120) show that the
elasticity laws are in fact hypoelastic and that, generally, there does not exist a free
energy density function from which they can be derived (Toll 2011).

The yield function and the flow rule are formulated within the rotated frame:



15 Micromorphic Approach to Gradient Plasticity and Damage 533

f
�
�
�

�; R
�

D 
�eq �R; Pe
�

p D Pp
@f

@�
�

�
(125)

where normality is assumed for convenience and the viscoplastic multiplier Pp

is given by some viscoplastic law. The evolution of internal variables is of the

form Pq D H
�
q; Pe

�

p
�

for suitable functions H. The yield radius is chosen as the

following expression inspired by the previous thermodynamically based models:
R D Rref .p/�a D Rref � div b. This extension of the micromorphic approach to
finite deformations using rotating frames has been proposed first by Saanouni and
Hamed (2013) and used by these authors for metal forming simulations involving
regularised damage laws. As a result, the regularisation operator can be written as:

p D � �
1

H�

div b D � �
1

H�

div

�
Q
�

� b�
	

D � �
1

H�

div

�
Q
�

� A
�

� k�
	

(126)

In the isotropic case, A
�

D A1
�

, the regularisation operator reduces to

p D � �
A

H�

div

�
Q
�

� k�
	

(127)

It is worth insisting on the fact that, in general, Q
�

� k� ¤ rx�. Accordingly, the

previous equation does not involve the Laplace operator and the regularisation is
therefore nonlinear even with respect to rotated quantities.

Among all choices of rotating frames, the one associated with the logarithmic
spin rate tensor (Xiao et al. 1999) was claimed to be the only one such that, when
Pe
�

p D 0, the isotropic hypoelastic strain-stress relation turns out to be hyperelastic.

However, this property does not pertain to the general case Pe
�

p ¤ 0, so that this

specific choice does not in general provide any explicit form of the regularisation
operator.

Alternative constitutive choices are possible for the higher order stresses if
Laplacian operators are preferred. They amount to restricting the use of the
rotating frame only to the classical elastoviscoplasticity equations and to writing
independently, b D A rx�, so that the regularisation operator is expressed in
terms of the Eulerian Laplace operator �x, see Eq. (148) in the next section, or
b0 D A rX� which leads to the Lagrangian Laplace operator �X , see Eq. (143) in
the next section.

Note that limitations in the formulation of anisotropic plasticity arise from using
symmetric plastic strain variable e

�

p and that generalisations are needed in order

to introduce necessary plastic spins for materials with microtructures, which is
possible within the rotating frame approach (Forest and Pilvin 1999).
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Finite DeformationMicromorphic Elastoviscoplasticity Based on the
Multiplicative Decomposition

The most appropriate thermodynamically based framework for the formulation
of finite deformation anisotropic elastoviscoplasticity relies on the multiplicative
decomposition of the deformation gradient, as settled by Mandel (1971). This
method is applied here to a generalised continuum model again limited to one scalar
degree of freedom, ¦, in addition to the displacement vector, u. The gradients of
the degrees of freedom can be computed with respect to the reference or current
coordinates:

F
�

D 1
�

C Grad u D 1
�

C u ˝ rX (128)

K D Grad � D rX�; k D grad � D rX� D F
�

�T � K D K � F
�

�1 (129)

The consideration of microdeformation degrees of freedom of higher order is
possible without fundamental modification of the approach below, see Forest and
Sievert (2006).

A multiplicative decomposition is envisaged in this section, see Eq. (12), in the
form:

F
�

D F
�

e � F
�

p (130)

which assumes the existence of a triad of directors attached to the material point
in order to unambiguously define the isoclinic intermediate local configuration,
labelled (#) in the sequel, see Mandel (1971, 1973). The directors are usually related
to non–material microstructure directions like lattice directions in single crystals or
fibre directions in composites. The existence of such directors is required for the
formulation of objective anisotropic constitutive equations (Besson et al. 2009). The
Jacobians of all contributions in Eq. (130) are denoted by

J D det F
�
; Je D det F

�

e; Jp D det F
�

p; J D JeJp; �0 D �]Jp D �J (131)

They are used to relate the mass densities with respect to the three local
configurations: In the present section, the microdeformation gradient K is not
split into elastic and plastic contributions, although it is possible as done in
section “Elastic-Plastic Decomposition of the Generalized Strain Measures,” at the
expense of additional evolution laws to be determined and of drastically different
regularisation operators.

The power density of internal and contact forces are

p.i/ D �
�

W PF
�

F
�

�1
C a P�C k � rx P�; 8x 2 �; p.c/ D t � � C ac P�; 8x 2 @�

(132)
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The invariance of p(i) with respect to any change of observer requires the Cauchy
stress �

�
to be symmetric. The scalar microstrain is assumed to be invariant. The

corresponding balance and boundary conditions are still given by Eq. (87).

Lagrangian Formulation

The Lagrangian free energy density is a function  0
�
C
�

e; q; �;K
�

, where C
�

e D

F
�

eT � F
�

e is the elastic strain and q a set of internal variables accounting for material

hardening. Note that the usual elastic strain tensor C
�

e is defined with respect to the

intermediate configuration to comply with standard anisotropic plasticity, whereas
K is Lagrangian. The presented formulation is therefore not purely Lagrangian but
rather mixed. The local Lagrangian form of the entropy inequality is: D0 D p

.i/
0 �

p0 P 0 � 0; p
.i/
0 D Jp.i/. Accounting for the multiplicative decomposition (130),

the power of internal forces is expanded as:

p
.i/
0 D J�

�
W PF

�
� F

�

�1 C Ja P�C Jb � rx P� D
Jp

2
…
�

e W PC
�

e

C Jp…
�

M W PF
�

p
� F

�

p�1 C a0 P�C b0 � PK

(133)

where the Piola stress tensor w.r.t. the intermediate configuration and the Mandel
stress tensor according to (Haupt 2000) are respectively defined as:

…
�

e D JeF
�

e�1 � � � F
�

e�T ; …
�

M D C
�

e � …
�

e D JeF
�

eT � �
�

� F
�

e�T (134)

The Lagrangian generalized stresses in (133) are a0 D Ja and b0 D JF
�

�1b. As

a result the dissipation rate becomes:

0
@Jp
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…
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e � �0
@ 0
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e
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A W PC

�

e
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�
a0 � �0

@ 0
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P�C
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b0 � �0

@ 0

@K

	
� PK

C Jp…
�

M W PF
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p
� F

�

p�1 � �0
@ 0

@q
Pq � 0

(135)

The following state and evolution laws ensure the positivity of D0:

…
�

e D 2�]
@ 0

@C
�

e ; a0 D �0
@ 0

@�
; b0 D �0

@ 0

@K
; R D �0

@ 0

@q
(136)

PF
�

p
� PF

�

p�1
D

@�

@…
�

M

�
…
�

M ;R
�
; Pq D �

@�

@R

�
…
�

M ;R
�
; (137)
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Following Mandel (1971), a dissipation potential �
�
…
�

M ;R
�

function of the

driving forces for plasticity, is introduced to formulate the flow and hardening
variable evolution rule. If the dissipation function is convex w.r.t. …

�

M and concave

w.r.t. R, the positivity of dissipation is ensured. Specific expressions for within the
context of viscoplasticity can be found in Besson et al. (2009).

As an example, the following free energy potential is proposed:

�0 0 D
1

2
JpE

�

e W c
�

W E
�

e C �0 q.q/C
1

2
H�.p � �/2 C �0 rX .K / (138)

where  q is the appropriate free energy contribution associated with usual work-
hardening (not specified here) and 2E

�

e D C
�

e � 1
�

is the Green-Lagrange elastic

strain measure. The microstrain variable is compared to the cumulative plastic strain
variable p defined as:

Pp D

r
2

3

�
PP
�

� P
�

�1
�

W
�

PP
�

� P
�

�1
�

(139)

According to the state laws (136), we obtain

…
�

e D �]
@ 0

@E
�

e D c
�

W E
�

e; a0 D �H� .p � �/ ; b0 D �0
@ rX

@K
(140)

The regularisation operator then follows from the combination of the previous
constitutive equations with the balance equation (89):

p D � �
1

H�

Div

�
�0
@ rX

@K

	
(141)

The specific choice �0 rX .K / D 1
2
K � A

�
� K leads to a regularisation operator

that is linear with respect to Lagrangian coordinates:

p D � �
1

H�

Div
�
A
�

� Grad �
�

(142)

which involves the Laplacian operator �X in the isotropic case, i.e. A
�

D A1
�

,

Op D 1 �
A

H�

�X (143)

The impact on hardening can be seen by choosing, as an example, q D p,
according to (139), as an internal variable in (138). The dissipation potential can be
chosen in such a way that the residual dissipation takes the form
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D0 D Jp…
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M W
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M
eq Pp �R Pp � 0 (144)

with

Pp D
@�

@f
; f

�
…
�

M ;R
�

D Jp…
M
eq �R

where f is the yield function. As a result, the yield stress R is given by the following
enhanced hardening law:

R D �0
@ 0

@p
D �0

@ q

@p
CH� .p � �/ D �0
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@p
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�
�0
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@K

	
(145)

Eulerian Formulation
In the Eulerian formulation, the free energy density is taken as a function of k

instead of K , according to (129): 
�
C
�

e; �;k
�

, so that the state laws for generalised

stresses become:

a D �
@ 

@�
; b D �

@ 

@k
(146)

The arguments of the free energy mix the invariant quantities C
�

e; � and the

observer–dependent variable k. Galilean invariance then requires  to be isotropic
with respect to k.

The constitutive choice (138) is now replaced by

� D
1

2
JE

�

e W c
�

W E
�

e C � q.q/C
1

2
H�.p � �/2 C � r .k/ (147)

A quadratic potential  r is necessarily of the form Akkk2=2, for objectivity
reasons, so that the regularisation operator involves the Laplace operator �x w.r.t.
Eulerian coordinates:

Op D 1 �
A

H�

�x (148)

If the same viscoplastic yield function f
�
…
�

M ;R
�

as in the previous subsection

is adopted, the hardening rule is enhanced as follows:

R D �
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@p
D �

@ q

@p
CH� .p � �/ D �

@ q

@p
� div b D �

@ q

@p
� A�x� (149)
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This therefore yields a finite strain generalisation of Aifantis strain gradient
plasticity model (Aifantis 1987; Forest and Aifantis 2010).

Formulation Using the Local Intermediate Configuration Only
In the two previous formulations, Lagrangian or Eulerian generalized strain vari-
ables were mixed with the elastic strain variable C

�

e attached to the intermediate

local configuration, as the arguments of the free energy function. It is possible to
assign the free energy function with a consistent set of arguments solely attached
to the intermediate configuration. For that purpose, a generalised strain K ] and
generalised stresses a];b

] are now defined on the intermediate local configuration:

K ] D k � F
�

e D F
�

eT � k D K � F
�

p�1 D F
�

p�T � K (150)

a] D Jea D J�1
p a0; b] D J�1

p F
�

p � b0 D JeF
�

e�1 � b (151)

The power density of internal forces expressed w.r.t. the intermediate local
configuration then takes the form:
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p
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p�1 C a] P�C b] � PK
]

(152)

where p.i/0 is still given by Eq. (133). To establish this expression, the following
relation was used:

PK D F
�

pT � PK
]

C PF
�

pT
� K ] (153)

The dissipation rate density measured w.r.t. the intermediate local configuration
is then:

D] D p
.i/

] � �] P ] � 0 (154)

The free energy density function is chosen as  ]
�
C
�

e; q; �;K ]
�

. As such,

it is invariant w.r.t. change of observer. The Clausius–Duhem inequality is now
derived as
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(155)
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This expression reveals the existence of a generalised Mandel tensor, …
�

M C

K ] ˝ b
�

], conjugate to the plastic deformation rate, that is a function of the

classical Mandel stress and of microdeformation related stress and strain. Positivity
of dissipation is ensured by the choice of the following state laws and plastic flow
and hardening rules:

…
�

e D 2�]
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@C
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(156)
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� ; Pq D �
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(157)

provided that the dissipation potential �
�
…
�

M C K ] ˝ b]; R
�

displays suitable

convexity properties with respect to both arguments.

The yield criterion is taken as a function f
�
…
�

M C K ] ˝ b]; R
�

D …M
eq � R

where the …M
eq is an equivalent stress measure based on the generalized Mandel

stress tensor. Choosing q D p, where p is still given by Eq. (139), the residual
dissipation takes the form:

D] D
�
…
�

M C K ] ˝ b]
�

W PF
�

p
� F

�

p�1 �R Pp D …M
eq Pp �R Pp (158)

Note that the contribution K ]˝b]in the generalised Mandel stress acts as a size–
dependent kinematic hardening component which comes in addition to isotropic
hardening represented by R. This is a specific feature of the model formulation w.r.t.
the intermediate configuration.

As an example, a typical form of the free energy density function based on
constitutive variables defined on the intermediate configuration, and hyperelastic
laws are:
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(159)
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W E
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e; a] D �H� .p � �/ ; b] D �]
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(160)

These generalized stresses can be inserted into the balance equation

a0 D Div b0 ) Jpa] D Div
�
JpF

�

p�1 � b]
�

(161)
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This provides the form of the regularisation operator:

p D � �
1

JpH�

Div

�
JpF

�

p�1�]
@ ]

@K ]

	
(162)

A quadratic dependence of the contribution �] ]r D 1=2K ] �A
�

�K ] leads to the

following linear relationship between b] andK ]:

b] D AK ] ) b D J�1
e AB

�

e � k and b] D JpAC
�

p�1 � k (163)

with B
�

e D F
�

e � F
�

eT and C
�

p D F
�

pT � F
�

p . However, in that case, the regularisation

operator (161) is nonlinear and does not involve a Laplace operator, even in the
isotropic case A

�
D A1

�
. As a result, the hyperelastic relationships for the higher

order stresses are not linear w.r.t. to the associated strain gradient measures.

Conclusion

Eringen and Mindlin’s micromorphic theory offers real opportunities for the model-
ing of size effects in the mechanics of materials. Elastic-viscoplastic constitutive
laws have been formulated at finite deformations. They remain to be further
specialized and calibrated with respect to size effects observed in metal and polymer
plasticity. Successful applications deal for example with the ductile fracture of
metallic alloys (Enakoutsa and Leblond 2009; Hutter 2017b) and porous metals
(Dillard et al. 2006). Micromorphic elasticity has been recently revisited and
further developed to account for the dispersion of elastic waves in architectured
and metamaterials (Neff et al. 2014; Rosi and Auffray 2016; Madeo et al. 2016).
Intensive work is needed to establish connections between the micromorphic
continuum theories and the actual underlying microstructure (Forest and Trinh
2011; Hutter 2017a; Biswas and Poh 2017).

The proposed systematic treatment of the thermomechanics of continua with
additional degrees of freedom leads to model formulations ranging from micromor-
phic to phase field models. In particular, a general framework for the introduction
of dissipative processes associated with the additional degrees of freedom has been
proposed. If internal constraints are enforced on the relation between macro and
microvariables in the micromorphic approach, standard second gradient and strain
gradient plasticity models can be retrieved.

As a variant of micromorphic continuum, microdamage continuum and its
regularization capabilities for the modelling of crack propagation in single crystals
have been studied. First, a crystallographic constitutive model which accounts for
continuum damage with respect to fracture planes has been presented. Then, the
theory has been extended from classical continuum to microdamage continuum.
It has been shown that the approach can be a good candidate for solving mesh
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dependency and the prediction of final fracture in anistropic media. Analytical fits
and numerical results showed that the theory is well suited for FEA and possesses a
great potential for the future modelling aspects. Comparison with available data on
crack growth especially cyclic loading in nickel-based superalloys, will be decisive
to conclude on the ability of the approach to reach realistic prediction of component
failure.

The presented extensions to finite deformations show that the regularisation
operator cannot be postulated in an intuitive way. It is rather the result of a
constitutive choice regarding the dependence of the free energy function on the
gradient term. Purely Lagrangian and Eulerian formulations are straightforward
and lead to Helmholtz–like operators w.r.t. Lagrangian of Eulerian coordinates.
Two alternative standard procedures of extension of classical constitutive laws to
large strains, widely used in commercial finite element codes, have been combined
with the micromorphic approach. In particular, the choice of local objective
rotating frames leads to new nonlinear regularisation operators that are not of the
Helmholtz type. Three distinct operators were proposed within the context of the
multiplicative decomposition of the deformation gradient. A new feature is that
a free energy density function depending on variables solely defined with respect
to the intermediate isoclinic configuration leads to the existence of additional
kinematic hardening induced by the gradient of a scalar micromorphic degree of
freedom.

Note that the results obtained for the micromorphic theory with additional
degrees of freedom are also valid for gradient theories (gradient plasticity or gradient
damage) once an internal constraint is imposed linking the additional degrees of
freedom to strain or internal variables. This amounts to selecting high values of
parameter H� or introducing corresponding Lagrange multipliers. The analysis was
essentially limited to scalar micromorphic degrees of freedom for the sake of sim-
plicity, even though tensorial examples were also given. Scalar plastic microstrain
approaches suffer from limitations like indeterminacy of flow direction at cusps of
the cumulative plastic strain in bending for instance, see Peerlings (2007), Poh et al.
(2011), and Wulfinghoff et al. (2014). Those limitations can be removed by the use
of tensorial micromorphic variable (microstrain or microdeformation tensors). The
micromorphic approach is not limited to the gradient of strain–like, damage or phase
field variables. It can also be applied to other internal variables, as demonstrated
for hardening variables in Dorgan and Voyiadjis (2003) and Saanouni and Hamed
(2013).

It remains that the regularisation properties of the derived nonlinear operators are
essentially unknown, except through examples existing in the mentioned literature.
For instance, the Eulerian and Lagrangian variants of the Helmholtz-type equation
for scalar micromorphic strain variables have been assessed by Wcislo et al. (2013)
giving the advantage to the latter, based on finite element simulations of specific
situations. The regularising properties of more general operators should be explored
in the future from the mathematical and computational perspectives in order to
select the most relevant constitutive choices that may depend on the type of material
classes.
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It may be surprising that the constitutive theory underlying the construction of
regularisation operators for plasticity and damage, mainly relies on the enhancement
of the free energy density function instead of the dissipative laws. It is in fact widely
recognised that plastic strain gradients, e.g. associated with the multiplication of
geometrically necessary dislocations, lead to energy storage that can be released by
further deformation or heat treatments. However, the limitation to the enhancement
of free energy potential is mainly due to the simplicity of the theoretical treatment
and to the computational efficiency of the operators derived in that way. Dissipative
higher order contributions remain to be explored from the viewpoint of regular-
isation, as started in Forest (2009). Constitutive models of that kind are already
available for plasticity, damage and fracture (Amor et al. 2009; Pham et al. 2011;
Vignollet et al. 2014; Miehe et al. 2016).
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Abstract

In this chapter, two cases of thermodynamic-based higher order gradient plastic-
ity theories are presented and applied to the stretch-surface passivation problem
for investigating the material behavior under the nonproportional loading con-
dition. This chapter incorporates the thermal and mechanical responses of
microsystems. It addresses phenomena such as size and boundary effects and
in particular microscale heat transfer in fast-transient processes. The stored
energy of cold work is considered in the development of the recoverable
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counterpart of the free energy. The main distinction between the two cases is
the presence of the dissipative higher order microstress quantities Sdis

ijk . Fleck

et al. (Soc. A-Math. Phys. 470:2170, 2014, ASME 82:7, 2015) noted that Sdis
ijk

always gives rise to the stress jump phenomenon, which causes a controversial
dispute in the field of strain gradient plasticity theory with respect to whether
it is physically acceptable or not, under the nonproportional loading condition.
The finite element solution for the stretch-surface passivation problem is also
presented by using the commercial finite element package ABAQUS/standard
(User’s Manual (Version 6.12). Dassault Systemes Simulia Corp., Providence,
2012) via the user-subroutine UEL. The model is validated by comparing with
three sets of small-scale experiments. The numerical simulation part, which is
largely composed of four subparts, is followed. In the first part, the occurrence
of the stress jump phenomenon under the stretch-surface passivation condition
is introduced in conjunction with the aforementioned three experiments. The
second part is carried out in order to clearly show the results to be contrary to
each other from the two classes of strain gradient plasticity models. An extensive
parametric study is presented in the third part in terms of the effects of the
various material parameters on the stress-strain response for the two cases of
strain gradient plasticity models, respectively. The evolution of the free energy
and dissipation potentials are also investigated at elevated temperatures. In the
last part, the two-dimensional simulation is given to examine the gradient and
grain boundary effect, the mesh sensitivity of the two-dimensional model, and
the stress jump phenomenon. Finally, some significant conclusions are presented.

Keywords
Higher order gradient plasticity · Energetic · Dissipative · Stress jump ·
Non-proportional loading

Introduction

It is well known that the classical continuum plasticity theory cannot capture the size
effect of the microstructure during the course of plastic deformation. Aifantis (1984)
incorporated a material length scale into the conventional continuum plasticity
model to capture the size effect and proposed a modified flow rule by including
the gradient term ˇr2"p into the conventional flow rule as follows:

�eff D R ."p/ � ˇr2"p (1)

where � eff is the effective stress and is calculated by �eff D
p

3�ij �ij =2 with the
deviatoric stress tensor � ij, R("p) > 0 is the conventional flow resistance, "p is the
accumulated plastic strain, ˇ >0 is a material coefficient, and r2 D Divr is the
Laplacian operator. Hereafter, a number of mechanisms associated with geomet-
rically necessary dislocations (GNDs) have been proposed within the framework
of the strain gradient plasticity (SGP) theory. Generally, there are two different
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kinds of viewpoints in SGP theory in terms of the origin of the strengthening effect.
Firstly, there is a specific argument that the strain gradient strengthening is purely
energetic in the sense that GNDs originate in the blockage by grain boundaries
and the pile-ups of dislocations has a backstress associated with the energetic
strengthening (Fleck and Willis 2015). For example, Kuroda and Tvergaard (2010)
argued that the term � eff C ˇr2"p calculated in Eq. 1 represents a total stress at the
material point that activates the plastic straining, i.e., the generation and movement
of dislocations. They also pointed out that the thermodynamic requirement on
the plastic dissipation D is evaluated by D D

�
�eff C ˇr2"p

�
P"p > 0. This

demonstration shows that the nonlocal term ˇr2"p is naturally interpreted as an
energetic quantity, which is consistent with the interpretation in Gurtin and Anand
(2009) that the nonlocal term in Aifantis’ formulation should be energetic. Secondly,
there is another point of view that GNDs combine with the statistically stored
dislocations (SSDs) to provide the forest hardening, which in turn, lead to the
dissipative strengthening. For example, in Fleck and Hutchinson (2001), gradient
term is implicitly considered as a dissipative quantity that causes the theory to
violate the thermodynamic requirement on plastic dissipation. Fleck and Willis
(2009a) developed a mathematical basis for phenomenological gradient plasticity
theory corresponding to both rate dependent/independent behavior with the scalar
plastic multiplier. The plastic work in Fleck and Willis (2009a) is taken to be
purely dissipative in nature, and the thermodynamic microstresses are assumed to be
dissipative. In their incremental form of plasticity theory, an associated plastic flow
rule is assumed by means of the convex yield function, consequently, the positive
plastic work is ensured. Fleck and Willis (2009b) developed a phenomenological
flow theory version of SGP theory by extending their theory in Fleck and Willis
(2009a) to isotropic and anisotropic solids with tensorial plastic multiplier. Fleck
and Willis (2009b) argued that the microstress quantities should include a dissipative
part; thus, it has been proposed that the term ˇr2"p is additively decomposed into an
energetic (�)en and dissipative (�)dis in order to develop a kinematic hardening theory.
The dissipative stresses satisfy a yield condition with an associated flow plastic rule,
while the free energy provides the standard kinematic hardening.

There has been a debate between Fleck, Willis, and Hutchinson (Fleck et al. 2014,
2015; Hutchinson 2012) and Gudmundson et al. (Gudmundson 2004; Gurtin and
Anand 2009) for the last 15 years or so. Fleck and Hutchinson (2001) developed a
phenomenological SGP theory using higher order tensors with a similar framework
to that proposed by Aifantis (1984) and Muhlhaus and Aifantis (1991). Higher order
stresses and additional boundary conditions have been involved in the theory to
develop a generalization of the classical rate-independent J2 flow theory of gradient
plasticity. However, they do not discuss the compatibility of their theory with
thermodynamic requirements on the plastic dissipation. Gudmundson (2004) and
Gurtin and Anand (2009) pointed out that the formulation of Fleck and Hutchinson
(2001) violates thermodynamic requirements on the plastic dissipation. Gurtin
and Anand (2009) discussed the physical nature of nonlocal terms in the flow
rules developed by Fleck and Hutchinson (2001) under isothermal condition and
concluded that the flow rule of Fleck and Hutchinson (2001) does not always satisfy
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the thermodynamic requirement on plastic dissipation unless the nonlocal term is
dropped. A formulation of Fleck and Hutchinson (2001) has been modified to meet
this thermodynamic requirement by partitioning the higher order microstresses into
energetic and dissipative components (Hutchinson 2012). In addition, Hutchinson
(2012) classified the strain gradient version of J2 flow theories into two classes:
incremental theory developed by Fleck and Hutchinson and nonincremental theory
developed by Gudmundson et al. (c.f. see Fleck et al. (2014, 2015), Gudmundson
(2004), Gurtin and Anand (2005, 2009), and Hutchinson (2012) for details). The
specific phenomenon in the nonincremental theory that exhibits a finite stress jump
due to infinitesimal changes in plastic strain that may occur under the nonpropor-
tional loading is noted and its physical acceptance is also discussed in the work of
Fleck et al. (2014, 2015). Hutchinson (2012) concluded that discontinuous changes
with infinitesimal changes in boundary loads are physically suspect. (Despite the
argument of J.W. Hutchinson, Acta Mech. Sin. 28, 4 (2012), there is another
viewpoint to look at the stress jump phenomenon. The perspective taken in N.A.
Fleck, J.R. Willis, ibid. 31, (2015) is that it is premature at this moment in time to
judge whether a formulation associated with the stress jump is physically acceptable
or not, therefore, an in-depth study of dislocation mechanism and microscale exper-
iments with non-proportional loading history is needed.) Fleck et al. (2014, 2015)
have shown this phenomenon with two plane strain problems, stretch-passivation
problem, and stretch-bending problem, for nonproportional loading condition. In
their work, it is noted that the dissipative higher order microstress quantities Sdis

ijk

always generate the stress jump for nonproportional loading problems.
In this chapter, two different cases of the high order SGP model with and without

the dissipative higher order microstress quantities Sdis
ijk are presented based on the

new forms of the free energy and the dissipation potentials for eliminating an
elastic loading gap. The presented model is applied to the stretch-surface passivation
problem in order to compare the behavior of each case under the nonproportional
loading condition. For this, the finite element solution for the stretch-surface
passivation problem is presented by using the commercial finite element package
ABAQUS/standard (2012) via the user-subroutine UEL and validated by comparing
with three sets of small-scale experiments, which have been conducted by Han et al.
(2008), Haque and Saif (2003), and Xiang and Vlassak (2006). An extensive numer-
ical work is also carried out based on the one-dimensional and two-dimensional
codes in order to compare the results from the two cases of the SGP model and to
analyze the characteristics of the stress jump phenomenon.

Principle of Virtual Power

The principle of virtual power is used to derive the local equation of motion
and the nonlocal microforce balance for volume V as well as the equations for
local traction force and nonlocal microtraction condition for the external surface
S, respectively. In the presence of varying temperature fields at the microstructure
level, the formulation should incorporate the effects of the temperature gradient
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on the thermo-mechanical behavior of the material due to the microheterogeneous
nature of material (Forest and Amestoy 2008). In this sense, it is assumed here
that the plastic strain, plastic strain gradient, temperature, and temperature gradient
contribute to the power per unit volume.

Moreover, as it is mentioned in section “Introduction,” the effect of the interface
plays a crucial role for the plastic behavior of the material at the microscale. An
interface (grain boundary) separating grains G1 and G2 is taken into account here,
and it is assumed that the displacement field is continuous, i.e. uG1

i D uG2

i , across the
grain boundary (Fig. 1). As shown in this figure, a dislocation moving toward the
grain boundary in grain G1 cannot pass through the grain boundary, but it is trapped
and accumulated at the grain boundary due to the misalignment of the grains G1

and G2 that are contiguous to each other. In this sense, the grain boundary acts as
an obstacle to block the dislocation movement; therefore, the yield strength of the
material increases as the number of grain boundaries increases. By assuming that
the interface surface energy depends on the plastic strain rate at the interface of
the plastically deforming phase, the internal part of the principle of virtual power
for the bulk Pint and for the interface P I

int are expressed in terms of the energy
contributions in the arbitrary subregion of the volume V and the arbitrary subsurface
of the interface SI , respectively, as follows:

Pint D

Z

V

�
�ij P"e

ij C Xij P"
p
ij C Sijk P"

p

ij;k C A PT C Bi
PT;i

�
dV (2)

Fig. 1 The schematic illustration of the spatial lattice of two contiguous grains, G1 and G2, along
with a single slip in grain G1 (Reprinted with permission from Voyiadjis et al. 2017)
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P I
int D

Z

SI

�
M

IG1

ij P"
pIG1

ij C M
IG2

ij P"
pIG2

ij

�
dSI (3)

where the superscripts “e,” p,” and “I” are used to express the elastic state, the
plastic state, and the interface, respectively. The internal power for the bulk in the
form of Eq. 2 is defined using the Cauchy stress tensor � ij, the backstress Xij

conjugate to the plastic strain rate P"
p
ij , the higher order microstress Sijk conjugate

to the gradients of the plastic strain rate P"
p

ij;k , and the generalized stresses A and

Bi conjugate to the temperature rate PT and the gradient of the temperature rate PT;i ,
respectively. The internal power for the interface in the form of Eq. 3 is defined using
the interfacial microscopic moment tractions MIG1

ij and M
IG2

ij expending power over

the interfacial plastic strain rates P"
pIG1

ij at SIG1 and P"
pIG2

ij at SIG2 , respectively.
Moreover, since the plastic deformation, which is accommodated by the gener-

ation and motion of the dislocation, is influenced by the interfaces, Eq. 3 results
in higher order boundary conditions generally consistent with the framework of a
gradient type theory. These extra boundary conditions should be imposed at internal
and external boundary surfaces or interfaces between neighboring grains (Aifantis
and Willis 2005; Gurtin 2008). The internal power for the bulk is balanced with the
external power for the bulk expended by the tractions on the external surfaces S and
the body forces acting within the volume V as shown below:

Pext D

Z

V

bi vi dV C

Z

S

�
ti vi C mij P"

p
ij C a PT

�
dS (4)

where ti and bi are traction and the external body force conjugate to the macroscopic
velocity vi, respectively. It is further assumed here that the external power has terms
with the microtraction mij and a, conjugate to the plastic strain rate P"

p
ij and the

temperature rate PT , respectively, since the internal power in Eq. 2 contains the terms
of the gradients of the plastic strain rate P"

p

ij;k and the gradients of the temperature

rate PT;i , respectively.
Making use of the principle of virtual power that the external power is equal to

the internal power (Pint D Pext) along with the integration by parts on some terms
in Eq. 2, and utilizing the divergence theorem, the equations for balance of linear
momentum and nonlocal microforce balance can be represented, respectively, for
volume V, as follows:

�ij;j C bi D 0 (5)

Xij � �ij � Sijk;k D 0 (6)

divBi � A D 0 (7)

where � ij D � ij � �kkıij/3 is the deviatoric part of the Cauchy stress tensor and ıij is
the Kronecker delta.
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On the external surface S, the equations for local surface traction conditions and
nonlocal microtraction conditions can be written, respectively, with the outward unit
normal vector to S, nk, as follows:

tj D �ij ni (8)

mij D Sijknk (9)

a D Bi ni (10)

In addition, the interfacial external power P I
ext, which is balanced with the

interfacial internal power P I
int, is expended by the macrotractions �

G1

ij .�nI
j / and

�
G2

ij .nI
j / conjugate to the macroscopic velocity vi, and the microtractions SIG1

ijk

�
�nI

k

�

and S
IG2

ijk

�
nI

k

�
that are conjugate to P"

pIG1

ij and P"
pIG2

ij , respectively, as follows:

P I
ext D

Z

SI

n�
�
G2

ij nI
j � �

G1

ij nI
j

�
vi C S

IG2

ijk nI
k P"

pIG2

ij � S
IG1

ijk nI
k P"ij pIG1

o
dSI (11)

By equating P I
int D P I

ext with considering the arbitrary variation of the plastic
strain at the interface, the interfacial macro- and microforce balances can be
obtained as follows:

�
�
G1

ij � �
G2

ij

�
nI

j D 0 (12)

M
IG1

ij C S
IG1

ijk nI
k D 0 (13)

M
IG2

ij � S
IG2

ijk nI
k D 0 (14)

The microforce balance conditions in Eqs. 13 and 14 represent the coupling
behavior in the grain interior at the interface to the behavior of the interface, since
the microtractions SIG1

ijk nI
k and S

IG2

ijk nI
k are the special cases of Eq. 8 for the internal

surface of the interface.

Thermodynamic Formulation with Higher Order Plastic Strain
Gradients

The first law of thermodynamics, which encompasses several principles including
the law of conservation of energy, is taken into account in this chapter in order
to develop a thermodynamically consistent formulation accounting for the thermo-
mechanical behavior of small-scale metallic volumes during the fast transient
process. In order to consider micromechanical evolution in the first law of thermody-
namics, the enhanced SGP theory with the plastic strain gradient is employed for the
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mechanical part of the formulation, whereas the micromorphic model is employed
for the thermal counterpart as follows (see the work of Forest and co-workers (Forest
and Amestoy 2008; Forest and Sievert 2003)):

�Pe D �ij P"e
ij C Xij P"

p
ij C Sijk P"

p

ij;k C A PT C Bi
PT;i � divqi (15)

PeI D M
I
ij P"

pI
ij C qI

i nI
i (16)

where � is the mass density, e is the specific internal energy, eI is the internal surface
energy density at the contacting surface, and qi and qI

i are the heat flux vectors of
the bulk and the interface, respectively.

The second law of thermodynamics, or entropy production inequality as it is
often called, yields a physical basis that accounts for the distribution of GNDs within
the body along with the energy carrier scattering and requires that the free energy
increases at a rate not greater than the rate at which work is performed. Based on
this requirement, entropy production inequalities for the bulk and the interface can
be expressed, respectively, as follows:

(17)

(18)

where S is the specific entropy and S
I is the surface density of the entropy of the

interface.

The Energetic and Dissipative Components
of the Thermodynamic Microstresses

Internal energy e, temperature T, and entropy S describing the current state of the
material can be attributed to the Helmholtz free energy � (per unit volume) such as

� PST � �Pe C �ij P"e
ij C Xij P"

p
ij C Sijk P"

p

ij;k � qi

T;i

T
C A PT C Bi

PT;i � 0: (19)

By taking the time derivative of Eq. 19 for the bulk and the interface and
substituting each into Eqs. 17 and 18, respectively, the nonlocal free energy (i.e.,
Clausius-Duhem) inequality for the bulk and the interface can be obtained as
follows:

�ij P"e
ij C Xij P"

p
ij C Sijk P"

p

ij;k C A PT C Bi
PT;i � � P‰ � �S PT � qi

T;i

T
� 0 (20)

M
I
ij P"

pI
ij � P‰I � S

I PT I � 0 (21)
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In order to derive the constitutive equations within a small-scale framework, an
attempt to account for the effect of nonuniform distribution of the microdefection
with temperature on the homogenized response of the material is carried out in this
chapter with the functional forms of the Helmholtz free energy in terms of its state
variables. By assuming the isothermal condition for the interface (i.e., PT I D 0), the
Helmholtz free energy for the bulk and the interface are given, respectively, by

‰ D ‰
�
"e

ij ; "
p
ij ; "

p

ij;k; T; T;i

�
(22)

‰I D ‰I
�
"

pI
ij

�
(23)

where the function ‰ is assumed to be smooth and the function ‰1 is assumed to be
convex with respect to a plastic strain at the interface "

pI
ij .

Taking time derivative of the Helmholtz free energy for the bulk P‰ and the
interface P‰I give the following expressions, respectively

P‰ D
@‰

@"e
ij

P"e
ij C

@‰

@"
p
ij

P"
p
ij C

@‰

@"
p

ij;k

P"
p

ij;k C
@‰

@T
PT C

@‰

@T;i

PT;i (24)

P‰I D
@‰I

@"
pI
ij

P"
pI
ij (25)

By substituting Eq. 24 into Eq. 20 for the bulk and Eq. 25 into Eq. 21 for
the interface, and factoring out the common terms, one obtains the following
inequalities:

�
�ij � � @‰

@"e
ij

�
P"e
ij C

�
Xij � � @‰

@"
p
ij

�
P"
p
ij C

�
Sijk � � @‰

@"
p

ij;k

�
P"
p

ij;k

C
�
A � �S � � @‰

@T

�
PT C

�
Bi � � @‰

@T;i

�
T;i � qi

T
T;i � 0

(26)

M
I
ij P"

pI
ij � �

@‰I

@"
pI
ij

P"
pI
ij � 0 (27)

Guided by Eqs. 26 and 27, it is further assumed that the thermodynamic
microstress quantities Xij , Sijk , A, and M

I
ij are decomposed into the energetic and

the dissipative components such as (Voyiadjis and Deliktas 2009; Voyiadjis and
Faghihi 2012; Voyiadjis et al. 2014):

Xij D X en
ij C X dis

ij (28)

Sijk D Sen
ijk C Sdis

ijk (29)
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A D Aen C Adis (30)

M
I
ij D M

I;en
ij C M

I;dis
ij (31)

The components M
I;en
ij and M

I;dis
ij represent the mechanisms for the pre- and

postslip transfer and thus involve the plastic strain at the interface prior to the slip

transfer "
pI.pre/

ij and the one after the slip transfer "
pI.post/

ij , respectively. The overall
plastic strain at the interface can be obtained by the summation of both plastic strains
such as:

"
p
ij

I
D "

pI.pre/

ij C "
pI.post/

ij (32)

Substituting Eqs. 28, 29, and 30 into Eq. 26 for the bulk and Eq. 31 into Eq.
27 for the interface and rearranging them in accordance with the energetic and the
dissipative parts give the following expressions:

�
�ij � � @‰

@"e
ij

�
P"e
ij C

�
X en

ij � � @‰

@"
p
ij

�
P"
p
ij C

�
Sen

ijk � � @‰

@"
p

ij;k

�
P"
p

ij;k

C
�
Aen � �S � � @‰

@T

�
PT C

�
Bi � � @‰

@T;i

�
PT;i C X dis

ij P"
p
ij

C Sdis
ijk P"

p

ij;k C Adis PT � qi

T
T;i � 0

(33)

 

M
I;en
ij � �

@‰I

@"
pI
ij

!

P"
pI
ij C M

I;dis
ij P"

pI
ij � 0 (34)

From the above equations with the assumption that the fifth term in Eq. 33
is strictly energetic, one can retrieve the definition of the energetic part of the
thermodynamic microstresses as follows:

�ij D � @‰
@"e

ij
IX en

ij D � @‰

@"
p
ij

ISen
ijk D � @‰

@"
p

ij;k

I

Aen D �
�

S C @‰
@T

�
IBi D � @‰

@T;i

(35)

M
I;en
ij D �

@‰I

@"
pI
ij

(36)

Hence, the residual respective dissipation is then obtained as:

D D X dis
ij P"

p
ij C Sdis

ijk P"
p

ij;k C Adis PT �
qi

T
T;i � 0 (37)

DI D M
I;dis
ij P"

pI
ij � 0 (38)

where D and DI are the dissipation densities per unit time for the bulk and
the interface, respectively. The definition of the dissipative thermodynamic
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microstresses can be obtained from the complementary part of the dissipation

potentials D
�

P"
p
ij ; P"

p

ij;k; PT ; T;i

�
and DI

�
P"
pI
ij

�
such as

X dis
ij D

@D
@P"

p
ij

ISdis
ijk D

@D
@P"

p

ij;k

IAdis D
@D
@ PT

I �
qi

T
D

@D
@T;i

(39)

M
I;dis
ij D

@DI

@P"
pI
ij

(40)

One now proceeds to present the constitutive laws for both the energetic and
the dissipative parts which are achieved by employing the free energy and the
dissipation potentials, which relate the stresses to their work-conjugate generalized
stresses. The functional forms of the Helmholtz free energy and dissipation potential
and the corresponding energetic and dissipative thermodynamic microstresses for
the aforementioned two different cases of the model, i.e., the case with the
dissipative higher order microstress quantities Sdis

ijk and the one without Sdis
ijk , are

presented in the following sections.

Helmholtz Free Energy and Energetic Thermodynamic
Microstresses

Defining a specific form of the Helmholtz free energy function � is tremendously
important since it constitutes the bases in deriving the constitutive equations. In
this chapter, the Helmholtz free energy function is put forward with three main
counterparts, i.e., elastic, defect, and thermal energy, as follows (Voyiadjis and Song
2017):
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(41)

where Eijkl is the elastic modulus tensor, ˛t is the coefficient of linear thermal
expansion, Tr is the reference temperature, h is the hardening material constant
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corresponding to linear kinematic hardening, r (0 < r < 1) is the isotropic hardening

material constant, "p D
q

"
p
ij "

p
ij is the accumulated plastic strain, Ty and n are

the thermal material constants that need to be calibrated by comparing with the
experimental data, `en is the energetic length scale that describes the feature of
the short-range interaction of GNDs, G is the shear modulus for isotropic linear
elasticity, c" is the specific heat capacity at constant stress, and a is a material
constant accounting for the interaction between energy carriers such as phonon-
electron. The term (1 � (T/Ty)n) in Eq. 41 accounts for the thermal activation
mechanism for overcoming the local obstacles to dislocation motion.

The first term of the defect energy ‰d
1 characterizes the interaction between

slip systems, i.e., the forest dislocations leading to isotropic hardening. This term
is further assumed to be decomposed into the recoverable counterpart ‰

d;R
1 and

nonrecoverable counterpart ‰
d;NR
1 . The establishment of the plastic strain gradient

independent stored energy of cold work with no additional material parameters is
achievable with this decomposition.

The recoverable counterpart, ‰
d;R
1 , accounts for the stored energy of cold work.

When the elasto-plastic solid is cold-worked, most of the mechanical energy is
converted into heat, but the remaining contributes to the stored energy of cold work
through the creation and rearrangement of crystal defects such as dislocations, point
defects, line defects, and stacking faults (Rosakis et al. 2000). In this chapter, the
plastic strain-dependent free energy, ‰

d;R
1 , accounting for the stored energy of cold

work is derived by assuming that the stored energy is related to the energy carried by
dislocations. Mollica et al. (2001) investigated the inelastic behavior of the metals
subject to loading reversal by linking the hardening behavior of the material to
thermo-dynamical quantities such as the stored energy due to cold work and the
rate of dissipation. In the work of Mollica et al. (2001), it is assumed that the
stored energy depends on the density of the dislocation network that increases with
monotonic plastic deformation until it is saturated at some point. This points out that
the material stores this energy for a certain range of the accumulated plastic strain,
after which the material will mainly dissipate the external work supply.

For the derivation of the stored energy of cold work, one assumes that the
energetic microstress X en

ij , given later by Eq. 52, can be expressed by separation
of variables as follows:

X en
ij

�
"

p
ij ; T

�
D
X�

"
p
ij

�
T .T / (42)

with
P�

"
p
ij

�
D h"

p
ij "r�1

p and T .T / D
�
1 �

�
T =Ty

�n�
.

On the other hand, instead of using the plastic strain at the macroscale level to
describe the plastic deformation, † can be defined at the microscale level using
the Taylor law, which gives a simple relation between the shear strength and the
dislocation density, as follows:

X
D &Gb

p
�t (43)
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where − is the statistical coefficient accounting for the deviation from regular spatial
arrangements of the dislocation populations, b is the magnitude of the Burgers
vector, and �t is the equivalent total dislocation density and can be obtained by
(†/−Gb)2 from Eq. 43.

Here, it is assumed that the stored energy of cold work, the result of energy
carried by each dislocation, results in an extra latent hardening which is recoverable
and temperature independent. Thus, the recoverable energy of cold work can be put
forward as follows:

‰
d;R
1 D U�t (44)

where U is the elastic deformation energy of a dislocation and can be approximately
given by

U D
Gb2

4�
ln

�
R

R0

�
(45)

where R is the cut-off radius (R � 103b) and R0 is the internal radius (b < R0 < 10b)
(Meyers and Chawla 2009). By substituting �t D (†/−Gb)2 into Eq. 45 along with
Eq. 42, one can obtain the stored energy of cold work as follows:

‰
d;R
1 D #h2"2r

p (46)

where by comparing the aforementioned ranges for R, R0, and − to the shear modulus
G, ª can be expressed by

# D
1

4�&2G
ln

�
R

R0

�
�

1

G
(47)

The nonrecoverable counterpart ‰
d;NR
1 accounting for the energetically based

hardening rule that mimics the dissipative behavior by describing irreversible
loading processes can then be derived as follows (Gurtin and Reddy 2009):

‰
d;NR
1 D

h

r C 1

�
1 �

�
T

Ty

�n�
"rC1

p � #h2"2r
p (48)

where ª is a constant that depends on the material microstructure.
The second term of the defect energy ‰d

2 characterizes the short-range interac-
tions between coupling dislocations moving on close slip planes and leads to the
kinematic hardening. This defect energy ‰d

2 is recoverable in the sense that by
starting at any value of the accumulated plastic strain gradients, ‰d

2 returns to its
original value as the accumulated plastic strain gradients return to their original
value.
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One can now obtain the energetic thermodynamic forces by using the definitions
in Eq. 35 along with the Helmholtz free energy given by Eq. 41 as follows:

�ij D Eij kl"
e
kl � ˛t .T � Tr/ ıij (49)

Aen D �S � ˛t .T � Tr/ "e
ij ıij �

c"

Tr

.T � Tr/ �
h"rC1

p

r C 1

n

Ty

�
T

Ty

�n�1

(50)

Bi D �aT ;i (51)

X en
ij D h"

p
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�
1 �

�
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Ty

�n�
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p (52)

Sen
ijk D G`2

en"
p

ij;k (53)

Here, according to the aforementioned decomposition of the first term of
the defect energy into the recoverable and nonrecoverable counterparts, X en

ij can

be further decomposed into recoverable
�
X en;R

ij

�
and nonrecoverable

�
X en;NR

ij

�

counterparts as follows:

X en;R
ij D 2r#h2"

p
ij "2r�2

p (54)

X en;NR
ij D h"

p
ij

�
1 �

�
T

Ty

�n�
"r�1

p � 2r#h2"
p
ij "2r�2

p (55)

From the aforementioned physical interpretations of ‰
d;R
1 and ‰

d;NR
1 , as well

as X en;R
ij and X en;NR

ij can be defined as the terms describing the reversible loading
due to the energy carried by dislocations and the energetically based hardening
rule that mimics dissipative behavior by describing irreversible loading processes,
respectively.

Meanwhile, it is well known that the interface plays a role as the barrier to plastic
slip in the early stages of plastically deforming phase, while it acts as a source of the
dislocation nucleation in the later stages. The energetic condition in the area around
the interface is affected by the long-range internal stress fields associated with
constrained plastic flow which leads to the accumulated and pile-up of dislocations
near the interface. Thus, the condition at the interface is determined by a surface
energy that depends on the plastic strain state at the interface (Fredriksson and
Gudmundson 2005).

The interfacial Helmholtz free energy per unit surface area of the interface is put
forward under the guidance of Fredriksson and Gudmundson (2005) work such as
(It should be noted that it is possible to introduce another form of the surface energy
if it is convex in, "

pI
ij .):
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‰I D
1

2
G`I

en"
pI.pre/

ij "
pI.pre/

ij (56)

where `I
en is the interfacial recoverable length scale.

By substituting the interfacial Helmholtz free energy per unit surface given by
Eq. 56 into Eq. 36, the interfacial recoverable microstresses MI;en

ij can be obtained
as follows:

M
I;en
ij D G`I

en"
pI.pre/

ij (57)

As can be seen in Eq. 57, MI;en
ij does not involve the plastic strain rate, which is

related to the dislocation slip, and the temperature since the interfacial recoverable
microstresses are activated by the recoverable stored energy.

Dissipation Potential and Dissipative Thermodynamic
Microstresses

In this section, the dissipation potential functions for the aforementioned two cases
of the SGP model are postulated, respectively. The first case is derived from the
dissipation potential dependent on the plastic strain gradient, which leads to the
nonzero dissipative thermodynamic microstress Sdis

ijk ¤ 0, while the other case
is derived from the dissipation potential that is independent on the plastic strain
gradient, which leads to Sdis

ijk D 0.
Coleman and Gurtin (1967) pointed out that the dissipation potential function is

composed of two parts, the mechanical part which is dependent on the plastic strain
and its gradient and the thermal counterpart which shows the purely thermal effect
such as the heat conduction. In this sense, and in the context of Eq. 37, the functional
form of the dissipation potential, which is dependent on P"

p

ij;k , for the former class
can be put forward as (Voyiadjis and Song 2017):

(58)

where � y is a material constant accounting for the yield strength, m is a nonnegative
material constant for the rate sensitivity parameter, in which the limit m ! 0
corresponds to rate-independent material behavior, 0 is a constant for the reference
flow rate, `dis is the dissipative length scale that corresponds to the dissipative effects
in terms of the gradient of the plastic strain rate, b is the material constant accounting
for the energy exchange between phonon and electron, and k(T) is the thermal
conductivity coefficient. The generalized dissipative effective plastic strain measure

is defined as a function of the plastic strain rate, the gradient of the plastic strain
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rate, and the dissipative length scale as follows:

(59)

By using the dissipation potential given in Eq. 58 along with Eq. 39 and the
assumption k(T)/T D k0 D constant, the dissipative thermodynamic forces for the
former case (Case I) can be obtained as follows:

(60)

(61)

Adis D �b PT (62)

qi D �k0T;i (63)

On the other hand, the functional form of the dissipation potential, which is
independent of P"

p

ij;k , for the latter case (Case II) can be postulated by setting `dis D 0
in Eq. 58 as follows:

(64)

where `disD0 is given by
q

P"
p
ij P"

p
ij by setting `dis D 0 in Eq. 59. By substituting Eq. 64

into Eq. 39, the dissipative thermodynamic forces for the latter case (Case II) can be
obtained as follows:

(65)

Sdis
ijk D 0 (66)

Adis D �b PT (67)

qi D �k0T;i (68)

Meanwhile, Gurtin and Reddy (2009) pointed out that the classical isotropic
hardening rule, which is dissipative in nature, may equally well be characterized
via a defect energy since this energetically based hardening rule mimics the
dissipative behavior by describing loading processes that are irreversible. In this
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sense, as it was mentioned previously in this chapter, the energetic microstress X en
ij

is further decomposed into X en;NR
ij that describes an irreversible loading process

and X en;R
ij that describes a reversible loading process due to the energy carried by

the dislocations. The present framework follows the theorem of Gurtin and Reddy
(2009) in that the theory without a defect energy is equivalent to the theory with a
defect energy by replacing the dissipation D by an effective dissipation Deff, which
is defined as follows:

Deff D
�
X dis

ij C X en;NR
ij

�
P"
p
ij C Sdis

ijk P"
p

ij;k C Adis PT �
qi

T
T;i (69)

where X en;NR
ij may be viewed as the effectively dissipative microforce since it

satisfies an effective dissipation inequality.
There are two main mechanisms affecting the energy dissipation during the

dislocation movement in the grain boundary area. The first mechanism is related
to an energy change in the grain boundary region. The macroscopic accumulated
plastic strain at the grain boundary can be connected to the microscopic deformation
of the grain boundary through the quadratic mean of the deformation gradient. Thus,
the energy change after the onset of slip transmission to the adjacent grain is able to
be approximately determined by a quadratic function of the deformation gradient at
the microscale and hence the interfacial plastic strain at the macroscale. The other
mechanism introduces the energy involved in the deformation of the grain boundary.
This energy is mainly due to the energy dissipation during the dislocation movement
and can be taken as a linear function of the interfacial plastic strain.

The interfacial dissipation potential DI in the current study is postulated by
combing the above-mentioned mechanisms as follows:

(70)

where `I
dis is the interfacial dissipative length scale, mI and I

0 are the viscous
related material parameters, �I

y is a constant accounting for the interfacial yield
stress at which the interface starts to deform plastically, hI is an interfacial hardening
parameter representing the slip transmission through the interface, T I

y is the scale-
independent interfacial thermal parameter at the onset of yield, nI is the interfacial

thermal parameter, and "
I.post/
p D

q
"

pI.post/

ij "
pI.post/

ij and P"
I.post/
p D

q
P©
pI.post/

ij P"
pI.post/

ij

are defined, respectively, with the plastic strain at the interface after the slip transfer

"
pI.post/

ij and its rate P"
pI.post/

ij . The rate-dependency and temperature-dependency of
the interfacial dissipation energy are clearly shown in Eq. 70 through the terms

and
�
1 � T I =T I

y

�nI

, respectively.
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The interfacial dissipative microstresses M
I;dis
ij can be obtained by substituting

Eq. 70 into Eq. 40 as follows:

(71)

By substituting Eqs. 71 and 57 into Eq. 31, one can obtain the interfacial
microtraction M

I
ij as follows:

(72)

As can be seen in Eq. 72, a free surface, i.e., microfree boundary condition, at the
grain boundary can be described by setting `I

en D `I
dis D 0 and it is also possible

to describe a surface passivation, i.e., microclamped boundary condition, by setting
`I

en ! 1 and `I
dis ! 1.

Flow Rule

The flow rule in the present framework is established based on the nonlocal
microforce balance, Eq. 6, augmented by thermodynamically consistent constitutive
relations for both energetic and dissipative microstresses. By substituting Eqs. 51,
53, 60, and 61 into Eq. 6, one can obtain a second-order partial differential form
of the flow rule as follows (The flow rule, Eq. 73, corresponds to the SGP model
(Case I), in which the functional form of the dissipation potential is dependent on

P"
p

ij;k

�
Sdis

ijk ¤ 0
�

. One can easily obtain the flow rule for the other case (Case II) of

the SGP model, i.e. with Sdis
ijk D 0, by setting `dis D 0.) (Voyiadjis and Song 2017):

(73)

where the under-braced term Sen
ijk;k represents a backstress due to the energy stored

in dislocations and results in the Bauschinger effect observed in the experiments
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(Liu et al. 2015; Nicola et al. 2006; Xiang et al. 2005; Xiang and Vlassak 2006) and
discrete dislocation plasticity (Nicola et al. 2006; Shishvan et al. 2010, 2011).

Thermo-mechanical Coupled Heat Equation

The evolution of the temperature field is governed by the law of conservation of
energy (the first law of thermodynamics). The terms addressing heating as a result of
the inelastic dissipation and thermo-mechanical coupling are involved for describing
the evolution of the temperature field. The equation for the conservation of energy
in this chapter is put forward as follows:

�ij P"e
ij C Xij P"

p
ij C Sijk P"

p

ij;k C A PT C Bi
PT;i � div qi C �HEXT � � Pe D 0 (74)

where HEXT is the specific heat from the external source.
By considering the effective dissipation potential given in Eq. 69 along with the

equations for the entropy production (the second law of thermodynamics) previously
described in Eq. 17, the relationship for the evolution of the entropy, which describes
the irreversible process, can be derived as follows:

(75)

By using Eq. 50 for solving the rate of the entropy PS, the evolution of the
temperature field can be obtained as follows:

�c0
PT D X dis

ij P"
p
ij C X en;IR

ij P"
p
ij C Sdis

ijk P"
p

ij;k„ ƒ‚ …
①

C
k .T /

2T
T;i T;i C aTr

PT;ii � bTr
RT

„ ƒ‚ …
②

� ˛t P"e
ij ıij T

„ ƒ‚ …
③

�

(

h"r�1
p

 
n

Ty

�
T

Ty

�n�1
!

P"
p
ij C

h"rC1
p

r C 1

 
n .n � 1/

T 2
y

�
T

Ty

�n�2
!

PT

)

T

„ ƒ‚ …
④

C �HEXT„ƒ‚…
⑤

(76)

where c0 is the specific heat capacity at constant volume and is given by
c0 D constant Š c"T/Tr. As shown in Eq. 76, the following terms are depicted, ①

irreversible mechanical process, ② generalized heat conduction, ③ thermo-elastic
coupling, ④ thermo-plastic coupling, and ⑤ heat source, which are involved in the
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evolution of the temperature. The third-order mixed derivation term aTrT;ii in part
② introduces the microstructural interaction effect into the classical heat equation,
in addition, the second-order time derivative term bTr

RT gives the thermal wave
behavior effect in heat propagation.

By substituting the constitutive equations of the energetic microstresses given by
Eqs. 49, 50, 51, 52, and 53 and the dissipative microstresses given by Eqs. 60, 61,
62, and 63 into Eq. 76 and defining three additional terms eff D k0=�cv , en D

aTr=k0, and dis D bTr=�cv , the evolution of temperature for the model, in which
the functional form of the dissipation potential dependent on P"

p

ij;k , i.e., Sdis
ijk ¤ 0,

can be obtained as follows (Voyiadjis and Song 2017):

(77)

In the absence of the mechanical terms, Eq. 77 turns to the generalized heat
equation including en and dis. The evolution of temperature for the other case
(Case II) of SGP model, i.e., with Sdis

ijk D 0 can be obtained by setting `dis D 0 in
Eq. 77.

Finite Element Implementation of the Strain Gradient Plasticity
Model

In this section, first a one-dimensional finite element model for the SGP model
by Voyiadjis and Song (2017) is presented to investigate the size dependent
behavior in the microscopic structures under macroscopically uniform uniaxial
tensile stress. In a one-dimensional finite element implementation, the macroscopic
partial differential equations for balance of linear momentum Eq. 5 with the
macroscopic boundary conditions, ux D 0 D 0 and uxDL D u� (prescribed), and the
microscopic partial differential equations for nonlocal force balance Eq. 6 with the
microscopic boundary conditions,

�
M

I � S
�

xD0
D 0 and

�
M

I � S
�

xDL
D 0, yield

the following expressions in a global weak form, respectively (The finite element
solutions, in this section, depend on the x-direction. A single crystal with the size
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of L bounded by two grain boundaries is analyzed (see Fig. 7 for details). Also a
two dimensional case is presented for solving the problem of the square plate in the
latter part of this chapter:

LR

0
.� Qu;x/ dx D 0 (78)

Z L

0



.X � �/ Q"p C S Q"p

;x

�
dx C M

I Q"
p
xDL � M

I Q"
p
xD0 D 0 (79)

where the arbitrary virtual fields Qu and Q"p are assumed to be kinematically
admissible weighting functions in the sense that QuxD0 D QuxDL D 0. (In the case
of micro-clamped boundary condition, Q"

p
xD0 D Q"

p
xDL D 0 is imposed at the grain

boundaries to enforce the complete blockage of dislocations at the interface. In the
case of micro-free boundary condition, on the other hand, the dislocations are free
to move across the interface, which in turn, the present grain boundary flow rule is
imposed.)

The user-element subroutine UEL in the commercial finite element package
ABAQUS/standard (2012) is presented in this chapter in order to numerically solve
the weak forms of the macroscopic and microscopic force balances, Eqs. 78 and
79, respectively. In this finite element solution, the displacement field u and the
plastic strain field "p are discretized independently and both of the fields are taken
as fundamental unknown nodal degrees of freedom. In this regard, the displacement
field and corresponding strain field ", and the plastic strain field and corresponding
plastic strain gradient field "

p
;x can be obtained by using the interpolation as follows:

u.x/ D

nuX

�D1

N
�
uU �

u ".x/ D
@u.x/

@x
D

nuX

�D1

N
�
u;xU �

u (80)

"p.x/ D
n"pP

�D1

N
�
"pE �

"p "
p
;x.x/ D @"p.x/

@x
D

n"pP

�D1

N
�
"p;xE �

"p (81)

where N
�
u and N

�
"p are the shape functions, and U �

u and E �
"p are the nodal values of

the displacements and the plastic strains at node � , respectively. The terms nu and
n"p represent the number of nodes per a single element for the displacement and the
plastic strain, respectively. (If a one-dimensional three-noded quadratic element is
employed, nu and n"p are set up as three. On the other hand, these parameters are
set up as two in the case that a one-dimensional two-noded linear element is used. It
should be noted that nu and n"p do not necessarily have to be same as each other in
the present finite element implementation, even though both the displacement field
and the plastic strain fields are calculated by using the standard isoparametric shape
functions.)

Substituting Eqs. 80 and 81 into Eqs. 78 and 79 give the nodal residuals for the
displacement ru and the plastic strain r"p for each finite element el as follows:
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.ru/� D

Z

el

�
�N�

u;x

�
dx (82)

.r"p /� D

Z

el

h
.X � �/N

�
"p C SN�

"p ;x

i
dx C M

I
N

�
"p (83)

where the term M
I
N

�
"p is applied only for the nodes on the interface which is at

x D 0 and x D L.
The global coupled system of equations, (ru)� D 0 and .r"p /� D 0, are solved

using ABAQUS/standard (2012) based on the Newton-Raphson iterative scheme.
Occasionally, the modified Newton-Raphson method, referred to as quasi Newton-
Raphson method, is employed in the case that the numerical solution suffers a
divergence during the initial increment immediately after an abrupt change in
loading. The Taylor expansion of the residuals with regard to the current nodal
values can be expressed by assuming the nodal displacement and the plastic strain
in iteration — as U —

u and E —
"p , respectively, as follows:

�
rujU —C1
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�

�
D
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u ;E—
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(85)

where 	U �
u D

�
U —C1
u

�

�
�
�
U —
u

�

�
, 	E �

"p D
�
E —C1

"p

�

�
�
�
E —

"p

�

�
, and

O
��

	U �
u

�2

;
�
	E �

"p

�2
�

are the big O notation to represent the terms of higher

order than the second degree. The residual is ordinarily calculated at the end of
each time step, and the values of the nodal displacements and the plastic strains are
updated during the iterations. The increments in nodal displacements and the plastic
strains can be computed by solving the system of linear equations shown in Eq. 86
with the Newton-Raphson iterative method:
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where Kel is the Jacobian (stiffness) matrix that needs to be defined in the user-
subroutine for each element.

From Eqs. 84 and 85 along with the discretization for the displacements given
by Eq. 80 and the plastic strains given by Eq. 81 at the end of a time step, and the
functional forms of the energetic and dissipative higher order stresses defined in the
previous sections, the Jacobian matrix for the case of the SGP model with Sdis

ijk ¤ 0

can be obtained as follows:

Kel
uu D �

@ru

@U �
u

ˇ̌
ˇ̌
U —
u

D �

Z

el

�
EN

�
u;xN

�
u;x

�
dx (87)
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Z
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EN

�
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�
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�
dx (89)

(90)

where 	t is a time step. The Jacobian matrix for the other case, i.e.
�
Kel

"p"p

�
Sdis

ijkD0
,

can be obtained by setting `dis D 0 in Eq. 90. The interfacial terms in
�
Kel

"p"p

�
Sdis

ijk¤0

and
�
Kel

"p"p

�
Sdis

ijkD0
are applied only for the nodes on the interface which is at x D 0

and x D L in this chapter.

Experimental Validation of the Strain Gradient Plasticity Model

In this section, the present SGP model and corresponding finite element code by
Voyiadjis and Song (2017) are validated by comparing with the experimental results
from three sets of size effect experiments. In addition, the comparison between the
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SGP model by Voyiadjis and Song (2017) and Voyiadjis and Faghihi (2014) is car-
ried out to show the increase in accuracy of the model by Voyiadjis and Song (2017).
To examine the applicability of the present finite element implementation to the var-
ious kinds of materials, it is considered that each set of three experiments involves
the three different materials, viz. aluminum (Al), copper (Cu), and nickel (Ni).

Haque and Saif (2003) developed Micro-Electro Mechanical Systems (MEMS)-
based testing techniques for uniaxial tensile testing of nanoscale freestanding Al
thin films to explore the effect of strain gradient in 100 nm, 150 nm, and 485 nm
thick specimens with average grain size of 50 nm, 65 nm, and 212 nm, respectively.
The specimens with 99.99% pure sputter-deposited freestanding Al thin films are
10 
m wide and 275 
m long. All experiments are carried out in situ in SEM and
the stress and strain resolutions for the tests are set 5 Mpa and 0.03%, respectively.
In particular, the comparison between the present SGP model by Voyiadjis and Song
(2017) and Voyiadjis and Faghihi (2014) is carried out to show the increase in
accuracy of the present model. The calibrated material parameters as well as the
general material parameters for the Al are presented in Table 1, and the numerical
results from both the present model by Voyiadjis and Song (2017) and Voyiadjis
and Faghihi (2014) are shown in Fig. 2 in conjunction with the experimental data of
Haque and Saif (2003). As it is clearly shown in this figure, the size effect: Smaller is
Stronger is observed on the stress-strain curves of the Al thin films. Furthermore, the
calculated results of the present SGP model by Voyiadjis and Song (2017) display a

Table 1 The general and calibrated material parameters used for the validation of the proposed
strain gradient plasticity model (Reprinted with permission from Voyiadjis and Song 2017)

General Aluminum Copper Nickel
E (GPa) Elastic modulus for isotropic

linear elasticity
110 70 115

G (GPa) Shear modulus for isotropic linear
elasticity

48 27 44

� (g cm�3) Density 8.960 2.702 8.902
c3(J/g K) Specific heat capacity at constant

stress
0.385 0.910 0.540

Calibrated Aluminum Copper Nickel
� y (MPa) Yield stress 195 700 950
h (MPa) Hardening material parameter 600 1,700 3,500

0

�
s�1

�
Reference effective plastic strain
rate

0.04 0.04 0.04

r Nonlinear hardening material
parameter

0.6 0.2 0.2

m Non-negative rate sensitivity
parameter

0.05 0.05 0.05

Ty (
ı

K) Thermal material parameter 1,358 933 890
n Temperature sensitivity parameter 0.3 0.3 0.3
`en (
m) Energetic length scale 1.5 (1.0 
m) 0.9 (100 nm) 1.0
`dis (
m) Dissipative length scale 2.5(1.0 
m) 8.0 (100 nm) 0.1
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Fig. 2 The validation of the present strain gradient plasticity model by comparing the numerical
results from the present model by Voyiadjis and Song (2017) with those from Voyiadjis and
Faghihi (2014) and the experimental measurements from Haque and Saif (2003) on the stress-
strain response of the sputter-deposited Al thin films (Reprinted with permission from Voyiadjis
and Song 2017)

Fig. 3 Schematic representation of the plane strain bulge test technique presented by Xiang and
Vlassak (2006). The stress-strain response of either a single material membrane or a stack of mul-
tiple material membranes adhered on a rigid Si frame is able to be obtained by using the following
equations: � DP(d2 C 	2)/2t	 and" D "r C f(d2 C 	2)/2d	g arcsin(2d	/d2 C 	2) � 1 where "r
is a residual strain in the membrane (Reprinted with permission from Voyiadjis and Song 2017)

tendency to be more coincident to the experimental data than those of Voyiadjis and
Faghihi (2014).

Xiang and Vlassak (2006) investigated the size effects with a variety of film
thicknesses on the plastic behavior of the freestanding electroplated Cu thin films by
performing the plane strain bulge test. In this plane strain bulge test, the rectangular
freestanding membranes surrounded by a rigid silicon (Si) frame are deformed in
plane strain by applying a uniform pressure to one side of the membrane as shown
in Fig. 3. The displacement and pressure resolutions for this bulge tests system are
0.3 
m and 0.1 kpa, respectively.
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As can be seen in the work of Xiang and Vlassak (2006), the stress-strain curves
of the Cu thin films with a passivation layer on both surfaces clearly show the size
effects due to the presence of a boundary layer with high dislocation density near
the film-passivation layer interfaces. In this sense, the bulge test of electroplated Cu
thin films with both surfaces passivated by 20 nm of titanium (Ti) is considered here
for the experimental validation of the present SGP model. In order to describe the
passivation effect, the microclamped condition, which causes the dislocations to be
completely blocked at the grain boundary, is imposed at both surfaces of the Cu thin
films. Meanwhile, the experiments are performed with the various thicknesses of the
Cu thin films of 1.0 
m, 1.9 
m, and 4.2 
m. The average grain sizes in all cases
are given by 1.5 ˙ 0.05 
m, 1.51 ˙ 0.04 
m, and 1.5 ˙ 0.05 
m, respectively,
which mean almost equal to each other.

The calibrated and general material parameters for the copper are presented in
Table 1, and the comparison between the experimental measurements from the bulge
tests and the calculated results from the present SGP model by Voyiadjis and Song
(2017) is shown in Fig. 4. As it is clearly shown in this figure, the size effects
according to the variation of the Cu thin film thicknesses is well observed in both
the present SGP model and the experimental work of Xiang and Vlassak (2006).
Moreover, the numerical results of the present model by Voyiadjis and Song (2017)
are in good agreement with the experimental measurements.

Han et al. (2008) developed the microscale tensile testing system, which is
composed of a high temperature furnace, a micro motor actuator and the Digital

Fig. 4 The validation of the present strain gradient plasticity model by comparing to the
experimental measurements from Xiang and Vlassak (2006) on the stress-strain response of the
electroplated Cu thin films with the passivated layers on both sides (Reprinted with permission
from Voyiadjis and Song 2017)
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Image Correlation (DIC) system, for evaluating the mechanical properties of the
Ni thin films at high temperatures. Dogbone-shaped specimens used in their
experiments were made by Micro-electro mechanical system (MEMS) processes
and the primary dimensions of the specimen are shown in Fig. 5.

The calibrated material parameters as well as the general parameters for Ni are
presented in Table 1. The results of the microscale tensile tests at four different
temperatures, i.e., 25 ıC, 75 ıC, 145 ıC, and 218 ıC, and corresponding numerical
results from the present model (Voyiadjis and Song 2017) are shown in Fig. 6. As
shown in this figure, it is clear from both the experimental and numerical results that

Fig. 5 The specimen dimensions for the experimental validation (Reprinted with permission from
Voyiadjis and Song 2017)

Fig. 6 The validation of the present strain gradient plasticity model (Voyiadjis and Song 2017)
by comparing the numerical results with the model by Voyiadjis and Faghihi (2014) and the
experimental measurements from Han et al. (2008) on the stress-strain response of Ni thin films
(Reprinted with permission from Voyiadjis and Song 2017)
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the Young’s modulus is not affected by variations in temperature, while the yield and
tensile strength decrease as the specimen temperature increases. In addition, Fig. 6
clearly shows that the Bauschinger effect is not affected very much by variations in
the specimen temperature. Meanwhile, the calculated results of the present model
(Voyiadjis and Song 2017) compare better to the experimental data than those of
Voyiadjis and Faghihi (2014) (Fig. 6).

Stretch-Passivation Problem

The numerical solutions for the stretch-passivation problem with the two cases of
the SGP model are presented in this section. The frameworks presented in this
chapter represent the nonlocal flow rules in the form of partial differential equations
when the microscopic force balances are integrated with the thermodynamically
consistent constitutive equations. To interpret and analyze the physical phenomena
characterized by the current frameworks is very complicated; in this sense, a
one-dimensional numerical solution is presented first and extended to the two-
dimensional one later in this chapter.

An initially uniform single grain with the size of L is used with two grain
boundaries as shown in Fig. 7. The grain is assumed to be infinitely long along
the x-direction and initially homogeneous; therefore, the solution depends only
on the x-direction. In the one-dimensional stretch-passivation problem, the grain
is deformed into the plastic regime by uniaxial tensile stretch with no constraint
on plastic flow at the grain boundaries. At a certain point, the plastic flow
is then constrained by blocking off the dislocations from passing out of the
grain boundary, which leads the further plastic strain not to occur at the grain
boundary.

Fig. 7 One-dimensional model for a single grain with two grain boundaries (Reprinted with
permission from Voyiadjis et al. 2017)
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Numerical Results

In this section, an extensive numerical work is carried out based on the validated
code in order to compare the results from the aforementioned two cases of the
SGP model and to analyze the characteristics of the stress jump phenomenon.
This section is largely composed of four subparts. In the first part, the occurrence
of the stress jump phenomenon under the stretch-surface passivation condition is
introduced in conjunction with three experiments used in section “Experimental
Validation of the Strain Gradient Plasticity Model.” The second part is focused on
indicating that the results are contrary to each other for the two cases of the SGP
model. An extensive parametric study is also conducted in terms of the various
material parameters, and the evolution of the free energy involving the stored
energy of cold work and the dissipation potentials during the plastic deformation
are discussed in the third part. In the last part, the two-dimensional simulation is
also given to examine the gradient and grain boundary effect, the mesh sensitivity
of the two-dimensional model, and the stress jump phenomenon.

The numerical results on the stress-strain behaviors of Al and Cu thin films
for the SGP model with the corresponding dissipative microstress quantities are
presented in Figs. 8 and 9, respectively. In both simulations, a significant stress jump

Fig. 8 A finite stress jump due to infinitesimal changes in the plastic strain. The numerical
implementation of the SGP model with the dissipative potential dependent on P"

p

ij;k , i.e., Sdis
ijk ¤ 0,

is carried out based on the experiments of Haque and Saif (2003) with the various thicknesses of
the Al thin films of 100 nm, 150 nm, and 485 nm (Reprinted with permission from Voyiadjis and
Song 2017)
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Fig. 9 A finite stress jump due to infinitesimal changes in the plastic strain. The numerical
implementation of the SGP model with the dissipative potential dependent on P"

p

ij;k , i.e., Sdis
ijk ¤ 0,

is carried out based on the experiments of Xiang and Vlassak (2006) with the various thicknesses
of the Cu thin films of 1.0 
m, 1.9 
m, and 4.2 
m (Reprinted with permission from Voyiadjis
and Song 2017)

is observed at the onset of passivation. In particular, it is shown that the very first
slopes immediately after the passivation increase as the film thicknesses decrease,
viz. the dissipative length scales increase, in both simulations. Thus, the stress jump
phenomenon is revealed to be highly correlated with the dissipative higher order
microstress quantities Sdis

ijk .
Figure 10 shows the numerical results on the stress-strain behavior of Ni thin

films for the SGP model with the dissipative microstress quantities. As shown in
this figure, the magnitudes of the stress jump are less than expected in all cases since
the dissipative length scale `dis is set 0.1 which is much smaller than the energetic
length scale `en D 1.0. Nevertheless, the very first slopes immediately after the pas-
sivation are calculated as E25°C D 58.0 GPa, E75°C D 59.2 GPa, E145°C D 72.6 GPa,
and E218°C D 105.0 GPa, respectively, and this shows the responses immediately
after the passivation gets gradually closer to the elastic response ED 115 GPa as
the temperature increases.

The numerical implementations to specify whether or not the stress jump phe-
nomenon occurs under the stretch-surface passivation have been hitherto conducted
within the framework of the SGP model with Sdis

ijk ¤ 0. Hereafter, the numerical
simulations are given more focus on the direct comparison of the material response
on the stress-strain curves between the two cases of the SGP models. The material
parameters used for these implementations are presented in Table 2.
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Fig. 10 A finite stress jump due to infinitesimal changes in the plastic strain. The numerical
implementation of the SGP model with the dissipative potential dependent on P"

p

ij;k , i.e., Sdis
ijk ¤ 0,

is carried out based on the experiments of Han et al. (2008) at the various temperatures of the Ni
thin films of 25 ıC, 75 ıC, 145 ıC, and 218 ıC. The circles on the curve indicate the passivation
point (Reprinted with permission from Voyiadjis and Song 2017)

Table 2 Material parameters for the numerical simulation (Reprinted with permission from
Voyiadjis and Song (2017))

For grain (bulk)
E Elastic modulus for isotropic linear elasticity 100 (GPa)
� y Yield stress 100 (MPa)
h Hardening material parameter 200 (MPa)

0 Reference effective plastic strain rate 0.04
r Nonlinear hardening material parameter 0.1
m Non-negative rate sensitivity parameter 0.3
T0 Initial temperature 77 (K)
Ty Thermal material parameter 1,000 (K)
n Temperature sensitivity parameter 0.6
� Density 0.8570 g • cm�3

c" Specific heat capacity at constant stress 0.265 (J/g K)
For grain boundary (interface)
� I

y Interfacial Yield stress 150 (MPa)
hI Interfacial hardening material parameter 300 (MPa)

I
0 Interfacial reference effective plastic strain rate 0.04

nI Interfacial temperature sensitivity parameter 0.1
mI Interfacial rate sensitivity parameter 1.0
TIy Interfacial thermal material parameter 700 (K)
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Fig. 11 Comparison of the results from two different cases of the present SGP model with
the dissipation potential dependent on P"

p

ij;k , i.e., Sdis
ijk ¤ 0; and with the dissipative potential

independent on P"
p

ij;k , i.e., Sdis
ijk D 0. The results for the latter case are computed with three different

values of energetic length scales `en D 0.1 , 0.2 and 0.3 (Reprinted with permission from Voyiadjis
and Song 2017)

Figure 11 clearly shows this point by comparing the results from the two cases.
The behavior of the SGP model with Sdis

ijk ¤ 0 is in stark contrast with that of the

SGP case with Sdis
ijk D 0 after the passivation point. A significant stress jump with

the slope Epassivation similar to the modulus of elasticity E is shown in the SGP case
with Sdis

ijk ¤ 0. On the other hand, no elastic stress jump is observed in the SGP

case with Sdis
ijk D 0. This result is exactly in agreement with the prediction in Fleck

et al. (2014, 2015). In the case that the dissipative potential is independent of P"
p

ij;k ,
the contribution from the plastic strain gradients is entirely energetic as can be seen
in section “Dissipation Potential and Dissipative Thermodynamic Microstresses.”
Both the increase in the yield strength in the early stages of passivation and
subsequent hardening due to the effects of the plastic strain gradient are observed
along with the increase of the energetic length scale as shown in Fig. 11.

The comparison of the results from the case of the present SGP model by
Voyiadjis and Song (2017) with the dissipative potential dependent on P"

p

ij;k is shown
in Fig. 12a with various dissipative length scales, i.e., `dis D 0.1 , 0.3 , 0.5 , 1.0 ,
1.5 , and 2.0. As can be seen in this figure, the magnitude of the stress jump
significantly increases as the dissipative length scale increases, on the other hand,
the stress jump phenomenon disappears as the dissipative length scale tends to zero.
This is because the dissipative higher order microstress quantities Sdis

ijk , which is
the main cause of the stress jump, vanishes when the dissipative length scale `dis is
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Fig. 12 Comparison of the results from the case of the present SGP model with the dissipative
potential dependent on P"

p

ij;k , i.e., Sdis
ijk ¤ 0: (a) with various dissipative length scales (`dis D 0.1 ,

0.3 , 0.5 , 1.0 , 1.5 , and 2.0) and (b) for various passivation points (" D 20.2%, 0.3%, 0.4%,
0.5%, and 0.6% with identical energetic and dissipative length scales) (Reprinted with permission
from Voyiadjis and Song 2017)
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equal to zero. It is worth noticing that the very first behavior immediately after the
passivation indicates a substantial difference with varying dissipative length scales.
As the dissipative length scales increase from 0.1 to 2.0, the corresponding slopes
of the very first response E also increase from 13.3 to 198.4 GPa. The main reason
of this phenomenon in terms of the dissipative length scale is also because the
dissipative higher order microstress quantities Sdis

ijk sharply increases with increasing
`dis.

The comparison of the results from the case of the SGP model with the dissipative
potential dependent on P"

p

ij;k is shown in Fig. 12b for various passivation points. The
energetic and dissipative length scales are set identical in all cases. The magnitudes
of the stress jump with the magnitudes of " D 20.2%, 0.3%, 0.4%, 0.5%, and
0.6% are obtained as 13.8 MPa, 16.2 MPa, 18.6 MPa, 21.1 MPa, and 23.5 MPa,
respectively, and the values normalized by the value of the magnitude " D 20.2% are
calculated as 1.00, 1.17, 1.35, 1.52, and 1.70, respectively. The normalized higher
order microstress quantities Sdis

ijk with the magnitudes of " D 20.2%, 0.3%, 0.4%,
0.5%, and 0.6% are obtained as 1.00, 1.17, 1.30, 1.40, and 1.48, respectively, as
shown in Fig. 12b. Thus, it is worth noticing that the stress jump phenomenon
is highly correlated with the dissipative higher order microstress quantities Sdis

ijk .
In addition, the very first responses immediately after the passivation also make
a substantial difference with varying passivation points. The slopes of the very
first responses for the magnitudes of " D 0.2%, 0.3%, 0.4%, 0.5%, and 0.6%
are calculated as 64.8 GPa, 87.1 GPa, 109.7 GPa, 132.5 GPa, and 155.5 GPa,
respectively.

The effects of various parameters on the mechanical behavior of the stretch-
surface passivation problem are investigated by using a one-dimensional finite
element. The numerical results reported in this parametric study are obtained by
using the values of the material parameters in Table 2 unless it is differently
mentioned.

The stress-strain graphs for various values of the hardening material parameter
h are shown in Fig. 13a with two different cases of the SGP model. For the
case with Sdis

ijk ¤ 0, the slopes of the very first response immediately after the
passivation are obtained as Eh D 109.7 GPa in all simulations, and the corresponding
magnitudes of the stress jump for each simulation are, respectively, obtained as
� 0

hD100MPa D 18:6 MPa, � 0
hD200MPa D 18:6 MPa, � 0

hD300MPa D 18:7 MPa,
� 0

hD400MPa D 18:7 MPa, and � 0
hD500MPa D 18:7 MPa. There is little difference

between all the simulations. For the case with Sdis
ijk D 0, no stress jump phenomena

are observed in all simulations.
The effects of the nonnegative rate sensitivity parameter m on the stress-strain

behavior for the two cases of the SGP model are represented in Fig. 13b. It is clearly
shown in this figure that by increasing the rate sensitivity parameter, the stress jump
phenomena are significantly manifested in the case of the SGP model with Sdis

ijk ¤ 0

in terms of both the slope of the very first response immediately after the passivation
and the corresponding magnitude of the stress jump. In the case of the SGP model
with Sdis

ijk D 0, on the other hand, the material behavior is not affected a lot by

the rate sensitivity parameter m. In the SGP model with Sdis
ijk ¤ 0, the slopes of
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the very first response immediately after the passivation (Em) and the corresponding
magnitudes of the stress jump .� 0

m/ are obtained as Em D 0.2 D 96.7 GPa, Em D 0.25 D

103.0 GPa, Em D 0.3 D 109.7 GPa, Em D 0.35 D 116.5 GPa and � 0
mD0:2 D 14:8 MPa,

� 0
mD0:25 D 16:7 MPa, � 0

mD0:3 D 18:6 MPa, � 0
mD0:35 D 20:6 MPa, respectively.

Thus, it is clearly shown that both the slope of the very first response immediately
after the passivation and the corresponding magnitude of the stress jump increase as
the nonnegative rate sensitivity parameter m increases.

Fig. 13 (continued)
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Fig. 13 (continued)
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Fig. 13 Comparison of the results from the case of the present SGP model with the dissipative
potential dependent on P"

p

ij;k , i.e., Sdis
ijk ¤ 0 with the effects of: a the hardening material parameter

h (100 MPa, 200 MPa, 300 MPa, 400 MPa, and 500 MPa), b the nonnegative rate sensitivity
parameter m (0.2, 0.25, 0.3, and 0.35), c the temperature sensitivity parameter n (0.4, 0.6, 0.8,
and 1.0), d the thermal material parameter Ty (500ıK, 1,000ıK, 1,500ıK, and 2,000ıK), e the
interfacial temperature sensitivity parameter nI (0.1, 0.2, 0.3 and 0.5), f the interfacial thermal
material parameter T I

y (600ıK, 700ıK, 1,000ıK, and 11,300ıK) (Reprinted with permission from
Voyiadjis and Song 2017)
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The effects of the temperature sensitivity parameter n on the stress-strain
behavior for the two cases of the SGP model are represented in Fig. 13c. It is clearly
shown in this figure that the yield stress significantly increases as the temperature
sensitivity parameter n increases, while the strain hardening is not influenced a
lot by this parameter. This is because the temperature affects the strain hardening
mechanism through the dislocation forest barriers, while the backstress, i.e., ener-
getic gradient hardening, is almost independent of the temperature. Meanwhile, the
temperature sensitivity parameter n significantly affects the stress-strain response in
the case of the SGP model with Sdis

ijk ¤ 0. In this case, the slopes of the very first
response immediately after the passivation are obtained as En D 0.4 D 112.5 GPa,
En D 0.6 D 109.7 GPa, En D 0.8 D 107.8 GPa, and En D 1.0 D 106.6 GPa, and the
corresponding magnitudes of the stress jump are obtained as � 0

nD0:4 D 16:6 MPa,
� 0

nD0:6 D 18:6 MPa, � 0
nD0:8 D 19:7 MPa, and � 0

nD1:0 D 20:4 MPa, respectively.
Thus, in contrast with the rate sensitivity parameter m, the slope of the very
first response immediately after the passivation decreases, while the corresponding
magnitude of the stress jump increases as the temperature sensitivity parameter n
increases.

The effects of the thermal material parameter Ty on the stress-strain behavior
with the two cases of the SGP model are represented in Fig. 13d. Similar to the
temperature sensitivity parameter n, the yield stress significantly increases as the
thermal material parameter Ty increases, while the strain hardening is not influenced
a lot by this parameter. In the case of the SGP model with Sdis

ijk ¤ 0, the slopes of the
very first response immediately after the passivation .ETy / and the corresponding
magnitudes of the stress jump .� 0

Ty
/ are obtained as ETyD500ıK D 111:9 GPa,

ETyD1000ıK D 109:7 GPa, ETyD1500ıK D 108:7 GPa, ETyD2000ıK D 108:1 GPa
and � 0

TyD500ıK
D 17:1 MPa, � 0

TyD1000ıK
D 18:6 MPa, � 0

TyD1500ıK
D 19:2 MPa,

� 0
TyD2000ıK

D 19:6 MPa, respectively. These results from the simulations with
various thermal material parameter Ty are very similar to those with the temperature
sensitivity parameter n, in the sense that the slope of the very first response
immediately after the passivation decreases, while the corresponding magnitude of
the stress jump increases as the temperature sensitivity parameter n increases.

The effects of the interfacial temperature sensitivity parameter nI on the stress-
strain behavior for the two cases of the SGP model are presented in Fig. 13e. It
is clearly shown in this figure that increasing interfacial temperature sensitivity
parameter makes the grain boundary (interface) harder and results in less variation
of the stress jump in both cases of the SGP model with Sdis

ijk ¤ 0 and Sdis
ijk D

0. In the case of the SGP model with Sdis
ijk ¤ 0, the slopes of the very first

response immediately after the passivation are obtained as EnI D0:1 D 109:7 GPa,
EnI D0:2 D 80:4 GPa, EnI D0:3 D 70:3 GPa, and EnI D0:5 D 62:1 GPa, and the
corresponding magnitudes of the stress jump are obtained as � 0

nI D0:1
D 18:6 MPa,

� 0
nI D0:2

D 17:6 MPa, � 0
nI D0:3

D 17:1 MPa, and � 0
nI D0:5

D 16:4 MPa, respectively.
From these results, it is easily observed that the slope of the very first response after
the passivation and the corresponding magnitude of the stress jump increase as the
interfacial temperature sensitivity parameter nI decreases. In addition, the variations
along with the different cases are shown to be more drastic by decreasing the
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interfacial temperature sensitivity parameter nI . Similarly, for the case of the SGP
model with Sijk D 0, decreasing the interfacial temperature sensitivity parameter
makes the variation more radically as shown in Fig. 13e.

The effects of the interfacial thermal material parameter T I
y on the stress-strain

behavior for the two cases of the SGP model are represented in Fig. 13f. As can be
seen in this figure, the overall characteristic from the simulation results with various
T I

y is similar to those with various nI in the sense that increasing T I
y makes the grain

boundary (interface) harder and results in less variation of the stress jump in both
cases of the SGP model with Sdis

ijk ¤ 0 and Sdis
ijk D 0. In the case of the SGP model

with Sdis
ijk ¤ 0, the slopes of the very first response immediately after the passivation

are obtained as ET I
y D600ıK D 114:0 GPa, ET I

y D700ıK D 109:7 GPa, ET I
y D1000ıK D

101:7 GPa, and ET I
y D1300ıK D 97:1 GPa, and the corresponding magnitudes of

the stress jump are obtained as � 0
T I

y D600ıK
D 18:7 MPa, � 0

T I
y D700ıK

D 18:6 MPa,

� 0
T I

y D1000ıK
D 18:4 MPa, and � 0

T I
y D1300ıK

D 18:3 MPa, respectively.

Based on the calibrated model parameters of Ni (Table 1), the evolution of the
various potentials during the plastic deformation are investigated with four different
temperatures, i.e., 25 ıC, 75 ıC, 145 ıC, and 218 ıC, in this section. Figure 14 shows
(a) the variation of the plastic strain dependent free energies .‰d

1 ; ‰
d;R
1 and‰

d;NR
1 /,

(b) plastic strain dependent dissipation rate D1 (i.e., plastic strain dependent term in
Eq. 58), (c) plastic strain gradient-dependent free energy .‰d

2 / and dissipation rate
D2 (i.e., plastic strain gradient dependent term in Eq. 58), and (d) amount of stored
energy .‰d

1 C ‰d
2 / and dissipated energy .D D

R
.D1 C D2/dt/.

As can be seen in Fig. 14a, both free energies ‰d
1 and ‰

d;NR
1 decrease as the

temperature increases. The stored energy of cold work ‰
d;R
1 is also presented in this

figure. One can observe that ‰d
1 and ‰

d;NR
1 have a strong temperature dependency,

while the stored energy of cold work has no variation with varying temperatures. In
addition, the stored energy of cold work tends to saturate after some critical point
since the stored energy of cold work is proportional to the dislocation density that
remains constant after the aforementioned critical point. Meanwhile, it is shown in
Fig. 14b,c that rates of dissipation, D1 and D2, are dependent on the temperature
such that both D1 and D2 increase with decreasing temperatures while ‰d

2 shows no
temperature dependency. The amount of stored and dissipated energies is shown in
Fig. 14d. As it is shown in this figure, the amount of stored energy is larger than the
dissipated energy and both decrease as the temperature increases.

Lastly, the one-dimensional finite element implementation is extended to the
two-dimensional one. The simple tension problem of the square plate is solved to
study the strain gradient effects, the mesh sensitivity of the model with the three
cases according to the number of elements (100, 400, and 1,600 elements), and the
stress jump phenomena under the abrupt surface passivation. Each edge of the plate
has a length of w and the material parameters in Table 2 are used again for these
simulations.

Figure 15a, b shows the stress-strain behavior of the plate with the
various energetic length scales (`en/wD 0.0, 0.1, 0.3, 0.5, 0.7, and 1.0 with
`dis/wD 0.0) and dissipative length scales (`dis/wD 0.0, 0.1, 0.2, 0.3, 0.4,



586 G. Z. Voyiadjis and Y. Song

2.0E+07

1.8E+07

a

1.4E+07

1.6E+07

1.2E+07

1.0E+07

8.0E+06

6.0E+06

4.0E+06

2.0E+06

0.0E+00
0.00 0.01 0.02 0.03

PLASTIC STRAIN

F
R

E
E
 E

N
E

R
G

Y
 (

J/
m

3 )

0.04

25°C

Stored energy
of Cold work

75°C

145°C

218°C

Y d
1,R

Y d
1

Y d
1,NR

0.05

0.00 0.01 0.02 0.03

PLASTIC STRAIN

0.04 0.05

b

0.0E+00

1.0E+00

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

7.0E+05

R
A

T
E
 O

F
 D

IS
S

IP
A

T
IO

N
 (

J/
s 

-m
3 ) 25°C

75°C

145°C

218°C

c 5.0E+02

4.5E+02

4.0E+02

3.5E+02

3.0E+02

2.5E+02

2.0E+02

1.5E+02

1.0E+02

5.0E+01

0.0E+00
0.000 0.002 0.004 0.006 0.008 0.010 0.012

1.0E+07

9.0E+06

8.0E+06

7.0E+06

6.0E+06

5.0E+06

4.0E+06

3.0E+06

2.0E+06

1.0E+06

0.0E+00

R
A

T
E
 O

F
 D

IS
S

IP
A

T
IO

N
 (

J/
s 

-m
3 )

F
R

E
E
 E

N
E

R
G

Y
 (

J/
m

3 )

PLASTIC STRAIN GRADIENT

25°C

75°C

145°C

218°C

D2

Y d
2

Fig. 14 (continued)



16 Higher Order Thermo-mechanical Gradient Plasticity Model:: : : 587

d

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

3.0E+07

2.5E+07

2.0E+07

1.5E+07

1.0E+07

5.0E+06

0.0E+00

P
O

T
E

N
T

IA
LS

 (
J/

 m
3 )

TIMES (s)

25°C

75°C

145°C

D

25°C
75°C
145°C
218°C

218°C

Y d

Fig. 14 The evolution of free energy and dissipation potentials based on the calibrated model
parameters (Han et al. 2008): (a) plastic strain-dependent free energy, (b) plastic strain-dependent
dissipation rate, (c) plastic strain gradient-dependent free energy and dissipation rate (The primary
y-axis on the LHS: D2, the secondary y-axis on the RHS: ‰d

2 ), and (d) amount of stored and
dissipated energies (Reprinted with permission from Voyiadjis and Song 2017)

and 0.5 with `en/wD 0.0), respectively. In common with the one-dimensional
simulations, the numerical results show the energetic hardening as the energetic
length scale increases as well as the dissipative strengthening as the dissipative
length scale increases.

Figure 15c shows the grain boundary effect of the square plate. It is well known
that the grain boundary blocks the dislocation movement, which, in turn, leads to the
strengthening of the material. The energetic and dissipative length scales reported
in these simulations are set zero and the microclamped condition is imposed at the
grain boundary, which is indicated by the bold line in the figure. The strengthening
caused by increasing the grain boundary area is well observed as expected. For the
simulations presented in Fig. 15a–c, 20 � 20 elements are used.

The mesh sensitivity of the two-dimensional numerical model is examined in
terms of the energetic and dissipative length scales with 10 � 10, 20 � 20 and
40 � 40 mesh elements in Fig. 15d, e, respectively. Figure 15d shows the stress-
strain behavior of the plate with the various energetic length scales (`en/wD 0.1, 0.5
and 1.0 with `dis/wD 0) compared to those in the absence of the gradient effects
(`en/wD `dis/wD 0). The numerical results without the gradient terms significantly
show the mesh sensitivity as expected, while for all nonzero values of `en/w, the
numerical solutions show the mesh-independent behavior. In addition, Fig. 15d
also shows the energetic hardening as the energetic length scale increases. The
mesh-independent behavior is also observed with varying dissipative length scales
`dis/wD 0.1 , 0.2 and 0.3 with `en/wD 0 in Fig. 15e as with the case for the
energetic length scale. The dissipative strengthening is also observed in this figure.

The stress jump phenomenon hitherto extensively studied in the one-dimensional
finite element implementation is also examined for the two-dimensional simulation;
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Fig. 15 (continued)
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Fig. 15 (continued)
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Fig. 15 The stress-strain behavior of the square plate: (a) the energetic hardening, (b) the
dissipative strengthening, (c) the grain boundary effect, (d) the mesh sensitivity with varying
`en, (e) the mesh sensitivity with varying `dis, and (f) the stress jump phenomenon (Fig. 15c, f:
Reprinted with permission from Voyiadjis and Song (2017))
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20 � 20 elements with `en/wD 0.0 and `dis/wD 0.2 are used for this simulation.
Figure 15f shows the material behaviors of the unpassivated plate, the passivated
plate, and the plate abruptly passivated at some point. As can be seen in this figure,
the stress jump is significantly observed by the numerical results, which are identical
to the one-dimensional case.

Conclusions

In this chapter, a phenomenological thermodynamic-based higher order gradient
plasticity theory is presented and applied to the stretch-surface passivation problem
for investigating the material behavior under the nonproportional loading condition.
The thermodynamic potentials such as the Helmholtz free energy and the dissipation
potential are established based on the concepts of the dislocation interaction
mechanism and the thermal activation energy. The microstructural interface effect
between two grains is also incorporated into the formulation, such that the present
interfacial flow rule is able to account for the energy storage at the interface caused
by the dislocation pile up as well as the energy dissipation through the interface
caused by the dislocation transfer. The formulation is tested for two cases in the
presence of the dissipative higher order microstress quantities Sdis

ijk . In the first case,

the dissipation potential is dependent on the gradients of the plastic strain rate P"
p

ij;k ;

as a result, Sdis
ijk does not have a value of zero in this formulation. In the second case

the dissipation potential is independent of P"
p

ij;k , which in turn, Sdis
ijk does not exist.

It is noticed by Fleck et al. (2014, 2015) that Sdis
ijk always gives rise to the stress

jump phenomenon, which causes a controversial dispute in the field of SGP theory
with respect to whether it is physically acceptable or not, under the nonproportional
loading condition.

Prior to exploring the effect of the dissipative higher order microstress quantities
Sdis

ijk on the stress-strain behavior for the two cases of the SGP model with

and without Sdis
ijk , the present model and corresponding finite element code by

Voyiadjis and Song (2017) are validated by comparing with three sets of small-scale
experiments. Particularly, each set of three experiments involving Al, Cu, and Ni
are selected, respectively, to examine the applicability of the present finite element
implementation to the various kinds of materials. The first experiment, which was
performed by Haque and Saif (2003), is the uniaxial tensile testing of nanoscale
freestanding Al thin films to explore the effect of strain gradient in 100 nm, 150 nm,
and 485 nm thick specimens with average grain size of 50 nm, 65 nm, and 212 nm,
respectively. The results clearly show the size effect on the stress-strain curves of the
Al thin films; in addition, the calculated results of the present SGP model display a
tendency to be more coincident to the experimental data than those of Voyiadjis and
Faghihi (2014). For the second experimental validation, the experimental work of
Xiang and Vlassak (2006) on the size effect in electroplated Cu thin films with
various microscale thicknesses is selected since the effect of passivation on the
stress-strain behavior of the Cu thin film is also considered in their work. The
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stress-strain curves from the numerical results of the present SGP (Voyiadjis and
Song 2017) model are in good agreement with the experimental measurements. The
size effect according to the variation of the film thicknesses is also well observed
from the results. For the third experimental validation, the microtensile test on the
temperature effect on Ni thin films by Han et al. (2008) is employed since, in the
nano- or microsystems, the effect of the higher order gradient on temperature also
needs to be considered for the fast transient behavior. From both the experimental
and numerical results, it is shown that the Young’s modulus is not affected by
the variations in temperature, while the yield and tensile strength decrease as
the specimen temperature increases. The calculated results of the present model
(Voyiadjis and Song 2017) compare better to the experimental data than those of
Voyiadjis and Faghihi (2014).

The numerical simulation part is largely composed of four subparts. The
main purpose of the first part is to examine the occurrence of the stress jump
phenomenon under the stretch-surface passivation condition in conjunction with
the aforementioned three experiments. In all simulations, a stress jump is clearly
observed at the onset of passivation. The second part is carried out in order to clearly
show the results to be contrary to each other from the two cases of the SGP model.
The conclusion in this part is drawn such that a significant stress jump with the
slope Epassivation similar to the modulus of elasticity E is shown in the case of the
SGP model with Sdis

ijk ¤ 0, on the other hand, no elastic stress jump is observed in

the case of the SGP model with Sdis
ijk D 0. This result is exactly in agreement with

the predictions in Fleck et al. (2014, 2015).
In the third part, an extensive parametric study is presented in terms of the effects

of the dissipative length scale `dis, the onset point of passivation, the hardening
material parameter h, the nonnegative rate sensitivity parameter m, the temper-
ature sensitivity parameter n, the thermal material parameter Ty, the interfacial
temperature sensitivity parameter nI , and the interfacial thermal material parameter
T I

y on the stress-strain response for the two SGP cases, respectively. There are
a number of conclusions worth mentioning here, namely: (1) the magnitude of
the stress jump significantly increases as the dissipative length scale increases, on
the other hand, the stress jump phenomenon disappears as the dissipative length
scale comes closer to zero, (2) the slopes of the very first response E immediately
after the passivation also increase as the dissipative length scales increase, (3)
the stress jump phenomenon is highly correlated with the dissipative higher order
microstress quantities Sdis

ijk , in addition, the very first responses immediately after
the passivation also make a substantial difference with varying passivation points,
(4) the hardening material parameter h does not affect the stress jump significantly
in the case of the SGP model with Sdis

ijk ¤ 0, (5) both the slope of the very first
response immediately after the passivation and the corresponding magnitude of the
stress jump substantially increase as the nonnegative rate sensitivity parameter m
increases in the case of the SGP model with Sdis

ijk ¤ 0, (6) as the temperature-
related parameters for the bulk such as the temperature sensitivity parameter n and
the thermal material parameter Ty increase, the slope of the very first response
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immediately after the passivation decreases and the corresponding magnitude of
the stress jump increases in the case of the SGP model with Sdis

ijk ¤ 0, (7) the
slope of the very first response after the passivation, the corresponding magnitude
of the stress jump increases and the variations along with the cases are shown more
drastically by decreasing the temperature-related parameters for the interface, such
as the interfacial temperature sensitivity parameter nI and the interfacial thermal
material parameter T I

y in the case of the SGP model with Sdis
ijk ¤ 0, and finally (8)

no stress jump is observed in all cases with Sdis
ijk D 0.

Meanwhile, the plastic strain-dependent free energy accounting for the stored
energy of cold work is derived in this chapter by assuming that the stored energy
is related to the energy carried by dislocations. Accordingly, the variation of free
energies and dissipation potentials during the plastic deformation are investigated
with four different temperatures, i.e. 25 ıC, 75 ıC, 145 ıC, and 218 ıC. From the
numerical results, it is shown that the stored energy of cold work has no temperature
dependency; in addition, the stored energy of cold work tends to saturate after some
critical point since the stored energy of cold work is proportional to the dislocation
density that remains constant after the aforementioned critical point.

Lastly, the two-dimensional tension problem of the square plate (Voyiadjis and
Song 2017) is solved to examine the mesh sensitivity of the model. The effects of
the strain gradient and grain boundary are also studied. As expected, a strong mesh-
dependence stress-strain behavior is observed in the case of no gradient effects,
while the numerical results with the gradient effects show the mesh-independent
behavior. The energetic hardening, the dissipative strengthening, the grain boundary
strengthening, and the stress jump phenomena are well observed in common with
the results from the one-dimensional simulation.
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Abstract

This chapter considers advances over the past 15 years achieved by the authors
and coworkers on generalized crystal plasticity to address size and configuration
effects in dislocation plasticity at the micron scale. The specific approaches
addressed here focus on micropolar and micromorphic theories rather than
adopting strain gradient theory as the starting point, as motivated by the pio-
neering ideas of Eringen (Eringen and Suhubi 1964; Eringen and Claus Jr 1969;
Eringen 1999). It is demonstrated with examples that for isotropic elasticity and
specific sets of slip systems, a dislocation-based formulation of micropolar or
micromorphic type provides results comparable to discrete dislocation dynamics
and has much in common with the structure of Gurtin’s slip gradient theory
(Gurtin 2002; Gurtin et al. 2007).

Keywords
Micropolar · Strain gradient · GNDs · Crystal plasticity · Finite elements

Introduction

The collective behavior of dislocations in a single crystal can be described by
means of the continuum theory of dislocations. The material volume element is
assumed to contain a suitable density of dislocations for the continuum theory
of dislocations to be applicable. Nonhomogeneous plastic deformations induce
material and lattice incompatibilities that are resolved by a suitable distribution
of the dislocation density tensor field which can be interpreted as a second rank
statistical mean for a population of arbitrary dislocations inside a material volume
element (Kröner 1969; Cermelli and Gurtin 2001). Nye’s fundamental relation
linearly connects the dislocation density tensor to the lattice curvature field of the
crystal. This fact has prompted many authors to treat a continuously dislocated
crystal as a Cosserat continuum (Günther 1958; Kröner 1963; Schäfer 1969; Forest
et al. 2000). The Cosserat approach records only the lattice curvature of the crystal
but neglects the effect of the rotational part of the elastic strain tensor, which is a
part of the total dislocation density tensor (Cordero et al. 2010). Full account of
plastic incompatibility is taken in strain gradient plasticity theories, starting from
the original work by Aifantis (1984) up to the work of Gurtin (2002). Formulation
of crystal plasticity within the micromorphic framework is more recent and was
suggested by Clayton et al. (2005) for a large spectrum of crystal defects, including
point defects and disclinations. Limiting the discussion to dislocation density tensor
effects, also called geometrically necessary dislocation (GND) effects, Cordero et
al. (2010) showed, within a small deformation setting, how the micromorphic model
can be used to predict grain and precipitate size effects in laminate crystalline
materials. In particular, the micromorphic model is shown to deliver more general
scaling laws than conventional strain gradient plasticity. These models represent
extensions of the conventional crystal plasticity theory (cf. Teodosiu and Sidoroff
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1976) that accounts for single crystal hardening and lattice rotation but does not
incorporate the effect of the dislocation density tensor.

The layout of the chapter is as follows. Classical single crystal plasticity theory
is first recalled in section “Finite Deformation Kinematics” including the thermody-
namical framework and the definition of the continuum dislocation density tensor.
The Cosserat generalization of crystal plasticity is presented in section “Micropolar
Single Crystal Plasticity” with its relation to strain gradient plasticity. The section
“Applications: Comparison to 2D Discrete Dislocation Dynamics Simulations”
provides applications including a comparison between Cosserat constitutive laws
and results from discrete dislocation dynamics in the case of constrained thin films
in shear and bending.

Classical Single Crystal Plasticity

Finite Deformation Kinematics

The classical theory of finite deformation single crystal plasticity is based on a
multiplicative decomposition of the deformation gradient into elastic and plastic
parts,

F D FeFp (1)

where Fp describes the plastic deformation of the continuum that leaves the under-
lying lattice vectors unaltered and Fe describes the elastic stretching and rotation
of the lattice relative to this intermediate, isoclinic configuration. The deformation
gradient maps infinitesimal vectors from the reference to current configuration and
can be expressed in terms of the referential gradient of the displacement field as

dx D FdX; F D 1 C H; H D ur0 (2)

H is the distortion (or displacement gradient) tensor and has been introduced
for use in subsequent sections. The theory is completed by supplying constitutive
prescriptions for the relationships between Fe and the Cauchy stress and to provide
an evolution equation for Fp (and any associated internal state variables) consistent
with thermodynamics.

Thermodynamics

The standard nonpolar mechanical balance laws (neglecting inertial terms) are given
in the current configuration as

� � r C f D 0; � D � T (3)
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with the associated traction boundary condition, t D �n, where � is the Cauchy
stress tensor, f is a body force vector, t is the traction vector, and n is the unit normal
to the external part of the boundary where tractions are specified. The total energy
balance can be expressed as

� PU D � W D � r � q (4)

where � is the current density, U is the specific internal energy, D is the rate of
deformation tensor, and q is the heat flux vector. The entropy inequality which will
be used to derive the state equations and guide the construction of plastic evolution
equations is given as

� P�C r �
� q
T

�
� 0 (5)

where � is the specific entropy, and T is temperature. Using the state relation
 D U � T�, Eqs. (4) and (5) can be combined to obtain the Clausius-Duhem
inequality

� W D � �
�

P C PT �
�

�
1

T
q � rT � 0 (6)

where the intrinsic (�intr) and thermal (�th) dissipation are defined as

�intr D � W D � �
�

P C PT �
�
; �th �

1

T
q � rT (7)

Next, we derive an expression for the stress power in the intermediate config-
uration by using the relationship between the Cauchy stress and the second Piola-
Kirchhoff stress with respect to the intermediate configuration QS D J eFe�1�Fe�T

and by writing the velocity gradient in terms of the multiplicative decomposition,
i.e.,

L D PFF�1 D PFeFe�1 C Fe PFpFp�1Fe�1 (8)

such that

1

�
� W L D

1

Q�

�
QS W PQE

e

C …M W QLp
�

(9)

where Q� is the density in the intermediate configuration, QEe is the elastic Green-
Lagrange strain, …M is the Mandel stress tensor, and QLp is the plastic velocity
gradient in the intermediate configuration which have the following definitions

QEe D
1

2

�
FeTFe � 1

�
; …M D FeTFe QS; QLp D PFpFp�1: (10)
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Equation (9) identifies the appropriate power-conjugate variables in the inter-
mediate configuration, from which it can be seen that QEe is the strain measure
power-conjugate to Q…

e
and that …M is power-conjugate to QLp . If we now introduce

the Helmholtz free energy,  D O 
�

QEe; T; �˛
�
, the following expression is obtained

by inserting the right-hand side of Eq. (9) along with the chain rule expression of
the time derivative of  into the Clausius-Duhem inequality

�
…e � Q�

@ 

@ QEe

�
W PQEe � Q�

�
�C

@ 

@T

�
PT C …M W QLp � Q�

X
˛

@ 

@�˛
� P�˛ � 0: (11)

where � ˛ is a set of internal state variables. Here, “*” is an appropriate scalar
product operator for the rank of tensor � ˛ . The state laws are then deduced as

…e D Q�
@ 

@ QEe
; � D �

@ 

@T
: (12)

and the residual intrinsic dissipation is then expressed as

�intr D …M W QLp �
X
˛

r˛ � P�˛ � 0; r˛ D Q�
@ 

@�˛
: (13)

Therefore, thermodynamically consistent evolution equations for QLp and P�˛ may
be derived by introducing a convex dissipation potential� D O�

�
…M ; r˛

�
such that

QLp D
@�

@…M
; P�˛ D �

@�

@r˛
(14)

Representative functional forms for O and O� are given for completeness below.
It is typical to use a free energy that is quadratic with respect to its arguments, i.e.,

Q� 
�

QEe; �˛
�

D
1

2
QEe W QC W QEe C

1

2

X
˛;ˇ

a˛ˇ�˛�ˇ (15)

where QC is the fourth-order elasticity tensor in the intermediate configuration and
a˛ˇ is positive definite interaction matrix that describes the coupling between the
�˛ . Likewise, a typical power law potential for the inelastic evolution equations is
given as

�
�
…M ; r˛

�
D

P�0

nC 1

X
˛

g˛
�F˛

g˛

	nC1

(16)

where n is the power law exponent, g˛ is viscous stress, P�0 a typical strain rate
parameter, and F˛ is a yield function. The brackets h•i D Max (•, 0) have been
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introduced. The yield function is defined in terms of the resolved shear stress, �˛ ,
and the energetic flow resistance, r˛ , as

F˛ D �˛ � .r0 C r˛/ ; �˛ D …M W .Qs˛ ˝ Qn˛/ (17)

The slip direction vector and the normal to the slip plane for slip system ˛ are
respectively denoted by Qs˛ and Qn˛ in the undistorted lattice configuration.

Deformation Incompatibility and the GNDDensity Tensor

Finite Deformation Kinematics
For a classical Cauchy continuum, compatibility of the displacement field requires
that the curl of the deformation gradient vanishes, i.e.,

I

c

dx D

I

C

FdX D 0 ) F � r0 D 0 (18)

During an inhomogeneous elastic-plastic deformation, the elastic and plastic
deformation maps are not compatible and can be used to quantify the heterogeneity
of the deformation field in terms of the net Burgers on the intermediate configura-
tion, i.e.,

Qb D

I

Qc

d Qx D

I

c

Fe�1dx D

I

C

FpdX (19)

Making use of Stokes’ theorem, the last two expressions in Eq. (19) can be
expressed in terms of surface integrals as

Qb D

Z

s

Aenda D

I

S

ApNdA (20)

where Ae D Fe � 1 � r and Ap D Fp � r0 are the corresponding two-point
geometrically necessary dislocation density tensors that map from current to
intermediate and reference to intermediate configurations, respectively.

There have been many works in the last two decades focused on incorporating
the effects of GNDs into crystal plasticity modeling frameworks. It is beyond the
scope of this chapter to attempt to review the myriad ways in which these extensions
are carried out. The vast majority of generalized crystal plasticity models that
incorporate the effects of GNDs do so by computing them from the plastic slip
gradients (so-called slip gradient theories) rather than via gradients of Fe�1. While
the connection between slip gradients and GND densities can be established in a
finite deformation context (see Kuroda and Tvergaard 2008), in this section, the
presentation is limited to the linearized kinematic setting for ease of presentation
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and direct connection with the pioneering work of Nye (1953). The subsequent
developments closely follow the presentation of Arsenlis and Parks (1999).

Linearized Kinematics
In the case of linearized kinematics, the multiplicative decomposition of the
deformation gradient is replaced with an additive decomposition of the distortion
tensor, i.e., H D He C Hp and Eq. (18) may conveniently be rewritten as

H � r D 0 (21)

The continuumGND density tensor,A� Ae � Ap, can be equivalently expressed
in terms of either the elastic or plastic distortion as

A D �He � r D Hp � r (22)

The lattice torsion-curvature is defined as the gradient of the lattice rotation
vector (Nye 1953), i.e.,

� D 	r (23)

where 	 is given by

	 D �
1

2
� W skw .He/ (24)

where “skw” is the skew operator providing the antisymmetric part of the tensor.
The notation � is used for the permutation tensor. Combining Eqs. (22), (23), and
(24) the lattice torsion-curvature may be expressed as

~ D �AT C
1

2
tr .A/ 1

„ ƒ‚ …
Nye curvature;�

� ."e � r/T (25)

where "e is the elastic strain tensor which is symmetric. As indicated in Eq. (25),
the first two terms represent Nye’s original torsion-curvature tensor since it was
assumed that He � skw(He).

Next, we seek an expression for A in terms of slip gradients which can be
obtained from taking the curl of the plastic distortion. First, note that the discrete
version of Nye’s tensor, Ad, for a population of straight edge and screw dislocations
can be written as

Ad D b
X
˛

�
%˛? � %˛>

�
„ ƒ‚ …

%˛
G?

s˛ ˝ t˛ C
�
%˛ˇ � %˛˝

�
„ ƒ‚ …

%˛
Gˇ

s˛ ˝ s˛ (26)
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where %˛? is the positive edge dislocation density, %˛> is the negative edge dislocation
density, %˛ˇ is the positive screw dislocation density, %˛˝ is the negative screw
dislocation density, %˛G? is the edge GND density, and %˛Gˇ is the screw GND
density. The continuous expression of Nye’s GND density tensor is then obtained
as

A D Hp � r

D
P
˛

�˛s˛ ˝ n˛ � r

D
P
˛

.�r�˛ � s˛/ s˛ ˝ t˛ C .r�˛ � t˛/ s˛ ˝ s˛
(27)

Comparing these two expressions for Nye’s tensor, it may be shown that
the continuum GND densities are given by slip gradients projected in the glide
directions for the respective dislocation populations, i.e.,

%˛G? D �b�1r�˛ � s˛; %˛Gˇ D b�1r�˛ � t˛ (28)

An expression relating Nye’s torsion-curvature tensor, �, to the GND densities
is obtained by inserting Eq. (27) into the first two terms in Eq. (25)

� D �b
X
˛



%˛G?t

˛ ˝ s˛ C %˛Gˇ

�
s˛ ˝ s˛ �

1

2
1
��

(29)

We will revisit the expression given in Eq. (29) when motivating constitutive
equations in subsequent sections.

Micropolar Single Crystal Plasticity

Finite Deformation Theory

The presentation is given here within the finite deformation framework before
returning to the linearized case.

Kinematics
A micropolar continuum is a generalized continua with extra rotational degrees of
freedom. Considering two sets of vector triads attached to each material point in
the reference configuration, X, there is an independent mapping of the two sets of
vectors to the current configuration such that

dxi D FdXi ; di D RDi 8i D 1; 3 (30)

where F is the usual deformation gradient (see Eq. (2)) andR is the two-point tensor
that maps the microstructure triad in the reference configuration, Di to its image in



17 Micropolar Crystal Plasticity 603

the current configuration, di. R is the micropolar rotation tensor; the overbar is used
to distinguish it from the rotational part of the deformation gradient obtained via
the polar decomposition, i.e., F D RU. The micropolar rotation tensor is a proper
orthogonal tensor such that the following relations hold:

R R
T

D 1; R .X; t D 0/ D 1; det
�
R
�

D 1 (31)

The micropolar rotation field can also be expressed in terms of the axial vector
field, 	, via

R D exp
�
ˆ
�
; ˆij D �"ijk	k (32)

where ˆ is the skew symmetric tensor associated with the axial vector 	. The three
components of 	 along with the displacement field, u, comprise the six independent
degrees of freedom for the micropolar continuum. It has been shown by Eringen
and Suhubi (1964) that a suitable set of invariant Lagrangian strain measures for the
micropolar continuum may be defined as

U D R
T
F; � D R

T
�
Rr0

�
(33)

where U is called the relative deformation tensor and � is the third-rank wryness (or
torsion-curvature tensor. The Lagrangian micropolar strain is defined in terms of the
relative distortion tensor as E D U � 1. Due to the antisymmetry with respect to its
first two indices, it is convenient to express the torsion-curvature as a second-order
tensor, i.e.,

K D �
1

2
� W � (34)

The rates of the micropolar strain and torsion-curvature tensors are related to the

velocity, v D Pu, and the microstructural angular velocity, � D PR R
T

, as

PU U
�1

D R
T �

L � �
�
R (35)

P
K U

�1

D R
T
.!r/R (36)

where L D PFF�1 is the velocity gradient and ! D �1=2� W � is the axial vector
associated with �. From Eqs. (35) and (36), it is clear that the rate expressions on
the LHS are pull-backs from the current configuration via the microrotation.
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Thermodynamics
The mechanical balance laws under static equilibrium for the micropolar continuum
are

r � � T C f D 0; r � mT � � W � C c D 0 (37)

where � is the unsymmetric Cauchy force stress tensor, f is a body force vector, m
is the couple stress tensor, and c is a body couple vector. These balance laws can
be deduced using the principle of virtual work (Germain 1973; Forest and Sievert
2003). The energy balance and Clausius-Duhem inequality for the micropolar
continuum are given, respectively, as

� PU D � W
�
L � �

�
C m W !r � r � q (38)

O� W

�
PU U

�1
�

C Om W

�
P

K U
�1
�

� �
�

P C � PT
�

�
1

T
q � rT � 0 (39)

where O� and Om are the Cauchy and couple stress tensors pulled back to the reference
configuration via R, i.e.,

O� D R
T

�R; Om D R
T
mR (40)

The specific form of Eq. (39) was obtained by using the kinematic relations
given in Eqs. (35) and (36). Let us first consider the case of finite micropolar

thermoelasticity and assume that  D O 
�
U;K ; T

�
. Taking the time derivative

of  and inserting into Eq. (39) leads to

�
O�U

�T
� �

@ 

@U

�
W PU C

�
OmU

�T
� �

@ 

@K

�
W P
K � �

�
�C

@ 

@T

�
PT � 0 (41)

Therefore, the state laws for the micropolar material are

O� D �
@ 

@U
U
T
; Om D �

@ 

@K
U
T
; � D �

@ 

@T
(42)

Next we must introduce elastic-plastic decompositions for U and K . We start
with the natural assumption that the hyperelastic relations will have the same form
as Eq. (42) with respect to the elastic deformation measures, i.e.,

O� D �
@ 

@U
eU

eT
; Om D �

@ 

@K
eU

eT
(43)

Consistent with this assumption, it can be shown (Sievert et al. 1998) that the
appropriate decompositions are given as
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U D U
e
U
p
; K D K

e
U
p

C K
p

(44)

Substituting the rate forms of these decompositions back into the Clausius-

Duhem inequality with  D O 
�
U
e
;K

e
; T; �˛

�
yields

† W
�

PU
p

U
p�1

�
C M W

�
P

K
p

U
p�1

�
C �

X
˛

@ 

@�˛
� P�˛ � 0 (45)

where the driving forces for the plastic evolution equations are identified as

† D U
eT

O�U
e�T

C K
eT

OmU
e�T

; M D OmU
e�T

(46)

Specific constitutive equations must be provided for the free energy and plastic
evolution equations to complete the formulation. The procedure for doing so can be
undertaken in analogous fashion to what is done in the classical theory. However,
there is some additional flexibility that is afforded in constructing the plastic evolu-
tion equations in this case compared to the classical theory (see Forest and Sievert
(2003) for an in-depth discussion of single vs. multi-criterion flow rules). Rather
than narrowing to specific constitutive choices in the current finite deformation
context, we will discuss these issues within the small deformation framework in
the subsequent sections. The principles guiding constitutive equation development
are the same for both finite and infinitesimal deformations and we choose to
discuss these aspects with respect to the theories used in the numerical simulations
appearing later in the chapter. A more complete exposition of constitutive equation
development in the finite deformation context has been given elsewhere (Forest
et al. 1997; Forest 2012).

Linear Deformation Theory

Linearized Kinematics
In the case of small deformations and rotations, the following notation is introduced
for the micropolar strain, ", and torsion-curvature, �:

E D U � 1 � ur � ˆ DW " D "e C "p (47)

K D �
1

2
� W � � 	r DW � D �e C �p (48)

As indicated in Eqs. (47) and (48), we assume an additive elastic-plastic
decomposition of the strain and torsion-curvature tensors. Note that the symmetric
part of " is the classical small strain tensor: sym .
/ D 
 D sym .H/, and the
skew-symmetric part is a measure of the difference between the continuum rotation,
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w D skw (H), and microrotation: skw ."/ D w � ˆ. The additive decomposition
of the distortion tensor, H, into elastic and plastic parts is assumed (see section
“Linearized Kinematics”) and the micropolar plastic strain is defined to be equal to
the plastic distortion such that the evolution equation of "p has the form

P"
p

D
X
˛

P�˛s˛ ˝ n˛ (49)

Therefore, elastic micropolar strain is defined as

"e D He � ˆ D "e„ƒ‚…
sym."e/

C
�
we � ˆ

�
„ ƒ‚ …

skw."e/

(50)

Equation (50) shows that the skew-symmetric part of the micropolar elastic
strain is just the difference between the lattice rotation embodied by we and the
microrotation. Using the relationship between the lattice torsion-curvature and
GNDs presented in section “Linearized Kinematics” as motivation, Forest et al.
(1997) proposed a micropolar plastic torsion-curvature evolution equation of the
form (note there is a sign convention difference between the screw GND term
presented here and what was originally proposed in that work):

P�
p

D
X
˛



P'˛?
L?

t˛ ˝ s˛ C
P'˛ˇ

Lˇ

�
s˛ ˝ s˛ �

1

2
1
��
: (51)

Here, P'˛? and L˛? are the plastic rotation rate and plastic length scale associated
with edge GNDs and P'˛ˇ and L˛ˇ are the analogous quantities for screw GNDs.
Comparing Eqs. (29) and (51) reveals the relationship between the GND densities
and the micropolar plastic torsion-curvature parameters, namely

P%˛G? D �
P'˛?
bL?

; P%˛Gˇ D �
P'˛ˇ

bLˇ

(52)

The introduced length scales are expected to be in the range of micron and
submicron sizes as illustrated in the examples provided in this chapter.

Thermodynamics at Small Strains
Let us now revisit the Clausius-Duhem inequality for the micropolar material
expressed in terms of the rates of linearized kinematic variables as a guide to
constitutive equation development, i.e.,

� W P"C m W P� � �
�

P C � PT
�

�
1

T
q � rT � 0 (53)

We assume a general form of the free energy that depends on the elastic strain,
the elastic torsion-curvature, temperature, and a set of internal state variables,
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i.e.,  D O ."e;�e; T; �˛/. Taking the chain rule expression for the time derivative
of O along with the elastic-plastic decompositions for the strain and torsion-
curvature and inserting into Eq. (53) and following the Coleman-Noll procedure,
the following state laws are obtained:

� D �
@ 

@"e
; m D �

@ 

@�e
; � D �

@ 

@T
(54)

along with the expression for the intrinsic dissipation, i.e.,

�intr D � W P"
p

C m W P�
p

�
X
˛

r˛ � P�˛ � 0; r˛ D �
@ 

@�˛
(55)

Elastic Free Energy Function
The most general form of the elastic strain energy for a linearized micropolar
continuum is given by the quadratic form viz (Eringen 1999):

� e D
1

2
"e W C W "e C

1

2
�e W D W �e C "e W E W �e (56)

where C, D, and E are fourth-order tensors of elastic moduli. However, the
coupling moduli E are equal to zero for materials exhibiting point symmetry (Forest
et al. 1997). Therefore, the stress and couple-stress constitutive equations for single
crystals may be expressed as

� D C W "e ; m D D W �e (57)

For an elastically isotropic material, these expressions have the form

� D œ tr ."e/ 1 C 2� "e C 2�c
�
!e � ˆ

�
m D ˛ tr .�e/ 1 C 2ˇ sym .�e/C 2�skw .�e/

(58)

where œ and � are the usual Lamé’s constants and �c, ˛, ˇ, and � are nonstandard
and/or higher-order elastic moduli. The coupling modulus, �c, gives rise to the skew
symmetric part of the Cauchy stress and the couple-stress moduli, ˛, ˇ, and � ,
can be interpreted as elastic length scales; when they are normalized, for example,
with respect to the shear modulus the resulting quantities have units of length, e.g.,
`e D

p
ˇ=�.

Flow Rules
The development of dissipative constitutive equations follows the standard approach
utilizing a flow potential and associative flow rules. As discussed in Forest and
Sievert (2003), one can formulate the rules either in terms of a single or multiple
criteria, i.e., either a single flow potential for both strain and torsion-curvature or
independent flow potentials for the respective deformation variables. Mutli-criterion
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theories are more general and require the specification of additional material
parameters and should only be used if there is compelling need for this additional
flexibility/complexity of the model. Representative multi-criterion micropolar single
crystal plasticity models were presented by Forest et al. (2000) and Mayeur and
McDowell (2013). The subsequent treatment of this section will focus on a single
criterion framework since the numerical results presented later in the chapter were
obtained using this type of model, and we have found it to suffice for most purposes.
The plastic strain and torsion-curvature evolution equations are derived from a
unified slip system flow potential, F˛ , i.e.,

P"
p

D
X
˛

P�˛
@F˛

@�
; P�

p
D
X
˛

P�˛
@F˛

@m
(59)

Given the suggested kinematic forms for the plastic strain and torsion-curvature
rates (Eqs. (49) and (51)), we propose a yield function, F˛ , of the form

F˛ D O�˛ � .r0 C r˛/ � 0 (60)

Here, O�˛ is an effective resolved shear stress and r0 is the initial yield strength.
The effective resolved shear stress is defined with respect to the projections of the
force and couple stress tensors as

O�˛ D

rˇ̌
ˇ�˛eff

ˇ̌
ˇ
2

C
ˇ̌
˛?=L?

ˇ̌2
C
ˇ̌
˛ˇ=Lˇ

ˇ̌2
: (61)

where �˛eff is the resolved shear stress, ? is the resolved couple stress acting on
edge GNDs, ˇ is the resolved couple stress acting on screw GNDs, and L?, Lˇ

are normalizing length scales for edge and screw GNDs, respectively. The resolved
shear and couple stresses are defined as

�˛eff D � W .s˛ ˝ n˛/ (62)

˛? D m W .t˛ ˝ s˛/ (63)

˛ˇ D m W

�
s˛ ˝ s˛ �

1

2
1
�

(64)

The “eff ” subscript has been applied to the resolved shear stress to emphasize
that the driving force for slip has a contribution from the skew-symmetric part
of the stress tensor and also to distinguish it from the classical resolved shear
stress, which is computed using only the symmetric part of the Cauchy stress. The
contribution of the skew-symmetric part of the Cauchy stress to �˛eff gives rise to
gradient-dependent kinematic hardening which is elaborated upon further in section
“Relationship to Slip Gradient Theory.” The flow directions then follow as
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@F˛

@�
D
�˛eff

O�˛
s˛ ˝ n˛ (65)

@F˛

@m
D

1

L?

t˛ ˝ s˛
˛?=L?

O�˛
C

1

Lˇ

�
s˛ ˝ s˛ �

1

2
1
�
˛ˇ=Lˇ

O�˛
: (66)

Herein, we work within an elastic-viscoplastic setting and propose a power law
expression for P�˛ , i.e.,

P�˛ D P�0

�
O�˛ � .r0 C r˛/

g˛

	m
(67)

where P�0 is a reference effective deformation rate, g˛ is a viscous drag stress, and
m is an inverse rate sensitivity exponent. Inserting Eqs. (65), (66), and (67) into Eq.
(59) and comparing with the expressions given in Eqs. (49) and (51), the expressions
for the slip system deformation rates are obtained as

P�˛ D P�0

�
O�˛ � .r0 C r˛/

g˛

	m �˛eff
O�˛

(68)

P'˛? D P�0

�
O�˛ � .r0 C r˛/

g˛

	m˛?=L?

O�˛
(69)

P'˛ˇ D P�0

�
O�˛ � .r0 C r˛/

g˛

	m˛ˇ=Lˇ

O�˛
(70)

It is easily shown from Eqs. (68), (69), and (70) that the slip system plastic
multiplier is related to the slip and curvature rates as

P�˛ D

q
j P�˛j2 C

ˇ̌
P'˛?
ˇ̌2

C
ˇ̌
P'˛ˇ
ˇ̌2

(71)

Equation (71) reveals that P�˛ is an effective slip system deformation rate
accounting for both slip and torsion-curvature deformation modes.

Internal State Variable Evolution
Consider the case where the evolution of the internal state variable associated with
energetic isotropic hardening with the effective deformation rate, i.e.,

P&˛ D P�˛ (72)

Further, a quadratic dependence of the free energy on −˛ is assumed

� in D
1

2

X
˛

X
ˇ

H˛ˇ&˛&ˇ; H˛ˇ D H0 (73)
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where H˛ˇ is the hardening matrix and H0 > 0 is the hardening modulus. The
energetic isotropic hardening stress is then given as

r˛ D
X
ˇ

H˛ˇ&ˇ D H0

X
ˇ

&ˇ (74)

Given the preceding evolution equations, the intrinsic dissipation inequality may
now be expressed in terms of slip system variables as

�intr D
X
˛

�
�˛eff P�˛ C ˛?

P'˛?
L?

C ˛ˇ
P'˛ˇ
Lˇ

� r˛ P&˛
�

� 0 (75)

which may be further simplified and expressed as

� D
X
˛

. O�˛ � r˛/ P�˛ � 0 (76)

For nonzero values of P�˛ , Eq. (67) can be inverted to obtain the expression for
O�˛ as

O�˛ D g˛

 
P�˛

P�0

! 1
m

C r0 C r˛ (77)

Inserting this expression into Eq. (76) yields

�intr D
X
˛

2
4g˛

 
P�˛

P�0

! 1
m

C r0

3
5 P�˛ � 0 (78)

Therefore, the dissipation inequality is unconditionally satisfied for this set of
constitutive equations.

While the illustrative example given in this particular section yields a simple
linear isotropic hardening behavior, it is straightforward and often preferable in
practice to use nonlinear hardening laws; general examples of such extensions were
previously given by Forest et al. (1997) and Mayeur et al. (2011). In the sequel, we
present a dislocation density-based hardening framework (Mayeur and McDowell
2013) that has been compared to a number discrete dislocation dynamics boundary
value problems; some of which will be presented as representative applications of
the theory.

Dislocation Density-Based Strength Model
Previously, Mayeur et al. (2011) and Mayeur and McDowell (2013) have employed
both single and mutli-criterion flow rules with a variety of hardening laws to
simulate size-dependent behavior observed in 2D discrete dislocation dynamics
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(DDD) simulations to varying degrees of success. The hardening model presented
is the simplest version capable of reproducing the observed DDD behavior.

We take the statistically stored dislocation density on each slip system, %˛S , as our
primary internal state variable to describe the hardening behavior. The slip system
yield stress is defined in terms of a Taylor relation that is assumed to depend only
on the SSD density, i.e.,

r˛ D r0 C c1�b

sX
ˇ

h˛ˇ%
ˇ
S (79)

where c1 is a constant, b is the Burgers vector, and h˛ˇ is an interaction matrix.
We do not use a generalized Taylor relation that directly includes a dependence
on the GND density, which is a commonly employed assumption in other classes
of generalized single crystal models. It was shown (Mayeur and McDowell 2013)
that a hardening model based on the generalized Taylor relation leads to excessive
and unrealistic hardening as compared to the DDD simulations. The SSD density
evolves according to a Kocks-Mecking (Mecking and Kocks 1981) relation which
represents a competition between storage and recovery mechanisms until the steady-
state value of dislocation density is reached:

P%˛S D
1

b

�
1

ƒ˛
� 2yc%

˛
S

�
P�˛ (80)

Here, ƒ˛ is the mean free path between dislocations, and yc is the capture radius
for dislocation annihilation. The mean free path is defined in terms of the SSD
density, an average dislocation junction strength,K, and an interaction matrix, a˛ˇ as

ƒ˛ D
KqP
ˇ a

˛ˇ%
ˇ
S

(81)

Since the SSD evolution equation is defined with respect to P�˛ rather than P�˛ , it
naturally includes scale-dependence by virtue of P�˛ being an effective slip system
deformation measure (see Eq. (71)). We found this type of scale-dependent isotropic
hardening described the DDD results better than either a direct dependence of the
Taylor stress and/or the mean free path on the GND density. We note that size
effects of initial yield stress, r0, are not addressed by the hardening relations and
may depend on the initial dislocation source distribution as well as obstacles and
interfaces that impede slip.

Relationship to Slip Gradient Theory

In this section, we briefly discuss the relationship of micropolar crystal plasticity to
slip gradient crystal plasticity theory in the form developed by Gurtin (2002, 2007).
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A more in-depth comparison of the two model frameworks and simulation results
has been given by Mayeur and McDowell (2014). Gurtin’s theory is based on taking
the slip system shears as continuum degrees of freedom and contains an additional
balance equation – the so-called microforce balance – in addition to the classical
force and angular momentum balances. The microforce balance is given as

�˛ C r � �˛ � q˛ D 0 (82)

where �˛ is the classical resolved shear stress, �˛ is a higher-order stress that is
power-conjugate to the slip rate gradient, r P�˛ , and q˛ is the stress power-conjugate
to the slip rate, P�˛ . In addition to Dirichlet micro-boundary conditions on the slip
system shears, complementary micro-traction boundary conditions may also be
prescribed in terms of the micro-traction „˛ , i.e.,

„˛ D �˛ � n (83)

The macroscopic and microscopic scales are coupled by the presence of the
resolved shear stress, �˛ D n˛ � � � s˛ , in the microforce balance. The microforce
balance is a partial differential equation that governs the evolution of the slip system
shears and can be interpreted as a nonlocal yield condition.

Thermodynamics
Thermodynamically consistent constitutive equations have been developed by
Gurtin using a purely mechanical form of the 2nd law, i.e.,

�intr D � W P"e C
X
˛

.q˛ P�˛ C �˛ � r P�˛/ � P � 0 (84)

The free energy is assumed to depend on the elastic strain and the set of slip
system shear gradients, r E� D

˚
r�1; : : : ;r�N

�
, i.e.,

 D O 
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"e;r E�

�
D O e ."

e/C O in
�
r E�
�

(85)

Expressing the time derivative of the free energy via the chain rule and inserting
into Eq. (84) yields

�intr D

�
� �
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�
W P"e C
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q˛ P�˛ C

�
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@r�˛

�
� r P�˛

�
� 0 (86)

It is assumed that �˛ can be decomposed additively into energetic and dissipative
components such that

�˛ D �˛en C �˛d ; �˛en
:

D
@ 

@r�˛
(87)



17 Micropolar Crystal Plasticity 613

Following the Coleman-Gurtin (Coleman and Gurtin 1967) thermodynamic
procedure, the state law for the Cauchy stress obtained is identical to that of Eq.
(54)1. Making use of Eq. (87), the reduced dissipation inequality is given as

�intr D
X
˛

�
q˛ P�˛ C �˛d � r P�˛

�
� 0 (88)

Classical quadratic elastic free energy potentials are employed within the
Gurtin-type theory since the treatment of the macroscopic forces is unaltered.
Representative constitutive equations for the defect energy and dissipative stresses
are presented below.

Energetic Constitutive Equations (Defect Energy)
Several variations of the defect energy have been proposed in the literature and can
be classified as either recoverable or nonrecoverable. A recoverable defect energy
depends on the current values of the slip gradients and vanishes when there are no
slip gradients regardless of prior loading history, whereas a nonrecoverable energy
does not vanish upon unloading. A typical recoverable defect energy is given as
(Reddy 2011)

 d D
1

2
g0`

2
en

X
˛

h
c`

�
Q%˛`
�2

C cˇ

�
Q%˛ˇ
�2i

(89)

where g0 is the initial flow stress, `en is an energetic length scale, and c`/cˇ are
dimensionless constants defining the relative contributions of edge and screwGNDs,
respectively. The edge and screw GND measures used in Eq. (89) are defined as

Q%˛` D �r�˛ � s˛; Q%˛ˇ D �r�˛ � t˛ (90)

Note the dimensional and sign difference of the screw GND term with respect to
the GND density definitions used in section “Linearized Kinematics.” The energetic
microcouple stress vector corresponding to  d is given as

�˛en D �g0`
2
en

�
c` Q%˛`s

˛ C cˇ Q%˛ˇt˛
�

(91)

The microcouple stress vector lies in the slip plane and decomposes naturally
into edge and screw components. Gurtin et al. (2007) view �˛en as reflective of a
net distributed Peach-Koehler force acting on the GNDs since its components are
perpendicular to the respective dislocation line directions and have units of force per
unit length.

Dissipative Constitutive Equations
The dissipative constitutive equations are introduced with the aid of an effective slip
system deformation rate, d˛ , defined as



614 J. R. Mayeur et al.

d˛ D

q
j P�˛j2 C L2dkr˛

tan P�˛k2 (92)

where Ld is a dissipative length scale and the tangential gradient operator is defined
as r˛

tanf D .rf � s˛/ s˛C.rf � t˛/ t˛ . The scalar dissipative microstress is posited
to have the functional form

q˛ D g˛
�
d˛

d0

� 1
m P�˛

d˛
(93)

where g˛ is a viscous drag stress, d0 is the reference effective deformation rate,
and m is the inverse rate-sensitivity exponent. The dissipative microcouple stress is
introduced in an analogous manner, i.e.,

�˛d D g˛L2d

�
d˛

d0

� 1
m r˛

tan P�˛

d˛
(94)

Inserting Eqs. (93) and (94) into Eq. (88) and making use of Eq. (92) yields

�intr D
X
˛

Q�˛d˛ � 0; Q�˛ WD g˛
�
d˛

d0

� 1
m

: (95)

Here, we introduce the implicitly defined effective dissipative stress, Q�˛ , that is
power-conjugate to the effective slip system deformation rate d˛ . It is straightfor-
ward to show that Q�˛ can also be expressed in terms of the dissipative microstresses,
i.e.,

Q�˛ D
h
.q˛/2 C k�˛d=Ldk

2
i1=2

: (96)

Inverted Flow Rule Versus Microforce Balance
An examination of the micropolar and slip gradient theories reveals many similar-
ities between the two sets of governing equations. Central to both theories is the
notion that the presence of GNDs gives rise to both energetic and dissipative contri-
butions to scale-dependent mechanical behavior. In general, nonlocal strengthening
effects are manifested in both the isotropic and kinematic hardening responses of
the material. A key component of the slip gradient theory is the microforce balance,
which couples the macroscopic and microscopic responses and represents a nonlocal
flow rule governing the evolution of the slip system shears. Typically, the r � �˛

term in the microforce balance induces kinematic hardening and the q˛ term leads
to isotropic hardening, although the exact nature of the hardening contributions
depends on the specific constitutive forms employed. The noteworthy feature of
second term in the microforce balance is that it is a function of second gradients
of slip since �˛ D f

�
r˛

tan�
˛
�
. The relationship between second gradients of slip
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(GND gradients) and kinematic hardening is in accordance with other dislocation-
based gradient single crystal plasticity theories (Yefimov et al. 2004a; Evers et al.
2004; Forest 2008).

A similar result is obtained for the micropolar theory by considering the inverted
flow rule, which is obtained from the coaxiality relations �˛eff = O�˛ D P�˛= P�˛ .
Neglecting the isotropic energetic hardening terms in Eq. (77), the coaxiality
relations may be rearranged and expressed as

�˛ C �˛b � g˛

 
P�˛

P�0

! 1
m

P�˛

P�˛
D 0: (97)

Here, the resolved Cauchy stress, �˛eff , is explicitly written as two terms where

the second term is a back stress, �˛b WD 1
2
t˛ �

�
r � mT

�
, related to the projection

of the skew symmetric part of the stress tensor. The back stress may be expressed
as a function of the couple stress since 2 skw(� ) D � � (r � mT). Thus, the back
stress in the micropolar theory is a function of lattice torsion-curvature gradients.
This is analogous to the dependence exhibited by the slip gradient theory since
second gradients of slip (GND gradients) are directly connected to lattice torsion-
curvature gradients via Nye’s relations (see section “Linearized Kinematics”). In
both theories, the higher-order balance law leads to the coupling of the micro
and macro scales and to the natural inclusion of gradient-dependent kinematic
hardening. Compare Eq. (97) to the microforce balance augmented with the
constitutive equation for q˛ given in Eq. (93)

�˛ C r � �˛ � Qg˛
�
d˛

d0

� 1
m P�˛

d˛
D 0: (98)

The similarities between the two expressions given in Eqs. (97) and (98) are
obvious, although some key differences emerge when the constitutive equations for
m and �˛ are considered. To illustrate these differences, we compare the microforce
balance and inverted micropolar flow rule augmented with simple constitutive
equations for the 2D case (e.g., edge dislocations only). Inserting Eqs. (91) and
(94) into Eq. (98), the following expression is obtained:

�˛ C g0`
2
enc`r � Œ.r�˛ � s˛/ s˛�C L2dr �

"
g˛
�
d˛

d0

� 1
m .r P�˛ � s˛/ s˛

d˛

#

� g˛
�
d˛

d0

� 1
m P�˛

d˛
D 0:

(99)

An analogous expression for the inverted micropolar flow rule is obtained by
using a simplified version of Eq. (58)2 where m D 2�`2e�

e in Eq. (97), i.e.,
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(100)

Note that the energetic and dissipative length scales appear isolated in separate
terms in Eq. (99), whereas the third term in Eq. (100) contains both the elastic
and plastic length scales. Therefore, both energetic and dissipative gradient effects
are eliminated when `e D 0 in the micropolar theory; however, the dissipative
gradient term is suppressed for L? 	 `2e irrespective of the value of `e.
The separation of energetic and dissipative gradient hardening terms in the slip
gradient theory is a direct consequence of the assumed additive decomposition
of �. Another, perhaps more subtle, difference between the two expressions is
that the dissipative gradient term in the microforce balance is a function of slip
rate gradients, while it is a function of total plastic curvature in the inverted
micropolar flow rule. We remark that if the micropolar theory was cast in terms
of an additive energetic/dissipative decomposition of the couple stress tensor rather
than an additive elastic-plastic decomposition of the torsion-curvature tensor, the
micropolar model would mirror the phenomenology of the slip gradient model in
terms of a strict separation of energetic and dissipative gradient hardening effects,
and the dissipative gradient hardening would be proportional to the rate of lattice
torsion curvature.

Curvatures, Couple Stresses, and Gradient Terms
With the connection between the vectorial microcouple stress, �˛ , and the second
rank couple stress tensor, m, established, additional analogies between the two
models are explored. A comparison of Eqs. (90) and (52) reveals a relationship
between the micropolar plastic torsion-curvature flow rates and the directional slip
gradients, i.e.,

P'˛? $ Ldr P�˛ � s˛ ; P'˛ˇ $ Ldr P�˛ � t˛ (101)

where $ is used to signify that the two terms have analogous roles in the respective
theories. This association is further evident when the effective deformation rate in
Eq. (92) is expressed in component form as

d˛ D

q
j P�˛j2 C jLdr P�˛ � s˛j2 C jLdr P�˛ � t˛j2: (102)

which establishes d˛ $ P�˛ (see Eq. (71)). If the energetic isotropic hardening
term in Eq. (76) is neglected and compared to the analogous expression in Eq. (95),
we see that the two dissipation inequalities have identical forms. Therefore, it is
straightforward to show that the resolved couple stresses in the micropolar theory
can be related to the dissipative microcouple stresses of the slip gradient theory
by expressing the dissipation inequality in a form that parallels Eq. (75). First, the
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dissipative constitutive equation for �˛d given in Eq. (94) is written in component
form as

�˛d D g˛L2d

�
d˛

d0

� 1
m .r P�˛ � s˛/ s˛ C .r P�˛ � t˛/ t˛

d˛
D �˛d`s

˛ C �˛dˇt˛ (103)

where �˛
d`

and �˛dˇ are the edge and screw components of �˛d . Inserting Eq. (103)
into Eq. (88) and making use of the microforce balance, the dissipation inequality
may be expressed as

�intr D
X
˛



.�˛ C r � �˛/ P�˛ C

�˛
d`

Ld
.Ldr P�˛ � s˛/C

�˛dˇ

Ld
.Ldr P�˛ � t˛/

�
� 0:

(104)

A comparison of Eqs. (75) and (104) in conjunction with the relationships
identified in Eq. (101) reveals that

�˛eff $ �˛ C r � �˛ (105)

˛?=L? $ �˛d`=Ld (106)

˛ˇ=Lˇ $ �˛dˇ=Ld (107)

The association established in Eq. (105) was already apparent from a comparison
of the inverted micropolar flow rule and the microforce balance, whereas the
relationships established by Eqs. (106) and (107) were revealed by inserting the
component form of �˛d into the reduced dissipation inequality. Furthermore, we
can rewrite the effective dissipative stress in the slip gradient theory using the
component form of �˛d as

Q�˛ D

q
j�˛ C r � �˛j

2 C
ˇ̌
�˛
d`
=Ld

ˇ̌2
C
ˇ̌
�˛dˇ=Ld

ˇ̌2
: (108)

This expression is consistent with Eq. (61) of the micropolar theory given the
relationships established by Eqs. (105), (106), and (107).

As a final remark, we remind the reader that the micropolar theory differs
from slip gradient theory by its adoption of the rotation of the microstructure
director vectors in Eq. (30) as an independent constitutive prescription. This also
simplifies the numerical implementation since slip gradients need not be computed
or estimated. The remainder of section “Micropolar Single Crystal Plasticity”
explores applications of this single crystal micropolar framework. The chapter
dedicated to micromorphic crystal plasticity considers further extension of the
micropolar theory to a micromorphic theory that includes distortion of the director
vectors.
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Applications: Comparison to 2D Discrete Dislocation Dynamics
Simulations

This section presents a comparison of two-dimensional micropolar crystal plasticity
and discrete dislocation dynamics simulations of single crystal thin films subjected
to a variety of loading conditions. Specifically, we examine three widely studied
boundary value problems: constrained simple shear, pure bending (single and dou-
ble slip configurations), and simple shear of a particle reinforced composite. These
problems are routinely used as benchmarks to evaluate the ability of generalized
single crystal plasticity models to accurately capture size effects. A micropolar
single crystal model with the hardening described by Eqs. (79), (80), and (81) was
implemented in an Abaqus/Standard Version 6.7.1 (2007) user element subroutine
(UEL) for the simulations presented below. The element is a four node quadrilateral
and the integration is performed using a B-bar technique to prevent volumetric
locking. Both the displacement and rotation fields are interpolated using standard
bilinear shape functions.

The micropolar model has been independently calibrated for each boundary
value problem by fitting to both average (e.g., stress-strain curves) and microscopic
(e.g., dislocation density distributions) deformation behavior. It was previously
demonstrated that fitting to multiple aspects of the deformation behavior is nec-
essary to obtain a unique set of micropolar constitutive parameters (Mayeur et al.
2011). As a result of the 2D nature of the problems considered, the calibration
procedure is simplified in the sense that there are only a few parameters to be
determined. Essentially, there are four fitting parameters that are summarized by
the set: M D fr0,K, `e, L?g. All of the other material parameters are either known
as inputs (e.g., classical elastic parameters, Burgers vector magnitude) or can be
assigned standard values based on experience from classical local crystal plasticity

models. For example, the viscoplastic parameters
�

P�˛; g˛;m
�
cannot be explicitly

determined due to lack of DDD results at multiple strain rates, so reasonable
values for these parameters are prescribed and held fixed throughout the calibration
process. Note that only a single elastic and plastic length must be determined. For
plane strain problems, the couple stress constitutive relation given in Eq. (58)2
reduces to

m3i D 2ˇ�e3i D 2�`2e�
e
3i ; i D 1; 2; (109)

where it has been assumed, without loss of generality, that ˇ D � . Recall, the
couple stress constitutive parameter, ˇ, is related to an elastic length scale parameter,
`e D

p
ˇ=�. As discussed by Forest (2008), the nonclassical elastic constant, �c,

Eq. (58)1, is not a free fitting parameter in micropolar single crystal plasticity.
Rather, it serves as an internal penalty constraint forcing the lattice rotations to
coincide with the rotational part of the elastic distortion. Because of this constraint,
the micropolar torsion-curvature is identified as the lattice torsion-curvature thereby
making the connection between GNDs and the scale effects predicted by the model.
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Since screw GNDs do not contribute to plastic torsion-curvature evolution in the 2D
boundary value problems, there is a single plastic length scale parameter, L?, to be
determined.

Here, we briefly outline how the length scale parameters affect material response
a general strategy for calibrating them to the DDD simulations. The elastic length
scale parameter, `e, is related to the initial scale-dependent kinematic hardening
modulus and the ratio L?/`e dictates the saturation rate of gradient hardening. Larger
L?/`e ratios are associated with slower transients such that when L? 	 `e, the
strengthening effect reduces to that of linear gradient kinematic hardening (Mayeur
et al. 2011). The elastic length scale should also be small enough so as not to
induce size-dependent effects in the elastic deformation regime. The plastic length
scale, L?, determines the magnitude of the GND density distributions; however, its
influence is not independent of the prescribed value of `e. As shown in Mayeur
et al. (2011), it is the ratio L?/`e that dictates the maximum value of the local GND
density fields. If `e is varied while holding L?/`e and all other model parameters
constant (including specimen dimensions), the resulting GND density field will be
essentially unchanged. To illustrate how the length scale parameters influence the
average stress strain response, we show two plots in Fig. 1 where the elastic length
scale is varied while keeping the ratio L?/`e fixed (here Lp D L?) and another with
fixed elastic length scale and varying L?/`e for the problem of constrained simple
shear (Mayeur and McDowell 2014).

The parameter r0 is used to fit to the initial yield strength rather than a prescribed
initial dislocation density since the DDD simulations are assumed to be initially
dislocation free. However, in the planar double slip simulations, a negligibly small
value of initial SSD density (10�6 �m�2) is specified for each slip system so
that SSD evolution is nonzero. This approach is taken in lieu of introducing a
nucleation term in the SSD density evolution equation. It is worth mentioning that
r0 should not necessarily be treated as a fixed material constant due to the statistical
variations in the source strength and spatial distribution in the discrete dislocation
simulations, as well as the mean free path of initial obstacles or impenetrable
interfaces. The initial yield point in the discrete simulations will depend significantly
on the availability of weak sources in highly stressed regions. Given a fixed value for
the initial slip system yield strength, approximate upper bounds can be established
for `e and K by isolating the effects of the two distinct material strengthening
mechanisms. For example, given a target stress-strain curve, the maximum value
of `e is determined by assuming that all of the material hardening is due to the
gradient-induced back stresses (1/K D 0), whereas the maximum value of K is
determined by assuming that all of the material hardening is due to slip threshold
hardening (`e D 0). In general, both mechanisms will contribute to the material
strengthening and the actual values will fall below the upper bounds. As discussed
in Mayeur and McDowell (2013), either the unloading behavior or some other
attribute of the local deformation field (e.g., shear strain distributions) must be
used in order to differentiate between the relative hardening contributions. A list
of micropolar constitutive parameters used in all of the simulations is given in
Table 1.
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Fig. 1 Average shear
stress-strain response for
constrained simple shear with
(a) different values of Lp/`e
with `e D 100 nm and (b)
different elastic length scale
parameters with Lp/`e D 5.
Slip threshold hardening is
suppressed (r˛ D r0)
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Constrained Shear of Thin Films

Here, we compare results of the micropolar model to DDD results for a constrained
thin film subjected to simple shear originally presented by Shu et al. (2001).
Related studies were also conducted by Yefimov and van der Giessen (2005b)
and Limkumnerd and van der Giessen (2008). A more detailed exposition of the
micropolar results are contained in Mayeur and McDowell (2013). The specimen
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Table 1 Summary of constitutive model parameters used in the micropolar single crystal
simulations

Parameter Symbol Magnitude Unit
– – Constrained

shear
Bending SS Bending

DS
Composite –

Shear modulus � 26.3 26.3 26.3 26.3 GPa
Poisson’s ratio � 0.33 0.33 0.33 0.33 –
Couple
modulus

�c 263 263 263 263 GPa

Elastic length
scale

`e 10, 15 125, 125 300, 600 125 nm

Plastic length
scale

L? 45 562.5, 250 750, 700 125 nm

Reference
threshold stress

r0 12.78 10 10 13, 21, 30 MPa

Threshold
stress
coefficient

c1 0.5 N/A 0.5 N/A –

Burgers vector
magnitude

b 0.25 0.25 0.25 nm

Hardening
matrix
coefficients

h˛ˇ ı˛ˇ N/A 1.0 N/A –

Initial SSD
density

¬S0 10�6 N/A 10�6 N/A �m�2

Dislocation
interaction
coefficients

a˛ˇ ı˛ˇ N/A 1.0 N/A –

Dislocation
segment length
constant

K 16.67,18.18 N/A 160, 26 N/A –

Dislocation
capture radius

yc 0 N/A 1.5 N/A nm

Reference
deformation
rate

P�0 10�3 10�3 10�3 10�3 s�1

Drag stress g 5 5 5 5 MPa
Inverse rate
sensitivity
exponent

m 20 20 20 20 –

geometry is film oriented for symmetric slip with thickness, H, in the x2-direction
as shown in Fig. 2. The slip systems are oriented at ˙30ı with respect to the
x2-direction. The top and bottom surfaces are modeled as rigid dislocation barriers
(impenetrable), the bottom surface is fully constrained against displacement, and
a uniform horizontal displacement is applied to the top surface while the vertical
displacement is constrained. The load is applied under displacement control up to an
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u1 = u* = ΓH

u1 = u2 = f = 0
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Fig. 2 Geometry schematic and boundary conditions for the constrained shear initial-boundary
value problem

average strain of � D 0.03. The discrete dislocation problem was modeled as a unit
cell of width,W, and thickness,H, and was spatially discretized with uniformly sized
quadrilateral finite elements with an element size of he D W/30. The material was
modeled as having zero initial dislocation density and the sources were distributed
randomly throughout the spatial domain. Individual dislocation source strengths
were determined by randomly sampling from a Gaussian distribution with a mean
nucleation strength, �nuc D 50MPa, and a standard deviation of 0:2�nuc .

The displacement boundary conditions were applied at the top surface consistent
with a constant strain rate of 103 s�1. The constitutive parameters used in the
simulations are representative of an aluminum single crystal.

u1 .x1; 0; t/ D u2 .x1; 0; t/ D 	 .x1; 0; t/ D 0

u1 .x1;H; t/ D � .x1;H; t/H; u2 .x1;H; t/ D 	 .x1;H; t/ D 0
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We only used the data for the 1 �m thick film in the calibration process since this
is the only thickness for which all relevant deformation fields have been reported.
Consistent with earlier nonlocal single crystal plasticity simulations of this problem,
the isotropic hardening response is assumed to be linear (Shu et al. 2001; Bittencourt
et al. 2003). Due to the symmetry of the problem and since it is impossible to dif-
ferentiate between self and latent hardening effects from the available DDD results,
we assume that h˛ˇ D a˛ˇ D ı˛ˇ . Results are presented for two sets of constitutive
parameters. As shown in Fig. 3, the stress-strain curves are nearly identical for both
fits and are in good agreement with the discrete dislocation results. Fit 1 uses slightly
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Fig. 3 Comparison of the
average shear stress-strain
response for H D 1 �m.
Results for two parameter sets
are shown to illustrate how
differences in the local fields
can vary for an identical
average response. The
discrete dislocation results are
from Shu et al. (2001) and are
given by the solid black line

more threshold hardening (K1 D 16.67 vs. K2 D 18.18), whereas fit 2 has a larger
contribution from gradient kinematic hardening (`e2 D 15 nm vs. `e1 D 10 nm).
The differences in the relative proportions of isotropic versus gradient kinematic
hardening are evident in the shear strain distributions shown in Fig. 4. The profiles
for fit 1 have a blunted shape as compared to the rounded morphology observed for
fit 2, which is consistent with the general observation that larger elastic length scales
result in parabolic shear strain distributions. The signed GND density distributions
for both fits are shown in Fig. 5a. The maximum GND densities at the boundary are
marginally overpredicted and display steeper gradients in the near boundary regions
than the discrete dislocation results, but compare favorably overall.

Pure Bending of Thin Films: Single Slip

The discrete dislocation results of the single slip bending configuration presented
in this section were obtained by Yefimov et al. (2004b) and the micropolar results
were given by Mayeur and McDowell (2011). The initial-boundary value problem
is a thin film of width, W, and thickness, H, subjected to pure bending in a state
of plane strain as sketched in Fig. 6. Considering a coordinate system attached to
the midpoint of the film, the deformation is defined by the edge rotation angle, ‚,
and is prescribed through a linear variation of the x1 displacement component as a
function of distance from the neutral axis:

u1

�
˙
W

2
; x2; t

�
D ˙‚.t/x2: (111)
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Fig. 4 Comparison of shear
strain distributions at
different levels of applied
strain for H D 1 �m: (a) fit 1
and (b) fit 2. The discrete
dislocation results are from
Shu et al. (2001) and are
given by the dashed lines

a

b

The displacements are applied consistent with a constant average rotation rate,
10�3 s�1, until a final rotation angle of ‚ D 0.02 is reached. The top and bottom
surfaces of the beam are traction-free. As shown in Fig. 6, a single slip system is
oriented at an angle ª with respect to the x1-axis, and slip is constrained to occur
within region demarcated by the internal solid black lines. This restriction has been
imposed in the discrete dislocation simulations in order to avoid the complication of
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Fig. 5 Comparison of
discrete dislocation and
micropolar crystal plasticity
dislocation density
distributions at � D 0.0168
for H D 1 �m: (a) signed
GND density and (b) SSD
density. The discrete
dislocation result is from Shu
et al. (2001) and are given by
the solid black line

a

b

having dislocations exit the crystal through the lateral faces where the displacement
boundary conditions are prescribed. Two different film thicknesses are considered
for the single slip configuration, H D 2 and 4 �m, respectively, with a fixed width-
to-thickness ratio of W/H D 3. Slip system orientations of 30ı and 60ı are studied
and will be referred to using the shorthand notation ª30 and ª60 in the following.
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Fig. 6 Schematic of the geometry and slip system configuration for the single slip bending initial-
boundary value problem

The average loading response is quantified by the bending moment, M, work-
conjugate to ‚ which is given by

M D

Z H=2

�H=2

�11

�
˙
W

2
; x2

�
x2 dx2: (112)

A thickness-independent measure of the average loading response is given by
the normalized bending moment, M/Mref , with the reference bending moment

defined as: Mref D 2
3
�nuc

�
H
2

�2
. Mref corresponds to the moment calculated from

an assumed linear stress distribution over height of the beam with peak values
of ˙�nuc at the free surfaces. The mean critical nucleation stress, �nuc , is taken
as 50 MPa in the discrete dislocation simulations. The micropolar finite element
meshes, consistent with the DDD simulations, employ a uniform grid of bilinear
quadrilaterals: 66 � 38 for ª30 and 155 � 30 for ª60.

The normalized moment-rotation plots for both slip system orientations and
thicknesses are plotted in Fig. 7, and they are in reasonably good agreement with
the discrete dislocation results with respect to both the orientation and scale-
dependence. Except for the 2 �m thick film for ª30, the results are in good
quantitative agreement with the initial yield strengths and nominal hardening rates
predicted by the discrete dislocation model. The DDD results show that the yield
strength for the 2 �m thick film for ª30 is lower than that of the 4 �m film in
contradiction to an expected “smaller is stronger” trend, which underscores the
stochastic nature of the initial flow stress obtained from DDD simulations. The
discrete simulations display an approximately linear hardening rate that increases
with decreasing film thickness, and the micropolar model shows similar trends
although the rate is somewhat underestimated for the 2 �m thick film with ª60.
There is a substantially higher hardening rate for ª30 as compared to ª60 as shown
in Fig. 7; this difference is primarily due to the way the boundary value problem
is constructed with distinct elastic and plastic zones and is not a consequence
of the local hardening behavior. Recall that the films are modeled as composite
elastic-plastic materials with plastic deformation restricted to the interior region



17 Micropolar Crystal Plasticity 627

Fig. 7 Comparison of the
discrete dislocation (DD) and
micropolar crystal plasticity
(MP) normalized
moment-rotation response for
the single slip bending
configuration (a) ª D 30

ı

and (b) ª D 60
ı

. The discrete
dislocation results are from
Yefimov et al. (2004b)

a

b

bounded by the solid lines parallel to the slip direction (see Fig. 6) for the sake
of convenience in the DDD simulations. Therefore, the plastic zone size for ª30 is
much smaller. The significantly higher apparent hardening rates for ª30 as compared
to ª60 are essentially due to an increased volume fraction of the elastic phase and
not dislocation hardening. In fact, a local crystal plasticity model with an elastic-
perfectly plastic slip system level response would yield an apparent hardening
rate comparable to, albeit lower than that shown in Fig. 7a. Of course, there is a
component of the apparent hardening rate differences for the two orientations due
to the relative misalignment of the slip and axial strain directions, and this is the
portion associated with variations in GND distributions between the two cases.
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Fig. 8 Dislocation density distributions predicted by the micropolar crystal plasticity simulations
at ‚ D 0.015 for ª D 30

ı

: (a) H D 4 �m (b) H D 2 �m
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Fig. 9 Dislocation density distributions predicted by the micropolar crystal plasticity simulations
at ‚ D 0.015 for ª D 60

ı

: (a) H D 4 �m (b) H D 2 �m

Dislocation density contour plots for both film thicknesses are shown in Figs.
8 and 9 for ª30 and ª60, respectively, with ‚ D 0.015. In the ª30 film, the
maximum dislocation densities are 39.8 �m�2 and 22.6 �m�2, respectively, for 2
and 4 �m thick films. Dislocation-free zones are clearly observed along the neutral
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Fig. 10 Comparison of the
discrete dislocation (DD) and
micropolar crystal plasticity
(MP) dislocation density
evolution as a function of
average plastic curvature for
both orientations of the single
slip configuration. The dashed
curves are for ª60. The
discrete dislocation results are
from Yefimov et al. (2004b)

axis for both film thicknesses, where the thickness of the dislocation-free region
is approximately 3–4 times larger for the 4 �m thick film. As compared to the
ª30 film, the dislocation density distributions for ª60 are markedly different. The
morphology of the distribution can be characterized as having ellipsoidal-shaped
lobes originating at the free surface near the corner of the elastic-plastic interface
and extending perpendicular to elastic-plastic interface toward the neutral axis. The
maximum local dislocation densities, 160 �m�2 (H D 2 �m) and 98.3 �m�2

(H D 4 �m), are significantly higher than in the v30 film. The contour plots exhibit
rather high dislocation density at the free surfaces that are generated in response
to the strong rotational gradients that arise due to the compliance mismatch at the
elastic-plastic interface. This is in contrast to the DDD simulations which exhibit
dislocation-free zones at the free surfaces that are thought to be the result of an
image force effect. It is possible that an image force effect might be imposed within
the micropolar framework through an appropriately specified higher-order traction
along the free surfaces; however, this avenue has yet to be pursued.

In Fig. 10, the total dislocation density computed over the entire volume is plotted
as a function of the imposed deformation for both orientations with H D 4 �m. It is
shown that the micropolar model accurately captures the evolution as predicted by
the DDD simulations. The dislocation density is computed by volume averaging the
centroidal element values over the FE mesh, and the average plastic curvature, Kp,
is calculated according to

Kp D
2‚

W
�
M

EI
: (113)
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Here, EI is the in-plane bending stiffness defining the elastic curvature. The total
GND density required to accommodate an imposed bending angle, ‚, can be
calculated according to Ashby (1970) in terms of Kp as

O� D
Kp

b1
; (114)

where b1 is the magnitude of the x1-component of the Burgers vector. The plot
shows that the dislocation density increases in an approximately linear fashion with
respect to the plastic curvature for both sets of simulations. Also, as expected from
Eq. (114), the dislocation density at a given level of plastic curvature is higher for the
ª60 film. Since the x1-component of the Burgers vector is smaller for this orientation,
more dislocations are needed to accommodate the imposed strain gradient.

Pure Bending of Thin Films: Double Slip

Next we study pure bending of thin films with a double slip system configuration
as shown in Fig. 11. The DDD simulation results presented were originally
reported by Yefimov and van der Giessen (2005a) and an analysis using micropolar
crystal plasticity was presented by Mayeur (2010). As in the single slip case, two
orientations are considered, ª30 and ª60 where the orientation angle is also defined
as the angle between the x1-axis and the slip direction for slip system 1. For each
orientation, the second slip system is symmetrically aligned with respect to the
x2-axis. The films are partitioned into elastic and plastic phases as before and
in accordance with the discrete dislocation simulations. The elastic zones are the
triangular regions located at the top, bottom, left, and right ends of the film as
shown in Fig. 11, and each slip system is only active in the slice of material parallel
to the slip direction. Thus, the plastic zone can be divided into five regions: four
single slip regions (two for each slip system) that are the outermost diagonal regions
and a diamond-shaped double slip region located at the center of the film and is
demarcated by the blue dotted lines in the schematic. The boundary conditions and

W

x2

x1

s1

s2

n1 n2
H

M,Θ

ϑ

Fig. 11 Schematic of the geometry and slip system configuration for the double slip bending
initial-boundary value problem
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Fig. 12 Comparison of the
discrete dislocation (DD) and
micropolar crystal plasticity
(MP) normalized
moment-rotation response for
the double slip bending
configuration (a) ª D 30

ı

and (b) ª D 60
ı

. The discrete
dislocation results are from
Yefimov and van der Giessen
(2005a)

a

b

FE discretizations are the same as for the single slip configuration. Simulations are
carried out for film thicknesses of 4 �m and 8 �m with fixed aspect ratioW/H D 3.

The normalized moment-rotation responses for both film thicknesses and orien-
tations are plotted in Fig. 12 against the discrete dislocation results, and the results
compare favorably. The response is similar for both orientations unlike the single
slip configuration, where the hardening rate was much higher for the ª30 films due
to larger effective film thickness resulting from the dominant influence of the elastic
regions. However, the behavior for the ª60 films has a stronger scale-dependence
as would be expected given that more GNDs are necessary to accommodate the
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Fig. 13 Dislocation density distributions predicted by the micropolar crystal plasticity simulations
at ‚ D 0.02 for ª D 30

ı

: (a) H D 8 �m (b) H D 4 �m

strain gradients for the ª60 film. In contrast to the single slip simulations, we found
that different elastic length scales and dislocation multiplication constants, K, are
required for each orientation to obtain a good match with the DDD results.

Figure 13 shows the total dislocation density contour plots for the ª30 films at
‚ D 0.02, and we note that the magnitude of the total dislocation density field is
approximately three orders of magnitude larger than that of the SSD density field
(not shown), which is characteristic of confined micro-scale dislocation plasticity.
The maximum dislocation density is located at the free surfaces near the elastic-
plastic interfaces for both film thicknesses, with peak values of 57.7 �m�2 and
32.3 �m�2 for the 4 �m and 8 �m thick films, respectively. In the case of the
8 �m thick film, there is dislocation-limited region (not dislocation-free) adjacent
to the neutral axis separating the regions of higher dislocation density, whereas
the dislocation distributions are continuous across the neutral axis for the 4 �m
thick film. This is in contrast to the dislocation density fields for the single slip
configuration (see Fig. 8) which exhibit a clear dislocation starved zone adjacent to
the neutral axis. It is interesting that the maximum dislocation density values occur
in the single slip regions and that the double slip region has a significantly lower
density.

Figure 14 shows the total dislocation density contour plots for the ª60 films at
‚D 0.02. The geometrical configuration of the elastic and plastic phases for the ª60
oriented crystal is such that there is no centrally located elastic zone and the majority
of the plastic phase is a double slip region. Therefore, the dislocation density fields
are continuous and smooth, in contrast to the ª30 orientation where the dislocation
density field has a checkered type of pattern. The local maximum in the dislocation



17 Micropolar Crystal Plasticity 633

RHO
(Average-compute)

RHO
(Average-compute)

53.89
49.40
44.91
40.42
35.93
31.44
26.95
22.45
17.96
13.47
8.98
4.49
0.00

53.89
49.40
44.91
40.42
35.93
31.44
26.95
22.45
17.96
13.47
8.98
4.49
0.00

a

b

Fig. 14 Dislocation density distributions predicted by the micropolar crystal plasticity simulations
at ‚ D 0.02 for ª D 60

ı

: (a) H D 8 �m (b) H D 4 �m

density fields are comparable for both orientations, thus the total (over the entire
plastic region) dislocation density is much higher for the ª60 film.

The total film dislocation density is plotted for both slip orientations and
thicknesses versus the average plastic curvature in Fig. 15. In general, the micropolar
results compare favorably to the discrete dislocation results. The micropolar model
captures the change in slope of the dislocation density-plastic curvature plot with
the change in thickness for the ª30 oriented films, but not for the ª60 oriented films.
An increase in the slope is predicted for the ª30 films but the micropolar results are
nearly identical for the ª60 films. The DDD results for the 8 �m thick film show an
increase in slope with increasing average plastic curvature, while the slope for the
4 �m remains essentially constant.

Simple Shear of a Metal Matrix Composite

In this application we study the size-dependent hardening of a metal matrix
composite subjected to simple shear. The idealized particle reinforced system shown
in Fig. 16 was previously analyzed using DDD simulations by Cleveringa et al.
(1997, 1999) and Yefimov et al. (2004a) and micropolar crystal plasticity by Mayeur
and McDowell (2015). The periodic unit cell consists of an elastic-viscoplastic
matrix phase (white) with a single slip system parallel to the x1 direction, reinforced

by elastic particles (gray). The size of the unit cell is 2W � 2H
�
W D H

p
3
�

and the particles have dimensions 2Wf � 2Hf . Two distinct cases, denoted Material
I and Material II, with different particle aspect ratios but the same area fraction,
Af D (HfWf )/(HW) D 0.2, are studied: the unit cell for Material I is reinforced



634 J. R. Mayeur et al.

Fig. 15 Comparison of the
discrete dislocation (DD) and
micropolar crystal plasticity
(MP) dislocation density
evolution as a function of
average plastic curvature for
the double slip configuration
(a) H D 4 �m and (b)
H D 8 �m. The discrete
dislocation results are from
Yefimov and van der Giessen
(2005a)

a

b

by square particles with Wf D Hf D 0.416H, while the unit cell for Material II is
reinforced by rectangular particles with Hf D 2Wf D 0.588H. The two cases are
differentiated such that Material I contains an unobstructed vein of matrix material
that spans the unit cell, whereas the particles overlap in Material II and block slip.
Since the area fraction of the elastic particles is the same for both morphologies,
any observed differences in material response are due to the dislocation-particle
interactions and not the phase volume fraction.
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Fig. 16 Schematic of the geometry and slip system configuration for the metal matrix composite
initial-boundary value problem

The composite is subjected to simple shear through displacement boundary
conditions applied to top and bottom surfaces and these surfaces are assumed
to be couple stress traction free. Periodic boundary conditions are enforced on
displacements and microrotation at the left and right surfaces. The deformation is
imposed at a shearing rate of P� D 10�3s�1 up to a unit cell shear strain of � D 0.01,
at which point the material is unloaded back to zero strain. The boundary conditions
are stated as:

u1 .x1;˙H; t/ D ˙�.t/H; u2 .x1;˙H; t/ D 0

u1 .�W; x2; t/ D u1 .W; x2; t/ ; u2 .�W; x2; t/ D u2 .W; x2; t/
	 .�W; x2; t/ D 	 .W; x2; t/ :

(115)

Further, microrotation is assumed to be coupled at the matrix-particle interface.
Simulations are performed for cell sizes of H D f0.5C, C, 2Cg where C D 4000b
with b D 0.25 nm. The FEmesh consists of 106 � 61 bilinear quadrilateral elements.
The classical elastic properties of the particles are � D 192.3 GPa and � D 0.17,
and the matrix constitutive parameters are listed in Table 1. These parameters are
representative of silicon carbide particles embedded in an aluminum matrix. With
regard to specifying the nonclassical elastic constants for inclusion, �Ic and ˇI , we
assume that �cI D �cM and ˇI D ˇM where the superscripts I and M refer to the
inclusion and matrix, respectively. As discussed by Cordero et al. (2010), other
choices are possible and perhaps should be considered in future work.
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Fig. 17 Average stress-strain
response for (a) Material I
and II for H D C and (b)
Material II with variable slip
threshold for different particle
spacings. Dashed lines are
discrete dislocation results
(Yefimov 2004a) and solid
lines are micropolar results

a

b

As shown in Fig. 17a, the unit-cell average stress-strain response predicted by the
discrete dislocation model for Material I is nearly elastic-perfectly plastic, whereas
Material II displays an approximately linear hardening rate. Material I does not
harden because there are no obstacles to dislocation motion. In contrast, mobile
dislocations in Material II are obstructed by the particles and form pileups and tilt
walls at the matrix-particle interface. The unloading curve suggests the material
strengthening in Material II is governed by the development of a strong back stress,
as evidenced by the pronounced Bauschinger effect, while unloading is essentially
elastic for Material I. The average stress-strain curves predicted by the micropolar
model (solid lines in Fig. 17) are in good agreement with the discrete dislocation
results during forward loading; however, the Bauschinger effect for Material II is
significantly underestimated. Figure 17b shows the stress-strain curves for Material
II for the three unit cell sizes. We found that it was necessary to use different r0
values to obtain good agreement with the discrete dislocation results. Interestingly,
the calibrated values, r0 D f13, 21, 30g MPa, show strong correlation with the Hall-
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Petch relation r0 / ƒ�1/2, where ƒ D
�
2
p
3 � 0:588

�
H is the mean free path for

Material II. The slope of the Hall-Petch relation is 40.51 MPa
p
�m. Note that the

Hall-Petch relation was not assumed a priori, but rather is consistent with the result
of parameter estimation.

The cumulative plastic slip distributions for both cases with H D C and
� D 0.006 as predicted by the micropolar model are shown in Fig. 18. The slip
field morphology for Material I is characterized by intensely localized plasticity in
the unreinforced veins of matrix material, whereas the slip morphology for Material
II is characterized by highly localized bands that form along the top and bottom
faces of the particles, but do not extend across the full width of the unit cell due
the particle overlap. The cumulative slip distributions predicted by the micropolar
model are consistent with the discrete dislocation simulations and are noticeably
different than the predictions of local and low-order gradient theories, which show
much higher levels of slip accumulation along the vertical matrix-particle interfaces.

The total dislocation density fields are plotted for all three cases of Material II
in Fig. 19 at � D 0.006. There is a significant dislocation density accumulation
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Fig. 18 Contours of cumulative slip at � D 0.006 for (a) Material I (b) Material II (H D C)
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Fig. 19 Evolution of total matrix dislocation density versus applied strain as predicted by the
micropolar model (solid lines) and discrete dislocation dynamics (dashed lines) (Yefimov et al.
2004a) (a) for various unit cell sizes during loading and (b) unloading for H D C. Contour of total
dislocation density for Material II at � D 0.006 for the micropolar model H D 0.5C

along the vertical faces of the matrix-particle interface and sparse dislocation density
distributed throughout the matrix. These GNDs are generated to accommodate the
rotational gradients that develop at the interface (Ashby 1970). The total matrix
dislocation density is plotted during loading as a function of applied shear strain for
both the micropolar and discrete dislocation models for the three unit cell sizes in
Fig. 19a and during loading/unloading forH D C in Fig. 19b. The micropolar results
are in good agreement with the discrete dislocation simulations for the two largest
unit cells during loading, but there is a modest departure in the model predictions
for the H D 0.5C case. Interestingly, the discrete dislocation model predicts much
higher rate of dislocation recovery upon unloading as compared to the micropolar
model.

Overall, the predictions of the micropolar simulations are in reasonably good
agreement with the discrete dislocation simulation results. The most significant
discrepancy in the simulated material response is the underprediction of the
Bauschinger effect and the rate of dislocation recovery upon unloading. We believe
these discrepancies are largely related to the higher-order boundary conditions
enforced at the matrix-particle interface. It is assumed that the lattice rotations at
the matrix-particle interface are equal in these simulations, i.e., the finite element
nodes along the matrix-particle interface are shared between the two materials. This
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represents a different boundary condition than what is enforced at the matrix-particle
interface in the discrete dislocation simulation. The interface boundary condition
enforced in the DDD models is one of equal displacements and zero slip at the
vertical matrix-particle faces. Thus, the micropolar model enforces an additional
constraint at the matrix-particle interface, which may overconstrain the material
response upon unloading. It may be possible to achieve an improved unloading
response by either modifying boundary conditions at the matrix-particle interface
or the nonclassical elastic constants of the inclusion, �Ic and ˇ

I , which will alter the
way higher-order tractions are transmitted between the two phases.

Conclusions

Micropolar crystal plasticity is a specialized subset of the more general micro-
morphic crystal plasticity theory, discussed in a subsequent chapter, that accounts
for size effects due to gradients of lattice rotation. The connection between the
micropolar lattice torsion-curvature and Nye’s GND tensor was established and
related to concepts from slip gradient-based crystal plasticity. The advantage of
the micropolar theory in comparison to the micromorphic and slip gradient-based
theories is the reduced complexity in that it requires only three additional continuum
degrees of freedom for the fully three-dimensional case.

A full treatment of the finite deformation kinematics and thermodynamic-based
constitutive equations have been developed and placed in context as an extension of
concepts of local crystal plasticity theory. A model employing linearized kinematics
is then presented with an explicit set of constitutive equations that were used in finite
element simulations of initial-boundary value problems previously solved using
discrete dislocation dynamics (DDD). The simulation results demonstrate the ability
of the micropolar theory to capture many of the salient features exhibited by the
DDD simulations for a wide range of boundary value problems, including both the
size-dependence of the stress-strain response and the evolution of the dislocation
density.

An extended comparison to Gurtin-type slip gradient-based theories of higher-
order single crystal plasticity was presented. The analysis highlights many striking
theoretical similarities, which suggests that they will also share many of the same
predictive capabilities. A few subtle, but key differences, with respect to the
construction of dissipative constitutive equations are also discussed. For example,
it is possible in the slip gradient-based theories to isolate gradient energetic and
dissipative length scale effects, whereas they are coupled in the micropolar theory,
i.e., one cannot have gradient dissipative effects in the absence of energetic gradient
effects since there will be no driving force for plastic torsion-curvature evolution.
However, it is noted that there is no principal restriction preventing one from
casting the micropolar theory in terms of energetic-dissipative decomposition of the
couple stress tensor rather than of the lattice torsion-curvature, which would then
accommodate a true separation of energetic and dissipative gradient effects.



640 J. R. Mayeur et al.

There is still much exciting work to be done in further developing the micropolar
theory. Two areas of particular interest are the development of proper intermediate
higher-order boundary conditions between fully constrained (micro-hard) and trac-
tion free (micro-free) and the proper description of interface boundary conditions
and/or constitutive equations for grain and/or phase boundaries.
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Abstract

The micromorphic approach to crystal plasticity represents an extension of the
micropolar (Cosserat) framework, which is presented in a separate chapter.
Cosserat crystal plasticity is contained as a special constrained case in the
same way as the Cosserat theory is a special restricted case of Eringen’s
micromorphic model, as explained also in a separate chapter. The micromorphic
theory is presented along the lines of Aslan et al. (Int J Eng Sci 49:1311–
1325, 2011) and Forest et al. (Micromorphic approach to crystal plasticity and
phase transformation. In: Schroeder J, Hackl K (eds) Plasticity and beyond.
CISM international centre for mechanical sciences, courses and lectures, vol
550, Springer, pp 131–198, 2014) and compared to the micropolar model in
some applications. These extensions of conventional crystal plasticity aim at
incorporating the dislocation density tensor introduced by Kröner (Initial studies
of a plasticity theory based upon statistical mechanics. In: Kanninen M, Adler
W, Rosenfield A, Jaffee R (eds) Inelastic behaviour of solids. McGraw-Hill,
pp 137–147, 1969). and Cermelli and Gurtin (J Mech Phys Solids 49:1539–
1568, 2001) into the constitutive framework. The concept of dislocation density
tensor is equivalent to that of the so-called geometrically necessary dislocations
(GND) introduced by Ashby (The deformation of plastically non-homogeneous
alloys. In: Kelly A, Nicholson R (eds) Strengthening methods in crystals. Applied
Science Publishers, London, pp 137–192, 1971). The applications presented in
this chapter deal with pile-up formation in laminate microstructures and strain
localization phenomena in polycrystals.

Keywords
Micromorphic medium · Crystal plasticity · Dislocation density tensor ·
Geometrically necessary dislocations · Strain gradient plasticity · Size effect

Introduction

The micromorphic approach to crystal plasticity represents an extension of the
micropolar (Cosserat) framework which is presented in a separate chapter. Cosserat
crystal plasticity is contained as a special constrained case in the same way as the
Cosserat theory is a special restricted case of Eringen’s micromorphic model, as
explained also in a separate chapter. The micromorphic theory is presented along the
lines of Aslan et al. (2011) and Forest et al. (2014) and compared to the micropolar
model in some applications. These extensions of conventional crystal plasticity
aim at incorporating the dislocation density tensor introduced by Kröner (1969)
and Cermelli and Gurtin (2001) into the constitutive framework. The concept of
dislocation density tensor is equivalent to that of so-called geometrically necessary
dislocations (GND) introduced by Ashby (1971).

The links between the micromorphic continuum and the plasticity of crystalline
materials have been recognized very early by Claus and Eringen (1969) and Eringen
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and Claus (1970). Lattice directions in a single crystal can be regarded as directors
that rotate and deform as they do in a micromorphic continuum. The fact that
lattice directions can be rotated and stretched in a different way than material
lines connecting individual atoms, especially in the presence of static or moving
dislocations, illustrates the independence between directors and material lines in
a micromorphic continuum, even though their deformation can be related at the
constitutive level.

The objective of the present chapter is to formulate a finite deformation
micromorphic extension of conventional crystal plasticity to account for GND
effects in single crystals. It also provides analytical predictions of size effects on
the yield strength and kinematic hardening of laminate microstructures made of
an elastic layer and an elastic–plastic single-crystal layer undergoing single slip.
The theory is called the microcurl model because the evaluation of the curl of the
microdeformation, instead of its full gradient, is sufficient to account for the effect
of the dislocation density tensor.

The models proposed in this section for single crystals fall in the class of
anisotropic elastoviscoplastic micromorphic media for which constitutive frame-
works at finite deformations have been proposed in Forest and Sievert (2003), Lee
and Chen (2003), Grammenoudis and Tsakmakis (2009), Sansour et al. (2010),
and Regueiro 2010; see the corresponding chapter in this handbook. In fact,
the micromorphic approach can be applied not only to the total deformation
by introducing the microdeformation field but can also be restricted to plastic
deformation, for specific application to size effects in plasticity, or to damage
variables for application to regularized simulation of crack propagation, as proposed
in Forest (2009, 2016) and Hirschberger and Steinmann (2009).

The outline of this chapter is as follows. The crystal plasticity model formulated
within Eringen’s micromorphic framework is presented at finite deformation in
section “The Microcurl Model at Finite Deformation,” together with its lineariza-
tion. Size effects predicted by the model are illustrated in section “Size Effects
in a Two-Phase Single-Crystal Laminate.” Some constitutive laws involving the
dislocation density tensor are discussed in section “Free Energy Potentials for
Micromorphic Crystal Plasticity” with an application to cyclic plasticity in single
crystals. Finally, the model is used to predict the response of polycrystalline metals
and alloys in section “Grain Size Effects in Polycrystals.”

TheMicrocurl Model at Finite Deformation

Model Formulation

Balance Equations
The degrees of freedom of the proposed theory are the displacement vector u and
the microdeformation variable b�p , a generally nonsymmetric second-rank tensor.
The fieldb�p

.X/ is generally not compatible, meaning that it does not derive from a
vector field. The exponent p indicates, in advance, that this variable will eventually
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be constitutively related to plastic deformation occurring at the material point. In
particular, the microdeformation b�p is treated as an invariant quantity with respect
to rigid body motion. The polar decomposition of the microdeformation contains
the polar rotation R used in the micropolar crystal plasticity theory and a symmetric
microstretch tensor. As a result, when this microstretch tensor is close to the identity
tensor, the micromorphic model reduces to the micropolar one.

A first gradient theory is considered with respect to the degrees of freedom.
However, the influence of the microdeformation gradient is limited to its curl part
because of the intended relation to the dislocation density tensor associated with
the curl of plastic distortion. The following sets of degrees of freedom and of their
gradients are therefore defined:

DOF D
˚

u; b�
p�
; GRAD D

˚

F WD 1C u ˝ r0; K WD Curl b�p� (1)

The following definition of the curl operator is adopted:

Curl b�p
WD

@b�
p

@Xk
� ek; Kij WD 2jkl

@b�
p

ik

@Xl
(2)

where 2ijk is the permutation tensor.
The method of virtual power is used to derive the balance and boundary

conditions, following Germain (1973). For that purpose, the power density of
internal forces is defined as a linear form with respect to the velocity fields and
their Eulerian gradients:

p.i/ D � W . Pu ˝ r/C s W P
b�
p

C M W curl P
b¦
p
; 8x 2 V (3)

Here, the conjugate quantities are the Cauchy stress tensor � , which is symmetric
for objectivity reasons; the microstress tensor, s; and the generalized couple-stress
tensor M. The curl of the microdeformation rate is defined as:

curl P
b�
p

WD 2jkl
@ P
b�
p

ik

@xl
ei ˝ ej D PK F�1 (4)

The form of the power density of internal forces dictates the form of the power
density of contact forces:

p.c/ D t � Pu C m W P
b¦
p
; 8x 2 @V (5)

where t is the usual simple traction vector and m is the double-traction tensor. The
principle of virtual power is stated in the static case and in the absence of volume
forces for the sake of brevity:

�

Z

D

p.i/ dV C

Z

@D

p.c/ dS D 0 (6)



18 Micromorphic Crystal Plasticity 647

for all virtual fields Pu; P
b�
p

and any subdomain D � V. By application of the Gauss
divergence theorem, assuming sufficient regularity of the fields, this statement
expands into:

R

V

@�ij
@xj

Pui dV C
R

V

�

2kjl
@Mik

@xl
� sij

�

P
b�
p

ij dV

C
R

@V

�

ti � �ij nj
�

Pui dS C
R

@V

�

mik � 2jkl Mij nl
�

P
b�
p

ik dS D 0; 8Pui ;8P
b�
p

ij

which leads to the two-field equations of balance of momentum and generalized
balance of moment of momentum:

div � D 0; curl M C s D 0; 8x 2 V (7)

and two boundary conditions:

t D � � n; m D M� 2 �n; 8x 2 @V (8)

the index representation of the latter relation being mij D Mik2kjlnl. These balance
equations can be compared to the corresponding ones in the chapter dedicated to the
micropolar theory.

Constitutive Equations
The deformation gradient is decomposed into elastic and plastic parts in the form,

F D Fe Fp (9)

The isoclinic intermediate configuration is defined in a unique way by keeping
the crystal orientation unchanged from the initial to the intermediate configuration
following Mandel (1973). The plastic distortion Fp is invariant with respect to rigid
body motions that are carried by Fe. The current mass density is �, whereas the
mass density of the material element in the intermediate configuration is Q�, such
that Q�=� D Je WD det .Fe/. The elastic strain is defined as:

QEe WD
1

2

�

FeT Fe � 1
�

(10)

The microdeformation is linked to the plastic deformation via the introduction of
a relative deformation measure, defined as:

ep WD Fp�1
b�
p

� 1 (11)

This tensor ep measures the departure of the microdeformation from the plastic
deformation. The state variables are assumed to be the elastic strain, the relative
deformation, the curl of microdeformation, and some internal variables, ˛:
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STATE WD
n

QEe; ep; K; ˛
o

(12)

The specific Helmholtz free energy density,  , is assumed to be a function of
this set of state variables. In particular, in this simple version of the model, the curl
of microdeformation is assumed to contribute entirely to the stored energy. In more
sophisticated models, as proposed in Forest and Sievert (2003, 2006), Forest (2009),
and Gurtin and Anand (2009), the relative deformation, the microdeformation, and
its gradient can be split into elastic and plastic parts.

When the internal constraint ep � 0 is enforced, the plastic microdeformation
coincides with the plastic deformation so that the curl of the plastic microdeforma-
tion is directly related to the dislocation density tensor previously defined by:

K WD Curl b�p
� Curl Fp D JAF�T (13)

where A is the dislocation density tensor defined as the curl of the inverse elastic
deformation.

The micromorphic model then reduces to strain gradient plasticity according to
Gurtin (2002).

The dissipation rate density is the difference:

�intr WD p.i/ � � P � 0 (14)

which must be positive according to the second principle of thermodynamics. When
the previous strain measures are introduced, the power density of internal forces
takes the following form:

p.i/ D � W PFeFe�1C � W
�

Fe PFp Fp�1 Fe�1
�

C s W
�

Fp PepC PFp ep
�

CM W PK F�1

D
�

Q�
…e W PQE

e

C
�

Q�
…M W PFp Fp�1 C s W

�

Fp Pep C PFp ep
�

C M W PK F�1

(15)

where …e is the second Piola–Kirchhoff stress tensor with respect to the intermedi-
ate configuration and …M is the Mandel stress tensor:

…e WD Je Fe�1 � Fe�T; …M WD Je FeT � Fe�T D FeT Fe …e (16)

On the other hand,

� P D �
@ 

@ QEe
W PQE

e

C �
@ 

@ep
W Pep C �

@ 

@K
W PK C �

@ 

@˛
P̨ (17)
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We compute:

JeD D
�

…e � Q� @ 
@QEe

�

W PQE
e

C
�

Je FpT s � Q� @ 
@ep

�

W Pep

C
�

JeM F�T � Q� @ 
@K

�

W PK

C
�

…M C Jes b�
pT
�

W PFp Fp�1 � Q� @ 
@˛

P̨ � 0

(18)

Assuming that the processes associated with PQE
e

; Pep and PK are nondissipative,
the state laws are obtained:

…e D Q�
@ 

@ QEe
; s D J�1

e Fp�T Q�
@ 

@ep
; M D J�1

e Q�
@ 

@K
FT (19)

The residual dissipation rate is:

JeD D
�

…M C Jes b¦
pT
�

W PFp Fp�1 �R P̨ � 0; with R WD Q�
@ 

@˛
(20)

At this stage, a dissipation potential that depends on stress measures, �(S, R), is
introduced in order to formulate the evolution equations for plastic flow and internal
variables:

PFp Fp�1 D
@�

@S ; with S WD …M C Jesb¦
pT (21)

P̨ D �
@�

@R
(22)

where R is the thermodynamic force associated with the internal variable ˛ and S is
the effective stress conjugate to plastic strain rate, the driving force for plastic flow.

In the case of crystal plasticity, a generalized Schmid law is adopted for each slip
system s in the form:

f s
�

S; � sc
�

D jS W Psj � �sc � 0; with Ps D l s ˝ ns (23)

for activation of slip system s with slip direction, ls, and normal to the slip plane, ns.
We call Ps the orientation tensor. The critical resolved shear stress is �sc which may
be a function of R in the presence of isotropic hardening. The kinematics of plastic
slip follows from the choice of a dissipation potential, �(f s), that depends on the
stress variables through the yield function itself, fs:

PFp Fp�1 D

N
X

sD1

@�

@f s

@f s

@S D

N
X

sD1

P”s Ps; with P”s D
@�

@f s
sign .S W Ps/ (24)
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A possible viscoplastic potential is then:

�.f s/ D
K

nC 1
<
f s

K
>nC1 (25)

where K and n are viscosity parameters associated with viscoplastic slip, and the
brackets stand for < � > D Max(0, �). The generalized resolved shear stress can be
decomposed into two contributions:

S W Ps D �s � xs; with �s D …M W Ps and xs D �sb¦pT W Ps (26)

The usual resolved shear stress is � s, whereas xs can be interpreted as an internal
stress or back stress leading to kinematic hardening. The fact that the introduction
of the effect of the dislocation density tensor or, more generally, of gradient of
plastic strain tensor leads to the existence of internal stresses induced by higher-
order stresses has already been noticed by Steinmann (1996); see also Forest (2008).
The back stress component is induced by the microstress s or, equivalently, by the
curl of the generalized couple-stress tensor, M, via the balance Eq. (7).

Geometrically LinearizedModel

When deformations and rotations remain sufficiently small, the previous equations
can be linearized as follows:

F D 1C H ' 1C He C Hp; He D "e C !e; Hp D "p C !p (27)

where "e and !e (resp. "p, !p) are the symmetric and skew-symmetric parts of
Fe – 1 (resp. Fp – 1). When microdeformation is small, the relative deformation is
linearized as:

ep D .1 C Hp/�1 .1 C ¦p/ � 1 ' ¦p � Hp; with ¦p Db¦
p

� 1 (28)

When linearized, the state laws (19) become:

� D �
@ 

@"e
; s D �

@ 

@ep
; M D �

@ 

@K
(29)

The evolution equations read then:

P"p D
@�

@ .� C s/
; P̨ D �

@�

@R
(30)

The most simple case of a quadratic free energy potential is first considered:

� ."e; ep;K/ D
1

2
"e W C W "e C

1

2
H�ep W ep C

1

2
AK W K (31)
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The usual four-rank tensor of elastic moduli is denoted by C. The higher-order
moduli have been limited to only two additional parameters: H¦ (unit MPa) and
A (unit MPa.mm2). Their essential impact on the prediction of size effects will be
analyzed in the next section. It follows that:

� D C W "e; s D H�ep; M D AK (32)

Large values of H¦ ensure that ep remains small so that b¦p remains close to Hp

and K is close to the dislocation density tensor. The yield condition for each slip
system becomes:

f s D j�s � xsj � �sc (33)

with

xs D �s W Ps D .curl M/ W Ps D A .curl curl ¦p/ W Ps (34)

Comparison BetweenMicropolar andMicromorphic Crystal
Plasticity

Experimental techniques like Electron Back-Scatter Diffraction (EBSD) provide
the field of lattice orientation and, consequently, of lattice rotation Re during
deformation. The rotation Re appears in the polar decomposition of the elastic
deformation Fe D ReUe, where Ue is the lattice stretch tensor. Since

˛ D � curl Fe�1 D � curl
�

Ue�1 � ReT
�

(35)

the hypothesis of small elastic strain implies

˛ ' � curl ReT (36)

This approximation also requires that the gradient of elastic strain is also small,
which is not ensured even if the elastic strain is small. If, in addition, elastic rotations
are small, we have:

˛ ' � curl .1 � !e/ D curl !e (37)

The small rotation axial vector is defined as:

�e
! D �

1

2
2
'

W !e; !e D �2
�

�
�e
! (38)



652 S. Forest et al.

or, in matrix notations:

Œ!e� D

2

4

0 !e12 �!e31
� !e12 0 !e23
!e31 �!e23 0

3

5 D

2

6

4

0 �
�e
!3

�e
!2

�e
!3 0 �

�e
!1

�
�e
!2

�e
!1 0

3

7

5 (39)

The gradient of the lattice rotation field delivers the lattice curvature tensor. In
the small deformation context, the gradient of the rotation tensor is represented by
the gradient of the axial vector:

� WD
�e
! (40)

One can establish a direct link between curl !e and the gradient of the axial
vector associated with !. For that purpose, the matrix form of curl !e is derived
according to:

Œcurl !e� D

2

6

4

!e12;3 C !e31;2 �!e31;1 �!e12;1
� !e23;2 !e12;3 C !e23;1 �!e12;2
� !e23;3 �!e31;3 !e23;1 C !e31;2

3

7

5 (41)

or equivalently:

Œcurl !e� D

2

6

6

4

�e
�!3;3 �

�e
!2;2

�e
!2;1

�
!3;1

�e
!1;2

�e
�!3;2 �

�e
!1;1

�e

!3;2
�e
!1;3

�e
!2;3

�e
�!1;1 �

�e
!2;2

3

7

7

5 (42)

from which it becomes apparent that:

˛ D �T � .trace �/ 1; � D ˛T �
1

2
.trace ˛/ 1 (43)

This is a remarkable relation linking, with the context of small elastic strains
(and in fact of small gradients of elastic strain) and rotations, the dislocation density
tensor to lattice curvature. It is known as Nye’s formula (Nye 1953).

As a conclusion, it appears that the Cosserat crystal plasticity model only
considers the lattice curvature part contained in the full dislocation tensor. This
seems to be a reasonable assumption. However, some significant differences can
be found in the predictions of Cosserat vs. full micromorphic theory, as discussed
in the reference Cordero et al. (2010a).
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Size Effects in a Two-Phase Single-Crystal Laminate

A periodic two-phase single-crystal laminate under simple shear, whose unit cell
is shown in Fig. 1, is considered, following Forest and Sedláček (2003a), Forest
(2008), and Cordero et al. (2010a). This microstructure is composed of a hard
elastic phase (h) and a soft elasto-plastic phase (s) where one slip system with slip
direction normal to the interface between (h) and (s) is chosen. A mean simple glide
” is applied in the crystal slip direction l of the phase (s). The displacement and
microdeformation fields take the form:

u1 D ”x2; u2 .x1/ ; u3 D 0; ¦
p
12 .x1/ ; ¦

p
21 .x1/ (44)

within the context of small deformation theory. It follows that:

ŒH� D

2

4

0 ” 0

u2;1 0 0
0 0 0

3

5

ŒHp� D

2

4

0 ” 0

0 0 0

0 0 0

3

5 ŒHe� D

2

4

0 ” � ” 0

u2;1 0 0

0 0 0

3

5

Œ¦p� D

2

4

0 ¦
p
12 .x1/ 0

¦
p
21 .x1/ 0 0

0 0 0

3

5 Œcurl ¦p� D

2

4

0 0 �¦
p
12;1

0 0 0

0 0 0

3

5

The resulting stress tensors are:

Fig. 1 Single slip in a periodic two-phase single-crystal laminate under simple shear: the gray
phase (h) displays a purely linear elastic behavior, whereas the inelastic deformation of the white
elasto-plastic phase (s) is controlled by a single-slip system (n, l)
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Œ�� D 	

2

4

0 ” � ” C u2;1 0
” � ” C u2;1 0 0

0 0 0

3

5

Œs� D �H¦

2

4

0 ” � ¦
p
12 0

� ¦
p
21 0 0

0 0 0

3

5

ŒM� D

2

4

0 0 �A¦
p
12;1

0 0 0

0 0 0

3

5 Œcurl M� D

2

4

0 �A¦
p
12;11 0

0 0 0

0 0 0

3

5

These forms of matrices are valid for both phases, except that ” � 0 in the hard
elastic phase. Each phase possesses its own material parameters, H¦ and A, the shear
modulus,	, being assumed for simplicity to be identical in both phases. The balance
equation, s D �curl M, gives �p21 D 0 and the plastic slip:

” D ¦
p
12 �

A

H�

�
p
12;11: (45)

In the soft phase, the plasticity criterion stipulates that:

�12 C s12 D �c CH”cum; (46)

where H is a linear hardening modulus considered in this phase and ”cum is the
accumulated plastic slip as P”cum D jP”j. The following analytical resolution is done
for the first loading branch, under monotonic loading. The slip direction, l, has been
chosen such that ” > 0 for this first loading branch so that we have: ”cum D ”.
Considering Eqs. (45) and (46), we obtain the second-order differential equation for
the microdeformation variable in the soft phase, ¦ps12 ,

1

!s2
¦
ps
12;11 � ¦

ps
12 D

�c � �12

H
; with !s D

v

u

u

t

Hs
�H

As
�

Hs
� CH

� : (47)

where 1/!s is the characteristic length of the soft phase for this boundary value
problem. The force stress balance equation requires �12 to be uniform. It follows
that the nonhomogeneous part of the differential equation is constant and then the
hyperbolic profile of ¦ps12 takes the form:

¦
ps
12 D C s cosh .!sx/CD; (48)

where Cs and D are constants to be determined. Symmetry conditions
�

¦
ps
12 .�s=2/ D ¦

ps
12 .s=2/

�

have been taken into account.
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In the elastic phase, where the plastic slip vanishes, a hyperbolic profile of the
microdeformation variable, ¦ph12 , is also obtained:

¦
ph
12 D Ch cosh

�

!h
�

x ˙
s C h

2

��

; with !h D

s

Hh
¦

Ah
; (49)

where, again, Ch is a constant to be determined, and symmetry conditions have been
taken into account. It is remarkable that the plastic microvariable, ¦ph12 , does not
vanish in the elastic phase, close to the interfaces, although no plastic deformation
takes place. This is due to the transmission of double traction. Such a transmission
has been shown in Cordero et al. (2010a) to be essential for size effects to occur.
This point will be discussed in section “Size Effects in a Two-Phase Single-Crystal
Laminate.” The linear constitutive equation for the double-stress tensor in (32)
can be interpreted, for the elastic phase, as nonlocal elasticity. That is why the
corresponding characteristic length, 1/!h, will be kept of the order of nanometers in
the presented simulation.

The coefficients Cs, D, and Ch can be identified using the interface and
periodicity conditions:

• Continuity of ¦p12 at x D ˙s/2:

C s cosh
�

!s
s

2

�

CD D Ch cosh

�

!h
h

2

�

: (50)

• Continuity of the double traction, as given in Eq. (8), m12 D �M13 at x D ˙s/2:

As!sC s sinh
�

!s
s

2

�

D �Ah!hCh sinh

�

!h
h

2

�

: (51)

• Periodicity of displacement component u2. We have the constant stress compo-
nent:

�12 D 	 .” � ” C u2;1/ (52)

whose value is obtained from the plasticity criterion in the soft phase (Eq. 46):

�12 D �c CH”cum � As¦
ps
12;11: (53)

Still considering the first loading branch for which ”cum D ”, it follows that:

us2;1 D
�12

	
� ” C ” D

�c

	
� ” C

As!s2C s

H
cosh .!sx/C

H C 	

	
D (54)
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in the soft phase and:

uh2;1 D
�12

	
� ” D

�c

	
� ” C

H

	
D (55)

in the hard phase. The average on the whole structure,

Z .sCh/=2

�.sCh/=2

u2;1dx D 0; (56)

must vanish for periodicity reasons and gives

�

�c

	
� ”

�

.s C h/C
2As!sC s

H
sinh

�

!s
s

2

�

C
H .s C h/C 	s

	
D D 0 (57)

The resolution of Eqs. (50), (51), and (57) gives:

C s D

�

�c

	
� ”

�

"

As!s sinh
�

!s s
2

�

s C h

 

H .s C h/C 	s

	

 

coth
�

!s s
2

�

As!s
C

coth
�

!h h
2

�

Ah!h

!

�
2

H

!#�1

(58)

D D �As!sC s sinh
�

!s
s

2

�

 

coth
�

!s s
2

�

As!s
C

coth
�

!h h
2

�

Ah!h

!

(59)

Ch D �C s
As!s sinh

�

!s s
2

�

Ah!h sinh
�

!h h
2

� : (60)

Figure 2 shows the profiles of plastic microdeformation and double traction in
the two-phase laminate for different sets of material parameters and for a fraction of
soft phase (s), fs D 0.7. These profiles clearly show the continuity of ¦p12 and m12 at
the interfaces. The different shapes presented are obtained for various values of the
modulus As, the other material parameters being fixed and given in Table 1. Varying
As modifies the mismatch with respect to the modulus Ah of the phase (h). Without
mismatch the profile of ¦p12 is smooth at interfaces, while stronger mismatches lead
to sharper transitions between the phases. Varying As also changes the intrinsic
length scale 1/!s of the phase (s). When the intrinsic length scale is small compared
to the size of the microstructure, the microdeformation gradient can develop inside
the phase (s) which leads to a rounded profile of the plastic microdeformation ¦p12
and to a double traction m12 localized at the interfaces. When the intrinsic length
scale increases, the value of the double traction also increases at the interfaces (or
equivalently, when decreasing the microstructure length scale, l D s C h, for a fixed
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a b

Fig. 2 Profiles of (a) plastic microdeformation �p12 and (b) double traction m12 in the two-phase
microstructure with the microcurl model at 0.2% overall plastic strain obtained with the set of
material parameters given in Table 1 and (1) with no mismatch between the moduli of the two
phases, Ah D As D 5.10�5 MPa.mm2; (2) with a stronger mismatch, Ah D 5.10�5 MPa.mm2

and As D 1.10�3 MPa.mm2; and (3) Ah D 5.10�5 MPa.mm2 and As D 5.10�2 MPa.mm2. The
associated intrinsic length scales, 1/!s, are, respectively, 100 nm, 449 nm, and 3.2 
m. In all three
cases, the fraction of soft phase fs D 0.7 and the microstructure size is fixed, l D 1 
m. The vertical
lines indicate the position of interfaces

intrinsic length scale). When the intrinsic length scale becomes of the order of the
size of the microstructure or even larger, the model starts to saturate so that ¦p12
becomes quasihomogeneous (flat profile) and the double traction is not localized
anymore (linear profile). From Eq. (53) we derive the expression of the macroscopic
stress tensor component,†12, defined as the mean value of the stress component �12

over the microstructure size, l D (s C h):

X

12
D h�12i D

1

l

Z 1
2

� 1
2

�12dx D �c C
H

fs
h”cumi �

As

fs

˝

�
ps
12;11

˛

; (61)

where brackets < > denote the average values over the microstructure unit cell. We
obtain the mean plastic slip for the first loading branch from Eq. (45):

h”i D

*

¦
ps
12 �

As

Hs
�

¦
ps
12;11

+

D
2As!sC s sinh

�

!s
fsl

2

�

Hl
C fsD (62)

where fs is the fraction of soft phase. From this we obtain alternative expressions of
Csand D as functions of h”i,
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Table 1 Set of material parameters used in the simulations. The intrinsic length scales, defined as
1/!h,s, induced by these parameters is of the order of 10 nm for the elastic phase (h) and 500 nm
for the plastic phase (s)

	[MPa] � c[MPa] H[MPa] H¦[MPa] A[MPa.mm2]

Phase (s) 35,000 40 5000 500,000 1.10�3

Phase (h) 35,000 – – 500,000 5.10�5

C s D � h”i

2

4As!s sinh

�

!s
fsl

2

�

0

@fs

0

@

coth
�

!s
fsl

2

�

As!s
C

coth
�

!h
.1�fs/l

2

�

Ah!h

1

A �
2

Hl

1

A

3

5

�1

(63)

D D h”i
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2

Hl
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coth
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fsl
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�

As!s
C

coth
�

!h
.1�fs/l

2

�

Ah!h

1

A

�1
3

7

5

�1

(64)

which contain contributions from both the back stress and the isotropic hardening.
The macroscopic stress takes the form:

X

12
D �c CHD: (65)

The hardening produced by the model is a combination of the kinematic
hardening arising from the higher-order back stress component and the linear
isotropic hardening introduced in (46). Its modulus, Htot, is size-dependent and is
obtained using Eqs. (64) and (65):

Htot D H

2

6

4fs �
2

Hl

0

@

coth
�

!s
fsl

2

�

As!s
C

coth
�

!h
.1�fs/l

2

�

Ah!h

1

A

�1
3

7

5

�1

(66)

One cycle of deformation ” has been considered to illustrate the kinematic
hardening effects. In the absence of gradient effects, only isotropic hardening is
visible. The microcurl model leads to an additional kinematic hardening component.
When the size of the elasto-plastic phase (s) becomes large compared to the intrinsic
length scale 1/!s, strain gradient effect is small, and the kinematic hardening arising
from the microcurl model tends to vanish. Then the model reduces to conventional
crystal plasticity theory, and the limit of the 0.2% macroscopic flow stress is:
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lim
l!1

X

12j0:2
D �c C

H

fs
h”cumi : (67)

In contrast, the maximum extra stress, �†, predicted by the model at small
microstructure sizes can be computed as:

�† D lim
l!0

X

12
.h”i/ � lim

l!1

X

12j0:2
D
1 � fs

fs
H� h”i : (68)

Figure 3 presents the predicted evolution of the macroscopic flow stress †12j0.2

at 0.2% plastic strain (obtained by setting h”i D 0.002) as a function of the
microstructure length scale l in a log–log diagram. This evolution is plotted using
the material parameters given in Table 1 and for various values of the coupling
modulus, Hs

¦ D Hh
¦ D H¦. The four lower curves are obtained for finite values of

the modulus H¦; they exhibit a tanh shape with saturation for large (l > 10�2 mm)
and small (l < 10�5 mm) values of l. These saturations can be characterized by
the limit given in Eq. (67) and the maximum extra stress, �†, given in Eq. (68),
respectively. A transition domain with strong size dependence is observed between
these two plateaus. The limits and the maximum extra stress, the position of the
transition zone, and the scaling law exponent in the size-dependent domain (slope
in the log–log diagram) are directly related to the material parameters used in the
model. In fact, the position of the size-dependent domain is controlled by the moduli
Ah,s (not illustrated here), while the maximum extra stress and the scaling law
exponent are both controlled by the modulus H¦, both increasing for higher values
of H¦ as suggested by Fig. 3.

When H¦ is very small, we can deduce from Eq. (68) that �† vanishes, and
consequently the scaling law exponent will tend to 0. The upper curve is obtained
for H¦ ! 1; it no longer exhibits a tanh shape as no saturation occurs for small
values of l, the limit �† !1 follows. This limit case will be described in the
next subsection; it will be shown that in that case, a scaling law exponent of �2 is
reached. Finally, the microcurl model can produce scaling law exponents ranging
from 0 to �2.

Strain Gradient Plasticity as a Limit Case

In the proposed microcurl model, the modulus H¦ introduces a coupling between
micro and macro variables. A high value of H¦ forces the plastic microdeformation
¦p to remain as close as possible to the macroplastic deformation Hp. Consequently,
it enforces the condition that K coincides with the dislocation density tensor. In
this case, the microcurl model degenerates into the strain gradient plasticity model
by Gurtin (2002). When applied to the laminate microstructure, the strain gradient
plasticity model leads to the indeterminacy of the double-traction vector at the
interfaces, due to the fact that no strain gradient effect occurs in the elastic phase; see
Cordero et al. (2010a). The microcurl model can then be used to derive the missing
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interface condition to be applied at the interface, by means of a limit process in the
previous solution of the boundary value problem.

The limit H� ! 1 of the microcurl model can be used to determine the value of
the double traction to be imposed at the interface, as follows:

lim
H¦!1

m12 .s=2/ D lim
H¦!1

As¦
ps
12;1 .s=2/

D lim
H¦!1

As!s sinh

�
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2
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�fs
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�1

Since H� ! 1, 1/!h ! 0 and coth (!h h/2) ! 1. Moreover, !s1 WD !s !
p

H=As .
Consequently,
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3
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(69)

Accordingly, the double traction is found to depend on the mean plastic slip.
The characteristic length in the soft phase for the strain gradient plasticity model
is found to be related to the ratio between the hardening modulus and the higher-
order modulus, As. The limiting process can also be used to predict the response of
the strain gradient plasticity model in the size effect zone. For that purpose, let us
consider the limit of †12j0.2, when H¦ goes to infinity. Indeed, when H¦ tends to
infinity, the expression of D in Eq. (64) can be simplified. We consider sizes of the
microstructures in the size effect zone, i.e., intermediate values of l. Since H¦ is very
high, the term tanh (!h(1 – fs)l/2) tends to 1. Considering that l is small enough, the
term l (tanh (!s fs l/2)) can be approximated by its Taylor expansion at the order 2,
which leads to D of the form:

D �
al C b

cl2 C dl C e
(70)

where

a D
h”ifs

2
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H¦

; b D h”ifsA
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(72)
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The terms a, d, and e tend to 0 when H¦ ! 1, so that:

D �
12As h”i

f 3
s Hl

2
(73)

and for the macroscopic stress:

†12 � �c C
12As h”i

f 3
s l

2
(74)

This expression indicates a l�2 scaling law for the strain gradient plasticity
model. This scaling law differs from the Hall–Petch relation, l–1/2, typical for grain
size effects, and from the Orowan relation, l�1, valid for precipitate size effects.

On the right Fig. 3 shows a comparison between the micropolar and micromor-
phic responses in the case of the two-phase laminate under shear. A saturation of
the stress level is found for increasing values of the penalty modulus H¦ in the
micropolar model at small scales. In contrast, the micromorphic response converges
toward that of the strain gradient plasticity model and displays no limit at small
scales. This is a fundamental difference between the lattice curvature-based and the
dislocation density tensor-based models; see Cordero et al. (2010a).

Free Energy Potentials for Micromorphic Crystal Plasticity

The previous example showing that a simple quadratic potential with respect to the
dislocation density tensor does not provide the satisfactory scaling law for the plastic
behavior of the channel is an incentive for developing more physical constitutive
laws for strain gradient plasticity. Such an attempt is presented in this section along
the lines of Wulfinghoff et al. (2015).

Physically, the introduction of additional energy density terms may be motivated
by the incomplete nature of the continuum theory. Clearly, the continuum descrip-
tion does not contain the full information on the discrete dislocation microstructure.
In particular, single dislocations are not resolved. Instead, the continuum representa-
tion may be interpreted as a smoothed version of the real system, where information
is lost deliberately. There is no reason to assume that the total elastic energy of
the continuum representation coincides with the elastic energy of the real system
including discrete dislocations. This is due to the loss of information as a result
of the smoothing procedure (Mesarovic et al. 2010). Additional energy terms in
gradient plasticity may therefore be interpreted as an attempt to partially compensate
the error in the continuum elastic energy. This is done by taking into account
available kinematical information on the dislocation microstructure as additional
argument of the energy.

The optimal form of the energy is subject of current research. Most applications
are based on a pragmatic quadratic approach (e.g., Cordero et al. 2012; Reddy et al.
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2012; Wulfinghoff and Böhlke 2012; Miehe et al. 2014; Wulfinghoff et al. 2013a, b;
Mesarovic et al. 2015).

Instead, a more reasonable approach seems to be based on a variable internal
length scale as a function of the dislocation state (Groma et al. 2003; Mesarovic
et al. 2010). The quadratic form was recently shown to provide physically unrealistic
scaling in the size-dependent response of laminate microstructures under shear
(Cordero et al. 2010b; Forest and Guéninchault 2013). Since quadratic forms are
unusual in the classical dislocation theory, alternative free energy potentials were
proposed in the past 10 years. Rank-one energies that are linear with respect to the
GND densities have been shown to lead to a size-dependent yield stress in certain
situations. Additionally motivated by line tension (and more elaborate) arguments,
they are used by several authors (Ortiz and Repetto 1999; Conti and Ortiz 2005;
Ohno and Okumura 2007; Kametani et al. 2012; Hurtado and Ortiz 2013).

Asymptotic methods can be used to derive alternative effective potential for dis-
tributions of edge dislocations. The asymptotic derivation of a logarithmic potential
by De Luca et al. (2012) accounts for line tension effects at the macroscopic scale.
Systematic derivations of back stress distributions were derived in Geers et al.
(2013) by means of asymptotic methods.

The choice of a logarithmic energy is inspired by the statistical theory of dislo-
cations of Groma et al. (2003, 2007) and Berdichevsky (2006a,b). Here, the internal
length scale of the back stress is determined by the dislocation microstructure
(see also Svendsen and Bargmann 2010; Forest and Guéninchault 2013). In the
latter reference, the rank-one and logarithmic formulations were applied to strain
gradient plasticity theories involving the full dislocation density tensor instead of
the individual GND densities.

Formulation of Two Free Energy Potentials

It is assumed that the volumetric stored energy density has the form:

� D W D We CWg CWh; (75)

with We D (" � "p) : C : (" � "p)/2. The expressions Wh and Wg are assumed to be
functions of internal (hardening) variables ˛ and the dislocation density tensor A,
respectively.

Size-independent isotropic hardening is accounted for by Wh, while Wg models
size effects.

The following defect energies are investigated:

W 1
g D cGb kAk ; W ln

g D c0 kAk ln
kAk

A0
; (76)

where c is a constant of order unity, G is the macroscopic shear modulus, b is the
Burgers vector, A0 is a constant, and c0 is given by:
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c0 D
Gbˇ

2� .1 � �/
; (77)

where � is Poisson’s ratio and ˇ is of order unity. The Euclidean norm of the
dislocation density tensor is defined as: kAk D

p
A � A.

The rank-one energyW 1
g can be motivated by simple line tension arguments; see

Ortiz and Repetto (1999) and Hurtado and Ortiz (2012, 2013).
The logarithmic energyW ln

g (Eq. (76)) is motivated by the form of the associated
back stress (Forest and Guéninchault 2013). It turns out that the approachW ln

g leads
to a back stress which is formally close to the one derived in the statistical theory of
Groma et al. (2003), given in 1D by

Gc1

2� .1 � v/ �
@2x1” (78)

for a single-slip situation with slip direction e1. Here, � denotes the total dislocation
density. In the two-dimensional single-slip regime, the back stress involves the
Laplacian of the plastic slip, as postulated by Aifantis (1987). However, the
internal length scale is not interpreted as a material constant but determined by the
dislocation microstructure, if W ln

g is applied.
The stresses ¢ and M are assumed to be energetic, i.e.,

� D
@W

@"e
; M D

@W

@A
(79)

If the stored energy is not differentiable at A D 0, the symbol @ in Eq. (79)2 is
interpreted as a subdifferential operator (see, e.g., Han and Reddy 2013), i.e.,

M j˛D0 2
˚

M W Wg .A/ � M � A � 0 8A
�

: (80)

This can be interpreted as follows. If the stress M is applied at a material point, A
will take a value which minimizes the expression Wg(A) � M � A. For small values
of M, the minimum is given by A D 0. However, for sufficiently large values of M,
the value of A can be determined from the stationarity condition M D @˛Wg.

For example, if Wg is given by W 1
g D cGb kAk, it follows that A D 0 if

M W A 	 W 1
g .A/ D cGb kAk 8A () M W A 	 kMk kAk 	 cGb kAk 8A:

(81)

Hence, it is found that:

(

M 2 fM W ' .M / 	 0g ; if A D 0

M D cGb A
kAk
; else:

(82)

with ®(M) D kMk � cGb.
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Note that the generalized stress M can be computed uniquely from A only if
A ¤ 0. This makes analytical solutions as well as the numerical implementation
difficult. Possible numerical strategies concerning this problem are discussed in
Kametani et al. (2012) as well as Hurtado and Ortiz (2013).

Application to the Shearing of the Periodic Laminate

In this section, the two new potentials are applied to the elasto-plastic laminate
microstructure already considered in section “Size Effects in a Two-Phase Sin-
gle-Crystal Laminate”; see Fig. 1. The two promising candidates of the defect
energy function Wg are investigated concerning their effect on the overall size
effects as well as the dislocation pileup structures building up at impenetrable
boundaries. The dislocation density tensor can be expressed in terms of the edge
density �? D � @x1”

A D ��?e1 ˝ e3: (83)

The quantity �? represents the total Burgers vector amount per unit area of edge
dislocations. Note that its unit (
m�1) differs from the unit of the total line length
per unit volume �, given by 
m�2.

Assuming the defect energy Wg to be a function of jjAjj, the generalized stress
M reads

M D @AWg D @kAkWg
A

kAk
D M .x1/ e1 ˝ e3: (84)

From the balance Eq. (7)2, it follows that

s12 �M 0 D 0: (85)

Throughout this section, the isotropic hardening contribution will be neglected,
i.e., Wh D 0.

Rank-One Defect Energy
For the laminate, the following energy is adopted:

W 1
g D cGb kAk D cGb j�?j ; (86)

where c is of order unity (Ortiz and Repetto 1999). According to Eq. (84), the
generalized stress M reads:

M D � �
?

j�
?

j
cGb D � sign �?cGb; if j�?j > 0

jM j 	 cGb; if j�?j D 0
(87)

where the second line follows from Eq. (82).
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Subsequently, a monotonic shear deformation in the positive direction is pre-
scribed such that the following relations hold in the soft phase: � eff � �C; P” � 0.

The principle of virtual power is written for the real field on the laminate unit
cell V:

Z

V

� W P" C s W PHp C M W curl PHpdV D

Z

@V

t � Pu dS C m W PHpdS (88)

The last term of the right-hand side vanishes due to the fact that Hp is periodic,
whereas m is antiperiodic. The first term of the right-hand side coincides with the
first term in the left-hand side, as can be shown by means of the Gauss theorem. As
a result we obtain,

Z

@V

s W PHp C M W curl PHp dV D 0 (89)

For the laminate under single slip, this gives:

Z s=2Ch

�s=2

s12 P” C .�cGb sign ”;1/ .�P”;1/ dx1 D 0 (90)

Under monotonic loading, sign ”;1 D sign P”;1, so that

Z s=2Ch

�s=2

s12 P” C cGb j P”;1j dx1 D 0 (91)

According to the Schmid law, �12 C s12 D � rmC where the fields �12, s12 are
uniform. The solution is such that the plastic slip field ”(x1) is uniform in ] � s/2,
s/2[ at each instant. So does P” .x1/ D P”.0/ in ] � s/2, s/2[. It vanishes in ]s/2,
s/2 C h[. It is therefore discontinuous at ˙s/2. As a result, the derivative of the
plastic slip rate is the sum of two Dirac functions:

P”;1 .x1/ D P”.0/
�

ı
�

x1 C
s

2

�

� ı
�

x1 �
s

2

��

(92)

The integration of these Dirac functions (in fact the absolute values due to (91))
on the interval [�s/2, s/2 C h] finally gives

s
�

�rmC c � �12
�

P”.0/C 2cGb P”.0/ D 0 (93)

The scaling law follows:

�12 D �C C
2cGb

s
: (94)
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Fig. 4 Macroscopic shear stress–strain curve for the rank-one energy. The increase of the overall
yield point scales inversely with the size of the soft phase, after Wulfinghoff et al. (2015)

This equation holds in the plastic regime. Clearly, the application of the rank-one
energy increases the macroscopic yield stress by 2cGb/s, i.e., the increase scales
inversely with the size of the soft phase (see Fig. 4). The same scaling behavior
has been found by Ohno and Okumura (2007) for a spherical grain, also using
a rank-one energy. The authors concentrated on the overall mechanical response
without having to compute the fields inside of the grains. As illustrated in Fig. 4, the
dislocations localize in dislocation walls at the elasto-plastic interface.

For the material parameters of aluminum (G D 26.12 GPa and b D 0.286 nm) and
c D 1, the size effect becomes important when the system size is below 10 
m. The
plastic shear strain is constant in the bulk, i.e., the dislocations form singularities
(walls) at the boundaries. The back stress is constant (w.r.t. space) in the bulk.
During the first period, it increases and thereby impedes any plastic deformation.
Therefore, the overall deformation is purely elastic during this period. At a certain
point, the plastic deformation starts, and the back stress remains constant afterward.
Its value is given by 2cGb/s.

Logarithmic Energy
This section investigates the following defect energy:

W ln
g D c0 kAk ln

kAk

A0
; (95)

with the constant c0 as defined in Eq. (77). The energy is motivated by the statistical
theory of dislocations by Groma et al. (2003). The authors derive a back stress
term which involves the second gradient of slip as postulated by Aifantis (1987).
However, their theory involves an internal length scale which is given by 1=

p
�,

where � denotes the total dislocation density.
In pure metals, the geometrical characteristics of the microstructure are essen-

tially determined by the dislocation arrangement. This is a strong argument for a
(variable) internal length scale, which is determined by the available dislocation
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field variables (instead of a constant length scale parameter; see also Forest and
Sedláček (2003b) where this dependency is derived from a dislocation line tension
model).

It is demonstrated subsequently that the approach (95) leads to a back stress
which is similar to that of Groma et al. (2003). However, it should be mentioned
that this energy is neither convex nor smooth with respect to the dislocation density
tensor (a regularization will be discussed at a later stage).

For the laminate problem, the generalized stress M reads (see Eq. (84)):

M D � sign �?c0

�

ln
j�?j

A0
C 1

�

: (96)

In this section, rate-independent plasticity will be considered based on the yield
criterion:

f D
ˇ

ˇ� eff
ˇ

ˇ � �C 	 0: (97)

Here, the effective stress reads:

� eff D .� C s/ � .l ˝ n/ D �12 C s12
.85/
D �12 CM 0: (98)

With Eq. (96) and M
0

D (@�?M) (@x1�?), it follows that

� eff D � �
c0

j�?j
@x1�? D � C

Gˇ

2� .1 � v/

b

j�?j
@2x1”: (99)

Here, the second term can be interpreted as a back stress. Note that the back
stress involves no internal length scale parameter. Instead, the internal length scale,
p

b=�?, is determined by the dislocation microstructure. In contrast to the back
stress of Groma et al. (2003), the internal length scale is determined by the GND
density �? instead of the total density �. Hence, the influence of statistically stored
dislocations (SSDs) is ignored for brevity. Therefore, a homogeneous initial GND
density j�?j D A0 will be assumed to be given. In addition, it is assumed that the
SSD density is equal or less than A0. The soft phase is assumed to be under plastic
loading, with � eff D �C in the soft phase. In this case,

M 0 .85/D s12 D �
�

�12 � �C
�

D const: ) M D �
�

�12 � �C
�

x1; (100)

where, again, the constant of integration vanishes due to the symmetry requirement
jM(�s/2)j D jM(s/2)j. The plastic slip ” can be derived from the equality of Eqns.
(96) and (100), which yields a differential equation for ”. The solution reads:

” D
A0L

e

�

exp
� s

2L

�

� exp
�

�a
x1

L

��

with L D
c0

�12 � �C
; (101)
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Fig. 5 Macroscopic
stress–strain diagram for
three different sizes.
Analytical (lines) and
regularized, numerical
(triangles) solution for the
logarithmic potential, after
Wulfinghoff et al. (2015)

where the matching conditions ”(�s/2) D ”(s/2) D 0 have been exploited and where
e D exp (1). The variable a is defined by a D sign ”0 and is assumed positive in
(�s/2, 0) and negative in (0, s/2).

The macroscopic stress–strain relation follows:

” D
A0L

e .s C h/

�

exp
� s

2L

�

.s � 2L/C 2L
�

C
�12

G
: (102)

The solution is evaluated for the following material parameters:

E [GPa] � �C [MPa] b [nm] ˇ A0/b [
m�2]
70 0.34 10 0.286 1 1

A very thin hard phase with negligible width h is considered (h/s D 10�6 for the
analytical solution).

The macroscopic stress–strain curve (102) is illustrated in Fig. 5. A clear
size effect is visible. Apparently, mainly the overall yield stress is affected. The
hardening shows less size dependence. It is remarkable that the model provides a
size-dependent yield stress and nonlinear kinematic hardening.

Since there is no distinct yield stress, the evaluation of the scaling behavior
is based on the offset yield stress at 0.2% plastic strain. The offset yield stress
as a function of the inverse of the size 1/s exhibits the same behavior as in the
results obtained from the rank-one energy. It scales inversely with channel size; see
Wulfinghoff et al. (2015).
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Regularization of the Logarithmic Energy
The following regularization is introduced:

Wg D

(

1
2
c0
b
l2kAk2; kAk < AL

c0 kAk ln kAk
A0

CW0; else:
(103)

In the region of small GND densities, the energy is replaced by a quadratic
potential. The internal length scale l, the transition density ˛L, and the offset energy
W0 are chosen such that Wg, @k˛kWg and @2

k˛k
Wg are continuous at the transition

point kAk D AL. As a result

AL D A0; l
2 D

b

A0
; W0 D

c0A0

2
: (104)

The regularized energy (103) is convex, normalized, and twice differentiable.
The back stress for the laminate problem reads:

x D

(

� c0
A0
@2x1”; j�?j < A0;

� c0
j�

?

j
@2x1”; else:

(105)

Cyclic Behavior of the Laminate

The laminate is now submitted to one full cycle ” D ˙0:05. The hysteresis loops
�12 vs. ” for both rank-one and logarithmic potentials are represented in Fig. 6
for s D 3 
m. In the absence of isotropic hardening, the loops are stabilized
after one full cycle. They are characterized by pure kinematic hardening. The
influence of the back stress is clearly observable. The curves in Fig. 6 have been
obtained numerically. One striking feature of the results is the nonconvexity of
the obtained loops. According to the rank-one model, the first unloading stage
is characterized by reverse plasticity at a constant negative shear stress. When ”
goes through zero again, the overall shear stress experiences a jump of the same
magnitude as computed analytically for monotonic loading in sections “Rank-One
Defect Energy” and “Logarithmic Energy.” The nonconvex loop obtained for
the logarithmic potential is similar but smoother and displays smooth nonlinear
kinematic hardening. A similar nonconvex hysteresis loop was obtained by Ohno
and Okumura (2008) for the rank-one model.

The type of nonlinear kinematic hardening observed for both models can
be identified with Asaro’s type KIII model, corresponding to a first-in/last-out
sequence of dislocation motion (Asaro (1975)). It is considered by Asaro as the
most perfect form of recovery of plastic memory. Such stress–strain loops display
inflection points that are observed in some materials, see Asaro (1975) for a
Nimonic alloy, but such observations have also been made in several Nickel based
superalloys. It is usually attributed to substructural recovery on the microscale,
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Fig. 6 Cyclic loading for s D 3
m

for instance pileup formation and destruction at ”
0

precipitates. In the present
simple single-crystal model, it is the single active hardening mechanism induced
by strain gradient plasticity and the presence of the hard phase in the laminate. It
represents an accurate continuum description of dislocation piling-up and unpiling-
up phenomena.

The experimental evidence of such nonconvex loops is illustrated in Figs. 7 and
8 in the case of polycrystalline Fe–Cr and Al–Cu–Mg alloys, respectively. The first
loop in Fig. 7 (left) exhibits two inflection points, but the convexity is restored
after a few cycles, and the usual shape with still a strong Bauschinger effect is
retrieved in Fig. 7 (right). Figure 8 shows that the amount of plastic recoverability
is controlled by the annealing degree of the dislocation microstructure. Further
evidence of nonconvex loops in the cyclic behavior of FCC alloys can be found in
the recent contribution by Proudhon et al. (2008) dealing with aluminum alloys. The
common characteristics of these FCC alloys are that they all contain a population
of nonshearable intragranular precipitates. This distribution of particles represents
the first series of obstacles to be overcome by dislocations for the plasticity to
start. The distance between precipitates presents a small scatter, and the average
value is the characteristic length responsible for the size-dependent yield limit. This
distance is comparable to the width s in our ideal laminate model. As illustrated
by the TEM observations by Stoltz and Pelloux (1974, 1976), Taillard and Pineau
(1982), and Proudhon et al. (2008), dislocation loops multiply around precipitates
and can be destroyed after reverse loading unless the material is annealed before
reversing the load, see Fig. 8, or unless the multiplication of forest dislocations
or cross-slip effects limit the recoverability of cyclic plasticity. The effect has also
been observed in nickel-base single-crystal superalloys for tension along <111>;
see Fig. 9. The simulations based on the logarithmic potential provide smooth loops
that are closer to the experimental shapes. Our simulations deal with ideal single-
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crystal laminates and simulations for polycrystals remain to be done. However, as
shown by the two-dimensional strain gradient plasticity simulations performed by
Ohno and Okumura (2008), based on the rank-one potential, the effect pertains
for polycrystals. However, these authors did not recognize the physical reality of
the simulated phenomena. Instead, they further developed the model to replace the
rank-one energy potential by a dissipative formulation which restores the convexity
of fatigue loops.

The two nonquadratic energy potentials represent continuum models of a discrete
phenomenon which can be illustrated for a single dislocation source, as shown
in Fig. 10. The cyclic response of a Frank–Read source, simulated by discrete
dislocation dynamics (DDD) (Déprés et al. 2004; Chang et al. 2016), provides a
nonconvex loop which is identical to the one predicted by the rank-one continuum
model. This is related to the fact that an instability of the loop behavior is observed
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Fig. 9 Stabilized stress–strain loops for nickel-base single-crystal superalloy SC16 at 950 ıC,
experiment vs. simulation after Fedelich (2002)

for a critical stress that is inversely proportional to the length of the source. The
scenario of dislocation source bowing and sudden propagation and multiplication
can be reversed entirely in the absence of strong interaction with the dislocation
forest and in the absence of cross-slip. This explains the concave shape of the stress–
strain loop predicted by the DDD, which is accurately translated by the continuum
model; see Fig. 6. Statistical effects of the collective behavior of dislocations finally
destroy the recoverability of plastic deformation and the associated transmission of
the single source behavior to the macroscopic response.



674 S. Forest et al.

Fig. 10 Cyclic behavior of a single Frank–Read dislocation source simulated by discrete disloca-
tion density. (Courtesy of Dr. M. Fivel)

Grain Size Effects in Polycrystals

The model is now applied to simulate the response of polycrystals and the effects of
grain size.

The interface conditions at grain boundaries play a major role in the simulated
size effects in the polycrystal behavior. No special interface law is considered in
this work, although such physically motivated interface conditions exist in the
literature; see Gurtin and Anand (2008). Instead, we consider the canonical interface
conditions that arise from the formulation of the balance equations of the microcurl
continuum model. These conditions are the continuity of displacement, u, and
the continuity of plastic microdeformation, ¦p. These conditions also include the
continuity of the simple and double tractions, t and M, described in Eq. (8). Con-
tinuity of displacement excludes grain boundary cracking and sliding. Continuity
of plastic microdeformation is reminiscent of the fact that dislocations generally do
not cross grain boundaries, especially for such random grain boundaries. Note that
in the microcurl model, only the kinematic degrees of freedom ¦p are continuous.
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This is not the case of the plastic deformation, Hp, which is treated here as
an internal variable. However, due to the internal constraint discussed in section
“Model Formulation,” Hp closely follows the plastic microdeformation so that it
is quasi-continuous at grain boundaries when the penalty coefficient, H�, is high
enough. Conversely, lower values of H� may allow slightly discontinuous plastic
deformation, which may be tentatively interpreted as dislocation sinking inside grain
boundaries. The continuity of the associated tractions expresses the transmission
of classical and generalized internal forces from one grain to another through
grain boundaries. Such continuum models are then able to mimic in that way the
development of dislocation pileups at grain boundaries (Forest and Sedláček 2003a).

More elaborate grain boundary behavior laws are necessary to go beyond the
three possible interface conditions readily available according to the microcurl
model: vanishing microdeformation, continuous microdeformation, or vanishing
microtractions at grain boundaries. They require proper account of transmission
and absorption rules for dislocations at grain boundaries. A simple and efficient
strategy was proposed for the formulation and finite element implementation of such
interface constitutive laws by Wulfinghoff et al. (2013a). The reader is referred to
the references quoted therein for more advanced grain boundary behavior laws.

Boundary Value Problem for Polycrystals

The size effects exhibited by the solution of the boundary value problem are linked
to an intrinsic length scale, ls, introduced through the generalized moduli H� and A
of Eq. (32) and defined as:

ls D

s

A

H�

: (106)

This intrinsic length scale has to be consistent with the fact that plasticity effects
occur at scales ranging from hundreds of nanometers to a few microns. In addition,
as stated in section “Model Formulation,” the coupling modulus, H�, has to be
chosen high enough to ensure that ¦p and Hp are close. These requirements are
guidelines for the choice of relevant generalized moduli H� and A. The sets of
material parameters used in this section are chosen in that way.

The finite element simulations have been made on periodic 2D meshes of
periodic polycrystalline aggregates generated by a method based on Voronoi
tessellations (Fig. 11a, b). Quadratic isoparametric finite elements with reduced inte-
gration are used. The random distribution of the grain centers has been controlled
so that their sizes are sensibly the same, around the mean grain size, d. A random
orientation is assigned to each grain, and two slip systems are taken into account
for simplicity. In 2D, the plastic behavior of FCC crystals can be simulated with 2D
planar double slip by considering two effective slip systems separated by an angle of
2 (Asaro 1983; Bennett and McDowell 2003). Figure 11c describes the geometry.
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Fig. 11 Periodic meshes of the 2D periodic aggregates used in the finite element simulations
including 52 grains. Two slip systems are taken into account in each randomly oriented grain.
Various mean grain sizes, d, ranging from tens of nanometers to hundreds of microns, are
investigated. On the right, description of the two effective slip systems for 2D planar double slip

The slip system pair is oriented by the angle � , which is the grain orientation
randomly fixed for each grain. For a FCC crystal  D 35.1ı, it corresponds to the
orientation of the close-packed planes in the crystal lattice of the grain.

Periodic homogenization for generalized continua is used to predict the effective
response of the polycrystal. The displacement field is assumed to be of the form

u.x/ D E :x C v.x/; (107)

with the fluctuation v periodic, meaning that it takes identical values at homologous
points of the unit cell (Forest et al. 2001). The plastic microdeformation field, ¦p, is
assumed to be periodic, meaning that no rotational macroscopic plastic deformation
is imposed to the unit cell. Its components are equal at homologous opposite nodes.
According to periodic homogenization, the simple and double tractions t and m are
antiperiodic at homologous points of the unit cell.

Polycrystals are random materials so that the periodicity constraint may lead
to a bias in the estimation of the effective properties. This boundary effect can be
alleviated by considering several realizations of the microstructure and performing
ensemble averaging (Zeghadi et al. 2007).

Overall Cyclic Response of a Polycrystalline Aggregate

The finite element simulations of the boundary value problem presented previously
have been conducted under generalized plane strain conditions on aggregates with
a relatively small number of grains. The aim here is not to obtain a representative
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Table 2 Sets of material parameters used in the 24-grain aggregate case (Fig. 11a). The intrinsic
length scale, ls D

p

A=H¦, is given for each set

Set 
 [MPa] � c [MPa] H� [MPa] A [MPa mm2] ls [
m]

a 35,000 40 3.0 106 1.0 10�2 5.8 10�2

b 35,000 40 1.0 106 1.0 10�2 1.0 10�1

c 35,000 40 3.5 105 1.0 10�2 1.7 10�1

d 35,000 40 8.8 104 1.0 10�3 1.1 10�1

response but to catch the grain size effects and to explore qualitatively the impact
of different sets of material parameters. In this section, a virtual material is
considered with various intrinsic length scales. The macroscopic stress–strain curve
is obtained by applying a cyclic simple shear loading controlled by the average
strain component E12 on the aggregate of 52 grains with d D 0.2 
m and the set of
material parameters labeled (c) in Table 2. The mean stress component †12 is then
computed:

†12 D
1

V

Z

V

�12 dV; E12 D
1

V

Z

V

"12 dV; (108)

where V denotes each polycrystal unit cell. The simulated response displays the
kinematic hardening effect produced by the microcurl model. The stress–strain
curves shown in Fig. 12 prove that this kinematic hardening is size dependent: it
increases for smaller grains. Note that the observed overall kinematic hardening has
two distinct sources: the intragranular back stress induced by plastic strain gradients
and the intergranular internal stress that originates from the grain to grain plastic
strain incompatibilities. The latter contribution is also predicted by classical crystal
plasticity models.

Figure 13 presents the effect of the mean grain size, d, on the macroscopic flow
stress at 1% plastic strain in the 52-grain aggregate in a log–log diagram for different
intrinsic length scales, lS , introduced through the sets of material parameters
(labeled a, b, c, and d) given in Table 2. The considered loading conditions are still a
simple shear test with periodic boundary conditions. The curves exhibit two plateaus
for large (d > 20
m) and small (d < 0.1 
m) mean grain sizes with a transition
domain in between. This tanh shape indicates that when d is large compared to
the intrinsic length scale, ls, strain gradient effects are small, and the kinematic
hardening arising from the microcurl model vanishes. The model saturates when
d is of the order of ls or smaller. The transition domain exhibits a strong size
dependence, the polycrystalline aggregate becoming harder for decreasing grain
sizes. The position of the transition zone, the maximum extra stress (the distance
between the two plateaus), and the scaling law exponent, m, in the size-dependent
domain are controlled by the material parameters used in the model. The two latter
effects are controlled by the coupling modulus, H�; they both increase for higher
values of H� as shown in Fig. 13. The scaling exponent is defined as the slope in the
log–log diagram in the inflection domain, reflecting the scaling law:
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Fig. 12 Macroscopic stress–strain response of the 52-grain aggregate under simple shear for
various mean grain sizes, d. The set of material parameters used is labeled (g) in Table 3

Fig. 13 Effect of the mean grain size, d, on the macroscopic flow stress,
P

12 Í 1%, at 1% plastic
strain. The results are obtained for the 52-grain aggregate using the different sets of material
parameters given in Table 3. The scaling law exponent, m, is identified in each case

†12 / dm: (109)

It is obtained with the sets of material parameters given in Table 2. The computed
values range from �0.26 to �0.64 including the well-known Hall–Petch exponent
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Table 3 Sets of material parameters used in the 52-grain aggregate case (Fig. 11b)

Set 
 [MPa] � c [MPa] Q [MPa] b h˛˛ h˛ˇ, ˛ ¤ ˇ

e 27,000 0.75 7.9 10.2 1 4.4
f 27,000 0.75 7.9 10.2 1 4.4
g 27,000 0.75 7.9 10.2 1 4.4

Set H� [MPa] A [MPa mm2] ls [
m]

e 1.0 106 1.0 10�2 1.0 10�1

f 3.5 105 1.0 10�2 1.7 10�1

g 5.0 104 1.0 10�2 4.5 10�1

m D �0.5. In fact, it was shown in Cordero et al. (2010a) that values of m ranging
from 0 to �2 can be simulated with the microcurl model in the case of two-phase
microstructures. In each case, these values are obtained without classical isotropic
hardening, meaning that the linear kinematic hardening produced by the model
is able to reproduce a wide range of scaling laws. Note that conventional strain
gradient plasticity models do not lead to tanh-shape curves but rather to unbounded
stress increase for vanishingly small microstructures (Cordero et al. 2010a).

Grain Size Effects in Idealized Aluminum Polycrystals

Similar finite element simulations have been performed on the idealized aluminum
aggregate of 52 grains of Fig. 11. An additional isotropic hardening component is
addedas in (Méric et al. 1991) to obtain a more realistic response of large aluminum
grains. The size-independent hardening law reads:

R˛ D �c CQ

n
X

ˇ

h˛ˇ
�

1 � exp
�

�b”ˇcum

��

; (110)

where n is the number of slip systems (here n D 2), Q and b are material coefficients
defining nonlinear isotropic hardening, H’“ is the interaction matrix, and ”ˇcum is
the accumulated micro-plastic slip on the slip system ˇ. Cumulative plastic slip
results from the integration of the differential equation P”

ˇ
cum D

ˇ

ˇ P”ˇ
ˇ

ˇ. The material
parameters used in these simulations are given in Table 3. The macroscopic stress–
strain curves presented in Fig. 12 are obtained by applying a simple shear loading
controlled by the average strain component E12 on the 52-grain aggregate with
various mean grain sizes, d, taken in the size-dependent domain. The chosen set of
material parameters has the label (g) in Table 3. These parameters are such that an
acceptable description of aluminum polycrystals is obtained for large grains and that
a Hall–Petch-like behavior is found in a plausible range of grain sizes. However, we
did not attempt to calibrate the amplitude of the extra hardening so that simulation
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Fig. 14 Grain size effect on the accumulated plastic slip. These contour plots are obtained with
the 52-grain aggregate for the same mean value of cumulative plastic strain p D 0.01. The set of
material parameters (g) of Table 3 is used. The pairs of slip plane directions are represented for
each grain on the 1 
m contour plot

predictions remain qualitative. The curves of Fig. 12 show again that the kinematic
hardening produced by the model is strongly size dependent. The set of material
parameters (g) of Table 3 gives the ideal Hall–Petch scaling law exponent m D �0.5.

An important output of the simulations is the dependence of the stress and strain
fields in the grains of the polycrystal on grain size. Figures 14 and 15 show the
contour plots of the field of accumulated plastic slip, computed as:

Pp D

r

2

3
P"p W P"p; (111)

where "p is the symmetric part of the plastic deformation, Hp, and the contour plots
of the norm A of the dislocation density tensor,

kAk D
p

A W A; (112)
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Fig. 15 Grain size effect on the norm of the dislocation density tensor. These contour plots are
obtained with the 52-grain aggregate for the same mean value of macroscopic accumulated plastic
strain p D 0.01. The set of material parameters (g) of Table 3 is used. The pairs of slip plane
directions are represented for each grain on the 1 
m contour plot

respectively. The considered grain sizes are taken in the size-dependent domain
where the evolution of the fields is assumed to be physically relevant. The chosen
set of material parameters has the label (g) in Table 3; it corresponds to an intrinsic
length scale ls D 0.45
m and gives a scaling law exponent m D �0.5. The mean
value of the accumulated plastic slip is the same for all cases; only its distribution
varies with the size of the microstructure as shown in Fig. 14.

The first contour plot of each figure is obtained for d D 200 
m Ï ls D 0.45
m,
at the very beginning of the size-dependent behavior domain according to Fig. 13.
At this size, the simulated fields show that p is quite inhomogeneous and that some
deformation bands appear; jjAjj is localized at the grain boundaries and almost
vanishes in the grain cores. The contour plots obtained for 2
m < d < 20 
m show
a significant evolution of both fields. One observes the formation of a network of
strain localization bands with decreasing grain size. These bands are slip bands as
they are parallel to the slip plane directions represented on the 1 
m contour plot of
Fig. 14. They compensate the larger blue zones where plastic strain cannot develop
due to the higher energy cost associated with its gradient. Plastic strain becomes
stronger inside the localization bands. This is due to the fact that the contour plots
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are given for fixed macroscopic cumulative plastic strain mean value of p, which
implies that the applied total strain is higher for small grain sizes as suggested by
Fig. 12. The field of the norm of the dislocation density tensor is still high close
to grain boundaries and spreads over the grain cores. The last contour plot of each
figure is obtained for d D 1 
m, a size close to ls. Here the model starts to saturate,
which can be seen from the simulated fields. The field of p does not evolve anymore
and jjAjj decreases. In fact, as ls controls the strain gradient effects, strong strain
gradients cannot develop because they become energetically too expensive when
the grain size is too small.

Conclusions

The micromorphic crystal plasticity theory introduces independent plastic microde-
formation degrees of freedom. It represents a relaxation of the strain gradient
plasticity model. It contains as a special case the micropolar crystal plasticity model.
The advantage of the micromorphic framework is that it provides a wider range of
modeling possibilities regarding constitutive laws and boundary conditions, as it was
illustrated for the description of Hall–Petch effects in polycrystals. It has also merits
regarding computational mechanical aspects since its implementation is rather
straightforward and can be used for strain gradient plasticity computations based
on proper internal constraints. The advantage of the micropolar theory compared
to the micromorphic one is its reduced number of degrees of freedom, 3 instead
of 8/9 in 3D (8 dof if plastic incompressibility is enforced). The micropolar model
incorporates the effect of the lattice curvature tensor, which represents an essential
part of the dislocation density tensor.

A full set of constitutive equations has been formulated for micromorphic crystal
plasticity by extending the framework of generalized standard materials based on
the introduction of free energy and dissipation potentials.

Simple examples of the plasticity of sheared single-crystal layers show the ability
of the continuum models to reproduce the essential features of the collective behav-
ior of dislocations piling up in thin layers, channels, and laminate microstructures,
as predicted by discrete dislocation dynamics. The scaling laws predicted by the
continuum models strongly depend on the choice of the constitutive equations. For
example, standard quadratic free energy potential was shown to be inadequate to
reproduce Orowan-like size effects. Strongly nonlinear potentials, including the
logarithmic free energy density, were shown to be more closely related to the physics
of dislocations.

Size effects also strongly influence the strain localization behavior of polycrystals
for which the formation of intense slip bands is predicted in micron-size grains by
the micromorphic models. This feature is to be related to the high energy cost of
dislocation pileup formation in small grains.

Special attention was given to the cyclic response of crystals, which is of the
utmost importance for the prediction of fatigue lifetime of materials. The question
of recovery of plastic strain has been shown to be a central issue. In the absence
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of strong forest interaction and cross-slip, total recovery of plastic strain gradients
is possible, leading to nonconvex cyclic stress–strain loops as observed in some
two-phase alloys. Note that results from discrete dislocation dynamics and the
micropolar model were provided in the chapter dedicated to micropolar crystal
plasticity. Similar comparisons can be found in the case of micromorphic model
in the Reference Chang et al. (2016) where the continuum and discrete descriptions
of dislocation pileups at interfaces are discussed.

Much work remains to be done in the development of predictive constitutive
equations in micropolar and micromorphic crystal plasticity due to the com-
plex underlying dislocation mechanisms. Especially, suitable modeling of grain
boundary behavior remains a major issue for higher-order modeling of polycrystal
plasticity.
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Abstract

A renewed interest toward Cosserat or micropolar continuum has driven
researchers to the development of specific models for upscaling discrete
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internal lengths in its formulation, Cosserat continuum is quite attractive for
addressing problems involving strain localization. It enables modeling the shear
band thickness evolution, tracking the postlocalization regime, and correctly
dissipating the energy when using numerical schemes. In this chapter, we
summarize the fundamental governing equations of a Cosserat continuum
under multiphysical couplings. Several examples of the numerical advantages
of Cosserat continuum are also presented regarding softening behavior, strain
localization, finite element formulation, reduced integration, and hourglass
control. The classically used constitutive models in Cosserat elastoplasticity are
presented and some common approaches for upscaling and homogenization in
Cosserat continuum are discussed. Finally, a simple illustrative example of the
adiabatic shearing of a rock layer under constant shear stress is presented in
order to juxtapose a rate-independent Cosserat with a rate-dependent Cauchy
formulation as far as it concerns strain localization.

Keywords
Cosserat continuum · Plasticity · Bifurcation theory · Multiphysical
couplings · Strain localization · Shear locking · Upscaling · Faults

Introduction

Cosserat or micropolar continuum is a special case of what is called micromorphic,
generalized, or higher-order continua. The general theory of micromorphic continua
is general enough to describe various heterogeneous systems with microstructure. In
Fig. 1, we briefly outline the various higher-order continuum theories, according to
Germain (1973), and their special cases. Besides the classical continuum (also called
Cauchy or Boltzmann continuum) and the Cosserat continuum, special cases of
micromorphic continua are also the second gradient and the couple stress continuum
theories.

In the last three decades, a renewed interest toward the Cosserat continuum has
driven researchers to the development of specific continuous models for upscaling
discrete media such as masonry, granular assemblies, fault gouges, porous media,
and biomaterials (see, for instance, Besdo 1974; Anderson and Lakes 1994; Forest
et al. 1999, 2001; Forest and Sab 1998; Stefanou et al. 2010; Sulem et al. 2011;
Trovalusci et al. 2015; Masiani and Trovalusci 1996; Mühlhaus and Vardoulakis
1988; Bardet and Vardoulakis 2001; Pasternak and Mühlhaus 2006; Pasternak et al.
2006; de Buhan and Sudret 2000; among others). Cosserat continuum has seemed
motivated by the advantages enclosed in its enhanced kinematics and the nonsym-
metry of the stress tensor. When used for the formulation of continuum equivalent
models for discrete media, Cosserat continuum allows to efficiently take into
account high deformation gradients, relative particles’ rotation, and scale effects.
Moreover, Cosserat continuum enables the investigation of the phenomenon of wave
dispersion, which characterizes the dynamic response of discrete media when the
wavelength is comparable to the size of the microstructure (internal length).
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Fig. 1 Higher-order continuum theories according to Germain’s terminology (Mindlin 1964;
Eringen 1999)

Due to the presence of internal lengths in its formulation, Cosserat continuum
is quite attractive for addressing problems involving strain localization. After the
pioneering work of Mühlhaus and Vardoulakis (1988), who explained mathemati-
cally the shear band thickness and its evolution under shearing, Cosserat continuum
became the first and nowadays one of the common modeling approaches for
regularization of the ill-posed Cauchy continuum (Zervos et al. 2001; Papanastasiou
and Zervos 2004; Papanastasiou and Vardoulakis 1992; De Borst and Sluys 1991;
Godio et al. 2016a). Moreover, the correct simulation of the shear band thickness
evolution (e.g., the thickness of the principal slip zone in a fault gouge) and of the
postpeak behavior of a system, which Cosserat theory enables, guarantees correct
energy dissipation.

This chapter is structured as follows. In section “The Cosserat Continuum,”
we give the general equations of a Cosserat continuum. In particular, the linear
and angular momentum balance as well as the mass and energy balance equations
and the second law of thermodynamics are extended for the Cosserat continuum.
Under multiphysical couplings, involving chemistry and phase transformations, the
above equations have to be adapted for momentum, mass, and energy exchange
between the considered phases. Section “The Cosserat Continuum” is completed
with a small paragraph discussing the additional terms due to this exchange.
In section “Constitutive Laws for Cosserat Continua,” we present some consti-
tutive laws that are commonly used in Cosserat elasticity and elastoplasticity,
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including softening and multiphysical couplings. In section “Numerical Advantages
of Cosserat Continuum,” we show the numerical advantages of Cosserat continuum
theory for solving problems when softening behavior and strain localization are
encountered. The commonly used approaches for upscaling and homogenization
of heterogeneous structures in the frame of Cosserat continuum are discussed in
section “Upscaling and Homogenization.” Finally, in section “Rock Shear Layer of
Cosserat Continuum: Fault Mechanics,” a simple example of the adiabatic shearing
of a rock layer under constant shear stress is presented in order to highlight the
similarities of a rate-independent Cosserat and a rate-dependent Cauchy continuum
as far it concerns the conditions for which shear band localization takes place. It
is worth mentioning that Cosserat continuum is a promising framework in fault
mechanics as it enables to compute the thickness of the principal slip zone inside a
fault core, its dependence upon the microstructure of the fault gouge (Sulem et al.
2011; Rattez et al. 2016a, b; Veveakis et al. 2013; Sulem and Stefanou 2016) and its
impact on the seismic energy budget.

The Cosserat Continuum

Cosserat continuum equations can be derived in two different, but equivalent, ways,
each one based on a different physical ansatz. The first one is based on the linear
and angular momentum balance and the fundamental assumption of the existence
of the so-called couple stresses at the material point (Fig. 2). The physical meaning
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Fig. 2 Stresses and couple-stresses (moments) of Cosserat continuum (Stefanou et al. 2008)
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of couple stresses, as well of their conjugate in energy kinematic measures, i.e.,
the gradient of the rotations (i.e., the curvatures), is a long-standing point of
discussions in the scientific community and it is application-wise. For instance, in
the Timoshenko theory of beams, which coincides with a one-dimensional Cosserat
continuum, the Cosserat moment is simply the resultant section moment.

The second, alternative approach for deriving the Cosserat continuum equations
is by postulating the form of the energy density function and by enriching directly
the kinematics of the material point. Both ways are equivalent, but here we prefer
to present the first one as only the momentum balance equations are needed. The
energy of a Cosserat continuum can be then derived directly from the variational
form of the Cosserat equilibrium equations.

Linear and Angular Momentum Balance

Let us consider a solid of volume V and its boundary @V. The linear momentum is
given as follows:

Pi D

Z

V

�vidV (1)

where �i is the velocity of a material point, i D 1,2,3 (in three dimensions), and � is
the density. The resultant force is written as:

Fi D

Z

V

fidV C

Z

@V

tidS (2)

where fi is a body force per unit volume and ti is the traction vector, with ti D � ijnj
and nj the normal unit vector at the boundary. Repeated indices denote summation
over the repeated index. Applying the Newton’s law DPi

Dt D Fi , we obtain:

�ij ;j C fi D �
Dvi

Dt
(3)

In the case of a multiphase material, the velocity of each constituent phase has
to be considered separately. Moreover, the momentum equations have to be written
separately for each phase and then combined to give again Eq. 3, but with �Dvi

Dt D

.1 � n/ �s Dsvs
i

Dt C n�f Df v
f
i

Dt , where, here, f stands for the fluid phase and s for the
solid one, n is the Eulerian porosity (pore volume per unit volume of porous material
in actual state), and Dx.:/

Dt D @.:/

@t
C .:/;i v

x
i . The above equation is valid as far as no

exchange or transformation takes place between the phases.
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The moment of momentum about a point is:

Hi D

Z

V

eij kxj �vkdV C

Z

V

Iij !j dV (4)

where eijk is the Levi-Civita perturbation symbol, Iij the microinertia tensor, and
! j the Cosserat rotational velocity of the material point. In the special case of an
isotropic microinertia tensor, Iij D Isıij, where ıij is the Kronecker delta.

The resultant moment about the same point is written as:

Li D

Z

V

�
eijkxj fk C �i

�
dV C

Z

S

eijkxj tkdS C

Z

V

midS (5)

where �i is a body couple stress per unit volume and mi Dmijnj is the couple
stress tractor, with mij the couple stress tensor. Euler’s law

DHi

Dt D Li , yields:

mij ;j C eijk�kj D Iij

D!j

Dt
(6)

From the above equation, we observe that the stress tensor � ij is not symmetric
due to the presence of the couple stress gradient and the microinertia terms. � ij can
be decomposed into a symmetric � ij and an antisymmetric part sij : � ij D � ij C sij. In
this case, the symmetric part plays the role of the Cauchy stress tensor.

Mass Balance

The derivation of the pore pressure diffusion-generation equation from the mass
balance follows the classical derivation procedure as in the classical Cauchy
continuum. In particular, it becomes:

@pf

@t
D ƒ

@T

@t
�

1

ˇ�

@"

@t
C

1

ˇ�
wi;i (7)

where wi D n
�
v

f
i � vs

i

�
is the Darcy’s fluid (relative) velocity, @"

@t
D vi;i is the

volumetric strain rate, ƒ D ��

ˇ�
is the undrained pore fluid pressurization coefficient,

with �� D n�f C (1� n)�s
, where �f is the fluid thermal expansion coefficient and

�s is the solid thermal expansion coefficient, ˇ� D nˇf C (1� n)ˇs is the storage
coefficient, where ˇf is the fluid compressibility and ˇs is the compressibility of the
solid phase.

Assuming Darcy’s law for the fluid flow, the above equation becomes:
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where chy D k
�f ˇ�

is the hydraulic diffusivity with k the hydraulic permeability,
which is assumed here isotropic and constant and, �f the fluid viscosity.

Energy Balance

Similar to the mass balance equation, the derivation of the energy balance equation
and in a second step of the heat equation follows the same steps as in the
case of the Cauchy continuum. However, the work of the external, generalized
forces and the kinetic energy have some additional terms due to the Cosserat
rotations and moments. More specifically, assuming a micropolar solid phase and a
nonmicropolar fluid, the kinetic energy rate is:

DK
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D D
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f
i v

f
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The internal energy is written as follows:
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Dt D DEs

Dt C DEf
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D D
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�
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(10)

here "s and "f are the internal energy of the solid and fluid phase, respectively, per
unit mass.

The work rate of external forces for a Cosserat continuum is given by:
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Notice that due to the presence of two phases in the medium, the volumetric as
well as the external generalized forces and tractions are split over the two phases.
For a chemically inert system and in absence of any exchange between the solid and
the fluid phase, the equations remain the same with Eqs. 3 and 6. According to the
first law of thermodynamics, we have:
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where DQ
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hi;idV is the rate of heat input (given to V through

its boundary @V) and hi is the heat flux vector components. After some algebraic
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manipulations, the energy balance equation becomes:
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where P	ij D vi;j C eijk¨k and P
ij D ¨i;j . Neglecting the Cosserat effects and
adapting the notation, the above equation coincides with Houlsby and Puzrin (2000)
and Coussy (2004).

Assuming an elastoplastic constitutive law (see section “Constitutive Laws for
Cosserat Continua”), the energy balance equation results to the heat equation for
Cosserat continua:

@T

@t
D cth

@2T

@xi @xi

C
1

�C
�ij P	

p
ij C

1

�C
mij P


p
ij (14)

where T is the temperature, P	
p
ij the plastic deformation rate tensor, and P


p
ij the plastic

curvature rate tensor and cth the thermal diffusivity coefficient. For deriving the
above equation, small deformations and an isotropic Fourier’s law were considered.

Second Law of Thermodynamics

Following the same derivations, the second law of thermodynamics yields:
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where S denotes the specific entropy of the mixture per unit mass and Sx the specific
entropy of the specie x. The above equation coincides with the one of (Houlsby and
Puzrin 2000) after proper substitutions and algebra. Under specific assumptions for
the constitutive behavior of the solid and the fluid phases, the above equation can be
further developed.

Phase Transitions Between the Species

Phase transitions from the solid to the fluid phase and vice versa, due to, for instance,
dissolution/precipitation mechanisms or dehydration, has as a result the addition
of supplementary terms in the above equations. In particular, if Prs!f D �Prf !s

expresses the rate of transition from the solid to the fluid phase, Eqs. 3, 6, 8, 13, and
15 become:
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where cch D 1
ˇ�

�f ��s

�f �s is the chemical pressurization coefficient and ˛ D Is

�s
. The

chemical pressurization coefficient may be insignificant in most of the cases of
dissolution/precipitation reactions in rocks (Sulem and Stefanou 2016). However,
this is not the case for dehydration or decarbonation reactions (Sulem and Famin
2009; Brantut et al. 2011).

Constitutive Laws for Cosserat Continua

Deriving constitutive relations for Cosserat continuum is not a trivial task. This is
owed to the fact that Cosserat theory has intrinsic internal lengths and consequently
the constitutive law is not scale invariant. In the simplest case, i.e., under small
deformations, in a centrosymmetric, linear, elastic, isotropic Cosserat medium, the
stresses are related to the generalized elastic deformation measures according to the
following constitutive relations (Vardoulakis 2009):
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where K is the bulk modulus, G is the shear modulus, �1 , �2 , �3 are positive
material constants, and R is an internal length parameter, which for granular
materials is often identified to the mean radius of the grains in the represen-
tative volume element (RVE). 	 (ij) and 	 [ij] denote, respectively, the symmetric
and antisymmetric parts of 	 ij D ui , j C eijk� k, where ui are the components of



696 I. Stefanou et al.

Table 1 Coefficients used for the generalized J2 invariants for Cosserat continuum (Sulem and
Vardoulakis 1990)
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the displacement vector and � k the components of the Cosserat rotation vector
(infinitesimal rotations). The Cosserat shear modulus, which expresses the stiffness
related to the relative rotation of the particle (e.g. of a grain) with respect to the
macrorotation of the continuum (e.g., assemblage of grains) is defined as Gc D �1G.

In a small deformations framework, the classical J2 plasticity criteria can be
generalized for Cosserat continua. This approach is based on the generalization of
the stress and strain invariants in order to account for the Cosserat couple stresses,
curvatures, and rotations. Based on micromechanical considerations and averaging,
the deviatoric stress and strain invariants take the following form (Rattez et al.
2016b; Sulem and Vardoulakis 1990; Vardoulakis and Sulem 1995):
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where �d
ij , m

d
ij , 	

d
ij , and 
d

ij are the deviatoric parts of the stress, couple-stress, strain,
and curvature tensors respectively. hp. and gp (p D 1,..,4) are coefficients that can
be determined by micromechanical considerations on the kinematics or the statics
of an assemblage of grains in contact (Sulem and Vardoulakis 1990; Mühlhaus and
Vardoulakis 1987) (see Table 1).

Notice that the internal length R appears directly in the above expressions. Once
the above invariants are derived, various plasticity criteria can be used. We refer, for
example, to the von Mises, the Drucker-Prager, or to the Cam-clay criterion, which
are commonly used in metal, soil, and rock mechanics and they are expressed in
terms of the q, p invariants. Volumetric and shear hardening parameters can be also
defined allowing not only to reproduce the stress-strain response of a geomaterial,
but also the shear band thickness evolution (Mühlhaus and Vardoulakis 1987), its
thickness, and the postbifurcation regime, which is crucial in many applications
as it is related to stress redistribution, collapse, and energy dissipation. In a small
strains framework, the generalized deformation rate measures are decomposed in
elastic and plastic parts as follows:
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Assuming a Drucker-Prager yield surface and plastic potential:

F D q C �p � 0 (24)

Q D q C ˇp (25)

where pD �kk ,� is the friction coefficient and ˇ the dilatancy coefficient; the
elastoplastic incremental generalized stress-strain relationships become:
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C e
ijkl and M e

ijkl are the elastic constitutive tensors for the stress and the couple
stress, respectively, derived from Eq. 21, and
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HS is the hardening modulus due to shear plastic deformations, defined by:

@F

@	p
D �Hs (29)

Once the constitutive parameters of the material are calibrated, a bifurcation
analysis can provide important information regarding strain localization evolution
under shearing (Mühlhaus and Vardoulakis 1987). Various multiphysical phenom-
ena (Sulem et al. 2011; Veveakis et al. 2012, 2013) as well as grain cataclasis (Rattez
et al. 2016b) can also be considered. Predicting strain localization is of paramount
importance in geotechnical applications involving strongly non-associated materials
(common case) and in fault mechanics where the mutiphysical couplings, energy
dissipation, softening behavior, and grain size evolution play the central role for
earthquake triggering and coseismic slip (see next sections for more details).

It is worth emphasizing that the internal length(s) that are present in the Cosserat
continuum theory have somehow to be determined or identified. This can be done
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either by using bottom-up, upscaling, and homogenization techniques that consider
the microstructure in detail (see section “Upscaling and Homogenization”) or
through classical geotechnical tests. However, in practice of classical geotechnical
testing, the calibration of these parameters is ignored.

Numerical Advantages of Cosserat Continuum

Mesh Dependency and Its Remedy

It is well known that when it comes to strain localization, the governing equations
based on a classical Boltzmann continuum become ill-posed and when numerical
approaches are used for integration of these equations, the result is mesh dependent
(e.g., De Borst et al. 1993). With the term mesh dependency, we mean that the
numerical results depend on the size and the type of the finite elements used.
More specifically, the global behavior depends on the choice of the mesh and
by refining it no convergence of the numerical results is observed. In Fig. 3 we

Fig. 3 Biaxial test of a softening material for different mesh sizes. The developed plastic
deformations, the shear band thickness, and the total applied force – displacement depends on
the mesh size
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Fig. 4 Above: Deformation pattern and isocontour of in-plane shear strain distribution for different
discretizations of the hollow cylinder. Below: Macroscopic behavior of the hollow cylinder (left)
and localization of the in-plane shear strain (right) for different discretizations with the COSS8R
finite element (FE) (Godio et al. 2015)

present this mathematical and numerical artifact, which is owed to the absence of
internal lengths in the classical continuum. Moreover, the developed shear bands
(contracting or dilating) are always one to two finite elements thick.

Cosserat continuum is one of the available techniques for regularizing mesh
dependency during shear banding (De Borst and Sluys 1991; De Borst et al. 1993;
De Borst 1984). In Fig. 4, we present the simulations that were carried out using
COSS8R finite element, a homemade User Element for Abaqus, which is currently
extended for use to any classical finite element code (Godio et al. 2016a). The
problem treated is a thin hollow cylinder made of a softening material under
shearing. Three different finite element discretizations were tested. In the same
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Fig. 5 Left: The classical spring-slider model used for understanding earthquake nucleation and
energy partition (Scholz 2002; Kanamori and Brodsky 2004). Right: Schematic representation of
the mechanical behavior of a rock interface (fault). From A to B, the slip is aseismic. Instability
takes place at B (coseismic slip). The role of the softening branch is apparent

figure, we present the resulting macroscopic behavior of the cylinder in terms of the
normalized reaction moment and the differential axial rotation. The onset of plastic
deformations rapidly culminates with a softening branch, which is accompanied by
strain localization.

Strain localization occurs exactly as in the shear layers studied by De Borst
(1991). The curves show important mesh-independency, i.e., the thickness (width)
of the localization zone does not depend on the number of elements falling inside
this zone and the total force-axial rotation curve is independent of the mesh size.
This is not only a fundamental feature of finite elements based on the Cosserat
continuum, but it demonstrates also the fast convergence of the chosen Finite
Element interpolation scheme (Godio et al. 2015).

Besides failure analysis in geotechnical engineering (Goodman 1989), the post-
peak behavior of the geomaterial plays a crucial role in earthquake nucleation. In the
idealistic, basic case of considering a fault zone as an interface with no multiphysical
couplings and assuming a rate-independent behavior for the rock material, i.e.,
F D F(ı), where F is the interface friction and ı the slip (Fig. 5 left), bifurcation
theory leads (see Mam and Quennehen 2016; Stefanou and Alevizos 2016) to the
classical relationship for earthquake nucleation: dF(•)/d• � �k (Scholz 2002). This
condition is presented graphically in Fig. 5 (right). Instabilities are triggered (or
induced) not at the peak, but in the softening branch, i.e., at B–C. Before that,
there is slip but it is aseismic. This shows the importance of correctly capturing the
postpeak behavior of the rock material (numerically and analytically). Moreover,
correct simulation of the shear band thickness evolution (e.g., the thickness of the
principal slip zone in a fault) guarantees that the dissipation of energy through
the various multiphysical mechanisms that take place (e.g., temperature and pore
pressure increase, shear heating, thermal pressurization, thermally induced chemical
reactions, grain size evolution, etc.) is correctly calculated before and during the
seismic slip.
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Shear Locking, Reduced Integration and Physical Hourglass Control

In the above paragraph, we described the advantages of Cosserat continuum for
inelastic behavior and strain localization compared to the classical continuum. Yet,
Cosserat continuum numerical advantages do not stop there.

Shear locking is a common numerical problem when lower-order interpolation
functions are used in finite element analysis. Shear locking is the phenomenon of
extremely slow convergence of the numerical solution to the exact one, even when
extremely fine discretizations are used. Due to the chosen interpolation functions, a
large ratio of the energy input is erroneously transformed to shear strain energy
instead of flexural (Zienkiewicz et al. 1971) resulting to a stiffer response. A
numerical trick that it is commonly used in finite elements is reduced integration
of the stiffness matrix. This alleviates shear locking without losing accuracy (in
an incremental formulation, the right-hand side is completely/correctly integrated).
However, this numerical trick comes with a price. Reduced integration of common
Cauchy continuum finite elements (e.g., linear or quadratic polynomial interpola-
tions) leads to a deficiency of the stiffness matrix. In other words, the stiffness matrix
has some eigenvalues that are zero and consequently some deformation modes
are associated to zero strain energy (spurious modes). For linear and quadratic
Cauchy finite elements, these zero-energy modes have the geometrical shape of
an hourglass. In traditional finite element technology, a small artificial/numerical
stiffness is added to these deformation modes (represented by the correspond-
ing to the zero eigenvalues eigenvectors). This technique is called hourglass
control. However, when important stress gradients take place, hourglass control
can fail.

Cosserat continuum offers a natural way to avoid hourglass control. It can be
shown (Godio et al. 2015) that after reduced integration of the stiffness matrix, no
zero eigenvalues appear in the stiffness matrix. In Fig. 6, we consider the well-
discussed plane foundation problem (Zienkiewicz et al. 2013). Due to reduced
integration, an hourglass mode is activated in the rigid element on top as a result
of the applied force. This hourglass mode is able to propagate within a certain area

Fig. 6 Foundation of a rigid footing: (a) a highly rigid element resting upon a layer of flexible
elements with reduced integration; (b) propagating zero-energy mode in an assembly of Cauchy
(S8R) elements; (c) accurate results from a COSS8R subdivision (Godio et al. 2015)
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in the elements below. On the contrary, the COSS8R element does not have this
deficiency, as the rotational DOF perform an intrinsic action of hourglass control
and no artificial hourglass control is needed.

Upscaling and Homogenization

Homogenization or upscaling methods is a class of methods that aim at deriving an
equivalent continuum theory that describes the macroscopic behavior of heteroge-
neous systems, i.e., of systems with microstructure. (Asymptotic) homogenization
is a mathematically rigorous, well-established theory for performing this task
(Sánchez-Palencia 1986; Bakhvalov and Panasenko 1989; Pinho-da-Cruz et al.
2009; Charalambakis 2010). This method is based on the asymptotic expansion of
the various state fields (displacements, deformations, stresses) in terms of a small
quantity ", which represents the ratio of the characteristic size of the ‘elementary
volume’ over the overall size of the structure, and provides an equivalent to the
heterogeneous system homogeneous continuum for " ! 0. Besides the rigorous
mathematical formulation of this approach, its main advantage is the ability to
determine error estimators of the derived continuum for finite values of ". However,
when it comes to generalized continua, such as the Cosserat continuum, that
possess internal lengths, the asymptotic limit " ! 0 loses interest as it cancels out
these internal length (Pradel and Sab 1998). In other words, by this pass to the
limit, asymptotic homogenization erases any internal length that are related to the
material’s microstructure, which higher-order continuum theories, such as Cosserat,
are in principle able to capture.

To overcome this problem, several alternative schemes have been proposed in
the literature for upscaling heterogeneous systems (see Anderson and Lakes 1994;
Forest and Sab 1998; Stefanou et al. 2008, 2010; Trovalusci et al. 2015; Bardet
and Vardoulakis 2001; Pradel and Sab 1998; Sab and Pradel 2009; Rezakhani
and Cusatis 2016; Godio et al. 2016b; Bacigalupo and Gambarotta 2011, 2012;
Baraldi et al. 2016, among others). The majority of these schemes is based upon the
homogeneous equivalent continuum concept (see Charalambakis 2010), in the sense
that the derived Cosserat continuum shares (a) the same energy (internal energy,
dissipation) and (b) the same kinematics with the heterogeneous, discrete medium.
The classical asymptotic homogenization expansion ansatz that leads to a Cauchy
continuum as the ratio of the size of the unit cell over the overall structure tends
to zero is not followed in these approaches. Therefore, these heuristic approaches
remain applicable even when the size of the microstructure is not infinitesimal as
compared to the overall size of the system, or, in other words, when scale separation
is no more applicable.

A typical example for applying and testing these upscaling methods is masonry-
like structures. Masonry can be seen as a geomaterial whose building blocks are
often quasi-periodically arranged in space. Moreover, the building blocks are at the
human scale, which makes them an ideal toy model, contrary to granular media
whose microstructure is small, shows geometric complexity and has to be statis-
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Fig. 7 Modal frequencies of a masonry panel versus the number of building blocks: comparison
between the results extracted by discrete element method and by the use of the Cosserat
homogenized plate model for masonry (Godio et al. 2016a; Stefanou et al. 2008)

tically described (Stefanou and Sulem 2014, 2016). When the upscaling scheme
is correctly formulated, it is possible to capture the wave dispersion behavior of a
heterogeneous system even when the wave length is comparable to the block size.
Notice that in this case, the classical homogeneous Cauchy continuum approach
fails as it is not a dispersive medium. In Fig. 7, we present the modal frequencies of a
masonry panel which was up-scaled with Cosserat continuum (Stefanou et al. 2008;
Godio et al. 2015) in function of the number of its building blocks. Even when the
number of the building blocks is small, the Cosserat homogenized continuum model
succeeds in representing the dynamics of the discrete heterogeneous structure. In
Fig. 8, we present the out-of-plane-displacement contours of the first three flexural
modal shapes of a homogenized masonry panel and a comparison with the flexural
modal shapes provided by discrete elements (Godio et al. 2014).

In the case of granular media, the approach described in Bardet and Vardoulakis
(2001, 2003) or in Rezakhani and Cusatis (2016) can be followed for upscaling
and determining the effective parameters of an equivalent Cosserat continuum.
It is worth pointing out that these upscaling techniques may provide valuable
information on strain localization and energy dissipation in the absence of detailed
experimental data as it is the case of the complex behavior of fault gouges. However,
Cosserat continuum is effective only under shearing. In the case of pronounced
extension or compaction, the Cosserat additional terms have no effect and at least a
first-order micromorphic continuum has to be used (Fig. 1).
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Fig. 8 Out-of-plane-displacement contours of the first three flexural modal shapes. Left Discrete
elements solution. Right Homogenized Cosserat finite element solution (Godio et al. 2014)

Rock Shear Layer of Cosserat Continuum: Fault Mechanics

In this section, we give a simple example of Cosserat theory used for modeling the
adiabatic shearing of a rock layer under constant shear stress. Two different model-
ing frameworks of at least, at first approximation, different physical assumptions are
juxtaposed and compared as far as it concerns the conditions for which shear band
localization takes place.

The first framework is the Cauchy continuum with rate-dependent constitutive
law (viscoplasticity). Rate-dependent constitutive models and, in general, viscoplas-
tic constitutive laws in the frame of Cauchy continuum are frequently used as, under
some conditions, they can lead to finite thickness shear band formation. The relation
between viscosity and shear band thickness (and consequently material length scale)
has been discussed in several publications (e.g., Wang et al. 1996). The second
modeling framework is Cosserat elastoplasticity.

Thermal softening is taken into account as a destabilizing mechanism that may
lead to shear band localization. The complexity of the chosen constitutive laws and
of the multiphysical couplings considered is kept to a minimum degree in order
to reveal the salient futures of each framework and highlight their similarities or
their differences regarding strain localization. For a more detailed modeling in the
frame of Cosserat continuum involving thermo-poro-chemo-mechanical couplings
and more elaborate constitutive laws for the rock material, the reader is referred to
Sulem et al. (2011), Godio et al. (2016a), and Veveakis et al. (2012, 2013). The
reader is referred to (Rice et al. 2014) for the Cauchy rate-dependent framework
under thermo-poro-chemo-mechanical couplings.

The thickness of the rock layer is D and constant normal and shear stresses are
applied at its boundaries as depicted in Fig. 9. Initially, the layer is considered to be
in a state of homogeneous shear deformation.

In both models, it is assumed that all the plastic work is converted to heat and that
Fourier’s law is applicable. Under these assumptions, the heat equation is written in
indicial notation as follows (see Eq. 14):
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Fig. 9 Shearing of a rock layer: Cosserat rotational degree of freedom ! and couple stresses
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where the infinite layer hypothesis was considered and consequently the derivatives
in the x1 and x3 directions vanish (invariance). Small deformations are considered
and the slip event is sufficiently rapid in order to justify adiabatic conditions at the
boundaries of the layer. In the case of the Cauchy continuum, the third term in the
right-hand side vanishes and the stress tensor is symmetric.

Cauchy Continuumwith Rate-Dependent Constitutive Law

Let’s assume a simple rate-dependent constitutive law for the shear stress at a point
inside the shear layer:

�12 D �0 C H P	12 C  .T � Ts/ (31)

where H is a mechanical hardening parameter (positive),  a thermal softening
parameter (negative), Ts a reference temperature, and �0 the shear stress at steady
state and reference temperature.

For a Cauchy continuum, the linear momentum balance is:

�ij ;j D 0 (32)

Inertia terms and body forces are neglected in this example. The angular
momentum balance imposes the symmetry of the stress tensor, � ij D � ji. For a
Cauchy continuum, 	 ij D ui , j, where ui is the displacement in the ith direction.
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At steady state T D T � D Ts; �12 D ��
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12 D 0,

and PT � D 0. This state will be stable as long as any perturbation does not grow in
time. By perturbing the temperature and displacements fields at steady state, T D

T � C QT ; ui D u�
i C Qui ) and by neglecting higher order terms, Eqs. 30, ,31, and 32

become:

Q�12 D H PQ	
p

12 C  QT I @Q�12

@x2
D 0I @Q�22

@x2
D 0

@ QT
@t

D cth
@2 QT

@x2
2

C 1
�C

��
12

PQ	
p

12

(33)

The perturbations QT ; Qui , should fulfill the boundary conditions of the rock layer.

Equation 33 together with the boundary conditions @ QT
@z

ˇ̌
ˇ
zD˙ D

2

D 0, Q�12

�
z D ˙ D

2

�
D

0 and Q�22

�
z D ˙ D

2

�
D 0 form a linear system of partial differential equations,

which admits solutions of the type Qui D Ui e
st sin 2�

�
z , QT D Test cos 2�

�
z, where s is

the so-called growth coefficient and � D D
N
, N D 1 , 2 , 3 , : : : . By replacing into Eq.

33 we obtain: s D �
�0

H�C
� 4�2cth

�2 . The system is unstable when s>0 or, equivalently,

when the wavelength of the perturbation is bigger than a critical wavelength �rd
cr W

� > �rd
cr D 2�

q
Hcth�C

��0
.

Cosserat Elastoplasticity

An elastic perfectly plastic constitutive behavior with thermal softening is assumed
in this example. More advanced Cosserat constitutive models such as the Mühlhaus-
Vardoulakis Cosserat plasticity model (Vardoulakis and Sulem 1995) might be used
(see section “Constitutive Laws for Cosserat Continua”), but the advantage of this
simple model is that analytical derivations are simple to perform, which permits a
convenient comparison with the above rate-dependent model. By analogy with the
Cauchy rate-dependent model presented in the previous paragraph, the yield surface
is defined as:

F D �.12/ � �0 �  .T � Ts/ � 0 (34)

where � (ij) denotes the symmetric part of the stress tensor. In this way, the same shear
stress limit and thermal softening with the Cauchy model is retrieved if one neglects
the rate-dependent term in Eq. 31. Nevertheless, because of the chosen yield surface
(Eq. 34), the plastic curvatures are zero and therefore they do not contribute to the
heat equation (Eq. 30). A centrosymmetric, linear elastic isotropic Cosserat medium
is considered (see Eq. 21).

At steady state, we have a Cauchy continuum under homogeneous shear. In
particular, PT � D 0; T D T � D Ts; �.12/ D ��

.12/ D �0; �Œ12� D ��
Œ12� D 0; m32 D

m�
32 D 0, and �22 D ��

22 D �0. This state will be stable as long as any perturbation
does not grow in time. The temperature, the displacement, and the rotation fields
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at steady state are perturbed
�
T D T � C QT ; ui D u�

i C Qui ; �3 D ��
3 C Q�3

�
as in

the Cauchy case. The perturbations QT ; Qui , and Q�3 have to fulfill the boundary
conditions of the rock layer as in the Cauchy continuum case and additionally
Qm32

�
z D ˙ D

2

�
D 0. A linear system is then formed which admits solutions

of the form: Qui D Ui e
st sin 2�

�
z; Q�3 D ‚3est cos 2�

�
z; QT D Test cos 2�

�
z. The

critical growth coefficient is then: s D � 16G�4R2�Ccth
�2.4G�2R2�C C.8�2R2C�2/�0/

where we

set Gc DG for simplicity. The system is unstable when s > 0 or, equivalently
when the wavelength of the perturbation is bigger than a critical wavelength �Cos

cr :

� > �Cos
cr D 2�

r
R2.G�C C2�0/

��0
� 2�

q
R2G�C

��0
. For typical values of the shear

modulus, the applied shear stress at the boundary, the thermal softening parameter,
and specific heat, it holds G�C� �0.

Discussion: Rate-Dependent Models Versus Cosserat Continuum

Even though both frameworks are based on different constitutive assumptions and
micromechanisms, the resemblance of the expressions for the critical wavelength
impels an analogy between the hardening parameter of the viscoplastic modelH and
the Cosserat internal length, which here is chosen equal to the mean grain radius:
Hcth �R2G. We observe that in the rate-dependent framework, a characteristic
length appears from the combination of strain rate hardening and thermal diffusivity,
whereas in the Cosserat framework, it is directly related to the material grain size.
The hardening parameter H can be measured experimentally for a given rock and
it generally decreases during shearing together with the size of the grains and the
shear modulus, which also decrease due to important shearing and comminution. It
is worth mentioning that the term R2G represents the rolling stiffness of the grains,
which, in comparison with the classical Cauchy continuum, rigidifies the system
in the same way that the viscous term in the rate-dependent friction law does. If
we take the example of a highly granulated fault gouge with a grain size of 10 �m
and assuming a shear modulus G D 300 MPa, then for cth D 1mm2/s, the hardening
parameter H is equal to H D 0.03 MPa s, which is in agreement with experimental
measurements (Blanpied et al. 1995; Chester and Higgs 1992). Consistently, we
observe the similar role of the diffusion length and of the Cosserat internal length in
the control of the thickness of the localization zone.

Conclusion

In this chapter, we summarized the fundamental, balance equations of a Cosserat
continuum under multiphysical couplings that involve a fluid and a solid phase. In
the beginning, the fluid was considered not to react with the solid phase in order
to present the basic thermo-hydro-mechanical framework. The additional terms due
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to fluid momentum, mass, and energy exchange were presented next in the case of
chemically reactive fluids (thermo-hydro-chemo-mechanical couplings) resulting to
phase transitions. Under appropriate, application-wise constitutive laws, the above
equations can be used for modeling various physical systems by taking into account
the size of the microstructure in a continuum mechanics framework.

Cosserat continuum has several advantages. First of all, it remedies the mesh
dependency of the classical Cauchy continuum and leads to correct energy dissipa-
tion in inelasticity and softening. Notice that the latter is of particular importance
in rock mechanics as it controls stress redistribution and failure, in fault mechanics
as it determines the seismic energy budget, and in soil mechanics especially when
nonassociative plastic flow behavior is involved. Several examples are presented
in section “Numerical Advantages of Cosserat Continuum.” Moreover, Cosserat
continuum assures in a physical manner hourglass control in reduced integration
finite element formulations.

Finally, a simple example of the adiabatic shearing of a rock layer under
constant shear stress is presented in order to highlight the similarities of a rate-
independent Cosserat and a rate-dependent Cauchy continuum as far it concerns
strain localization conditions. Cosserat continuum is a promising framework for
studying many problems where microstructure is of paramount importance. Faults
is one of them (Sulem et al. 2011; Rattez et al. 2016a, b; Veveakis et al. 2013; Sulem
and Stefanou 2016; Brantut et al. 2017).
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Abstract

In this contribution we discuss the interest of using enriched continuum
models of the micromorphic type for the description of dispersive phenomena
in metamaterials. Dispersion is defined as that phenomenon according to which
the speed of propagation of elastic waves is not a constant, but depends on the
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wavelength of the traveling wave. In practice, all materials exhibit dispersion
if one considers waves with sufficiently small wavelengths, since all materials
have a discrete structure when going down at a suitably small scale. Given the
discrete substructure of matter, it is easy to understand that the material properties
vary when varying the scale at which the material itself is observed. It is hence
not astonishing that the speed of propagation of waves changes as well when
considering waves with smaller wavelengths.

In an effort directed toward the modeling of dispersion in materials with
architectured microstructures (metamaterials), different linear-elastic, isotropic,
micromorphic models are introduced, and their peculiar dispersive behaviors
are discussed by means of the analysis of the associated dispersion curves.
The role of different micro-inertias related to both independent and constrained
motions of the microstructure is also analyzed. A special focus is given to
those metamaterials which have the unusual characteristic of being able to stop
the propagation of mechanical waves and which are usually called band-gap
metamaterials. We show that, in the considered linear-elastic, isotropic case,
the relaxed micromorphic model, recently introduced by the authors, is the only
enriched model simultaneously allowing for the description of non-localities and
multiple band-gaps in mechanical metamaterials.

Keywords
Dispersion · Microstructure · Metamaterials · Enriched continuum models ·
Relaxed micromorphic model · Multi-scale modeling · Gradient
micro-inertia · Free micro-inertia · Complete band-gaps · Nonlocal effects

AMS 2010 subject classification: 74A10 (stress), 74A30 (non-simple materials),
74A60 (micro-mechanical theories), 74E15 (crystalline structure), 74M25 (micro-
mechanics), 74Q15 (effective constitutive equations)

Introduction

The study of the dispersive behaviors of materials with respect to wave propagation
is a central issue in modern mechanics. Dispersion is defined as that phenomenon
for which the speed of propagation of waves in a given material changes when
changing the wavelength (or, equivalently, the frequency) of the traveling wave (see,
e.g., Achenbach 1973). This is a phenomenon which is observed in practically all
materials as far as the wavelength of the traveling wave is small enough to interact
with the heterogeneities of the material at smaller scales. Indeed, anyone knows that
all materials are actually heterogeneous if considering sufficiently small scales: it
suffices to go down to the scale of molecules or atoms to be aware of the discrete
side of matter. It is hence not astonishing that the mechanical properties of materials
are different when considering different scales and that such differences are reflected
on the speed of propagation of waves.
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a b

Fig. 1 Typical dispersion curves for longitudinal (a) and transverse (b) waves in (linear-elastic)
Cauchy continua (� and � are the classical Lamé parameters and � is the average mass density).
The slopes cl and ct are the phase velocities for longitudinal and transverse waves, respectively

The standard approach for the description of the mechanical behavior of
materials at large scales is that of using classical Cauchy models which, by
their intrinsic nature, are only capable to provide constant speeds of propagation
(nondispersive behavior) depending on the elastic moduli of the material and on
its mass density. Figure 1 shows the typical behavior of the dispersion curves for
Cauchy continua (isotropic linear elasticity). The slope !=k of the straight lines is
called phase velocity and is a measure of the speed of propagation of waves in the
considered continuum. As a matter of fact, this approach is very effective if one is
not interested in the study of wave propagation at high frequencies, since dispersive
behaviors are not activated when the wavelength is so large that the traveling wave
cannot detect the presence of the underlying microstructure.

On the other hand, Cauchy continuum models are not adapted in all those
situations in which dispersive behaviors cannot be neglected. This is the case, for
example, when considering so-called metamaterials, i.e., materials with architec-
tured microstructures which show dispersive behaviors at relatively low frequencies
(large wavelengths). Metamaterials are man-made artifacts conceived arranging
together small structural elements, usually in periodic or quasiperiodic patterns,
in such a way that the resulting material possesses new unorthodox mechanical
properties that are not shared by any classical material (see, e.g., Fig. 2). Since the
characteristic sizes of microstructures which are usually encountered in mechanical
metamaterials typically vary from microns to centimeters, it is not astonishing that
such materials exhibit microstructure-related dispersive behaviors for wavelengths
which are by far larger than those needed to unveil dispersion in more classical
materials. In fact, it is not necessary to have waves with wavelengths that go down
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Fig. 2 Examples of periodic microstructures of metamaterials that are susceptible to unveil
dispersive behaviors

at the scale of the crystals or of the molecules to start detecting dispersive behaviors.
In conclusion, the phenomenon of dispersion in metamaterials cannot be neglected,
even at relatively large scales, and models which are more adapted than the classical
Cauchy theory need to be introduced.

In this optic, enriched continuum models (micromorphic, second gradient)
have been proposed, already in the sixties by Mindlin (1963, 1964) and Eringen
(1966, 1999), as suitable generalizations of Cauchy continuum mechanics to study
dispersive behaviors. In particular, micromorphic models have shown their efficacy
to model rather complex dynamical behaviors by accounting independently for
global macroscopic vibrations of the unit cell, as well as for independent vibrations
of the microstructures inside the unit cell itself. As we will show in detail, such
models present dispersion patterns which are by far richer than the straight lines
provided by classical linear elasticity.

As far as second gradient models are concerned, it must be said that they are able
to account for some dispersion (as far as a suitable gradient micro-inertia is intro-
duced), but they definitely do not allow for the description of all possible motions
inside the unit cell: only those motions of the microstructure which are directly gen-
erated by a macro-deformation of the unit cell can be accounted for by such models.
More particularly, the dispersion curves for a second gradient continuum are not so
different from those of a Cauchy material presented in Fig. 1, except for the fact
that they are not straight lines, thus allowing for the description of some dispersion.
Nevertheless, due to the fact that the kinematics remains the same of Cauchy media
(only the displacement field is introduced in second gradient theories), only two,
slightly dispersive, acoustic curves can be found (see also Madeo et al. 2015, 2016d
for more details) in such model. This is of course a strong limitation as far as modern
metamaterials with extremely complex architectures are concerned.

Band-GapMetamaterials

In the last years, advanced metamaterials have been conceived and manufactured
which exhibit more and more unorthodox properties with respect to the propagation
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of mechanical and electromagnetic waves. Actually, materials which are able to
“stop” or “bend” the propagation of waves of light or sound with no energetic
cost have recently attracted the attention of scientists given the fact that they
could suddenly disclose rapid and unimaginable technological advancements. In
particular, metamaterials altering electromagnetic wave propagation are currently
making the object of intense scientific research (see, e.g., Man et al. 2013; Armenise
et al. 2010; Steurer and Sutter-Widmer 2007) for the potential they may have for
immediate exotic applications. In fact, they might be used for rendering aircrafts
or other vehicles undetectable to radar or for making objects invisible to the
human eye. Many other incredible applications have been imagined for such
metamaterials such as so-called super-lenses that would allow the human eye to
see single viruses or nano-organisms. Notwithstanding the interest raised by such
“electromagnetic metamaterials,” they will not make the object of the present work
which will be instead centered on the study of “mechanical metamaterials.” As far
as metamaterials interacting with mechanical waves are concerned, regrettably, the
excitation directed toward their potential applications appears to be less intense
than in the previous case, even if their possible fascinating effects on our life
are only limited by our imagination. In fact, metamaterials altering elastic wave
propagation could be used to build structures absorbing the higher frequencies of
earthquake energy, or to conceive naval, automotive, and aeronautical vehicles that
are able to absorb external solicitations and shocks thereby drastically improving
their internal comfort. What’s more, civil engineering structures which are built in
the vicinity of sources of vibrations such as metro lines, tramways, train stations,
and so forth would take advantage of the use of these metamaterials to ameliorate
the enjoyment of internal and external environments. Based on the same principle,
passive engineering devices perfectly able to insulate from noise could be easily
conceived and produced at relatively low costs. The conception of waveguides used
to optimize energy transfers by collecting waves in slabs or wires, as well as the
design of wave screens employed to protect from any sort of mechanical wave, could
also experience a new technological revolution. And many other unprecedented
applications that, at this juncture, we cannot even envision could be abruptly
disclosed once such metamaterials would become easily accessible.

In this contribution, we will focus our attention on those metamaterials which
are able to “stop” wave propagation, i.e., metamaterials in which waves within
precise frequency ranges cannot propagate. Such frequency intervals at which
wave inhibition occurs are known as frequency band-gaps, and their intrinsic
characteristics (characteristic values of the gap frequency, extension of the band-
gap, etc.) strongly depend on the metamaterial microstructure. Such unorthodox
dynamical behavior can be related to two main different phenomena occurring at
the microlevel:

• Local resonance phenomena (Mie resonance): The microstructural components,
excited at particular frequencies, start oscillating independently of the matrix so
capturing the energy of the propagating wave which remains confined at the level
of the microstructure. Macroscopic wave propagation thus results to be inhibited.
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• Micro-diffusion phenomena (Bragg scattering): When the propagating wave has
wavelengths which are small enough to start interacting with the microstructure
of the material, reflection and transmission phenomena occur at the micro-level
that globally result in an inhibited macroscopic wave propagation.

Such resonance and micro-diffusion mechanisms (usually a mix of the two) are at
the basis of both electromagnetic and elastic band-gaps (see, e.g., Steurer and Sutter-
Widmer 2007), and they are manifestly related to the particular microstructural
topologies of the considered metamaterials. Indeed, it is well known (see, e.g.,
Steurer and Sutter-Widmer 2007; Armenise et al. 2010; Man et al. 2013) that the
characteristics of the microstructures strongly influence the macroscopic band-gap
behavior. As it has been said, we will be focused on mechanical waves, even if
some of the used theoretical tools can be thought to be suitably generalized for the
modeling of electromagnetic waves as well. Such generalizations could open new
long-term research directions, for example, in view of the modeling of so-called
phoxonic crystals which are simultaneously able to stop both electromagnetic and
elastic wave propagation.

Band-GapMechanical Metamaterials and the RelaxedMicromorphic
Model

As we have previously pointed out, enriched continuum models are well adapted to
describe dispersion in metamaterials as well as specific motions of the microstruc-
tures inside the unit cells. Nevertheless, not all such enriched models are effective
for the description of very complex metamaterials such as those exhibiting band-
gap behaviors. As a matter of fact, it has been proved in a series of recent papers
Madeo et al. (2014, 2015, 2016a,c,d) that the relaxed micromorphic model is the
only enriched continuum model which is simultaneously able to account for:

• The description of the first (and sometimes the second) band-gap in mechanical
metamaterials

• The presence of non-localities which are an intrinsic characteristic of microstruc-
tured materials, especially when high contrasts in the mechanical properties are
present at the level of the microstructure.

Indeed, as we will show in the remainder of this contribution, the relaxed micro-
morphic model is the most suitable enriched continuum model to be used to
simultaneously account for band-gaps and non-localities in mechanical metamate-
rials. A particular subclass of micromorphic models, the so-called internal variable
models, allows for a simplified description of band-gaps, but are not able to account
for non-localities related to the microscopic heterogeneities of metamaterials. Such
models can be adapted for the description of a particular subclass of metamaterials
that are conceived on the basis of the hypothesis of “separation of scales” which
basically assumes that all the motions of the microstructure are confined inside the
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unit cell and do not have interactions with the motion of the adjacent cells (see, e.g.,
Pham et al. 2013; Sridhar et al. 2016).

It has to be underlined again that enriched continuum models of the type
discussed in this paper are “macroscopic” models in the sense that they allow for
the description of the averaged mechanical behavior of metamaterials with complex
microstructures while remaining in the simplified framework of continuum mechan-
ics. The main interest of using macroscopic theories for metamaterials can be found
in the fact that they feature the introduction of only few parameters which are, in
an averaged sense, reminiscent of the presence of the underlying microstructure.
If, on the one hand, this fact provides a drastic modeling simplification which is
optimal to proceed toward (meta-)structural design, some drawbacks can be reported
which are mainly connected to the difficulty of directly relating the introduced
macroscopic parameters to the specific characteristics of the microstructure (topol-
ogy, microstructural mechanical properties, etc.). This difficulty is often seen as a
limitation for the effective application of enriched continuum models. As a matter
of fact, it is the authors’ belief that such models are a necessary step if one wants
to proceed toward the engineering design of metastructures, i.e., structures which
are made up of metamaterials as building blocks. Of course, the proposed model
will introduce a certain degree of simplification, but it is exactly this simplicity that
makes possible to envision the following step which is that of proceeding toward
the design of complex structures made of metamaterials.

To be more precise, as we will see, the relaxed micromorphic model is able to
describe the onset of the first (and sometimes the second) band-gap in mechanical
metamaterials. In order to catch more complex behaviors, the kinematics and the
constitutive relations of the proposed model should be further enriched in a way
that is not yet completely clear. Nevertheless, we do not see this fact as a true
limitation since we intend to use the unorthodox dynamical behavior of some
metamaterials exhibiting band-gaps to fit, by inverse approach, the parameters of
the relaxed micromorphic model following what has been done, e.g., in Madeo et al.
(2016a). This fitting, when successfully concluded for a certain number of specific
metamaterials, will allow the design of metastructures by means of tools which are
familiar to engineers, such as finite element codes.

Of course, as classical Cauchy models show their limits for the description
of the dynamical behavior of metamaterials, even at low frequencies, the relaxed
micromorphic model will show its limit for higher frequencies, yet remaining
accurate enough to account for some macroscopic manifestations of microstructure.

The Fundamental Role of Micro-inertia in Enriched Continuum
Models

As far as enriched continuum models are concerned, a central issue which is
also an open scientific question is that of identifying the role of so-called micro-
inertia terms on the dispersive behavior of such media. As a matter of fact,
enriched continuum models usually provide a richer kinematics, with respect to the
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classical macroscopic displacement field alone, which is related to the possibility
of describing the motions of the microstructure inside the unit cell. The adoption
of such enriched kinematics (given by the displacement field u and the micro-
distortion tensor P ; see, e.g., Mindlin 1964; Eringen 1999; Ghiba et al. 2014;
Madeo et al. 2014, 2015, 2016a,c,d; Neff et al. 2014b), as we will see, allows for
the introduction of constitutive laws for the strain energy density that are able to
describe the mechanical behavior of some metamaterials in the static regime. When
the dynamical regime is considered, things become even more delicate since the
choice of micro-inertia terms to be introduced in the kinetic energy density must be
carefully based on:

• A compatibility with the chosen kinematics and constitutive laws used for the
description of the static regime,

• The specific inertial characteristics of the metamaterial that one wants to describe
(e.g., eventual coupling of the motion of the microstructure with the macro
motions of the unit cell, specific resistance of the microstructure to independent
motion, etc.).

It has to be explicitly mentioned that, in this contribution, we voluntarily limit
ourselves to consider the linear-elastic, isotropic case with the aim of unveiling the
most fundamental properties of enriched continuum models for the description of
metamaterials in the dynamic regime. As a matter of fact, this simplification will
allow us to understand the essence of each introduced term and its effect on the
description of the mechanical behavior of particular metamaterials. Indeed, enriched
continuum models of the micromorphic type featuring the description of band-gaps
when introducing nonlinearities in the micro-inertia terms can also be found in the
literature Stefano et al. (2011), but the interpretation of the introduced nonlinearities
would be more complex to be undertaken on a phenomenological ground.

In the present contribution, for all the models that will be presented (relaxed
micromorphic, Mindlin-Eringen micromorphic, internal variable, etc.), we will
consider a kinetic energy of the type

J D
1

2
� ku;t k

2

„ ƒ‚ …

Cauchy inertia

C
1

2
� kP;t k

2

„ ƒ‚ …

free micro-inertia

C
1

2
�1 k dev sym ru ;t k

2 C
1

2
�2 k skewru ;t k

2 C
1

6
�3 tr . ru ;t /

2

„ ƒ‚ …

gradient micro-inertia

;

(1)

where � is the value of the average macroscopic mass density of the considered
metamaterial, � is the free micro-inertia density, and the �i ; i D f1; 2; 3g are the
gradient micro-inertia densities associated to the different terms of the Cartan-
Lie decomposition of ru . The comprehension of the terms appearing in such
expression of the kinetic energy density is fundamental for the correct understanding
and exploitation of enriched continuummodels for the description of the mechanical
behavior of metamaterials in the dynamic regime.
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Fig. 3 Schematic
representation of a system
showing free and gradient
micro-inertia

For this reason we discuss separately each term appearing in Eq. (1) by giving a
general interpretation of its effect on the dynamics of metamaterials:

• The Cauchy inertia term 1
2
� ku;t k

2 is the macroscopic inertia introduced in
classical linear elasticity. It allows to describe the vibrations associated to the
macroscopic displacement field. In an enriched continuum mechanical modeling
framework, this means that such terms account for the inertia to vibration of the
unit cells considered as material points (or representative volume elements) with
apparent mass density �.

• The term 1
2
� kP;t k

2 accounts for the inertia of the microstructure alone: with
reference to Fig. 3, the free micro-inertia � can be thought to be due to the
green springs connecting the blue masses inside the unit cells. The higher is
the value of �, the stiffer we can imagine the green springs. We called �

free micro-inertia (Madeo et al. 2016b) since it represents the inertia of the
microstructure seen as a micro-system whose vibration can be independent of
the vibration of the unit cells. An inertia term of this type is mandatory whenever
one considers an enriched model of the micromorphic type, i.e., a model that
features an enriched kinematics .u; P /. Indeed, it would be senseless to introduce
an enriched kinematics and an enriched constitutive form for the strain energy
density and then avoid to introduce this free micro-inertia in the model. It would
be like introducing a complex constitutive structure to describe in detail the
mechanical behavior of microstructured materials while not giving to the model
the possibility of activating the vibrations of such microstructures. The free
micro-inertia allows us to account for the vibrations of the microstructures that
typically appear for high frequencies (i.e., small wavelengths comparable with
the characteristic size of the microstructure) in a huge variety of mechanical
metamaterials. We explicitly mention the fact that the free micro-inertia term
could take advantage of the Cartan-Lie decomposition of the micro-distortion
tensor P in its dev sym (trace-free symmetric-), skew (skew-symmetric-) and tr
(trace-) part as it is done for the following term. In this work we do not explicitly
consider this possibility, even if we will evoke some of the effects of such a
choice on the dispersion curves later on.

• The gradient micro-inertia term is of the type N� k ru ;t k
2, and, when split

using a Cartan-Lie decomposition, it takes the form shown in Eq. (1) (Madeo
et al. 2016b). Such term allows to account for some specific vibrations of the
microstructure which are directly related to the deformation of the unit cell at
the higher scale. With reference to Fig. 3, the term N� can be related to the effect
that the red bars have on the motion of the blue masses. Increasing the value
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of N� is tantamount to make the red bars stiffer, so that we can finally say that
a nonvanishing N� constrains the motions of the microstructure to be somehow
related to the macroscopic deformation of the unit cell. In fact, we can easily
imagine that a deformation of the unit cell can induce a motion of the mass
through the motion of the red bars. With respect to a similar metamaterial in
which only the free micro-inertia � is present, we can imagine that a metamaterial
with a nonvanishing gradient micro-inertia N� is more “local” in the sense that the
vibration of the microstructure is more confined to the unit cell than if only the
green springs were present. This gradient micro-inertia term brings additional
information with respect to the free micro-inertia term previously described, and
this is translated in the behavior of some dispersion curves that, as we will see,
can be flattened when increasing the value of N�1, N�2 or N�3.

Notations

In this contribution, we denote by R
3�3 the set of real 3 � 3 second-order tensors,

written with capital letters. We denote respectively by � , W and h�; � i a simple and
double contraction and the scalar product between two tensors of any suitable
order. (For example, .A � v/i D Aij vj , .A � B/ik D Aij Bjk , A W B D Aij Bji ,
.C � B/ijk D CijpBpk , .C W B/i D CijpBpj , hv;w i D v � w D viwi ,
hA; B i D Aij Bij etc.) Everywhere we adopt the Einstein convention of sum over
repeated indices if not differently specified. The standard Euclidean scalar product
on R

3�3 is given by hX; Y iR3�3 D tr.X � Y T /, and thus the Frobenius tensor norm
is kXk2 D hX; XiR3�3 . In the following we omit the index R

3;R3�3. The identity
tensor on R

3�3 will be denoted by 1, so that tr.X/ D hX; 1i.
We consider a body which occupies a bounded open set BL of the three-

dimensional Euclidian space R
3 and assume that its boundary @BL is a smooth

surface of class C 2. An elastic material fills the domain BL � R
3, and we refer the

motion of the body to rectangular axes Oxi .
For vector fields v with components in H1.BL/, i.e., v D.v1; v2; v3/T; vi 2H1.BL/;

we define r v D ..r v1/T ; .r v2/T ; .r v3/T /T , while for tensor fields P with rows
in H.curl I BL/, resp. H.div I BL/, i.e., P D

�

P T
1 ; P T

2 ; P T
3

�

, Pi 2 H.curl I BL/

resp. Pi 2 H.div I BL/ we define CurlP D
�

.curlP1/T ; .curlP2/T ; .curlP3/T
�T

;

DivP D .divP1; divP2; divP3/T :

As for the kinematics of the considered micromorphic continua, we introduce the
functions

�.X; t/ W BL ! R
3; P .X; t/ W BL ! R

3�3;

which are known as placement vector field andmicro-distortion tensor, respectively.
The physical meaning of the placement field is that of locating, at any instant t , the
current position of the material particle X 2 BL, while the micro-distortion field
describes deformations of the microstructure embedded in the material particle X
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X

χ(X,t)

u(X,t) = χ(X,t) –X

x

P(X,t)+

Fig. 4 Schematic representation of the enriched kinematics describing the motion of enriched
models of the micromorphic type. A model of this type has 3 (components of u) + 9 (components
of P ) D 12 degrees of freedom (DOF)

(see Fig. 4). As it is usual in continuum mechanics, the displacement field can also
be introduced as the function u.X; t/ W BL ! R

3 defined as

u.X; t/ D �.X; t/ � X:

The RelaxedMicromorphic Model

The relaxed micromorphic model endowsMindlin-Eringen’s representation with the
second-order dislocation density tensor ˛ D �CurlP instead of the full gradient
rP . (The dislocation tensor is defined as ˛ij D � .CurlP /ij D �Pih;k�jkh, where
� is the Levi-Civita tensor and Einstein notation of sum over repeated indices is
used.) In the isotropic case, the energy of the relaxed micromorphic model reads
(Ghiba et al. 2014; Madeo et al. 2014, 2015, 2016c; Neff et al. 2014a,b):

W D �e k sym . ru � P /k2 C
�e

2
.tr . ru � P //2

„ ƒ‚ …

isotropic elastic-energy

C �c k skew . ru � P /k2

„ ƒ‚ …

rotational elastic coupling

C �micro k symP k2 C
�micro

2
.trP /2

„ ƒ‚ …

micro-self-energy

C
�eL

2
c

2
kCurlP k2

„ ƒ‚ …

isotropic curvature

; (2)

where all the introduced constitutive parameters are assumed to be constant. The
model is well-posed in the static and dynamical case including when �c D 0; see
Neff et al. (2014a) and Ghiba et al. (2014).

The relaxed micromorphic model counts 6 constitutive parameters in the
isotropic case (�e , �e , �micro, �micro, �c , Lc). The characteristic length Lc is
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intrinsically related to nonlocal effects due to the fact that it weights a suitable
combination of first-order space derivatives in the strain energy density (2). For
a general presentation of the features of the relaxed micromorphic model in the
anisotropic setting, we refer to Barbagallo et al. (2016).

The associated equations of motion in strong form, obtained by a classical least
action principle, take the form (see Madeo et al. (2014, 2015, 2016d) and Neff et al.
2014a)

� u;t t � DivŒ I � D Div Œe	 � ; � P;t t D e	 � s � Curlm; (3)

where

I D �1 dev sym ru ;t t C �2 skewru ;t t C
1

3
�3 tr . ru ;t t / ;

e	 D 2 �e sym . ru � P / C �e tr . ru � P / 1 C 2 �c skew . ru � P / ; (4)

s D 2 �micro symP C �micro tr .P / 1;

m D �eL
2
c CurlP:

The fact of adding a gradient micro-inertia in the kinetic energy (1) modifies the
strong-form PDEs of the relaxed micromorphic model with the addition of the new
term I (Madeo et al. 2016b). Of course, boundary conditions would also be modified
with respect to the ones presented in Madeo et al. (2016a,d), but they will not be the
object of study of the present contribution.

Dispersion Analysis

We rapidly recall in this subsection how, starting from the equations of motion
in strong form for the relaxed micromorphic medium, it is possible to obtain
the associated dispersion curves by following standard techniques. We start by
making a plane-wave ansatz which means that we assume that all the 12 scalar
components of the unknown fields (In what follows, we will not differentiate
anymore the Lagrangian space variable X and the Eulerian one x. In general, such
undifferentiated space variable will be denoted as x D .x1; x2; x3/T ) u.x; t/ and
P .x; t/ only depend on the component x1 of the space variable x which is also
assumed to be the direction of the traveling wave. With this unique assumption,
together with the introduction of the new variables

P S WD
1

3
tr .P / ; PŒij � WD . skewP /ij D

1

2

�

Pij � Pji

�

; (5)

P D WD P11 � P S ; P.ij / WD . symP /ij D
1

2

�

Pij C Pji

�

;

P V WD P22 � P33; i; j D f1; 2; 3g;
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the equations of motions (3) can be simplified and rewritten, after suitable manip-
ulation, as (see d’Agostino et al. (2016) and Madeo et al. (2014, 2015, 2016c) for
additional details):

• A set of three equations only involving longitudinal quantities:

� Ru1 �
2 �1 C �3

3
Ru1;11 D .2 �e C �e/ u1;11 � 2�e P D

;1 � .2�e C 3�e/ P S
;1 ;

� RP D D
4

3
�e u1;1C

1

3
�eL

2
c P D

;11�
2

3
�eL

2
cP S

;11�2 .�e C�micro/ P D ;

(6)

� RP S D
2 �e C 3 �e

3
u1;1 �

1

3
�eL

2
cP D

;11 C
2

3
�eL

2
cP S

;11

� .2 �e C 3 �e C 2 �micro C 3 �micro/ P S ;

• Two sets of three equations only involving transverse quantities in the 
-th
direction, with 
 D 2; 3:

� Ru
 �
�1 C �2

2
Ru
;11 D .�e C �c/ u
;11 � 2 �e P.1
/;1 C 2 �c PŒ1
�;1;

� RP.1
/ D �e u
;1 C
1

2
�eL

2
c P.1
/;11 C

1

2
�eL

2
c PŒ1
�;11 (7)

� 2 .�e C �micro/ P.1
/;

� RPŒ1
� D ��c u
;1 C
1

2
�eL

2
c P.1
/;11 C

1

2
�eL

2
cPŒ1
�;11 � 2 �c PŒ1
�;

• One equation only involving the variable P.23/:

� RP.23/ D �2 .�e C �micro/ P.23/ C �eL
2
cP.23/;11; (8)

• One equation only involving the variable PŒ23� :

� RPŒ23� D �2 �c PŒ23� C �eL
2
cPŒ23�;11;

• One equation only involving the variable P V :

� RP V D �2 .�e C �micro/ P V C �eL
2
cP V

;11: (9)

Once that this simplified form of the equations of motion is obtained, we look for a
wave-form solution of the type
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v1 D ˇ1 ei.kx1�!t/; v2 D ˇ2 ei.kx1�!t/; v3 D ˇ3 ei.kx1�!t/;

v4 D ˇ4 ei.kx1�!t/; v5 D ˇ5 ei.kx1�!t/; v6 D ˇ6 ei.kx1�!t/; (10)

where ˇ1, ˇ2, ˇ3 2 C
3 and ˇ4, ˇ5, ˇ6 2 C are the unknown amplitudes of the

considered waves, ! is the frequency, and k is the wavenumber and where, for
compactness, we set

v1 WD
�

u1; P D
11 ; P S

�

; v2 WD
�

u2; P.12/; PŒ12�

�

; v3 WD
�

u3; P.13/; PŒ13�

�

;

v4 WD P.23/; v5 WD PŒ23�; v6 WD P V : (11)

Replacing the wave-form (10) and (11) in the equations of motion (6), (7), (8)
and (9) and simplifying, we end up with the following systems of algebraic
equations:

A1.!; k/�ˇ1 D 0; A� .!; k/�ˇ� D 0; � D 2; 3; A4.!; k/�˛ D 0;

(12)
where we set ˛ D .ˇ4; ˇ5; ˇ6/ and
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0
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(13)

A4.!; k/ D

0
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B
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s 0 0

0 �!2 C c2
m k2 C !2

r 0

0 0 �!2 C c2
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1

C

C

C
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A

:

In the definition of the matrices Ai , i D f1; 2; 3; 4g, the following characteristic
quantities have also been introduced:
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!sD

s

2 .�e C�micro/

�
; !r D

s

2 �c

�
; !p D

s

.3 �e C2 �e/C.3 �microC2 �micro/

�
;

cm D

s

�e L2
c

�
; cp D

s

�e C 2�e

�
; cs D

s

�e C �c

�
: (14)

Dispersion Curves for the RelaxedMicromorphic Model

The dispersion curves for the relaxed micromorphic model are the solutions
! D !.k/ of the algebraic equations

detA1.!; k/ D 0;
„ ƒ‚ …

longitudinal

detA2.!; k/ D detA3.!; k/ D 0;
„ ƒ‚ …

transverse

detA4.!; k/ D 0:
„ ƒ‚ …

uncoupled

(15)
In order to plot such curves, we chose the values of the constitutive parameters to
be those in Table 1.

These numerical values will be also kept for the simulations relative to the other
models in the subsequent sections if not differently specified. (We explicitly remark
that the values of the elastic coefficients must be chosen in such a way to respect the
conditions of positive definiteness of the strain energy density (Madeo et al. 2014,
2015), i.e., �e > 0, �micro > 0, 3�e C 2�e > 0, 3�micro C 2�micro > 0, �c � 0).
We explicitly remark that the chosen values correspond to a relatively soft material,
but completely analogous results can be obtained with any other combination of the
parameters with the only constraint of respecting positive definiteness of the strain
energy density.

We start by presenting in Fig. 5 the dispersion curves for the relaxed micromor-
phic model obtained with vanishing gradient micro-inertia �. In the figures presented
thereafter, we adopt the following acronyms:

Table 1 Values of the parameters used in the numerical simulations (left) and corresponding values
of the Lamé parameters and of the Young modulus and Poisson ratio (right). For the formulas
needed to calculate the homogenized macroscopic parameters starting from the microscopic ones
see Barbagallo et al. (2016).

Parameter Value Unit

�e 200 MPa

�e D 2�e 400 MPa

�c D 5�e 1000 MPa

�micro 100 MPa

�micro 100 MPa

Lc 1 mm

� 2000 kg=m3

� 10�2 kg=m3

� 10�1 kg=m3

Parameter Value Unit

�macro 82:5 MPa

�macro 66:7 MPa

Emacro 170 MPa
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Fig. 5 Dispersion relations ! D !.k/ of the relaxed micromorphic model for the uncoupled
(left), longitudinal (center), and transverse (right) waves with nonvanishing free micro-inertia
� ¤ 0 and vanishing gradient micro-inertia N� D 0

• TRO: transverse rotational optic,
• TSO: transverse shear optic,
• TCVO: transverse constant-volume optic,
• LA: longitudinal acoustic,
• LO1-LO2: 1st and 2nd longitudinal optic,
• TA: transverse acoustic,
• TO1-TO2: 1st and 2nd transverse optic.

It can be seen from Fig.5 that the main characteristic feature of the relaxed
micromorphic model is that of having a horizontal asymptote for the acoustic waves.
It is exactly this feature that allows the relaxed model to account for the description
of band-gaps in nonlocal band-gap metamaterials. Indeed, a complete band-gap can
be identified in the interval of frequencies individuated by the horizontal asymptote
of the longitudinal acoustic wave LA and the characteristic frequency !s . In such
interval, the wavenumber becomes purely imaginary for all the considered waves
(longitudinal, transverse, and uncoupled) which means that the wave can actually
not propagate.

Now, we show in Fig. 6 the results obtained for nonvanishing gradient micro-
inertia � ¤ 0 (here and in the sequel, we suppose in the expression (1) to have
N�1 D 0, N�2 D N�3 D N�, if not differently specified). The effect of the addition of
such gradient micro-inertia term is that of flattening the optic curves so allowing for
the possibility of the onset of a second longitudinal and transverse band-gap if the
gradient inertia parameters are sufficiently high. The fact of having split the gradient
micro-inertia in three parts allows to flatten the longitudinal and transverse waves
separately. Moreover, we remark that the addition of gradient micro-inertiae �1, �2,
and �3 has no effect on the cutoff frequencies !s , !p , and !r which only depend
on the free micro-inertia � (and of course on the constitutive parameters). Indeed, if
an equivalent Cartan-Lie decomposition of the free micro-inertia term would have
been performed, the result would have been that of gaining the independence of the
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Fig. 6 Dispersion relations ! D !.k/ of the relaxed micromorphic model for the uncoupled
(left), longitudinal (center), and transverse (right) waves with nonvanishing free micro-inertia
� ¤ 0 and nonvanishing gradient micro-inertia N� ¤ 0

three cutoff frequencies which could be then translated independently one from the
other along the y-axis.

It is worth to explicitly remark that the observed flattening effect of the micro-
inertia N� can be interpreted as the fact that some modes propagate more slowly
when N� is nonvanishing. Indeed, it is well known (Achenbach 1973) that the slope
of the dispersion curves in a point is a measure of the speed of propagation of the
considered waves (phase velocity). With this definition in mind, it is easy to infer
by direct comparison of Figs. 5 and 6 that the longitudinal and transverse waves
are much slower in the second case, when N� ¤ 0. On the other hand, we can also
remark that the modes corresponding to the uncoupled waves are not affected by the
introduction of the gradient micro-inertia N�.

With reference to previous works Madeo et al. (2014, 2015, 2016c,d), it is
possible to observe that the oblique asymptotes of the waves LO1, TO1 as well as
the asymptotes of the uncoupled waves are directly proportional to the value of the
characteristic length Lc . This is equivalent to say that such waves propagate, thanks
to the non-localities that are intrinsic of the proposed relaxed micromorphic model.
When the gradient micro-inertia is introduced, the waves LO1, TO1 are flattened,
so that the effect of non-localities results to be reduced. The non-local behavior on
the uncoupled waves, instead, is not affected by the introduction of the gradient
micro-inertia.

The Internal Variable Model

We recall (see Neff et al. 2014b) that the energy for the internal variable model does
not include higher space derivatives of the micro-distortion tensor P and, in the
isotropic case, takes the form
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W D �e k sym . ru � P /k2 C
�e

2
.tr . ru � P //2

„ ƒ‚ …

isotropic elastic-energy

C �c k skew . ru � P /k2

„ ƒ‚ …

rotational elastic coupling

(16)

C �micro k symP k2 C
�micro

2
.trP /2

„ ƒ‚ …

micro-self-energy

;

Due to the absence of space derivatives of the micro-distortion tensor P in the
strain energy density, such model intrinsically excludes the possibility of modeling
non-localities. If, in a first instance, this can be a reasonable simplification for a
certain class of metamaterials for which the “separation of scale” hypothesis can be
verified (Pham et al. 2013; Sridhar et al. 2016), the fact of neglecting the effect of
the deformation of the unit cell on the adjacent ones can be too restrictive, especially
when metamaterials with high contrasts of the mechanical properties at the micro-
level are considered.

The equations of motion for the internal variable model, obtained as the result
of a least action principle based on the strain energy density (16) and the kinetic
energy (1), are

� u;t t � DivŒ I � D Div Œe	 � ; � P;t t D e	 � s; (17)

where

I D �1 dev sym ru ;t t C �2 skewru ;t t C
1

3
�3 tr . ru ;t t / ;

e	 D 2 �e sym . ru � P / C �e tr . ru � P / 1 C 2 �c skew . ru � P / ; (18)

s D 2 �micro symP C �micro tr .P / 1:

We present the dispersion relations obtained for the internal variable model
with a vanishing gradient inertia (Fig. 7) and for a nonvanishing gradient inertia
(Fig. 8). We start by noticing in Fig. 7 that, suitably choosing the value of the cut-
off frequencies, the internal variable model allows for the description of up to 2
band-gaps. The pattern of longitudinal and transverse waves, even if not including
non-localities, still remains realistic for at least some particular metamaterials. On
the other hand, this “absence of non-locality” drastically affects the uncoupled
waves which become perfectly horizontal lines (local resonances of some modes
inside the unit cell), which can be a too drastic simplification for three-dimensional
metamaterials.

Figure 8 shows the effect of the addition of the gradient micro-inertia �k ru ;t k
2

on the internal variable model. By direct observation of Fig. 8, we can notice that
suitably choosing the relative position of !r and !p , the internal variable model
allows to account for 3 band-gaps. We thus have an extra band-gap with respect to
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the case with vanishing gradient inertia (Fig. 7) and to the analogous case for the
relaxed micromorphic model (see Fig. 6), but we are not able to consider non-local
effects. The characteristic behavior of the dispersion curves becomes unrealistic in
this case, given that almost only local resonances (dispersion curves which become
horizontal straight lines) are provided. It turns out that the fact of excluding the
possibility of describing non-local effects in metamaterials becomes too restrictive
and unphysical for the description of the great majority of metamaterials.

The StandardMindlin-EringenModel

In this section we discuss the effect on the Mindlin-Eringen model of the addition
of the gradient micro-inertia �k ru ;t k

2 to the classical terms �ku;t k
2 C �kP;t k

2. We
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recall that the strain energy density for this model in the isotropic case takes the
form

W D �e k sym . ru � P /k2 C
�e

2
.tr . ru � P //2

„ ƒ‚ …

isotropic elastic-energy

C �c k skew . ru � P /k2

„ ƒ‚ …

rotational elastic coupling

(19)

C �micro k symP k2 C
�micro

2
.trP /2

„ ƒ‚ …

micro-self-energy

C
�eL

2
c

2
kr P k2

„ ƒ‚ …

isotropic curvature

;

The dynamical equilibrium equations are

� u;t t � DivŒ I � D Div Œe	 � ; � P;t t D e	 � s � M; (20)

where

I D �1 dev sym ru ;t t C �2 skewru ;t t C
1

3
�3 tr . ru ;t t / ;

e	 D 2 �e sym . ru � P / C �e tr . ru � P / 1 C 2 �c skew . ru � P / ; (21)

s D 2 �micro symP C �micro tr .P / 1;

M D ��eL
2
c DivrP

„ ƒ‚ …

D�P

:

Recalling the results of Madeo et al. (2014), we remark that when the gradient
micro-inertia is vanishing (�1 D �2 D �3 D 0), the Mindlin-Eringen model does
not allow the description of band-gaps (see Fig. 9), due to the presence of a straight
acoustic wave. On the other hand, when switching on the parameters �2 and �3, some
optic branches are flattened, so that a band-gap can be created suitably choosing the
values of the characteristic cutoff frequencies (see Fig. 10). The analogous case for
the relaxed micromorphic model (Fig. 5) allowed instead for the description of 2
band-gaps.

In conclusion, the classical Mindlin-Eringen model is suitable to account for
dispersion, and for non-localities in metamaterials, it shows its limits for the
description of band-gaps in metamaterials. In fact, the presence of a gradient micro-
inertia is needed to create a single band-gap, while the relaxed micromorphic
model is able to account for 2 band-gaps in the analogous case (see Fig. 6). This
means that the relaxed micromorphic model is most suitable to model mechanical
metamaterials exhibiting band-gaps also when they are manufactured in such a
way that the gradient micro-inertia becomes non-negligible. Indeed, the description
of the second band-gap occurring at higher frequencies becomes possible for the
relaxed micromorphic model, but not for the Mindlin-Eringen one when considering
suitable additional micro-inertia terms.
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Fig. 9 Dispersion relations ! D !.k/ of the standard Mindlin-Eringen micromorphic model
for the uncoupled (left), longitudinal (center), and transverse (right) waves with nonvanishing free
micro-inertia � ¤ 0 and vanishing gradient micro-inertia N� D 0
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Fig. 10 Dispersion relations ! D !.k/ of the standardMindlin-Eringen micromorphic model
for the uncoupled (left), longitudinal (center), and transverse (right) waves with nonvanishing free
micro-inertia � ¤ 0 and nonvanishing gradient micro-inertia N� ¤ 0

TheMicromorphic Model with Curvature kDivPk2CkCurlPk2

The classical Mindlin-Eringen model can be reformulated by introducing the energy
(see Madeo et al. 2016c):

W D �e k sym . ru � P /k2 C
�e

2
.tr . ru � P //2

„ ƒ‚ …

isotropic elastic-energy

C �c k skew . ru � P /k2

„ ƒ‚ …

rotational elastic coupling

(22)

C �micro k symP k2 C
�micro

2
.trP /2

„ ƒ‚ …

micro-self-energy

C
�eL

2
c

2

�

kDivP k2 C kCurlP k2
�

„ ƒ‚ …

augmented isotropic curvature

;
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in which the gradient of the micro-distortion tensor is decomposed in its Curl and
Div part. The dynamical equilibrium equations are

� u;t t � DivŒ I �
„ ƒ‚ …

new augmented term

D Div Œe	 � ; � P;t t D e	 � s � M; (23)

where

I D �1 dev sym ru ;t t C �2 skewru ;t t C
1

3
�3 tr . ru ;t t / ;

e	 D 2 �e sym . ru � P / C �e tr . ru � P / 1 C 2 �c skew . ru � P / ; (24)
s D 2 �micro symP C �micro tr .P / 1;

M D ��eL
2
c .r .DivP / � Curl CurlP /

„ ƒ‚ …

DivrP D�P

:

Simply rearranging the terms appearing in the definition of the tensor M , it can be
remarked that the structure of the equation is equivalent to the one obtained in the
standard micromorphic model with curvature 1

2
krP k2; see Eq. (20) in section “The

Standard Mindlin-Eringen Model.” The results obtained for such case are thus
completely superposable to those presented before for the classical Mindlin-Eringen
micromorphic model (see Figs. 9 and 10).

TheMicromorphic Model with Curvature kDivPk2

We have shown in the previous sections that the relaxed micromorphic model
with curvature kCurlP k2 is an enriched model which allows to simultaneously
account for non-localities and multiple band-gaps in mechanical metamaterials. We
also showed that the full Mindlin-Eringen model with curvature krP k2 can be
equivalently reformulated with a curvature term of the type kCurlP k2CkDivP k2.
We concluded that the relaxed micromorphic model is well-adapted for the descrip-
tion of band-gap metamaterials, while the classical Mindlin-Eringen model, if
equally suitable for describing dispersion and non-locality, is not performant for the
modeling of band-gap metamaterials to the same extent. In this section we explore
another possible micromorphic model with curvature term kDivP k2 (see Madeo
et al. 2016c) which thus features an energy of the type

W D �e k sym . ru � P /k2 C
�e

2
.tr . ru � P //2

„ ƒ‚ …

isotropic elastic-energy

C �c k skew . ru � P /k2

„ ƒ‚ …

rotational elastic coupling

(25)

C �micro k symP k2 C
�micro

2
.trP /2

„ ƒ‚ …

micro-self-energy

C
�eL

2
d

2
kDivP k2

„ ƒ‚ …

isotropic curvature

:
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Fig. 11 Dispersion relations ! D !.k/ of the relaxed micromorphic model with curvature
kDivP k2 for the uncoupled (left), longitudinal (center), and transverse (right) waves with
nonvanishing free micro-inertia � ¤ 0 and vanishing gradient micro-inertia N� D 0

The dynamical equilibrium equations are

� u;t t � DivŒ I � D Div Œe	 � ; � P;t t D e	 � s � M; (26)

where

I D �1 dev sym ru ;t t C �2 skewru ;t t C
1

3
�3 tr . ru ;t t / ;

e	 D 2 �e sym . ru � P / C �e tr . ru � P / 1 C 2 �c skew . ru � P / ; (27)

s D 2 �micro symP C �micro tr .P / 1;

M D ��eL
2
c r .DivP / :

We start by presenting in Fig. 11 the dispersion relations obtained with a
vanishing gradient micro-inertia (Fig. 11). Also in the case of the micromorphic
model with only kDivP k2, when considering a vanishing gradient micro-inertia,
there always exist waves which propagate inside the considered medium indepen-
dently of the value of the frequency, and the uncoupled waves assume a peculiar
resonant behavior in which the frequency is independent of the wavenumber k
(local resonances for some modes). The characteristic behavior observed for the
longitudinal and transverse waves shows a significative coupling between the LO1

and LA as well between as the TO1 and TA waves, respectively. Such strong
coupling does not allow for the presence of complete band-gaps. Moreover, since
the non-localities introduced by the curvature kDivP k2 are much weaker than those
introduced by the term kCurlP k2, the behavior of the dispersion curves for the
uncoupled waves is the same as that of a completely local model as the internal
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Fig. 12 Dispersion relations ! D !.k/ of the relaxed micromorphic model with curvature
kDivP k2 for the uncoupled (left), longitudinal (center), and transverse (right) waves with
nonvanishing free micro-inertia � ¤ 0 and nonvanishing gradient micro-inertia N� ¤ 0

variable one (see the first of Fig. 7) and significantly deviates from the behavior
observed for the relaxed micromorphic model (see the first of Fig. 5).

On the other hand, when switching on the gradient inertia (Fig. 12), a behavior
analogous to the relaxed micromorphic model appears for the longitudinal and
transverse waves, while the uncoupled waves definitely remain those of a local
model. Thus, if the micromorphic model with curvature kDivP k2 can describe
band-gaps when adding the gradient micro-inertia terms, it loses almost any
capability of accounting for non-local effects. Indeed, the effect of the addition
of the gradient micro-inertia is that of flattening the longitudinal and transverse
waves which is equivalent to say that these waves become more “local.” The main
difference between Figs. 12 and 6 can be found in the uncoupled waves: if in the
relaxed micromorphic model they are able to account for non-negligible non-local
effects, this is not the case for the micromorphic model with curvature kDivP k2.

We can conclude that, independently of the type of micro-inertia which is consid-
ered, the micromorphic model with curvature kDivP k2 is not able to simultaneously
account for band-gaps and non-localities, in strong contrast to what happens for the
relaxed micromorphic case.

Conclusions

It has been shown in this contribution that the dispersive behaviors usually encoun-
tered in engineering metamaterials can be suitably accounted for by using enriched
continuum models of the micromorphic type. The enriched kinematics that is pecu-
liar of such enriched models allows for the introduction of extra degrees of freedom
with respect to classical Cauchy continua, thus accounting for the description of
independent motions of the microstructure inside the unit cells. Nevertheless, if all
are suitable for modeling dispersive phenomena in microstructured materials, not all
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such models are equally adapted for describing the onset of band-gaps in mechanical
metamaterials. The models proposed in this contribution differ one from the other
basically for the expression of the curvature terms in the strain energy density, i.e.,
for the type of higher-order space derivatives of the micro-distortion tensor P which
are accounted for.

After presenting in detail the dispersion curves associated to all the introduced
isotropic, linear-elastic models, it is concluded that the relaxed micromorphic model
is the most suitable enriched model which is simultaneously able to account for both
band-gaps and non-localities in mechanical metamaterials.

The interest of introducing complex micro-inertia terms (gradient micro-inertia)
accounting for a coupling of the motion of the microstructure with the deformation
of the unit cell at the higher scale is also discussed. It is shown that the effect
of adding such gradient micro-inertia is that of flattening the longitudinal and
transverse dispersion curves, so that the final effect is that of lowering the speed
of propagation of such waves at the macroscopic level. This can be equivalently
interpreted as a “loss of non-locality” for the longitudinal and transverse waves
which is substantially related to the presence of the gradient micro-inertia. As far
as the uncoupled waves are concerned, their behavior is not affected by the addition
of such new micro-inertia term, and the peculiar behavior of these waves for the
relaxed micromorphic model makes evident the non-locality that such model is able
to provide concomitantly to the presence of complete band-gaps.

The main interest of using continuum theories of the micromorphic type for
the description of the behavior of materials with complex microstructures can be
found in the fact that they feature the introduction of few parameters which are, in
an averaged sense, reminiscent of the presence of the underlying microstructure.
If, on the one hand, this fact provides a drastic modeling simplification which
is optimal to proceed toward (meta-)structural design, some drawbacks can be
reported which are mainly related to the difficulty of directly relating the introduced
macroscopic parameters to the specific characteristics of the microstructure (topol-
ogy, microstructural mechanical properties, etc.). The aforementioned difficulty of
explicitly relating macro-parameters to micro-properties is often seen as a limitation
for the effective application of enriched continuum models. As a matter of fact, it
is the authors’ belief that such models are a necessary step if one wants to proceed
toward the engineering design of metastructures, i.e., structures which are made up
of metamaterials as building blocks. Of course, the proposed model will introduce a
certain degree of simplification, but it is exactly this simplicity that makes possible
to envision the next step which is that of proceeding toward the design of complex
(meta-) structures made of metamaterials.

To be more precise, the relaxed micromorphic model proposed here is able to
describe the onset of the first (and sometimes the second) band-gap which occurs
at lower frequencies. In order to catch more complex behaviors, the kinematics and
the constitutive relations of the proposed model should be further enriched in a
way that is not yet completely clear. Nevertheless, this fact has not to be seen as
a limitation since it is possible to use the unorthodox dynamical behavior of some
metamaterials exhibiting band-gaps to fit, by inverse approach, the parameters of
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the relaxed micromorphic model following what has been done, e.g., in Madeo et al.
(2016a). This fitting, when successfully concluded for some specific metamaterials,
will allow the setting up of the design of metastructures by means of tools which
are familiar to engineers, such as finite element codes. Of course, as classical
Cauchy models show their limits for the description of the dynamical behavior of
metamaterials, even at low frequencies, the relaxed micromorphic model will show
its limit for higher frequencies, yet remaining accurate enough for accounting for
some important macroscopic manifestations of microstructure.
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Abstract

The considerations are addressed to the notion of implicit nonlocality in mechan-
ical models. The term implicit means that there is no direct measure of nonlocal
action in a model (like classical or fractional gradients, etc. in explicit nonlocal
models), but some phenomenological material parameters can be interpreted as
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one that maps some experimentally observed phenomena responsible for the
scale effects.

The overall discussion is conducted in the framework of the Perzyna Theory
of Viscoplasticity where the role of the implicit length scale parameter plays the
relaxation time of the mechanical disturbance. In this sense, in the viscoplastic
range of the material behavior, the deformation at each material point contributes
to the finite surrounding. The important consequence is that the solution of
the IBVP described by Perzyna’s theory is unique – the relaxation time is the
regularizing parameter.

Keywords
Implicit nonlocality · Viscoplasticity · Anisotropic damage

Introduction

Fifty years after publishing the fundamental paper on the theory of thermo-
viscoplasticity (TTV) by Perzyna (1963), the concept of material overstress function
is still vivid nowadays in mechanics and enables new findings (cf. Sumelka 2014;
Glema et al. 2014; Sumelka and Nowak 2016). One can say that the viscoplasticity
concept is one of the most fruitful ideas in modeling plastic (irreversible) processes.
It is obvious that TTV formulation evolved during the years to obtain the mature
form in the early 1990s (Perzyna 2005) – the one strongly influenced by the works
of J.E. Marsden group (cf. Marsden and Hughes 1983; Abraham et al. 1988) – where
both detailed experimental observations and robust mathematical modeling have
aimed to obtain the unique solution of the posed thermomechanical problem with
clear physical interpretation.

The last mentioned aspect of uniqueness of initial boundary value problem
(IBVP) formulated in the framework of TTV plays the fundamental role in the
following discussion. This crucial aspect involves the concept of the relaxation
time – the parameter which controls viscoplasticity effects in TTV and maps
implicitly the physical length scale. On the other hand, the main drawback of TTV
is complexity of the formulation that requires the necessity of dynamically solving
what is computationally time-consuming (Łodygowski 1996). Herein it should be
pointed out that TTV and its inherent properties strongly differ from the classical
plasticity with application of yield strength limit in a rate form (Heeres et al. 2002) –
in this sense the term ‘viscoplasticity’ is used misleadingly in the literature (thus the
reader must carefully analyze the definition of plastic strain in a specific formulation
to judge whether it is consistent with original TTV).

TTV was extensively verified and validated in the literature. Let us mention
herein some crucial aspects of TTV discussed by the authors in a series of
papers: (i) mathematically well-posedness was presented in Łodygowski et al.
(1994), Łodygowski (1996) and Glema et al. (1997); (ii) solution existence and
uniqueness of softening problem were subjects of Perzyna (2005); (iii) viscosity
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defined by material parameter was analyzed in Glema (2000) and Glema et al.
(2003); (iv) propagation of mechanical and thermal waves was clarified in Glema
and Łodygowski (2002) and Glema (2004); (v) dispersive material character was
presented in Glema (2000); (vi) diverse way of energy dissipation was discussed
in Glema et al. (2003); (vii) smooth and non-smooth distributions within damage
and failure were concluded in Glema et al. (2009); (viii) damage anisotropy was
included into TTV in Perzyna (2008) and Glema et al. (2009) and developed in
Sumelka (2009); (ix) transition from ductile to brittle type of damage and role
of covariance in damage mechanics was analyzed in Łodygowski and Sumelka
(2015) and Sumelka (2013); (x) or finally the generalization of classical TTV
by fractional calculus (Podlubny 1999; Kilbas et al. 2006) application to obtain
fractional viscoplasticity was recently proposed in Sumelka (2014) and since then
has been under continuous development, e.g., Sumelka and Nowak (2017), Sun and
Shen (2017) and Xiao et al. (2017). All these results prove that TTV is a reliable
tool for modeling the varied types of materials including geometerials, concrete
materials, and especially metallic-like materials for a broad range of strains, strain
rates, and temperatures.

It should be stated that the explicit nonlocal mechanical models like those
proposed by Mindlin and Tiersten (1962), Kröner (1963), Toupin (1963, 1964),
Green and Rivlin (1964), Mindlin (1964; 1965) and Mindlin and Eshel (1968),
Yang et al. (2002), and Park and Gao (2008) and the nonlocal continuum mechanics
initiated by Eringen and coworkers (Eringen 1972a,b, 1983), generalized continuum
formulations (Polyzos and Fotiadis 2012; Tarasov 2014), or the one by de Borst and
Pamin (1996), Fleck and Hutchinson (1997), Aifantis (1999), and Voyiadjis and
Abu Al-Rub (2005) are more robust than implicit TTV (other implicit models can
be found in, e.g., Voyiadjis and Abed 2005, 2006; Voyiadjis and Kattan 2007). This
means that for the explicit nonlocal formulations, the advantages of inclusion of
the length scale parameter are more pronounced and physical interpretation is more
straightforward. Nonetheless, the serious drawback of explicit models is the high
number of material parameters; recall that Mindlin theory contains 1764 coefficients
in total (903 independent, Morán 2016) and these concepts make the numerical
implementation more involved and computation time can be significantly higher
due to the additional variables (e.g., higher order stresses).

The remaining part of this paper is organized as follows.
In section “Relaxation Time: Implicit Length Scale Parameter,” the physical

interpretation of the relaxation time of a mechanical perturbation as a length scale
parameter is provided.

Section “The Thermo-viscoplasticity Model” describes the TTV accounting for
anisotropic damage nucleation and growth (Sumelka 2009).

In section “Definition of Material Functions for Adiabatic Process” the material
function for an adiabatic processes are identified.

Finally, in section “Numerical Examples: Modeling of Spalling Phenomena,” the
numerical results of spalling phenomena including the effects of anisotropic damage
nucleation and growth are presented.

Section “Conclusions” concludes the document.
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Relaxation Time: Implicit Length Scale Parameter

Herein the original concepts by Perzyna are recalled (2005, 2010, 2012).
The attention is focused on metallic materials. It is important that basic results

come from the single crystal deformation analysis (micro scale of observation) and
afterward they are generalized for the polycrystalline solids (meso-macro scale of
observation), the one captured by the continuum description.

From the theory of crystal dislocations, the inelastic shear strain rate can be
expressed as

P2p D ˛bv; (1)

where ˛ denotes the mean density of mobile dislocations, b is the Burgers vector
(the displacement per dislocation line), and v is the mean dislocation velocity (Asaro
1983). Next, based on the experimental observations that thermally activated and
phonon damping mechanisms are most pronounced, the mean dislocation velocity
can be expressed by

v D
AL�1

tS C tB
; (2)

where AL�1 is the average distance of dislocation movement after each thermal
activation, tS is the time a dislocation has spent at the obstacle, and tB denotes the
time of traveling between the barriers. Applying Eq. (2) in Eq. (1), it can be shown
that (Teodosiu and Sidoroff 1976)

P2p D
1

TmT

�
exp

�
U Œ.� � ��/Lb�

k#

�
C
BAL�1v

.� � �B/b

��1

D
1

T

�
ˆ

�
�

�Y
� 1

��
sgn�; (3)

where TmT is the relaxation time for the thermally activated mechanism, U is the
activation energy (Gibbs free energy), � is the applied stress, �� is the athermal
stress, L is the distance between obstacle dislocation, k is the Boltzmann constant,
B is called the dislocation drag coefficient, # is the absolute temperature, v is
the frequency of dislocation vibration, �B denotes the stress needed to overcome
the forest dislocation barriers to the dislocation motion (the back stress), < � >

denotes the Macaulay bracket, T is the relaxation time,ˆ is the empirical overstress
function, and �Y is a static yield stress. From the point of view of herein discussion,
it is crucial that

TmT D
1

˛bAL�1v
: (4)
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Therefore, the relaxation time for the thermally activated mechanism is a function
of the average distance of dislocation movement, thus including the information on
the characteristic size of plastic deformation, identified with crystal (micro) length
scale characteristic for specific material. For completeness it should be stated that
the relaxation time for the phonon damping mechanism (TmD) is

TmD D
B

˛b2�B
D TmT

BAL�1v

b�B
: (5)

The final postulate is that for a polycrystalline material (continuum level), the
meso-macro viscoplastic strain is described by the analogous formula to Eq. (1). As
will be discussed in the following section, the macroscopic relaxation time Tm is
then

Tm D
`

ˇc
; (6)

where ` is a macroscopic length scale, ˇ is a proportionality factor, and c denotes
the velocity of the propagation of the elastic wave. It can be shown Sluys (1992)
that for 1D longitudinal wave propagation in the elasto-viscoplastic material

Tm D
`E

2�0c
; (7)

where E is the Young modulus and �0 is the yield stress; thus, ˇ D 2�0
E

.
The last relation shows clearly that the relaxation time maps the material length

scale, thus implicitly introducing length scale to the continuum model. Furthermore,
the relaxation time Tm can be viewed not only as a microstructural parameter
to be determined from experimental observations but also as a mathematical
regularization parameter, as mentioned.

The Thermo-viscoplasticity Model

The assumed kinematics induces the form of stresses (Dłużewski 1996); hence,
first the kinematics of the body is described. Next, following the balance principles
and necessary constitutive axioms, the constitutive model for a thermomechanical
process is obtained. It should be pointed out that the description follows the concepts
presented in Sumelka (2009).

Basic Definitions

The following fundamental definitions hold in continuum mechanics (Truesdell and
Noll 1965; Rymarz 1993; Perzyna 1978; Ostrowska-Maciejewska 1994).



748 W. Sumelka and T. Łodygowski

Definition 1. The material continuum is a three-dimensional differentiable mani-
fold M:

M D .R3; S/

where R3 is a three-dimensional continuum and S denotes the structure of manifold.

Definition 2. The material body B is a subset of material continuum M:

B � M

and is characterized by the following structure S :

1. The set of material bodies is a material body:

B D B1 [ B2 [ : : : [ B � M;

2. Material body B or its arbitrary part can be uniquely mapped in the finite domain
D of the Euclidean point space E3 :

~ W B �D;

where ~ � E3. The map ~ is called the configuration of the body and ~ 2 K,
where K is a set of a homeomorphic maps.

3. The smallest part of the material body is a material pointX . The map ~ assigns
to every material point, X , its geometrical point in D

X D ~.X/; X D ~�1.X/; X 2 E3; X 2 B:

4. For every pair of configurations ~, � , there exist a homeomorphic map:

�~� W � ı ~�1; �~� W E3
�E3:

The map �~� is called Deformative configuration and maps the domain E3 in
E3. Those domains are occupied by the body B in different configurations.

5. In the E3 space, the additive Borelian measure M corresponds to every
configuration ~:

M W D �R
1 or M W ~.B/�R

1:

6. The constitutive relations describing material of the body are fulfilled in every
material point X of the body B.

Definition 3. Absolute time is a time which runs at the same rate for all the
observers in the universe.
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Those definitions state a passage from an abstract mathematical description of
the body, B, to physical one.

Kinematics

Thus, the real material body become the abstract body, modeled as a manifold.
The deformation of a real material body is treated in this ‘mathematical world’
as a mapping between manifolds. The observer in an abstract setting can occupy
different positions; by analogy to the real observer, however, some of them are
most convenient from many point of views. Two of them are most important
for description of the material body motion, namely, the Lagrangean (material,
referential) and the Eulerian (spatial, current) ones. These descriptions span two
manifolds, as mentioned, and will be denoted by B and S , respectively (Marsden
and Hughes 1983).

Points in B are denoted by X while in S by x . Coordinate system for B is
denoted by

˚
XA

�
with base EA and for S by fxag with base ea . Dual bases in those

coordinate systems are denoted by EA and ea, respectively. The tangent spaces in B
and S are written as TXB D fXg � V 3 and TxS D fxg � V 3. They are understood
as Euclidean vector space V 3 , regarded as vectors emanating from points X and x,
respectively (Marsden and Hughes 1983).

For measuring purposes in the abstract space, the Riemannian space on manifolds
B and S is introduced, i.e., fB;Gg and fS; gg where metric tensors are defined, as
G W TB � T �B and g W T S � T �S where TB and T S denote the tangent bundles
of B and S , respectively, while T �B and T �S denote their dual tangent bundles.
Explicit definitions for metric tensors are then GAB.X/ D .EA;EB/X and gab.x/ D

.ea; eb/x where .; /X and .; /x denote inner product in B and S , respectively.
The regular motion of the material body is treated as a series of the immersing

of the abstract body B in the Euclidean point space E3 (Rymarz 1993), and can be
written as

x D �.X; t /: (8)

Thus, �t W B � S is a C1 current configuration of B in S , at time t . For the analysis
of abstract body deformation, the tangent of �, which defines the two point tensor
field F, called deformation gradient, is considered. F describes all local deformation
properties and is the primary measure of deformation (Perzyna 1978; Holzapfel
2000), thus

F.X; t / D T � D
@�.X; t /
@X

; (9)

and using the notion of tangent space

F.X; t / W TXB � TxD�.X;t/S; (10)

so F is a linear transformation for each X 2 B and t 2 I � R
1.
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The important properties of F are a consequence of the assumption that map � is
uniquely invertible (smooth homeomorphism) (X D ��1.x; t /); hence, there exists
the inverse of deformation gradient:

F�1.x; t / D
@��1.x; t /

@x
: (11)

Thus, the tensor field F is non-singular (det.F/ ¤ 0), and because of the
impenetrability of matter det.F/ > 0: Furthermore F can be uniquely decomposed
into pure stretch and pure rotation, called polar decomposition, namely

F D RU D vR; (12)

where R is the rotation tensor (unique, proper orthogonal) which measures local
orientation and U and v define unique, positive define, symmetric tensors called the
right (or material) stretch tensor and the left (or spatial) stretch tensor, respectively
(stretch tensors measure the local shape). Using the notion of tangent space, the
result is obtained that for each X 2 B, U.X/ W TXB � TXB and for each x 2 S ,
v.x/ W TxS � TxS:

From the general class of the Lagrangean and the Eulerian strain measures,
defined through one single scale function given by (cf. Hill 1978; Xiao et al. 1998),

E D g.C/ D

3X
iD1

g. M�i /Ci ;

and

e D g.B/ D

3X
iD1

g. M�i /Bi ;

where the scale function g.�/ is a smooth increasing function with the normalized
property g.1/ D g0.1/ � 1 D 0, M�i is used to denote distinct eigenvalues of
the right and left Cauchy-Green tensors C and B, respectively, and Ci and Bi are
the corresponding subordinate eigenprojections; the Green-Lagrange and the Euler-
Almansi definitions were accepted. As will be presented, such choice is crucial for
the clear meaning of the rate-type constitutive structure.

The Green-Lagrange strain tensor is defined as Perzyna (2005) (E W TXB � TXB):

2E D C � I; (13)

where E stands for the Green-Lagrange strain tensor, I denotes the identity on TXB,
and

C D FT � F D U2 D B�1: (14)
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On the other side, the Euler-Almansi strain tensor definition is (e W TxS � TxS)

2e D i � c; (15)

where e stands for the Euler-Almansi strain tensor and i denotes the identity on TxS .
One has also

c D b�1 and b D F � FT D v2; (16)

where tensor b is sometimes referred to as the Finger deformation tensor.
For the purpose of the objective tensor rate definition, the push-forward and the

pullback operations are introduced as

��..�/
[/ D F�T .�/[F�1; (17)

��..�/[/ D FT .�/[F; (18)

respectively, where [ indicates that a tensor has all its indices lowered (Marsden
and Hughes 1983). In view of the above definitions, the following holds:

e[ D ��.E[/ D F�TE[F�1; (19)

E[ D ��.e[/ D FT e[F: (20)

The generality of possible deformations of a real material body assumes that also
in an abstract world it can be arbitrary, called commonly finite. With this respect, the
finite elasto-viscoplastic deformation is assumed, manifested by the multiplicative
decomposition of the total deformation gradient, namely

F.X; t / D Fe.X; t / � Fp.X; t /: (21)

This decomposition is justified by the micromechanics of single crystal plasticity
(Perzyna 1998) and states that the component Fe is a lattice contribution to F while
Fp describes the deformation solely due to plastic shearing on crystallographic slip
systems.

The inverse of the local elastic deformation Fe�1 releases from the stress state
in every surrounding (N .x/ � �.B/) in an actual configuration. The configuration
obtained by the linear map Fe�1 from actual configuration S is called unstressed
configuration and is denoted by S 0. Thus one can write (see Fig. 1)

Fe W TyS 0
� TxS; Fp W TXB � TyS 0; (22)

where the material point in the configuration S 0 is characterized by y.
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Fig. 1 The interpretation of the multiplicative decomposition of F

Based on the decomposition Eq. (21), the viscoplastic strain tensor Ep W

TXB � TXB can be written as

2Ep D Cp � I; (23)

where

Cp D FpT � Fp D Up2 D Bp�1 and Ee D E � Ep; (24)

whereas the elastic strain tensor ee W TxS � TxS is

2ee D i � ce; (25)

where

ce D be�1 and be D Fe � FeT D ve2 and ep D e � ee: (26)

To define TTV, being the rate-type constitutive structure, the rate of deformation
needs to be defined. Starting with the spatial velocity �,

�.x; t / D Px D
@�

@t
; (27)

the gradient of �, the tensor field (nonsymmetric, second order), called spatial
velocity gradient, can be computed (Holzapfel 2000):

l.x; t / D
@�.x; t /
@x

; (28)
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where l stands for spatial velocity gradient. Next, based on the definitions given by
Eqs. (9), (21), and (28) the fundamental relation is obtained (Perzyna 2005):

l D PF � F�1 D PFe �Fe�1 C Fe � . PFp �Fp�1/ � Fe�1 D le C lp; (29)

which introduces the elastic le and plastic lp parts of spatial velocity gradient. On
the other hand, the additive decomposition of spatial velocity gradient to symmetric
and antisymmetric parts generates covariant tensor field d called rate of deformation
tensor and also covariant tensor field w called spin tensor, with the definitions :

l D d C w D de C we C dp C wp; (30)

d D
1

2
.l C lT /; (31)

w D
1

2
.l � lT /: (32)

To define the objective rate, the Lie-type derivative (assuring diffeomorphisms)
is accepted. Its definition for an arbitrary spatial tensor field ' is obtained using the
following concept:

(i) compute the pullback operation of ' – the material field ˆ is obtained,
(ii) take the material time derivative of ˆ,

(iii) carry out the push-forward operation of the result field from (ii).

The scheme can be summarized as

L�.'/ D ��

	
D

Dt
��.'/



; (33)

where L� stands for Lie derivative.
In view of the above definition, Lie derivative of the Euler-Almansi strain

measure results in

d[ D L�.e[/: (34)

Thus, Lie derivative states a direct relationship between the stretching d and the
Eulerian strain e. It should be pointed out that Eq. (34) holds for e[ only; thus, the
choice of e[ to be the strain measure is the most proper from the point of view of
physical interpretation of the mathematical model.

Furthermore based on Eq. (34), one can write

de[ D L�.ee
[/; dp[ D L�.ep

[/: (35)
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Constitutive Postulates

The constitutive structure must fulfill all basic experimentally proven balance prin-
ciples. Nonetheless, some constitutive postulates are still needed for completeness.
Thus, assuming that conservation of mass, balance of momentum, balance of
moment of momentum, and balance of energy and entropy production hold, four
constitutive postulates are accepted (Perzyna 1986a, 2005):

(i) Existence of the free energy function  being formally the following scalar
function of tensorial argument:

 D O .e;F; # I �/; (36)

where � denotes a set of internal state variables governing the description of
dissipation effects and # represents temperature. It is clear that for nonempty
� state vector, a dissipation exists in the model; otherwise, the presented model
describes thermoelasticity.

(ii) Axiom of objectivity. The material model should be invariant with respect to
diffeomorphism (any superposed motion) – (cf. Frewer 2009) for interesting
discussion.

(iii) The axiom of the entropy production. For every regular process, the constitutive
functions should satisfy the second law of thermodynamics.

(iv) The evolution equation for the internal state variables vector � should be of the
form

L�� D Om.e;F; #;�/: (37)

where evolution function Om has to be determined based on the experimental
observations. This postulate states the hardest part of modeling; others are
nowadays broadly accepted standards.

Constitutive Relations

To obtain the stress and the entropy relations, the reduced dissipation inequality is
applied in the form (Marsden and Hughes 1983; Sumelka 2009)

1

�Ref
� W d � .	 P# C P / �

1

�#
q � grad# � 0; (38)

where � denotes current and �Ref reference densities, � denotes Kirchhoff stress,
 is the free energy function, # is absolute temperature, 	 denotes the specific
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(per unit mass) entropy, and q is the heat flux. Using postulate (i), Eq. (38) can be
rewritten in the form:

 
1

�Ref
� �

@ O 

@e

!
W d �

 
	C

@ O 

@#

!
P# �

@ O 

@�
L�� �

1

�#
q � grad# � 0; (39)

so because of arbitrariness

� D �Ref
@ O 

@e
; (40)

	 D �
@ O 

@#
: (41)

Thus, Eq. (39) reduces to

�
@ O 

@�
L�� �

1

�#
q � grad# � 0: (42)

The specific form of the constitutive relations depends on the assumed internal
state vector components. Herein we assume that � consists of two variables, namely,
(Perzyna 2008; Glema et al. 2009; Sumelka and Łodygowski 2011)

� D .2p; �/; (43)

where 2p is the equivalent plastic deformation P2p D
�
2
3
dp W dp

� 1
2 , which describes

the dissipation effects generated by viscoplastic deformation and � being the
microdamage tensor which takes into account the anisotropic microdamage effects.

The assumption Eq. (43), together with the application of Lie derivative to
formula Eq. (40), with internal state vector constant (or in other words keeping
the history constant – thermoelastic process), gives us the evolution equation for
Kirchhoff stress tensor in the form (Duszek–Perzyna and Perzyna 1994)

.L��/e D Le W de � Lth P#; (44)

where

Le D �Ref
@2 O 

@e2
; (45)

Lth D ��Ref
@2 O 

@e@#
; (46)
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in above Le denotes elastic constitutive tensor and Lth is thermal operator. Using
the relations

.L��/e D P� � � � de � de � �; (47)

and

d D de C dp; (48)

final form of the Kirhchoff stress rate is

L�� D Le W d � Lth P# � .Le C g� C �g/ W dp: (49)

On the other side, the energy balance in the form (Perzyna 2005; Sumelka 2009)

�# P	 D �divq � �
@ O 

@�
� L��; (50)

together with the rate of entropy, defined by Eq. (41), defines the evolution equation
for temperature, namely,

�cp P# D �divq C #
�

�Ref

@�

@#
W d C ��� W dp C ���k W L��; (51)

where the specific heat and the irreversibility coefficients �� and ��� are determined
by

cp D �#
@2 O 

@#2
; (52)

�� D ��

 
@ O 

@ 2p
� #

@2 O 

@#@ 2p

!r
2

3

1

� W p
; (53)

��� D ��

 
@ O 

@�
� #

@2 O 

@#@�

!
W
1

k
;

where p defines the tensor of viscoplastic flow direction.

TheMicrodamage Tensor

The microdamage tensor is postulated to be the state variable in Eq. (43) and
maps the experimentally observed micro-voiding in the zones of the severe plastic
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Fig. 2 Cracks anisotropy in
1145 aluminum after flat
plate impact experiment
(Seaman et al. 1976)

deformation. As an example in Fig. 2, the effects of a flat plate impact experiment
in 1145 aluminum are considered (Seaman et al. 1976). It is observed that three
stages of damage evolution are crucial: nucleation, growth, and coalescence.
Another important fact is that the microdefects have directional geometry –
in this experiment they have approximately an ellipsoidal shape. This damage
anisotropy is important and should be included in the continuum description (at
meso-macro scale), keeping simultaneously the information about level of material
porosity.

The microdamage tensor (the state variable at meso-macro scale) Fig. 3 is intro-
duced through the logic presented below, with the most important properties that
components of this tensor are proportional to the damage area on the representative
volume element (RVE) (its principal values), whereas its Euclidean norm defines
porosity.

Considering the RVE, being the abstract point Pi in the model (cf. Fig. 3), one
can introduce three ratios:

A
p
i

A
; (54)

where Api is a damaged area and A denotes assumed characteristic area of the RVE.
Next, three vectors are obtained based on the introduced ratios – theirs modules
are equal to those ratios and are normal to the RVE’s planes. From all possible
spatial configuration of the RVE, the one is chosen, in which the resultant module is

largest. This resultant is called the main microdamage vector and is denoted by O�
.m/

(Sumelka and Glema 2007), i.e.,
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Fig. 3 The concept of microdamage tensor

O�
.m/

D
A
p
1

A
Oe1 C

A
p
2

A
Oe2 C

A
p
3

A
Oe3; (55)

where O.�/ denotes the principal directions of microdamage with Ap1 � A
p
2 � A

p
3 .

In the following step, based on the main microdamage vector, the microdamage

vector is built, denoted by O�
.n/

(Sumelka and Glema 2007):

O�
.n/

D
1ˇ̌

ˇ
ˇ̌
ˇ O�.m/

ˇ̌
ˇ
ˇ̌
ˇ
 	

A
p
1

A


2
Oe1 C

	
A
p
2

A


2
Oe2 C

	
A
p
3

A


2
Oe3

!
; (56)

which states clear connection to microdamage tensor (Sumelka and Glema 2007)

O�
.n/

D O�n; (57)
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where

n D
p
3
ˇ̌̌ˇ̌̌

O�
.m/
ˇ̌̌ˇ̌̌�1 

O

.m/
1 Oe1 C O


.m/
2 Oe2 C O


.m/
3 Oe3

�
; (58)

giving in the principal directions of � the fundamental relation

O� D

p
3

3

2
64

O

.m/
1 0 0

0 O

.m/
2 0

0 0 O

.m/
3

3
75 : (59)

Therefore, as mentioned, the physical interpretation of the microdamage tensor
components is that the diagonal components 
i i of the microdamage tensor �, in
its principal directions, are proportional to the components of the main micro-
damage vector 
.m/i which defines the ratio of the damaged area to the assumed
characteristic area of the RVE, on the plane perpendicular to the i direction. As a
consequence, the damage plane is the one perpendicular to the maximal principal
value of �.

Moreover, the Euclidean norm from the microdamage field O� results in additional
physical interpretation for microdamage tensor, namely, it defines the scalar quantity
called the volume fraction porosity or simply porosity (Perzyna 2008):

p
� W � D 
 D

V � Vs

V
D
Vp

V
; (60)

where 
 denotes porosity (scalar damage parameter), V is the volume of a material
element, Vs is the volume of the solid constituent of that material element, and Vp
denotes void volume:

Vp D

p
3 l

3

q�
A
p
1

�2
C
�
A
p
2

�2
C
�
A
p
3

�2
: (61)

The interpretations of the microdamage tensorial field impose the mathematical
bounds for the microdamage evolution, as


 2< 0; 1 >; and O�i i 2< 0; 1 > : (62)

However, the physical bounds are different and are rate dependent (Cochran and
Banner 1988; Meyers and Aimone 1983), e.g., under extreme loading is of the order
0:09�0:35 (Dornowski and Perzyna 2002, 2006). Furthermore, on continuum level,
the initial porosity exists in metals (denoted by 
0) which is in the order of 
0 Š

10�4 � 10�3 (Nemes and Eftis 1991).



760 W. Sumelka and T. Łodygowski

Definition of Material Functions for Adiabatic Process

Evolution Equations for Internal State Variables

The evolution equations for the internal state variables are postulated in the
following rate form:

dp D ƒp; (63)

L�� D ƒh @h
�

@�
Cƒg @g

�

@�
; (64)

whereƒ; ƒh, andƒg define the intensity of the viscoplastic flow, the microdamage
nucleation, and the microdamage growth, respectively, while p; @h

�

@�
, and @g�

@�
define

viscoplastic flow direction, microdamage nucleation direction, and microdamage
growth direction, respectively.

Material Functions

Thermoelastic Range
Because of existence of the initial microdamage state, the microdamage tensor
also influences thermoelastic range. Mathematically it is expressed by putting the
stiffness operator to be a function of the microdamage state (Sumelka and Glema
2007, 2008):

Le D Le.�/: (65)

The explicit definition of Eq. (65) is given under the assumption that the operator
Le in damage directions is coaxial with principal directions of microdamage tensor
�, namely,

OLeijkm D . OC/ijkmıij ıkm C . OD/ijkm.ıikıjm C ıimıjk/C

. OE/ijkm.ıikıjm � ıimıjk/; (66)

where C; D; and E are the fourth-order material parameters tensors; . OC/ijkm,
. OD/ijkm, and . OE/ijkm are projections of those tensors onto the orthonormal basis
vectors Oei (Holzapfel 2000) (alternatively we could use the notation introduced in
Mura 1987, e.g., instead of . OC/ijkm, we could write OCIJKM with the annotation that
uppercase indices take on the same numbers as the corresponding lowercase ones
but are not summed up – see also Skolnik et al. 2008.); ı denotes the Kronecker
symbol; and .O�/ denotes damage directions. The tensors in Eq. (66) which describe
the material parameters are defined in the following way:
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OCijkm D . OG/ijkm; (67)

ODijkm D . OG/ijkm
1

2.1 � 2. O�/ijkm/
; (68)

OEijkm D . OG/ijkm
1 � 4. O�/ijkm

2.1 � 2. O�/ijkm/
; (69)

where

OGijkm D G0.1 � . O‡ /ijkm/

	
1 �

6K0 C 12G0

9K0 C 8G0
. O‡ /ijkm



; (70)

OKijkm D
4G0K0.1 � . O‡ /ijkm/

4G0 C 3K0. O‡ /ijkm
; (71)

O�ijkm D
1

2

3 OKijkm � 2 OGijkm
3 OKijkm C OGijkm

: (72)

The parameters G0 and K0 are the shear and bulk modulus of the material matrix,
respectively, and O‡ is defined as

O‡ijkm D
p
3

q
O
ij O
km Oei ˝ Oej ˝ Oek ˝ Oem: (73)

Finally, applying Voigt notation, the matrix representation of the constitutive tensor
OLe is

OLe D

2
6666664

OLe


O‡1111

�
OLe. O‡1122/ OLe. O‡1133/ 0 0 0

OLe. O‡2211/ OLe


O‡2222

�
OLe. O‡2233/ 0 0 0

OLe. O‡3311/ OLe. O‡3322/ OLe


O‡3333

�
0 0 0

0 0 0 OLe


O‡1212

�
0 0

0 0 0 0 OLe


O‡2323

�
0

0 0 0 0 0 OLe


O‡3131

�

3
7777775
: (74)

Notice that, O‡1212 D O‡2323 D O‡3131 D 0. It is important that for O� ! O0 we arrive at

limO�!O0
OGijkm � G0;

limO�!O0
OKijkm � K0;

limO�!O0 O�ijkm � 1
2
3K0�2G0
3K0CG0

:

(75)

Thus, the tensor Le becomes the well-known (isotropic) Hooke’s elastic one. For
O� ! O1, we obtain material annihilation:
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limO�!O1
OGijkm � 0;

limO�!O1
OKijkm � 0;

limO�!O1 O�ijkm �
45K2

0C16G20C48K0G0

117K2
0�16G20C96K0G0

:

(76)

For isotropic microdamage, when we substitute the microdamage tensor by scalar
damage parameter, the Mackenzie formulation is obtained (Mackenzie 1950;
Perzyna 1986a).

Nonetheless, in following discussion, it is assumed that the elastic range is
isotropic and independent of the microdamage state; thus, elastic constitutive tensor
Le takes the form

Le D 2�I C �.g ˝ g/; (77)

where � and � are Lam Ke constants . Such assumption is justified because of small
influence of elastic range in the extremely dynamic processes.

Because of above assumption, the thermal expansion effects are also isotropic;
thus, thermal operator Lth is

Lth D .2�C 3�/g; (78)

where  is thermal expansion coefficient.

Viscoplastic Range
We accept common assumptions for TTV theory concerning the rate of viscoplastic
strains dp Perzyna (1963, 1966), namely,

ƒvp D
1

Tm

�
ˆvp

	
f

�
� 1


 �
D

1

Tm

� 	
f

�
� 1


mpl �
; (79)

f D
n
J 0
2 C

h
n1.#/C n2.#/.� W �/

1
2

i
J 21

o 1
2
; (80)

n1.#/ D 0; n2.#/ D n D const:; (81)

� D f�s.#/ � Œ�s.#/ � �0.#/� exp Œ�ı.#/ 2p�g

2
41 �

 
.� W �/

1
2


F

!ˇ.#/3
5 ; (82)

# D
# � #0

#0
; �s.#/ D ��

s � ���
s #; �0.#/ D ��

0 � ���
0 #;

ı.#/ D ı� � ı��#; ˇ.#/ D ˇ� � ˇ��#: (83)
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p D
@f

@�

ˇ̌̌
ˇ
�Dconst

	ˇ̌̌
ˇ
ˇ̌̌
ˇ@f@�

ˇ̌̌
ˇ
ˇ̌̌
ˇ

�1

D
1

Œ2J 0
2 C 3A2.tr�/2�

1
2

Œ�0 C Atr�ı�; (84)

where yield surface f is considered in the form suggested in Shima and Oyane
(1976), Perzyna (1986a,b) and Glema et al. (2009), � is the work hardening-
softening function (Perzyna 1986a; Nemes and Eftis 1993), �0 represents the stress
deviator, J1 and J 0

2 are the first and the second invariants of Kirchhoff stress
tensor and deviatoric part of the Kirchhoff stress tensor, respectively, and A D

2.n1 C n2.� W �/
1
2 /.

Microdamage Nucleation and Growth
The material functions for the microdamage tensor evolution are Dornowski (1999)
and Glema et al. (2009) as follows:

• for the anisotropic microdamage nucleation effects,

@h�

@�
D

�
@ Oh

@�

�
k

�
@ Oh

@�

�
k�1; (85)

Oh D
1

2
e W N W e; N D Is; Nijkl D

1

2

�
ıikıjl C ıil ıjk

�
; (86)

In D a1J1 C a2
�
J 0
2

� 1
2 C a3

�
J 0
3

� 1
3 ; (87)

�n D

1 � .� W �/

1
2

� �
��
n � ���

n .#/C ����
n . P2p/

�
; (88)

���
n .#/ D ���

n

# � #0

#0
; ����

n . P2p/ D ����
n log

P2p � P2
p
Q

P2
p
Q

; (89)

ˆn
	
In

�n
� 1



D

	
In

�n
� 1


mn
: (90)

where Nai .i D 1; 2; 3/ are the material parameters, J 0
3 is the third invariant

of deviatoric part of the Kirchhoff stress tensor, and �n is the void nucleation
threshold stress.

• for the anisotropic microdamage growth effects,

@g�

@�
D

�
@ Og

@�

� ����
�
@ Og

@�

�����
�1

; (91)

Og D
1

2
� W G W �; G D Is; Gijkl D

1

2

�
ıikıjl C ıil ıjk

�
; (92)

Ig D b1J1 C b2
�
J 0
2

� 1
2 C b3

�
J 0
3

� 1
3 ; (93)
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�eq D �eq.�; #;2
p/ D c.#/.1 � .� W �/

1
2 / ln

1

.� W �/
1
2

f2�s.#/ � Œ�s.#/ � �0.#/�F .
0; �; #/g; (94)

F D F .
0; �; #/ D

 

0

1 � 
0

1 � .� W �/
1
2

.� W �/
1
2

! 2
3 ı.#/

C

 
1 � .� W �/

1
2

1 � 
0

! 2
3 ı.#/

;

(95)

ˆg

	
Ig

�eq
� 1



D

	
Ig

�eq
� 1


mg

; (96)

where �eq is the void growth threshold stress and Nbi .i D 1; 2; 3/ are the material
parameters.

• for thermal effects,

divq D 0; (97)

k D �: (98)

It should be noticed that for the microdamage mechanism, it is assumed that
Dornowski (1999) and Glema et al. (2009):

• velocity of the microdamage nucleation is coaxial with the principal directions
of strain state,

• velocity of the microdamage growth is coaxial with the principal directions of
stress state,

• only positive (tension) principal strain (stress) induces the nucleation (growth) of
the microdamage.

Concluding, for an adiabatic process, one needs to identify 36 material parame-
ters:

• 5 parameters related to viscoplastic evolution,
• 17 parameters related to anisotropic microdamage evolution (nucleation 8,

growth 5, fracture porosity 4),
• 7 parameters shared with viscoplastic and microdamage evolution,
• 4 parameters related to thermal evolution,
• 2 elasticity parameters, and
• reference density.
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Numerical Examples: Modeling of Spalling Phenomena

Introductory Remarks

Herein the results discussed in Łodygowski and Sumelka (2015) are developed to
map the damage nucleation effects, also. From the TTV properties like: (i) the
description is invariant with respect to any diffeomorphism (covariant material
model), (ii) the obtained evolution problem is well posed, (iii) sensitivity to the
rate of deformation, (iv) finite elasto-viscoplastic deformations, (v) plastic non-
normality, (vi) dissipation effects, (vii) thermomechanical couplings, and (viii)
length scale sensitivity; the last one plays herein the exposed role. Namely, precise
modeling of the geometry and intensity of the localized deformation zones, the
initiation time of macrodamage, its direction, and the final fracture pattern are aimed
to be modeled in details.

A series of 3D tension analyses were included to understand the influence of
mesh density, element type, and/or the relaxation time on numerical results –
cf. Figs. 4, 5, 6, and 7. Fully integrated elements are the most proper choice
considering damage analysis where damaged elements are removed from mesh
causing a considerable change in the numerical model. The reduced elements in
which single integration point exists are more sensitive – herein damage of an
element is controlled in a single point whereas in a full integrated element in eight
points, damage criterion must be fulfilled to delete the element. Furthermore, the
relaxation time controls truly the rate of viscoplastic deformation and at the same
time the initiation and growth of damage. Nonetheless, because of extreme dynamic
regime (the velocity of tension was 60m

s and the specimen length c.a. 20mm), the
shear band zones were localized close to loaded end.

In the remaining part of this section before analysis of the spalling phenomenon,
initial boundary value problem (IBVP) is emphasized together with some com-
ments on computer implementation of TTV in the Abaqus/Explicit finite element
program.

Initial Boundary Value Problem

To solve the thermomechanical problem in terms of the presented TTV means to
find �;�; �;�; �, and # as functions of t and position x such that the following
equations are satisfied Perzyna (1994), Łodygowski (1996) and Łodygowski and
Perzyna (1997a,b):
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Fig. 4 The comparison of equivalent plastic strain localization zones vs. element type and mesh
size

Fig. 5 The comparison of equivalent plastic strain localization zones vs. element type and mesh
size
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(i) the field equations:

P� D �;

P� D
1

�Ref

 
div� C

�

�
� grad� �

�

1 � .� W �/
1
2

grad.� W �/
1
2

!
;

P� D ��div� C
�

1 � .� W �/
1
2

.L�� W L��/
1
2 ;

P� D Le W d C 2� � d � Lth P# � .Le C g� C �g/ W dp; (99)

P� D 2� � d C
@g�

@�

1

Tm

�
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�
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�eq.�; #;2p/
� 1

� �

C
@h�

@�
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�
ˆn

�
In

�n.�; #;2p/
� 1

� �
;

P# D
��

�cp
� W dp C

���

�cp
k W L��;

(ii) the boundary conditions:
(a) displacement � is prescribed on a part �� of �.B/ and tractions .� �n/a are

prescribed on a part �� of �.B/, where �� \�� D 0 and �� [�� D �.B/,
(b) heat flux q � n D 0 is prescribed on �.B/,

(iii) and the initial conditions �;�; �;�; �, and # are given for each particle X 2 B
at t D 0,

are satisfied.
In Eq. (99)6, because of adiabatic regime assumption, the first two terms in

temperature evolution law Eq. (51) are omitted. It should be emphasized that
adiabatic condition assumption weakens the robustness of modeling due to the
fact that the first term in Eq. (51) introduces in a natural way the nonlocality.
Nevertheless, recall that in the viscoplasticity, the nonlocality results implicitly from
the relaxation time parameter (Tm).

This evolution form is even better seen when the operator equation is involved
(Łodygowski 1995). Hence, the inhomogeneous abstract Cauchy problem can be
formulated in the following form:

P'.t; x/ D A.t; x/ � '.t; x/ C f.t; x;'/ for t 2 .0; T � and x 2 � (100)

with the initial condition

'.0; x/ D '0: (101)
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where
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2
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; (102)
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(104)

where „ D L��.
Now, it is necessary to split the discussion into two branches. One is so called

the abstract Cauchy problem (ACP), which takes into consideration only the initial
conditions, and the other one more significant for responsible computations initial
boundary value problem (IBVP). For detailed description and discussion, please
refer to the works Łodygowski et al. (1994), Łodygowski (1995, 1996), and
Łodygowski and Perzyna (1997a). The well-posedness of the ACP or IBVP means
that the solution for the components of vector P' exists, is unique, and is stable in
Hadamard or Lyapunov sense. It seems to be possible to prove the conditions for
well-posedness of ACP and, using the Lax theorem, define the conditions for finite
element approximation. Unfortunately, for IBVP until now it is extremely difficult
in a strict mathematical way to prove the well-posedness of the system of governing
equations (for 1D case it was done by Ionescu and Sofonea 1993). One cannot count
for the general proof for arbitrary IBVP. Fortunately, we are not completely helpless.
Using the numerical computations, one is able to discover the pathological mesh
dependency (using different meshes, e.g., more dense, the typical convergence is
not achieved) which is for softening behavior the implicit proof that the governing
set of equations is not well posed. For this purpose, any finite element computational
results have to be verified for different meshes including specific refinement in the
localized areas.
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Table 1 Material parameters for HSLA-65 steel

� D 121:154GPa � D 80:769GPa �� D 0:8 ��� D 0:1

��

s D 570MPa ���

s D 129MPa ��

0 D 457MPa ���

0 D 103MPa

ˇ� D 11:0 ˇ�� D 2:5 ı� D 6:0 ı�� D 1:4

a1 D 0:7 a2 D 0:85 a3 D 0 c D 0:067

b1 D 0:02 b2 D 0:5 b3 D 0 mg D 1

jjL��c jj � s�1 
F
�

D 0:36 
F
��

D � mn D 1

��

n D 671MPa ���

n D 265MPa ����

n D 38MPa mF �

cp D 470 J=kgK  D 10�6 K�1 P2
p
Q D 10�5 s�1 mpl D 0:14

�Ref D 7800 kg=m3 n1 D 0 n2 D 0:25 Tm D 2:5�s

Material Parameter Identification for HSLA-65 Steel

As in Łodygowski and Sumelka (2015), the HSLA-65 steel experimentally analyzed
in Nemat-Nasser and Guo (2005) is considered. Herein, precise identification of
such a great number of material parameters is even more troublesome, because of
damage nucleation term. Thus parameters presented in Table 1 should be thought
as a compromise; hence, small fluctuations of them are possible (dependently on
detailed experimental results showing competition of fundamental variables, e.g.,
temperature, viscoplastic strain, microdamage). For a proposition of a method
to reduce the number of material parameters using soft computing methods cf.
(Sumelka and Łodygowski 2013).

Computer Implementation in Abaqus/Explicit

The Abaqus/Explicit commercial finite element code has been adapted as a solver.
The Abaqus/ Explicit utilizes central difference time integration rule along with the
diagonal (“lumped”) element mass matrices. To remove damaged elements from the
mesh (elements in which for every integration point fracture porosity was reached,
or equivalently load carrying capacity is zero � � 0) the so-called element deletion
method is applied (Song et al. 2008). The model has been implemented in the
software, by taking advantage of a user subroutine VUMAT, which is coupled with
the Abaqus system (Abaqus 2012).

Because of Lie derivative application in TTV, special attention is paid to the
stress update in VUMAT. Namely, the Green-Naghdi rate is calculated by default in
Abaqus/Explicit VUMAT user subroutine; thus, the following formula was applied
to enforce spatial covariance (Sumelka 2009):

Q� jiC1D RT jiC1 Œ� ji C�t .2� ji �d ji CL�� ji /C ‡ ji �R jiC1; (105)

where ‡ jiD ��t .	 ji �� ji �� ji �	 ji / and � jiD R ji Q� ji RT ji , where
	 is the spin tensor. The importance of the subject of matter lays in fact that
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the applied objective rate can influence the results considerably – (cf. Sumelka
2013). Furthermore, some of them (e.g., Zaremba 1903) can lead to the nonphysical
solutions (Dienes 1979; Lehmann 1972; Nagtegaal and de Jong 1982; Xiao et al.
1997).

Spall Fracture PhenomenonModeling

In this section, the results presented in Łodygowski and Sumelka (2015) (as men-
tioned) are resolved including the additional effects which come from microdamage
nucleation effects – previously in all elements initial porosity was assumed (
0 D

6 � 10�4), namely,

�0 D

2
434:64 � 10�5 0 0

0 34:64 � 10�5 0

0 0 34:64 � 10�5

3
5 :

As before, spalling will be the result of flat plate impact test (Meyers and Aimone
1983; Curran 1987; Klepaczko 1990; Hanim and Klepaczko 1999; Boidin et al.
2006) (cf. Fig. 8). In this test two, plates with high velocities impact each other. As a
result of the impact (caused by the flyer plate), a complete or partial separation of the
material can appear in the target plate Fig. 8. This is due to tension in the target plate,
induced by the interaction of two waves, incident and reflected. In spall zone, the
intensive evolution of microdamage appears and changes dependently on velocity
of flayer plate. Furthermore, spall test (among others, e.g., Moćko and Kowalewski
2011, 2013) is an important technique to analyze strain-stress behavior of a material.

The numerical model mapping the flat plate impact experiment is presented in
Fig. 9. The dimensions of flayer plate are diameter �fla D 114mm and thickness
tfla D 5mm, while for target plate diameter is �tar D 114mm and thickness is ttar D

10mm. Due to the microdamage anisotropy, full spatial modeling was necessary.
The numerical analyses were conducted in Abaqus/Explicit code including user
subroutine VUMAT, as mentioned. The C3D8R finite elements (eight-node linear
brick, reduced integration element) were applied – in total c.a. 3M finite elements
were used. The initial velocity of the flyer plate was v0 D 500m

s , and the initial
temperature 296K was assumed.

The initial microdamage state needs detailed discussion. Because of lack of the
experimental data concerning the initial microdamage distribution in the specimen,
it was assumed as follows (cf. Figs. 10 and 11):

• for a random set of elements, 
0 D 0 was assumed,
• for majority of elements, 
0 D 6:0e � 4 was prescribed,
• and finally for few elements (randomly chosen), the porosity close to the

fractured one was taken into account.
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200 m

IMPACT VELOCITY – 423 fps IMPACT VELOCITY – 433 fps

IMPACT VELOCITY – 468 fps IMPACT VELOCITY – 506 fps

IMPACT VELOCITY – 668 fps

GP-7456-23

Fig. 8 The final damage of the aluminum 1145 target plate for a constant shot geometry but for
different impact velocities (After Barbee et al. 1972)

It is clear that because of tensorial nature of the microdamage state variable, the
components of initial microdamage tensor field were provided in every integration
point. For simplicity, it was assumed that in the initial configuration the microdam-
age tensor is isotropic.

Material parameters for TTV model were taken as discussed in section “Material
Parameter Identification for HSLA-65 Steel.”
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Fig. 9 Numerical model for modelling spall phenomenon

Fig. 10 Initial configuration for spalling analysis: (left) finite elements without initial porosity;
(middle) finite elements with initial porosity; (middle) finite elements with initial porosity close to
fracture porosity

In Figs. 12 and 13, the numerical results are presented. The initial velocity
of flyer plate, equals v0 D 500m

s , was high enough to cause spalling in the
target plate (cf. Łodygowski and Sumelka 2015). The sample fields of strain rates,
microdamage growth velocity, fracture porosity, and porosity during the process (the
analysis of other variables like stresses, thermal stresses, strains, temperatures, etc.
is not included) show almost immediate localization of a separation zone as in the
experiment. In this sense, the TTV in a presented form is verified and validated.
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Fig. 11 Initial configuration of a microdamage directions for spalling analysis: (left) finite
elements without initial porosity; (middle) finite elements with initially isotropic porosity; (middle)
finite elements with initial porosity close to fracture porosity

Fig. 12 Comparison of porosity (norm of the microdamage tensor) and principal directions of the
microdamage tensor

Conclusions

The presented Perzyna Theory of Thermo-Viscoplasticity (TTV) is motivated by
the micromechanical experimental results and ensures unique solution of the posed
IBVP. On the other side, the attractiveness of TTV model is reduced due to the high
number of material parameters needed for practical applications. Nonetheless, such
adverse factor will always appear in the phenomenological modeling if qualitative
and quantitative results are needed.



21 Implicit Nonlocality in the Framework of the Viscoplasticity 775

Fi
g
.
1
3

T
he

pl
ot

s
of

st
ra

in
ra

te
s,

m
ic

ro
da

m
ag

e
gr

ow
th

ve
lo

ci
ty

,f
ra

ct
ur

e
po

ro
si

ty
,a

nd
po

ro
si

ty
fo

r
tim

e
pr

oc
es

s
5

�1
0

�
6

s
(fl

ay
er

ve
lo

ci
ty
v
0

D
5
5
0
m s

)



776 W. Sumelka and T. Łodygowski

It is commonly recognized that nonlocal models are more robust than local ones.
TTV belongs to the class of implicit nonlocal models, in the sense that there is no
direct measure of nonlocal action in the model but some phenomenological material
parameters can be interpreted as one that control the scale effects. In TTV this
parameter is the relaxation time – deduced from the analysis of the single crystal
deformation. As presented, the relaxation time (Tm) can be viewed not only as a
microstructural parameter (which includes the information about the characteristic
size of plastic deformation) but also as a mathematical regularization parameter.

Finally, it is important to emphasize that today over 50 years after publishing the
basic paper on the theory of thermo-viscoplasticity by Perzyna, its concepts are still
vivid and stimulate new findings, e.g., fractional viscoplasticity.
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Abstract

In this chapter, a coupled thermomechanical gradient-enhanced continuum
plasticity theory containing the flow rules of the grain interior and grain
boundary areas is developed within the thermodynamically consistent frame-
work. Two-dimensional finite element implementation for the proposed gradient
plasticity theory is carried out to examine the micro-mechanical and ther-
mal characteristics of small-scale metallic volumes. The proposed model is
conceptually based on the dislocation interaction mechanisms and thermal
activation energy. The thermodynamic conjugate microstresses are decomposed
into dissipative and energetic components; correspondingly, the dissipative and
energetic length scales for both the grain interior and grain boundary are
incorporated in the proposed model, and an additional length scale related to
the geometrically necessary dislocation-induced strengthening is also included.
Not only the partial heat dissipation caused by the fast transient time but
also the distribution of temperature caused by the transition from the plastic
work to the heat is included into the coupled thermomechanical model by
deriving a generalized heat equation. The derived constitutive framework and
two-dimensional finite element model are validated through the comparison
with the experimental observations conducted on microscale thin films. The
proposed enhanced model is examined by solving the simple shear problem
and the square plate problem to explore the thermomechanical characteristics
of small-scale metallic materials. Finally, some significant conclusions are
presented.

Keywords
Strain gradient plasticity · Thermomechanical coupling · Grain boundary · 2D
FEM · Validation · Size effect

Introduction

The conventional continuum plasticity model is characteristically size-independent
and is not capable of capturing the size effects, in particular, when the material is
subjected to the nonhomogeneous (heterogeneous) plastic deformation under the
fast transient time and its size ranges from a few hundreds of nanometers to a few
tens of micrometers. The evidence of such a behavior is found in many micro-
mechanical experimental observations such as nano-/micro-indentation hardness
(Almasri and Voyiadjis 2010; Kim and Park 1996; Lim et al. 2017; Park et al. 1996;
Voyiadjis et al. 2010; Voyiadjis and Peters 2010; Voyiadjis and Zhang 2015; Zhang
and Voyiadjis 2016), nano/micro-pillars (Hwang et al. 1995), torsion of micron-
dimensioned metal wires (Fleck and Hutchinson 1997; Kim et al. 1994), bending
of microscale single and polycrystalline thin films (Venkatraman et al. 1994), thin
beams under micron-dimensioned tension/bending (Huang et al. 2006; Parilla et
al. 1993), flow strength of nanocrystalline metals (Bergeman et al. 2006), and
microscale reverse extrusion of copper (Zhang et al. 2018).
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It is commonly accepted that the interaction between the statistically stored
dislocations (SSDs) and the geometrically necessary dislocations (GNDs) gives
rise to the size effect observed in micro-/nanoscale metallic volumes. The SSDs
are stored by random trapping each other and increase with the plastic strain,
whereas the GNDs are stored to preserve the compatibility of diverse material
components and increase with the gradient of the plastic strain. As the size of
material specimen decreases, the GNDs increase the resistance to deformation
by acting as the blockages to the SSDs (Fleck et al. 1994). This mechanism
is called glide control because the existence of GNDs, caused by nonuniform
deformation or the prescribed boundary conditions, restrains the slip of dislocation
glide (Muhlhaus and Aifantis 1991; Nicola et al. 2006; Xiang and Vlassak 2006).
Another mechanism for the size effect is the dislocation starvation caused by the
insufficient amount of dislocations that arises from the small volumes (Bergeman et
al. 2006; Giacomazzi et al. 2004; Yaghoobi and Voyiadjis 2016).

Numerous theoretical and numerical works have been carried out to explore
the aforementioned phenomena based on the gradient-enhanced nonlocal plasticity
theory (Fleck and Hutchinson 1997; Gudmundson 2004; Gurtin and Anand 2009;
Hutchinson 2012; Ivanitsky and Kadakov 1983; Lele and Anand 2008; Song and
Voyiadjis 2018; Voyiadjis and Song 2017) since the pioneering investigations of
Aifantis (1984, 1987) which incorporate the gradient term in the conventional flow
rule. McDowell (2010) reviewed the trends in plasticity research for metals over the
25 years prior to the publication year (2010) in terms of the multiscale kinematics,
the effect of material length scale, the role of grain boundaries, and so forth.

Hutchinson (2012) classified the strain gradient version of J2 flow theories
into two classes: incremental theory developed by Fleck and Hutchinson and non-
incremental theory developed by Gudmundson, Gurtin, and Anand (c.f. see Fleck et
al. (2014, 2015); Gudmundson (2004); Gurtin and Anand (2005, 2009); Hutchinson
(2012) for details). Fleck and co-workers (Fleck et al. 2014, 2015) then pointed
out that the specific phenomenon, which exhibits a significant stress jump due to
infinitesimal variation in the direction of plastic strain that may occur under the
nonproportional loading, arises in the non-incremental theory and also discussed its
physical acceptance in their work. Fleck and co-workers (Fleck et al. 2014, 2015)
have shown this phenomenon with two plane strain problems, stretch-bending prob-
lem and stretch-surface passivation problem, for nonproportional loading condition.
In their work, it is noted that the dissipative higher-order microforces always cause
the significant stress gap or jump under the nonproportional loading conditions.
Recently, Voyiadjis and Song (2017) examined the stress jump phenomenon with
the stretch-surface passivation problem using the one-dimensional finite element
implementation, and an extensive parametric study is also performed in order to
investigate the characteristics of the stress jump phenomenon.

Another important issue in the strain gradient plasticity (SGP) theory is the
thermal effect. In the nano/micro systems, the effect of temperature gradient needs to
be considered for the fast transient time. If the mean free path of phonons is approx-
imately the medium size, heat transfer is partly ballistic rather than purely diffusive.
This is caused by the small depth of the zone influenced by heat or small size of
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the structure and the non-equilibrium transition of thermodynamic circumstances
related to reducing the response time (Tzou and Zhang 1995). Moreover, when
the response time in nano-/microscale materials decreases to the thermalization
time range, it results in the non-equilibrium conversion of thermodynamic states
between phonons and electrons (Brorson et al. 1990; Tzou and Zhang 1995). The
conventional heat equation is not capable of capturing the effect of electron-phonon
interaction in this time frame; thus, the microscopic generalized heat equation has
to be employed to interpret these phenomena.

Voyiadjis and co-workers (Voyiadjis and Deliktas 2009a, b; Voyiadjis and
Faghihi 2012; Voyiadjis et al. 2014, 2017; Voyiadjis and Song 2017) have developed
the thermodynamically consistent and coupled thermomechanical SGP models to
study the characteristics of nano-/microscale metallic materials. All those works,
however, have been limited to one-dimensional finite element implementation. As
it is well known, there is bound to be a fundamental difference between one-
dimensional finite element implementation and two-dimensional one. For example,
in one-dimensional case, some special complications, e.g., the resonance between
the physical scale and mesh scale, cannot be considered during the simulation. It
should be noted that there is no difference between the different dimensions from
the variational point of view; however, the difference exists in the description of
the finite-dimensional approximation spaces. The finite element implementation in
multidimension is based on the same principle of the one in the one dimension;
thus the piecewise-polynomial functions of low degree with many terms are
considered for accuracy. In the two-dimensional model, it is significantly more
complicated since the polynomial functions have more variables and the open
sets are much more varied than in the one-dimensional model. In terms of the
dimensional extension, there is the simple modification from one-dimensional
finite element implementation for the strain gradient plasticity model to the two-
dimensional one in Voyiadjis and Song (2017). However, in that work, the effects
of temperature and its gradient were not considered, but just addressed the effect of
the mechanical component of the thermodynamic microforces in terms of the stress
jump phenomenon. Recently, in Song and Voyiadjis (2018), the two-dimensional
finite element implementation of the coupled thermomechanical strain gradient
plasticity model is performed. In that work, two null boundary conditions, i.e.,
microscopically free and hard boundary conditions, are considered at the grain
boundary to describe the dislocation movement and the plastic flow at the grain
boundary areas.

It is well known that the free surface may act as the source for the defect devel-
opment and its propagation toward the grain inside, whereas the grain boundaries
block this dislocation movement and, consequently, give rise to the strain gradients
to accommodate the geometrically necessary dislocations (Hirth and Lothe 1982).
In addition, the grain boundaries can be the source of dislocation through the
transmission of plastic slip to the neighboring grains (Clark et al. 1992). Besides
these physical remarks, from the mathematical viewpoint, the nonstandard boundary
conditions are necessary at the external boundary of a region for the well-posed
governing equations in the implementation of higher-order strain gradient plasticity
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models. Therefore, careful modeling of the grain boundary is important in the
continued development of higher-order strain gradient plasticity models.

The experimental observations on slip transmission motivate one to assume that
the effect of surface/interfacial energy and the global nonlocal energy residual
should be nonvanishing. Examples can be found from the in situ TEM direct
observations, e.g., Lee et al. (1989), or using the geometrically necessary dislocation
(GND) concept in the description of observations in bicrystallines, e.g., Sun et al.
(2000), and nanoindentation tests close to the grain boundary, e.g., Soer et al. (2005).
This results in a new type of boundary condition, in the context of strain gradient
plasticity incorporating the interfacial energy, accounting for the surface resistance
to the slip transfer due to the grain boundary misalignment (see, e.g., Aifantis and
Willis (2005); Cermelli and Gurtin (2002); Fredriksson and Gudmundson (2007);
Gudmundson (2004); Gurtin (2008)).

Also, in this chapter, two-dimensional numerical simulation in the context of the
small deformation framework is developed incorporating the temperature- and rate-
dependent flow rules for the grain interior and grain boundary, and the proposed
model is validated by comparing against two sets of small-scale experiments
showing the size effects. The reason for choosing these two experiments is that these
experiments were also used in Voyiadjis and Song (2017) for validating the one-
dimensional model, so it will be possible to compare the numerical results and val-
idated material properties directly. The simple shear problem is solved based on the
validated model in order to examine the size effect in the small-scale metallic mate-
rials. The square plate problem with the various grain boundary conditions is also
solved to investigate the grain boundary effect in conjunction with the length scales.

Additionally, a generalized structure for modeling polycrystals from micro-
to nano-size range is introduced Voyiadjis and Deliktas (2010). The polycrystal
structure is defined in terms of the grain core, the grain boundary, and the triple
junction regions with their corresponding volume fractions. Depending on the size
of the crystal from micro to nano, different types of analyses are used for the
respective different regions of the polycrystal. The analyses encompass local and
nonlocal continuum or crystal plasticity. Depending on the physics of the region,
dislocation-based inelastic deformation and/or slip/separation is used to characterize
the behavior of the material. The analyses incorporate interfacial energy with
grain boundary sliding and grain boundary separation. Certain state variables are
appropriately decomposed into energetic and dissipative components to accurately
describe the size effects.

Kinematics

In this chapter, tensors are denoted by the subscripts i, j, k, l, m, and n. The
superscripts e, p, int, ext., en, dis, etc. imply specific quantities such as elastic state,
plastic state, internal, external, energetic, dissipative, etc., respectively. Also, the
superimposed dot represents derivative with respect to time, and the indices after a
comma represent the partial derivatives.
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In the conventional continuum plastic theory of the isotropic solids for the small
deformation assumption, the displacement gradient ui, j is decomposed into elastic
ue

i;j and plastic counterparts up
i;j as follows:

ui;j D ue
i;j C up

i;j where up

k;k D 0 (1)

where the elastic distortion ue
i;j and the plastic distortion up

i;j indicate the recov-
erable stretching and rotation and the evolution of dislocations in the material
structure, respectively.

For the small deformation framework in the conventional theory, the strain tensor
"ij is also decomposed into the elastic and plastic elements as follows:

"ij D "e
ij C "

p
ij D

1

2

�
ue

i;j C ue
j;i

�
C

1

2

�
up

i;j C up
j;i

�
(2)

Here, the plastic strain is assumed to be deviatoric, "
p

kk D 0, since the material
volume is not changed by the dislocation glide-induced plastic deformation (Gurtin
and Anand 2009). The plastic rotation is then given as follows:

W
p

ij D
1

2

�
up

i;j � up
j;i

�
(3)

In the conventional isotropic plasticity theory, since the plastic rotations (the
rotation of material relative to the lattice) may be absorbed by their elastic
counterparts without any influence on the field equations, they are fundamentally
irrelevant to the theory. In this sense, the plasticity irrotational assumption is
principally adopted in this chapter as indicated in Eq. (4) (see Gurtin et al. (2010)).

W
p

ij D 0 (4)

Accordingly, up
i;j D "

p
ij .

Meanwhile, the direction of plastic flow Nij is given by

Nij D
P"
p
ij��� P"
p
ij

���
D

P"
p
ij

Pep
) P"

p
ij D PepNij (5)

with the accumulated plastic strain rate Pepgiven by

Pep D
��� P"

p
ij

��� D
q

P"
p
ij P"

p
ij (6)

Correspondingly, the accumulated plastic strain ep can be obtained by

ep D

Z t

0

Pepdt (7)
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Principle of Virtual Power: Grain Interior

Recently, the thermodynamically consistent SGP theories have been developed
by Voyiadjis and his co-workers to account for the characteristics of small-scale
metallic material behavior based on the principle of virtual power (Voyiadjis and
Song 2017; Voyiadjis et al. 2017).

The internal power P
int is presented with a combination of three energy

contributions, i.e., the macro-, micro-, and thermal-energy contributions, in the
arbitrary region �0 as follows:

P
int D

Z

�0

0
B@�ij P"e

ij„ƒ‚…
Macro

C x Pep C Qi Pe
p
;i„ ƒ‚ …

Micro

C A PT C Bi
PT;i„ ƒ‚ …

Thermal

1
CA dV (8)

where x and Qi are the thermodynamic microforces conjugate respectively to Pep

and Pe
p
;i and � ij is the Cauchy stress tensor. It is assumed in this chapter that extra

contributions to the internal power exist from the temperature. A and Bi are the
micromorphic scalar and vector generalized stress-like variables conjugate to the
temperature rate PT and the first gradient of the temperature rate PT;i , respectively.
These terms are introduced in a micromorphic fashion to lead the additional
thermal balance equations considering the nonlocal thermal effects (Liu et al. 2017).
Therefore, the purely mechanical part of the internal power is complemented by the
thermal contributions that represent the thermal part of the power of work, which is
the convectively performed power. Note that only the first gradient of temperature
rate is considered, for the sake of simplicity. Meanwhile, one can refer to Faghihi
and Voyiadjis (2014) to see the model in the absence of the temperature-related
terms A and Bi .

The internal power Pint for �0 is equated with the external power Pext expended
by the macro- and microtractions (ti , m) on the external surface @�0 and the body
forces acting within �0 as shown below:

P
ext D

Z

�0

bi Pui„ƒ‚…
Macro

dV C

Z

@�0

0
@ ti Pui„ƒ‚…

Macro

C m Pep„ƒ‚…
Micro

C a PT„ƒ‚…
Thermal

1
A dS (9)

where bi is the generalized external body force conjugate to the macroscopic
velocity Pui . Furthermore, it is assumed for the external power to have the term of a,
conjugate to PT for the thermal effect.

By using the equation, Pint D P
ext , in conjunction with the divergence theorem

and factoring out the common terms, the balance equations for the macroscopic
linear momentum, nonlocal microforce, and generalized stresses A and Bi for
volume �0 can be obtained, respectively, as follows (see Appendix A for detailed
derivations):
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�ij;j C bi D 0 (10)

�ij D .x � Qk;k/ Nij (11)

Bi;i � A D 0 (12)

where �ij is the deviatoric part of � ij with the Kronecker delta ıij�
�ij D �ij � �kkıij =3

�
.

On @�0, the balance equations for the local surface traction and the nonlocal
microtraction are expressed with the outward unit normal vector to @�0, ni,
respectively, as

tj D �ij ni (13)

m D Qi ni (14)

a D Bi ni (15)

The first law of thermodynamics is considered here to derive the thermody-
namically consistent formulation to account for the thermo-viscoplastic small-scale
behavior of the metallic volumes during the fast transient time. The adiabatic
viscoplastic deformation for metals is affected by the initial temperature, the loading
rate, and the temperature evolution caused by the transition from plastic work to
heat. The enhanced gradient theory is employed for the mechanical part of the
formulation, whereas the micromorphic model is employed for the thermal part as
follows (see the work of Forest and Amestoy (2008)):

� PE D �ij P"e
ij C x Pep C Qi Pe

p
;i C A PT C Bi

PT;i � qi;i C �Hext (16)

where � is the mass density, E is the specific internal energy, qi is the thermal flux
vector, and H

ext is the specific heat from the external source.
The second law of thermodynamics introduces a physical base to account for the

GNDs’ distribution in the body. The following entropy production inequality can be
obtained based on the basic statement of this law that the free energy must increase
at a rate less than the one at which the work is carried out, with the specific entropy
s and the micromorphic approach by Forest (2009):

�� PE C � PsT C �ij P"e
ij C x Pep C Qi Pe

p
;i C A PT C Bi

PT;i � qi

T;i

T
� 0 (17)

The entropy production vector is assumed in this chapter to be equal to the
thermal flux vector divided by the temperature, as given in Coleman and Noll
(1963).
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Energetic and Dissipative Thermodynamic Microforces: Grain
Interior

The Helmholtz free energy ‰ (per unit volume) is obtained with the entropy s,
internal energy E, and temperature T describing a current state of the material as
follows:

‰ D E � Ts (18)

By using Eqs. (17) and (18), the Clausius-Duhem inequality is derived as follows:

�ij P"e
ij C x Pep C Qi Pe

p
;i C A PT C Bi

PT;i � � P‰ � �s PT � qi

T;i

T
� 0 (19)

For deriving the constitutive equations within a small-scale framework, an
attempt to address the effect of the nonuniform microdefect distribution with the
temperature is carried out in the present work with the functional form of the
Helmholtz free energy given as:

‰ D ‰
�
"e

ij ; ep; e
p
;i ;T;T;i

�
(20)

In the process of developing the constitutive equations, the plastic dissipation
work must be nonnegative. By taking the time derivative of the Helmholtz free
energy, P‰ is expressed as follows:

P‰ D
@‰

@"e
ij

P"e
ij C

@‰

@ep
Pep C

@‰

@ e
p
;i

Pe
p
;i C

@‰

@T
PT C

@‰

@T;i

PT;i (21)

Substituting Eq. (21) into Eq. (19) and factoring the common terms out give the
inequality as follows:

 
�ij � �

@‰

@"e
ij

!
P"e
ij C

�
x � �

@‰

@ep

�
Pep C

 
Qi � �

@‰

@e
p
;i

!
Pe
p
;i C

�
A � �s � �

@‰

@T

�
PT

C

�
Bi � �

@‰

@T;i

�
PT;i �

qi

T
T;i � 0 (22)

Meanwhile, the thermodynamic conjugate microforces x, Qi; and A are assumed
to be decomposed into the energetic and the dissipative elements as follows:

x D x
en C x

dis (23)

Qi D Q
en
i C Q

dis
i (24)

A D A
en C A

dis (25)
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Substituting Eqs. (23), (24), and (25) into Eq. (22) and rearranging them in
accordance with the energetic and the dissipative parts result in the following
expression:

 
�ij � �

@‰

@"e
ij

!
P"e
ij C

�
x

en � �
@‰

@ep

�
Pep C

 
Q

en
i � �

@‰

@e
p
;i

!
Pe
p
;i

C

�
A

en � �s � �
@‰

@T

�
PT C

�
Bi � �

@‰

@T;i

�
PT;i C x

dis Pep

C Q
dis
i Pe

p
;i C A

dis PT �
qi

T
T;i � 0

(26)

By assuming that the fifth term in Eq. (26) is strictly energetic, the energetic
components of the thermodynamic microforces are defined as follows:

�ij D �
@‰

@"e
ij

(27)

x
en D �

@‰

@ep
(28)

Q
en
i D �

@‰

@e
p
;i

(29)

A
en D �

�
s C

@‰

@T

�
(30)

Bi D �
@‰

@T;i

(31)

The dissipation density per unit time D is then obtained as:

D D x
dis Pep C Q

dis
i Pe

p
;i C A

dis PT �
qi

T
T;i � 0 (32)

The dissipative counterparts of the thermodynamic microforces are obtained
from the dissipation potential D

�
Pep; Pe

p
;i ;

PT;T;i

�
as follows:

x
dis D

@D

@ Pep
(33)

Q
dis
i D

@D

@ Pe
p
;i

(34)

A
dis D

@D

@ PT
(35)
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�
qi

T
D

@D

@T;i

(36)

It is necessary to define the proper formulation of Helmholtz free energy ‰

because it establishes the basis for the derivation of the constitutive relations. It
has to take not only the material type such as fcc metals, bcc metals, polymer, steel
alloys, concrete, etc. but also the deformation condition such as rate dependency
of the material into consideration. In the current work, the Helmholtz free energy
function is put forward with three main counterparts, i.e., elastic energy ‰e, defect
energy ‰d, and thermal energy ‰th, as follows (Voyiadjis and Song 2017; Voyiadjis
et al. 2017):

‰
�
"e

ij ; ep; e
p
;i ;T;T;i

�
D ‰e

�
"e

ij ;T
�

C ‰d
�
ep; e

p
;i ;T

�
C ‰th .T;T;i / (37)

with

‰e
�
"e

ij ;T
�

D
1

2�
"e

ij Eijkl "
e
kl �

˛th

�
.T � Tr / "e

ij ıij (38)

‰d
�
ep; e

p
;i ;T

�
D

H0

� .r C 1/

	
1 �

�
T

Ty

�n

.ep/rC1

„ ƒ‚ …
‰d

1

C
�0

� .# C 1/

�
`2

en

�
e

p
;i e

p
;i

�� #C1
2

„ ƒ‚ …
‰d

2

(39)

‰th .T;T;i / D �
1

2

c"

Tr

.T � Tr /
2 �

1

2�
aT;iT;i (40)

where ˛th is the thermal expansion coefficient, Eijkl is the elastic modulus tensor,
H0 is the standard isotropic hardening parameter, r .0 < r < 1/ is the isotropic
hardening material parameter, Ty and n are the thermal material parameters, �0 > 0
is the stress-dimensioned scaling parameter to explain the initial slip resistance,
`en is the energetic material length scale describing the feature of the short-range
interaction of the GNDs, a is the material constant for the isotropic heat conduction
which accounts for the interaction of the energy carriers, ª is the parameter for
governing the nonlinearity of the gradient-dependent defect energy, Tr > 0 is the
reference temperature, and c" is the specific heat capacity at the constant stress. In
this chapter, Ty is determined by the calibration with experimental data.

The second term of the defect energy ‰d
2 is postulated as a function of e

p
;i ,

and the condition ª > 0 ensures the convexity of ‰d
2 . (The short-range interaction

of the coupling dislocations shifting on the adjacent slip planes, so-called GND
core energy, is characterized by the defect energy ‰d

2 . ‰d
2 may be assumed to be

a function of the GND density. It is assumed in this work that the plastic strain
gradient is viewed as a macroscopic measure of GNDs.) In particular, by setting
ª D 1, the function ‰d

2 turns to the quadratic formula (see Bardella (2006); Gurtin
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(2004)), while the L2-norm of e
p
;i is used in Garroni et al. (2010) and Ohno and

Okumura (2007) by setting ª D 0. It is worth mentioning that ‰d
2 is independent

of the temperature since it indicates the energy carried by the dislocations; thus it is
energetic in nature (Lele and Anand 2008).

Since the central objective of the present work is to account for thermal variation,
thermal terms are included in the free energy. The elastic and defect parts of the
Helmholtz free energy functions, ‰e and ‰d, are locally convex with respect to
strain-related terms at all points of the body in the equilibrium state. However,
‰t is a concave function of the temperature (Lubarda 2008). The second-order
variation of ‰ is related to the second-order variation of E by using Eq. (18)
and taking the virtual variations of temperature and entropy states into account
such as @2‰=@T2.ıT/2 D �@2E=@s2.ıs/2. Thus, E is convex with respect to
entropy s, and ‰ is concave with respect to temperature since @2E=@s2.ıs/2 >

0 ! @2‰=@T2.ıT/2 < 0. In addition, it can be assumed that entropy increases
monotonically with respect to temperature; thus @s=@T D �@2‰=@T2 (Callen
1985).

One can now obtain the energetic thermodynamic forces by using the definitions
in Eqs. (27), (28), (29), (30), and (31) in conjunction with Eqs. (37), (38), (39), and
(40) as follows:

�ij D Eijkl"
e
kl � ˛th .T � Tr / ıij (41)

x
en D H0

	
1 �

�
T

Ty

�n

.ep/r (42)

Q
en
i D �0`2

en

h
`2

en

�
e

p

;ke
p

;k

�i #�1
2

e
p
;i (43)

A
en D �s � ˛th .T � Tr / "e

ij ıij �
c"

Tr

.T � Tr / �
H0.ep/rC1

r C 1

T

Ty

�
T

Ty

�n�1

(44)

Bi D �aT;i (45)

It is assumed here that the dissipation potential function is composed of two
parts, the mechanical part which is dependent on the plastic strain and plastic strain
gradient and the thermal counterpart which shows the purely thermal effect such as
the heat conduction. In this sense, and in the context of Eq. (32), the functional form
of the dissipation potential, which is dependent on e

p
;i , can be put forward as:

D D D
p .ep; "p; Pep;T/ C D

g
�
Pe
p
;i ;T

�
C D

th
�

PT;T;i

�
(46)

where D
p and D

g are the mechanical parts and D
th accounts for the purely thermal

effect. The functional forms of each part are given as follows:
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D
p .ep; "p; Pep;T/ D �0
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�2

b"p
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T

Ty

�n
� Pep

Pp1

�m1

Pep

(47)

D
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�
Pe
p
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�
D �0

	
1 �

�
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Ty
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� Pp

Pp2

�m2

Pp (48)

D
th
�

PT;T;i

�
D �

&

2
PT2 �

1

2

k .T/

T
T;iT;i (49)

where � and b are the numerical parameter and magnitude of the Burgers vector,
which are characteristically given as 0.2 � � � 0.5 and b � 0.3 nm for metals,
respectively. The parameter � is the shear modulus, Pp1 and Pp2 are the nonnegative
reference rates, m1 and m2 are the nonnegative strain rate sensitivity parameters,
− is the material constant characterizing the energy exchange between phonon
and electron, and k .T/ is the thermal conductivity coefficient. The dimensionless
function . Pep= Pp1/m1 in Eq. (47) leads to different physical effects from the term
. Pp= Pp2/m2 in Eq. (48), in spite of the similar forms (see Lele and Anand (2008) for
more details).

The parameter Pp is a scalar measuring the plastic strain rate gradient, which is
defined by

Pp
def
D `dis

�� Pe
p
;i

�� D `dis

q
Pe
p
;i Pe

p
;i (50)

where `dis is the dissipative length scale.
The dimensionless function H .ep/ is related to the strain hardening/softening

behavior with H.0/ D 1. In the current work, the following form of mixed
hardening function is adopted (Voce 1955):

H .ep/ D 1 C .� � 1/ Œ1 � exp .�!ep/� C
H0

�0

ep (51)

where � and ! are the material parameters. The strain hardening, strain softening,
and strain hardening/softening can be modeled based on the particular choices for
these parameters.

The Nye dislocation density tensor ˛ij, which indicates the i-component of the
resultant Burgers vector related to GNDs of line vector j, is exploited here to
account for the effects of plastic strain gradient (Arsenlis and Parks 1999; Fleck
and Hutchinson 1997). Nonvanishing ˛ij indicates that the GNDs exist and the net
Burgers vector bi can be obtained by using the Stokes’ theorem as follows:

bi D

I

C

up

i;kdxk D

Z

S

	jklu
p

i;lknj dS (52)
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where 	jkl is the permutation tensor and nj is the unit vector normal to the surface
S whose boundary is the curve C. Under the assumption that the plastic flow is
irrotational, the Nye dislocation density tensor ˛ij is given by

˛ij D 	iklu
p

j;lk D 	ikl "
p

jl;k (53)

in which, in the work of Gurtin (2004), ˛ji is indicated as the Burgers tensor.
With neglecting the interaction between different slip systems, the total accumu-

lation of GNDs is calculated as follows:

"p def
D
��˛ij

�� D b�G (54)

where "p is a scalar measure of an effective plastic strain gradient and �G is the total
GND density. In order to present the microstructural hardening induced by GNDs,
another length scale parameter, designated as the N-G length scale parameter, is
defined here:

`N �G
def
D �2

�
�

�0

�2

b (55)

where the N-G length scale parameter was first introduced by Nix and Gao (1998).
With the definition of `N � G, Eq. (47) can be expressed by

D
p .ep; "p; Pep;T/ D �0

p
H2 .ep/ C `N �G"p

	
1 �

�
T

Ty

�n
� Pep

Pp1

�m1

Pep (56)

In the special case `N � G D 0 and H .ep/ D 1, Eq. (56) reduces to D
p D

�0

�
1 �

�
T=Ty

�n�
. Pep= Pp1/m1 Pep , a form in Voyiadjis and Song (2017).

Using the dissipative potential given in Eqs. (47), (48), (49), and (56) along with
Eqs. (33), (34), (35), and (36) and considering k .T/ =T D k0 D constant , the
constitutive relations for the dissipative microforces are obtained as follows:

x
dis D �0

p
H2 .ep/ C `N �G"p
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(57)
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A
dis D �& PT (59)

qi

T
D k0T;i (60)
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Flow Rule: Grain Interior

The flow rule in the present framework is established based on the nonlocal
microforce balance, given in Eq. (11), and strengthened by thermodynamically
consistent constitutive relations for both energetic and dissipative microforces. By
considering the backstress, the microforce equilibrium can be expressed as follows:

�ij �
�
�Q

en
k;k

�
Nij„ ƒ‚ …

Backstress

D
�
x � Q

dis
k;k

�
Nij (61)

By substituting Eqs. (42), (43), (57), and (58) into Eq. (61), one can obtain a
second-order partial differential flow rule as follows:
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(62)

It is required to accompany the initial conditions for ep and "p in the flow rule. A
standard initial condition, for the behavior starting at time t D 0 from a virgin state,
is assumed here such that

e
p
tD0 D "

p
tD0 D 0 (63)

Thermodynamic Derivations of the Heat Evolution Equation

Heat flow is controlled by the first law of thermodynamics, i.e., the energy
conservation law, given in Eq. (16). The temperature field is governed by the heat
flow generated through the inelastic dissipation and thermomechanical coupling
effect. By considering the law of energy conservation given in Eq. (16) along
with the dissipation potential given in Eqs. (32), (46), (47), (48), and (49) in
conjunction with the equations for the energetic and dissipative components of the
thermodynamic microforces given, respectively, by Eqs. (27), (28), (29), (30), and
(31) and Eqs. (33), (34), (35), and (36), the relationship for the evolution of the
entropy, which describes the irreversible process, can be derived as follows:

� PsT D D C �Hext (64)
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By using Eq. (44) for solving the rate of the entropy Ps and assuming the specific
heat capacity at the constant volume c0 as c0 D constant Š c"T=Tr , the
temperature evolution can be obtained as follows:

�c0
PT D x

dis Pep C Q
dis
i Pe

p
;i„ ƒ‚ …

irreversible mechanical process

� ˛th .T � Tr / P"e
ij ıijT„ ƒ‚ …
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� PPT„ƒ‚…
plastic�thermal coupling

C
k0

2
T;iT;i

„ ƒ‚ …
heat conduction

C �Hext

„ƒ‚…
heat source

(65)

where

PP D H0.ep/r
�
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Pep C
nH0.ep/rC1

.r C 1/Ty

�
T

Ty

�n�1

PT (66)

It should be noted that the heat conduction term can be generalized to the
microscale heat equation by considering the effects of the temperature gradient
on the stored energy and the temperature on the energy dissipation individually
in terms of the two extra material intrinsic time scale parameters (Voyiadjis and
Faghihi 2012).

By substituting the constitutive equations of the dissipative microforces into Eq.
(65) and assuming that the external heat source is absent, the temperature evolution
is consequently obtained as:
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(67)

where the additional term teff is defined as teff D k0=2�c0.
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Principle of Virtual Power: Grain Boundary

One of the main goals in this study is to develop the thermodynamically consistent
gradient-enhanced plasticity model for the grain boundary, which should be also
consistent with the one for the grain interior. Hereafter, the superscript GB and the
expression GB will be used to denote the specific variables at the grain boundary.

Two grains G1 and G2 separated by the grain boundary are taken into account
in this chapter, and the displacement field is assumed to be continuous, i.e., uG1

i D

uG2

i , across the grain boundary. The internal part of the principle of virtual power
for the grain boundary is assumed to depend on the GB accumulated plastic strain
rates PepGBG1 at SGBG1 and PepGBG2 at SGBG2 in the arbitrary surface SGB of the grain
boundary as follows:

P
int GB

D

Z

SGB

�
M

GBG1 PepGBG1
C M

GBG2 PepGBG2
�

dSGB (68)

where the GB microscopic moment tractions M
GBG1 and M

GBG2 are assumed to
expend power over PepGBG1 and PepGBG2 , respectively. In addition, the GB external

power P
ext GB is expended by the macrotractions �
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ij
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j

�
and �
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k

�
�nGB

k

�
and

Q
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i

�
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k

�
that are conjugate to PepGBG1 and PepGBG2

; respectively, as follows:

P
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D

Z
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G2

ij nGB
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ij nGB
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�
Pui C Q

G2

k nGB
k PepGBG2

� Q
G1

k nGB
k PepGBG1

o
dSGB

(69)

where nGB is the unit outward normal vector of the grain boundary surface. From
P

int GB
D P

ext GB , the macro- and microforce balances for the grain boundary are
obtained as follows:

�
�
G1

ij � �
G2

ij

�
nGB

j I M
GBG1 C Q

G1

k nGB
k D 0I M

GBG2 � Q
G2

k nGB
k D 0 (70)

The first and second laws of thermodynamics are considered to construct the
thermodynamically consistent gradient- and temperature-enhanced framework for
the grain boundary as follows:

PEGB
D M

GB PepGB

C qGB
i nGB

i (71)

PsGB
T

GB � qGB
i nGB

i � 0 (72)
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where EGB is the GB surface energy density, qGB
i is the GB heat flux vector, and

s
GB is the surface density of the entropy of the grain boundary.

Energetic and Dissipative Thermodynamic Microforces: Grain
Boundary

By using the time derivative of the equation, ‰GB D EGB � T
GB

s
GB , and

substituting it into Eqs. (71) and (72), the following Clausius-Duhem inequality
for the grain boundary is obtained:

M
GB PepGB

� P‰GB � s
GB PTGB � 0 (73)

One assumes the isothermal condition for the grain boundary ( PTGB D 0) and
the Helmholtz free energy for the grain boundary is given by ‰GB D ‰GB(epGB).
Substituting the time derivative of ‰GB into Eq. (73) gives the following inequality:

M
GB PepGB

� �
@‰GB

@epGB
PepGB �0 (74)

The GB thermodynamic microforce quantity M
GB is further assumed to be

decomposed into the energy and dissipative components such as MGB D M
GB;en C

M
GB;dis . The components MGB;en and M

GB;dis indicate the mechanisms for the pre-
and post-slip transfer and thus involve the plastic strain at the grain boundary prior
to the slip transfer epGB(pre) and the one after the slip transfer epGB(post), respectively,
(epGB D epGB(pre) C epGB(post)). From Eq. (74) one obtains

�
M

GB;en � �
@‰GB

@epGB

�
PepGB

C M
GB;dis PepGB �0 (75)

The GB energetic microforce can be obtained as:

M
GB;en D �

@‰GB

@epGB
(76)

Hence the GB dissipative microforce can then be obtained as:

M
GB;dis D

@DGB

@ PepGB
(77)

where D
GB is the nonnegative dissipation density per unit time for the grain

boundary, given by D
GB D M

GB;dis PepGB �0. This nonnegative plastic dissipation
condition can be satisfied when the GB plastic dissipation potential is a convex
function of the GB accumulated plastic strain rate.
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In this chapter, it is assumed by following Fredriksson and Gudmundson (2007)
that the GB Helmholtz free energy per unit surface has the form of the general power
law as follows:

‰GB
�
epGB

�
D

1

2
G`GB

en

�
epGB.pre/

�2

(78)

where G is the shear modulus in the case of isotropic linear elasticity and `GB
en is the

GB energetic length scale. By substituting Eq. (78) into Eq. (76), the GB energetic
microforce quantity can be obtained as follows:

M
GB;en D G`GB

en epGB.pre/ (79)

Note that MGB;en is independent of the plastic strain rate and temperature since
this variable comes from the recoverable stored energy.

Meanwhile, two major factors might be identified affecting the energy dissipation
when the dislocations move in the grain boundary area (Aifantis and Willis 2005).
When dislocations encounter a grain boundary, they pile up there. Slip can transmit
to the adjacent grain only when the stress field ahead of the pileup is high enough.
Direct observation of the process using transmission electron microscopy (TEM)
also shows that the main mechanisms for the aforementioned slip transmission are
the dislocation absorption and reemission for the low-angle boundaries (Soer et
al. 2005) and the dislocation nucleation in the adjacent grain for the high-angle
boundaries (Ohmura et al. 2004), respectively. As soon as deformation initiates
in the adjacent grain, the grain boundary begins to deform and the plastic strain
on the grain boundary increases. The energy associated with the deformation
of the grain boundary in this case is taken to be mainly due to the energy
dissipation as dislocations move in the grain boundary region. In addition to
considering the resistance force to dislocation motion being temperature and rate
dependent, this energy dissipation can be taken as a linear function of GB plastic
strain.

Moreover, change in the grain boundary area can also affect the energy dissipa-
tion. The macroscopic accumulated plastic strain at the grain boundary, epGB, can be
related to the microscopically deformation of the grain boundary through the root-
mean-square of the gradient of this deformation. In addition, the energy change after
the grain boundary has yielded, i.e., onset of slip transmission, can be approximated
by a quadratic function of the aforementioned displacement gradient at microscale
and hence the GB plastic strain at macroscale.

Combining both aforementioned mechanisms, i.e., change in the grain boundary
area and deformation of the grain boundary due to the dislocation movement,
involved in the energy dissipation due to the plastic strain transfer across the
grain boundary, one can postulate the following generalized expression for the GB
dissipation potential:
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D
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(80)

where `GB
dis is the GB dissipative length scale, mGB and PpGB are the viscous related

material parameters, �GB
0 is a constant accounting for the GB yield stress, HGB

0 is
the GB hardening parameter, TGB

y is the scale-independent GB thermal parameter
at the onset of yield, and nGB is the GB thermal parameter. The temperature
and rate dependencies of the GB energy are shown, respectively, in the terms�
1 � T

GB=TGB
y

�nGB

and
�

PepGB.post/
= PpGB

�mGB

.

By using Eqs. (77) and (80), the GB dissipative microforce M
GB;dis can be

obtained as:
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(81)

Therefore, the GB thermodynamic microforce M
GB can be obtained as:

M
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Flow Rule: Grain Boundary

The flow rule for the grain boundary can be derived by substituting Eq. (82) into the
microforce balances for the grain boundary, Eq. (70), such as:
for SGBG1 ,
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for SGBG2 ,
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(84)

where the second term in LHS of both equations represents the backstress. Note
that, in general case, the grain boundary model parameters are not identical on each
side; however in this chapter, the same values are assumed to be considered for
simplification.

Considering the GB flow rules as the boundary conditions of the grain interior
flow rule, Eq. (62), results in a yield condition accounting for the temperature- and
rate-dependent barrier effect of grain boundaries on the plastic slip and consequently
the influence on the GND evolution in the grain interior.

Finite Element Formulation of the Proposed SGPModel

A two-dimensional finite element model for the proposed SGP model is developed
to account for the size-dependent response for microscopic structures. The boundary
value problem consists of solving the flow rules for the grain interior/boundary
given in sections “Flow Rule: Grain Interior” and “Flow Rule: Grain Boundary”
in conjunction with the constitutive equations given in sections “Energetic and
Dissipative Thermodynamic Microforces: Grain Interior” and “Energetic and Dis-
sipative Thermodynamic Microforces: Grain Boundary” subjected to the prescribed
displacement conditions u


t on part of the boundary @�0
0 and traction free condition

on the remaining boundary part of the body. The microscopic and macroscopic force
balances can then be described in the global weak form after utilizing the principle
of virtual power and applying the corresponding boundary conditions, i.e., arbitrary
virtual displacement fields ıu D 0 on @�0

0 and arbitrary virtual plastic strain fields
ıep D 0 on @�00

0 as follows:

Z

�0

�
�ij ıui;j

�
dV D 0 (85)

Z

�0

�
.x � �/ ıep C Qi ıe

p
;i

�
dV D 0 (86)
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where � is the resolved shear stress defined by

� D �ij Nij D �ij Nij (87)

The UEL subroutine in the finite element software ABAQUS/Standard (2012) is
built in this chapter for numerically solving the global weak forms of macroscopic
and microscopic force balances, Eqs. (85) and (86), respectively. In this finite
element formulation, the plastic strain field ep and the displacement field ui are
discretized independently, and both of the fields are taken as fundamental unknown
nodal degrees of freedom. In this regard, the displacement and corresponding strain
field, "ij, and the plastic strain and corresponding plastic strain gradient field e

p
;i are

obtained by using the interpolation as follows:

ui D

nuX
�D1

U
�
ui
N

� (88)
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(89)

ep D

nepX
�D1

E�
epN

� (90)

e
p
;j D
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E�
ep

@N�

@xj

(91)

where N
�
u and N

�
ep denote the interpolation functions and U

�
ui and E�

ep denote the
nodal values of the plastic strains and displacements at node �, respectively. The
terms nu and nep represent the number of nodes per single element for displacement
and plastic strain, respectively. Since a two-dimensional quadratic 9-node element
is used in this chapter, nu and nep are set up as nine. It should be noted that nu
and nep do not necessarily have to be the same as each other in the present finite
element implementation, even though both the displacement and plastic strain fields
are calculated by using the standard isoparametric interpolation functions.

The body is approximated using finite elements, � D [ �el. By substituting
Eqs. (88), (89), (90), and (91) into Eqs. (85) and (86), the nodal residuals for the
displacement Rui

and the plastic strain Rep for each element �el can be obtained as:

.Rui
/� D �

Z

�el

�
�ij

@N
�
u

@xj

�
dV (92)
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dV (93)
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The system of linear equations, .Rui
/� D 0 and .Rep /� D 0, are solved

using ABAQUS/Standard (2012) based on the Newton-Raphson iterative method.
Occasionally, the modified Newton-Raphson method, referred to as quasi-Newton-
Raphson method, is employed in the case that the numerical solution suffers a
divergence during the initial increment immediately after an abrupt change in
loading. In the quasi-Newton-Raphson method, a specific correction factor, which
is less than one, is multiplied by one portion of the stiffness matrix. By using this
method, a divergence problem can be overcome; however, convergence is expected
to be slow because of the expensive computational cost. The Taylor expansion of
the residuals with regard to the current nodal values can be expressed by assuming
the nodal displacement and the plastic strain in iteration — as U

—
ui and E—

ep are,
respectively, as follows:
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where �U
�
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is the big O notation to represent the terms of higher order

than the second degree. These residuals are repetitively calculated at every time
step, and the calculated numerical results are updated during the whole iterations.
The increments in the nodal displacement and plastic strains can be obtained by
computing the system of linear equations shown in Eq. (96):

"
K�el

ui uk
K

�el
ui ep

K
�el
epuk

K
�el
epep

#

„ ƒ‚ …
K�el

�
�U

�
uk

�E�
ep

�
D

8
<̂
:̂

�
Rui j

U
—
ui ;E—

ep

�
��

Rep j
U

—
ui ;E—

ep

�
�

9
>=
>;

(96)

where K�el is the Jacobian (stiffness) matrix.
From the functional forms of the thermodynamic microforces defined in sec-

tions “Energetic and Dissipative Thermodynamic Microforces: Grain Interior” and
“Energetic and Dissipative Thermodynamic Microforces: Grain Boundary” and
Eqs. (94) and (95) along with the Eqs. (88), (89), (90), and (91) at the end of each
time step, each component of the Jacobian matrix can be obtained, respectively, as
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follows:
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where �t is a time step. The grain boundary terms in Eq. (100) are only applied for
nodes on the grain boundary area.

Validation of the Proposed SGPModel

In this section, the proposed SGP theory and corresponding finite element imple-
mentation are validated through the comparison against the experimental measure-
ments from two sets of size effect tests: aluminum thin film experiments by Haque
and Saif (2003) and nickel thin film experiments by Han et al. (2008). The material
parameters for two different metals, aluminum and nickel, are also calibrated by
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using the experimental data. The parameters �0 and H0 are determined by extrap-
olating the experimental data, and the material length scales are determined based
on the suggestion by Anand et al. (2005). In their work, an initial assumption for
the material length scales is suggested by matching the numerical results from the
proposed flow rule to the yield strength and backstress experimental measurements
under the assumption of `en D 0 and `dis D 0 at each case, respectively. The rest of
the material parameters come from the literature (Han et al. 2008; Haque and Saif
2003; Voyiadjis and Song 2017). The grain boundary flow rule is not considered
in sections “Validation of the Proposed SGP Model,” “Microfree Grain Boundary,”
and “Microhard Grain Boundary.”

Haque and Saif (2003) developed the micro-electromechanical system (MEMS)-
based testing skill for the nanoscale aluminum (Al) thin films under the uniaxial
tensile loading to investigate the strain gradient effect in 100 nm, 150 nm, 200 nm,
and 485 nm-thick specimens, which have the average grain sizes of 50 nm,
65 nm, 80 nm, and 212 nm, respectively. The specimens with 99.99% pure sputter-
deposited freestanding Al thin films are 10 m wide and 275 m long. All
experiments are carried out in situ in SEM, and the strain and stress resolutions
for the tests are set as 0.03% and 5 MPa, respectively. The general and calibrated
material parameters are shown in Table 1. Figure 1 displays the direct comparison
between the proposed model and the experimental observations. As clearly shown
in this figure, the size effect, “smaller is stronger,” is observed on the stress-strain

Table 1 The general and calibrated material parameters used for the validation of the proposed
strain gradient plasticity model. (Reprinted with permission from Song and Voyiadjis (2018a))

General Aluminum Nickel
E (GPa) Elastic modulus for isotropic linear elasticity 70 115
� Poisson’s ratio 0.30 0.31
� (GPa) Shear modulus for isotropic linear elasticity 27 44
� (g� cm�3) Density 2.702 8.902
c" (J/g �

ı

K) Specific heat capacity at constant stress 0.910 0.540
˛th(�m/m �

ı

K) Thermal expansion coefficient 24.0 13.1
Pp1; Pp2

�
s�1

�
Reference plastic strain rate 0.04 0.04

r Nonlinear hardening material constant 0.6 0.2
m1 Nonnegative strain rate sensitivity parameter 0.05 0.05
m2 Nonnegative strain rate sensitivity parameter 0.2 0.2
Ty

�ı

K
�

Thermal material parameter 933 890
n Temperature sensitivity parameter 0.3 0.3
Calibrated Aluminum Nickel
�0 (MPa) Stress-dimensioned scaling constant 1,000 950
H0 .MP a/ Isotropic hardening parameter 1,000 1,000
`en (�m) Energetic length scale 1.2 1.6
`dis (�m) Dissipative length scale 0.7 0.5
`N � G (�m) N-G length scale 1.0 2.0
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Fig. 1 The validation of the proposed SGP model by comparing the numerical results from the
proposed model with the experimental measurements from Haque and Saif (2003) on the stress-
strain response of the sputter-deposited Al thin films. (Reprinted with permission from Song and
Voyiadjis (2018a))

Fig. 2 The schematic
illustration of the dog bone
specimen and its main
dimensions (Han et al. 2008).
(Reprinted with permission
from Song and Voyiadjis
(2018a))

curves; furthermore, the numerical results from the proposed SGP model and the
experimental data correspond closely with each other.

The microscale tensile experiment skill for evaluating the mechanical and
thermal properties of the nickel (Ni) thin films at high temperatures is developed
by Han et al. (2008). The dog bone-shaped specimens used in their experiments
were made by micro-electromechanical system (MEMS) processes, and the primary
dimensions of the specimen are given in Fig. 2. The general and calibrated
material parameters for Ni are presented in Table 1. The experimental measure-
ments at four different temperatures, i.e., 25

ı

C, 75
ı

C, 145
ı

C, and 218
ı

C, and
corresponding numerical values from the proposed model are presented in Fig. 3.
As shown in this figure, it is obvious from both the numerical and experimental
results that the Young’s modulus is not affected by variations in temperature
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Fig. 3 The validation of the proposedSGP model by comparing the numerical results from the
proposed model with the experimental measurements from Han et al. (2008) on the stress-strain
response of the Ni thin films. (Reprinted with permission from Song and Voyiadjis (2018a))

Fig. 4 The schematic
illustration of the simple
shear problem including the
macroscopic and microscopic
boundary conditions and
initial conditions. (Reprinted
with permission from Song
and Voyiadjis (2018a))

while the yield strength decreases as the specimen temperature increases; in
addition, Fig. 3 clearly shows that the Bauschinger effect is not affected very
much by variations in the specimen temperature. All these observations are not
much different from those observed in one-dimensional finite element simulations
(Voyiadjis and Song 2017).
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Microfree Grain Boundary

The characteristics of the proposed SGP theory under the microfree boundary
condition at the grain boundary is addressed in this section by solving the shear
problem of a rectangular plate with varying material parameters.

By following Gurtin (2003), the simple class of microscopically free boundary
condition on a prescribed subsurface is employed from Eq. (14) as follows:

m D Qi ni D 0 (101)

The schematic illustration of the problem, the initial conditions, and the macro-
scopic and microscopic boundary conditions are shown in Fig. 4. The parameter
u
(t) represents the prescribed displacement. The stress-strain behavior and the
distributions of the temperature and accumulated plastic strain across the plate in
x2 direction are investigated for the various material length scales (`en, `dis, and
`N � G), the hardening parameter H0, and the temperature-related parameters (n
and Ty). The material parameters in Table 2 are used for this section unless stated
otherwise.

Energetic Gradient Hardening

For exploring the characteristics of the energetic gradient hardening only, the
dissipative gradient and GND gradient terms are assumed to vanish by imposing
`dis D `N � G D 0. The stress-strain behaviors and the distributions of ep and T

Table 2 The material parameters used in sections “Microfree Grain Boundary” and “Microhard
Grain Boundary.” (Reprinted with permission from Song and Voyiadjis (2018a))

General Values

E (GPa) Elastic modulus for isotropic linear elasticity 110
� Poisson’s ratio 0.33
� (GPa) Shear modulus for isotropic linear elasticity 48
� (g � cm�3) Density 8.960
c" (J/g �

ı

K) Specific heat capacity at constant stress 0.385
˛th(�m/m �

ı

K) Thermal expansion coefficient 24.0
Pp1; Pp2

�
s�1

�
Reference plastic strain rate 0.04

r Nonlinear hardening material constant 0.6
m1 Nonnegative strain rate sensitivity parameter 0.05
m2 Nonnegative strain rate sensitivity parameter 0.2
Ty

�ı

K
�

Thermal material parameter 1,358
n Temperature sensitivity parameter 0.3
�0 (MPa) Stress-dimensioned scaling constant 1,000
H0 .MP a/ Isotropic hardening parameter 1,000
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along the height of the plate for `en/L D 0, 0.1, 0.2, 0.3, 0.5, 0.7, and 1.0 with
H0 D 0 MPa are shown in Fig. 5. For the case of `en/L D 0, the stress-strain
curve does not show hardening as expected, and the distribution of ep is uniform.
As `en/L increases, the rates of the hardening increase as shown in Fig. 5a, and the
distributions of ep and T become more parabolic. When the dissipative length scale
`dis is absent, the heat generation is governed by the amount of ep; therefore the
distribution of T is identical to the one of ep as observed in Fig. 5b, c. Due to the
microhard boundary condition, the temperature does not rise at the boundary, and
the maximum temperature is observed at the center of the plate.

Dissipative Gradient Strengthening

It is now assumed that the energetic and GND hardening disappear by setting
`en D `N � G D 0. The isotropic hardening parameter is also set as H0 D 0 MP a.
The stress-strain curves and the distributions of ep and T across the height of the
plate for `dis/L D 0, 0.05, 0.1, 0.2, 0.3, 0.5, and 0.7 are shown in Fig. 6. As `dis/L
increases, it is shown in Fig. 6a that the initial yield strength increases without strain
hardening. The non-monotonic behavior of ep with `dis/L is elucidated by plotting
the maximal values of ep at the center of the plate for varying `dis/L as shown in
Fig. 6c. These numerical results are in line with the works of Bardella (2006) and
Fleck and Hutchinson (2001). The drastic change shown in the accumulated plastic
strain distribution according to varying `dis/L prominently affects the temperature
distribution. According to Eq. (67), both the plastic strain and its gradient are
involved in the evolution of T. As observed from Fig. 6b, the large amounts of
plastic strain gradient raise the temperature at the boundary; on the other hand, the
temperature at the center of the plate is primarily influenced by plastic strain.

GNDHardening

It is now assumed that the energetic and dissipative gradient terms disappear by
setting `en D `dis D 0. The stress-strain curves and the distributions of ep and
T across the height of the plate for `N � G/L D 0, 0.1, 0.2, 0.5, 1.0, 1.5, and
2.0 with H0 D 0 MPa are shown in Fig. 7. As `N � G/L increases, the rates of
the strain hardening increase more significantly, while no initial yield strength is
observed. Similar to the energetic gradient hardening case, in the absence of `dis,
the distribution of temperature is identical to the one of plastic strain.

Temperature-Related Parametric Study

The effects are now investigated of the two material parameters, n and Ty , on the
stress-strain behavior, the distributions of the temperature and accumulated plastic
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Fig. 5 The effects of the energetic gradient hardening with the energetic length scale only
(`dis D `N � G D 0): (a) the stress-strain response, (b) the temperature distribution, and (c)
the accumulated plastic strain distribution. (Reprinted with permission from Song and Voyiadjis
(2018a))
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Fig. 6 The effects of the dissipative gradient strengthening with the dissipative length scale
only (`en D `N � G D 0): (a) the stress-strain response, (b) the temperature distribution, and (c)
the accumulated plastic strain distribution. (Reprinted with permission from Song and Voyiadjis
(2018a))
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Fig. 7 The effects of the GND hardening with the N-G length scale only (`en D `dis D 0): (a)
the stress-strain response, (b) the temperature distribution, and (c) the accumulated plastic strain
distribution. (Reprinted with permission from Song and Voyiadjis (2018a))
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strain, and the temperature evolution in conjunction with `en/L D 1.0, `dis/L D 0.5,
and `N � G/L D 1.0.

Figures 8 and 9 show the effect of the material parameters n and Ty applying the
temperature-dependent behavior of the present model on the stress-strain curve, the
distributions of the temperature and accumulated plastic strain distribution, and the
evolution of the temperature at the midpoint of the plate. As shown in these figures,
the effects of the two parameters on the thermal and mechanical material response
are similar to each other due to the fact that two parameters affect the temperature-
related term

�
1 �

�
T=Ty

�n�
in the flow rule, which explains the thermal activation

mechanism for overcoming the local barriers to the dislocation movement, in a
similar way. It is worth mentioning that, in some literatures, the parameter Ty is
assumed to be equal to the melting temperature of the specific material in order not
to bring in the material parameter additionally. In this chapter, however, the normal
parameter is employed as a normalizing constant that should be calibrated by using
the experimental data.

It is clearly observed in Figs. 8a and 9a that, as n and Ty increase, the strain
hardening and the initial yield strength also increase. The effect, nevertheless,
is more prominent in initial yield strength, because strain hardening mechanism
is affected by temperature through the dislocation forest barriers; on the other
hand, the backstress does not depend on the temperature. For both n and Ty , it
is shown in Figs. 8b, c and 9b, c that the accumulated plastic strains at the boundary
(0 < x2/L < 0.2 and 0.8 < x2/L < 1) are almost identical with respect to the different
values of n and Ty ; on the other hand, the most significant differences in the
temperature profiles occur at the same range for both parameters. In contrast to this,
the most substantial differences in the accumulated plastic strain profiles according
to the values of n and Ty occur in the middle (0.2 < x2/L < 0.8) of the plate; on the
other hand, the temperature profiles at this part do not show considerable difference.

Microhard Grain Boundary

In this section, a microhard boundary condition, which describes that the dislocation
movements are blocked completely at the grain boundary, is assumed to hold on the
grain boundary as follows:

ep D 0 (102)

The square plate with an edge of W is solved to investigate the effect of this grain
boundary condition. The top edge of the plate is subject to a prescribed condition
in terms of the displacement

�
utop

1 .x1; W; t/ D u�
1 .t/; utop

2 .x1; W; t/ D 0
�
, while

the bottom edge is fixed
�
ubot

1 .x1; 0; t/ D ubot
2 .x1; 0; t/ D 0

�
. The whole square is

meshed using 1,600 (40 � 40) elements and split into several grains by the four
different grain boundary areas, which are indicated by the bold lines as shown in
Fig. 10. For these simulations, the stress-dimensioned scaling constant �0 and the
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Fig. 8 The effects of the thermal material parameter n with `en/L D 1.0, `dis/L D 0.5, and
`N � G/L D 1.0: (a) the stress-strain response, (b) the temperature distribution, and (c) the
accumulated plastic strain distribution. (Reprinted with permission from Song and Voyiadjis
(2018a))
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Fig. 9 The effects of the thermal material parameter Ty with `en/L D 1.0, `dis/L D 0.5, and
`N � G/L D 1.0: (a) the stress-strain response, (b) the temperature distribution, and (c) the
accumulated plastic strain distribution. (Reprinted with permission from Song and Voyiadjis
(2018a))
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Fig. 10 The schematic illustration of the square plate problem with four different grain boundary
areas. (Reprinted with permission from Song and Voyiadjis (2018a))

isotropic hardening parameter H0 are set as 195 MPa and 0 MPa, respectively, and
the values in Table 2 are used again for the rest of the material parameters.

The comparison of the microscopic boundary condition is addressed through
the single grain in Fig. 11. Figure 11a shows the distributions of the accumulated
plastic strain ep and temperature T; respectively, with the microhard boundary
condition at the grain boundaries, while Fig. 11b shows those with the microfree
boundary condition. The terminologies “NT11” and “UVARM6” in Fig. 11 indicate
the accumulated plastic strain and the temperature, respectively, and are used
continually in the rest of this work. For this example, `en/L D 0.3, `dis/L D 0.0,
and `N � G/L D 0.0 are used. As can be seen in Fig. 11a, each edge of the plate with
microhard boundary condition obstructs the dislocation movement, which results in
ep D 0, whereas in the case of microfree boundary condition, ep and T are evenly
spread across the grain.

Figure 12 shows the distributions of ep and T with no gradient effect. This can
be regarded as the reference case for the purpose of the comparison to other cases
with the gradient effect.

The effects of the grain boundary area in conjunction with the energetic gradient
hardening, dissipative gradient strengthening, GND hardening, and no gradient
effect are shown in Fig. 13 through the stress-strain responses. As can be seen
in Fig. 13a, no significant hardening or strengthening is observed under the
conventional plasticity theory. On the other hand, by considering the gradient
effect, the energetic hardening, dissipative strengthening, and GND hardening are
observed, respectively, in Fig. 13b, c, d with varying grain boundary areas.

The effects of the grain boundary area in conjunction with the energetic
gradient hardening, dissipative gradient strengthening, and GND hardening on the
distributions of ep and T are also shown, respectively, in Figs. 14, 15, and 16.
For the simulations in Fig. 14, the energetic length scales vary from 0.1 to 0.3,
and the dissipative and N-G length scales are set as zero. It should be noted that
the distributions of ep and T are not identical in all grains since the simple shear
loading is applied to the top edge of the plate and not to each grain individually. It
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Fig. 11 The distributions of the accumulated plastic strain and the temperature with (a) the
microhard and (b) microfree boundary conditions. (Reprinted with permission from Song and
Voyiadjis (2018a))

is clearly observed in Fig. 14 by comparing to Fig. 12 that the distributions of ep

and T with the energetic hardening are significantly different from those with no
gradient effect. This tendency is also observed with the dissipative strengthening
effects when comparing Fig. 15 with Fig. 12 as well as with the GND hardening
effects when comparing Fig. 16 with Fig. 12.

Intermediate (Deformable) Grain Boundary

The assumption of two null boundary conditions, microfree and microhard bound-
ary conditions, is used at the grain boundary in the previous two sections. In this
section, the governing differential equation is solved by imposing the proposed grain
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Fig. 14 The distributions of the accumulated plastic strain and the temperature in conjunction
with varying grain boundary areas with the energetic length scale only (`dis D `N � G D 0): (a)
ep with `en/W D 0.1, (b) T with `en/W D 0.1, (c) ep with `en/W D 0.2, (d) T with `en/W D 0.2,
(e) ep with `en/W D 0.3, and (f) T with `en/W D 0.3. (Reprinted with permission from Song and
Voyiadjis (2018a))
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Fig. 15 The distributions of the accumulated plastic strain and the temperature in conjunction
with varying grain boundary areas with the dissipative length scale only (`en D `N � G D 0): (a) ep

with `dis/W D 0.01, (b) T with `dis/W D 0.01, (c) ep with `dis/W D 0.03, (d) T with `dis/W D 0.03,
(e) ep with `dis/W D 0.05, and (f) T with `dis/W D 0.05. (Reprinted with permission from Song
and Voyiadjis (2018a))
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Fig. 16 The distributions of the accumulated plastic strain and the temperature in conjunction
with varying grain boundary areas with the N-G length scale only (`en D `dis D 0): (a) ep

with `N � G/W D 0.1, (b) T with `N � G/W D 0.1, (c) ep with `N � G/W D 0.3, (d) T with
`N � G/W D 0.3, (e) ep with `N � G/W D 0.5, and (f) T with `N � G/W D 0. (Reprinted with
permission from Song and Voyiadjis (2018a))



22 Finite Element Analysis of Thermodynamically Consistent: : : 823

Fig. 17 The schematic illustration of the simple shear problem: (a) the macroscopic, microscopic
boundary conditions and initial conditions (b) 4 � 4 grains. (Reprinted with permission from Song
and Voyiadjis (2018b))

boundary flow rule to account for the deformable grain boundary. Furthermore,
the characteristics of the proposed strain gradient plasticity theory incorporating
the flow rules of both the grain interior and grain boundary are addressed in this
section by solving the shear problem of a square plate with an edge of L. The
schematic illustration of the problem, the initial conditions, and the macroscopic
and microscopic boundary conditions as well as the grain boundary area are shown
in Fig. 17. The parameter u
(t) represents the prescribed displacement. The whole
square is meshed using 1,600 (40 � 40) elements and split into the 16 (4 � 4)
grains by the grain boundary area, which is indicated by the bold lines. The material
parameters for the grain interior and grain boundary are presented in Table 3.

As can be seen from Eq. (82), the grain boundary may act like a free surface,
i.e., microfree boundary condition, when `GB

en D `GB
dis D 0. On the other hand,

the microhard boundary condition can be compelled under the conditions `GB
en !

1 and `GB
dis ! 1. Firstly, the validity of these conditions is examined in

this section. Next, the direct comparison between the classical plasticity theory
(`en/L D `dis/L D `N � G/L D 0.0) and the gradient-enhanced plasticity theory
(`en/L D `dis/L D `N � G/L D 0.1) is given in order to check the ability of the
proposed flow rule on the size effect. The numerical results in terms of the
accumulated plastic strain profile and the stress-strain curves are shown in Figs.
18 and 19. As can be seen in these figures, the microfree and microhard boundary
conditions are well captured under the classical plasticity theory as well as the
gradient-enhanced plasticity theory. In addition, in Fig. 18c, no size effect is
observed in the classical plasticity theory with varying normalized material length
scales as expected. In Fig. 19c, on the other hand, strain hardening and strengthening
are more pronounced as the dimensions of the shear plate height are reduced
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Table 3 The material parameters used in section “Intermediate (Deformable) Grain Boundary.”
(Reprinted with permission from Song and Voyiadjis (2018b))

Grain interior Values
E (GPa) Elastic modulus for isotropic linear elasticity 110
� Poisson’s ratio 0.33
� (GPa) Shear modulus for isotropic linear elasticity 48
� (g � cm�3) Density 8.960
c" (J/g �

ı

K) Specific heat capacity at constant stress 0.385
˛th(�m/m �

ı

K) Thermal expansion coefficient 16.0
Pp1; Pp2

�
s�1

�
Reference plastic strain rate 0.04

r Nonlinear hardening material constant 0.6
m1 Nonnegative strain rate sensitivity parameter 0.05
m2 Nonnegative strain rate sensitivity parameter 0.2
Ty

�ı

K
�

Thermal material parameter 1,358
n Temperature sensitivity parameter 0.3
�0 (MPa) Stress-dimensioned scaling constant 195
H0 .MP a/ Isotropic hardening parameter 0
Grain boundary Values
�GB

0 .MP a/ Constant accounting for the GB yield stress 195
H

GB
0 .MP a/ GB hardening parameter 0

PpGB Viscous related material parameters for GB 0.04
mGB Viscous related material parameters for GB 1
T

GB
y GB thermal parameter at the onset of yield 700

nGB GB thermal parameter 0.4

(`GB
en =L ! 1, `GB

dis=L ! 1). In Fig. 20, the effects of each material length scale
parameter, i.e., `en, `dis, and `N � G, along with the microscopically hard boundary
condition, are also examined through the profile of accumulated plastic strain.
In addition, the contributions of each length scale parameter on the stress-strain
responses are shown in Fig. 20c.

Variations in the stress-strain responses and the evolutions of maximum tem-
perature are investigated for the various values of the normalized energetic and
dissipative grain boundary material length scales as shown in Figs. 21 and 22. It is
assumed by setting `GB

dis=`dis D 0 that all plastic work at the grain boundary is stored
as surface energy which depends on the plastic strain state at the surface. In this case,
`GB

en =`en reflects the grain boundary resistance to plastic deformation. Figures 21b
and 22b show the size effects on the strain hardening and temperature evolution
due to the grain boundary energetic length scale, and it is more pronounced in the
more strongly constrained material, i.e., increasing `GB

en =`en. On the other hand, by
setting `GB

en =`en D 0, it is assumed that the work performed at the grain boundary is
dissipated in the absence of surface energy. In this case, `GB

dis=`dis reflects the grain
boundary resistance to slip transfer. As can be seen in Fig. 21c, the initial yield
strength increases without strain hardening as `GB

dis=`dis increases.
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Fig. 18 Classical plasticity theory (`en/L D `dis/L D `N � G/L D 0.0). The distributions of
the accumulated plastic strain with (a) the microscopically free (`GB

en D `GB
dis D 0) and (b)

microscopically hard boundary conditions (`GB
en ! 1, `GB

dis ! 1) and (c) the stress-strain
responses. (Reprinted with permission from Song and Voyiadjis (2018b))

Generalized Structure for Modeling Polycrystals
fromMicro- toNanoscale Range

In this section, modeling of strengthening in inelastic nanocrystalline materials
with reference to the triple junction and grain boundaries using SGP is introduced
based on the work of Voyiadjis and Deliktas (2010). Voyiadjis and Deliktas
(2010) not only provide the internal interface energies but also introduce two
additional internal state variables for the internal surfaces (contact surfaces). By
using these internal state variables together with displacement and temperature, the
constitutive model is formulated as usual by state laws utilizing free energies and
complimentary laws based on the dissipation potentials. One of these new state
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Fig. 19 Strain gradient plasticity theory (`en/L D `dis/L D `N � G/L D 0.1). The distributions
of the accumulated plastic strain with (a) the microscopically free (`GB

en D `GB
dis D 0) and (b)

microscopically hard boundary conditions (`GB
en ! 1, `GB

dis ! 1) and (c) the stress-strain
responses. (Reprinted with permission from Song and Voyiadjis (2018b))

variables measures tangential sliding between the grain boundaries and the other
measures the respective separation. A homogenization technique is developed to
describe the local stress and strain in the material. The material is characterized as
a composite with three phases: the grain core, the grain boundaries, and the triple
junctions.

Nanocrystalline materials are structurally characterized by a large volume frac-
tion of grain boundaries which may significantly alter their physical, mechanical,
and chemical properties in comparison with conventional coarse-grained polycrys-
talline materials which have grain size usually in the range 10–300m (Meyers
et al. 2006). The grain size of nanocrystalline materials is usually below 10 nm.
The nanocrystalline structure described by Gleiter (2000) is composed of structural
elements with a characteristic size of a few nanometers (see Fig. 23).
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Fig. 20 The distributions of the accumulated plastic strain with the microscopically hard
boundary condition (`GB

en =L ! 1, `GB
dis=L ! 1) under (a) the energetic length scale only

(`en/L D 0.1, `dis/L D `N � G/L D 0.0), (b) the dissipative length scale only (`dis/L D 0.1,
`en/L D `N � G/L D 0.0), (c) the N-G length scale only (`N � G/L D 0.1, `en/L D `dis/L D 0.0), and
(d) the stress-strain responses. (Reprinted with permission from Song and Voyiadjis (2018b))
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Fig. 21 The distributions of the accumulated plastic strain according to the various values of
`GB

en =`en and `GB
dis=`dis : (a) combined `GB

en and `GB
dis , (b) `GB

en only, and (c) `GB
dis only. (Reprinted

with permission from Song and Voyiadjis (2018b))
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Fig. 22 The evolutions of the maximum temperature according to the various values of `GB
en =`en

and `GB
dis=`dis : (a) combined `GB

en and `GB
dis , (b) `GB

en only, and (c) `GB
dis only. (Reprinted with

permission from Song and Voyiadjis (2018b))
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Triple junction
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Fig. 23 Two-dimensional model of nanostructured materials (Gleiter 2000; Meyers et al. 2006).
(Reprinted with permission from Voyiadjis and Deliktas (2010))

In Fig. 23a, the image represents crystal atoms with neighbor configurations
corresponding to the lattice and the boundary atoms with a wide variety of
interatomic spacing. The atoms in the centers of the crystals are indicated in black
and the one in the boundary regions are represented as open circles. Figure 23b
shows the simplified representation of the image of the nanocrystalline structure
by comprising grain core, grain boundary, and triple junctions. As one notes from
the image in Fig. 23a, many atoms reside in the grain boundary region, and in this
case the volume fraction of the interfacial region will not be zero. The small sizes
involved in this case limit the conventional operation of the dislocation sources.

The geometrical representation of the RVE proposed by different authors
(Mecking and Kocks 1981; Pipard et al. 2009) can be conceptually described by
three regions such as the grain core, the grain boundary, and the triple junctions
with their corresponding internal interfaces, respectively. In this work the simplified
nanocrystalline structure shown in Fig. 23b is represented as a 2D triangle represen-
tative volume element (RVE) of a composite material with three phases; grain core,
grain boundary, and triple junction (see Fig. 24).

In Fig. 24, if one uses r as the indicator for the phase, then it can be named one
of three regions such as the grain core (r D gc), the grain boundary (r D gb), or
the triple junction (r D tj). Similarly, one may use the symbol rs to represent the
interface surfaces that surround the regions presented in Fig. 24 such that (rs D cb)
indicates the internal interface between the grain core and grain boundary and
(rs D btj) shows the internal interface between the grain boundary and the triple
junction.

The deformation of each region is attributed to different involved dislocation
storage mechanisms and grain boundary sliding or slip. The region called the grain
core represents the interior of the grain for which strain hardening only results
from the evolution of statistically stored dislocations (SSDs), �s. These are due
to multiplication and annihilation processes between dislocations with net Burgers
vector equal to zero (Arsenlis and Parks 1999). The SSDs are inherently random
within the whole grain. The region with thickness w is termed the grain boundary
region and is bounding the grain core. Triple junction is defined as a separate region.
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Fig. 24 Representative volume element for the description of the simplified nanocrystalline
structure. (Reprinted with permission from Voyiadjis and Deliktas (2010))

The physical origin of the presence of GNDs in this region is due at the
mesoscopic scale due to the concentration of slip bands at the grain boundaries
such as dislocation pileups. This one has to be relaxed with the help of GNDs. The
layer thickness w probably depends on the grain size (since the slip line patterns
may vary with grain size) and may vary with strain essentially due to an expansion
of the layer with increasing dislocation density. For the sake of simplicity, w will
be here assumed to be constant. In addition to these three zones, two interfaces are
defined to characterize interactions among the grain core, the grain boundary, and
the triple junction. The interface between grain core and the grain boundary that
is attributed to the dislocation blocking and pileups can be described as hard, soft,
or intermediate interfaces where interfacial hardening and strengthening parameters
are introduced based on the theory presented by Voyiadjis and Deliktas (2009b).
The second interface which is defined between the grain boundary and the triple
junction grain is attributed to the grain boundary sliding or slip which could be
described through modeling of the behavior of the triple junction. Full details of
the thermodynamical framework for modeling the inelastic behavior of the material
and the homogenization scheme for material modeling of the heterogeneous solids
developed with a view to address the heterogeneous microstructure and effect of
volume fraction of the phases can be found in Voyiadjis and Deliktas (2010).
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Multilevel homogenization scheme presented in Voyiadjis and Deliktas (2010)
is used for the evaluation of the material model behavior. The local stresses in the
grain core, grain boundary, and triple junction are evaluated to better understand the
physical mechanisms responsible for the grain size effects on the overall inelastic
behavior of the material. The inverse Hall-Petch effects are also investigated, and
simulated results are compared with the reported experimental ones. The studied
material is Ni-P alloy with a fixed grain boundary width, 4 nm, and varying grain
sizes from 10 nm to 200 nm. The material response of each phase is predicted by
the constitutive relation given in Voyiadjis and Deliktas (2010). These constitutive
relations represent the generalized case of the formulation. For example, if one
considers the polycrystalline structured material, the inelastic deformation is mostly
dominated in the grain core by dislocation mechanisms (movement and storage),
and both plastic strain and its gradient are used in the formulation characterized by
the strain gradient formulation. In the case of nanocrystalline structured materials,
for the grain size range (Pipard et al. 2009), 30 nm < d � 100 nm, it is assumed
that the grain core carries only statistically stored dislocations, whereas the grain
boundary and the triple junction regions have geometrically necessary dislocations.
Therefore, in this case, while the plastic strain gradient is dropping out from the
grain core phase, it should be considered in the grain boundary and triple junction
phases. In the last case where nanocrystalline grain size is less than 30 nm (Meyers
et al. 2006), the dislocation-based inelastic deformation in the grain core phase
is essentially shut off, and the inelastic deformation occurs primarily by slip and
separation of the grain boundaries. The material constants of the Ni-P are obtained
from experimental studies (Benson et al. 2001; Zhao et al. 2003) reported by Qing
and Xingming (2006).

The overall stress-strain curves of the Ni-P nanocrystalline material for various
grain sizes are presented in Fig. 25. Clearly materials with large grain sizes show
more plastic hardening than that with smaller grain sizes. For material grain size
that is bigger, the volume fraction of the interphases is negligible, and therefore, the
material response is dominated by the behavior of the grain core. However, when
the grain size is getting smaller, the overall response is more complex. In this case
the material responses of both the grain boundary and the triple junction along with
that of the grain core play essential role in the overall behavior of the nanocrystalline
material.

Nanocrystalline material exhibits almost an order of magnitude higher strain
rate sensitivity than their microcrystalline counterparts. This enhanced strain rate
sensitivity of the nanocrystalline materials is captured qualitatively by proposed
theory here (Fig. 26).

As one notes clearly from Fig. 26, the nanocrystalline material shows the strong
strain rate sensitivity at the grain size of 20 nm. However, as the grain size is
increased that of microcrystalline counterpart it is observed that material does not
exhibit the strain rate sensitivity.

Finally, in Fig. 27, the relation between the yield strength and the grain size
in nanometer Ni-P is shown. By comparison with experimental results, when the
critical size of the crystalline grains of nanometer Ni-P is greater than 10 nm, the
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Fig. 25 Overall stress-strain response of nanocrystalline with various grain sizes. (Reprinted with
permission from Voyiadjis and Deliktas (2010))
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150 nm at the different strain rates. (Reprinted with permission from Voyiadjis and Deliktas (2010))
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Fig. 27 Grain size dependency of yield strength for the Ni-P material. (Reprinted with permission
from Voyiadjis and Deliktas (2010))

positive H-P slope can be seen. However, when the size of the crystalline grain is
less than 10 nm, a negative H-P slope can be observed (Fig. 27).

Conclusions

The two-dimensional finite element analysis for the thermodynamically consis-
tent thermomechanical coupled gradient-enhanced plasticity model is proposed
within the areas of grain interior and grain boundary and validated by comparing
against two sets of small-scale experiments demonstrating the size effects. The
proposed formulation is developed based on the concept of dislocation interaction
mechanisms and thermal activation energy. The thermodynamic microstresses are
assumed to be divided in two components, i.e., the energetic and dissipative
components, which in turn, both energetic and dissipative material length scale
parameters are incorporated in the governing constitutive equations. These two
thermodynamic microstresses can be respectively obtained in a direct way from the
Helmholtz free energy and rate of dissipation potential by taking maximum entropy
production into account. The concept of GND density is additionally employed
in this work to interpret the microstructural strengthening mechanisms induced
by the nonhomogeneous deformation. Correspondingly, the model in this work
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incorporates the terms related to GND-induced strengthening and the additional
material length scale parameter. Not only the partial heat dissipation due to fast
transient time but also the distribution of the temperature caused by the transition
from plastic work to heat is included into the coupled thermomechanical model by
deriving a generalized heat equation.

The proposed SGP model and the correspondingly developed finite element
code are validated through the comparisons against the experimental measurements
from small-scale aluminum and nickel thin film tests. The material parameters for
two kinds of metals are also calibrated by using the experimental measurements.
The numerical results show good agreement with the experimental measurements
in terms of both tests. The simple shear problem and the square plate problem
are solved based on the validated model in order to examine size effect in
small-scale metallic materials and two null boundary conditions, respectively.
The energetic hardening, dissipative strengthening, and GND hardening are well
observed, respectively, with varying `en, `dis, and `N � G. The parametric study
is carried out to investigate the effect of the temperature-related parameters on
the stress-strain curve, the distributions of the temperature and the accumulated
plastic strain, and the temperature evolution. The effect of the microhard boundary
condition at the grain boundary on the stress-strain curve and the distributions of
the plastic strain and the temperature are presented by solving the square plate
problem. The strengthening effect due to the microhard boundary condition at the
grain boundary is clearly observed with increasing grain boundary areas in this
simulation. In addition, the microfree and microhard boundary conditions are well
captured by using the proposed grain boundary flow rule. Lastly, the size effects
on the stress-strain responses and the evolutions of maximum temperature are well
observed with the cases of (a) combined `GB

en and `GB
dis , (b) `GB

en only, and (c) `GB
dis

only.
A generalized structure for modeling polycrystals from micro- to nano-size

range is presented in the last section. The polycrystalline structure is defined in
terms of the grain core, the grain boundary, and the triple junction regions with
their corresponding volume fractions. This is achieved by describing a simplified
nanocrystalline structure as a 2D triangle representative volume element (RVE)
of a composite material. It is shown that the developed model is able to capture
qualitatively the enhanced strain rate sensitivity of the nanocrystalline materials
that exhibit almost an order of magnitude higher strain rate sensitivity than their
microcrystalline counterparts. It is also shown that the inverse Hall-Petch is captured
from the model prediction that fits quite well to the experimental observations.

Appendix A. Deriving the Balance Equations

The total strain rate P"ij is defined as follows:

P"ij D
1

2

�
Pui ;j C Puj ;i

�
(103)
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with the velocity gradient Pui ;j D @Pui =@xj .
By substituting Eq. (2) into Eq. (8), one obtains

P
int D

Z

�0

�
�ij P"ij � �ij P"

p
ij C x Pep C Qi Pe

p
;i C A PT C Bi

PT;i

�
dV (104)

From the plastic incompressibility (P"
p

kk D 0), �ij P"
p
ij D �ij P"

p
ij . The divergence

theorem can be used here in Eq. (104) together with Eq. (103) to obtain the following
expression:

P
int D

Z

@�0

�
�ij nj Pui C Qi ni Pep C Bi ni

�
dS

�

Z

�0

�
�ij;j Pui � �ij P"

p
ij C x Pep � Qi;i Pep C A PT � Bi;i

PT
�

dV

(105)

By equating the external power given in Eq. (9) to the internal power (Pint D

P
ext ), the following expression is obtained:

Z

@�0

˚�
�ij nj � ti

�
Pui C .Qi ni � m/ Pep C .Bi ni � a/


dS

�

Z

�0

˚�
�ij;j C bi

�
Pui C

�
�ij Nij � x C Qi;i

�
Pep C .A � Bi;i / PT


dV

(106)

Here, Pui , Pep , and PT can be designated randomly when the following conditions
are satisfied:

�ij;j C bi D 0 (107)

�ij D .x � Qk;k/ Nij (108)

Bi;i � A D 0 (109)

tj D �ij ni (110)

m D Qi ni (111)

a D Bi ni (112)
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Abstract

Models of physical lattices with long-range interactions for nonlocal contin-
uum are suggested. The lattice long-range interactions are described by exact
fractional-order difference operators. Continuous limit of suggested lattice oper-
ators gives continuum fractional derivatives of non-integer orders. The proposed
approach gives a new microstructural basis to formulation of theory of nonlocal
materials with power-law nonlocality. Moreover these lattice models, which is
based on exact fractional differences, allow us to have a unified microscopic
description of fractional nonlocal and standard local continuum.
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Keywords
Non-local continuum · Lattice model · Long-range interaction · Fractional
derivatives · Exact differences

Introduction

Continuum mechanics can be considered as a continuous limit of lattice models,
where the length scales of a continuum element are much larger than the distances
between the lattice particles. In general, continuum models, which are described by
differential equations with a finite number of integer-order derivatives with respect
to coordinates, cannot be considered as nonlocal models. An application of general
form infinite series with integer derivatives to describe media with nonlocality is
a difficult problem. This problem can be solved for power-law type of nonlocality
by using fractional derivatives of non-integer orders. It is important to note that the
use of the derivatives of non-integer orders is actually equivalent to using an infinite
number of derivatives of integer orders (e.g., see Lemma 15.3 in Samko et al. 1993).
The fractional-order derivatives allow us to describe continuum with nonlocality
of power-law type. First time the fractional derivatives with respect to space
coordinates have been applied to mechanics of nonlocal continuum by Gubenko
(1957) and Rostovtsev (1959) in 1957. Recently, the fractional-order derivatives are
actively used to describe continua with power-law type of nonlocality in Di Paola
et al. (2009a,b, 2013), Di Paola and Zingales (2011), Drapaca and Sivaloganathan
(2012), Challamel et al. (2013), Atanackovic et al. (2014a,b), Tarasov (2010,
2013, 2014a,b,c,d, 2015a,b,c,d,e,g, 2016b,c,e, 2017), Carpinteri et al. (2009, 2011),
Sapora et al. (2013), Cottone et al. (2009a,b), Sumelka and Blaszczyk (2014),
Sumelka et al. (2015), and Sumelka (2015), where the microscopic models of
fractional continuummechanics are also discussed. Fractional calculus is a powerful
tool to describe processes in continuously distributed media with nonlocality of
power-law type. As it was shown in Tarasov (2010, 2006a,b), the continuum
equations with fractional derivatives are directly connected to lattice models with
long-range interactions. As it was shown in Tarasov (2006a,b), the differential
equations with fractional derivatives of non-integer orders can be derived from
equation for lattice particles with long-range interactions in the continuous limit,
where the distance between the lattice particles tends to zero. A direct connection
between the lattice with long-range interaction and nonlocal continuum has been
proved by using the special transform operation (Tarasov 2006a,b, 2014e, 2015f)
(see also Tarasov and Zaslavsky 2006a,b).

In works Tarasov (2014e, 2015f,h, 2016f,g,h,i, 2017b), it has been suggested
exact lattice (discrete) analogs of fractional differential operators of integer and
non-integer orders. This mathematical tool allows us to formulate lattice models
that are exact discrete (microstructural) analogs of continuum models. The models
of lattices with long-range interactions and corresponding models of continua
with power-law nonlocality have been suggested in Tarasov (2013, 2014a,b,c,d,
2015a,b,c,e,d, 2016b,c,e, 2017).
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Long-Range Interactions of Lattice Particles

Let us consider three-dimensional physical lattices. These lattices are characterized
by space periodicity. For unbounded lattices we can use three noncoplanar vectors
a1, a2, a2, which are the shortest vectors by which a lattice can be displaced to
coincidence with itself. Sites of this lattice can be characterized by the number
vector n D .n1; n2; n3/, where ni (j D 1; 2; 3) are integer. For simplification,
we consider a lattice with mutually perpendicular primitive lattice vectors aj ,
(j D 1; 2; 3). This means that we use a primitive orthorhombic Bravais lattice.
We choose directions of the axes of the Cartesian coordinate system coincide with
the vector aj , such that aj D aj ej , where ai D jaj j > 0 and ej are the basis
vectors of the Cartesian coordinate system. Then the vector n can be represented as
n D n1e1 C n2e2 C n3e3.

Choosing a coordinate origin at one of the lattice sites, then the positions of all
other site with n D .n1; n2; n3/ is described by the vector r.n/ D n1a1Cn2a2Cn3a3.
The lattice sites are numbered by n. Therefore the vector n is called the number
vector of the corresponding particle. We assume that the equilibrium positions of
particles coincide with the lattice sites r.n/. Coordinates r.n/ of lattice sites differ
from the coordinates of the corresponding particles, when particles are displaced
with respect to their equilibrium positions. To define the coordinates of a particle,
we define displacement of this particle from its equilibrium position by the vector
field u.n; t / D

P3
iD1 ui .n; t / ei , where ui .n; t / D ui .n1; n2; n3; t/ are components

of the displacement vector for lattice particle.
To simplify our consideration, we use some assumptions for microscopic (lattice)

structure. We assume that lattice n-particle interacts by pair manner with all lattice
m-particles that reflects the long-range nature of the interaction in the suggested
nonlocal model of material.

In general, it is possible to consider the long-range interactions that are character-
ized by different orders ˛j in different directions ej D aj =jaj j. In these models we
should use the difference operators of orders ˛j , where ˛1 ¤ ˛2, ˛1 ¤ ˛3, ˛2 ¤ ˛3.

Let us give a definition of the long-range interaction of power-law type (for
details see Tarasov (2006a,b) and Sect. 8 of Tarasov 2010). An interaction of lattice
particles is called the interaction of power-law type if the kernels K.n � m/ of this
interaction satisfy the conditions

lim
k!0

OK˛.k/ � OK˛.0/

jkj˛
D A˛; ˛ > 0; 0 < jA˛j < 1; (1)

where

OK˛.k�x/ D

C1X

nD�1

e�ikn�xK.n/ D 2

1X

nD1

K.n/ cos.kn�x/: (2)
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The examples of power-law type interaction are considered in Tarasov (2006a,b,
2010, 2014c,e).

The power-law type of interactions is suggested in the papers Tarasov (2006a,b)
(see also Sect. 8 of Tarasov 2010, 2014e, 2015f). This type of interactions is
characterized by the power-law asymptotic behavior of spatial dispersions in lattice.
We assume that the power-law spatial dispersion in the lattice can be caused by
non-Debye screening of electromagnetic interatomic interactions. Some aspects
of the theory of this screening are described in the papers Tarasov and Trujillo
(2013) and Tarasov (2016a), where fractional-order power-law spatial dispersion
in electrodynamics of continuum is discussed. Some elasticity models of materials
with power-law spatial dispersion are discussed in Tarasov (2013, 2014a).

Lattices Fractional Integro-Differentiation

In the lattice models, the long-range interactions can be described by using the
lattice fractional integro-differential operators that has been suggested in Tarasov
(2014e, 2015f, 2016f,g).

Let us give a definition of the lattice fractional integro-differentiation: Lattice

integro-differential operators T
DL

h
˛
j

i
of order ˛ > �1 in the direction ej D

aj =jaj j is an operator that is defined by the equation

�
T
DL

�
˛

j

�

f

�

.n/ D
1

a˛
j

C1X

mj D�1

K˛.nj � mj / f .m/; .j D 1; : : : ; N /; (3)

where n;m 2 Z
N , and n D m C .nj � mj /ej . The kernel K˛.n/ is a real-valued

function of integer variable n 2 Z, that is defined by the equation

K˛.n/ D cos
�� ˛

2

� �˛

˛ C 1
1F2

�
˛ C 1

2
I

1

2
;

˛ C 3

2
I �

�2 n2

4

�

� sin
�� ˛

2

� �˛C1 n

˛ C 2
1F2

�
˛ C 2

2
I

3

2
;

˛ C 4

2
I �

�2 n2

4

�

; (4)

where ˛ > �1. If ˛ > 0, then the lattice operator (3) will be called the lattice
fractional derivative. For �1 < ˛ < 0, then the lattice operator (3) is called the
lattice fractional integral (antiderivative).

In kernel (4) of the lattice derivatives, we use the generalized hypergeometric
function 1F2 that is defined (see Sect. 1.6 of Kilbas et al. 2006) by the equation

1F2.aI b; cI z/ WD

1X

kD0

.a/k

.b/k .c/k

zk

kŠ
D

1X

kD0

�.a C k/ �.b/ �.c/

�.a/ �.b C k/ �.c C k/

zk

kŠ
; (5)
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where .a/k is the Pochhammer symbol (rising factorial) that is defined by .a/0 D 1,
and .a/k D �.a C k/=�.a/.

Note that using (5) and �.z C 1/ D z�.z/, expression (4) of the kernel K˛.n/

can be represented in the form

K˛.n/ D

1X

kD0

.�1/k �2kC1=2C˛ n2k

22k kŠ �.k C 1=2/

 
cos

�
� ˛
2

	

˛ C 2k C 1
�

� n sin
�

� ˛
2

	

.˛ C 2k C 2/ .2k C 1/

!

;

(6)
where ˛ > �1.

Lattice Derivatives of Integer Orders

Let us give exact expressions of lattice fractional derivatives for integer orders
(Tarasov 2014e, 2015h,f, 2016f). The lattice derivatives of integer orders are defined
by the equations

T �2s f Œn� WD

C1X

mD�1
m¤0

K2s.m/ f Œn � m� C K2s.0/ f Œn�; .s 2 N/; (7)

T �2s�1 f Œn� WD

C1X

mD�1
m¤0

K2s�1.m/ f Œn � m�; .s 2 N/; (8)

where the kernels K2s.m/ and K2s�1.m/ are defined by Eqs. (3) and (6).
The kernels of these lattice operators can be represented (Tarasov 2016f) in a

simpler form.

K2s.m/ D

s�1X

kD0

.�1/mCkCs .2s/Š �2s�2k�2

.2s � 2k � 1/Š

1

m2kC2
.m 2 Z; m ¤ 0/; (9)

K2s�1.m/ D

s�1X

kD0

.�1/mCkCsC1 .2s � 1/Š �2s�2k�2

.2s � 2k � 1/Š

1

m2kC1
.m 2 Z; m ¤ 0/:

(10)

and

K2s.0/ D
.�1/s �2s

2s C 1
; K2s�1.0/ D 0: (11)

Note that K2s.0/ describes a self-interaction of lattice particles. The interaction of
different particles is described by Ks.n � m/ with n � m ¤ 0.
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The first-order lattice operators is

T �1 f Œn� WD

C1X

mD�1
m 6D0

.�1/m

m
f Œn � m�: (12)

The lattice antiderivative is defined by the equation

T ��1f Œn� WD

C1X

mD�1
m 6D0

��1 Si.� m/ f Œn � m�; (13)

where Si.z/ is the sine integral.

From Lattice Models to ContinuumModels

Using the methods suggested in Tarasov (2006a,b, 2014e, 2015f, 2016f), we can
define the operation that transforms a lattice field u.n/ into a field u.r/ of continuum.
For this transformation, we will consider the lattice scalar field u.n/ as Fourier series
coefficients of some function Ou.k/ for kj 2 Œ�kj 0=2; kj 0=2�, where j D 1; 2; 3. At
the next step, we use the continuous limit k0 ! 1 to obtain Qu.k/. Finally we apply
the inverse Fourier integral transformation to obtain the continuum scalar field u.r/.
Let us describe these steps with details:

Step 1: The discrete Fourier series transform u.n/ ! F�fu.n/g D Ou.k/ of the
lattice scalar field u.n/ is defined by

Ou.k/ D F�fu.n/g D

C1X

n1;n2;n3D�1

u.n/ e�i.k;r.n//; (14)

where r.n/ D
P3

j D1 nj aj , and aj D 2�=kj 0 are distance between lattice particles
in the direction aj .

Step 2: The passage to the limit Ou.k/ ! LimfOu.k/g D Qu.k/, where we use aj !

0 (or kj 0 ! 1), allows us to derive the function Qu.k/ from Ou.k/. By definition Qu.k/

is the Fourier integral transform of the continuum field u.r/, and the function Ou.k/

is the Fourier series transform of the lattice field u.n/, where

u.n/ D
.2�/3

k10k20k30

u.r.n//;

and r.n/ D
P3

j D1 nj aj D
P3

j D1 2�nj =kj 0 ! r.
Step 3: The inverse Fourier integral transform Qu.k/ ! F�1fQu.k/g D u.r/ is

defined by
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u.r/ D
1

.2�/3

• C1

�1

dk1dh2dk3 ei
P3

j D1 kj xj Qu.k/ D F�1fQu.k/g: (15)

The combination F�1 ıLim ı F� of the operations F�1, Lim, and F� define the
lattice-continuum transform operation

TL!C D F�1 ı Lim ı F� (16)

that maps lattice models into the continuum models (Tarasov 2006a,b).
The lattice-continuum transform operation TL!C as the combination of three

operations F�1 ı Limit ı F� can be applied not only for lattice fields but also
for lattice operators. The operation TL!C allows us to map of lattice derivatives
T
DL



˛
i

�
into continuum derivatives RT

DC



˛
i

�
, by the equation

RT
DC

�
˛

j

�

f .r/ D TL!C

��
T
DL

�
˛

j

�

f

�

.n/

�

.˛ > �1/: (17)

The transform operation TL!C , which maps the lattice operator to the continuum
operators, has been defined in Tarasov (2006a,b, 2010, 2016f).

For integer order ˛ > 0, the suggested lattice fractional derivatives are directly
related to the partial derivatives of integer orders

RT
DC

�
m

j

�

f .r/ D TL!C

��
T
DL

�
m

j

�

f

�

.n/

�

D
@mf .r/

@xm
j

; (18)

where m 2 N. This means that the lattice fractional derivatives (3) of integer positive
values of ˛ D m 2 N are standard partial derivatives of integer orders m.

Lattice Derivatives Are Exact Discretization of Continuum
Derivatives

In paper Tarasov (2016f), it has been suggested an exact discretization for deriva-
tives of integer and non-integer orders.

Let us give the definition of the exact discretization of integro-differentiation: Let

A.RN / be a function space and RT
DC

h
˛
j

i
be an differential operator on a function

space A.RN / such that

RT
DC

�
˛

j

�

f .r/ D g.r/ .r 2 R
N / (19)
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for all f .r/ 2 A.RN /, where g.r/ 2 A.RN /. The lattice operator T
DL

h
˛
j

i
will be

called an exact discretization of RT
DC

h
˛
j

i
if the equation

T
DL

�
˛

j

�

f .n/ D g.n/ .n 2 Z
N / (20)

is satisfied for all f .n/ 2 A.ZN /, where g.n/ 2 A.ZN /.
Condition (20) means that the equality

�
RT

DC

�
˛

j

�

f .r/
�

rDn
D T

DL

�
˛

j

�

f .n/ (21)

holds for all n 2 Z
N .

In work Tarasov (2016f), it has been proposed a general principle of algebraic
correspondence for an exact discretization. For the lattice fractional calculus, this
principle can be formulated in the following form.

Principle of exact correspondence between lattice and continuum theories:
The correspondence between the theories of difference (lattice) and differential
(integro-differential) equations lies not so much in the limiting condition when the
primitive lattice vectors aj ! 0 as in the fact that mathematical operations on these
two theories should obey in many cases the same laws.

This principle is similar to the Dirac’s principle of correspondence between
the quantum and classical theories. To specify our consideration, the suggested
principle of correspondence can be formulated in the following form: The lattice
integro-differential operators, which are exact discretization of continuum integro-
differential operators of integer or non-integer orders, should satisfy the same
algebraic characteristic relations as the continuum integro-differential operators.
For detail see Tarasov (2016f).

Let us give the necessary condition of exact discretization of derivatives: The

lattice operator (difference) T
DL

h
˛j

j

i
is the exact discretization of the continuum

operator RT
DC

h
˛j

j

i
of order ˛j if the following condition

1

aj

F�1 Fa;�

�
T
DL

�
˛j

j

��

D RT
DC

�
˛j

j

�

(22)

is satisfied for arbitrary values of aj > 0. If the condition (22) is not satisfied, but
the condition

lim
aj !0C

1

aj

F�1 Fa;�

�
T
DL

�
˛j

j

��

D RT
DC

�
˛j

j

�

(23)
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holds, then the lattice operator T
DL

h
˛j

j

i
is the asymptotic (approximate) dis-

cretization of the continuum operator RTDC

h
˛j

j

i
. Here F�1 is the inverse Fourier

integral transform and Fa;� is the Fourier series transform . It is obvious that the
lattice operator, which is an exact discretization, satisfies the condition (23) of the
asymptotic discretization also.

Using the suggested lattice derivatives and antiderivative, we can obtain exact
lattice analogs of the differential equations of continuum models without using
approximations. It should be noted that this discretization allows to obtain lattice
(difference) equations whose solutions are equal to the solutions of corresponding
differential equations (Tarasov 2016f,h, 2017a). The suggested lattice fractional
derivatives greatly simplify the construction of microstructural (lattice) models with
long-range interactions in fractional nonlocal theories of continua, media, and fields
(Tarasov 2013, 2014a,b,c,d, 2015a,b,c, 2016b,c).
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Abstract

The present essay is an attempt to present a meaningful continuum mechanics
formulation into the context of fractional calculus. The task is not easy, since
people working on various fields using fractional calculus take for granted that a
fractional physical problem is set up by simple substitution of the conventional
derivatives to any kind of the plethora of fractional derivatives. However, that
procedure is meaningless, although popular, since laws in science are derived
through differentials and not through derivatives. One source of that mistake is
that the fractional derivative of a variable with respect to itself is different from
one. The other source of the same mistake is that the well-known derivatives
are not able to form differentials. This leads to erroneous and meaningless
quantities like fractional velocity and fractional strain. In reality those quantities,
that nobody understands what physically represent, alter the dimensions of the
physical quantities. In fact the dimension of the fractional velocity is L/T˛ ,
contrary to the conventional L/T. Likewise, the dimension of the fractional
strain is L�˛ , contrary to the conventional L0. That fact cannot be justified.
Imagine that even in relativity theory, where everything is changed, like time,
lengths, velocities, momentums, etc., the dimensions remain constant. Fractional
calculus is allowed up to now to change the dimensions and to accept derivatives
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that are not able to form differentials, according to differential topology laws.
Those handicaps have been pointed out in two recent conferences dedicated
to fractional calculus by the authors, (K.A. Lazopoulos, in Fractional Vector
Calculus and Fractional Continuum Mechanics, Conference “Mechanics though
Mathematical Modelling”, celebrating the 70th birthday of Prof. T. Atanackovic,
Novi Sad, 6–11 Sept, Abstract, p. 40, 2015; K.A. Lazopoulos, A.K. Lazopoulos,
Fractional vector calculus and fractional continuum mechanics. Prog. Fract.
Diff. Appl. 2(1), 67–86, 2016a) and were accepted by the fractional calculus
community. The authors in their lectures (K.A. Lazopoulos, in Fractional Vector
Calculus and Fractional Continuum Mechanics, Conference “Mechanics though
Mathematical Modelling”, celebrating the 70th birthday of Prof. T. Atanackovic,
Novi Sad, 6–11 Sept, Abstract, p. 40, 2015; K.A. Lazopoulos, in Fractional
Differential Geometry of Curves and Surfaces, International Conference on
Fractional Differentiation and Its Applications (ICFDA 2016), Novi Sad, 2016b;
A.K. Lazopoulos, On Fractional Peridynamic Deformations, International Con-
ference on Fractional Differentiation and Its Applications, Proceedings ICFDA
2016, Novi Sad, 2016c) and in the two recently published papers concerning
fractional differential geometry of curves and surfaces (K.A. Lazopoulos, A.K.
Lazopoulos, On the fractional differential geometry of curves and surfaces. Prog.
Fract. Diff. Appl., No 2(3), 169–186, 2016b) and fractional continuummechanics
(K.A. Lazopoulos, A.K. Lazopoulos, Fractional vector calculus and fractional
continuum mechanics. Prog. Fract. Diff. Appl. 2(1), 67–86, 2016a) added in
the plethora of fractional derivatives one more, that called Leibniz L-fractional
derivative. That derivative is able to yield differential and formulate fractional
differential geometry. Using that derivative the dimensions of the various quan-
tities remain constant and are equal to the dimensions of the conventional quan-
tities. Since the establishment of fractional differential geometry is necessary for
dealing with continuummechanics, fractional differential geometry of curves and
surfaces with the fractional field theory will be discussed first. Then the quantities
and principles concerning fractional continuum mechanics will be derived.
Finally, fractional viscoelasticity Zener model will be presented as application of
the proposed theory, since it is of first priority for the fractional calculus people.
Hence the present essay will be divided into two major chapters, the chapter
of fractional differential geometry, and the chapter of the fractional continuum
mechanics. It is pointed out that the well-known historical events concerning
the evolution of the fractional calculus will be circumvented, since the goal of
the authors is the presentation of the fractional analysis with derivatives able to
form differentials, formulating not only fractional differential geometry but also
establishing the fractional continuum mechanics principles. For instance, follow-
ing the concepts of fractional differential and Leibniz’s L-fractional derivatives,
proposed by the author (K.A. Lazopoulos, A.K. Lazopoulos, Fractional vector
calculus and fractional continuum mechanics. Prog. Fract. Diff. Appl. 2(1), 67–
86, 2016a), the L-fractional chain rule is introduced. Furthermore, the theory
of curves and surfaces is revisited, into the context of fractional calculus. The
fractional tangents, normals, curvature vectors, and radii of curvature of curves
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are defined. Further, the Serret-Frenet equations are revisited, into the context
of fractional calculus. The proposed theory is implemented into a parabola and
the curve configured by the Weierstrass function as well. The fractional bending
problem of an inhomogeneous beam is also presented, as implementation of
the proposed theory. In addition, the theory is extended on manifolds, defining
the fractional first differential (tangent) spaces, along with the revisiting first
and second fundamental forms for the surfaces. Yet, revisited operators like
fractional gradient, divergence, and rotation are introduced, outlining revision
of the vector field theorems. Finally, the viscoelastic mechanical Zener system
is modelled with the help of Leibniz fractional derivative. The compliance and
relaxation behavior of the viscoelastic systems is revisited and comparison with
the conventional systems and the existing fractional viscoelastic systems are
presented.

Keywords
Fractional Derivative · Fractional Differential · Fractional Stress · Fractional
Strain · Fractional Principles in Mechanics · Fractional Continuum Mechanics

Introduction

Fractional Calculus, originated by Leibnitz (1849), Liouville (1832), and Riemann
(1876) has recently applied to modern advances in physics and engineering.
Fractional derivative models account for long-range (nonlocal) dependence of
phenomena, resulting in better description of their behavior. Various material mod-
els, based upon fractional time derivatives, have been presented, describing their
viscoelastic interaction (Atanackovic 2002; Mainardi 2010). Lazopoulos (2006) has
proposed an elastic uniaxial model, based upon fractional derivatives for lifting
Noll’s axiom of local-action (Carpinteri et al. 2011) have also proposed a fractional
approach to nonlocal mechanics. Applications in various physical areas may also
be found in various books (Kilbas et al. 2006; Samko et al. 1993; Poldubny 1999;
Oldham and Spanier 1974).

Since the need for Fractional Differential Geometry has extensively been dis-
cussed in various places, researchers have presented different aspects, concerning
fractional geometry of manifolds (Tarasov 2010; Calcani 2012) with applications
in fields of mechanics, quantum mechanics, relativity, finance, probabilities, etc.
Nevertheless, researchers are raising doubtfulness about the existence of fractional
differential geometry and their argument is not easily rejected.

Basically, the classical differential df (x)D f
0

(x)dx has been substituted by the
fractional one introduced by Adda (2001, 1998) in the form:

d af D g.x/.dx/a

Nevertheless that definition of the differential is valid in the case of positive
increments dx, whereas in the case of negative increments, the differential d˛f (x)
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may be complex. That is exactly the reason why many researchers reasonably reject
the existence of fractional differential geometry. However the variable x accepts its
own fractional differential:

d ˛x D �.x/.dx/˛

with � (x) ¤ 1, differently of the conventional case when a D 1, where � (x) is
always one. Relating both equations, it appears that:

d af D
g.x/

�.x/
d ax

In this case d˛x is always a real quantity accepting positive or negative incre-
mental real values alike. On these bases, the development of fractional differential
geometry may be established.

Further, fractal functions exhibiting self-similarity are nondifferentiable func-
tions, but they exhibit fractional differentiability of order 0<’<1 (see Yao et al.
2005; Carpinteri et al. 2009 Goldmankhaneh et al. 2013; Liang and Su 2007).
Goldmankhaneh et al. (2013) introduced the generalized fractional Riemann-
Liouville and Caputo-like derivatives for functions defined on fractal sets.

Fractional Calculus in mechanics has been suggested by many researchers,
Tarasov (2010, 2008), Drapaca and Sivaloganathan (2012), Sumelka (2014),
and Lazopoulos and Lazopoulos (2016a), in problems of continuum mechanics
with microstructure where nonlocal elasticity is necessary. Fractional continuum
mechanics has been applied to various problems in hydrodynamics (Tarasov 2010;
Balankin and Elizarrataz 2012). Recently fractional calculus has been introduced
by the author (Lazopoulos 2016a) for the description of peridynamic theory (Silling
2003, 2010). Yet, fractional calculus has been considered as the best frame for
describing viscoelastic problems (Atanackovic 2002; Beyer and Kempfle 1995). In
addition fractional differential geometry affects rigid body dynamics, in holonomic
and nonholonomic systems (Riewe 1996, 1997; Baleanu et al. 2013). Recent appli-
cations in quantum mechanics, physics, and relativity demand differential geometry
revisited by fractional calculus (Golmankhaneh Ali et al. 2015; Baleanu et al. 2009).

In the present work, the fractional differential established in Lazopoulos and
Lazopoulos (2016a) will be recalled along with the introduced Leibniz’s L-
fractional derivatives. Those differentials are always real and proper for establishing
the fractional differential geometry. Correcting the picture of fractional differential
of a function, the fractional tangent space of a manifold was defined, introducing
also Leibniz’s L-fractional derivative that is the only one having physical meaning.
Moreover, the present work reviews description of fractional geometry of curves,
describing their tangent (first differential) spaces, their normals, the curvature
vectors, and the corresponding radii of curvature. In addition, the Serret-Frenet
equations will be revisited into the fractional calculus context. The theory is
implemented to a parabola, to the Weierstrass function and the beam bending
(Lazopoulos et al. 2015), considered as applications of the curves’ theory to the solid
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mechanics. Yet, the theory is extended on manifolds, just to describe the fractional
differential geometry of surfaces. Finally outline of fractional vector field theory is
included, along with the revisited fractional vector field theorems.

The mechanics researchers have been motivated by the mechanical behavior
of disordered (nonhomogeneous) materials with microstructure. Porous materials
(Vardoulakis et al. 1998, Ma et al. 2002), colloidal aggregates (Wyss et al. 2005),
ceramics, etc., are materials with microstructure that exert strong influence in their
deformation. Major factors in determining the material deformation are microc-
racks, voids, material phases, etc. The nonhomogeneity of the heterogeneous mate-
rials has been tackled by various homogenization theories (Bakhalov and Panasenko
1989). Nevertheless, these materials require the lifting of the basic local action
axiom of continuum mechanics (Truesdell 1977; Truesdell and Noll 1965). As
defined by Noll (1958, 1959) simple materials satisfy the three fundamental axioms:

(a) The principle of determinism
(b) The principle of local action
(c) The principle of material frame-indifference.

Truesdell and Noll (1965) points out in his classic continuum mechanics book:
“The motion of body-points at a finite distance from a point x in some shape may be
disregarded in calculating the stress at x.” Material microstructure, inhomogeneities,
microcracks, etc., are some of the various important factors that affect the material
deformation with nonlocal action. These factors are not considered in the simple
materials formulation.

Various theories have been proposed just to introduce a long distance action in
the deformation of the materials. One direction considers Taylor’s expansion of
the strain tensor in the neighborhood of a point, taking in consideration one or
two most important terms. Hence gradient strain theories have been appeared in
nonlinear form (Toupin 1965), and in linear deformation (Mindlin 1965). Eringen
(2002) has also proposed a theory dealing with micropolar elasticity. Mindlin
introduced a simpler version of linear gradient theories and an even simpler
model has been presented by Aifantis (1999) with his GRADELA model. In these
theories, the authors introduced intrinsic material lengths that accompany the higher
order derivatives of the strain. Many problems have been solved employing those
theories concerning size effects, lifting of various singularities, porous materials
(Aifantis 1999, 2003, 2011; Askes and Aifantis 2011), mechanics of microbeams,
microplates, and microsheets (Lazopoulos 2004; Lazopoulos et al. 2010).

However various nonlocal elastic theories have been introduced, that are more
reliable in taking care of nonsmooth deformations, since integrals are friendlier than
derivatives to take care of various nonsmooth phenomena.

Lazopoulos (2006) introduced fractional derivatives of the strain in the strain
energy density function in an attempt to introduce nonlocality in the elastic response
of materials. Fractional calculus was used by many researchers, not only in the
field of Mechanics but mainly in Physics and especially in Quantum Mechanics, to
develop the idea of introducing nonlocality. In fact, the history of fractional calculus
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is dated since seventeenth century. Particle physics, electromagnetics, mechanics of
materials, hydrodynamics, fluid flow, rheology, viscoelasticity, optics, electrochem-
istry and corrosion, and chemical physics are some fields where fractional calculus
has been introduced.

Fractional calculus in material deformations has been adopted in solving various
types of problems. First we may consider the deformation problems with nonsmooth
strain field. Second heterogeneous material deformations may also be studied.
Furthermore, time fractional derivative is proved to be more suitable in viscoelastic
deformations, since viscoelastic deformations with retarded memory materials may
also be discussed. The nonlocal strain effects of deformation problems are con-
cerned by the last type of those problems. There are many studies considering frac-
tional elasticity theory, introducing fractional strain (Drapaca and Sivaloganathan
2012; Carpinteri et al. 2001, 2011; Di Paola et al. 2009; Atanackovic et al. 2008;
Agrawal 2008). Recently Sumelka (2014) has presented applications of Fractional
Calculus in the nonlocal elastic deformation of Kirchhoff-Love plates and in the
rate-independent plasticity. Nevertheless a different definition of fractional strain
is yielded in the present work. Jumarie (2012) has proposed modified Riemann-
Liouvile derivative of fractional order with an approach to differential geometry of
fractional order. In additionMeerschaert et al. (2006) have presented fractional order
vector calculus for fractional advection-dispersion. Recent applications of fractional
calculus have been appeared in peridynamic theory (Silling 2000; Silling et al.
2003; Evangelatos 2011; Evangelatos and Spanos 2012). Tarasov (2010) has also
presented a book including fractional mathematics and its applications to various
physics areas. In addition Tarasov (2008) has presented a fractional vector fields
theory combining fractals (Feder 1988), and fractional calculus.

Lazopoulos and Lazopoulos (2016a, b) have clarified the geometry of the
fractional differential resulting in fractional tangent spaces of the manifolds quite
different from the conventional ones. Hence the fractional differential geometry
has been established, indispensable for the development of fractional mechanics.
It is evident that the definition of the stress and the strain is greatly affected by the
tangent spaces. Hence the fractional stress tensors and the fractional strain tensors
are quite different from the conventional ones. The linear strain tensors are also
revisited. Those basic concepts are important for establishing fractional continuum
mechanics.

In the present work, fractional vector calculus is revisited, since the fractional
differential of a function is not linearly dependent upon the conventional differential
of the variables. Furthermore, the fractional derivative of a variable with respect
to itself is different from one. The fractional vector calculus is revisited along
with the basic field theorems of Green, Stokes, and Gauss. Applications of the
fractional vector calculus to continuum mechanics are presented. The revision
in the right and left Cauchy-Green deformation tensors and Green (Lagrange)
and Euler-Almanssi strain tensors are exhibited. The change of volume and the
surface due to deformation (change of configuration) of a deformable body is also
discussed. Further the revisited fractional continuum mechanics principles yielding
the fractional continuity and motion equations are also derived.
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Moreover, linearization of the strain tensors is performed. The change of frac-
tional volume and fractional surface due to deformation (change of configuration) of
a deformable body is also discussed. in addition, the revisited fractional continuum
mechanics principles, such as mass conservation (fractional continuity equation)
and motion equations (conservation of fractional linear and rotational momentum),
are also discussed.

In addition, Bagley et al. (1986) introduced Fractional Calculus in viscoelasticity,
and Atanackovic et al. (2002, 2002a) pursue the idea in many applications and in
fractional variational problems (Atanackovic et al. 2008) with fractional deriva-
tives. Mainardi (2010) has also discussed the application of fractional calculus in
linear viscoelasticity. In Sabatier et al. (2007), there exists a section concerning
viscoelastic disordered media. As an application to the present theory, the vis-
coelastic behavior of Zener model will be revisited using Leibniz fractional time
derivatives. Comparison of the proposed model to the existing fractional ones will
be discussed. Further the behavior of the proposed model concerning its compliance
and relaxation is discussed and compared to the existing fractional ones and the
conventional as well.

It is pointed out that the present essay will be divided into two major chapters,
the chapter of fractional differential geometry and the chapter of the fractional
continuum mechanics. The viscoelasticity Zener model will be discussed into the
context of the proposed theory.

Basic Properties of Fractional Calculus

Fractional Calculus has recently become a branch of pure mathematics, with many
applications in Physics and Engineering, (Tarasov 2008, 2010). Many definitions of
fractional derivatives exist. In fact, fractional calculus originated by Leibniz, looking
for the possibility of defining the derivative dng

dxn when n D 1
2
. The various types of

the fractional derivatives exhibit some advantages over the others. Nevertheless they
are almost all nonlocal, contrary to the conventional ones.

The detailed properties of fractional derivatives may be found in Kilbas et al.
(2006), Podlubny (1999), and Samko et al. (1993). Starting from Cauchy formula
for the n-fold integral of a primitive function f (x)

I nf .x/ D

Z x

a
f .s/ .ds/n D

xZ

a

dxn

xnZ

a

dxn�1

xn�1Z

a

dxn�2:: : : :

x2Z

a

f .x1/ dx1 (1)

expressed by:

aI
n
xf .x/ D

1

.n � 1/Š

xZ

a

.x � s/n�1f .s/ds; x > 0; n 2 N (2)
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and

xI n
bf .x/ D 1

.n�1/Š

bR
x

.s � x/n�1f .s/ds; x > 0; n 2 N (3)

the left and right fractional integral of f are defined as:

aI a
xf .x/ D

1

� .˛/

xZ

a

f .s/

.x � s/1�a
ds (4)

xI a
bf .x/ D

1

� .˛/

bZ

x

f .s/

.s � x/1�a
ds (5)

In Eqs. 4 and 5 we assume that ˛ is the order of fractional integrals with
0 < a �1, considering �(x) D (x�1)! with �(˛) Euler’s Gamma function.

Thus the left and right Riemann-Liouville (R-L) derivatives are defined by:

aD
a
xf .x/ D

d

dx

�
aI

1�a
x f .x/

�
(6)

and

xDa
bf .x/ D �

d

dx

�
bI 1�a

x f .x/
�

(7)

Pointing out that the R-L derivatives of a constant c are nonzero, Caputo’s
derivative has been introduced, yielding zero for any constant. Thus, it is considered
as more suitable in the description of physical systems.

In fact Caputo’s derivative is defined by:

a
cDa

xf .x/ D
1

� .1 � ˛/

xZ

a

f 0.s/

.x � s/a ds (8)

and c
xDa

bf .x/ D �
1

� .1 � ˛/

bZ

x

f 0.s/

.s � x/a ds (9)

Evaluating Caputo’s derivatives for functions of the type:
f (x)D (x� a)n or f (x)D (b� x)n we get:

c
aDa

x.x � a/� D
� .� C 1/

� .�˛ C � C 1/
.x � a/��˛; (10)
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and for the corresponding right Caputo’s derivative:

xDa
b.b � x/� D

� .� C 1/

� .�˛ C � C 1/
.b � x/��˛

Likewise, Caputo’s derivatives are zero for constant functions:

f .x/ D c: (11)

Finally, Jumarie’s derivatives are defined by,

J
a D

a

xf .x/ D
1

� .1 � ˛/

d

dx

xZ

a

f .s/ � f .a/

.x � s/a ds

and

J
x D

a

bf .x/ D �
1

� .1 � ˛/

d

dx

bZ

x

f .s/ � f .b/

.s � x/a ds

Although those derivatives are accompanied by some derivation rules that are
not valid, the derivatives themselves are valid and according to our opinion are
better than Caputo’s, since they accept functions less smooth than the ones for
Caputo. Also Jumarie’s derivative is zero for constant functions, basic property,
advantage, of Caputo derivative. Nevertheless, Caputo’s derivative will be employed
in the present work, having in mind that Jumarie’s derivative may serve better our
purpose.

The Geometry of Fractional Differential

It is reminded, the n-fold integral of the primitive function f (x), Eq. 1, is

I nf .x/ D

Z x

a
f .s/ .ds/n (12)

which is real for any positive or negative increment ds. Passing to the fractional
integral

I ˛ .f .x// D

Z x

a
f .s/ .ds/˛ (13)

the integer n is simply substituted by the fractional number ˛. Nevertheless, that
substitution is not at all straightforward. The major difference between passing from
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Eqs. 11 to 12 is that although (ds)n is real for negative values of ds, (ds)˛ is complex.
Therefore, the fractional integral, Eq. 13, is not compact for any increment ds. Hence
the integral of Eq. 13 is misleading. In other words, the differential, necessary for
the existence of the fractional integral, Eq. 13, is wrong. Hence, a new fractional
differential, real and valid for positive and negative values of the increment ds,
should be established.

It is reminded that the a-Fractional differential of a function f (x) is defined by,
Adda (1998):

d af .x/ D c
aD

a
xf .x/.dx/a (14)

It is evident that the fractional differential, defined by Eq. 14, is valid for positive
incremental dx,whereas for negative ones, that differential might be complex. Hence
considering for the moment that the increment dx is positive, and recalling that
c
aDa

xx ¤ 1, the ˛-fractional differential of the variable x is:

d ax D c
aD

a
xx.dx/a (15)

Hence

d af .x/ D
c
aD

a
xf .x/

c
aD

a
xx

d ax (16)

It is evident that daf (x) is a nonlinear function of dx, although it is a linear
function of dax. That fact suggests the consideration of the fractional tangent space
that we propose. Now the definition of fractional differential, Eq. 16, is imposed
either for positive or negative variable differentials d˛x. In addition the proposed
L-fractional (in honor of Leibniz) derivative L

a D
a

xf .x/ is defined by,

d af .x/ D L
a D

a

xf .x/d ax (17)

with the Leibniz L-fractional derivative,

L
a D

a

xf .x/ D
c
aDa

xf .x/
c
aDa

xx
(18)

Hence only Leibniz’s derivative has any geometrical of physical meaning.
In addition, Eq. 3, is deceiving and the correct form of Eq. 3 should be substituted

by,

f .x/ � f .a/ D L
a I

a

x

�
L
a D

˛

xf .x/
�

D
1

� .˛/ � .2 � a/

xZ

a

.s � a/1�˛

.x � s/1�a
L
a D

˛

xf .s/ds

(19)
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Fig. 1 The nonlinear
differential of f (x) f(x)

f(x)

xo xo+dx x

dx

dαf(xo)
Δf(xo)

It should be pointed out that the correct forms are defined for the fractional
differential by Eq. 17, the Leibniz derivative, Eq. 18 and the fractional integral by
Eq. 19. All the other forms are misleading.

Configuring the fractional differential, along with the first fractional differential
space (fractional tangent space), the function y D f (x) has been drawn in Fig. 1, with
the corresponding first differential space at a point x, according to Adda’s definition,
Eq. 14.

The tangent space, according to Adda’s (1998) definition, Eq. 14, is configured
by the nonlinear curve daf (x) versus dx. Nevertheless, there are some questions con-
cerning the correct picture of the configuration, (Fig. 1), concerning the fractional
differential presented by Adda (1998). Indeed,

(a) The tangent space should be linear. There is not conceivable reason for the
nonlinear tangent spaces.

(b) The differential should be configured for positive and negative increments dx.
However, the tangent spaces, in the present case, do not exist for negative
increments dx.

(c) The axis daf (x), in Fig. 1, presents the fractional differential of the function f (x),
however dx denotes the conventional differential of the variable x. It is evident
that both axes along x and f (x) should correspond to differentials of the same
order.

Therefore, the tangent space (first differential space), should be configured in the
coordinate system with axes (d˛x, d˛f (x)). Hence, the fractional differential, defined
by Eq. 17, is configured in the plane (d˛x, d˛f (x)) by a line, as it is shown in Fig. 2.

It is evident that the differential space is not tangent (in the conventional
sense) to the function at x0, but intersects the figure y D f (x) at least at one
point x0. This space, we introduce, is the tangent space. Likewise, the normal is
perpendicular to the line of the fractional tangent. Hence we are able to establish
fractional differential geometry of curves and surfaces with the fractional field
theory. Consequently when ˛ D 1, the tangent spaces, we propose, coincide with
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Fig. 2 The virtual tangent
space of the f (x) at the point
x D x0

X0

n

dαf(x)

dαx

f(x0)Δ

the conventional tangent spaces. As a last comment concerning the proposed
L-fractional derivative, the physical dimensions of the various quantities remain
unaltered from the conventional to any order Fractional Calculus.

Differentiation

The following chapter is a summary from the paragraphs 2.4–2.6 of the book,
Differential topology with a view to applications (Chillingworth 1976).

Let E and F be two normed linear spaces with respective norms k�kE and k�kF,
suppose f : E ! F is a given continuous (not necessarily linear) map, and let x be a
particular point of E.

Definition
The map f is differentiable if there exists a linear map L: E!F which approximates
f at x in the sense that for all h in E we have:

f .x C h/ � f .x/ D L.h/ C khkE�.h/ (20)

where h(x) is an element of F with,

k�.h/kF ! 0 as khkE ! 0 (21)

In this definition, E and F are two normed linear spaces with respective norms
k�kE and k�kF, and f: E ! F is a given continuous (not necessarily linear) map.

Furthermore, let x be a particular point of E and U an open subset of E. The
properties and uses of the derivative are:

Linear Combinations

If f, g: U!F are differentiable then so is the map ˛fCˇg for any constants ˛,ˇ and
D(˛f C ˇg)D ˛Df C ˇDg as maps U!L(E,F). At this point we must point out that
constant maps themselves have derivative zero.
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Linear Maps

If f is the restriction to U of a continuous linear map: E ! F, then Df (x) D L for
every x"U, i.e. L is already its own linear approximation.

In the special case E D F D R we have f (x) D �x for some number �, and
Df (x) D � regarded as the linear map R ! R: x ! � x.

Bilinear Maps

If E D E1 � E2 and f is the restriction to U of a continuous bilinear map B: E1 � E2

! F (i.e. B is linear in each factor separately) then Df (x)hDB(x1, h2)CB(h1, x2)
where x D (x1, x2), h D (h1, h2) with x1, h1 in E1 and x2, h2 in E2.

Cartesian Products

If f1: U1 ! F1 and f2: U2 ! F2 are differentiable then so is f D f1 � f2 :U1 �U2 !

F1 �F2 where (f1 � f2)(x1, x2) means (f1 (x1), f2 (x2)), and we have:

Df .x1; x2/ .h1 � h2/ D .Df1 .x1/ h1; Df2 .x2/ h2/ (22)

That is, derivatives operate coordinate-wise.

Compositions

Chain Rule
Suppose E, F, and G are three normed linear spaces, and U, V are open sets in E,
F, respectively. Let f: U ! F and g: V ! G be continuous maps, and suppose the
image of f lies in V so that the composition g • f : U ! G exists.

If f is differentiable at x and g is differentiable at f (x) then g • f is differentiable

D .g � f / .x/ D Dg .f .x//
�

� Df .x/ (23)

In other words, the derivative of a composition is the composition of the
derivatives.

If E D Rn, F D Rm, G D Rp, and y D f (x), z D z(y) the chain rule states that:

@
�
z1; z2; : : : : : : ; zp

�
@ .x1; x2; : : : : : : ; xn/

D
@
�
z1; z2; : : : : : : ; zp

�
@ .y1; y2; : : : : : : ; ym/

�
@ .y1; y2; : : : : : : ; ym/

@ .x1; x2; : : : : : : ; xn/
(24)
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Product Rule
For the same maps f,g holds:

D .f � g/ D f � D.g/ C g � D.f / (25)

Let’s assume derivative of a product f (t) D A(t)�b(t) where A(t) is an m�nmatrix
and b(t) is an n vector. Then:

Df .t/ D A.t/ � Db.t/ C DA.t/ � b.t/ (26)

Now the question arises whether L-fractional derivative satisfies all the condi-
tions, Eqs. 22, 23, 24, 25, and 26 required by the demand of differentiation according
to differential topology rules. The answer is no. There are some rules that the
L-fractional derivative satisfies, like the linearity condition, Eq. 17 that cannot be
satisfied by the common fractional derivatives like Caputo etc., since the nonlinear
Eq. 14 holds for them. However, there are other conditions, such as the chain rule
that are not valid. Now we have to make a choice. Either to define differential that
is necessary for establishing fractional differential geometry that is necessary for
dealing with problems in Physics, or to forget fractional calculus. On that dilemma
we make the choice to impose the necessary rules, like fractional chain rule, just for
forming fractional differential geometry. In that case the physical problem leaves its
print or trace on mathematics, that in conventional calculus is not necessary, since
all differential rules are satisfied by themselves, in the conventional case.

The Fractional Arc Length

Let y D f (x) be a function, which may be non-differentiable but has a fractional
derivative of order ’, 0 < ’ < 1. The fractional differential of y D f (x) in the
differential space is defined by:

d ay D
aDa

xf .x/

aDa
xx

d ax D L
a D

a

xf .x/d ax (27)

Therefore the arc length is expressed by:

s1 .x; a/ D aI a
x

h
.d ay/2 C .d ax/2

i1=2

D aI a
x

"�
aDa

xf .x/

aDa
xx

�2

C 1

# 1
2

d ax (28)

Furthermore, for parametric curves of the type:

y D f .t/; x D g.t/ (29)
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The fractional ˛-differentials are defined by:

d ax D aDa
t g.t/

aD
a
t t

d at

d ay D aDa
t f .t/

aDa
t t

d at
(30)

and the fractional differential of the arc length is expressed by:

d as D

vuut
.d ay/2 C .d ax/2 D

"�
aDa

t f .t/

aDa
t t

�2

C

�
aDa

t g.t/

aDa
t t

�2
# 1

2

d at (31)

and

s D L
a I

a

xd as D L
a I

a

t

��
aDa

t f .t/

aDa
xt

�2

C
�

aDa
t g.t/

aDa
xt

�2
	 1

2

d ˛t

D L
a I

a

t

h�
L
a D

a

t f .t/
�2

C
�

L
a D

a

t g.t/
�2i 1

2
d ˛t

(32)

The Fractional Tangent Space

Let r D r(s) be a natural representation of a curve C, where s is the ˛-fractional
length of the curve. Since the velocity of a moving material point on the curve r(s)
defines the tangent space, the fractional tangent space of the curve r D r(s) is defined
by the first derivative:

r1 D
d ar
d as

D
aDa

s r

aDa
s s

D L
a D

a

s r (33)

Recalling

d a jrj D d as (34)

the length jr1j of the fractional tangent vector is unity.
The tangent space line of the curve r D r(s) at the point r0 D r(s0) is defined by:

r D r0 C kt0 0 < k < 1 (35)

where t0 D t(s0) is the unit tangent vector at r.
The plane through r0, orthogonal to the tangent line at ro, is called the normal

plane to the curve C at s0.The points y of that orthogonal plane are defined by:

.y � r0/ � t .s0/ D .y � r0/ � r1 .s0/ D 0 (36)
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Fractional Curvature of Curves

Considering the fractional tangent vector:

t D r1.s/ D
aDa

s r

aDa
s s

D L
a D

a

s r (37)

its fractional derivative may be considered:

r2.s/ D
d at
d as

D
aDa

s t

aDa
s s

D L
a D

a

s t D t1.s/ (38)

The vector t1(s) is called the fractional curvature vector on C at the point r(s) and
is denoted by › D ›(s)D t1(s).

Since t is a unit vector

t � t D 1 (39)

Restricted to fractional derivatives that yield zero for a constant function, such as
Caputo’s derivatives, the curvature vector t1(s) on C is orthogonal to t and parallel
to the normal plane. The magnitude of the fractional curvature vector:

� D j›.s/j (40)

is called the fractional curvature of C at r(s).The reciprocal of the curvature � is the
fractional radius of curvature at r(s):

� D
1

�
D

1

j›.s/j
(41)

The Fractional Radius of Curvature of a Curve

Following Porteous (1994), for the fractional curvature of a plane curve r, we study
at each point r(t) of the curve, how closely the curve approximates there to a parame-
terized circle. Now in the tangent or first differential space at a point r(t0), the circle,
with center c and radius �, consists of all r(t) in the differential space such that:

.r � c/ � .r � c/ D �2 (42)

Further Eq. 42 yields:

c � r �
1

2
r � r D

1

2

�
c � c � �2

�
(43)

with the right hand side been constant.
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Therefore the derivation of the function

V .c/ W t ! c � r.t/ �
1

2
r.t/ � r.t/ (44)

Hence:

V .c/1 D .c � r.t// � r1.t/ D 0 (45)

V .c/2 D .c � r.t// � r2.t/ � r1.t/ � r1.t/ D 0 (46)

Suppose that r is a parametric curve with r(t) in the virtual tangent space. Then
V(c)1(t) D 0 when the vector c – r(t) in the tangent space is orthogonal to the tangent
vector r1(t). Indeed when the point c, in the tangent space, lies on the normal to r1(t)
at t, the line through r(t) is orthogonal to the tangent line.

When r2(t) is not linearly dependent upon r1(t), there will be a unique point c ¤

r(t),on the normal line, such that also V(c)2(t) D 0.

The Serret-Frenet Equations

Let r be a curve with unit speed, where the fractional velocity vector, (Porteous
1994),

t.s/ D r1.s/ D
c
aDa

s r.s/
c
aDa

s s
D L

a D
a

s r.s/ (47)

is of unit length.
Let r(s) be such a curve. The vector

t1.s/ D r2.s/ D
c
aDa

s r1.s/
c
aDa

s s
D

c
aDa

s

c
aDa

s s

�
c
aDa

s r.s/
c
aDa

s s

�
D L

a D
a

s

�
L
a D

a

s r.s/
�

(48)

is normal to the curve r D r(s) since t(s)�r(s) D 1 and

t1.s/ � t.s/ D 0 (49)

since for Caputo’s derivative aDa
s c D 0 for any constant c.

Consider t1(s) �(s)n(s), where n(s)is the unit principal normal to r at s, provided
that �(s)¤0 where ›(s) is the curvature of r at s.
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Hence the equations for the focal line are defined by

.c � r.s// � r1.s/ D 0

.c � r.s// � �.s/n.s/ D 1
(50)

Thus, the principal center of curvature c at s is the point r(s) C �(s)n(s), where
�.s/ D 1

�.s/
. Furthermore, the principal normal vector n(s) orthogonal to the tangent

line is pointing towards the focal line (locus of the curvature centers). Likewise,
the (unit) binormal b(s) is defined to be the vector t(s) � n(s), the triad of unit
vectors t(s), n(s), b(s) forming a right-handed orthonormal basis for the tangent
vector space to the curvature r(s). Each of the derivative vectors t1(s), n1(s), b1(s)
linearly depends on t(s), n(s), b(s). Considering the equations: t1 t D 0 and t1 n D 0
with t1 n C n1 � t D 0, we get the fractional Sarret-Frenet equations:

t1 D �n
n1 D ��t C 	b
b1 D �	n

(51)

The coefficient 	 is defined to be the torsion of the curve r. These equations are
the fractional equations for the fractional Serret-Frenet system. Considering plane
curves,

r.x/ D xi C y.x/j (52)

Equations 45 and 46 defining the fractional centers of curvature c D c1i C c2j
become,

.c1 � x/ C .c2 � y.x// L
a D

˛

xy.x/ D 0

.c2 � y.x// L
a D

˛

x

�
L
a D

˛

xy.x/
�

�
�
1 C L

a D
˛

xy.x/2
�

D 0
(53)

Since the fractional radius of curvature is defined by

¡˛ D �˛
1 i C �˛

2 j D .c1 � x/ i C .c2 � y.x// j (54)

the components of the fractional curvature are given by

�˛
1 D �

1 C L
a D

˛

s y.x/2

L
a D

˛
s

�
L
a D

˛
s y.x/

�L
a D

˛

s y.x/

�˛
2 D

1 C L
a D

˛

s y.x/2

L
a D

˛
s

�
L
a D

˛
s y.x/

�
(55)
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Further, for the case of jy(x)j< < 1, that we consider in linear bending, Eq. 28
yields,

d as D d ax C o.d ax/2 (56)

with

L
a D

˛

s ./ D L
a D

˛

x ./ (57)

and

�˛ D jr˛j �
1

L
a D

˛
x

�
L
a D

˛
xy.x/

� (58)

Let us consider a fractional beam with its source point (x,y,z) D (0,0,0). That
means, the fractional u Caputo’s derivatives of any function, concerning the beam,
are defined by

c
0Da

uf .u/ D
1

� .1 � ˛/

uZ

0

f 0.s/

.u � s/a ds

where, u might be one of the variables (x, y, z).

Applications

The Fractional Geometry of a Parabola

Let r be a parabola t ! (t, t2).Then we have

r.t/ D te1 C t 2e2 (59)

Hence:

r1.t/ D e1 C
c
aDa

t

�
t 2
�

c
aDa

t t
e2 D e1 C

2t

2 � a
e2 (60)

and

r2.t/ D
2

2 � a
e2

Then the centers of curvature of the parabola describe a curve:

c.t/ D c1.t/e1 C c2.t/e2 (61)
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Satisfying Eqs. 45 and 46 with

c1 C
2t

2 � a
c2 D t C

2t3

2 � a
(62)

2

2 � a
c2 D

2t2

2 � a
C 1 C

4t2

.2 � a/2
(63)

Solving the system of Eqs. 62 and 63 we get:

c1 D �
4t3

.�2 C a/2
(64)

c2 D �
4 C a2 C 8t2 � 2a

�
2 C t 2

�
.4 � 2a/

(65)

Figure 3 shows the tangent space of the parabola at the point t D 1.5 for various
values of the fractional dimension ˛ D (1, 0.7, 0.3).

It is clear that the tangent spaces for ˛ D 0.7 and ˛ D 0.3 intersect the parabola at
the point t D 1.5, although the conventional tangent space with fractional dimension
˛ D 1.0 touches the parabola at t D 1.5.

Furthermore the centers of curvature for various values of the fractional dimen-
sion ˛ the point t D 1,5 are (for the conventional case):

˛ D 1.0 c1 D �13.5 and c2 D 7.25
˛ D 0.7 c1 D �7.98 and c2 D 6.36
˛ D 0.3 c1 D �4.67 and c2 D 5.75

Parabola with its tangent spaces

-3

-2

-1

0

1

2

3

4

5

0 0,5 1 1,5 2 2,5

t

Parabola
a=1
a=0.7
a=0.3

Fig. 3 The parabola with its tangent spaces at t D 1.5 for ˛ D 1, ˛ D 0.7, ˛ D 0.3
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The Tangent and Curvature Center of the Weierstrass Function

Let us consider the function,

W .t/ D
X1

nD1

�˛n



sin

�

nt

2

�
� sin .2
nt/

�
(66)

the well-known Weierstrass function, continuous with discontinuous conventional
derivatives at any point, (Liang and Su 2007). The parameter ˛ has been proved to
be related to the fractional dimension of the function W(t). Restricting the function
to w(t) with

w.t/ D
X6

nD1

�˛n



sin

�

nt

2

�
� sin .2
nt/

�
(67)

and for ˛ D 0.5 and 
 D 2, the fractional tangent to the curve at the point
t D 1.0 has been drawn, (Fig. 4), with the help of the Mathematica computerized
pack.

Bending of Fractional Beams

Considering the pure fractional bending problem of a beam with microcracks,
microvoids, various other defects, we get the fractional strain:

"˛
xx D �

y

�˛
(68)

Weirstrass Function

-1,5

-1

-0,5

0

0,5

1

1,5

2

0 0,5 1 1,5 2 2,5

t

W(t)

Fig. 4 The function w(t) with its fractional (˛ D 0.5) tangent at t D 1.0
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where the fractional curvature is defined by,

1

�˛
D D2w.x/ D

1

aD˛
xx

aD˛
x

�
aD˛

xw.x/

aD˛
xx

�
; (69)

with w(x) denoting the elastic line of the beam.
Likewise, the fractional bending moment is expressed by:

M D �2

h=2Z

0

�˛
xxy d ˛y D

EI ˛

�˛
(70)

with the fractional stress, (see Lazopoulos et al. 2015),

�˛
xx D �

M

I ˛
y (71)

Hence the fractional bending of beams formula is revisited and expressed by:

M D EI ˛D2w.x/ D
EI ˛

c
0D˛

x x

c

0

D˛
x

�
c
0D˛

xw.x/
c
0D˛

x x

�
(72)

Therefore, the deflection curve w(x) is defined by:

w.x/ D

xZ

0

0
@

sZ

0

M.t/

EI˛
d ˛t

1
A d ˛s C c1x C c2 (73)

In conventional integration, the deflection curve is defined by:

w.x/D

xZ

0

s1�˛

� .2 � ˛/

0
@

sZ

0

M.t/

EI˛
t1�˛

� .2 � ˛/

1

� .˛/ .s � t /1�˛
dt

1
A ds

.x � s/1�˛
C c1xCc2

(74)

The Fractional Tangent Plane of a Surface

Let us consider a manifold, with points M(u,v), defined by the vectors

M .u; v/ D x .u; v / (75)

with,

xi D xi .u; v/ ; u1 � u � u2; v1 � v � v2; i D 1; 2; 3 (76)
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The infinitesimal distance between two points P and Q on the manifold M is
defined by,

d ˛x D
c
aD˛

u x
c
aD˛

u u
d ˛u C

c
aD˛

u x
c
aD˛

u v
d ˛v (77)

In fact for the surface

z D u2v2 (78)

see, Fig. 2, the tangent space according to Eq. 77 is expressed by:

d ˛r D d ˛x i C d ˛y j C
2xy

.2 � ˛/
.yd ˛x C xd ˛y /k (79)

Figures 5 and 6 shows the surface defined by Eq. 78 with its fractional tangent

1.0

1.00.5

0.0

0.0

0.5

0.5

0.0
0.0

u

v

z

Fig. 5 The surface z D u2v2 plane (space) at the point (u,v) D (0.5, 0.5) for two fractional
dimensions, ˛ D 1 (the conventional case) and ˛ D 0.3. It is clear that the fractional tangent
plane is different from the conventional one (˛ D 1).
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2

0.1

0.0

0.5

1.0

0.0
0.5

1.0

V

tangent plane for a=1

tangent plane for a=0.3

u

Z

0.0

Fig. 6 The tangent planes for various values of the fractional dimension ˛

Fundamental Differential Forms on Fractional Differential
Manifolds

The First Fractional Fundamental Form

Following formal procedure (Guggenheimer 1977), the quantity

I ˛ D d ˛x � d ˛x D

�
c
aD˛

u x
c
aD˛

u u
d ˛u C

c
aD

˛
v x

c
aD

˛
v v

d ˛v

�
�

�
c
aD

˛
u x

aD
˛
u u

d ˛u C
c
aD

˛
v x

aD
˛
v v

d ˛v

�

D E d ˛u2 C 2Fd ˛u d ˛v C G d ˛v2

(80)

defined upon the tangent space of the manifold, as it has been clarified earlier, the
I˛ stands for the first fractional differential form, with the dot meaning the inner
product.

E D
c
aD˛

u x
c
aD˛

u u
�

c
aD˛

u x
c
aD˛

u u

F D
c
aD˛

u x
c
aD˛

u u
�

c
aD˛

v x
c
aD˛

v v

G D
c
aD˛

v x
c
aD˛

v v
�

c
aD˛

v x
c
aD˛

v v

(81)
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corresponding to

I ˛ D E du2 C 2Fdu dv C G dv2

Furthermore the first fundamental form is positive definite, i.e., 0� I˛ with I˛ D 0
if and only if d˛u and d˛v are equal to zero. Hence,

EG�F2 > 0.

The Second Fractional Fundamental Form

Consider the manifold M(u, v) D x(u, v). Then, at each point of the manifold, there
is a fractional unit normal N to the fractional tangent plane

N D

aD˛
u x

aD˛
u u

� aD˛
v x

aD˛
v vˇ̌

ˇ aD˛
u x

aD˛
u u

� aD˛
v x

aD˛
v v

ˇ̌
ˇ (82)

that is a function of u and v with the fractional differential

d ˛N D
aD˛

uN

aD˛
u u

d ˛u C
aD˛

uN

aD˛
uv

d ˛v (83)

Restricting only to Caputo’s fractional derivatives with the property of zero
fractional derivative of any constant, and taking into consideration that N�N D 1,we
get,

d ˛N � N D 0 (84)

where the vector d˛N is parallel to the fractional tangent space.
The second fractional fundamental form is defined by Guggenheimer (1977),

II˛ D �d ˛x � d ˛N D �

�
c
aD˛

u x

aD˛
u u

d ˛u C
c
aD˛

u x

aD˛
uv

d ˛v

�
�

�
c
aD˛

uN

aD˛
uu

d ˛u C
c
aD˛

uN

aD˛
uv

d ˛v

�

D L d ˛u2 C 2Md ˛u d ˛v C Nd ˛v2

(85)

with,

L D �
c
aD˛

u x

aD
˛
u u

�
c
aD˛

uN

aD
˛
uu

M D �
1

2

�
c
aD˛

u x
c
aD˛

u u
�

c
aD˛

vN
c
aD˛

v v
C

c
aD˛

uN
c
aD˛

u u
�

c
aD˛

v x
c
aD˛

v v

�

N D �
c
aD˛

v x
c
aD˛

v v
�

c
aD˛

uN
c
aD˛

v v

(86)
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It is pointed again that the geometric procedures, that use quantities not defined
upon the correct tangent spaces, are questionable. Even if analytically may yield the
same results, geometrically are confusing.

The Fractional Normal Curvature

Let P be a point on a surface x D x(u, v) and x (t) D x(u(t), v(t)) a regular curve C at
P. The fractional curvature of curves has been discussed in �Chap. 6, “Uniqueness
of Elastoplastic Properties Measured by Instrumented Indentation” . The normal
curvature k˛

n vector of C at P is the vector projection of the curvature vector k˛ onto
the normal vector N at P. The component of k˛ in the direction of the normal N is
called the normal fractional curvature of C at P and is denoted by k˛

n . Therefore,

k˛
n D k˛ � N (87)

Since the unit tangent to C at P is the vector

t D
d ˛x
d ˛s

D
d ˛x
d ˛t

=

ˇ̌
ˇ̌d ˛x
d ˛t

ˇ̌
ˇ̌ (88)

where s denotes the fractional arc length of the curve and t is the unit perpendicular
to the normal N along the curve, we get:

0 D
d ˛ .t � N/

d ˛t
D

d ˛t
d ˛t

� N C t �
d ˛N
d ˛t

(89)

Therefore, the normal curvature of a curve is equal to:

k˛
n D k � N D

d ˛t
d ˛t

� N=

ˇ̌
ˇ̌d ˛x
d ˛t

ˇ̌
ˇ̌ D �t �

d ˛N
d ˛t

=

ˇ̌
ˇ̌d ˛x
d ˛t

ˇ̌
ˇ̌

D �
d ˛x
d ˛t

�
d ˛N
d ˛t

=

ˇ̌
ˇ̌d ˛x
d ˛t

ˇ̌
ˇ̌2

D �

�
c
aD˛

u x
c
aD˛

u u

d ˛u

d ˛t
C

c
aD˛

u x
c
aD˛

u v

d ˛v

d ˛t

�
�

�
c
aD˛

uN
c
aD˛

u u

d ˛u

d ˛t
C

c
aD˛

uN
c
aD˛

u v

d ˛v

d ˛t

�
�

c
aD˛

u x
c
aD˛

u u

d ˛u

d ˛t
C

c
aD˛

u x
c
aD˛

u v

d ˛v

d ˛t

�
�

�
c
aD˛

u x
c
aD˛

u u

d ˛u

d ˛t
C

c
aD˛

u x
c
aD˛

u v

d ˛v

d ˛t

�

D
L.d ˛u=d ˛t/2 C 2M .d ˛u=d ˛t/ .d ˛v=d ˛t/ C N .d ˛v=d ˛t/2

E.d ˛u=d ˛t/2 C 2F .d ˛u=d ˛t/ .d ˛v=d ˛t/ C G.d ˛v=d ˛t/2

(90)
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Recalling Eqs. 87 and 90, the normal curvature is defined by:

k˛
n D

II˛

I ˛
(91)

Fractional Vector Operators

In the present section the fractional tangent spaces along with their fractional
normal vectors should be reminded, as they were defined in the preceding sections
“The Geometry of Fractional Differential,” “The Fractional Arc Length,” and “The
Fractional Tangent Space.”

For Cartesian coordinates, fractional generalizations of the divergence or gradi-
ent operators are defined by:

r.a/f .x/ D grad.a/f .x/ D r
.˛/
i f .x/ei D

!
cDa

i f .x/

!
cDa

i xi

C ei D
L
!Da

i f .x/ei (92)

where !
cDa

i are Caputo’s fractional derivatives of order ˛ and the subline meaning
no contraction. Further, L

!D˛
i f .x/ is Leibniz’s derivative, Eq. 18. Hence, the

gradient of the vector x is

r.˛/x D I (93)

with I denoting the identity matrix. Consequently for a vector field

F .x1; x2; x3/ D e1F1 .x1; x2; x3/ C e2F2 .x1; x2; x3/ C e3F3 .x1; x2; x3/ (94)

where Fi(x1,x2,x3) are absolutely integrable, the circulation is defined by:

C
.˛/
L .F/ D

�
!I

.a/
L ;F

�
D

Z

L

.dL;F/ D!I .a/
L .F1d ˛x1/ C !I .a/

L .F2d ˛x2/

C !I .a/
L .F3d ˛x3/

(95)

Furthermore, the divergence of a vector F(x) is defined by:

r.a/ � F.x/ D div.a/F.x/ D
!

cDa
kFk .x/

!
cDa

kxk

D !
LD

a

kFk .x/ (96)

where the subline denotes no contraction.
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Moreover, the fractional curl F (curl(a)F(x)) of a vector F is defined by:

curl.a/F D el "lmn
!

cDa
mFn

!
cDa

mxm

D el "lmn!
LD

a

mFn (97)

A fractional flux of the vector F expressed in Cartesian coordinates across surface
S is a fractional surface integral of the field with:

ˆ˛
s .F/ D

�
!I ˛

s ;F
�

D
.˛/

!

“

S

.F1d ˛x2d ˛x3 C F2d ˛x3d ˛x1 C F3d ˛x2d ˛x3/ (98)

A fractional volume integral of a triple fractional integral of a scalar field
f D f(x1,x2,x3) is defined by:

!V
.a/

� Œf � D!I
.a/
� Œx1; x2; x3� f .x1; x2; x3/ D

.˛/

!

•

�

f .x1; x2; x3/ d ˛x1d ˛x2d ˛x3

(99)

It should be pointed out that the triple fractional integral is not a volume integral,
since the fractional derivative of a variable with respect to itself is different from
one. So there is a clear distinction between the simple, double, or triple integrals
and the line, surface, and volume integrals respectively.

Fractional Vector Field Theorems

Fractional Green’s Formula

Green’s theorem relates a line integral around a simple closed curve @B and a
double integral over the plane region B with boundary @B. With positively oriented
boundary @B, the conventional Greens theorem for a vector field F D F1e1 C F2e2
is expressed by:

Z

@B

.F1dx1 C F2dx2/ D

Z Z

B

�
@ .F1/

@x2

�
@ .F2/

@x1

�
dx1dx2 (100)

Recalling that:

d ax D .d ax1; d ax2/ D
�

c
!Da

x1
Œx1� d ˛x1; c

!Da
x2

Œx2� d ˛x2

�
(100a)
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and substituting into conventional Green’s theorem Eq. 100 we get:

!

.˛/Z

@W

.F1d ˛x1 C F2d ˛x2/ D

!

.˛/Z Z

W

 
c
!Da

x2
.F1/

c
!Da

x2
.x2/

�

c
!Da

x1
.F2/

c
!Da

x1
.x1/

!
d ˛x1d ˛x2 (101)

Fractional Stoke’s Formula

Restricting in the consideration of a simple surfaceW, if we denote its boundary by
@W and if F is a vector field defined on W, then the conventional Stokes’ Theorem
asserts that: I

W

F � dL D

—

W

curl F � dS (102)

In Cartesian coordinates it yields:

R
@W

.F1dx1 C F2dx2 C F3dx3/ D
’
W

�
@.F3/

@x2
� @.F2/

@x3

�
dx2dx3

C
�

@.F1/

@x3
� @.F3/

@x1

�
dx3dx1C

�
@.F2/

@x1
� @.F1/

@x2

�
dx1dx2

(103)

where F(x1, x2, x3)D e1F1(x1, x2, x3)C e2F2(x1, x2, x3)C e3F3(x1, x2, x3).
In this case, the fractional curl operation is defined by:

curl˛
w .F/ D el"lmn

˛
!Da

xm
.Fn/ =c

!Da
xk

.xi / ımk D e1

 
˛
!Da

x2
F3

˛
!Da

x2
x2

�

˛
!Da

x3
F2

˛
!Da

x3
x3

!

C e2

 
˛
!Da

x3
F1

˛
!Da

x3
x3

�

˛
!Da

x1
F3

˛
!Da

x1
x1

!
C e3

 
˛
!Da

x1
F2

˛
!Da

x1
x1

�

˛
!Da

x2
F1

˛
!Da

x2
x2

!

(104)

Therefore transforming the conventional Stokes’ theorem into the fractional form
we get:

.˛/

!

Z
W

.F1d ˛x1CF2d ˛x2 C F3d ˛x3/ D
.˛/

!

“
W

( 
˛
!Da

x2
F3

˛
!Da

x2
x2

�

˛
!Da

x3
F2

˛
!Da

x3
x3

!
d ˛x2d ˛x3

C

 
˛
!Da

x3
F1

˛
!Da

x3
x3

�

˛
!Da

x1
F3

˛
!Da

x1
x1

!
d ˛x3d ˛x1

C

 
˛
!Da

x1
F2

˛
!Da

x1
x1

�

˛
!Da

x2
F1

˛
!Da

x2
x2

!
d ˛x1d ˛x2

)

(105)
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Fractional Gauss’ Formula

For the conventional fields theory, let F D e1F1Ce2 F2Ce3 F3. be a continuously
differentiable real-valued function in a domain W with boundary @W. Then the
conventional divergence Gauss’ theorem is expressed by:

“

@W

F � dS D

•

W

divFdV (106)

Since

d.˛/S D e1d ˛x2d ˛x3 C e2d ˛x3d ˛x1 C e3d ˛x1d ˛x2 (107)

where daxi i D 1,2,3 is expressed by Eq. 15,

d .˛/V D d ˛x1d ˛x2d ˛x3 (108)

Furthermore, see Eq. 96,

div.a/F.x/ D
c
!Da

kFk .x/
c
!Da

kxi

ıkm (109)

The Fractional Gauss divergence theorem becomes:

.˛/

!

“
@W

F � d .˛/S D
.˛/

!

•
w

div.˛/Fd .˛/V (110)

Remember that the differential d˛SDn˛d˛S, where n˛ is the unit normal of
the fractional tangent space as it has been defined in section “The Geometry of
Fractional Differential.”

Fractional Deformation Geometry

Outlining the Fractional Deformation Geometry presented in Lazopoulos and
Lazopoulos (2016a), we assume the description in the Euclidean space, considering
the reference configuration B with the boundary @B of a body displaced to its
current configuration b with the boundary @b (see Truesdell 1977). The points in the
reference placement B, defining the material points, are described byX, whereas the
set of the displaced points y describe the current configuration b with the boundary
@b. The coordinate system in B is denoted by fXAg, while the corresponding to
the current configuration b is reflected to fyig. In the present description, both
systems have the same axial directions with base vectors feAg,feig whether the
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reference concerns the current or the initial (unstressed) configuration. The motion
of a reference point X is described by the function

y D ‰ .X; t / (111)

the conventional gradient of the deformation is defined by:

F .‰ ; t / D @‰.X;t/

@X or FiA D @‰i

@XA
(112)

with

F.˛/ D F
.˛/
ij D r

.˛/

X yi D c
aD˛

Xj
yi D

c
aD˛

Xj
.X C u/

c
aD˛

Xj
X

D r
.˛/

X X C r
.˛/

X u (113)

Furthermore, the right Cauchy-Green fractional deformation tensor,

C.˛/ D F.˛/T F.˛/ (114)

and

B.˛/ D F.˛/F.˛/T (115)

is the left Cauchy-Green fractional deformation tensor.
Likewise, the fractional nonlinear fractional Green-Lagrange strain tensor E(˛)

may be defined by:

E
.˛/
N D N �

˛

EN (116)

where N is the unit vector of the considered fiber in the reference placement, with

E.˛/ D
1

2

�
C.˛/ � I

�
(117)

Recalling that the current placement y D X C u, where u denotes the displace-
ment vector, the fractional Green-Lagrange deformation tensor becomes:

E.˛/ D
1

2

��
r

.˛/

X u
�T

C r.˛/u C
�
r

.˛/

X u
�T

r.˛/u
	

(118)

Proceeding to define the fractional strain tensor referred to the current placement,
i.e., Euler-Almansi strain tensor:

A.˛/ D
1

2

�
I �

�
B.˛/

��1
�

(119)
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with the strain

"n D nT � A.˛/n (120)

where n is the unit vector along the deformed fiber, corresponding to the N unit
vector along the reference placement fiber. It is evident that in the conventional
case with a D 1 the fractional Euler Almansi strain tensor A(’) reduces to the
conventional strain tensor A. It should be pointed out that the fractional stretches

(˛), adopting the right Cauchy-Green strain tensor C(˛), are defined by:


.˛/ D
d ˛s

d ˛S
(121)

as the ratio of the measures of the final infinitesimal length over the corresponding

length of the fractional differential d˛X vector with d ˛S D .d ˛X � d ˛X/
1
2 . In fact

the stretches 
(˛) are defined by:

�

.˛/

�2

D NT � C.˛/N (122)

where N D NAeA is the unit vector directed along the material reference fiber.
Furthermore for

1�

.˛/

�2 D

 
d .˛/S

d .˛/s

!2

D nT �
�
B.˛/

��1

n (123)

where n the unit vector along the deformed fiber.

Polar Decomposition of the Deformation Gradient

It is well known that every nonsingular matrix may be decomposed into a product
of an orthogonal and a symmetric positive tensor. Applying the property to the
deformation gradient we get:

F.˛/ D R.˛/U.˛/ D V.˛/R.˛/ (124)

where R is orthogonal RDR-T and U and V are symmetric positive (UDUT and
VDVT). Therefore:

C.˛/ D
�
U.˛/

�2
and B.˛/ D

�
V.˛/

�2 (125)

Moreover, the eigenvalues of C(˛) and V(˛) are the same, but the eigenvectors
u(˛) of U(˛) and v(˛) of V(˛) are related by v(˛) D R(˛)u(˛). In fact v(˛) is directed
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along a principal direction (eigenvector) of the strain tensor V(˛) with u(˛) been the
eigenvector of U(˛). In other words, principal directions refer to the vectors u.˛/ D

u.a/
A eA and v.˛/ D v

.a/
A eA.

Deformation of Volume and Surface

Consider three noncoplanar line elements d˛X(1), d˛X(2), d˛X(3) at the point X in B
so that:

d˛y.i/ D F.˛/d ˛X.i/ (126)

with d˛yi the corresponding fractional differential vectors in the current placement.
Further, the volume d˛V is derived by

d ˛V D d ˛X.1/ �
�
d ˛X.2/ ^ d ˛X.3/

�
(127)

Alternatively

d ˛V D det
�
d ˛X.1/; d ˛X.2/; d ˛X.3/

�
(128)

in which dX(1) denotes a column vector (i D 1,2,3). The corresponding volume d˛v
in the deformed configuration is

d ˛v D det
�
d ˛y.1/; d ˛y.2/; d ˛y.3/

�
(129)

and

d ˛v D det
�
F.˛/

�
d ˛V � J .˛/d ˛V (130)

where

J .˛/ D det F.˛/ and d ˛V D d ˛X.1/ � d ˛X.2/ ^ d ˛X.3/ (131)

Consider, further, an infinitesimal vector element of material surface dS in the
neighborhood of the point X in B with daS D N˛d˛S the fractional tangent surface
vector corresponding to the normal fractional normal vector N˛ . Likewise, d˛X
is an arbitrary fiber cutting the edge d˛S such that d˛X�d˛S >0. The volume of
the cylinder with base d˛S and generators d˛X has volume d˛V D d˛X �d˛S. If
d˛x and d˛s are the deformed configurations of d˛X and d˛S respectively, with
d˛sDn˛d˛s, where n˛ is the normal vector to the deformed surface, the volume
d˛V in the reference placement corresponds to the volume d˛v D d˛x �d˛s in the
current configuration so that:
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d ˛v D d ˛y � d ˛s D J .˛/d ˛X � d ˛S (132)

Since d˛yDF(˛)d˛X, we obtain

F.˛/T d ˛X � d ˛s D J .˛/d ˛X � d ˛S (133)

removing the arbitrary d˛X. Consequently,

d ˛s D J .˛/
�
F.˛/

��T

d ˛S (134)

and

n˛d ˛s D J .˛/
�
F.˛/

��T

N˛d ˛S (135)

The relation between the area elements corresponding to reference and current
configurations is the well-known Nanson’s formula for the fractional deformations.

Examples of Deformations

Homogeneous Deformations

The most general homogeneous deformation of the body B from its reference
configuration is expressed by:

x D AX (136)

Choosing as fractional derivatives Caputo ones that are given by:

C
a D

a

t .t � a/v D
� .v C 1/

� .�˛ C � C 1/
.t � a/v�a

and

C
a D

a

X X D
�.2/

� .2 � a/
X1�a (137)

and specializing the homogeneous deformations with the example of simple shear,
we discuss the deformation,

x1 D X1 C X2

x2 D X2

x3 D X3

(138)
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Therefore the Cauchy-Green deformation tensors C(˛) and B(˛) become:

C.˛/ D
�
F.˛/

�T

F˛ D

ˇ̌
ˇ̌
ˇ̌
1  0


�
2 C 1

�
0

0 0 1

ˇ̌
ˇ̌
ˇ̌ (139)

and

B D F.˛/
�
F.˛/

�T

D

ˇ̌
ˇ̌
ˇ̌
1 C 2  0

 1 0

0 0 1

ˇ̌
ˇ̌
ˇ̌ (140)

The Green (Langrange) Fractional strain tensor is:

E.˛/ D
1

2

�
C.˛/ � I

�
D

2
4 0 =2 0

=2 2=2 0

0 0 0

3
5 (141)

And the Euler-Almansi strain tensor is given by:

A.˛/ D
1

2

�
I �

�
B.˛/

��1
�

D

2
4 0 =2 0

=2 �2=2 0

0 0 0

3
5 (142)

It would seem strange that the results are exactly the same as the ones of
the conventional elasticity. However, there is mathematical explanation for the
homogeneous deformations. Just taking into consideration the definition of the
fractional derivative and differential, the differential for a linear function of the form:

f .x/ D Ax (143)

The fractional differential is given by:

d ˛f .x/ D A d ˛x (144)

the fractional differential of the function has almost the same form as the conven-
tional one. Nevertheless, for the nonlinear function:

f .x/ D x4 (145)

the fractional differential

d ˛f .x/ D C
a D

˛

xx4 �
�

C
a D

˛

xx
��1

d ˛x (146)
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Is equal to

d ˛f .x/ D
�.5/� .2 � ˛/

� .5 � ˛/
x3d ˛x (147)

with coefficient depending upon the ˛ fractional dimension. That makes the
difference in nonhomogeneous deformations discussed in the next section.

The Nonhomogeneous Deformations

The nonhomogeneous deformation is defined by the equations:

x1 D X1 C X4
2

x2 D X2

x3 D X3

(148)

Taking into consideration Eqs. 124 and 125, the fractional Cauchy-Green
deformation tensors are expressed by:

C.˛/ D
�
F.˛/

�T

F.˛/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1
24�.2�˛/X3

2

�.5�˛/
0

24�.2�˛/X3
2

�.5�˛/
1 C

5762�.2�˛/2X6
2

�.5�˛/2 0

0 0 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

(149)

and

B.˛/ D F.˛/
�
F.˛/

�T

D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
1 C

5762�.2�˛/2X6
2

�.5�˛/2

24�.2�˛/X3
2

�.5�˛/
0

24�.2�˛/X3
2

�.5�˛/
1 0

0 0 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌ (150)

Hence Green-Lagrange strain tensor is expressed by:

E.˛/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

0
12�.2�˛/X3

2

�.5�˛/
0

12�.2�˛/X3
2

�.5�˛/

2882�.2�˛/2X6
2

�.5�˛/2 0

0 0 0

ˇ̌
ˇ̌
ˇ̌
ˇ̌ (151)

and Euler-Almansi strain tensor is defined by:

A.˛/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

0
12�.2�˛/x3

2

�.5�˛/
0

12�.2�˛/x3
2

�.5�˛/
�

2882�.2�˛/2x6
2

�.5�˛/2 0

0 0 0

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

(152)



888 K. A. Lazopoulos and A. K. Lazopoulos

It is evident that the strain tensors strongly depend upon the fractional dimension
˛ for the present nonhomogeneous deformation. However, the present deformation
also depends upon the source ! of the fractional analysis.

The Infinitesimal Deformations

Since there has been pointed out in the introduction, fractional strain tensors have
been considered in the literature, mainly in infinitesimal deformations, simply by
substituting the common derivatives to fractional ones. It would be wise to study
whether that idea is valid or not. Unfortunately it is proven a mistake. Fractional
strain with simple substitution of derivatives does not have any physical meaning.

Considering the fractional Euler-Lagrange strain tensor, Eq. 118, where u is the

small displacement vector with juj	 1 and
ˇ̌
ˇr.˛/

X u
ˇ̌
ˇ 	 1, we restrict into the linear

deformation analysis, and the infinitesimal (linear) fractional Euler-Lagrange strain

tensor
˛

Elin becomes:

E.˛/

lin D
1

2

�
.rX/

a

uT C
a

rXu
	

(153)

It is recalled from Eq. 92 that:

r.a/f .x/ D grad .a/f .x/ D r
.˛/
i f .x/ei D

c
!Da

i f .x/
c
!Da

i xi

ei ; (154)

Hence the linear fractional strain is not simply the half of the sum of the fractional
derivatives of the displacement vector and its transport, but the half of the fractional
gradient (as it has been defined by Eq. 92) and its transport.

Fractional Stresses

Pointing out that the fractional tangent space of a surface has different orientation
of the conventional one, the fractional normal vector n˛ does not coincide with
the conventional normal vector n. Hence we should expect the stresses and
consequently the stress tensor to differ from the conventional ones not only in the
values.

If d˛P is a contact force acting on the deformed area d˛a D n˛d˛a, lying on the
fractional tangent plane where n˛ is the unit outer normal to the element of area
d˛a, then the ’-fractional stress vector is defined by:

t˛ D lim
d˛a�0

d ˛P
d ˛a

(155)
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However, the ’-fractional stress vector does not have any connection with the
conventional one

t D lim
da�0

dP
da

(156)

since the conventional tangent plane has different orientation from the ’-fractional
tangent plane and the corresponding normal vectors too.

Following similar procedures as the conventional ones we may establish
Cauchy’s fundamental theorem (see Truesdell 1977).

If t˛(�,n˛) is a continuous function of the transplacement vector x, there is an
’-fractional Cauchy stress tensor field

T˛ D
h
�˛
ij

i
(157)

The Balance Principles

Almost all balance principles are based upon Reynold’s transport theorem. Hence
the modification of that theorem, just to conform to fractional analysis is presented.
The conventional Reynold’s transport theorem is expressed by:

d

dt

Z

W

AdV D

Z

W

dA

dt
dV C

Z

@W

AvndS (158)

For a vector field A applied upon region W with boundary @W and vn is the
normal velocity of the boundary @W.

Material Derivatives of Volume, Surface, and Line Integrals

For any scalar, vector or tensor property that may be represented by:

Pij .t/ D

Z

V

P �
ij .x; t/ dV (159)

where V is the volume of the current placement in the conventional calculus. The
material time derivative of P �

ij .x; t/ is expressed by:

dP �
ij

dt
D

@P �
ij

@t
C v

@P �
ij

@xj

D
@P �

ij

@t
C v � rxP

�
ij (160)
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recalling that we consider constant material points during time derivation. Similarly
in fractional calculus, the material time derivative is given, for any tensor field Pij

by:

dP �
ij

dt
D

@P �
ij

@t
C

@˛P �
ij

@xa
k

d axl

dxa
k

dg .xm/

dt
ıkm (161)

Since

vk D
@axe

@xa
k

dg .xm/

dt
ıkm (162)

The material derivative, into the context of fractional calculus, is expressed by:

d . /

dt
D

@ . /

@t
C v �

a

rx ./ (163)

Hence, the acceleration is defined by:

a D
dv
dt

D
@v
@t

C v �
˛

rxv (164)

Furthermore the material time derivative of Pij(t) is expressed in conventional
analysis by:

d

dt

�
Pij .t/


D

d

dt

Z

V

P �
ij .x; t/ dV (165)

where b is the current placement of the region. It is well known that:�
d

�

V

�
D JdV; and the Eq. 165 yields:

d

dt

Z

V

P �
ij .x; t/ dV D

Z

V

�
@P �

ij .x; t/

dt
C P �

ij .x; t/
@vp

@xp

	
dV (166)

Recalling the material derivative operator Eqs. 160 and 166 yields,

d

dt

Z

V

P �
ij .x; t/ dV D

Z

b

2
4@P �

ij .x; t/

@t
C

@
�
upP �

ij .x; t/
�

@xp

3
5 dV (167)
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yielding Reynold’s Transport theorem:

d

dt

Z

v

P �
ij .x; t/ dV D

Z

V

@P �
ij .x; t/

@t
dV C

Z

S

vp

h
P �

ij .x; t/
i

dSp (168)

Expressing Reynold’s Transfer Theorem in fractional form we get:

d
dt

!

R
V

P �
ij .x; t/ d ˛V D

!

R
V

@P �

ij .x;t/

@t
d ˛V C

!

R
S

up

h
P �

ij .x; t/
i

d ˛Sp
(169)

where d˛V and d˛S the infinitessimal fractional volume and surface, respectively.
The volume integral of the material time derivative of Pij(t) may also be

expressed by:

d

dt
!

.˛/Z

V

P �
ij .x; t / d ˛V D

!

.˛/Z

V

�@P �
ij .x; t/

@t
C div˛

h
vP �

ij

i �
d ˛V (170)

The Balance of Mass

The conventional balance of mass, expressing the mass preservation, is expressed
by:

d

dt

Z

W

�dV D 0 (171)

In the fractional form it is given by:

d

dt
!

.˛/Z

W

� d ˛V D 0 (172)

where d
dt

is the total time derivative.
Recalling the fractional Reynold’s Transport Theorem, we get:

d

dt
!

.˛/Z

V

�d ˛V D

!

.˛/Z

V

�@� .x; t/

@t
C div˛ Œv��

�
d ˛V (173)



892 K. A. Lazopoulos and A. K. Lazopoulos

Since Eq. 173 is valid for any volume V, the continuity equation is:

@�

@t
C diva Œv�� D 0 (174)

where div˛ has already been defined by Eq. 96. That is the continuity equation
expressed in fractional form.

Balance of Linear Momentum Principle

It is reminded that the conventional balance of linear momentum is expressed in
continuum mechanics by:

d

dt

Z

�

�vdV D

Z

@�

t.n/dS C

Z

�

�bdV (175)

where v is the velocity, t(n) is the traction on the boundary, and b is the body force
per unit mass. Likewise that principle in fractional form is expressed by:

d

dt
!

.˛/Z

�

�vd .˛/V D

!

.˛/Z

�

Œ�b C diva .T˛/� d .˛/V (176)

Hence the equation of linear motion, expressing the balance of linear momentum,
is defined by:

diva ŒT˛� C �b � �
�
v D 0 (177)

It should be pointed out that div˛ has already been defined by Eq. 96 and is
different from the common definition of the divergence.

Following similar steps as in the conventional case, the balance of rotational
momentum yields the symmetry of Cauchy stress tensor.

Balance of Rotational Momentum Principle

Following similar procedure as in the conventional case, we may end up to the
symmetry property of the fractional stress tensor, i.e.:

T˛ D .T˛/T (178)
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Fractional Zener Viscoelastic Model

The Integer Viscoelastic Model

It was proposed by Zener consists of the elastic springs with elastic constraints E1

and E2 and the viscous dashpot having a viscosity constant C. Then the standard
linear solid model called Zener viscoelastic model is indicated in Fig. 7.

The three-parameter Zener model (Fig. 7) yields the following constitutive
equation:

�
1 C

C

E1 C E2

d

dt

	
�.t/ D

E2

E1 C E2

�
E1 C C

d

dt

	
".t/ (179)

In this case the creep and relaxation functions take the form:

J .t/ D
E1 C E2

E1E2

f1 � exp Œ� .t=	"/�g (180)

G.t/ D
E1E2

E1 C E2

f1 C exp Œ� .t=	"/�g (181)

where

	" D
C

E1

; 	� D
C

E1 C E2

: (182)

For the viscoelastic materials with E1 D 0.16 109 N/m, E2 D 1.5 109 N/m and
C D 16 109 Ns/m, and the initial condition yo D 0, the function of the compliance
with respect to time is shown in Fig. 8.

Furthermore, the function of the relaxation modulus G(t) with respect to time t is
shown in Fig. 9:

Fig. 7 The three-parameter
Zener model
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Fig. 9 Variation of the relaxation modulus with respect to time for the integer Zener viscoelastic
model

The Fractional Order Derivative Viscoelastic Models

Viscoelastic models have been proposed using fractional time derivatives, just to
take into account the material memory effects. The fractional Zener model intro-
duced by Bagley and Torvik (1986) has been extensively studied in the literature
(see Atanackovic 2002 and Sabatier et al. 2007). Consequently, the fractional Zener
model has been proposed, using fractional time derivatives and more specifically the
Caputo time derivatives. Therefore the constitutive equation for the model is:

�
1 C

C

E1 C E2

d ˛

dt˛

	
�.t/ D

E2

E1 C E2

�
E1 C C

d ˛

dt˛

	
".t/ (183)
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with creep compliance and relaxation modulus:

J .t/ D
1

E2

C
1

E1

f1 � E˛ Œ�.t=	"/
˛�g (184)

G.t/ D
E2

E1 C E2

fE0 C E1E˛ Œ�.t=	"/
˛�g (185)

where 	˛
" D C

E1
; 	˛

� D C
E1CE2

.
For the viscoelastic materials with E1 D 0.16 109 N/m, E2 D 1.5 109 N/m,C D 16

109 Ns/m, and the initial condition yo D 0, the function of the compliance with
respect to time is shown in Fig. 10.

Furthermore, the function of the relaxation modulus G(t) with respect to time t
is shown in Fig. 11. It is shown that the lower the fractional order the slower the
convergence to the final zero value of the relaxation.

Proposed Fractional Viscoelastic Zener Model

Since only Leibnitz L-fractional derivatives have physical sense, the fractional
viscoelastic equations should be expressed in terms of L-fractional derivatives.
Therefore the L-fractional Zener model should be expressed by:

�
1 C

C

E1 C E2

L
0 D

˛

t

	
�.t/ D

E2

E1 C E2

�
E1 C C L

0 D˛
t


".t/ (186)
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Fig. 10 The variation of the compliance with respect to time for various values of the fractional
order for the existing fractional models
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Hence for constant applied stress the compliance

J .t/ D
".t/

�
(187)

expressing the variation of strain with respect to time is given by the equation:

h
E1 C C L

0 D
˛

t

i
J .t/ D

E1 C E2

E2

(188)

Therefore we have to solve the fractional linear equation:

C L
0 D

˛

t y.t/ C E1y.t/ D 1 C
E1

E2

(189)

Looking now for a solution of the type:

y.t/ D

1X
kD0

yktk (190)

and substituting y(t) from Eq. 190 to the governing compliance, Eq. 189 we get:

1X
kD0

CykC1

� .2 � ˛/ � .� C 2/

� .� C 2 � ˛/
tk C

1X
kD0

E1yktk D 1 C
E1

E2

(191)

Since the algebraic Eq. 191 is valid for any t the various coefficients yi are defined
by:
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y1 D
1

C

�
�E1y0 C 1 C

E1

E2

�
(192)

ykC1 D �
E1

C

� .� C 2 � ˛/

� .� C 2/ � .2 � ˛/
yk; 8k 
 1 (193)

Hence

yk D

�
�

E1

C � .2 � ˛/

�k�1 k�1Y
m�1

� .m C 2 � a/

� .m C 2/
y1; 8k 
 2 (194)

For the viscoelastic materials with E1 D 0.16 109 N/m, E2 D 1.5 109 N/m,C D 16
109 Ns/m, and the initial condition yo D 0; the function of the compliance with
respect to time is shown in Fig. 6.

It is clear from Fig. 6 that the fractional order has influence upon the time of
convergence of the compliance modulus to the final value. The lower the value of
the fractional order the slower the convergence of the compliance modulus to the
final value.

Now, proceeding to the relaxation behavior of the Fractional Zener Viscoelastic
model, we consider constant strain "(t) D ", then the governing Eq. 185 becomes:

C L
0 D˛

t

�
�.t/

"

�
C .E1 C E2/

�
�.t/

"

�
D E1E2 (195)

For the relaxation modulus y.t/ D G.t/ D �.t/

"
, the Eq. 197 above takes the

form:

C L
0 D˛

t y.t/ C .E1 C E2/ y.t/ D E1E2 (196)

Looking for solution of the type

y.t/ D

1X
kD0

yktk (197)

and substituting in Eq. 196 we get:

1X
kD0

C ykC1

� .2 � ˛/ � .k C 2/

� .k C 2 � ˛/
tk C

1X
kD0

.E1 C E2/ yktk D E1E2 (198)

Since Eq. 198 is valid for any t, it is an identity. Hence:

y1 D �
E1 C E2

C
y0 C

E1E2

C
(199)
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ykC1 D �
E1 C E2

C

� .m C 2 � ˛/

� .2 � ˛/ � .k C 2/
y1; 8k 
 2 (200)

Those relations yield:

yk D

�
�

E1 C E2

c � .2 � ˛/

�k�1 k�1Y
mD1

� .m C 2 � ˛/

� .m C 2/
y1; 8k 
 2: (201)

For the viscoelastic materials with E1 D 0.16 109 N/m, E2 D 1.5 109 N/m, and
C D 16 109 Ns/m, the function of the relaxation modulus with respect to time is
shown in Fig. 7.

It is clear from Fig. 7 that the fractional order has influence upon the time of
convergence of the relaxation modulus to the zero value. The lower the value of the
fractional order the slower the convergence of the relaxation modulus to the zero
value.

Comparison of the Three Viscoelastic Models

For the viscoelastic materials with E1 D 0.16 109 N/m, E2 D 1.5 109 N/m, and
C D 16 109 Ns/m, and for two different values of the fractional orders a D 0.5,
a D 0.7, and a D 0.9 the (Figs. 8, 9, and 10) show the behavior of the compliance
modulus and (Figs. 11, 12, 13, 14, 15, and 16) the behavior of the relaxation
modulus.

Comparing (Figs. 17, 18, and 19) the behavior of the proposed model exhibits
a more mild convergence for the compliance and relaxation moduli to the final
values as far as to Caputo’s viscoelastic models are concerned. Further, the lower
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Fig. 12 The variation of the compliance with respect to time for various values of the fractional
order for the existing fractional models
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the fractional order of the model the slower the convergence to the final values for
the same proposed model.

Conclusion: Further Research

Correcting the picture of fractional differential of a function, the fractional tangent
space of a manifold was defined, introducing also Leibniz’s L-fractional derivative
that is the only one having physical meaning. Further, the L-fractional chain
rule is imposed, that is necessary for the existence of fractional differential.
After establishing the fractional differential of a function, the theory of fractional
differential geometry of curves is developed. In addition, the basic forms concerning
the first and second differential forms of the surfaces were defined, through the
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tangent spaces defined earlier, having mathematical meaning without any confusion,
contrary to the existing procedures. Further the field theorems have been outlined in
an accurate manner that may not cause confusion in their applications. The present
work will help in discussing many applications concerning mechanics, quantum
mechanics, and relativity, that need a clear description, based upon the fractional
differential geometry. Moreover, the basic theorems of fractional vector calculus
have been revised along with the basic concepts of fractional continuum mechanics.
Especially the concept of fractional strain has been pointed out, because it is widely
used in various places in a quite different way. The present analysis may be useful
for solving updated problems in Mechanics and especially for lately proposed
theories such as peridynamic theory. Finally, viscoelasticity models are studied
using L-fractional derivatives. Those models exhibit milder behavior from the ones
formulated through Caputo derivatives, compared to the conventional (integer)
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models. In the present study, only the Zener viscoelastic model was discussed and
its behavior concerning the compliance and relaxation moduli was studied.
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Abstract

This chapter reviews the modeling of fractal materials by homogenized contin-
uum mechanics using calculus in non-integer dimensional spaces. The approach
relies on expressing the global balance laws in terms of fractional integrals
and, then, converting them to integer-order integrals in conventional (Euclidean)
space. Via localization, this allows development of local balance laws of fractal
media (continuity, linear and angular momenta, energy, and second law) and,
in case of elastic responses, formulation of wave equations in several settings
(1D and 3D wave motions, fractal Timoshenko beam, and elastodynamics under
finite strains). Next, follows an account of extremum and variational principles,
and fracture mechanics. In all the cases, the derived equations for fractal media
depend explicitly on fractal dimensions and reduce to conventional forms for
continuous media with Euclidean geometries upon setting the dimensions to
integers.

Keywords
Balance laws · Fractal · Fractional calculus · Fractal derivative ·
Homogenization

Introduction

It has been observed by Benoît Mandelbrot (1982) that many natural objects are
statistically self-similar and “broken” in space (or time) and exhibit non-smooth or
highly irregular features. Mandelbrot called such objects fractals. Examples include
coastlines, porous media, cracks, turbulent flows, clouds, mountains, lightning bolts,
snowflakes, melting ice, and even parts of living entities such as the neural structure
or the surface of the human brain (Barnsley 1993; Le Méhauté 1991; Hastings and
Sugihara 1993; Falconer 2003; Tarasov 2005a). There are also fractals in time �

signals, processes, and musical compositions � but we shall not concern ourselves
with them here.

Mathematical fractal sets are characterized by a Hausdorff dimensionD, which is
the scaling exponent characterizing the fractal pattern’s power law. Physical fractals
can be modeled only for some finite range of length scales within the lower and
upper cutoffs by mathematical ones. These objects are called pre-fractals. While
the mechanics of fractal and pre-fractal media is still in an early developing stage,
the new field of fractal mechanics can already generate elegant models (Tarasov
2005b; Ostoja-Starzewski 2007, 2008a, 2009; Joumaa and Ostoja-Starzewski 2011;
Li and Ostoja-Starzewski 2009a).
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The approach we employ is based on calculus in non-integer dimensional
spaces (i.e., spaces embedded in Euclidean space), thus allowing a homogenization;
by a slight abuse of terminology stemming from quantum mechanics (Li and
Ostoja-Starzewski 2009b), this method has originally been called “dimensional
regularization.” With this approach the fractional integrals over fractal sets (i.e.,
fractal material domains) are transformed to equivalent continuous integrals over
Euclidean sets (Jumarie 2009). This transformation produces balance laws that are
expressed in continuous form, thereby simplifying their mathematical manipulation
both analytically and computationally. A product measure is used to achieve this
transformation.

The idea goes back to V.E. Tarasov (2005a,b,c), who developed continuum-type
equations for conservation of mass, linear and angular momentum, and energy of
fractals and studied several fluid mechanics and wave problems (Tarasov 2005a,b,c,
2010). An advantage of this approach is that it admits upper and lower cutoffs
of fractal scaling, so that one effectively deals with a physical pre-fractal rather
than a purely mathematical fractal lacking any cutoffs. The original formulation
of Tarasov was based on the Riesz measure, which is more appropriate for
isotropic fractal media than for anisotropic fractal media. To represent more general
heterogeneous media, Li and Ostoja-Starzewski introduced a model based on a
product measure (Li and Ostoja-Starzewski 2010, 2011; Ostoja-Starzewski et al.
2016). Since this measure has different fractal dimensions in different directions,
it grasps the anisotropy of fractal geometry better than the Tarasov formulation
for a range of length scales between the lower and upper cutoffs (Li and Ostoja-
Starzewski 2010; Ostoja-Starzewski et al. 2016). The great promise is that the
conventional requirement of continuum mechanics, the separation of scales, can
be removed with continuum-type field equations still employed. This approach
was applied, among others, to thermomechanics with internal variables, extremum
principles of elasticity and plasticity, turbulence in fractal porous media, dynamics
of fractal beams, fracture mechanics, and thermoelasticity (Ostoja-Starzewski 2007,
2008a, 2009; Jumarie 2009; Oldham and Spanier 1974; Ostoja-Starzewski et al.
2014).

Homogenization of Fractal Media

Mass Power Law and Product Measure

The basic approach to homogenization of fractal media by continua originated with
Tarasov (2005a,b, 2010). He started to work in the setting where the mass obeys a
power law

m.R/ � RD; D < 3; (1)
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with R being the length scale of measurement (or resolution) and D the fractal
dimension of mass in the three-dimensional (3D) Euclidean space E

3. Note that the
relation (1) can be applied to a pre-fractal, i.e., a fractal-type, physical object with
lower and upper cutoffs. More specifically, Tarasov used a fractional integral to
represent mass in a region W embedded in E

3. In the subsequent work, we focused
on a general anisotropic, fractal medium governed, in place of (1), by a more general
power law relation with respect to each coordinate (Li and Ostoja-Starzewski 2010,
2011; Ostoja-Starzewski et al. 2016) (which, in fact, had originally been recognized
by Tarasov)

m.x1; x2; x3/ � x1
˛1x2

˛2x3
˛3 : (2)

Then, the mass is specified via a product measure

m.W/ D

Z
W
�.x1; x2; x3/d l˛1.x1/d l˛2.x2/d l˛3.x3/; (3)

while the length measure along each coordinate is given through transformation
coefficients c.k/1

d l˛k .xk/ D c
.k/
1 .˛k; xk/dxk; k D 1; 2; 3 (no sum). (4)

Equation (3) implies that the mass fractal dimensionD equals ˛1C˛2C˛3 along the
diagonals, jx1j D jx2j D jx3j, where each ˛k plays the role of a fractal dimension
in the direction xk . While it is noted that, in other directions, the anisotropic fractal
body’s fractal dimension is not necessarily the sum of projected fractal dimensions,
an observation from an established text on mathematics of fractals is recalled here
(Falconer 2003): Many fractals encountered in practice are not actually products,
but are product-like. In what follows, we expect the equality between D D ˛1 C

˛2 C˛3 to hold for fractals encountered in practice, whereas a rigorous proof of this
property remains an open research topic.

This formulation has four advantages over the original approach (Li and Ostoja-
Starzewski 2009b, 2011):

1. It does not involve a left-sided fractional derivative (Riemann-Liouville), which
does not give zero when applied to a constant function, a rather unphysical
property.

2. The mechanics-type derivation of wave equations (in 3D, 2D, or 1D) yields the
same result as that obtained from the variational-type derivation.

3. The 3D wave equation cleanly reduces to the 1D wave equation.
4. It offers a consistent way of handling not only generally anisotropic fractals but

also isotropic ones, overall developing a systematic formulation of continuum
mechanics. In particular, see the “fractal derivative” (13) below.
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Product Measure

The relation (4) implies that the infinitesimal fractal volume element, dVD , is

dVD D dl˛1.x1/d l˛2.x2/d l˛3.x3/ D c
.1/
1 c

.2/
1 c

.3/
1 dx1dx2dx3 D c3dV3;

with c3 D c
.1/
1 c

.2/
1 c

.3/
1 .

(5)

In fact, it plays the role of a fractal representative volume element (RVE), which
is mapped into the RVE of non-fractal (conventional) type. Note that (i) this map is
different from the scaling of a random microstructure toward a deterministic volume
element in non-fractal media (Ostoja-Starzewski et al. 2016), and (ii) the material
spatial randomness is not explicitly introduced into the formulation discussed here.

For the surface transformation coefficient c.k/2 , we consider a cubic volume
element, dV3 D dx1dx2dx3, whose surface elements are specified by the normal
vector along the axes i , j , or k in Fig. 1. Therefore, c.k/2 associated with the surface

S
.k/

d is

c
.k/
2 D c

.i/
1 c

.j /
1 D c3=c

.k/
1 ; i ¤ j; i; j ¤ k: (6)

The sum d.k/ D ˛i C ˛j ; i ¤ j; i; j ¤ k, is the fractal dimension of the surface

S
.k/

d along the diagonals jxi j D jxj j in S.k/d . This equality is not necessarily true
elsewhere, but is expected to hold for fractals encountered in practice (Falconer
2003) as discussed previously for the relationship between D and ˛1 C ˛2 C ˛3.
Figure 1 illustrates the relationship among the line transformation coefficients c.k/1
and respective surface (c.k/2 ) and volume (c3) transformation coefficients. We note
that, whenD ! 3, with each ˛i ! 1, the conventional concept of mass is recovered
(Ostoja-Starzewski et al. 2014).

j

k

Volume VD →

→
Surface

i

S(i)
d

S(i)
d S(j)

d

S(j)
d

S(k)
d

S(k)
d

c3 = c(i) . c(j) . c(k)
1 1 1

c(i) =  c(j)c(k)
12 1

=
c(i)
1

c3

→ c(j) =  c(i)c(k)
12 1

=
c(j)
1

c3

→ c(k) =  c(i)c(j)
12 1

=
c(k)
1

c3

Fig. 1 Roles of the transformation coefficients c.i/1 , c.k/2 , and c3 in homogenizing a fractal body of
volume dVD , surface dSd , and lengths dl˛ into a Euclidean parallelpiped of volume dV3, surface
dS2, and lengths dxk
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We adopt the modified Riemann-Liouville fractional integral of Jumarie (2009,
2005) for c.k/1 :

c
.k/
1 D ˛k

�
lk � xk

lk0

�˛k�1

; k D 1; 2; 3; (no sum on k), (7)

where lk is the total length (integral interval) along xk , while lk0 is the characteristic
length in the given direction (e.g., the mean pore size). In the product measure
formulation, the resolution length scale is

R D
p
lklk: (8)

Examining c.k/1 in two special cases, we observe:

1. Uniform mass: The mass is distributed isotropically in a cubic region with a
power law relation (9). Denoting the reference mass density by �0 and the cubic
length by l , we obtain

m.W/ D �0l
˛1 l˛2 l˛3=lD�3

0 D �0l
˛1C˛2C˛3=lD�3

0 D �0l
D=lD�3

0 ; (9)

which is consistent with the mass power law (1). In general, however,
D ¤ ˛1 C ˛2 C ˛3.

2. Point mass: The distribution of mass is concentrated at one point, so that the mass
density is denoted by the Dirac function �.x1; x2; x3/ D m0ı.x1/ı.x2/ı.x3/. The
fractional integral representing mass becomes

m.W/ D ˛1˛2˛3
l˛1�1l˛2�1l˛3�1

lD�3
0

m0 D ˛1˛2˛3

�
l

l0

�D�3

m0; (10)

When D ! 3 (˛1; ˛2; ˛3 ! 1), m.W/ ! m0 and the conventional concept of
point mass is recovered (Ostoja-Starzewski et al. 2014). Note that using the Riesz
fractional integral is not well defined except when D D 3 (by letting 00 D 1 in
m.W/ D ˛1˛2˛30

D�3m0), which, on the other hand, shows a non-smooth transition
of mass with respect to its fractal dimension. This fact also supports our choice of
the non-Riesz-type expressions for c.k/1 in (14).

Note that our expression for c.k/1 shows that the length dimension, and hence the

mass m would involve an unusual physical dimension if it were replaced by c.k/1 D

˛k .lk � xk/
˛k�1. This behavior is understandable since, mathematically, a fractal

curve only exhibits a finite measure with respect to a fractal dimensional length
unit (Mandelbrot 1982). Of course, in practice, we prefer physical quantities to have
usual dimensions, and so we work with nondimensionalized coefficients c.k/1 .

A simple generic example of an anisotropic, product-like fractal is the so-called
Carpinteri column (Carpinteri et al. 2004), a parallelepiped domain in E

3, having
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mathematically well-defined Hausdorff dimensions in all three directions. It has
been proposed as a model of concrete columns which are essentially composite
structures featuring oriented fractal-type microstructures. The square cross section
of the column is a Sierpiński carpet, which is “fractally” swept along the longitudi-
nal direction in conjunction with a Cantor ternary set (see Ostoja-Starzewski et al.
2014 for a discussion).

Another example is offered by the rings of Saturn. If considered as random fields,
the rings possess (i) statistical stationarity in time, (ii) statistical isotropy in space,
and (iii) statistical spatial nonstationarity. The reason for (i) is an extremely slow
decay of rings relative to the time scale of orbiting around Saturn. The reason for
(ii) is the obviously circular, albeit radially disordered and fractal pattern of rings;
fractality is present in the radial but not polar coordinate (Li and Ostoja-Starzewski
2015). The reason for (iii) is the lack of invariance with respect to arbitrary shifts in
Cartesian space which, on the contrary, holds true in, say, a basic model of turbulent
velocity fields.

Fractional Integral Theorems and Fractal Derivatives

In order to develop continuum mechanics of fractal media, we introduce the notion
of fractal derivatives with respect to the coordinate xk and time t . The definitions
of these derivatives follow naturally from the fractional generalization of two basic
integral theorems that are employed in continuum mechanics (Tarasov 2005c, 2010;
Li and Ostoja-Starzewski 2009b; Demmie and Ostoja-Starzewski 2011): Gauss
theorem, which relates a volume integral to the surface integral over its bounding
surface, and the Reynolds transport theorem, which provides an expression for the
time rate of change of any volume integral in a continuous medium.

Consider the surface integral

Z
@W

f � ndSd D

Z
@W

fknkdSd ; (11)

where f.D fk/ is any vector field and n.D nk/ is the outward normal vector field to
the surface @W which is the boundary surface for some volume W , and dSd is the
surface element in fractal space. The notation .D Ak/ is used to indicate that the Ak
are components of the vector A.

To compute (11), we relate the integral element ndSd to its conventional surface
element ndS2 in E

3 via the fractal surface coefficients c.k/2 , k D 1; 2; 3, as shown in
Fig. 1. This figure shows that the infinitesimal element ndSd can be expressed as a
linear combination of the nkc

.k/
2 dS2, k D 1; 2; 3 (no sum).

By the conventional Gauss theorem, and noting that c.k/2 does not depend on the
coordinate xk , (11) becomes

Z
@W

f � ndSd D

Z
@W

fknkdSd D

Z
W
Œfkc

.k/
2 �;k dV3 D

Z
W

fk;k

c
.k/
1

dVD: (12)



912 M. Ostoja-Starzewski et al.

In (12) and elsewhere, we employ the usual convention that .�/;k is the partial
derivative of .�/ with respect to xk . Next, based on (11) and the above, we define
the fractal derivative (fractal gradient), rD

k as

rD� D ekrD
k � or rD

k � D
1

c
.k/
1

@�

@xk
(no sum on k); (13)

where ek is the base vector. With this definition, the Gauss theorem for fractal media
becomes

Z
@W

f � ndSd D

Z
W

rD
k fkdVD D

Z
W

�
rD � f

�
dVD: (14)

It is straightforward to show that the fractal operator, rD
k , commutes with

the fractional integral operator, is its inverse, and satisfies the product rule for
differentiation (the Leibnitz property). Furthermore, the fractal derivative of a
constant is zero. This latter property shows that a fractal derivative and a fractional
derivative are not the same since the fractional derivative of a constant does not
always equal to zero (Oldham and Spanier 1974).

To define the fractal material time derivative, we consider the fractional general-
ization of Reynolds transport theorem. Consider any quantity, P , accompanied by
a moving fractal material system, Wt , with velocity vector field v .D vk/. The time
derivative of the volume integral of P over Wt is

d

dt

Z
Wt

PdVD: (15)

Using the Jacobian (J ) of the transformation between the current configuration (xk)
and the reference configuration (Xk), the relationship between the corresponding
volume elements (dVD D JdV 0

D), and the expression for the time derivative of J ,
it is straightforward to show that

d

dt

Z
Wt

PdVD D

Z
Wt

�
@P

@t
C .vkP / ;k

�
dVD

D

Z
Wt

�
@P

@t
C c

.k/
1 rD

k .vkP /

�
dVD:

(16)

The result given by the first equality is identical to the conventional representation.
Hence, the fractal material time derivative and the conventional material time
derivative are the same,

�
d

dt

�
D

P D
@P

@t
C vkP;k D

@P

@t
C c

.k/
1 vkr

D
k P: (17)
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Equation (17) is the Reynolds theorem for fractal media; its form is similar to
the conventional one; an alternative form (Li and Ostoja-Starzewski 2010) of the
fractional Reynolds transport theorem that involves surface integrals is different
from the conventional one and rather complicated. This difference results from
the fractal volume coefficient c3 depending on all the coordinates, whereas in the
derivation of the Gauss theorem (14), c.k/2 is independent of xk .

Vector Calculus on Anisotropic Fractals

Motivated by the fractal derivative (13), we have the fractal divergence of a vector
field (f)

divf D rD � f or rD
k fk D

1

c
.k/
1

@fk

@xk
(18)

and the fractal curl operator

curlf D rD � f or ejkir
D
k fi D ejki

1

c
.k/
1

@fi

@xk
: (19)

The four fundamental identities of the conventional vector calculus can now be
shown to carry over in terms of these new operators:

(i) The divergence of the curl of a vector field f:

div � curlf D emrD
m � ej ejkirD

k fi D
1

c
.j /
1

@f

@xj

"
ejki

1

c
.k/
1

@fi

@xk

#
D 0: (20)

where eijk is the permutation tensor.
(ii) The curl of the gradient of a scalar field �:

curl � .grad�/ D ei eijkrD
j .r

D
k �/ D ei eijk

1

c
.j /
1

@

@xj

"
1

c
.k/
1

@�

@xk

#
D 0: (21)

In both cases above, we can pull 1=c.k/1 in front of the gradient because the

coefficient c.k/1 is independent of xj .
(iii) The divergence of the gradient of a scalar field � is written in terms of the

fractal gradient as

div � .grad�/ D rD
j � rD

k � D
1

c
.j /
1

@

@xj

"
1

c
.j /
1

@�

@xj

#
D

1

c
.j /
1

"
@�;j

c
.j /
1

#
;j , (22)

which gives an explicit form of the fractal Laplacian.
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(iv) The curl of the curl operating on a vector field f:

curl�.curlf/ D epeprjrD
r .ejkir

D
k fi / D eprD

r

�
rD
p fr

	
�eprD

r rD
r fp : (23)

Next, the Helmholtz decomposition for fractals can be proved just as in the
conventional case: a vector field F with known divergence and curl, none of which
equal to zero and which is finite and uniform and vanishes at infinity, may be
expressed as the sum of a lamellar vector U and a solenoidal vector V

F D U C V (24)

with the operations

curlU D 0, divV D 0 (25)

understood in the sense of (18) and (19), respectively.
These results have recently been used (Ostoja-Starzewski 2012) to obtain

Maxwell equations modified to generally anisotropic fractal media using two inde-
pendent approaches: a conceptual one (involving generalized Faraday and Ampère
laws) and the one directly based on a variational principle for electromagnetic
fields. In both cases the resulting equations are the same, thereby providing a self-
consistent verification of our derivations. Just as Tarasov (2010), we have found that
the presence of anisotropy in the fractal structure leads to a source/disturbance as
a result of generally unequal fractal dimensions in various directions, although, in
the case of isotropy, our modified Maxwell equations are different. For most recent
developments, see Tarasov (2014, 2015a,b).

Homogenization Process for Fractal Media

The formula (3) for fractal mass expresses the mass power law using fractional inte-
grals. From a homogenization standpoint, this relationship allows an interpretation
of the fractal medium as an intrinsically discontinuous continuum with a fractal
metric embedded in the equivalent homogenized continuum model as shown in
Fig. 2. In this figure, dl˛i , dSd , and dVD represent the line, surface, and volume
elements in the fractal medium, while dxi , dS2, and dV3, respectively, denote
these elements in the homogenized continuum model. The coefficients c.i/1 , c.k/2 ,
and c3 provide the relationship between the fractal medium and the homogenized
continuum model:

dl˛i D c
.i/
1 dxi ; dSd D c

.k/
2 dS2; dVD D c3dV3 (no sum). (26)

Standard image analysis techniques (such as the “box method” or the “sausage
method” Stoyan and Stoyan 1994) allow a quantitative calibration of these coef-
ficients for every direction and every cross-sectional plane. In a non-fractal medium
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Fine
microstructure

Homogenized
micropolar point

Fractal RVE

Pre-fractals with cutoffs

Homogenized RVE

Fractal

L

L

log(R)

(dlD,dSd,dVD)

(dx,dS2,dV3)

c1,c2,c3

log(m)

l

l

Fig. 2 Illustration of the two-level homogenization processes: fractal effects are present between
the resolutions l and L in a fractal RVE with an Apollonian packing porous microstructure

where all the c coefficients in (26) are unity, one recovers conventional forms
of the transport and balance equations of continuum mechanics. As discussed in
section “Fractal Angular Momentum Equation,” the presence of fractal geometric
anisotropy (c.j /1 ¤ c

.k/
1 , j ¤ k, in general), as reflected by differences between the

˛’s, leads to micropolar effects; see also Li and Ostoja-Starzewski (2010, 2011).
The above formulations provide one choice of calculus on fractals, i.e., through

product integral (3), reflecting the mass scaling law (2) of fractal media. The
advantage of our approach is that it is connected with conventional calculus through
coefficients c1; c2; and c3 and therefore well suited for development of continuum
mechanics and partial differential equations on fractal media as we shall see in the
next sections. Besides, the product formulation allows a decoupling of coordinate
variables, which profoundly simplifies the Gauss theorem (14) and many results
thereafter. Other choices of calculus on fractals have been discussed in Ostoja-
Starzewski et al. (2014).
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ContinuumMechanics of Fractal Media

In the preceding section, we discussed product measures and fractional integrals,
generalized the Gauss and Reynolds theorems to fractal media, and introduced
fractal derivatives. We now have the framework to develop continuum mechanics
in a fractal setting. We proceed just like it in classical continuum mechanics but
employ fractional integrals expressed in terms of fractal derivatives.

In light of the discussion in section “Homogenization Process for Fractal Media”
of the difference between fractal media and classical continuum mechanics, the
definitions of stress and strain are to be modified appropriately. First, with reference
to the modified concept of surface elements, we have the Cauchy tetrahedron of
Fig. 3. Next, we specify the relationship between surface force, FS (D F S

k ), and the
Cauchy stress tensor � (D �kl ) using fractional integrals as

F S
k D

Z
S

�lknldSd ; (27)

where nl are the components of the outward normal n to S . On account of (26)2,
this force becomes

F S
k D

Z
S

�lknldSd D

Z
S

�lknlc
.l/
2 dS2: (28)

Fig. 3 Cauchy’s tetrahedron of a fractal body interpreted via product measures
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To specify the strain, we observe, again using (26)1 and the definition of fractal
derivative (13), that

@

@l˛k
D
@xk

@l˛k

@

@xk
D

1

c
.k/
1

@

@xk
D rD

k : (29)

Thus, for small deformations, we define the strain, "ij , in terms of the displacement
uk as

"ij D
1

2

�
rD
j ui C rD

i uj
	

D
1

2

"
1

c
.j /
1

ui ;j C
1

c
.i/
1

uj ;i

#
(no sum). (30)

As shown in Li and Ostoja-Starzewski (2010), this definition of strain results in
the same equations governing wave motion in linear elastic materials when derived
by a variational approach as when derived by a mechanical approach, also see
section “Fractal Wave Equations.”

In the following, we apply the balance laws for mass, linear momentum, energy,
and entropy production to the fractal medium in order to derive the corresponding
continuity equations.

Fractal Continuity Equation

Consider the equation for conservation of mass for W

d

dt

Z
W
�dVD D 0; (31)

where � is the density of the medium. Using the fractional Reynolds transport
theorem (17), since W is arbitrary, we find, in terms of the fractal derivative (13),

d�

dt
C �c

.k/
1 rD

k vk D 0: (32)

Fractal Linear Momentum Equation

Consider the balance law of linear momentum for W ,

d

dt

Z
W
�vdVD D FB C FS ; (33)

where FB is the body force, and FS is the surface force given by (28). In terms of
the components of velocity, vk , and body force density, Xk , (33) can be written as
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d

dt

Z
W
�vkdVD D

Z
W
XkdVD C

Z
@W

�lknldSd : (34)

Using the Reynolds transport theorem and the continuity equation (32), the left-hand
side is changed to

d

dt

Z
W
�vkdVD D

Z
W

�
@�vk

@t
C .vkvl�/ ;l

�
dVD

D

Z
W
�

�
@vk

@t
C vlvk;l

�
dVD D

Z
W
�
dvk

dt
dVD:

(35)

Next, by the fractal Gauss theorem (14) and localization, we obtain the fractal linear
momentum equation

� Pvk D Xk C rD
l �lk: (36)

Fractal Angular Momentum Equation

The conservation of angular momentum in a fractal medium is stated as

d

dt

Z
W
�eijkxj vkdVD D

Z
W
eijkxjXkdVD C

Z
@W

eijkxj �lknldSd : (37)

Using (37) and (14) yields

eijk
�jk

c
.j /
1

D 0: (38)

It was shown in Li and Ostoja-Starzewski (2011) and Ostoja-Starzewski et al. (2016)
that the presence of an anisotropic fractal structure is reflected by differences in the
fractal dimensions ˛i in different directions, which implies that c.j /1 ¤ c

.k/
1 , j ¤ k,

in general. Therefore, the Cauchy stress is generally asymmetric in fractal media,
indicating that the micropolar effects should be accounted for and (38) should be
augmented by the presence of couple stresses. It is important to note here that
a material may have anisotropic fractal structure yet be isotropic in terms of its
constitutive laws (Joumaa and Ostoja-Starzewski 2011).

Focusing now on physical fractals (so-called pre-fractals), we consider a body
that obeys a fractal mass power law (4) between the lower and upper cutoffs. The
choice of the continuum approximation is specified by the resolution R. Choosing
the upper cutoff, we arrive at the fractal representative volume element (RVE)
involving a region up to the upper cutoff, which is mapped onto a homogenized
continuum element in the whole body. The micropolar point homogenizes the very
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fine microstructures into a rigid body (with 6 degrees of freedom) at the lower cutoff.
The two-level homogenization processes are illustrated in Fig. 2.

To determine the inertia tensor i at any micropolar point, we consider a rigid
particle p having a volume P , whose angular momentum is

�A D

Z
P
.x � xA/ � v.x; t /d�.x/: (39)

Taking v.x; t / as a helicoidal vector field (for some vector ! 2 R
3), v.x; t / D

v.xA; t/C!�.x � xA/, we have found (Ostoja-Starzewski et al. 2016) all (diagonal
and off-diagonal) components of ikl as

Ikl D

Z
P
Œxmxmıkl � xkxl ��.x/dVD: (40)

Here we use Ikl (Eringen uses ikl ) in the current state so as to distinguish it from
IKL in the reference state, the relation between both being given by Eringen (1999)
Ikl D IKL�kK�lL, where �kK is a microdeformation tensor, or deformable director.
For the entire fractal particle P , we have

d

dt

Z
P
�IKLdVD D 0; (41)

which, in view of (17), results in the fractal conservation of microinertia

d

dt
Ikl D Ikrvlr C Ilrvkr : (42)

In micropolar continuum mechanics (Nowacki 1986; Eringen 1999), one needs a
couple-stress tensor � and a rotation vector ' augmenting, respectively, the Cauchy
stress tensor � (thus denoted so as to distinguish it from the symmetric � ) and the
deformation vector u. The surface force and surface couple in the fractal setting can
be specified by fractional integrals of � and �, respectively, as

T Sk D

Z
@W

�iknidSd ; MS
k D

Z
@W

�iknidSd : (43)

The above is consistent with the relation of force tractions and couple tractions to
the force stresses and couple stresses on any surface element dSd

tk D �ikni ; mk D �ikni : (44)

Now, proceeding in a fashion similar as before, we obtain (36) and the fractal
angular momentum equation
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eijk

c
.j /
1

�jk C rD
j �ji C Yi D Iij Pwj : (45)

In the above, Yi is the body force couple, while vk .D Puk/ and wk .D P'k/ are the
deformation and rotation velocities, respectively.

Fractal Energy Equation

Globally, the conservation of energy has the following form

d

dt

Z
W
.e C k/dVD D

Z
W
.Xivi C Yiwi / dVD C

Z
@W

.ti vi Cmiwi � qini / dSd ;

(46)
where k D 1

2

�
�vivi C Iijwiwj

�
is the kinetic energy density, e the internal energy

density, and q (D qi ) heat flux through the boundary of W . As an aside we note
that, just like in conventional (non-fractal media) continuum mechanics, the balance
equations of linear momentum (36) and angular momentum (47) can be consistently
derived from the invariance of energy (48) with respect to rigid body translations
(vi ! vi C bi ; wi ! wi ) and rotations (vi ! vi C eijkxj!k; wi ! wi C !i ),
respectively.

To obtain the expression for the rate of change of internal energy, we start from

Z
W
. Pe C � vi Pvi C Iijwi Pwi /dVD DZ

W

h
Xivi C Yiwi C rD

j .�j ivj C �jiwj /
i
dVD �

Z
W

rD
i qidVD;

(47)

and note (36) and (47), to find

Pe D �j i

�
rD
j vi � ekj iwk

	
C �jir

D
j wi � rD

i qi : (48)

Next, introducing the infinitesimal strain tensor and the curvature tensor in fractal
media

	ji D rD
j ui � ekj i'k; 
j i D rD

j 'i ; (49)

we find that the energy balance (52) can be written as

Pe D �ij P	ij C �ij P
ij : (50)

Assuming e to be a state function of 	ij and 
ij only and assuming �ij and �ij not
to be explicitly dependent on the temporal derivatives of 	ij and 
ij , we find
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�ij D
@e

@	ij
�ij D

@e

@
ij
: (51)

which shows that, just like in non-fractal continuum mechanics, also in the fractal
setting,

�
�ij ; 	ij

�
and

�
�ij ; 
ij

�
are conjugate pairs.

Fractal Second Law of Thermodynamics

To derive the field equation of the second law of thermodynamics in a fractal
medium B .!/, we begin with the global form of that law in the volume VD , having
a Euclidean boundary @W , that is

PS D PS.r/ C PS.i/ with PS.r/ D
PQ

T
; PS.i/ � 0; (52)

where PS , PS.r/ and PS.i/ stand, respectively, for the total, reversible, and irreversible
entropy production rates in VD . Equivalently,

PS � PS.r/: (53)

Since these two rates are extensive quantities, we obtain

Z
W

�
d

dt
s dVD D

d

dt

Z
W

�s dVD � �

Z
@W

qknk

T
dSd D �

Z
W

rD
k

�qk
T

	
dVD;

(54)
which yields the local form of the second law

�
ds

dt
� �rD

k

�qk
T

	
�

rD
k qk;k

T
C
qkr

D
k T

T 2
: (55)

Just like in thermomechanics of non-fractal bodies (Ziegler 1983; Maugin 1999),
we now introduce the rate of irreversible entropy production �Ps.i/ which, in view of
(57), gives

0 � �Ps.i/ D �Ps C
rD
k qk;k

T
�
qkr

D
k T

T 2
C �h: (56)

Here with s we denote specific entropies (i.e., per unit mass). Next, we recall the
classical relation between the free energy density  , the internal energy density e,
the entropy s, and the absolute temperature T :  D e � T s. This allows us to write
for time rates of these quantities P D Pe� s PT �T Ps. On the other hand, with  being
a function of the strain 	ji and curvature-torsion 
ji tensors, the internal variables
˛ij (strain type) and �ij (curvature-torsion type), and temperature T , we have
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� P D �
@ 

@	ij
P	ij C �

@ 

@˛ij
P̨ ij C �

@ 

@
ij
P
ij C �

@ 

@�ij
P�ij C �

@ 

@T
PT : (57)

In the above we have adopted the conventional relations giving the (external and
internal) quasi-conservative Cauchy and Cosserat (couple) stresses as well as the
entropy density as gradients of  

�
.q/

ij D �
@ 

@"ij
ˇ
.q/

ij D �
@ 

@˛ij
�
.q/

ij D �
@ 

@
ij
�
.q/

ij D �
@ 

@�ij
s D �

@ 

@T
(58)

This is accompanied by a split of total Cauchy and micropolar stresses into their
quasi-conservative and dissipative parts

�ij D �
.q/

ij C �
.d/
ij ; �ij D �

.q/

ij C �
.d/
ij ; (59)

along with relations between the internal quasi-conservative and dissipative stresses

ˇ
.q/

ij D �ˇ
.d/
ij ; �

.q/

ij D ��
.d/
ij : (60)

In view of (59) and (60), we obtain

�
�

P C s PT
�

D � . Pe � T Ps/ D �
.q/

ij P	ij C ˇ
.q/

ij ˛ij C �
.q/

ij P
ij C �
.q/

ij
P�ij C �h: (61)

On account of the energy balance, this is equivalent to

T �Ps D �
.d/
ij P	ij C ˇ

.d/
ij P̨ ij C �

.d/
ij P
ij C �

.d/
ij

P�ij � rD
k qk C �h: (62)

Recalling (61), we find the local form of the second law in terms of time rates of
strains and internal parameters

0 � T �Ps.i/ D �
.d/
ij P	ij C ˇ

.d/
ij P̨ ij C �

.d/
ij P
ij C �

.d/
ij

P�ij �
qkr

D
k T

T
C �h: (63)

The above is a generalization of the Clausius-Duhem inequality to fractal dissipative
media with internal parameters. Upon dropping the internal parameters (which may
well be the case for a number of materials), the terms ˇ.d/ij P̨ ij and �.d/ij P�ij drop

out, whereas, upon neglecting the micropolar effects, the terms �.d/ij P
ij and �.d/ij P�ij
drop out.

For non-fractal bodies without internal parameters, the stress tensor �ij reverts
back to �ij , and (63) reduces to the simple well-known form Ziegler (1983)

0 � T �Ps.i/ D �
.d/
ij P	ij �

T;k qk

T
C �h: (64)
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Interestingly, the fractal gradient (13) appears only in the thermal dissipation
term. In fact, this derivative arises in processes of heat transfer in a fractal
rigid conductor and coupled thermoelasticity of fractal deformable media
(Oldham and Spanier 1974).

Fractal Wave Equations

Just like in conventional continuum mechanics, the basic continuum equations
for fractal media presented above have to be augmented by constitutive relations.
At this point, we expect that the fractal geometry influences configurations of
physical quantities like stress and strain, but does not affect the physical laws (like
conservation principles) and constitutive relations that are inherently due to material
properties. This expectation is supported in two ways:

• A study of scale effects of material strength and stress from the standpoint of
fractal geometry which is confirmed by experiments involving both brittle and
plastic materials (Carpinteri and Pugno 2005)

• Derivations of wave equations through mechanical and variational approaches,
respectively (Demmie and Ostoja-Starzewski 2011), as shown below

Elastodynamics of a Fractal Timoshenko Beam

Analogous results, also exhibiting self-consistency, were obtained in elastodynam-
ics of a fractally structured Timoshenko beam (Li and Ostoja-Starzewski 2009a).
First recall that such a beam model has two degrees of freedom .q1; q2/ at each point:
the transverse displacement q1 D w and the rotation q2 D '. In the mechanical
approach, the beam equation can be derived from the force and moment balance
analysis. Thus, beginning with the expressions of shear force (V ) and bending
moment (M )

V D 
�A
�
rD
x w � '

�
; M D �EIrD

x '; (65)

we find

�A Rw D rD
x V; �I R' D V � rD

x M: (66)

which lead to

�A Rw D rD
x




�A

�
rD
x w � '

��
;

�I R' D rD
x

�
EIrD

x '
�

C 
�A
�
rD
x w � '

�
:

(67)
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The kinetic energy is

T D
1

2
�

Z l

0

h
I . P'/2 C A . Pw/2

i
dlD; (68)

while the potential energy is

U D
1

2

Z l

0

"
EI

�
@'

@lD

�2
C 
�A

�
@w

@lD
� '

�2#
dlD

D
1

2

Z l

0

h
EIc�2

1 .';x /
2 C 
�A

�
c�1
1 w;x �'

�2i
c1dx:

(69)

Now, the Euler-Lagrange equations

@

@t

�
@L

@ Pqi

�
C

3X
jD1

@

@xj

"
@L

@
�
qi;j

�
#

�
@L

@qi
D 0 (70)

result in the same as above.
In the case of elastostatics and when the rotational degree of freedom ceases to

be independent (' D @w=@lD D rD
x w), we find the equation of a fractal Euler-

Bernoulli beam

rD
x rD

x

�
EIrD

x rD
x w

�
D 0; (71)

which shows that

M D EIrD
x rD

x w: (72)

The relationship between the bending moment (M ) and the curvature (rD
x rD

x w)
still holds, while c1 enters the determination of curvature

�
rD
x rD

x w D

c�1
1

�
c�1
1 w;x

�
;x

�
.

In a nutshell, the fractional power law of mass implies a fractal dimension
of scale measure, so the derivatives involving spatial scales should be
modified to incorporate such effect by postulating c1; c2; and c3 coefficients,
according to the material body being embedded in a 1D, 2D, or 3D Euclidean
space.

More work was done on waves in linear elastic fractal solids under small motions.
Several cases of isotropic (Joumaa and Ostoja-Starzewski 2011) or anisotropic
(with micropolar effects) (Joumaa et al. 2014; Joumaa and Ostoja-Starzewski 2016)
media have been considered through analytical and computational methods. It
was found on the mathematical side that fractal versions of harmonic, Bessel,
and Hankel functions. The study (Joumaa and Ostoja-Starzewski 2011) provided
the basis for a study of wave motion in a human head, where the brain, while
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protected by skull bones, is actually surrounded by a cerebrospinal fluid (so-called
CSF) and has fractal geometric characteristics (Joumaa and Ostoja-Starzewski
2013).

Elastodynamics in 3D

First, the equations of motion of 3D elastodynamics can be determined for finite
strain motions by extending the procedure of classical continuum mechanics. To
this end, begin with the action functional of a fractal solid W isolated from external
interactions

ıI D ı

Z t2

t1

ŒK � E �dt D 0; (73)

where K and E are the kinetic and internal energies

K D
1

2

Z
W
�vividVD E D

Z
W
�edVD: (74)

Thus, we have a functional, which can be rewritten in fractal space-time (e being
the specific, per unit mass, internal energy density) as

0 D ıI D ı

Z t2

t1

Z
W

�
1

2
�v2k � �e

�
dVDdt D ı

Z t2

t1

Z
W

�
�
1

2
v2k � �e

�
dVDdt:

(75)
Analogous to the strain of (30), the deformation gradient is

FkI D rD
I xk �

1

c
.I /
1

xk;I : (76)

Assuming that the specific energy density e depends only on the deformation
gradient, and that � has no explicit dependence on time, leads to:

(i) The boundary conditions

@W�
@e

@FkI
NI D 0 or ıxk D 0 on @W (77)

(ii) The kinematic constraints ıxk D 0 at t D t1 and t D t2
The Hamilton principle for (73) implies the equation governing motion in a

fractal solid under finite strains

rD
I

�
�
@e

@FkI

�
� �

dvk

dt
D 0: (78)
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Next, in fractal bodies without internal dissipation, e plays the role of a potential

TkI D �
@e

@FkI
; (79)

where TkI is the first Piola-Kirchhoff stress tensor, and (78) becomes

rD
I TkI � �

dvk

dt
D 0 or

1

c
.I /
1

TkI ;I ��
dvk

dt
D 0: (80)

Restricting the motion to small deformation gradients, TkI becomes the Cauchy
stress tensor, and we recover the linear momentum equation (37). Generalizing this
to the situation of W interacting with the environment (i.e., subject to body forces),
ı .I CW � P/ D 0, we obtain

rD
I TkI C �

�
bk �

dvk

dt

�
D 0: (81)

The above formulation was specialized in Demmie and Ostoja-Starzewski (2011)
to 1D models and focused on nonlinear waves, demonstrating how the governing
equations might be solved by the method of characteristics in fractal space-time.
We also studied shock fronts in linear viscoelastic solids under small strains. We
showed that the discontinuity in stress across a shock front in a fractal medium is
identical to the classical result.

Related Topics

Extremum and Variational Principles in Fractal Bodies

Just like in preceding sections, the dimensional regularization approach can also
be applied to other statements in continuum/solid mechanics involving integral
relations. For example, the Maxwell-Betti reciprocity relation of linear elasticityR
@W
t�i ui dS2 D

R
@W
tiu�

i dS2 is generalized for fractal media to

Z
@W

t�i ui dSd C

Z
@W

m�
i 'idSd D

Z
@W

tiu
�
i dSd C

Z
@W

mi'
�
i dSd ; (82)

so as to read in E
3:

Z
@W

t�i ui c2dS2 C

Z
@W

m�
i 'i c2dS2 D

Z
@W

tiu
�
i c2dS2 C

Z
@W

m�
i 'i c2dS2: (83)

The reciprocity relation (82) is proved by appealing to the Green-Gauss theorem
and the Hooke law (�ij D Cijkl "kl ) and proceeding just like in the conventional
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continuum elasticity. As an application, consider the classical problem of calculation
of the reduction in volumeV of a linear elastic isotropic body (of bulk modulus 
)
due to two equal, collinear, opposite forces F , separated by a distance L. Clearly, in
the classical case, one does not need the micropolar term and, as discussed in Li and
Ostoja-Starzewski (2009a), finds V D FL=3
. On the other hand, for a fractal
body, given the loading �ij D �pıij and �ij D 0, the integrals involving scalar
products of couple traction with rotation vanish, and we obtain

p V c3 D p
FL

3

c1: (84)

Recalling (6) and assuming that the opposite forces are applied parallel to one of
the axis of the coordinate system (say, xk) yield V D FL=3
c

.k/
2 . This can be

evaluated numerically for a specific material according to (6).
Next, suppose we focus on situations where couple-stress effects are negligible.

Then, we recall the concept of a statically admissible field as a tensor function
�ij .x/, such that �ij D �ji and (Fk D �fk)

Fk C rD
l �kl D 0 (85)

in W and the boundary conditions

�klnl D tk (86)

on @Wt . Similarly, we recall a kinematically admissible displacement field as a
vector function u.x/ satisfying the boundary conditions

ui D fi (87)

on @Wu. We can now consider the principle of virtual work: “The virtual work of
the internal forces equals the virtual work of the external forces.” Let � .x/ be a
statically admissible stress field and u.x/ a kinematically admissible displacement
field. Define "ij .u/ D u.i ;j /. Then

Z
W

�ij "ij dVD D

Z
W

Fiui dVD C

Z
@Wt

tiui dSd C

Z
@Wu

�ij nj fidSd : (88)

The proof follows by substitution from the fractional equation of static equilibrium
and boundary conditions after integrating by parts, and using the Gauss theorem,
all conducted over the fractal domain W . Of course, the above can be rewritten in
terms of conventional integrals:Z

W

�ij "ij c3dV3 D

Z
W

Fiui c3dV3 C

Z
@Wt

c2tiui c2dS2

C

Z
@Wt

�ij nj fi c2dS2:

(89)
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In a similar way, we can adapt to fractal elastic bodies the principle of virtual
displacement, principle of virtual stresses, principle of minimum potential energy,
principle of minimum complementary energy, and related principles for elastic-
plastic or rigid bodies.

Relation to other studies of complex systems: While the calculus in non-
integer spaces outlined in this brief review has been employed for fractal porous
media, the approach can potentially be extended to microscopically heterogeneous
physical systems (made up of many different micromechanical systems, having
different physical properties, and interacting under the influence of different kinds
of phenomena). Several such possibilities have been discussed in Ostoja-Starzewski
et al. (2014), and one paradigm is given in the next section.

Fracture in Elastic-Brittle Fractal Solids

General Considerations
According to Griffith’s theory of elastic-brittle solids, the strain energy release rate
G is given by Gdoutos (1993)

G D
@W

@A
�
@Ee
@A

D 2	; (90)

where A is the crack surface area formed, W is the work performed by the applied
loads, Ee is the elastic strain energy, and 	 is the energy required to form a
unit of new material surface. The material parameter 	 is conventionally taken
as constant, but, given the presence of a randomly microheterogeneous material
structure, its random field nature is sometimes considered explicitly (Ostoja-
Starzewski 2008b, 2004). Recognizing that the random material structure also
affects the elastic moduli (such as E), the computation of Ee and G in (90)
needs to be reexamined (Ostoja-Starzewski 2004); see also Balankin et al. (2011)
in the context of paper mechanics. With reference to Fig. 4, we consider a 3D
material body described by D and dand having a crack of depth a and a fractal
dimension DF .

Focusing on a fractal porous material, we have

U e D

Z
W

� u dVD D

Z
W

� u c3 dV3: (91)

By revising Griffith’s derivation for a fractal elastic material, we then obtain

U e D
�a2c21�

2

8�
.K C 1/c3; (92)
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Fig. 4 (a) A fractal body subjected to two equal, collinear, opposite forces F and (b) its
homogenized equivalent via dimensional regularization

with � being the Poisson ratio, and

K D

8<
:
3 � 4� for plane strain
3 � �

1C �
for plane stress

(93)

the Kolosov constant.

Dead-load conditions. Equation (90) becomes

G D
@U e

@A
D 2	: (94)

If A D 2a � 1, this gives the critical stress

�c D

s
2	E

.1 � �2/�a c3 c
2
1

: (95)

However, if the fracture surface is fractal of a dimension ˛, then we should use
@=@lDF instead of @=@a. Now, since we have (note Fig. 5) dlDF D c1da, the new
partial derivative becomes

@

@lDF
D

@

c1@a
; (96)

so that
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u

P L

a

Fig. 5 Fracture and peeling of a microbeam of thickness L off a substrate. A representative
volume element dV3 imposed by the pre-fractal structure characterized by upper cutoff scale
L is shown. Thus, the beam is homogeneous above the length scale L. By introducing random
variability in that structure, one obtains a random beam; see (103)

�c D

s
2	E

.1 � �2/�a c3 c1
: (97)

Fixed-grip conditions. We consider the case of a crack of depth a and width B
in plane strain. In this case the displacement is constant (i.e., non-random), and the
load is random. Now, only the second term in (90) remains, so that

G D �
@Ee .a/
B@lDF

D �
@Ee .a/
Bc1@a

: (98)

Peeling a Layer Off a Substrate

Dead-load conditions. As a specific case, we take an Euler-Bernoulli beam, so that
the strain energy is

E.a/ D

Z a

0

M2

2IE
dx; (99)

where a is crack length, M is bending moment, and I is beam’s moment of inertia.
Henceforth, we simply work with a D A=B , where B is the constant beam (and
crack) width. In view of Clapeyron’s theorem, the strain energy release rate may be
written as

G D
@E
B@a

: (100)

For a layer modeled as a fractal Euler-Bernoulli beam (section “Peeling a Layer Off
a Substrate),” we have
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E.a/ D

Z a

0

M2

2IE
dlD D

Z a

0

M2

2IE
c1dx; (101)

so that

G D
@E

c1B@a
: (102)

Generalization to a Statistical Ensemble
Now, if the beam’s material is random, E is a random field parametrized by x,
which we can write as a sum of a constant mean hEi and a zero-mean fluctuation
E 0.x/

E.!; x/ D hEi CE 0.!; x/ ! 2 ˝; (103)

where! is an elementary event in˝, a sample space. Clearly, E is a random integral,
such that, for each and every realization ! 2 ˝, we should consider

E.a;E .!// D

Z a

0

M2c1dx

2IE.!; x/
: (104)

Upon ensemble averaging, this leads to an average energy

hE.a;E/i D

�Z a

0

M2c1dx

2I ŒhEi CE 0.!; x/�


: (105)

In the conventional formulation of deterministic fracture mechanics, random
microscale heterogeneities E 0.x; !/ are disregarded, and (104) is evaluated by
simply replacing the denominator by hEi, so that

E.a; hEi/ D

Z a

0

M2c1dx

2I hEi
: (106)

Clearly, this amounts to postulating that the response of an idealized homogeneous
material is equal to that of a random one on average. To make a statement
about hE.a;E/i versus E.a; hEi/, and about hG.E/i versus G.hEi/, first, note
the random field E is positive valued almost surely. Then, Jensen’s inequality
yields a relation between harmonic and arithmetic averages of the random variable
E .!/

1

hEi
�

�
1

E


: (107)

whereby the x-dependence is immaterial in view of the assumed wide-sense
stationary of field E. With (105) and (106), and assuming that the conditions
required by Fubini’s theorem are met, this implies that



932 M. Ostoja-Starzewski et al.

E.a; hEi/ D

Z a

0

M2c1dx

2I hEi
�

Z a

0

M2c1

2I

�
1

E


dx

D

�Z a

0

M2c1dx

2IE.!; x/


D hE.a;E/i ;

(108)

Now, defining the strain energy release rate G.a; hEi/ in a reference material
specified by hEi, and the strain energy release rate hG.a;E/i properly ensemble
averaged in the random material fE.!; x/I! 2 ˝; x 2 Œ0; a�g

G.a; hEi/ D
@E.a; hEi/

Bc1@a
hG.a;E/i D

@ hE.a;E/i
Bc1@a

; (109)

and noting that the side condition is the same in both cases

E.a; hEi/ jaD0D 0 hE.a;E/i jaD0D 0; (110)

we find

G.a; hEi/ � hG.a;E/i : (111)

This provides a formula for the ensemble average G under dead-load conditions
using deterministic fracture mechanics for Euler-Bernoulli beams made of fractal
random materials.

Just like in the case of non-fractal materials (Ostoja-Starzewski 2004), the
inequality (111) shows that G computed under the assumption that the random
material is directly replaced by a homogeneous material (E.x; !/ D hEi) is lower
than G computed with E taken explicitly as a spatially varying material property.

Fixed-grip conditions. On account of (4), assuming that there is loading by a force
P at the tip, we obtain

G D �
u

2Bc1

@P

@a
: (112)

Take now a cantilever beam problem implying P D 3uEI=.c1a/3. Then, we find

hGi D �
u

2Bc1

�
@P

@a


D �

u

2Bc1

@ hP i

@a
D
9u2I hEi

2B.c1a/4
: (113)

Since the load � be it a force and/or a moment � is always proportional to E, this
indicates that G can be computed by direct ensemble averaging of E under fixed-
grip loading, and, indeed, the same conclusion carries over to Timoshenko beams.
This analysis may be extended to mixed-loading conditions and stochastic crack
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stability by generalizing the study of non-fractal, random beams carried out in Li
and Ostoja-Starzewski (2009a).

Closure

While fractals are abundant in nature, the mechanics of fractal media is still in its
infancy. In this brief review, we showed how fundamental balance laws for fractal
porous media can be developed using a homogenization method using calculus in
non-integer dimensional spaces, a special version of dimensional regularization.
The developments are confined to materials whose mass is specified by a product
measure, where the overall mass fractal dimensionD equals ˛1 C˛2 C˛3 along the
diagonals, jx1j D jx2j D jx3j, where each ˛k plays the role of a fractal dimension
in the direction xk . The strategy is to express the balance laws for fractal media in
terms of fractional integrals and, then, to convert them to integer-order integrals in
conventional (Euclidean) space. This leads to balance laws expressed in continuous
forms albeit modified by the presence of coefficients responsible for dependencies
on ˛1’s; this makes mathematical treatments more tractable. It is shown how to
develop balance laws of fractal media (continuity, linear and angular momenta, first
and second law of thermodynamics) as well as the elastodynamics equations of
a fractal Timoshenko beam and 3D solids under finite strains. In general, if the
fractal geometry is described by a product measure, the angular momentum balance
cannot be satisfied unless the stress tensor is asymmetric. Therefore, a generally
anisotropic fractal medium necessitates adoption of a nonclassical continuum, the
Cosserat model, for the balance laws to be satisfied (Maugin 2016). We then discuss
extremum and variational principles and fracture mechanics in fractal media. In
all the cases, the derived equations for fractal media depend explicitly on fractal
dimensions and reduce to conventional forms for continuous media with Euclidean
geometries upon setting the dimensions to integers. The fractal model discussed
is useful for solving complex mechanics problems involving fractal materials
composed of microstructures of inherent length scale, generalizing the universally
applied classical theory of elastodynamics for continuous bodies. This modeling
approach offers a foundation upon which one can study (thermo)mechanical
phenomena involving fractals analytically and computationally while determining
fractal dimensions by image analyses.
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Abstract

Development and application of advanced, computationally intensive multiscale
(macro-, meso-, and micro-mechanically) physically based models to describe
physical phenomena associated with friction and wear in heterogeneous solids,
particularly under high velocity impact loading conditions. Emphasis will be
placed on the development of fundamental, thermodynamically consistent theo-
ries to describe high-velocity material wear failure processes in combinations of
ductile and brittle materials for wear damage-related problems. The wear failure
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criterion will be based on dissipated energies due to plastic strains at elevated
temperatures. Frictional coefficients will be identified for the contact surfaces
based on temperature, strain rates, and roughness of the surfaces. In addition
failure models for microstructural effects, such as shear bands and localized
deformations, will be studied.

The computations will be carried with Abaqus Explicit as a dynamic
temperature-displacement analysis. The contact between sliding against each
other’s surfaces is specified as surface-to-surface contact on the master-slave
basis. The tangential behavior is defined as kinematic contact with finite
sliding. The validation of computations utilizing the novel approach presented
in this work is going to be conducted on the continuum level while comparing
the obtained numerical results with the experimental results obtained in the
laboratories in Metz, France. Reaction forces due to friction between the
two specimens and temperature resulting from the dissipated energy during
the friction experiment are going to be compared and discussed in detail.
Additionally the indentation response at the macroscale, for decreasing the
size of the indenter, will be used to critically assess and evaluate the length scale
parameters.

Keywords
Failure in metals · Frictional coefficient · High speed impact · High velocity
material wear · Micro structural effects · Multiscale modeling

Introduction

The need to improve the reliability and life of tribological components that are
prone to severe contact stress during some of the engineering applications such
as cutting tool for metals, gun tubes, engine exhaust valves, engine turbocharger
components, rail gun environment, jet engine gear box splines and gears, and
slippers on high-speed test track sleds. Severe contact stresses of such applications
generate high temperature and create thermomechanical gouging and wear due to
high-velocity sliding between contacting materials (Ireman et al. 2003; Ireman and
Nguyen 2004; Arakawa 2014, 2017; Hernandez et al. 2015; Bayart et al. 2016).
High-velocity sliding between dissimilar materials can result in thermomechanical
gouging of the materials. This problem can be considered in the field of nonlocal
modeling of heterogeneous media that assesses a strong coupling between rate-
dependent plasticity (viscoplasticity) and rate-dependent damage (viscodamage or
creep damage) under high-velocity gouging (Lodygowski et al. 2011; Voyiadjis et al.
2010).

The field of research dealing with wear modeling is still very elusive, yet
there has been progress made in the understanding of many aspects of the wear
mechanisms. The definition of the wear is stated in the work of Johansson and
Klarbring (1993) as “the loss of material from a surface, transfer of material from
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one surface to another or movement of material within a single surface.” This
definition can be simplified as “damage to a solid surface generally involving
progressive loss of materials due to relative motion between that surface and
a coating surface or substance.” (Johnson et al. 1947; Klarbring 1986, 1990;
Johansson and Klarbring 2000; Varga et al. 2013). A close look at the activity
leading to wear is at the dimensional level of 10 nm where material structure can be
seen as nanocrystalline. In addition to this small-scale phenomenon, local high spots
(asperities) produce high stresses over short time scales of order of microseconds,
whereas strain rate are of the order of 104–107 s�1.

Another important aspect of wear problem is the time dependency and high
temperature produced by energy dissipation through the contact interaction. Due
to both high strain rate and temperature, it is possible to observe in the wear of
metals the formation of adiabatic shear bands at the microscale. Many of the features
described here make it obvious that the highly complex nature of the wear problem
cannot be solely treated by using macroscale phenomenological models. Therefore,
a clear need exists for the development of a realistic and reliable physically based
material model within the framework of multiscale modeling that can be utilized in
the sever contact stress applications.

The major consideration of this research is to develop an experimental/theoretical
model for the material in order to better characterize and predict the internal failure
surrounding the gouging and wear events. This research is to be carried out by
first investigating the phenomenon of the wear, and later it will be extended to
incorporate gauging problems.

The theoretical model is based on a nonlocal theory of crystal plasticity that
incorporates macroscale interstate variables and their higher-order gradients in order
to describe the change in the internal structure and investigate the size effect of
statistical inhomogeneity of the evolution-related plasticity and damage-hardening
variables. The gradients are introduced here as the hardening internal state variables
and are considered independent of their local counterparts. It also incorporates
the thermomechanical coupling effects as well as the internal dissipative effects
through the rate-type covariance constitutive structure with a finite set of internal
state variables.

Crystal plasticity models (Asaro 1983) that account for the crystalline
microstructure by distinguishing between different crystallographic orientations
have become successful in modeling the anisotropic plastic deformation of
single crystals. The discrete slip systems that depend on the crystal structure
are incorporated into these models, but the plastic part of deformation is still
modeled in a continuum sense. The characteristic length of the deformed
microstructure becomes significant in the analysis of the material at a scale where
the microstructure characteristic length is no longer negligible with respect to the
material size. This triggers an important question, whether and how macroscopic
overall mechanical properties as strength, hardness, etc. depend upon a natural
internal length scale related to the characteristic size of the microstructures in the
material. A nonlocal crystal plasticity (NCP) model is developed in this work using
thermodynamically consistent higher-order strain gradient theory. Multiple length
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scales are introduced at the NCP to account for the microstructure. These length
scales are used to characterize size effects, strengthening, hardening, values of
dislocation line energies, back-stress magnitudes, and the thickness of the plastic
boundary layer.

The theoretical model is formulated for the crystalline system with multiple
symmetric double slip systems. The boundary value problem analyzed here is the
simple shear of a constrained crystalline strip in order to investigate the effects
of the dissipative and energetic parameters on the size effect response of the
constrained crystalline strip systems. The developed theory described quantitatively
the thickness of the boundary layer, hardening, and strengthening response of the
system.

The classical crystal plasticity, which inherently includes no material length
scales, cannot predict size effects. Strain gradient plasticity (SGP) theories extend
the classical plasticity models by including an intrinsic material length scale and are
therefore appropriate for problems involving small dimensions (Aifantis and Willis
2006; Anand et al. 2005; Fleck and Willis 2008; Fredriksson and Gudmundson
2007). These material length scales are necessary both for dimensional consistency
when strain gradients are used in the formulation and in crystal plasticity based on
a continuum description of the dislocation behavior. The physical basis of the SGP
for metals has been founded on theoretical developments concerning geometrically
necessary dislocations (GNDs) (Nye 1953). Standard micromechanical modeling
of metals for the inelastic material behavior of single crystals and polycrystals
is commonly based on the premise that resistance to glide is due mainly to the
random trapping of mobile dislocations during locally homogeneous deformations.
Such trapped dislocations are commonly referred to as statistically stored dislo-
cations (SSDs) and act as obstacles to stop further dislocation motion, resulting
in hardening. An additional contribution to the density of immobile dislocations
and to hardening can arise when the continuum length scale approaches that of the
dominant microstructural features.

One of the open issues of the SGP is the ongoing discussion of the energetic
and dissipative nature of the dislocation network that accounts for many plasticity
phenomena. Gurtin (2003) argued that the density of geometrically necessary
dislocations is quantified by Nye’s tensor that leads to increase in the free energy.
However, Fleck and Willis (2008) discussed this issue by questioning whether the
additional strengthening is mainly energetic or dissipative. They assumed that the
core energy of dislocations stored during plastic deformation is much smaller than
the plastic work dissipated in dislocation motion. Based on this observation, they
concluded that both statistically stored and geometrically necessary dislocations
contribute more to plastic dissipation than to a change in energy. Bardella (2006,
2007) also pointed out that modeling involving only energetic material length scales
may not be sufficient to describe the size effects exhibited in metals. He reasoned
the fact that energetic length scales, defined through a function of Nye’s dislocation
density tensor, allow the description of the increase in strain hardening accompanied
with diminishing size, but they do not help in capturing the related strengthening. He
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proposed that at least one dissipative length scale is required in modeling in order
to capture the strengthening effect.

In this work both energetic and dissipative material length scales are introduced,
and their physically based relations as a function of the accumulated plastic
deformation, strain rate, temperature, and corresponding microstructural features
are proposed. It was observed that plasticity and damage phenomena at small-
scale levels dictate the necessity of more than one length scale parameters in the
gradient description. Energetic material length scales quantify the size effects due
to GNDs. The need of more energetic material length scales in order to have a
better description of the material behavior should be first evaluated in light of the
experimental results (or discrete dislocation simulations). Two main energy storage
mechanisms are used here. The first is that energy stored in dislocation network
uses dislocation density that depends on the inelastic strain path. Dislocation
density increases with inelastic deformation and eventually reaches a saturation
point. The second storage mechanism is due to the presence of the second hard
phase.

Nonlocal Strain Gradient Crystal Plasticity Formulation

In this section the nonlocal strain gradient crystal plasticity theory is presented.
This theory is developed based on the thermodynamically consistent higher-order
strain gradient theory developed by Voyiadjis and coworkers (Voyiadjis and Deliktas
2009a, b; Voyiadjis and Abu Al-Rub 2007). In order to adapt this theory to a
crystalline system, they introduced in the virtual work the following fields X(ˇ)

and X
.ˇ/ that are work-conjugates to the slip, � (ˇ), and the slip gradient, �

.ˇ/

;i ,
respectively. The principle of virtual work can be expressed in terms of these fields
as follows:

(1)

where � ij is the standard stress tensor with � ij D � ji., ti is the standard trac-
tion stress vector, while is the nonstandard traction force work-conjugate
to the slip, � (ˇ). In order to derive balance laws, integration by parts is used
on some terms of the integral in Eq. (1) along with the divergence theorem
(
R
V grad (F)dV D

R
V 5 F dV D

R
SF n dS). The gradient of the displacement

is given by "ij D 1/2(ui, j C uj, i), and the resolved shear stress is �.ˇ/ D m
.ˇ/

i �ij s
.ˇ/

j

where m
.ˇ/

i and s
.ˇ/

j are unit vectors characterizing the normal to the slip plane ˇ and
its slip direction, respectively. Equation (1) is now expressed as follows:
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(2)

Equation (2) must hold for any variations in ıui and ı� (ˇ), and therefore one obtains
the classical equilibrium equation

�ij;j D 0 (3)

and the micro-force balance equation

X.ˇ/ � �.ˇ/ � X
.ˇ/

i;i D 0 (4)

Standard boundary conditions are now obtained that can be defined by prescribing
either traction force or displacement, respectively, at each point on the boundary

ti D �ij nj or ui (5)

Nonstandard boundary conditions can be given by prescribing either micro-traction
force or slip at each point of the boundary

(6)

A boundary condition of �.ˇ/ D 0 form is referred to as a micro-clamped boundary
condition, and a boundary condition of is termed a micro-free boundary
condition.

In fact, the plastic strain, "
p
ij , in a single crystal can be expressed as the symmetric

part of the plastic distortion, � , by the following expression:

�ij D

NX

ˇD1

�.ˇ/m
.ˇ/

i s
.ˇ/

j (7)

Therefore, the plastic deformation can be expressed in terms of the plastic distortion
as

"
p
ij D

NX

ˇD1

�.ˇ/�
.ˇ/

ij (8)
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where

�
.ˇ/

ij D
1

2

�
m

.ˇ/

i s
.ˇ/

j C m
.ˇ/

j s
.ˇ/

i

�
(9)

and �
.ˇ/

ij is the symmetric Schmid tensor of the slip system ˇ.
A motivation for the nonlocal formulation proposed by Gurtin (2003) stems

from the fact that plastic deformation in crystalline solids arises from the motion
of dislocations, which are line defects characterized by the Burgers vector bi. This
observation allows one to characterize the net Burgers vector Bi with respect to a
closed loop C in the crystal through the following integral

Bi D

I

C

up
ij dxj D

I

S

˛ij vj dS (10)

in which S is any surface with boundary C and vj is the unit normal field for S
suitably oriented with respect to C. The tensor ˛ij, which is often referred to as Nye’s
dislocation density tensor (Nye 1953) or as the density of geometrically necessary
dislocations, is given by the explicit relation

˛ij D

NX

ˇD1

ejkl�
.ˇ/

;k m
.ˇ/

i s
.ˇ/

l (11)

where ejkl is the alternating tensor.
Helmholtz free energy that accounts only for stored energy allows one to

obtain energetic components of the thermodynamic forces � ij, X(ˇ), and X
.ˇ/ work-

conjugates to the elastic strain, "e
ij , slip, � (ˇ), and slip gradient, �

.ˇ/

;i , respectively.
The functional form of the Helmholtz free energy is assumed to be

‰ D
1

2
"e

ij Eijkl "
e
kl C

NX

ˇD1

1

2
a

.ˇ/

1

�
�.ˇ/

�2

C
1

2
a2˛ij ˛ij (12)

In this formulation one does not assume that Nye’s tensor ˛ijis an independent state
variable of the Helmholtz free energy but it is dependent on the slip gradient, � ,i,
of the free energy. The energetic components of the thermodynamic forces can be
obtained as follows:

�ij D
@‰

@"e
kl

D Eijkl"
e
kl

enX.ˇ/ D
@‰

@�.ˇ/
D a

.ˇ/

1 �.ˇ/

en
X

.ˇ/

i D
@‰

@�
.ˇ/

;i

D @‰
@˛kl

@˛kl

@�
.ˇ/

;i

D a2˛klN
.ˇ/

kil

(13)
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where Nkjl D eijlm
.ˇ/

i s
.ˇ/

k ; a
.ˇ/

1 D ho and a2 D G`2
en. The thermodynamic force

given by (13)3 is similar to the expression for �
.ˇ/

i that is defined by Bittencourt
et al. (2003). `en is the energetic material length scale that quantifies the size effect
due to GND (related to the Burgers vector length). This characteristic length scale
from a microstructural point of view can be attributed to dislocation network such
as dislocation spacing, dislocation cell size, and misorientation of the cells in the
metallic materials.

In order to satisfy the second law of thermodynamics, one requires the dissipation
to be positive. This implies that

P
ˇX.ˇ/ P�.ˇ/ C X

.ˇ/

;i P�
.ˇ/

;i � 0. This inequality leads
to the existence of the dissipation potential that should be a convex functional form
in terms of its variables. One possible choice of such potential can be given by the
following power law (Bardella 2007)

D D
ho�o

N C 1

0

@
�

.ˇ/

eff

�o

1

A

N C1

(14)

where �
.ˇ/

eff D

qˇ
ˇ�.ˇ/

ˇ
ˇ2

C `2
dis�

.ˇ/

;i �
.ˇ/

;i . `dis is the dissipative material length scale
that quantifies the strengthening due to the size effect. This characteristic length
scale from a microstructural point of view can be attributed to the movement of the
mobile dislocations.

The dissipative components of each thermodynamic force can be obtained from
Eq. (14) by taking partial derivatives of this potential with respect to its flux
respective variables

disX.ˇ/ D ho

�
�eff

�o

�N �1
�.ˇ/

�o

d is
X

.ˇ/

i D ho`2
dis

�
�eff
�o

�N �1 �
.ˇ/
;k

�o

(15)

Making use of Eqs. (13)2, (13)3, and (15) into (4) and (6), the following nonlocal
differential equation for the flow stress and the nonstandard boundary condition can
be obtained, respectively,

�.ˇ/ D a
.ˇ/

1 �.ˇ/ C ho

�
�eff

�o

�N �1
�.ˇ/

�o

� `2
enG

h
˛ij N

.ˇ/

ikj

i

;k
� ho`2

dis

��
�eff

�o

�N �1 �
.ˇ/
;k

�o

�

;k

(16)

and for the corresponding nonstandard boundary condition

(17)
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The elasticity is taken to be isotropic, characterized by Young’s modulus E and
Poisson’s ratio v, with the shear modulus given by 2G D E/(1 C v). Thus there are
seven positive material parameters that characterize the mechanical behavior: E, v,
ho, � o, N and material length scales, `dis and `en, respectively. In addition, for each
crystal the number of slip systems and the respective orientation of each system

specified by m
.ˇ/

i ; s
.ˇ/

i

�
m

.ˇ/

i s
.ˇ/

i D 0
�

need to be identified.

Simple Shear of a Constrained Crystalline Strip with Double Slips

The boundary value problem analyzed here is the simple shear of a constrained
crystalline strip, of height H in the x2 direction and unbounded in the x1 and x3

directions. The crystal is characterized by incompressible isotropic linear elastic
material with plain strain and quasi-static loading conditions. It is also assumed that
the crystalline strip has multiple double ˇ slip systems that consist of two possible
glides symmetrically oriented with respect to any plane constant x2 by angle �ˇ .
The strip is sheared by applying to the plane x2 D H a uniform displacement equal
to Y(t)H in the x1 direction where Y(t) is the prescribed shear strain. The schematic
description of this problem is illustrated in Fig. 1.

The standard macroscopic boundary conditions are

u1 D 0; along x2 D 0

u1 D U .t/ D H‡.t/; u2 D 0 along x2 D H
(18)

In the constrained layer problem, one restricts to monotonic loading, so that the
prescribed shear rate satisfies PY > 0.

The nonstandard boundary conditions due to the nonlocality are defined as micro-
free boundary conditions on the sides of the strip

(19)

Fig. 1 A constrained
crystalline strip with multiple
symmetric double slip
systems subjected to the
simple shear
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and micro-clamped boundary conditions on the bottom and top of the strip

�.ˇ/ D 0; along x2 D 0; H (20)

One now considers the solution of this boundary value problem with field quantities
that are independent of x1. Macroscopic equilibrium requires that �12 be spatially
uniform. One seeks the solution for which �11 and �22 vanish. The elasticity solution
in simple shear has a spatially uniform stress. Thus the entire strip reaches yield at
the same time. The orientation of the first slip of the double system is given by

m1
i D cos �ˇe1 C sin �ˇe2; s1

i D � sin �ˇ e1 C cos �ˇe2 (21)

The orientation of the second slip of the double system can be obtained by
replacing �ˇ by ��ˇ and recalling that the following equalities hold due to

symmetry
�
�

.ˇ/

1 D �
.ˇ/

2 D �.ˇ/
�

and
�
�

.ˇ/

1 D �
.ˇ/

2 D �.ˇ/
�

. The sole nonvanishing

component of the strain tensor is given by

"
p
12 D

X

ˇ

�.ˇ/ cos 2�ˇ (22)

Since all the fields must be independent of x1 and x3 and due to symmetry, therefore
the nonvanishing component of the Nye’s tensor is in the x2 direction due to the
edge dislocation lying along x3 and is given by

˛23 D
X

ˇ

�
.ˇ/

;2 sin2�ˇ (23)

Hence the only nonvanishing components of Nijk tensor can be obtained as

N223 D
@˛23

@�
.ˇ/

;2

D sin2�ˇ (24)

One first considers the linear case by setting N D 1 in Eqs. (16) and (17) and making
use of Eqs. (21–24); the simplified form of the Eqs. (16) and (17) can be obtained
as follows:

�.ˇ/ D ho�.ˇ/ C ho

�.ˇ/

�o

� `2
enGsin2�ˇ

X

	

�
	
;22sin2�	 � ho`2

dis

�
.ˇ/

;22

�o

(25)

and for the corresponding nonstandard boundary condition

(26)
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Equation (25) can be written in the matrix form as

M.ˇ	/�
.	/

;22 � �.ˇ/ D �F .ˇ/ (27)

where M.ˇ	/ is defined as

M.ˇ	/ D

2

6
6
6
6
6
6
6
4

a2
1 C b2

1 b1b2 � � � � � � b1b	

b2b1 a2
2 C b2

2
:::

: : :
:::

: : :

bˇb1 a2
ˇ C b2

ˇ

3

7
7
7
7
7
7
7
5

(28)

and its components are defined as

aˇ D `disp
1C�o

; bˇ D
q

G�o

.1C�o/ho
`ensin2�ˇ

Fˇ D �.ˇ/�o

.1C�o/ho

(29)

For the sake of simplicity, the strip system is assumed to have only one double
system, and the dissipative material scale is set to zero. Equation (27) reduces to the
following one dimensional form

�;22 � 
2� D �
2 (30)

where the coefficients 
2 and F are defined as


2 D
.1 C �o/ ho

.`/2G�osin4�
; F D

�

.`/2Gsin4�
(31)

Case 1 No dissipative hardening (ho D 0, such that 
2 D 0) is considered here. In
this case the solution of Eq. (30) with the boundary conditions given by Eq. (20)
yields the following quadratic relation for the plastic slip as a function of x2:

� D
F

2

�
x2H � x2

2

�
(32)

The remaining field quantities "12 and �12 can be computed using the following
steps. The nonvanishing components of the plastic strain given by Eq. (22) can be
rewritten as follows:

"
p
12 D � cos 2� (33)

and the resolved shear stress is given by � D cos 2��12 where shear stress is defined
as �12 D 2G ."12 � � cos 2�/. Averaging shear stress with respect to x2 over the
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interval [0,H] and knowing that �12 is spatially constant and the average of "12 over
the interval [0,H] is Y/2, then one obtains

�12 D G .‡ � 2 cos 2��ave/ (34)

The solution of the differential Eq. (30) that is expressed by Eq. (32) is a function
of � . By eliminating �12 from Eq. (34), one can solve the resulting linear equation
for � such as

� .r/ D
6G‡ cos 2�sin42�

�
6sin42� C cos22��or2

� (35)

where r D H/`. Substituting Eq. (35) into (32) and (34) along with setting (x2 D zH)
yields the following relation:

� .r/ D
� .r/ r2

2G sin4 2�

�
z � z2

�
(36)

This solution shows that the slip distribution is in quadratic form in the normalized
thickness. The shear stress component, �12, can be obtained in terms of

�12 .r/ D
6G‡sin42�

�
6sin42� C cos22��or2

� (37)

These two equations are plotted in Fig. 2a, b, respectively.
The size of the thickness is defined by (r D H/`). Since ` is the material property

and has a constant value, the value of r represents the size of the thickness. It is
clear from both figures that the material indicates strengthening with decrease in
size. Figure 2a, b illustrate this fact by showing the decrease in thickness results
in an increase in shear stress which in turn provides less plastic deformation.
Another observation from these analyses is the formation of the boundary layer
with decreasing thickness (region of gradients). It is obvious from Fig. 2a that
the boundary layer starts forming after r reduces to 20. It is clearer when r
is 15.

Case 2 In the case of the dissipative hardening where (ho > 0), the solution of the
differential equation in Eq. (30) along with the boundary conditions given in Eq.
(20) results to the following expression:

� D
F


2
Œ1 � cosh Œ
x2� C sinh Œ
x2� tanh ŒH
=2�� (38)

By averaging the Eq. (38) over the interval [0,H] and substituting the resulting
relation into Eq. (34), one can solve the resulting equality for �
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Fig. 2 Ideal plastic case
where (ho D 0) at various
length scales (H/` D 1, 5,
10,15,20,25,30). Crystal strip
has two slip systems with
(�1 D 60, �2 D � 60 ),
G D 26300 MPa, �o D 0.01,
`dis D 0, and N D 1. (a)
Shear slip distribution vs.
normalized thickness. (b)
Shear stress distribution vs.
imposed shear strain

� D
G‡

�
1

cos 2�
C 2G�o

ho.�oC1/
cos 2�

n
1 � tanhŒH
=2�

H
=2

o� (39)

Substituting Eq. (39) into (32) and (34) yields the following relations. Shear stress
component, �12, can be obtained as a function of r D H/` by replacing the term
H
/2 with Ar where A D

p
ho .�o C 1/ =G=2sin2�

�12.r/ D
G‡

h
1 C 2G�o

ho.�oC1/
cos22�

n
1 � tanhŒAr�

Ar

oi (40)

In the case when r ! 0, the response of the shear stress is �12(r) D GY which
is the linear elastic solution. For the case when r ! 1, the response of the shear
stress is obtained as �12(r) D G‡ /(1 C 2G�o cos 2� /ho(�o C 1)) which shows
size-dependent behavior. Figure 3 shows the curves for the plastic strain versus
normalized thickness for various length scales.

Although the predictions of the models show similar trends, there is variation
in their hardening behaviors. This is because the proposed model introduces
decomposition for each thermodynamics force. However, in the works of Bardella
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Fig. 3 Comparison of two
models of the plastic slip
distribution vs. normalized
thickness at various length
scales (H/` D 1, 10, 25, 50,
75) that are obtained from the
(a) proposed theory and (b)
formulation by Bardella
(2006). Crystal strip has two
slip system with (�1 D 60,
�2 D � 60 ),
G D 26300 MPa,
ho D 50 MPa, �o D 0.01,
Y D 0.1, `dis D 0, and N D 1

(2007) and Anand et al. (2005), they decomposed the thermodynamic forces that
are related to the gradient. The current model indicates that the hardening becomes
effective when the length scale parameter is reduced to 25, whereas the prediction
of the other model (Bardella 2007) shows hardening at a value of 10. This explains
that the current model predicts the thickness of the boundary layer higher than the
prediction of that by Bardella (2007). Figure 4 shows the predictions of both models
on the response of the shear stress versus imposed shear strain.

If one looks at the marked dashed lines in both Fig. 4a, b, it is clear that both
models agree in their predictions of strengthening due to size effects.

A parametric study is performed by plotting the shear stress versus the slip
orientation. This result is presented in Fig. 5.

As observed from Fig. 5, the influence of the orientation of the slip planes
with variation in � indicates clearly the length scale effects. In the case when the
orientation of the slips is � Š 0, the strip becomes less stiff, and the most complaint
response is observed. However, when the orientation of the slips is around � Š 45,
one obtains a stiffer response, and the maximum shear stress is obtained. In both
cases since the material response is linear elastic, no size effect is observed.
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Fig. 4 Comparison between two models for the shear stress vs. imposed shear strain at various
length scales (H/` D 1, 10, 25, 50, 75) that are obtained from the (a) proposed theory and (b)
formulation by Bardella (2006). Crystal strip has two slip systems with (�1 D 60, �2 D � 60 ),
G D 26300 MPa, ho D 50 MPa, �o D 0.01, `dis D 0, and N D 1
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Fig. 5 Shear stress distribution versus orientation of the two symmetric slip systems at various
length scales (H/` D 1, 10, 25, 50, 55). Other parameters used are G D 26300 MPa, ho D 50 MPa,
�o D 0.01, Y D 0.1, `dis D 0, and N D 1. Angles are measured in radians
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Table 1 Specimen designations and measured actual cross-sectional dimensions

Specimen designation Specimen material Section dimensions
(in � in)

Applied loading

1080_04_1 AISI 1080 0.039 � 0.4 Monotonic
increasing

1080_04_2 AISI 1080 0.039 � 0.4 Cyclic
4130N_05_1 AISI 4130 0.056 � 0.315 Monotonic

increasing
4130N_05_2 AISI 4130 0.056 � 0.315 Cyclic
4130N_05_3 AISI 4130 0.056 � 0.316 Cyclic
VAX300_06_1 VascoMax C-300 0.064 � 0.313 Monotonic

increasing
VAX300_06_2 VascoMax C-300 0.065 � 0.316 Cyclic
VAX300_06_3 VascoMax C-300 0.064 � 0.314 Cyclic

Experimental Procedure for Material Evaluation

The experimental procedure consists of three sets of tests conducted on AISI
1080, AISI 4130, and VascoMax C-300 steels. The first set of experiments involve
monotonic tensile loading of the specimens up to failure, while they were unloaded
at certain levels and reloaded in the second and the third sets of experiments.

An MTS 810 Hydraulic Materials Testing System was used to apply uniaxial
stresses on the specimens. The strain data were obtained using a 1 in. gauge
length MTS extensometer (Model No. 634.11E–24) and 1 mm gauge length
Omega general-purpose pre-wired 1-axis strain gauges. The actual cross-sectional
dimensions of the specimens were measured prior to tests using a digital caliper,
and the measured dimensions are presented in Table 1 with the corresponding
designations. The three sets of experiments and their results are presented next.

Result of the First Set of Experiments

In the first phase of the experimental program, one specimen from each material type
was tested under monotonic increasing tensile loads in order to obtain mechanical
properties (yield strength and ultimate strength) of the materials. During the tests,
only the longitudinal strain values were recorded in the midsection of the specimens
with a 1 in. gauge length MTS extensometer (Fig. 6).

The rate of loading of the MTS testing machine was set to be 0.01 in./min
for specimen 4130N_05_1; however, due to the large size of the output file,
it was decreased to 0.02 in./min for specimens 1080_04_1 and Vax300_06_01.
Determinations of these loading rate values were made based on ASTM E8,
Standard Test Methods for Tension Testing of Metallic Materials. Even though the
recommended rates of loading values in ASTM E8 are higher than the ones used in
this study, slower loading rates were used in this study because the cross sections of
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Fig. 6 Measurement of
longitudinal strains

the specimens are considerably smaller than the standard tension testing specimens
addressed in the standard.

Using the output data file obtained from the software controlling the MTS testing
machine, the engineering stress values were obtained by dividing the actual stress
output data by the measured initial cross-sectional areas, and the stress-strain curves
for all three tested materials are presented in Figs. 7, 8, and 9.

Result of the Second Set of Experiments

For the second set of experiments, transverse strain values were also recorded in
addition to the longitudinal strains. For this purpose, a pair of pre-wired Omega
strain gauges was attached on opposite surfaces of one specimen from each material
type (Fig. 10). Due to the small width of the specimens, 1 mm gauge length (total
length of 4 mm) strain gauges were used. The strain gauges were placed at the
midsections of the specimens using commercial strain-gauge glue. Through a data
logger, the strain data from both of the strain gauges are stored in micro-strains.

The second phase of the experimental program differs from the first one not only
for measuring transverse strains but also in terms of the loading procedure. The
specimens, in the second experimental phase, were loaded up to certain stress/strain
levels, and then they were unloaded until the applied force is equal to zero.
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Fig. 7 Calculated stress-strain curve of specimen 1080_04_1 under monotonic loading

Fig. 8 Calculated stress-strain curve of specimen 4130N_05_1 under monotonic loading

Several cycles were decided to be applied in such a way that the peak strain value
of each cycle exceeds the one that belongs to the previous cycle. For this purpose,
special test procedures were defined using the MTS controller software, and the
time, machine displacement, applied force, and strain values were stored.
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Fig. 9 Calculated stress-strain curve of specimen VAX300_06_1 under monotonic loading

Fig. 10 A pair of pre-wired
strain gauges glued on
opposite sides of a specimen

In order to calculate the applied stresses, the average of the transverse strain
obtained from the two strain gauges was used. The transverse strain along the
thickness of the specimen was assumed to be equal to the transverse strain along
the width. Figure 11 illustrates how the extensometer and the strain gauges were
used to measure longitudinal and transverse strains.

The transverse strain data obtained from the attached strain gauges were averaged
to be used for calculating the change in the cross section of the specimens, thus the
applied stresses. The strain data collected from the strain gauges and their average
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Fig. 11 Measurement of
longitudinal and transverse
strains

values are plotted and shown in Figs. 8 and 12 for specimens 4130N_05_2 and
VAX300_06_2. During these two tests, visual observations were made, and it was
noticed that the strain gauges were detached after the first few load cycles because
of the small size of the glued area. Furthermore, the cyclic loading has also an effect
on how quickly the gauges get detached and collect meaningless data.

It can be seen in Figs. 12 and 13 that the strain gauges attached to specimen
4130N_05_2 start collecting useless data after the first loading cycle, while the strain
gauges of specimen VAX300_06_2 are detached approximately at the end of the
fourth cycle. The strain data before the strain gauges were detached were used to
calculate the actual applied stresses. It should be noted that the strains after that were
considered to be constant and equal to the last meaningful values. The stress-strain
relationships for the two specimens tested under cyclic tensile forces are shown in
Figs. 14 and 15. It should be noted that the small spikes in Fig. 15 are caused when
the applied loads (and selected target strain levels for the cycles) were being adjusted
by the MTS testing machine.

Result of the Third Set of Experiments

Similar to the second phase, transverse strain values were also recorded in addition
to the longitudinal strains in the third set of experiments. However, different
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Fig. 12 Transverse strain-gauge readings of specimen 4130N_05_2

Fig. 13 Transverse strain-gauge readings of specimen VAX300_06_2

than the second set, a single strain gauge was attached to the midsection of
one specimen from each material type (Fig. 16). The transverse strain along the
thickness of the specimen was assumed to be equal to the transverse strain along the
width.

The specimens (1080_04_2, 4130N_05_3 and VAX300_06_3) were, again,
loaded up to certain stress/strain levels, and then they were unloaded until the
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Fig. 14 Calculated stress-strain curve of specimen 4130N_05_2

Fig. 15 Calculated stress-strain curve of specimen VAX300_06_2

applied force is equal to zero before the following loading. In order to calculate
the applied stresses, the transverse strain data obtained from the single strain gauge
were used. The strain recordings for all three tested specimens are presented in Figs.
17, 18, and 19. It can be seen from Fig. 17 that the strain gauge on the specimen
1080_04_2 kept recording valuable data until the end of the test while the ones
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Fig. 16 A single strain
gauge attached to the
midsection of a test specimen

Fig. 17 Transverse strain-gauge readings of specimen 1080_04_2

Fig. 18 Transverse strain-gauge readings of specimen 4130N_05_3
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Fig. 19 Transverse strain-gauge readings of specimen VAX300_06_3

Fig. 20 Calculated stress-strain curve of specimen 1080_04_02 (red line) with the monotonic
stress-strain curve of specimen 1080_04_1 (green line)

on 4130N and VascoMax C300 specimens detached by the end of the first loading
cycle.

The meaningful strain data were used to calculate the actual applied stresses,
and the stress-strain relationships for the three specimens tested under cyclic tensile
forces are shown in Figs. 21 and 22 with red lines. The stress-strain relationships
for the monotonic loading are also included in these figures with green lines
(Fig. 20).
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Fig. 21 Calculated stress-strain curve of specimen 4130N_05_03 (red line) with the monotonic
stress-strain curve of specimen 4130N_05_1 (green line)

Fig. 22 Calculated stress-strain curve of specimen VAX300_06_03 (red line) with the monotonic
stress-strain curve of specimen VAX300_06_1 (green line)

Numerical Simulations and Validating the Experimental
Approach

The experimental work on the study of friction between metallic surfaces will be
conducted by Voyiadjis and coworkers (Voyiadjis and Abu Al-Rub 2007; Voyiadjis
et al. 2010; Voyiadjis and Deliktas 2009a, b; Lodygowski et al. 2011) with its
counterpart at Ecole de’ Nationale Institut der Mechanic (ENIM), at Metz, France.
A modified Hopkinson’s bar experiment shown schematically in Fig. 23a, developed
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by Phillipon at ENIM, simulates high-velocity contact between two surfaces. In
this experiment, ultrahigh-speed projectiles of the 1020 steel (for sled shoe surface)
will be fired onto a stationary VASOMAX steel surface (for the sled track). The
contact force in this experiment is measured by a dynamometer ring shown in Fig.
23b. The contact force exerted on the dynamometer (in Fig. 23c) can be predicted
by measuring the change in length of the friction device using strain. The results
from the experiment will include (a) the measured contact force (both normal and
frictional) response from the dynamometer ring and (b) the final contact surface
between the two specimens. The latter (along with the initial surface) will be

Fig. 23 (a) Schematic of modified Hopkinson experiment, developed by Phillipon et al. at (b)
zoom-in view of friction device used to experimentally measure contact forces during high-velocity
contact and (c) measured contact force on dynamometer
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processed using SEM to characterize the topography of the surfaces before/after
and consequently the size of contacting asperities. In this experiment, roughness
measured through the SEM is characterized by software package (Vision32)
provided by Veeco Metrology Group. The presliding characterization of the sled
shoe and track surfaces indicates a presliding surface roughness of 4–8 mm, and
it is postulated that damage phenomena are generated from dislocation generation
at between crystallographically misoriented single crystals (at the microscale). In
order to further characterize the sliding interfaces, experiments were conducted.

ENIM, used to measure contact forces during high-velocity contact between
polycrystalline surfaces.

The simulations were performed with the FE commercial software ABAQUS
(REFERENCE) according to the theory developed and coded as a VUMAT
subroutine. The set of simulation was performed for different values of normal force
and sliding velocity capturing the development of surface temperature as well as
plastic deformation. The different mesh sizes were also considered to present the
mesh independency thanks to the implemented theory. In the following figures, a
couple of main results are presented.

In Fig. 24 the following stages of the simulation are presented using the
coarse and fine mesh approach. The initial stage (Figs. 24a and 25a) presents the

Fig. 24 FEM with coarse mesh and fine mesh for high-speed friction experiment with (a)
boundary condition, (b) development temperature, (c) development of the moment
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Fig. 25 FEM with fine mesh for high-speed friction experiment with (a) boundary condition, (b)
development temperature, (c) development of the moment

application of all boundary conditions just before applying the sliding velocity to the
specimen B. Figures 24b and 25b present the development of the temperature as one
of the mainly considered variables. Lastly Figs. 24c and 25c show the moment when
the contact between the specimens is lost. Figure 24 with the coarse mesh presents
the results for the sliding velocity of 27 mDs, whereas Fig. 25 presents the fine mesh
for the sliding velocity 56 mDs. Figure 24a presents the initial configuration of the
simulation just before the sliding begins. Figure 24b presents the middle stage of
the simulation process and the surface temperature development. Figure 24c shows
the final stage of the simulation.

Discussions and Conclusions

Metal-to-metal friction problem is addressed in this work and revisited, specifically
in investigating the coefficient of the dry friction for steel in the high-velocity range.
The following contributions are made by this study:
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• A physical model based on the nonlocal crystal plasticity model is proposed
to investigate the coefficient of the dry friction. Results are presented from the
simulations of the simple shear of a constrained crystalline strip with double
slips and high-speed friction experiment.

• It is shown that the material responses obtained from the simulation of the
physically based constitutive model agree with the real behavior of the metals.

• This work investigates also the effects of two thermodynamic processes, ener-
getic and dissipative, involved in strain gradient crystal plasticity. The improved
theory by Voyiadjis and Deliktas (2009b) is enhanced by decomposition for each
thermodynamic force. This decomposition, in turn, introduces two different types
of material length scales which provide better description of the dislocation
network. The theoretical model is formulated for the crystalline system with
multiple symmetric double slip systems. The boundary value problem analyzed
here is the case of simple shear of a constrained crystalline strip in order to
investigate the effects of the dissipative and energetic parameters on the size
effect response of the constrained crystalline strip systems. The developed theory
describes quantitatively the thickness of the boundary layer, hardening, and
strengthening response of the system.

• However, there are still open issues of great interest in the field of SGP such
as the following: (i) dissipative and energetic nature of the dislocation network
(Anand et al. 2005; Bardella 2007; Bittencourt et al. 2003; Gurtin 2008; Voyiadjis
and Deliktas 2009a) (the important question is how energy depends on the
characteristics of the dislocation distribution), (ii) evolution of the microstructure
which is attributed to many plasticity phenomena (Berdichevsky 2006; Gurtin
2008; Molinari and Ravichandran 2005; Nijs et al. 2008), and (iii) physical bases
of the material length scale (Abu Al-Rub and Voyiadjis 2004; Anand et al. 2005;
Mughrabi 2004).
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and numerical experiments. The models are formulated in the simple one-
dimensional setting, and their ability to reproduce heterogeneous plastic strain
processes is analyzed, focusing on strain localization phenomena observed in
metallic materials at different length scales. In a geometrically linear context,
both models are based on the additive decomposition of the strain into elastic
and plastic parts. Moreover, they share the same non-convex plastic energy,
and they are both characterized by the same nonlocal plastic energy as well,
i.e., a quadratic form of the plastic strain gradient. In the first model, proposed
in Yalçinkaya et al. (Int J Solids Struct 49:2625–2636, 2012) and Yalcinkaya
(Microstructure evolution in crystal plasticity: strain path effects and dislocation
slip patterning. Ph.D. thesis, Eindhoven University of Technology, 2011), the
plastic energy is assumed to be conservative, and plastic dissipation is introduced
through a viscous term, which makes the formulation rate-dependent. In the
second model, developed in Del Piero et al. (J Mech Mater Struct 8(2–4):109–
151, 2013), the plastic term is supposed to be totally dissipative. As a result,
plastic deformations are not recoverable, and the resulting framework is rate-
independent, contrary to the first model. First, the evolution problems resulting
from the two theories are analytically solved in a special simplified case,
and correlations between the shape of the plastic potential and the modeling
predictions are established. Then, the models are numerically implemented
by finite elements, and numerical solutions of two different one-dimensional
problems, associated with different plastic energies, are determined. In the first
problem, a double-well plastic energy is considered, and the evolution of plastic
slip patterning observed in crystals at the mesoscale is reproduced. In the second
problem, a convex-concave plastic energy is used to simulate the macroscopic
response of a tensile steel bar, which experiences the so-called necking process,
with plastic strains localization and final coalescing into fracture. Numerical
results provided by the two models are analyzed and compared.

Keywords
Strain gradient plasticity · Size effect · Localization · Deformation
patterning · Damage · Fracture

Introduction

In recent years, developments in constitutive modeling have illustrated the ability
of strain gradient plasticity theories to capture different strain localization processes
by incorporating non-convex plastic energies into the model in a thermodynamically
consistent way (see, e.g., Yalçinkaya et al. 2011, 2012; Klusemann and Yalçinkaya
2013; Klusemann et al. 2013 for the modeling of intragranular microstructure
evolution resulting in plastic anisotropy and Del Piero et al. 2013; Lancioni 2015
for strain localization leading to failure). Since processes like strain localization
and microstructures evolution are stress-softening processes, the corresponding
evolution boundary value problems undergo convergence troubles due to loss
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of ellipticity. In order to remedy these problems, several methods have been
proposed including variational regularization methods, nonlocal methods, viscous
regularization techniques, and Cosserat theories. However, nowadays, the modeling
of softening mechanisms is still an open issue, and it is subject to intense research
activities. In order to contribute to this, in this chapter two strain gradient plasticity
models incorporating the phase-field idea for the evolution of plastic slip are
proposed and analyzed. The numerical comparison study of rate-dependent and rate-
independent models has been addressed recently in Yalçinkaya and Lancioni (2014)
and Lancioni et al. (2015a). In the current chapter, we focus on the similarities
and differences of both models in a variational format and present analytical
and numerical solutions for that purpose. Models are formulated in the simple
one-dimensional setting, which preserves simplicity and allows to focus on the
key physical and mathematical aspects, avoiding the complicated technicalities
of multidimensional frameworks, and the hypothesis of linear elastoplasticity is
assumed, which allows to decompose the total strain into the sum of elastic and
plastic contributions. Extensions to multidimensional setting, which would result in
(strain gradient) crystal plasticity models (see, e.g., Yalçinkaya et al. 2012; Lancioni
et al. 2015b) and/or finite elasticity frameworks, are not included.

The first model, proposed in Yalçinkaya et al. (2011, 2012), is deduced by
following a classical thermodynamical approach (see Gurtin et al. 2010). The
principle of virtual work is used to get balance equations at macro and micro level,
while the dissipation inequality is exploited to define micro-stresses. In order to
satisfy the dissipation inequality, a viscous plastic stress is introduced, which makes
the model rate-dependent (RD). The free energy is assumed to be sum of a non-
convex plastic term (which does not exist in Gurtin et al. 2010) and two quadratic
terms with respect to the elastic deformation and the plastic deformation gradient.
The inclusion of a non-convex plastic term in free energy that drives the localization
and patterning is arguable, yet it is physical for the illustration of deformation
patterning under monotonic loading, which is the main scope of the current work.

In the second model, developed in Del Piero et al. (2013), discussed in Del
Piero (2013), and extended in Lancioni (2015), the plastic evolution is determined
by incremental minimization of an energy functional, which is composed by three
contributions equal to those considered in the abovementioned free energy of the RD
model. However, in this case, the plastic term is supposed to be totally dissipative,
and, therefore, plastic deformations are not recoverable. The resulting framework is
rate-independent (RD), contrary to the previous model.

The different dissipative properties assigned to the plastic energy in two formu-
lations reflect on different descriptions of the plastic strain evolution. In the RD
model, plastic strains are partially recoverable, because of the plastic free energy
term, and partially dissipate, since the viscous stress contributes to dissipate plastic
power. On the contrary, in the RI model, plastic strains are totally irreversible,
being the corresponding energy dissipative. In both the two models, stability issues
related to stress-softening regimes are solved by incorporation of the plastic strain
gradient term into the expression of the free energy. This nonlocal term not only
allows to regularize the evolution problem but also plays the fundamental role of
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strain localization limiter against abrupt fractures (see Bazant and Jirásek 2002).
Moreover, it also gives the opportunity to work at different length scales due to the
internal length scale parameter included intrinsically in its formulations.

The aim of this study is to analyze the influence of the form of the plastic energy
function on the description of heterogeneous plastic processes. In this respect,
analytical solutions are found in the simplified case of evolution from homogeneous
strain configurations, providing precise indications on the shape to give to the plastic
energy in order to reproduce specific evolution processes. Then, finite element codes
are developed by implementing the RD and RI models and used to solve numerically
two different problems of strain localization occurring at different length scales, as
described in the following:

(i) The first problem is the evolution of heterogeneous plastic shear strains
in metallic materials. When metals are subject to considerable loadings
(e.g., during forming processes), mechanisms of dislocation self-organization
activate that lead to the formation of patterning observable at the mesoscale,
where regions of high dislocation density (dislocation walls) envelop areas of
low dislocation density (dislocation cell interiors), which can also be regarded
as domains of high plastic slip and low plastic slip activity, as shown in the
picture of Fig. 1a. To reproduce this patterning process, the plastic energy is
assumed to be a Landau-Devonshire type of double-well functional, where
the second well is shifted up, similar to the form used in Yalçinkaya et al.
(2011). Using such a type of plastic potential results in a Ginzburg-Landau
phase-field-like relation for the evolution of plastic slip, where the different
phases are identified as regions with high plastic and low plastic strain.

u(0)=0 x u l l( )=

l

u=0
u l=

Pb 1: plastic slip patterning

Pb 2: necking

l

a

b

Fig. 1 Plastic slip patterning: (a) straight slip bands on a single crystal of 3.25% silicon iron
(Hull 1963); (b) one-dimensional geometrical scheme of the shear problem. Necking: (c) neck in
a tensile steel bar; (d) one-dimensional scheme of a tensile bar
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(ii) The second problem refers to the process of strain localization that leads
to final fracture, observed in tensile metals, the so-called necking process
(see Fig. 1c). Necking occurs at a length scale which is almost at the
macroscopic engineering level, thus completely different from that of the
previous problem. For this problem, a convex-concave plastic functional
has been chosen. Localization initiates and evolves when the amount of
plastic deformation reaches values in the concave part of the energy, and
it is accompanied by substantial stress-softening. Localization continues on
smaller and smaller regions, until final fracture, which corresponds to the
solution loss of stability. The response of steel bars to tensile loadings has
been studied in Lancioni (2015), by using an enriched version of the RI model.
In the present study, it is solved by the RD model as well, and comparisons
are established.

The chapter is organized as follows. In section “Nonlocal Rate-Dependent and
Rate-Independent Models,” the two models are formulated within a common unified
framework, which allows to easily point out analogies and differences. In sec-
tion “Analytical Solutions,” analytical solution is found, and in section “Numerical
Results” numerical results are presented and commented. Concluding remarks are
summarized in section “Conclusions.”

Nonlocal Rate-Dependent and Rate-Independent Models

Problem Statement

Consider a one-dimensional domain .0; l/ of length l . The displacement of a point
x 2 .0; l/ at the time instant t is denoted by u D ut .x/. Here and in the following,
the dependence on time is indicated by a subscript, and the following notation for
derivatives is used: for any function v D vt .w/, which depends on a certain space-
dependent variable w D w.x/ and on time t , a prime indicates derivative with
respect to w, v0 D dv=dw, and a dot means time derivative, Pv D dv=dt .

The boundary conditions assigned at the domain endpoints are

ut .0/ D 0; ut .l/ D l"t ; (1)

where "t is an imposed deformation, function of time. We suppose that the
deformation is decomposed additively into an elastic part "e and a plastic part "p ,
i.e.,

u0 D "e C "p: (2)

Since positive deformations are applied ("t � 0), the plastic deformation coincides
with the cumulative plastic strain, here denoted by � . Thus we can write
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u0 D "e C �; (3)

In addition to (1), two possible boundary conditions on � can be assigned, which
are

�t .0/ D �t .l/ D 0 .hard b:c:/; or � 0
t .0/ D � 0

t .l/ D 0 .soft b:c:/: (4)

As shown in the numerical simulations, hard boundary conditions force the plastic
strain � to evolve in the central part of the body, and a boundary layer develops
at the both ends of the bar. On the other hand, soft boundary conditions lead to
evolution of a homogeneous � field. An interesting discussion is proposed in Jirásek
and Rolshoven (2009) on possible assignment of boundary conditions for the plastic
strain in gradient plasticity models.

Model Equations: Dissipation, Equilibrium, and Evolution

Both theories are formulated within a common unified framework, which allows
an easy comparison from a theoretical viewpoint. In here, the general modeling
ingredients are introduced that are needed to deduce balance and evolution equations
in a thermodynamically consistent way. In the next sections “Rate-Dependent
Model” and “Rate-Independent Model,” these relations are specialized for the
models, according the specific constitutive assumptions of each theory.

Given the triplet .u; �; � 0/ of independent internal variable, the material is
assumed to be endowed with the free energy

 ."e; �; � 0/ D  e."
e/C  �.�/C  � 0.� 0/; (5)

which is sum of elastic, plastic, and stored contributions, analogously to the free
energy considered in Gurtin and Anand (2009). Here, we assume that the elastic
and the nonlocal terms are quadratic functions

 e."
e/ D

1

2
E"e2;  � 0.� 0/ D

1

2
A� 02; (6)

but, in general, different expressions can be considered. The plastic potential  �
is a monotonic increasing function of � , which can assume any expression. The
macroscopic stress and the microscopic stress and hyperstress power-conjugated to
P"e , P� and P� 0, respectively, are defined as

� D  0
e."

e/ D E"e; � D  0
� .�/; � D  0

� 0.�
0/ D A� 0: (7)

These stresses are energetic. The next stage concerns the definition of the local
dissipated power.
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Dissipation. If we suppose that dissipation is only due to plastic strains, the
dissipated power has the form

D.�; P�/ D �d .�; P�/ P�; (8)

where �d D �d .�; P�/ is a dissipated micro-stress power-conjugated to P� . The
dependence of �d on the rate P� allows to introduce viscous plastic micro-stresses
within the model, as done in the RD model of section “Rate-Dependent Model.”
Since the dissipation inequality for isothermal processes reads

D D P � P � 0; (9)

with P the local internal power, �d must be such that the dissipationD in (8) is non-
negative. A further way to introduce dissipative behavior is through a dissipation
potential, according to the theory of generalized standard materials (Mielke 2006).
If �.�/ is a dissipative plastic potential, the dissipated micro-stress is � 0.�/, and the
dissipation inequality (9) becomes

D.�; P�/ D � 0.�/ P� � 0: (10)

Thus, summing up, the total micro-stress conjugated to � is

�� D � C �d C � 0; (11)

where the first term is energetic, and the second and third terms are dissipated. If we
assume that volume forces are null, the body total energy is

E.u; �/ D

Z l

0

�
 
�
u0 � �; �; � 0

�
C �.�/

�
dx; (12)

which is used in the following to deduce the equilibrium and the evolution equations
in a variational format.
Equilibrium. A configuration .u; �/ is equilibrated if

ıE.u; � I ıu; ı�/CWNC .�; P� I ı�/ � 0 ; (13)

for any admissible perturbation .ıu; ı�/, where ıE is the first variation of E, and
WNC is the infinitesimal virtual work of �d . Using (7), the two terms in the above
inequality are

ıE D

Z l

0

�
�ıu0 C .� C � 0 � �/ı� C �ı� 0

�
dx;

WNC D

Z l

0

�d ı� dx:

(14)
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When the unknown pair .u; �/ is not constrained through inequality conditions,
the equilibrium condition (13) reduces to an equality. Indeed, in the case of
unconstrained .u; �/, for any admissible perturbation .ıu; ı�/, also the opposite
perturbation .�ıu; �ı�/ is admissible, and thus (13) must be satisfied as an
equality, in order to be satisfied for any pair of opposite perturbations. The resulting
equation is the equation of virtual power (see Gurtin et al. 2010). This situation is
found in the RD model. Differently, in the RI model, an inequality constrain on �
leads to an equilibrium inequality.
Evolution. The evolution problem is solved by following a variational incremental
procedure, which allows to determine the solution .utC� ; �tC� / at the time instant
t C � , with � a given time increment, when the solution .ut ; �t / at the previous
instant t is known.

The solution at t C � is approximated by the first-order Taylor expansion

utC� D ut C � Put ; �tC� D �t C � P�t ; (15)

where the velocity pair .Put ; P�t / represents the unknown to be determined. The total
energy (12) is approximated by the second-order development

EtC� .Put ; P�t / D Et C � PEt.Put ; P�t /C
1

2
�2 REt.Put ; P�t /; (16)

and

�Et.Put ; P�t / D EtC� �Et D � PEt.Put ; P�t /C
1

2
�2 REt.Put ; P�t / (17)

is the approximated energy increment within a time step t ! tC� . The pair .Put ; P�t /

solves the variational inequality

ı�Et.Put ; P�t I ı Pu; ı P�/C�WNC . P�t I ı P�/ � 0 ; (18)

for any admissible perturbations pair .ı Pu; ı P�/, where �WNC . P�t I ı P�/ is the virtual
power expended by �d within the time interval .t; t C �/, i.e.,

�WNC D

Z l

0

.�dtC� � �dt /ı P� dx: (19)

As above commented for the equilibrium relation (13) and (18) reduces to an
equality, when the unknowns .Put ; P�t / are not constrained by inequality conditions.

The formulation proposed in this section allows to obtain equilibrium and
evolution equations, provided that certain constitutive assumptions are made.
In particular, the quantities to be assigned are the plastic free energy  �.�/,
the dissipative micro-stress �d , and the dissipation potential �.�/, which must
satisfy the dissipation inequality (10). We recall that the elastic and the nonlocal
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free energies are assigned in (6). In the next sections “Rate-Dependent Model”
and “Rate-Independent Model,” specific constitutive assumptions are made, and
both models are formulated.

Rate-Dependent Model

In this section, we formulate the RD model, which was first proposed in Yalçinkaya
et al. (2011) by using the principle of virtual power.
Constitutive assumptions. The basic constitutive assumptions are:

1. The plastic free energy  �.�/ satisfies the conditions  �.0/ D 0,  0
� .0/ � 0,

and  0
� .�/ > 0 for any � > 0. Two different non-convex expressions of  �.�/

will be given for the two problems numerically solved in sections “Plastic Slip
Patterning” and “Necking in Tensile Steel Bars.”

2. A viscous dissipative micro-stress of the form

�d D c P� (20)

is assumed, where c is a viscous coefficient. Notice that, with this stress, the
dissipation inequality (10) is automatically satisfied. The reader is referred to
Yalçinkaya et al. (2011) for a discussion on more complex expressions of �d .

3. The dissipative potential �.�/ is neglected.

With these assumptions, the micro-stress power-conjugated to P� is

�� D  0
� C c P�; (21)

where the first term is energetic, and the second is dissipative. The viscous
contribution constitutes the source of rate dependency of the model.
Equilibrium. Under these assumptions, the equilibrium condition (13) rewrites

Z l

0

�
�.ıu0 � ı�/C  0

� ı� C �ı� 0 C c P�ı�
�
dx D 0; (22)

for any admissible perturbation pair .ıu; ı�/, from which the macroscopic and
microscopic force balance equations are obtained by assuming ı� D 0 and ıu0 D 0

(i.e., ı� D �ı"e), respectively. They are

� 0 D 0; � �  0
� C � 0 � c P� D 0: (23)

Remark 1. If we assume  0
� .0/ > 0, solution of the above equilibrium equations at

the initial instant t D 0 is
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"e0 D
 0
� .0/

E
; �0 D 0: (24)

This initial strain corresponds to the prestress �0 D  0
� .0/ associated with the pre-

imposed deformation "0 D  0
� .0/=E. From such an initial state, the elastoplastic

deformation evolves according to the evolution equation

E"e �
�
 0
� �  0

� .0/
�

C A� 00 � c P� D 0; (25)

which differs from (23)2 for the second term within the brackets, which is null at the
beginning of the evolution process. The constitutive assumption  0

� .0/ > 0 is made
to reproduce initial purely elastic behaviors.
Evolution. The evolution equation is obtained from (18), with

�WNC D

Z l

0

.c P� � �dt /ı P� dx: (26)

The macroscopic and microscopic evolution equations are determined by assuming
ı P� D 0 and ı Pu0 D 0, respectively, and they are

.Pu0
t � P�t /

0 D 0; E.Pu0
t � P�t / �

�
 00
� .�t /C

c

�

�
P�t C A P� 00

t D �
�dt
�
; (27)

with the boundary conditions

Put .0/ D 0; Put .l/ D l P"t ;

P�t .0/ D P�t .l/ D 0 .hard b:c:/; or P� 0
t .0/ D P� 0

t .l/ D 0 .soft b:c:/:
(28)

Equations (27) are obtained in Yalçinkaya et al. (2011) by linearizing equations (23).
Equation (27)1 states that .Pu0

t � P�t / is constant, and thus it can be written in the form

Pu0
t � P�t D

1

l

Z l

0

.Pu0
t � P�t / dx D P"t � NP�t ; (29)

where

NP� D
1

l

Z l

0

P�t dx (30)

is the mean value of P�t in .0; l/. Substituting (29) in (27)2, we get the following set
of equations, alternative to (27),
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A P� 00
t �

�
 00
� .�t /C

c

�

�
P�t �E NP�t D �E P"t �

�dt
�
;

Pu0
t D P"t C P�t � NP�t ;

(31)

where the first equation depends only on P�t . Equations (31) are equivalent to (27),
and they are solved by determining P�t from the first equation and, then, Put from the
second equation.

Rate-Independent Model

In this section, we deduce the governing equations of the RI model first proposed in
Del Piero et al. (2013).
Constitutive assumptions. We make the following constitutive assumptions:

1. The plastic free energy  �.�/ is neglected.
2. The dissipative micro-stress �d is neglected.
3. A dissipative potential �.�/ is considered, which is assumed to be equal to the

plastic free energy of the RD model, defined at point (1) of section “Rate-Depen-
dent Model.” Thus the dissipative potential must satisfy the conditions �.0/ D 0,
� 0.0/ � 0, and � 0.�/ > 0, for any � > 0.

With these hypotheses, the plastic micro-stress is

�� D � 0.�/; (32)

which is totally dissipative, in agreement with Aifantis theory (Aifantis 1984) and
the reformulations proposed in Gudmundson (2004) and Gurtin and Anand (2009)
in a thermodynamically consistent format, where the local term of the flow rule is
dissipative and the nonlocal term is energetic.

Since � 0.�/ � 0 for any � , according to the assumptions given in the above point
3, the dissipation inequality (10) is satisfied if

P� � 0; (33)

which represents a constraint for the plastic strain and imposes that plastic strain
can never decrease in an evolution process.
Equilibrium. From (33) an admissible perturbation is such that ı� � 0. Since
WNC D 0, inequality (13) rewrites

Z l

0

�
�.ıu0 � ı�/C �ı� 0 C � 0ı�

�
dx � 0; (34)



982 G. Lancioni and T. Yalçinkaya

for any admissible plastic strain perturbation such that ı� � 0. Assuming ı� D 0,
we obtain the balance equation (23)1, while, assuming ıu0 D 0, we found the plastic
yield condition

� � � 0 � � 0; (35)

which states that the stress � cannot be greater than the yield limit � 0 � � 0.
Evolution. Evolution is governed by inequality (18), where �WNC D 0. Assuming
ı P� D 0, we get the macroscopic evolution equation (27)1, and, setting ı Pu0 D 0, we
obtain

ı�Et.Put ; P�t ; 0; ı P�/ D

Z l

0

�
ft C � Pft

�
ı P� dx C Œ.�t C � P�t /ı P�	l0 � 0; (36)

where

ft D � 0
t � �t � � 0

t ; (37)

and ı P� is an arbitrary perturbation that satisfies the condition

P�t C ı P� � 0; (38)

imposed by the irreversibility relation (33). The boundary terms are null, if the
boundary conditions (28) are assigned. For non-negativeness of the integral term,
the two possible cases P�t D 0 and P�t > 0 are separately considered. (i) if P�t D 0,
then ı P� � 0 for (38), and the integral term in (36) is nonnegative if ft C � Pft � 0;
(ii) if P�t > 0, ı P� can have any sign, and the integral term in (36) is nonnegative
if ft C � Pft D 0. Thus, summing up, evolution is governed by the Kuhn-Tucker
conditions

P�t � 0; ft C � Pft � 0; .ft C � Pft / P�t D 0; (39)

which represent the flow rule of plasticity. It states that the stress maintains equal to
the yield stress when � evolves.

Equations (27)1, (39) and the boundary conditions (28) are necessary conditions
for a minimum of the total energy EtC� , i.e., for .Put ; P�t / to be solution of the
following constrained quadratic programming problem

.Put ; P�t / D argminf�Et.Put ; P�t /; P�t � 0; and b:c: on Put and P�tg: (40)

In the numerical code, problem (40) is solved by implementing a constrained
quadratic programming algorithm.
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Analytical Solutions

In this section, the evolution problems described in the previous sections are
analytically solved in the simplified special case of evolution from homogeneous
configurations. The analytical solutions found in Del Piero et al. (2013) and in
Lancioni (2015) for the RI model and in Lancioni et al. (2015a) for the RD model
are recalled and commented, since they provide useful criteria for the choice of the
plastic energy functionals, which are the free energy  � in the RD model and the
dissipative potential � in the RI model, whose shape is still unspecified.

At the instant t , we assume that �t is homogenous and that, for the RI model,
the yield condition (35) is satisfied as an equality, i.e., �t D � 0

t , since � 0
t D 0 for

constant � . The boundary conditions are

Put .0/ D 0; Put .l/ D l P"t ; P�t .0/ D P�t .l/ D 0; (41)

where the most interesting case of hard boundary conditions for P�t is considered.

RDModel

Under the above simplified assumptions, the evolution equation (31)1 reduces to a
differential equation with constant coefficients, which can be written in the form

A P� 00
t �

�
 00
� C

c

ı"t
P"t

�
P�t D �

�
P�t C

�d

ı"t
P"t

�
; (42)

where  00
� D  00

� .�t / is constant. In order to make explicit the dependence on the
deformation rate P", we have used the relation � D ı"=P", with ı" the deformation
increment in the time step � . Equation (42) is solved in two steps. In the first step,
the solution P�t is found as a function of P�t , and, in the second step, P�t is explicitly
determined by using the relation

P�t D E.P"t � NP�t /; (43)

which is obtained by differentiating (7)1 and using (29). Omitting subscript t for
brevity, the solution of the boundary value problem (41) and (42) is

P� D
P� C �d

ı"
P"

 00
� C c P"

ı"

�
1 �

cosh kP".l=2 � x/

cosh kP"l=2

�
;

P� D E
 00
� C c P"��d

ı"

 00
� C c P"

ı"
CE'1.kP"l/

P"; if  00
� > �

c P"

ı"
;
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P�D
P� C �d

ı"
P"

2A
x.l � x/; P� D E

12A � �d l2

ı"

12ACEl2
if  00

� D �
c P"

ı"
;

P� D
P� C �d

ı"
P"

 00
� C c P"

ı"

�
1 �

cos kP".l=2 � x/

cos kP"l=2

�
;

P� D E
 00
� C c P"��d

ı"

 00
� C c P"

ı"
CE'2.kP"l/

P"; if  00
� < �

c P"

ı"
; (44)

with

kP" D

s
1

A

ˇ̌
ˇ̌ 00

� C
c P"

ı"

ˇ̌
ˇ̌; (45)

and

'1.y/ D 1 �
2

y
tanh

y

2
; '2.y/ D 1 �

2

y
tan

y

2
: (46)

Functions '1 and '2 are graphed in Fig. 2.
Formulas (44) refer to three different types of solutions, associated with three

different intervals of values of  00
� , as shown by the graphs of Fig. 3a. Hyperbolic

solutions characterize the semiaxis 00
� > � c P"

ı"
. In the semiaxis 00

� < � c P"
ı"

, two types

of trigonometric solutions distinguish: for � 4�2A
l2

� c P"
ı"

�  00
� < � c P"

ı"
, the plastic

strain rate is positive in any points of the domain, while, for  00
� < � 4�2A

l2
� c P"

ı"
,

the plastic strain rate is positive in a central part of the domain and negative
in portions close to the endpoints. This latter situation describes a process of
strain localization in the center of the domain and plastic strain recovery on the
sides. Plastic strain unloading is possible since the plastic energy is assumed to be
stored.

Notice that the sign of P� depends on the deformation rate P". If we suppose that �d

is so small that it can be neglected, then P� is positive for  00
� > �.�2A=l2 � c P"=ı"/,

and it is negative for  00
� < �.�2A=l2 � c P"=ı"/. In the former case, the evolution

regime is stress-hardening, while, in the latter case, it is stress-softening.

RI Model

Since we have assumed that �t D  0
� , then ft D 0, and the evolution relations (39)

simplify as follows:

P�t � 0; P�t � � 00
t P�t � ˛ P� 00

t ; .� 00
t P�t � P�t � ˛ P� 00

t / P�t D 0: (47)
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We introduce the coefficient

k0 D

r
j � 00 j

˛
; (48)

which is equal to the coefficient (45), with P" D 0 and  �.�/ D �.�/. First, we
suppose � 00 � 0. Integrating (47)3 over .0; l/, we obtain

P�

Z l

0

P� dx D

Z l

0

�
� 00 P�2 C A P� 02

�
dx > 0; (49)

from which P� > 0. If we suppose P� D 0 in some intervals of .0; l/, from (47)2, P� �

0, in contradiction with the above result. Thus P� must be positive almost everywhere
in .0; l/, and the Khun-Tucker conditions (47) are satisfied if

P� 00 � k20 P� D �
P�

A
; for any x 2 .0; l/; (50)

where index t is omitted. Solutions of (50) satisfying the boundary conditions (41)
are found by following the procedure of section “RD Model”: first the solution P�t is
found in terms of P�t , and, then, P�t is explicitly determined from (43). We obtain

P� D
P�

� 00

 
1 �

cosh k0
�
l
2

� x
�

cosh k0 l2

!
; P� D E

� 00

� 00 CE'1.k0l/
P" > 0; (51)

with '1 equal to (46)1. Notice that P� > 0 for any x 2 .0; l/. Also P� > 0, since
numerator and denominator in (51)2 are positive. It follows that, if � 00 > 0, plastic
strain evolves in the whole domain (full-size solution) under a regime of stress-
hardening. If � 00 D 0, Eq. (50) reduces to A P� 00 D P� , whose solution is

P� D
P�

2A
x.l � x/; P� D E

12A

12ACEl2
P" > 0: (52)

Even in this case, P� is full-size, and the evolution process is stress-hardening. For
� 00 < 0, Eq. (47)3 becomes elliptic

P� 00 C k20 P� D �
P�

A
; (53)

and it admits the solution

P� D
P�

� 00

 
1 �

cos k0. l2 � x/

cos k0 l2

!
; P� D E

� 00

� 00 CE'2.k0l/
P"; (54)
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Fig. 2 Graphs of functions '1 D '1.y/ and '2 D '2.y/

with '2 as in (46)2. Solution (54) is positive for any x 2 .0; l/, if �4�2A=l2 �

� 00 < 0. For � 00 < �4�2A=l2, the above solution is negative in portions of .0; l/
close to the endpoints, in contradiction with the irreversibility condition (33), and,
thus, localized solutions must be looked for. Before determining localized solutions,
we discuss the sign of P� in (54)2. If ��2A=l2 < � 00 < 0 (i.e., 0 < k0l < �), then
P� > 0. Indeed, being '2 < 0 (see Fig. 2), both numerator and denominator in (54)2
are negative, and the evolution regime is stress-hardening. For �4�2A=l2 � � 00 <

��2A=l2 (� < k0l � 2�), '2 is positive, and P� � 0, i.e., stress-softening regime, if

� 00 CE'2.k0l/ > 0: (55)

It was proven in Del Piero et al. (2013) that inequality (55) is a sufficient condition
for stability of solution (54). Since '2 � 1, if �4�2A=l2 � � 00 < ��2A=l2, the
above inequality is satisfied if E > 4�2A=l2, which is a condition usually met by
real applications.

Now, we consider the case � 00 < �4�2A=l2, and we look for localized solutions.
We assume that P� localizes in a portion .0; Ol/, adjacent to the bar left endpoint,
and the supplementary continuity conditions P�. Ol/ D P� 0. Ol/ D 0 are assigned.
Equation (53) is solved within the localization zone .0; Ol/, and the inequality P� � 0

is satisfied outside it, where P� D 0. The resulting solution is

8<
:

P� D
P�

� 00
.1 � cos k0x/ ; for 0 < x � Ol ; with Ol D

2�

k0
;

P� D 0; for Ol < x < l;

(56)
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a

b

Fig. 3 Scheme of analytical solutions in the case of RD model (a), and RI model (b)

where the length Ol is determined from the supplementary condition P� 0. Ol/ D 0, and

P� D E
� 00

� 00 C 2� E
k0l

P": (57)

Notice that any translation of the localized solution (56) is also a solution. The stress
rate P� is negative (stress-softening regime), if

� 00 C 2�
E

k0l
> 0; (58)

which, as proved in Del Piero et al. (2013), is a sufficient condition for stability
of (56), analogously to the stability relation (55). When � 00 approaches �2�E=.k0l/

from above, then P� ! �1, and P� ! 1 in a small region of the domain.
The total energy associated with this configuration drops to minus infinity. This
situation describes the occurrence of fracture. Detailed analyses of fractured con-
figurations are proposed in Del Piero et al. (2013), Del Piero (2013), and Lancioni
(2015).

Figure 3b schematizes the different solutions described above, which depend on
the value of � 00.
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Numerical Results

The RD and RI evolution problems, governed by Eqs. (28) and (31) and the
constrained quadratic programming problem (40), respectively, are implemented
numerically by finite elements. In each one-dimensional finite element, the plastic
strain � is approximated by a linear shape function, depending on two nodal
unknowns defined at the element endpoints, while the displacement u is approx-
imated by a quadratic shape function, where three nodal variables are defined at
the element endpoints and midpoint. The solution of the evolution problems is
refined at each time step by means of a Newton-Raphson iterative scheme in the RD
formulation and by implementing a sequential quadratic programming algorithm in
the RI model.

In the following, the numerical tests presented in Lancioni et al. (2015a)
are discussed, where two distinct non-convex plastic energies are assigned in
order to reproduce two different processes: plastic shear slip patterning in metals
(section “Plastic Slip Patterning”) and necking in tensile steel bars (“section “Neck-
ing in Tensile Steel Bars”).

Plastic Slip Patterning

The problem of formation and evolution of microstructures in metallic materials
is addressed in the simplified one-dimensional geometrical scheme proposed in
Fig. 1b. A semi-infinite layer with thickness l is subjected to a shear deformation
". The evolution of the plastic shear strain � through the thickness is analyzed in
both RD and RI frameworks, by first assuming the soft boundary conditions (4)1 for
� and then the hard boundary conditions (4)2. The layer thickness is l D 1mm. The
Young modulus E used in the above theoretical sections is replaced by the shear
modulus G D 78:947GPa, which corresponds to the Young modulus E D 210GPa
and Poisson’s ratio 
 D 0:33 of steel. As in Yalçinkaya et al. (2011), we fix c D 7

MPa=s andA D 147:29N. CoefficientA is related to the internal length scale by the
formula A D ER2=.16.1 � 
2// proposed in Bayley et al (2006), where the length
scale R represents the radius of the dislocation domain contributing to the internal
stress field. In this example R D 0:1mm. A Landau-Devonshire type of potential
f1 D f1.�/ is assigned to the plastic energy densities  � (RD model) and � (RI
model), whose expression is

f1.�/ D 1:525 � 108�4 � 5:2 � 106�3 C 5:25 � 104�2 MPa: (59)

The graphs of f1 and of its first derivative are represented in Fig. 4. Values
of binodal and spinodal points are indicated in the graphs, as well the stress
corresponding to the Maxwell line.

When soft boundary conditions are applied, the response of the layer to the shear
deformation " is described by the stress versus strain curves of Fig. 5. The RI model
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Fig. 5 Response curves in case of soft boundary conditions. Deformation rates P" D
0:001; 0:1; 1 s�1 are considered in the RD problem

provides the solid line curve, while the dashed line curves are obtained from the
RD model, by assigning three different deformation rates, i.e., P" D 0:001; 0:1,
and 1 s�1. Notice that the response curves of the RD model get closer to the curve
of the RI model, as P" decreases, because the effect of the viscous stress reduces.
Three branches characterizes the response curves: (i) an initial hardening branch;
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(ii) an intermediate softening phase, in the RI case and in RD cases with low
rates, exhibiting sharp initial and final drops, and central plateaus; and (iii) a final
hardening curve. These three steps of the curves are associated with different plastic
strain regimes, as described in Fig. 6, which show different profiles of � at different
values of the imposed deformation.

In the initial hardening phase, the plastic strain grows homogeneously in the
whole domain, which is common to all the four simulations. This phase ends when
the plastic strain (plastic slip in this one-dimensional case) �1s , corresponding to
the first spinodal point, is reached. From then on, different evolutions are observed.
The RI simulation and the RD simulations with sufficiently low deformations rates
(P" D 0:001; 0:1 s�1) exhibit strain localization on the right side of the domain,
corresponding to the stress dropping down in the response curves. This stress
drop occurs and is postponed as the deformation rate increases. The viscous stress
contribution taken into account in the RD model produces a delay of the localization
process. This can be clearly noticed by comparing the profiles of � in Fig. 6b, c
corresponding to the localization stage. Afterward, the plastic band moves from the
right to the left. The plastic wave propagation corresponds to the stress plateau of
the � � " curves. The stress value of the plateau lowers as P" decreases, approaching
to the Maxwell line. Differently, in the RI case, the plateau is below the Maxwell
line.

The evolutions predicted by the two models in this intermediate phase of
heterogeneous strain evolution exhibit a further crucial difference pointed out in
the following. In the RD model, plastic strain localizes till the saturation value �b2,
corresponding to the second binodal point, is reached in the right part of the body,
while at the left side � rapidly reduces to the value �b1 of the first binodal point.
Although the plastic wave front for the RI model has a similar width, the wave peak
has a value slightly lower than �b2, and the strain downstream remains constant at
the value �s1 of the first spinodal point, the value at which localization is initiated.
This is explained by the fact that the plastic energy is totally dissipated in the RI
model, and thus � can only grow. On the other hand, the energy  � of the RD model
is stored, and therefore � can be partially recovered, which justifies the reduction
of � outside the localization zone. Plastic energy recovery is also evident at the end
of the slip patterning evolution, when the deformation becomes homogeneous. The
evolution step from " D 0:0150 to " D 0:0151 results in a significant reduction in
� over the entire domain. The change to homogeneous strain is accompanied by a
further stress drop, as shown by the curves of Fig. 5. This strain patterning is totally
lost by the RD model when sufficiently large deformation rates are considered. For
P" D 1 s�1, evolution is always homogeneous, as shown in Fig. 6d, even if the stress-
strain curve exhibits a softening branch.

Constitutive response curves in the case of hard boundary conditions are plotted
in Fig. 7. Their shapes are similar in type to those of the previous case of soft
boundary conditions, that is, they present two hardening branches and an interposed
softening stage. In this case they present a smoother shape. However, also the curves
of Fig. 5 are always continuous, and the drops, which apparently look discontinuous,
are smooth quickly decreasing curves.
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Fig. 7 Response curves in case of hard boundary conditions. Deformation rates P" D
0:001; 0:1; 1 s�1 are considered in the RD problem

In Fig. 8, snapshots of � are taken at deformation increment �" D 10�3. The
evolution process that they describe is clearly composed by four phases: (1) an initial
hardening phase in which deformation is homogeneous, except in the boundary
layers developed at each end; (2) a softening process of strain localization in the
middle of the domain; (3) a subsequent stress plateau characterized by plastic
slip spreading toward the boundaries; and (4) a final hardening branch, where the
deformation field evolves in a similar way to the initial hardening phase. If the
evolution profiles of Fig. 8b, c are compared, it can be noticed that the increase
of the deformation rate produces a delay of the localization process, which only
partially takes place. The size of the zone where � initially localizes becomes larger
and larger as P" increases.

Necking in Tensile Steel Bars

Now, we consider an homogeneous bar of length l D 140mm, clamped at the
left endpoint and subjected to the tensile displacement "l at the right endpoint
(see Fig. 1b). The bar is made of steel, with Young’s Modulus: E D 210GPa.
For the plastic energy ( � in the RD model and � in the RI model), we consider
the piecewise cubic function considered in Lancioni (2015). This function, that we
indicate with f2 D f2.�/, is graphed in Fig. 9, with its first and second derivatives,
and its analytical expression is

f2.�/ D

8<
:
c1� C

1

2
c2�

2

�
1 �

�

3�1

�
; if 0 < � � �1;

c3� C c4.� � �1/C c5.� � �1/
3; if �1 < � � �2;

(60)
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Fig. 9 Plastic energy density of the steel bar and its first and second derivatives

where c3 D c1�1Cc2�
2
1 =6, c4 D c1Cc2�1=2, and c5 D �.2c1Cc2�1/=.6.�2��1/

2/

to guarantee the continuity of � and � 0 at �1 and the condition f 0
2 � 0. Coefficients

c1, c2,�1, and �2 are related to easily measurable experimental quantities through the
relations

c1 D �c; c2 D
2

�1
.�m � �c/; �1 D "m �

�m

E
; �2 D

2.d0 � dbreak/

d0
; (61)

where �c is the yield stress, �m is the peak stress, "m is the corresponding strain, d0
are the initial diameters of the bar cross section, and dbreak is the diameter of the
broken cross section. We assign the following values obtained from tensile tests

�c D 0:376 GPa; �m D 0:496 GPa; "m D 0:15; d0 D 10 mm; dbrak D 6:5 mm:
(62)

Deduction and detailed description of formulas (61) are given in Lancioni (2015).
The energy functional f2 is convex in the interval 0 � � < �1, concave for �1 � � <

�2, and constant for � > �2. For � > �2, the bar deforms without spending plastic
energy, and this corresponds to complete breaking. Thus, the simulations presented
in the following are interrupted when � reaches the breaking value �2 D 0:7. For
the nonlocal parameter, we assume A D 2 kN, as in Lancioni (2015), and, for the
viscous coefficient of the RD model, we fix c D 0:015 GPa s�1 as in Lancioni et al.
(2015a).

Macroscopic constitutive response (��") curves are compared in Fig. 10. For the
RD model, the four different deformation rates P" D 10�3; 10�1; 1, and 10 s�1 are
considered. In the enlargement on the left side of Fig. 10, the experimental curve is
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Fig. 10 Response curves of a tensile steel bar

also plotted (dashed line). The simulations predict three phases: an initial perfectly
elastic phase, which interrupts when � reaches the yield value �c , a hardening
phase, and a final softening phase. In Lancioni (2015), a more sophisticated plastic
energy was considered to reproduce the yielding plateau observed at the onset of the
inelastic regime (see the experimental curve in the left Fig. 10).

For sufficiently low deformation rates (P" D 10�3 and 10�1 s�1), the RI and RD
models give practically the same hardening branches, with equal yield and peak
stresses, but they differ in predicting the softening curves. The branch of the RI
model is very close to the experimental curve, while those of the RD model strongly
depends on P", getting longer as the deformation rate increases. Since P" D 1 � 10�3 is
a very small rate, the corresponding curve is a good approximation of the response
curve in the limit static case P" D 0. The discrepancies between this curve and that of
the RI model clearly prove that the RI model is not the limit case of the RD model
for P" ! 0, although the RD model gives results close to those of the RI model
when small deformation rates are considered. For large values of the deformation
rate (P" D 1 and 10 s�1), the response curves of the RD model largely deviates from
the curve of the RI model. As P" grows, the yield and peak stresses increases, and the
softening branches extends. Also the plastic strain evolution is completely different
than that of the RI case, as described in the following.

The evolution of � is described in Fig. 11, where profiles of � at different values
of " are plotted for the RI case and for the RD one as well with P" D 10�3; 1; 10 s�1.
Results of the RI model and RD model with P" D 10�3 s�1 are comparable. In both
the cases, the hardening phase is associated with the evolution of homogeneous
plastic strains (with the exception of small boundary layers where � decreases to
zero), and the softening phase is characterized by a progressive localization of �
in smaller and smaller portions in the center of the bar, up to the final fracture,
occurring when � reaches the breaking value �2 D 0:7 in the bar midpoint.
Both models describe fracture as the ending stage of a strain localization process;
however, they differ in predicting the evolution of � outside the localization zone:
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Fig. 11 Profiles of � at different values of P". (a) RI model, (b) RD model with P" D 0:001 s�1, (c)
RD model with P" D 1 s�1, (d) RD model with P" D 10 s�1

� maintains constant in the RI case, and only the elastic deformation " reduces,
since ı" D ı�=E < 0 (elastic unloading), while both � and "e reduce in the RD
process (elastoplastic unloading). Gray areas in Fig. 11b highlight the zones where
� is recovered. The partial strain recovery outside the localization portion makes the
softening branch of the response curve much steeper than that of the RI curve. The
evolution of � is very different if large P" are applied, as illustrated in Fig. 11c, d.
Since the plastic strain has no time to localize, the limit value � D 0:7 that leads
to failure is reached in large zones in the center of the bar. On the contrary, plastic
strain is recovered in small zones close to the endpoints. For P" D 1 s�1, plastic
recovery leads to local compressive strain states in the final stages of the evolution
(see the gray regions in Fig. 11c).

We notice that the above results agree with the analytical solutions found
in sections “RD Model” and “RI Model.” The analytical results basically state
that solutions are full-size if the plastic energy is convex and localized if it is
concave. Accordingly, numerical simulations predict an initial full-size evolution of
� , spreading in the whole bar. The initial hardening phase terminates when � reach
the value �1 D 0:16, at which the plastic energy changes from concave to convex.
From this point on, the bar experiences localization. The fact that � localizes on
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smaller and smaller portions is also expected by the analytical results, according to
which the size of the localization zone is inversely proportional to j 00

� j (see solution
(44)3) or to j � � 00j (solution (56)). In the plastic energy (60) implemented in the
simulations, jf 00

2 j is increasing with � .
The bar response at unloading is analyzed in Fig. 12. For the RI model,

unloading is always elastic, since � does not reduce. The dissipated plastic energy
is represented by the area below the response curve (gray area in Fig. 12a). For
the RD model, unloading depends on the deformation rate. For small deformation
rates, the unloading curves practically coincide with the loading curve, with no
plastic dissipation, but, for larger deformation rates, hysteretic loops are obtained,
and the area of the resulting closed curves represents the dissipated viscous
energy. These areas are larger and larger as j P"j increases. The unloading process
given by the RD model exhibits a first elastic unloading, followed by a second
elastoplastic unloading, which are clearly recognizable by the different slope of the
corresponding branches. The different responses at unloading described by the two
models constitute a further distinguishing feature of the two proposed formulations.

Conclusions

In this chapter, two nonlocal plasticity models based on non-convex plastic poten-
tials are addressed, by following a variational procedure which is thermodynami-
cally consistent. Their ability in capturing the evolution of heterogeneous plastic
patterning is analyzed in a simplified one-dimensional mathematical setting. The
first model is rate-dependent, and it accounts for partially recoverable plastic strains.
The second one is rate-independent, and it assumes that plastic strains are totally
dissipative. Both plasticity models are enhanced by a gradient energy contribution,
which introduces a length parameter into the models allowing studies at different
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length scales. Non-convex plastic potentials are assumed that lead to heterogeneous
strain distributions and to processes of plastic localization. The instability due to the
presence of a non-convex plastic energy is stabilized by the gradient energy term.

The RD and RI problems governing the strain evolution are solved analytically,
for a simplified case. Analytical solutions give useful information on the shape that
should be assigned to the plastic energy in order to predict specific behaviors, such
as stress-hardening with a diffused plastic strain evolution, or stress-softening with
strain localization. Both formulations are incorporated into finite element solution
procedure and two different problems are solved, each one characterized by a
specific non-convex plastic energy and by a specific length scale.

Numerical results have pointed out clearly the similarities and differences of
the models, in some cases confirming the analytical evidences. At low deformation
rates, the results of the RD model approach to those of the RI formulation, because
of the effect of the viscous stress contribution. Differently, at high deformation rates,
viscosity produces a delay of the strain localization, which, for particularly large
deformation rates, is even missed. Consequently, results largely deviate from those
of the RI model.

Differences that are independent on the deformation rate have been also
observed, which are related to the different assumptions on the dissipative nature
of the plastic energy made within each formulation. Two main differences deserve
to be mentioned. (1) The different strain recovery processes that activate outside
the strain localization zone: in the RI case, only the elastic strain reduces, while,
in the RD case, both elastic and plastic strains are recovered. (2) The different
responses at unloading: purely elastic unloading is reproduced by the RI model,
with plastic strains cumulated in the body, and elastoplastic unloading is described
by the RD case. In this latter case, hysteretic loops are observed and no residual
strains cumulate in the body.
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Abstract

This chapter studies the thermodynamical consistency and the finite element
implementation aspects of a rate-dependent nonlocal (strain gradient) crystal
plasticity model, which is used to address the modeling of the size-dependent
behavior of polycrystalline metallic materials. The possibilities and required
updates for the simulation of dislocation microstructure evolution, grain
boundary-dislocation interaction mechanisms, and localization leading to
necking and fracture phenomena are shortly discussed as well. The development
of the model is conducted in terms of the displacement and the plastic slip, where
the coupled fields are updated incrementally through finite element method.
Numerical examples illustrate the size effect predictions in polycrystalline
materials through Voronoi tessellation.
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Introduction

Strain gradient frameworks have been the most popular plasticity models for the last
three decades, since the early work Aifantis (1984) due to their intrinsic capability to
capture the size-dependent behavior of metallic materials through the incorporated
length scale parameter which is absent in the classical models that are local and has
no reference to the microstructural characteristic lengths. There is a large body of
literature illustrating the size effect in the different materials under different loading
conditions such as torsion (see, e.g., Fleck et al. 1994; Aifantis 1999), bending (see,
e.g., Aifantis 1999; Stölken and Evans 1998; Haque and Saif 2003), indentation
(see, e.g., Nix and Gao 1998; Swadenera et al. 2002), and compression experiments
such as Wang et al. (2006) and Volkert and Lilleodden (2006).

There have been developments in both phenomenological-type isotropic strain
gradient plasticity models and physics-based strain gradient crystal plasticity
frameworks in order to model the size-dependent response of materials and the
evolution of the inhomogeneous strain distribution at the interfaces and boundaries.
All of them incorporate a length scale, to capture the size effect, however there is no
unified structure of such nonlocal frameworks. Depending on the chosen internal
state variables, the global degrees of freedom, the way the strain gradients are
incorporated, and the thermodynamical work conjugate nature of the models, there
have been various classifications in the literature.

Considering the phenomenological models, Hutchinson (2012) mentions that it
has not been a simple matter to obtain a sound extension of the classical J2 flow
theory of plasticity that incorporates a dependence on plastic strain gradients. Two
classes of J2-type extensions have been proposed: one with increments in higher-
order stresses related to increments of strain gradients and the other characterized
by the higher-order stresses themselves expressed in terms of increments of strain
gradients. The theory in Mühlhaus and Aifantis (1991) and Fleck and Hutchinson
(2001) are in the first class, and these do not always satisfy the thermodynamic
consistency. The other class includes Gudmundson (2004) and Gurtin and Anand
(2009) which are thermodynamically consistent; however they have the physical
deficiency that the higher-order stress quantities can change discontinuously for
bodies subject to arbitrarily small load changes. Hutchinson (2012) presents a sound
phenomenological extension of the rate-independent theory of the first class with a
modification of the Fleck-Hutchinson model ensuring its thermodynamic integrity.
The problems including nonproportional loading have recently been solved using
the updated thermodynamically consistent model in Fleck et al. (2014). Reddy
(2011a) has recently studied the flow rules of rate-independent gradient plasticity
models and analyzed the uniqueness and the existence of solutions. In addition
to these higher-order theories, lower-order theories have been developed based on
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the plastic strain gradient-dependent work-hardening rules such as Chen and Wang
(2000) and Huang et al. (2004). The recent work by Panteghini and Bardella (2016)
presents a detailed finite element implementation of isotropic gradient plasticity
frameworks.

Initiated by Taylor (1938) crystal plasticity frameworks have been the main
physically based approach in plasticity to address the intrinsic anisotropy and the
localization phenomena in metals. It offers a kinematically representative descrip-
tion of first-order crystallographic phenomena (slip planes and directions, elastic
anisotropy) and based on the statistical representation of the kinetics of groups
of dislocations via flow and hardening rules at the individual slip system level.
Even though the main application of such models is the small-scale engineering,
the conventional ones do not include a length scale to address the realistic size-
dependent behavior. Moreover, slip band formation, plastic slip microstructure
evolution, and the effect of the grain boundaries are the limiting features of these
models. The extension of crystal plasticity models to capture such effects will be
discussed in the current and upcoming chapters.

Since the crystal plasticity extension of Fleck and Hutchinson (1997) to illustrate
the grain size effect on strength (Shu and Fleck 1999), various strain gradient crystal
plasticity models have been proposed. One of the simplest ways to incorporate the
length scale into the constitutive frameworks has been the enhancement of the work-
hardening laws with strain gradients such as lattice incompatibility-based models
(see, e.g., Acharya and Bassani 2000; Bassani 2001), mechanism-based strain
gradient crystal plasticity models (see, e.g., Han et al. 2005a,b), and others such as
Ohashi (2005), Dunne et al. (2007), and Liang and Dunne (2009). In such models
plastic strain gradients correspond to the geometrically necessary dislocation (GND)
densities (Ashby 1970), and they contribute to the hardening behavior in addition to
the statistically stored dislocation (SSD) densities. This type of lower-order crystal
plasticity enhancement does not bring any additional boundary condition to the
conventional boundary value problem formulation.

The other approach is the higher-order extension of crystal plasticity frameworks
(see Gurtin 2000, 2002; Yefimov et al. 2004; Evers et al. 2004; Arsenlis et al. 2004;
Bayley et al. 2006; Ma et al. 2006; Borg 2007; Geers et al. 2007; Levkovitch
and Svendsen 2006; Kuroda and Tvergaard 2008; Reddy 2011b; Yalcinkaya
2011; Yalcinkaya et al. 2012; Klusemann and Yalçinkaya 2013; Klusemann et al.
2013) that would allow the treatment of plastic slip/dislocation density boundary
conditions, and it is the main focus of the present paper. The higher-order theories
can further be subclassified into work-conjugate and non-work-conjugate types
(see Kuroda and Tvergaard 2008). In the former one, the plastic slip gradients
are accompanied by the thermodynamically conjugate higher-order stress terms
in the virtual work expression, and there exists an external contribution of work
arising from a corresponding higher-order surface traction (see, e.g., Gurtin 2002;
Borg 2007; Yalcinkaya et al. 2012). This unconventional virtual work expression
leads to slip or higher-order traction at the boundaries which would allow us to
solve problems where strong barriers of a material interface are impenetrable for
dislocations. In the non-work-conjugate type of works (such as Yefimov et al. 2004;
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Evers et al. 2004; Arsenlis et al. 2004; Bayley et al. 2006; Ma et al. 2006), a
physically based slip evolution is influenced by higher-order stress contribution
which is written in terms of gradients of plastic slip, where the arguments of virtual
work have not been applied. These extended crystal plasticity models could further
be classified according to chosen global degrees of freedom for the finite element
solution procedure. In this context, there have been two different approaches where
authors take plastic slip (see, e.g., Borg 2007; Yalcinkaya 2011; Yalcinkaya et al.
2012; Klusemann and Yalçinkaya 2013; Klusemann et al. 2013) or the dislocation
density (see, e.g., Evers et al. 2004; Bayley et al. 2006; Geers et al. 2007) as
degrees of freedom together with displacement field. For the sake of simplicity,
the current study considers the most elementary representation of a strain gradient
crystal plasticity theory in terms of plastic slip and displacement which are taken as
coupled global degrees of freedom.

In addition to their success in predicting size effects, strain gradient crys-
tal plasticity models have been improved further to simulate the intragranular
microstructure evolution, intergranular grain boundary behavior, and macroscopic
strain localization leading to necking in metallic materials (see, e.g., also Yalcinkaya
et al. 2011, 2012; Özdemir and Yalçinkaya 2014; Yalcinkaya and Lancioni 2014;
Lancioni et al. 2015a). A thermodynamically consistent incorporation of a proper
plastic potentials results in different responses in terms of both strain distribution
and the global constitutive response. This chapter addresses the thermodynamically
consistent development and extension of higher-order, work-conjugate, plastic slip-
based strain gradient crystal plasticity frameworks to capture the size effect and
inhomogeneous strain and stress distribution in polycrystalline materials, in a simple
and illustrative setting. It also studies different approaches to develop these models,
the boundary conditions, and the solution algorithms and addresses some future
challenges.

The chapter is organized as follows. First, in section “Plastic Slip-Based Strain
Gradient Crystal Plasticity,” the classical thermodynamical derivation of the rate-
dependent strain gradient crystal plasticity framework is discussed. Then in sec-
tion “Rate Variational Formulation of Strain Gradient Crystal Plasticity,” the
rate variational formulation of the same model is addressed. In section “Finite
Element Solution Procedure of Strain Gradient Crystal Plasticity Framework,” the
finite element solution procedure of the framework is studied in detail. Then in
section “Simulation of Polycrystalline Behavior,” numerical examples are solved
to illustrate the size effect in polycrystalline metals. Last, in section “Conclusion
and Outlook” the concluding remarks are summarized.

Plastic Slip-Based Strain Gradient Crystal Plasticity

In this section the complete formulation and thermodynamical consistency of
the higher-order, work-conjugate, plastic slip-based rate-dependent strain gradient
crystal plasticity model are studied, and the weak form of equations is derived
for the finite element implementation. Depending on the plastic slip potential
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for the energetic hardening, the models are distinguished as convex and non-
convex in nature. The convex type of model, which is used in this chapter, is
essentially used for the size effect predictions, while the non-convex type of
models could be employed for the simulation of intrinsic microstructure evolution
or macroscopic localization and necking (see, e.g., Yalcinkaya et al. 2011, 2012;
Yalçinkaya 2013; Yalcinkaya and Lancioni 2014). The purpose of this section is
to study the thermodynamics and the derivation of the convex-type strain gradient
crystal plasticity model and to address the ways to incorporate different physical
phenomena into the developed framework.

The theoretical framework is developed in a geometrically linear context, with
small displacements, strains, and rotations. The time-dependent displacement field
is denoted by u D u.x; t /, where the vector x indicates the position of a material
point. The strain tensor " is defined as " D 1

2
.ruC .ru/T /, and the velocity vector

is represented as v D Pu. The strain is decomposed additively as

" D "e C "p (1)

into an elastic part "e and a plastic part "p . The plastic strain rate can be written as
a summation of plastic slip rates on the individual slip systems, P"p D

P
˛ P�˛P˛

with P˛ D 1
2
.s˛ ˝ n˛ C n˛ ˝ s˛/ the symmetrized Schmid tensor, where s˛

and n˛ are the unit slip direction vector and unit normal vector on slip system ˛,
respectively.

Next, the selection of the internal state variables is discussed. The choice of
the state variables controls the formulation of the free energy and the governing
equations which would be needed to obtain the constitutive response and the
evolution of the deformation field. The state variables are chosen to be given by
the set

state D f"e; �˛;r�˛g (2)

where �˛ contains the plastic slips on the different slip systems ˛ and r�˛

represents the gradient of the slips on these slip systems. The chosen variables
describing the state are to be regarded as mesoscale internal state variables. At
that scale, the glide plane slip and their gradients are natural candidates. They
both describe the physical state on a slip plane in the mean field sense. The slip
characterizes the average plastic deformation accumulated on a glide plane, whereas
their gradients characterize the amount of geometrically necessary dislocations that
accompany that process, also an important characteristic of the mean dislocation
configuration. The use of these state variables naturally entails the other quantities
in the constitutive description, like the gradient of the dislocation density, where the
divergence of the microstress directly involves the gradient of GND.

There are a number of choices possible for the state variables. At the mesoscale,
the choice made is quite appropriate in representing a spatiotemporal ensemble
of microscopic states. The mesoscale state variables are measures of the current
dislocation state in the material relative to which energy storage and hardening in the
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material are modeled. Microscopic processes like phase transitions or dislocation
interaction may survive coarse-graining (from the microscale to the mesoscale),
resulting in non-convex contributions to the free energy as in phase field models
and a transition from spatial or material homogeneity or inhomogeneity. The use of
slip-like quantities as mesoscale state variables is quite common in crystal plasticity.
Several examples can be found in the literature, e.g., Rice (1971), using a continuum
slip model, which characterizes the state of the crystal in terms of the shear strains
on each slip system. Later on Perzyna (1988) considered plastic slips together
with the slip resistance as internal state variables. For the numerical problems with
monotonic loading histories, the adopted mesoscopic state variables are well capable
of bridging the microscopic and mesoscopic states of the material.

Following the arguments of Gurtin (e.g., Gurtin 2000, 2002), the power expended
by each independent rate-like kinematical descriptor is expressible in terms of an
associated force consistent with its own balance. However, the basic kinematical
fields of rate variables, namely, P"e , Pu, and P�˛ are not spatially independent. It
is therefore not immediately clear how the associated force balances are to be
formulated, and, for that reason, these balances are established using the principle
of virtual power.

Assuming that at a fixed time the fields u, "e , and �˛ are known, we consider ı Pu,
ı P"e , and ı P�˛ as virtual rates, which are collected in the generalized virtual velocity
V D fı Pu; ı P"e; ı P�˛g. Pext is the power expended on the domain ˝ and Pint a
concomitant expenditure of power within ˝, given by

Pext .˝;V/ D
R
S

t.n/ � ı Pu dS C
R
S

P
˛.�

˛.n/ ı P�˛/ dS

Pint .˝;V/ D
R
˝

� W ı P"e d˝ C
R
˝

P
˛.�

˛ ı P�˛/d˝ C
R
˝

P
˛.�

˛ � rı P�˛/ d˝

(3)
where the stress tensor � , the scalar internal forces �˛ , and the microstress vectors
�˛ are the thermodynamical forces conjugate to the internal state variables "e , �˛ ,
and r�˛ , respectively. In Pext , t.n/ is the macroscopic surface traction, while
�˛.n/ represents the microscopic surface traction conjugate to �˛ at the boundary S
with n indicating the boundary normal. The principle of virtual power states that for
any generalized virtual velocity V, the corresponding internal and external power
are balanced, i.e.,

Pext .˝;V/ D Pint .˝;V/ 8 V (4)

Now the consequences are derived following the restriction rı Pu D ı P"e C ı P!e CP
˛ ı P�˛s˛ ˝ m˛ . First a generalized virtual velocity without slip rate is considered,

namely, ı P�˛ D 0 which means rı Pu D ı P"e C ı P!e . Considering that Cauchy stress
is symmetric, the power balance becomes
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Z

˝

� W rı Pud˝ D

Z

S

t.n/ � ı PudS (5)

After applying divergence theorem, the conditions derived from equation (5) are the
traction condition

t.n/ D �n (6)

and the classical linear momentum balance

r � � D 0: (7)

The microscopic counterparts of the conditions are obtained through a consideration
of a generalized virtual velocity with ı Pu D 0with arbitrary ı P�˛ field which results in

X

˛

ı P�˛.s˛ ˝ m˛/ D �ı P"e � ı P!e (8)

And the term � W ı P"e becomes

� W ı P"e D �� W
X

˛

ı P�˛.s˛ ˝ m˛/ � � W ı P!e (9)

Using the symmetry of the Cauchy stress, the following relation is obtained � W

ı P"e D �
P

˛ ı P�˛�˛ where �˛ is the Schmid resolved stress. For this case the power
balance (4) utilized again

R
S

P
˛.�

˛.n/ı P�˛/dS D �
P

˛

R
˝
�˛ı P�˛d˝ C

P
˛

R
˝
�˛ı P�˛d˝

C
P

˛

R
˝

�˛ � rı P�˛d˝

(10)

or equivalently

P
˛

R
˝
.��˛ C �˛ � r � �˛/ı P�˛d˝ C

P
˛

R
S
.�˛ � n � �˛.n//ı P�˛dS D 0 (11)

which should be satisfied for all ı P�˛ . This argument yields the microscopic traction
condition on the outer boundary of the bulk material

�˛.n/ D �˛ � n (12)

and the microscopic force balance inside the bulk material on each slip system ˛

�˛ � �˛ C r � �˛ D 0 (13)

on each slip system ˛.
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Next, the thermodynamical consistent derivation of global system of equations is
addressed, starting with the local internal power expression

Pi D � W P"e C
X

˛

.�˛ P�˛ C �˛ � r P�˛/ (14)

The local dissipation inequality results in

D D Pi � P D � W P"e C
X

˛

.�˛ P�˛ C �˛ � r P�˛/ � P � 0 (15)

For a single crystal material without grain boundaries, the material is assumed to be
endowed with a free energy with different contributions according to

 D  e C  � C  r� (16)

The time derivative of the free energy is expanded and equation (15) is elaborated
to

D D � W P"e C
P

˛.�
˛ P�˛ C �˛ � r P�˛ �

@ 

@"e
W P"e �

@ 

@�˛
P�˛ �

@ 

@r�˛
� r P�˛/

D .� �
d e

d"e
/

„ ƒ‚ …
0

W P"e C
P

˛.�
˛ �

@ �

@�˛
/ P�˛ C

P
˛ .�

˛ �
@ r�

@r�˛
/

„ ƒ‚ …
0

�r P�˛ � 0

(17)
The stress � and the microstress vectors �˛ are regarded as energetic quantities
having no contribution to the dissipation

� D
d e

d"e

�˛ D
@ r�

@r�˛

(18)

whereas �˛ does have a dissipative contribution. Note that considering the
microstress vectors, �˛ as non-dissipative is an assumption. It is also possible
to take dissipative and non-dissipative parts of the microstresses due to the gradient
of the plastic deformation as done in some of the recent works (see, e.g., Gurtin
2002, 2008). In that case the dissipative parts would appear in the following reduced
dissipation inequality, while in the current framework it does not exist

D D
X

˛

.�˛ �
@ �

@�˛
/ P�˛ � 0: (19)
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The multipliers of the plastic slip rates are identified as the set of dissipative stresses
� ˛dis

� ˛dis D �˛ �
@ �

@�˛
(20)

In order to satisfy the reduced dissipation inequality at the slip system level, the
following constitutive equation is proposed

�˛dis D '˛sign. P�˛/ (21)

where '˛ represents the mobilized slip resistance of the slip system under consider-
ation

'˛ D
s˛

P�˛0
j P�˛j (22)

where s˛ is the resistance to dislocation slip which is assumed to be constant and P�0
is the reference slip rate. Substituting (22) into (21) gives

P�˛ D
P�˛0
s˛
�˛dis (23)

Substitution of �˛dis according to (20) into (23) reveals

P�˛ D
P�˛0
s˛

�

�˛ �
@ �

@�˛

�

(24)

Using the microforce balance (13) results in the plastic slip equation

P�˛ D
P�˛0
s˛

�

�˛ C r � �˛ �
@ �

@�˛

�

: (25)

Note that the derivation of the thermodynamically consistent constitutive equations
(plastic slip evolution) are based on an assumption which results in an expression
identical to classical power-law relation of crystal plasticity frameworks with an
exponent m D 1. This choice was of course made for simplicity only, yet with
a large similarity to discrete dislocation studies using linear drag relations. The
general form of equations would follow by including the rate sensitivity exponent
in (22) as '˛ D s˛. P�˛0 =j P�˛j/m which would yield the following general form

P�˛ D P�˛0

�

j�˛ C r � �˛ �
@ �

@�˛
j=s˛

� 1
m

sign.�˛ �
d �

d�˛
/ (26)
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The identification of the model as crystal plasticity, strain gradient crystal plasticity,
or non-convex strain gradient crystal plasticity depends on the terms entering
the equations (25) and (26). Comparing equations (23) and (25) resolves �˛dis D

�˛ C r � �˛ � @ �=@�
˛ . In the recently developed non-convex strain gradient

crystal plasticity frameworks (see, e.g., Yalcinkaya et al. 2011, 2012), the driving
force for the dislocation slip evolution is �˛dis which physically means that, in
addition to the resolved shear stress �˛ , the back stress due to the gradients of
the geometrically necessary dislocation densities r � �˛ , and the internal force
leading to the accumulation of plastic slip @ �=@�˛ , is affecting the plastic flow. In
classical crystal plasticity frameworks, it is only the resolved shear stress �˛ which
determines the plastic flow, while in strain gradient type of models it is the effective
resolved shear stress �˛eff D �˛ C r � �˛ . In addition to the explicit contribution of
 � , other contributions of the free energies defined in (16) enter the slip equation
via (18) with �˛ D d e=d"e W P˛ and �˛ D @ r�=@r�

˛ .
It is necessary to comment on the particular choices for energy potentials

. e;  � ;  r� / which would result in the expressions for the related stresses with
�˛ D d e=d"e W P˛ , �˛ D @ r�=@r�

˛ and @ �=@�˛ . In the numerical examples
of this chapter, quadratic forms are used for the elastic free energy  e and the plastic
slip gradients free energy contribution  r� , i.e.,

 e D
1

2
"e W 4C W "e and  r� D

X

˛

1

2
Ar�˛ � r�˛ (27)

where A is a scalar quantity, which includes an internal length scale parameter,
governing the effect of the plastic slip gradients on the internal stress field, and it
could be introduced in different ways. One choice isA D ER2=.16.1��2// as, e.g.,
used in Bayley et al. (2006) and Geers et al. (2007), whereR is a typical length scale
for dislocation interactions and it physically represents the radius of the dislocation
domain contributing to the internal stress field. If the dislocation interaction is
limited to nearest neighbor interactions only, then R equals the dislocation spacing.
Moreover, � is Poisson’s ratio and E is Young’s modulus. Depending on the
problem, different relations for A could be introduced or it could even be used as a
parameter itself in a more phenomenological way. The definitions in (27) result in
the following stress expressions

� D
d e

d"e
D 4C W "e

�˛ D
@ r�

@r�˛
D Ar�˛

(28)

The contributions from the elastic and gradient potentials constitute the convex
strain gradient crystal plasticity framework. The crucial part is the determination
of the plastic potential  � which governs the energetic hardening behavior of the
model, the spatial distribution, and the localization of the strain and deformation.



28 Strain Gradient Crystal Plasticity: Thermodynamics and Implementation 1011

While a convex  � influences solely the hardening behavior of the model, a non-
convex contribution incudes deformation localization and macroscopic softening.
Due to the incorporation of a non-convex potential, we refer the resulting framework
the non-convex strain gradient crystal plasticity having the capability to model
heterogeneous distribution of deformation (microstructure evolution). The effect of
incorporation of both phenomenological and physically based non-convex plastic
potentials on the spatial distribution of deformation and the macroscopic constitutive
response within the scope of plasticity, damage, and fracture has been illustrated
recently in, e.g., Yalcinkaya et al. (2011, 2012), Klusemann and Yalçinkaya (2013),
Klusemann et al. (2013), Lancioni et al. (2015a,b).

Another thermodynamically consistent approach to reach the identical consti-
tutive model and plastic slip evolution relation is to work in the framework of
continuum thermodynamics and rate variational methods (see, e.g., Svendsen 2004;
Reddy 2011a,b) for history-dependent material behavior, which is addressed in the
next section. In this case the evolution equations are derived from a dissipation
potential. Same results could be obtained through variational formulation and
incremental minimization procedure as well (see Lancioni et al. 2015a).

In order to solve initial boundary value problems using the rate-dependent
strain gradient crystal plasticity framework, a fully coupled finite element solution
algorithm is employed where both the displacement u and the plastic slips �˛ are
considered as primary variables. These fields are determined in the solution domain
by solving simultaneously the linear momentum balance (7) and the slip evolution
equation (26) for m D 1 and constant slip resistance, which constitute the local
strong form of the balance equations

r � � D 0

P�˛ �
P�˛0
s˛
�˛ �

P�˛0
s˛

r � �˛ C
P�˛0
s˛
@ �

@�˛
D 0

(29)

In order to obtain variational expressions representing the weak forms of the
governing equations given above, these equations are multiplied by weighting
functions ıu and ı˛� and integrated over the domain ˝. Using the Gauss theorem
(S is the boundary of ˝) results in

Gu D

Z

˝

rıu W �d˝ �

Z

S

ıu � tdS

G˛
� D

Z

˝

ı˛� P�˛ d˝ �

Z

˝

ı˛�
P�˛0
s˛
�˛ d˝ C

Z

˝

rı˛� �
P�˛0
s˛

�˛d˝

C

Z

˝

ı˛�
P�˛0
s˛

@ �

@�˛
d˝ �

Z

S

ı˛�
P�˛0
s˛
�˛ dS

(30)

where t is the external traction vector on the boundary S , and �˛ D � � n. The
domain ˝ is subdivided into finite elements, where the unknown fields of the
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displacement and slips and the associated weighting functions within each element
are approximated by their nodal values multiplied with the interpolation shape
functions stored in the N u and N� matrices,

ıu D N uıu u D N uu

ı˛� D N�ı˛� �˛ D N��˛
(31)

where u, ıu, �
˛ , and ı˛� are columns containing the nodal variables. Bilinear

interpolation functions for the slip field and quadratic interpolation functions for the
displacement field are used. An implicit backward Euler time integration scheme is
used for P�˛ in a typical time increment Œtn; tnC1�which gives P�˛ D Œ�˛nC1 � �˛n �=	t .
The discretized element weak forms read

Ge
u D ıTu

�Z

˝e

Bu � d˝e �

Z

Se
N u t dSe

�

G˛e
� D ı˛�

"Z

˝e

N �TN �

"
�˛
nC1

� �˛
n

	t

#

d˝e �

Z

˝e

P�˛0
s˛
N �T �˛ d˝e

#

Cı˛�
P�˛0
s˛

"Z

˝e

B� �˛ d˝e C

Z

˝e

N �T
@ 

�˛

@�˛
d˝e �

Z

Se
N �T �˛ dSe

#

(32)

The weak forms of the balance equations (32) are linearized with respect to the
variations of the primary variables u and �˛ and solved by means of a Newton-
Raphson solution scheme for the increments of the displacement field 	u and the
plastic slips 	�˛ . The procedure results in a system of linear equations which can
be written in the following matrix format

"
Kuu Ku�

K�u K��

# "
	u

	�˛

#

D

"
�Ru CRextu

�R� CRext�

#

(33)

where Kuu; Ku� ;K�u, and K�� represent the global tangent matrices, while Ru and
R� are the global residual columns. The contributions Rextu and Rext� originate from
the boundary terms.

The global degrees of freedom in this framework are the displacement and
the plastic slips, in terms of which the boundary conditions are defined. Without
an explicit grain boundary model, in the current setting, there are two types of
conditions that could be used at grain boundaries during polycrystal simulations.
The first one is the soft boundary condition for the plastic slip which does not
restrict the transfer of dislocations to the neighboring grain, and the other one
is the hard boundary condition which blocks the transmission of the dislocations
and results in the boundary layer in terms of plastic slip. The reality is in
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between, and in order to model the proper behavior of transmission, emission, and
dissociation of dislocations within the grain boundary, an explicit grain boundary
model should be included in the framework (see very recent examples Özdemir
and Yalçinkaya 2014; van Beers et al. 2015a,b; Gottschalk et al. 2016; Bayerschen
et al. 2016). For a more detailed discussion on the GB modelling through strain
gradient crystal plasticity, please refer to the upcoming chapter by Yalcinkaya and
Ozdemir.

Rate Variational Formulation of Strain Gradient Crystal Plasticity

In this section the derivation of the constitutive equations of the rate-dependent
strain gradient crystal plasticity framework is conducted via rate variational for-
mulation. The same set of coupled equations are eventually obtained to be solved
through finite element method.

In here, the formulation is carried out in the framework of continuum thermo-
dynamics and rate variational methods (see, e.g., Svendsen 2004; Svendsen and
Bargmann 2010) for history-dependent behavior. The attention is confined to quasi-
static, infinitesimal deformation processes. Let B represent sample domain with
boundary @B . Besides the displacement field u, the principle global unknowns are
taken as the plastic slips �˛ on each glide system ˛. The model behavior is identified
with energetic and dissipative processes. The energetic processes are represented
by the free energy density  . In the case of general non-convex gradient crystal
plasticity (Yalcinkaya et al. 2011, 2012), this consists of an elastic  e , non-convex
 � , and the gradient  r� parts (see equation 16).

The dissipative/kinetic processes are represented by a simple rate-dependent
power-law form of dissipation potential ', which would result in the same con-
stitutive relation for the evolution of plastic slip field

' D
X

˛

1

mC 1
s P�0

ˇ
ˇ
ˇ
ˇ

P�˛

P�0

ˇ
ˇ
ˇ
ˇ

mC1

(34)

The dissipation potential ' is nonnegative and convex in P� ; therefore it satisfies
the dissipation principle Silhavy (1997) sufficiently. This form tacitly assumes zero
activation energy or stress for initiation of inelastic deformation. Since the current
work is concerned with purely qualitative effects, m D 1 is chosen for simplicity,
analogous to discrete dislocation studies based on linear drag relations. When � is
modeled as a global variable, the current framework results in a Ginzburg-Landau-
/phase-field-like relation for � when  � is introduced as non-convex. Other choices
for m, including those used in classical crystal plasticity studies, would result in
a non-Ginzburg-Landau form. Other values of m influence the strength, but not
the qualitative effect of the rate-dependent material behavior and microstructure
development (Yalcinkaya et al. 2011).
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Next, the finite element solution procedure of the continuum thermodynamics
variational formulation of the evolution field relations for the initial-boundary
value problem is addressed briefly. The formulation begins with the following rate
functional

R D

Z

B

rvdV C

Z

@B

rsdS (35)

which is based on the corresponding volumetric and boundary rate potentials

rv WD 
v C 'v
rs WD 
s C 's

(36)

The energetic and the dissipative terms are represented by 
 and ', respectively. The
energy storage density 
 could be determined by


v D
@ 

@ru
� r Pu C

P
˛

@ 

@�˛
P�˛ C

P
˛

@ 

@r�˛
� r P�˛ (37)

Using the definition of the stresses due to elastic and gradient free energy in (18)


v D � � r Pu C
P

˛.
@ �

@�˛
� �˛/ P�˛ C

P
˛ �˛ � r P�˛ (38)

The surface rate potential rs consists of energetic 
s and kinetic or dissipative
's parts which are linear and nonlinear, respectively, in the rates Pu and P�˛ and
determines the flux boundary conditions

�t D
@rs

@ Pu
and � �˛ D

@rs

@ P�˛
(39)

associated with Pu and P�˛ , respectively. Considering flux free boundary conditions,
the rate potentials are

rv D � � r Pu C
P

˛

�

.
@ �

@�˛
� �˛/ P�˛ C �˛ � r P�˛ C 1

2
s P�0

ˇ
ˇ
ˇ

P�˛

P�0

ˇ
ˇ
ˇ
2
�

rs D 
s C 's D 0 .flux � free/:

(40)

Now we get the first variation of R in Pu and P�˛ by using integration by parts, the

divergence theorem, and the variational derivative
ıf

ıx
D
@f

@x
� r �

@f

@rx
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ıR D

Z

B

ırv

ı Pu
ı PudV C

Z

@B

.
@rv

@r Pu
n C

@rs

@ Pu
/ � ı PudS

C
X

˛

�Z

B

ırv

ı P�˛
ı P�˛dV C

Z

@B

.
@rv

@r P�˛
� n C

@rs

@ P�˛
/ı P�˛dS

� (41)

Note that this form is independent of the gradients of ı Pu and ı P�˛ .
R is stationary with respect to all admissible variations of Pu when

ırv

ı Pu
D 0 in B

@rv

@r Pu
n C

@rs

@ Pu
D 0 on @Bt

(42)

hold in the bulk and at the flux part of the boundary @Bt . These relations represent
the momentum balance in B and on @Bt in (rate) variational form.

The stationarity of R with respect to admissible variations of P�˛ is given when

ırv

ı P�˛
D 0 in B

@rv

@r P�˛
� n C

@rs

@ P�˛
D 0 on @B'

(43)

hold. The physical interpretation of these relations would simply be the generalized
flow rule on each glide system.

Finally the field relations for the deformation

r � � D 0 in B
�n D t on @Bt

(44)

and for each glide system

s˛

P�˛0
P�˛ � �˛ � r � �˛ C

@ �

@�˛
D 0 in B

�˛ � n D �˛ on @B'

(45)

are obtained. Equations (44) and (45) form the same set of strong form of equations
of the previous section (29) to be solved by the finite element method. We follow
the same strategy to obtain the weak form of the equations and to solve numerically
for the macroscopic response and the evolution of the deformation field. Both
approaches result in a thermodynamically consistent strain gradient crystal plasticity
model. For the sake of mechanistic understanding, the constitutive relation/the
dissipation potential is chosen to be the most simple one; however other choices
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could easily be implemented in the framework as well following the steps above.
After studying the thermodynamics and formulation of single crystal strain gradient
plasticity, we focus on the details of the coupled finite element implementation of
the model in the next section.

Finite Element Solution Procedure of Strain Gradient Crystal
Plasticity Framework

In this section the detailed finite element implementation of the coupled slip-based
rate-dependent (convex) strain gradient crystal plasticity model with three slip
systems is presented. Considering constant slip resistance, without slip interactions,
and the linear case withm D 1, the plastic slip-dependent part of the free energy  �
drops, and slip equation becomes

P� �
P�0

s
� �

P�0

s
r � � D 0 (46)

Substituting � and collecting constants in matrix form results in

P� � C � � r � .Dr�/ D 0 (47)

where the plastic slips, resolved Schmid stress, and the gradient of the slip systems
are included as

� D

2

4
�1
�2
�3

3

5 � D

2

4
�1
�2
�3

3

5 r� D

2

6
6
6
6
6
6
6
4

@�1

@x

@�1

@y

@�2

@x

@�2

@y

@�3

@x

@�3

@y

3

7
7
7
7
7
7
7
5

(48)

and the parameters read

C D

2

6
6
6
6
4

P�0

s
0 0

0
P�0

s
0

0 0
P�0

s

3

7
7
7
7
5

D D

2

6
6
6
6
4

P�0

s
A 0 0

0
P�0

s
A 0

0 0
P�0

s
A

3

7
7
7
7
5

(49)

Together with the slip equation in (47), the linear momentum balance

r � � D 0 (50)
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enters the finite element solution procedure as strong form equations. The weak
forms of the equations are obtained in a standard manner, using a Galerkin
procedure. Firstly, the balance of linear momentum is tested with a field of
virtual displacements ıu and integrated over the domain ˝, which results
in Gu

Gu D

Z

˝

ıu � .r � � /d˝ (51)

which could be written as

Gu D

Z

˝

rıu W �d˝ �

Z

�

t � ıud� (52)

where t is the traction vector t D � � n. Then, G� is obtained in a similar
way by testing the slip equation with virtual plastic slip and integrating over the
domain

G� D

Z

˝

P� � ı� d˝ �

Z

˝

C � � ı� d˝ �

Z

˝

Œr � .Dr�/� � ı�d˝ (53)

which could be written as

G� D

Z

˝

P� � ı� d˝ �

Z

˝

C � � ı� d˝ C

Z

˝

rı� W Dr�d˝ �

Z

�

t � ı�d� (54)

with

t D Dr� � n (55)

Next, the equations are linearized through Newton-Raphson iterations using the

linearization operator 	 which is basically defined as 	xF D
@F

@x
	x

LinGu D 	uGu C	�Gu CG�
u D 0

LinG� D 	�G� C	uG� CG�
� D 0

(56)

Now each term is linearized

	uGu D

Z

˝

@�

@"
W 	u" W rıu d˝ (57)
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with � D 4C W ." � "p/

@�

@"
D 4C

	u" D
1

2
.r	u C .r	u/T /

(58)

and the first term of the linearized displacement Galerkin reads

	uGu D

Z

˝

rıu W 4C W
1

2
.r	u C .r	u/T / d˝: (59)

Then the second term of the linearized displacement Galerkin is derived as follows

	�Gu D

Z

˝

@�

@�
	� W rıud˝ (60)

In order to calculate
@�

@�
the rate of plastic slip is written as

P"p D
X

˛

P�˛P˛ with P˛ D
1

2
.s˛ ˝ n˛ C n˛ ˝ s˛/ (61)

and the integration of the plastic slip rate gives

"
p
nC1 D "pn C

X

˛

.�˛nC1 � �˛n /P
˛ (62)

then the regarding derivatives read as

@"p

@�ˇ
D Pˇ

@�

@�ˇ
D

@�

@"p
W
@"p

@�ˇ
D �4C W Pˇ

(63)

Finally the second term of the linearized displacement Galerkin expression is
expressed as follows

	�Gu D �

Z

˝

rıu W 4C W Pˇ 	�ˇ d˝: (64)
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Then the terms related to the linearization of G� are handled. The operator with
respect to the displacement is given by

	uG� D �

Z

˝

C
@�

@"
W 	u" ı� d˝ (65)

By using the derivative
@�˛

@"
D 4C W P˛ it could be written as

	uG� D �

Z

˝

C
1

2
.r	u C .r	u/T / W 4C W P˛ı�d˝: (66)

The last term is

	�G� D

Z

˝

	� P� ı�d˝ �

Z

˝

C 	�� ı�d˝ C

Z

˝

D	�.r�/ � rı�d˝ (67)

The following two terms are necessary

	�� D
@�˛

@�ˇ
	� D

@

@�ˇ
.� W P˛/	� D �P˛ W 4C W Pˇ	�

	�.r�/ D r	�

(68)

Finally, equation (67) is written as

	�G� D

Z

˝

1

	t
ı� 	� d˝ C

Z

˝
CP˛ W 4C W Pˇ	� ı� d˝ C

Z

˝
Dr.	�/ � rı�d˝

(69)

After the linearization procedure, the above system of equations is discretized. The
problem is solved in 2D under plane strain assumption. Quadratic interpolation is
used for the displacement field, and linear interpolation is used for the plastic slip
field. The degree of freedoms in an element is explicitly illustrated in Fig. 1. The
interpolation of the fields is conducted through the matrix of shape functions N

ıu D N u ıu u D N u u

ı� D N�ı
�

� D N��

(70)

and the interpolations of the gradients of the fields are done through the matrix of
shape functions’ derivatives
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27, 28 13, 14

24, 25, 2622, 23, 20, 21 17, 18, 1915, 16,

 3,  4,  5 1,  2, 10, 11, 12 8,  9,6, 7

29, 30

Fig. 1 The displacement degree of freedom numbers is represented with bold, while the other
numbers (placed only at the corner nodes) illustrate the plastic dof in an element. This representa-
tion corresponds to the quadratic interpolation in u and linear interpolation in �

rıu D Bu ıu ru D Bu u

rı� D B�ı
�

r� D B��

(71)

The second-order tensors are stored in Voigt notation as follows: A D

ŒA11 A12 A21 A22�
0. The operations in equations (70) and (71) are explicitly

illustrated in the matrix format as follows

"
ux

uy

#

D

"
N u
1 0 N u

2 0 : : : N u
9 0

0 N u
1 0 N u

2 : : : 0 N u
9

#

„ ƒ‚ …
N u

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

u1x

u1y

u2x

u2y

:

:

:

u9x

u9y

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(72)
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2

6
6
6
4

�1

�2

�3

3

7
7
7
5

D

2

6
6
6
4

N
�
1 N

�
2 N

�
3 N

�
4 0 0 0 0 0 0 0 0

0 0 0 0 N
�
1 N

�
2 N

�
3 N

�
4 0 0 0 0

0 0 0 0 0 0 0 0 N
�
1 N

�
2 N

�
3 N

�
4

3

7
7
7
5

„ ƒ‚ …
N�

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

�11

�12

�13

�14

�21

�22

:

:

:

�33

�34

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(73)

2

6
6
6
6
6
6
4

ux;x

ux;y

uy;x

uy;y

3

7
7
7
7
7
7
5

D

2

6
6
6
6
6
4

N u
1;x 0 N u

2;x 0 : : : N u
9;x 0

N u
1;y 0 N u

2;y 0 : : : N u
9;y 0

0 N u
1;x 0 N u

2;x : : : 0 N u
9;x

0 N u
1;y 0 N u

2;y : : : 0 N u
9;y

3

7
7
7
7
7
5

„ ƒ‚ …
Bu

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

u1x

u1y

u2x

u2y

:

:

:

u9x

u9y

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

2

6
6
6
6
6
6
4

ux;x

ux;y

uy;x

uy;y

3

7
7
7
7
7
7
5

D

2

6
6
6
6
6
4

N u
1;x 0 N u

2;x 0 : : : N u
9;x 0

0 N u
1;x 0 N u

2;x : : : 0 N u
9;x

N u
1;y 0 N u

2;y 0 : : : N u
9;y 0

0 N u
1;y 0 N u

2;y : : : 0 N u
9;y

3

7
7
7
7
7
5

„ ƒ‚ …
Bu

�

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

u1x

u1y

u2x

u2y

:

:

:

u9x

u9y

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(74)
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2

6
6
6
6
6
6
6
6
6
6
6
6
4

�1;1

�1;2

�2;1

�2;2

�3;1

�3;2

3

7
7
7
7
7
7
7
7
7
7
7
7
5

D

2

6
6
6
6
6
6
6
6
6
6
6
6
4

N
�
1;x N

�
2;x N

�
3;x N

�
4;x 0 0 0 0 0 0 0 0

N
�
1;y N

�
2;y N

�
3;y N

�
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0 0 0 0 N
�
1;x N
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2;x N
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3;x N
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3
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5

„ ƒ‚ …
B�
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6
6
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6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

�11

�12
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�14
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�22

:

:

:

�33

�34

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(75)

The following matrix will be needed as well

Bu
S D

1

2
.Bu C Bu

�/ (76)

A commonly used operation regarding the fourth- and second-order tensors is
D W 4C W B which can be written in index notation as A D Dij Cijkl Bkl . The
following matrix multiplication is used for this operation

ŒA� D
�
D11 D12 D21 D22

	

„ ƒ‚ …
DT

2

6
6
6
6
6
4

C1111 C1112 C1121 C1122

C1211 C1212 C1221 C1222

C2111 C2112 C2121 C2122

C2211 C2212 C2221 C2222

3

7
7
7
7
7
5

„ ƒ‚ …
C

2

6
6
6
6
6
4

B11

B12

B21

B22

3

7
7
7
7
7
5

„ ƒ‚ …
B

(77)

After the discretization the linearization operator of the displacement Galerkin could
be written as

	uGu D
R
˝e ı

T
u B

uT C Bu
S 	u d˝

e

	�Gu D �
R
˝e ı

T
u B

uT E N�	� d˝e
(78)
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where

E D ŒE1 E2 E3�

E1 D C P1T

E2 D C P2T

E3 D C P3T

(79)

where P1T , P2T , and P3T represent the column version of the P1, P2, and P3

tensors. C is the matrix version of the 4C as defined above. The displacement
linearization operator of the discretized plastic slip Galerkin reads

	uG� D �
R
˝e ı�N

�T C l Cp 	u d˝
e

(80)

with

C l D

2

6
6
6
6
4

P�0

s
0 0

0
P�0

s
0

0 0
P�0

s

3

7
7
7
7
5

and Cp D

2

6
6
4

C1
p

C 2
p

C 3
p

3

7
7
5 and

C1
p D P1 C Bu

S

C 2
p D P2 C Bu

S

C 3
p D P3 C Bu

S

(81)

where Bu
S is 4 � 18; C is 4 � 4; P1, P2, and P3 are 1 � 4; C1

p , C
2
p , and C

3
p are

1� 18, Cp is 3� 18; and C l is 3� 3 matrices. The slip linearization operator of the
discretized plastic slip Galerkin is

	�G� D
R
˝e

1
	t
ı
�
N �T N �	�d˝e C

R
˝e ı

�
N �T P p N �	�d˝e

C
R
˝e ı

�
B�TDdB�	�d˝e

(82)

where

Pp D

2

6
6
6
6
6
6
6
6
6
6
4

P�0

s
P 1 C P1T

P�0

s
P 1 C P2T

P�0

s
P 1 C P3T

P�0

s
P 2 C P1T

P�0

s
P 2 C P2T

P�0

s
P 2 C P3T

P�0

s
P 3 C P1T

P�0

s
P 3 C P2T

P�0

s
P 3 C P3T

3

7
7
7
7
7
7
7
7
7
7
5

and Dd
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D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

P�0

s
A 0 0 0 0 0

0
P�0

s
A 0 0 0 0

0 0
P�0

s
A 0 0 0

0 0 0
P�0

s
A 0 0

0 0 0 0
P�0

s
A 0

0 0 0 0 0
P�0

s
A

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(83)

And the discretized Galerkins of previous step are written as

G�
u D

R
˝e ı

T
u B

u
S �d˝e

G�
� D

R
˝e ı

�
N �TN �

��
nC1

� �
n

	t

�

d˝e �
R
˝e ı

�
N �T C � d˝e

C
R
˝e ı

�
B�T Dd B��d˝e:

(84)

Eventually, the element stiffness tangents would be

kuu D
R
˝e B

uT C Bu
S d˝

e

ku� D �
R
˝e B

uT E N�d˝e

k�u D �
R
˝e N

�T C l Cp d˝
e

k� � D
R
˝e

1
	t
N �T N �˝e C

R
˝e N

�T P p N �d˝e C
R
˝e B

�TDdB�d˝e:

(85)
Element residuals are calculated by using the values from the previous estimate

ru D
R
˝e B

u
S �d˝e

r� D
R
˝e N

�TN �

 
�
nC1

� �
n

	t

!

d˝e �
R
˝e N

�T C l � d˝
e

C
R
˝e B

�T Dd B��d˝e:

(86)
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The assembly operation gives the global tangent and the residual

Kuu D A fkuug Ku� D A fku�g Ru D A frug

K�u D A fk�ug K� � D A fk� �g R� D A fr�g

(87)

and the system of equations to be solved reads

"
Kuu Ku�

K�u K� �

# "
	u

	�

#

D

2

4
�Ru CRextu

�R� CRext�

3

5 (88)

where Rextu and Rext� originate from the boundary terms in the equilibrium. Above
procedure is implemented in Matlab and Abaqus software, and numerical problems
illustrating the behavior of polycrystalline materials are solved and presented in the
next section.

Simulation of Polycrystalline Behavior

In this section the performance of the strain gradient crystal plasticity model is tested
through size effect simulations using Voronoi tessellation (see, e.g., Aurenhammer
1991), which is used to obtain basic geometries of polycrystalline aggregates
containing 14, 110 or 212 grains, presented in Fig. 2. For each aggregate three
different average grain sizes are used: Davg = 50, 100 and 150�m. This compares
well with the average grain sizes of AISI 304 stainless steels (1 to 47�m, Di Schino
and Kenny 2003) and AISI 316L (13 to 107�m Feaugas and Haddou 2003).

Displacement load is applied to the left and right edge in the global -X direction
(left edge) and the global +X direction (right edge), resulting in macroscopic
<11>= 10%. The symbol h i represents the Macaulay bracket, indicating a macro-
scopically averaged value. Rigid body movement is prevented by fixing the bottom
left and bottom right nodes of the model in global Y direction. If one imagines
that the aggregate is embedded in a larger piece of material, the applied boundary
condition lies between the two bordering cases of constraints, imposed to the
aggregate by the surrounding material: (a) stresses or (b) displacements imposed
on the aggregate boundaries. The latter condition results in straight edges. Plastic
slip at the boundaries of the model is not constrained.

Material parameters are taken from Yalcinkaya et al. (2012) and are used to
demonstrate the strain gradient effects in the polycrystalline aggregates. They are
not directly related to any engineering materials. Table 1 lists the used strain gradient
crystal plasticity material properties. Crystallographic orientations of grains are
randomly distributed (0–360ı) using uniform probability distribution. Three slip
systems are considered in each grain.
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Fig. 2 14, 110, and 212 grain models. Colors represent individual grains; grain orientations are
given by local coordinate systems

Table 1 Material properties of the strain gradient single crystal plasticity model

Young Poisson Reference Slip Orientations Material

modulus ratio slip rate resistance length scale

E [MPa] � [/] P�0 [s�1] s [MPa] [ı] R [�m]

210000.0 0.33 0.15 20.0 120, 60, 45 0.0, 1, 5, 7.5, 10

Material length scale parameter R or the average grain size has substantial effect
on the plastic behavior of the material. R is related to different microstructural
features such as dislocation spacing (see, e.g., Nix and Gao 1998), dislocation
source distance (see, e.g., Aifantis et al. 2009), or grain size (see, e.g., Voyiadjis
and Abu Al-Rub 2005). Here we relate R to a certain percentage of the average
grain size, Davg . The ratio R=Davg has a significant effect on the macroscopic
stress-strain response. Larger R=Davg values lead to stiffer responses; see Fig. 3.
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Fig. 3 The effect of the
material length scale
parameter R for strain rates
of P = 0.2 and 2 s�1
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Fig. 4 The effect of hard (left) and soft (right) BC on the strain and stress fields in a 110 grain
aggregate with R=Davg = 1.6%, 2.5%, and 5% and P = 0.2 s�1

The same trend is observed for the two strain rates P = 0.2, 2 s�1. Stiffer responses
are obtained at higher strain rates which is in line with expectation. For soft
BC higher R=Davg ratios also lead to larger differences in the response between
aggregates of different number of grains. So grain number influence is larger. For
hard BC, the grain number influence on the macroscopic response is significantly
smaller, while at the same time the macroscopic responses are stiffer compared
to the soft BC responses. For a given R=Davg ratio, both local responses of a
polycrystalline aggregate are the same even though the grain sizes are different,
resulting in the same macroscopic responses as well.

Hard and soft BCs have strong effect on the local stress/strain distribution as well.
With hard BC the plastic slips at the grain boundaries are imposed to be zero, which
constrains the deformations at the grain boundaries significantly. Consequently, the
grain boundary stresses are higher; see Figs. 4 and 5 for two different strain rates
where Mises equivalent stress and strains are plotted. Increasing the R=Davg ratios
increases the grain boundary stresses and widens the areas of higher stresses at the
grain boundaries. This is especially evident for the hard BC but can also be clearly
observed for the soft BC. In general, the grain boundary stress concentrations can
be observed already at relative small R=Davg ratio of 1.6%.

Both higher strain rates and R=Davg ratios result in stiffer macroscopic
responses, while R=Davg significantly impacts the grain boundary stresses, where
the influence of the rate on the grain boundary stress is considerably smaller.
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Fig. 5 The effect of hard (left) and soft (right) BC on the strain and stress fields in a 110 grain
aggregate with R=Davg = 1.6%, 2.5%, and 5% and P = 2 s�1

As for the material parameters, the rates used here are not related to a
specific experiment, and they are quite high compared to 0.5mm/mm/min
.0:0083 s�1/�0:05mm=mm=m .0:00083 s�1/ which ASTM E 8/E 8M-08 specifies
for the strain rate during standard tensile testing of metallic materials ASTM 2009.
Both material parameters and loading conditions should be identified for more
realistic simulations.

Conclusion and Outlook

In this chapter, the thermodynamically consistent derivation of a higher-order, work-
conjugate, plastic slip-based rate-dependent strain gradient crystal plasticity model
is presented through both classical thermodynamics and rate variational formula-
tion. After obtaining the coupled strong form of equations, the weak forms are
derived through Galerkin method, and the complete finite element implementation
is discussed in detail. The model presented here does not include any energetic
hardening term. For the sake of simplicity and clarity, a linear dependence for
the slip evolution equation is employed. Any extension of the model to include
nonlinear terms could easily be done by following the presented steps above. The
performance of the model is illustrated through polycrystalline examples using
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Voronoi tessellation, and the influence of the boundary conditions, the loading rate,
and the number and the size of the grains are studied. The current study considers
only the hard and soft boundary conditions which are two extreme cases restricting
the plastic slip completely or allowing the dislocation slip transfer without any
resistance. Even though it is possible to capture the size effect due to the plasticity
activity at the grain boundaries with the current nonlocal model, the boundary
conditions are not completely physical, and the real behavior is somewhere in
between these two situations. A grain boundary model is needed in order to
incorporate the complex dislocation-grain boundary interaction mechanisms into
the plasticity model. Therefore, the next chapter studies a particular grain boundary
model and illustrates explicitly the effect of the misorientation between the grains
and the orientation of the grain boundary. Due to its convex nature, the current model
does not predict the intragranular plastic/dislocation microstructure formation and
evolution. This requires the incorporation of an additional non-convex energy term.

Acknowledgements Tuncay Yalçinkaya gratefully acknowledges the support by the Scientific
and Technological Research Council of Turkey (TÜBİTAK) under the 3001 Programme (Grant
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Abstract

This chapter addresses the formation and evolution of inhomogeneous plastic
deformation field between grains in polycrystalline metals by focusing on con-
tinuum scale modeling of dislocation-grain boundary interactions within a strain
gradient crystal plasticity (SGCP) framework. Thermodynamically consistent
extension of a particular strain gradient plasticity model, addressed previously
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(see also, e.g., Yalcinkaya et al, J Mech Phys Solids 59:1–17, 2011), is presented
which incorporates the effect of grain boundaries on plastic slip evolution explic-
itly. Among various choices, a potential-type non-dissipative grain boundary
description in terms of grain boundary Burgers tensor (see, e.g., Gurtin, J Mech
Phys Solids 56:640–662, 2008) is preferred since this is the essential descriptor
to capture both the misorientation and grain boundary orientation effects. A
mixed finite element formulation is used to discretize the problem in which
both displacements and plastic slips are considered as primary variables. For the
treatment of grain boundaries within the solution algorithm, an interface element
is formulated. The capabilities of the framework is demonstrated through 3D bi-
crystal and polycrystal examples, and potential extensions and currently pursued
multi-scale modeling efforts are briefly discussed in the closure.

Keywords
Strain gradient plasticity · Grain boundary · Grain boundary-dislocation
interaction · Misorientation · Grain boundary Burgers tensor

Introduction

At the grain scale, polycrystalline materials tend to develop heterogeneous plastic
deformation fields due to variation of grain orientations, geometries, and defects.
Grain boundaries are natural locations for plastic slip accumulation and geometri-
cally necessary dislocations accommodating the gradients of inhomogeneous plastic
strain. Grain boundaries have been subject to extensive research for decades due
to their major influence on the mechanical properties of polycrystalline metals.
Investigations on grain boundaries within polycrystalline materials date back to
the observations of Hall and Petch. According to the so-called Hall-Petch effect,
the yield strength of a polycrystalline metal specimen scales linearly with the
inverse square root of the grain size. This is explained by the fact that grain
boundaries behave as barriers against dislocation mobility, and they limit the mean
free path of the dislocations thereby increasing strain hardening. Obviously, the
grain size represents an intrinsic length scale of the polycrystalline system which
inevitably influences the material response significantly. Conventional plasticity
models do not incorporate a material length scale, and predictions of such theories
involve only the lengths associated with the geometry of the whole solid body. In
order to capture the grain size-dependent response, an internal length scale must
be incorporated in the constitutive law. In the last two decades, the number of
phenomenological and physically based strain gradient-type plasticity models has
increased significantly. The intention of these models was to address the issue of
internal length scale properly. Some of these models indeed consider the grain
boundaries in a direct or smeared way; however understanding of dislocation-
grain boundary interaction is far from being complete and constitutive models,
and their numerical implementations are still subject of ongoing discussions. As
stated by McDowell (2008), capturing the role of grain boundaries accurately within
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continuum scale plasticity models is a challenging task. To this end, researchers
have utilized different models and tools at different scales. In the context of grain
boundary-dislocation interaction modeling, most of the existing efforts fall under
one of the four categories identified as: (i) atomistic level studies, (ii) dislocation
dynamics simulations, (iii) macroscale phenomenological modeling, and (iv) (multi-
scale) crystal plasticity modeling.

When resolved at atomic scale, grain boundary is a thin transition layer from
one grain (orientation) to the other, and it has its own structure. This structure
endows the grain boundary with an initial energy (equilibrium energy) which
is the focus of a considerable fraction of the literature on atomistic level grain
boundary models; see, for example, Tschopp and McDowell (2007) and McDowell
(2008). Although these studies mostly focus on specific grain boundaries (e.g.,
symmetric tilt boundaries) and a limited number of materials, the findings might
be used effectively in multi-scale strain gradient plasticity type models. Developing
a quantitative understanding through experiments on dislocation nucleation and slip
transfer reactions at grain boundaries is extremely difficult. Therefore, atomistic
models are the ideal tools to develop an understanding on unit mechanisms involved
in dislocation absorption, transmission, and reflection within/from a grain boundary
as exemplified by de Koning et al. (2002, 2003) and Spearot and McDowell (2009).
However, significant challenges exist such as extending the number of slip transfer
events to realistically large numbers, modeling nonequilibrium grain boundaries,
and understanding dislocation activity in polycrystalline metals with heterogeneous
compositions, e.g., impurities at grain boundaries or metallic alloys with hetero-
phase interfaces.

Along with atomistic models, there have been a number of studies which have
tried to embed grain boundaries within discrete dislocation dynamics framework
(DDD, Van der Giessen and Needleman 1995) in a consistent way. At first, the
focus was primarily on the treatment of slip transmission through grain boundaries
within DDD. In this context, dislocation transmission rules based on transmission
electron microscope (TEM) observations (see, e.g., Shen et al. 1986; Lee et al. 1989)
were introduced into DDD codes (Li et al. 2009). As an alternative, the findings of
atomistic level studies such as the one by de Koning et al. (2002) are adopted to
introduce slip transmission criteria in DDD; see Kumar et al. (2010). However, the
transmission of dislocations is not the only interaction mechanism to be considered.
The absorption and emission of dislocations are also possible, but the rules for the
incorporation of these phenomena are not clear yet.

The last two groups of studies mainly consist of strain gradient-type plasticity
models taking into account the effect of inhomogeneous plastic strain distribution
due to grain boundaries, i.e., high slip gradients in the vicinity of grain boundaries
and related back-stress evolution, with either grain boundary conditions or with a
decomposition of the grain into a core and a grain boundary effected zone. The
majority of the strain gradient models could only treat the grain boundaries in two
limiting cases as either impenetrable surfaces with no slip (hard boundaries) or
slip without any resistance (soft boundaries). However, the proper interpretation
of grain boundary effects could only be done by incorporating a grain boundary
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description into strain gradient plasticity models which could cover other scenarios
of dislocation-grain boundary interactions.

It was first recognized by Gudmundson (2004) that jump conditions across
interfaces in strain gradient theories can be introduced and an additional contribution
to the internal virtual work has to be considered along the interface between two
plastically deforming phases. The interface conditions and traction expressions
are derived, yet a polycrystal plasticity simulation was not performed. Later on
Fredriksson and Gudmundson (2005) used this strain gradient framework with the
interface model to capture dislocation built up at elastic/plastic interfaces. In a
following work, Aifantis and Willis (2005) presented a similar approach which
incorporates the physical properties of interfaces by means of interface potential
appended to a phenomenological strain gradient plasticity model. To explore the
capabilities of the model, Aifantis et al. (2006) calibrated the proposed interface
potential through indentation tests, where the grain boundary “yield” reveals itself
in the form of strain/displacement bursts observed in the load vs. tip displacement
diagrams. In a parallel work, Abu Al-Rub (2008) extended a strain gradient
plasticity framework by including an interface potential to investigate thin film
mechanics. In the work of Massart and Pardoen (2010), interface elements were
used to control/prescribe higher order boundary conditions stemming from the
use of Fleck-Hutchinson gradient plasticity model (Fleck and Hutchinson 2001).
The rate of plastic slip is initially set to zero at these interfaces and evolves with
deformation mimicking the grain boundary relaxation mechanisms. Apart from
these phenomenological gradient plasticity theories, there have been a number of
attempts which have consolidated grain boundary effects within SGCP frameworks.
One of the earliest ones was proposed by Ma et al. (2006) which incorporated
the mechanical interaction between mobile dislocations and grain boundaries in
a dislocation-based crystal plasticity model. The influence of grain boundaries is
taken into account in terms of an additional energy affecting the dislocation velocity
(plastic slip) in the bulk as opposed to the interfacial nature of grain boundaries.
Nevertheless, the study reveals that the misorientation of the neighboring grains
alone is not sufficient to describe the influence of grain boundaries. Borrowing the
ideas of Aifantis andWillis (2005), Borg (2007) and Borg and Fleck (2007) incorpo-
rated an energy potential that penalizes crystallographic slip at grain boundaries into
a SGCP theory for finite deformations. This approach does not take into account the
misorientation of the neighboring grains or the grain boundary orientation, reflecting
a rather phenomenological description. In a more recent study by Ekh et al. (2011),
interface conditions sensitive to misorientation between grains were introduced in an
ad hoc manner, where the slip resistance at grain boundaries decreases as the level of
slip system alignment increases. However Gurtin (2008), which is also the point of
departure for this chapter and has influenced many other recent works by van Beers
et al. (2013), Özdemir and Yalçinkaya (2014), and Gottschalk et al. (2016), intrinsi-
cally includes the effect of both the misorientation between neighboring grains and
the orientation of the grain boundary through grain boundary Burgers tensor.

Departing from the structure outlined by Gurtin (2008), in this chapter an
extension of a rate-dependent strain gradient crystal plasticity model (convex
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counterpart of Yalcinkaya et al. 2011 and Yalçinkaya et al. 2012) is presented in
which grain boundary response is embedded in a thermodynamically consistent
manner. Furthermore a mixed finite element-based solution algorithm is elaborated
where both the plastic slips and displacement fields are taken as degrees of freedom.

The chapter is organized as follows. First, in section “Strain Gradient Crystal
Plasticity Framework and Grain Boundary Model,” the SGCP framework is reca-
pitulated, and its consistent extension is presented. The particular form of the grain
boundary potential is described in detail as well. In the following section, the finite
element-based solution algorithm and the treatment of grain boundaries in a discrete
setting are worked out. In section “Numerical Examples,” the proposed formulation
is assessed on the basis of three-dimensional examples. The chapter is closed by
conclusion and outlook section, commenting on current efforts of extensions within
a multi-scale modeling perspective.

Strain Gradient Crystal Plasticity Framework and Grain Boundary
Model

In this section, within the context of continuum thermodynamics, crystal plasticity
model is presented where the bulk behavior and the interface are treated separately.
First, the force balances are derived via the principle of virtual power followed by
the consideration of dissipation inequality for the bulk material and the interface
successively.

Principle of Virtual Power: Macroscopic andMicroscopic Energy
Balances

In a geometrically linear kinematics setting, the time-dependent displacement field
of a body with a grain boundary, as shown in Fig. 1, is denoted by u D u.x; t /,
where x indicates the position of a material point. It has to be noted that the
displacement field is continuous across the grain boundary. Furthermore, although
the discussions are based on a body composed of two grains as depicted in Fig. 1,
the following derivations are valid for bodies composed of multiple grains.

The strain tensor " is defined as " D 1
2
.ru C .ru/T /, and the velocity vector is

represented as v D Pu. The strain is decomposed additively as

" D "e C "p (1)

into an elastic part "e and a plastic part "p .
The plastic strain rate can be written as the summation of plastic slip rates on the

individual slip systems, P"p D
P

˛ P�˛P˛ with P˛ D 1
2
.s˛ ˝ m˛ C m˛ ˝ s˛/ the

symmetrized Schmid tensor, where s˛ and m˛ are the unit slip direction vector and
unit normal vector on slip system ˛, respectively. The set

state D "e; �˛;r�˛ (2)
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is chosen to be the state variables where �˛ and r�˛ are the plastic slip and gradient
of plastic slip on system ˛. Following the arguments of Gurtin (e.g., Gurtin 2000,
2002), the power expended by each independent rate-like kinematical descriptor
is expressible in terms of an associated force consistent with its own balance.
However, the basic kinematical fields of rate variables, namely, P"e , Pu, and P�˛ are not
independent. It is therefore not immediately clear how the associated force balances
are to be formulated, and, for that reason, these balances are established using the
principle of virtual power.

The classical macroscopic system is defined by a traction t. Nn/ that expends
power over the velocity Pu and stress � that expends power over the elastic strain
rate P"e . There are no body forces acting on the system. The microscopic system is
composed of a scalar microscopic stress �˛ for each slip system that expends power
over the slip rate P�˛ , a vector of microscopic stress �˛ that expends power over the
slip-rate gradient r P�˛ , a scalar microscopic traction �˛. Nn/ that expends power over
P�˛ , and a scalar interfacial microscopic grain boundary stress �˛ that expends power
over the grain boundary slip rates P�˛A and P�˛B where approaching the grain boundary
from different grains is designated by subscripts A and B. The virtual rates are
collected in the generalized virtual velocity V D .ı Pu; ı P"e; ı P�˛; ı P�˛A; ı P�˛B/. The force
systems are characterized through their work-conjugated nature with respect to the
state variables. Pext is the power expended on the domain ˝, Pint a concomitant
expenditure of power within ˝ stated as

Pext.˝;V/ D
R
S

t. Nn/ � ı Pu dS C
P

˛

R
S
�˛. Nn/ı P�˛dSC

P
˛

R
SGB

�
�˛A ı P�˛A C �˛B ı P�˛B

�
dS

Pint.˝;V/ D
R
˝

� W ı P"ed˝ C
P

˛

R
˝
�˛ı P�˛d˝ C

P
˛

R
˝

�˛ � rı P�˛d˝

(3)

where �A and �B are the microscopic grain boundary stresses associated with the
grain boundary of grain A and grain B, respectively. The boundary S is the union of
outer boundaries of grains A and B; and SGB is the grain boundary (the interface)
as shown in Fig. 1.

Grain A

Grain B

NA

NB

n̄

SA

SB

SGB

S= SA SB

Fig. 1 A body with a grain boundary
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Postulation of principle of virtual power states that given any set of virtual fields,
the corresponding internal and external powers are balanced

Pext.˝;V / D Pint .˝;V/ 8 V (4)

Now the consequences are derived following the restriction rı Pu D ı P"e C ı P!e CP
˛ ı P�˛s˛ ˝ m˛ . First a generalized virtual velocity without slip is considered,

namely, ı P�˛ D 0 which means rı Pu D ı P"e C ı P!e . Considering that Cauchy stress
is symmetric, the power balance becomes

Z

˝

� W rı Pud˝ D

Z

S

t. Nn/ � ı PudS (5)

The conditions derived from equation (5) are well-known traction conditions

t. Nn/ D � Nn (6)

and the classical linear momentum balance

r � � D 0 (7)

The microscopic counterparts of the conditions are obtained through a consideration
of a generalized virtual velocity with ı Pu D 0 with arbitrary ı P�˛ field which results
in

X

˛

ı P�˛.s˛ ˝ m˛/ D �ı P"e � ı P!e (8)

and the term � W ı P"e becomes � W ı P"e D �� W
P

˛ ı P�˛.s˛ ˝ m˛/� � W ı P!e . Using
the symmetry of the Cauchy stress and the definition of the Schmid resolved stress
�˛

� W ı P"e D �
X

˛

ı P�˛�˛ (9)

For this case the power balance (4) is utilized again and the following form is
obtained

P
˛

R
S
�˛. Nn/ı P�˛dS C

P
˛

R
SGB

�
�˛A ı P�˛A C �˛B ı P�˛B

�
dS D

�
P

˛

R
˝
�˛ı P�˛d˝ C

P
˛

R
˝
�˛ı P�˛d˝ C

P
˛

R
˝

�˛ � rı P�˛d˝

(10)
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which could be written as

P
˛

R
˝
.��˛ C �˛ � r � �˛/ı P�˛d˝ C

P
˛

R
S
.�˛ � Nn � �˛. Nn//ı P�˛dS

C
P

˛

R
SGB

�
�˛A � NA � �˛A

�
ı P�˛AdS C

P
˛

R
SGB

�
�˛B � NB � �˛B

�
ı P�˛BdS D 0

(11)
and has to be satisfied for all ı P�˛ . This argument yields the microscopic traction
condition on the outer boundary of the bulk material

�˛. Nn/ D �˛ � Nn (12)

and the microscopic force balance inside the bulk material on each slip system ˛

�˛ � �˛ C r � �˛ D 0 (13)

and microscopic grain boundary interface conditions on both side of the grain
boundary

�˛A � NA D �˛A

�˛B � NB D �˛B

(14)

Since NA D �NB , the interface conditions given by equation (14) can be expressed
as

�˛A D �˛A � NA

�˛B D ��˛B � NA
(15)

The details of the previous derivations for the case of single crystals (i.e., bulk
material without GB terms) could be followed explicitly from Gurtin (2000, 2002)
and Gurtin et al. (2007) and including the grain boundary terms presented in detail
in Gurtin (2008).

Free Energy Imbalance: Bulk Material

The local internal power expression in the bulk material can be written as

Pi D � W P"e C
X

˛

.�˛ P�˛ C �˛ � r P�˛/ (16)

and the local dissipation inequality results in

D D Pi � P D � W P"e C
X

˛

.�˛ P�˛ C �˛ � r P�˛/ � P � 0 (17)
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The material is assumed to be endowed with a free energy with different contribu-
tions according to

 ."e;r�˛/ D  e."
e/C  r� .r�

˛/ (18)

The free energy is assumed to depend only on the elastic strain and the dislocation
density. In comparison to recent works of the authors (see, e.g., Yalcinkaya et al.
2011, Yalçinkaya et al. 2012, Yalçinkaya 2013, Yalcinkaya and Lancioni 2014,
Lancioni et al. 2015a,b) where the framework is developed and used for modeling
the inhomogeneous deformation field (microstructure) formation and evolution,
the current chapter does not include the energetic hardening term  � in the bulk
material, which could be convex or non-convex in nature. The details of such
modeling approaches are discussed in one of the chapters here.

The time derivative of the free energy is expanded and equation (17) is elaborated
to

D D � W P"e C
P

˛.�
˛ P�˛ C �˛ � r P�˛ �

@ 

@"e
W P"e �

@ 

@�˛
P�˛ �

@ 

@r�˛
� r P�˛/

D .� �
d e

d"e
/

„ ƒ‚ …
0

W P"e C
P

˛.�
˛/ P�˛ C

P
˛ .�

˛ �
@ r�

@r�˛
/

„ ƒ‚ …
0

�r P�˛ � 0

(19)

The stress � and the microstress vectors �˛ are regarded as energetic quantities

� D
d e

d"e

�˛ D
@ r�

@r�˛

(20)

whereas �˛ does have a dissipative contribution

D D
X

˛

.�˛/ P�˛ � 0 (21)

The multipliers of the plastic slip rates are identified as the set of dissipative stresses
defined as �˛dis

�˛dis D �˛ (22)

In order to satisfy the reduced dissipation inequality at the slip system level, the
following constitutive equation is proposed

�˛dis D '˛sign. P�˛/ (23)
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where '˛ represents the mobilized slip resistance of the slip system under consider-
ation

'˛ D
s˛

P�˛0
j P�˛j (24)

with s˛ the resistance to dislocation slip which is assumed to be constant and
with P�0 a reference slip rate. Note that this relation assumes a linear relationship
between strain rate and stress. In more quantitative simulations, small values of
strain rate sensitivity exponent would be required. This choice was of course made
for simplicity only, yet with a large similarity to discrete dislocation studies using
linear drag relations. Simulations with other strain rate exponent do not change the
qualitative nature of the examples, yet they will affect the rate-dependent (time-
dependent) behavior. Substituting (24) into (23) gives

P�˛ D
P�˛0
s˛
�˛dis (25)

which, upon substitution of �˛dis according to (22), takes the following form

P�˛ D
P�˛0
s˛

.�˛/ (26)

Finally, using the microforce balance (13) results in the plastic slip equation

P�˛ D
P�˛0
s˛

.�˛ C r � �˛/ (27)

Contributions of the free energies defined in (18) enter the slip equation via (20)
with �˛ D d e=d"e W P˛ and �˛ D @ r�=@r�

˛ . Quadratic forms are used for the
elastic free energy  e and the plastic slip gradients free energy contribution  r� ,
i.e.,

 e D
1

2
"e W 4C W "e

 r� D
P

˛

1

2
Ar�˛ � r�˛

(28)

where 4C is the fourth-order elasticity tensor and A is a scalar quantity, which
includes an internal length scale parameter, governing the effect of the plastic slip
gradients on the internal stress field. It may be, e.g., expressed asA D ER2=.16.1�

�2// as used in Bayley et al. (2006) and Geers et al. (2007), where R physically
represents the radius of the dislocation domain contributing to the internal stress
field, � is Poisson’s ratio, and E is Young’s modulus.
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Free Energy Imbalance: Interface

Similarly, the dissipation associated with the grain boundary can be written as,

DGB D PGB � P GB � 0 (29)

where

PGB D
X

˛

Z

SGB

.�˛A P�˛A C �˛B P�˛B/ dS (30)

and  GB is the free energy of the grain boundary which is essentially the coarse-
grained representation of complex grain boundary-dislocation slip interaction mech-
anism such as dislocation transmission, emission, and dissociation of dislocations
within the grain boundary. Transmission electron microscopy (TEM) studies and
dislocation level models reveal that energetic and dissipative character of grain
boundaries is dictated by the local geometrical features such as misorientation of
grains and the grain boundary orientation. Therefore, an energy potential which
is sensitive to noncoherent slip systems of neighboring grains and grain boundary
orientation would reflect the underlying physics sufficiently well to a certain extent.

In order to account for essential geometrical features, the kinematic characteri-
zation presented in Gurtin (2008) is adopted in this work. In Gurtin (2008), the slip
incompatibility of the neighboring grains is described in terms of the grain boundary
Burgers tensor defined as

G D
X

˛

Œ�˛Bs˛B ˝ n˛B � �˛As˛A ˝ n˛A	.N�/ (31)

where for any vector N , N� is the tensor with components .N�/ij D "ikjNk . In
equation (31), the relative misorientation of grains is reflected by the difference
term, and the grain boundary orientation is accounted for by the tensor N�.
Furthermore, using (31), the magnitude of grain boundary Burgers tensor can be
expressed in the following form

jG j2 D
X

˛

X

ˇ

�
C
˛ˇ
AA�

˛
A�

ˇ
A C C

˛ˇ
BB�

˛
B�

ˇ
B C �2C

˛ˇ
AB�

˛
A�

ˇ
B

�
(32)

in which the slip interaction moduli are introduced such that

C
˛ˇ
AA D

�
s˛A � s

ˇ
A

� �
n˛A � N

�
�
�
n
ˇ
A � N

�

C
˛ˇ
AB D

�
s˛A � s

ˇ
B

� �
n˛A � N

�
�
�
n
ˇ
B � N

�

C
˛ˇ
BB D

�
s˛B � s

ˇ
B

� �
n˛B � N

�
�
�
n
ˇ
B � N

�

(33)
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Since C˛ˇ
AA and C˛ˇ

BB represent interactions between slip systems within grain A and

grain B, respectively, they are called intra-grain interaction moduli, whereas C˛ˇ
AB

represent the interaction between slip systems of the two grains and called inter-
grain interaction moduli.

Furthermore, by decomposing slip system normal vector (n˛A;n
ˇ
A;n

˛
B;n

ˇ
B ) into

normal and tangential components with respect to grain boundary plane as

n˛A D
�
n˛A � N

�
N C

�
I � n˛A � N

�
N D n

˛;nor
A C n

˛;tan
A (34)

and using " � ı identity ("ijk"ipq D ıjpıkq � ıjqıkp), it can be shown that

�
n˛A � N

�
�
�
n
ˇ
A � N

�
D n

˛;tan
A � n

ˇ;tan
A (35)

Therefore, the interaction moduli can be expressed in the following alternative form

C
˛ˇ
AA D

�
s˛A � s

ˇ
A

� �
n
˛;tan
A � n

ˇ;tan
A

�

C
˛ˇ
AB D

�
s˛A � s

ˇ
B

� �
n
˛;tan
A � n

ˇ;tan
B

�

C
˛ˇ
BB D

�
s˛B � s

ˇ
B

� �
n
˛;tan
B � n

ˇ;tan
B

�

(36)

which allows a clear geometric interpretation as illustrated in Fig. 2. For the sake of
clarity, a two-dimensional bi-crystal with slip system ˛ located in grain A and slip
system ˇ located in grain B is considered, and different geometric configurations
are depicted in Fig. 2.

For the intra-grain moduli (C˛˛
AA) and (Cˇˇ

BB ), the first inner product yields
unity, and the second inner product term measures the contribution of this slip
system to the slip incompatibility depending on the orientation of slip system with
respect to the grain boundary orientation. If the slip system orientation coincides
with the orientation of the grain boundary, in other words if the slip system is
parallel to the grain boundary, then there is no interaction between the slip system
and the grain boundary; therefore the slip system does not contribute to slip
incompatibility.

In the inter-grain interaction moduli (C˛˛
AA) expression, the first inner product

term is the measure of geometric coherency of the slip systems, taking the maximum
value of unity when the systems (slip system ˛ in grain A and slip system ˇ in grain
B) are parallel. Similar to the intra-grain moduli, the second inner product term is
the influence of the orientation of slip systems ˛ and ˇ with respect to the grain
boundary orientation.
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Grain A

Grain AGrain A

Grain B

Grain BGrain Bnα
A

nα
A

nα
A

nα
A

sαA

sαA

sαA nβ
B

nβ
B

nβ
B

nβ
B

sβB

sβB

sβB

nα,tan
A

nβ ,tan
B

N

NN

a b

c

Fig. 2 (a) An arbitrary configuration, (b) an inclined grain boundary and a parallel slip system,
and (c) coherent slip systems with a vertical grain boundary

At this stage ignoring the dissipative effects, a simple free energy potential of the
form

 GB D
1

2

jG j2 (37)

is proposed where 
 is a positive constant modulus. With this particular form in
hand (32), rate of free energy can be expressed as

P GB D 

X

˛

X

ˇ

h�
�
ˇ
BC

˛ˇ
BB � �

ˇ
AC

˛ˇ
BA

�
P�˛B �

�
�
ˇ
BC

˛ˇ
AB � �

ˇ
AC

˛ˇ
AA

�
P�˛A

i
(38)

Then the dissipation inequality reads as

2

4�˛A � 

X

ˇ

�
�
ˇ
AC

˛ˇ
AA � �

ˇ
BC

˛ˇ
AB

�
3

5 P�˛AC

2

4�˛B � 

X

ˇ

�
�
ˇ
BC

˛ˇ
BB � �

ˇ
AC

˛ˇ
BA

�
3

5 P�˛B � 0

(39)
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Since a non-dissipative grain boundary response is assumed, equation (39) leads to
following identifications

�˛A D 

P

ˇ

�
�
ˇ
AC

˛ˇ
AA � �

ˇ
BC

˛ˇ
AB

�

�˛B D 

P

ˇ

�
�
ˇ
BC

˛ˇ
BB � �

ˇ
AC

˛ˇ
BA

� (40)

In case of single slip system (˛) in grain A and single slip system (ˇ) in grain B,
for an arbitrary orientation other than the orientation where one of the slip systems
(˛ or ˇ) is parallel to the grain boundary, the interaction moduli read as

C˛˛
AA D n

˛;tan
A � n

˛;tan
A

C
ˇˇ
BB D n

ˇ;tan
B � n

ˇ;tan
B

C
˛ˇ
AB D

�
s˛A � s

ˇ
B

� �
n
˛;tan
A � n

ˇ;tan
A

�
(41)

In case of coherent slip systems, the inter-grain interaction moduli reduce to

C
˛ˇ
AB D n

˛;tan
A � n

ˇ;tan
B (42)

which implies

�˛A D N

�
�˛A � �

ˇ
B

�

�
ˇ
B D N


�
�
ˇ
B � �˛A

� (43)

where N
 D
�
n
˛;tan
A � n

ˇ;tan
B

�

. If the slip systems are coherent and the grain boundary

is perpendicular to these parallel slip systems, then the moduli take the following
values

C˛˛
AA D 1:0, C˛˛

BB D 1:0, C˛˛
AB D 1:0 (44)

implying that

�˛A D 

�
�˛A � �˛B

�

�˛B D 

�
�˛B � �˛A

� (45)

The difference between the slips is being penalized by the grain boundary strength

. When the slip system ˛ of grain A is parallel to the grain boundary, the interaction
moduli simplify to
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C˛˛
AA D 0, C˛ˇ

AB D 0, Cˇˇ
BB D 1:0 (46)

yielding

�A D 0, �B D 
 �
ˇ
B (47)

Since, in this configuration, grain A is not interacting with the grain boundary and
grain B, the corresponding interaction moduli turn out to be zero. Depending on the
value of 
 (“the strength of the interface”), the grain boundary may act as a soft
(
 D 0) or hard (
 D 1) boundary for grain B as reflected by equation (47).

Finite Element Implementation

In order to solve the initial boundary value problem for the grain boundary enhanced
strain gradient crystal plasticity framework, a mixed finite element formulation is
used. The displacement u and plastic slips �˛ are taken as primary variables, and
these fields are determined within the problem domain by solving simultaneously
the linear momentum balance and the microscopic force balance. Therefore the
strong form of these equations reads as

r � � D 0

P�˛ �
P�˛0
s˛
�˛ �

P�˛0
s˛

r � �˛ D 0

(48)

complemented with the boundary conditions (6), (12) on the associated outer
boundaries and the interface conditions (14) on the grain boundary, respectively.
It has to be noted that the slip evolution equation is in fact the microforce
balance (equation (13)) reexpressed in an alternative form with the aid of equa-
tions (22), (23), and (24). The weak forms of the balance equations are obtained
through multiplication by weighting functions ıu and ı�˛ and integration over the
domain ˝, yielding

Gu D

Z

˝

rıu W �d˝ �

Z

S

ıu � tdS

G˛
� D

Z

˝

ı�˛ P�˛ d˝ �

Z

˝

P�˛0
s˛
ı�˛ �˛ d˝ C

Z

˝

P�˛0
s˛

rı�˛ � Ar�˛d˝

�

Z

S

P�˛0
s˛
ı�˛ �˛ dS �

Z

SGB

P�˛0
s˛
ı�˛A�

˛
A dS �

Z

SGB

P�˛0
s˛
ı�˛B�

˛
B dS

(49)

where the grain boundary contributions appear as additional terms in the weak form
of microstress balance. Furthermore, t in equation (49) is the external traction vector
on the boundary S , and �˛ D Ar�˛ � Nn. Using a standard Galerkin approach,
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the unknown fields of displacements, slips, and associated weighting functions are
interpolated via

ıu D N uı Qu u D N u Qu

ı�˛ D N�ı Q�˛ �˛ D N� Q�˛
(50)

where Qu, ı Qu, Q�˛ , and ı Q�˛ are the columns containing the nodal variables of a
particular element. Adopting a discretization by ten-noded tetrahedra elements,
quadratic interpolation for the displacement field and linear interpolation for the
slips are used. Referring to Fig. 3, for a ten-noded tetrahedra, only the corner nodes
have the slip degrees of freedom, whereas all nodes have displacement degrees of
freedom.

To facilitate the integration of the grain boundary contributions, 12-noded zero
thickness interface elements are used which are inserted along the grain boundaries;
please see Fig. 3. By means of these elements, one has the access to the slip values
along the grain boundary as approached from grain A and grain B. However,
it is important to note that the interface elements do not possess any kind of
mechanical cohesive behavior and do not cause discontinuity in displacement
field. In the solution phase, the displacement continuity across the grain boundary
is fulfilled by means of equality constraints (rigid ties) enforcing the same dis-

Corner nodes (disp. & slip dofs)

Edge nodes (disp. dofs only)

Interface element

Internal surface of Grain I

Bulk element
Internal surface of Grain II

Fig. 3 Element types used for discretization. For ease of illustration, grain boundary and interface
element are shown with a gap
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placement field for the corresponding nodes of on the two sides of an interface
element.

With a 12-noded interface element, ı�˛A and ı�˛B can be expressed as

2

4
ı�˛A

ı�˛B

3

5 D

2

4
N1 N2 N3 0 0 0

0 0 0 N1 N2 N3

3

5

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

ı�˛1

ı�˛2

ı�˛3

ı�˛4

ı�˛5

ı�˛6

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

D NGB ı�
˛

GB
(51)

in terms of nodal virtual slip variables ı�i and the standard shape functions
(N1;N2;N3) for a linear triangle. In the columns of nodal quantities such as ı�˛

GB
,

subscripts designate the node number, and the superscripts are reserved for slip
system identity. Introducing � D

�
�˛A �˛B

�T
, the grain boundary integral for the

particular slip system ˛ can be expressed as
Z

SGB

P�˛0
s˛

�
�˛Aı�

˛
A C �˛Bı�

˛
B

�
dS D ı�T

˛

Z

SGB

P�˛0
s˛
N T
GB � dS (52)

Introducing the 2n � 6n T matrix (where n is the number of slip systems)

T D

2

6
6
6
6
6
4

N1 N2 N3 0 0 0 0 0 0 : : : 0 0 0 0 0 0

0 0 0 N1 N2 N3 0 0 0 : : : 0 0 0 0 0 0
:::

:::
:::

:::
:::

:::
:::
:::
:::
:::

:::
:::

:::
:::

:::
:::

0 0 0 0 0 0 0 0 0 : : : N1 N2 N3 0 0 0

0 0 0 0 0 0 0 0 0 : : : 0 0 0 N1 N2 N3

3

7
7
7
7
7
5

(53)

and the rows

CA D
�
C˛1
AA �C˛1

AB C
˛2
AA �C˛2

AB : : : C
˛n
AA �C˛n

AB

�

CB D
�
�C˛1

BA C
˛1
BB �C˛2

BA C
˛2
BB : : : �C˛n

BA C
˛n
BB

�

�T D
�
�11 �

1
2 �

1
3 �

1
4 �

1
5 �

1
6 : : : �

n
1 �

n
2 �

n
3 �

n
4 �

n
5 �

n
6

�

(54)

for slip system ˛, the interface element contribution reads as

G
˛;e
GB;� D �ı�T

˛

Z

SeGB

N T
GB D � dSe (55)
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where

D D 

P�˛0
s˛

�
CAT

CBT

	

(56)

By employing backward Euler time integration for P�˛ , one can write P�˛ D

Œ�˛nC1 � �˛n 	=�t with �t D tnC1 � tn, and fully discrete weak forms for element
e read

Ge
u D ıuT

�Z

˝e

Bu � d˝e �

Z

Se
N u t dSe

	

G˛;e
� D ı Q�˛

"Z

˝e

N �TN �

"
�˛
nC1

� �˛
n

�t

#

d˝e �

Z

˝e

P�˛0
s˛
N �T �˛ d˝e

#

Cı Q�˛
�Z

˝e

P�˛0
s˛
AB�T B� �˛ d˝e �

Z

Se

P�˛0
s˛
N �T �˛ dSe

	

(57)

By adding the integrals for the interface and bulk discretizations ((56) and (57),
respectively) and enforcing

Pnel
iD1 G

˛;e
GB;� C

Pnel
iD1 G

˛;e
� D 0, the weak form for the

whole domain is obtained. The weak forms of the balance equations are linearized
with respect to the increments of the primary variables u and �˛ and solved by
means of a Newton-Raphson solution procedure for the corrective terms �u and
��˛ . The resulting system of linear equations can be written in the following
compact form

"
Kuu Ku�

K�u K�� CK
��
GB

# "
�u

��˛

#

D

"
�Ru CRextu

�R� CRext�

#

(58)

where Kuu; Ku� ;K�u, and K�� represent the global tangent matrices of the bulk.
K
��
GB is the contribution of the interface elements, while Ru and R� are the global

residual columns. The contributions Rextu and Rext� originate from the boundary
terms.

Numerical Examples

The presented framework is implemented both for 2D and 3D problems in Abaqus
V 6.12-1 through user element capabilities. Since the 2D implementation and
corresponding examples were documented in Özdemir and Yalçinkaya (2014), in
this work the focus is on 3D formulation. To this end, a ten-noded tetrahedron
with quadratic displacement and linear slip interpolations is developed and used
for the discretization of the grain interiors. The slip degrees of freedom are defined
on the corner nodes, whereas the edge nodes have only displacement degrees of
freedom. For the treatment of grain boundaries, 12-noded zero thickness interface
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element is implemented by following the formulation presented in section “Finite
Element Implementation.” Although the interface element has 12 nodes, only the
corner nodes and the associated slip degrees of freedom are used for interpolation
(see Fig. 3). As mentioned before, the displacement continuity is achieved by using
equality constraints (rigid links) enforcing the same displacements on the two sides
of a grain boundary.

Bi-crystal Specimen with Single Slip System

To assess the basic characteristics of the proposed formulation, a relatively simple
geometry of a bi-crystal specimen is considered. Mechanical and slip boundary
conditions are schematically shown in Fig. 4, and the material parameters are
given in Table 1. The front face is displaced with a constant rate in positive z-
direction by 10�m in 0.5 s. For the sake of clarity, a single slip system with
Em D .0;

p
2=2;

p
2=2/ and Es D .0;�

p
2=2;

p
2=2/ is considered. In fact, this is a

slip system solely defined in YZ plane and making an angle of 45ı with the positive
Z-axis. As far as grain boundary (GB) orientation is concerned, two different cases,
namely, a vertical GB and a tilted one, are treated separately; please see Fig. 4.
In what follows, slip profiles along the specimen are plotted with reference to the
longitudinal path (from the front face to the back face of the specimen) shown in
Fig. 4.

To start with, the case where the GB is vertical and slip systems of the two grains
are perfectly coherent is considered. In other words, the misorientation between the

X

Y

Z

Grain 1

Grain 2
Longitudinal path

GB

Back face
ux = 0,uy = 0,uz = 0
hard boundary for slips

Front face
ux = 0,uy = 0
Hard boundary for slips

X

Y

Z

Longitudinal path

Grain 1

Grain 2

GB

Back face

Front face
ux = 0,uy = 0
Hard boundary for slips

Fig. 4 Bi-crystal example with a vertical (left) and a tilted (right) grain boundary. Each grain is
cubic and 50 by 50 by 50�m in dimensions
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Table 1 Geometry and
material parameters for
example 4.1 and example 4.2

Example 4.1 Example 4.2

E .MPa/ 70,000.0 70,000.0

� .�/ 0.33 0.33

P�0 .s
�1/ 0.0115 0.0115

s .MPa/ 20 20

r .mm/ 0.005 0.005

Em1 (0,
p
2=2,

p
2=2) (1/

p
3,1/

p
3,1/

p
3)

Es1 (0,-
p
2=2,

p
2=2) (�

p
2=2,

p
2=2,0)

Em2 – (1/
p
3,1/

p
3,1/

p
3)

Es2 – (0,
p
2=2,�

p
2=2)

Em3 – (1/
p
3,1/

p
3,1/

p
3)

Es3 – (
p
2=2,0,�

p
2=2)
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Fig. 5 Slip distribution along the longitudinal path for two different 
 values

two grains is zero. For this case, two analyses with different GB strength (
) are
conducted. The slip distributions along the longitudinal path are shown in Fig. 5.

 D 0 corresponds to a bi-crystal without a grain boundary, and 
 D 1;000;000

is very close to a hard boundary as is going to be shown shortly. In fact the two
solutions are identical which are consistent with the finding of section “Finite
Element Implementation” stating that when the misorientation is zero, the grains do
not “feel” the existence of a grain boundary. According to the analysis conducted
in section “Finite Element Implementation,” the grains should not “feel” even an
inclined grain boundary as long as the slip systems of the two grains are aligned. In
order to test this, a set of analysis with crystallographically aligned bi-crystal with a
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tilted GB (by 30ı, see Fig. 4) is conducted. In Fig. 6, the slip contours within the bi-
crystal specimen cut by a vertical GB and a tilted GB are depicted. For both cases,

 D 1;000; 000 and from Fig. 5, it is known that for a vertical GB with aligned
grains, the response is insensitive to 
. Identical contour seen in Fig. 6 verifies
that an inclined grain boundary does not have any influence on the slip distribution
provided that there is no misorientation.

In the next stage, the problem is slightly modified by rotating grain 2 around x
axis by 15ı. In this configuration, there is a misalignment between the slip systems
of the two grains, and the slip distribution along the longitudinal path for different

 values are shown in Fig. 7. The influence of the grain boundary is clearly visible,
and as the interface strength is increased, the slip distribution in the vicinity of the
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between the grains is zero and 
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grain boundary resembles to that observed around a hard boundary. The contour plot
comparison shown in Fig. 8 indicates that the hard boundary like behavior grows in
the vicinity of the whole grain boundary.

To investigate the influence of the “GB strength” on the mechanical response of
the system, in Fig. 9, the total reaction force in z-direction is drawn for different 

values. The increase in reaction force and the slope of the force-displacement curves
clearly demonstrates the hardening effect of the GB. Due to significant changes in
slip distribution, there is a considerable increase in the reaction force. It is also
noteworthy to mention that over a certain threshold, the increase in the reaction is

sl1

−1.000e−12
+1.042e−02
+2.083e−02
+3.125e−02
+4.167e−02
+5.208e−02
+6.250e−02
+7.292e−02
+8.333e−02
+9.375e−02
+1.042e−01
+1.146e−01
+1.250e−01

X

Y

Z

sl1

−1.000e−12
+1.042e−02
+2.083e−02
+3.125e−02
+4.167e−02
+5.208e−02
+6.250e−02
+7.292e−02
+8.333e−02
+9.375e−02
+1.042e−01
+1.146e−01
+1.250e−01

X

Y

Z
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becoming insignificant which indicates that the grain boundary is sufficiently close
to a hard boundary.

Thereafter, the tilted grain boundary with misaligned grains is considered, and
the same set of analysis is reiterated. An important and interesting case can be
constructed if one of the grains is rotated such that the slip system within that grain
becomes parallel to the grain boundary. To set up such a configuration, grain 1 is
rotated by 15ı counterclockwise. In this case, the slip system in grain 1 is not going
to interact with the grain boundary since Es vector of the slip plane becomes parallel
to the GB. Contour plots and the slip profile along the longitudinal path presented
in Figs. 10 and 11 are obtained by setting 
 D 0 and 
 D 1;000;000, respectively.

Comparison of the slip distribution for grain 1 for 
 D 0 and 
 D 1;000;000

indicates that the slip distributions are very close in these two cases. In other words,
the slip profile in grain 1 that would be obtained without the grain boundary (
 D 0)
is almost identical to the profile obtained when there is almost a hard boundary
(
 D 1;000;000). Such a situation can arise if and only if the crystallographic system
of the grain does not interact with the GB. This is in fact the case since the slip
system of grain 1 is parallel to the GB. The slight disagreement between the slip
profiles of grain 1 for 
 D 0 and 
 D 1;000;000 stems from the fact that the slip
distribution in grain 2 is severely modified (for 
 D 1;000;000) which has some
consequences on elastic strains and stresses in both grains due to coupled nature of
the problem. Due to changes in elastic strains within grain 2, the slip distribution
within grain 1 for 
 D 0 and 
 D 1;000;000 is slightly altered although the slip
system of this grain and the GB are parallel.
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Fig. 10 Slip distribution along the longitudinal axis for 
 D 0 and 
 D 1;000;000 values. Slip
distributions within grain 1 are very close to each other for two different 
 values
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Fig. 12 A cylindrical specimen with 16 grains. The specimen is discretized by 69235 bulk and
74719 interface elements

Cylindrical Specimen with Three Slip System

Although bi-crystal specimens are ideal for investigating grain boundary mechanics,
even the smallest engineering components typically consist of multiple grains.
Furthermore, a single slip system is far from being realistic. To assess the potential
consequences of embedding a grain boundary model within a polycrystalline
specimen with multiple active slip systems, a cylindrical specimen consisting of
16 regular grains is considered in this example. The specimen is 12.5�m in radius
and 50�m in length and stretched in positive Z-direction by 5�m in 1 s. Please
see Fig. 12 for displacement and slip boundary conditions. The parameters of the
problem are given in Table 1, and it is assumed that three slip systems (octahedral
plane slip systems) are active at any material point as tabulated in the same table.
The orientations of the grains are described by Euler angles, and they are generated
randomly using the Bunge convention. Therefore the slip systems of the neighboring
grains are misaligned in a random manner.



29 Strain Gradient Crystal Plasticity: Intergranular Microstructure Formation 1059

0 5 10 15 20 25 30 35 40 45 50
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

z coordinate along the path (μm)

2nd
 sl

ip
 (−

)

κ = 0
κ = 10

0 50 100 150 200 250 300 350
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

circumferential angle (degree)

2nd
 sl

ip
 (−

)

κ = 0
κ = 10

Fig. 13 Slip profile along longitudinal (top) and circumferential path (bottom) for cylindrical
specimen

Two analyses with 
 D 0 and 
 D 10 are conducted, and the corresponding
slip distributions (second slip system) along a representative longitudinal and a cir-
cumferential path (please see Fig. 12 for the chosen paths) are presented in Fig. 13.
Although the same set of Euler angles are used in the two analyses, a stronger
grain boundary yields a significant change in slip distribution. The discontinuities
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Fig. 14 Y-displacement as obtained by 
 D 0 (left) and 
 D 10 (right). The orientations of the
grains in both analyses are kept the same

disappear for both longitudinal and circumferential paths, and a sort of pattern
induced by grain boundaries is visible for strong GBs. Most of the grain boundaries
behave very similar to hard boundaries although the GB strength is not that high (as
compared to the bi-crystal example). Therefore, it seems that not only the strength of
the GB but also the misorientation angle between the grains is influential on the slip
profiles. Although the second slip system is presented, similar patterns are observed
also for slip systems 1 and 3.

So far the discussion has focused on the slip response and the way it is altered
as a function of GB strength and misorientations. However, due to coupled nature
of the problem, it is natural to expect that GBs would also influence the strain and
displacement fields of the specimen. In order to underscore this fact, in Fig. 14,
contours of Y-displacement as obtained from the two analyses are presented. The
significance of the difference is clearly visible, and in fact this comparison suggests
that the GBs might have a strong influence on localization bands in polycrystalline
specimens. Although the results of the current analysis are quite limited, the
framework has the potential to investigate the influence of GBs on overall behavior
to a certain extent through a statistical perspective. Furthermore, by switching on
and off the GBs in combination with some specific textures (in terms of grain
orientation distributions), the current formulation might be useful to quantify the
relative contribution of GBs on mechanical response indicators such as load capacity
corresponding to a “macroscopic” strain and/or “macroscopic” strain necessary to
reach a certain “microscopic” strain within the polycrystalline solid body.

Conclusion and Outlook

In this chapter, a grain boundary model, which was rigorously derived in Gurtin
(2008), is incorporated into a strain gradient crystal plasticity framework in a
thermodynamically consistent manner. The description of the grain boundary model



29 Strain Gradient Crystal Plasticity: Intergranular Microstructure Formation 1061

is based on the grain boundary Burgers tensor which takes into account both the
effect of the mismatch between the grains and the orientation of the grain boundary.

Macroscopically, the geometric structure of a grain boundary is described by
the grain misorientation and the grain boundary normal vector, Wolf and Yip
(1992). Therefore the current formulation fully captures the geometric structure of
a grain boundary. However, as long as intrinsic energy and energy stemming from
interaction of lattice dislocations and grain boundary are concerned, the quadratic
energy form used here is not really based on physical arguments. Nonetheless, this
form can still be used to investigate the basic properties and limiting cases in a
systematic manner. At this stage, it has to be noted that one can construct situations
in which grain boundary Burgers tensor is zero although there exist nonzero slips
within the grains. A physical explanation of such a situation might correspond to
annihilation. However, in that case the model cannot reproduce the hard boundary
conditions regardless of the magnitude of 
; see Gottschalk et al. (2016).

In order to capture the role of grain boundaries more accurately within continuum
scale plasticity models, reflecting complicated physics of grain boundaries through
proper upscaling strategies is essential. A particular approach in this context makes
use of distributed disclination model to describe the initial energy of the symmetric
tilt boundaries, Fressengeas et al. (2014). As compared to the results of atomistic
models, the predictions of such defect mechanics based models are satisfactory.
However, evolution of grain boundary intrinsic energy and incorporation of the
effect of lattice dislocation interactions with grain boundaries and the associated
energy still need to be addressed. Atomistic studies on grain boundary structures
in various material systems are quite numerous, and their results can be exploited
to construct computationally feasible multi-scale models. With regard to this,
a systematic approach is presented in a series of papers by van Beers et al.
(2015a,b) where a logarithmic relation for the initial intrinsic energy with two fitting
parameters identified by atomistic simulations is embedded into a strain gradient
crystal plasticity model. Furthermore, the interaction with lattice dislocations and
grain boundary is quantified in terms of a net defect density measure (consistent
with the grain boundary Burgers tensor), and defect redistribution within the grain
boundary is addressed through net defect balance equation. Although the model
has some phenomenological aspects, some qualitative agreement with small-scale
experiments is achieved. Other mechanisms such as grain boundary sliding and
opening resulting in the change of the structure of the grain boundary are intimately
coupled with defect redistribution. Such changes involving relative sliding and
opening call for a proper description of the mechanical response of the grain
boundary. The treatment of GBs under finite strains (see, e.g., McBride et al.
2016) and coupling defect redistribution with mechanical cohesive behavior in
a thermodynamically consistent manner (see, e.g., Mosler and Scheider 2011)
are some open problems to be addressed. Here defect redistribution is primarily
concerned with the evolution of the initial structure of the GBs and does not deal
with the slip transmission events. It seems that continuum level description of such
transmission events requires some special attention on different aspects ranging
from the determination of the essential interactions (e.g., dislocation interactions
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across a GB, see Stricker et al. 2016) to proper set of transmission criteria; see
Bayerschen et al. (2016). Apart from all these potential improvements, it has to be
noted that quantitative validation of GB models at continuum scale is a challenge
due to intrinsic coupling between defect transport including redistribution and the
mechanical integrity of GBs.
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Abstract

In the traditional approach to the modeling of mechanical behavior of engineer-
ing materials, the stress tensor is calculated directly from the prescribed strain
tensor either by a closed form tensorial relation as in elasticity or by incremental
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analysis as in classical plasticity formulations in which the formulation is devel-
oped in terms of tensor invariants and their combinations. However, to model the
general three-dimensional constitutive behavior of the so-called geomaterials at
arbitrary nonproportional load paths that frequently arise in dynamic loadings,
such direct approaches do not yield models with desired accuracy. Instead,
microplane approach prescribes the constitutive behavior on planes of various
orientations of the material microstructure independently, and the second-order
stress tensor is obtained by imposing the equilibrium of second-order stress
tensor with the microplane stress vectors. In this work, particular attention is
devoted to the milestone microplane models for plain concrete, namely, the
model M4 and the model M7. Furthermore, a novel autocalibrating version of
the model M7 called the model M7Auto is presented as an alternative to both
differential and integral type nonlocal formulations since the model M7Auto
does not suffer from the shortcomings of these classical nonlocal approaches.
Examples of the performance of the models M7 and M7Auto are shown by
simulating well-known benchmark test data like three-point bending size effect
test data of plain concrete beams using finite element meshes of the same element
size and Nooru-Mohamed test data obtained at different load paths using finite
element meshes having different element sizes, respectively.

Keywords
Constitutive model · Microplane model · Crack band model · Concrete ·
Auto-calibrating Microplane model · Three dimensional finite element analysis

Introduction

The classical approach to the constitutive modeling of engineering materials is to
relate the second-order strain tensor to the second-order stress tensor meanwhile
satisfying tensorial invariance requirements. Often this approach requires either the
use of tensor polynomial or scalar loading functions and inelastic potential functions
that vary only with the invariants of the stress or strain tensors. In addition, in the
case of pressure-sensitive dilatant quasi-brittle materials such as concretes, rocks,
and stiff soils, the principal directions of second-order stress and strain tensors
almost never coincide when a general dynamic loading causing significant wave
propagation is considered. Thus, the classical approach to constitutive modeling
becomes extremely difficult if not impossible in the case of such materials. A
multitude of models exist that follow this classical approach, but almost all of them
fall short of a complete description of the behavior of quasi-brittle materials at
general nonproportional load paths.

In microplane approach, however, the material behavior is prescribed on planes
of many different orientations independently, and the response is assembled to yield
the second-order stress or strain tensor by arguing equilibrium of stresses that act
at different scales in the microstructure of the material. This indirect approach is
computationally much more demanding than the classical approach, but at the same
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time, it offers many more possibilities for modeling complex material behavior. For
example, the so-called kinematic constraint employed for quasi-brittle materials,
which implies that the microplane strains on different microplanes are projections
of the second-order strain tensor, combined with equivalence of the virtual work
of second-order stress and strain tensor over the volume of a unit hemisphere with
that of microplane stress and strains over the surface of the same unit hemisphere
(called the “stress equilibrium”) automatically yields a microplane model in which
the principal directions of the second-order stress and strain tensors almost never
coincide. Moreover this microplane model captures the so-called vertex effect
automatically (Caner et al. 2002). Similarly, using the so-called static constraint
employed for polycrystalline metals, which implies that the microplane stresses on
different microplanes are projections of the second-order stress tensor, leads to a
multisurface plasticity model after imposing the stress equilibrium. Furthermore, in
such a multisurface plasticity model with as many yield surfaces as the number of
microplanes, there is no need to invent new, invariant rules for the activation and
deactivation of the many yield surfaces for a multitude of possible load paths under
dynamic loads; that is automatically determined by the magnitude of the deviatoric
part of the projected microplane stress vectors.

For many materials, the microplane can physically be related to the material
microstructure. For example, in polycrystalline plasticity, the microplanes represent
compact planes over which dislocation motion takes place more easily than on other
planes. Although there is a finite number of such planes for many metals and alloys
and thus the material response appears to be likely anisotropic, many different
grains oriented in many different directions actually lead to isotropic behavior in
the structural scale with dimensions on the order of 0.01 mm or larger. In the case
of concretes, there are no dislocations; however, as shown in Fig. 1b, the contact
surfaces between coarse and fine aggregates and cement paste within the material
mesostructure are where the inelastic phenomena take place, and thus microplanes
represent a collection of all such contact planes oriented in all possible directions
creating again initially isotropic response in the structural scale with dimensions
on the order of 5 mm or larger. In biological soft tissue, for example, the material
is made of a matrix of elastin fibers forming a network reinforced with collagen
fibers with a mean direction oriented close to the maximum stress direction in
the tissue. The distribution of collagen fiber directions can easily be projected on
to the microplanes oriented in all possible directions which results in anisotropic
behavior. The elastin fiber network is almost completely isotropic and can readily
be represented by these microplanes.

The focus of this study is microplane models for plain concrete, arguably one
of the most challenging engineering materials to model mathematically. Only the
most important milestones in the development of microplane models for concrete
are dealt with. In particular, the model M4 (Bažant et al. 2000; Caner and Bažant
2000), the model M7 (Caner and Bažant 2013a,b), and a novel nonlocal extension of
the model M7 called the model M7Auto are studied in this work. The models
M4 and M7 are continuum models developed to predict fracture, damage, and
plasticity in plain concrete using the finite element method in which the damage
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Fig. 1 (a) The Gaussian quadrature points representing the microplanes over a unit sphere, (b) the
weak planes shown in the mesostructure of concrete, (c) the microplane strain vectors shown on a
microplane

and fracture localize to a one element wide band. Such models are also called
crack band models. In these models the response depends on the size and shape
of the elements in the finite element mesh employed. In crack band models, the
calibration of the model is carried out for a fixed element size, and in the analyses a
finite element mesh of the same size elements with an aspect ratio of approximately
1 must be employed to obtain accurate predictions of the concrete response to
an arbitrary three-dimensional stress state. By contrast, the classical approach to
remove the mesh size dependence of crack band models is in the form of either
(1) an integral type approach or (2) a differential type approach in both of which a
characteristic material size acts as a localization limiter. Both of these approaches
suffer from significant issues such as unobjective treatment of the Gauss points
near the boundary of the structure, prediction of cracks initiating ahead of the
crack tip, errors introduced due to shielding of Gauss points by a partially open
cohesive crack, physically difficult to interpret higher-order stresses, and associated
boundary conditions. In this study, the model M7Auto is described to overcome all
these difficulties simply by taking into account the element size, shape, and type
during the calibration process to extract the dependence of the microplane stress-
strain boundaries on the finite element size so as to dissipate a constant fracture
energy at quasistatic loading rates. It is shown that to successfully employ the model
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M7Auto in the finite element analysis of concrete structures, it is necessary that (1)
the size of the elements in the mesh does not exceed the range of autocalibration
of the model, (2) the elements have an aspect ratio close to 1 for the simulation of
general three-dimensional crack propagation, and (3) the element type should be
the same in the mesh. The predictive capabilities of the models M7 and M7Auto are
demonstrated by simulating some well-known benchmark test data.

Other than microplane models for cementitious materials, there are a number
of microplane models formulated for polymer foams (Brocca et al. 2001), poly-
crystalline metals (Brocca and Bažant 2000), fiber-reinforced polymer composites
(Kirane et al. 2016; Caner et al. 2011; Cusatis et al. 2008), rocks (Bažant and
Zi 2003; Chen and Bažant 2014), soils (Prat and Bažant 1991; Chang and Sture
2006), shape memory alloys (Brocca et al. 2002), and biological soft tissue
(Caner et al. 2007). Details of these formulations are excluded from the present
study.

The Principal Microplane Formulations

Essentially the formulation for the constitutive response of a material involves
determination of the stress tensor given the strain tensor and, in the inelastic range,
the history variables that describe the earlier state of the material. In general, this
relation must be a direct relation as in the case of elastic behavior of materials.
Often an incremental approach must be employed in the inelastic range due to
several mathematical and physical reasons. A typical example is the classical
J2 plasticity formulation that separates the plastic part from the strain tensor
and determines the current stress tensor that corresponds to the current strain
tensor. The microplane approach is fundamentally different in that the response
quantities are first determined on the microplanes and integrated over all possible
microplanes oriented in different directions to yield the familiar second-order
tensor form. Due to the relationship between the material microstructure and the
mechanical response, the application of the microplane approach to the constitutive
modeling of materials with very different mechanical behaviors is of interest.
Consequently, several formulations of microplane models proposed for several
different engineering materials exist; among them are the so-called geomaterials that
include cement-based materials, rocks, and soils. These materials exhibit pressure
sensitivity, dilatancy, and softening due to fracturing. To capture this strain-softening
behavior, the so-called kinematic constraint must be applied instead of the so-called
static constraint. In the kinematically constrained microplane formulations, both the
strain tensor and its increment are projected over all possible microplanes as shown
in Fig. 1c, and the stress vector acting on each of these microplanes is evaluated
using the constitutive law prescribed on the microplane level. Finally, the stress
tensor is calculated by integrating the stress vector over all possible microplanes as
shown in Fig. 1a. By contrast, in the statically constrained microplane formulations
used to describe polycrystalline plasticity of metals and their alloys, both the
stress tensor and its increment are projected over all possible microplanes, and the
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corresponding strain vectors are calculated using the constitutive law prescribed at
the microplane level. Finally, the second-order tensor form of the strain tensor is
obtained by integrating the strain vector over all possible microplanes. Thus, the
microplane approach is an indirect one that employs simpler constitutive relations
between stress and strain vectors at the microplane level to model complex material
behavior. The kinematically constrained formulations can further be divided into
the formulations with the so-called volumetric-deviatoric split and those without the
volumetric-deviatoric split. The split in these formulations refers to the separation
of the strain tensor into volumetric and deviatoric parts.

In the remainder of this section, the most commonly used formulations, namely,
the kinematic no-split, the kinematic split, and the static split formulations, are
discussed.

The Kinematic No-Split Formulation

Given the strain tensor, the first step is to project it onto the microplanes defined
by discretizing a unit hemisphere at special locations for optimal integration (e.g.,
using Gaussian quadrature) over the surface of the hemisphere:

�N D Nij �ij (1)

where Nij D ni nj and the normal vector n is the normal to the microplane defined
for each of the microplanes involved in the model.

To treat the microplane shear strain vector, it is convenient to define the directions
m and l so that the base vectors in the directions n, m, and l form an orthogonal
rectangular coordinate system on the microplane. These directions should be defined
randomly so that no directional bias is created across the microplanes that form the
unit hemisphere. Using these vectors, we can define the second-order tensors:

Mij D
1

2

�
mi nj C mj ni

�

Lij D
1

2

�
li nj C lj ni

�
(2)

Using the tensors M and L, the components of shear strain vector along the
directions m and l can be evaluated as

�M D Mij �ij

�L D Lij �ij (3)

The stress quantities that correspond to these microplane strain quantities are
evaluated using the microplane constitutive laws:
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�N D FN .�N ; : : :/

�M D F� .�N ; �M ; : : :/ (4)

�L D F� .�N ; �L; : : :/

where the functions FN and F� denote the microplane normal and shear constitutive
laws.

Finally to calculate the stress tensor, the following stress equilibrium equation
may be employed:

Z

V

�ij ı�ij dV D

Z

S

Œ�N ı�N C �M ı�M C �Lı�L� dS (5)

) �ij ı�ij

Z

V

dV D

Z

S

�
�N Nij ı�ij C �M Mij ı�ij C �LLij ı�ij

�
dS

)

�
�ij

2�

3
�

Z

S

�
�N Nij C �M Mij C �LLij

�
dS

�
ı�ij D 0 8 ı�ij ¤ 0

) �ij D
3

2�

Z

S

�
�N Nij C �M Mij C �LLij

�
dS (6)

Eq. (5) means that the virtual work of stress and strain tensor over the volume of the
unit hemisphere is equal to the virtual work of the microplane stresses and strains
over the surface of the unit hemisphere.

As a useful exercise, the small strain linearly elastic behavior may be obtained
using this formulation as follows. First, the microplane stress and strains are
assumed to be related as

�N D EN �N

�M D E� �M (7)

�L D E� �L

Substituting Eqs. (7), (1) and (3) into Eq. (6) and factoring out the strain tensor �

yield the stiffness tensor as obtained by the microplane no-split formulation. This
tensor may be compared to the classical isotropic elastic stiffness tensor, and for the
two tensors to be identical, the microplane elastic moduli turn out to be

EN D
E

1 � 2�

E� D
E

1 � 2�

1 � 4�

1 C �
(8)

According to the above relations, the thermodynamically admissable range of the
coefficient of the Poisson is limited to �1 < � < 1=4. Thus for a material for which
the coefficient of Poisson lies in the range Œ1=4; 1=2/, the model cannot be used to
predict the behavior of that material. However, for many quasi-brittle materials such
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as concretes, fiber-reinforced concretes, and many other ceramics, the coefficient of
Poisson lies in the range Œ�1; 1=4�, and this formulation can be used. For example,
recently this formulation has been successfully extended to model the complete
range of the mechanical behavior of normal strength and high strength concretes
as well as fiber-reinforced concretes.

The Kinematic Split Formulation

In this formulation, the microplane normal strain is decomposed into volumetric and
deviatoric parts:

�N D �V C �D

�N D �V C �D (9)

where

�V D �kk=3 (10)

and thus

�D D

�
Nij �

ıij

3

	
�ij (11)

The shear strains remain as given in Eq. (3). However, in this formulation Eqs. (4)
should be rewritten as

�D D FD .�D; : : :/

�V D FV .�V ; : : :/ (12)

�M D F� .�D; �V ; �M ; : : :/

�L D F� .�D; �V ; �L; : : :/

Furthermore, Eq. (6) must also be rewritten as

Z

V

�ij ı�ij dV D

Z

S

Œ�V ı�V C �Dı�D C �M ı�M C �Lı�L� dS
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) �ij D�V ıij C
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�
�D

�
Nij �
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3

	
C�M Mij C�LLij

�
dS (13)
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because
R

S
Nij dS D ıij 2�=3 and

R
S

dS D 2� . Instead of Eq. (13) the microplane
split formulations prior to the microplane model M4 used simply

�ij D �V ıij C
3

2�

Z

S

�
�DNij C �M Mij C �LLij

�
dS (14)

which violates the work conjugacy of volumetric stress. This can be conveniently
shown by simply setting i D j D k in Eq. (14) which yields

�kk D 3�V C
3

2�

Z

S

�DdS (15)

in which generally
R

S
�DdS ¤ 0 except in the elastic range. Thus, the pressure

depends on deviatoric stress when Eq. (14) is employed in the calculation of the
second-order stress tensor.

Using this formulation the isotropic linearly elastic behavior may be simulated
as follows: Let the relationships between the microplane stress and strains be given
by

�V D EV �V

�D D E� �D

�M D E� �M (16)

�L D E� �L

Substituting Eqs. (16), (3), (10), and (11) into Eq. (13) and again factoring out
the strain tensor � result in the stiffness tensor as obtained by the microplane
split formulation. This tensor may again be compared to the classical elastic
stiffness tensor for an isotropic material, and for the two tensors to be identical,
the microplane elastic moduli turn out to be

EV D
E

1 � 2�

ED D E� D
E

1 C �
(17)

The above equations clearly show that in this formulation, the full thermodynam-
ically admissable range Œ�1; 1=2� of the coefficient of Poisson can be represented.
Several microplane models for concrete and fiber-reinforced concrete have been
developed by different authors using this formulation. Due to the volumetric-
deviatoric split of the normal strain both in the elastic and in the inelastic ranges, this
formulation results in similar material behavior both in tension and in compression.
On the other hand, for quasi-brittle materials like concrete, such similarity in the
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predicted response is not helpful because the behavior in tension is completely
different than behavior in compression for such materials.

The Static Split Formulation

The static split formulation is obtained by projecting the stress tensor over the
microplanes:

�N D Nij �ij

�M D Mij �ij (18)

�L D Lij �ij

In this formulation, typically the stress tensor being projected is the trial stress
tensor as in the classical plasticity theory. Furthermore, the projected normal stress
is divided into volumetric and deviatoric parts:

�N D �V C �D (19)

where �V D ıij �ij =3 and �D D .Nij � ıij =3/�ij . The projected and split
microplane stresses are employed to determine the microplane inelastic strains using
the constitutive laws HD;HV , and H� defined at the microplane level:

�in
D D HD .�D; �V ; : : :/

�in
V D HV .�V ; : : :/ (20)

�in
M D H� .�D; �V ; �M ; : : :/

�in
L D H� .�D; �V ; �L; : : :/

Finally to calculate the inelastic strain tensor, the following stress equilibrium
equation may be employed:
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Nij �
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C �in

M Mij C �in
L Lij

�
dS (22)

Eq. (22) determines the inelastic part of the total strain tensor which readily
facilitates the calculation of the elastic part of the strain tensor which in turn leads
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to the actual stress tensor. For example, assuming a series coupling of elastic and
plastic zones in an elastoplastic material, once the inelastic strain tensor is calculated
using Eq. (22), the elastic part of the total strain tensor can easily be determined
which readily facilitates the calculation of the actual stress tensor.

The microplane isotropic linearly elastic flexibility tensor can be obtained by
treating the inelastic strains in Eq. (22) as elastic strains and substituting Eq. (18)
and

�V D
1

EV

�V

�D D
1

E�

�D

�M D
1

E�

�M (23)

�L D
1

E�

�L

into Eq. (22) and factoring out the stress tensor. By comparing this microplane
flexibility tensor with the standard isotropic linearly elastic flexibility tensor, the
same relations given in Eq. (17) are obtained.

MicroplaneModels for Cementitious Materials

Several authors have proposed microplane models for constitutive behavior of
cement-based materials since the microplane approach with a formulation applica-
ble to tensile fracturing of cement-based materials was first outlined in 1984 (Bažant
and Gambarova 1984; Bažant and Oh 1985). In the remainder of this section, the
most important formulations of microplane approach for cementitious materials are
discussed.

Earlier MicroplaneModels with Limited Predictive Capabilities

The first microplane no-split-type formulation presented in Bažant and Gambarova
(1984) and Bažant and Oh (1985) is based on the hypotheses that the microplane
normal strains are the projections of the second-order strain tensor as shown
in Eq. (1) and that the microplane normal stress on any given microplane is
a function of the microplane normal strain on that microplane as shown in
the first of Eq. (4). The shear resistance on the microplanes is neglected. The
microplane system then is coupled to an elastic solid in series so as to yield
the desired Poisson’s ratio for concrete. To numerically calculate the integral in
Eq. (6) (where �M and �L are taken as zero in this formulation) as efficiently
as possible, the optimum Gaussian integration over the surface of a sphere is
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employed. Using this model, the experimentally observed dilatancy in concrete
when cracks are sheared is successfully simulated. In addition, this formulation is
shown to be capable of simulating the tensile fracture of concrete. On the other
hand, the compression failure of concrete cannot be correctly predicted using this
formulation.

In the microplane split-type formulation presented in Bažant and Prat (1988a)
and verified in Bažant and Prat (1988b), the microplane shear resistance is taken
into account (as in Eqs. (3) with (12)), and the invariants of the stress and strain
tensors are introduced in the formulation so as to be able to model the general
three-dimensional pressure-sensitive dilatant behavior of concrete in compression.
The volumetric-deviatoric split of the microplane normal strain and stress (as
in Eqs. (9) and (19)) is introduced leading to the simulation of the complete
thermodynamically admissable range of Poisson’s ratio. With this formulation, the
microplane formulation is able to predict a considerably wide range of inelastic
behavior of concrete, including tensile softening, dilatancy under shear, dilatancy
and friction in compression, compression softening, ductile-brittle transition in
compression, and hydrostatic compression behaviors. However, this formulation
cannot accurately predict the concrete response to load cycles in compression and in
tension. Furthermore, this formulation suffers from excessively long softening tails
in the model response.

The microplane split-type formulation presented in Ožbolt and Bažant (1992)
refines and extends the model presented in Bažant and Prat (1988a) to cyclic
loading and the strain rate effect in concrete. The rate effect is modeled as in
the Maxwell series coupling model of a nonlinear spring and a dashpot which
ignores the real physical mechanisms behind this phenomenon. Although some
success is achieved in simulating the load cycles in compression, the load cycles
in tension could not be correctly simulated. In particular, this formulation fails to
predict damage in tension manifested by unloading to origin with little observed
plasticity. In this formulation the microplane damage variables are treated as
nonlocal variables as described in Bažant and Ožbolt (1990) and in Bažant and
Pijaudiercabot (1988).

The studies Bažant et al. (1996a,b) present and verify yet another split-type
formulation that introduces the so-called stress-strain boundaries. These boundaries
should be considered as yield limits that vary with microplane strains and other
history variables defined on the microplane. The basic idea is to describe the
monotonic loading in inelastic range using these boundaries and prescribe the
loading, unloading, and reloading responses between the boundaries as elastic.
It is verified against different test data from different researchers as well as
several test data obtained using specimens from the same concrete at different
proportional and nonproportional load paths by the same researchers. Remarkably
all these data are simulated relatively well using this formulation. However, in this
model the prediction of concrete response to load cycles in tension still remains
unsolved. Furthermore, the stiffness degradation in tensile softening cannot be
simulated. Also, in tensile softening predictions, the lateral strains are observed to
be excessively large which cannot be physically justified.
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TheMicroplaneModel M4

The microplane model M4 deserves more attention as it is currently the most
widely used microplane model for concrete even though it is not the most capable
microplane model currently available for concrete. It has been implemented in many
commercial and free finite element analysis codes including ATENA, OOFEM,
MARS, DIANA, SBETA, and EPIC with an ever-growing user community because
it satisfies the needs of many engineers and researchers by providing consistently
outstanding prediction of concrete behavior at most commonly used load paths.

One important feature of the model M4 is, according to the model M4 formula-
tion presented in Bažant et al. (2000) and verified in Caner and Bažant (2000), that
the work conjugacy of volumetric stress is satisfied leading to the stress equilibrium
equation given by Eq. (13). All split-type formulations prior to the model M4 suffer
from a lack of work conjugacy of volumetric stress, the correction of which is the
main motivation behind the model M4. When Eq. (14) is used in the calculation of
the second-order stress tensor instead of Eq. (13), a volumetric-deviatoric coupling
occurs automatically in the inelastic range. This, on the other hand, is not an error
per se because the experimentally observed dilatant behavior of concrete under
shear in fact implies the existence of such a coupling. However, this coupling
must be introduced explicitly in the boundaries of the model so as to control the
model behavior to fit the test data more accurately. Consequently, the model M4
formulation employs Eq. (13) that satisfies the work conjugacy of the volumetric
stress.

Another feature of the model M4 is that the microplane boundaries that control
softening are enhanced with plateaus so that the sharp peaks observed in the
softening predictions by the earlier formulations become rounded in the softening
response of the model. In the earlier formulations, the inelastic strains localize to a
few microplanes which create a sharp peak which is observed in the experiments as
a round one. In the formulation of the model M4, the plateaus incorporated into the
microplane boundaries that control the softening response allow more microplanes
to reach the yield limit, and thus a rounded peak results.

Yet another major feature embedded in the model M4 is the introduction of
a completely new nonlinear friction boundary. Earlier formulations use a linear
dependence of the frictional stress on the normal stress which spuriously strengthens
the concrete at large normal stresses. The newly introduced boundary starts as
nearly linear at small normal stresses but quickly reaches a completely horizontal
asymptote at large normal stresses. Thus, at large confining pressures, a maximum
frictional resistance at the microplanes is reached. This feature allows the prediction
of both the entry and exit crater shapes in the dynamic projectile penetration simula-
tions of concrete walls of different thicknesses which involve only moderately large
microplane normal stresses (Bažant et al. 2000). With the microplane formulations
prior to the model M4, these crater shapes are not predicted correctly at all.

Furthermore, the unloading and reloading laws which remain elastic in the for-
mulation presented in Bažant et al. (1996b) are redefined to fit the experimental data
better in compression load cycles as well as in unloading at high confining pressures.
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In tension, a crack-closing boundary is proposed which allows the response to return
to origin when unloading occurs. However, the resulting load cycle loops are too
large compared to the experimentally observed loops. Furthermore, the stiffness
degradation in tension is not captured at all in this formulation. Yet another problem
that plagues the model M4 as well as the earlier split formulations is that in the
tensile softening response, excessive lateral contractions which cannot be physically
justified are predicted.

The model M4 is extended to strain rate effects and finite strain as well, but
the important feature of this extension given in Bažant et al. (2000) is that the
fracturing strain rate effects are based on the theory of Arrhenius-type fracture
process with an activation energy. Although this theory is empirical, it can describe
an incredibly wide range of physical phenomena including elastic deformations as
well as diffusion phenomena in the material microstructure. The finite strain theory
presented and applied to the microplane model M4 in Bažant et al. (2000) proposes
as the finite strain tensor the Green’s Lagrangian strain tensor and as the stress tensor
the back-rotated Cauchy stress tensor which are not work conjugate. However, the
error that results from the lack of work conjugacy is predicted to be small.

TheMicroplaneModel M7

The microplane model M7 presented in Caner and Bažant (2013a) and verified
in Caner and Bažant (2013b) is currently the most capable of the microplane
models for concrete. Although it has a kinematic no-split-type formulation in the
elastic range, in the inelastic range, the compressive stress-strain boundaries employ
the volumetric-deviatoric split of microplane stress and strains, while the tensile
boundary still employs the total microplane normal strain, and thus its formulation
is of mixed type. The formulation of this model resolves the three aforementioned
issues that have been persistent for several decades, namely, (1) the excessive
lateral contraction during softening in tension is prevented (now the lateral strains
return to origin as the tensile softening progresses), (2) the stiffness degradation
during tensile softening is correctly captured, and (3) the tension-compression
load cycles are correctly represented. In the rest of the load paths, the response
predicted by the model M7 is either slightly better or about the same as that of
the model M4. Thus the model M7 appears to be a significant improvement over
its predecessors. The price to pay to achieve it is that the Poisson’s ratio must
stay in the interval .�1; 1=4/, which typically is the case for all kinematic no-split
microplane formulations that do not ignore the shear resistance on the microplanes.
This situation, however, could be remedied by coupling an elastic solid in series
to the microplane solid as shown in Caner and Bažant (2013a) which allows the
representation of the full thermodynamically admissable range of Poisson’s ratio by
this series coupling model as a whole.

The stress equilibrium equation employed in this formulation is the same as in
Eq. (6). In the elastic range, Eqs. (7) and (8) hold true. In the inelastic range, the
microplane stress and strains are separated into their volumetric and deviatoric parts
as in Eqs. (9) and used in the microplane constitutive laws given by
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k1; k2; : : : ; k5 are the free parameters that need to be calibrated for any given
concrete, while c1; c2; : : : ; c20 are fixed constants for which the values are given in
Table 1 of Caner and Bažant (2013b). Moreover, in tension the microplane normal
modulus of elasticity degrades according to
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to take into account the fatigue of concrete under tensile load cycles (Kirane and
Bažant 2015). In compression, the microplane normal elastic modulus degradation
occurs according to
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where �0�
N is the maximum compressive fracturing strain ever reached on a

microplane, another history variable. In the foregoing equations; EN 0 is the
undamaged microplane normal elastic modulus, EN is the (possibly damaged)
microplane normal elastic modulus.

The elastic microplane stresses are calculated incrementally by

�e
N D �0

N C EN 	�N

�e
L D �0

L C E� 	�L

�e
M D �0

M C E� 	�M (27)

�e D

q
�e

L
2 C �e

M
2



1080 F. C. Caner et al.

7 0

–10

–20

–30

–40

–50

–60

–70

0 250

200

150

100

50

0

–20

–40

–60

–80

–100

–120

–140

6

5

4

3

2

1

0
0

0.
00

1

0.
00

2

0.
00

3

0.
00

4

0.
00

5

0.
00

6

0.
00

7

0.
00

8

0.
00

9
0.

01

0.
01

1
0.

01
2

0.
00

1
0.

00
0

0.
00

2

0.
00

3

0.
00

4

0.
00

5

0.
00

6

0.
00

7

0.
00

8

0.
00

9
0.

01

0.
01

1
0.

01
2

–0
.1

20

–0
.1

10

–0
.1

00

–0
.9

0

–0
.0

80

–0
.0

70

–0
.0

60

–0
.0

50

–0
.0

40

–0
.0

30

–0
.0

20

–0
.0

10

0.
00

0

–1
15

00

–1
05

00

–9
50

0

–8
50

0

–7
50

0

–6
50

0

–5
50

0

–4
50

0

–3
50

0

–2
50

0

–1
50

0
–5

00
50

0

5

–7.5

0

0.05
0.1

0.15

0.2

1.2

0.95
0.7

0.45
0.2

–0.0024

–0.0019
–0.0014

–0.0009
–0.0004

–20

–32.5

–45

σn
[M

Pa]

σN
b [MPa]

σN
b [MPa]

σD
b [MPa]

σt
b [MPa]σn

b [MPa]

v

v

v

DN

a b

c d

Fig. 2 The stress-strain boundaries of the model M7: (a) normal boundary, (b) deviatoric
boundary, (c) volumetric boundary, and (d) friction boundary

where the microplane stresses from the previous load step �0
N , �0

L, and �0
M are also

history variables, leading to a total of five history variables per microplane. But
the stress response on a microplane cannot exceed the corresponding stress-strain
boundary:

�N D max
�
min

�
�e

N ;FC
N

�
;F�

N

�

�L D
�e

L

�e
min .�e;F� / (28)

�M D
�e

M

�e
min .�e;F� /

Finally the second-order stress tensor is obtained by evaluating the integral in Eq. (6)
using Gaussian quadrature. The strain-dependent yield limits of the model M7 given
by the aforementioned equations are depicted in Fig. 2.

The experimental data first reported in Figs. 12 through 15 of Bažant et al.
(1996a) features many different load paths in compression for the same concrete.
To simulate these test data, once the model is calibrated, the model parameters
cannot be changed from one load path prediction to the other, and thus these tests
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Fig. 3 The test data obtained at Waterways Experiment Station for different load paths using
the same concrete (the symbols) and predictions by the model M7 (the curves): (a) uniaxial
compression, (b) triaxial compression, (c, d) load path with lateral to axial strain ratio of �0:2, (e, f)
axial loading and lateral unloading, (g) hydrostatic compression, and (h) confined compression
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are a major challenge for any concrete model. The model M7 successfully predicts
response of this plain concrete at nearly all load paths as shown in Fig. 3 except
for Fig. 3c. The test data for this load path for which the predicted response of
the model M7 seems to be off could never be predicted correctly neither by the
earlier microplane formulations nor by mesoscale models for plain concrete (see
Cusatis et al. 2011) suggesting a likely problem with the test data. The performance
of the model M7 in predicting the test data shown in these figures is about the
same as that of the model M4. However, the model M7 calibration in this case also
satisfies a most likely uniaxial tension behavior of this type of concrete, whereas the
model M4 calibration did not take into account the tensile behavior of this concrete.
Unfortunately a uniaxial tension test data for this concrete is not available, and thus
the predicted response shown in this figure cannot be compared to the test data.

In Fig. 3 the parameter set of the model M7 employed for all simulations is
given by E D 25; 000 MPa, � D 0:18; k1 D 160:106; k2 D 100; k3 D 15; k4 D

72; k5 D 10:106; f 0
c0 D 15:08 MPa, E0 D 20; 000MPa, c1 D 0; 089; c2 D 0:4; c3 D

0:4; c4 D 50; c5 D 3500; c6 D 40; c7 D 30; c8 D 8; c9 D 0:012; c10 D 0:4; c11 D

1:9; c12 D 0:18; c13 D 2500; c14 D 500; c15 D 7000; c16 D 100; c17 D 1; c18 D

1:6 � 103MPa, c19 D 1000; c20 D 1:8; c21 D 250 MPa. Elements are deleted when
the maximum microplane normal strain in tension exceeds 90% in all simulations.

A further extensive verification of the model M7 is given in Fig. 4. In these
figures, the experimental data from three-point bending size effect tests originally
published in Hoover et al. (2013) are simulated using the model M7. Once the
model is calibrated using the load-displacement curve of the beam with 9.3 cm
depth and a relative notch length of 30%, the model parameters remain fixed for
the rest of the simulations. Thus, these size effect tests are a major challenge for any
constitutive model for plain concrete. As shown in these figures, the performance
in tension of the model M7 is outstanding. In addition, the model M7 can predict
compression-tension load cycles unlike the earlier formulations of microplane
models as shown in Fig.4 of Caner and Bažant (2013b) and in Kirane and Bažant
(2015).

Furthermore, in Fig. 5 the compression test data published in Wendner et al.
(2015) are predicted using the model M7. The test data given in Fig. 5a is for
a cylindrical specimen aged for 31 days, and the data given in Fig. 5b is for a
cylindrical specimen aged for 400 days. Other than this difference, the two concretes
come from the same batch as the specimens of Fig. 4. The test data of Fig. 5c, d
are for cubic specimens aged for 470 days. The compressive response parameters
of the model M7 are calibrated in Fig. 5c, and for each case, the reported value
of elastic modulus is employed. In addition, in all compression simulations, the
contact conditions between test platens and the specimens are simulated using a
band of cohesive elements. These contact conditions turn out to be critical to obtain
the result shown in Fig. 5d. The tensile response of the model remained the same
as in Fig. 4. As can be inferred from the fits in these figures, the model M7 can
reproduce the compressive response of concrete to a large extent simultaneously
with the tensile response using the same set of parameters.
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Fig. 4 Curves with symbols show the size effect test data from three-point bending tests of
plain concrete specimens with various notch lengths relative to beam depth: (a) 0% notch depth
(unnotched), (b) 2.5% notch depth, (c) 7.5% notch depth, (d) 15% notch depth, and (e) 30% notch
depth. Light colored thin lines show the range of test data. The predictions by the model M7 are
shown by thick curves in color

The specimens with predicted cracks are shown in Fig. 6. The cylindrical
specimens exhibit a diagonal band of axial splitting cracks at failure. The 4 cm
cubic specimen shown in Fig. 6c develops extensive distributed splitting cracks
at failure. In contrast, the major mode of failure in the 15 cm cubic specimen
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Fig. 5 Compression test data obtained from the specimens from an overcured version of the same
concrete as the three-point bending plain concrete specimens of Fig. 4: (a) Cylindrical specimen
of concrete aged 31 days with dimensions 7.5 by 15 cm, (b) cylindrical specimen of concrete aged
400 days with the same dimensions, (c) cubic specimen with a dimension of 4 cm, and finally (d)
cubic specimen with a dimension of 15 cm. The curve with symbols is the test data; light colored
thin lines show the range of test data. The predictions by the model M7 are shown by thick curves
in color

shown in Fig. 6d is a large splitting crack in the middle. The hexahedral mesh
used in all these calculations of compression failure has an average size of
5 mm.

In Figs. 4 through 6 the parameter set of the model M7 employed for all
simulations is given by � D 0:18; k1 D 125�106; k2 D 15; k3 D 15; k4 D 20; k5 D

16�106; f 0
c0 D 15:08 MPa, E0 D 20; 000 MPa, c1 D 0; 089; c2 D �1:318; c3 D

8:4; c4 D 70; c5 D 3500; c6 D 20; c7 D 80; c8 D 15; c9 D 0:012; c10 D

1; c11 D 0:5; c12 D 2:36; c13 D 4500; c14 D 300; c15 D 4000; c16 D 60; c17 D

1:4; c18 D 17:5 MPa; c19 D 14; 000; c20 D 1:8; c21 D 250 MPa. Elements are
deleted when the maximum microplane normal strain in tension exceeds 90%. The
Young modulus employed to calculate the curves of Fig. 4 is given by E D 41; 290

MPa. In Figs. 5a and 6a E D 27; 735 MPa, in Figs. 5b and 6b E D 31; 382 MPa,
in Figs. 5c and 6c E D 40; 509 MPa and in Figs. 5d and 6d E D 38; 063 MPa are
used.
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Fig. 6 (a) Cylindrical specimen of concrete aged 31 days with dimensions 7.5 by 15 cm, (b)
cylindrical specimen of concrete aged 400 days with the same dimensions, (c) cubic specimen
with a dimension of 4 cm, and finally (d) cubic specimen with a dimension of 15 cm

Nonlocal MicroplaneModels

In the analysis of structures by the finite element method, the microplane model
is meant to be used to calculate the second-order stress tensor that corresponds
to a given second-order strain tensor at the Gauss points of a finite element mesh
made of continuum elements. The fracture predicted by the microplane model at
the Gauss points is distributed across the width of an element creating a crack
band. This approach to modeling fracture has a number of advantages including
automatic tracking of crack propagation direction and automatic detection of crack
nucleation anywhere in the mesh. It also allows the use of the well-developed
continuum mechanics theories in the simulation of fracture and damage. However,
one disadvantage to crack band modeling is that the calculated response depends
on the width of the crack band. The smaller the width, the smaller is the energy
dissipated by fracture; thus in the limit of vanishing element width, fracture energy
also vanishes. Obviously this is unrealistic. There seems to be three choices to get
the correct energy dissipation as the cracks propagate in the material: (1) the element
width may be considered as a material parameter in which case, the finite element
mesh should consist of elements of one single size and one single aspect ratio
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close to that of a cube for a general 3-D fracture propagation and the microplane
model should be calibrated for that element size, (2) a localization limiter may
be introduced by which the average of the variables of the model that govern the
fracturing of the material or equivalently of the fracturing part of the total strains
over a finite neighborhood of every Gauss point may be calculated, and finally
(3) using principle of virtual work, the strongly nonlocal partial differential stress
equations of motion with a characteristic length which also yields the corresponding
boundary conditions may be developed.

The nonlocal integral generalization of the microplane split-type formulation
given in Bažant and Prat (1988a) is presented in Bažant and Ožbolt (1990) as
the first ever nonlocal microplane model. In this formulation, the localization of
the fracture process zone into zero width as the mesh is refined is prevented by
introducing the volume averages of only damage variables, equivalent to averaging
the fracturing part of the total strains. Thus, the elastic part of the response remains
local. The calculation of the volume average when part of the volume protrudes off
the boundary, the integration weights are rescaled so as to produce a true average.
This kind of treatment of the boundary zone is one of the reasons for the stiffness
matrix to become nonsymmetric. The weight function employed is a bell-shaped
one, similar to the Gaussian probability distribution function, with a cutoff distance
beyond which the value of the function becomes zero. The fact that many other
weight functions can produce satisfactory fits of experimental data means a unique
weight function does not exist. This formulation leads to a mesh size-independent
model (excluding the discretization error that results when coarse meshes are used).
In Bažant and Ožbolt (1992), the nonlocal formulation presented in Bažant and
Ožbolt (1990) is employed to simulate the compression fracture of concrete which
is more complex than the tensile fracture of concrete.

The nonlocal formulation presented in Bažant and Di Luzio (2004) extends the
microplane model M4 given in Bažant et al. (2000) to nonlocality. The over-nonlocal
formulation in which the strains in the stress-strain boundaries of the model M4 are
replaced by the total microplane strains averaged over a finite neighborhood of the
Gauss point, multiplied by an empirical coefficient m and added to total microplane
strain multiplied by .1�m/, is presented in di Luzio (2007) and Di Luzio and Bažant
(2005). This formulation has the advantage that it does not require a variable that
governs the fracture nor the separation of the total microplane strains into fracturing
and elastic parts. However, it also suffers from the typical problems of the classical
integral type nonlocal formulations.

AMesh Size-Independent MicroplaneModel: TheModel M7Auto

Although the nonlocal integral type crack band models achieve the mesh size
independence of the calculated response, they have a number of disadvantages
and problems. For example, the nonlocal crack band models cannot capture the
closely spaced distributed cracking due to either the reinforcement in a deforming
reinforced concrete beam or the drying shrinkage of concrete surface, whereas the
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mesh size-dependent crack band models can indeed capture those cracks accurately
provided that they are calibrated for the element size employed in the mesh. Another
important problem in the nonlocal crack band modeling is the treatment of the
boundary. When the averaging volume protrudes the boundary of the structure,
the averaging volume has to be reduced, which means that at the boundary, the
averaging becomes unobjective. The least problematic treatment of the boundary in
the sense of nonlocal crack band modeling is probably keeping a sufficiently thick
boundary layer where the model is kept mesh size dependent with a calibration for
that mesh size employed in the boundary layer (Bažant et al. 2010). Yet another
problem in such nonlocal crack band models is that cracks initiate ahead of the
crack tip which is not physically realistic. Furthermore, in dynamic applications,
the separation of the particles smaller than the averaging size cannot be captured.
Moreover, there is no practical way to detect the shielding effect of a partially
formed cohesive crack between two Gauss points within the same averaging volume.
Yet another difficulty is that a varying size of the averaging volume is needed for
correctly capturing crack initiation and crack growth. A computational difficulty in
Abaqus (Simulia Corporation 2014) is that for large meshes, it is not possible to
correctly calculate the volume averages of the relevant fracturing variable of a crack
band model because the user subroutine is evaluated in separate blocks of Gauss
points.

However, if the continuum model can calibrate itself for different element size,
aspect ratio, and type, not only the model response becomes independent of mesh
size, but also all the aforementioned difficulties associated with classical nonlocal
integral type approach could be avoided. Thus, in what follows, an autocalibrating
version of the model M7 called the model M7Auto is described, and its performance
is illustrated using several examples.

In the model M7, the softening behavior in tension and in compression is
governed by the parameters c4, c11, c12, and c13. Thus, with varying element
size, these four fixed parameters must vary so as to dissipate the same fracture
energy. The resulting element size-dependent stress-strain boundaries are obtained
by substituting
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in Eqs. (24) and (25). In Figs. 7 through 10 the parameter set of the model M7
employed for all simulations is given by E D 30; 500 MPa, � D 0:18; k1 D
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189 � 106; k2 D 110; k3 D 24; k4 D 6; k5 D 100 � 106; f 0
c0 D 15:08 MPa,

E D 20; 000MPa, c1 D 0; 089; c2 D �1:9; c3 D 3:7538; c4 D 25:85335; c5 D

3500; c6 D 20; c7 D 1; c8 D 8; c9 D 0:012; c10 D 0:33; c11 D 184; 434:5; c12 D

264; 009:5; c13 D 112 lch C 1780; c14 D 300; c15 D 4000; c16 D 60; c17 D 1:4;

c18 D 1:6 �10�3MPa, c19 D 1000; c20 D 1:8; c21 D 250 MPa. The newly introduced
“s” parameters are given by s1 D 0:981856; s2 D 21:67212; s3 D 4:291001; s4 D

1:51 � 10�6; s5 D 0:020228; s6 D 16:85614; s7 D 7:696828; s8 D 1:8 � 10�6; s9 D

124:9338; s10 D 7; 625; 177; s11 D 1:15299 and s12 D 3; 048; 460. Elements are
deleted when the maximum microplane normal strain in tension exceeds 90% in
all simulations. The parameter lch is the characteristic length of the element that
corresponds to the variable “charLength” in Abaqus user subroutine. The reference
fracture energy can be obtained by calibrating the model using a mesh with a fixed
element size, type, and aspect ratio close to 1. During this initial calibration phase,
the free parameters of the model k1 through k5 also need to be varied. Next, a new
mesh is generated with the desired element size keeping the element type the same
and the aspect ratio as close to 1 as possible. Now the free parameters are kept fixed,
and the four fixed parameters are varied until the same fracture energy is dissipated
both in tension and in uniaxial and triaxial compression. This procedure is repeated
for different element sizes, and the resulting trends in those four fixed parameters are
approximated using appropriate functions. These variations of the fixed parameters
as functions of element size are programmed into the model M7 in the form of a
user subroutine for Abaqus. This allows the model to recalibrate itself for different
element sizes within a range of 5 to 20 mm. The upper limit of this range can further
be increased using the approach given in Červenka et al. (2005) but that requires a
new user element to be defined in Abaqus.

In concrete the characteristic size is considered to be roughly the half of the
size of the fracture process zone. In crack band models, the width, w, of the crack
band corresponds to the size of the fracture process zone and thus is a measure of
the characteristic size of the material. In the finite element calculations, it seems
reasonable to use elements of size about three to four times the maximum aggregate
size of the concrete of interest, and it seems unlikely that smaller elements can be
used to simulate the softening behavior. However, as shown in this study, much
smaller crack band widths can be employed in the finite element calculations to
obtain correct material response provided that the model is properly calibrated for
these widths. Thus, for a different element size w, the predicted energy per unit
volume dissipated by fracture, 
f , should vary in order to satisfy

Gf D w
f (30)

where Gf is constant in quasi-static loading conditions (see Fig. 1 in Bažant and
Caner 2005). Although it is found out in this study that for much smaller values of w
than three to four times the maximum aggregate size the model can be successfully
recalibrated in order to satisfy Eq. (30), when the width of the element (or the crack
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band) is much larger, satisfying this equation becomes very difficult and a different
strategy as in Červenka et al. (2005) may be needed.

In Abaqus documentation (Simulia Corporation 2014), the precise calculation of
the characteristic length of an element in three-dimensional space is not given. In the
finite element calculations, however, it is found out that for both bilinear hexahedral
and linear tetrahedral elements, the characteristic length made available to the user
subroutine as the variable “charLength” coincides with the cube root of the element
volume:

charLength D
3

p
V (31)

For a hexahedral element with an aspect ratio of 1, the characteristic length is the
same as its side length. This is convenient for the model calibration in problems in
which the cracks propagate along the mesh lines in a hexahedral mesh using Abaqus.
For quadratic tetrahedral elements, the characteristic length is given by

charLength D 3
p

V =4 (32)

The tetrahedral elements not only allow meshing of more complex geometries
compared to hexahedral elements, but also in crack band models, they pose less
resistance to a possible change in the direction of cracks, and thus potentially they
are more useful than hexahedral elements. However in this study both hexahedral
structured meshes and tetrahedral random meshes have been employed in the
calibration of the model. For the case of a priori knowledge of crack paths, the
hexahedral elements are preferred because the characteristic size is more closely
related to element dimensions in these elements than in the tetrahedral elements.

In the following finite element analyses, the aspect ratio of the elements is kept
as close to 1 as possible. For an arbitrary geometry, even for a geometry as simple as
a cylindrical one, it is not trivial to obtain a mesh made of elements with an aspect
ratio very close to unity. However, the aspect ratio of the elements must be as close
to unity as possible to be able capture the correct energy dissipation as well as the
correct crack paths.

The Nooru-Mohamed-mixed mode fracture test data set presented in Nooru-
Mohamed (1992) for different load paths is a well-known challenge for constitutive
models for plain concrete. The finite element model required to fit these test data
involves a correct representation of the test setup including the rigidities of the three
frames used in the tests in addition to the other restrictions related to finite element
mesh used in the sense of crack band model to discretize the concrete specimens.
First, the model M7Auto is calibrated by optimally fitting the experimental load-
displacement data with a mesh oriented along the experimentally observed crack
paths (Fig. 7d). Next, the performance of the model M7Auto is tested by employing
finite element random meshes with different element sizes and types. The load-
displacement predictions are compared to the test data in Fig. 7f. In this figure,
the dark-blue curve is associated with the mesh in Fig. 7a, the thick gray curve
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Fig. 7 Crack paths and load displacement curves predicted by the model M7Auto in uniaxial
tension of the Nooru-Mohamed specimens using different mesh sizes: (a) 5 mm hexahedral random
mesh, (b) 6.25 mm hexahedral random mesh, (c) 10 mm hexahedral random mesh, (d) 6.25 mm
hexahedral mesh oriented along the experimentally observed crack paths, (e) 5 mm random
tetrahedral mesh, (f) the load-displacement experimental data shown as symbols and the predictions
by the model M7Auto

with the mesh of Fig. 7d, the dotted purple curve with the mesh of Fig. 7c, the
dashed blue curve with the mesh in Fig. 7b, and finally the blue dashed dotted curve
with the mesh in Fig. 7e. The crack paths predicted in this simple load path are in
general reasonable, and the load-displacement predictions agree very well with the
experimental data with the exception of the case of Fig. 7e in which relatively large
tetrahedral elements are employed.
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In Fig. 8a–e, the experimentally observed crack patterns that correspond to the
load path 4a and the crack paths predicted by the already calibrated model M7Auto
are shown. The average mesh sizes used in the calculations are approximately 5,
6.25, and 10 mm as shown in the figures. The meshes are random in Fig. 8a, b,
c, e, whereas in Fig. 8d the mesh is oriented along the experimentally observed
crack paths. Clearly the crack paths in Fig. 8d are captured almost exactly by the
model as the cracks do not have to propagate skew to the mesh in a zigzag pattern.
In Fig. 8a, b, c, e the crack paths are still captured reasonably well, but especially
more accurately when the element size is small enough. In Fig. 8e a random mesh
of linear tetrahedral elements are used, and comparing this figure to Fig. 8a in
which bilinear hexahedral elements are used, it is observed that tetrahedral elements
prevent the zigzag pattern of crack propagation skew to the mesh. The predicted
load-displacement response corresponding to Fig. 8a–e and test data are given in
Fig. 8f. In this figure, the dark-blue curve is associated with the mesh in Fig. 8a, the
thick gray curve with the mesh of Fig. 8d, the dotted purple curve with the mesh of
Fig. 8c, the dashed blue curve with the mesh in Fig. 8b, and finally the blue dashed
dotted curve with the mesh in Fig. 8e. The peak load is generally overestimated, but
the response predicted by the model M7Auto in general agrees well with the test
data with the exception of the case of Fig. 8e.

Figure 9a–e show the crack patterns that result from the load path 4b and
the crack paths predicted by the model M7Auto. Similar to Fig. 8, the average
mesh sizes are approximately 5, 6.25, and 10 mm in these figures. The meshes
are random in Fig. 9a, b, c, e, whereas in Fig. 9d the mesh is oriented along the
experimentally observed crack paths. Clearly the crack paths in Fig. 9d are simulated
very well by the model as the cracks do not have to propagate skew to the mesh.
In Fig. 9a, b, c, e the crack paths are still simulated reasonably well, but the accuracy
is higher when the element size is small enough. In Fig. 9e a random mesh of linear
tetrahedral elements are used. Comparing this figure to Fig. 9a in which bilinear
hexahedral elements are used, it is observed that tetrahedral elements facilitate the
crack propagation skew to the mesh. The predicted load-displacement response
corresponding to Fig. 9a–e and test data are shown in Fig. 9f. In this figure, the
dark-blue curve corresponds to the mesh in Fig. 9a, the thick gray curve to the mesh
of Fig. 9d, the dotted purple curve to the mesh of Fig. 9c, the dashed blue curve to the
mesh in Fig. 9b, and finally the blue dashed dotted curve to the mesh in Fig. 9e. The
peak load is again mostly overestimated, but the response predicted by the model
M7Auto in general is in a reasonable agreement with the test data although the case
of Fig. 9e shows a significantly large deviation from the test data.

Similarly, Fig. 10a–e show the experimentally observed crack patterns that
correspond to the load path 4c and the crack paths predicted by the already
calibrated model M7Auto. Similar to Fig. 8, the average mesh sizes shown are
approximately 5, 6.25, and 10 mm in these figures. The meshes are random in
Fig. 10a, b, c, e, whereas in Fig. 10d the mesh is oriented along the experi-
mentally observed crack paths. Clearly the crack paths in Fig. 10d are captured
almost exactly by the model as the cracks do not have to propagate skew to the
mesh in a zigzag pattern. In Fig. 10a, b, c, e the crack paths are still captured
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Fig. 8 Crack paths and load displacement curves predicted by the model M7Auto as the response
of the Nooru-Mohamed specimens to the load path 4a using different mesh sizes: (a) 5 mm
hexahedral random mesh, (b) 6.25 mm hexahedral random mesh, (c) 10 mm hexahedral random
mesh, (d) 6.25 mm hexahedral mesh oriented along the experimentally observed crack paths,
(e) 5 mm random tetrahedral mesh, (f) the load-displacement experimental data shown as symbols
and the predictions by the model M7Auto

reasonably well, but especially more accurately when the element size is small
enough. In Fig. 10e a random mesh of linear tetrahedral elements are used,
and comparing this figure to Fig. 10a in which bilinear hexahedral elements
are used, it is observed that tetrahedral elements prevent the zigzag pattern of
crack propagation skew to the mesh. The predicted load-displacement response
corresponding to Fig. 10a–e and test data are given in Fig. 10f. In this figure,
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Fig. 9 Crack paths and load displacement curves predicted by the model M7Auto as the response
of the Nooru-Mohamed specimens to the load path 4b using different mesh sizes: (a) 5 mm
hexahedral random mesh, (b) 6.25 mm hexahedral random mesh, (c) 10 mm hexahedral random
mesh, (d) 6.25 mm hexahedral mesh oriented along the experimentally observed crack paths,
(e) 5 mm random tetrahedral mesh, (f) the load-displacement experimental data shown as symbols
and the predictions by the model M7Auto

the dark-blue curve is associated with the mesh in Fig. 10a, the thick gray curve
with the mesh of Fig. 10d, the dotted purple curve with the mesh of Fig. 10c, the
dashed blue curve with the mesh in Fig. 10b, and finally the blue dashed dotted
curve with the mesh in Fig. 10e. The peak load is generally overestimated, but the
response predicted by the model M7Auto in general agrees well with the test data
with the exception of the case of Fig. 10e.
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Fig. 10 Crack paths and load displacement curves predicted by the model M7Auto as the response
of the Nooru-Mohamed specimens to the load path 4c using different mesh sizes: (a) 5 mm
hexahedral random mesh, (b) 6.25 mm hexahedral random mesh, (c) 10 mm hexahedral random
mesh, (d) 6.25 mm hexahedral mesh oriented along the experimentally observed crack paths,
(e) 5 mm random tetrahedral mesh, (f) the load-displacement experimental data shown as symbols
and the predictions by the model M7Auto

Although the predictions corresponding to the cases given in Figs. 7e, 8e, 9e, and
10e seem to be too inaccurate, in fact the coarse random mesh can cause this kind
of deviations in response due to discretization error; see Figs. 5 and 6 in Červenka
et al. (2005). These calculation results reinforce the idea that if the crack paths are
not known in advance, a two-step calculation procedure should be followed: in the
trial step, the calculations should be carried out using a random mesh, and in the
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final step, the calculations should be done using a mesh oriented along the crack
paths observed in the trial step.

Conclusions

In this study three types of common microplane formulations that can be applied
to a wide range of material constitutive behavior are discussed. The focus is on
the microplane models for plain concrete, a challenging engineering material to
model mathematically. Only the major milestones in the development of microplane
models for concrete are explicitly treated. Thus, the model M4, the model M7, and
a novel nonlocal extension of the model M7 called the model M7Auto are discussed
in this study. The predictive capabilities of the model M7 are demonstrated
by simulating the size effect test data obtained by three-point bending tests of
geometrically similar beams as well as the compression test data obtained using
specimens from an overcured version of the same concrete at different proportional
and nonproportional load paths. Thus, it is shown that the model M7 fits all these
experimental data very accurately.

Furthermore, it is shown that the model M7Auto overcomes the difficulties
associated with classical approaches to nonlocal modeling simply by recalibrating
itself according to the element size, shape, and type. The requirements for a
successful use of the model M7Auto are that (1) the size of the elements in the mesh
should not exceed the range of autocalibration of the model, (2) the elements must
have an aspect ratio close to 1 for the simulation of general three-dimensional crack
propagation, (3) the element type should be the same in the mesh. The predictive
capabilities of the model M7Auto are demonstrated by simulating some well-known
load paths in the benchmark test data of Nooru-Mohamed. It is shown that the model
M7Auto can handle a significant range of element sizes from 5 to 20 mm and still
predict the concrete response to complex load paths quite accurately.
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Abstract

The most catastrophic brittle failure in ferritic steels is observed as their tendency
of losing almost all of their toughness when the temperature drops below their
ductile-to-brittle transition (DBT) temperature. There have been put large efforts
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in experimental and theoretical studies to clarify the controlling mechanism of
this transition; however, it still remains unclear how to model accurately the
coupled ductile=brittle fracture behavior of ferritic steels in the region of ductile-
to-brittle transition.

Therefore, in this study, an important attempt is made to model coupled
ductile=brittle fracture by means of blended micro-void and micro-cracks. To
this end, a thermomechanical finite strain-coupled plasticity and continuum
damage mechanics models which incorporate the blended effects of micro-
heterogeneities in the form of micro-cracks and micro-voids are proposed.

In order to determine the proposed model material constant, a set of finite
element model, where the proposed unified framework, which characterizes
ductile-to-brittle fracture behavior of ferritic steels, is implemented as a VUMAT,
is performed by modeling the benchmark experiment given in the experimental
research published by Turba et al., then, using these models as a departure
point, the fracture response of the small punch fracture testing is investigated
numerically at 22ıC and �196ıC and at which the fracture is characterized as
ductile and brittle, respectively.

Keywords
Ductile-Brittle transition · Porous plasticity · Damage mechanics · Small
punch test · Ferritic steels

Introduction

Large-scale ferritic steel structures are widely used in advanced engineering appli-
cations such as pressure vessels, fusion reactor structures, construction of nuclear
reactors, line pipes used for gas and oil transportation, and welded steel ships. It
is well known that during the low-temperature climate operation, the catastrophic
breakdown of structure and machine elements often occurred. As noted by Sutar
et al. (2014) between 1942 and 1952, around 250 large welded steel ships were lost
due to catastrophic brittle failure. Although the most of steel structure is normally
capable of sustaining great loads and capable of ductility above certain degree
of temperature, they become so brittle and have tendency to lose almost all of
their toughness when the temperature drops below their ductile-to-brittle transition
temperature (Baloso et al. 2017). Depending on loading rate, ambient temperature,
as well as triaxiality, the mode of fracture in metals switches from ductile to brittle or
vice versa, which is called as ductile-to-brittle transition phenomenon. The ductile-
to-brittle transition temperature (DBTT) is a phenomenon that is widely observed in
metals especially in severe steel structures in severe weather (Renevey et al. 1996;
Tanguy et al. 2007; Hütter 2013b).

In metals, the fracture mode in the upper-temperature range (toward 22ıC) is
ductile with micro-voids and dimples. At the lowest-temperature range (toward
�196ıC), the fracture is almost completely brittle, while plasticity governed
ductile failure is observed at temperatures as low as �158ıC. In that case, the
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plasticity properties fall, and the character of fracture changes from ductile to brittle
(Hütter 2013b). In the transition region, both ductile and brittle fracture, consist-
ing of transgranular cleavage marks, exist. The amount of ductile crack growth
decreases gradually with temperature decrease. At lower temperature, brittle fail-
ure is linked with the inter- or intragranular cleavage with nucleation, growth,
and coalescence of micro-cracks and is identified as dominant unstable failure
mechanisms, while at the higher temperature ductile failure is characterized by the
nucleation, growth, and coalescence of micro-voids leading to rupture (Anderson
2004; Chakraborty and Biner 2013).

The controlling mechanism of this transition still remains unclear despite large
efforts made in experimental and theoretical investigation. Thus understanding the
triggering mechanism of such kind of transition is of great importance. Two com-
mon failure mechanisms, namely, ductile and brittle fracture in metallic materials,
should be characterized well in the constitutive model for better understanding the
triggering mechanism of such kind of transition.

There have been significant efforts put forward to develop unified models that
take into account the different failure mechanisms that are active at different
temperature regime as well as at transition zone (see, e.g., Shterenlikht 2003;
Hutter et al. 2014; Needleman and Tvergaard 2000; Batra and Lear 2004; Xia
and Fong Shih 1996; Chakraborty and Biner 2013; McAuliffe and Waisman 2015;
Turtuk and Deliktas 2016; Soyarslan et al. 2016).

In those approaches, ductile failure mechanism is modeled by the strip line
model of Freund and Lee (1990) and Rousselier (1987)’s model, or mostly
by Gurson-Tvergaard-Needleman model (GTN-model Needleman and Tvergaard
2000), whereas cleavage failure in metallic materials has been described primarily
by two models. The deterministic model by Ritchie-Knott-Rice (Ritchie et al.
1973) relies on a critical stress over the critical distance principle. In other words,
brittle fracture occurs once the principal stresses averaged over a region within a
characteristic length exceed a temperature- and rate-independent threshold, while it
may or may not be accompanied by plastic flow. Drawback of these models is that
the experimentally observed scatter caused by cleavage in fracture toughness cannot
be captured. Curry and Knott (1979) modified this theory by incorporating a critical
volume ahead of the crack tip to describe the scatter in fracture toughness due to
cleavage failure.

The statistical model proposed by Beremin Research Group (see, e.g., Beremin
1983 and Mudry 1987), on the other hand, incorporates Wiebull distribution
(Weibull 1953) to describe fracture stress in terms of failure probability at lower
and transition temperatures. Statistical nature of this model helps one to capture
the scatter in fracture toughness; however, it fails to model accurately stable
crack growth near transition regime. Turtuk and Deliktas (2016) proposed a new
approach specifically to model temperature-driven ductile brittle transition regime to
introduce internal softening associated with micro-crack initiation and propagation
due to cleavage mechanisms.

Many researchers proposed approaches that use a constitutive model such
as the GTN model which accounts for the damage-induced nonlocality
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(see, e.g., Bergheau et al. 2014; Zhang et al. 2000; Rivalin et al. 2001a, b;
Pardoen and Hutchinson 2000). Linse et al. (2012) has made nonlocal modification
on the GTN model by employing an implicit gradient-enriched formulation where
the volumetric plastic strain is introduced as nonlocal, damage-driving state
variable. Ramaswamy and Aravas (1998) has been discussed and implemented
the gradient-based extension of the Gurson model.

There are only few studies in the literature where the particular cleavage
softening is taken into account. Samal et al. (2008) modified Rousselier model
by considering a nonlocal Rousselier model (Samal et al. 2008) in conjunction
with Beremin model (Beremin 1983). Chakraborty and Biner (2013) proposed a
unified model that incorporates both ductile damage and cleavage failure mecha-
nisms through temperature- and failure probability-dependent parameters. The flow
strength of the bulk material is varied to obtain the temperature-dependent bulk
material behavior. It is assumed that without cleavage, the cohesive law follows a
traction-separation behavior of ductile damage as described in Scheider and Brocks
(2003). Modeling cleavage failure by a cohesive zone is a heuristic approach which
combines two relevant features. Firstly, the softening initiates under pure mode-I
when the maximum principal stress in the ligament reaches a critical level, the so-
called cohesive strength, which is a common assumption. In addition, the work of
cohesive separation can be interpreted as the work required to drive the micro-crack
which initiated at a broken second-phase particle into the neighboring grain and
through the next grain boundary (Kabir et al. 2007; Hardenacke et al. 2012)

In the work of Hutter (2013a), a unified model is proposed by means of a cohesive
zone in addition to the ductile material degradation, where the crack propagation is
simulated by incorporating the softening associated with cleavage initiation in the
ductile-brittle transition region. He introduced two length scales to investigate the
material behavior. On the macroscopic scale, the ductile mechanism is modeled
with a nonlocal modification of the Gurson-Tvergaard-Needleman model (GTN
model), whereas the discrete voids are resolved in the microscopic model. Soyarslan
et al. (2016) proposed a model for the ductile-brittle transition at the macroscale
where two length scales are incorporated into the constitutive relations. The ductile
fracture length scale is based on the average inclusion distance and associated with
the nonlocal evolution equation for the porosity. The brittle fracture length scale is
based on the average grain size and associated with the material region at which the
maximum principal stress is averaged out.

However, these approaches suffer from the mentioned inherent weaknesses
pertaining to brittle fracture models. An important attempt to model ductile fracture
by means of blended micro-void and micro-cracks is given in literature by Chaboche
et al. (2006). In their work, micro-void- and micro-crack-driven separate damage
variables have been defined in order to model ductile fracture at isothermal
conditions, meaning that no thermal coupling exists in their work. Recently Turtuk
and Deliktas (2016) published a work that presents present thermomechanical
finite strain-coupled plasticity and continuum damage mechanics models which
incorporate the blended effects of micro-heterogeneities in the form of micro-cracks
and micro-voids. They applied presented models in small punch fracture testing
in order to simulate temperature-driven ductile-to-brittle transition fracture of P91
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steel. While void growth-driven damage is represented by Gurson plasticity, micro-
crack-driven damage is formulated with continuum damage mechanics framework.
The presented work also takes up blended modeling approach and extends further,
incorporating thermal coupling, Gurson’s porous plasticity, brittle fracture model-
ing, and application to ductile-to-brittle transition fracture. The developed unified
framework, which characterizes ductile, brittle, and ductile-to-brittle transition
fractures, was implemented as a VUMAT in ABAQUS to describe fracture response.
Taking the experimental research of notched specimens published by Turba et.al,
the finite element analyses have been performed to simulate fracture response of
the small punch fracture specimens made of P91 steel at 22ıC and �196ıC and at
which the fracture is characterized as ductile and brittle, respectively.

Theoretical Background

Theoretical framework presented here based on the thermomechanical finite strain-
coupled plasticity and continuum damage mechanics models which incorporate the
blended effects of micro-heterogeneities in the form of micro-cracks and micro-
voids. While void growth-driven damage is represented by Gurson plasticity, micro-
crack-driven damage is formulated with continuum damage mechanics framework.
The presented work also takes up blended modeling approach and extends further,
incorporating thermal coupling, Gurson’s porous plasticity, brittle fracture model-
ing, and application to ductile-to-brittle transition fracture. The developed unified
framework, which characterizes ductile, brittle and ductile to brittle transition

Ductile Fracture: Gurson Porous Plasticity

The modeling of fracture in ductile metals due to damage is often based on the
micromechanical model of Gurson (1977) for the growth of a single void in
an ideal elastoplastic matrix. This model devises a hydrostatic stress-dependent
yield potential derived using homogenization over void rigid plastic matrix and
limit analysis. This potential is later modified by Tvergaard and Needleman, by
the introduction of void shape effects as well as acceleration in the void growth
during void coalescence, to be named as Gurson-Tvergaard-Needleman porous
plasticity model (Tvergaard and Needleman 1984), along with other contributors,
e.g., Tvergaard (1981, 1982a,b), Needleman and Tvergaard (1998), Nahshon and
Hutchinson (2008), Nahshon and Xue (2009), Wen et al. (2005), and Malcher et al.
(2012), also with extensions to nonlocal formulation at hyper-elastic setting as in
Hakansson et al. (2006).
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where f is the void volume fraction that evolves with plastic strains, � y is the
current yield stress of material, and NQ� is the so-called effective stress, which is
defined within continuum damage mechanics formalism and introduced in detail
in the following section. Note that the proposed coupling with continuum damage
mechanics formalism introduces dev

�
NQ�
�

as the deviatoric part of the effective stress
tensor at rotationally neutralized configuration in the yield potential �p , onto which
both void growth and micro-crack-driven damage mechanisms are reflected in order
to account for softening effects of ductile and brittle failure phenomena. Since
the aim is to model combined effect of micro-voids and micro-cracks on fracture,
the effective stress-based plastic potential can be considered as a Gurson’s plastic
matrix with built-in micro-cracks. A similar usage of effective stress in the plastic
dissipation potential has been introduced by Chaboche et al. (2006), by using two
damage state variables (one for pressure-dependent plastic flow response and the
other for generalized damage situations) and focusing only on ductile fracture with
isotropic damage. Further details on effective stress concept and micro-crack-driven
damage are given in the following section.

Evolution of the plastic flow is assumed to follow normality rule and is calculated
from:

PQ"
p

D �@Q�� D �@Q� �p (2)

where � is the plastic multiplier, � is the dissipation potential function which is
defined as � D �p. Q� ;D/ C �d .Y;D/, with �d being the damage dissipation
potential representing micro-crack-driven damage contribution linked to brittle
fracture. Note that the micro-crack-driven damage is coupled to plastic flow upon �,
considering the plastic flow existence in ductile-to-brittle transition state. Further
elaboration of damage potential and its parameters are given in subsection on
continuum damage mechanics. Tvergaard and Needleman’s criteria for void growth
and coalescence have been defined by:

f *.f / D

8<
:
f ; f � fc

fc C
�
f *
u � fc

� Œf � fc�

ŒfF � fc�
; f > fc

(3)

where fu D 1=q1, fc is the threshold value of void volume ratio at which void
growth and coalescence start to accelerate and fF is the critical value of void
volume ratio at which the load-carrying capacity of the material is completely lost.
The evolution equation for void volume ratio f is calculated using principle of
conservation of mass and incompressibility of plastic flow. It is composed of two
separate phases, namely, nucleation and growth under fully developed plastic flow,
meaning that evolution of void volume fraction can mathematically be defined by:

Pf D Pf nuc C Pf gr (4)
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The void evolution due to nucleation is statistically dependent and is defined as in
Chu and Needleman (1980):

Pf nuc D AN Pe"peqI AN D AN .e"peq/ D
fN

SN
p
2�

exp

0
B@�

he"peq �e"pN i2
2ŒSN �2

1
CA (5)

wheree"pN and SN denote the mean equivalent plastic strain at the nucleation and
its standard deviation. Employing the principle of plastic work equivalence, the
equivalent effective plastic strain rate reads as follows.
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p
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(6)

After Nahshon and Hutchinson (2008), Pf gr has further been decomposed into void
growth under shear and under normal stresses such that Pf

gr
normal controls void growth

under hydrostatic stresses and Pf
gr

shear enhances behavior of softening due to void
growth when material is under shear stresses.
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where kw is a material parameter governing shear-related growth and is suggested
in Nahshon and Hutchinson (2008) to be within 0 � kw � 3 and w is a function
of deviatoric stress within 0 � w � 1 that is responsible for distinguishing the
axisymmetric stress states from generalized plane strain and is calculated as:
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in which NJ3 is the third deviatoric invariant of the stress tensor. Note that, although
a generalized shear-driven evolution is included within the formalism of continuum
damage mechanics, within the formulation of the present work, Nahshon and
Hutchinson shear correction is required to describe damage for ductile fracture,
while CDM formulation is taken to model brittle damage evolution. Finally, the
balance of energy is used to compute the time rate of change of temperature using
the plastic work equation:

�cp P� D & NQ� W PQ"
p

(9)
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where & denotes the so-called Taylor-Quinney coefficient (Taylor and Quinney
1934) that controls the amount of plastic work converted to heat during plastic flow,
in which � and cp are the density and the heat capacity of the material, respectively.
Extension of the plastic hardening model for strain rate and temperature dependency
has been performed considering Johnson-Cook-type multiplicative decomposition
of the material yield stress on strain hardening, strain rate dependency, and thermal
softening. However, the original Johnson-Cook hardening law has been replaced
with Hockett-Sherby hardening equation (Hockett and Sherby 1975), for better
representation of the post-yielding and pre-peak response in small punch testing
simulations of P91. That is:

� y.e"peq; Pe"peq; �/ D hy.e"peq/ry.Pe"peq/ty.�/

hy.e"peq/ D he"peq C b � Œb � � y0� exp.�m
�e"peq

�n
/

ry.Pe"peq/ D 1C C log

 
Pe"peq

P"
p
0

!

ty.�/ D 1 �˝r

(10)

where � y0; b; C; n;m and r are material parameters. The reference strain rate has
been denoted with P"

p
0 , and ˝ is defined as ˝ WD Œ� � �0�=Œ�M � �0� where �0

and �M represent the reference and melting temperatures, respectively. Here, only
dependency of the yield stress on strain rate and temperature is considered within
Johnson-Cook formalism, i.e., employed formulation is not viscoplastic. Note that
theoretical basis presented here and numerical implementation performed cover
also rate effects. However, it is excluded within the scope of this work, and only
temperature-driven effects are investigated.

Brittle Fracture Model: ContinuumDamageMechanics

Concept of damaged material has initially been introduced by Kachanov (1958) and
Rabotnov (1969), with an attempt to describe creep behavior of materials. Following
these initial proposals, the concept of damage mechanics has been developed
through works of Chaboche (1977), Lemaitre (1985), Germain et al. (1983),
Murakami and Ohno (1980), Chow and Wang (1987a,b), and Krajcinovic and
Fonseka (1981), within consistency of continuum thermodynamics. An exhaustive
literature cite is not aimed here; however further literature is given in Besson et al.
(2010) and Skrzypek et al. (2008).

For a general case, damage is physically defined as the ratio of the surface area of
micro-cracks or cavities situated on the plane passing through the cross section of a
representative volume element (RVE) to the total surface area of the RVE. Damage
is assumed to act over an RVE such that D D 0 describes undamaged material,
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whileD D 1 represents fully damaged material, at which the load-carrying capacity
of RVE has totally been lost. In phenomenological approach to damage, also called
as continuum damage mechanics, a damage state variable affects the material stress
state, with the introduction of the so-called effective stress tensor. Definition of the
effective stress tensor is either based on the strain equivalence principle introduced
by Chaboche (1977) or by the energy equivalence principle developed by Cordebois
and Sidoroff (1982). In strain equivalence principle, effective stress is defined as
the stress tensor, when applied to a fictitious undamaged material generates the
same strain tensor obtained when net (or homogenized) stress tensor is applied to
a damaged material. In energy equivalence principle, the equivalence is formulated
over elastic strain energies of damaged and undamaged materials. For the case of
isotropic damage, effective stress is defined as NQ� D Q�=.1 � d/, where d is a scalar
damage variable and � is the net stress tensor. For the tensorial damage variable, also
employed in the present work, several definitions are given in literature (Skrzypek
et al. 2008).

The effective stress tensor employed in the present work is based on the
volumetric-deviatoric split and symmetrization of effective stress tensor given by
Cordebois and Sidoroff (1982) and Chow and Wang (1987a,b) and as:
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in which “tr” and “dev” denote trace and deviator of the tensorial quantity and
P is the 4th order deviatoric projection tensor and D is the 2nd order tensorial
damage variable representing the micro-crack-driven damage evolution linked to
brittle fracture. The coupling and dependency between micro-crack-driven brittle
damage evolution and micro-void-driven ductile damage is achieved by assuming
the normality rule for damage evolution, using plastic multiplier � and potential
� D �p. Q� ;D/C �d .Y;D/ introduced previously, with a specific choice of damage
potential �d given in Hayakawa and Murakami (1997) and Abu Al-Rub and
Voyiadjis (2003):

PD D �@Y� D �@Y�d

�d D
1

Sm.mC 1/

rh
Œ1 � D��1 W Œ1 � D��1

iq
ŒY W Y�mC1

(13)

where Y is stress-like variable, controlling brittle damage initiation and evolution,
and is conjugate to D. Note that, the specific choice for �d is in terms of the
invariants of stress-like damage conjugate variable Y so that the brittle damage
formulation is analogous to ductile damage part with �p and f . In a thermodynam-
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ically consistent framework, one can obtain the expression for damage conjugate
variable named as strain energy release rate Y, by taking its derivative with respect
to the free energy function defined, i.e., Y D �@D . Instead, for the hypo-elastic
plasticity framework upon which this work is based, we propose two different laws
to calculate Y and PD. Looking from brittle fracture point of view and based on
experimental evidence that brittle fracture is linked to principal stresses, principal
stress-driven Leckie-Hayhurst-type and plasticity-driven Lemaitre-type expressions
for Y and PD have been proposed first time specifically to model temperature-driven
ductile-to-brittle transition. These proposed models are introduced and discussed
next.

Modified Leckie-Hayhurst Form
Initially developed as a creep-rupture criterion (Hayhurst and Leckie 1973; Leckie
and Hayhurst 1977) in terms of stress invariants and within the context of isotropy,
the so-called Leckie-Hayhurst form is generalized as a function of NQ� as:

'. NQ� / D a NQ� i C bJ1. NQ� /C Œ1 � a � b�J2. NQ� / (14)

where NQ� i is the maximum principal component of effective stress tensor at
rotationally neutralized configuration. Proposing such a form for strain energy
release rate has two advantages: (a) there is direct dependency to stresses and
therefore direct link to brittle fracture modeling over principal stresses and (b)
straightforward numerical implementation. Furthermore, the proposed form is anal-
ogous to quantitative expression of Ritchie-Knott-Rice cleavage criterion, which
requires maximum principal stress exceed a specific temperature-independent limit
over a specific distance. Thus, Leckie-Hayhurst-type form has been modified to
capture principal stress effects such that Yi D NQ� i . Since the form in general has
been derived considering isotropy condition (over a scalar damage variable), the
extension considering second-order damage tensor D has been proposed in terms of
spectral representation of Y:

Y D
3P
iD1

hYi ini ˝ ni

hYi i D max.0; Yi � Yi
0/

(15)

where Yi 0 is the threshold value controlling the micro-crack damage initiation and
evolution and ni the principal directions of effective stress tensor NQ� . This modified
form can also be considered as 2nd-order anisotropic Ritchie-Knott-Rice brittle
fracture criterion which is able to model internal softening associated with micro-
crack initiation, propagation, and thus cleavage. However, note that this proposed
form for Y has no more the meaning of strain energy release rate, as it is in a
thermodynamically consistent framework.
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For the calibration of the material parameter Yi 0, a mixed experimental-
numerical study needs to be performed. Here, we propose a similar test setup
given in Ritchie et al. (1973) and Curry and Knott (1976). In Ritchie et al. (1973)
and Curry and Knott (1976), a four-point bending test has been set up, and fracture
toughness of the pre-notched specimens have been measured. A finite element study
of the stress field around the notch then revealed the critical fracture stress of the
specimen. Since the principal stress dependency of the proposed Leckie-Hayhurst
form is similar to that of Ritchie-Knott-Rice fracture law, a parameter identification
setup similar to Ritchie et al. (1973) and Curry and Knott (1976), which measures
fracture response in terms of fracture toughness or force-displacement curves then
correlates it to principal stresses numerically, is sufficient for the determination of
Yi
0. Note that, the experimental portion of the correlations performed within the

present work is based on force-displacement response of the small punch fracture
experiments given in Turba et al. (2011).

Plasticity-Driven Lemaitre Form
Driven by motivation that micro-void-based dilatational damage f and micro-
crack-driven brittle damage coexist in a ductile-to-brittle transition state, the kinetic
damage evolution law proposed by Lemaitre et al. (2000) is adopted to describe
damage evolution effects to model cleavage. The form proposed by Lemaitre et al.
in (2000) is:

PD D

"
NY

S

#m
jPQ"
p
j where NY D

1

2
Q"e W C W Q"e (16)

where NY is the effective elastic energy density, while jPQ"
p
j defined plastic strain

rate tensor in terms of its principal components, S and m are material parameters
to be correlated. jPQ"

p
j is formed by rewriting plastic strain rate tensor in spectral

representation with its eigenvectors serving a basis and performing absolute value
operation. It’s to pay attention that principal directions of damage rate tensor
coincide with the principal directions of plastic strain rate tensor. The evolution
of damage is positive only if a certain threshold of accumulated plastic strain is
reached, i.e.,

PD D 0 if e"peq �e"p;crit
eq (17)

The critical value of accumulated equivalent plastic strains acts as a threshold not
only for damage evolution but as a limiter to pre-, post, and in-transition zone
fracture response of the material. Therefore, it should be identified along with other
damage parameters. Such identification is performed numerically within the scope
of the work and is given in preceding sections. A drawback of this form is this:
a nonphysical damage evolution is recovered under biaxial tensile stress states. To
overcome this issue, Eq. 16 can be modified to take positive part of PQ"

p
, instead

of its absolute value. However, for axisymmetric small punch fracture modeling
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and implementation, the original form with absolute value of principal components
has been used. The experimental characterization of material parameters S ,m, and
"
p;crit
eq that define this damage evolution law is basically uniaxial test with unloadings

and low-cycle fatigue tests. Details of experimental characterization are given in
Lemaitre et al. (2000) and Lemaitre and Desmorat (2005).

Application to Small Punch Testing

Small punch testing is a recently developed mechanical testing method that allows
the mechanical, fracture, and creep characterization of tiny specimens. It gained
widespread importance and popularity since it enables the testing using specimens
taken from already existing components that have been exposed to service loads
and temperatures. As it is also considered a nondestructive test method, in situ
characterization of fracture, creep, mechanical properties, as well as lifetime is
possible.

Small Punch Experimental Setup

Small punch testing technique uses miniaturized samples, and its setup has been
carried out according to the guidelines of the Code of Practice for Small Punch
Testing for Tensile and Fracture Behavior (CEN 2006). The testing temperature
range was between 22ıC and �196ıC. In order to achieve the lowest test tem-
perature, the testing equipment has been placed in a vessel filled with liquid
nitrogen inside its environmental chamber. The thermocouples with an accuracy
of �2ıC were used. The deformation velocity of the samples was kept at constant
value of 0.005 mm/s. Specimens were disks of 8 mm diameter and 1 mm thickness,
with a predefined circumferential notch. The V-notches were produced by electro-
discharge machining, resulting in a notch of diameter 2.5 mm, notch tip radius of
5 microns, and notch depth of 0.5 mm, as proposed in Turba et al. (2011). The
schematic of the SP creep testing equipment is presented in Fig. 1.

In this test method, a rigid spherical ended puncher penetrates through a disk
specimen at a constant displacement rate. During the experiment, the puncher force
F and the midspan central displacement ı are recorded. The importance of small
punch testing lies in its versatility: small punch force-displacement curves can be
used to estimate mechanical properties such as yield stress, maximum strength,
elasticity modulus, fracture toughness, ductile-to-brittle transition temperature, high
temperature creep properties, etc. Furthermore, it requires small-sized specimens
so that tiny cuts from existing structures could be utilized to investigate long-term
in situ mechanical or thermal response of the material. As a result of experiments
performed within a wide temperature range, it has been observed that the fracture
mode in the upper temperature range (toward 22ıC) is ductile with micro-voids
and dimples. In the transition region, both ductile and brittle fracture, consisting of
transgranular cleavage marks, exist. The amount of ductile crack growth decreases
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Fig. 1 Small punch test holder (Basbus et al. 2014)

gradually with reduced temperature. At the lower temperature range (toward
�196ıC), the fracture is almost completely brittle.

The radial symmetry of the notch enables to achieve a plane strain condition for
evaluation purposes. Due to significantly small radius of the notch tip, high stress
concentrations are achieved, and the crack was found to be initiating from the notch
tip, for all the disks tested at different temperatures.

For the ductile case where void initiation and growth are controlled by plastic
strain, the crack propagation was found to follow a path in the direction of the
notch where the equivalent plastic strain is maximum. The micro-voids nucleating
at second phase particles in the vicinity of the notch tip grow and coalescence as
the strain level is increased, and finally a continuous crack is formed, leading to the
complete fracture of the disk.

At �196ıC, the crack propagates in perpendicular direction to maximum
principal stress, in accordance with the maximum tensile stress theory by (Erdogan
and Sih 1963).

As for the transition, the crack was found to follow an angle in-between ductile
and brittle cases, while the angle approaches the one in the brittle case. Ductile,
brittle, and transition fractures could be visualized in Figs. 2 and 3.

Numerical Simulations of SPT

The proposed theoretical model has been implemented in ABAQUS as a VUMAT.
Numerical implementation has been performed for axisymmetric elements, due
to the presence of the rotationally symmetric notch. Implemented model covers
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Fig. 2 After-experiment investigation of a notched specimen tested at 22ıC

Fig. 3 Three different crack patterns observed at different temperatures (a): ductile fracture at
22ıC, (b) brittle fracture at �196ıC, (c) temperature-dependent transition fracture pattern

temperature effects on transition fracture as well as Johnson-Cook strain rate
dependency and stress triaxiality effects on fracture. Axisymmetric finite elements
with reduced integration and enhanced hourglassing controls (CAX4R) have been
used. Clamps and puncher have been modeled as rigid instances. Artificial strain
energy effects are kept at minimum thanks to sufficiently small element sizes. Small
punch experiment has been modeled for 22ıC and �196ıC. ABAQUS setup can be
visualized in Fig. 4.

The set of material parameters used to predict P91 behavior have been listed in
Tables 1, 2, 3, and 4.

Simulations with the proposed material model and with stated material param-
eters have yielded three distinct crack patterns, which are in good correlation both
with respect to theoric predictions and experimental results. If Fig. 5 is inspected,
a precise correlation with simulation and numerics, in terms of crack patterns, can
easily be observed. Depending on the temperature level � and the threshold value
of the principal strain energy release rate Y 0i , direction and pattern of the transition
fracture can precisely be predicted. As also inspected from experimental results,
transition fracture patterns are mainly dominated by brittle fracture, while plastic
strain amount and direction govern how much the crack deviates from principal
stress directions. Such experimental and numerical patterns could be visualized in
Fig. 5.
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Fig. 4 (a) Initial configuration at the beginning of the simulation. (b) Final configuration at end of
the simulation with ductile fracture. (c) Axisymmetric FE mesh of a specimen. (d) Close-up view
of the notch tip, illustrating mesh size

Table 1 Thermoelastic
properties of P91

E(GPa) � cp (m2/[Ks2]) & "0 �M (K)

210 0.3 622 0.9 1.3e-5 1717

Table 2 Flow curve data of
P91 at 22ıC, Johnson-Cook
hardening

h (MPa) � y0 (MPa) b (MPa) m n

500 346 650 25.73 1.01

Table 3 Gurson-Tvergaard-
Needleman model parameters
for P91

fN sN "N q1 q2 q3 D 1=fU f0 kw

0.005 0.1 0.03 1.5 1.0 2.25 0.0055 3.0

Table 4 Ductile and brittle
failure criteria

fc fF Di;crit Y 0i (MPa)

0.05 0.207 0.30 1500

The force-displacement responses of the implemented models and comparison
to experimental results are given in Fig. 6. As it is seen, the numerical response of
the proposed models compared to experimental results is in good correlation, as a
result of a change in temperature. The peak responses are accurately predicted at all
three cases. The maximum pre-failure load for modified Leckie-Hayhurst model is
slightly higher compared to that of Lemaitre model. The reason for such a response
is natural, since micro-crack-driven damage in Lemaitre-type model is driven by
equivalent plastic strain amount, leading to additional softening in load response at
higher plastic strains. Still, such a deviation is within the acceptable range. Note
that the brittle damage response of modified Leckie-Hayhurst model is linked only
to maximum principal strain evolution.
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Fig. 5 (a) Numerical prediction and experimental investigation of ductile tearing at 22ıC. (b)
Numerical prediction and experimental investigation of brittle cleavage at �196ıC. (c) A typical
mixed-mode fracture pattern, mainly effected by brittle cleavage, while plastic strain direction
deviates crack direction away from principal stress directions. (d) Close-up view of pure brittle
crack propagation. (e) Close-up view of mixed-mode crack propagation. Note the difference in
propagation direction compared to pure brittle fracture

Effects of Specimen Geometry on Fracture Response of SPT

The geometrical parameters of the small punch experiment such as puncher radius
and notch depth (Fig. 7) have been varied, and the effects of such geometrical
changes on fracture response of the specimen are investigated numerically.

A design of experiments study is performed to find the correlation between
geometrical parameters.

The Effects of the Puncher Radius
The puncher radius of the loading units has been varied with the values of 2.25, 2.5,
and 2.75 mm, respectively (Fig. 8), to investigate its effects on the fracture response
of the notched specimen.

Usually, the radius of the puncher on the loading unit is 2.5 mm. In the case of
reducing the radius of the puncher, the contact surface between the puncher and the
specimen became smaller. If the puncher radius is reduced to too small value, more
stress concentration occur nearby the underneath of the puncher region, and also
failure of the specimen is dominated by shear due to punching effect. (See Fig. 9.)

By comparing the experimental results, it is concluded that the puncher radius
should be kept between the values of 1.5 and 3.5 mm as its lower and upper limits.
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Fig. 6 Numerical simulations with two implemented material models and comparison with
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Fig. 8 Various puncher radius

Fig. 9 (a) Numerical prediction of effects of the puncher radius with 2.25, 2.5, and 2.275 mm on
the notched specimen

Force-displacement curves are presented in Fig. 10 in order to indicate the puncher
radius effect on the fracture response of the specimen.

As it can be seen from the curves in Fig. 10, there is relation between the peak
load and the radius of the puncher. As the radius of the puncher increases to a certain
critical value, the region of the contacting surfaces between the puncher and the
specimen becomes wider and the load reaches its peak value faster than that in the
specimen loaded with the puncher having smaller radius. Therefore, this indicates
that fracturing of the specimen loaded with puncher having bigger radius occurs
much earlier than that of the specimen loaded with puncher having smaller radius
(Fig. 9).

The Effects of Crack Depth
Depth of the crack is one of the most important fracture parameters that causes the
damage and fracture in the materials. In order to investigate the effect of crack depth
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Fig. 10 Prediction of the force-displacement response of the notched specimen for various radius
of the puncher

Fig. 11 Stress distribution at various crack depth

on the fracture response of the small punch test, three different crack depths, with
length of 0.44, 0.49, and 0.54 mm, are defined in numerical simulation. Figure 11
mimics von Mises stress distributions as the results of the finite element simulation
of SPTs at various crack depths.

As the crack depth increases along the direction of the thickness of the specimen,
material becomes weaker and is much likely prone to damage and fracture. At the
lower temperature �196ıC for all crack lengths, the material behaves completely
brittle. However, as seen in Fig. 11 for the larger crack length, material shows more
ductile behavior than that of the smaller crack length.
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Fig. 12 Prediction of the force-displacement response of the notched specimen for various crack
depth

Figure 12 shows the force-displacement curves. It is seen that the peak load of the
force-displacement curves exhibit a lowering with increase in the specimen crack
length at both temperatures. This implies that for decreased initial crack lengths, the
specimen exhibits higher fracture resistance (Fig. 12).

Discussion of Results and Further Research

In the enclosed work, a coupled continuum damage mechanics and porous plasticity
model on local scale have been presented, in order to model temperature-dependent
ductile-to-brittle transition fracture in metals. Classical effective stress and damage
expressions of CDM have been employed to model brittle fracture, while Gurson’s
porous metal plasticity has been utilized to model ductile fracture. Leckie-Hayhurst
criterion has been modified to account for brittle fracture and extended to cover
anisotropic material behavior. Constitutive modeling and small punch experiments
have been performed for P91 steel. It has been found out that the proposed
model precisely and conveniently predicts crack patterns within a relatively wide
temperature range from 22ıC to �196ıC.

The effects of the various geometrical parameters such as puncher radius on
fracture response of the SPT specimen is investigated numerically. Depth of the
crack is a crucial effect parameter that causes the damage and fracture in the
materials. As the crack depth increases along the direction of the thickness of
the specimen, material becomes weaker and shows more ductile behavior. On the
other hand the puncher radius dominates shear type failure in the specimen due to
punching effects.
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For the sake of completeness, the proposed model will be extended to nonlocal
framework by making use of integral type nonlocal approach, complemented with
associated length scales for both brittle and ductile fractures. Incorporation of the
statistical effects for the brittle fracture by the stochastic distribution of material
properties as well as the sensitivity study for the threshold value of the strain energy
release rate Y 0i will also be studied.
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Abstract

In this chapter, a new microstructure-dependent higher-order shear deforma-
tion beam model is introduced to investigate the vibrational characteristics of
microbeams. This model captures both the size and shear deformation effects
without the need for any shear correction factors. The governing differential
equations and related boundary conditions are derived by implementing Hamil-
ton’s principle on the basis of modified strain gradient theory in conjunction
with trigonometric shear deformation beam theory. The free vibration problem
for simply supported microbeams is analytically solved by employing the Navier
solution procedure. Moreover, a new modified shear correction factor is firstly
proposed for Timoshenko (first-order shear deformation) microbeam model.
Several comparative results are presented to indicate the effects of material
length-scale parameter ratio, slenderness ratio, and shear correction factor on the
natural frequencies of microbeams. It is observed that effect of shear deformation
becomes more considerable for both smaller slenderness ratios and higher modes.
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Introduction

The miniaturized (small-sized) structures have a wide range of applications in
nano- and micro-electromechanical systems (NEMS andMEMS) due to the rapid
improvements in technology (Younis et al. 2003; Li and Fang 2010; Wu et al. 2010).
Microbeamis one of the essential structures frequently used in MEMS/NEMS such
as micro-resonators (Zook et al. 1992), atomic force microscopes (Torii et al. 1994),
micro-actuators (Hung and Senturia 1999), and microswitches (Xie et al. 2003).
Because of the characteristics dimensions of the microbeams (thickness, width,
and length) are on the order of microns and submicrons, size effects should be
taken into consideration on the determination of the mechanical characteristics of
such structures. However, it has been experimentally observed for several materials
that microstructural effects appear and have considerable effect on mechanical
properties and deformation behavior for smaller sizes (Poole et al. 1996; Lam et
al. 2003; McFarland and Colton 2005). Unfortunately, the well-known classical
continuum theories, which are independent of scale of the structure’s size, fail
to estimate and explain of size dependency in micro- and nanoscale structures.
Subsequently, various nonclassical continuum theories, which include at least one
additional material length-scale parameter, have been developed like couple stress
theory (Mindlin and Tiersten 1962; Koiter 1964; Toupin 1964), micropolar theory
(Eringen 1967), nonlocal elasticity theory (Eringen 1972, 1983), and strain gradient
theory (Fleck and Hutchinson 1993; Vardoulakis and Sulem 1995; Altan et al. 1996).

One of the higher-order continuum theories, named as strain gradient theory,
developed by Fleck and Hutchinson (1993, 2001), can be viewed as extended
form of the Mindlin’s simplified theory (Mindlin 1965). This theory requires five
additional material length-scale parameters related to second-order deformation
gradients. Subsequently, Lam et al. (2003) proposed a more useful form of the
strain gradient theory which is named as modified strain gradient theory (MSGT)
and includes three additional material length-scale parameters for linear elastic
isotropic materials.

This theory has been employed by many researchers to analyze size-dependent
microbeams. For instance, Bernoulli-Euler and Timoshenko models were intro-
duced for static bending, free vibration, and buckling behaviors of microbeams
by Kong et al. (2009), Wang et al. (2010), and Akgöz and Civalek (2012,
2013a). Furthermore, Kahrobaiyan et al. (2012) and Ansari et al. (2011) introduced
Bernoulli-Euler and Timoshenko beam models for functionally graded microbeams,
respectively. Artan and Batra (2012) employed the method of initial values for the
free vibration of Bernoulli-Euler strain gradient beams with four different boundary
conditions as simply supported-simply supported, clamped-free, clamped-clamped,
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and clamped-simply supported. Approximate solutions for static and dynamic
analyses of microbeams were also carried out by finite element method based on
Bernoulli-Euler and Timoshenko beam theories, respectively (Kahrobaiyan et al.
2013; Zhang et al. 2014a).

Presently, various beam theories have been proposed and used to investigate the
mechanical behaviors of beams. Influences of shear deformation can be neglected
for slender beams with a large aspect ratio. However, effects of shear deformation
and rotary inertia become more prominent and cannot be ignored for moderately
thick beams and vibration responses on higher modes. In this manner, several
shear deformation beam theories have been developed to account for the effects
of transverse shear. One of the earlier shear deformation beam theories is the first-
order shear deformation beam theory (commonly named as Timoshenko beam
theory (TBT)) (Timoshenko 1921). This theory assumes that shear stress and strain
are constant along the height of the beam. In fact, the distributions of these are
not uniform, and also there are no transverse shear stress and strain at the top and
bottom surfaces of the beam. For this reason, a shear correction factor is needed,
as a disadvantage of the theory. After that, some higher-order shear deformation
beam theories, which satisfy the condition of no shear stress and strain without
any shear correction factors, have been presented such as parabolic (third-order)
beam theory (Levinson 1981; Reddy 1984), trigonometric (sinusoidal) beam theory
(Touratier 1991), hyperbolic beam theory (Soldatos 1992), exponential beam theory
(Karama et al. 2003), and general exponential beam theory (Aydogdu 2009a).
These theories have been used less than Euler-Bernoulli beam theory (EBT) and
TBT on prediction of the mechanical responses of microstructures on the basis of
the nonclassical continuum theories (Aydogdu 2009b; Salamat-talab et al. 2012;
Şimşek and Reddy 2013a, b; Thai and Vo 2012, 2013; Akgöz and Civalek 2013b,
2014a, b, c, 2015; Zhang et al. 2014b).

In the present study, a new size-dependent trigonometric (sinusoidal) shear
deformation beam model in conjunction with modified strain gradient theory is
developed. This model captures both the microstructural and shear deformation
effects without the need for any shear correction factors. The governing differential
equations and related boundary conditions are derived by using Hamilton’s princi-
ple. The free vibration response of simply supported microbeams is investigated.
Analytical solutions for the first three natural frequencies are presented. In order to
indicate the accuracy and validity of the present model, the results are comparatively
presented with the results of other beam theories. A detailed parametric study is
carried out to indicate the influences of material length-scale parameter, slenderness
ratio, and shear correction factors on the natural frequencies of microbeams.

Modified Strain Gradient Theory

The modified strain gradient elasticity theory was proposed by Lam et al. (2003)
in which contains not only classical strain tensor but also second-order deformation
gradients (first-order strain gradients) such as dilatation gradient vector and devia-
toric stretch gradient and symmetric rotation gradient tensors. The strain energy U
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on the basis of the modified strain gradient elasticity theory can be written by (Lam
et al. 2003; Kong et al. 2009):

U D
1

2

Z L

0

Z
A

�
�ij "ij C pi �i C �

.1/

ij k�
.1/

ij k C ms
ij �s

ij

�
dA dx (1)

"ij D
1

2

�
ui;j C uj;i

�
(2)

�i D "mm;i (3)

�
.1/

ij k D 1
3

�
"jk;i C "ki;j C "ij ;k

�
� 1

15

�
ıij ."mm;k C 2"mk;m/

C ıjk ."mm;i C 2"mi;m/ C ıki

�
"mm;j C 2"mj ;m

�� (4)

�s
ij D

1

2

�
�i;j C �j;i

�
(5)

�i D
1

2
eijkuk;j (6)

where ui, � i, "ij, � i, �
.1/

ijk and �s
ij denote the components of the displacement vector

u, the rotation vector ™, the strain tensor ©, the dilatation gradient vector ”, the
deviatoric stretch gradient tensor ˜(1), and the symmetric rotation gradient tensor
¦s, respectively. Also, ı is the symbol of Kronecker delta and eijk is the permutation
symbol.

Furthermore, the components of the classical stress tensor ¢ and the higher-order
stress tensors p, £(1), and ms defined as (Lam et al. 2003).

�ij D �"mmıij C 2	"ij (7)

pi D 2	l2
0 �i (8)

�
.1/

ijk D 2	l2
1 �

.1/

ijk (9)

ms
ij D 2	l2

2 �s
ij (10)

where l0,l1,l2 are additional material length-scale parameters related to dilatation
gradients, deviatoric stretch gradients, and rotation gradients, respectively. Further-
more, � and 	 are the Lamé constants defined as

� D
Ev

.1 C v/ .1 � 2v/
; 	 D

E

2 .1 C v/
(11)

where E is Young’s modulus and v is Poisson’s ratio.
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Trigonometric Shear DeformationMicrobeamModel

The displacement components of an initially straight beam on the basis of trigono-
metric shear deformation beam theory (see Fig. 1) can be written as (Touratier
1991).

u1.x; z; t / D u.x; t/ � z
@w.x; t/

@x
C R.z/
.x; t/

u2.x; z; t / D 0

u3.x; z; t / D w.x; t/

(12)

in which


 .x; t/ D
@w .x; t/

@x
� ' .x; t/ (13)

where u1, u2 and u3 are the x�, y� and z� components of the displacement vector,
and also u and w are the axial and transverse displacements, ' is the angle of
rotation of the cross section about y� axis of any point on the midplane of the beam,
respectively. R(z) is a function which depends on z and plays a role in determination
of the transverse shear strain and stress distribution throughout the height of the
beam. In order to satisfy no shear stress and strain condition at the upper (z D �h/2)
and lower (z D h/2) surfaces of the beam, R(z) is selected as following without need
for any shear correction factors:

R.z/ D
h

�
sin

��z

h

�
(14)

It can be noted that the displacement components for EBT and TBT will be
obtained by setting R(z) in Eq. 12 equal to (0) and (z), respectively. With the use
of Eqs. 12, 13, and 14 into Eq. 2, the nonzero strain components are obtained as

"11 D
@u

@x
� z

@2w

@x2
C R

@


@x
; "13 D

1

2
S
 (15)

L

x

z

h

b

z

y

Fig. 1 Geometry, coordinate system, and cross section of a simply supported microbeam
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where

S.z/ D cos
��z

h

�
(16)

and from Eq. 15 and Eq. 3, the components of dilatation gradient vector ” are
expressed as

�1 D @2u
@x2 � z @3w

@x3 C R
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�2 D 0;
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(17)

By inserting Eq. 15 in Eq. 4, the nonzero components of deviatoric stretch
gradient tensor ˜(1) can be obtained as
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Also, the use of Eq. 12 in Eq. 6 gives

�1 D 0; �2 D �
@w

@x
C

1

2
S
; �3 D 0 (19)

and the nonzero components of the symmetric part of the rotation gradient tensor ¦s

can be achieved by using of Eq. 19 into Eq. 5 as

�s
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�
@2w

@x2
�

1

2
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; �s
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4h2
R
 (20)

With the use of Eq. 15 in Eq. 7, the nonzero components of classical stress tensor
¢ can be written as

�11 D E�
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�
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where
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� D
.1 � v/

.1 C v/ .1 � 2v/
(22)

It is notable that Poisson’s effect is neglected by choosing � D 1 in Eq. 22 (Reddy
2011). From Eq. 8 and Eq. 15, the nonzero components of higher-order stress tensor
p are obtained as

p1 D 2	l2
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By inserting Eq. 18 in Eq. 9, the nonzero components of higher-order stress
tensor £(1) are written as
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Similarly, the nonzero components of higher-order stress tensor ms are deter-
mined by using of Eq. 20 into Eq. 10:
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With the substitution of Eqs. 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, and 25 into
Eq. 1, the first variation of strain energy of microbeam is expressed as
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where L is length of the microbeam, A is the area of cross section, I is the second
moment of area:
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The kinetic energy of the microbeam is given by
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where � is the mass density. From Eqs. 12 and 28, the first variation of the kinetic
energy can be expressed as
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where (m0, m2) are the mass inertias as.
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The first variation of the work done by external forces can be written as
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where f (x, t) and q(x, t) are the axial and transverse distributed loads, respectively.
In addition, bQi .i D 1; 2; : : : ; 7/ are the specified forces or moment of forces at the
end of the microbeam. After that, with the aid of Hamilton’s principle as

0 D
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.ıT � ıU C ıW / dt (32)



32 Size-Dependent Transverse Vibration of Microbeams 1131

and by substituting Eqs. 26, 29, and 31 into Eq. 32, integrating by parts, and setting
the coefficients ıu, ıw, and ı
 equal to zero, the governing equations of motion of
the microbeam based on SBT can be obtained as (Akgöz and Civalek 2013b).

ıu W �m0

@2u

@t2
C A

�
E

@2u

@x2
� 2	k1

@4u

@x4

	
C f D 0 (33)

ıw W � m0

@2w

@t2
C m2

�
@4w

@x2@t2
�

24

�3

@3


@x@t2

	
� k5

@4w

@x4

C k4

@3


@x3
C 2	Ik1

�
@6w

@x6
�

24

�3

@5


@x5

	
C q D 0

(34)

ı
 W
24

�3
m2

@3w

@x@t2
�

6

�2
m2

@2


@t2
� k2
 C k3

@2


@x2

� k4

@3w

@x3
�

12

�2
	Ik1

�
@4


@x4
�

4

�

@5w

@x5

	
D 0

(35)

and boundary conditions at x D 0 and x D L
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Analytical Solutions for Free Vibration Problem of Simply
SupportedMicrobeams

Here, in order to solve free vibration problem of simply supported microbeams, the
Navier solution procedure is used. The well-known geometric boundary conditions
for a simply supported end can be defined as zero deflection and nonzero slope
and/or rotation of the cross section as

w D 0;
@w

@x
¤ 0; 
 ¤ 0 (43)

In view of Eq. 43, the left sides of Eqs. 39 and 41 must vanish. Hence, the
following relations can be written by Eqs. 36, 37, 38, 39, 40, 41, 42, and 43 as
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The following expansions of generalized displacements which include undeter-
mined Fourier coefficients and certain trigonometric functions can be successfully
employed as
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whereWn and Hn are the undetermined Fourier coefficients, !n is natural frequency,
and ˛ D n�

L
. This means that Eqs. 45 and 46 must satisfy the corresponding

boundary conditions. Substituting Eqs. 45 and 46 into Eqs. 35 and 36 as the
governing equations for free vibration, the following equation is obtained as
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For a nontrivial solution, the determinant of coefficient matrix must be vanished
and the characteristic equation can be reached by providing this condition. The
eigenvalues are obtained by solving the characteristic equation. It can be noted that
the smallest root of the characteristic equation gives the first natural (fundamental)
frequency.

Numerical Results and Discussion

In this section, free vibration problem of a simply supported microbeam is analyti-
cally solved with the Navier-type solution based on trigonometric shear deformation
beam theory in conjunction with modified strain gradient theory. For illustration
purpose, the microbeam is taken to be made of epoxy with the following material
properties: Young’s modulus E D 1.44 GPa, Poisson’s ratio v D 0.38, the mass
density � D 1,220 kg/m3 and the material length-scale parameter l D 11.01 	m
(Kahrobaiyan et al. 2013). The microbeam has a rectangular cross section, and the
width-to-thickness ratio is taken to be constant as b/h D 2, while the length-to-
thickness ratio is taken several values as L/h D 5�80. All material length-scale
parameters are considered to be equal to each other as l0 D l1 D l2 D l.

As stated before, Timoshenko beam theory (TBT) needs a shear correction
factor to take into consideration the nonuniformity of transverse shear strain and
stress throughout the beam thickness. For rectangular cross-section beams, the
most commonly used shear correction factors can be defined as ks D 5/6 (used
here) and ks D (5C 5v)/(6C 5v). The classical results evaluated by TBT and other
shear deformation beam theories such as third-order (parabolic), trigonometric
(sinusoidal), hyperbolic, and exponential shear deformation beam theories are in
good agreement. However, this agreement may decrease for the results of higher-
order continuum theories, and this situation can be seen from the previous works
(Akgöz and Civalek 2013b; Şimşek and Reddy 2013a, b). Consequently, a new
modified shear correction factor

�
k�

s

�
is used for Timoshenko microbeam model

(TBT*)-based MSGT as follows (Akgöz and Civalek 2014a):

k�
s D ksk

MSGT
ac (49)

where

kMSGT
ac D 15

�
l0Cl1Cl2

3

�a.
ha

a D 3

0
@h

��
l0Cl1Cl2

3

� 1
A

0:08

� 0:45 (50)

It can be noted that k�
s will be equal to ks by setting material length-scale

parameters equal to zero in Eq. 50. In order to demonstrate the accuracy and validity
of the present analysis, some illustrative examples are comparatively given with
other beam theories.
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Table 1 Dimensionless fundamental frequencies
�
!1 D !1L2

p
m0=EI

�
l/h Beam

theory
L D 8 h L D 40 h L D 80 h

CT MSGT CT MSGT CT MSGT

0 EBT 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696
TBT 9.6094 9.6094 9.8587 9.8587 9.8669 9.8669
TBT* 9.6094 9.6094 9.8587 9.8587 9.8669 9.8669
SBT 9.6098 9.6098 9.8587 9.8587 9.8669 9.8669

0.5 EBT 9.8696 21.8020 9.8696 21.7179 9.8696 21.7153
TBT 9.6094 19.7861 9.8587 21.6223 9.8669 21.6913
TBT* 9.6094 21.2380 9.8587 21.6944 9.8669 21.7094
SBT 9.6098 21.2186 9.8587 21.6933 9.8669 21.7091

1 EBT 9.8696 40.1133 9.8696 39.9305 9.8696 39.9248
TBT 9.6094 31.3909 9.8587 39.3696 9.8669 39.7817
TBT* 9.6094 38.9701 9.8587 39.8826 9.8669 39.9128
SBT 9.6098 39.0201 9.8587 39.8843 9.8669 39.9132

*Timoshenko beam model with the new shear correction factor

Table 2 Dimensionless second natural frequencies
�
!2 D !2L2

p
m0=EI

�
l/h Beam

theory
L D 8 h L D 40 h L D 80 h

CT MSGT CT MSGT CT MSGT

0 EBT 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784
TBT 35.8237 35.8237 39.3048 39.3048 39.4348 39.4348
TBT* 35.8237 35.8237 39.3048 39.3048 39.4348 39.4348
SBT 35.8329 35.8329 39.3050 39.3050 39.4348 39.4348

0.5 EBT 39.4784 88.2502 39.4784 86.9138 39.4784 86.8718
TBT 35.8237 66.0744 39.3048 85.4193 39.4348 86.4892
TBT* 35.8237 80.2054 39.3048 86.5394 39.4348 86.7776
SBT 35.8329 80.1416 39.3050 86.5229 39.4348 86.7733

1 EBT 39.4784 162.7167 39.4784 159.8137 39.4784 159.7222
TBT 35.8237 95.8638 39.3048 151.4933 39.4348 157.4783
TBT* 35.8237 146.5687 39.3048 159.052 39.4348 159.5306
SBT 35.8329 147.5984 39.3050 159.0795 39.4348 159.5373

*Timoshenko beam model with the new shear correction factor

Dimensionless first three natural frequencies for various values of l/h and slen-
derness ratios corresponding to different beam theories are tabulated in Tables 1, 2,
and 3, respectively. It can be clearly observed from the tables that the dimensionless
natural frequencies predicted by both CT and TBT are lower than the other ones,
while those obtained by both MSGT and EBT are larger than the other ones. Also,
an increase in l/h leads to an increment in the difference between dimensionless
natural frequencies corresponding to classical and nonclassical models, and also
this difference becomes more prominent for higher modes. On the other hand,
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Table 3 Dimensionless third natural frequencies
�
!3 D !3L2

p
m0=EI

�
l/h Beam

theory
L D 8 h L D 40 h L D 80 h

CT MSGT CT MSGT CT MSGT

0 EBT 88.8264 88.8264 88.8264 88.8264 88.8264 88.8264
TBT 73.2989 73.2989 87.9565 87.9565 88.6060 88.6060
TBT* 73.2989 73.2989 87.9565 87.9565 88.6060 88.6060
SBT 73.3581 73.3581 87.9576 87.9576 88.6062 88.6062

0.5 EBT 88.8264 202.4110 88.8264 195.7139 88.8264 195.5009
TBT 73.2989 126.2815 87.9565 188.4270 88.6060 193.5834
TBT* 73.2989 167.4196 87.9565 193.8353 88.6060 195.0255
SBT 73.3581 168.1073 87.9576 193.7568 88.6062 195.0041

1 EBT 88.8264 374.4469 88.8264 359.9240 88.8264 359.4607
TBT 73.2989 186.4415 87.9565 322.3023 88.6060 348.4635
TBT* 73.2989 304.9236 87.9565 356.1056 88.6060 358.4933
SBT 73.3581 310.7247 87.9576 356.2506 88.6062 358.5275

*Timoshenko beam model with the new shear correction factor
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Fig. 2 Variations of the dimensionless natural frequency versus slenderness ratio (first mode).
(a) CT (b) MSGT

difference between the results corresponding to EBT and shear deformation beam
theories (TBT, TBT*, and SBT) is more significant for short beams. This situation
can be interpreted as the effect of shear deformation is minor for slender beams
with a large slenderness ratio. In addition, it can be clearly seen from the tables that
the natural frequencies predicted by SBT and TBT* are in good agreement, while
the divergence between the natural frequencies of SBT and TBT is considerable
especially for bigger values of l/h.

Variations of the dimensionless first three natural frequencies of the simply sup-
ported microbeam with respect to the slenderness ratio corresponding to different
beam models are depicted in Figs. 2, 3, and 4, respectively. It is observed that an
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Fig. 3 Variations of the dimensionless natural frequency versus slenderness ratio (second mode).
(a) CT (b) MSGT
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Fig. 4 Variations of the dimensionless natural frequency versus slenderness ratio (third mode).
(a) CT (b) MSGT

increase in slenderness ratio leads to a decrement on effects of shear deformation,
and differences between the dimensionless natural frequencies based on EBT, TBT,
TBT*, and SBT are diminishing for L/h � 50. Moreover, it can be concluded that
the dimensionless natural frequencies evaluated by TBT, TBT*, and SBT are nearly
equal to each other for CT, but the difference between TBT and SBT is more
considerable in the higher-order models for lower slenderness ratios and higher
modes.

Influences of h/l ratio on the first three dimensionless natural frequencies for
L D 7h are illustrated in Figs. 5, 6, and 7, respectively. These figures reveal that
natural frequencies based on MSGT are always bigger than CT. Also, it is found
that the effects of shear deformation and small size are more considerable for smaller
values of h/l and higher modes.
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Fig. 5 Effects of
thickness-to-material
length-scale parameter ratio
on the first dimensionless
natural frequency (L D 7 h)
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Fig. 6 Effects of thickness-to-material length-scale parameter ratio on the second dimensionless
natural frequency (L D 7 h)

Conclusion

In this study, a size-dependent sinusoidal shear deformation beam model in
conjunction with modified strain gradient elasticity theory (MSGT) is developed.
The model captures both the microstructural and shear deformation effects without
any shear correction factors. The governing differential equations and corresponding
boundary conditions are derived by using Hamilton’s principle. The free vibration
behavior of simply supported microbeams is investigated. Analytical solutions for
the first three natural frequencies are presented by the Navier solution technique.
The results are compared with other beam theories for the validation of the
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Fig. 7 Effects of
thickness-to-material
length-scale parameter ratio
on the third dimensionless
natural frequency (L D 7 h)
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present model. A detailed parametric study is carried out to show the influences
of thickness-to-material length-scale parameter ratio, slenderness ratio, and shear
deformation on the free vibration response of simply supported microbeams. The
obtained results can be summarized as:

• Microbeams based on MSGT are stiffer than based on the classical theory.
• The natural frequencies obtained by both MSGT and EBT are always greater

than those predicted by the other considered beam models and theories.
• The difference between the natural frequencies decreases as the thickness-to-

material length-scale parameter ratio increases.
• Effect of shear deformation becomes more considerable for both smaller slender-

ness ratios and higher modes.
• Use of modified shear correction factors is more suitable for Timoshenko

microbeam models based on higher-order continuum theories.
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Abstract

In this chapter, size-dependent axial vibration response of micro-sized rods is
investigated on the basis of modified strain gradient elasticity theory. On the
contrary to the classical rod model, the developed nonclassical micro-rod model
includes additional material length scale parameters and can capture the size
effect. If the additional material length scale parameters are equal to zero, the
current model reduces to the classical one. The equation of motion together with
initial conditions, classical and nonclassical corresponding boundary conditions,
for micro-rods is derived by implementing Hamilton’s principle. The resulting
higher-order equation is analytically solved for clamped-free and clamped-
clamped boundary conditions. Finally, some illustrative examples are presented
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to indicate the influences of the additional material length scale parameters, size
dependency, boundary conditions, and mode numbers on the natural frequencies.
It is found that size effect is more significant when the micro-rod diameter is
closer to the additional material length scale parameter. In addition, it is observed
that the difference between natural frequencies evaluated by the present and
classical models becomes more considerable for both lower values of slenderness
ratio and higher modes.

Keywords
Micro-rod · Size dependency · Axial vibration · Small-scale effect · Modified
strain gradient theory · Length scale parameter · Higher-order rod model ·
Natural frequency

Introduction

Nowadays, due to the rapid advances in technologies, micro- and nano-sized
mechanical systems like microbeams, microbars, biosensors, nanowires, atomic
force microscope, nanotubes, micro actuators, nano probes, micro- and nano-
electromechanical systems (MEMS and NEMS), and ultra-thin films have been
widely used in modern applications such as mechanical, biomedical, chemical,
and biological applications (Fu et al. 2003; Li et al. 2003; Najar et al. 2005;
Faris and Nayfeh 2007; Moser and Gijs 2007; Kahrobaiyan et al. 2011a). The
insight of the mechanical behavior characteristics of micro- and nanostructures
is very important for the optimum design of such structures. Bending, buckling,
and vibration responses of these structures can be investigated by experimental
studies and computer simulation techniques at atomistic levels. The effects of size
dependency on the deformation behaviors of the aforementioned structures have
been experimentally observed (Fleck et al. 1994; Chong and Lam 1999; Senturia
2001; Haque and Saif 2003; Lam et al. 2003; Lou et al. 2006).

Due to the difficulty and computationally expensiveness of experimentation and
simulation techniques at atomistic levels (e.g., molecular dynamic simulation),
many scientists and researchers tended the continuum mechanics modeling as an
alternative. However, the classical continuum mechanics approaches do not the
ability for interpretation and explanation of the microstructural dependency of
small-sized structures due to the lack of any additional (intrinsic) material length
scale parameters. Then, higher-order (nonclassical) continuum theories, which
include at least one additional material length scale parameter in addition to classical
ones, have been proposed to predict the microstructure-dependent behavior of these
small-scale structures.

Higher-order continuum theories include Cosserat elasticity by Cosserat and
Cosserat (1909), strain gradient elasticity of Mindlin (1964,1965), micropolar
theory (Eringen and Suhubi 1964), nonlocal elasticity (Eringen 1983), couple stress
theory by Mindlin and Tiersten (1962), Toupin (1962), and Koiter (1964), strain
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gradient theory (Fleck and Hutchinson 1993), simple gradient elasticity with surface
energy (Vardoulakis and Sulem 1995; Altan et al. 1996; Altan and Aifantis 1997),
modified couple stress (Yang et al. 2002), and modified strain gradient theories (Lam
et al. 2003). Some earlier studies based on these theories available in the literature
have been briefly given here.

Peddieson et al. (2003) formulated a nonlocal Bernoulli-Euler beam model with
nonlocal elasticity theory. Also, Reddy (2007a) investigated bending, buckling, and
free vibration analysis of nonlocal beams for different beam theories. Wang et al.
(2008) studied bending problem of micro- and nano-sized beams based on nonlocal
Timoshenko beam theory. Aydogdu (2009) investigated the small-scale effect on
longitudinal vibration of a nanorod on the basis of Eringen’s nonlocal elasticity
theory.

The classical couple stress theory has been used to investigate the bending anal-
ysis of a circular cylinder by Anthoine (2000). Tsepoura et al. (2002) investigated
static and dynamic analysis of bars based on simple gradient elasticity theory with
surface energy. Papargyri-Beskou et al. (2003a) and Lazopoulos (2012) observed
dynamic analysis of gradient elastic beams. Bending and buckling analysis of
gradient elastic beams is studied on the basis of Bernoulli-Euler beam model by
Papargyri-Beskou et al. (2003b) and Lazopoulos and Lazopoulos (2010).

Modified couple stress theory is a higher-order continuum theory that has
been elaborated by Yang et al. (2002) which contains the symmetric rotation
gradient tensor and one additional material length scale parameter in addition to
the conventional (classical) strain tensor. Park and Gao (2006) and Ma et al. (2008)
developed new size-dependent Bernoulli-Euler and Timoshenko beam models,
respectively. Kong et al. (2008) investigated free vibration analysis of the Bernoulli-
Euler microbeam model based on this theory.

The modified strain gradient elasticity theory is one of the popular higher-
order continuum theories, which was proposed by Lam et al. (2003), that includes
dilatation and deviatoric stretch gradient tensors besides the symmetric rotation
gradient and classical strain tensor and also three additional material length scale
parameters for linear elastic isotropic materials. Kong et al. (2009), Akgöz and
Civalek (2011), and Wang et al. (2010) used modified strain gradient elasticity for
static and dynamic analyses of microbeams on the basis of Bernoulli-Euler and
Timoshenko beam models, respectively. Furthermore, static torsion and torsional
free vibration analyses of microbars based on this theory were presented by
Kahrobaiyan et al. (2011b) and Narendar et al. (2012). Recently, longitudinal
vibration responses of microbars were investigated by Akgöz and Civalek (2013,
2014), Kahrobaiyan et al. (2013), and Güven (2014).

In this chapter, size-dependent axial vibration response of micro-sized rods is
investigated on the basis of modified strain gradient elasticity theory. The equation
of motion together with initial conditions, classical and nonclassical corresponding
boundary conditions, for micro-rods is derived with the aid of Hamilton’s principle.
The resulting higher-order equation is solved for two different boundary condi-
tions as clamped-free and clamped-clamped. Influences of micro-rod characteristic
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lengths, slenderness ratio, additional material length scale parameters, and mode
number on the vibrational response of the size-dependent micro-rod are investi-
gated.

Formulation for Modified Strain Gradient Theory

The strain energy U in a linear elastic isotropic material occupying volume V based
on the modified strain gradient elasticity theory can be written by Lam et al. (2003)
and Kong et al. (2009).

U D
1

2

Z
V

�
�ij "ij C pi �i C �

.1/

ijk�
.1/

ijk C ms
ij �s

ij

�
dv (1)

"ij D
1

2

�
ui;j C uj;i

�
(2)

�i D "mm;i (3)

�
.1/

ijk D
1

3

�
"jk;i C "ki;j C "ij;k

�
�

1

15

�
ıij ."mm;k C 2"mk;m/

C ıjk ."mm;i C 2"mi;m/ C ıki

�
"mm;j C 2"mj;m

�� (4)

�s
ij D

1

2

�
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�
(5)

�i D
1

2
eijkuk;j (6)

where ui, "ij, � i, �
.1/

ijk , �s
ij , and � i are the components of the displacement vector, the

strain tensor, the dilatation gradient vector, the deviatoric stretch gradient tensor, the
symmetric rotation gradient tensor, and the rotation vector, respectively. Also ıij is
the Kronecker delta, and eijk is the permutation symbol. The stress measures � ij, pi,

�
.1/

ijk , and ms
ij are the components of classical and higher-order stresses defined as

Lam et al. (2003).

�ij D �ıij "mm C 2	"ij (7)

pi D 2	l2
0 �i (8)
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Fig. 1 Geometry and coordinate system of a straight micro-rod
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2 �s
ij (10)

where � and 	 are the well-known Lamé constants and l0, l1, l2 are additional
material length scale parameters which represent the size dependency and related to
dilatation gradients, deviatoric stretch gradients, and rotation gradients, respectively.

Microstructure-Dependent RodModel

It is considered that the case of axial vibration of a straight thin micro-rod (see
Fig. 1). Due to axial vibrations take place in x� direction, the deformation of the
cross section in y� and z� directions is assumed to be negligible by a simple theory
for axial vibration of thin rods. The components of displacement vector can be
expressed as Rao (2007).

u1 D u .x; t/ ; u2 D 0; u3 D 0 (11)

where u1, u2, and u3 are the components of displacement vector in x�, y�, and z�
directions, respectively.

In view of Eqs. (2) and (11), the non-zero strain component of the micro-rod is

"xx D
@u

@x
(12)

Use of Eqs. (12) into (3), the non-zero component of dilatation gradient vector is
obtained as

�x D
@2u

@x2
(13)



1146 Ö. Civalek et. al

From Eqs. (2) and (4), non-zero components of deviatoric stretch gradient tensor
are achieved as

�.1/
xxx D

2

5

@2u

@x2
; �.1/

xyy D �.1/
xzz D �.1/

yxy D �.1/
yyx D �.1/

zxz D �.1/
zzx D �

1

5

@2u

@x2
(14)

Furthermore, all components of rotation vector and so symmetric rotation
gradient tensor are equal to zero as

�i D 0; .i D x; y; z/ (15)

�s
ij D 0; .i; j D x; y; z/ (16)

The non-zero stress � ij can be obtained by neglecting Poisson’s effect in Eq. (7)
as

�xx D E
@u

@x
(17)

where E is the elastic modulus. By inserting Eqs. (13) into (8) and Eqs. (14) into
(9), the non-zero components of higher-order stresses pi and �

.1/

ijk can be expressed
as

px D 2	l2
0

@2u

@x2
(18)

�.1/
xxx D

4

5
	l2

1

@2u

@x2
; � .1/

xyy D �.1/
xzz D �.1/

yxy D �.1/
yyx D �.1/

zxz D �.1/
zzx D �

2

5
	l2

1

@2u

@x2
; (19)

Substituting above equations into Eq. (1), the strain energy U can be rewritten as

U D
1

2

Z L

0

�
EA

�
u0
�2

C

	
2	Al2

0 C
4

5
	Al2

1


 �
u00
�2�

dx (20)

where A is the cross-sectional area of the micro-rod and

u0 D
@u

@x
; u00 D

@2u

@x2
(21)

The first variation of strain energy U in Eq. (20) on the time interval [t0, t1] can
be calculated as following expression
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ıU D

Z t1

t0

Z L

0

˚
Bu.4/ � EAu00

�
ıudxdt C

Z t1

t0

n ��
EAu0 � Bu000

�
ıu
�L

0

C
�
Bu00ıu0

�L
0

o
dt

(22)

where

u000 D
@3u

@x3
; u.4/ D

@4u

@x4
; B D 2	A

	
l2
0 C

2

5
l2
1



(23)

On the other hand, the first variation of the work done by external force q ,
axial force N, and higher-order axial force Nh on the time interval [t0, t1] takes the
following form

ıW D

Z t1

t0

Z L

0

qıudxdt C

Z t1

t0

n
ŒN ıu
L0 C

�
N hıu0

�L
0

o
dt (24)

Also, the first variation of kinetic energy K of the micro-rod on the time interval
[t0, t1] reads as

ıK D �

Z t1

t0

Z L

0

mRuıudxdt C

Z L

0

ŒmPuıu
t1t0dx (25)

where m is the mass per unit length and

Pu D
@u

@t
; Ru D

@2u

@t2
(26)

The following relation is written by employing Hamilton’s principle with Eqs.
(22, 24, and 25)

ı

�Z t1

t0

ŒK � .U � W /
 dt

�
D 0 (27)

Z t1

t0

Z L

0

�
EAu00 � Bu.4/ � mRu C q

�
ıudxdt C

Z t1

t0

�˚
N �

�
EAu0 � Bu000

��
ıu
�L

0
dt

C

Z t1

t0

�˚
N h � Bu00

�
ıu0
�L

0
dt C

Z L

0

ŒmPuıu
t1t0dx D 0

(28)

According to the fundamental lemma of calculus of variation (Reddy 2007b), the
equation of motion for the micro-rod reads as

EAu00 � Bu.4/ C q D mRu (29)
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Also, initial conditions and boundary conditions satisfy the following equations,
respectively, as

Pu .x; t1/ ıu .x; t1/ � Pu .x; t0/ ıu .x; t0/ D 0 (30)

h
N .L; t/ �

�
EAu0 .L; t/ � Bu000

�
L; t

��i
ıu .L; t/

�
h
N .0; t/ �

�
EAu0 .0; t/ � Bu000

�
0; t
��i

ıu .0; t/ D 0

(31)

h
N h .L; t/ � Bu00

�
L; t

�i
ıu0 .L; t/ �

h
N h .0; t/ � Bu00

�
0; t
�i

ıu0 .0; t/ D 0

(32)

Solution of Axial Vibration Problem

u can be expressed as the following form by employing separation of variables
method

u .x; t/ D U .x/ei!t (33)

By substituting above equation into Eq. (29) in the absence of q yields

B
d 4U

dx4
� EA

d 2U

dx2
� !2mU D 0 (34)

Analytical solution of Eq. (34) can be obtained as follows

U .x/ D D1 sin˛x C D2 cos˛x C D3 sinhˇx C D4 coshˇx (35)

where

˛ D

 
�EA C

p
.EA/2 C 4Bm!2

2B

!1=2

; ˇ D

 
EA C

p
.EA/2 C 4Bm!2

2B

!1=2

(36)

and Di (i D 1, 2, 3, 4) are constants which can be determined by corresponding
boundary conditions. For a micro-rod that both ends are clamped, classical and
nonclassical boundary conditions are

U .0/ D 0 and U .L/ D 0 (37)

BU 00.0/ D 0 and BU 00.L/ D 0 (38)
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By using of above boundary conditions in Eq. (35), solution can be written in a
matrix form as

2
664

0 1 0 1

sin˛L cos˛L sinhˇL coshˇL

0 �˛2 0 ˇ2

� ˛2 sin˛L �˛2 cos˛L ˇ2 sinhˇL ˇ2 coshˇL

3
775

2
664

D1

D2

D3

D4

3
775 D 0 (39)

For a nontrivial solution, the determinant of coefficient matrix of above equation
must be vanished. This leads to the following condition as

sin˛L D 0 namely ˛ D
n�

L
; .n D 1; 2; : : : / (40)

By inserting Eqs. (40) in (36), the natural longitudinal frequencies of a clamped-
clamped micro-rod are obtained as

!n D
n�

L

s
1

m

	
EA C B

n2�2

L2



(41)

For a clamped-free micro-rod, classical and nonclassical boundary conditions are

U .0/ D 0 and EAU 0.L/ � BU 000.L/ D 0 (42)

BU 00.0/ D 0 and U 0.L/ D 0 (43)

By using of above boundary conditions in Eq. (35), solution can be given in a
matrix form as

Table 1 Comparison of dimensionless natural frequencies
�
$ D !L

q
�

E

�
of clamped-free

micro-rod for the first three modes with various values of l/D

l/D Mode 1 Mode
2

Mode 3

CT MSGT CT MSGT CT MSGT

0 1.5708 1.5708 4.7124 4.7124 7.8540 7.8540
0.3 1.5708 1.5712 4.7124 4.7243 7.8540 7.9091
0.6 1.5708 1.5726 4.7124 4.7599 7.8540 8.0721
0.9 1.5708 1.5748 4.7124 4.8187 7.8540 8.3368
1.2 1.5708 1.5779 4.7124 4.8998 7.8540 8.6938
1.5 1.5708 1.5818 4.7124 5.0021 7.8540 9.1323
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Table 2 Comparison of dimensionless natural frequencies
�
$ D !L

q
�

E

�
of clamped-clamped

micro-rod for the first three modes with various values of l/D

l/D Mode 1 Mode
2

Mode 3

CT MSGT CT MSGT CT MSGT

0 3.1416 3.1416 6.2832 6.2832 9.4248 9.4248
0.3 3.1416 3.1451 6.2832 6.3114 9.4248 9.5198
0.6 3.1416 3.1557 6.2832 6.3954 9.4248 9.7995
0.9 3.1416 3.1733 6.2832 6.5330 9.4248 10.2487
1.2 3.1416 3.1977 6.2832 6.7209 9.4248 10.8463
1.5 3.1416 3.2288 6.2832 6.9550 9.4248 11.5694

Fig. 2 Variations of the
frequency ratio with respect
to D/l for the first three
modes. (a) Clamped-free (b)
clamped-clamped
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2
664

0 1 0 1

˛�1 cos˛L �˛�1 sin˛L ˇ�2 coshˇL ˇ�2 sinhˇL

0 �˛2 0 ˇ2

˛ cos˛L �˛ sin˛L ˇ coshˇL ˇ sinhˇL

3
775

2
664

D1

D2

D3

D4

3
775 D 0 (44)
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Fig. 3 Variations of the first
three frequency ratios versus
l/D. (a) Clamped-free (b)
clamped-clamped
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where

�1 D
�
EA C ˛2B

�
; �2 D

�
EA � ˇ2B

�
(45)

Similarly, the determinant of coefficient matrix of Eq. (44) must be vanished for
a nontrivial solution. This leads to the following condition as

cos˛L D 0 namely ˛ D
.2n � 1/ �

2L
; .n D 1; 2; : : : / (46)

By inserting Eqs. (46) in (36), the natural longitudinal frequencies of a clamped-
free micro-rod are achieved as

!n D
.2n � 1/ �

2L

vuut 1

m

 
EA C B

.2n � 1/2�2

4L2

!
(47)
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Fig. 4 Effect of slenderness
ratio of the micro-rod on the
frequency ratios for the first
three modes (l D D). (a)
Clamped-free (b)
clamped-clamped
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It is evident that if the additional material length scale parameters l0 and l1 are
equal to zero, the natural longitudinal frequencies !n in Eqs. (41) and (47) will be
transformed those in classical theory.

Numerical Results and Discussion

In this section, some illustrative examples for clamped-free and clamped-clamped
micro-sized rods are presented. In the figures, the natural longitudinal frequencies
obtained by MSGT and CT represented by !s and !c, respectively, and unless
otherwise stated, L D 20D, l0 D l1 D l are considered, and Poisson’s ratio is chosen
as 0.38.

A comparison of nondimensional first three natural frequencies of the micro-rod
corresponding to various values of the additional material length scale parameters-
to-diameter ratio is tabulated in Tables 1 and 2 for clamped-free and clamped-
clamped boundary conditions, respectively. It is seen from the tables that the results
of classical and newly developed model are identical for l/D D 0. It can be said
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that the nondimensional natural frequencies obtained by the new model increase
gradually for bigger values of l/D, while those obtained by a classical model are not
affected by the variation in l/D. It is also notable that differences between the results
of the classical model and the current model are more prominent for larger values
of l/D and higher modes.

Variations of the frequency ratios (!c /!s) with respect to D/l for the first three
modes are illustrated in the Fig. 2 for clamped-free and clamped-clamped boundary
conditions, respectively. It is evident that an increase in the values of D/l leads to
an increment in the frequency ratios, and the frequency ratios are nearly equal to
one for D/l � 4. Also, higher values of !c /!s are obtained for lower modes. It can
be concluded that the divergence between classical and size-dependent frequencies
becomes more significant for higher modes.

Variations of the first three frequency ratios are plotted versus l/D in Fig. 3 for
clamped-free and clamped-clamped micro-rods, respectively. When the values of
l/D increases, the frequency ratios for first, second, and third modes decrease. Also,
it is noted that the frequency ratios are equal one for l/D D 0.

Influences of slenderness ratio on the frequency ratios are depicted for the first
three modes in Fig. 4. It can be interpreted that the difference between natural
frequencies predicted by the newly developed and classical models becomes more
prominent for both lower slenderness ratios and higher modes. In addition, it can be
said that the size dependency of the micro-rod diminishes due to an increase in the
slenderness ratio.

It can be seen clearly from the present results that additional material length
scale parameters are more important both clamped-free and clamped-clamped cases
for smaller sizes and higher modes. Also, the values of the frequency ratios for
clamped-clamped boundary condition are smaller than those of the other case.

Conclusion

A higher-order continuum theory is used for modeling of longitudinal vibration
problem of micro-sized rod. Some parametric results have been presented in order to
show the effect of additional length scale parameters. The results of modified strain
gradient theory (MSGT) compared with those obtained by classical theory (CT). It
has been seen that the frequency ratios decrease when l/D increases. It is also shown
that the length scale parameters have some notable influences on axial vibration
of the micro-sized rod. It is also possible to say that the effect of the length scale
parameters is more significant for slender rods. An increase in slenderness ratio
of the micro-rod leads to a decrease in the difference between natural frequencies
predicting by the newly developed and classical models. It is also observed that
additional material length scale parameters play an important role for smaller size
of the micro-rod and higher modes. It is also notable that when additional material
length scale parameters are zero, the present model directly becomes the classical
model.
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Abstract

The peridynamic theory is a nonlocal extension of continuum mechanics that
is compatible with the physical nature of cracks as discontinuities. It avoids
the need to evaluate the partial derivatives of the deformation with respect to
the spatial coordinates, instead using an integro-differential equation for the
linear momentum balance. This chapter summarizes the peridynamic theory,
emphasizing the continuum mechanical and thermodynamic aspects. Formula-
tion of material models is discussed, including details on the statement of models
using mathematical objects called peridynamic states that are nonlocal and
nonlinear generalizations of second-order tensors. Damage evolution is treated
within a nonlocal thermodynamic framework making use of the dependence
of free energy on damage. Continuous, stable growth of damage can suddenly
become unstable, leading to dynamic fracture. Peridynamics treats fracture and
long-range forces on the same mathematical basis as continuous deformation
and contact forces, extending the applicability of continuum mechanics to new
classes of problems.

Keywords
Peridynamic · Nonlocal · Damage · Elasticity · Plasticity · Eulerian

Purpose of the Peridynamic Theory

In spite of its many successes, the local theory of continuum mechanics has some
limitations that have hindered its applicability to many important problems:

• Its equations cannot be applied directly on a growing discontinuity in the
deformation, making it impossible to model fracture using these equations alone.

• It does not include long-range forces such as electrostatic and van der Waals
forces that are important in many technologies.

• It cannot be applied to the mechanics of discrete particles, creating a fundamental
divide between molecular dynamics and continuum mechanics.

The peridynamic theory addresses these limitations in the local theory. Its
field equations are integro-differential equations that do not require a smooth
deformation, allowing fracture to be modeled on the same basis as continuous
deformation. It treats all internal forces as long range, allowing interactions such as
electrostatic forces to be included in a material description in a natural way. Discrete
particles can be treated as a type of peridynamic material, allowing continuous
media and systems of particles to be included within the same model, following
the same basic equations.

The general idea is that the peridynamic theory replaces the local equilibrium
equation with a nonlocal expression as follows:
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r� � C b D 0 !

Z
Hx

f .q; x/ dVq C b D 0; (1)

where � is the stress field, b is the body force density field, and f is a vector field
representing the force density (per unit volume squared) that material point q exerts
on x. Hx is a neighborhood of x to be described below.

The main purposes of this chapter are as follows:

• To explain the origin of the second of (Eq. 1)
• To show how the deformation determines f through the material model
• To describe material models within the framework of nonlocal thermodynamics
• To demonstrate that damage and fracture fit naturally into this framework
• To describe how some aspects of the local theory can be obtained as a limiting

case of the peridynamic equations

Basic Concepts

In a peridynamic body B, each material point x interacts directly with its neighbors
q 2 B located within a cutoff distance ı of x in the reference configuration. Let q
denote such a neighbor and define the bond � D q � x. The family of x, denoted by
Hx, consists of all the bonds with length no greater than ı:

Hx D fq � x W 0 < jq � xj � ı;q 2 Bg :

The cutoff distance ı is called the horizon and is assumed for purposes of this
discussion to be independent of x (Fig. 1).

Let y(x) denote the deformation. Suppose there is a strain-energy density field
W(x), and that its value at x depends on the collective deformation of Hx. This
means that W(x) depends not on @y/@x (which may not exist if a crack is present)
but on y(q) for all the material points within the horizon of x.

To express the dependence of W on the collective deformation of Hx, it is
convenient to use mathematical objects called states. A state is simply a mapping
from Hx to some other quantity, which can be a scalar, a vector, or a tensor. By
convention, the bond that the state operates on is written in angle brackets, A hŸi.
State-valued fields depend on position and possibly time, denoted by

A Œx; t � hŸi :

The fundamental kinematical quantity for purposes of material modeling is the
deformation state Y, defined by:

Y Œx� hq � xi D y .q/ � y .x/ 8q 2 Hx; 8x 2 B

Geometrically, the deformation state maps each bond to its image under the
deformation.
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Bond
= −

ℋ

Fig. 1 Bond and family

Returning to our strain-energy density field W(x), we can now represent its
dependence on the collective deformation of Hx. We write this function in the form:

W .x/ D bW .Y Œx�/ 8x 2 B

where Ŵ (Y) is the strain-energy density function for the material. The dependence
of Ŵ on Y contains all the material-dependent characteristics of the model.
Examples of such a material model are given by:

• Isotropic bond-based material:

bW .Y/ D
1

2

Z
Hx

C .j�j/ .jY h�i j � j�j/2dV� ;

where C is a scalar-valued function of bond length.

• A possible model for a fluid (one of many, see section “Effectively Eulerian
Material Models”):

bW .Y/ D
1

2

�Z
Hx

C .j�j/ .jY h�i j � j�j/ dV�

�2
:
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Properties of States

Vector-valued states are similar to second-order tensors in that they both map vectors
onto vectors. However, states can be nonlinear and even discontinuous mappings. It
is useful to define the dot product of two vector-valued states A and B by:

A � B D

Z
Hx

A h�i �B h�i dV� (2)

and of two scalar-valued states a and b by:

a � b D

Z
Hx

a h�i b h�i dV� :

The unit state 1 and zero state 0 are defined by:

1 h�i D 1; 0 h�i D 0 8�:

The identity state leaves bonds unchanged:

X h�i D � 8�:

The norm of a state A is defined by:

kAk D
p
A � A or kak D

p
a � a:

The composition of two states A and B is a state defined by:

.A ı B/ h�i D A hB h�ii I

The “ı” symbol distinguishes this operation from the point product, to be defined
below. If R is a second-order tensor, it may similarly be combined with a state A; in
this case, a special symbol is not necessary:

.AR/ h�i D A hR�i ; .RA/ h�i D R .A h�i/ :

The point product of two states, at least one of which is scalar-valued, is
defined by:

.aA/ h�i D .Aa/ h�i D a h�iA h�i ;

.ab/ h�i D .ba/ h�i D a h�i b h�i :
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Double states operate on two bonds rather than just one and are denoted by
K h�; �i, where � and � are bonds. Double states are usually tensor-valued. An
example is the dyadic product double state defined by:

.A ? B/ h�; �i D A h�i ˝ B h�i :

The dot product of a tensor-valued double state K with a vector-valued state A is
the vector-valued state given by:

.K � A/ h�i D

Z
Hx

K h�;�iA h�i dV�; .A � K/ h�i D

Z
Hx

A h�iK h�; �i dV�:

It is necessary to define a notion of differentiation of functions of states.
Let ‰ .A/ be a scalar-valued function of a vector-valued state. Consider a small
increment �A. Suppose there is a vector-valued state denoted ‰A .A/ such that for
any �A,

‰ .A C�A/ �‰ .A/ D ‰A .A/ ��A C o .k�Ak/ : (3)

Then ‰A .A/ is called the Fréchet derivative of ‰ at A. The Fréchet derivative
of a function whose value is a vector-valued state is a double state.

Fréchet derivatives obey a form of the chain rule. For example, if B is a state-
valued function of the state A,

‰A .B .A// D ‰B � BA;

or

‰A h�i D

Z
Hx

‰B h�i �BA h�; �i dV�:

Note that BA is a tensor-valued double state. More details about the use of states
can be found in Silling et al. (2007). The symmetries of double states play an
interesting role in the linearized peridynamic theory, which is beyond the scope
of the present chapter (Silling 2010).

Balance of Momentum

Using the nonlocal concept of strain energy described in section “Basic Concepts,”
expressions for balance of linear momentum will now be derived. Assume that B
is bounded, and consider a time-independent deformation y(x) under external body
force density field b(x). Define the total potential energy of the body by:

ˆy D

Z
B
.W .x/ � b .x/ � y .x// dVx: (4)
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Let �y be a small increment in the deformation and assume that the Fréchet
derivative bWY .Y/ exists for all Y. Define

T Œx� D bW Y .Y Œx�/ :

In the following, it is convenient to adopt the convention that states produce the
value 0 for bonds longer than ı. This permits us to replace Hx with B as the region
of integration in some of the expressions below. From Eqs. 2, 3, and 4,

�ˆy D

Z
B
.T Œx� ��Y Œx� � b .x/ ��y .x// dVx

D

Z
B

�Z
B

fT Œx� hq � xi � .�y .q/ ��y .x//g dVq � b .x/ ��y .x/
�

dVx

D

Z
B

�Z
B

fT Œq� hx � qi ��y .x/ � T Œx� hq � xi ��y .x/g dVq � b .x/ � y .x/
�

dVx

D

Z
B

�Z
B

n
T Œq� hx�qi � T Œx�

D
q�x

Eo
dVq � b .x/

�
��y .x/ dVx;

(5)

where an interchange of dummy variables of integration x $ q is used in the third
line. Stationary potential energy requires �ˆy D 0 for all �y and hence Eq. 5 can
be localized to yield:

Z
Hx

fT Œx� hq � xi � T Œq� hx � qig dVq C b .x/ D 0 8x 2 B: (6)

Equation 6 is the equilibrium equation in peridynamics. It is frequently written
in the more suggestive form:

Z
Hx

f .q; x/ dVq C b .x/ D 0 8x 2 B (7)

where f (q, x) is the pairwise bond force density field, given by:

f .q; x/ D T Œx� hq � xi � T Œq� hx � qi 8x;q 2 B:

Observe that f(q, x) is comprised of two terms arising from the material models
at x and at q.

The pairwise bond force density field obeys the antisymmetry condition:

f .x;q/ D �f .q; x/ 8x;q 2 B:

Mechanically, the vector f(q, x) can be thought of the force density (force per
unit volume squared) that q exerts on x. However, it is best not to take this intuitive
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picture too literally, because there is not necessarily a direct physical interaction
between the two points.

By d’Alembert’s rule, the time-dependent equation of motion is found from
Eq. 7 to be:

� .x/ Ry .x; t / D

Z
Hx

f .q; x; t / dVq C b .x; t / 8x 2 B; t � 0 (8)

where � is the mass density field.
A more axiomatic and general derivation of the linear momentum balance in

peridynamics, which does not assume the existence of a strain-energy density field,
can be found in Silling and Lehoucq (2010). Also, a derivation from statistical
mechanics is available in Lehoucq and Sears (2011).

Energy Balance and Thermodynamics

The laws of thermodynamics can be written in a form compatible with the nonlocal
nature of the peridynamic theory. The first law of thermodynamics takes the
following form:

P" .x; t / D T Œx; t � � PY Œx; t �C h .x; t /C s .x; t / 8x 2 B; t � 0;

where " is the internal energy density (per unit volume), h is the rate of heat transport
to x, and s is the energy source rate. More simply,

P" D T � PY C hC s: (9)

To provide an intuitive picture of this expression, recall that by Eq. 2,

T �
:

Y D

Z
Hx

T h�i �
:

Y h�i dV� :

The energy balance (9) therefore sums up the rate of work done by the bond
forces acting against the rate of extension of the individual bonds. The key point
is that only the force state at x, that is, T Œx; t �, contributes to the energy change
at x. The force state T Œq; t � does not, even though it appears in the momentum
balance (6). This partitioning of the pairwise bond force into energy contributions
at x and q is the unique feature of the peridynamic version of thermodynamics that
causes the internal energy density to be additive, provided that h is conserved. This
fact apparently resolves a long-standing question about whether it is even possible
to define a nonlocal internal energy density that is additive (Gurtin and Williams
1971); see (Silling and Lehoucq 2010) for a more complete discussion.

The energy balance (9) applies regardless of how the heat transport h is specified.
This could be supplied by the Fourier heat conduction expression or by a nonlocal
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diffusion law such as:

h .x; t / D

Z
Hx

h
H Œx; t � hq � xi �HŒq; t � hx � qi

i
dVq

whereH is a scalar-valued state. The most intuitive form of such anH models heat
diffusion along bonds as though they are conducting wires that are insulated from
each other (Bobaru and Duangpanya 2010):

H Œx; t � hq � xi D K Œx� hq � xi .� .q; t / � � .x; t // (10)

where � is the temperature field and K is the bond conductivity. The heat flow
expression (10) is useful in modeling systems with inherently nonlocal diffusion
mechanisms such as radiative heat transport, as well as in treating discontinuities
and singularities in the temperature field. A model for heat transport that is more
general than (Eq. 10) could have the form:

H Œx; t � D bH .‚ Œx; t �/ ; ‚ Œx; t � hq � xi D � .q; t / � � .x; t / : (11)

This representation could model systems in which the heat flow in each bond can
depend not only on the temperature difference between its own endpoints but also
on the temperature difference in other bonds in the family.

The local form of second law of thermodynamics as implemented in peridynam-
ics has the following form:

� P� � hC s (12)

where � is the entropy density field (per unit volume) in the reference configuration.
A restriction on the admissible forms of bH arises from the second law, as discussed
in section “Restriction on the Heat Transport Model.”

Material Models

A peridynamic material model bT determines the force state at every material point
x and time t. For most materials, the force state depends on the deformation state
Y Œx; t � and possibly other variables as well. If Y is the only quantity that the material
model depends on, we write:

T Œx; t � D bT .Y Œx; t �/ :
If the body is heterogeneous, that is, if the material model depends explicitly on

position, we write:

T Œx; t � D bT .Y Œx; t � ; x/ :
The material model can also depend on the rate of deformation,

:

Y, and other physically relevant quantities such as temperature (section
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“Thermodynamic Form of A Material Model”), damage (section “Damage as a
Thermodynamic Variable”), or plastic deformation (section “Plasticity”).

Material models are required to satisfy certain general rules. The requirement of
nonpolarity is written as:

Z
Hx

bT .Y/ h�i � Y h�i dV� D 0 8Y: (13)

Nonpolarity guarantees that global balance of angular momentum holds, that
is, the material model does not nonphysically create angular momentum. It is
similar to the required symmetry of the Cauchy stress tensor in the local theory.
Nonpolarity is not a requirement in the micropolar versions of peridynamics that
have been proposed (Gerstle et al. 2007) or in a peridynamic shell theory that
includes rotational degrees of freedom (Chowdhury et al. 2016).

In the absence of external fields that provide a special physical direction that
affects material response, a peridynamic material model is required to satisfy
objectivity. This is a requirement that if the family is deformed and then rigidly
rotated, then the force state undergoes the same rigid rotation. This condition is
written as follows:

bT .QY/ D QbT .Y/ 8Q; 8Y

where Q is any proper orthogonal tensor. Unlike objectivity, isotropy is not a general
requirement but is appropriate for modeling materials that have no internal special
direction (such as embedded unidirectional reinforcement fibers). Isotropy means
that if the body is first rigidly rotated, then deformed, the force state is the same as
if there were no rotation:

bT .YQ/ D bT .Y/ 8Q; 8Y

where Q is any proper orthogonal tensor.
If there is a strain-energy function bW Y .Y/ such that:

bT .Y/ D bW Y .Y/ 8Y;

then the material is elastic. An elastic material is objective if and only ifbW .QY/ D bW .Y/ 8Q; 8Y: An elastic material is isotropic if and only if:

bW .YQ/ D bW .Y/ 8Q; 8Y:

A material that is elastic and objective is necessarily nonpolar (Silling 2010).
This property is a convenience to developers of material models, because it is often
much easier to prove objectivity of bW than to prove nonpolarity directly from
Eq. 13.
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Peridynamic material models fall into the following categories:

• Bond-based: Each bond has a force response that depends only on its own
deformation and damage, independent of all other bonds in the family. For a
bond-based material model,

T Œx� hq � xi Dbt .Y Œx� hq � xi ;q; x/ :

Note that the functionbt and its arguments are all vectors rather than vector-valued
states. For a homogeneous body, the equilibrium equation for a bond-based material
is often written as:

Z
Hx

f .u .q/ � u .x/ ;q � x/ dVq C b .x/ D 0;

with f rather thanbT as the material model. An example is given by:

f .�; �/ D C h�i .j� C �j � j�j/M h�i ; M h�i D
Y h�i

j Y h�i j

where C is a scalar-valued state. In this material model, each bond acts like a linear
spring.

• State based: Each bond has a force response that can depend on the deformation
and damage in all the bonds in the family. Among state-based material models,
there are two classes: ordinary, in which the bond forces are always parallel to
the deformed bond direction M h�i, and all others, which are called non-ordinary.
Ordinary materials have the advantage of automatically being nonpolar.

Thermodynamic Form of aMaterial Model

This section describes a thermodynamic formulation of peridynamic material
models. Material response that can be defined in terms of static variables (without
rates, gradients, and loading history) can often be written in terms of a free-energy
function. The advantage of this way of characterizing material response is that
the resulting values for the force state, temperature, entropy, damage, coefficient
of thermal expansion, and heat capacity are always consistent. It also permits us
to incorporate restrictions on the material model derived from the second law of
thermodynamics. Additional terms such as rate dependence can be added to the
force state obtained from the thermodynamic form.

Define the free-energy density at a material point x and time t by:

 D " � �� (14)
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where, as before, ", � , and � are the internal energy density, temperature, and entropy
density, respectively. Taking the time derivative of Eq. 14 and applying the second
law expression, Eq. 12 leads to:

P" � P�� � P � 0:

Combining this with the first law expression (9) yields:

T �
:

Y C hC s � P�� � P � 0: (15)

Suppose the material model is expressed in terms of the dependence of free-
energy density on both the deformation state and temperature, thus  .Y; �/. By the
chain rule,

P D  � P� C  Y �
:

Y: (16)

In this expression,  � is a partial derivative and  Y is a Fréchet derivative, and
therefore, its value is a state. Combining Eq. 15 with Eq. 16 and regrouping terms
yields:

�
T �  Y

�
�

:

Y C hC s � .�C  �/ P� � 0: (17)

Following the reasoning of Coleman and Noll (1963; Gurtin et al. 2010), in
principle, we can contrive an experiment in which h D s D 0 and the quantities
:

Y and P� are prescribed independently of each other.

Suppose that in such a thought experiment P� D 0 but
:

Y is varied, and vice versa.
Enforcing the inequality (17) then leads to the conclusions

T D  Y; � D � � : (18)

The first of these provides the force state in the thermodynamic form of a rate-
independent material model. Rate dependence can be including by assuming the

dependence  
�
Y; PY; � ; P�

�
, leading to an additional term in Eq. 17:

�
T �  Y

�
�

:

Y C hC s � .�C  �/ P� C  P�
R� �  :

Y �
::

Y � 0:

From this, using the same reasoning as before, one concludes that  P� D  :
Y D 0,

that is, the free energy density cannot depend explicitly on P� or
:

Y. However, without
loss of generality, rate effects can be incorporated by partitioning the force state
response into equilibrium and rate-dependent parts:
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bT �Y; :Y; �� D Te .Y; �/C Td
�
Y;

:

Y; �
�
; Td .Y; 0; �/ D 0:

From this assumption, it follows by a similar Coleman-Noll type of argument
(Fried 2010) that

Te D  Y; Td �
:

Y � 0: (19)

The second of Eq. 19 is a dissipation inequality. It implies that

Td h�i �
:

Y h�i � 0; 8� 2 Hx:

Work done by both Te and Td contribute to the internal energy density according
to the first law (9), in general changing the temperature. These temperature changes
affect  indirectly, even though  :

Y D 0.
Thermal expansion arises from the coupling between Y and � in the form of  .

For example, for an elastic material with strain-energy density function bW , a model
with thermal expansion can be defined by:

 .Y; �/ D
bW ..1 � ˛��/Y/

1 � ˛��
; �� WD � � �0

where ˛ is a linear coefficient of thermal expansion. Then by the chain rule,

T D  Y D bW Y ..1 � ˛��/Y/ � bW Y .Y/ � ˛��K � X

where the approximation holds if j ˛�� j	 1 and j Y h�i � � j	j � j for all �. K
is the micromodulus double state, defined by:

K D bW YY:

(See Silling (2010) for details on the properties of K and its role in the linearized
theory.)

Restriction on the Heat Transport Model

Recall the local form of the second law of thermodynamics,

� P� � hC s: (20)

All of us are familiar with the restriction in the local theory that heat cannot
flow from cold to hot, which is a consequence of the second law. It is interesting to
investigate the analogous restriction in peridynamics.
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To do this, consider a bounded, nondeforming, thermodynamically isolated body.
Assume that the material model is as described in the section “Thermodynamic
Form of a Material Model,” in which the free-energy density has the dependence
 .Y; �/. As a consequence of the second of Eq. 18, since PY D 0, it follows that �
can depend only on � . This implies that equality holds in Eq. 20, that is,

� P� D h: (21)

(This is not a result of reversibility, which is not assumed here.) Now compute
the total entropy change in the body. From Eqs. 11 and 21 (dropping t from the
notation),

Z
B

P� .x/ dVx D

Z
B

h .x/
� .x/

dVx

D

Z
B

Z
B

H Œx� hq � xi �H Œq� hx � qi

� .x/
dVqdVx

D

Z
B

Z
B

�
1

� .x/
�

1

� .q/

�
H Œx� hq � xi dVqdVx

D �

Z
B
ˇ Œx� �H Œx� dVx

(22)

where ˇ is the scalar-valued state defined by:

ˇ Œx� hq � xi D
1

� .q/
�

1

� .x/
:

Suppose that the heat transport model bH obeys

ˇ � bH .‚/ � 0 8‚; (23)

or equivalently Z
Hx

ˇ h�i bH f�i dVx � 0 8‚:

Working backwards through the steps in Eq. 22, evidently Eq. 23 implies that

Z
B

P� .x/ dVx � 0;

which is the global form of the second law for an isolated body. Note that the
stronger restriction

ˇ h�i bH h�i � 0 8�

is sufficient but not necessary for Eq. 23 to hold.
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The inequality (23) is a restriction on the constitutive model for heat transportbH ; it is the peridynamic form of the rule that “heat cannot flow from cold to hot.”
Details on peridynamic modeling of heat transport can be found in Bobaru and
Duangpanya (2010), Bobaru and Duangpanya (2012), and Oterkus et al. (2014b).
A fully coupled thermomechanical treatment is discussed in Oterkus et al. (2014a).
The relation of the restriction (Eq. 23) to the Clausius-Duhem inequality is discussed
in section “Convergence of Peridynamics to the Local Theory” below.

Damage as a Thermodynamic Variable

In the previous section, it was assumed that the material model is stated in terms of
the free-energy density function given by:

 .Y; �/ :

An important characteristic of the response of real materials is that they fracture
and fail. To help model this aspect of material response, it is assumed that there
is a scalar-valued state field called the damage state, denoted by �, that has the
distinguishing feature of monotonicity over time:

P� h�i � 0 8� 2 Hx: (24)

By convention, it is usually assumed that 0� � h�i �1 for all bonds �, with
� h�i D 0 representing an undamaged bond. By assuming a material model of the
form:

 
�
Y; � ; �

�
(25)

and working through the free-energy inequality discussed previously, one concludes
(Silling and Lehoucq 2010) that the following dissipation inequality holds:

 � � P� � 0; (26)

which also implies:

 � h�i � 0 8� 2 Hx: (27)

Damage evolves according to a prescribed material-dependent damage growth
law,

P� D D
�
Y; PY; �

�

where D is a scalar state-valued function (section “Damage Evolution”).
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Examples of Material Models

The following examples of material models illustrate the connection between free-
energy density and mechanical forces. They also demonstrate how to evaluate
Fréchet derivatives in practice.

Bond-Based Linear Material with Damage

Consider the free-energy density function defined by:

 
�
Y; � ; �

�
D
1

2

�
C
�
1 � �

�
e
�

� e C c� .1 � log .�=�0// (28)

or equivalently

 
�
Y; � ; �

�
D
1

2

Z
Hx

C h�i
�
1 � � h�i

�
e2 h�i dV� C c� .1 � log .�=�0// (29)

where C is the prescribed scalar-valued micromodulus state and c is the heat
capacity (at constant Y). The scalar-valued state e is the extension state, defined
by:

e h�i D j Y h�i j � j � j : (30)

To explain how to evaluate the force state T D  Y, we go through in detail the
process of obtaining the Fréchet derivative. Recalling (Eq. 3), we seek to express a
first-order approximation for incremental changes in  in response to any small�Y
in the form:

� D

Z
Hx

Œsomething� ��Y h�i dV� :

The process of finding the Fréchet derivative consists of finding an expression of
this form. The [something], which is a function of the dummy variable of integration
� (and therefore is a state), is the Fréchet derivative. For the example material model
(29),

� D T ��Y D

Z
Hx

C h�i
�
1 � � h�i

�
e h�i�e h�i dV� :

Since

�e h�i D M h�i ��Y h�i ; M h�i D
Y h�i

j Y h�i j
;
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it follows that

T ��Y D

Z
Hx

h
C h�i

�
1 � � h�i

�
e h�iM h�i

i
��Y h�i dV� :

Comparing this with Eq. 3 leads to the conclusion that

bT .Y/ D C
�
1 � �

�
eM: (31)

or

T h�i D C h�i
�
1 � � h�i

�
e h�iM h�i 8� 2 Hx:

Some features of the material model (31) are as follows:

• The bond force density vector in each bond is parallel to the deformed bond.
• Holding damage fixed, the magnitude of the bond force density varies linearly

with bond extension.
• The model is bond-based: each bond responds independently of all the others.
• The model is geometrically nonlinear: it allows for large deformation.
• Increasing the damage in each bond decreases the magnitude of each bond force

density in that bond.

From Eq. 28 and the second of Eq. 18, one finds that for this material model,

� D � � D c log .�=�0/ (32)

From Eq. 14, the second of Eq. 18, and the time derivative of Eq. 32, it follows
that if Y and � are held constant,

P" D  � P� C P��C � P�

D � P�

D c P�:

Thus, unlike the free energy, the internal energy varies linearly with temperature
under these conditions, with the heat capacity as the constant of proportionality.

Ordinary State-Based Linear Material with Damage

A modification of Eq. 31 that includes a volume change may be written as:

bT .Y/ D
�
C
�
1 � �

�
e C A#1

�
M; # D

1 � e

1 � 1
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where A is a constant and ª is the dilatation. (See Eq. 40 below for a more general
definition of dilatation.) Note that the dilatation depends on all the bonds in the
family.

Non-ordinary State-BasedMaterial

The following material model tends to resist bending:

bT .Y/ hŸi D

�
A .e hŸi C e h�Ÿi/ .Y hŸi � Y h�Ÿi/ if Ÿ 2 Hx and � Ÿ 2 Hx;

0 otherwise:

where A is a constant. Another way to write this is to define the reversal state by

R hŸi D �Ÿ 8Ÿ 2 Hx;

then

bT .Y/ D A .e C e ı R/ .Y � Y ı R/ :

This material is nonpolar even though the bond forces are not necessarily parallel
to the deformed bonds. It is interesting that a state-based peridynamic material
model without changing the equilibrium equation can resist bending; see Diyaroglu
et al. (2015) and Grady and Foster (2014). for details and specific material models.
This is in contrast to the standard theory of beams and plates, in which a special
fourth-order PDE replaces the fundamental second-order PDEs of local continuum
mechanics.

Bond-Based Viscoelastic Material

The material model (31) can be modified to include a rate-dependent damping term:

bT �Y; :Y� D
�
C
�
1 � �

�
e C A Pe

�
M

where A is a nonnegative constant. More information on viscoelastic peridynamic
models can be found in Mitchell (2011a) and Weckner and Mohamed (2013).

Isotropic Bond-BasedMaterial

In the material model (31), different bonds can have different stiffness, because C
is a state (that is, its value depends on the bond). (See Hu et al. 2012a; Oterkus and
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Madenci 2012). for examples of anisotropic material models.) To model isotropic
materials, set

C hŸi D C i .jŸj/

where Ci is a function of bond length only, thus

T D
�
C i
�
1 � �

�
e
�
M:

The most general form for Ci is discussed in Silling (2000).

Nonconvex Bond-BasedMaterial

If the bond force density is not a monotonic function of extension, and if it is elastic,
then its strain-energy density function is called nonconvex. An example is:

T hŸi D Ae hŸi exp
�
�e2 hŸi

�
M hŸi or bT .Y/ D Ae exp

�
�e2

�
M:

The properties of nonconvex bond-based materials, including their stability and
relation to brittle fracture, are discussed by Lipton (2014, 2016). More general
concepts of convexity that apply to state-based materials are, to the best of the
author’s knowledge, a totally unexplored area.

Discrete Particles as Peridynamic Materials

Consider a set of N particles with equal mass m that interact through a multibody
potential such that the potential energy of particle i is given by:

ˆi D Ui .r1i ; r2i ; : : : ; rNi / � bi � yi ; rj i WD yj � yi

where yi and bi are the position of and external force on particle i. The potential
energy of the entire set of particles is found from:

ˆ D

NX
iD1

ˆi :

The acceleration of each particle i is obtained from Newton’s second law in the
form:

Fi D mRyi D � @ˆ
@yi

D
NP
jD1

�
@Ui
@rj i

�
@Uj
@rij

�
C bi :

(33)
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Now consider the peridynamic body with mass-density field and body-force
density field defined by:

� .x/ D

NX
iD1

m� .x � xi / ; b .x/ D

NX
iD1

bi� .x � xi / (34)

where �(�) denotes the 3D Dirac delta function. Here, the reference positions of the
particles xi are arbitrary and merely serve to identify the particles for purposes of
the mathematics. For this peridynamic body, let the material model be elastic with
strain-energy density function given by:

bW .Y Œx� ; x/ D

NX
iD1

Ui .r1i ; r2i ; : : : ; rNi /� .x � xi / ; rj i D Y Œxi �
˝
xj � xi

˛
:

(35)

After evaluating the Fréchet derivative of this bW , the force state field is found to
be:

T Œx� hq � xi D

NX
iD1

NX
jD1

@Ui

@rj i
� .x � xi / �

�
q � xj

�
: (36)

Evaluating the acceleration field using Eqs. 8, 34, and 36, the terms involving
�(q � xj) integrate to 1 and hence

� .x/
::
y .x/ D

Z
B

n
T Œx� hq � xi � T Œq�

D
x � q

Eo
dVq C b .x/

becomes

NP
iD1

�
m
::
y .x/ � b .x/

�
�.x � xi / D

NP
iD1

NP
jD1

@Ui
@rj i

�
�.x � xi / ��

�
x � xj

��

D
NP
iD1

NP
jD1

�
@Ui
@rj i

�
@Uj
@rij

�
�.x � xi /

which implies

m
::
y .xi / D

NX
jD1

�
@Ui

@rj i
�
@Uj

@rij

�
C bi ; i D 1; 2; : : : ; N:

So, the peridynamic equation of motion for the body specified in Eqs. 34 and 35
reduces to Newton’s second law, (Eq. 33).
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The applicability of peridynamics to both continuous and discrete systems can be
useful in modeling the interaction of particles with continuous bodies. For example,
certain aspects of the mechanics of a suspension of particles in a liquid can be treated
simply by adding the responses of the two media, one discrete and one continuous:

bW .Y; x/ D

NX
iD1

Ui .Y; x/� .x � xi /C bW c .Y/

where bW c is the strain-energy density function for the continuum. Since the
machinery of peridynamics can be applied to this unconventional medium, this
model could potentially be used to study interesting phenomena such as wave
dispersion, attenuation, scattering in suspensions of interacting particles.

Effectively EulerianMaterial Models

The material models described up to now in this chapter have been Lagrangian;
they refer explicitly to a reference configuration, and the bond forces arise from
movement of the bonds from their reference positions. For modeling fluids under
large deformations, the Lagrangian approach becomes impractical because of the
gross distortion of the families. In these cases, an Eulerian approach to material
modeling may be preferable.

An effectively Eulerian material model for a fluid can be derived by letting the
horizon be infinite but limiting the response to bonds that currently have length less
than a prescribed distance ı in the deformed configuration. For example, such a
model for a fluid could be specified by defining a nonlocal density as follows:

� .x/ D �0

Z
B
! .jY Œx� hq � xi j/dVŸ (37)

where �0 is the reference density and ! is a differentiable weighting function on [0,
1) such that:

R
B ! .j�j/ dV� D 1;

! D 0 on Œı;1/ ; !0 � 0 on Œ0; ı� :

Even though the region of integration in Eq. 37 is B in the reference config-
uration, in effect only a neighborhood of radius ı in the deformed configuration
needs to be computed. The nonlocal density Eq. 37 can be used in any conventional
equation of state. The energy balance (9) continues to apply without change, since
its form is independent of the material model. The pressure from the equation of
state determines the bond forces through the usual Fréchet derivative:
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T h�i D bT .Y/ h�i D  Y D
@ 

@v

@v

@�
�Y

D .�p/

�
��0

�2

� �
�0!

0 .jY h�i j/M h�i
�

D pv2!0 .jY h�i j/M h�i 8� 2 B

where p is the pressure and v D �0=� is the nonlocal relative volume. This approach
to modeling fluids has been successfully applied to very large deformations and
strong shock waves (Silling et al. 2017).

Some Lagrangian material models can be converted to effectively Eulerian
models. To do this, we must eliminate any explicit dependence of T h�i on � except
as an identifier for bonds. For example, recall the example bond-based material
model (30), (31) with � D 0:

T h�i D bT .Y/ h�i D C h�i e h�i M h�i ; e h�i Dj Y h�i j � j � j :

This model contains � explicitly through the Í�Í term, so it is Lagrangian. But
consider this alternative model:

bT �Y; :Y� h�i WD C hY h�iiE h�i M h�i (38)

where E is a scalar-valued state, that is a function of time, defined by:

E Œ0� D 0; PE Œt� D

�
PY h�i � M h�i if j Y h�i j� ı;

0 otherwise;

or, more succinctly,

bT �Y; :Y� D .C ı Y/EM; PE D
:

Y � M: (39)

Since � does not appear explicitly in Eq. 38 except as an identifier, this alternative
model is effectively Eulerian. In Eq. 39, it is assumed that C hpi D 0 whenever ÍpÍ
> ı. Interactions can occur in bonds that start out with length greater than ı but get
shorter over time. Similarly, bonds that are initially short will have zero bond force
density if they elongate over time to length greater than ı. The material model (39)
is effectively Eulerian but is not elastic.

Plasticity

For small deformations, it is conventional to express volume changes in the form of
the dilatation, denoted ª. By linearization of Eq. 37, this is found to be:

v � 1 � # .Y/ WD
3 .�x/ � e

.�x/ � x
; � h�i D � j � j !0 .j�j/ ; x h�i Dj � j : (40)
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where e is the extension state defined in Eq. 30. In terms of rates, since Pe D M�
:

Y,
Eq. 40 can be written as

P#
� :

Y
�

WD
3 .�X/ �

:

Y
.�X/ � X

: (41)

We will not make further use of the connection between � and ! given in the
second of Eq. 40, so� can be regarded as essentially arbitrary, except that it must be
nonnegative and depend only on j�j. Similarly, for small deformations, the pressure
is given by:

p .T/ D �
1

3
X � T: (42)

Plastic deformation can be incorporated into an elastic material model by
introducing a new vector-valued state called the permanent deformation state,
denoted P. Given a free-energy density function  0 .Y; �/, define a new free-energy
density function by

 .Y;P; �/ D  0 .Y � P; �/ :

Since T D  Y, it follows that

bT .Y;P; �/ D bT0 .Y � P; �/

and similarly

 P D �T: (43)

By repeating the steps leading up to Eq. 17, one finds that

�
T �  Y

�
�

:

Y �  P �
:

P C hC s � .�C  �/ P� � 0: (44)

From Eqs. 43 and 44, it follows that

P p WD T �
:

P � 0 (45)

where P p is the rate of plastic work. Equation 45 is the dissipation inequality for
plastic materials.

Plastic flow can occur when the force state is on or outside of a yield surface
defined by:

P .T/ D 0
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where P is a scalar-valued function. A possible evolution law for P is given by:

:

P D 	PT; (46)

where 	 > 0. Equation 46 can be thought of as an associated flow rule. The
dissipation inequality (Eq. 45), which is a consequence of the second law of
thermodynamics, places a restriction on P:

PT � T � 0 8T;

which is a type of convexity condition on the yield surface.
Many materials, especially metals under moderate stress, have yield surfaces

that are nearly independent of the pressure. To account for this, the peridynamic
yield surface can be defined to be a function of the deviatoric force state, which is
obtained by subtracting off the hydrostatic part of the force state:

Td D T �
X � T

.�X/ � X
�X: (47)

From Eqs. 42 and 47,

p
�
Td
�

D 0;

that is, the deviatoric force state has zero pressure. For a material model in which the
yield surface depends only on Td , the associated flow rule (Eq. 46) can be evaluated
using the chain rule for Fréchet derivatives, with the result:

:

P D 	PT

D 	PTd � TdT

D 	

 
PTd �

.�X/ � PTd

.�X/ � X
X

!
:

(48)

Comparing the structure of Eqs. 47 and 48, it is subtle but significant that in the
latter, the � is shifted from outside the fraction to inside the numerator. Using this
fact, Eqs. 41 and 48 imply that:

P#
� :
P
�

D 0;

that is, the associated flow rule applied to a yield surface that depends only on the
deviatoric force state results in zero volume change. This echoes the familiar result
in the plasticity of metals that plastic strain has zero dilatation. Additional details
on modeling plasticity within peridynamics can be found in Foster et al. (2010),
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Madenci and Oterkus (2016), Mitchell (2011b), Sun and Sundararaghavan (2014),
and Warren et al. (2009).

Damage Evolution

The monotonicity condition (24) is the only general requirement on the evolution of
damage:

P� h�i D D h�i � 0 8� 2 Hx:

Otherwise, we are free to dream up damage growth laws. The second law
restriction (Eq. 26) is really a condition on the material model, not the damage
growth law.

One approach to specifying how damage grows is to define a failure surface in
state space:

S
�
T;Y; �

�
D 0

such that damage does not increase if S is in the interior of the surface, that is, if
S < 0.

An example of a plausible damage growth law is given by:

D h�i D

�
0 if S < 0;
œF h�i otherwise:

(49)

where œ(t) is a nonnegative scalar-valued function and F is the thermodynamic force
state defined by:

F D � �: (50)

The damage growth law (49) satisfies the monotonicity condition (24) because
of the result (27), which is a consequence of the dissipation inequality for damage:

P� h�i D D h�i D œF h�i D �œ � h�i � 0 8� 2 Hx:

The remaining question is how to determine œ.
In dynamics, we can reasonably assume a dependence of the form:

œ D aS (51)

where a is a nonnegative constant. This relation allows the value of S to be outside
the failure surface, that is, S > 0, while damage is evolving. It is interesting
to investigate the stability of the resulting damage growth. Consider a uniformly
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deformed body and hold the deformation fixed. Allow damage to evolve and analyze
whether damage growth speeds up or slows down over time. To study this, take the

total time derivative of S
�
T;Y; �

�
holding PY D 0:

PS D
�
ST � T� C S�

�
� P�:

Using Eqs. 49 and 50 yields:

Pœ D a PS D a	
�
ST � T� C S�

�
� F :

The solution to this ODE for œ is given by:

œ.t/ D œ.0/eart ; r D
�
ST � T� C S�

�
� F : (52)

Thus, the damage growth is stable if r � 0 and unstable otherwise. Mechanically,
this criterion says that if S is being driven toward the failure surface by the ST term
faster than it is being pushed away from it by the S� term (if this term is positive),
then it is unstable.

In the case of quasi-static deformation, it can be assumed that, instead of Eq. 51,
the condition that determines the growth of damage is that the system always
remains on the failure surface as Y changes, thus:

PS D 0:

Under this assumption, writing out the time derivative of S using Eq. 49 yields:

0 D PS
�
T;Y; �

�

D ST �
�
TY �

:

Y C T� � P�
�

C SY �
:

Y C S� � P�

D ST �
�
TY �

:

Y C œT� � F
�

C SY �
:

Y C œS� � F :

Solving this for œ and applying the monotonicity requirement for damage leads
to:

œ D max

8<
:0;�

�
ST � TY C SY

�
�

:

Y

r

9=
; 8

:

Y (53)

where r is given by the second of Eq. 52. Observe that Eq. 53 blows up as
r ! 0, indicating the onset of unstable damage growth, as discussed previously. The
relations (49) and (53) allow us to explicitly determine the rate of damage growth
for every bond at every point in the body, provided the deformation is quasi-static
and S D 0:
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P� D max

8<
:0;�

�
ST � TY C SY

�
�

:

Y�
ST � T� C S�

�
� F

9=
;F 8

:

Y: (54)

As an example of a failure surface, consider the material model (28) with a slight
modification that introduces a binary variable to indicate intact bonds or broken
bonds:

b h�i D

(
1 if � h�i < 1;

0 otherwise:

The modified free-energy expression is given by:

 
�
Y; � ; �

�
D
1

2

�
C
�
1 � �

�
be
�

� e C c� .1 � log .�=�0// :

An example of a failure surface is given by:

S
�
T; �

�
D .kT/ � M C

s1

2

			�
			2 � s0 (55)

where s0 and s1 are constants, s0 � 0, and k is a nonnegative, constant, scalar-valued
state. The bond force density is given by:

T D  Y D C
�
1 � �

�
beM:

Evaluating the required Fréchet derivatives in Eq. 54 leads to:

F D � � D 1
2
Cbe2; TY D C

�
1 � �

�
bM ?M; T� D �CbeM;

SY D 0; ST D kM; S� D s1

			�
			�:

Suppose that a specimen has zero deformation and damage at time 0 and then
is deformed homogeneously and quasi-statically. By Eqs. 49 and 55, damage first
starts growing when the condition S D 0 occurs, hence:

.kT/ � M D s0:

Under continued quasi-static deformation with stable damage growth, Eq. 54
then leads to:

P� D D D

�
kC

�
1 � �

�
b
�

� Pe�
kCbe � s1

			�
			�
�

�
�
Cbe2

�Cbe2: (56)
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Fig. 2 Stress-strain curves for a bar under tension

Damage growth is stable until the denominator in Eq. 56 becomes nonpositive;
then it becomes unstable. Figure 2 illustrates the behavior of this example material
and damage growth model for a 1D body with:

C D k D 1; ı D 1; s0 D 0:02:

The different stress-strain curves are for different values of s1, indicating the
transition from stable to unstable damage growth as s1 is increased. The stress is
computed using Eq. 58, to be discussed below.

In 2D, similar material and damage models (for a material with a bulk modulus
of 10MPa) can simulate the stable accumulation of diffuse damage near a stress
singularity, as shown in Fig. 3. The specimen contains a semicircular notch and
is under combined normal and transverse loading corresponding to strain rates of
P–22 D 2:0s�1 and P–12 D 1:0s�1. Until a strain of about 
22 D 0.12, there is a stable
growth of damage near the notch. Then there is a sudden transition to dynamic
fracture. The crack rapidly propagates to the opposite free edge of the specimen.
This transition from stable to unstable can be seen in the stress-strain curve shown
in Fig. 4. This curve represents the total normal load in the vertical direction divided
by the cross-sectional area of the specimen (on a cross-sectional plane that does not
include the notch).

These examples demonstrate the potential usefulness of peridynamic damage
mechanics in modeling materials that either fracture immediately or after a period
of accumulated continuous damage. The compatibility of the peridynamic field
equations with both continuous and discontinuous deformations is helpful in
modeling the spontaneous nucleation and growth of fractures within a damaged
material.
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Fig. 3 Transition of stable damage growth at a stress concentration to dynamic fracture
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Fig. 4 Remote normal stress as a function of global strain for damage growth and fracture near a
semicircular notch

Bond Breakage

A simpler approach to damage modeling in peridynamics has � hŸi jump discon-
tinuously from 0 to 1 according to some criterion, which can be quite general.
This approach, which is called bond breakage, is used in the vast majority of
peridynamic codes because of its simplicity and reduced memory requirements.
It has the disadvantage compared with continuously varying � that instantaneous
bond breakage can excite unwanted oscillations in a numerical grid. However, these
can be suppressed in practice by applying damping forces to nodes after their bonds
break.

A bond-breakage criterion can be as simple as a critical value of bond strain
(Silling and Askari 2005). In this case, the critical bond strain for bond breakage can
be calibrated to match a given critical energy release rate for the material. This bond-
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breakage strain depends on the horizon as well as the critical energy release rate.
Critical bond strain as a failure criterion is a natural way to model brittle fracture,
particularly in mode I. For other modes, it becomes trickier to specify the critical
strain, which may depend on the conditions in other bonds in the family. Nucleation
of cracks is predicted by bond breakage damage growth laws, but with a simple
bond-strain criterion, it is difficult to prescribe both the critical energy release rate
and the critical conditions for crack nucleation simultaneously. Postfailure response
of the bonds depends on the material model; for example, it may or may not be
appropriate in a given material to allow bonds to sustain compressive force after
they break.

In spite of the many successes of the bond breakage approach to peridynamic
damage modeling, the above considerations help motivate the development of the
more general approach using the thermodynamic force and failure surfaces as
described in section “Damage Evolution.”

Connections with the Local Theory

This section summarizes the mathematical and conceptual connections between
the nonlocal peridynamic theory and the local theory. The connections discussed
here include the relations between the force state and the stress tensor, between
the deformation state and the deformation gradient tensor, between nonlocal
heat transport and the Clausius-Duhem inequality, the scaling and convergence
of material models, and local damage mechanics. Not discussed below but also
important is the peridynamic version of the Eshelby-Rice J -integral (Hu et al.
2012b; Silling and Lehoucq 2010).

Local Kinematics and Kinetics

Suppose a First Piola stress tensor � is given. Let ! be a positive scalar-valued state
called the influence function. Consider the force state defined by:

T .� / D �!K�1X or T .� / h�i D �! h�iK�1� 8� 2 Hx (57)

where K is the shape tensor defined by:

K D

Z
Hx

! h�i � ˝ �dVŸ:

The force state T .�/ defined by Eq. 57 has the property that in a uniform
deformation of a homogeneous body, the force per unit area across any plane
transferred by all the bonds that cross this plane is equal to:

� D �n
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where n is a unit normal to the plane. Conversely, for a given force state T, the stress
tensor defined by:

� .T/ D

Z

Hx

T h�i ˝ �dV� (58)

has the same property. � is called the partial stress tensor. For any � ,

�
�
T .� /

�
D � :

Analogous expressions can be derived for deformation states and deformation
gradient tensors:

Y .F/ h�i D F�; F .Y/ D

�Z
Hx

! h�iY h�i ˝ � dV�

�
K�1 8F;Y: (59)

It is easily confirmed that for any tensor F,

F
�
Y .F/

�
D F:

The relations (57) and (59) provide a way to adapt a local material model � (F)
to peridynamics by setting

T .Y/ D T
�
�
�
F .Y/

�
(60)

for any Y. A peridynamic material model of the form (60) is called a correspondence
model. These models have the properties that they are elastic, isotropic, and
objective whenever the underlying local material model � (F) has these properties, in
the sense of the local theory. Correspondence models generally exhibit zero-energy
modes of deformation (Tupek and Radovitzky 2014) due to the noninvertibility of
F, that is,

F .Y/ D F
�
Y0
�
/ H) Y D Y0:

Several practical ways of reducing this type of instability in numerical models
have been proposed. One such method penalizes the departures of the deformation
state from a uniform deformation within the family. In this method, the material
model is modified by including an additional term as follows:

T .Y/ D T
�
�
�
F .Y/

�
C A

			Y � F .Y/X
			
Y

where the subscript denotes the Fréchet derivative and A is a constant (Silling 2017).
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For any deformation (not necessarily uniform) of any peridynamic body (not
necessarily homogeneous), the peridynamic stress tensor is defined by:

� .x/ D

Z
U

Z 1

0

Z 1

0

.y C z/2 .T Œx � zm� h.y C z/mi/˝ m dy dz d�m

where U is the unit sphere and d�m is a differential spherical angle in the direction
of the unit vector m. � has the surprising property (Lehoucq and Silling 2008;
Lehoucq and von Lilienfeld 2010; Noll 1955) that

r � � D

Z
Hx

fT Œx� hq � xi � T Œq� hx � qig dVq:

This means that the peridynamic equilibrium equation can be written as:

r � � C b D 0;

which is formally the same as in the local theory.
The partial stress tensor � is equal to � in the special case of a uniform

deformation of a homogeneous body. Otherwise, the sense in which it approximates
v is discussed in Silling et al. (2015).

Convergence of Peridynamics to the Local Theory

It seems reasonable to require that a proper nonlocal theory should converge, in
some sense, to the local theory in the limit of “zero nonlocality.” To investigate how
this convergence works in the peridynamic equations, we first consider how material
models scale as the horizon decreases.

As the horizon is changed, holding the bulk properties of the material fixed,
peridynamic material models satisfy certain scaling relations. Let Tı and Yı denote
the force state and the deformation state, respectively, for any ı > 0. Let ı1 and ı2

be two values of the horizon and H1 and H2 the corresponding families. Suppose a
material modelbT1 is given for the horizon ı1. For any Y2 on H2, define the state Y1
by:

Y1 h�1i D
ı1

ı2
Y2



ı2

ı1
�1

�
8�1 2 H1:

Consider the material model defined by:

bT2 .Y2/ h�2i D

�
ı1

ı2

�4bT1 .Y1/


ı1

ı2
�2

�
8�2 2 H2: (61)
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It is easily confirmed that for a uniform deformation of a homogeneous body, �

defined in Eq. 58 is invariant with respect to this change in horizon:

�
�bT1 .Y1/

�
D �

�bT2 .Y2/
�
:

In general, it can be shown that if a deformation is twice continuously differen-
tiable, and ifbTı scales according to Eq. 61, then the limit:

� 0 WD lim
ı!0

�
�bTı .Yı/

�

exists and that:

lim
ı!0

Z
Hı

n
Tı Œx� hq � xi � Tı Œq� hx � qi

o
dVq D r � � 0: (62)

In summary, we now have a stress tensor field � 0 such that, in the limit of zero
horizon, the peridynamic accelerations equal the accelerations in the local theory
computed from the divergence of � 0; see Silling and Lehoucq (2008) for details.
More rigorous results concerning convergence of peridynamics to local elasticity
have been established (Emmrich et al. 2007).

Remarkably, Lipton has extended these results to discontinuous deformations;
the limiting case of a peridynamic body containing a growing crack approaches a
smooth solution in the local theory augmented by a Griffith crack that consumes
energy at a definite rate as it grows. This result requires a peridynamic material
model with a nonconvex strain-energy density function (Lipton 2014, 2016).

For heat transport, the statement analogous to Eq. 62 is as follows:

lim
ı!0

Z
Hı

fHı Œx� hq � xi �Hı Œq� hx � qig dVq D r � Q0 (63)

where Q0 is the limiting heat flux vector field given by:

Q0 WD lim
ı!0

Qı; Qı WD Q .Hı/ D �

Z
Hx

Hı h�i �dV� : (64)

The minus sign appears by convention in the second of Eq. 64 so that the heat
flux Q � n through a plane normal to a unit vector n will be positive if energy is
flowing parallel to n, rather than opposite to it. Recall the inequality (23) derived
from the second law,

ˇ �Hı � 0; ˇ Œx� hq � xi D
1

� .q/
�

1

� .x/
: (65)
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For a smooth temperature field, as ı ! 0, we can use the first term of a Taylor
series to write down the first-order approximation:

ˇ h�i � � � rˇ .x/ 8� 2 Hx;

hence Eq. 65 can be approximated by:

0 � ˇ �Hı �

Z
Hx

� � .rˇ/Hı h�i D �rˇ � Qı: (66)

Similarly, for small ı, Eq. 63 is approximated by:

hı WD

Z
Hı

fHı Œx� hq � xi �Hı Œq� hx � qig dVq �

Z
Hx

� � rHı h�i D �r � Qı:

(67)

From Eqs. 20, 66, and 67,

P� � ˇhı C ˇs

� �ˇr � Qı C ˇs

� �ˇr � Qı � rˇ � Qı C ˇs

D �r
�
ˇQı

�
C ˇs:

Omitting some of the details of taking the limit, the result for ı ! 0 is:

P� �
s

�
� r �

�
Q0

�

�
:

This is a form of the Clausius-Duhem inequality of local continuum thermody-
namics. It is interesting that this local form of the second law with heat transport can
be derived from the peridynamic version of the second law without specifying any
particular form of the constitutive model bH .‚/ or assuming a particular physical
mechanism for heat transport (conduction, convection, radiation, etc.).

Local ContinuumDamageMechanics

The failure characteristics of engineering materials are frequently expressed in terms
of failure surfaces, with or without some specification of postfailure behavior. These
expressions can sometimes be converted to peridynamic failure surfaces using the
partial stress and approximate deformation gradient defined in Eq. 58 and 59 above.
For example, if a failure surface in terms of the stress tensor and deformation
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gradient tensor is given in the form S0 .� ;F; '/, where ® is a scalar damage variable,
we can define a peridynamic failure surface by:

S
�
T;Y; �

�
D S0

�
� .T/ ;F .Y/ ; '

�
�
��
; '

�
�
�

D
! � �

! � 1
:

Evaluating the required Fréchet derivatives in Eq. 54 then leads to:

ST D
@S0
@�

X; SY D
@S0
@F

! h�iK�1X; S� D
@S0
@'

!

! � 1
:

The remaining derivatives that appear in Eq. 54 are obtained from the peridy-
namic material model, as before.

Discussion

Why and how does a crack grow? How does a continuous body become discontin-
uous? Why does nature seem to favor these discontinuities as energy minimizers,
yet equip real materials with energy barriers that resist their formation and growth?
How can real materials be designed or optimized to resist cracking? These and other
fundamental questions possibly can be studied within the peridynamic theory.

Although peridynamics is often used to model brittle fracture and fragmentation
(for example, (Hu et al. 2013)), diverse new applications are continually being
discovered. These have recently included, for example:

• Electromigration in integrated circuits (Gerstle et al. 2008; Oterkus et al. 2013)
• Biological cell mechanics and tumor growth (Lejeune and Linder 2017a, b;

Taylor et al. 2016)
• Damage in materials due to high voltage breakdown (Wildman and Gazonas

2015)
• Effects of residual thermal stress on fracture in glass (Jeon et al. 2015; Kilic and

Madenci 2009)
• Failure of reinforced concrete (Gerstle et al. 2010)
• Mechanics of nanocomposites (Prakash and Seidel 2016)
• Fluid transport and hydraulic fracture in rocks (Katiyar et al. 2014; Nadimi 2015;

Ouchi et al. 2015; Van Der Merwe 2014)
• Solitons (Silling 2016)
• Corrosion (Chen and Bobaru 2015)

and many others.
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Abstract

Recent developments in the mathematical and computational aspects of the
nonlocal peridynamic model for material mechanics are provided. Based on
a recently developed vector calculus for nonlocal operators, a mathematical
framework is constructed that has proved useful for the mathematical analyses
of peridynamic models and for the development of finite element discretizations
of those models. A specific class of discretization algorithms referred to as
asymptotically compatible schemes is discussed; this class consists of methods
that converge to the proper limits as grid sizes and nonlocal effects tend to
zero. Then, the multiscale nature of peridynamics is discussed including how,
as a single model, it can account for phenomena occurring over a wide range
of scales. The use of this feature of the model is shown to result in efficient
finite element implementations. In addition, the mathematical and computational
frameworks developed for peridynamic simulation problems are shown to extend
to control, coefficient identification, and obstacle problems.

Keywords
Peridynamics · Nonlocal vector calculus · Variational forms · Multiscale
methods · Finite element method · Optimal control · Obstacle problems

Introduction

The peridynamic (PD) model for solid mechanics was introduced in Silling (2000),
followed by a more generally applicable version in Silling et al. (2007); see also
the review (Silling and Lehoucq 2010). The main features of the model are that
it is a continuum model that is free from spatial derivatives, allows for nonlocal
interactions, and allows for solutions that contain jump discontinuities across
lower-dimensional manifolds. As such, it is especially well suited for simulations
of material failure phenomena such as fracture. Indeed, despite its relatively recent
development, the effectiveness of PD has already been demonstrated in several
sophisticated applications, including the fracture and failure of composites, crack
instability, fracture of polycrystals, and nanofiber networks; see Askari et al. (2008)
for a review and also Bobaru and Silling (2004), Bobaru et al. (2005), Gerstle
and Sau (2004), Gerstle et al. (2005), Littlewood (2010), Silling (2003), Silling
and Askari (2004), Silling and Bobaru (2005), Silling et al. (2003), Weckner and
Abeyaratne (2005), and Weckner and Emmrich (2005). The successful application
of PD for multiscale engineering analyses has been enabled by the development
of software packages, see, e.g., Parks et al. (2008, 2012) and Silling and Askari
(2005). There has also been extensive studies of peridynamic models appearing in
the engineering, material science, and mathematical literatures.

An additional feature of PD is that, all on its own, it is amultiscalemodel. A valid
material model is one that provides a faithful description of the physical phenomena.
A tractable material model is one for which useful information can be extracted,
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e.g., through discretization, in an efficient manner. These two requirements allow us
to define a multiscale material model as one that is valid and tractable over a wide
range of spatial and temporal scales. In most cases, multiscale models are defined
by coupling two different models that operate at different scales, e.g., molecular
dynamics and classical elasticity; peridynamics provides the opportunity to do away
with the need for such troublesome couplings. Thus, we refer to peridynamics
as a multiscale mono-model in contrast to multiscale multi-models for which two
different models, e.g., classical elasticity and molecular dynamics, are coupled to
produce a multiscale model. This feature, which is discussed below, results from the
introduction of a length scale " > 0, often referred to as the horizon, such that points
separated by a distance greater than " do not, for all practical purposes, interact.

The rest of this section is devoted to a very brief description of peridynamic
models. Then, in section “Mathematical Framework” we present a mathematical
framework, based on a recently developed vector calculus for nonlocal operators,
that has proved useful for the mathematical analyses of peridynamic models and
for the development of finite element discretizations of those models. In particular,
the recently developed concept of asymptotically compatible schemes is discussed.
In section “Peridynamics as a Multiscale Mono-model,” the multiscale nature
of peridynamics as a mono-model for material mechanics is discussed as is the
implications that feature of peridynamics has on efficient finite element imple-
mentations. In section “Control, Identification, and Obstacle Problems,” we show
how the mathematical and computational frameworks developed for peridynamic
simulation problems can be extended to control, coefficient identification, and
obstacle problems. The material presented in this paper is drawn from, among other
sources, Du et al. (2012a, 2013a,b) and Du (2016a,b) for section “Mathematical
Framework,” Xu et al. (2016b) for section “Peridynamics as a Multiscale Mono–
model,” and D’Elia and Gunzburger (2014, 2016) and Guan and Gunzburger (2017)
for section “Control, Identification, and Obstacle Problems.”

Peridynamic Models and Their Linearized Form

The general state-based peridynamic equation of motion (Silling et al. 2007) takes
the form

�@ttu.x; t / D

Z
Rn

fTŒx�hy � xi � TŒy�hx � yigdy C b.x/ (1)

with TŒx�hy � xi and TŒy�hx � yi denoting the peridynamic force states, u the
displacement vector, � the material density, and b a given body force density.
Under the assumption of small deformation, (1) can be approximated by the linear
integrodifferential equation

�@ttu.x; t / D

Z
Rn

C".y; x/
�
u.y; t / � u. x; t /

�
dy C b.x/: (2)
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As an example, we have the linear bond-based model for which C" is a rank-one
tensor of the form

C".y; x/ D !".jy � xj/
�
˛.y; x/˝ ˛.y; x/

�
; where ˛.y; x/ D

y � x
jy � xj2

(3)

denotes a scaled vector along the bond between x and y. We assume that nonlocal
interactions occur only when the distance between x and y is smaller than a
specified distance ", referred to as the horizon. Thus, the nonlocal interaction kernel
!".jy � xj/L is supported in a spherical neighborhood of radius ". However, for the
state-based peridynamic model, the range of interactions becomes broader due to the
indirect interactions (Silling 2010). Nevertheless, we still use " as a characteristic
measure of the range of nonlocal interactions.

Local limit of peridynamic models. In peridynamic models, if " ! 0, then
nonlocal interactions become localized. We expect that in several settings, such as
linear peridynamic models, the nonlocal models reduce to classical partial differen-
tial equation (PDE) models under proper assumptions on the interaction kernels.
Intuitively, these assumptions imply that !".jzj/ approaches a constant multiple
of the Dirac delta function at z D 0. For the linear bond-based peridynamics,
such studies have been carried out in Du et al. (2013b), Du and Zhou (2011),
and Mengesha and Du (2013).

Mathematical Framework

Understanding and developing mathematical treatments of nonlocal models call for
a new mathematical framework. In this section, we give a brief description of that
framework and its use in the nonlocal mechanic setting.

A Nonlocal Vector Calculus

Because the quantities of interest in continuum mechanics are mostly vector and
tensor-valued function, the nonlocal vector calculus presented in Du et al. (2013a)
provides a systematic means for formulating nonlocal mechanical models such as
peridynamics. Nonlocal operators are defined as the basic building blocks of the
nonlocal vector calculus. For example, for any two points y and x in Rn, we choose
a two-point vector ˛. x; y/ W Rn � R

n ! R
m that is antisymmetric, i.e., we have

˛.y; x/ D �˛.x; y/, and then, respectively, define a nonlocal divergence operator
D acting on tensors and its adjoint operator D� acting on vectors by

.D /.x/ D

Z
Rn

�
 .x; y/C .y; x/

�
˛.x; y/dy 8 .x; y/ W Rn � R

n ! R
n�m

.D�v/.x; y/ D
�
v.y/ � v.x/

�
˝ ˛.y; x/ 8 v.y/ W Rn ! R

m:
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D and D
� are adjoint operators in the sense that

Z
Rn

v.x/ � .D /.x/dx D

Z
Rn

Z
Rn

.D�v/.x; y/ .x; y/dydx:

Note thatD�v is a symmetric two-point tensor-valued function, i.e., .D�v/.x; y/ D

.D�v/.y; x/. On the other hand, for any two-point tensor function  .x; y/, D 
depends only on the symmetric part of  with respect to its two variables x and
y. With respect to the dimension parameters m and n, the cases most relevant to
peridynamics are m D 1 and m D n.

For notational convenience, as in Du et al. (2013a), we introduce the nonlocal
divergence operator D acting on vectors and its adjoint operator D� acting on
scalars by

.D'/.x/ D

Z
Rn

�
'.x; y/C '.y; x/

�
� ˛.x; y/dy 8 ' W Rn � R

n ! R
n

.D�v/.x; y/ D
�
v.y/ � v.x/

�
˛.y; x/ 8 v W Rn ! R:

To account for the indirect interactions between two material points present in the
state-based peridynamic models, the weighted nonlocal operators D!" and D

�
!"

are
introduced in Du et al. (2013a). For example, letting !".x; y/ W Rn�R

n ! R denote
a nonnegative scalar-valued two-point function and given the function u.x/ W Rn !

R
m, we have the weighted divergence operator given by

D!".u/.x/ D D
�
!".x; y/u.x/

�
for x 2 R

n:

These operators are more closely aligned with conventional first-order differential
operators defined on vector fields compared to the operators D, D�, D, and D

�.
More rigorous definitions and careful modifications in bounded domains are given
in Mengesha and Du (2016). Additional formal discussions about D, D�, D! , and
D�
!"

can be found in Du et al. (2013a) and rigorous derivations in Mengesha and Du
(2016) along with nonlocal Green’s identities such as

Z
Rn

u
�
D

�
!

�
D

�v
���
dx �

Z
Rn

�
D

�
!

�
D

�u
���

vdx D 0:

The nonlocal Green’s identities are nonlocal analogs of the classical counterparts
and are crucial in defining variational formulations of nonlocal mechanic problems.

Formulating Nonlocal Models via Nonlocal Operators

The nonlocal vector calculus allows us to reformulate linear peridynamic models
in ways similar to the way local linear PDE models can be expressed in terms of
basic divergence, gradient, and curl operators. For example, for a given kernel !" D
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!".jy � xj/ and any function u D u.x/ defined in R
n, using the matrix and vector

product identities

.ˇ ˝ ˛/˛ D ˇ˛T˛ D j˛j2ˇ and .˛˝ ˛/ˇ D ˛Tˇ˛ 8˛;ˇ 2 R
m (4)

and the notation !".jy�xj/ D !".jy�xj/j˛.x; y/j2, a composition of the operators
D and D� yields

L".u/.x/D�D.!"D
�u/.x/ D

Z
Rn

!".jy�xj/ ..u.y/ � u.x//˝ ˛.y; x// ˛.y; x/dy

(5)
which corresponds to the linear Navier operator for bond-based peridynamics. On
the other hand, for a scalar function u, we have

L".u/.x/ D �D.!" D
�u/.x/ D

Z
Rn

!".jy � xj/.u.y/ � u.x//dy (6)

which is often referred to a nonlocal Laplacian or a nonlocal diffusion operator.

A Linear Steady-State Problem as an Illustration

We consider a linear steady-state problem related to the nonlocal bond-based
peridynamic model for which the nonlocal force is a linear Hookean spring force
aligned with the bond direction. We have

�L"u.x/ D b.x/ 8 x 2 �; (7)

where� denotes a bounded domain inRn and the nonlocal bond-based peridynamic
operator L" is defined by

L"u.x/ D �D
�
!"D

�.u/
�
.x/

D

Z
�[�I

!".jy � xj/˛.y; x/˝ ˛.y; x/
�
u.y/ � u.x/

�
dy

D

Z
�[�I

!".jy � xj/
y � x

jy � xj2
˝

y � x
jy � xj2

�
u.y/ � u.x/

�
dy:

(8)

Here, �I denotes the interaction domain which is defined as containing the points
in R

nn� (i.e., the points outside of �) that interact with the points inside of �.
Below in (9), we define the specific interaction domain that is used in peridynamic
modeling. From (7) or (8), we see that points in y 2 �I affect the nonlocal operator
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at points x 2 �, thus the nomenclature “interaction domain.” Note that �I is also
the region on which the solution may be constrained.

For nonlocal models such as peridynamics, an important issue is the proper
understanding of the nonlocal analog of boundary conditions specified for PDEs. In
Du et al. (2012a), the notion of volume-constrained problems is discussed because
in general, unlike the case of local PDEs, interactions occur at a distance. Of course,
this does not exclude the case of classical local boundary conditions in special cases.
For example, in recent studies, linear peridynamic models with a variable horizon
" D ".x/ for x 2 � have also been studied Silling et al. (2014) and Tian and
Du (2016). In such a case, a variable horizon ".x/ is allowed to vanish as material
points approach the boundary � of �, e.g., ".x/ / dist. x; �/ for points x near the
boundary � . In this case, displacement boundary conditions can be directly imposed
on � based on the new trace theorem proved in Tian and Du (2016).

Concerning nonlocal problems defined on a bounded domain, we follow the
discussion in Du et al. (2012a). First of all, one may define a notion of essential
constraints and natural or variational conditions for nonlocal problems by drawing
analogies to classical variational problems for PDEs that are defined with respect to
suitable boundary conditions. Indeed, with a constant horizon, the most widely stud-
ied case is that of Dirichlet-type essential constraints, i.e., displacement constraints
on the solution that are imposed on a constraint set �I of nonzero measure. For
example, we may impose the condition u D 0 on �I ; this is an essential condition
that must be built explicitly into the variational principle. Typically, we have the
values of u specified on

�I D fx 2 R
n n� W dist.x; @�/ < "g (9)

which is a "-collar surrounding �, where @� denotes the boundary of � and also
the inner boundary of �I .

The case of Neumann-type conditions that, for peridynamics, are the analog of
the natural traction condition for the PDE case can take different forms. If �I

is an empty set, then L" can be well-defined over all of � [�I D � without
the need to impose additional conditions on u. In this case, the forcing function
b may represent either a soft or hard loading with the distinction only showing
up through the dependence on the horizon parameter. Another interpretation that
is more symbolically similar to the PDE case is to have a nonempty �I in the
definitions of the nonlocal operators as that given by (8) and imposing (7) on
both � that represents the nonlocal equation and �I that represents the domain
of nonlocal constraints or nonlocal traction conditions. Again, viewed in terms
of � [�I , such a separation of the equation domain and the constraint domain
becomes mathematically superfluous, although b can be subject to different physical
interpretations, i.e., in � it represents a body force, whereas in �I it represents a
nonlocal traction force.
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Variational Formulation

Related to Eq. (7), we consider the nonlocal constrained value problem

�
�L"u.x/ D b.x/ 8 x 2 �

u.x/ D 0 8 x 2 �I

(10)

which may be derived by minimizing the corresponding energy functional

E.u/ D

Z
�[�I

Z
�[�I

1

2
!".jy � xj/ .D�u. x; y//2dydx �

Z
�[�I

b.x/u.x/dx :

(11)
It is helpful to state clearly what type of kernels are amenable to variational
frameworks and treatment using the nonlocal calculus. For example, !" is often
assumed to satisfy

1: !".r/ � 0 8 r 2 .0; "/ (12)

2: supp.!"/ � B".0/; i.e.; !".r/ D 0 r � "; (13)

3:

Z
Rn

!".jxj/dx D m < 1; (14)

where the normalization condition (14) on !" implies that it has finite second-
order moments, a condition that is necessary for well-defined elastic moduli (Silling
2000). It is also equivalent to the requirement that the energy is finite for a linear
displacement field. A consequence is that for any square integrable vector-valued
function that has square integrable first-order partial derivatives, the energy remains
finite. We note that the nonnegativity assumption !".r/ � 0 can be relaxed
(Mengesha and Du 2013).

The corresponding energy space V contains square integrable functions, i.e.,
functions in L2.� [�I / having finite energy. This is an inner product space
corresponding to the norm

kuk2v D juj2v C kuk2
L2.�[�I /

;

where the semi-norm jujv on V is defined as

juj2v D

Z
�[�I

Z
�[�I

!".jx � yj/ .D�u/2dydx :

The solution space Vc;" is the subspace of V consisting of functions satisfying the
constraint u.x/ D 0 on �I . Various properties of the function spaces V and Vc;"
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can be studied in either L2 spaces or fractional Sobolev spaces for specific kernels
(Du et al. 2013a) and general abstract solution spaces (Mengesha and Du 2014a).

A variational formulation of (7) is given by the minimization problem

min
u2Vc;"

E.u/:

The well-posedness of the variational problem is studied in Du et al. (2013b), Du
and Zhou (2011), Mengesha and Du (2013, 2014a,b) in which additional details
may be found about suitable interpretations of the operators of the nonlocal vector
calculus, especially for cases involving non-integrable interaction kernels.

Note that if we have an integrable nonlocal interaction kernel, the space V and its
dual V � are both equivalent to the standard Hilbert space L2.� [�I /. In general,
the nonlocal spaces may be larger than the H1.� [�I / space so that they may
be used to produce solutions having less regularity (Du et al. 2012a; Du and Zhou
2011) than that of solution of the analogous PDEs; indeed, this is a motivation for
considering nonlocal mechanical models like peridynamics. As mentioned earlier,
when " ! 0, the nonlocal problems are closely related to classical local models.
Techniques for investigating the local limit of nonlocal peridynamic models include
Taylor expansions (Emmrich and Weckner 2007; Silling and Lehoucq 2008),
Fourier transforms (Du et al. 2013a; Du and Zhou 2011), consistency of weak forms
(Du et al. 2014), and the nonlocal calculus of variations (Mengesha and Du 2013,
2014a,b). For the linear bond-based peridynamic model, the local limit recovers the
linear Navier elasticity model with a special Poisson ratio.

Discretization Schemes

There have been several approaches taken for the discretization of nonlocal models,
including peridynamics. These include meshfree methods, finite difference meth-
ods, finite element methods, and numerical quadrature and collocation approaches.
Mathematically rigorous studies of convergence properties of such discretizations
include, for example, Tian and Du (2013), in which a number of finite difference
approximations are given for one-dimensional scalar nonlocal peridynamic equa-
tions with their convergence proved; discrete maximum principles are also shown
along with error estimates. For collocation schemes, rigorous studies include (Zhang
et al. 2016a). For theoretical convergence results for finite element approximations,
see Tian and Du (2013) and Zhou and Du (2010) for one-dimensional or special
two-dimensional models; the same analysis if given in Tian and Du (2014) for
general multidimensional linear peridynamic bond-based and state-based models
using conforming finite element spaces defined on arbitrary grids. Nonconforming
discontinuous Galerkin approximations have been discussed in Tian and Du (2015).



1206 M. D’Elia et al.

Quadrature rules for finite element approximations are considered in Zhang et al.
(2016b).

Here, due to space limitations, we briefly review recent results about asymptoti-
cally compatible schemes.

Asymptotically Compatible Schemes
It is known in practice that to obtain consistency between nonlocal models and
corresponding local PDE models, the mesh or quadrature point spacing may have
to be reduced at a faster pace than the reduction of the horizon parameter (Bobaru
et al. 2009; Bobaru and Duangpanya 2010). Otherwise, there could potentially be
complications and inconsistent limiting solutions when the horizon parameter is
coupled proportionally to the discretization parameter (Seleson et al. 2016; Tian and
Du 2013, 2014). Asymptotically compatible (AC) schemes, formally introduced in
Tian and Du (2014), are numerical discretization of nonlocal models that converge
to nonlocal continuum models for fixed horizon parameter and to the local models
as the horizon vanishes for both discrete schemes with a fixed numerical resolution
and for continuum models with increasing numerical resolution.

Let h > 0 denote the meshing parameter (or particle spacing) and " the horizon
parameter or even a more generic model parameter. The implications of the AC
property are illustrated in Fig. 1. There, u" denotes the solution of the continuous
nonlocal problem with " > 0, u0 the solution of the corresponding continuous local
problem, u";h the solution of the discretized nonlocal problem, and u0;h the solution
of the discretized local problem.

As seen from detailed studies given in Tian and Du (2013), some popular
discretization schemes of nonlocal peridynamics fail to be AC. In particular, if " is
taken to be proportional to h, then as h ! 0, piecewise constant conforming finite
element solutions actually converge to the incorrect limit, similarly to those based on
simple Riemann sum quadrature approximations to nonlocal operators. In Tian and

uε,h u0,h

uε u0

ε → 0

h → 0

ε → 0

h → 0ε → 0, h → 0

Fig. 1 A diagram for asymptomatically compatible schemes Tian and Du (2014)
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Du (2014) (see also Chen and Gunzburger 2011 for a computational illustration),
it is shown that as long as the condition h D o."/ is met as " ! 0, then we are
able to obtain the correct local limit even for discontinuous piecewise constant finite
element approximations when they are of the conforming type. Practically speaking,
this implies that a mild growth of bandwidth is needed as the mesh is refined
to recover the correct local limit for Riemann sum like quadratures or piecewise
constant finite element schemes.

On the other hand, it is shown in Tian and Du (2014) (again, see also Chen
and Gunzburger 2011 for computational illustrations) that all conforming Galerkin
approximations of the nonlocal models containing continuous piecewise linear
functions are automatically AC. This means that they can recover the correct local
limit as long as both " and h are diminishing, even if the nonlocality measure "
is reduced at a much faster pace than the mesh spacing h. Whereas the analysis
is highly technical, an intuitive explanation is that even with h larger than ", the
nonlocal features are still encoded in the stiffness matrices to ensure the correct
local limit due to the incorporation of higher-order (than constant) basis functions.

Naturally, schemes using higher-order basis functions tend to provide higher-
order accuracy to the nonlocal problems as well. At the moment, the theory on AC
schemes does not offer any estimate of the order of convergence with respect to the
different coupling of h and ". Preliminary numerical experiments in Tian and Du
(2014) offer some insight about the balance of modeling and discretization errors,
but additional theoretical analyses remain to be carried out.

Asymptotically compatible (AC) schemes, being either conforming Galerkin-
type approximations of weak forms Chen and Gunzburger (2011), Tian and Du
(2014), and Xu et al. (2016a,b), nonconforming DG approximations (Tian and Du
2015), or collocation- and quadrature-based approximations of strong forms (Du
and Tian 2014; Seleson et al. 2016; Zhang et al. 2016a,b), offer the potential to
solve the desirable models with different choices of parameters to gain efficiency
and to avoid the pitfall of reaching inconsistent limits.

The framework of AC schemes is very general. For example, it has also been used
to prove the convergence of numerical solutions of nonlocal diffusion equations
to that of fractional diffusion equations Tian et al. (2016); see also D’Elia and
Gunzburger (2013). The theory also guided the development of nonconforming DG
approximations (Tian and Du 2015) for peridynamic models with non-integrable
interaction kernels. The framework can also be applicable to numerical studies of
nonlocal models of convection and diffusion (Tian et al. 2015, 2017) that were
motivated by the work on nonlocal convection (Du et al. 2014) and nonlinear
nonlocal hyperbolic conservation laws (Du and Huang 2017; Du et al. 2017a) that
improved the model studied in Du et al. (2012b). Furthermore, such a concept can
also be used in the study of nonlocal gradient recovery for the numerical solution of
nonlocal models (Du et al. 2016).

Conditioning
A good theoretical understanding of the conditioning of stiffness matrices for
nonlocal problems is alluded to in the Fourier analysis of the point spectrum for
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the nonlocal operators as given in Du and Zhou (2016) and Zhou and Du (2010);
see Aksoylu and Mengesha (2010), Aksoylu and Parks (2011), Aksoylu and Unlu
(2013), Du et al. (2012a), and Seleson et al. (2009) for additional discussions. In
comparison with a typical local diffusion model that yields a condition number of
O.h�2/ for a discretization with meshing parameter h, the corresponding nonlocal
models have their condition numbers dependent on both " and h in general. For
example, Du and Zhou (2016) provided sharp lower and upper bounds for finite
element discretization of a nonlocal diffusion operator based on a quasi-uniform
regular triangulation. For effective algebraic solvers of the resulting linear system,
we refer to studies on the use of Toeplitz (Wang and Tian 2012) and multigrid
(Du and Zhou 2016) solvers.

Adaptivity
Due to, e.g., reduced sparsity, nonlocal models such as peridynamics generally
incur greater computational costs than do their local PDE-based counterparts. Thus,
designing effective adaptive methodologies is important. The paper Du et al. (2013c)
contains an a posteriori error analysis of conforming finite element methods for
solving linear nonlocal diffusion and peridynamic mechanic models. A general
abstract framework is developed for a posteriori error analysis of nonlocal volume-
constrained problems for scalar equations. The reliability and efficiency of the
estimators are proved, and relations between nonlocal and classical local a posteriori
error estimation are also studied. In Du et al. (2013d), a convergent adaptive finite
element algorithm for the numerical solution of scalar nonlocal models is developed.
For problems involving certain non-integrable kernel functions, the convergence
of the adaptive algorithm is rigorously derived with the help of several basic
ingredients, such as an upper bound on the estimator, the estimator reduction, and
the orthogonality property. How these estimators and methods work in the local
limit and for general time-dependent and nonlinear peridynamic models is under
current investigation.

Peridynamics as a Multiscale Mono-model

Classical PDE models for mechanics such as the Navier equations for elasticity do
not feature a length scale other than those related to material properties. On the other
hand, peridynamics features the horizon " that determines the extent of nonlocal
interactions, even in the case of homogeneous, isotropic materials. The appearance
of a length scale implies that the nature of the peridynamic model changes as the
“viewing window” through which one looks at the model changes in size relative to
". Here, we give a brief discussion of this observation.

Let b� � �. Because nonlocal interactions only occur between points within a
distance " from each other, a point x 2 b� only interacts with points y 2 b� [ b�",
where b�" D f y 2 � [�I n b� j jy � xj � "g. Thus, b�" is the interaction domain
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Fig. 2 The gray areas
illustrate three regions �i

having different length scales.
The black regions
surrounding the gray regions
are the interaction regions
�i;", all of which have the
same thickness "

corresponding to b�. Note that b�" is a collar surrounding b�. We denote by jb�j and
jb�"j the volumes of � and �", respectively.

Let d D diam.b�/ and assume that b� is “nicely shaped” so that, in R
3,

jb�j D O.d3/. Then, jb�"j D O.d2" C d"2 C "3/. We have that the volume
ratio � D jb�"j=jb�j D O."=d C "2=d2 C "3=d3/ is an indicator of the relative
nonlocality for the subdomain b�. If " is a fixed material parameter, � decreases
(resp. increases) as jb�j increases (resp. decreases). Because there are no self-
interactions (a consequence of Newton’s third law), the net internal force on b� due
to the action of points in b� is zero so that the internal force on b� is solely due to
interactions with points in b�".

We introduce three subdomains b�i with diameters di , interaction domains b�i;",
and volume ratios �i , i D 1; 2; 3; see Fig. 2. We consider three cases:

• d1 � " so that �1 D O."=d1/ 	 1 so that the internal force acting on b�1

is local, emanating from the very thin (relative to the size of b�1) layer b�1;" of
material points surrounding b�;

• d2 D O."/ so that �2 D O.1/ and the internal force acting on b�2 is nonlocal,
emanating from the layer b�2;" of material points having roughly the same size as
b�2;

• d3 	 " so that �3 D O."3=d33 / � 1 so that the internal force acting on b�3 is
nonlocal, emanating from the very thick (relative to the size of b�3) layer b�3;" of
material points surrounding b�3.

Thus, depending on the scale one is operating in, peridynamics can behave
as either a local or nonlocal material model so that, clearly, peridynamics is by
itself a multiscale model for material mechanics, hence our characterization of
peridynamics as a multiscale mono-model for mechanics. This observation has
important implications for computations which we next explore.
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AMultiscale Finite Element Implementation of Peridynamics

The multiscale nature of peridynamic models resulting from the horizon "motivates
a multiscale finite element implementation of peridynamics. Suppose h is a typical
grid size in a discretization of a PDE model for solid mechanics in case the solution,
i.e., the displacement, is known to be smooth; for example, if one is interested
in achieving an L2 error of O.ı/ and one uses continuous piecewise linear finite
element approximations, then h would be chosen to be of O.ı1=2/. Even in cases
where the solution has discontinuities, one can safely use the PDE model in regions
away from the discontinuity, i.e., in regions where the displacement is smooth.
However, near the location of discontinuities in the displacement, the PDE model
breaks down, and one instead uses a peridynamic model. However, because the
locations of those discontinuities are, in general, not known beforehand, one has to
be able to detect where they occur. One also has to devise a strategy for coupling the
peridynamic and PDE models. The overall goal of the implementation is to achieve,
e.g., for piecewise linear approximations O.h2/ accuracy even in the present of
discontinuities.

Based on the above discussions, a multiscale implementation of the peridynamic
model in one dimension is presented in Chen and Gunzburger (2011) and Xu et al.
(2016a) and in two dimensions in Xu et al. (2016b). One starts with a choice for a
horizon parameter " and for a bulk grid size h, that is, what one would use should one
be solving a PDE model for problems with smooth solutions. Then, the multiscale
implementation includes the following components:

1. Detection of elements that contain a discontinuity in the displacement. A simple
means for doing this is to examine the size of the difference in the displacements
at the nodes of a triangle. More sophisticated means for this step are also
considered in Xu et al. (2016b).

2. Refinement of the grid as necessary near the discontinuities. Meeting the goal of
refinement requires the use of very small elements so that refinement should not
result in isotropic elements containing the discontinuity because this would result
in a huge number of such elements. Instead, refinement should result in highly
anisotropic elements with long sides aligned with a discontinuity and very short
sides crossing a discontinuity.

3. Use of discontinuous Galerkin methods (DGMs) for peridynamics in regions
containing the discontinuity. The kernel functions used in peridynamics are
such that such methods are conforming. In particular, unlike the PDE case, one
need not worry about enforcing continuity of any kind across element edges;
nonlocality takes care of a weak enforcement of such properties.

4. Use of continuous Galerkin methods (CGMs) for peridynamics in regions
neighboring but not containing the discontinuity. The use of CGMs wherever
possible results in a reduction in the number of degrees of freedom compared to
using DGMs.
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5. Use of CGMs for PDEs if sufficiently far away from the discontinuity. In regions
where the displacement is smooth, PDEs provide adequate modeling and CGMs
provide conforming discretizations.

6. Use of quadrature rules that can be applied for any combination of h and ". Such
quadrature rules on triangles and regions defined as the intersection of triangles
with the interaction disc of radius " are developed in Xu et al. (2016b) that are
applicable to the integrable kernels appearing in two-dimensional peridynamic
models.

Generically, one would choose h � " because then the discretized peridynamic
model essentially reduces to a local model whenever the local grid size is of
O.h/. Specifically, if one uses the same asymptotically compatible continuous finite
element space and the same basis to discretize both the nonlocal peridynamic model
and the corresponding local PDE model, it can be shown that the difference between
the entries of the peridynamic stiffness and those of PDE stiffness matrix is of
O."/. This effect greatly facilitates the coupling of a peridynamic model to a PDE
model; in fact, the coupling is seamless. On the other hand, we would also choose
" > h, where h denotes the grid size one would use for elements in which solution
discontinuities occur. With " > h, the peridynamic model is nonlocal. To meet the
goal of achieving O.h2/ accuracy, one should choose h D O.h4/ because in any
element containing a solution discontinuity whose position is not known exactly, the
best accuracy one can achieve is O.h1=2/ regardless of what degree polynomial one
uses. It is shown in Chen and Gunzburger (2011) and Xu et al. (2016a,b) that the
fine-to-coarse grid transition can, at least for kernels that allow for discontinuous
displacements and for DGMs, be abrupt, i.e., there is no need for transition layer
within which the element size gradually grows from small to fine. DGMs need only
be used in elements that contain the discontinuity.

We illustrate the multiscale implementation strategy for an exact solution having
a jump discontinuity across a circle of radius 0:5 centered within the square Œ0; 1�2;
the fixed horizon " D 0:01. Starting with a uniform mesh of size h, the target
grid size for regions where the solution is smooth, an adaptive grid refinement
strategy that first detects elements containing the discontinuity and which ultimately
constructs a grid consisting of O.h/ size elements except for highly anisotropic
elements (the elements connecting the red nodes in Fig. 3 which is for h D 1=16)
along the discontinuity that are of size O.h/ parallel to the discontinuity and of
size O.h4/ across the discontinuity, the actual thickness of those elements is of
O.10�5/ so that they are not visible. In Fig. 3, DGM and peridynamics are used
in elements with a red node, CGM and peridynamics are used in elements having
both red and blue nodes, and CGM with PDE are used in the remaining elements.
Note that the highly anisotropic straight-sided elements cannot, in general, contain
the discontinuity throughout the element. The construction process merely insures
that the discontinuity passes through the shortest side of those elements. We have
empirically found that doing this is enough to preserve optimal accuracy.
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Fig. 3 For a problem with a discontinuous solution across a circle, the resulting adaptively refined
mesh (left) and a cross-section of approximate solution (right). Note that all elements are of size h
excepting the thin elements connecting the red nodes which are not visible because they have one
side of length O.h4/

As a result of these implementation choices, the number of degrees of freedom
needed is only slightly greater than that for a finite element method on anO.h/ size
grid for the PDE. The overhead incurred through the use of a nonlocal model to
treat discontinuous behaviors is due to the use of such models in a layer of highly
anisotropic elements surrounding the discontinuity and the use of DGMs in those
elements. Because, in two dimensions, the number of such elements grows linearly,
whereas the total number of elements grows quadratically, the percentage overhead
actually reduces as h decreases.

The implementation of Chen and Gunzburger (2011) and Xu et al. (2016a,b)
clearly illustrates the multiscale mono-model nature of peridynamics but is still a
far cry from being a useful tool; much work needs to be done to achieve the latter,
with the most daunting tasks remaining being extensions to three dimensions and
the treatment of problems with propagating, i.e., moving, discontinuities.

Control, Identification, and Obstacle Problems

In this section, we very briefly touch upon some other recent developments for
nonlocal models that go beyond standard simulation settings.

Nonlocal Optimal Control Problems

The ingredients of an optimal control problem are state and control variables, a
state equation that relates the state and control variables, and a cost or objective
functional which depends on the state and control. Then, the goal of the optimal
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control problem is to determine states and controls that minimize the cost functional,
subject to the state equation being satisfied.

We consider state equations of the form

8̂
<
:̂

�Lu.x/ WD 2

Z
B".x/

�
u.y/ � u.x/

�
ˇ.x; y/dy D f for x 2 �

u D g for x 2 �I ;

(15)

where u.x/ denotes the state, f .x/ the control, g.x/ a given function, and ˇ.x; y/ a
symmetric kernel, i.e., ˇ.x; y/ D ˇ.y; x/. We consider the matching functional

J .u; f / WD
1

2

Z
�

�
u.x/ �bu.x/�2dx C

�

2

Z
�

�
f .x/

�2
dx; (16)

wherebu.x/ is a given target function and � > 0 a given parameter. The first term
in (16) is the goal of control, i.e., to match (in anL2 sense for the functional J .u; f /)
the solution u.x/ of (16) as well as possible to the given target functionbu.x/. Then,
the optimal control problem is to

seek an optimal state u�.x/ and an optimal control f �.x/ such that the functional (16) is
minimized subject to (15) being satisfied.

Of course, a precise statement of this problem requires the choice of appropriate
function spaces for u and f ; these are defined in D’Elia and Gunzburger (2014).
There, the existence and uniqueness of the optimal control and state in appropriate
function spaces are also proved for several kernels relevant to peridynamics or
anomalous diffusion.

The optimal state u�.x/ is determined from the optimality system

8<
:

�Lu� D �
1

�
w� for x 2 �

u� D g for x 2 �I

and

(
�Lw� D .u� �bu/ for x 2 �

w� D 0 for x 2 �I :
(17)

The adjoint function w�.x/ is a Lagrange multiplier function that is introduced to
enforce the constraint (15) imposed when minimizing the functional (16).

After the optimal state u�.x/ and optimal adjoint state w�.x/ are obtained, the
optimal control f �.x/ is given by

f � D �
1

�
w� for x 2 �:
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Also proved in D’Elia and Gunzburger (2014) is the convergence, as " ! 0, of
solutions of the nonlocal control problem to solutions of the local control problem
for which the state equation (15) is replaced by the PDE problem

(
��u` D f` for x 2 �

u` D g` for x 2 @�;
(18)

where u`.x/ and f`.x/ denote the local PDE solution and control, respectively,
and @� denotes the boundary of �. The given Dirichlet data g`.x/ is determined
by evaluating the nonlocal data g.x/ on @�; this, of course, requires g. x/ for
x 2 �I to be more regular than that needed for the nonlocal problem to be well
posed. In addition, in D’Elia and Gunzburger (2014), the convergence of solutions
of finite-dimensional discretizations of the nonlocal optimality system, including
finite element discretizations, is proved, and optimal error estimates are derived,
again for several kernels relevant to peridynamics and anomalous diffusion.

As an example, we consider a piecewise linear target function having a jump
discontinuity; see the light blue curve in Fig. 4. In that figure, also plotted are the
target functional bu and, for two values of ", the finite element approximations u�

N

of the optimal state and f �
N of the optimal control. We observe that, away from

the point x D 0:5 at which the target function is discontinuous, the local and
nonlocal approximations show a very good match to the target function. However,
we observe that because the local optimal state is differentiable, its approximation
cannot match the target function near x D 0:5. Also, because the nonlocal optimal
state converges to the local optimal state as " ! 0, we see that for the smaller
value of ", the nonlocal and local optimal states are in close agreement so that, in
this case, the nonlocal optimal state also fails to match the target function near the
discontinuity. This is to be expected because we have already stated that the solution
of the nonlocal problem converges to that of the local problem as " ! 0. However,
for the larger value of " for which nonlocal effects are more pronounced, we observe
a difference between the approximation of the local optimal state (which does not
match the target well) and the approximation of the nonlocal optimal state (which
do match well), being more flexible with respect to the discontinuous behavior of
the target function.

Nonlocal Parameter Identification Problems

We next consider the problem of identifying the diffusivity coefficient function
#.x; y/ in the nonlocal equation

8̂
<
:̂
2

Z
B".x/

�
u.y/ � u.x/

�
#.x; y/ ˇ.x; y/dy D f .x/ for x 2 �

u.x/ D g.x/ for x 2 �I ;

(19)
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Fig. 4 The target function
and finite element
approximations of the optimal
state (left) and control (right)
for the nonlocal and local
control problems. The middle
plot is a zoom-in of the left
plot in the vicinity of the
discontinuity in the target
function
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where the kernel ˇ.x; y/ W � � � ! R is a nonnegative symmetric mapping and
f .x/ and g.x/ are given functions. We assume that the diffusivity function satisfies

0 < #0 � #.x; y/ � #1 < 1 (20)

for some constants #0 and #1. Additional technical assumptions on #.x; y/ are
needed for the analysis; see D’Elia and Gunzburger (2016).

Our approach is to

seek an optimal state u�.x/ and an optimal diffusivity #�.x; y/ such that the functional
K.u; #/ is minimized subject to (19) and (20) being satisfied,

where, for a given target functionbu.x/, we have the functional

K.u; #/ WD
1

2

Z
�

�
u.x/ �bu.x/�2dx: (21)

Note the absence of a regularization term in (21) compared to the functional (16);
that term is not needed in the analysis because of (20) and the other technical
assumptions explicitly enforced on candidate solutions.

In D’Elia and Gunzburger (2016), the existence of a solution of this parameter
identification problem is proved. In general, the solution is not unique. This is
not due to the nonlocality; lack of uniqueness also holds for the corresponding
local PDE parameter identification problem. In that paper, an optimality system
whose solution provides the optimal state and optimal diffusivity coefficient is also
derived. For the sake of brevity, we do not discuss this here other than to say
that in addition to the state equation (19) and an adjoint equation similar to (17),
complementary conditions are present that enforce the constraints in (20). Also
in D’Elia and Gunzburger (2016), finite element discretizations of the optimality
system are defined, and convergence proofs for the discrete solution are provided,
including a priori error estimates for the approximate states and coefficients.

As an illustration, we assume the form #.x; y/ D #.
xCy
2
/ for the coefficient and

then choose the particular piecewise constant coefficient

#C .z/ D

8<
:
1 z 2 .0; 0:2/

0:1 z 2 .0:2; 0:6/

1 z 2 .0:6; 1/:

(22)

Piecewise constant coefficients often arise in practice; for example, in subsurface
flows, disjoint portions of the subsurface may consist of rock, clay, or sand. Using
that coefficient, we solve the state equation (19) with f .x/ D 5 on � D .0; 1/,
u.x/ D 0 on �I D .�"; 0/ [ .1; 1C "/, and a peridynamic-like kernel to produce
the manufactured target functionbu.x/ for the functional (21); in actuality, we solve
for a very fine grid finite element approximation of bu.x/. Having done this, we
pretend we do not know either the state or coefficient but try to identify them by
solving the optimality system. Note that the diffusivity coefficient we try to identify
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Fig. 5 For different values of M and for N D 212, the approximation #�

M of the optimal
coefficient for " D 2�9 (left) and 2�4 (right). Also plotted is the target coefficient #C

is discontinuous so that a local PDE-based parameter identification problem would
do a poor job of matching that coefficient.

Computational results are shown in Fig. 5. In that figure,M denotes the number
of degrees of freedom used in a piecewise constant approximation of # . Note that
M is different from the number of degreesN used for a continuous piecewise linear
approximation of u. In Fig. 5, we use a large value forN so as to minimize the effects
of inaccuracies present in the approximate solution of the constraint equation (19).
From Fig. 5, one observes that asM increases, the approximation #� resulting from
the optimization process converges to the presumably unknown exact coefficient
#C . We again note that nonlocality allows for much better match than is possible
with PDE-based models.

Nonlocal Obstacle Problems

We consider the nonlocal obstacle problem given by the nonlocal equation (15) with
g D 0 for which the solution u.x/ is subject to the constraint

u.x/ �  .x/ for x 2 �; (23)

where  .x/ is a given function. This problem is equivalent to the variational
problem

min
u
I Œu� subject to u �  in � and u D 0 on �I (24)

for the functional

I Œu� WD
1

2

Z
�[�I

Z
�[�I

ˇ.x; y/.u.x/ � u.y//2dydx �

Z
�

u.x/f .x/dx:
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In Guan and Gunzburger (2017), the existence and uniqueness of solutions of the
nonlocal obstacle problem (24) is proved for integrable and certain classes of non-
integrable kernels. There, it is also proved that finite element discretizations are well
posed as is its convergence to the solution of the continuous problem. In addition,
the convergence as " ! 0 of solutions of the nonlocal obstacle problem to that of
the local obstacle problem is also proved under certain assumptions.

The corresponding local obstacle problem is given by Eq. (18) subject to the
constraint (23). Well-posedness proofs for this problem require more smoothness
for the obstacle than is required for the nonlocal obstacle problem. In particular, for
the local case, obstacles with jump discontinuities are not allowable, whereas for
the nonlocal case, for integrable and certain classes of non-integrable kernels with
relatively weak singularities, such obstacles fall within the purview of the well-
posedness and finite element analyses of Guan and Gunzburger (2017).

There is also a very significant difference in the solutions of the local and
nonlocal obstacle problems, especially for non-smooth obstacles. An illustration
is provided by Fig. 6 which features a piecewise linear obstacle having two jump
discontinuities. The solution of the obstacle problem is given for five values of "
as is the solution of the local obstacle problem. We see that, as expected, for small
values of ", the nonlocal solution is close to the local ones, but for larger values, there
is a significant difference, with the nonlocal solution being able to conform much
better to the shape of the obstacle, even on its vertical edges. The local solution can
only stretch over the peaks of the obstacle and completely ignores the shape of the
obstacle below those peaks.
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equations (PDEs); however, the accuracy comes at the price of a prohibitive com-
putational cost, making local-to-nonlocal (LtN) coupling strategies mandatory.

In this chapter, we review the state of the art of LtN methods where the
efficiency of PDEs is combined with the accuracy of nonlocal models. Then, we
focus on optimization-based coupling strategies that couch the coupling of the
models into a control problem where the states are the solutions of the nonlocal
and local equations, the objective is to minimize their mismatch on the overlap of
the local and nonlocal problem domains, and the virtual controls are the nonlocal
volume constraint and the local boundary condition. The strategy is described in
the context of nonlocal and local elasticity and illustrated by numerical tests on
three-dimensional realistic geometries. Additional numerical tests also prove the
consistency of the method via patch tests.

Keywords
Optimization-based coupling methods · Local-nonlocal coupling · Nonlocal
elasticity · Classical elasticity · Peridynamics · Domain decomposition ·
Finite element method · Particle methods

Introduction

Nonlocal continuum theories such as peridynamics (Silling and Lehoucq 2010) and
physics-based nonlocal elasticity (Di Paola et al. 2009) can capture strong nonlocal
effects due to long-range forces at the mesoscale or microscale. For problems
where these effects cannot be neglected, nonlocal models are more accurate than
classical partial differential equations (PDEs) that only consider interactions due to
contact. However, the improved accuracy of nonlocal models comes at the price of
a computational cost that is significantly higher than that of PDEs.

The goal of local-to-nonlocal (LtN) coupling methods is to combine the compu-
tational efficiency of PDEs with the accuracy of nonlocal models. LtN couplings are
imperative when the size of the computational domain or the extent of the nonlocal
interactions is such that the nonlocal solution becomes prohibitively expensive
to compute, yet the nonlocal model is required to accurately resolve small-scale
features (such as crack tips or dislocations that can affect the global material
behavior). In this context, the main challenge of a coupling method is the stable
and accurate merging of two fundamentally different mathematical descriptions of
the same physical phenomena into a physically consistent coupled formulation.

Structure of the Chapter

This chapter is organized as follows. In section “Principles of Optimization-Based
Couplings” we present an abstract framework of optimization-based coupling
(OBC) methods. In section “The State Models and Their Properties” we introduce
the static peridynamics and the local elasticity state models and describe their
properties. In section “Optimization-Based LtN Formulation of Linearized Linear
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Peridynamic Solid and Classical Elasticity” we specialize the OBC approach to the
state models, and in section “Discretization of the LtN Formulation” we describe its
fully discrete formulation; here we also review the discretization scheme for static
peridynamics. Finally, in section “Numerical Tests” we demonstrate the consistency
and efficiency of the coupling method through several numerical tests using Sandia’s
agile software components toolkit.

Local-to-Nonlocal CouplingMethods for ContinuumMechanics

The promise of improved physical fidelity at a lower computational cost has
attracted significant attention to the coupling of nonlocal and local material models
in continuum mechanics. The bulk of the existing methods though is based on some
form of blending of the two material models. This blending can involve the energies
of the two models, their force balance equations, or even their material properties.
We describe three examples that are representative of these types of couplings.

The extension of the Arlequin method (Ben Dhia and Rateau 2005) to LtN
couplings of continuum mechanics models by Han and Lubineau (2012) is an
example of an energy-blending approach.

Their method splits the domain into a nonlocal subdomain, where the nonlocal
effects are pronounced, and an overlapping local subdomain, where such effects
are negligible. The intersection of these domains forms a “gluing area” where the
energy of the system is defined as a weighted average of the local and nonlocal
energies. At the local and nonlocal complements of the gluing area, the energy is
defined according to the models operating in these regions. A Lagrange multiplier
enforces compatibility of the kinematics of both models.

The formulation in Seleson et al. (2013) provides an example of a force-blending
coupling approach. This method couples peridynamics and classical elasticity by
using a weighted average of the local and nonlocal force balance equations in the
overlap or bridging domain. Similar to Han and Lubineau (2012), the method uses
the “pure” local and nonlocal force equations in the complements of this domain.
The resulting hybrid model satisfies Newton’s third law and is consistent for linear
fields with no external forces (i.e., the method passes a linear patch test).

Finally, the morphing approach in Lubineau et al. (2012) is an example of an
LtN coupling scheme based on blending, or morphing, the material properties of
the two models. The method consists in the definition of a single model over the
entire domain with an equilibrium equation that accounts for both local and nonlocal
interactions through a gradual change in the material properties characterizing the
two models in a “morphing” region. In this region local and nonlocal properties
are suitably weighted under the constraint of energy equivalence in the overlap of
the two domains. In Azdoud et al. (2013) the same authors extend this method to
anisotropic continua.

These coupling methods share two common features. First, by blending energies,
forces, or material models, they effectively introduce a hybrid material description
combining the properties of both the local and nonlocal models in the overlap
regions. Second, they treat the kinematic compatibility between the models, e.g.,
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the equality of their displacements over a suitable interface, as a constraint in a way
that is reminiscent of classical domain decomposition methods. In the next section,
we describe a general OBC strategy that differs fundamentally from the blending
approaches discussed above and offers some distinct computational and theoretical
advantages.

Principles of Optimization-Based Couplings

In contrast to the blending methods described earlier, an OBC strategy treats the
coupling condition as an optimization objective, which is minimized subject to the
model equations acting independently in their respective subdomains. In so doing
OBC reverses the roles of the coupling conditions and the governing equations and
keeps the latter separate.

In particular, the coupling of local and nonlocal models is effected by couching
the LtN coupling into an optimization problem. The objective is to minimize the
mismatch of the local and nonlocal solutions on the overlap of their subdomains,
the constraints are the associated governing equations, and the controls are the
virtual nonlocal volume constraint and the local boundary condition. This approach
is inspired by nonstandard optimization-based domain decomposition methods for
PDEs (Discacciati et al. 2013; Du 2001; Du and Gunzburger 2000; Gervasio et al.
2001; Gunzburger et al. 1999, 2000; Gunzburger and Lee 2000; Kuberry and Lee
2013). It has also been applied to the coupling of discrete atomistic and continuum
models in Olson et al. (2014a,b). This strategy brings about valuable theoretical and
computational advantages. For instance, the coupled problem passes a patch test by
construction, its well-posedness typically follows from the well-posedness of the
constraint equations, and its numerical solution only requires the implementation of
the optimization strategy as the local and nonlocal solvers for the state equations can
be used as black boxes. For this reason, we refer to OBC methods as nonintrusive as
opposed to the coupling methods described in section “Local-to-Nonlocal Coupling
Methods for Continuum Mechanics,” which are intrusive in the sense that their
implementation requires modification of the basic governing equations for the local
and nonlocal models in the overlap region. In what follows, we present an abstract
formulation of OBCs.

Let Ln WVn !R be a nonlocal operator that accurately describes the behavior of
the material in a bounded body and let Ll WVl !R be a local operator that describes
the material well enough where the nonlocal effects are negligible. We recall that
the numerical solution of the accurate nonlocal model is computationally expensive,
whereas the one of the local model is, in general, affordable. As in the coupling
methods described in section “Local-to-Nonlocal Coupling Methods for Continuum
Mechanics,” we solve the nonlocal model where the nonlocality affects the global
material behavior and the local problem everywhere else; the challenge is to couple
those models at the interfaces or overlaps of their domains. As explained above, we
tackle this by solving an optimization problem where we minimize the difference
between the local and nonlocal solutions at the interfaces tuning their values on the
virtual boundaries and volumes induced by the domain decomposition; see Fig. 1a.
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Fig. 1 Illustration of LtN OBC domain configuration for a bonded body � and its decomposition
into ! and �. (a) An abstract domain configuration. (b) A simplified domain configuration

Formally, we state the LtN OBC as follows:

min
un;ul ;�n;�l

J .un;ul / D
1

2
kun � ulk

2
�;overlap

s.t.

8
ˆ̂
<̂

ˆ̂
:̂

�Lnun D b.x/ nonlocal domain

un.x/ D g.x/ physical n-boundary

un.x/ D�n.x/ virtual n-boundary

8
ˆ̂
<̂

ˆ̂
:̂

�Llul D b.x/ local domain

ul .x/ D g.x/ physical boundary

ul .x/ D�l .x/ virtual boundary,

(1)

where b is a body force density, k � k�;domain is a suitable norm on a domain, and
.�n; �l / 2 C (the control space) are the control variables. “N-boundary” stands
for nonlocal boundary, usually called interaction volume (rigorously defined in
section “The State Models and Their Properties”), that consists of all points outside
of the domain that interact with points inside the domain. Thus, the goal of OBC is
to find optimal values of the virtual controls �n and �l such that un and ul are as
close as possible on the overlap and still satisfy the model equations, which play the
role of optimization constraints.

Note that this approach is very general and flexible and can be applied to any
nonlocal model for continuum mechanics when a suitable local approximation is
available. In this chapter, we use the OBC technique to combine nonlocal elasticity,
described by a static peridynamics model, and classical linear elasticity. Our strategy
is based on the recently introduced approaches (D’Elia and Bochev 2014, 2016;
D’Elia et al. 2016) for local and nonlocal diffusion (Du et al. 2012).

Well-Posedness

We present a strategy for proving the well-posedness of (1) for linear operators Ll

and Ln. Here, without loss of generality, we consider g D 0. We assume that for any
pair of controls, the constraints in (1) have unique solutions un.�n/ and ul .�l /. We
introduce the reduced form of the optimization problem by eliminating the states
from (1) and obtaining an optimization problem in terms of �n and �l only:
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min
�n;�l

J .�n; �l / D
1

2
kun.�n/ � ul .�l /k

2
�;o; (2)

where “o” stands for “overlap.” Following the approach used in Abdulle et al.
(2015), D’Elia and Bochev (2016), Gervasio et al. (2001) and Olson et al. (2014b),
one can show the well-posedness of (2) by splitting the solution of the state
equations into the “harmonic” components .vn.�n/; vl .�l // and the homogeneous
components .u0

n;u0
l / such that they respectively satisfy

8
ˆ̂
<

ˆ̂
:

�Ln vn D 0 nonlocal domain

vn D 0 physical n-boundary

vn D�n virtual n-boundary

8
ˆ̂
<

ˆ̂
:

�Ll vl D 0 local domain

vl D 0 physical boundary

vl D�l virtual boundary;

(3)

and

(
�Ln u0

n Db nonlocal domain

u0
n D 0 n-boundary

(
�Ll u0

l Db local domain

ul .x/ D 0 boundary:
(4)

In terms of the components un D vn C u0
n and ul D vl C u0

l , the objective function
and the Euler-Lagrange equations are given by

J .�n; �l / D
1

2
kvn.�n/ � vl .�l /k

2
�;o C

1

2
ku0

n � u0
l k2

�;o

C .vn.�n/ � vl .�l /;u0
n � u0

l /�;o;

and

Q.� n; � l I ˇn; ˇl / D F .ˇn; ˇl / 8 .ˇn; ˇl / 2 C; (5)

where

Q.� n; � l I ˇn; ˇl / D .vn.� n/ � vl .� l /; vn.ˇn/ � vl .ˇl //�;o;

F .ˇn; ˇl / D �.u0
n � u0

l ; vn.ˇn/ � vl .ˇl //�;o:

The well-posedness of (2) is a consequence of the following important assumption.

Assumption .1 (Strong Cauchy-Schwarz (CS) inequality) There exists a posi-
tive constant � < 1 such that for all .� n; � l / 2 C

j.vn.� n/; vl .� l //�;oj < � kvn.� n/k�;okvl .� l /k�;o: (6)

This assumption, though strong, is reasonable in the context of multiscale modeling;
in fact, it holds for problems such as nonlocal diffusion models (D’Elia and Bochev
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2016; Olson et al. 2014b) and multiscale elliptic problems with highly oscillatory
coefficients (Abdulle et al. 2015).

The following lemma establishes a fundamental property of Q.

Lemma 1. If Assumption.1 holds, the form Q.�; �/ defines an inner product on C.
Proof. The bilinear form Q.�; �/ is symmetric and positive semi-definite. We show
that it defines an inner product, by showing that Q.� n; � l I � n; � l / D 0 if and only
if .� n; � l / D .0; 0/. Clearly, if .� n; � l / D .0; 0/, then vn.� n/ D 0 and vl .� l / D 0,
implying Q.� n; � l I � n; � l /D0. On the other hand, if Q.� n; � l I � n; � l /D0,

0 D Q.� n; � l I � n; � l / D kvn.� n/ � vl .� l /k
2
�;o

D kvn.� n/k2
�;o C kvl .� l /k

2
�;o � 2.vn.� n/; vl .� l //�;o

� .1 � �/
�
kvn.� n/k2

�;o C kvl .� l /k
2
�;o

�
;

where the last step is a consequence of the strong CS inequality (6) and the Young’s
inequality. Since � < 1, we have

�
kvn.� n/k2

�;o C kvl .� l /k
2
�;o

�
� 0:

Thus, we have that vn.� n/D0 and vl .� l /D0, which implies .� n; � l /D.0; 0/. ut

Note that to establish the well-posedness of problem (2), we need the complete-
ness of C with respect to the norm induced by Q. However, this may not be the
case; thus, as done in Abdulle et al. (2015), we may consider the completion of C
and solve the optimization problem in the completed space, which we denote by Cc .
Then, we use the Hahn-Banach theorem to extend Q and F in Cc in a continuous
and unique way and we denote the extensions by Qc and Fc . The latter are such that
Qc is continuous and coercive and Fc is continuous in Cc . The following theorem is
a consequence of the considerations above.

Theorem 1. If Assumption.1 holds, the optimization problem (2) has a unique
solution .��

n ; ��
l /2Cc satisfying the extended Euler-Lagrange equation

Qc.��
n ; ��

l I ˇn; ˇl / D Fc.ˇn; ˇl / 8 .ˇn; ˇl / 2 Cc:

The State Models and Their Properties

Let � � R
3 be a bounded body with boundary @� D � , the peridynamic equation

of the displacement of a material point x 2 � at time t � 0 is given by

�.x; t /
@2u
@t2

.x; t / D

Z

�

˚
TŒx; t �hx0 � xi � TŒx0; t �hx � x0i

�
dVx0 C b.x; t /;
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where � W � � R
C!R

C is the mass density, u W � � R
C!R

3 is the displacement
field, b W ��R

C!R
3 is a given body force density and T W ��R

C!R
.3;3/ is the

force state field, i.e, the force state at .x; t / mapping the bond hx0 � xi to force per
unit volume squared. In this work we consider the peridynamic equilibrium equation
for a static problem:

�LnŒu�.x/ WD �

Z

�

˚
TŒx�hx0 � xi � TŒx0�hx � x0i

�
dVx0 D b.x/: (7)

According to the nonlocal theory, we make the assumption that a material point x

interacts only with a neighborhood of points, more specifically, with material points
in a ball of radius ı centered in x, i.e.,

Bı.x/ D fx0 2 � W jx � x0j � ıg;

where ı is a length scale referred to as the horizon. This implies that

TŒx�hx0 � xi D 0; 8 x0 … Bı.x/:

We solve (7) in ! 2 � and we prescribe Dirichlet volume constraints in a volumetric
layer � surrounding ! so that the entire problem domain is � D ! [ �; see Fig. 1,
right. The definition of � depends on the properties of T, and its thickness has
to be large enough to guarantee the well-posedness of the problem; we provide
more details below. In this work, for simplicity, we consider the linearized linear
peridynamic solid (LPS) model (Silling et al. 2007) characterized by the force state
field

TŒx�h�i D
w.j�j/

m

�

.3K� 5G/ �.x/�C 15G
� ˝ �

j�j2
.u.x C �/ � u.x//

�

; 8 x 2 �;

(8)
where � D x0 � x. Here K is the bulk modulus and G is the shear modulus. The
linearized nonlocal dilatation, � W�!R, is defined as

�.x/ D
3

m

Z

Bı.0/

w.j�j/ ��.u.xC�/�u.x// dV�; with m D

Z

Bı.0/

w.j�j/ j�j2 dV�:

Here, the spherical influence function w is a scalar valued function used to
determine the support of force states and to modulate the bond strength (Seleson
and Parks 2011; Silling et al. 2007). Using the linearized LPS force state field
in (8), we formulate the three-dimensional peridynamic problem as follows. Find
u 2 ŒL2.�/�3 such that

8
<

:

�LLPSŒu�.x/ Db.x/ x 2 !

u.x/ D g.x/ x 2 �;
(9)

where g 2 ŒL2.�/�3 is a given displacement function and LLPS is obtained by
substituting (8) into Ln, i.e.,
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LLPSŒu�.x/ WD

Z

Bı.0/

w.j�j/

m

�

.3K � 5G/.�.x/ C �.x C �//�

C 30G
� ˝ �

j�j2
.u.x C �/ � u.x//

�

dV� :

(10)

We define the layer � as

� D fx0 2 � W jx0 � xj < 2ıg 8 x 2 �: (11)

Note that the thickness is double the size of the horizon; this happens because
in order to evaluate the peridynamic operator on a boundary point x 2 @!, we
need to evaluate a double integral over Bı.0/ � Bı.0/, i.e., we need values of the
displacement in B2ı.x/.

The model (10) has two important features. First, its local limit (i.e., the limit for
ı ! 0 that corresponds to vanishing nonlocal interactions) is the classical Navier-
Cauchy equation (NCE) of static elasticity (Seleson and Littlewood 2016):

�LNCŒu�.x/ WD �

��

K C
1

3
G

	

r.r � u/.x/ C G r2u.x/




D b.x/; (12)

where K, G, and b are defined as in (8). The latter is equivalent to the linear
elasticity equation in terms of the Lamé constants .	; 
/:

�r � � Œu�.x/ D b.x/; where

� Œu� D 	.r � u/I C 
.ru C ruT /

.	; 
/ D
�
K � 2G

3
; G

�
;

(13)

where I is the identity tensor. This property suggests that the NC model can
approximate fairly well the nonlocal model for sufficiently regular solutions; for
this reason, it is the local model of choice in our coupling strategy.

Second, for a quadratic displacement field, the linearized LPS reduces to the
classical NCE (see Proposition 1 in Seleson and Littlewood 2016). This property
allows us to perform a quadratic patch test; see section “Patch Tests.”

Optimization-Based LtN Formulation of Linearized Linear
Peridynamic Solid and Classical Elasticity

Given a domain � representing a bounded body, we introduce a partition into a
nonlocal subdomain �n and a local subdomain �l , with boundary �l , such that
�n D !n [�n and �n \�l D �o ¤ ;; see Fig. 2 for a two-dimensional illustration.
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Fig. 2 An example LtN domain configuration in two dimensions

We assume that the nonlocal model (10) accurately describes the material
behavior in �n, while the local NC model gives a fairly reasonable representation
for the rest of the domain. We formulate the coupling as an optimization problem
where we minimize the difference between the nonlocal and the local solutions on
the overlap �o adjusting their values on the virtual interaction volume �c and the
virtual boundary �c determined by the partition. Let �D D � \ �n and �D D � \ �l

be the physical interaction volume and boundary where we prescribe the given
Dirichlet data; we define the virtual control volume and boundary as �c D �n n�D

and �c D �l n�D . By posing the peridynamic problem on !n and the NC problem
on �l , we obtain

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

�LLPSŒun�.x/ D b.x/ x 2 !n

un.x/ D g.x/ x 2 �D

un.x/ D�n.x/ x 2 �c

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

�LNCŒul �.x/ D b.x/ x 2 �l

ul .x/ D g.x/ x 2 �D

ul .x/ D�l .x/ x 2 �c;

(14)

where �n 2 ŒL2.�c/�3 and �l 2 ŒH 1=2.�c/�3 are undetermined volume constraints
and boundary conditions. In our formulation (14) serve as constraints and .�n; �l /

as control variables of the optimization problem

min
un;ul ;�n;�l

J .un;ul / D
1

2

Z

�o

jun � ul j
2 dx subject to (14). (15)

Given the optimal controls ��
n and ��

l , we define the coupled solution as

u� D

(
u�

n x 2 �n

u�
l x 2 �l n �o;

(16)

where u�
n D un.��

n/ and u�
l D ul .�

�
l /.
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Discretization of the LtN Formulation

For the discretization of the NC model in (12), we consider the standard finite
element (FE) method. We denote the vector of values of the local discrete solution
at the FE degrees of freedom by Eul D ŒEu 1

l ; Eu 2
l ; Eu 3

l �, with Eu k
l 2 R

Nl where Nl is the
number of degrees of freedom of each spatial component over the FE computational
mesh.

For the peridynamic model introduced in section “The State Models and Their
Properties,” we utilize a meshfree discretization. For every point xi discretizing the
body �, we approximate the integral operator as follows

LŒxi � WD
X

j 2Fi

˚
TŒxi �hxj � xi i � TŒxj �hxi � xj i

�
V

.i/
j ; (17)

where xi and V
.i/

j are quadrature points and weights and Fi represents the set of
all points in � interacting with the i th material point. Note that the quadrature
point xj is chosen to coincide with the reference position of the j th node; the

quadrature weight V
.i/

j is the volume of the intersection between the neighborhood
of xj and the neighborhood of xi , i.e., jBı.xj /\Bı.xi /j. For xj near the boundary

of Bı.xi /, V
.i/

j represents a partial volume. Details regarding the computation of

V
.i/

j can be found in Seleson and Littlewood (2016). We denote the vector of values
of the discrete nonlocal solution at the material points by Eun D ŒEu 1

n ; Eu 2
n ; Eu 3

n �, with
Eu k

n 2 R
Nn , where Nn is the number of material points.

We let Sn 2 R
No;Nn be the matrix that selects the components of Eu k

n in �o and
Sl 2 R

No;Nl be the operator that evaluates Eu k
l at the material points in �o; we define

them as

.Sn/ij WD ıij and .Sl /ij WD �j .xi /; 8 xi 2 �o;

where �j is the j th FE basis function. We define the discrete functional as

Jd .Eun; Eul / D
1

2

NoX

iD1

3X

kD1

j.SnEu k
n /i � .Sl Eu

k
l /i j

2 eV i ; (18)

where eV i is the volume associated with the i th material point, properly scaled.

Software

The example simulations are carried out using the Albany Salinger et al. (2013)
(available at the public git repository https://github.com/gahansen/Albany) and
Peridigm Parks et al. (2012) (available at the public git repository https://github.
com/peridigm/peridigm) codes, developed in the Center for Computing Research

https://github.com/gahansen/Albany
https://github.com/peridigm/peridigm
https://github.com/peridigm/peridigm
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at Sandia National Laboratories. Albany is an FE code for simulating a variety of
physical processes governed by PDEs. It is applied for the majority of the compu-
tation, including FE assembly for the Navier-Cauchy equation, calculation of the
functional and its derivative, and solution of the state and adjoint systems. Peridigm
is a peridynamics code for solid mechanics. A software interface was developed to
facilitate the linking of Peridigm routines with Albany; both Albany and Peridigm
rely on several Trilinos packages (available at https://trilinos.org/packages), for
example, Epetra for the management of parallel data structures, Intrepid2 for FE
assembly, and Ifpack and AztecOO for the preconditioning and solution of linear
systems. We apply the LBFGS optimization algorithm, as implemented in the
Trilinos package ROL (available at https://trilinos.org/packages/rol).

Numerical Tests

In this section, we demonstrate the effectiveness and consistency of our strategy
through several numerical examples. We first show that the OBC method passes
linear and quadratic patch tests. In these cases, the analytic solutions are available
and are in agreement for the nonlocal and local models. We then apply the OBC
approach to test cases in which a discontinuity is present in the nonlocal domain. For
these simulations, while the nonlocal and local models behave similarly, differences
in their solutions are expected in the overlap domain. We model a rectangular bar
containing a crack, followed by a tensile test specimen containing a crack. The
latter case represents a realistic engineering geometry that fully exercises the OBC
approach in three dimensions.

Patch Tests

The patch test simulations demonstrate the effectiveness of the OBC approach on
benchmark problems for which the analytic solutions are available. As mentioned
previously, it was shown in Seleson and Littlewood (2016) that Eqs. (9) and (12)
are equivalent for linear and quadratic displacements. As a result, for this class of
problems, it is expected that numerical results obtained using the OBC approach
should exhibit an excellent match between the local and nonlocal models in the
overlap region, with discretization error being the only source of discrepancy.

We consider a rectangular bar in three dimensions:

� D Œ0:0 mm; 100:0 mm� � Œ�12:5 mm; 12:5 mm� � Œ�12:5 mm; 12:5 mm�,
!n[�D[�c DŒ0:0 mm; 62:5 mm��Œ�12:5 mm; 12:5 mm��Œ�12:5 mm; 12:5 mm�;

�l D Œ37:5 mm; 100:0 mm� � Œ�12:5 mm; 12:5 mm� � Œ�12:5 mm; 12:5 mm�.

Following the configuration illustrated in Fig. 2, the nonlocal domains are con-
structed such that !n is fully encapsulated by �D [ �c . The external layer provided
by the domain �D [ �c , in which volume constraints are prescribed, has a thickness
equal to twice the horizon (see section “The State Models and Their Properties”).

https://trilinos.org/packages
https://trilinos.org/packages/rol
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Fig. 3 Solutions for displacement in the x direction for the linear and quadratic patch tests. (a)
Solution for the linear patch test. (b) Solution for the quadratic patch test

In Fig. 3, nodal volumes on the left and the FE mesh on the right represent the
discretizations of !n [ �D [ �c and �l , respectively. Further, we define

Linear: u.x/ D 10�3.x; 0; 0/, b.x/ D 0, g.x/ D u.x/,
Quadratic: u.x/ D 10�5.x2; 0; 0/, b.x/ D bq , g.x/ D u.x/.

We assign to the bulk modulus, K, a value of 150:0 GPa, and we assign to the
shear modulus, G, a value of 81:496 GPa, which are representative of stainless steel.
The peridynamic horizon in the nonlocal domain is assigned a value of 4:270 mm.
Following Seleson and Littlewood (2016), the body force density, bq , producing
equilibrium under the given quadratic displacement field, is given by

bq D 10�5

�
8G

3
C 2K

	

D 5:173 N mm�3:

Simulation results for the linear and quadratic patch tests are presented in
Figs. 3 and 4. Displacement solutions in the x (horizontal) direction are given in
Fig. 3. In Fig. 4, we report the same variable along a horizontal line passing through
the center of the bar. The patch test results are in good agreement with the expected
linear and quadratic solutions, respectively, for both the nonlocal and local models.

Rectangular Bar with a Crack

We next consider a rectangular bar containing a discontinuity (crack) at its center.
As illustrated in Fig. 5, OBC is utilized to connect a nonlocal domain covering
the center portion of the bar with two local domains located at the ends of the
bar. Under this configuration, the discontinuity is contained within the nonlocal
domain, and the regions over which (non-control) Dirichlet boundary conditions
are applied are restricted to the local domain. This is advantageous because, in
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Fig. 4 Solutions for the x component of displacement along a horizontal line passing through
the center of the bar for the linear and quadratic patch tests. (a) Solution for the linear patch test.
(b) Solution for the quadratic patch test

practice, the determination and application of nonlocal volume constraints can be
problematic (Littlewood 2015). We define the bounded body as

� WD Œ�50:0 mm; 50:0 mm� � Œ�12:5 mm; 12:5 mm� � Œ�12:5 mm; 12:5 mm�.

The discontinuity is inserted into the geometry via a rectangular plane defined by
x D 0:0 mm, 5:0 mm � y � 12:5 mm, and �12:5 mm � z � 12:5 mm. The
nonlocal and local domains are defined as
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Fig. 5 Discretization and solution for the rectangular bar with a crack. (a) Discretization for the
rectangular bar with a crack. Control nodes are highlighted in blue. (b) The x component of
the displacement solution. Deformation is magnified by a factor of 20 to clearly illustrate the
discontinuity. (c) The x component of the displacement solution along a horizontal line on the top
edge of the bar, passing through the discontinuity

!n[�D [�c WD Œ�46:875 mm; 46:875 mm��Œ�12:5 mm; 12:5 mm��Œ�12:5 mm;

12:5 mm�,
�l 1WD Œ�50:0 mm; �34:375 mm��Œ�12:5 mm; 12:5 mm��Œ�12:5 mm; 12:5 mm�,
�l 2 WD Œ34:375 mm; 50:0 mm��Œ�12:5 mm; 12:5 mm��Œ�12:5 mm; 12:5 mm�.

The domain �c , over which control Dirichlet conditions for the nonlocal domain
are applied, is defined by �46:875 mm � x � �42:1875 mm and 42:1875 mm �

x � 46:875 mm. The control Dirichlet conditions for the local model are applied to
�c , defined by the planes x D �34:375 mm and x D 34:375 mm. The locations
of the control nodes in the discretized model are highlighted in Fig. 5a. As in
the patch tests, the bulk modulus, K, is assigned a value of 150:000 GPa and the
shear modulus, G, a value of 81:496 GPa. The peridynamic horizon in the nonlocal
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domain is assigned a value of 2:707 mm. Tensile loading is applied to the bar
by prescribing displacements of �0:05 mm and 0:05 mm in the x (longitudinal)
direction on the faces located at the ends of the bar defined by x D �50:0 mm
and x D 50:0 mm, respectively. To eliminate rigid body modes, additional zero
displacement boundary conditions are applied in the y direction along the edges
defined by x D �50:0 mm; y D �12:5 mm and x D 50:0 mm; y D �12:5 mm and
in the z direction along the edges defined by x D �50:0 mm; z D �12:5 mm and
x D 50:0 mm; z D �12:5 mm.

Simulation results are presented in Fig. 5. The three-dimensional image in Fig. 5b
shows the opening of the crack that results from tensile loading. Figure 5c gives
displacement results along a horizontal line located on the top face of the bar.

Tensile Test Specimen with a Crack

The simulation of a tensile bar with a crack at its midpoint demonstrates OBC for
the modeling of a common engineering geometry. As shown in Fig. 6, we restrict the
use of the nonlocal model to a small subdomain in the direct vicinity of the crack.
The overall height of the tensile bar specimen is 100:0 mm and the width of the bar
at its midpoint is 6:25 mm. The nonlocal region, located at the midpoint of the bar
and offset to the side of the bar containing the crack, has a height of 8:68 mm and
width of 4:985 mm. The nodes comprising the nonlocal model control domain, �c ,

Fig. 6 Discretization of the
tensile bar specimen. The
nonlocal domain is restricted
to a small subregion near the
center of the bar.
(a) Discretization of tensile
bar specimen. (b) Control
nodes in the overlap region
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Fig. 7 Displacement solutions for the tensile test specimen. Deformation is magnified by a factor
of 10 to clearly illustrate the discontinuity. (a) Displacement in x direction. (b) Displacement in y

direction. (c) Displacement in z direction

and the local model control domain, �c , are highlighted in blue in Fig. 6b. The
discontinuity is inserted via a rectangular plane at the midpoint of the bar extending
from the left side of the bar a distance of 1:86 mm into the bar. We employ material
model parameters of 160:0 GPa for the bulk modulus and 64:0 GPa for the shear
modulus. For the nonlocal model, the peridynamic horizon is assigned a value
of 0:537 mm. Tensile loading is simulated via Dirichlet (displacement) boundary
condition applied to the faces at the top and bottom of the bar that produce an overall
engineering strain of 0.1% in the y direction. Following the strategy described in
section “Rectangular Bar with a Crack,” additional zero displacement boundary
conditions are applied along edges on the top and bottom faces in the x and z
directions to eliminate rigid body modes.

Results for the tensile bar simulation are given in Fig. 7. The influence of the
crack on the displacement solution is restricted predominantly to the nonlocal
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region, and solutions corresponding to the nonlocal and local models are in good
general agreement in the overlap domain.
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Abstract

As nonlocal models become more widespread in applications, we focus on
their connections with their classical counterparts and also on some theoretical
aspects which impact their implementation. In this context we survey recent
developments by the authors and prove some new results on regularity of
solutions to nonlinear systems in the nonlocal framework. In particular, we focus
on semilinear problems and also on higher-order problems with applications in
the theory of plate deformations.
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Introduction

The need for improved models in continuum mechanics has motivated rapid
developments in partial differential equations (PDEs). Over the last two decades,
the success of nonlocal models has given a fresh impetus to investigate partial
integrodifferential equations (PIDEs), for which efforts are under way toward
formulating a counterpart to the local theory in PDEs. Recent results in the nonlocal
framework demonstrate the importance of robust implementations for models that
depend on a length scale parameter (Tian and Du 2014). Other situations have
shown the critical need for a deep understanding of theoretical aspects, such as well-
posedness and regularity of solutions, and also continuity with respect to initial data
which guarantee that numerical simulations produce physically relevant solutions.
Toward this aim, we present below some existing and new results for the nonlocal
theory, which give a correspondence between the nonlocal and the classical elliptic
theory for the second- and fourth-order levels.

Recently nonlocal theories have successfully modeled singular phenomena (such
as fracture), as well as phenomena with nonlocal features (aggregation models in
biology (Sun et al. 2012; Mogilner and Edelstein-Keshet 1999), thermal diffusion
(Oterkus et al. 2014), image processing (Gilboa and Osher 2008), sandpile forma-
tion, and more; see the monograph (Andreu-Vaillo et al. 2010) and the references
therein). The theory of peridynamics (Silling 2000) introduced a model for elastic
deformations in which an integral operator collects a cumulative response of
pairwise interactions within a neighborhood of each material point. This formulation
is applicable to both continuous deformations and those with dynamic fracture. In
the absence of fracture, for a domain� � R

n with smooth boundary and collar � (a
closed set surrounding� of positive measure, which will be defined more precisely
below), the deformation u W � � R

n ! R satisfies the steady-state system

(
L�u.x/ D f .x/; x 2 �

u.x/ D 0; x 2 �:
(1)

The above operator, L�, is a nonlocal Laplacian, defined as

L�u.x/ WD

Z
�[�

Œu.y/ � u.x/��.x; y/ dy; (2)

with � W .� [ �/ � .� [ �/ ! R a measurable kernel. The source term satisfies
f 2 L2.�/, so the equalities in (1) and in the sequel are in the almost everywhere
sense.
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Recent investigations have focused on the case when � is integrable and has
a finite support radius ı, usually referred to as the horizon of interaction. (If �
is not integrable, then the operator L� needs to be defined by using the principal
value). An integrable kernel (also called a weakly singular kernel) is often required
in numerical implementations in order to avoid quadrature errors, especially when
the function u does not have any a priori smoothness. Indeed, in the case of a
highly singular kernel �, a non-smooth or discontinuous function u will produce
an unbounded L�u with unrectifiable errors in numerical computations. Kernels
with non-integrable singularity have been considered before (Caffarelli et al. 2014;
Foss and Geisbauer 2012); however, their analysis is very different as it can still
appeal to compactness and smoothness results that are not available when � 2 L1.
Here we aim to provide a general and versatile roadmap for the study of regularity
of solutions to nonlocal systems and establish connections with the local theory
by formulating equivalent nonlocal theorems to existing local results. The bridge
between the two theories also involves an analysis of convergence of low-regularity
nonlocal solutions to the smooth solutions of the classical solutions as the support of
the kernel shrinks to zero. We also prove some new regularity results which provide
the groundwork for a more comprehensive regularity theory of nonlocal systems.
More precisely, we establish regularity of solutions for nonlocal semilinear systems,
as well as for higher-order problems.

Nonlocal models provide an alternative description for physical situations
modeled by functions that lack any weak differentiability. Thus a nonlocal elliptic
problem admits L2� regular solutions whenever the forcing is in L2, whereas the
classical Laplacian endows the solutions with H2� regularity (basically, existence
of two weak derivatives). This fact is seen as a strong advantage to employing
nonlocal models when the physics of the problems show that irregular solutions
could arise. An immediate implication in the mathematical analysis shows that
all estimates could be derived at the L2-level, so no additional approximations or
smoothing techniques need to be employed. The techniques for investigations of
low-regularity solutions are still under development, but sufficiently many existing
results indicate that the nonlocal theory mirrors in many aspects the classical PDE
framework. The results that connect the nonlocal theory with the local theory are at
two levels:

• Nonlocal counterparts to existing theorems in the local theory are derived (e.g.,
mean value theorems, regularity of “elliptic” solutions, Poincaré inequality, etc.)

• Convergence results that show that nonlocal operators and/or nonlocal solutions
converge to their classical counterparts under appropriate assumptions as the
horizon of interaction (the support of the kernel �) shrinks to zero.

The new paradigm requires that one studies nonlocal solutions uı (dependent
on the kernel’s horizon, ı) with low-regularity tools. One can then investigate the
convergence of uı to u as the horizon ı ! 0C and identify a connection to classical
results. The table below contrasts and compares the two approaches: in the local
setting, smooth approximations of the solutions to the PDE will converge in H2 to
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a weak solution u 2 H2, whereas in the nonlocal setting, the rough solutions uı of
the counterpart PIDE will converge in L2 to the sameH2 regular solution.

Framework Convergence

Local Regularized approximations
H2

�! weakH2 solution

Nonlocal L2 approximations uı
L2

�! weakH2 solution u

The choice of the model (PDE vs. PIDE) is dictated by the physics and
whether it is appropriate to require weakly differentiable solutions that satisfy
a PDE or to allow solutions with stronger discontinuities as is possible with a
PIDE.

Higher-Order Nonlocal Models

In Radu et al. (2017) the authors introduced and analyzed a system involving a
nonlocal biharmonic operator with boundary conditions which are counterparts
of the classical boundary (hinged and clamped) conditions. This nonlocal model
provides an alternative to classical plate theory, which though well-developed for
nice domains (convex or of classC2) andH2 solutions, has significant shortcomings
regarding irregular solutions and domains. The diagram below summarizes the
well-posedness results of Radu et al. (2017) for fourth-order nonlocal problems on
arbitrary domains, even in the absence of Lipschitz regularity for the boundary of
the domain. When the domains have more regularity, these results also establish
a clear connection, as the horizon goes to zero, to the classical theory through L2

strong convergence.

Regularity of domain Results for the nonlocal biharmonic system

None Nonlocal problem well-posed in L2.�/

Class C1 (relaxation may be
possible)

L2.�/-convergence to distributional solution

Class C2 or convex C1 Convergence to weak solution of elliptic hinged or
clamped problem

Class C4 Convergence to regular solution of elliptic hinged or
clamped problem

For all nonlocal theories, of second- or higher-order, our goal remains to propose
and investigate models that are robust in the presence of singularities. The ensuing
nonlinear analysis will carry to applications such as suspension bridges where
many new models and interesting advances have recently appeared (Berchio et al.
2016; Gazzola 2015; Radu et al. 2014). By introducing higher-order systems in the
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nonlocal setting, we are also considering applications in other disciplines where
such systems play an essential role, such as nonlocal diffusion (see Andreu-Vaillo
et al. 2010 and the references therein). In phase transitions, the classical Cahn-
Hilliard equations are fourth-order systems, which have long been recognized to be
approximations to phase separations with a binary mixture, yet the model considers
it equipped with continuity or even smoothness. Different nonlocal models (Bates
and Han 2005a,b) have already been considered as well, yet their convergence to
the classical counterpart has not been established yet.

At a theoretical level, we state in this manuscript the first (to our knowledge)
regularity results for solutions to nonlinear second-order nonlocal systems and, also,
for higher-order nonlocal systems. The classical theory of these systems is very
well-developed (e.g., for recent developments, see Mayboroda and Maz’ya 2014).
There are several facts that motivate carrying this study in the nonlocal setting. First,
as we will see below, the nonlocal elliptic theory contains many parallel results
and properties comparable to the classical theory: energy minimization, comparison
principles, and mean value properties (Foss and Radu 2016; Hinds and Radu 2012).
Also, as discussed above, nonlocal solutions, seen as “rough” approximations of
classical solutions, converge to their classical (smooth) counterparts even for higher-
order systems. These convergence results have the potential to solve open classical
problems where one could study first its nonlocal counterpart and then investigate
the limit of the nonlocal solutions as the horizon shrinks. Finally, a major advantage
of studying nonlocal problems is the fact that they obviate the need for smoothness
assumptions for solutions of systems of any order while still capturing the physical
phenomenon.

The rest of this paper is organized as follows. In the next section, we present some
results regarding nonlocal ellipticity which provide a foundation for carrying out
theoretical investigations of nonlocal problems. In section “Definitions and Setup”
we introduce notation and some general assumptions, after which we present a
method for obtaining the scaling needed for obtaining pointwise error estimates
between nonlocal and local Laplacians applied to a smooth function; the section
concludes with a nonlocal version of Poincaré’s inequality. In section “Regularity
of Nonlocal Solutions for Nonlinear Systems” we review some existing regularity
results from the linear case, after which we prove some new results for nonlinear
problems for second-order nonlocal problems. In the last section, we use an
iteration argument to study regularity of solutions for higher-order systems studied
in connection with plate deformations.

Definitions and Setup

For the remainder of the paper, the kernel � will be a nonnegative, rotationally
symmetric, and integrable kernel (Throughout the paper, with an abuse of notation,
we may write �.x; y/ D �.jx � yj/ to indicate that � depends only on the distance
between x and y). At various points in the sequel, we will refer to the following:
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Assumptions and definitions for the kernels:

(A1) � W Œ0;1/ ! Œ0;1/ is measurable, and there exist ˇ 2 Œ0; n/ and c; ı0 > 0
such that

0 < �.r/ � cr�ˇ; for all r 2 .0; ı0/

�.r/ D 0; for all r � ı0:

(A2) There is a c0 > 0 such that �.r/ > c0, for all r 2 .0; ı0�.
(A3) For every ı 2 .0; ı0�, define �ı W Œ0;1/ ! Œ0;1/ by

�ı.r/ WD

�
�.r/; 0 < r � ı

0; r > ı:

The ı parameter is called the horizon of the kernel. The assumption (A1) ensures the
integrability of the kernels � and �ı . The nonlocal Poincaré inequality (Thereom 1)
requires (A2).

Denote by !n the volume of the unit ball in n dimensions, so n!n will be its
surface area. The n dimensional ball of radius " > 0 centered at x will be denoted
by B".x/.

Let � � R
n be an open and bounded domain. With ı0 provided in (A1), the

collars of � are the sets

� WD
[
x2�

Bı0.x/ n�

and for each ı 2 .0; ı0�

�ı WD
[
x2�

Bı.x/ n�;

where ı0 > 0 is specified in assumption (A1). For each " > 0, set

�" WD fx 2 � W B".x/ � �g:

We use ru for the spatial gradient of a function u W Rn ! R, provided it exists.
For the mean value of u over a set E � R

n with positive and finite measure jEj, we
will use the standard notation

uE WD �

Z
E

u.x/ dx D
1

jEj

Z
E

u.x/ dx: (3)

Given � 2 C1.Rn/ and u 2 L2.� [ �/, define the convolution product as

.� � u/.x/ WD

Z
Rn

�.y � x/Nu.y/ dy
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where

Nu.y/ WD

(
u.y/; y 2 � [ �

0; y … � [ �:

Nonlocal and Local Laplacians

In this section, we present some results that provide a connection between the local
and nonlocal Laplacian operators.

Elliptic Properties for the Nonlocal Laplacian

The classical elliptic theory has developed to a level where systems with complex
nonlinearities and space-dependent coefficients are very well understood, even for
domains with fairly rough boundaries. Nonlocal operators have been introduced
as natural generalizations of classical differential operators, and their successful
implementation in applications continues to promote their theoretical analysis
to deeper levels. For second-order problems, several results have been proved
that show the intimate connection between nonlocal and local frameworks. More
specifically, the following elliptic-type properties hold in the nonlocal framework
(Du et al. 2012; Foss and Radu 2016; Hinds and Radu 2012):

Proposition 1. Suppose that � satisfies assumption (A1). The operator L� admits
the following properties:

(a) If u 	 constant then L�u D 0 (trivially). Conversely, if L� D 0 and u D 0 on
� , then u 	 constant:

(b) Let x 2 � [ �: For any maximal point x0 that satisfies u.x0/ � u.x/, we have
�L�u.x0/ � 0: Similarly, if x1 is a minimal point such that u.x1/ � u.x/, then
�L�u.x1/ � 0:

(c) �L�u is a positive semidefinite operator, i.e., h�L�u; ui � 0, where h
; 
i

denotes the L2.� [ �/ inner product.

(d)
Z
�[�

L�u.x/dx D 0.

(e) If the kernel � is given by a combination of derivatives of the Dirac mass,
then for this particular choice of kernel, we have L� D �u in the sense of
distributions (see Du et al. 2012);

(f) As the radius of the horizon ı goes to zero, the nonlocal solutions converge
to their classical counterparts. This fact has been proven for the Laplacian
(Mengesha and Du 2014), as well as for the biharmonic operator (Radu et al.
2017);
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(g) Dirichlet’s principle and variational arguments apply for nonlocal systems as
proven in Hinds and Radu (2012);

(h) A weighted mean value theorem is available; indeed, one can easily see that
a nonlocal harmonic function u, i.e., a function u for which L�u.x/ D 0 for
x 2 �; must also satisfy

u.x/ D

R
�[�

�.jx � yj/u.y/ dyR
�[�

�.jx � yj/ dy
; x 2 �:

Using this result, one can prove
(i) �u D 0 if and only if L�u.x/ D 0 for every kernel �.x; y/ D �.jx�yj/ 2 L1.

We conclude this subsection by stating the following nonlocal Poincaré-type
inequality, versions of which can be found in Aksoylu and Parks (2011) or Hinds
and Radu (2012):

Theorem 1 (Nonlocal Poincaré inequality). Let � be an open, bounded domain
and� 2 L1.Rn/ a nonnegative kernel that satisfies (A2) and (A3). If u 2 L2.�[�/,
then there is a constant �p.ı; n;�/ > 0 s.t.

�p

Z
�

ju.x/j2 dx �

Z
�

Z
�[�ı

�ı.jx � yj/ju.y/ � u.x/j2 dy dx C

Z
�ı

ju.x/j2 dx:

Scaling of the Nonlocal Laplacian and Pointwise Estimates

In this subsection, we will assume that (A1)–(A3) hold for the kernels � and
�ı . We will derive a scaling that normalizes the nonlocal Laplacian. To facilitate
identification of the scaling, a modified definition for L�ı will be used and, for
convenience, denoted by Lı

Lıu.x/ D 	.ı/

Z
�[�ı

Œu.y/ � u.x/��ı.jx � yj/ dy: (4)

Here 	.ı/ is the scaling factor in terms of the support of �ı . This horizon-dependent
scaling 	 will be determined later. Moreover, we will show that the scaled Lıu
converges to the local Laplacian �u at the rate ı2, i.e.,

jLıu ��uj � C.u/ı2;

where C.u/ depends on bounds for the fourth-order derivatives of u. This error
bound between the local and nonlocal Laplacian has been derived before (see, e.g.,



37 Bridging Local and Nonlocal Models: Convergence and Regularity 1251

Du et al. 2013). Below we outline the argument that was first presented in Foss and
Radu (2016) which has already been utilized in deriving error estimates between
nonlocal solutions and their local equivalents for systems that involve a nonlocal
biharmonic operator (Radu et al. 2017) and for the newly introduced state Laplacian
(Radu and Wells 2017). Additionally, the argument accommodates very general
kernels (that are integrable) and shows the optimality of the ı2 convergence that
is observed for C4 functions.

For each ı 2 .0; ı0�, we define the function 
ı W .0;1/ ! Œ0;1/


ı.r/ WD

rZ
ı

� �ı.�/ d�: (5)

Thus, for example, if �.r/ D r�ˇ on .0; ı0�, then we find that


ı.r/ D

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:

1

2 � ˇ
Œr2�ˇ � ı2�ˇ�; 0 < r � ı; ˇ ¤ 2

ln r � ln ı; 0 < r � ı; ˇ D 2

0; r > ı:

Assume that u 2 C4.�[ �/. By using the fundamental theorem of calculus, we
have that

Lıu.x/ D 	.ı/

Z
Bı.x/

Œu.y/ � u.x/��ı.jx � yj/ dy

D 	.ı/

Z
Bı.x/

1Z
0

ru.x C s.y � x// 
 .y � x/�ı.jy � xj/ ds dy:

After changing the order of integration in the double integral and changing variables
z D y � x, we obtain that

Lıu.x/ D 	.ı/

1Z
0

Z
Bı.0/

ru.x C sz/ 
 Œz�ı.jzj/� dz ds:

With 
ı given by (5), we have that

rz
ı.jzj/ D 
 0
ı.z/

z

jzj
D z�ı.jzj/;
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so

Lıu.x/ D 	.ı/

1Z
0

Z
Bı.0/

ru.x C sz/ 
 rz
ı.jzj/ dz ds:

After an integration by parts and by using the fact that 
ı.jzj/ D 
ı.ı/ D 0 for
z 2 @Bı.0/, we obtain

Lıu.x/ D �	.ı/

1Z
0

Z
Bı.0/

s�u.x C sz/
ı.jzj/ dz ds

which is equivalent to

Lıu D �	.ı/

1Z
0

Z
Bı.0/

sŒ�u.x C sz/ ��u.x/�
ı.jzj/ dz ds (6)

��u.x/	.ı/

1Z
0

ıZ
0

Z
@B�.0/

s
ı.j�j/d!.z/ d� ds:

We compute

1Z
0

ıZ
0

Z
@B�.0/

s
ı.�/ d!.z/ d� ds D
1

2
n!n

ıZ
0


ı.�/�
n�1 d�:

This results in the scaling

	.ı/ D
�2

n!n

ıZ
0


ı.�/�
n�1 d�

(7)

will make the coefficient of the Laplacian to be 1 on the RHS of (6) above.

For example, if �.r/ D

(
r�ˇ; 0 < r � ı

0; ı < r
then for ˇ ¤ 2 we have

	.ı/ D
2.2 � ˇ C n/

!nı2�ˇCn
;
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where for n D 1 we take !0 D 2:With the choice of scaling given in (7), we write

Lıu.x/ ��u.x/ D �	.ı/

Z
Bı.0/

1Z
0

sŒ�u.x C sz/ ��u.x/�
ı.jzj/ ds dz: (8)

By employing the fundamental theorem of calculus and simplifying, we obtain

Lıu.x/ ��u.x/ D � 	.ı/

Z
Bı.0/

1Z
0

.1 � s2/

2
Œ�ru.x C sz/� 
 z
ı.jzj/ ds dz

D � 	.ı/

Z
Bı.0/

1Z
0

.1 � s2/

2
Œ�ru.x C sz/��ru.x/� 
 z
ı.jzj/ ds dz;

where we used the fact that Z
Bı.0/

z
ı.jzj/ dz D 0:

Further we have

Lıu.x/��u.x/ D �	.ı/

Z
Bı.0/

1Z
0

�
1

3
�
s

2
C
s3

6

� �
�r2u.x C sz/z

�

z
ı.jzj/ ds dz:

With

M4 D sup
x2�[�

jD4u.x/j

we estimate

jLıu.x/ ��u.x/j �	.ı/M4

Z
Bı.0/

1Z
0

�
1

3
�
s

2
C
s3

6

�
jzj2j
ı.jzj/j ds dz

D
	.ı/M4

8
n!n

ıZ
0

�nC1j
ı.�/j d�:

Finally, we use the fact that �nC1 � �n�1ı2 to obtain

jLıu.x/ ��u.x/j �
M4

4
ı2: (9)
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This estimate shows that the nonlocal Laplacian approaches the classical Laplacian,
as the horizon ı goes to zero, at a rate comparable to ı2, independently of the
dimension. The convergence also demonstrates that the scaling selected in (7) is
the correct one.

Moreover, it was shown that besides the above convergence of the operators
(applied to sufficiently smooth functions), one has the convergence of the nonlocal
solutions to their classical counterparts. More precisely, it was shown in Mengesha
and Du (2014) that the solutions uı to the problem

(
Lıuı.x/ D f .x/; x 2 �

uı.x/ D 0; x 2 �ı;
(10)

obtained for each ı 2 .0; ı0�, converge strongly in L2 to u, the solution of the
classical Laplace equation

(
�u.x/ D f; x 2 �

u.x/ D 0; x 2 @�:

Regularity of Nonlocal Solutions for Nonlinear Systems

In this section we provide some integrability and differentiability properties for
solutions of

(
L�u.x/ D f .x; u.x//; x 2 �

u.x/ D 0; x 2 �:
(11)

The linear problem obtained for x 7! f .x; u.x// D f .x/ was investigated in Foss
and Radu (2016), where it was shown that a solution’s integrability properties are the
same as possessed by the function f . This result addressed one of the deficiencies of
Poincaré’s inequality, mainly, the fact that the integrability of a function cannot be
improved based on bounds on its nonlocal gradient, as in the classical framework.
In the same setting, we also showed in Foss and Radu (2016) that for a nonlocal
Laplacian with integrable kernel (Note that if the kernel is highly singular then there
are compact embedding results and Poincaré-type inequalities that do increase the
integrability by using estimates on the gradient.) and f 2 C1. N�/, solutions to (1)
satisfy u 2 W 1;2.�/. Below we will offer an extension to this result by showing that
a forcing term f 2 W 1;2.�/\L1.�/ will yield a solution u with regularity at the
same level.
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Higher Integrability

We state first a result that guarantees the higher integrability of solutions to the
linear problem (we refer to Foss and Radu (2016) for its proof) and then present an
extension to this result in the semilinear setting.

Theorem 2 (Higher integrability of solutions to the linear problem). Assume
� 2 L1.Rn/ satisfies (A1). If u is a solution of

(
L�u.x/ D f .x/; x 2 �

u.x/ D 0; x 2 �:

with a priori regularity u 2 Lp.�/; p > 1 and we assume that f 2 Lr.�/; r > p

then u 2 Lr.�/.
The proof for this result is similar, but simpler, than its generalization to a nonlinear
setting, which we present below.

Theorem 3 (Higher integrability of solutions to semilinear problems). Assume
� 2 L1.Rn/ satisfies (A1) and that given f W � � R ! R, the mapping

u 7! gx.u/ D u C f .x; u/

is invertible on R with the inverse g�1
x uniformly Lipschitz continuous with respect

to x 2 R
n. Then any solution u 2 Lp.�/; p > 1 of (11) satisfies u 2 L1.�/.

Proof. Without loss of generality, we assume that k�kL1 D 1 and note that the
uniform Lipschitz continuity of g�1

x implies there is a constantM < 1 such that

jg�1
x .u/j � M juj; for all u 2 R; x 2 �:

First, extend any solution u of the above equation by zero outside �, and with
an abuse of notation, denote the extended function by u as well. In light of our
assumptions, we write the integrodifferential equation in (1) as

Z
Rn

u.y/�.jy � xj/ dy � u.x/
Z
Rn

�.jy � xj/ dy D .u��/.x/� u.x/ D f .x; u.x//:

(12)
From the last equality of (12), we obtain that

u.x/ D g�1
x ..u � �/.x// (13)

to which we apply Young’s inequality for convolutions to obtain

ku � �kr � kukpk�kq;
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where
1

r
D
1

p
C
1

q
� 1, where q is chosen appropriately.

Depending on the power ˇ that controls the growth of the kernel �, as given by
assumption (A1), we have the following cases:

Case 1. For ˇ < n
p � 1

p
take q D

p

p � 1
to obtain r D 1. By (13) and using

the bound on the growth of g�1
x above, we have that u 2 L1.�/.

Case 2. If ˇ � n
p � 1

p
, then let q D

n � "

ˇ
for " > 0 arbitrarily small. Then,

the degree of integrability of u � � is up to (but not including) r0 D
pn

nC p.ˇ � n/
; note that r0 > 1 since p > 1. Again, by (13) and the

bound on g�1
x stated above, this integrability is transferred to u so that

u 2 Lr for all r < r0. We apply again Young’s inequality

ku � �kr1 � kukr0k�kq1 ;

with
1

r1
D

1

r0
C

1

q1
� 1: Take q1 D

p.n � "/

.n � "/.2p � 1/ � pˇ
to obtain

r1 D 1. Using one more time (13) and the growth of g�1
x , we obtain, as

in the previous case, that u 2 L1.�/:

ut

Remark 1. The above theorem is not only dimension independent, it is also
applicable for unbounded, as well as bounded, domains.
The integrability result in Theorem 2 is used to establish some differentiability
properties of the solution u, which are described next.

Higher Differentiability

The first result shows differentiability for solutions of the linear system (1) when
the kernel is differentiable. Our final goal is to establish differentiability of solutions
when � is only assumed to be integrable.

Proposition 2. If � 2 C1.Rn/, f 2 C1.�/ and u 2 L1.� [ �/ is a solution to
L�u D f ; i.e.,

Z
�[�

.u.y/ � u.x//�.jx � yj/dy D f .x/; for all x 2 �;

then u 2 C1.�/:
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Proof. The theorem follows easily from the equality

u.x/ D .u � �/.x/ � f .x/

and the smoothing properties of the convolution operator. ut

In the absence of differentiability assumptions for �, we will need the following
lemmas for the proof of the main result.

Lemma 1. If � 2 L1.Rn/ and u 2 C1.� [ �/ satisfies

L�u.x/ D f .x/; for all x 2 �

for f 2 C1.�/ then L�.ru/.x/ D rf .x/ for all x 2 �.

Proof. The linearity of the L� operator trivially gives the result. ut

Lemma 2. If � 2 L1.Rn/, f 2 L1.�/ and u 2 L1.� [ �/ satisfies

L�u.x/ D f .x/; for all x 2 �;

then

L�Œ� � u�.x/ D .� � f /.x/; for all x 2 �":

Here " > 0 and � 2 C1.Rn/ with supp.�/ � B".0/

Proof. Again, employ the linearity of L� and of the convolution product. Note that
for x 2 � n�", the convolution � � u may incorporate values of u outside of �, so
there is no assurance that the equation is satisfied outside of �". ut

We are now ready to present the regularity result for linear problems, improving
the result given by Theorem 4.3 in Foss and Radu (2016).

Theorem 4 (Regularity for solutions of nonlocal equations). Let f 2 L1.�/\

W 1;2.�/. Suppose that � 2 L1.Rn/ satisfies assumptions (A1), (A2), and (A3).
Then, the unique solution u of the system (10)

(
L�u.x/ D f .x/; x 2 �

u.x/ D 0; x 2 �;
(14)

satisfies

u 2 L1.�/ \W 1;2.�/:

Remark 2. The solutions u to (14) clearly depend on �, but we suppressed this
dependence for the clarity of the argument.
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Proof. The existence and uniqueness of u 2 L2.� [ �/ when f 2 L2.�/ were
proven before (see Hinds and Radu (2012) for a variational argument). Below we
will establish uniform estimates in the gradient which will then yield the desired
regularity.

Extend u and f to all of Rn by 0. Let f�"g">0 be a family of mollifiers defined

by �" WD
1

"n
�

�x
"

�
, with � 2 C1.Rn/ and supp.�/ � B1.0/. Fix " 2

�
0; ı0

2

�
. By

Lemma 2,

L�Œ�" � u�.x/ D .�" � f /.x/

for each x 2 �". Put u" WD �" � u and f" WD �" � f: Since u" 2 C1.� [ �/,
Lemma 1 implies

L�Œru"�.x/ D rf".x/ (15)

for each x 2 �". Since u D 0 on � , we have that u" D 0 on

�" WD fx 2 R
njdist.x;�/ < "g;

hence ru" D 0 on � [ � n�". We then have from (15) above that for all x 2 �"

L�Œru"�.x/ D

Z
�"
Œru".y/ � ru".x/��.jx � yj/dy D rf".x/:

We multiply the equation by ru" and integrate on �" to obtainZ
�"

Z
�"

Œ.ru".y/ � ru".x//�.jy � xj/� 
 ru".x/ dy dx

D

Z
�"

rf".x/ 
 ru".x/ dx: (16)

We estimate the LHS above as follows:Z
�"

Z
�"

Œ.ru".y/ � ru".x//�.jy � xj/� 
 ru".x/ dy dx

C

Z
�"

Z
�"n�"

Œ.ru".y/ � ru".x//�.jy � xj/� 
 ru".x/ dy dx

D
1

2

Z
�"

Z
�"

Œ.ru".y/ � ru".x//
2�.jy � xj/� dy dx
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C

Z
�"

Z
�"n�"

Œ.ru".y/ � ru".x//�.jy � xj/� 
 ru".x/ dy dx

From (16) and above equality, we obtain

Z
�"

Z
�"

Œ.ru".y/ � ru".x//
2�.jy � xj/� dy dx D 2

Z
�"

rf".x/ 
 ru".x/ dx (17)

� 2

Z
�"

Z
�"n�"

Œ.ru".y/ � ru".x//�.jy � xj/� 
 ru".x/ dy dx

By Poincaré’s inequality as given by Theorem 1 applied on the domain �" with
collar �" n�", we have

kru"k
2
L2.�"/

� C

Z
�"

Z
�"

Œ.ru".y/ � ru".x//
2�.jy � xj/� dy dx (18)

C C

Z
�"

Z
�"n�"

Œ.ru".y/ � ru".x//
2�.jy � xj/� dy dx C kru"k

2
L2.�"n�"/

:

By using Hölder’s inequality in (17) and combining it with (18), we obtain

kru"k
2
L2.�"/

�C

8<
:krf"k

2
L2.�"/

C kru"k
2
L2.�"n�"/

(19)

C

Z
�"

Z
�"n�"

Œ.ru".y/ � ru".x//�.jy � xj/� 
 ru".x/ dy dx

9>=
>; :

Since ru".x/ D .u � r�"/.x/ with r�".x/ D
1

"nC1
r�

�x
"

�
, we have by Young’s

inequality for convolutions that

kru"k
2
L2.�"n�"/

� kuk2
L1.�"n�"/

kr�"k
2
L2.�"n�"/

:

For f 2 L1.�/, we have u 2 L1.�/ by Theorem 3, and since j�" n �"j < C"

(since the boundary of � is smooth), the above estimate becomes

kru"k
2
L2.�"n�"/

� C"2kuk2L1.�/

kr�k2
L1.Rn/

"2
< C:
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Finally, we estimate the last term on the RHS of (19) by using Young’s inequality
for convolutions.ˇ̌̌
ˇ̌̌
ˇ
Z
�"

Z
�"n�"

Œ.ru".y/ � ru".x//�.jy � xj/� 
 ru".x/ dy dx

ˇ̌̌
ˇ̌̌
ˇ

�

ˇ̌̌
ˇ̌̌
ˇ
Z
�"

Z
�"n�"

ru".y/ 
 ru".x/�.jy�xj/ dy dx

ˇ̌̌
ˇ̌̌
ˇ C

Z
�"

Z
�"n�"

jru".x/j
2�.jy�xj/ dy dx

�

Z
�"

jŒ.��"n�".y/ru"/ � ��.x/jdx C C

Z
�"

Z
�"n�"

jru".x/j
2�.jy � xj/ dy dx

� kru"kL2.�"/ C C./k�k2
L1..�"//

kru"k
2
L2.�"n�"/

C

Z
�"

Z
�"n�"

jru".x/j
2�.jy � xj/ dy dx

for  > 0, and where �A denotes the characteristic function for the set A. Since
� 2 L1.Rn/ and j�" n�"j < C", we have that

J WD

Z
�"

Z
�"n�"

jru".x/j
2�.jy � xj/ dy dx < C"kru"k

2
L2.�"/

uniformly for every x 2 R
n. Thus, we can choose " sufficiently small to absorb

the term J defined above in the LHS of (19). Similarly, by choosing  sufficiently
small, we obtain

kru"k
2
L2.�"/

� C; (20)

where C is independent of ". The uniform estimate from (20) shows that given an
open set �0 �� �, we can extract a subsequence ru"k that converges weakly to
some h 2 L2.�0/. (Here �0 �� � indicates the closure of �0 is a compact subset
of �.) We finally argue that h is the distributional gradient of u. Let  2 Cc.�

0/,
we have

.h;  /L2.�0/ D lim
k!1

.ru"k ;  /L2.�0/ D � lim
k!1

.u"k ;r /L2.�0/ D �.u;r /L2.�0/;

which verifies that ru D h. Hence u 2 W 1;2.�/ since C is independent of ". Since
we already proved that u 2 L1.�/ the conclusion of the theorem follows. ut

Finally, we conclude this section with a theorem that establishes infinite regular-
ity of solutions for semilinear problems.
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Theorem 5 (Regularity of solutions to semilinear problems). Suppose that
� 2 L1.Rn/ satisfies (A1) and that k�kL1.Rn/ D 1. In addition, assume that
� 2 W s;2.Rn/:Moreover, assume that the mapping

u 7! gx.u/ D u C f .x; u/

is invertible on R with the inverse u 7! g�1
x .u/ 2 C1.R/ for every x 2 �. Under

these assumptions, if a solution u 2 Lp.�/; p > 1 of (11) exists, then it must
satisfy

u 2 C1.�/:

Proof. Since � 2 W s;2.Rn/ and u 2 L2.� [ B/, we have that u � � 2 W s;2.�/.
From the equality u.x/ D g�1

x .u � �/.x/ and the smoothness of g�1
x , we have that

u 2 W s;2.�/. We iterate this argument, and using the increased smoothness on u,
we will obtain that u 2 W 2s;2.�/, and so on, to finally obtain u 2 W1;2.�/; hence
u 2 C1.�/. ut

Remark 3. The strength of the convolution argument that we used above is explored
in full generality in the forthcoming paper (Foss et al. 2017).

Regularity for Higher-Order Nonlocal Problems

In Radu et al. (2017) we introduced the nonlocal biharmonic operator

B�Œu� WD L�ŒL�u�

and nonlocal versions of hinged and clamped boundary conditions and showed well-
posedness of the coupled nonlocal systems. Moreover, to strengthen the connection
between the local and nonlocal theories, we proved that the nonlocal solutions
of the hinged and clamped plate systems converge to their respective classical
counterparts.

We will focus here on the nonlocal hinged boundary value problem

8̂<
:̂
B�Œu� D f; x 2 �2ı

u D 0; x 2 � n�ı

L�Œu� D 0; x 2 �ı n�2ı

(21)

which we showed is well-posed. Note that the parameter ı > 0 determines the
thickness of the regions in� in which the hinged boundary conditions are imposed;
in particular, it is not related to the horizon of �. We have the following convergence
result:
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Theorem 6. Let � � R
n, n � 2, be a bounded domain either of class C2 or

convex of class C1, and let � be a nonnegative and integrable kernel that satisfies
assumptions (A2) and (A3). Suppose the sequence of positive scalars fıng

1
nD1 �

.0;1/ converges to 0 as n ! 1. For f 2 L2.�/, the solutions uın of the nonlocal
hinged problems (21) converge in L2.�/ to the weak (variational) solution u 2

W 2;2.�/ \W 1;2
0 .�/ of

�
�2u D f; x 2 �

u D �u D 0; x 2 @�
(22)

as n ! 1. Furthermore, if� is smooth, e.g., of class C4, then u is also inW 4;2.�/.

Remark 4. The assumptions of � are more general in Radu et al. (2017); here,
we have imposed additional restrictions so we are in position to use our earlier
regularity results.
By iterating the regularity result given by Theorem 4, we obtain the following
regularity result.

Theorem 7 (Regularity of solutions to the linear nonlocal hinged system). Let
f 2 W 1;2.�/, � a nonnegative and integrable kernel that satisfies assumptions
(A2) and (A3). Then there exists a unique solution u to the system (21) such that
u 2 W 1;2.�/ \ L1.�/.

Proof. We decompose the system (22) into two second-order nonlocal boundary
value problems:

�
LıŒu� D v; x 2 �ı

u D 0; x 2 � n�ı

(23)

�
LıŒv� D f; x 2 �2ı

v D 0; x 2 �ı n�2ı

(24)

and use Theorem 4 first for (24) to obtain that v 2 W 1;2.�/ \ L1.�/; then with
this regularity for v, we apply the theorem to (23) to show that u 2 W 1;2.�/ \

L1.�/. ut
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Abstract

We introduce a regularized model for free fracture propagation based on nonlocal
potentials. We work within the small deformation setting, and the model is
developed within a state-based peridynamic formulation. At each instant of the
evolution, we identify the softening zone where strains lie above the strength
of the material. We show that deformation discontinuities associated with flaws
larger than the length scale of nonlocality ı can become unstable and grow. An
explicit inequality is found that shows that the volume of the softening zone
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goes to zero linearly with the length scale of nonlocal interaction. This scaling
is consistent with the notion that a softening zone of width proportional to ı

converges to a sharp fracture set as the length scale of nonlocal interaction
goes to zero. Here the softening zone is interpreted as a regularization of the
crack network. Inside quiescent regions with no cracks or softening, the nonlocal
operator converges to the local elastic operator at a rate proportional to the radius
of nonlocal interaction. This model is designed to be calibrated to measured
values of critical energy release rate, shear modulus, and bulk modulus of
material samples. For this model one is not restricted to Poisson ratios of 1=4 and
can choose the potentials so that small strain behavior is specified by the isotropic
elasticity tensor for any material with prescribed shear and Lamé moduli.

Keywords
Free fracture model · Nonlocal interactions · Double-well potentials ·
State-based peridynamics

Introduction

We address the problem of free crack propagation in homogeneous materials. The
crack path is not known a priori and is found as part of the problem solution.
Our approach is to use a nonlocal formulation based on double-well potentials.
We will work within the small deformation setting, and the model is developed
within a state-based peridynamic formulation. Peridynamics (Silling 2000; Silling
et al. 2007) is a nonlocal formulation of continuum mechanics expressed in terms
of displacement differences as opposed to spatial derivatives of the displacement
field. These features provide the ability to simultaneously simulate both smooth
displacements and defect evolution. Computational methods based on peridynamic
modeling exhibit formation and evolution of sharp features associated with phase
transformation (see Dayal and Bhattacharya 2006) and fracture (see Silling and
Lehoucq 2008; Silling et al. 2010; Foster et al. 2011; Agwai et al. 2011; Du et al.
2013; Lipton et al. 2016; Bobaru and Hu 2012; Ha and Bobaru 2010; Silling and
Bobaru 2005; Weckner and Abeyaratne 2005; Gerstle et al. 2007; Silling and Askari
2005). A recent review of the state of the art can be found in Bobaru et al. (2016).

In this work we are motivated by the recent models proposed and studied in
Lipton (2014, 2016), and Lipton et al. (2016). Calibration has been investigated
in Diehl et al. (2016). These models are defined by double-well two-point strain
potentials. Here one potential well is centered at the origin and associated with
elastic response, while the other well is at infinity and associated with surface
energy. The rationale for studying these models is that they are shown to be well
posed over the class of square-integrable non-smooth displacements, and in the
limit of vanishing nonlocality, the dynamics localize and recover features of sharp
fracture propagation (see Lipton 2014, 2016). In this work we extend this modeling
approach to the state-based formulation. Our work is further motivated by the recent
numerical-experimental study carried out in Diehl et al. (2016) demonstrating that
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the bond-based model is unable to capture the Poisson ratio for a sample of PMMA
at room temperature. Here we develop a double-well state-based potential for which
the Poisson ratio is no longer constrained to be 1=4. We show that for this model
we can choose the potentials so that the small strain behavior is specified by the
isotropic elasticity tensor for any material with prescribed shear and Lamé moduli.

Nonlocal Dynamics

We formulate the nonlocal dynamics. Here we will assume displacements u are
small (infinitesimal) relative to the size of the three-dimensional body D. The tensile
strain is written as S D S.y; x; t I u/ and given by

S.y; x; t I u/ D
u.t; y/ � u.t; x/

jy � xj
� ey�x; ey�x D

y � x

jy � xj
; (1)

where ey�x is a unit direction vector and � is the dot product. It is evident that
S.y; x; t I u/ is the tensile strain along the direction ey�x . We introduce the influence
function !ı.jy � xj/ such that !ı is nonzero for jy � xj < ı, zero outside. Here we
will take !ı.jy � xj/ D !.jy � xj=ı/ with !.r/ D 0 for r > 1 nonnegative for
r < 1 and ! is bounded.

The spherical or hydrostatic strain at x is given by

�.x; t I u/ D
1

Vı

Z
D\Bı.x/

!ı.jy � xj/S.y; x; t I u/jy � xj dy; (2)

where Vı is the volume of the ball Bı.x/ of radius ı centered at x. Here we have
employed the normalization jy � xj=ı so that this factor takes values in the interval
from 0 to 1.

Motivated by potentials of Lennard-Jones type, we define the force potential for
tensile strain given by

Wı.S.y; x; t I u// D ˛!ı.jy � xj/
1

ıjy � xj
f .
p

jy � xjS.y; x; t I u// (3)

and the potential for hydrostatic strain

Vı.�.x; t I u// D
ˇg.�.x; t I u//

ı2
(4)

where Wı.S.y; x; t I u// is the pairwise force potential per unit length between two
points x and y and Vı.�.x; t I u// is the hydrostatic force potential density at x. They
are described in terms of their potential functions f and g (see Fig. 1). These two
potentials are double-well potentials that are chosen so that the associated forces
acting between material points x and y are initially elastic and then soften and
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Fig. 1 Potential function
f .r/ for tensile force and
potential function g.r/ for
hydrostatic force

r+1 r+2r−
1r−

2

r

f∞
g∞

f(r)

g(r)

Fig. 2 Cohesive tensile force

r+1r−
1

r

f ′(r)

decay to zero as the strain between points increases (see Fig. 2 for the tensile force).
This force is negative for compression, and a similar force hydrostatic strain law
follows from the potential for hydrostatic strain. The first well forWı.S.y; x; t I u//

and Vı.�.x; t I u// is at zero tensile and hydrostatic strain, respectively. With this in
mind, we make the choice

f .0/ D f 0.0/ D g.0/ D g0.0/: (5)
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The second well is at infinite tensile and hydrostatic strain and is characterized
by the horizontal asymptotes limS!1 f .S/ D f1 and lim�!1 g.�/ D g1,
respectively (see Fig. 1).

The critical tensile strain SC
c > 0 for which the force begins to soften is given

by the inflection point rC
1 > 0 of f and is

SC
c D

rC
1p

jy � xj
: (6)

The critical negative tensile strain is chosen much larger in magnitude than SC
c and

is

S�
c D

r�
1p

jy � xj
; (7)

with r�
1 < 0 and rC

1 << jr�
1 j. The critical value 0 < �C

c where the force begins to
soften under positive hydrostatic strain for �.x; t I u/ > �C

c is given by the inflection
point rC

2 of g and is

�C
c D rC

2 : (8)

The critical compressive hydrostatic strain where the force begins to soften for
negative hydrostatic strain is chosen much larger in magnitude than �C

c and is

��
c D r�

2 ; (9)

with r�
2 < 0 and rC

2 < jr�
2 j. For this model we suppose the inflection points for g

and f satisfy the ordering

r�
2 < r�

1 < 0 < rC
1 < rC

2 : (10)

This ordering is chosen to illustrate ideas for a material that is weaker in shear strain
than hydrostatic strain. With this choice and the appropriate influence function !ı ,
if the hydrostatic stress is positive at x and is above the critical value �C

c , then there
are points y in the peridynamic neighborhood for which the tensile stress between
x and y is above SC

c . This aspect of the model is established and addressed in
section “Control of the Softening Zone.”

The potential energy is given by

PDı.u/ D
1

Vı

Z
D

Z
D\Bı.x/

jy � xjWı.S.y; x; t I u// dydx

C

Z
D

Vı.�.x; t I u// dx: (11)
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The material is assumed homogeneous, and the density is given by �, and the applied
body force is denoted by b.x; t/. We define the Lagrangian

L.u; @t u; t / D
�

2
jjPujj2

L2.DIR3/
� PDı.u/ C

Z
D

b � udx;

here Pu is the velocity given by the time derivative of u, and kPukL2.DIR3/ denotes the
L2 norm of the vector field Pu W D ! R

3. Applying the principle of least action
together with a straightforward calculation gives the nonlocal dynamics

� Ru.x; t/ D LT .u/.x; t/ C LD.u/.x; t/ C b.x; t/; for x 2 D; (12)

where

LT .u/.x; t/ D
2˛

Vı

Z
D\Bı.x/

!ı.jy � xj/

ıjy � xj
@S f .

p
jy � xjS.y; x; t I u//ey�x dy;

(13)

and

LD.u/.x; t/D
ˇ

Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2
Œ@� g.�.y; t I u//C@� g.�.x; t I u//� ey�x dy:

(14)

The dynamics is complemented with the initial data

u.x; 0/ D u0.x/; @t u.x; 0/ D v0.x/: (15)

It is readily verified that this is an ordinary state-based peridynamic model. The
forces are defined by the derivatives of the potential functions, and the derivative
associated with the tensile strain potential is sketched in Fig. 2. We show in the next
section that this initial value problem is well posed.

Existence of Solutions

The regularity and existence of the solution depends on the regularity of the initial
data and body force. In this work we choose a general class of body forces and initial
conditions. The initial displacement u0 and velocity v0 are chosen to be integrable
and belonging to L1.DIR3/. The body force b.x; t/ is chosen such that for every
t 2 Œ0; T0�, b takes values in L1.D;R3/ and is continuous in time. The associated
norm is defined to be kbkC .Œ0;T0�IL1.D;R3// D maxt2Œ0;T0�kb.x; t/kL1.D;R3/. The
space of continuous functions in time taking values in L1.DIR3/ for which this
norm is finite is denoted by C .Œ0; T0�I L1.D;R3//. The space of functions twice
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differentiable in time taking values in L1.D;R3/ such that both derivatives belong
to C .Œ0; T0�I L1.D;R3// is written as C 2.Œ0; T0�I L1.D;R3//.

We will establish existence and uniqueness for the evolution by writing the
second-order ODE as an equivalent first-order system. The nonlocal dynamics (12)
can be written as a first-order system. Set y D .y1; y2/ where y1 D u and y2 D ut .

Now, set F ı.y; t/ D
�
F1.y; t/; F2.y; t/

�T

where:

F1.y; t/ D y2

F2.y; t/ D LT .y1/.t/ C LD.y1/.t/ C b.t/
(16)

And the initial value problem is given by the equivalent first-order system

d

dt
yı D F ı.yı; t/

y.0/ D .y1.0/; y2.0// D .u0; v0/

(17)

The existence of a unique solution to the initial value problem is asserted in the
following theorem.

Theorem 1. For a body force b.t; x/ in C 1
�
Œ0; T �I L1.D;R3/

�
and initial data

y1.0/ and y2.0/ in L1
0 .DIR3/ � L1

0 .DIR3/, there exists a unique solution

y.t/ such that y1 D u is in C 2
�
Œ0; T �I L1.D;R3/

�
for the dynamics described

by (17) with initial data in L1..DIR3/ � L1.DIR3/ and body force b.t; x/ in

C 1
�
Œ0; T �I L1.D;R3/

�
.

Proof. We will show that the model is Lipschitz continuous and then apply the
theory of ODE in Banach spaces, e.g., Driver (2003), to guarantee the existence
of a unique solution. It is sufficient to show that

jjLT .u/.x; t/CLD.u/.x; t/�.LT .v/.x; t/CLD.v/.x; t//jjL1.D/ � C jju�vjjL1.D/

(18)

For ease of notation, we introduce the following vectors

EU D u.y/ � u.x/;

EV D v.y/ � v.x/:

We write

LT .u/.x; t/ C LD.u/.x; t/ � .LT .v/.x; t/ C LD.v/.x; t// D I1 C I2: (19)
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Here

I1 D
2˛

ıVı

Z
D\Bı.x/

!ı.jy � xj/p
jy � xj

n
f 0.

p
jy � xjS.y; x; t I u//

� f 0.
p

jy � xjS.y; x; t I v//
o
e.y�x/dy

I2 D
ˇ

ı2Vı

Z
D\Bı.x/

!ı.jy � xj/
�
g0.�.y; t I u// C g0.�.x; t I u//

� .g0.�.y; t I v// C g0.�.x; t I v///
�
e.y�x/dy (20)

Since f 00 is bounded a straightforward calculation gives:

jf 0.
p

jy � xjS.y; x; t I u// � f 0.
p

jy � xjS.y; x; t I v//

�
p

jy � xj sup
s2R

fjf 00.s/jgjS.y; x; t I u/ � S.y; x; t I v/j;

and jey�xj D 1, so we can bound I1 by

jI1j �
2˛

ıVı

Z
D\Bı.x/

!ı.jy � xj/ sup
x2D

fjf 00.x/jgjS.y; x; t I u/ � S.y; x; t I v/j dy:

(21)
In what follows C1 D sups2Rfjf 00.s/jg < 1 and we make the change of variable

y D x C ı�

jy � xj D � j�j

dy D ı3d�;

and a straightforward calculation shows

I1 �
2˛C1

ı2

Z
H1.0/\fxCı�2Dg

j!.�/j
ju.x C ı�/ � u.x/ � .v.x C ı�/ � v.x//j

j�j
d�

(22)
Which leads to the inequality

jjI1jjL1.DIR3/ �
4˛C1C2

ı2
jju � vjjL1.DIR3/; (23)

with C2 D
R

H1.0/
j�j�1!.j�j/ d� . Now we can work on the second part,

where we follow a similar approach. Noting that g00 is bounded, we let C3 D

sup�2Rfjg00.�/jg < 1 and C4 D
R

H1.0/
j�j!.j�j/d� , to find that
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jg0.�.y; t I u// � g0.�.y; t I v//j � C3j�.y; t I u/ � �.y; t I v/j

�
2C3C4

ı2
ku � vkL1.DIR3/;

and

jg0.�.x; t I u// � g0.�.x; t I v//j � C3j�.x; t I u/ � �.x; t I v/j

�
2C3C4

ı2
ku � vkL1.DIR3/;

so

kI2kL1.DIR3/ �
4ˇC3C4

ı2
ku � vkL1.DIR3/: (24)

Adding (23) and (24) gives the desired result

jjLT .u/.x; t/ C LD.u/.x; t/ � .LT .v/.x; t/ C LD.v/.x; t//jjL1.DIR3/

�
4.˛C1C2 C ˇC3C4/

ı2
ku � vkL1.DIR3/: (25)

ut

Stability Analysis

In this section we identify a source for crack nucleation as a material defect
represented by a jump discontinuity in the displacement field. To illustrate the
ideas, we assume the defect is in the interior of the body and at least ı away from
the boundary. This jump discontinuity can become unstable and grow in time. We
proceed with a perturbation analysis and consider a time-independent body force
density b and a smooth equilibrium solution u. Now assume that the defect perturbs
u in the neighborhood of a point x by a piecewise constant vector field s that
represents a jump in displacement across a planar surface with normal vector �.
We assume that this jump occurs along a defect of length 2ı on the planar surface.

The smooth equilibrium solution u.x; t/ is a solution of

0 D LT .u/.x; t/ C LD.u/.x; t/ C b.x/ (26)

Now consider a perturbed solution uP .x; t/ that differs from equilibrium solution
u.x; t/ by the jump across the planar surface which is specified by unit normal vector
�. We suppose the surface passes through x and extends across the peridynamic
neighborhood centered at x. Points y for which .y � x/ � � < 0 are denoted by E�

�

and points for which .y � x/ � � � 0 are denoted by EC
� , see Fig. 3.
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Fig. 3 Jump discontinuity

x
ν

y − x

δ = μσ(t)δ = 0

E−
ν

The perturbed solution uP satisfies

� RuP D LT .uP /.x; t/ C LD.uP /.x; t/ C b.x/ (27)

Here the perturbed solution uP .x; t/ is given by the equilibrium solution plus a
piecewise constant perturbation and is written

uP .y; t/ D u.y; t/ C s.y; t/ (28)

Where

s.y; t/ D

(
0 y 2 E�

�

N��.t/ y 2 EC
�

(29)

Subtracting (26) from (27) gives

� RuP D LT .uP /.x; t/ C LD.uP /.x; t/ � LT .u/.x; t/ C LD.u/.x; t/ (30)

Here the second term in LD.u/ vanishes as we are away from the boundary,
and the integrand is odd in the y variable with respect to the domain Bı.x/. Since
uP D u C s and s is small, we expand f 0.

p
jy � xj.S.y; x; t I u C s/// in Taylor

series in s. Noting that �.x; t I uCs/ D �.x; t I u/C�.x; t I s/ and �.x; t I s/ is initially
infinitesimal, we also expand g0.�.x; t I u C s// in a Taylor series in �.x; t I s/.
Applying the expansions to (30) shows that to leading order

� RuP D � R�� D
2˛

ıVı

Z
Bı.x/

!ı.jy � xj/p
jy � xj

f 00.
p

jy � xjS/.s.y; t/ � s.x; t//�

e.y�x/e.y�x/dy C
ˇ

Vıı2

Z
Bı.x/

!ı.jy � xj/g00.�.y; t I u//
1

VıZ
Bı.y/

!ı.jz � yj/.s.z; t / � s.y; t// � ez�y d zey�x dy D I1 C I2;

(31)
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where I1 and I2 are the first, second terms on the right-hand side of (31). A
straightforward calculation using (29) shows that

I1 D �
2˛

ıVı

Z
Bı.x/\E�

�

J ı.jy � xj/

jy � xj
f 00.

p
jy � xjS/e.y�x/ � N��.t/e.y�x/dy (32)

We next calculate I2. A straightforward but delicate calculation gives

1

Vı

Z
Bı.y/

!ı.jz � yj/

ı
.s.z; t / � s.y; t// � ez�y d z D b.y/ � ��.t/ (33)

where

b.y/ D
1

Vı

Z 2	

0

Z ı

a

Z 


0

!.jz � yj/e.�; 
/jz � yj2 sin
 d
 d� d jz � yj (34)

and the limits of the iterated integral are

a D j.y � x/ � �j 
 D arccos

�
j.y � x/ � �j

jz � yj

�
; (35)

and e.�; 
/ is the vector on the unit sphere with direction specified by the angles �

and 
. Calculation now gives

I2 D
ˇ

Vıı2

 Z
Bı.x/\E�

�

!ı.jy � xj/g00.�.y; t I u//b.y/ � ��.t/ey�xdy

�

Z
Bı.x/\EC

�

!ı.jy � xj/g00.�.y; t I u//b.y/ � ��.t/ey�xdy

�
;

(36)

where

Z
Bı.x/\E�

�

!ı.jy � xj/

ı
b.y/ � �s.t/ey�xdy

D

Z
Bı.x/\EC

�

!ı.jy � xj/

ı
b.y/ � �s.t/ey�xdy: (37)

We now take the dot product of both sides of (31) with � to get

� R� D
.A C Bsym/� � �

j�j2
�.t/; (38)
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where

A D �
2˛

ıVı

Z
Bı.x/\E�

�

J ı.jy � xj/

jy � xj
f 00.

p
jy � xjS/e.y�x/ ˝ e.y�x/dy (39)

and Bsym D .B C BT /=2 with

B D
ˇ

Vıı2

 Z
Bı.x/\E�

�

!ı.jy � xj/g00.�.y; t I u//b.y/ ˝ ey�xdy

�

Z
Bı.x/\EC

�

!ı.jy � xj/g00.�.y; t I u//b.y/ ˝ ey�xdy

�
: (40)

Inspection shows that

f 00.
p

jy � xjS/ < 0; when S > SC
c : (41)

Thus the eigenvalues of A can be nonnegative whenever the tensile strain is positive
and greater than SC

c so that the force is in the softening regime for a preponderance
of points y inside Bı.x/. In general the defect will be stable if all eigenvalues of the
stability matrix ACBsym are negative. On the other hand, the defect will be unstable
if at least one eigenvalue of the stability matrix is positive.

We collect results in the following proposition.

Proposition 1 (Fracture nucleation condition about a defect). A condition for
crack nucleation at a defect passing through a point x is that the associated stability
matrix A C Bsym has at least one positive eigenvalue.
If the equilibrium solution is constant, then �.y; t I u/ D constant and Bsym D 0.
For this case the fracture nucleation condition simplifies and depends only on the
eigenvalues of the matrix A. In the next section, we analyze the size of the set where
the tensile strain is greater than SC

c so that the tensile force is in the softening regime
for points y inside Bı.x/.

Control of the Softening Zone

We define the softening zone in terms of the collection of centers of peridynamic
neighborhoods with tensile strain exceeding SC

c . In what follows we probe the
dynamics to obtain mathematically rigorous and explicit estimates on the size of the
softening zone in terms of the radius of the peridynamic horizon. In this section we
assume !ı D 1, ı < 1, and from the definition of the hydrostatic strain �.x; t I u/,
we have the following lemma.
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Lemma 1 (Hydrostatic softening implies tensile softening). If �C
c < �.x; t I u/,

then SC
c < S.y; x; t I u/ for some subset of points y inside the peridynamic

neighborhood centered at x and

fx 2 D W �.x/ > �C
c g � fx 2 D W S.x; y; t I u/ > SC

c ; for some y in Bı.x/g:

(42)

Proof. Suppose �C
c < �.x; t I u/, then there are points y in Bı.x/ for which

�C
c < jy � xjS.y; x; t I u/ <

p
jy � xjS.y; x; t I u/; (43)

so

SC
c <

�C
cp

jy � xj
< S.y; x; t I u/; (44)

since rC
1 < rC

2 D �C
c . This directly implies

fx 2 D W �.x/ > �C
c g � fx 2 D W S.x; y; t I u/ > SC

c ; for some y in Bı.x/g;

(45)
and the lemma is proved. ut

This inequality shows that the collection of neighborhoods where softening is due
to the hydrostatic force is also subset of the neighborhoods where there is softening
due to tensile force. Motivated by this observation, we focus on peridynamic
neighborhoods where the tensile strain is above critical. We start by defining the
softening zone. The set of points y in Bı.x/ with tensile strain larger than critical
can be written as

AC
ı .x/ D fy 2 Bı.x/ W S.y; x; t I u/ > SC

c g:

From the monotonicity of the force potential f , we can also express this set as

AC
ı .x/ D fy 2 Bı.x/I f .

p
jy � xjS.y; x; t I u// � f .rC

1 /g:

We define the weighted volume of the set AC
ı in terms of its characteristic function

�
A

C

ı
.y/ taking the value one for y 2 AC

ı and zero outside. The weighted volume

of AC
ı is given by

R
Bı.x/

�
A

C

ı
.y/jy � xj dy, and the weighted volume of Bı.x/ is

m D
R

Bı.x/
jy � xj dy. The weighted volume fraction Pı.x/ of y 2 Bı.x/ with

tensile strain larger than critical is given by the ratio

Pı.x/ D

R
Bı.x/

�
A

C

ı
.y/jy � xj dy

m
:
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Definition 1 (Softening zone). Fix any volume fraction 0 < � � 1, and with each
time t in the interval 0 � t � T , define the softening zone SZı.�; t/ to be the
collection of centers of peridynamic neighborhoods for which the weighted volume
fraction of points y with strain S.y; x; t I u/ exceeding the threshold Sc is greater
than � , i.e.,

SZı.�; t/ D
˚
x 2 DI Pı.x/ > �

�
: (46)

We now show that the volume of SZı.�; t/ goes to zero linearly with the horizon
ı for properly chosen initial data and body force. This scaling is consistent with the
notion that a softening zone of width proportional to ı converges to a sharp fracture
as the length scale ı of nonlocal interaction goes to zero. We define the sum of
kinetic and potential energy as

W .t/ D
�

2
jjPujj2

L2.D;Rd /
C PDı.u.t// (47)

and set

C .t/ D
� 1

p
�

Z t

0

jjbjjL2.D;Rd /d C
p

W .0/
�2

: (48)

Here C .t/ is a measure of the total energy delivered to the body from initial
conditions and body force up to time t . The tensile toughness is defined to be the
energy of tensile tension between x and y per unit length necessary for softening
and is given by f .rC

1 /=ı. We now state the geometric dependence of the softening
zone on horizon.

Theorem 2. The volume of the softening zone SZı is controlled by the horizon ı

according to the following relation expressed in terms of the total energy delivered
to the system, the tensile toughness, and the weighted volume fraction of points y

where the tensile strain exceeds SC
c ,

Volume.SZı.�; t// �
ıC .t/

�mf .rC
1 /

: (49)

Remark 1. It is clear that for zero initial data such that u.0; x/ D 0 that C .t/

depends only on the body force b.t; x/ and initial velocity. For this choice we see
that the softening zone goes to zero linearly with the horizon ı.

We now establish the theorem using Gronwall’s inequality and Tchebychev’s
inequality. The peridynamic energy density at a point x is

Eı.x/ D
1

Vı

Z
D\Bı.x/

jy � xjWı.S.y; x; t I u// dy C Vı.�.x; t I u// (50)
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Which can also be rewritten with the following change of variable y � x D ı�

Eı.x/ D
˛

ıV1

Z
D\B1.0/

!.j�j/f .
p

ıj�jS.xCı�; x; t I u//d�C
ˇg.�.x; t I u//

ı2
(51)

Recall from the monotonicity of f .r/ that rC
1 < r implies f .rC

1 / < f .r/. Now
define the set where the strain exceeds the threshold SC

c

SC;ıD
n
.�; x/2B1.0/ � DI x C ı� 2 D and f .rC

1 /<f .
p

ıj�jS.x C ı�; x; t I u//
o

(52)

A straightforward calculation with !.j�j/ D 1 shows that

f .rC
1 /

ı

Z
SC;ı

j�jd�dx �

Z
SC;ı

1

ı
f .
p

ıj�jS.x C ı�; x; t I u/d�dx

�

Z
D

Eı.x/ dx D PDı.u.t// (53)

We define the weighted volume of the set SC;ı to be

QV .SC;ı/ D

Z
SC;ı

j�jd�dx (54)

and inequality (53) becomes

f .rC
1 /

ı
QV .SC;ı/ �

Z
SC;ı

1

ı
f .
p

ıj�jS.x C ı�; x; t; u//d�dx � PDı.u.t// (55)

Next we use Gronwall’s inequality to prove the following theorem that shows that
the kinetic and peridynamic energies of the solution u.x; t/ are bounded by the
energy put into the system.

Theorem 3.

C .t/ �
�

2
kPuk2

L2.DIR2/
C PDı.u.t//: (56)

Proof. We start by multiplying both sides of (12) by Pu to get

� Ru.t/ � Pu.t/ D
�
LT .u/.x; t/ C LD.u/.x; t/

�
� Pu.t/ C b.t/ � Pu.t/:
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Applying the product rule in the first term and integration by parts in the second
term gives

1

2

d

dt

h
�jjPujj2

L2.D;Rd /
C 2PDı.u.t//

i
D

Z
D

b.t/ � Pu.t/ dx:

Application of Cauchy’s inequality to the right-hand side gives

1

2

d

dt

h
�jjPujj2

L2.D;Rd /
C 2PDı.u.t//

i
D

Z
D

b.t/ � Pu.t/dx

� jjb.t/jjL2.D;Rd /jjPu.t/jjL2.D;Rd /: (57)

Now set QW .t/ D �jjPujj2
L2.D;Rd /

C 2PDı.u.t// C � where � is a positive number and
can be taken arbitrarily small and (57) becomes,

1

2
QW 0.t/ D� jjb.t/jjL2.D;Rd /jjPu.t/jjL2.D;Rd /

� jjb.t/jjL2.D;Rd /

q
QW .t/

p
�

Now we can write

1

2

Z t

0

QW 0./q
QW ./

d �
1

p
�

Z t

0

jjbjjL2.D;Rd /d

Which simplifies to

q
QW .t/ �

q
QW .0/ �

1
p

�

Z t

0

jjbjjL2.D;Rd /d: (58)

Since � can be made arbitrarily small, we find that

p
W .t/ �

p
W .0/ �

1
p

�

Z t

0

jjbjjL2.D;Rd /d; (59)

and (56) follows. ut

We apply inequality (55) and Theorem 3 to get the fundamental inequality.

QV .SC;ı/ �
C .t/ı

f . Nr/
: (60)

The fundamental inequality above is defined on B1.0/ � D, and we now use it
to bound the volume of the softening zone on D. Introducing the characteristic
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function �SC;ı
.�; x/ and taking the value 1 when .�; x/ 2 SC;ı and 0 otherwise, we

immediately have

mPı.x/ D

Z
B1.0/

�SC;ı

.�; x/j�jd�:

So we can rewrite equation (54) as

QV .SC;ı/ D

Z
D

Z
B1.0/

�SC;ı

.�; x/j�jd�dx

D m

Z
D

Pı.x/ dx:

(61)

Now applying Tchebychev’s inequality to (61) with SZı.�; t/ defined by (46) gives
the desired result

Volume.SZı.�; t// �
1

�

Z
D

Pı.x/ dx D
QV .SC;ı/

m�
�

C .t/ı

m�f .rC
1 /

: (62)

Calibration of theModel

In this section we show how to calibrate this model using the known elastic
properties and energy release rate of fracture associated with a given material.

Calibrating the Peridynamic Energy to Elastic Properties

We start by considering a body D for which the strain S is small. Here small means
for a fixed jy �xj we have jS j << jS˙

c j, j� j << j�˙
c j. Now we proceed to calculate

the peridynamic energy density inside the material due to the presence of a small
deformation u.x/. Suppose that the strain at the length scale of a neighborhood of
horizon ı is a linear function, i.e.,

S.u; y; x/ D
u.y/ � u.x/

jy � xj
�

y � x

jy � xj

D F
y � x

jy � xj
�

y � x

jy � xj
D Fe � e;

(63)

here F is a 3 by 3 matrix. We expand the first potential with respect to S and the
second in � keeping in mind that

f .0/ D f 0.0/ D g.0/ D g0.0/ D 0
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to get

f
�p

jy � xjS
�

D
jy � xj

2
f 00.0/S2 C O.S3/

g
�
�.x; t I S/

�
D

1

2
g00.0/�2 C O.�3/

(64)

So we write the energy density which was defined in Eq. (50) for points x of
distance ı away from the boundary @D to leading order

Eı D
1

Vı

˛f 00.0/

2ı

Z
Hı.x/

!ı.jy � xj/jy � xj.Fe � e/2dy

C
ˇg00.0/

2ı2

�
1

Vı

Z
Hı.x/

!ı.jy � xj/jy � xjFe � e dy

�2
(65)

The change of variable ı� D y � x gives to leading order

Eı D
˛f 00.0/

2V1

Z
H1.0/

!.j�j/j�j.Fe � e/2d�

C
ˇg00.0/

2V 2
1

�Z
H1.0/

!.j�j/j�jFe � e d�

�2
(66)

Observe that .Fe � e/2 D
P

ijkl Fij Fklei ej ekel and the first term in (66) is given by

X
ijkl

MijklFij Fkl (67)

where

Mijkl D
˛f 00.0/

2V1

Z
H1.0/

j�j!.j�j/ ei ej ekel d� D
˛f 00.0/

2V1

Z 1

0

j�j3!.j�j/ d j�j

Z
S2

ei ej ekel de: (68)

where de is an element of surface measure on the unit sphere. Next observe Fe �e DP
kj Fkj ekej and the second term in (66) is given by

ˇg00.0/

2V 2
1

0
@X

ij

ƒij Fij

1
A

2

D
ˇg00.0/

2V 2
1

X
ijkl

ƒij ƒklFij Fkl : (69)
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where

ƒjk D

Z
H1.0/

j�j!.j�j/ ej ek d� D

Z 1

0

j�j3!.j�j/d j�j

Z
S2

ej ek de: (70)

Focusing on the first term, we show that

Mijkl D 2�

�
ıikıjl C ıil ıjk

2

�
C �ıij ıkl (71)

where � and � are given by

� D � D
˛f 00.0/

10

Z 1

0

j�j3!.j�j/ d j�j: (72)

To see this we write

�ijkl .e/ D ei ej ekel ; (73)

to observe that �.e/ is a totally symmetric tensor valued function defined for e 2 S2

with the property

�ijkl .Qe/ D QimemQjnenQkoeoQlpep D QimQjnQkoQlp�mnop.e/ (74)

for every rotation Q in SO3. Here repeated indices indicate summation. We write

Z
H1.0/

j�j3!.j�j/ ei ej ekel d� D

Z 1

0

j�j3!.j�j/d j�j

Z
S2

�ijkl .e/ de (75)

to see that for every Q in SO3

QimQjnQkoQlp

Z
S2

�ijkl .e/ de D

Z
S2

�mnop.Qe/ de D

Z
S2

�mnop.e/ de: (76)

Therefore we conclude that
R

S2 �ijkl .e/ de is invariant under SO3 and is therefore
an isotropic symmetric fourth-order tensor and necessarily of the form

Z
S2

�ijkl .e/ de D a
�
ıikıjl C ıil ıjk

�
C bıij ıkl : (77)

So M can be written in the form

Mijkl D 2�

�
ıikıjl C ıil ıjk

2

�
C �ıij ıkl ; (78)
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with suitable choices of � and �. To evaluate � and �, we note the following
relations between � and � for isotropic fourth-order tensors of the form above and
their contractions

Mi ijj D 3.2� C 3�/; (79)

Mij ij D 3.4� C �/: (80)

These relations can be readily verified by direct calculation.
On the other hand from the definition of M given by (68), we have

Mi ijj D
˛f 00.0/

2V1

Z 1

0

j�j3!.j�j/ d j�j

Z
S2

e2
i e2

j de D
4	˛f 00.0/

2V1

Z 1

0

j�j3!.j�j/ d j�j;

(81)

Mij ij D
˛f 00.0/

2V1

Z 1

0

j�j3!.j�j/ d j�j

Z
S2

e2
i e2

j de D
4	˛f 00.0/

2V1

Z 1

0

j�j3!.j�j/ d j�j;

(82)

since e2
i D

P
i e2

i D 1. Equation (72) now follows on recalling that V1 D 4
3
	 and

solving the system given by (79) and (80).
Focusing on the second term of (66) given by (69), we show that

ƒij D
4	

3

Z 1

0

j�j3!.j�j/ d j�jıij (83)

To see this we write

ƒij .e/ D ei ej ; (84)

to observe that ƒ.e/ is a totally symmetric tensor valued function defined for e 2 S2

with the property

ƒij .Qe/ D QimemQjnen D QimQjnƒmn.e/ (85)

for every rotation Q in SO3. As before repeated indices indicate summation. We
consider

Z
S2

ƒij .e/ de (86)

to see that for every Q in SO3

QimQjn

Z
S2

ƒij .e/ de D

Z
S2

ƒmn.Qe/ de D

Z
S2

ƒmn.e/ de: (87)
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Therefore we conclude that
R

S2 ƒij .e/ de is an isotropic symmetric second-order
tensor and of the form

Z
S2

ƒij .e/ de D aıij ; (88)

i.e., a multiple of the identity. So from (70) ƒ is of the form

ƒij D �ıij : (89)

To evaluate � we take the trace of (70) and (83) as follows.
Now the second term is given by

ˇg00.0/

2V 2
1

�
4	

3

�2 �Z 1

0

j�j3!.j�j/d j�j

�2X
ijkl

ıij ıklFij Fkl D

D ˇg00.0/
1

2

�Z 1

0

j�j3!.j�j/d j�j

�2X
ijkl

ıij ıklFij Fkl D KijklFij Fkl (90)

Collecting results we see that the leading order of the energy is given by

Eı D
X
ijkl

.Mijkl C Kijkl /Fij Fkl D
X
ijkl

�
2�

ıikıjl C ıil ıjk

2
C �ıij ıkl

�
Fij Fkl

(91)

where the shear modulus is given by

� D
˛f 00.0/

10

Z 1

0

j�j3!.j�j/ d j�j; (92)

and the Lame constant is given by

� D
˛f 00.0/

10

Z 1

0

j�j3!.j�j/ d j�j C
ˇg00.0/

2

�Z 1

0

j�j3!.j�j/d j�j

�2

: (93)

One is free to choose ˛ and ˇ provided that the resulting elastic tensor satisfies the
constraints of ellipticity. Here one is no longer restricted to Poisson ratios of 1=4 as
in the bond-based formulation.

An identical calculation shows that for two-dimensional problems the elastic
constants are given by

� D
˛f 00.0/

8

Z 1

0

j�j2!.j�j/ d j�j; (94)
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and

� D
˛f 00.0/

8

Z 1

0

j�j2!.j�j/ d j�j C
ˇg00.0/

2

�Z 1

0

j�j2!.j�j/d j�j

�2

; (95)

and one is no longer restricted to Poisson ratio 1=3 materials.
We note here that the two-dimensional moduli N� and N� are directly related to

the well-known moduli appearing in the plane strain or plane stress solutions for
isotropic materials. This relationship is now well known and can be found in Jasiuk
et al. (1994) and also Milton (2002).

Calibrating Energy Release Rate

In regions of large strain, the same force potentials (3) and (4) are used to calculate
the amount of energy consumed by a crack per unit area of growth, i.e., the energy
release rate. The energy release rate equals the work necessary to eliminate force
interaction on either side of a fracture surface per unit fracture area. In this model
the energy release rate has two components: one associated with the force potential
for tensile strain (3) and the other associated with the force potential for hydrostatic
strain (4). The critical energy release rate Gs associated with fracture under tensile
forces is found to be the same for all choices of horizon ı. However the critical
energy release rate for hydrostatic fracture Gh increases with decreasing horizon
and becomes infinite as ı ! 0 at the rate 1=ı.

For tensile forces we use (3) and calculate the work required to eliminate
interaction between two points x and y; this is given byWı.1/ D limS!1 Wı.S/

where Wı.1/ D !ı.jy � xj/f1=ı. We suppose x gives the center of the
peridynamic neighborhood located a distance z away from the planar interface
separating upper and lower half spaces. We suppose x lies in the lower half space,
and the points y lie in the upper half space inside the peridynamic neighborhood of x

(see Fig. 4). The critical energy release rate Gs associated with tensile forces equals
the work necessary to eliminate force interaction on either side of a fracture surface
per unit fracture area. It is given in three dimensions by integration of Wı.1/ over

Fig. 4 Evaluation of energy
release rate Gs . For each point
x along the dashed line,
0 � z � ı, the work required
to break the interaction
between x and y in the
spherical cap is summed up
in (96) using spherical
coordinates centered at x

y

z

x

ζ
δ

θ

arccos(z/ζ)
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the intersection of the neighborhood of x and the upper half space given by the
spherical cap (see Fig. 4),

Gs D
4	

Vı

Z ı

0

Z ı

z

Z cos�1.z=�/

0

Wı.1; �/�2 sin
 d
 d� d z (96)

where � D jy � xj. This integral is calculated and for d dimensions d D 1; 2; 3, the
result is

Gs D M
2!d�1

!d

f1 ; (97)

where M D
R 1

0
rd !.r/dr and !d is the volume of the d dimensional unit ball,

!1 D 2; !2 D 	; !3 D 4	=3. We see from this calculation that the critical energy
release rate is independent of ı.

For hydrostatic forces we use (4) and calculate the work required to eliminate
interaction between x and the upper half plane. As before we suppose x gives the
center of the peridynamic neighborhood located a distance z away from the planar
interface separating upper and lower half spaces. We suppose x lies in the lower half
space, and the peridynamic neighborhood of x intersects the upper half space (see
Fig. 5).

The critical energy release rate Gh associated with hydrostatic forces equals the
work necessary to eliminate force interaction on either side of a fracture surface
per unit fracture area. The work per unit volume needed to eliminate hydrostatic
interaction between a point x and its neighbors is

Vı.1/.x/ D lim
�!1

ˇg.�/

ı2
D

ˇg1

ı2
: (98)

For points x D .0; 0; z/, with 0 < jzj < ı above and below the z D 0 plane, the
work per unit area to eliminate hydrostatic interaction between the lower half space
z < 0 and upper half space z > 0 is

Gh D 2

Z ı

0

ˇg1

ı2
d z D

2ˇg1

ı
: (99)

Fig. 5 Hydrostatic energy
release rate Gh

x = (0, 0, z)

δ



1288 R. Lipton et al.

For d dimensions d D 1; 2; 3, the result is the same and

Gs D
2ˇg1

ı
: (100)

We see from this calculation that the energy release rate for hydrostatic fracture is
increasing at the rate 1=ı.

Linear Elastic Operators in the Limit of Vanishing Horizon

In this section we consider smooth evolutions u in space and show that away from
fracture set the operators LT C LD acting on u converge to the operator of linear
elasticity in the limit of vanishing nonlocality. We denote the fracture set by QD

and consider any open un-fractured set D0 interior to D with its boundary a finite
distance away from the boundary of D and the fracture set QD. In what follows
we suppose that the nonlocal horizon ı is smaller than the distance separating the
boundary of D0 from the boundaries of D and QD.

Theorem 4. Convergence to linear elastic operators. Suppose that u.x; t/ 2

C 2.Œ0; T0�; C 3.D;R3// and for every x 2 D0 � D n QD, then there is a constant
C > 0 independent of nonlocal horizon ı such that, for every .x; t/ in D0 � Œ0; T0�,
one has

jLT .u.t// C LD.u.t// � r � C E.u.t//j < C ı; (101)

where the elastic strain is E.u/ D .ruC.ru/T /=2 and the elastic tensor is isotropic
and given by

Cijkl D 2 N�

�
ıikıjl C ıil ıjk

2

�
C N�ıij ıkl ; (102)

with shear modulus N� and Lamé coefficient N� given by (92) and (93). The numbers
˛ and ˇ can be chosen independently and can be any pair of real numbers such that
C is positive definite.

Proof. We start by showing

jLT .u.t// �
f 00.0/

2!3

Z
B1.0/

ej�jJ .j�j/ei ej ek d�@2
jkui .x/j < C ı; (103)

where !3 D 4	=3 and e D ey�x are unit vectors on the sphere; here
repeated indices indicate summation. To see this recall the formula for LT .u/

and write @S f .
p

jy � xjS/ D f 0.
p

jy � xjS/
p

jy � xj. Now Taylor expand
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f 0.
p

jy � xjS/ in
p

jy � xjS and Taylor expand u.y/ about x, denoting ey�x by
e to find that all odd terms in e integrate to zero and

jLT .u.t//l �
2

Vı

Z
Bı.x/

J ı.jy � xj/

ıjy � xj

f 00.0/

4
jy � xj2@2

jkui .x/ei ej ekel ; dyj

< C ı; l D 1; 2; 3:

(104)

On changing variables � D .y � x/=ı, we recover (103). Now we show

jLD.u.t//k �
1

!3

Z
B1.0/

j�j!.j�j/ei ej d�
ˇg00.0/

2!3

Z
B1.0/

j�j!.j�j/ekel d�@2
lj ui .x/j

< C ı; k D 1; 2; 3:
(105)

We note for x 2 D0 that D \ Bı.x/ D Bı.x/ and the integrand in the second term
of (14) is odd and the integral vanishes. For the first term in (14), we Taylor expand
@� g.�/ about � D 0 and Taylor expand u.z/ about y inside �.y; t/ noting that terms
odd in e D ez�y integrate to zero to get

j@� g.�.y; t// � g00.0/
1

Vı

Z
Bı.y/

!ı.jz � yj/jz � yj@j ui .y/ei ej d zj < C ı3: (106)

Now substitution for the approximation to @� g.�.y; t// in the definition of LD gives

ˇ̌
ˇLD.u/

1

Vı

Z
Bı.x/

!ı.jy � xj/

ı2
ey�x

1

2Vı

Z
Bı.y/

!ı.jz � yj/jz � yj

ˇg00.0/@j ui .y/ei ej d z dy
ˇ̌
ˇ < C ı:

(107)

We Taylor expand @j ui .y/ about x; note that odd terms involving tensor products
of ey�x vanish when integrated with respect to y in Bı.x/, and we obtain (105).

We now calculate as in (Lipton 2016 equation (64) or in section “Calibrating the
Peridynamic Energy to Elastic Properties” to find that

f 00.0/

2!3

Z
B1.0/

j�jJ .j�j/ei ej ekel d�@2
jkui .x/

D

�
2�1

�
ıikıjl C ıil ıjk

2

�
C �1ıij ıkl

�
@2

jkui .x/;

(108)

where

�1 D �1 D
f 00.0/

10

Z 1

0

r3!.r/ dr: (109)
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Next observe that a straightforward calculation gives

1

!3

Z
B1.0/

j�j!.j�j/ei ej d� D ıij

Z 1

0

r3!.r/ dr; (110)

and we deduce that

1

!3

Z
B1.0/

j�j!.j�j/ei ej d�
ˇg00.0/

2!3

Z
B1.0/

j�j!.j�j/ekel d�@2
lj ui .x/

D
ˇg00.0/

2

�Z 1

0

r3!.r/ dr

�2

ıij ıkl@
2
lj ui .x/:

(111)

Theorem 4 follows on adding (108) and (111) ut

Conclusions

We have introduced a regularized model for free fracture propagation based on
nonlocal potentials. At each instant of the evolution, we identify the softening
zone where strains lie above the strength of the material. We have shown that
discontinuities associated with flaws larger than the length scale of nonlocality ı

can become unstable and grow. An explicit inequality is found that shows that
the volume of the softening zone goes to zero linearly with the length scale of
nonlocal interaction. This scaling is consistent with the notion that a softening
zone of width proportional to ı converges to a sharp fracture as the length scale
of nonlocal interaction goes to zero. Inside quiescent regions with no cracks, the
nonlocal operator converges to the local elastic operator at a rate proportional to
the radius of nonlocal interaction. We show that the model can be calibrated to
measured values of critical energy release rate, shear modulus, and bulk modulus of
material samples. The double-well state-based potential developed here no longer
has Poisson ratio constrained to be 1=4. For this model we can choose the potentials
so that the small strain behavior is specified by the isotropic elasticity tensor for any
material with prescribed shear and Lamé moduli.

The energy release rate necessary for tensile forces to create fractures is constant
in ı, whereas the forces necessary to create a fracture using hydrostatic forces grows
as 1=ı. Thus creation of fracture surfaces by hydrostatic forces will not be seen
when

ı <
2ˇg1

Gs

: (112)

On the other hand, the elastic properties for small strains can be made to correspond
to any positive definite isotropic elastic tensor.
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Abstract

We present novel governing operators in arbitrary dimension for nonlocal
diffusion in homogeneous media. The operators are inspired by the theory of
peridynamics (PD). They agree with the original PD operator in the bulk of
the domain and simultaneously enforce local boundary conditions (BC). The
main ingredients are periodic, antiperiodic, and mixed extensions of kernel
functions together with even and odd parts of bivariate functions. We present
different types of BC in 2D which include pure and mixed combinations of
Neumann and Dirichlet BC. Our construction is systematic and easy to follow.
We provide numerical experiments that validate our theoretical findings. When
our novel operators are extended to vector-valued functions, they will allow the
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extension of PD to applications that require local BC. Furthermore, we hope
that the ability to enforce local BC provides a remedy for surface effects seen
in PD.

We recently proved that the nonlocal diffusion operator is a function of the
classical operator. This observation opened a gateway to incorporate local BC
to nonlocal problems on bounded domains. The main tool we use to define
the novel governing operators is functional calculus, in which we replace the
classical governing operator by a suitable function of it. We present how to apply
functional calculus to general nonlocal problems in a methodical way.

Keywords
Nonlocal wave equation · Nonlocal operator · Peridynamics · Boundary
condition · Integral operator

Introduction

We construct novel governing operators for nonlocal diffusion (Andreu-Vaillo
et al. 2010; Du et al. 2012) in arbitrary dimension. The operators are inspired by
the theory of peridynamics (PD), a nonlocal extension of continuum mechanics
developed by Silling (2000). By suppressing the time variable t , we take the
following operator as the original governing operator, and, in 1D, it corresponds
to the original bond-based PD operator for homogeneous media. We choose the 2D
domain as ˝ WD Œ�1; 1� � Œ�1; 1� and for .x; y/ 2 ˝,

Lorigu.x; y/ WD

“

˝

bC .x0 � x; y0 � y/u.x; y/dx0dy0

�

“

˝

bC .x0 � x; y0 � y/u.x0; y0/dx0dy0: (1)

We define the operator that is closely related to Lorig as

Lu.x; y/ WD cu.x; y/ �

“

˝

bC .x0 � x; y0 � y/u.x0; y0/dx0dy0; .x; y/ 2 ˝: (2)

where C WD bC j˝ and c WD
’
˝

C .x0; y0/dx0dy0. Since bC enters into the formulation

only as a function of .x0 � x; y0 � y/, the operator L also assumes a homogeneous
medium. We will show that the two operators agree in the bulk. As the main
contribution, we prove that the novel governing operators we construct agree with
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Lorig in the bulk of ˝ and, at the same time, enforce local pure and mixed Neumann,
Dirichlet, periodic, and antiperiodic BC.

When PD is considered, the dimension of u must be equal to that of x. In that
case, the governing operator in (1) restricted to 1D corresponds to the bond-based
linearized PD; see Silling et al. (2003, Eq. 23) and Weckner and Abeyaratne (2005,
Eq. 3). For the discussion of PD, it is implied that u; x 2 R. The case of u 2 R and
x 2 R

d corresponds to nonlocal diffusion (Du et al. 2012; Seleson et al. 2013).
Our approach to nonlocal problems is fundamentally different because we

exclusively want to use local BC. In Beyer et al. (2016), one of our major results was
the finding that the governing operator of PD equation in R and nonlocal diffusion
in R

d are functions of the Laplace operator. This result opened the path to the
introduction of local boundary conditions into PD theory. Since PD is a nonlocal
theory, one might expect only the appearance of nonlocal BC while employing Lorig

as the governing operator. In the original PD formulation, the concept of local BC
does not apply to PD. Instead, external forces must be supplied through the loading
force density (Silling 2000, p.201). On the other hand, we demonstrate that the
anticipation that local BC are incompatible with nonlocal operators is not quite
correct. Our novel operators present an alternative to nonlocal BC, and we hope
that the ability to enforce local BC will provide a remedy for surface effects seen
in PD; see Madenci and Oterkus (2014, Chaps. 4, 5, 7, and 12) and Kilic (2008),
Mitchell et al. (2015). Furthermore, our approach will provide us the capability to
solve important elasticity problems that require local BC such as contact, shear, and
traction.

We studied various aspects of local BC in nonlocal problems (Aksoylu et al.
2017a,b, 2016, 2017, Submitted; Beyer et al. 2016). Building on Beyer et al. (2016),
we generalized the results in R to bounded domains (Aksoylu et al. 2017a,b), a
critical feature for all practical applications. In Aksoylu et al. (2017b), we laid the
theoretical foundations, and in Aksoylu et al. (2017a), we applied the foundations
to prominent BC such as Dirichlet and Neumann, as well as presented numerical
implementation of the corresponding wave propagation. In Aksoylu et al. (2017),
we constructed the first 1D operators that agree with the original bond-based PD
operator in the bulk of the domain and simultaneously enforce local Neumann
and Dirichlet BC which we denote by MN and MD, respectively. We carried out
numerical experiments by utilizingMN andMD as governing operators in Aksoylu
et al. (2017a). In Aksoylu et al. (2016), we studied other related governing operators.
In Aksoylu and Kaya (2018), we study the condition numbers of the novel governing
operators. Therein, we prove that the modifications made to the operator Lorig to
obtain the novel operators are minor as far as the condition numbers are concerned.

Our approach is not limited to PD; the abstractness of the theoretical methods
used allows generalization to other nonlocal theories. Our approach presents a
unique way of combining the powers of abstract operator theory with numerical
computing (Aksoylu et al. 2017a). Similar classes of operators are used in numerous
applications such as nonlocal diffusion (Andreu-Vaillo et al. 2010; Du et al. 2012;
Seleson et al. 2013), image processing (Gilboa and Osher 2008), population models,
particle systems, phase transition, and coagulation. See the review and news articles
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Du et al. (2012, 2014), and Silling and Lehoucq (2010) for a comprehensive
discussion and the book (Madenci and Oterkus 2014). In addition, see the studies
dedicated to conditioning analysis, domain decomposition and variational theory
(Aksoylu and Kaya 2018; Aksoylu and Mengesha 2010; Aksoylu and Parks 2011;
Aksoylu and Unlu 2014), discretization (Aksoylu and Unlu 2014; Emmrich and
Weckner 2007; Tian and Du 2013), and kernel functions (Mengesha and Du 2013;
Seleson and Parks 2011).

The rest of the paper is structured as follows. In section “The Novel Operators in
2D,” first we prove that the operators Lorig and L agree in the bulk in 2D. We define
the novel operators using orthogonal projections on bivariate functions for which
we utilize the periodic, antiperiodic, and mixed extensions of the kernel function
C .x/. We give the main theorem in 2D. In section “Operators in 1D”, first we
prove that the novel operators are self-adjoint. In 1D, we give the main theorem
which states they all agree with Lorig in the bulk and simultaneously enforce the
corresponding local BC. In section “The Construction of 2D Operators,” we exploit
the properties of the operators in 1D to construct the novel operators in 2D. We
transfer the agreement in the bulk property established for univariate functions to
bivariate ones and eventually prove that the novel operators agree with Lorig in the
bulk in 2D. In section “Verifying the Boundary Conditions,” we make use of the
Leibniz rule, the Fubini theorem, and the Lebesgue dominated convergence theorem
to prove that the novel operators enforce the local BC stated in the main theorem. In
section “Operators in Higher Dimensions,” we present the operators in 3Dwhich can
be easily extended to arbitrary dimension. In section “Numerical Experiments,” we
report the numerical experiments. In section “The Treatment of General Nonlocal
Problems Using Functional Calculus,” we present the treatment of general nonlocal
problems using functional calculus. We conclude in section “Conclusion.”

The Novel Operators in 2D

For .x; y/; .x0; y0/ 2 ˝1, it follows that .x0 � x; y0 � y/ 2 Œ�2; 2� � Œ�2; 2�. Hence,
in (1), the domain of bC .x0 � x; y0 � y/ is b̋ WD Œ�2; 2� � Œ�2; 2�. Furthermore, the
kernel function bC .x; y/ is assumed to be even. Namely,

bC .�x; �y/ D bC .x; y/:

The important choice of bC .x; y/ is the canonical kernel function b�ı.x; y/ whose
only role is the representation of the nonlocal neighborhood, called the horizon, by
a characteristic function. More precisely, for .x; y/ 2 b̋ ,

1We do not explicitly denote the dimension of the domain ˝. The dimension is implied by the
number of iterated integrals present in the operator. The domain ˝ is equal to Œ�1; 1�, Œ�1; 1� �
Œ�1; 1�, and Œ�1; 1� � Œ�1; 1� � Œ�1; 1� in 1D, 2D, and 3D, respectively.
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b�ı.x; y/ WD

�
1; .x; y/ 2 .�ı; ı/ � .�ı; ı/

0; otherwise.
(3)

The size of nonlocality is determined by ı and we assume ı < 1. Since the horizon
is constructed byb�ı.x; y/, a kernel function used in practice is in the form

bC .x; y/ D b�ı.x; y/b�.x; y/; (4)

where b�.x; y/ 2 L2.b̋/ is even.
Throughout the paper, we assume that

u.x; y/ 2 L2.˝/ \ C 1.@˝/: (5)

Inspired by the projections that give the even and odd parts of a univariate function,
we define the following operators that act on a bivariate function:

Pe;x0 ; Po;x0 ; Pe;y0 ; Po;y0 W L2.˝/ ! L2.˝/;

whose definitions are

Pe;x0u.x0;y0/ WD
u.x0;y0/Cu.�x0;y0/

2
; Po;x0u.x0;y0/ WD

u.x0;y0/�u.�x0;y0/

2
; (6)

Pe;y0u.x0;y0/ WD
u.x0;y0/Cu.x0;�y0/

2
; Po;y0u.x0;y0/ WD

u.x0;y0/�u.x0;�y0/

2
: (7)

Each operator is an orthogonal projection and possesses the following decomposi-
tion property:

Pe;x0 C Po;x0 D Ix0 ; Pe;y0 C Po;y0 D Iy0 : (8)

One can easily check that all four orthogonal projections in (6) and (7) commute
with each other. We define the following new operators obtained from the products
of these projections:

Pe;x0Pe;y0u.x0; y0/ WD
1

4

˚
Œu.x0; y0/ C u.x0; �y0/� C Œu.�x0; y0/ C u.�x0; �y0/�

�
;

Pe;x0Po;y0u.x0; y0/ WD
1

4

˚
Œu.x0; y0/ � u.x0; �y0/� C Œu.�x0; y0/ � u.�x0; �y0/�

�
;

Po;x0Po;y0u.x0; y0/ WD
1

4

˚
Œu.x0; y0/ � u.x0; �y0/� � Œu.�x0; y0/ � u.�x0; �y0/�

�
;

Po;x0Pe;y0u.x0; y0/ WD
1

4

˚
Œu.x0; y0/ C u.x0; �y0/� � Œu.�x0; y0/ C u.�x0; �y0/�

�
:
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Due to the aforementioned commutativity property, these are also orthogonal
projections and satisfy the following decomposition property:

Pe;x0Pe;y0 C Pe;x0Po;y0 C Po;x0Pe;y0 C Po;x0Po;y0 D Ix0;y0 : (9)

These will be used in the definition of the novel operators in 2D.
Reflecting on the square support of the restricted kernel function �ı.x; y/, we

define the bulk of the domain as follows:

bulk D f.x; y/ 2 ˝ W .x; y/ 2 .�1 C ı; 1 � ı/ � .�1 C ı; 1 � ı/g:

We first prove that the operators L and Lorig agree in the bulk. Throughout the paper,
we denote the restriction of a function bZ W b̋ ! R to ˝ as Z, i.e., Z WD bZj˝ .

Lemma 1.

Lu.x; y/ D Lorigu.x; y/; .x; y/ 2 bulk:

Proof. For .x; y/ 2 bulk, we have

.x � ı; x C ı/ � .y � ı; y C ı/ \ ˝ D .x � ı; x C ı/ � .y � ı; y C ı/:

Hence,

“

˝

bC .x0 � x; y0 � y/dx0dy0 D

“

˝

b�ı.x
0 � x; y0 � y/b�.x0 � x; y � y0/dx0dy0

D

xCıZ

x�ı

yCıZ

y�ı

b�.x0 � x; y0 � y/dx0dy0 D

ıZ

�ı

ıZ

�ı

�.x0; y0/dx0dy0

D

“

˝

�ı.x
0; y0/�.x0; y0/dx0dy0 D

“

˝

C .x0; y0/dx0dy0:

The result follows. ut

In the construction of the novel operators, a crucial ingredient is first restrictingbC to ˝ and then suitably extending it back to b̋ . To this end, we define the periodic,
antiperiodic, and mixed extensions of C .x/ from Œ�1; 1� to Œ�2; 2�, respectively, as
follows:
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bC p.x/ WD

8<
:

C .x C 2/; x 2 Œ�2; �1/;

C .x/; x 2 Œ�1; 1�;

C .x � 2/; x 2 .1; 2�;

bC a.x/ WD

8̂
<̂
ˆ̂:

�C .x C 2/; x 2 Œ�2; �1/;

C .x/; x 2 Œ�1; 1�;

�C .x � 2/; x 2 .1; 2�:
(10)

We also utilize the following mixed extensions of C .x/:

bC pa.x/ WD

8̂
<̂
ˆ̂:

C .xC2/; x 2 Œ�2; �1/;

C .x/; x 2 Œ�1; 1�;

�C .x � 2/; x 2 .1; 2�;

bC ap.x/ WD

8̂
<̂
ˆ̂:

�C .xC2/; x2Œ�2; �1/;

C .x/; x2Œ�1; 1�;

C .x � 2/; x2.1; 2�:

Building on our 1D construction in Aksoylu et al. (2017), in higher dimensions,
we discovered the operators that enforce local pure and mixed Neumann and
Dirichlet BC. We present the main theorem in 2D with the following 4 types of
BC.

Theorem 1 (Main Theorem in 2D). Let ˝ WD Œ�1; 1� � Œ�1; 1� and the restricted
kernel function be separable in the form

C .x; y/ D X.x/Y .y/; (11)

where X and Y are even functions. Then, the operators MN, MD, MND;ND, and
MN;DN defined by

�
MN � c

�
u.x; y/ WD �

“

˝

�bXp.x0 � x/Pe;x0 C bXa.x0 � x/Po;x0

�

�bY p.y0 � y/Pe;y0 C bY a.y0 � y/Po;y0

�
u.x0; y0/dx0 dy0;

�
MD � c

�
u.x; y/ WD �

“

˝

�bXa.x0 � x/Pe;x0 C bXp.x0 � x/Po;x0

�

�bY a.y0 � y/Pe;y0 C bY p.y0 � y/Po;y0

�
u.x0; y0/dx0 dy0;

�
MND;ND � c

�
u.x; y/ WD �

“

˝

�bXap.x0 � x/Pe;x0 C bXpa.x0 � x/Po;x0

�

�bY ap.y0 � y/Pe;y0 C bY pa.y0 � y/Po;y0

�
u.x0; y0/dx0 dy0;

�
MN;DN � c

�
u.x; y/ WD �

“

˝

�bXp.x0 � x/Pe;x0 C bXa.x0 � x/Po;x0

�

�bY pa.y0 � y/Pe;y0 C bY ap.y0 � y/Po;y0

�
u.x0; y0/dx0 dy0;
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agree with Lu.x; y/ in the bulk, i.e., for .x; y/ 2 .�1 C ı; 1 � ı/ � .�1 C ı; 1 � ı/.
Furthermore, the operators MN and MD enforce pure Neumann and Dirichlet BC,
respectively:

@

@n

��
MN � c

�
u
�
.x; ˙1/ D

@

@n

��
MN � c

�
u
�
.˙1; y/ D 0;

�
MD � c

�
u.x; ˙1/ D

�
MD � c

�
u.˙1; y/ D 0:

The operators MND;ND and MN;DN enforce mixed Neumann and Dirichlet BC,
respectively, in the following way:

@

@n

��
MND;ND � c

�
u
�
.�1; y/ D

@

@n

��
MND;ND � c

�
u
�
.x; �1/ D 0;

�
MND;ND � c

�
u.C1; y/ D

�
MND;ND � c

�
u.x; C1/ D 0;

and

@

@n

��
MN;DN � c

�
u
�
.˙1; y/ D

@

@n

��
MN;DN � c

�
u
�
.x; C1/ D 0;

�
MN;DN � c

�
u.x; �1/ D 0:

Proof. The proofs of agreement in the bulk and the verification of BC are given
in sections “The Construction of 2D Operators” and “Verifying the Boundary
Conditions,” respectively. ut

Remark 1. Although we assume a separable kernel function as in (11), note that we
do not impose a separability assumption on the solution u.x; y/.

Operators in 1D

The construction in higher dimensions is inspired by the one in 1D. Hence, it is
more instructive to provide the construction in 1D. For the convolution present in
the governing operators, we use a shorthand notation and define

Cu.x/ WD

Z
˝

bC .x0 � x/u.x0/dx0:

Furthermore, for each extension type utilized, we define the following operators
which will be useful in the exposition. Following the construction in Aksoylu et al.
(2017a), we assume that u; C 2 L2.˝/ and define
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Cpu.x/ WD

Z
˝

bC p.x0 � x/u.x0/dx0; Cau.x/ WD

Z
˝

bC a.x0 � x/u.x0/dx0;

(12)

Cpau.x/ WD

Z
˝

bC pa.x0 � x/u.x0/dx0; Capu.x/ WD

Z
˝

bC ap.x0 � x/u.x0/dx0:

(13)

The only difference in the operators Cp, Ca, Cpa, and Cap is the extension utilized for
the kernel functions. We prove that the operators agree in the bulk by investigating
how the corresponding kernel functions behave in the bulk.

Lemma 2. Let the kernel function bC .x/ be in the form

bC .x/ D b�ı.x/b�.x/;

where b�.x/ 2 L2.b̋/ is even. Let bC p.x/, bC a.x/, bC pa.x/, and bC ap.x/ denote the
periodic, antiperiodic, and mixed extensions of C .x/ to b̋ , respectively. Then,

bC .x/ D bC p.x/ D bC a.x/ D bC pa.x/ D bC ap.x/; x 2 .�2 C ı; 2 � ı/:

Furthermore, we have the following agreement in the bulk. Namely, for
x 2 .�1 C ı, 1 � ı/,

bC .x0�x/ D bC p.x0�x/ D bC a.x0�x/ D bC pa.x0�x/ D bC ap.x0�x/; x0 2 Œ�1; 1�:

(14)

Proof. Let us study the definition of bC p.x/ given in (10) by explicitly writing the
expression of practical kernel (4) as follows:

bC p.x/ D

8̂
<
:̂

�ı.x C 2/�.x C 2/; x 2 Œ�2; �1/;

�ı.x/�.x/; x 2 Œ�1; 1�;

�ı.x � 2/�.x � 2/; x 2 .1; 2�:

Let us closely look at the first expression in the above definition of bC p.x/:

bC p.x/jx2Œ�2;�1/ D �ı.x C 2/�.x C 2/: (15)

The expression in (15) is equivalent to

bC p.x/jx2Œ�2;�1/ D

(
�.x C 2/; x C 2 2 .�ı; ı/ and x 2 Œ�2; �1/;

0; x C 2 … .�ı; ı/ and x 2 Œ�2; �1/:
(16)
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Table 1 The value of each extension of the function C

Interval bC p.x/ bC a.x/ bC pa.x/ bC ap.x/

x 2 Œ�2; �2 C ı/ �.x C 2/ ��.x C 2/ �.x C 2/ ��.x C 2/

x 2 Œ�2 C ı; �ı� 0 0 0 0

x 2 .�ı; ı/ �.x/ �.x/ �.x/ �.x/

x 2 Œı; 2 � ı� 0 0 0 0

x 2 .2 � ı; 2� �.x � 2/ ��.x � 2/ ��.x � 2/ �.x � 2/

Due to the following set equivalence

fx W x C 2 2 .�ı; ı/ and x 2 Œ�2; �1/g

D fx W x 2 .�2 � ı; �2 C ı/ \ Œ�2; �1/ D Œ�2; �2 C ı/g;

the expression (16) reduces to

bC p.x/jx2Œ�2;�1/ D

�
�.x C 2/; x 2 Œ�2; �2 C ı/;

0; x 2 Œ�2 C ı; �1/:
(17)

Similar to (17), for x 2 .1; 2�, we have

bC p.x/jx2.1;2� D

�
0; x 2 .1; 2 � ı�;

�.x � 2/; x 2 .2 � ı; 2�:
(18)

Combining (17) and (18), for x 2 Œ�2; 2�, we obtain the expression for bC p.x/.
Similarly, we obtain the expressions for the antiperiodic and the mixed extensions.
We collect all the expressions in Table 1.

Clearly, all of the extensions agree for x 2 Œ�2 C ı; 2 � ı�. Also, see Figs. 1
and 2. ut

Using (14), we immediately obtain the following equivalence of operators in the
bulk:

Cu.x/ D Cpu.x/ D Cau.x/ D Cpau.x/ D Capu.x/; x 2 .�1 C ı; 1 � ı/: (19)

Even and odd parts of a univariate function u.x/ are used in the governing operators
MN, MD, MND, and MDN. We define the orthogonal projections that give the even
and odd parts, respectively, of a univariate function by Pe; Po W L2.˝/ ! L2.˝/;

whose definitions are

Peu.x/ WD
u.x/ C u.�x/

2
; Pou.x/ WD

u.x/ � u.�x/

2
:
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We present a commutativity property that allows us to identify the kernel
functions associated with the operators MN and MD.

Lemma 3.

CpPe D PeCp; CpPo D PoCp; CaPe D PeCa; CaPo D PoCa: (20)

Proof. We present the proof for CpPe D PeCp. The other results easily follow. We
recall the definition of Cpu.x/ in (12). We explicitly write PeCpu.x/, and the result
follows by utilizing the evenness of bC p and a change of variable:

PeCpu.x/ D
1

2

�Z
˝

bC p.x0 � x/u.x0/dx0 C

Z
˝

bC p.x0 C x/u.x0/dx0

	

D
1

2

�Z
˝

bC p.x0 � x/u.x0/dx0 C

Z
˝

bC p.x0 � x/u.�x0/dx0

	

D

Z
˝

bC p.x0 � x/Peu.x0/dx0

D CpPeu.x/:

ut

Remark 2. The above commutativity property plays an important role in determin-
ing the spectrum of the operators MN and MD; see Aksoylu and Kaya (2018).
It also helps in identifying the associated kernel functions; see (22) and (23).
Note that the above commutativity property does not hold for the operators Cpa
and Cap. Identification of the associated kernel functions can be done by direct
manipulation.

Theorem 2 (Main Theorem in 1D). Let c D
R

˝
C .x0/dx0. The following

operators MN,MD,MND, and MDN defined by

�
MD � c

�
u.x/ WD �

Z
˝

�bC a.x0 � x/Peu.x0/ C bC p.x0 � x/Pou.x0/
�
dx0;

�
MN � c

�
u.x/ WD �

Z
˝

�bC p.x0 � x/Peu.x0/ C bC a.x0 � x/Pou.x0/
�
dx0;

�
MND � c

�
u.x/ WD �

Z
˝

�bC ap.x0 � x/Peu.x0/ C bC pa.x0 � x/Pou.x0/
�
dx0;

�
MDN � c

�
u.x/ WD �

Z
˝

�bC pa.x0 � x/Peu.x0/ C bC ap.x0 � x/Pou.x0/
�
dx0
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agree withLu.x/ in the bulk, i.e., for x 2 .�1Cı; 1�ı/. Furthermore, the operators
MN and MD enforce pure Neumann and Dirichlet BC, respectively:

d

dx

��
MN � c

�
u
�
.˙1/ D 0;

�
MD � c

�
u.˙1/ D 0:

The operators MND and MDN enforce mixed Neumann and Dirichlet BC, respec-
tively:

�
MND � c

�
u.C1/ D

d

dx

��
MND � c

�
u
�
.�1/ D 0;

�
MDN � c

�
u.�1/ D

d

dx

��
MDN � c

�
u
�
.C1/ D 0:

We define the operatorsMN,MD,MND, andMDN as bounded, linear operators.
More precisely,MD; MN; MND; MDN 2 L.X; X/ where X D L2.˝/ \ C 1.@˝/.
ForMD, the choice of X can be relaxed as L2.˝/\C 0.@˝/. This choice is implied
when we study MD. The assumptions for the operators MND and MDN are also
implied in a similar way.

Imposing Neumann (also periodic and antiperiodic) BC requires differentiation.
For technical details regarding differentiation under the integral sign, see the
discussion on the Leibniz rule in Aksoylu et al. (2017) whose proof relies on the
Lebesgue dominated convergence theorem. In addition, the limit in the definition of
the Dirichlet BC can be interchanged with the integral sign, again by the Lebesgue
dominated convergence theorem.

Remark 3. When we assume homogeneous Neumann and Dirichlet BC on u,
then the operators MN and MD enforce homogeneous Dirichlet and Neumann
BC, respectively. More precisely, for u.˙1/ D 0 and u0.˙1/ D 0, we obtain
d

dx
MNu.˙1/ D 0 and MDu.˙1/ D 0, respectively. The same line of argument

applies to the operators MND and MDN.
Using the operators Cp, Ca, Cpa, and Cap given in (12) and (13), we can express

the operators MN, MD, MND, and MDN in the following way:

�
MN � c

�
D �

�
CpPe C CaPo

�
;

�
MD � c

�
D �

�
CaPe C CpPo

�
;

�
MND � c

�
D �

�
CapPe C CpaPo

�
;

�
MDN � c

�
D �

�
CpaPe C CapPo

�
:

Using the commutativity property (20), we arrive at the following representation:

�
MN � c

�
D �

�
PeCp C PoCa

�
;

�
MD � c

�
D �

�
PeCa C PoCp

�
:
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Now, we can identify the kernel functions associated with operatorsMN and MD:

�
MN�c

�
u.x/ D�

Z
˝

KN.x; x0/u.x0/dx0;

�
MD�c

�
u.x/ D �

Z
˝

KD.x; x0/u.x0/dx0;

(21)

where

KN.x; x0/ WD
1

2

˚�bC p.x0 � x/ C bC p.x0 C x/
�

C
�bC a.x0 � x/ � bC a.x0 C x/

��
;

(22)

KD.x; x0/ WD
1

2

˚�bC a.x0 � x/ C bC a.x0 C x/
�

C
�bC p.x0 � x/ � bC p.x0 C x/

��
:

(23)

We also want to identify the integrands associated with the operators MND and
MDN. We proceed by direct manipulation. By writing Pe and Po explicitly and
utilizing a simple change of variable, we arrive at the following expressions:

�
MND � c

�
u.x/ D �

Z
˝

KND.x; x0/u.x0/dx0;

�
MDN � c

�
u.x/ D �

Z
˝

KDN.x; x0/u.x0/dx0;

where

KND.x; x0/ WD
1

2

˚�bCpa.x0 � x/ C bC pa.x0 C x/
�

C
�bC ap.x0 � x/ � bC ap.x0 C x/

��
;

KDN.x; x0/ WD
1

2

˚�bC ap.x0 � x/ C bC ap.x0 C x/
�

C
�bC pa.x0 � x/ � bC pa.x0 C x/

��
:

In order to align with the construction given in Aksoylu et al. (2017a), we assume
that

bC .x/; bC a.x/; bC p.x/; bC pa.x/; and bC ap.x/ 2 L2.b̋/: (24)

Remark 4. The boundedness ofMN,MD,MND, andMDN follow from the choices
of (5) and (24). In addition, all of them fall into the class of integral operators;
hence, their self-adjointness follows from the fact that the corresponding kernels
are symmetric (due to evenness of C ), i.e., KBC.x; x0/ D KBC.x0; x/ and BC 2

fN;D;ND;DNg. The cases of BC 2 fND;DNg are more involved than the rest. One
useful identity is bC ap.x0 � x/ D bC pa.�x0 C x/.
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In the upcoming proofs, we want to report a minor caveat. We use bC a.x0 C 1/ D

�bC a.x0 � 1/ which holds for x0 ¤ 0. For x0 D 0, i.e., bC a.x0 C 1/ D C .1/ ¤

�C .�1/ D �bC a.x0 � 1/. Since x0 D 0 is only a point, it does not change the value
of the integral. We choose not to point it out each time we run into this case.

Proof (Proof of Theorem 2). The key observation that leads to the agreement of the
operatorsMN,MD,MND, andMDN with the operator L is the agreement of kernel
functions in (14). The property (14) leads to the equivalence (19). Hence, we arrive
at the following equivalence for x 2 .�1 C ı; 1 � ı/:

�
L � c

�
D � C
D �C.Pe C Po/ (using u D Peu C Pou/

D �
�
CPe C CPo

�
D �

�
CpPe C CaPo

�
(using (19)) (25)

DW
�
MN � c

�
:

Similar to (25), we can show that the other operators agree in the bulk as well:

�
L � c

�
D � C

D �
�
CaPe C CpPo

�
DW

�
MD � c

�
(26)

D �
�
CapPe C CpaPo

�
DW

�
MND � c

�
(27)

D �
�
CpaPe C CapPo

�
DW

�
MDN � c

�
(28)

First, we prove that the operatorsMN andMD enforce pure Neumann and Dirichlet
BC, respectively. Next, we will prove that the operators MND and MDN enforce
mixed Neumann and Dirichlet BC, respectively.

• The operator MN: First we remove the points at which the partial derivative
of KN.x; x0/ does not exist from the set of integration. Note that such points
form a set of measure zero and, hence, do not affect the value of the integral.
We differentiate both sides of (21). In Aksoylu et al. (2017), we had proved that
the differentiation in the definition of the Neumann BC can interchange with the
integral. We can differentiate the integrand KN.x; x0/ piecewise and obtain

d

dx

��
MN � c

�
u
�
.x/ D �

Z
˝

@KN

@x
.x; x0/u.x0/dx0; (29)

where

@KN

@x
.x; x0/ D

1

2

˚�
�bC 0

p.x0 �x/CbC 0

p.x0 Cx/
�
C

�
�bC 0

a.x0 �x/�bC 0

a.x0 Cx/
��

:
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We check the boundary values by plugging x D ˙1 in (29).

d

dx

��
MN � c

�
u
�
.˙1/ D �

Z
˝

@KN

@x
.˙1; x0/u.x0/dx0: (30)

The functions bC 0

p and bC 0

a are 2-periodic and 2-antiperiodic because they are the
derivatives of 2-periodic and 2-antiperiodic functions, respectively. Hence,

bC 0

p.x0 � 1/ D bC 0

p.x0 ˙ 1/ and bC 0

a.x0 � 1/ D �bC 0

a.x0 ˙ 1/:

Hence, the integrand in (30) vanishes, i.e.,

@KN

@x
.˙1; x0/ D 0:

Therefore, we arrive at

d

dx
MNu.˙1/ D cu0.˙1/:

When we assume that u satisfies homogeneous Neumann BC, i.e., u0.˙1/ D 0,
we conclude that the operatorMN enforces homogeneous Neumann BC as well.

• The operator MD: By the Lebesgue dominated convergence theorem, the limit
in the definition of the Dirichlet BC can be interchanged with the integral. Now,
we check the boundary values by plugging x D ˙1 in (23).

�
MD � c

�
u.˙1/ D �

Z
˝

KD.˙1; x0/u.x0/dx0: (31)

Since bC p and bC a are 2-periodic and 2-antiperiodic, respectively, we have

bC p.x0 � 1/ D bC p.x0 ˙ 1/ and bC a.x0 � 1/ D �bC a.x0 ˙ 1/:

Hence, the integrand in (31) vanishes, i.e., KD.˙1; x0/ D 0. Therefore, we arrive
at

MDu.˙1/ D cu.˙1/:

When we assume that u satisfies homogeneous Dirichlet BC, i.e., u.˙1/ D 0,
we conclude that the operator MD enforces homogeneous Dirichlet BC as well.

• The operator MND: First we prove that CapPeu.C1/ D 0. We use a change of
variable in the second piece.

CapPeu.C1/ D
1

2

�Z
˝

bC ap.x0 � 1/Peu.x0/dx0 C

Z
˝

bC ap.�x0 � 1/Peu.x0/dx0

	
:
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Then, we split the integrals into two parts as follows:

CapPeu.C1/ D
1

2

Z 0

�1

�bC ap.x0 � 1/ C bC ap.�x0 � 1/
�
Peu.x0/dx0

C
1

2

Z 1

0

�bC ap.x0 � 1/ C bC ap.�x0 � 1/
�
Peu.x0/dx0:

(32)

For x0 2 Œ�1; 0�, we have x0 � 1 2 Œ�2; �1�. By using the definition of bC ap and
the evenness of C , we obtain

bC ap.x0 �1/ D �bC ap.x0 C1/ D �C .x0 C1/ D �C .�x0 �1/ D �bC ap.�x0 �1/:

(33)
For x0 2 Œ0; 1�, we have x0 � 1 2 Œ�1; 0�. By using the definition of bC ap and the
evenness of C , we obtain

bC ap.x0 � 1/ D C .x0 � 1/ D C .�x0 C 1/ D �bC ap.�x0 � 1/: (34)

Combining (33) and (34) with (32), we conclude that CapPeu.C1/ D 0.
Similarly, we can conclude that CpaPou.C1/ D 0. Consequently, we arrive at

CNDu.C1/ D 0:

We prove that
d

dx
CpaPou.�1/ D 0. We use a change of variable in the second

piece.

d

dx
CpaPou.�1/ D �

1

2

�Z
˝

bC 0

pa.x0 C 1/Pou.x0/dx0

�

Z
˝

bC 0

pa.�x0 C 1/Pou.x0/dx0

	
:

Then, we split the integrals into two parts as follows:

d

dx
CpaPou.�1/ D �

1

2

Z 0

�1

�bC 0

pa.x0 C 1/ � bC 0

pa.�x0 C 1/
�
Pou.x0/dx0

�
1

2

Z 1

0

�bC 0

pa.x0 C 1/ � bC 0

pa.�x0 C 1/
�
Pou.x0/dx0:

(35)

For x0 2 Œ�1; 0�, we have x0 C 1 2 Œ0; 1�. By using the definition of bC pa and the
oddness of C 0, we obtain

bC 0

pa.x0 C1/ D C 0.x0 C1/ D �C 0.�x0 �1/ D �bC 0

pa.�x0 �1/ D bC 0

pa.�x0 C1/:

(36)
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For x0 2 Œ0; 1�, we have x0 C 1 2 Œ1; 2�. By using the definition of bC pa and the
oddness of C 0, we obtain

bC 0

pa.x0 C 1/ D �bC 0

pa.x0 � 1/ D �C 0.x0 � 1/ D C 0.�x0 C 1/ D bC 0

pa.�x0 C 1/:

(37)

Combining (36) and (37) with (35), we conclude that d
dx
CpaPou.�1/ D 0.

Similarly, we can conclude that d
dx
CapPeu.�1/ D 0. Consequently, we arrive at

d

dx
CNDu.�1/ D 0:

• The operator MDN: The proof is similar to the case of MND.
ut

Remark 5. As we prepare to construct the operators in 2D, it is useful to explicitly
denote the variable x0 on which Pe and Po act in the following way.

CNu.x/ WD
�
CpPe;x0 C CaPo;x0

�
u.x/

CDu.x/ WD
�
CaPe;x0 C CpPo;x0

�
u.x/

CNDu.x/ WD
�
CapPe;x0 C CpaPo;x0

�
u.x/

CDNu.x/ WD
�
CpaPe;x0 C CapPo;x0

�
u.x/:

Consequently, checking if the operators enforce the BC reduces to obtaining

d

dx
CNu.˙1/ D 0; CDu.˙1/ D 0

d

dx
CNDu.�1/ D 0; CNDu.C1/ D 0

d

dx
CDNu.C1/ D 0; CDNu.�1/ D 0:

(38)

The Construction of 2D Operators

For the convolution present in the governing operators, we use a shorthand notation
and define the operator

Cu.x; y/ WD

“

˝

bC .x0 � x; y0 � y/u.x0; y0/dx0dy0: (39)
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We also define the following auxiliary operators that act on a bivariate function.

XEu.x; y/ WD

Z
˝

bXE.x0 � x/u.x0; y/dx0; YEu.x; y/ WD

Z
˝

bY E.y0 � y/u.x; y0/dy0;

where E 2 fp;a;pa;apg.
Using the separability assumption (11) on the kernel function, we have the

following:

bC .x; y/ D bX.x/bY .y/: (40)

The separability of the kernel function leads to the following important property.
Using (40) and the Fubini theorem, we rewrite the operator C in (39).

Cu.x; y/ D

“

˝

bX.x0 � x/bY .y0 � y/u.x0; y0/dx0dy0

D

Z
˝

bX.x0 � x/

 Z

˝

bY .y0 � y/u.x0; y0/dy0
�
dx0

D

Z
˝

bX.x0 � x/


Yu.x0; y/

�
dx0

D X
�
Yu

�
.x; y/ (41)

In other words, we proved that C can be decomposed into a product of two 1D
operators where the action of X and Y is on the variables x and y, respectively.
Furthermore, a change in the order of integration leads to

Cu.x; y/ D YXu.x; y/: (42)

Similar to (19), we also obtain the following equivalence of operators in the bulk.
For fixed y0, we have

Xu.x; y0/ D Xpu.x; y0/ D Xau.x; y0/

D Xpau.x; y0/ D Xapu.x; y0/; x 2 .�1 C ı; 1 � ı/:

Also, for fixed x0, we have

Yu.x0; y/ D Ypu.x0; y/ D Yau.x0; y/ D Ypau.x0; y/

D Yapu.x0; y/ y 2 .�1 C ı; 1 � ı/:

The choice made in (25) leads to the construction of the operator that enforces pure
Neumann BC in the x- and y-variable as follows:
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XN WD XpPe;x0 C XaPo;x0 (in the x-variable) (43)

YN WD YpPe;y0 C YaPo;y0 (in the y-variable): (44)

Similarly, the choice made in (26) leads to the construction of the operator that
enforces pure Dirichlet BC in the x- and y-variable as follows:

XD WD XaPe;x0 C XpPo;x0 (in the x-variable) (45)

YD WD YaPe;y0 C YpPo;y0 (in the y-variable): (46)

Similarly, the choices made in (27) and (28) lead to the construction of the operators
that enforce mixed Neumann-Dirichlet and Dirichlet-Neumann BC in the x- and y-
variable as follows:

XND WD XapPe;x0 C XpaPo;x0 (in the x-variable) (47)

YND WD YapPe;y0 C YpaPo;y0 (in the y-variable) (48)

XDN WD XpaPe;x0 C XapPo;x0 (in the x-variable) (49)

YDN WD YpaPe;y0 C YapPo;y0 (in the y-variable): (50)

We want to construct an operator that enforces pure Neumann BC on the square.
We make the choice that gives the 1D Neumann operator both in x- and y-variables.
Hence, combining (43) and (44), we define the 2D pure Neumann operator as

�
MN � c

�
WD �XNYN D �

�
XpPe;x0 C XaPo;x0

��
YpPe;y0 C YaPo;y0

�
: (51)

Similarly, combining (45) and (46), we define the 2D pure Dirichlet operator as

�
MD � c

�
WD �XDYD D �

�
XaPe;x0 C XpPo;x0

��
YaPe;y0 C YpPo;y0

�
: (52)

Similarly, combining (47), (48), (49), and (50), we define the 2D mixed operators
as follows:

�
MND;ND � c

�
WD �XNDYND D �

�
XapPe;x0 C XpaPo;x0

��
YapPe;y0 C YpaPo;y0

�
(53)�

MN;DN � c
�

WD �XN YDN D �
�
XpPe;x0 C XaPo;x0

� �
YpaPe;y0 C YapPo;y0

�
:

(54)

Recalling (2), we immediately see that the operator L agrees in the bulk with the
given operators above. Namely,
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�
L � c

�
D �C D

�
MN � c

�
�
L � c

�
D �C D

�
MD � c

�
�
L � c

�
D �C D

�
MND;ND � c

�
�
L � c

�
D �C D

�
MN;DN � c

�
:

Remark 6. The operator C in (2) utilizes a 2D computational domain which is
indicated by the integration variable dx0dy0 D d.x0; y0/. We can show the
construction of each operator by paying attention to the computational domain of
each operator and rearranging (41) using the agreement of operators in the bulk in
the following way:

C D CIx0;y0 D X Ix0 YIy0

D X .Pe;x0 C Po;x0/ Y.Pe;y0 C Po;y0/

D
�
XPe;x0 C XPo;x0

� �
YPe;y0 C YPo;y0

�
D

�
XpPe;x0 C XaPo;x0

� �
YpPe;y0 C YaPo;y0

�
DW �

�
MN � c

�
D

�
XaPe;x0 C XpPo;x0

� �
YaPe;y0 C YpPo;y0

�
DW �

�
MD � c

�
D

�
XapPe;x0 C XapPo;x0

� �
YapPe;y0 C YapPo;y0

�
DW �

�
MND;ND � c

�
(55)

D
�
XpPe;x0 C XaPo;x0

� �
YapPe;y0 C YpaPo;y0

�
DW �

�
MN;ND � c

�
: (56)

We construct the operators in higher dimensions by using the corresponding rear-
rangement; see section “Operators in Higher Dimensions” for the 3D construction.
In addition, the 2D decomposition operator Ix0;y0 given in (9) is indeed the product
of the 1D decomposition operators Ix0 and Iy0 given in (8). More precisely,

Ix0;y0 D Ix0 Iy0

D
�
Pe;x0 C Po;x0

��
Pe;y0 C Po;y0

�
D Pe;x0Pe;y0 C Pe;x0Po;y0 C Po;x0Pe;y0 C Po;x0Po;y0 :

Verifying the Boundary Conditions

The operators
�
MN � c

�
,

�
MD � c

�
,

�
MND;ND � c

�
, and

�
MN;DN � c

�
given

in (51), (52), (53), and (54), respectively, are the product of two 1D operators. As
we mentioned, the limit in the definition of the BC can be interchanged with the
integral sign due to the Lebesgue dominated convergence theorem and the Leibniz
rule. Then, using the change in the order of integration as in (42) and (38), we can
prove that the pure and mixed Neumann and Dirichlet BC are enforced.

First, we prove that the operators MN and MD enforce pure Neumann and pure
Dirichlet BC in 2D:
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@

@n

�
.MN � c/ u

�
.x; C1/ D �

�
@

@y
XNYN

	
u.x; C1/

D �XN

�
d

dy
YN

	
u.x; C1/ D 0

@

@n
Œ.MN � c/ u� .x; �1/ D

�
@

@y
XNYN

	
u.x; �1/

D XN

�
d

dy
YN

	
u.x; �1/ D 0

@

@n
Œ.MN � c/ u� .C1; y/ D �

�
@

@x
YNXN

	
u.C1; y/

D �YN

�
d

dx
XN

	
u.C1; y/ D 0

@

@n
Œ.MN � c/ u� .�1; y/ D

�
@

@x
YNXN

	
u.�1; y/

D YN

�
d

dx
XN

	
u.�1; y/ D 0:

�
MD � c

�
u.x; ˙1/ D �XDYDu.x; ˙1/ D 0

�
MD � c

�
u.˙1; y/ D �YDXDu.˙1; y/ D 0:

Then, we prove that the operator MND;ND enforces mixed (2+2) Neumann-
Dirichlet, i.e., the West and South edges have Neumann and the East and North
edges have Dirichlet BC:

@

@n
Œ.MND;ND � c/ u� .�1; y/ D

�
@

@x
YNDXND

	
u.�1; y/

D YND

�
d

dx
XND

	
u.�1; y/ D 0

@

@n
Œ.MND;ND � c/ u� .x; �1/ D

�
@

@y
XNDYND

	
u.x; �1/

D XND

�
d

dy
YND

	
u.x; �1/ D 0:

�
MND;ND � c

�
u.C1; y/ D �XNDYNDu.C1; y/ D 0�

MND;ND � c
�
u.x; C1/ D �XNDYNDu.x; C1/ D 0:
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Finally, we prove that the operator MN;DN enforces mixed Neumann-Dirichlet
(3+1), i.e., the East, West, and North edges have Neumann and the South edge have
Dirichlet BC:

@

@n

�
.MN;DN � c/ u

�
.C1; y/ D �

�
@

@x
YDNXN

	
u.C1; y/

D YDN

�
d

dx
XN

	
u.C1; y/ D 0

@

@n

�
.MN;DN � c/ u

�
.�1; y/ D

�
@

@x
YDNXN

	
u.�1; y/

D YDN

� d

dx
XN

�
u.�1; y/ D 0

@

@n
Œ.MN;DN � c/ u� .x; C1/ D �

�
@

@y
XNYDN

	
u.x; C1/

D �XN

�
d

dy
YDN

	
u.x; C1/ D 0:

�
MN;DN � c

�
u.x; �1/ D �XNYDNu.x; �1/ D 0:

Operators in Higher Dimensions

Let us consider the convolution in 3D and the domain be ˝ WD Œ�1; 1� � Œ�1; 1� �

Œ�1; 1�: We define the convolution in 3D similarly using notation in (39).

Cu.x; y/ D

•

˝

bC .x0 � x; y0 � y; z0 � z/u.x0; y0; z0/dx0dy0d z0:

Note that C D �
�
L � c

�
. Hence we concentrate on finding suitable operators that

agree with C in the bulk. Assuming a separable restricted kernel function similar
to (11),

C .x; y; z/ D X.x/Y .y/Z.z/;

the operatorsMN andMD in 3D defined below enforce pure Neumann and Dirichlet
BC and simultaneously agree with the operator L in the bulk. The construction
process is an extension of the 2D case:



39 Nonlocal Operators with Local Boundary Conditions: An Overview 1317

C D CIx0;y0;z0 D X Ix0 YIy0 ZIz0

D X .Pe;x0 C Po;x0/ Y.Pe;y0 C Po;y0/Z.Pe;z0 C Po;z0/

D
�
XPe;x0 C XPo;x0

� �
YPe;y0 C YPo;y0

� �
ZPe;z0 C ZPo;z0

�
D

�
XpPe;x0 C XaPo;x0

� �
YpPe;y0 C YaPo;y0

� �
ZpPe;z0 C ZaPo;z0

�
DW �

�
MN�c

�
D

�
XaPe;x0 C XpPo;x0

� �
YaPe;y0 C YpPo;y0

� �
ZaPe;y0 C ZpPo;z0

�
DW �

�
MD�c

�
:

The operators that enforce mixed Neumann and Dirichlet BC can be constructed in
a similar fashion to the operators given in (55) and (56). The extension to arbitrary
dimension can be performed by the same line of argument.

Numerical Experiments

We numerically solve the following nonlocal wave equation:

ut t .x; t / C MBCu.x; t / D b.x; t /; .x; t / 2 ˝ � Œ0; T �; (57)

u.x; 0/ D u0.x/;

ut .x; 0/ D 0

by employing the governing operators MN and MD in 1D, i.e., BC 2

fN;Dg, and the operators MN, MD, MND;ND, and MN;DN in 2D, i.e., BC 2

fN;D; .ND; ND/; .N; DN/g, with discontinuous and continuous initial displacement
u0.x/; see the definition of the governing operators in Theorem 1. For the
discretization of the 1D problem, we use the Galerkin projection method with
piecewise polynomials. For implementation details and theoretical construction, see
Aksoylu et al. (2017a). Note that, for all time, BC are satisfied; see Fig. 3.

In 1D, as far as the boundary behavior goes, in nonlocal problems, we observe
a similar wave reflection pattern from the boundary as in classical problems. In the
classical case, we see that the Neumann and the Dirichlet BC create reflections of
same and opposite signs, respectively; for the Neumann BC, see Fig. 4. A parallel
behavior is observed for the nonlocal Neumann and Dirichlet cases; see Fig. 3.

For the discretization of the 2D problem, we use the Nyström method with the
quadrature chosen as the trapezoidal rule (Fig. 5). For implementation details, see
Aksoylu et al. (Submitted). We depict the solutions to the nonlocal wave equation
domain with homogeneous pure Neumann, pure Dirichlet, and mixed Neumann-
Dirichlet with vanishing initial velocity and discontinuous initial displacement; see
Figs. 6, 7, 8, and 9. Also, for continuous initial displacement, see Fig. 10. The
initial solutions are depicted in Fig. 5. Notice that, for all time, local BC are clearly
satisfied. Furthermore, for pure Neumann problem, we have numerically verified
that

’
˝
u.x; t /dx remains constant for all t . This is in agreement with the physical

implication that homogeneous Neumann BC model insulated boundaries.
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Fig. 3 Solution to the nonlocal wave equation on a 1D domain with discontinuous (top) and
continuous (bottom) initial solution and vanishing initial velocity with Neumann (left) boundary
condition using the governing operator MN and Dirichlet (right) boundary condition using the
governing operator MD. Note that, for all time, BC are satisfied and discontinuities remain
stationary

The Treatment of General Nonlocal Problems Using Functional
Calculus

Our main tool that allows us to incorporate local BC into nonlocal operators is
functional calculus. More precisely, the novel governing operators are obtained by
employing the functional calculus of self-adjoint operators, i.e., by replacing the
classical governing operator A by a suitable function of A, f .A/. We call f the
regulating function. Since classical BC is an integral part of the classical operator,
these BC are automatically inherited by f .A/. One advantage of our approach is
that every symmetry that commutes with A also commutes with f .A/. As a result,
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Fig. 4 Solution to the classical wave equation with Neumann (left) and Dirichlet (right) boundary
conditions with the same continuous initial displacement as in Fig. 3 and vanishing initial velocity

Fig. 5 Initial solutions to the nonlocal wave equation on a 2D domain with discontinuous (left)
and continuous (right) initial solutions

required invariance with respect to classical symmetries such as translation, rotation,
and so forth is preserved.

We illustrate the benefit of functional calculus, for instance, by comparing the
Laplace operator � to the biharmonic operator �2. By simply inspecting how the
biharmonic operator is connected to the Laplace operator, one can guess that the
regulating function would be f .�/ D �2. Before making a rigorous connection,
one has to prescribe the BC for each operator. We choose the Laplace operator with
homogeneous Dirichlet and Neumann BC and compare it to the biharmonic operator
with simply supported (SS) and Cahn-Hilliard (CH) type BC for plate vibration
utilizing the weak formulation of the following eigenvalue problems where the BC
used are precisely the following:



1320 B. Aksoylu et al.

t=
5

1

0.
5

–0
.5

u(x,y,t)

–1 1

0.
5

0

–0
.5

y
–1

–1
–0

.5 x

0
0.
5

0

t=
10

1

0.
5

–0
.5

u(x,y,t)

–1
1

0.
5

0

–0
.5

y
–1

–1
–0

.5 x

0
0.
5

0

t=
15

t=
20

t=
25

t=
30

1

0.
5

–0
.5

u(x,y,t)

–1
1

0.
5

0

–0
.5

y
–1

–1
–0

.5 x

0
0.
5

1

0

1

0.
5

–0
.5

u(x,y,t)

–1
1

0.
5

0

–0
.5

y
–1

–1

–0
.5 x

0
0.
5

0

1

0.
5

–0
.5

u(x,y,t)

–1
1

0.
5

0

–0
.5

y
–1

–1

–0
.5 x

0
0.
5

0

1

0.
5

–0
.5

u(x,y,t)

–1
1

0.
5

0

–0
.5

y
–1

–1
–0

.5 x

0
0.
5

1

0

Fi
g
.
6

So
lu
tio

n
to

th
e
no
nl
oc
al
w
av
e
eq
ua
tio

n
on

a
2D

do
m
ai
n
w
ith

di
sc
on
tin

uo
us

in
iti
al
so
lu
tio

n
us
in
g
th
e
go
ve
rn
in
g
op
er
at
or

M
N



39 Nonlocal Operators with Local Boundary Conditions: An Overview 1321

1

t=
5

t=
10

t=
15

0.
5 0

–0
.5

u(x,y,t)

u(x,y,t)

–1 1

0.
5

0

–0
.5

–1
–1

–0
.5

0
0.
5

x
y

1

0.
5 0

–0
.5 –1
1

0.
5

0

–0
.5

–1
–1

–0
.5

0
0.
5

x
y

u(x,y,t)

1

0.
5 0

–0
.5 –1
1

0.
5

0
–0

.5

–1
–1

–0
.5

0
0.
5

1

x
y

1

t=
20

t=
25

t=
30

0.
5 0

–0
.5

u(x,y,t)

u(x,y,t)

–1 1

0.
5

0

–0
.5

–1
–1

–0
.5

0
0.
5

x
y

1

0.
5 0

–0
.5 –1 1

0.
5

0
–0

.5

–1
–1

–0
.5

0
0.
5

x
y

u(x,y,t)

1

0.
5 0

–0
.5 –1

1

0.
5

0

–0
.5

–1
–1

–0
.5

0
0.
5

1

x
y

Fi
g
.
7

So
lu
tio

n
to

th
e
no
nl
oc
al
w
av
e
eq
ua
tio

n
on

a
2D

do
m
ai
n
w
ith

di
sc
on
tin

uo
us

in
iti
al
so
lu
tio

n
us
in
g
th
e
go
ve
rn
in
g
op
er
at
or

M
D



1322 B. Aksoylu et al.

t=
5

t=
20

t=
25

t=
30

t=
10

t=
15

u(x,y,t)

1
0.
5 0

–0
.5 –1
1

0.
5

0

–0
.5

–1
–1

–0
.5

0
0.
5

x
y

1

0.
5 0

–0
.5

u(x,y,t)

–1
1

0.
5

0

–0
.5

–1
–1

–0
.5

0
0.
5

x
y

1

0.
5 0

–0
.5

u(x,y,t)

–1

1

0.
5

0

–0
.5

–1
–1

–0
.5

0
0.
5

1

x
y

1

0.
5 0

–0
.5

u(x,y,t)

–1 1

0.
5

0

–0
.5

–1
–1

–0
.5

0
0.
5

x
y

1

0.
5 0

–0
.5

u(x,y,t)

–1

1

0.
5

0

–0
.5

–1
–1

–0
.5

0
0.
5

x
y

1

0.
5 0

–0
.5

u(x,y,t)

–1

1

0.
5

0

–0
.5

–1
–1

–0
.5

0
0.
5

1

x
y

Fi
g
.
8

So
lu
tio

n
to

th
e
no
nl
oc
al
w
av
e
eq
ua
tio

n
on

a
2D

do
m
ai
n
w
ith

di
sc
on
tin

uo
us

in
iti
al
so
lu
tio

n
us
in
g
th
e
go
ve
rn
in
g
op
er
at
or

M
N
D

;N
D



39 Nonlocal Operators with Local Boundary Conditions: An Overview 1323

1

0.
5 0

–0
.5 –1
1

0.
5

0

–0
.5

y
y

u(x,y,t)

1

0.
5 0

–0
.5 –1

u(x,y,t)

1

0.
5 0

–0
.5 –1

u(x,y,t)

x

t 
= 

5
t 

= 
10

t 
= 

15

t 
= 

20
t 

= 
25

t 
= 

30

–0
.5

0
0.
5

1

–1

0.
5

0

–0
.5

–1
y

1

0.
5

0

–0
.5

–1
–1

x
–0

.5
0

0.
5

1

–1
x

–0
.5

0
0.
5

–1

1

0.
5 0

–0
.5 –1

u(x,y,t)

y

1

0.
5

0

–0
.5

–1

1

x
–0

.5
0

0.
5

–1

1

0.
5 0

–0
.5 –1

u(x,y,t)

y

1

0.
5

0

–0
.5

–1
x

–0
.5

0
0.
5

–1

1

0.
5 0

–0
.5 –1

u(x,y,t)

y

1

0.
5

0

–0
.5

–1
x

–0
.5

0
0.
5

–1

Fi
g
.
9

So
lu
tio

n
to

th
e
no
nl
oc
al
w
av
e
eq
ua
tio

n
on

a
2D

do
m
ai
n
w
ith

di
sc
on
tin

uo
us

in
iti
al
so
lu
tio

n
us
in
g
th
e
go
ve
rn
in
g
op
er
at
or

M
N

;D
N



1324 B. Aksoylu et al.

–1

1
–0

.5

–0
.2
50

0.
25

–1

0.
5

t 
= 

5
u(x,y,t)

u(x,y,t)

u(x,y,t)

u(x,y,t)

u(x,y,t)

u(x,y,t)

t 
= 

10
t 

= 
15

t 
= 

20
t 

= 
25

t 
= 

30

–0
.5

–0
.5

y
x

y
x

y
x

y
x

y
x

y
x

0
0

0.
5

0.
5

–1

1
–0

.5

–0
.2
50

0.
25

–1

0.
5

–0
.5

–0
.5

0
0

0.
5

0.
5

–1

1
–0

.5

–0
.2
50

0.
25

–1

0.
5

–0
.5

–0
.5

0
0

0.
5

1
0.
5

–1

1
–0

.5

–0
.2
50

0.
25

–1

0.
5

–0
.5

–0
.5

0
0

0.
5

1
0.
5

–1

1
–0

.5

–0
.2
50

0.
25

–1

0.
5

–0
.5

–0
.5

0
0

0.
5

0.
5

–1

1
–0

.5

–0
.2
50

0.
25

–1

0.
5

–0
.5

–0
.5

0
0

0.
5

0.
5

Fi
g
.
1
0

So
lu
tio

n
to

th
e
no
nl
oc
al
w
av
e
eq
ua
tio

n
on

a
2D

do
m
ai
n
w
ith

co
nt
in
uo
us

in
iti
al
so
lu
tio

n
us
in
g
th
e
go
ve
rn
in
g
op
er
at
or

M
N



39 Nonlocal Operators with Local Boundary Conditions: An Overview 1325

SS-BC: u D �u D 0 on @˝; CH-BC:
@u

@n
D

@�u

@n
D 0 on @˝:

L.u; v/ WD

Z
˝

ru � rv dx D �R.u; v/ WD �

Z
˝

uv dx; v 2 VL;D or VL;N

B.u; v/ WD

Z
˝

r2u W r2v dx D �R.u; v/; v 2 VB;SS or VB;CH ;

VL;D WD H 1
0 .˝/; VL;N WD

n
v 2 H 1.˝/ W

@v

@n
D 0

o
;

VB;SS WD H 1
0 .˝/ \ H 2.˝/; VB;CH WD

n
v 2 H 2.˝/ W

@v

@n
D 0

o
:

Indeed, the eigenvalues of the biharmonic operator with SS-BC and CH-BC
are the squares of those of the Laplace operator with Dirichlet and Neumann
BC, respectively. Furthermore, the eigenfunctions are identical for Dirichlet and
Neumann BC with SS and CH, respectively. We have provided this example as a
proof of concept and, hence, chosen the BC carefully to establish the connection.
One may not obtain such connection with arbitrary BC.

The convolution operators in (12) in the form of integrals are derived from their
(original) series representation. We defined generalized convolution operators in
Aksoylu et al. (2017a,b) in the following series form:

CBCu.x/ WD
X

k

heBCk jC i heBCk jui eBCk ; (58)

where BC D p;a and h�j�i denotes the inner product in L2
C
.˝/ and is defined by

heBCk jui WD

Z
˝

�
eBCk

��
.x0/u.x0/dx0:

In addition,
�
eBCk

�
k
is chosen to be a basis associated with a multiple of the Laplace

operator with appropriate BC, which we call as the classical operator and denote
by �BC. The spectrum of �BC with classical BC such as periodic, antiperiodic,
Neumann, and Dirichlet is purely discrete. Furthermore, we can explicitly calculate
the eigenfunctions eBCk corresponding to each BC. These eigenfunctions form a
Hilbert (complete and orthonormal) basis for L2

C
.˝/ through which the generalized

convolution operator is defined. The main reason why we discuss �BC is the fact
that the governing operator (1) turns out to be a function of �BC (Aksoylu et al.
2017a,b; Beyer et al. 2016). Since the classical operator ABC is defined through local
BC, the eigenfunctions inherit this information. This observation opened a gateway
to incorporate local BC to nonlocal theories on bounded domains (Aksoylu et al.
2017b).
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The normalized eigenfunctions of the classical operators are as follows:

e
p
k .x/ WD

1
p

2
ei�kx; k 2 N; eak .x/ WD

1
p

2
ei�.kC 1

2 /x; k 2 N;

(59)

eNk .x/ WD

(
1p
2
; k D 0;

cos
�

k�
2

.x C 1/
�
; k 2 N

�;
eDk .x/ WD sin


k�

2
.x C 1/

�
; k 2 N

�:

Plugging the eigenfunctions in (59) into (58) and after hefty calculation, we proved
that the operators Cp and Ca have integral representations given (12). For more
details, see Aksoylu et al. (2017a).

Next, we present the steps how to apply functional calculus (FC). We denote a
nonlocal operator by NL and its local counterpart by A. Note that both nonlocal
diffusion and PD operators are defined initially on Rd and contain convolution. The
size of nonlocality is determined by the parameter ı which is encoded in the kernel
function.

FC-1. Apply limit to the horizon parameter, i.e., ı ! 0, to identify a local
counterpart A of NL.

FC-2. Apply the Fourier transform to “diagonalize” NL and A to obtain the
corresponding spectra.

FC-3. Read off the regulating function f by comparing the spectra of NL and A.
Spectra on R

d are continuous.

We apply the above steps to the concrete example of nonlocal diffusion on R
d

where the classical operator A is the Laplace operator �� W W 2.Rd / ! L2.Rd /.

NLu.x; t / D f .A/u.x; t / WD

 Z

Rd

C .x0/dx0
�
u.x; t / �

Z
Rd

C .x0 � x/u.x0; t /dx0:

(60)

We connect the nonlocal operator to A through Fourier transforms. Let F1 W

L1.Rd / ! C1.Rd /, F2 W L2.Rd / ! L2.Rd / be the Fourier transforms and the
kernel function C 2 L1.Rd / be even:

A D F �1
2 ı T� ı F2;

f .A/ D F �1
2 ı Tf .�/ ı F2; (61)

where Th.�/ denotes the maximal multiplication operator by h.�/: Then, we directly
diagonalize f .A/ by using the expression given in (60):

f .A/ D F �1
2 ı TF1C .0/�F1C .�/ ı F2: (62)
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Therefore, a comparison of (61) and (62) yields

f .�/ D F1C .0/ � F1C .�/:

We explicitly identify to which function of the classical operator the nonlocal
operator corresponds:

f .�/ D F1C .0/ � F1C .�/ D h1jC i � he�jC i; he�jC i WD

Z
Rd

e�.x0/�C .x0/dx0;

where the spectral value of the classical operator � 2 Œ0; 1/. Now, we extend the
construction on R

d to a bounded domain ˝.

FC-4. Restrict A to ˝ with a prescribed BC. Denote the new operator by ABC.
Spectrum of ABC, �.ABC/ is now discrete. Find the eigenfunctions of ABC.

FC-5. Define a generalized convolution as in (58) by using eigenfunctions of ABC.
FC-6. Rewrite (recycle) the regulating function with discrete spectrum.

fBC W �.ABC/ ! R; fBC.�BC
k / D h1jC i � heBCk jC i; BC 2 fp;ag: (63)

FC-7. Construct fBC.ABC/ using the spectral theorem. Namely, for
u D

P
k heBCk jui eBCk , we have

fBC.ABC/u D
X

k

fBC.�BC
k / heBCk jui eBCk : (64)

FC-8. Find a computationally feasible expression of fBC.ABC/ such as an integral
representation.

Now, we show how we use the FC steps to construct the governing operators
MBC; BC 2 fp;ag in 1D. Namely, we want to verify fBC.ABC/u D MBCu.

Using (63) and (64), we have the following:

fBC.ABC/u D
X

k

Œh1jC i � heBCk jC i� heBCk jui eBCk

D h1jC i
X

k

heBCk jui eBCk �
X

k

heBCk jC i heBCk jui eBCk

D cu � CBCu
D MBC; BC 2 fp;ag:

Expressing the regulating function for the case of BC 2 fN;Dg requires nontrivial
manipulation of series and is more involved than the case of BC 2 fN;Dg. We simply
report them here:
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fN W �.AN/ ! R; fN.�N
k/ D h1jC i �

(
he

p
k=2jC i if k 2 N is even,

hea.k�1/=2jC i if k 2 N is odd.

fD W �.AD/ ! R; fD.�D
k/ D h1jC i �

(
he

p
k=2jC i if k 2 N

� is even,

hea.k�1/=2jC i if k 2 N is odd.

In Aksoylu et al. (2017a), we showed that

fN.AN/u D
�
c � CpPe � CaPo

�
u D MNu

fD.AD/u D
�
c � CaPe � CpPo

�
u D MDu:

The operators MN and MD were used as governing operator in (57) to perform the
numerical experiments in 1D.

Remark 7. Fractional diffusion and fractional PDEs also fall into the class of
nonlocal problems; see some of the recent developments (Andreu-Vaillo et al. 2010;
Caffarelli et al. 2007; Di Nezza et al. 2012; Nochetto et al. 2015). There is a
fundamental difference between these operators and ours: our governing operators
are bounded. Note that the regulating function in (63) is bounded and that is why
the application of the spectral theorem in (64) is valid. Since our ultimate goal is to
capture discontinuities or cracks, we are mainly interested in bounded governing
operators. Fractional operators become unbounded for such discontinuities, and
hence, we exclude them from our discussion.

Conclusion

We presented novel governing operators in arbitrary dimension for nonlocal diffu-
sion. The operators agree with the original PD operator in the bulk of the domain
and simultaneously enforce local BC. We presented methodically how to verify
the BC by using a change in the order of integration. We presented different
types of BC in 2D which include pure and mixed combinations of Neumann
and Dirichlet BC. We presented numerical experiments for the nonlocal wave
equation. We verified that the novel operators enforce local BC for all time. We
also observed that the property we proved for 1D, namely, discontinuities remain
stationary, also holds for 2D.

Our ongoing work aims to extend the novel operators to vector-valued problems
which will allow the extension of PD to applications that require local BC.
Furthermore, we hope that our novel approach potentially will avoid altogether the
surface effects seen in PD.
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Abstract

We outline the recent developments of fast numerical methods for linear nonlocal
diffusion and peridynamic models in one and two space dimensions. We show
how the analysis was carried out to take full advantage of the structure of
the stiffness matrices of the numerical methods in its storage, evaluation, and
assembly and in the efficient solution of the corresponding numerical schemes.
This significantly reduces the computational complexity and storage of the
numerical methods over conventional ones, without using any lossy compression.
For instance, we would use the same numerical quadratures for conventional
methods to evaluate the singular integrals in the stiffness matrices, except that
we only need to evaluate O.N/ of them instead of O.N2/ of them. Numerical
results are presented to show the utility of these fast methods.
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Introduction

In the last couple of decades, many nonlocal models have been developed, which
are emerging as powerful tools for modeling challenging phenomena in many
disciplines and applications, including problems involving anomalous transport and
long-range time memory or spatial interactions. For instance, in the scenario of
diffusion processes, Fick first set up the diffusion equation at a macroscopic scale in
a deterministic manner during his study on how nutrients travel through membranes
in living organisms. But Fick’s approach was phenomenological. It was Einstein
who derived the diffusion equation from first principle as part of his work on
Brownian motion. Alternatively, Pearson modeled diffusion process via a stochastic
formulation at microscopic scale in terms of a randomwalk, leading to the stochastic
differential equation driven by a Brownian motion (Meerschaert and Sikorskii 2011;
Metzler and Klafter 2000; Øksendal 2010; Podlubny 1999).

The common assumptions between Einstein’s explanation of diffusion and
Pearson’s random walk are (i) the existence of a mean free path and (ii) the existence
of a mean waiting time. Under these assumptions, the central limit theorem
concludes that the underlying stochastic process that describes the particle jumps
is a Brownian motion in the Pearson’s approach. Equivalently, the corresponding
probability density function describing the stochastic process satisfies the Fickian
diffusion equation as the Fokker-Planck equation of the Brownian motion in the
Einstein’s approach (Meerschaert and Sikorskii 2011). Note that the assumptions
(i) and (ii), which lead to a stochastic process of Brownian motion, virtually hold
for transport processes in homogeneous media. In highly heterogeneous media with
faults and fractures, the underlying particle movements in the transport processes
may experience long jumps and so will have large deviation from Brownian motion
but converge to a Lévy process. Consequently, the corresponding probability density
function satisfies a fractional partial differential equation (PDE) as its Fokker-Planck
equation (Meerschaert and Sikorskii 2011). This justifies why a fractional PDE
or a nonlocal diffusion model better describes anomalous diffusive processes in
heterogeneous media than traditional integer-order PDEs (del-Castillo-Negrete et al.
2004; D’Elia et al. 2014; Du et al. 2012; Meerschaert and Sikorskii 2011; Metzler
and Klafter 2000; Podlubny 1999).

Similar phenomena occur in the context of continuum solid mechanics. In
this case, the classical theory assumes that all internal forces act locally and
yields mathematical models that are expressed in terms of PDEs. These models
have difficulties to describe problems with evolving discontinuities, due to its
differentiability assumption on displacement fields. The peridynamic theory (Silling
2000; Silling et al. 2007) was proposed as a reformation of the classical theory of
continuum solid mechanics and yields nonlocal mathematical formulations that are
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based on long-range interactions. Constitutive models in the peridynamic theory
depend on finite deformation vectors, instead of deformation gradients in classical
constitutive models. Consequently, peridynamic models are particularly suitable for
the representation of discontinuities in displacement fields and the description of
cracks and their evolution in materials. To date, peridynamic models have been
successfully applied in many important applications, including failure and damage
in composite laminates (Oterkus et al. 2012), crack propagation and branching (Ha
and Bobaru 2011), crack nucleation (Silling et al. 2010; Parks et al. 2008; Seleson
et al. 2009), phase transformations in solids (Dayal and Bhattacharya 2006), impact
damage (Seleson and Parks 2011; Silling and Askari 2005), polycrystal fracture
(Ghajari et al. 2014), crystal plasticity (Sun and Sundararaghavan 2014), damage in
concrete (Gerstle et al. 2007), and geomaterial fragmentation (Lai et al. 2015).

Because these nonlocal models provide greatly improved modeling capability
than traditional integer-order PDE models do, different numerical methods have
been developed for these models with different computational expense, memory
requirements, and implementational effort as well as accuracy, convergence, and
stability (Emmrich and Weckner 2007). For example, collocation methods and
mesh-free methods apply directly to the strong form of the nonlocal models and
are relatively simple to implement (Seleson et al. 2016; Seleson and Littlewood
2016; Silling and Askari 2005). On the other hand, finite element discretizations of
the nonlocal models are based on Galerkin weak forms and enjoy high convergence
rates (Chen and Gunzburger 2011; Du et al. 2013; Oterkus et al. 2012; Tian and Du
2013; Zhou and Du 2010).

However, nonlocal models involve singular integral operators and present numer-
ical difficulties that were not encountered in classical integer-order PDE models:
(i) the numerical methods for integer-order PDE models generate sparse stiffness
matrices which have a linear storage requirement of O.N/ where N is the number
of spatial unknowns. The matrix-vector multiplication has computational work of
O.N/. Hence, the convergence of any Krylov subspace iterative solver depends only
on the number of iterations. In contrast, the numerical methods for nonlocal models
yield dense stiffness matrices in which their bandwidths increase to infinity as the
mesh size decreases to zero. Consequently, the numerical methods for nonlocal
models have O.N2/ memory requirement. Direct solvers have been widely used in
the numerical simulation of nonlocal models, which have an O.N3/ computational
complexity in order to obtain the numerical solutions. On the other hand, the
matrix-vector multiplication by the stiffness matrices has O.N2/ computational
complexity. (ii) Due to the impact of the singular kernels in the integral operators in
nonlocal models, the evaluation and assembly of the stiffness matrices require the
evaluation of O.N2) entries, which can be very expensive. Numerical experiments
show that the evaluation and assembly of the coefficient matrix often constitute a
very large portion of simulation times! (iii) While they have high-order convergence
rates, Galerkin finite element methods double the number of spatial dimensions
that need to be discretized, leading to a significantly increased computational
work and memory requirement as compared to collocation methods. In summary,
the significantly increased computational work and memory requirement of the
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nonlocal models over those for the classical integer-order PDE models severely
limit the applications of these models, especially for problems in multiple space
dimensions.

In this chapter we go over the recent developments of fast and accurate numerical
methods for nonlocal models. We do not intend to develop a more accurate
numerical discretization or numerical quadrature for these models. Rather, we
explore the structure of the stiffness matrices of existing numerical methods in order
to significantly reduce the computational work to evaluate and assemble the stiffness
matrices and to compute the numerical solutions, as well as the memory requirement
to store the stiffness matrices. The idea applies to different numerical methods and
numerical quadratures in the literature. In this chapter we take some representative
numerical methods as examples to illustrate the developments.

The rest of this chapter is organized as follows. In section “Nonlocal Diffusion
and Peridynamic Models” we present a nonlocal diffusion model and a bond-based
peridynamic model and discuss related numerical issues. In section “Fast Numerical
Methods for a One-Dimensional Peridynamic Model” we go over the development
of fast Galerkin finite element method and a fast collocation method for a one-
dimensional peridynamic model. In section “A Fast Collocation Method for the
Nonlocal Diffusion Model (1)” we outline the development of a fast collocation
method for a nonlocal diffusion model in two space dimensions. In section “A Fast
Collocation Method for the Peridynamic Model (3)” we go over the development
of a fast collocation method for a bond-based peridynamic model in two space
dimensions. In section “Concluding Remarks” we draw concluding remarks and
discuss the future directions.

Nonlocal Diffusion and Peridynamic Models

In this section we use the presentative nonlocal diffusion model and peridynamic
model in two space dimensions as an example to illustrate the corresponding
numerical issues.

A Nonlocal DiffusionModel

A linear nonlocal diffusion model can be expressed as the following integral-
differential equation (D’Elia et al. 2014; Du et al. 2012):

ut .x; y; t/C

Z
Bı.x;y/

K.x � x0; y � y0/
�
u.x; y; t/ � u.x0; y0; t /

�
dx0dy0

D f .x; y; t/; .x; y/ 2 ˝; t 2 .0; T �;

u.x; y; 0/ D uo.x; y/; .x; y/ 2 ˝;

u.x; y; t/ D g.x; y; t/; .x; y/ 2 ˝c; t 2 Œ0; T �:

(1)
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Fig. 1 Illustration of a
spatial partition on ˝ [˝c

with a circular horizon

Here ˝ is the physical domain in the plane, ˝c represents a boundary zone of
width ı surrounding ˝ with ı > 0 being the horizon parameter of the material,
u represents the concentration of the solute, uo is the prescribed initial condition,
and f is the source and sink term, respectively; K.x; y/ is the kernel function of
the integral operator which is often of the form

K.x; y/ WD
C�

x2 C y2
�1C� (2)

with C being a normalization constant; Bı.x; y/ represents the material horizon
which is often chosen to be a disk centered at .x; y/ with radius ı (cf. Fig. 1).

We note that in the nonlocal diffusion model (1), the boundary condition is
“volume constrained” that is imposed on a two-dimensional boundary zone ˝c .
This is in contrast to the boundary conditions for classical integer-order PDE
models that are imposed on the boundary @˝ of the physical domain ˝. It is
clear that the integral operator in (1) can be viewed as a truncated version of the
fractional Laplacian operator .��/� , which is the infinitesimal generator of a Feller
semigroup that is generated by a Lévy process (Applebaum 2009; Meerschaert and
Sikorskii 2011).

A Bond-Based Linear Peridynamic Model

In a bond-based linear peridynamic model for modeling a proportional, microelastic
material in a reference domain in the plane, the equation of motion at any point
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.x; y/ in the reference configuration ˝ at any time t 2 .0; T � can be expressed as
(Silling 2000)

�ut t .x; y; t/C

Z
Bı.x;y/

K.x � x0; y � y0/.u.x; y; t/ � u.x0; y0; t //dx0dy0

D f.x; y; t/; .x; y/ 2 ˝; t 2 .0; T �;

u.x; y; 0/ D uo.x; y/; .x; y/ 2 ˝;

u.x; y; t/ D g.x; y; t/; .x; y/ 2 ˝c; t 2 Œ0; T �:

(3)

Here u.x; y; t/ D Œv.x; y; t/;w.x; y; t/�T represents the displacement vector field
with v.x; y; t/ and w.x; y; t/ being its components in the x and y directions, respec-
tively; similarly, f.x; y; t/ D

�
f v.x; y; t/; f w.x; y; t/

�T
represents an external

force density field, and g.x; y; t/ D
�
gv.x; y; t/; gw.x; y; t/

�T
is the prescribed

nonlocal boundary data imposed on the domain ˝c . � is the mass density in the
reference configuration. The micromodulus function for the material or the kernel
of the integral operator K is of the form

K.x; y/ D
c�

x2 C y2
�3=2

�
x2 xy

xy y2

�
(4)

where c is a constant that depends on the material properties and space dimensions.

Numerical Issues and Computational Complexity

The mathematical analysis for the nonlocal and peridynamic models and their
corresponding numerical analysis can be found, e.g., in Chen and Gunzburger
(2011), D’Elia et al. (2014), Du et al. (2012, 2013), Tian and Du (2013), Zhang
et al. (2016), and Zhou and Du (2010). In particular, the following error estimate
which was proved in Zhou and Du (2010) for the linear finite element method for a
steady-state nonlocal diffusion or peridynamic model states that for any 0 < " � 1,
there exists a positive constant C D C."/ which is independent of h such that

ku � uhkL2 � Ch2�"kukH2: (5)

The estimate looks similar to that for the finite element method for classical integer-
order PDEs in which the stiffness matrix is sparse. In this case, the stiffness matrix
can be stored in O.N/ memory and each matrix-vector multiplication (so each
Krylov subspace iteration) can be carried out in O.N/ computations.

However, for the nonlocal diffusion model (1) and peridynamic model (3), the
singular integral operator is defined on the material horizon Bı.x; y/, which yields
a dense stiffness matrix that hasO.N/ nonzero entries at each row, as the mesh size
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h tends to zero. Asymptotically, the stiffness matrix requires O.N2/ memory to
store and each matrix-vector multiplication (and so each Krylov subspace iteration)
has O.N2/ computational complexity. Alternatively, a direct solver has O.N3/

computational complexity to invert the linear system at each time step.
This has profound impact computationally. For example, for a three-dimensional

analogue of the nonlocal diffusion model (1) or the peridynamic model (3), each
time we refine the mesh size and time step by half, the memory requirement would
increase 64 times, and the computational complexity by a direct solver increases by
83 � 2 D 1024 times!

If we use a finite difference or finite element method with 1000 by 1000 by 1000
nodes to solve an integer-order diffusion PDE or elasticity model in three space
dimensions, a multigrid solver can solve the problem on the order of 109 operations.
However, if we use a similar method with the same number of nodes and time steps
to solve a three-dimensional analogue of the nonlocal diffusion model (1) or the
peridynamic model (3), a direct solver would have a computational complexity on
the order 1027 per time step. This will take state-of-the-art supercomputer at least
years of CPU time to finish the simulation, to say the least. Here we have not taken
into account for the extra computational complexity due to the nonlinearity and
the evaluation and assembly of the stiffness matrices in the numerical simulation.
The significantly increased computational complexity and memory requirements of
the nonlocal diffusion model and the peridynamic model significantly limit their
applications in reality, especially for problems in three space dimensions.

A simplified peridynamic model was proposed to reduce its computational com-
plexity by assuming that the horizon parameter ı D O.h/ (Chen and Gunzburger
2011). Under this assumption, the stiffness matrix of a numerical scheme becomes
local like a high-order finite difference or finite element method for an integer-
order PDE. However, it is not clear why physically relevant horizon parameter ı is
proportional to the computationally chosen mesh size h. This inconsistency is also
reflected in the error estimate of the corresponding finite element method, which
now reduces to the following first-order estimate in this case:

ku � uhkL2 � ChkukH2: (6)

In this chapter we go over the recent developments of fast and accurate, matrix-
free numerical methods with an efficient matrix evaluation and assembly for the
nonlocal diffusion model and the peridynamic model without the assumption of
ı D O.h/.

Fast Numerical Methods for a One-Dimensional Peridynamic
Model

In this section we go over the development of fast and accurate numerical methods
with efficient matrix assembly for a one-dimensional steady-state peridynamic
model of a finite bar that consists of microelastic materials, which is given by
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the following pseudo-differential equation (Chen and Gunzburger 2011; Silling
2000):

Z ˇ

˛

u.x/ � u.y/

jx � yj1C�
dy D f .x/; x 2 .˛; ˇ/; (7)

which is closed by the homogeneous Dirichlet boundary condition that is imposed
on the complement of the interval .˛; ˇ/ or simply in the neighborhood of the
interval .˛; ˇ/.

A Fast Galerkin Finite Element Method on a Uniform Partition

Define a uniform spatial partition on .˛; ˇ/ by

xi WD ˛ C ih; 0 � i � N; h WD
ˇ � ˛

N
(8)

for a given positive integer N . Let Sh be the linear finite element space defined on
Œ˛; ˇ� with respect to the given partition.

Let .�/ WD 1�j�j for � 2 Œ�1; 1� or zero otherwise. Let f�ig
N�1
iD1 be the standard

nodal basis functions for Sh, i.e.,

�i .x/ WD  
�x � xi

h

	
(9)

Let uh 2 Sh be the finite element approximation to the true solution u of
problem (7). Then uh can be expressed as follows:

uh.x/ D

N�1X
jD1

uj �j .x/: (10)

Then the Galerkin finite element method can be expressed as follows:

N�1X
jD1

a.�i ; �j /uj D l.�i /; 1 � i � N � 1; (11)

where the bilinear form a.�; �/ and the linear functional l are defined by

a.�j ; �i / D
1

h

Z ˇ

˛

�i .x/

Z ˇ

˛

�j .x/ � �j .y/

jx � yj1C�
dydx;

l.�i / D
1

h

Z ˇ

˛

f .x/�i .x/dx:

(12)
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Let u WD Œu1; u2; : : : ; uN�1�
T , f WD Œf1; f2; : : : ; fN�1�

T , and A WD Œai;j �
N�1
i;jD1 with

ai;j D a.�j ; �i / and fi D l.�i /. The finite element method (11) can be expressed
in a matrix form

Au D f: (13)

It can be proved that the stiffness matrix A is a symmetric and positive
definite matrix. Moreover, it is clear from (12) that the stiffness matrix A is full.
Consequently, the Galerkin finite element method (11) has a significantly increased
memory requirement and computational complexity compared to that for an integer-
order PDE model.

Theorem 1. The linear system (14) can be solved via the conjugate gradient
method in a matrix-free fashion, which requires O.N/ memory and has an
O.N logN/ computational complexity per conjugate gradient iteration.

Outline of proof. We carefully studied all the entries of the stiffness matrix A in
Wang and Wang (2010) and proved that the stiffness matrix A can be decomposed
as

A D At r C T: (14)

Here At r is a tridiagonal matrix and T D Œti;j �
N�1
i;jD1 contains all remaining nonzero

entries of A and is a symmetric Toeplitz matrix. We let qj�i denote the common
entry in the .j � i/th descending diagonal of T from left to right. Namely,

ti;j D qj�i ; j � i: (15)

Then the symmetric Toeplitz matrix Ao can be embedded into a 2.N �1/�2.N �1/

circulant matrix C as follows (Chan and Ng 1996):

C WD

�
T S
S T

�
S WD

2
6666664

0 qN�2 : : : q2 q1
qN�2 0 qN�2 : : : q2
::: qN�2 0

: : :
:::

q2
:::

: : :
: : : qN�2

q1 q2 : : : qN�2 0

3
7777775
: (16)

The circulant matrix C can be diagonalized by the discrete Fourier transform matrix
(Chan and Ng 1996)

C D F�1 diag.Fc/ F (17)

where c is the first column vector of C and F is the 2.N � 1/ � 2.N � 1/ discrete
Fourier transform matrix.
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Table 1 The efficiency of Gauss, CG and FCG

h Gauss CG FCG

CPU Iter. CPU Iter. CPU

2�10 47 s 36 1.19 s 36 0.18 s

2�14 6 days 11 h 46 9m 50 s 46 3.30 s

2�16 Stopped test 53 3 h 9m 53 18 s

2�17 Out of memory N/A Out of memory 56 1m 29 s

2�18 N/A N/A N/A 58 2m 51 s

2�28 N/A N/A N/A 92 3 days 11 h

For any v 2 R
N�1, define v2N�2 by

v2N�2 D

"
v

0

#
; Cv2N�2 D

"
T S

S T

# "
v

0

#
D

"
T v

Sv

#
: (18)

By (18) to evaluate T v for any vector v 2 R
N�1, we need only to evaluate

Cv2N for v2N�2 defined in (7). Note that the latter can be evaluated using the
decomposition (17) via the fast Fourier transform (FFT) in O..2N / log.2N // D

O.N logN/ operations. Hence, T v can be evaluated in O.N logN/ operations.
Note that the matrix-vector multiplication is carried out using (17) and (18), which
does not require the entire matrix T , but the first column vector c of the matrix C.
Hence, it is matrix-free and requires only O.N/ memory.

The matrix Atr is a tridiagonal matrix which can be stored in O.N/ memory,
and Atrv can be evaluated in O.N/ operations. ut.

The following table shows the numerical performance of Gaussian elimination
(Gauss), the conventional conjugate gradient method (FG), and the fast conjugate
gradient method (FCG) for a one-dimensional model problem (Wang and Wang
2010). The numerical results show that all the three solvers generate solutions
with the same accuracy. The table below shows the efficiency of different solvers
(Table 1).

A Fast CollocationMethod on a GradedMesh

Note that peridynamic model intends to describe problems with singularity. Hence,
a fast numerical method on a uniform mesh is very efficient but not as effective.
In Tian et al. (2013) we developed a fast collocation method for the peridynamic
model (7) with r D 0 and an assumed singularity point at the right-end point x D ˇ.
In this case, a geometrically graded mesh is defined below

x0 WD ˛; xi WD ˛ C

iX
kD1

ˇ � ˛

2k
; 1 � i � N � 1; xN WD ˇ: (19)
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Let f�ig
N�1
iD1 be the nodal basis functions defined in (9) except that the partition is

graded now. In this case, the trial function uh is still defined in (18). If we choose
xi (i D 1 : : : ; N � 1) to be the collocation points, then a collocation method can be
formulated as follows:

Z ˇ

˛

ui � u.y/

jxi � yj
dy D f .xi /; 1 � i � N � 1: (20)

Then the collocation method (20) can be expressed in the matrix form (14) except
that now fi D f .xi / and

ai;j D

Z ˇ

˛

��j

jxi � yj
dy; i ¤ j; ai;i D

Z ˇ

˛

1 � �i

jxi � yj
dy; 1 � i � N � 1: (21)

Since the partition (19) is geometrically graded, the basis functions f�ig
N�1
iD1 are

not translation invariant. We analyzed the structure of the stiffness matrix A and
proved the following theorem in

Theorem 2. The stiffness matrix A defined in (21) can be decomposed as

A D T C L: (22)

Here T is a Toeplitz matrix of order .N � 1/ which is obtained by extending the
matrix Al;l to an .N � 1/-by-.N � 1/ matrix, and L is a low-rank matrix of rank at
most 2 which is nonzero only in the last row or last column.

Consequently, A can be stored in O.N/ memory. The linear system (14) can be
solved via any Krylov subspace iterative method with O.N logN/ operations per
iteration.

Outline of proof. Note that the rightmost cell has the same size as its left neighbor,
so the gridding violates the geometrically decreasing pattern which affects the
structure of the matrix. To analyze the matrix structure, we express the stiffness
matrix A as a two-by-two block matrix of the form

A D

"
Al;l Al;r

Ar;l Ar;r

#
: (23)

Here Al;l is an .N � 2/-by-.N � 2/ submatrix that consists of the first N � 2 rows
and columns in A, Al;r consists of the first .N � 2/ entries in the last column of A,
Ar;l consists of the first .N � 2/ entries in the last row of A, and Ar;r consists of the
entry in the last row and column of A.
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We proved in Tian et al. (2013) that the submatrix Al;l is a Toeplitz matrix of
order .N �1/. By extending Al;l to a Toeplitz matrix T of order .N �1/, we can get
the decomposition (22). The rest of the theorem can be proved as in Theorem 1. ut

For the graded mesh (19), the stiffness matrix A is nonsymmetric. Hence,
a nonsymmetric Krylov subspace iterative method should be used. Numerical
experiments were presented in Tian et al. (2013) which shows the utility of the
fast method on graded mesh compared that on the uniform mesh. This coincides
with the observations in the context of the numerical methods for fractional PDEs
(Jia et al. 2014; Jia and Wang 2015).

A Fast CollocationMethod for the Nonlocal DiffusionModel (1)

In this section we outline the development of a fast bilinear collocation method for
the nonlocal diffusion model (1) on a rectangular domain˝ D .0; xr /� .0; yr /. As
we focus on the study of the matrix structure, we focus on the steady-state analogue
of problem (1). Without loss of generality, we assume that g � 0 as it does not
affect the structure of the stiffness matrix A.

Let the positive integers Nx and Ny denote the numbers of intervals in the x and
y directions, respectively. We define a spatial partition on N̋ by

xi WD ihx for i D 0; 1; � � � ; Nx with hx WD
xr

Nx
;

yj WD jhy for j D 0; 1; � � � ; Ny with hy WD
yr

Ny
:

(24)

To handle the discretization on the boundary zone˝c , we extend the partition to the
nodes .xi ; yj / for i D �ix;�ix C1; � � � ;�1; 0; 1; � � � ; Nx;Nx C1; � � � ; Nx C ix and
j D �jy;�jy C 1; � � � ;�1; 0; 1; � � � ; Ny;Ny C 1; � � � ; Ny C jy . Here

ix WD



ı

hx

�
; jy WD



ı

hy

�
(25)

are the ceilings of ı=hx and ı=hy , respectively.
The two-dimensional pyramid functions �i;j .x; y/ centered at .xi ; yj / can be

expressed as

�i;j .x; y/ WD  
�x � xi

hx

	
 

�y � yj

hy

	
; .x; y/ 2

�
˝ [˝c

�

0 6 i 6 Nx; 0 6 j 6 Ny:

(26)
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The trial function u is of the form

u.x; y/ D

Nx�1X
i 0D1

Ny�1X
j 0D1

ui 0;j 0�i 0;j 0.x; y/; .x; y/ 2
�
˝ [˝c

�
: (27)

With the prescribed nonlocal homogeneous Dirichlet boundary data, the unknowns
are ui;j for i D 1; 2; : : : ; Nx �1 and j D 1; 2; : : : ; Ny �1. In the numerical scheme
we need N WD .Nx � 1/.Ny � 1/ collocation points. We thus choose the spatial
nodes .xi ; yj / for i D 1; 2; : : : ; Nx � 1 and j D 1; 2; : : : ; Ny � 1 as collocation
points. This yields the following collocation formulation:

Z
Bı.xi ;yj /

K.xi � x0; yj � y0/
�
u.xi ; yj / � u.x0; y0/

�
dx0dy0 D f .xi ; yj /;

1 � i � Nx � 1; 1 � j � Ny � 1:

(28)

If we incorporate (27) into (28), we obtain the following collocation scheme:

Nx�1X
i 0D1

Ny�1X
j 0D1

ui 0;j 0

Z
Bı.xi ;yj /

K.xi � x0; yj � y0/

�
u.xi ; yj / � �i 0;j 0.x0; y0/

�
dx0dy0 D f .xi ; yj /;

1 � i � Nx � 1; 1 � j � Ny � 1:

(29)

Let u and f be the N -dimensional vectors defined by

u D Œu1;1; : : : ; uNx�1;1; u1;2; : : : ; uN/x�1;2; : : : ; u1;Ny�1; : : : ; uNx�1;Ny�1�
T ;

f D Œf1;1; : : : ; fNx�1;1; f1;2; : : : ; fNx�1;2; : : : ; f1;Ny�1; : : : ; fNx�1;Ny�1�
T ;

(30)

and A D Œam;n�Nm;nD1 be the N -by-N stiffness matrix. Then the collocation
method (29) can be expressed in the matrix form (14) with fm and Am;n being defined
by

am;n D

Z
Bı.xi ;yj /

K.xi � x0; yj � y0/.ım;n � �i 0;j 0.x0; y0//dx0dy0;

fm D f .xi ; yj /:

(31)

Here ım;n D 1 for m D n or 0 otherwise. The global indices m and n are related to
the indices .i; j / and .i 0; j 0/ by



1344 H. Wang

m D .j � 1/.Nx � 1/C i; 1 � i � Nx � 1; 1 � j � Ny � 1;

n D .j 0 � 1/.Nx � 1/C i 0 1 � i 0 � Nx � 1; 1 � j 0 � Ny � 1:
(32)

It is clear that the stiffness matrix of the collocation method (28) has a block
structure. Hence, assembly of the matrix requires the evaluation of .2ix C 1/

.Nx�1/�ix.ixC1/ entries per matrix block and totally .2jyC1/.Ny�1/�jy.jyC1/

blocks, which is totally .2jx C 1/.2jy C 1/N � .2jx C 1/.Ny � 1/jx.jx C 1/ �

.2jxC1/.Nx �1/jy.jy C1/C ix.ixC1/jy.jy C1/ of entries in the assembly of the
stiffness matrix. This is asymptotically O.N2/ of entries as hx ! 0 and hy ! 0.
Similarly, the collocation method requires asymptotically O.N2/ of memories to
store the matrix. In the numerical simulation of nonlocal diffusion models, the
assembly of the stiffness matrix often consumes a large portion of CPU time, as
the evaluation of each entry can be very costly.

A direct solver has O.N3/ computational complexity asymptotically, while a
Krylov subspace iterative method hasO.N2/ computational complexity per Krylov
subspace iteration. As we have observed from section “Fast Numerical Methods for
a One-Dimensional Peridynamic Model,” the key to developing a fast numerical
method is to explore the structure of its stiffness matrix.

In Wang and Basu (2012) we analyzed the structure of the stiffness matrix of a
finite difference method for a space-fractional PDE in two space dimensions and
developed a fast method accordingly. In that analysis we fully utilize the fact that
the fractional derivatives in the space-fractional PDE are in the coordinate directions
so that the stiffness matrix of the numerical scheme has a tensor product structure.

However, the singular integration operator in the context of the nonlocal diffusion
model (1) couples the unknowns in all the directions and so the stiffness matrix of
the numerical scheme (29) is not expected to have a tensor product structure. Hence,
the analysis is more complicated. We proved the following theorem in Wang et al.
(2014).

Theorem 3. The stiffness matrix A of the numerical scheme (29) has a block-
Toeplitz-Toeplitz-block structure with .Ny � 1/-by-.Ny � 1/ blocks

A D

2
66666666666666664

T0 T1 : : : Tjy 0 0 : : : 0

T�1 T0 T1 : : : Tjy 0 : : : 0
::: T�1 T0

: : :
: : : Tjy

: : :
:::

T�jy

: : :
: : :

: : : T1
: : :

: : : 0

0 T�jy

: : :
: : : T0 T1

: : : Tjy

0
: : :

: : :
: : : T�1 T0

: : :
:::

:::
: : :

: : :
: : :

: : :
: : :

: : : T1
0 0 : : : 0 T�jy : : : T�1 T0

3
77777777777777775

: (33)
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Each block Tj , �jy � j � jy , is a Toeplitz matrix of order Nx � 1

Tj D

2
66666666666666664

t0;j t1;j : : : tix ;j 0 0 : : : 0

t�1;j t0;j t1;j : : : tix ;j 0 : : : 0
::: t�1;j t0;j

: : :
: : : tix ;j

: : :
:::

t�ix ;j
: : :

: : :
: : : t1;j

: : :
: : : 0

0 t�ix ;j
: : :

: : : t0;j t1;j
: : : tix ;j

0
: : :

: : :
: : : t�1;j t0;j

: : :
:::

:::
: : :

: : :
: : :

: : :
: : :

: : : t1;j
0 0 : : : 0 t�ix ;j : : : t�1;j t0;j

3
77777777777777775

: (34)

Outline of proof. It is easy to show that if we express the stiffness matrix A as a
block matrix of order .Ny � 1/, i.e., A D ŒBj;j 0

�
Ny�1

j;j 0D1, then the matrix A is a
block-banded matrix with bandwidth 2jy C 1. Similarly, each nonzero matrix block

Bj;j 0

D Œb
j;j 0

i;i 0
�
Nx�1
i;i 0D1 of order .Nx � 1/ is banded with bandwidth 2ix C 1.

Using the substitution

x0 D xi C x; y0 D yj C y; (35)

we can show the relation

�i 0;j 0.x0; y0/ D �i 0�i;j 0�j .x; y/: (36)

Accordingly, we can prove that if

j 0
1 � j1 D j 0

2 � j2; (37)

then we have

b
j1;j

0

1

i;i 0
D b

j2;j
0

2

i;i 0
; 1 � i; i 0 � Nx � 1: (38)

Namely, Bj1;j
0

1 D Bj2;j
0

2 . That is, the matrix A D ŒBj;j 0

�
Ny�1

j;j 0D1 is block-Toeplitz.
Similarly, we prove that if

i 03 � i3 D i 04 � i4; (39)

then we have

b
j;j 0

i3;i
0

3
D b

j;j 0

i4;i
0

4
: (40)
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We have thus proved that each block Bj;j 0

is a Toeplitz matrix of bandwidth
2ix C 1. ut

From Theorem 3, we see that in the fast numerical method, we need only to
evaluate and store .2ix C 1/.2jy C 1/ entries of the matrix. A fast matrix-vector
multiplication algorithm can be developed as in section “Fast Numerical Methods
for a One-Dimensional Peridynamic Model,” in which each Krylov subspace
iteration has computational complexity of O.N logN/. Numerical experiments
presented in Wang et al. (2014) showed the utility of the fast method.

A Fast CollocationMethod for the Peridynamic Model (3)

As in section “A Fast CollocationMethod for the Nonlocal DiffusionModel (1),” we
consider the steady-state analogue of problem (3) with the nonlocal homogeneous
Dirichlet data. We use the same partition (24) and the basis functions (26). Without
loss of generality, we can assume c D 1 in (4), as we can always divide both sides
of the model by c in this case. Then the x-component v.x; y/ and the y-component
w.x; y/ of the displacement field u.x; y/ can be expressed as

v.x; y/ D

Nx�1X
i 0D1

Ny�1X
j 0D1

vi 0;j 0�i 0;j 0.x; y/;

w.x; y/ D

Nx�1X
i 0D1

Ny�1X
j 0D1

wi 0;j 0�i 0;j 0.x; y/:

(41)

We insert (41) into (3) and enforce the resulting equations at the collocation points
.xi ; yj / for i D 1; 2; � � � ; Nx � 1 and j D 1; 2; � � � ; Ny � 1 to obtain the following
scheme:

Z
Bı.xi ;yj /

.x0 � xi /
2
h
vi;j �

Nx�1X
i 0D1

Ny�1X
j 0D1

vi 0;j 0�i 0;j 0.x0; y0/
i

�
.x0 � xi /2 C .y0 � yj /2

�3=2 dx0dy0

C

Z
Bı.xi ;yj /

.x0 � xi /.y
0 � yj /

h
wi;j �

Nx�1X
i 0D1

Ny�1X
j 0D1

wi 0;j 0�i 0;j 0.x0; y0/
i

�
.x0 � xi /2 C .y0 � yj /2

�3=2 dx0dy0

D f v.xi ; yj /;
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Z
Bı.xi ;yj /

.x0 � xi /.y
0 � yj /

h
vi;j �

Nx�1X
i 0D1

Ny�1X
j 0D1

vi 0;j 0�i 0;j 0.x0; y0/
i

�
.x0 � xi /2 C .y0 � yj /2

�3=2 dx0dy0

C

Z
Bı.xi ;yj /

.y0 � yj /
2
h
wi;j �

Nx�1X
i 0D1

Ny�1X
j 0D1

wi 0;j 0�i 0;j 0.x0; y0/
i

�
.x0 � xi /2 C .y0 � yj /2

�3=2 dx0dy0

D f w.xi ; yj /; 1 � i � Nx � 1; 1 � j � Ny � 1:

(42)

The collocation scheme (42) can be written in the matrix form

A2Nu2N D f2N : (43)

The 2N -dimensional unknown displacement vector u2N and the right-hand side
loading vector f2N of (42) are labeled in their natural order. At each node .xi ; yj /,
the x component vi;j or f v

i;j is put first and the y component wi;j or f w
i;j second:

u2N WD
�
v1;1;w1;1; � � � ; vNx�1;1;wNx�1;1; v1;2;w1;2; � � � ; vNx�1;2;wNx�1;2;

� � � ; v1;Ny�1;w1;Ny�1; � � � ; vNx�1;Ny�1;wNx�1;Ny�1

�T
;

f2N WD Œf v
1;1; f

w
1;1; � � � ; f

v
Nx�1;1; f

w
Nx�1;1; f

v
1;2; f

w
1;2; � � � ; f

v
Nx�1;2; f

w
Nx�1;2;

� � � ; f v
1;Ny�1; f

w
1;Ny�1; � � � ; f

v
Nx�1;Ny�1; f

w
Nx�1;Ny�1�

T :

(44)

The 2N -by-2N stiffness matrix A2N can be written as the following N -by-N block
matrix:

A2N D

2
66666664

A1;1 A1;2 : : : A1;N�1 A1;N

A2;1 A2;2 : : : A2;N�1 A2;N
:::

:::
: : :

:::
:::

AN�1;1 AN�1;2 : : : AN�1;N�1 AN�1;N

AN;1 AN;2 : : : AN;N�1 AN;N

3
77777775
; (45)

where each entry of A2N is a two-by-two matrix

Am;n D

"
av;vm;n a

v;w
m;n

aw;vm;n a
w;w
m;n

#
; (46)

with the entries in Am;n being defined by
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av;vm;n WD

Z
Bı.xi ;yj /

.x0 � xi /
2.ım;n � �i 0;j 0.x0; y0//�

.x0 � xi /2 C .y0 � yj /2
�3=2 dx0dy0;

av;wm;n WD

Z
Bı.xi ;yj /

.x0 � xi /.y
0 � yj /.ım;n � �i 0;j 0.x0; y0//�

.x0 � xi /2 C .y0 � yj /2
�3=2 dx0dy0;

aw;wm;n WD

Z
Bı.xi ;yj /

.y0 � yj /
2.ım;n � �i 0;j 0.x0; y0//�

.x0 � xi /2 C .y0 � yj /2
�3=2 dx0dy0:

(47)

Aw;v
m;n D Av;wm;n. The global indicesm and n are related to the indices .i; j / and .i 0; j 0/

by (32). The entries of the right-hand side vector f2N are given by

f v
i;j D f v.xi ; yj /; f

w
i;j D f w.xi ; yj /; 1 6 i 6 Nx � 1; 1 6 j 6 Ny � 1: (48)

We use the similar idea as in section “A Fast CollocationMethod for the Nonlocal
Diffusion Model (1)” to conduct the analysis. However, due to the coupling between
the x component v and the y component w of the displacement u2N introduced by
the kernel in the model, the stiffness matrix A2N is not block-Toeplitz-Toeplitz-
block. To develop a fast method, we analyze the displacement vector u2N and the
stiffness matrix A2N .

We first decompose the displacement vector u2N as the following two auxiliary
vectors, which replace the even or odd entries of u2N by 0, respectively:

uo2N WD
�
v1;1; 0; � � � ; vNx�1;1; 0; v1;2; 0; � � � ; vNx�1;2; 0;

� � � ; v1;Ny�1; 0; � � � ; vNx�1;Ny�1; 0
�T
;

ue2N WD
�
0;w1;1; � � � ; 0;wNx�1;1; 0;w1;2; � � � ; 0;wNx�1;2;

� � � ; 0;w1;Ny�1; � � � ; 0;wNx�1;Ny�1

�T
:

(49)

We remove the zero entries in the above vectors to obtain two N -dimensional
vectors vN and wN . It is clear that

u2N D uo2N C ue2N : (50)

Next, we introduce the N -by-N matrices Av;vN , Av;wN , Aw;v
N , and Aw;w

N as follows:

Av;vN WD

2
66666664

a
v;v
1;1 a

v;v
1;2 : : : a

v;v
1;N�1 a

v;v
1;N

a
v;v
2;1 a

v;v
2;2 : : : a

v;v
2;N�1 a

v;v
2;N

:::
:::

: : :
:::

:::

a
v;v
N�1;1 a

v;v
N�1;2 : : : a

v;v
N�1;N�1 a

v;v
N�1;N

a
v;v
N;1 a

v;v
N;2 : : : a

v;v
N;N�1 a

v;v
N;N

3
77777775
; (51)
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Av;wN WD

2
66666664

a
v;w
1;1 a

v;w
1;2 : : : a

v;w
1;N�1 a

v;w
1;N

a
v;w
2;1 a

v;w
2;2 : : : a

v;w
2;N�1 a

v;w
2;N

:::
:::

: : :
:::

:::

a
v;w
N�1;1 a

v;w
N�1;2 : : : a

v;w
N�1;N�1 a

v;w
N�1;N

a
v;w
N;1 a

v;w
N;2 : : : a

v;w
N;N�1 a

v;w
N;N

3
77777775
; (52)

Aw;w
N WD

2
66666664

a
w;w
1;1 a

w;w
1;2 : : : a

w;w
1;N�1 a

w;w
1;N

a
w;w
2;1 a

w;w
2;2 : : : a

w;w
2;N�1 a

w;w
2;N

:::
:::

: : :
:::

:::

a
w;w
N�1;1 a

w;w
N�1;2 : : : a

w;w
N�1;N�1 a

w;w
N�1;N

a
w;w
N;1 a

w;w
N;2 : : : a

w;w
N;N�1 a

w;w
N;N

3
77777775
; (53)

and Aw;v
N D Av;wN .

We decompose the matrix-vector multiplication A2Nu2N as follows:

A2Nu2N D A2Nuo2N C A2Nue2N : (54)

In addition, if we collect all the odd numbered rows and all the even numbered rows
of A2Nuo2N , we obtain the following matrix-vector multiplications:

Av;vN vN ; Aw;v
N vN ; (55)

respectively. Similarly, if we collect all the odd numbered rows and all the even
numbered rows of A2Nue2N , we obtain the following matrix-vector multiplications:

Av;wN wN ; Aw;w
N wN ; (56)

respectively.
In summary, to evaluate the matrix-vector multiplication A2Nu2N efficiently, we

need only to efficiently evaluate the matrix-vector multiplications Av;vN vN , A
w;v
N vN ,

Av;wN wN , and Aw;w
N wN . Similarly, to efficiently store and assemble the stiffness

matrix A2N , we need only to efficiently store and assemble the submatrices Av;vN ,
Aw;v
N , Av;wN , and Aw;w

N . We use the similar analysis as in section “A Fast Collocation
Method for the Nonlocal Diffusion Model (1)” to prove that the matrices Av;vN ,
Aw;v
N , Av;wN , and Aw;w

N are block-Toeplitz-Toeplitz-block matrices. So fast matrix-free
numerical methods with efficient storage and evaluation of matrix entries can be
developed (Zhang and Wang 2016). Numerical experiments show the utility of the
method.
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Concluding Remarks

In this chapter we outlined the recent developments of fast numerical methods for
linear nonlocal diffusion models and bond-based peridynamic models in one and
two space dimensions. We show how the analysis was carried out to take the full
advantage of the structure of the stiffness matrices of the numerical methods in its
storage, evaluation, and assembly and in the efficient solution of the corresponding
numerical schemes. This would significantly reduce the computational complexity
and storage of the numerical methods over conventional ones, without using any
lossy compression. For instance, we would use the same numerical quadratures for
conventional methods to evaluate the singular integrals in the stiffness matrices,
except that we only need to evaluate O.N/ of them instead of O.N2/ of them.
Numerical results are presented to show the utility of these fast methods.

Technically, the contributions of this chapter are summarized as follows: (i) the
development of the fast numerical methods for the nonlocal diffusion model (1) and
peridynamic model (3) is motivated by that of the fast finite difference methods
for FPDEs (Chen et al. 2015; Wang and Basu 2012; Wang and Wang 2010; Yang
et al. 2011, 2014). However, the nonlocal diffusion model (1) and peridynamic
model (3) give rise to the coupling in all the directions, in contrast to FPDEs in
which the fractional derivatives are expressed only in the coordinate directions, and
so represent a much stronger coupling than FPDEs do. In this chapter we outline the
analysis of the stiffness matrices in the development of fast numerical methods with
efficient matrix assembly and storage. (ii) The fast numerical methods developed
for FPDEs (Wang and Basu 2012; Wang and Wang 2010; Wang and Du 2013)
and nonlocal diffusion models (Wang and Tian 2012; Wang et al. 2014; Wang and
Wang 2017) are primarily for scalar problems. However, the peridynamic model (3)
is a vector equation. Due to the coupling between the x component v and the y
component w of the displacement vector u introduced by the tensor product kernel,
the stiffness matrix in the numerical method is not block-Toeplitz-Toeplitz-block
as that for nonlocal diffusion models (Wang et al. 2014). Thus, the fast numerical
methods developed for FPDEs and nonlocal diffusion models do not apply to the
peridynamic model (3). We outlined the analysis of the coupling effect of the
peridynamic model (3) on the stiffness matrix of the numerical method and utilize
the structure in the development of a fast collocation method.

We end this section by discussing potential extensions: (i) a time-stepping
algorithm needs to be used for time-dependent problems, which actually reduces
the condition number of the stiffness matrix due to the impact of the time step size.
(ii) The extension to three-dimensional problem is conceptually straightforward as
the stiffness matrix should retain a similar structure. However, fractional implemen-
tation of a three-dimensional peridynamic model requires tremendous effort. (iii)
Additional problems include peridynamic model with variable coefficients, state-
based peridynamic model, and numerical methods discretized on locally refined
composite meshes.
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et al. (Compos Struct 133: 529–546, 2015)) and an intermediately homogenized
model (IH-PD model). We use these models to simulate fracture in functionally
graded materials (FGMs) and in porous elastic materials. We analyze dynamic
fracture, by eccentric impact, of a functionally graded plate with monotonically
varying volume fraction of reinforcements. We study the influence of material
gradients, elastic waves, and of contact time and magnitude of impact loading
on the crack growth from a pre-notch in terms of crack path geometry and crack
propagation speed. The results from FH-PD and IH-PD models show the same
cracking behavior and final crack patterns. The simulations agree very well,
through full failure, with experiments. We discuss advantages offered by the
peridynamic models in dynamic fracture of FGMs compared with, for example,
FEM-based models. The models lead to a better understanding of how cracks
propagate in FGMs and of the factors that control crack path and its velocity
in these materials. The IH-PD model has important advantages when compared
with the FH-PD model when applied to composite materials with phases of
disparate mechanical properties. An application to fracture of porous and elastic
materials (following Chen et al. (Peridynamic model for damage and fracture
in porous materials, 2017)) shows the major effect local heterogeneities have
on fracture behavior and the importance of intermediate homogenization as a
modeling approach of crack initiation and growth.

Keywords
Peridynamics · Functionally graded materials · Composite materials ·
Dynamic fracture · Crack propagation · Impact · Brittle fracture · Porous
elastic materials

Introduction

Functionally graded materials (FGMs) are a special class of composite materials
characterized by spatially varying material properties with the goals of eliminat-
ing/reducing stress concentrations, relaxing residual stresses, and enhancing the
bonding strength of the composite constituents. Generally, FGMs are multiphase
materials having continuously varying volume fractions of constituent phases
most often along a desired spatial direction. Benefits of using FGMs or FGM
coatings in thermomechanical applications are shown in, for example, Kashtalyan
and Menshykova (2009), Bobaru (2007), and Thai and Kim (2015). In designing
components involving FGMs, it is important to consider imperfections, such as
cracks, often preexisting as manufacturing defects or generated by external loads
during service. Fracture mechanics of FGMs, especially their dynamic failure, plays
a key role in the design of FGMs structures. The fracture behavior of FGMs has been
studied especially in the past two decades (see, e.g., Eischen 1987; Jin and Batra
1996; Delale and Erdogan 1983; Wang et al. 2014; Marur and Tippur 2000; Anlas
et al. 2000; Itou 2010). Theoretical studies conclude that the leading term in the
crack-tip stress field is of the inverse-square-root-singularity for any form of elastic
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modulus variation and the elastic modulus has a significant effect on the crack-tip
stress field, while the Poisson’s ratio has little effect on it (see Delale and Erdogan
1983). Only recently have studies focused on dynamic fracture problems in FGMs.
Dynamic analysis of cracks in FGMs under impact loading conditions has appeared
in, e.g., Itou (2010), Guo et al. (2004), and Ma et al. (2005), and analysis of crack
propagation in FGMs is also presented in Xia and Ma (2007), Kidane et al. (2010),
Cheng and Zhong (2007), Cheng et al. (2010), Lee (2009), and Matbuly (2009), for
example.

Due to the lack of symmetry in material properties, fracture is inherently
mixed-mode when a crack in a FGM is not parallel to the direction of material
properties variation, or when loading is asymmetric relative to the crack plane.
Jin et al. (2009) experimentally investigated the quasi-static mixed-mode crack
propagation in a FGM beam under offset loading. Abanto-Bueno and Lambros
(2006) experimentally studied quasi-static mixed-mode crack initiation and growth
in FGM through fracture experiments. Shukla and his coauthors (2006) presented
a detailed experimental study to understand the dynamic fracture behavior of
FGMs. Kirugulige and Tippur (2006) have conducted mixed-mode dynamic fracture
experiments on FGM samples made of compositionally graded glass-filled epoxy
plates with initial edge cracks along the material gradient. Rousseau and Tippur
(2001) presented an experimental study of the crack-tip deformation and fracture
parameter histories in compositionally graded glass-filled epoxy under low velocity
impact loading.

Most efforts dedicated to simulating static or dynamic fracture behavior of FGM
have used the finite element method (FEM). Kim and Paulino (2004) used local
remeshing technique to predict the crack path for the mixed-mode quasi-static
fracture test in Rousseau and Tippur (2001). Kirugulige and Tippur (2008) have
reexamined the mixed-mode dynamic fracture experiment reported in Kirugulige
and Tippur (2006) by using the cohesive-zone finite element method. Zhang
and Paulino (2005) have conducted mode-I and mixed-mode dynamic fracture
simulations in FGMs by cohesive finite elements. Bayesteh and Mohammadi (2013)
have used the extended finite element method (XFEM) to analyze the fracture
behavior of orthotropic FGMs. The approaches mentioned above used the classical
continuum mechanics models to treat fracture. Such approaches are based on partial
differential equations and, for describing discontinuities such as cracks, one has
to introduce special modeling techniques (such as adaptive remeshing) that define
crack surfaces as new boundaries of the updated domain. Continuum-type methods
using the cohesive FEM and XFEM require special criteria to decide, for example,
when to branch a dynamic crack (see Ha and Bobaru 2011; Song et al. 2008), as
well as explicit tracking of the crack path. Brittle damage processes involved in
branching of a crack depend on the flow of the strain energy density. A general,
predictive theory for how energy is dissipated in the creation of experimentally
observed damage around the region where a crack branches (the mirror–mist–
hackle transition) is not available. Because of these difficulties, classical models
that use a flat surface to represent the actual rough fracture surface are not be able
to release the correct amount of energy for crack growth in a dynamic setting and,
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therefore, are not able to predict experimentally observed crack propagating speeds
in dynamic brittle fracture (see Song et al. 2008). Cohesive-zone models need to
modify the experimental values of the fracture energy by several factors in order to
get propagation velocities in the range of measured ones (see Song et al. 2008).

An alternative approach to modeling dynamic fracture is the new nonlocal
continuum model (proposed by Silling (2000) and Silling et al. (2007)), peridy-
namics, which eliminates spatial derivatives from the formulation with the goal
of having a consistent mathematical model for problems with discontinuities in
the displacement field. Peridynamics is a reformulation of continuum mechanics
in which each material point is connected (via peridynamic bonds) with points
in a certain region around it, and not only with its nearest neighbors. In order
to overcome mathematical inconsistencies in the classical continuum mechanics
models of problems in which cracks initiate and evolve in time, peridynamics uses
an integral of forces over a nonlocal region (called horizon) around a point to
replace the divergence of the stress tensor in the equations of motion. The model
is particularly well suited for dealing with cracks and damage in solid mechanics
especially in situations where the crack path is not known in advance.

Peridynamics has been applied to damage and failure analysis of homogeneous
and nonhomogeneous materials. Silling and Askari (2005) employed the bond-
based peridynamics to study crack growth and impact of a sphere on a brittle target.
Bobaru and his coauthors (Ha and Bobaru 2010, 2011; Hu et al. 2012, 2013; Zhang
and Bobaru 2015) conducted several peridynamic studies of dynamic fracture in
brittle materials and composite materials, including crack branching, and impact
loading and fragmentation.

In this chapter, we employ the bond-based peridynamic (PD) model to investigate
the dynamic fracture behavior of FGMs under offset (asymmetric) impact loading
and understand the factors that influence the crack propagation direction and crack
growth in FGMs. We formulate a fully homogenized PD (FH-PD) model for an
already homogenized FGM by defining the bond properties between PD nodes
based on the elastic and fracture properties at the nodes’ locations in the FGM given
by experiments. In Cheng et al. (2015), we verified the model in terms of its elastic
dynamic behavior (wave propagation induced by sudden loading) by comparing
results, in the limit of the nonlocal region going to zero, with analytical ones of the
classical mechanics (local) model.

In addition to the FH-PD model, we present a new model in which intermediate
homogenization (IH-PD) is used to capture some information about the material
microstructure. Different from the FH-PD model, in which the bond properties are
computed locally based on an equivalent homogenized composite material, in the
IH-PD model we introduce two types of bonds, intraphase bond and interphase
bond, that represent the properties of the distinct composite phases and the interfaces
between them. For example, for a two-phase composite with phases A and B,
we will define A–A bonds (intraphase), B–B bonds (intraphase), and A–B bonds
(interphase). The distribution of the bonds depends on the volume fraction of the
phases at the nodes forming that particular bond. While the specific geometry of
the microstructure is not preserved (unless the scale of the nonlocal region and the
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corresponding discretization is at the scale of the smallest geometrical features of the
microstructure, rendering the model as an explicit model of the microstructure), the
specific volume fraction is, and we shall see how this is critical in modeling failure.
The model with this additional information that is preserved from the microscale
level will be tested against crack growth in a particular two-phase composite in
which one of the phases is void (a poroelastic material).

As examples used to test the models, we analyze dynamic crack growth in
FGMs, specifically the mixed-mode dynamic fracture experiment from Kirugulige
and Tippur (2006). Both the FH and the IH-PD models are employed to simulate
this experiment and we point to similarities and differences between the results.
A FGM plate (modeled under 2D plane stress conditions) with monotonically
varying volume fraction of reinforcement is simulated under mixed-mode loading
by eccentric impact relative to the pre-crack location. The role played by the
boundary conditions on the crack path is studied by using two configurations for
the impact loading: one with free boundaries and one with loads applied, at the
same time as the impact loading, at the support locations, closer, but not identical, to
conditions used in experiments. In particular, we notice an interesting phenomenon:
duration of impact loading influences the crack path by “attracting” the propagating
crack toward the moving location of strain energy concentration, generated by a
release surface wave initiated when the load is removed. Both FH-PD and IH-PD
models lead to the same cracking patterns for these dynamic loading conditions.
One difference between the fully homogenized solution and the intermediately
homogenized one is that in the IH-PD model, stress waves become less coherent,
being locally dispersed (“noisier” strain energy density maps) by the more detailed
representation of the composite microstructure.

While the differences between the two PD models for problems in which extreme
dynamics controls the crack behavior (high-intensity impact stress waves) is small,
in problems in which the microstructure dictates critical phenomena (like crack
initiation), the IH-PD model is able to capture an evolution of the failure not seen
with the FH-PD model. Indeed, when a porous material (two-phase composite
in which one of the phases is void) is considered under quasi-static loading,
the IH-PD model reproduces the experimentally observed dependence of crack
initiation and growth on the size of a pre-notch, while the FH-PD model, due to
ignoring of any microstructural details, fails to do so. We find that the IH model
is as computationally efficient compared with the FH model, which lead us to
recommend it against the FH-PD for modeling failure in composite and/or porous
materials.

Peridynamic Formulation for Functionally GradedMaterials
(FGMs)

In this section, we first briefly review the peridynamic theory for elastic brittle mate-
rials. Then, we introduce the fully (FH-PD) and intermediate (IH-PH) homogenized
peridynamic models for composite materials.
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Brief Review of Peridynamic Theory for Elastic Brittle Materials

The peridynamic model is a framework for continuum mechanics based on the idea
that pairs of material points exert forces on each other across a finite distance. This
concept can be viewed as an effective treatment of material length-scale induced by,
for example, the material microstructure. The peridynamic equations of motion for
bond-based model are given as (Silling 2000):

�.x/ Ru.x; t / D

Z

H.x/

f .u.x; t / � u.Ox; t / ; Ox � x/ dV Ox C b.x; t / (1)

where f is the pairwise force function in the peridynamic bond that connects point
Ox to x, u is the displacement vector field, �(x) is the spatially dependent density,
and b(x,t) is the body force. The integral is defined over a region H(x) called the
“horizon region,” or simply the “horizon.” The horizon is the compact supported
domain of the pairwise force function around a point x (see Fig. 1). The horizon
region is taken here to be a circle of radius ı. We refer to ı also as the “horizon,”
and from the context there should be no confusion whether we refer to the region or
its radius.

A microelastic material is defined as one for which the pairwise force derives
from a potential:

f .˜; Ÿ/ D
@! .˜; Ÿ/

@˜
(2)

where Ÿ D Ox � x is the relative position in the reference configuration and ˜ D

Ou � u is the relative displacement of x and Ox. A micropotential that leads to a linear
microelastic material is given by

! D
1

2
c .�/ s2� (3)

Fig. 1 Each point x interacts
directly with the point Ox in
the horizon region delimitated
by the red circle



41 Peridynamic Functionally Graded and Porous Materials:: : : 1359

where � D kŸk, s D ���

�
is the relative elongation of a bond, and � D kŸ C ˜k. The

function c(�) is called the micro-modulus and has the meaning of bond’s elastic
stiffness. The integrand in Eq. 1 may have different forms. For examples in diffusion
models please see Chen and Bobaru (2015), and in elasticity models please see Chen
et al. (2016). It has been observed that the crack propagation speed in brittle fracture
is not influenced by the particular shape of the micro-modulus, once the horizon is
reasonably small compared to the dimensions of the structure analyzed (see Ha and
Bobaru 2010). The pairwise force corresponding to the micropotential given above
has the following form:

f .˜; Ÿ/ D

(
ŸC˜

kŸC˜k
c .�/ s � � ı

0 � > ı
(4)

In this paper, we use the conical 2D plane stress micro-modulus functions (see
Ha and Bobaru 2010). Following the same procedure performed to calculate the
micro-modulus functions in 1D (see Bobaru et al. 2009), one obtains the conical
micro-modulus function in 2D, plane stress conditions (see Ha and Bobaru 2010):

c .�/ D c1

�
1 �

�

ı

�
D

24E

�ı3 .1 � v/

�
1 �

�

ı

�
(5)

For a FGM, the elastic modulus depends on the location, in our case on the
position of the ends of the peridynamic bond connecting x and Ox. The model used in
this paper uses the location-dependent elastic modulus and this is discussed in the
next section.

Failure is introduced in peridynamics by considering that the peridynamic bonds
break when they are deformed beyond a critical value, called the critical relative
elongation s0, computed based on the material’s fracture energy. In 2D, the energy
per unit fracture length for complete separation of the two halves of the body is the
fracture energy G0. Equating it to the work done in a PD material to accomplish the
separation of the body into two halves gives:

G0 D 2

Z ı

0

Z ı

z

Z cos�1
�
z
�

�

0

�
c .�/ s2

0�

2

�
�d�d�d z (6)

Substituting the micro-modulus function from Eq. 5 into Eq. 6, s0 is obtained as:

s0 D

r
5�G0

9Eı
(7)

For the PD-FGM model, G0 is a function of location of the ends of the
peridynamic bond, and this is given in the next section.
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A Fully Homogenized Peridynamic Model for FGMs

In this fully homogenized peridynamic (FH-PD) model, a FGM is understood as a
material model locally homogenized in terms of its elastic properties, density, and
fracture energy, corresponding to an actual composition of two phases. The FGM
cannot be considered as a globally homogeneous material since its material prop-
erties change over large distances, but it can be viewed as a locally homogeneous
material because we are not considering the explicit composition of the FGM and
we assume that in a sufficiently small neighborhood of any point, material properties
are, effectively, constant. We assume that only the volume fraction of each phase
influences the elastic and fracture properties of the composite. This assumption is,
obviously, a simplification since the particular shape and geometric distribution of
the inclusions can affect the elastic and, even more strongly, the fracture properties
in the FGM. For problems in which these dependencies are strong, one could first
obtain a homogenized peridynamic model from the specific material microstructure.
Such a model will lead to a specific horizon size that would capture one or several
length-scales generated by the specific microstructure of the composite material (see
Silling 2014).

We formulate the peridynamic model for the homogenized FGM concept, and,
therefore, the nonlocal region size is not connected to material length-scales
generated by a specific microstructure. In this way, we are able to consider the
convergence of the nonlocal model solution to the local model, in the limit of the
horizon size going to zero (see Silling and Lehoucq 2008; Ha and Bobaru 2010;
Bobaru et al. 2009). Such a modeling approach may not be appropriate for modeling
failure processes in certain FGMs under certain loading conditions. Part of our
goal here is to see to what extent the proposed peridynamic model of a locally
homogenized FGM is able to reproduce experimentally observed dynamic fracture
behavior for an FGM prepared by varying the volume fraction of small inclusions
(glass spheres) in an epoxy matrix as used in Kirugulige and Tippur (2006, 2008).
For the type of FGM used in Kirugulige and Tippur (2006, 2008), the fracture
behavior under impact conditions reveals a very high repeatability in terms of the
crack path (see Fig. 4 in Jain and Shukla (2006)).

Consider two arbitrary material points x and Ox connected by a peridynamic bond
in an FGM with Ex, �x, Gx and E Ox , � Ox , G Ox being their effective Young’s moduli,
densities, and fracture energies, respectively. For a peridynamic model of the FGM
we need to specify the micro-modulus of the bond connecting these two points.
We propose a model in which the material properties used to compute the micro-
modulus of the bond connecting points x and Ox are the average values of the material
properties at the two points. Therefore, in Eqs. 5 and 7 we will use:

E .x; Ox/ D
.Ex C E Ox/

2
; G0 .x; Ox/ D

.Gx C G Ox/

2
(8)

The material density is a pointwise quantity and is introduced at each point
in the peridynamic equation of motion (see Eq. 1). For the two-dimensional
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bond-based peridynamic model of an isotropic and homogeneous material in plane-
stress conditions, the Poisson’s ratio is 1/3. For the particular FGM used in the
experiments in Kirugulige and Tippur (2006, 2008), Poisson’s ratio varies from
0.33 to 0.37, and the authors of Kirugulige and Tippur (2006, 2008) select 0.34
in their modeling and calculations. While Poisson’s ratio may influence the path
of a growing crack, its variation is not expected to play a significant role in
the fracture behavior of FGMs (see Delale and Erdogan (1983) for a discussion
on this subject). Peridynamic modeling of other FGMs for which bond-based
model’s fixed Poisson ratio is not a good fit can be performed using the state-based
peridynamic formulation (see Silling and Lehoucq 2008; Silling et al. 2007). The
state-based PD formulation eliminates the Poisson ratio restriction, but it comes
with a computational penalty, normally increasing the cost by at least a factor of
two compared with the bond-based. Because the Poisson ratio for the material
considered here is close to 1/3 and the fact that our primary interest here is to observe
the capabilities of a PD model in capturing the evolution of fracture and failure in
FGMs and to understand what are the factors that control crack growth in FGMs, in
this book chapter, we use the bond-based peridynamic formulation.

An Intermediate-Homogenization Peridynamic Model for
Two-Phase Composites

The FH-PD model presented in the previous section assumes a homogenized local
material point. In reality, FGMs usually are composites of two or more material
phases. The mechanical connections between material points could be interphase
or intraphase bonding. An example of a two-phase (A and B) composite is shown
in Fig. 2. We consider two arbitrary material points x and Ox connected by a
peridynamic bond with R and OR being their Phase A volume fractions, respectively.
The peridynamic bond between these two material points has a certain probability

Phase A
Volume fraction
( )

Phase B
Volume fraction 
( )

node node 

Phase B
Volume Fraction
( )

Phase A
Volume fraction
( )

Fig. 2 Description of the intermediate-homogenization PD (IH-PD) model for a two-phase
composite material. The bond between the two nodes depends on the local volume fractions
of the two composite phases. When the nonlocal size and the discretization size reach the size
of the smallest geometrical features of the microstructure, the model matches one in which the
microstructural description is explicit
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to be considered as a bonding between the same phase or between different phases,
depending on the volume fraction of the phases in the two material volumes
occupied by the points. We will refer to Phase A – Phase A bonding as A–A bond,
Phase B – Phase B bonding as B–B bond, and Phase A – Phase B bonding as A–B
bond.

In the new intermediately homogenized peridynamic model (IH-PD, see Chen
et al. (2017) for details), we assume a linear relationship between the chance of a
bond to be of a certain type and the local phase volume fractions at the two nodes.
Thus, the bond between material points has chance R OR to be an A–A bond, chance

.1 � R/
�
1 � OR

�
to be a B–B bond, and chance 1 � .1 � R/

�
1 � OR

�
� R OR D

RC OR�2R OR to be a A–B bond. Heterogeneity is thus introduced by the combination
of different mechanical bonds (with different micro-moduli and critical bond strains)
connecting at a particular material point.

The detailed steps for the algorithm that implements the IH-PD model, in the
model generation stage (preprocessing step), at a node x, are:

(i) For each of the undetermined bonds in the family of this node, generate a
random number r from a uniform distribution in (0, 1).

(ii) If r < R OR, then label the bond as A–A bond by assigning the micro-modulus and

critical bond stretch of material A for this node. If R OR < r < .1 � R/
�
1 � OR

�
C

R OR, then label the bond as B–B bond. Otherwise, label the bond as an A–B
bond.

Once the bonds are assigned their type, the mechanical properties (micro-
modulus value, critical bond strain) are determined. For A–A bonds, we assign the
properties corresponding to phase A, B–B bonds are from phase B, and for A–B
bonds we have several options. Two possible ones are based on couplings in series
(arithmetic average) or parallel (harmonic average):

MAB D
MA C MB

2
.for the a � IH � PD model/ ;

and
2MAMB

MA C MB

.for the h � IH � PD model/

(9)

where MA, MB, and MAB are the mechanical properties corresponding to A, B, and
the interphase, phases, respectively. Another possibility for the A–B bonds is to find
interface properties from experiments and assign them to A–B bonds. This option is
especially useful when the interface is weaker than both of the phases.

Because the algorithm above contains random numbers, every different run that
uses a newly seeded random number generator will lead to slightly different results
for the same input data. For the elastic model, and a fixed horizon size, however,
increasing the m-value (the ratio between the horizon size and the discretization
size. See Appendix A for more details of the numerical discretization) results in
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attenuating/minimizing these differences. Obviously, with a fixed horizon size, once
the node size is smaller than the smallest dominant geometrical feature of the
microstructure (pore size in a porous material, fiber diameter in a fiber-reinforced
composite, size of debonds or microcracks), the elastic response would no longer
change. When the horizon size itself (and the corresponding discretization) is on
the scale of the microstructural features, the model essentially becomes an “explicit
microstructure” model. Since such models are expensive to compute, the goal for
the IH-PD model is to serve as an efficient alternative to the explicit model while
incorporating some of the microscale information that has an effect on fracture and
failure behavior with the goal of providing more realistic failure response than the
FH-PD model could.

To compare the effective properties of the IH-PD model with those from the FH-
PD model, we “homogenize” the bonds in the IH-PD model (see Fig. 2) so that
each bond has a mechanical property M(x, Ox) that is computed by considering a
combination of parallel bonds with properties MA, MB, and MAB between x and Ox,
as follows:

M D MAR OR C MB .1 � R/
�
1 � OR

�
C MAB

�
R C OR � 2R OR

�
(10)

By applying Eq. 9, we have:

M D

8<
:

MB C 1
2

.MA � MB/
�
R C OR

�
; a � IH � PD

MB C
.MA�MB /Œ.MA�MB /R ORCMB.RC OR/�

.MACMB /
; h � IH � PD

(11)

Note that for elasticity (and problems in which the microstructure is uniform), the
IH-PD and FH-PD converge, in the limit of the horizon going to zero, to the classical
composite model solution. However, when the nonlinear model is considered (in
which damage is allowed via bond breakage), the results from IH-PD and FH-
PD models do not have to be the same. The results from the two models will be
different especially for cases with high contrast between the fracture toughness of
the composite phases.

When applying the IH-PD model to FGMs with continuously varying volume
fraction of reinforcement, taking the horizon size small enough (relative to the
overall gradient in composition) leads to R Š OR. Then, Eq. 11 reduces to:

M D

(
MB C .MA � MB/ R .x/ ; a � IH � PD

MB C
.MA�MB /Œ.MA�MB /R2.x/C2MB R.x/�

.MACMB /
; h � IH � PD

(12)

Here, R(x) is the volume fraction of phase A at x. When R(x) D 0 (100% phase B),
M DMB; when R(x) D 1 (100% phase A), M DMA. This is the same as the effective
properties in the FH-PD model for an FGM (see Fig. 4 below).

Note that although the effective mechanical properties from the “homogeniza-
tion” in the IH-PD model could be the same as the ones in FH-PD model, the results
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from two models are different and in sections “Numerical Studies for Dynamic
Crack Propagation in FGMs” and “Results and Discussion” we will test these
differences in both dynamic fracture and quasi-static fracture.

The IH-PD model can also be used for modeling porous elastic materials, by
treating the porous material as a composite with one of the phases being a void
phase. We apply h-IH-PD model for a porous material. By assuming that phase
B is void phase in Fig. 2, material porosity P is the volume fraction of phase B.
Substituting R(x) D 1 �P and MB D 0 into the h-IH-PD model in Eq. 12, we obtain
the effective mechanical properties as follows:

M D MA.1 � P /2 (13)

Applications of h-IH-PD model for quasi-static fracture in a porous elastic and
brittle material are presented in section “Results and Discussion.”

Numerical Studies for Dynamic Crack Propagation in FGMs

Problem Setting

We consider dynamic crack growth in an edge-notch FGM plate specimen under
offset impact loading. This setup has been experimentally investigated in Kirugulige
and Tippur (2006). The sample geometry and boundary conditions are shown in
Fig. 3. We use two types of boundary conditions in our simulations, for two reasons:

(a) Different dynamic loading induce different wave propagation scenarios that are
likely to drive crack growth to different results. These scenarios will allow us to
understand the role wave propagation plays in dynamic brittle fracture of FGMs.

(b) The description given in Kirugulige and Tippur (2006) is not sufficiently
detailed to allow us to specify the boundary conditions precisely as those used

Fig. 3 Specimen geometry and boundary conditions: (a) sudden loading on the top surface,
otherwise free boundaries, and (b) sudden loading applied at three points (satisfying static
equilibrium)
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in the actual experiment. Only the launch speed of the impactor is given. The
authors of Kirugulige and Tippur (2006) also mentioned that “the specimen rests
on two blocks of soft putty to preclude any interaction from the supports while
the specimen undergoes stress wave loading.” The size of the hammer used as
the impactor in the experiments is not specified, the rebound time is not given,
and the size and properties of the supports are also not reported. The three-point
impact loading conditions used in our work, while not identical, are meant to be
closer to those in the experiments than the impact loading on the free-free plate.

The cohesive-zone finite element-based model for this problem used in
Kirugulige and Tippur (2008) employed only the “free–free” boundary conditions.
The computational study in Kirugulige and Tippur (2008) only presents the initial
stages of crack propagation, by following the crack growth only for its first 1.5–
2.0 cm. The authors of Kirugulige and Tippur (2008) do not explain why the study
was limited to this stage of crack growth and why they did not compare the crack
paths through final failure of the sample with the experimental results. Perhaps, the
FEM solution breaks down after a while. Our peridynamic simulations will track
the crack growth through full failure.

The FGM sample used in experiments in Kirugulige and Tippur (2006) is made
of epoxy with continuously varying volume fraction of glass filler particles (35 �m
mean diameter) from 0 to 40%. The mechanical properties of the constituents of the
FGM specimen studied are listed in Table 1. The variation of elastic modulus and
mass density along the width of a sample can be found in Fig. 3 in Kirugulige and
Tippur (2006). The elastic modulus varies from 10 GPa to 4 GPa over the width and
the mass density varies from 1,750 kg/m3 to 1,175 kg/m3 over the same width. The
FGM specimen is a rectangular plate (see Fig. 3) with width W D 43 mm, length
L D 152 mm, and an edge crack of length a D 8.6 mm. The specimen is subjected
to an impact loading at an offset distance of S D 25.5 mm with respect to the initial
crack location.

In their FEM analysis of this problem, the authors of Kirugulige and Tippur
(2008) use linear curve fitting to approximate the variation of fracture energy KICR,
elastic modulus E, and the mass density � over the sample’s width. We will do the
same here, to have a fair comparison between the PD and FEM results. However,
in section “Comparison with Experimental and FEM-Based Results: Nonlinear
Material Variation” we will also test the crack propagation paths and speed by
using the actual, nonlinear variation of elastic modulus and density measured from

Table 1 Nominal bulk properties of the constituent materials used in the FGM samples for the
dynamic fracture examples (from Kirugulige and Tippur 2006)

E (GPa) V ¡ (kg/m3)

Epoxy 3.2 0.34 1,175
Soda-lime glass 70 0.23 2,500
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Fig. 4 Linear curve fits for elastic moduli and density across the width of the sample (a). Fracture
energy variation across the sample’s width based on linear curve fits for the elastic modulus and
stress intensity factor (b) (same as those used in the FEM analysis in Kirugulige and Tippur (2008))

experiments and shown in Fig. 3 in Kirugulige and Tippur (2006) and repeated in
Fig. 1 in Kirugulige and Tippur (2008).

Let the elastic modulus at the bottom and top surfaces of the specimen be E1 and
E2, respectively. The maps with the linear curve fit for density and elastic modulus,
as well as the variation of fracture energy along the width of the sample, are shown
in Fig. 4.

For the case with the pre-crack on the stiffer side (i.e. E1 > E2), we have the
following linear curve-fits (see Kirugulige and Tippur 2008):
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KICR.y/ D 2:2 �
2:2 � 1:4

43
y; 0 � y � 43 mm (14)

E.y/ D 10 �
10 � 4

43
y; 0 � y � 43 mm (15)

�.y/ D 1; 750 �
1; 750 � 1; 175

43
y; 0 � y � 43 mm (16)

GIC .y/ D
K2

ICR.Y /

E.y/
; GIC .y/ D GIIC .y/ (17)

Similar linear approximations are used for the other case, when E1 < E2, when
the pre-crack is on the compliant side of the specimen.

The profiles of parameters shown in Eqs. 14, 15, 16, and 17 can be directly
applied in Eq. 8 to obtaine the bonds information in the peridynamic FH-PD model.

For the IH-PD model, we need the mechanical properties of each phase in the
FGMs and their corresponding volume fraction variation over the volume of a
peridynamic node, which is decided by the discretization scale used.

In the example here, we consider discretizations that are much larger than the size
of the glass beads inclusions. Therefore, we can use the properties as shown above
and assume a linear variation of volume fractions. We can thus take the material at
the bottom and top surfaces of the sample as being of a single phase. For example,
when the pre-crack is on the stiffer side (E1 > E2), the material at the bottom surface
is phase A material, of material parameters shown in Eqs. 14, 15, 16, and 17 with
y D 0, and the material at the top surface is phase B material, of material parameters
shown in Eqs. 14, 15, 16, and 17 with y D 43 mm. The volume fraction of each
phase is assumed to be linearly distributed in the y-direction. When E1 < E2, phase
A switches with phase B.

Boundary and Loading Conditions

We now present the details about the two types of boundary/loading conditions used
in this study. The first type conditions, shown in Fig. 3a, use impact loading of the
free beam/plate since this was also used in the finite-element-based computational
study in Kirugulige and Tippur (2008). In our case, we apply the normal stress as
a uniform distribution of the equivalent body force over a length of 10 mm (from
S� 5 mm to SC 5 mm) on the top surface (see Fig. 3a).

The second type of boundary/loading conditions mimics, to a certain extent,
the three-point loading from the experiments. In this case, we apply the dynamic
loading, uniformly distributed in space at three locations, corresponding to the two
supports and the impact location (see Fig. 3b). The lengths over which the loads are
applied are shown in Fig. 3b.
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Fig. 5 Variations of the duration of impact loading stress tested in the peridynamic computations

In absence of data from experiments regarding the rebound time of the hammer
used to impact the sample, we use a time variation of the impact load described by
the following trapezoidal profile (see Fig. 5):

	 D

8̂
<
:̂

	0
t
t1

0 � t � t1

	0 t1 � t � t2
	0

t3�t
t3�t2

t2 � t � t3

(18)

where 	0 is the maximum impact stress, the ramp-up time t1 D 30 �s, t3 is the total
loading time, and the ramp-down time is t3 – t2 D 30 �s. We keep the ramp-up and
ramp-down times fixed, but we vary the time spent at maximum stress level: t2 –
t1 D 40 �s, 90 �s, and 120 �s resulting in total loading times t3 D 100 �s, 150 �s,
and 180 �s, respectively (see Fig. 5).

To decide about the actual stress magnitude and corresponding loading force
in each of the boundary conditions types, we perform several tests at different
loadings and choose the ones that are about the smallest that lead to full failure
of the sample (complete separation into two pieces due to crack growth from the
pre-notch). For the three-position loading configuration, we select 	0 D 26 MPa,
while for the impact with free boundary conditions, we choose 	0 D 40 MPa. We
also note that some no-fail zones are assigned to the regions around the loading
location to avoid immediate failure generation at those locations. In these regions,
the critical relative elongation for the peridynamic bonds is set to a large value that
is never reached in the present loading conditions. We made sure that these areas do
not interfere with the crack growth in any of the computational tests we performed.
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For the remaining computational simulations, we use a uniform time step size of
50 ns, which is sufficiently small for all of the tests, based on the stability conditions
from Silling and Askari (2005).

Convergence Studies for Crack Propagation Path in Dynamic Brittle
Fracture of FGMs

In this subsection, we perform convergence studies in terms of the crack path shape
that grows from the pre-cracked FGM specimen under the impact loading for the
free–free boundary condition type. Convergence for peridynamic results in dynamic
brittle fracture has been discussed in Ha and Bobaru (2010, 2011) for isotropic and
homogeneous materials and in Hu et al. (2013) for homogeneous but anisotropic
materials. Here we study convergence for FGMs with the FH-PD model, and try to
answer whether the size of the nonlocal region is sufficiently small, relative to the
gradient of material properties function in the FGM, to obtain a crack path that no
longer changes when the horizon size decreases further.

Details of the discretized PD model were already given in section “Numerical
Studies for Dynamic Crack Propagation in FGMs” of Cheng et al. (2015) and
Appendix A. To those details, we append the combination of Eqs. 7 and 8 for the
FH-PD model.

For m-convergence (see Appendix A), we perform tests for a fixed horizon size
ı D 2 mm and vary the grid density: 
x D 1 mm (m D 2), 0.5 mm (m D 4), and
0.25 mm (m D 8). For the case with E1 < E2 (pre-crack is on the compliant side),
we select a total loading time of 150 �s and the resulting crack paths after 210 �s
from impact are shown in Fig. 6. The results indicate that, for this horizon size
and the particular material variation in the FGM chosen, when a sufficient number
of nodes are inside the horizon of the node (when m is larger than 4), no further
increases in the grid density changes the crack path. We also note that the lengths
of the crack paths in Fig. 6b, c are very similar, meaning that the crack speed is
similar between these two cases. The result in Fig. 6a shows that when there is a
small number of bonds connecting a node with its nonlocal neighbors (m D 2 in
2D produces only 12–20 possible bonds for each node, depending whether nodes
covered only partially by the horizon are included or not), the crack path suffers.
This is because there are not enough bonds in enough possible directions that
can break when stretched beyond their critical value to result in a crack growth
that is consistent with the dynamics of the problem. We emphasize here that in
peridynamics cracks grow autonomously, because of a cascading of bond rupture
events.

For the case when E1 > E2 (pre-crack is on the stiffer side of the FGM), the m-
convergence study is performed using the same numerical grids, the same loading
magnitude, and the same total loading time as above. The crack paths for this case
at 210 �s after impact are compared in Fig. 7. As in the previous case, it can be
observed that the paths with m D 4 and 8 are very similar to each other, in both
shape and length, meaning that the crack propagation speed between the two grids
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Fig. 6 m-convergence in
terms of the crack path for an
FGM specimen with E1 < E2

computed with different grids
for ı D 2 mm: (a) m D 2
(
x D 1 mm), (b) m D 4
(
x D 0.5 mm), and (c)
m D 8 (
x D 0.25 mm). The
damage maps shown are at
210 �s after impact for the
loading case with the total
loading time of 150 �s.
Dimensions on the axes are in
meters

Fig. 7 m-convergence in
terms of crack path for an
FGM specimen with E1 > E2

computed with different grids
for ı D 2 mm: (a) m D 2
(
x D 1 mm), (b) m D 4
(
x D 0.5 mm), and (c)
m D 8 (
x D 0.25 mm). The
damage maps shown are at
210 �s after impact for the
loading case with the total
loading time of 150 �s

are not much different from each other. From these two tests we conclude that, for a
given horizon size, a sufficiently high grid density to produce results that no longer
change with grid refinement is one produced by m D 4. Using a larger value of m
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Fig. 8 ı–convergence in
terms of the crack path for an
FGM specimen with E1 < E2

computed with different
horizon sizes (and grids
corresponding to
m D ı/
x D 4): (a)
ı D 4 mm, (b) ı D 2 mm,
and (c) ı D 1 mm. The
damage maps shown are at
210 �s after impact for the
loading case with a total
loading time of 150 �s

requires higher computational cost, while the results are not affected. Therefore, in
the remaining computations we choose m D 4. Note also that under m-convergence,
the “thickness” of the damage zone does not change (see remarks in Ha and Bobaru
(2010)).

To assess whether the crack path is resolved in terms of the horizon size we
now turn to ı-convergence (see Appendix A). Since the FH-PD model here is for a
locally homogenized FGM model, the horizon size is not connected to an eventual
material length-scale generated by specific microstructure architecture of the FGM.
Therefore, the role of a ı-convergence study is to determine the largest horizon size
that produces a crack path (crack propagation speed) that does not change when a
smaller horizon size is used. Since in the examples considered here the cracks are
generated from a pre-crack, and because the “size” of the initial damage caused by
the pre-crack depends on the size of the horizon (see also Ha and Bobaru (2010) and
Bobaru and Hu (2012) for a discussion on this topic), a large horizon size will not
represent well the physical dimensions of the pre-crack, leading to stress profiles
near the crack tip different from the actual ones. This will likely influence the
dynamic crack growth and the crack path in the FGM. Moreover, dynamic fracture
is strongly influenced by wave propagation and using a relatively large horizon size
leads to a larger nonlocal dispersion for propagating stress waves that influences, in
turn, crack growth evolution (Fig. 8).

We perform the ı-convergence study for m D 4 and use the following values
for the horizon size: 4 mm, 2 mm (as the one used in the m-convergence study
above), and 1 mm. Recall that the pre-crack length is close to 9 mm. Since m
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Fig. 9 ı–convergence in
terms of the crack path for an
FGM specimen with E1 > E2

computed with different
horizon sizes (and grids
corresponding to
m D ı/
x D 4): (a)
ı D 4 mm, (b) ı D 2 mm,
and (c) ı D 1 mm. The
damage maps shown are at
210 �s after impact for the
loading case with a total
loading time of 150 �s

is fixed, each horizon size determines the grid spacing used with it, therefore
the corresponding �x values are: 1 mm, 0.5 mm, and 0.25 mm, respectively.
The same impact conditions as those in the m-convergence test are applied.
The crack path of both E1 < E2 and E1 > E2 at 210 �s for peridynamic
simulations using the three cases specified above are shown in Figs. 9 and 13,
respectively. It can be noticed that, as the horizon decreases under ı-convergence,
the crack path does not change much, but it becomes more defined, consistent
with the assertion that the “spread” or “thickness” of damage is related to the
horizon size. Because the crack length at the same time instant is very similar
between the last two horizon sizes used, we can also conclude that the crack
propagation speed does not change as the horizon changes. Note that the width
of the pre-crack mentioned in the experiments in Kirugulige and Tippur (2008,
p. 272), is about 0.3 mm, while Fig. 3 in Kirugulige and Tippur (2008) shows
the pre-notch width to be in the 1 mm range. Because of this, and because
using an even smaller horizon size (while keeping a value of m of at least 4,
as required by the results from the m-convergence tests above) would lead to
higher computational cost with little difference in the results, in the computa-
tions that follow we will use the horizon size ı D 1 mm and a discretization
corresponding to m D 4, leading to a total of 105,184 nodes for the given
geometry.

In the next section, we compare the results from the FH-PD model with those
obtained with the IH-PD model for the smallest horizon size used with the FH-PD
model.
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Results and Discussion

In this section, we first apply the FH-PD model and discuss results in which we vary
the time impact loading is applied at its maximum, for the FGM with E1 < E2 (the
results for the case with E1 > E2 are available in Cheng et al. (2015)). We compare
the results with the ones from the IH-PD model and find them to be similar. We also
investigate differences in failure response between the free–free conditions and the
three-point impact loading conditions. We then discuss the effect of using the actual
material variation (nonlinear) versus using the linear curve-fit to those properties
when modeling dynamic fracture in FGMs with the FH-PD model. Finally, we
compare results with experimental ones on FGM samples and on homogeneous
samples.

Influence of Loading Duration andMaterial Variation: The Crack Path
“Attractor”
When the pre-cracked FGM sample with E1 < E2 is impacted with the 40 MPa
equivalent stress in the free–free boundary conditions, the duration over which the
sample is under that level of stress loading has a strong influence on the crack path
direction growth. A close examination of the strain energy maps during the crack
propagation process clearly shows regions where the strain elastic energy density is
concentrated and the interaction of stress waves propagating through the structure
(see results from FH-PD model, including Movies 1, 2, and 3, for the three loading
times of 100 �s, 150 �s, and 180 �s from Fig. 5, respectively). The crack does not
start when the first waves reach its tip, but much later when waves reflected from the
various boundaries and influenced by the presence of the pre-crack, lead to mixed-
mode conditions favorable for crack growth. In Fig. 10 we show some snapshots
taken at 144 �s and 210 �s from the initial impact, and after the final failure of the
sample, for the three cases of total loading times of 100 �s, 150 �s, and 180 �s (see
Fig. 10).

The crack initiates around 120 �s after the impact in all three cases. The initial
growth of the crack is close to straight in all cases, but soon after, it starts to deviate
from the straight line and it curves to the right when loading time is the shortest
(100 �s), while for the other two loading times cases the crack deviates to the left.
We explain this phenomenon as follows: for the loading time of 100 �s, the load is
removed before the crack starts to propagate. The Rayleigh wave generated during
the unloading phase, then acts as a “crack attractor,” and the crack, “sensing” the
strain energy density concentration created by the moving Rayleigh wave on the top
surface, starts to follow it and tilts to the right. This explanation is confirmed by the
results shown in Fig. 10 and in Movies 1, 2, and 3: for the loading time of 150 �s,
the crack tilts left, but when the released Rayleigh wave starts moving to the right,
the crack path changes direction and is following the motion of the location with
the largest strain energy density on the top surface of the sample, where bending
stresses start to become significant due to the opening of the crack. In the case when
the loading lasts 180 �s, the crack moves toward the location of the applied load,
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strain energy density at 144 µs (left) and 210 µs (right) after impact.

damage at full failure showing the crack path.

strain energy density at 144 µs (left) and 210 µs (right) after impact.

damage at full failure showing the crack path

strain energy density at 144 µs (left) and 210 µs (right) after impact.

damage at full failure showing the crack path.
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Fig. 10 Snapshots of strain energy density and crack propagation path in the FGM sample with
E1 < E2 at various moments for different total loading times: t3 D 100 �s for (a) and (b);
t3 D 150 �s for (c) and (d); t3 D 180 �s for (e) and (f)
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and by the time the load is released, the crack path has almost split the sample in
two and the Rayleigh wave traveling to the right can change very little of this final
stage of failure in the FGM.

The above observations suggest that it might be possible to control the crack path
in dynamic fracture from remote locations by using Rayleigh waves.

Using the same loading conditions and solution parameters, the FGM sample
with the pre-crack crack on the stiffer side (E1 > E2) was also tested, and the
results are presented in Cheng et al. (2015). The crack initiates now at about 100 �s
independent of the time at which the loading stays at the 40 MPa stress value. The
explanation presented above for the E1 < E2 case remains true.

The peridynamic results shown above correctly predict a trend observed in
experiments (see Fig. 8 in Kirugulige and Tippur (2006)), namely that the initiation
of crack propagation is earlier in the E1 > E2 case than in the E1 < E2 case. Notably,
this trend is not reproduced by the cohesive FEM model in Kirugulige and Tippur
(2008). The FEM computations there show either the exact opposite to what is
observed in experiments (conversion of stored strain energy into fracture energy
starts earlier for the E1 < E2 case than the E1 > E2 case, see Sect. 5.2 in Kirugulige
and Tippur (2008)), or that the crack initiation time is insensitive to these two
different cases of material variation in the FGM (see Sect. 5.4 in Kirugulige and
Tippur (2008)).

We also apply IH-PD model, including both a-IH-PD model and h-IH-PD model,
for the cases shown in Fig. 10. The comparison of the strain energy density profile
between the FH-PD model and the a-IH-PD model at 144 �s is shown in Fig. 11
(see Movies 4, 5, and 6, for strain energy evolution from a-IH-PD model, with the
three loading times of 100 �s, 150 �s, and 180 �s, respectively). Only the cases
with t3 D 100 �s and 150 �s are included. The strain energy density profile (at
144 �s) for the case with t3 D 180 �s is the same as the one with t3 D 150 �s.
In both cases, FH-PD model and a-IH-PD model generate the similar strain energy
density profiles. One difference between the fully homogenized solution and the
intermediately homogenized one, is that in the IH-PD model, stress waves become
less coherent, being locally dispersed (“noisier” strain energy density maps) by
the more detailed representation of the composite microstructure. Since in this
particular impact loading case the damage profile, or the crack propagation, is
controlled by the high-intensity impact stress waves, and the two models show
similar wave profiles, the final crack patterns from the FH-PD and a-IH-PD models
are almost identical, as shown in Fig. 12.

The final damage profiles from a-IH-PD model (see Fig. 12) are the same as
the ones from FH-PD model. Only minor differences are seen between the results
with the h-IH-PD model and those from the FH-PD model. The reason is that the
effective mechanical properties from the a-IH-PD model (see Eq. 11) are the same
as the ones in the FH-PD model, while the ones from the h-IH-PD model (see Eq.
11) are slightly smaller than the ones in the FH-PD model. Thus, h-IH-PD model
leads to slightly earlier crack initiation and the final crack tip is closer to the right
side than the one from FH-PD or a-IH-PD models.
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a
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d

FH-PD model, t3=100 µs. Strain energy density
 at 144 µs (left) and zoom-in (right)

 a-IH-PD model, t3=100 µs. Strain energy density
 at 144 µs (left) and zoom-in (right)

FH-PD model, t3=150 µs. Strain energy density
at 144 µs (left) and zoom-in (right)

a-IH-PD model, t3=150 µs. Strain energy density
at 144 µs (left) and zoom-in (right)
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Fig. 11 Snapshots of strain energy density based on the FH-PD model and the a-IH-PD models

Evolution of Crack Propagation Path: Influence of Boundary Conditions
The impact loading used so far is different from the one used in the experiments,
where soft supports are holding the impacted structure. In this section, we employ
the second type of boundary conditions/loading mentioned in sections “Problem
Setting” and “Boundary and Loading Conditions” and shown in Fig. 3b. The
maximum applied stress (delivered on the peridynamic model as an equivalent body
force) in this case needs to be lower than in the previous case in order to get a crack
that splits the sample in two pieces because of the bending induced by the three-
point impact loading used. We find that using 	0 D 26 MPa (see Eq. 17 and Fig. 5)
is sufficient to lead to full crack propagation through the width of the sample. The
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Fig. 12 Damage maps at full failure in the FGM sample with E1 < E2 for different total loading
times: t3 D 100 �s for (a) and (b); t3 D 150 �s for (c) and (d); t3 D 180 �s for (e) and (f)

rest of the computational parameters are identical with those used for the results
obtained in the previous section. Note that the impact loads applied on the sides of
the sample act simultaneously as the impact load on the top surface. In the actual
experiment, the reaction from the sides will be felt only after the waves generated
by the striking hammer reach the respective sides. The analysis of the results below
will decide whether these differences are significant in terms of dynamic failure in
the FGM samples used in our study.

Note that since in the previous section, we have shown that both FH-PD model
and IH-PD model lead to similar results, for the remaining of section “Numerical
Studies for Dynamic Crack Propagation in FGMs,” we only present results with the
FH-PD model.

The crack path for the FGM sample with the pre-crack on the compliant side
(E1 < E2) for total loading times of 100 �s, 150 �s, and 180 �s is shown in Fig. 13.
The initiation time for this case is about 125 �s, from the moment the loads are
applied. The main qualitative difference when comparing simulation results for the
three-point loading with free-free impact loading can be seen from the strain energy
density movies: once the crack starts moving, the three-point loading leads to the
creation of high strain energy density near the center of the top surface induced by
the bending of the cracked beam. This is the main reason for which the crack path
now does not stray much from a straight crack. The reasons for which the crack does
not grow completely straight are two: (a) the asymmetric impact loading and (b) the
release Rayleigh wave, induced by the unloading phase on the top surface, modifies
the location of the “crack attractor” on the top surface.
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Fig. 13 Three-point impact
loading conditions: damage
maps showing the final crack
path for the FGM sample
with E1 < E2, under different
total loading times. Compare
results with those in Fig. 10b,
d, and f, respectively

The differences between the impact loading on the free–free beam and the impact
at three locations seen above are also seen for the sample with the pre-crack on the
stiffer side (E1 > E2), as shown in Cheng et al. (2015). Interestingly, the differences
between the two FGM samples for the total loading times of 150 �s and 180 �s
show two trends: when the crack starts in the stiffer region, the crack initiates
earlier and the deflection angle (or kink angle) is larger than when the crack starts
in the softer region. These results are confirmed by the experimental observations
in Kirugulige and Tippur (2006, 2008). A kink angle larger when E1 > E2 than
when E1 < E2 is also predicted by the maximum tangential stress (MTS) criterion
introduced in Erdogan and Sih (1963) for the kink angle in FGMs.

In summary, the three-point impact loading conditions is closer to the actual
experimental conditions than the impact on the free–free beam, and the crack paths
obtained support this assertion. In addition, our study of varying the total loading
time tells us that, most likely, the time that the hammer used in the experiments to
impact the structure spends between first touch to rebound is larger than 100 �s.
The crack paths obtained for the total loading times of 150 �s and 180 �s are close
to those seen from the experiments.

Comparison with Experimental and FEM-Based Results: Nonlinear
Material Variation
In this section, we compare the results from the peridynamic simulations with those
from the experiments in Kirugulige and Tippur (2006) and from the FEM-based
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simulations in Kirugulige and Tippur (2008). The analytical results in Kirugulige
and Tippur (2006) and the FEM-based results in Kirugulige and Tippur (2008) used
linear curve-fitting of the material properties as shown in Fig. 4. The peridynamic
results presented so far used the same curve-fitting. In this section, we directly
employ the estimated sigmoidal (described by with a piecewise-linear interpolation)
elastic modulus and density measured in Kirugulige and Tippur (2006) and shown in
Fig. 3 in that reference. This will determine how strongly the small variations in the
elastic modulus and density influence the dynamic crack propagation behavior of
FGMs. Finally, we select the peridynamic computational results that most resemble
the experimental crack paths to compare among them. We also measure the crack
speed growth from our peridynamic solution and compare with it the experimental
and FEM-based numerical results from Kirugulige and Tippur (2008).

We extract the data from Fig. 3 in Kirugulige and Tippur (2006) and use it,
with the piecewise-linear interpolation shown there, to compute the micro-moduli
in our FG-PD model. We apply the three-point impact loading conditions used in
the previous section and use the 180 �s total loading time. We obtain the final crack
path shapes shown in Fig. 14a for the case with the pre-crack on the compliant
side (E1 > E2), and in Fig. 14b for the case with the pre-crack on the stiffer

Fig. 14 Damage maps (left column) showing final crack path and experimental results (right
column, reproduced from Kirugulige and Tippur (2006), showing only part of the beam). The three-
point impact loading was used in the computations with 180 �s total loading time for (a) and (b),
and 150 �s for (c). The PD computations for the FGM samples used the nonlinear (experimentally
measured in Kirugulige and Tippur (2006)) variation of elastic modulus and density
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side of the FGM (E1 < E2). The crack paths for the corresponding variation of
material properties gradation obtained from experiments (taken from Fig. 10 in
Kirugulige and Tippur (2006)) are placed next to the computed damage maps. To
make it easier to compare the crack shapes, we superpose a black line at 1 cm
to the right of the pre-crack tip, similar with what the authors of Kirugulige and
Tippur (2006) did. While the dynamic loading used in our simulations is different
from that used in the experiments (for the reasons mentioned in the beginning of
section “Quasi-Static Fracture in Brittle Porous Elastic Materials”), we observe a
close resemblance between the computed crack paths and the experimental ones.
The authors of Kirugulige and Tippur (2006) concluded that: “the differences in the
crack paths are attributable directly to the combined effects of elastic gradients as
well as fracture toughness gradients.” Our peridynamic model for FGM confirms
this statement. Moreover, the peridynamic results shown in section “Results and
Discussion” allow us to add to this statement the following:

(a) Crack path is influenced by stress wave, including surface waves that can modify
the location of the largest bending stresses/strain that “attracts” the crack toward
it.

(b) Stress waves modify the crack path especially after initial crack growth.
(c) Reflections of elastic waves from the boundaries and their subsequent self-

reinforcement determine the time at which the crack starts propagating.

In Fig. 14c, we show the peridynamic result for the homogeneous material with
three-point impact loading conditions and a total loading time of 150 �s. Next to this
figure, we show the experimental results for the same material type. We attribute the
slight differences in the crack path here to the dynamic loading conditions used in
our computations. To make it easier to compare the shape of the crack, we superpose
a black line at 1 cm to the left of the pre-crack tip, similar with what the authors of
Kirugulige and Tippur (2006) did.

By comparing the results using the nonlinear (piecewise linear) variation in Fig.
14a, b with those using the linear curve-fit for the elastic modulus and density shown
in Fig. 13c in this chapter and Fig. 19c in Cheng et al. (2015), we conclude that
differences in terms of crack paths exist, but they are small. The main source of
these differences are differences in stress waves propagation, caused by the slight
differences in local stiffness and density between the two models.

Quasi-Static Fracture in Brittle Porous Elastic Materials

In the previous sections, we have shown that both FH-PD model and IH-PD model
can be used to reproduce the dynamic fracture of an FGM plate. While only small
differences are observed between the results produced by the FH-PD and IH-PD
models when applied to heterogeneous materials in which mechanical properties of
the phases are not orders of magnitude different, significant differences are expected
when phases differ by orders of magnitude. Examples of such cases are fiber-
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reinforced composites, porous materials (in which the voids can be considered as
one of the phases), etc. In Chen et al. (2017), we apply both FH-PD model and h-
IH-PD model for modeling quasi-static fracture of a porous rock sample. We find
that only the IH-PD model delivers similar damage patterns and crack profiles as
seen in experiments. In this section, we briefly discuss this test.

The experiments shown in Lin et al. (2009) measure the damage evolution of
Berea sandstone notched specimens under quasi-static three-point bending tests.
The location of a pre-notch, as a stress concentrator, can control the development
of fracture, either through mode I failure for a center-notch beam or mixed-mode
failure for an off-center notch beam (Lin et al. 2009). Another critical factor for
the development of fracture is the pre-notch length. For the case shown in Fig. 15a
(from Lin et al. 2009), under the same loading conditions, different notch lengths
lead to different crack patterns. For instance, when the notch is short (5.65 mm),
the crack initiates from near the beam center and propagates vertically upward (see
section “Results and Discussion” and Fig. 6 in Lin et al. (2009)). When the notch
is long (12.23 mm), the beam fails by cracking from the tip of the pre-notch toward
the point of loading on the top boundary (see section “Results and Discussion” and
Fig. 8 in Lin et al. (2009)).

We apply both the FH-PD and the h-IH-PD models with quasi-static loading con-
ditions to simulate the cases shown in Fig. 15 and to examine the effect the pre-notch
length has on the crack pattern. In the FH-PD model of porous material, we use the
effective material properties calculated from Eq. 13 for the bond information (micro-
modulus and critical bond strain). In the h-IH-PD model, the porous material is
treated as a multiphase material with one empty phase (zero modulus). In this model,
the bonds involving the empty phase (A–B bond and B–B bond, if phase B is the
void phase) bear zero force. These bonds are equivalent with broken bonds. There-
fore, the effect of porosity can be represented by inserting “predamage” in the mate-
rial. The predamage maps corresponding to different porosities, as well as detailed
material parameters and model formulation, can be found in Chen et al. (2017).

Fig. 15 Geometry and loading configuration used in experiments of Hu et al. (2012) and in the
PD simulations below
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Fig. 16 Evolution of fracture paths (at different imposed displacements) for the short (left) and
long (right) pre-notched sample using the h-IH-PD model (see Movies 7 and 8 for the damage
evolution for the short and long pre-notched samples). The color represents the damage index with
the same color legend in Fig. 6 (predamage is included in this plot)

Fig. 17 Fracture paths for the short (left) and long (right) pre-notched samples using FH-PD
model (see Movies 9 and 10 for the damage evolution for the short and long pre-notched samples,
respectively)

Figure 16 shows the simulation results generated by h-IH-PD model for the
developing fracture in the short and long pre-notched Berea sandstone samples. The
damage maps show results consistent with the experimental findings on the effect
of the notch length: the long pre-notch leads to crack initiating from the pre-notch
tip, while in the short pre-notch case, the crack initiates from the bottom-center of
the beam.

The FH-PD model does not capture this effect of the pre-notch length on the
crack initiation and propagation in the porous sample, as shown in Fig. 17. With the
FH-PD model, the crack always initiates from the tip of the pre-notch.
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Conclusions

In this chapter, we answered the question of how much homogenization is too much
when modeling fracture processes. We presented two peridynamic models, one that
homogenizes the material to a greater extent (the fully homogenized peridynamic
model, FH-PD) than the other (the intermediately homogenized peridynamic model
(IH-PD). To assess the differences between these models, we studied two types
of fracture problems: a dynamic impact problem in a functionally graded material
(FGM), for which the crack growth is driven by stress waves, and a quasi-static
crack growth problem in a brittle porous elastic material.

The solutions for the problem of mixed-mode dynamic crack propagation in
functionally graded glass-filled epoxy matrix obtained with these peridynamic
models were similar, and matched closely the experimental results reported in the
literature. We provided a detailed computational analysis that showed the influence
of loading time and loading conditions on the crack path through full failure of the
sample.

In contrast, for a quasi-static crack growth in a porous material, the fully
homogenized model fails to capture the experimentally observed fracture behavior
in Berean sandstone that is controlled, in this case, by the size of a notch. The
intermediately homogenized peridynamic model, however, does reproduce the
observed crack growth behavior.

We concluded that for problems in which the microstructure plays an important
role on the failure behavior, a fully homogenized strategy will not work. Some
information about the microstructure is needed for a predictive model of crack
growth in these cases. The new IH-PD model showed that one does not need an
explicit description of the small-scale geometry of the material microstructure to
predict crack growth in a porous material. Even for the stress-wave driven crack
growth in the case of the asymmetric impact loading of the FGM plate, this model
produces a landscape of strain energy density that is more realistic compared with
the FH-PD model. The crack paths are the same in this case simply because the
microstructure effects are rendered secondary by the high flow of energy in the
system (stress waves generated by impact and reflecting from the boundaries).
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Nickerson) and by the AFOSR MURI Center for Material Failure Prediction through Peridynamics
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Appendix A

Numerical Discretization

The peridynamic equations can be discretized using the finite element method, or
any other method appropriate to compute solutions to integro-differential equations
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(or integration equations in static model). This approach, however, soon hits
well-known obstacles and difficulties for problems with evolving topologies, like
those in dynamic fracture and fragmentation. Instead, meshfree-type discretizations
are preferred in peridynamics simulations of dynamic failure of materials. The
discretization proposed in Silling and Askari (2005) uses the midpoint integra-
tion scheme (equivalent to a one-point Gaussian integration) for the domain
integral. Numerical simulations are performed using the following discretized
equation:

Z
Hx

f . Ox � x;u . Ox; t / � u .x; t // dV Ox '
X

j 2Fam.i/

c
�
�ij

	
sij Vij

where Fam(i) is the family of nodes j with their area (volume in 3D) covered, fully
or partially, by the horizon region of nodes i, � ij is the bond length between nodes
i and j, sij is the relative elongation for the same bond, and Vij is the area of node j
estimated to be covered by the horizon of node i.

Note that node j may not be fully contained within the horizon of node I, so
a partial volume integration, first introduced in Hu et al. (2010) and also shown
in Zhang and Bobaru (2015), is used here to improve the accuracy of midpoint
quadrature scheme. The main advantage of this algorithm compared with one that
simply checks whether a node is inside or outside the horizon region is that as the
grid density increases (for a fixed horizon value), the numerical convergence (in
terms of strain energy density, for example) is monotonic (see Hu et al. 2010).

Both dynamic (see section “Numerical Studies for Dynamic Crack Propagation
in FGMs”) and static (see section “Quasi-Static Fracture in Brittle Porous Elastic
Materials”) simulations are performed in this work. In the dynamic fracture
simulations of the FGM plate (section “Numerical Studies for Dynamic Crack
Propagation in FGMs”), we apply Velocity-Verlet method with a time interval of
0.05 �s. For the quasi-static fracture tests in section “Quasi-Static Fracture in Brittle
Porous Elastic Materials,” the energy minimization method (see Shewchuk 1994;
Zhang et al. 2016; Le and Bobaru 2017) is used, and the conjugate gradient (CG)
method with secant line search is adopted to minimize the strain energy of the
system. For all static simulations in this chapter, the CG method is used with a
convergence tolerance defined by: jWi �Wi�1j

Wi�1
< 10�6, in which Wi and Wi� 1 are the

total strain energy at current (i) and previous (i�1) CG iterations.
m-convergence and •-convergence: For a fixed horizon, the ratio mD ı/
x

describes how accurate the numerical quadrature for the integral in Eq. 1 will be.
We call this ratio “the horizon factor.” We recall that in the m-convergence we
consider the horizon ı fixed and take m! 1. The numerical PD approximation
will converge to the exact nonlocal PD solution for the given ı. In the case of ı-
convergence, the horizon ı ! 0 while m is fixed or increases with decreasing ı. For
ı-convergence and in problems with no singularities, the numerical PD solutions are
expected to converge to the classical local solution.
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that meshfree discretization, related issues present in peridynamic convergence
studies, and possible remedies proposed in the literature. In particular, we
discuss two numerical tools, partial-volume algorithms and influence functions,
to improve the convergence behavior of numerical solutions in peridynamics.
Numerical studies in this chapter involve static and dynamic simulations for
linear elastic state-based peridynamic problems.

Keywords
Peridynamics · Meshfree discretization · Partial volumes · Influence
functions · Convergence · Statics · Dynamics

Introduction

Peridynamic models have been employed over the past years to simulate a broad
range of engineering applications. These applications include failure and damage in
composite laminates (Hu et al. 2012; Kilic et al. 2009; Oterkus and Madenci 2012;
Oterkus et al. 2012; Xu et al. 2008), crack propagation and branching in glass (Ha
and Bobaru 2010, 2011; Kilic and Madenci 2009), crack nucleation (Littlewood
2011; Silling et al. 2010), impact damage (Bobaru et al. 2012; Seleson and Parks
2011; Silling and Askari 2005; Tupek et al. 2013), fracture in polycrystalline
materials (Askari et al. 2008; De Meo et al. 2016; Ghajari et al. 2014), structural
health monitoring (Littlewood et al. 2012), and damage in concrete (Gerstle et al.
2007), among many others. There are two main distinctive discretization methods
employed by the peridynamic community. These are the finite element method
(see, e.g., Chen and Gunzburger 2011) and the meshfree method of Silling and
Askari (2005). The former discretization method, in spite of robust supportive
mathematical analysis, is not amenable in terms of computational cost and software
implementation, particularly for simulations involving complex geometry in three
dimensions. Two specific challenges of finite element discretizations of peridynamic
models are proper quadratures for peridynamic weak formulations, which double
the number of spatial dimensions to be discretized relative to strong formulations,
and the necessity to adapt finite element meshes to conform to evolving crack
surfaces. In contrast, the latter discretization method, i.e., the meshfree method,
has been rapidly adopted by the engineering community, due to its implementation
simplicity and its ability to handle material separation in a relatively simple
manner. A downside of the meshfree approach is its poor convergence behavior.
Specifically, it has been shown in Seleson and Littlewood (2016) that standard
meshfree discretizations of peridynamic models exhibit irregular (non-smooth)
convergence behavior and a low (average) first-order convergence. Nevertheless,
numerical tools have been proposed and studied in Seleson (2014) and Seleson
and Littlewood (2016) to correct such irregular convergence behavior, resulting
in smoother convergence curves. The (average) first-order convergence is however
tied to an underlying piecewise-constant representation of the displacement field
in meshfree discretizations and could possibly be improved with higher-order
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approximations (as in finite element methods), although these are beyond the scope
of this chapter.

Generally speaking, setting up computational studies of convergence of numer-
ical solutions in peridynamics may or may not be a simple task. First of all, as
discussed in Bobaru et al. (2009), the concept of convergence in peridynamics
has more than one meaning. One may study, for instance, the convergence of a
numerical solution of a peridynamic problem to the analytical solution of that
problem; in this case, the horizon ı is kept fixed and the grid spacing h is taken
to zero. On the other hand, one could study the convergence of a numerical solution
of a peridynamic problem to the analytical solution of a corresponding classical
(local) problem; in this case, both ı and h are simultaneously taken to zero, most
probably at different rates. The various convergence avenues in peridynamics have
been illustrated in Du and Tian (2014).

This chapter is dedicated to reviewing the meshfree discretization of peridynamic
models, related issues present in convergence studies, and possible remedies
proposed in the literature. This chapter also discusses important considerations
for setting up convergence studies in peridynamics, such as the choice of horizon,
the error norm, the convergence avenue, and the refinement path, as well as related
computational costs. We focus on numerical convergence studies for linear elastic
state-based peridynamic problems. Following Seleson and Littlewood (2016), we
first study the convergence of numerical solutions of static peridynamic problems.
Then, we present studies concerning wave propagation in a peridynamic medium to
demonstrate how such convergence issues manifest in dynamic problems. To keep
this chapter succinct while providing the most impactful results toward practical
applications, we restrict the discussion to a select number of three-dimensional
problems.

Peridynamic Models and Their Meshfree Discretization

This chapter is concerned with convergence studies in three-dimensional problems
for ordinary state-based peridynamic (PD) models, given by the linear peridynamic
solid (LPS) model (Silling et al. 2007). The LPS strain energy density is

W D
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�
#2 C

1

2

15G

m
.!e/ � e (1)

and the corresponding force vector state field is given by
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where K is the bulk modulus and G is the shear modulus. In Eqs. 1 and 2, ª is
the dilatation, x is the reference position state, e is the extension state, m is the
weighted volume, M is the deformed direction vector state, and ! D ! .j�j/ is a
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spherical influence function depending on the length of a bond � (Seleson and Parks
2011; Silling et al. 2007). For computational purposes, it is useful to express Eqs. 1
and 2, respectively, in a more explicit form as
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with Hx the family of x, and where y(x,t) is the position of the material point x
in the deformed configuration at time t > 0. For simplicity and for consistency with
Seleson and Littlewood (2016), in this chapter the value ofm is computed for a point
in the bulk of a body and equally assigned to all points in that body, including those
near the boundary of the body. This does not affect the static simulations in section
“Convergence Studies of Static Peridynamic Problems,” because in those studies m
is only required for points within the bulk of the body, but may slightly influence
the dynamic results in section “Convergence Studies of Dynamic Peridynamic
Problems.” Given a PD body B, the LPS equation of motion for x 2 B at time
t � 0 is
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where � D x0 � x, � is the mass density field, u is the displacement field, and b is
the body force density field.

Linearized LPSModel

For a small deformation, the LPS model can be linearized giving the following strain
energy density (Silling 2010)
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and force vector state
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where the linearized dilatation is given by
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The linearized LPS equation of motion is
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and the corresponding equilibrium equation can be expressed as
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Discretized Peridynamic Models

In this chapter, we employ a discretization similar to the meshfree method
introduced in Silling and Askari (2005). In that method, no elements or other
geometrical connections between computational nodes are used. In our case, we
sometimes employ a reference mesh to approximate quadrature weights. However,
once these weights are computed, the mesh is discarded and there is no need to
computationally track mesh elements in a simulation, in contrast to traditional
(mesh-based) finite element methods. For this reason, the methods below are also
referred to as meshfree.

To discretize the PD equation of motion, we begin by discretizing the body B
with a set of N 3 nodes L D fxi g

N 3

iD1, where each node i is assigned a material
volume Vi corresponding to its Voronoi cell, � i, such that �i \ �j D ; for i ¤ j. The
resulting semi-discrete equation is given by

�i

d 2ui

dt2
D

X
j 2Fi

˚
T Œxi ; t �

˝
xj � xi

˛
� TŒxj ; t �

˝
xi � xj

˛�
V

.i/
j C bi ; (11)

where �i :D �(xi), ui :D u(xi,t), bi :D b(xi,t), and Fi is the family of node i,
representing the set of all nodes j interacting with node i. Here, the family of
a computational node i, Fi , is a discrete set and should not be confused with
the family of a material point x, Hx, which represents a finite continuum region.
In Eq. 11, the quadrature weights V

.i/
j represent the volume of the intersection

between the cell j and the neighborhood of node i (Seleson 2014). An illustration
of the meshfree discretization based on a uniform grid is given in Fig. 1. The
quadrature weights V

.i/
j may be computed by different numerical algorithms, as

described in section “Numerical Tools for Improved Convergence.” When a cell
partially overlaps the neighborhood of a given node, e.g., Hxi in Fig. 1, the volume
of that overlapping region is referred to as a partial volume; these overlaps are
illustrated in light orange color in Fig. 1. Algorithms that attempt to approximate

Fig. 1 Meshfree
discretization of a
peridynamic body B

i

j

k

V
(i)
j

δ B

Hxi
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such volumes for use as quadrature weights are referred to as partial-volume
algorithms.

Algorithm 1 : FV (from Silling and Askari (2005))
1: fCompute bond lengthg

2: j�j D jxj � xij
3: fCheck if node j is in the family of node ig
4: if j�j � ı then
5: V

.i/
j D Vj

6: else
7: V

.i/
j D 0

8: end if
9: Return V

.i/
j

Numerical Tools for Improved Convergence

In the meshfree method proposed in Silling and Askari (2005), the discretization of
the PD equation of motion is given by Eq. 11 with a choice of uniform quadrature
weights, i.e., V

.i/
j D Vj for all j 2 Fi , where the family of node i is

Fi D
˚
j 2 L W

ˇ̌
xj � xi

ˇ̌
� ı

�
: (12)

To easily compare this discretization method with other discretization methods
based on partial-volume algorithms, we first present the computation of quadrature
weights in this method in Algorithm 1; we refer to it as the FV (Full Volume)
algorithm. This discretization method has two drawbacks, as follows:

(1) Low spatial integration accuracy: The interactions between node i and nodes j
for which jxj �xij < ı and �j 6�Hxi are not accurately estimated. Moreover, the
interactions between node i and nodes k for which jxk � xij > ı are completely
omitted, even when �k \Hxi ¤ ;. See Fig. 1 for an illustration. This suggests a
low accuracy in the numerical computation of the integral in the PD governing
equation, due to a staircase approximation of the boundary of the neighborhood
of a given point.

(2) Irregular convergence behavior: A node k for which jxk � xij > ı does not
interact with node i. However, under a small grid refinement, such that xk !

xk C–ben with – a small number andben a unit vector so that jxk C –ben � xi j < ı,
that node interacts with node i. This suggests that a small grid refinement
may cause a significant change in the numerical integration, possibly resulting
in abrupt variations in the numerical error. This may result in an irregular
(nonsmooth) convergence behavior, as demonstrated in Seleson and Littlewood
(2016).
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Algorithm 2 : PV-PDLAMMPS (from Parks et al. (2008))
1: fCompute bond lengthg

2: j�j D jxj � xij
3: fCheck if cell j is contained within the neighborhood of node i

(exact in 1D only)g
4: if j�j C h

2
� ı then

5: V
.i/

j D Vj

6: fCheck if node j is in the family of node ig
7: else if j�j � ı then
8: V

.i/
j D 1

h

	
ı �

�
j�j � h

2

�

Vj

9: else
10: V

.i/
j D 0

11: end if
12: Return V

.i/
j

A way to mitigate the low integration accuracy and the irregular convergence
behavior described above is either to account for all the nodal contributions to
the spatial integration in the governing equation, by properly computing all cell-
neighborhood intersection volumes, or to weaken the contribution to the spatial
integration of nodes near the boundary of the neighborhood of a given node. The for-
mer approach has been used by implementing partial-volume algorithms, whereas
the latter approach has been used by employing influence functions that smoothly
approach zero as the bond length approaches the horizon value (Seleson 2014;
Seleson and Littlewood 2016). We describe these approaches in the next sections.

Partial-Volume Algorithms

Partial-volume algorithms are aimed at numerically approximating (or analyt-
ically calculating when feasible) volumes of intersections between neighbor
cells and the neighborhood of a given node. Those volumes are used
as quadrature weights in meshfree discretizations of PD equations. We
begin by describing an algorithm proposed in Parks et al. (2008) and
implemented in PDLAMMPS (Parks et al. 2011); we refer to it as the
PV-PDLAMMPS algorithm (PV is used as an acronym for Partial Volume). This
algorithm is based on the family of a given node in Eq. 12 and is described in
Algorithm 2. We observe that, as explained in Seleson (2014), the condition to
determine whether a cell j is contained within the neighborhood of node i (line 4 of
Algorithm 2) is not accurate. Furthermore, the partial-volume correction (line 8 of
Algorithm 2) is only a rough approximation to a partial volume based on a simple
linear correction.

To improve Algorithm 2, a method was proposed in Hu et al. (2010) and used in
Bobaru and Ha (2011). That method is based on the idea of expanding the family of
a given node in Eq. 12 to include neighboring nodes located at a distance larger than
the horizon from that node with cells intersecting the neighborhood of that node.
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The corresponding algorithm is described in Algorithm 3; we refer to it as the PV-
HHB algorithm (HHB refers to the initials of the authors of Hu et al. (2010)). It only
differs from the PV-PDLAMMPS algorithm in the inequality in line 7.

Although the PV-HHB algorithm represents an improvement to both the FV
and PV-PDLAMMPS algorithms, it has the following limitations. First, it does not
always account for all neighboring nodes with cells intersecting the neighborhood
of a given node, as demonstrated in Seleson (2014). Second, the partial-volume
correction is based on the same rough approximation used in the PV-PDLAMMPS
algorithm. To correct these issues, a method was proposed in Seleson (2014) for
two-dimensional models and expanded to three-dimensional models in Seleson
and Littlewood (2016). The idea of that method is to take the family of a given
node as all neighboring nodes with cells intersecting the neighborhood of that
node, and compute the corresponding intersections as accurately as possible. In
Seleson (2014), those intersections were calculated analytically for two-dimensional
models discretized over uniform grids, whereas in Seleson and Littlewood (2016)
a generalized computational method based on recursive subdivision and sampling
was employed to numerically approximate intersection volumes. We refer to the
corresponding algorithm as the PV-NC algorithm as in Seleson and Littlewood
(2016) (NC is used as an acronym for Numerical Calculation). The algorithm name
PV-NC was chosen in Seleson and Littlewood (2016) as a 3D numerically based
analog of the 2D algorithm PA-AC (Partial Area-Analytical Calculation), which is
based on analytical calculations of cell-neighborhood intersection areas.

Algorithm 3 : PV-HHB (from Hu et al. (2010))
1: fCompute bond lengthg

2: j�j D jxj � xij
3: fCheck if cell j is contained within the neighborhood of node i

(exact in 1D only)g
4: if j�j C h

2
� ı then

5: V
.i/

j D Vj

6: fCheck if node j is in the family of node ig
7: else if j�j � h

2
� ı then

8: V
.i/

j D 1
h

	
ı �

�
j�j � h

2

�

Vj

9: else
10: V

.i/
j D 0

11: end if
12: Return V

.i/
j

Influence Functions

The computational cost and geometrical challenge posed by the calculation of
partial volumes, particularly for nonuniform grids in higher dimensions, motivate
the study of a different approach. An alternative method to reduce errors in the
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numerical approximation of spatial integrations is to employ kernels that vanish
for bonds of a horizon or longer length, particularly smoothly decaying kernels.
Such kernels can result from the incorporation of highly regular influence functions.
Influence functions in PD models have been originally described in Silling et al.
(2007), and their role in peridynamics has been further studied in Seleson and Parks
(2011). These functions can be used to select which bonds contribute to the material
response of a given point, exclude damaged bonds, and modulate the strength of
nonlocal interactions, as well as represent interfaces, free surfaces, and mixtures
(Seleson 2010; Silling et al. 2007).

Following Seleson (2014) and Seleson and Littlewood (2016), we employ
spherical influence functions of the form

! .j�j/ D

(
Pn.j�j/

j�j˛
j�j � ı;

0 otherwise;
I ˛ D 0; 1; (13)

where Pn(r) is a polynomial of order n 2 N0, which satisfies Pn(0) D 1 and
Pn(ı) D 0 for n > 0, and P 0

n.r/ D P 00
n .r/ D : : : D P

.k/
n .r/ D 0 at r D 0, ı

with k D (n � 1)/2 for n > 1 odd. Specifically, we have

P0.r/ D 1; (14a)

P1.r/ D 1 �
r

ı
; (14b)

P3.r/ D 1 � 3
�r

ı

�2

C 2
�r

ı

�3

; (14c)

P5.r/ D 1 � 10
�r

ı

�3

C 15
�r

ı

�4

� 6
�r

ı

�5

; (14d)

P7.r/ D 1 � 35
�r

ı

�4

C 84
�r

ı

�5

� 70
�r

ı

�6

C 20
�r

ı

�7

: (14e)

An illustration of these polynomials is given in Fig. 2.

Convergence Studies of Static Peridynamic Problems

In this section, we present convergence studies of static PD problems following
Seleson and Littlewood (2016). Let a body B D (0,1)�(0,1)�(0,1) and let us define
a subregion � D (2ı,1�2ı)�(2ı,1�2ı)�(2ı,1�2ı) � B. All points in � are at
a distance of at least 2ı from the boundary @B, which is equivalent to saying
that � represents the bulk of the body. The choice of � allows us to properly
impose displacement boundary conditions, given a boundary function g(x), in the
boundary layer Bn� with B WD B [ @B, which contains a 2ı-width volumetric
layer required in state-based PD problems. This is in contrast to bond-based PD
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Fig. 2 Illustration of the polynomials Pn(r), n D 0, 1, 3, 5, 7, in Eq. 14 for ı D 1

problems, for which a layer of width ı is suffcient. The computational domain
and the boundary layer are illustrated in Fig. 3. For simplicity, our static problem
employs the linearized LPS model in Eq. 10 and is stated as

�

Z
Hx

! .j�j/

m

(
.3K � 5G/

�
# lin Œx� C # lin Œx C ��

�
�

C 30G
� ˝ �

j�j2
.u .x C �/ � u .x//

)
dV� D b .x/ x 2 �;

(15a)

u .x/ D g .x/ x 2 B n�: (15b)

Preliminary Considerations

(1) Manufactured solutions: In this study, we investigate the convergence of
numerical solutions of Problem (15) to analytical solutions. For this purpose,
we employ the method of manufactured solutions to find a corresponding body
force density, given an analytical solution. As proved in Seleson and Littlewood
(2016), given a quadratic displacement field, the PD equilibrium Eq. 10 reduces
to the classical Navier-Cauchy equation of static elasticity,
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Fig. 3 Illustration of the
computation domain � and
boundary layer Bn� for
Problem (15)

B \ ΩB \ Ω

Ω

�

�
Gr2u .x/ C

�
K C

1

3
G

�
r .r � u/ .x/

�
D b .x/ : (16)

Consequently, we can employ Eq. 16 to find a corresponding body force
density for our PD problem as follows. Let a displacement field u D (u, v, w),
where

u .x/ D U11x2 C U22y2 C U33z
2 C U12xy C U13xz C U23yz; (17)

v .x/ D V11x2 C V22y2 C V33z
2 C V12xy C V13xz C V23yz; (18)

w .x/ D W11x2 C W22y2 C W33z
2 C W12xy C W13xz C W23yz; (19)

where x D (x, y, z), and U11, U22, U33, U12, U13, U23, V11, V22, V33, V12, V13,
V23, W11, W22, W33, W12, W13, and W23 are constant coeffcients. Then, the
components of the body force density b D (b1, b2, b3) are:

b1 D �

�
2G .U11 C U22 C U33/ C

�
K C

1

3
G

�
.2U11 C V12 C W13/

�
;

b2 D �

�
2G .V11 C V22 C V33/ C

�
K C

1

3
G

�
.U12 C 2V22 C W23/

�
;

b3 D �

�
2G .W11 C W22 C W33/ C

�
K C

1

3
G

�
.U13 C V23 C 2W33/

�
:

(2) Error norm for numerical solutions: Let the body B be discretized with a

set of N 3 nodes L D fxi g
N 3

iD1 over a uniform grid with grid spacing h, so
that the Voronoi cell of node i is the cubic cell �i D

�
xi � h

2
; xi C h

2

�
��

yi � h
2
; yi C h

2

�
�

�
zi � h

2
; zi C h

2

�
, where xi D (xi, yi, zi). In particular, in the

numerical simulations we employ a discretization with N nodes per direction,
where each computational node possesses a full cubic cell inside the (cubic)
body, i.e., all nodes are at a distance of a least h/2 from the boundary of
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the body. To compute an error norm, we assume the numerical solution to
be given by a piecewise-constant approximation uh D (uh, vh, wh), so that
uh .x/ D

�
uh

i ; vh
i ;wh

i

�
for all x 2 � i with uh

i ; vh
i , and wh

i constants. The L2-norm
of the error is then

uh � u


2
D

�Z
B

�
uh .x/ � u .x/

�2
C

�
vh .x/ � v .x/

�2
C

�
wh .x/ �w .x/

�2
dVx

� 1
2

D

2
4 N 3X

iD1

Z
�i

�
uh

i � u .x/
�2

C
�
vh

i � v .x/
�2

C
�
wh

i � w .x/
�2
dVx

3
5

1
2

D

2
4 N 3X

iD1

NGX
gD1

NLX
`D1

NSX
sD1

( �
uh

i � u

�
xi C

h

2
˛g; yi C

h

2
ˇ`; zi C

h

2
�s

��2

C

�
vh

i � v

�
xi C

h

2
˛g; yi C

h

2
ˇ`; zi C

h

2
�s

��2

C

�
wh

i � w

�
xi C

h

2
˛g; yi C

h

2
ˇ`; zi C

h

2
�s

��2
)

h3

8
wgbw` Qws

3
5

1
2

;

(20)

where
˚
˛g

�
gD1;:::;NG

and
˚
wg

�
gD1;:::;NG

;fˇ`g`D1;:::;NL
and fbw`g`D1;:::;NL

; and
f�sgsD1;:::;NS

and f QwsgsD1;:::;NS
are Gauss quadrature points and weights in

the standard element [�1,1] along the x-, y-, and z-directions, respectively. A
quadrature rule with NG, NL, and NS Gauss quadrature points along the x-, y-,
and z-directions, respectively, integrates exactly monomials of the form xgy`zs

with 0 � g � 2NG � 1, 0 � ` � 2NL � 1, and 0 � s � 2NS � 1. Since the
analytical solution is assumed quadratic and we integrate a function of the
solution squared, we would like to integrate exactly monomials up to g D 4,
` D 4, and s D 4. We thus choose NG D NL D NS D 3.

(3) Computational cost and horizon choice: In this type of convergence study, the
horizon needs to be carefully chosen such that the size of the boundary layer
is small relative to the size of the computational domain, yet the computational
cost remains tractable. To clarify this, let a body B be a cube of edge length L
and the computational domain � be a smaller cube of edge length L � 4ı (as
illustrated in Fig. 3), and define Nneig D ı/h with h the grid spacing. Then, the
total number of computational nodes required to discretize the body B is

N 3 D

�
L

h

�3

D

�
Nneig

L

ı

�3

: (21)
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Table 1 Total number of computational nodes

Nneig (ı/h) ı D 0.10L ı D 0.04L ı D 0.02L ı D 0.01L

1 1,000 15,625 125,000 1,000,000
2 8,000 125,000 1,000,000 8,000,000
3 27,000 421,875 3,375,000 27,000,000
4 64,000 1,000,000 8,000,000 64,000,000
5 125,000 1,953,125 15,625,000 125,000,000
6 216,000 3,375,000 27,000,000 216,000,000

In Table 1, we show the total number of computational nodes required to
discretize B, for various choices of horizon ı. We observe that the horizon
cannot be too small, because otherwise the total number of computational nodes
may exceed the available computational resources. For instance, for ı D 0.01L,
a computation with Nneig D 6 would require 216 million nodes.

We now demonstrate that the horizon cannot be too large either. For this
purpose, we look at the ratio of the boundary layer to the computational domain:

jBn�j

j�j
D

L3 � .L � 4ı/3

.L � 4ı/3
D

1

.1 � 4ı=L/3
� 1; (22)

where j�j denotes the volume of the domain �. This ratio rapidly grows with
increasing ratio ı/L, as shown in Fig. 4. In particular, for ı > 0.0516L, the
volume of the boundary layer B \ � exceeds that of the computational domain
�. To exemplify this, specific values of Eq. 22 are shown in Table 2.

(4) Convergence avenue and refinement path: As described in the Introduction,
there exist different types of convergence in peridynamics. Here, we would
like to study the convergence of numerical solutions of static PD problems
to the corresponding analytical PD solutions. For this purpose, we fix the
horizon ı and employ a grid refinement. This, in fact, is analogous to standard
convergence studies in numerical partial differential equations (PDEs), where
the grid (or mesh) is refined. Since the horizon is fixed, the ratio ı/h increases
under grid refinement.

As demonstrated in Table 1, we cannot afford to refine the mesh beyond
a certain ratio Nneig D ı/h because the number of required computational
nodes would become intractable. On the other hand, to produce meaningful
comparisons in our study, we need enough convergence data points. For the
purpose of our studies, we took L D 1 and ı D 0.04, and we performed a
refinement given by Nneig D 3, 4, 5, 6. The data used here is a subset of the
results presented in Seleson and Littlewood (2016). The reader should refer to
that reference for a refinement study with additional data points.
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Fig. 4 Ratio jB \ �j/j�j as a function of the horizon ı in a cubic body B of edge length L with a
cubic subdomain � of edge length L � 4ı

Table 2 Volume ratio
jB \ �j/j�j

ı/L 0.000 0.001 0.005 0.010 0.050 0.100
jB \ �j/j�j 0.000 0.012 0.062 0.130 0.953 3.630

Numerical Results

We study the convergence of numerical solutions of Problem (15) with the following
choices: ı D 0.04, K D 1, G D 0.5, b D

�
� 10

3
; 0; 0

�
, and g(x) D (x2, 0, 0), and

where the weighted volume m is computed analytically. The chosen elastic moduli
correspond to a material with Poisson’s ratio � D 0.29. The goal of this study is, on
one hand, to compare the performance of the FV algorithm with the partial-volume
algorithms PV-PDLAMMPS, PV-HHB, and PV-NC, and, on the other hand, to study
the effect of incorporating specific influence functions within the PD force vector
state field. The total number of computational nodes employed in the simulations
appears in the third column of Table 1. The simulations were run in Peridigm, a PD
code developed at Sandia National Laboratories (Parks et al. 2012); see Seleson and
Littlewood (2016) for details regarding the solution procedure.

In Fig. 5, we present the convergence results for the FV algorithm as well as for
the different partial-volume algorithms and influence functions for (a) ˛ D 0 and
(b) ˛ D 1, where the error is computed with the L2-norm given in Eq. 20.
Specifically, we examine influence functions of the following form: piecewise linear
(PWL) with P1.r/ in Eq. 14b; piecewise cubic (PWC) with P3.r/ in Eq. 14c;
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Fig. 5 Convergence of the numerical solution of Problem (15) using different partial-volume
algorithms and different influence functions
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Table 3 Convergence rates
for the (static) convergence
results in Fig. 5

Algorithm ˛ D 0 ˛ D 1
r R r R

FV 1.53 0.165 1.38 0.128
PV-PDLAMMPS 0.86 0.186 0.89 0.167
PV-HHB 1.56 0.035 1.34 0.030
PV-NC 1.22 0.003 1.05 0.001
FV PWL 1.24 0.036 1.05 0.004
FV PWC 1.07 0.005 1.11 0.009
FV PWQ 1.10 0.014 1.15 0.016
FV PWS 1.04 0.006 1.12 0.012

piecewise quintic (PWQ) with P5.r/ in Eq. 14d; and piecewise septic (PWS) with
P7.r/ in Eq. 14e. In order to estimate a convergence rate, to each curve we fit a
linear function (in a least-squares sense) of the form

f .h/ D r log10.h/ C q; (23)

where r and q are constant coeffcients. The value of r represents an “average”
convergence rate. To estimate the quality of the linear fit, we also compute the norm
of residuals,

R D

vuutNiterX
nD1

.f .hn/ � log10 .En//2; (24)

where En and hn are the L2-norm of the error (cf. Eq. 20) and the grid spacing,
respectively, at the refinement step n, and Niter is the total number of refinement
steps. These results are presented in Table 3. We observe that both methods, accurate
estimation of partial volumes (see PV-NC) and employment of smooth influence
functions (see, e.g., FV PWS), provide a significant improvement relative to the
FV algorithm, as clearly observed in the reduction in the value of R. Based on the
convergence rates obtained, we conclude that those methods approach a first-order
convergence.

Convergence Studies of Dynamic Peridynamic Problems

In this section, we present convergence studies of dynamic PD problems, based on
unconstrained wave propagation. As in section “Convergence Studies of Static Peri-
dynamic Problems,” we investigate the effect of different partial-volume algorithms
and influence functions on the convergence behavior, as the grid is refined under a
fixed horizon.

Let a body B D
�
� 1

2
; 1

2

�
�

�
� 1

2
; 1

2

�
�

�
� 1

2
; 1

2

�
. Our dynamic problem employs

the linearized LPS model in Eq. 9 and is stated as
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� .x/
@2u
@t2

.x; t / D

Z
Hx

! .j�j/

m

n
.3K � 5G/

�
# linŒx; t � C # linŒx C �; t �

�
�

C30G
�˝�

j�j2
.u .x C �; t / � u.x; t //

o
dV� C b .x; t / x 2 B; t�0;

(25a)

u .x; 0/ D u0 .x/ x 2 B; (25b)

@u
@t

.x; 0/ D v0 .x/ x 2 B ; (25c)

where u0 and v0 are displacement and velocity initial conditions. As opposed to
the static Problem (15), no displacement boundary conditions are imposed in these
dynamic studies, eliminating the need to define a boundary layer.

Preliminary Considerations

(1) Error norm for numerical solutions: The error for the dynamic PD problems
was computed by comparing a series of increasingly refined discretizations
against results obtained using a highly refined reference discretization. This
was necessitated by the lack of analytical solutions of the state-based PD
Problem (25). While analytical solutions for wave propagation concerning
linear elastic bond-based PD models have been presented in one dimension in
Weckner and Abeyaratne (2005) and in higher dimensions in Weckner et al.
(2009), analytical solutions are not currently available for the state-based PD
Problem (25). Unfortunately, our approach for computing the error is extremely
computationally demanding, because the number of PD bonds increases dramat-
ically as the mesh is refined under a fixed horizon, as demonstrated in Table 4.
To achieve numerical accuracy while remaining computationally tractable, a
value of Nneig D 10 was employed for the reference numerical solution.

The calculation of an error norm in the dynamic studies followed assump-
tions analogous to those in the static simulations. We assumed the numerical

Table 4 Total number of
peridynamic (PD) bonds in a
simulation for ı D 0.05

Nneig (ı/h) Number of PD bonds
FV PV-NC

3 12,433,244 25,077,672
4 62,022,592 110,046,364
5 242,986,412 384,681,876
6 753,964,092 1,040,684,328
7 1,838,660,296 2,552,461,732
8 4,080,378,204 5,479,353,788
9 8,456,684,628 10,782,968,496
10 15,752,838,172 19,683,573,672
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solution for both the trial simulations and the reference simulation to be given
by a piecewise-constant approximation uh D (uh, vh, wh), so that uh .x;t / D�
uh

i ; vh
i ;wh

i

�
for all x 2 � i at time t with uh

i ; vh
i , and wh

i constants. We denote by
� ref

i a Voronoi cell in the reference discretization. To avoid having the reference
discretization being an exact subdivision of any of the trial discretizations,
which could result in biased error calculations for those specific discretizations,
the grid in the reference discretization was perturbed so that the internal nodes
(i.e., nodes not directly adjacent to the boundary of the body) were shifted a
distance of 0.3 times the reference grid spacing, href, in each direction. This
perturbation does not affect the error calculation in our studies because in the
wave propagation problems considered here nodes adjacent to the boundary
of the body have a zero displacement over the course of the simulations. Let
the domain B be decomposed into N int subdomains fQ�ngnD1;:::;N int , so that
Q�n D �i \� ref

j for given i and j; in other words, these subdomains are intersections
of pairs of Voronoi cells, one from the trial discretization and one from the
reference discretization. Then, the L2-norm of the error for a given level of grid
refinement, given by a grid spacing h, at the final time T can be computed as

uh � uhref


2
D

�Z
B

�
uh .x;T / � uhref .x;T /

�2
C

�
vh .x;T / � vhref .x;T /

�2

C
�
wh .x;T / � whref .x;T /

�2
dVx

� 1
2

D

2
4N intX

nD1

��
uh

n � uhref
n

�2
C

�
vh

n � vhref
n

�2
C

�
wh

n � whref
n

�2
�

V int
n

3
5

1
2

;

(26)

where
�
uh

n; vh
n;wh

n

�
and

�
uhref

n ; vhref
n ;whref

n

�
are the trial and reference numerical

solutions, respectively, over the subdomain Q�n at the final time T, and V int
n is the

volume of that subdomain.

(2) Reference solution: The solution of the PD Problem (25) varies for different
choices of influence function. This is true in general for PD problems, as
demonstrated in Seleson and Parks (2011), but was not the case for the static
simulations in section “Convergence Studies of Static Peridynamic Problems”
due to the particular choice of PD model and applied body force density. On
the other hand, even when the influence function is unchanged, the use of
different partial-volume algorithms may produce different numerical solutions.
As the reference solution is based on a (highly refined) numerical solution,
and not on an analytical one, separate reference solutions were computed for
the dynamic PD problems, one for each of the partial-volume algorithms and
influence functions.
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(3) Simulation running time: In these dynamic simulations, we would like to
investigate the accuracy of the numerical results for various choices of partial-
volume algorithms and influence functions. This suggests the need to let the
solution evolve sufficiently such that the effect of the discretization on the
system dynamics is clearly observable. On the other hand, we do not want
to concern ourselves with wave reflections from domain boundaries or with
interactions of a propagating wave with itself, as this may introduce another
level of complexity in the dynamics of the system. As a result, we run
simulations based on an initial pulse concentrated away from the center of
the domain and away from the domain boundaries, and we allow the pulse to
propagate as much as possible without interacting with the domain boundaries
or with itself at the center of the domain.

(4) Signal resolution and discretization: As discussed in section “Preliminary
Considerations” of the static PD problems, extremely refined discretizations
must be avoided due to computational limitations. However, in the dynamic
simulations, the discretization cannot be too coarse either because we need to
resolve the shape of the propagating wave in the domain.

Numerical Results

We study the convergence of numerical solutions of Problem (25) with the
following choices: ı D 0.05, K D 1, G D 0.5, b D 0, and � D 100.0; as in the
static Problem (15), the weighted volume m is computed analytically. The initial
conditions are given as follows:

u0 .x/ D

8<
: ae

�
.jxj�r0/2

`2 x
jxj

if .r0 � 3`/ � jxj � .r0 C 3`/ ;

0 otherwise;
(27)

v0 .x/ D 0; (28)

where the constants were assigned values of a D 0.001, r0 D 0.25, and ` D 0.07. The
initial displacement field is a spherical layer, with a Gaussian radial distribution. The
parameter r0 represents the center of the Gaussian and the parameter ` determines
its width. Points in that layer are assigned an initial outward radial displacement as
determined by the Gaussian function, whereas points outside that layer are given
a zero initial displacement. The width parameter ` was chosen so that the coarsest
discretization can resolve the shape of the Gaussian distribution. In addition, we
observe that at a distance r D 3` from the center of the Gaussian, the amplitude of
the initial displacement decays to about 1.2E-7, suggesting a reasonable transition
to the zero displacement field. No initial velocity is given. Plots of the initial
displacement field are given in Figs. 6a and 7a. The wave is allowed to propagate
freely from the initial time t0 D 0 to the final time T D 0.6. Time integration was
achieved using the standard velocity-Verlet scheme with a fixed time step�t D 0.01,
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(a) Initial displacement

(b) Final displacement

Fig. 6 Initial displacement (a) and final displacement (b) for nodes located along the x-axis for
the three-dimensional wave propagation, based on the reference finest grid with grid spacing
href D 0.005 (ı/href D 10). The final displacement was computed with the FV algorithm for
˛ D 0
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Displacement

(a) Initial displacement (b) Final displacement

0.0010
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0.0000
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0.0010

0.0005

0.0000

Fig. 7 Initial displacement (a) and final displacement (b) on an octant of the cubic domain for
the three-dimensional wave propagation, based on the reference finest grid with grid spacing
href D 0.005 (ı/href D 10). The final displacement was computed with the FV algorithm for
˛ D 0. Coloration denotes displacement magnitude

which was stable for all the simulations. The final displacement field numerically
computed with the FV algorithm for ˛ D 0 is given in Figs. 6b and 7b.

In Fig. 8, we present the convergence results for the different partial-volume
algorithms and influence functions for (a) ˛ D 0 and (b) ˛ D 1, where the error is
computed with the L2-norm given by Eq. 26. As in the static Problem (15), to each
curve we fit a linear function of the form of Eq. 23 to estimate a convergence rate; to
also estimate the quality of the linear fit, we compute the norm of residuals with
Eq. 24. These results are presented in Table 5. As in the static problems, both
methods, accurate estimation of partial volumes (see PV-NC) and employment of
smooth influence functions (see, e.g., FV PWS), provide a significant improvement
relative to the FV algorithm, as clearly observed in the reduction in the value of R.
Based on the convergence rates obtained, we conclude that those methods approach
a first-order convergence.

To demonstrate the effect of the influence function on the solution of the dynamic
problem, we compare in Fig. 9 the final displacement field for points along the
x-axis, for the different partial-volume algorithms and influence functions. The full
displacement field is presented in the top plots for (a) ˛ D 0 and (b) ˛ D 1. To
emphasize the differences between the two numerical tools discussed in this chapter,
partial-volume algorithms and influence functions, in the bottom plots, we zoom
in to the positive x-axis and simply compare the FV algorithm to the PV-NC and
FV PWS algorithms for (c) ˛ D 0 and (d) ˛ D 1. The results suggest that the
solution for the smooth influence function is different than the one obtained with
the FV algorithm; on the other hand, using a partial-volume correction seems to
more closely preserve the dynamics of the original model. This is natural, since
partial-volume algorithms are only aimed at improving the discretization of the
PD governing equation, without modifying the continuum model. In contrast, the
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Fig. 8 Convergence of the numerical solution of Problem (25) at the final time T using different
partial-volume algorithms and different influence functions
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Table 5 Convergence rates
for the (dynamic)
convergence results in Fig. 8

Algorithm ˛ D 0 ˛ D 1
r R r R

FV 4.27 0.514 1.41 0.099
PV-PDLAMMPS 1.05 0.202 1.02 0.157
PV-HHB 1.31 0.038 1.04 0.026
PV-NC 0.96 0.013 0.85 0.016
FV PWL 0.98 0.019 0.93 0.017
FV PWC 0.85 0.016 0.88 0.015
FV PWQ 0.86 0.015 0.91 0.015
FV PWS 0.85 0.016 0.93 0.015
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Fig. 9 Final displacement for nodes located along the x-axis for the three-dimensional wave
propagation, for different partial-volume algorithms and influence functions, based on the reference
finest grid with grid spacing href D 0.005 (ı/href D 10). In the top plots, the entire displacement
field is compared for (a) ˛ D 0 and (b) ˛ D 1. In the bottom plots, a zoom in to a portion of the
curve along the positive x-axis is presented comparing the FV, PV-NC, and FV PWS algorithms
for (c) ˛ D 0 and (d) ˛ D 1
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incorporation of different influence functions alters the continuummodel itself. This
is consistent with the results presented in Seleson and Parks (2011). Further dynamic
studies comparing the use of partial-volume algorithms and smooth influence
functions are currently underway and will be reported in the future.

Concluding Remarks

This chapter considered convergence studies for linear elastic state-based peridy-
namic models, based on meshfree discretizations, and presented two numerical
tools, partial-volume algorithms and influence functions, to improve the conver-
gence behavior of numerical solutions of static and dynamic peridynamic problems.
The work in this chapter drew from, and extended, the convergence studies
presented for static peridynamic problems in Seleson and Littlewood (2016). We
observed that both numerical tools can assist in improving the convergence behavior
of static and dynamic peridynamic simulations, resulting in approximately first-
order convergence. Depending on the application and problem under consideration,
influence functions can, however, significantly affect the dynamical behavior of
peridynamic systems.

An important contribution of this chapter is a discussion regarding various
challenges present in convergence studies in peridynamic problems, many of which
are not found in analogous convergence studies for PDEs. We hope that such
discussion will serve as guidance for future related research studies.
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Abstract

In this chapter, we consider a generic class of bond-based nonlocal nonlinear
potentials and formulate the evolution over suitable function spaces. The peri-
dynamic potential considered in this work is a differentiable version of the
original bond-based model introduced in Silling (J Mech Phys Solids 48(1):175–
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209, 2000). The potential associated with the model has two wells where one
well corresponds to linear elastic behavior and the other corresponds to brittle
fracture (see Lipton (J Elast 117(1):21–50, 2014; 124(2):143–191, 2016)). The
parameters in the potential can be directly related to the elastic tensor and
fracture toughness. In this chapter we show that well-posed formulations of the
model can be developed over different function spaces. Here we will consider
formulations posed over Hölder spaces and Sobolev spaces. The motivation for
the Hölder space formulation is to show a priori convergence for the discrete
finite difference method. The motivation for the Sobolev formulation is to show
a priori convergence for the finite element method. In the following chapter we
will show that the discrete approximations converge to well-posed evolutions.
The associated convergence rates are given explicitly in terms of time step and
the size of the spatial mesh.

Keywords
Peridynamic modeling · Numerical analysis · Finite difference
approximation · Finite element approximation · Stability · Convergence

Introduction

The peridynamic formulation, introduced in Silling (2000), is a nonlocal model
for crack propagation in solids. The basic idea is to redefine the strain in terms
of the difference quotients of the displacement field and allow for nonlocal forces
acting over some finite horizon. This generalized notion of strain allows for
the participation of larger class of deformations in the dynamics. The modeling
introduces a natural length scale given by the size of the horizon. The force at any
given material point is computed by considering the deformation of all neighboring
material points contained within the horizon. For linear peridynamic formulations
(Silling and Lehoucq 2008; Emmrich et al. 2013; Mengesha and Du 2014; Jha
and Lipton 2017c), it is shown that as the nonlocal length scale goes to zero, the
peridynamic model collapses to the elastic equilibrium and elastodynamics models.
For the nonlinear model introduced in Silling (2000), one may consider a smooth
version to find that the energy of the evolution recovers the energy of Linear Elastic
Fracture Mechanics as the nonlocal length scale goes to zero (Lipton 2014, 2016).
One of the important points of this model is the fact that as the size of the horizon
goes to zero, i.e., when we tend to the local limit, the model behaves as if it is
an elastic model away from the crack set. Therefore, in the limit, the model not
only converges to linear elasticity in regions with small deformation but also has
finite Griffith fracture energy associated with a sharp fracture set. The nonlinear
potential can be calibrated so that it gives the same fracture toughness as the Linear
Elastic Fracture Mechanics model. Further, the slope of the nonlinear force for small
strain is specified precisely by the elastic constant of the material. These results
are summarized in Lipton (2016) and Jha and Lipton (2017a). On the other hand
to use this model for numerical simulation, we take advantage the regularization
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given by the nonlocal formulation of the problem. With this in mind we show
existence of solutions in more regular spaces for fixed but small horizon and develop
a theory for the numerical simulation of fracture problems. In this chapter we present
the foundations for the theory and exhibit initial data and boundary conditions so
that solutions exist in the Hölder space C 0;� , � 2 .0; 1� and the Sobolev space
H 2 (see Jha and Lipton 2017a,b; Diehl et al. 2016). A numerical implementation
scheme using the finite difference model is proposed and demonstrated in Lipton
et al. (2016). In the following chapters, we show a priori convergence for the finite
difference method and finite element method. These results are reported in Jha and
Lipton (2017a,b). We show that these discrete approximations converge to the well-
posed evolutions described in this chapter. The associated convergence rates are
given explicitly in terms of time step and the size of the spatial mesh.

In this chapter we begin by describing bond-based peridynamics and the double-
well potential model. Here the nonlocal forces acting between points are given by
the derivatives of the potential with respect to the strain (see section “Problem
Formulation with Bond-Based Nonlinear Potentials”). The existence of a peri-
dynamic evolution taking values in the space of Hölder continuous functions is
presented in section “Existence of Solutions in Hölder Space.” The proof uses
the Hölder continuity of the nonlocal force with respect to the Hölder norm (see
section “Lipschitz Continuity in the Hölder Norm and Existence of a Hölder
Continuous Solution”). We then show the existence of a peridynamic evolution in
the set of essentially bounded functions taking values in the Sobolev space H 2,
the space of functions with function values, and derivatives of order one and two
that are square integrable (section “Existence of Solutions in the Sobolev Space
H 2”). As before the proof uses the Hölder continuity of the nonlocal force, but
now with respect to a norm that is the sum of the H 2 norm and the L1 norm, see
section “Lipschitz Continuity in the H 2 Norm and Existence of an H 2 Solution.”
We conclude the chapter observing that the well-posed evolutions over these regular
spaces converge to sharp fracture evolutions posed over spaces of functions with
jumps (section “Conclusions: Convergence of Regular Solutions in the Limit of
Vanishing Horizon”).

Problem Formulation with Bond-Based Nonlinear Potentials

Let D � R
d , for d D 2; 3 be the material domain with characteristic length scale

of unity. Every material point x 2 D interacts nonlocally with all other material
points inside a horizon of length � 2 .0; 1/. Let H�.x/ be the ball of radius �

centered at x containing all points y that interact with x. After deformation the
material point x assumes position z D x C u.x/. In this treatment we assume
infinitesimal displacements u.x/ so the deformed configuration is the same as the
reference configuration and the linearized strain is given by

S D S.y; xI u/ D
u.y/ � u.x/

jy � xj
�

y � x

jy � xj
:
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We let t denote time and the displacement field u.t; x/ evolves according to
Newton’s second law

�@2
t tu.t; x/ D �rPD�.u.t//.x/ C b.t; x/ (1)

for all x 2 D. Here the body force applied to the domain D can evolve with time
and is denoted by b.t; x/. Without loss of generality, we will assume � D 1. The
peridynamic force denoted by �rPD�.u/.x/ is given by summing up all forces
acting on x

�rPD�.u/.x/ D
2

�d !d

Z
H�.x/

@S W �.S; y � x/
y � x

jy � xj
dy;

where @S W � is the force exerted on x by y and is given by the derivative of the
nonlocal two-point potential W �.S; y � x/ with respect to the strain and !d is
volume of unit ball in dimension d .

Let @D be the boundary of material domain D. The Dirichlet boundary condition
on u is

u.t; x/ D 0 8x 2 @D; 8t 2 Œ0; T � (2)

and initial condition is

u.0; x/ D u0.x/ and @tu.0; x/ D v0.x/: (3)

The initial data and solution u.t; x/ are extended by 0 outside D.
The total energy E�.u/.t/ is given by the sum of kinetic and potential energy

given by

E�.u/.t/ D
1

2
jjPu.t/jjL2 C PD�.u.t//; (4)

where potential energy PD� is given by

PD�.u/ D
1

2

Z
D

�
1

�d !d

Z
H�.x/

W �.S.u/; y � x/dy

�
dx:

Nonlocal Potential

We consider potentials W � of the form

W �.S; y � x/ D !.x/!.y/
J �.jy � xj/

�
f .jy � xjS2/; (5)
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where f W R
C ! R is assumed to be positive, smooth, and concave with the

following properties

lim
r!0C

f .r/

r
D f 0.0/; lim

r!1
f .r/ D f1 < 1: (6)

The peridynamic force �rPD� is written as

� rPD�.u/.x/

D
4

�dC1!d

Z
H�.x/

!.x/!.y/J �.jy � xj/f 0.jy � xjS.u/2/S.u/ey�xdy; (7)

where we write S.u/ D S.y; xI u/ and ey�x D y�x

jy�xj
.

The function J �.jy � xj/ models the influence of separation between points y

and x. Here J �.jy � xj/ D J .jy � xj=�/, and we define J to be zero outside the
ball f� W j�j < 1g D H1.0/ and 0 � J .j�j/ � M for all � 2 H1.0/.

The boundary function !.x/ is nonnegative and takes the value 1 for points x

inside D of distance � away from the boundary @D. Inside the boundary layer of
width �, the function !.x/ smoothly decreases from 1 to 0 taking the value 0 on
@D.

The potential described in Eq. 5 gives the convex-concave dependence (see
Fig. 1) of W .S; y � x/ on the strain S for fixed y � x. Here the potential has a
well at zero strain and has a second well at infinite strain given by the horizontal
asymptote. Initially the deformation is elastic for small strains and then softens as
the strain becomes large; this is illustrated in Fig. 2. The critical strain where the
force between x and y begins to soften is given by Sc.y; x/ WD Nr=

p
jy � xj, and

the force decreases monotonically for

jS.y; xI u/j > Sc: (8)

Here Nr is the inflection point of r 7! f .r2/ and is the root of the following equation:

f 0.r2/ C 2r2f 00.r2/ D 0: (9)

In (Theorem 5.2, Lipton 2016), it is shown that in the limit � ! 0, the
peridynamic solution has bounded linear elastic fracture energy, provided the initial
data .u0; v0/ has bounded linear elastic fracture energy and u0 is bounded. The
elastic constants (Lamé constant � and �) and energy release rate of the limiting
energy are given by

� D � D Cd f 0.0/Md ; Gc D
2!d�1

!d

f1Md
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Fig. 1 Two-point potential
W �.S; y � x/ as a function
of strain S for fixed y � x

Fig. 2 Nonlocal force @S W �.S; y �x/ as a function of strain S for fixed y �x. Second derivative
of W �.S; y � x/ is zero at ˙Nr=

p
jy � xj

where Md D
R 1

0
J .r/rd dr and f1 D limr!1 f .r/. Cd D 2=3; 1=4; 1=5 for

d D 1; 2; 3, respectively, and !n D 1; 2; 	; 4	=3 for n D 0; 1; 2; 3. Therefore,
f 0.0/ and f1 are determined by the Lamé constant � and fracture toughness Gc .

Weak Formulation

We now give the weak formulation of the evolution. Multiplying Eq. 1 by a smooth
test function Qu with Qu D 0 on @D, we get
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.Ru.t/; Qu/ D .�rPD�.u.t//; Qu/ C .b.t/; Qu/:

We denote L2 dot product of u; v as .u; v/. An integration by parts easily shows for
all smooth u; v taking zero boundary values that

.�rPD�.u/; v/ D �a�.u; v/;

where

a�.u; v/

D
2

�dC1!d

Z
D

Z
H�.x/

!.x/!.y/J �.jy � xj/

f 0.jy � xjS.u/2/jy � xjS.u/S.v/dydx: (10)

Finally, the weak form of the evolution in terms of operator a� becomes

.Ru.t/; Qu/ C a�.u.t/; Qu/ D .b.t/; Qu/: (11)

Using definition of a� in Eq. 10, one easily sees that

d

dt
E�.u/.t/ D .Ru.t/; Pu.t// C a�.u.t/; Pu.t//: (12)

In the sequel the notation jj � jj denotes the L2 norm on D, and jj � jj1 is used for
the L1 norm on D and jj � jj2 for Sobolev H 2 norm on D.

Existence of Solutions in Hölder Space

In this section, we establish the existence of solutions in Hölder space. Here we
follow the approach developed in Jha and Lipton (2017a). Let C 0;� .DIRd / be the
Hölder space with exponent � 2 .0; 1�. The closure of continuous functions with
compact support on D in the supremum norm is denoted by C0.D/. We identify
functions in C0.D/ with their unique continuous extensions to D. It is easily seen
that functions belonging to this space take the value zero on the boundary of D (see,
e.g., Driver 2003). We introduce C

0;�
0 .D/ D C 0;� .D/ \ C0.D/. Here we extend

all functions in C
0;�
0 .D/ by zero outside D. The norm of u 2 C

0;�
0 .DIRd / is taken

to be

kukC 0;� .DIRd / WD sup
x2D

ju.x/j C Œu�C 0;� .DIRd / ;
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where Œu�C 0;� .DIRd / is the Hölder semi norm and given by

Œu�C 0;� .DIRd / WD sup
x¤y;

x;y2D

ju.x/ � u.y/j

jx � yj�
;

and C
0;�
0 .DIRd / is a Banach space with this norm. Here we make the hypothesis

that the domain function ! belongs to C
0;�
0 .DIRd /.

We write the evolution Eq. 1 as an equivalent first-order system with y1.t/ D

u.t/ and y2.t/ D v.t/ with v.t/ D @tu.t/. Let y D .y1; y2/T where y1; y2 2

C
0;�
0 .DIRd / and let F �.y; t/ D .F �

1 .y; t/; F �
2 .y; t//T such that

F �
1 .y; t/ WD y2 (13)

F �
2 .y; t/ WD �rPD�.y1/ C b.t/: (14)

The initial boundary value associated with the evolution Eq. 1 is equivalent to the
initial boundary value problem for the first-order system given by

d

dt
y D F �.y; t/; (15)

with initial condition given by y.0/ D .u0; v0/T 2 C
0;�
0 .DIRd / � C

0;�
0 .DIRd /.

The function F �.y; t/ satisfies the Lipschitz continuity given by the following
theorem.

Proposition 1 (Lipschitz continuity and bound). Let X D C
0;�
0 .DIRd / �

C
0;�
0 .DIRd /. The function F �.y; t/ D .F �

1 ; F �
2 /T , as defined in Eqs. 13 and 14,

is Lipschitz continuous in any bounded subset of X . We have, for any y; z 2 X and
t > 0,

kF �.y; t/ � F �.z; t /kX

�

�
L1 C L2

�
k!kC 0;� .D/ C kykX C kzkX

��
�2C˛.�/

ky � zkX (16)

where L1; L2 are independent of u; v and depend on peridynamic potential function
f and influence function J and the exponent ˛.�/ is given by

˛.�/ D

(
0 if � � 1=2

1=2 � � if � < 1=2:

Furthermore for any y 2 X and any t 2 Œ0; T �, we have the bound

kF �.y; t/kX �
L3

�2C˛.�/
.1 C k!kC 0;� .D/ C kykX / C b (17)
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where b D supt kb.t/kC 0;� .DIRd / and L3 is independent of y.
We easily see that on choosing z D 0 in Eq. 16 that �rPD�.u/.x/ is in

C 0;� .DIR3/ provided that u belongs to C 0;� .DIR3/. Since �rPD�.u/.x/ takes
the value 0 on @D, we conclude that �rPD�.u/.x/ belongs to C

0;�
0 .DIR3/.

The following theorem gives the existence and uniqueness of solution in any
given time domain I0 D .�T; T /.

Theorem 1 (Existence and uniqueness of Hölder solutions of cohesive
dynamics over finite time intervals). For any initial condition x0 2 X D

C
0;�
0 .DIRd / � C

0;�
0 .DIRd /, time interval I0 D .�T; T /, and right-hand side b.t/

continuous in time for t 2 I0 such that b.t/ satisfies supt2I0
jjb.t/jjC 0;� < 1, there

is a unique solution y.t/ 2 C 1.I0I X/ of

y.t/ D x0 C

Z t

0

F �.y.
/; 
/ d
;

or equivalently

y0.t/ D F �.y.t/; t/;with y.0/ D x0;

where y.t/ and y0.t/ are Lipschitz continuous in time for t 2 I0.
The proof of this theorem is given in the following section.

Lipschitz Continuity in the Hölder Norm and Existence of a
Hölder Continuous Solution

In this section, we prove Proposition 1.

Proof of Proposition 1

Let I D Œ0; T � be the time domain and X D C
0;�
0 .DIRd / � C

0;�
0 .DIRd /.

Recall that F �.y; t/ D .F �
1 .y; t/; F �

2 .y; t//, where F �
1 .y; t/ D y2 and F �

2 .y; t/ D

�rPD�.y1/ C b.t/. Given t 2 I and y D .y1; y2/; z D .z1; z2/ 2 X , we have

kF �.y; t/ � F �.z; t /kX

�
��y2 � z2

��
C 0;� .DIRd /

C
���rPD�.y1/ C rPD�.z1/

��
C 0;� .DIRd /

: (18)

Therefore, to prove the Eq. 16, we only need to analyze the second term in above
inequality. Let u; v 2 C

0;�
0 .DIRd /, then we have
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k�rPD�.u/ � .�rPD�.v//kC 0;� .DIRd /

D sup
x2D

j�rPD�.u/.x/ � .�rPD�.v/.x//j

C sup
x¤y;

x;y2D

j.�rPD�.u/ C rPD�.v//.x/ � .�rPD�.u/ C rPD�.v//.y/j

jx � yj�
:

(19)

Note that the force �rPD�.u/.x/ can be written as follows:

� rPD�.u/.x/

D
4

�dC1!d

Z
H�.x/

!.x/!.y/J .
jy�xj

�
/f 0.jy�xj S.y; xIu/2/S.y; xIu/

y�x

jy�xj
dy

D
4

�!d

Z
H1.0/

!.x/!.xC��/J .j�j/f 0.� j�j S.xC��; xIu/2/S.xC��; xIu/
�

j�j
d�:

where we substituted @S W � using Eq. 5. In the second step, we introduced the
change in variable y D x C ��.

Let F1 W R ! R be defined as F1.S/ D f .S2/. Then F 0
1.S/ D f 0.S2/2S .

Using the definition of F1, we have

2Sf 0.� j�j S2/ D
F 0

1.
p

� j�jS/p
� j�j

:

Because f is assumed to be positive, smooth, and concave and is bounded far
away, we have the following bound on derivatives of F1

sup
r

ˇ̌
F 0

1.r/
ˇ̌

D F 0
1. Nr/ DW C1 (20)

sup
r

ˇ̌
F 00

1 .r/
ˇ̌

D maxfF 00
1 .0/; F 00

1 .Ou/g DW C2 (21)

sup
r

ˇ̌
F 000

1 .r/
ˇ̌

D maxfF 000
1 .Nu2/; F 000

1 .Qu2/g DW C3: (22)

where Nr is the inflection point of f .r2/, i.e., F 00
1 . Nr/ D 0. f0; Oug are the maxima

of F 00
1 .r/. fNu; Qug are the maxima of F 000

1 .r/. By chain rule and by considering
the assumption on f , we can show that Nr; Ou; Nu2; Qu2 exists and the C1; C2; C3 are
bounded. Figures 3, 4, and 5 show the generic graphs of F 0

1.r/, F 00
1 .r/, and F 000

1 .r/,
respectively.
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Fig. 3 Generic plot of F 0

1 .r/. jF 0

1 .r/j is bounded by
ˇ̌
F 0

1 .Nr/
ˇ̌

r

F ′′
1 (r)

r̄−r̄

û−û

Fig. 4 Generic plot of F 00

1 .r/. At ˙Nr , F 00

1 .r/ D 0. At ˙Ou, F 000

1 .r/ D 0

r

F ′′′
1 (r)

ū2

−ū2 û
−û

ũ2

−ũ2

Fig. 5 Generic plot of F 000

1 .r/. At ˙Nu2 and ˙Qu2, F 0000

1 D 0
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The nonlocal force �rPD� can be written as

� rPD�.u/.x/

D
2

�!d

Z
H1.0/

!.x/!.x C ��/J .j�j/F 0
1.
p

� j�jS.x C ��; xIu//
1p
� j�j

�

j�j
d�:

(23)

To simplify the calculations, we use following notation:

Nu.x/ WD u.x C ��/ � u.x/;

Nu.y/ WD u.y C ��/ � u.y/;

.u � v/.x/ WD u.x/ � v.x/;

and .u � v/.x/ is defined similar to Nu.x/. Also, let

s D � j�j ; e D
�

j�j
:

In what follows, we will come across the integral of type
R

H1.0/
J .j�j/ j�j�˛ d�.

Recall that 0 � J .j�j/ � M for all � 2 H1.0/ and J .j�j/ D 0 for � … H1.0/.
Therefore, let

NJ˛ WD
1

!d

Z
H1.0/

J .j�j/ j�j�˛ d�: (24)

With notations above, we note that S.x C ��; xIu/ D Nu.x/ � e=s. �rPD� can be
written as

�rPD�.u/.x/ D
2

�!d

Z
H1.0/

!.x/!.x C ��/J .j�j/F 0
1. Nu.x/ � e=

p
s/

1
p

s
ed�:

(25)

We first estimate the term j�rPD�.u/.x/ � .�rPD�.v/.x//j in Eq. 19.

j�rPD�.u/.x/ � .�rPD�.v/.x//j

�

ˇ̌
ˇ̌
ˇ

2

�!d

Z
H1.0/

!.x/!.x C ��/J .j�j/

�
F 0

1. Nu.x/ � e=
p

s/ � F 0
1. Nv.x/ � e=

p
s/
�

p
s

ed�

ˇ̌
ˇ̌
ˇ

�

ˇ̌
ˇ̌ 2

�!d

Z
H1.0/

J .j�j/
1

p
s

ˇ̌
F 0

1. Nu.x/ � e=
p

s/ � F 0
1. Nv.x/ � e=

p
s/
ˇ̌
d�

ˇ̌
ˇ̌
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� sup
r

ˇ̌
F 00

1 .r/
ˇ̌ ˇ̌ˇ̌ 2

�!d

Z
H1.0/

J .j�j/
1

p
s

ˇ̌
Nu.x/ � e=

p
s � Nv.x/ � e=

p
s
ˇ̌
d�

ˇ̌
ˇ̌

�
2C2

�!d

ˇ̌
ˇ̌Z

H1.0/

J .j�j/
j Nu.x/ � Nv.x/j

� j�j
d�

ˇ̌
ˇ̌ : (26)

Here we have used the fact that j!.x/j � 1 and for a vector e such that jej D 1,
ja � ej � jaj holds and j˛ej � j˛j holds for all a 2 R

d ; ˛ 2 R. Using the fact that
u; v 2 C

0;�
0 .DIRd /, we have

j Nu.x/ � Nv.x/j

s
D

j.u � v/.x C ��/ � .u � v/.x/j

.� j�j/�

1

.� j�j/1��

� ku � vkC 0;� .DIRd /

1

.� j�j/1��
:

Substituting the estimate given above, we get

j�rPD�.u/.x/ � .�rPD�.v/.x//j �
2C2

NJ1��

�2��
ku � vkC 0;� .DIRd /; (27)

where C2 is given by Eq. 21 and NJ1�� is given by Eq. 24.
We now estimate the second term in Eq. 19. To simplify notation, we write

Q!.x; �/ D !.x/!.x C ��/ and with the help of Eq. 25, we get

1

jx � yj�
j.�rPD�.u/ C rPD�.v//.x/ � .�rPD�.u/ C rPD�.v//.y/j

D
1

jx � yj�
j

2

�!d

Z
H1.0/

J .j�j/
1

p
s

�

�
Q!.x; �/.F 0

1.
Nu.x/ � e

p
s

/ � F 0
1.

Nv.x// � e
p

s
//

� Q!.y; �/.F 0
1.

Nu.y/ � e
p

s
/ � F 0

1.
Nv.y// � e

p
s

/

�
ed�j

�
1

jx � yj�
j

2

�!d

Z
H1.0/

J .j�j/
1

p
s

�

j Q!.x; �/.F 0
1.

Nu.x/ � e
p

s
/ � F 0

1.
Nv.x/ � e

p
s

// � Q!.y; �/.F 0
1.

Nu.y/ � e
p

s
/

� F 0
1.

Nv.y/ � e
p

s
//jd�: (28)

We analyze the integrand in above equation. We let H be defined by

H WD

j Q!.x; �/.F 0
1.

Nu.x/ � e
p

s
/ � F 0

1.
Nv.x/ � e

p
s

// � Q!.y; �/.F 0
1.

Nu.y/ � e
p

s
/ � F 0

1.
Nv.y/ � e

p
s

//j

jx � yj�
:
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Let r W Œ0; 1� � D ! R
d be defined as

r.l; x/ D Nv.x/ C l. Nu.x/ � Nv.x//:

Note @r.l; x/=@l D Nu.x/ � Nv.x/. Using r.l; x/, we have

F 0
1. Nu.x/ � e=

p
s/ � F 0

1. Nv.x/ � e=
p

s/ D

Z 1

0

@F 0
1.r.l; x/ � e=

p
s/

@l
d l (29)

D

Z 1

0

@F 0
1.r � e=

p
s/

@r
jrDr.l;x/ �

@r.l; x/

@l
d l:

(30)

Similarly, we have

F 0
1. Nu.y/ � e=

p
s/ � F 0

1. Nv.y/ � e=
p

s/ D

Z 1

0

@F 0
1.r � e=

p
s/

@r
jrDr.l;y/ �

@r.l; y/

@l
d l:

(31)

Note that

@F 0
1.r � e=

p
s/

@r
jrDr.l;y/ D F 00

1 .r.l; x/ � e=
p

s/
e

p
s

: (32)

Combining Eqs. 30, 31, and 32 gives

H D
1

jx � yj�

Z 1

0

�
Q!.x; �/F 00

1 .r.l; x/ � e=
p

s/. Nu.x/ � Nv.x//

� Q!.y; �/F 00
1 .r.l; y/ � e=

p
s/. Nu.y/ � Nv.y//

�
�

e
p

s
d l

�
1

jx � yj�
1

p
s

j

Z 1

0

j Q!.x; �/F 00
1 .r.l; x/ � e=

p
s/. Nu.x/ � Nv.x//

� Q!.y; �/F 00
1 .r.l; y/ � e=

p
s/. Nu.y/ � Nv.y//jdl j:

Adding and substracting Q!.x; �/F 00
1 .r.l; x/ � e=

p
s/. Nu.y/ � Nv.y// and noting 0 �

Q!.x; �/ � 1 give

H �
1

jx � yj�
1

p
s

j

Z 1

0

jF 00
1 .r.l; x/ � e=

p
s/j j Nu.x/ � Nv.x/ � Nu.y/ C Nv.y/j dl j

C
1

jx�yj�
1

p
s

Z 1

0

j. Q!.x; �/F 00
1 .r.l; x/ � e=

p
s/ � Q!.y; �/F 00

1 .r.l; y/� e=
p

s//j

� j Nu.y/ � Nv.y/j dl:

DW H1 C H2:
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The H1 term is estimated first. Note that jF 00
1 .r/j � C2. Since u; v 2

C
0;�
0 .DIRd /, it is easily seen that

j Nu.x/ � Nv.x/ � Nu.y/ C Nv.y/j

jx � yj�
� 2ku � vkC 0;� .DIRd /:

Therefore, we have

H1 �
2C2
p

s
ku � vkC 0;� .DIRd /: (33)

We now estimate H2. We add and subtract Q!.x; �/F 00
1 .r.l; y/ � e=

p
s// in H2 to

get

H2 � H3 C H4;

where

H3 D
1

jx�yj�
1

p
s

Z 1

0

j.F 00
1 .r.l; x/ � e=

p
s/�F 00

1 .r.l; y/ � e=
p

s//j j Nu.y/�Nv.y/j dl;

and

H4 D
1

jx � yj�
1

p
s

Z 1

0

j. Q!.x; �/� Q!.y; �/jF 00
1 .r.l; y/ � e=

p
s//j j Nu.y/�Nv.y/j dl:

Now we estimate H3. Since jF 000
1 .r/j � C3 (see Eq. 22), we have

1

jx � yj�
jF 00

1 .r.l; x/ � e=
p

s/ � F 00
1 .r.l; y/ � e=

p
s/j

�
1

jx � yj�
sup

r

ˇ̌
F 000.r/

ˇ̌ jr.l; x/ � e � r.l; y/ � ej
p

s

�
C3
p

s

jr.l; x/ � r.l; y/j

jx � yj�

D
C3
p

s

�
j1 � l j j Nv.x/ � Nv.y/j

jx � yj�
C

jl j j Nu.x/ � Nu.y/j

jx � yj�

�

�
C3
p

s

�
j Nv.x/ � Nv.y/j

jx � yj�
C

jNu.x/ � Nu.y/j

jx � yj�

�
: (34)
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Where we have used the fact that j1 � l j � 1; jl j � 1, as l 2 Œ0; 1�. Also, note that

j Nu.x/ � Nu.y/j

jx � yj�
� 2kukC 0;� .DIRd /

j Nv.x/ � Nv.y/j

jx � yj�
� 2kvkC 0;� .DIRd /

j Nu.y/ � Nv.y/j � s� ku � vkC 0;� .DIRd /:

We combine above estimates with Eq. 34 to get

H3 �
1

p
s

C3
p

s

�
kukC 0;� .DIRd / C kvkC 0;� .DIRd /

�
s� ku � vkC 0;� .DIRd /

D
C3

s1��

�
kukC 0;� .DIRd / C kvkC 0;� .DIRd /

�
ku � vkC 0;� .DIRd /: (35)

Next we estimate H4. Here we add and subtract !.y/!.x C ��/ to get

H4 D
1

jx�yj�
1

p
s

Z 1

0

j.!.x; xC��/.!.x/�!.y//C!.y/.!.xC��/�!.yC��//

� jF 00
1 .r.l; y/ � e=

p
s//j j Nu.y/ � Nv.y/j dl:

Recalling that ! belongs to C
0;�
0 .DIRd / and in view of the previous estimates, a

straightforward calculation gives

H4 �
4C2

s1=2��
k!kC 0;� .DIRd /ku � vkC 0;� .DIRd /: (36)

Combining Eqs. 33, 35, and 36 gives

H �

�
2C2
p

s
C

4C2

s1=2��
k!kC 0;� .DIRd /C

C
C3

s1��

�
kukC 0;� .DIRd / C kvkC 0;� .DIRd /

��
ku � vkC 0;� .DIRd /:

Substituting H in Eq. 28 gives

1

jx � yj�
j.�rPD�.u/ C rPD�.v//.x/ � .�rPD�.u/ C rPD�.v//.y/j

� j
2

�!d

Z
H1.0/

J .j�j/
1

p
s

Hd�j
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�

 
4C2

NJ1

�2
C

4C2
NJ1��

�2��
k!kC 0;� .DIRd /

C
2C3

NJ3=2��

�2C1=2��

�
kukC 0;� .DIRd / C kvkC 0;� .DIRd /

�!
ku � vkC 0;� .DIRd /: (37)

We combine Eqs. 19, 27, and 37 and get

k�rPD�.u/ � .�rPD�.v//kC 0;�

�

 
4C2

NJ1

�2
C

2C2
NJ1��

�2��
.1 C k!kC 0;� /C

2C3
NJ3=2��

�2C1=2��
.kukC 0;� CkvkC 0;� /

!
ku�vkC 0;�

�
NC1 C NC2k!kC 0;� C NC3.kukC 0;� C kvkC 0;� /

�2C˛.�/
ku � vkC 0;� (38)

where we introduce new constants NC1; NC2; NC3. We let ˛.�/ D 0, if � � 1=2, and
˛.�/ D 1=2 � � , if � � 1=2. One can easily verify that, for all � 2 .0; 1� and
0 < � � 1,

max

	
1

�2
;

1

�2C1=2��
;

1

�2��



�

1

�2C˛.�/

To complete the proof, we combine Eqs. 38 and 18 and get

kF �.y; t/ � F �.z; t /kX �
L1 C L2.k!kC 0;� C kykX C kzkX /

�2C˛.�/
ky � zkX :

This proves the Lipschitz continuity of F �.y; t/ on any bounded subset of X . The
bound on F �.y; t/ (see Eq. 17) follows easily from Eq. 25. This completes the proof
of Proposition 1.

Existence of Solution in Hölder Space

In this section, we prove Theorem 1. We begin by proving a local existence theorem.
We then show that the local solution can be continued uniquely in time to recover
Theorem 1.

The existence and uniqueness of local solutions is stated in the following
theorem.

Theorem 2 (Local existence and uniqueness). Given X D C
0;�
0 .DIRd / �

C
0;�
0 .DIRd /, b.t/ 2 C

0;�
0 .DIRd /, and initial data x0 D .u0; v0/ 2 X . We

suppose that b.t/ is continuous in time over some time interval I0 D .�T; T /
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and satisfies supt2I0
kb.t/kC 0;� .DIRd / < 1. Then, there exists a time interval

I 0 D .�T 0; T 0/ � I0 and unique solution y D .y1; y2/ such that y 2 C 1.I 0I X/

and

y.t/ D x0 C

Z t

0

F �.y.
/; 
/ d
; for t 2 I 0 (39)

or equivalently

y0.t/ D F �.y.t/; t/;with y.0/ D x0; for t 2 I 0

where y.t/ and y0.t/ are Lipschitz continuous in time for t 2 I 0 � I0.
To prove Theorem 2, we proceed as follows. We write y.t/ D .y1.t/; y2.t// and

jjyjjX D jjy1.t/jjC 0;� Cjjy2.t/jjC 0;� . Define the ball B.0; R/Dfy 2 X W jjyjjX <Rg

and choose R > jjx0jjX . Let r D R � kx0kX and we consider the ball B.x0; r/

defined by

B.x0; r/ D fy 2 X W jjy � x0jjX < rg � B.0; R/; (40)

(see Fig. 6).
To recover the existence and uniqueness, we introduce the transformation

Sx0.y/.t/ D x0 C

Z t

0

F �.y.
/; 
/ d
:

Introduce 0 < T 0 < T and the associated set Y .T 0/ of Hölder continuous functions
taking values in B.x0; r/ for I 0 D .�T 0; T 0/ � I0 D .�T; T /. The goal is to find
appropriate interval I 0 D .�T 0; T 0/ for which Sx0 maps into the corresponding set
Y .T 0/. Writing out the transformation with y.t/ 2 Y .T 0/ gives

Fig. 6 Geometry

x0
B(x0, r)

0 R

B(0, R)
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S1
x0

.y/.t/ D x1
0 C

Z t

0

y2.
/ d
 (41)

S2
x0

.y/.t/ D x2
0 C

Z t

0

.�rPD�.y1.
// C b.
// d
; (42)

and there is a positive constant K D C =�2C˛.�/ (see Eq. 17) independent of y1.t/,
for �T 0 < t < T 0, such that estimation in Eq. 42 gives

jjS2
x0

.y/.t/�x2
0 jjC 0;� � .K.1C

1

��
C sup

t2.�T 0;T 0/

jjy1.t/jjC 0;� /C sup
t2.�T;T /

jjb.t/jjC 0;� /T 0

(43)
and from Eq. 41

jjS1
x0

.y/.t/ � x1
0 jjC 0;� � sup

t2.�T 0;T 0/

jjy2.t/jjC 0;� T 0: (44)

We write b D supt2I0
jjb.t/jjC 0;� and adding Eqs. 43 and 44 gives the upper

bound

jjSx0.y/.t/ � x0jjX � .K.1 C
1

��
C sup

t2.�T 0;T 0/

jjy.t/jjX/ C b/T 0: (45)

Since B.x0; r/ � B.0; R/ (see Eq. 40), we make the choice T 0 so that

jjSx0.y/.t/ � x0jjX � ..K.1 C
1

��
C R/ C b/T 0 < r D R � jjx0jjX : (46)

For this choice we see that

T 0 < �.R/ D
R � jjx0jjX

K.R C 1 C 1
�� / C b

: (47)

Now it is easily seen that �.R/ is increasing with R > 0 and

lim
R!1

�.R/ D
1

K
: (48)

So given R and jjx0jjX , we choose T 0 according to

�.R/

2
< T 0 < �.R/; (49)

and set I 0 D .�T 0; T 0/. We have found the appropriate time domain I 0 such that
the transformation Sx0.y/.t/ as defined in Eqs. 41 and 42 maps Y .T 0/ into itself.
We now proceed using standard arguments (see, e.g., Driver 2003, Theorem 6.10)
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to complete the proof of existence and uniqueness of solution for given initial data
x0 over the interval I 0 D .�T 0; T 0/.

We now prove Theorem 1. From the proof of Theorem 2 above, we see that
a unique local solution exists over a time domain .�T 0; T 0/ with �.R/

2
< T 0.

Since �.R/ % 1=K as R % 1, we can fix a tolerance � > 0 so that
Œ.1=2K/ � �� > 0. Then given any initial condition with bounded Hölder norm and
b D supt2Œ�T;T / jjb.t/jjC 0;� , we can choose R sufficiently large so that jjx0jjX < R

and 0 < .1=2K// � � < T 0. Thus we can always find local solutions for time
intervals .�T 0; T 0/ for T 0 larger than Œ.1=2K/ � �� > 0. Therefore we apply the
local existence and uniqueness result to uniquely continue local solutions up to an
arbitrary time interval .�T; T /.

Existence of Solutions in the Sobolev Space H2

We start by recalling that the space H 2
0 .DIRd / is the closure in the H 2 norm of

twice differentiable functions with compact support in D. We denote the norm
in H m by jj � jjm, m D 1; 2, and the L1 norm by jj � jj1. In this section,
we find that solutions of peridynamic evolutions exist for almost all times in
H 2

0 .DIRd / \ L1.DIRd /. For the sake of convenience, we let W denote the
H 2

0 .DIRd / \ L1.DIRd / space. The norm on W is defined as

jjujjW WD jjujj2 C jjujj1: (50)

We will assume that u 2 H 2
0 .DIRd / is extended by zero outside D; therefore,

u D 0; ru D 0; r2u D 0 for x … D and jjujjH 2.DIRd / D jjujjH 2.Rd IRd /.
Noting the Sobolev embedding property of u 2 H 2

0 .DIRd / (see Theorem
2.31, Demengel and Demengel 2012) given by

jjrujjLq.DIRd�d / � CejjujjH 2
0 .DIRd / (51)

for any q such that 2 � q � 6 in case of d D 3 and 2 � q < 1 in case of d D 2.
Constant Ce is independent of u.

In what follows, we will first prove the Lipschitz bound on �rPD�.u/, and then
using Lipschitz bound, we will show the local existence of solution u in W . We write
the peridynamic equation as an equivalent first-order system with y1.t/ D u.t/ and
y2.t/ D v.t/ with v.t/ D Pu.t/. Let y D .y1; y2/T where y1; y2 2 W and let
F �.y; t/ D .F �

1 .y; t/; F �
2 .y; t//T such that

F �
1 .y; t/ WD y2; (52)

F �
2 .y; t/ WD �rPD�.y1/ C b.t/: (53)

The initial boundary value is equivalent to the initial boundary value problem for
the first-order system given by
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Py.t/ D F �.y; t/; (54)

with initial condition given by y.0/ D .u0; v0/T 2 W � W .

Theorem 3 (Lipschitz bound on peridynamic force). For any u; v 2 W , we have

jj � rPD�.u/ � .�rPD�.v//jjW

�
NL1 C NL2.jjujjW C jjvjjW / C NL3.jjujjW C jjvjjW /2

�3
jju � vjjW (55)

where constants NL1; NL2; NL3 are independent of �, u, and v and are defined in (96).
Also, for u 2 W , we have

jj � rPD�.u/jjW �
NL4jjujjW C NL5jjujj2W

�5=2
; (56)

where constants are independent of � and u and are defined in (105).
We state the theorem which shows the existence and uniqueness of solution in

any given finite time interval I0 D .�T; T /.

Theorem 4 (Existence and uniqueness of solutions over finite time intervals).
For any initial condition x0 2 X D W � W , time interval I0 D .�T; T /,
and right-hand side b.t/ continuous in time for t 2 I0 such that b.t/ satisfies
supt2I0

jjb.t/jjW < 1, there is a unique solution y.t/ 2 C 1.I0I X/ of

y.t/ D x0 C

Z t

0

F �.y.
/; 
/ d
;

or equivalently

y0.t/ D F �.y.t/; t/;with y.0/ D x0;

where y.t/ and y0.t/ are Lipschitz continuous in time for t 2 I0.
The proof of the Lipschitz continuity and existence is established in the following

section.

Lipschitz Continuity in the H2 Norm and Existence of an H2

Solution

In this section we prove Theorems 3 and 4. To simplify the presentation, we
denote the peridynamic force �rPD�.u/ by simply P .u/. Recall that we denote
H 2

0 .DIRd / \ L1.DIRd / by W and
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jjujjW D jjujj C jjrujj C jjr2ujj C jjujj1:

We need to analyze jjP .u/ � P .v/jjW .
We use the following short notations:

s� D �j�j; e� D
�

j�j
; NJ˛ D

1

!d

Z
H1.0/

J .j�j/
1

j�j˛
d�;

S�.u/ D
u.x C ��/ � u.x/

s�

� e� ;

S�.ru/ D rS�.u/ D
ruT .x C ��/ � ruT .x/

s�

e� ;

S�.r2u/ D rS�.ru/ D r

�
ruT .x C ��/ � ruT .x/

s�

e�

�
:

In indicial notation, we have

S�.ru/i D
uk;i .x C ��/ � uk;i .x/

s�

.e�/k;

S�.r2u/ij D

�
uk;i .x C ��/ � uk;i .x/

s�

.e�/k

�
;j

D
uk;ij .x C ��/ � uk;ij .x/

s�

.e�/k

(57)

and

Œe� ˝ S�.r2u/�ijk D .e�/i S�.r2u/jk; (58)

where ui;j D .ru/ij , uk;ij D .r2u/kij , and .e�/k D �k=j�j.

Peridynamic Force

Let F1.r/ WD f .r2/ where f is described in section “Problem Formulation
with Bond-Based Nonlinear Potentials.” We have F 0

1.r/ D f 0.r2/2r . Thus,
2Sf 0.�j�jS2/ D F 0

1.
p

�j�jS/=
p

�j�j. We define the following constants related
to nonlinear potential

C1 WD sup
r

jF 0
1.r/j; C2 WD sup

r

jF 00
1 .r/j; C3 WD sup

r

jF 000
1 .r/j; C4 WD sup

r

jF 0000
1 .r/j:

The potential function f as chosen here satisfies C1; C2; C3; C4 < 1. Let

N!�.x/ D !.x/!.x C ��/; (59)
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and we choose ! such that

jr N!� j � C!1 < 1 and jr2 N!� j � C!2 < 1: (60)

With notations described so far, we write peridynamic force P .u/ as

P .u/.x/ D
2

�!d

Z
H1.0/

N!�.x/J .j�j/
F 0

1.
p

s�S�.u//
p

s�

e�d�: (61)

The gradient of P .u/.x/ is given by

rP .u/.x/ D
2

�!d

Z
H1.0/

N!�.x/J .j�j/F 00
1 .

p
s�S�.u//e� ˝ rS�.u/d�

C
2

�!d

Z
H1.0/

J .j�j/
F 0

1.
p

s�S�.u//
p

s�

e� ˝ r N!�.x/d�

D g1.u/.x/ C g2.u/.x/; (62)

where we denote first and second term as g1.u/.x/ and g2.u/.x/, respectively. We
also have

r2P .u/.x/ D
2

�!d

Z
H1.0/

N!�.x/J .j�j/F 00
1 .

p
s�S�.u//e� ˝ S�.r2u/d�

C
2

�!d

Z
H1.0/

N!�.x/J .j�j/
p

s�F 000
1 .

p
s�S�.u//e�˝S�.ru/˝S�.ru/d�

C
2

�!d

Z
H1.0/

J .j�j/F 00
1 .

p
s�S�.u//e� ˝ S�.ru/ ˝ r N!�.x/d�

C
2

�!d

Z
H1.0/

J .j�j/
F 0

1.
p

s�S�.u//
p

s�

e� ˝ r2 N!�.x/d�

C
2

�!d

Z
H1.0/

J .j�j/F 00
1 .

p
s�S�.u//e� ˝ r N!�.x/ ˝ S�.ru/d�

D h1.u/.x/ C h2.u/.x/ C h3.u/.x/ C h4.u/.x/ C h5.u/.x/ (63)

where we denote first, second, third, fourth, and fifth terms as h1; h2; h2; h4, and h5,
respectively. Estimating jjP .u/�P .v/jj and jjP .u/�P .v/jj1. From (61), we have
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jP .u/.x/ � P .v/.x/j

�
2

�!d

Z
H1.0/

J .j�j/
1

p
s�

jF 0
1.

p
s�S�.u// � F 0

1.
p

s�S�.v//jd�

�
2

�!d

�
sup

r

jF 0
1.r/j

�Z
H1.0/

J .j�j/
1

p
s�

j
p

s�S�.u/ �
p

s�S�.v/jd�

D
2C2

�!d

Z
H1.0/

J .j�j/jS�.u/ � S�.v/jd�; (64)

where we used the fact that j N!�.x/j � 1 and jF 0
1.r1/ � F 0

1.r2/j � C2jr1 � r2j. Since

jS�.u/ � S�.v/j �
ju.x C ��/ � v.x C ��/j C ju.x/ � v.x/j

�j�j

we have

jjP .u/ � P .v/jj1 �
2C2

�!d

Z
H1.0/

J .j�j/
2jju � vjj1

�j�j
d� D

L1

�2
jju � vjjW (65)

where we let L1 WD 4C2
NJ1:

From (64), we have

jjP .u/ � P .v/jj2

�

Z
D

�
2C2

�!d

�2 Z
H1.0/

Z
H1.0/

J .j�j/

j�j

J .j�j/

j�j
j�jjS�.u/ � S�.v/jj�jjS�.u/ � S�.v/j

d�d�dx:

Using the identities jajjbj � jaj2=2 C jbj2=2 and .a C b/2 � 2a2 C 2b2, we get

jjP .u/ � P .v/jj2

�

Z
D

�
2C2

�!d

�2 Z
H1.0/

Z
H1.0/

J .j�j/

j�j

J .j�j/

j�j

j�j2jS�.u/ � S�.v/j2 C j�j2jS�.u/ � S�.v/j2

2
d�d�dx

D 2

Z
D

�
2C2

�!d

�2 Z
H1.0/

Z
H1.0/

J .j�j/

j�j

J .j�j/

j�j

j�j2jS�.u/ � S�.v/j2

2
d�d�dx

D

Z
D

�
2C2

�!d

�2

!d NJ1

Z
H1.0/

J .j�j/

j�j
j�j2

2ju.x C ��/ � v.x C ��/j2 C 2ju.x/ � v.x/j2

�2j�j2
d�dx

D

�
2C2

�!d

�2

!d NJ1

Z
H1.0/

J .j�j/

j�j

1

�2

�
2

Z
D

�
ju.x C ��/ � v.x C ��/j2 C ju.x/ � v.x/j2

�
dx

�
d�

�

�
2C2

�!d

�2

!d NJ1

Z
H1.0/

J .j�j/

j�j

1

�2

�
4jju � vjj2

�
d�; (66)
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where we used symmetry wrt � and � in second equation. This gives

jjP .u/ � P .v/jj �
L1

�2
jju � vjj �

L1

�2
jju � vjjW : (67)

Estimating jjrP .u/ � rP .v/jj. From (62), we have

jjrP .u/ � rP .v/jj � jjg1.u/ � g1.v/jj C jjg2.u/ � g2.v/jj:

Using j N!�.x/j � 1, we get

jg1.u/.x/ � g1.v/.x/j

�
2

�!d

Z
H1.0/

J .j�j/jF 00
1 .

p
s�S�.u//rS�.u/ � F 00

1 .
p

s�S�.v//rS�.v/jd�

�
2

�!d

Z
H1.0/

J .j�j/jF 00
1 .

p
s�S�.u// � F 00

1 .
p

s�S�.v//jjrS�.u/jd�

C
2

�!d

Z
H1.0/

J .j�j/jF 00
1 .

p
s�S�.v//jjrS�.u/ � rS�.v/jd�

�
2C3

�!d

Z
H1.0/

J .j�j/
p

s� jS�.u/ � S�.v/jjrS�.u/jd�

C
2C2

�!d

Z
H1.0/

J .j�j/jrS�.u/ � rS�.v/jd�

D I1.x/ C I2.x/ (68)

where we denote first and second term as I1.x/ and I2.x/. Proceeding similar
to ((66)), we can show

jjI1jj2 D

Z
D

�
2C3

�!d

�2 Z
H1.0/

Z
H1.0/

J .j�j/

j�j3=2

J .j�j/

j�j3=2
j�j3=2j�j3=2p

s�
p

s�

� jS�.u/ � S�.v/jjrS�.u/jjS�.u/ � S�.v/jjrS�.u/jd�d�dx

�

Z
D

�
2C3

�!d

�2

!d
NJ3=2

Z
H1.0/

J .j�j/

j�j3=2
j�j3s� jS�.u/ � S�.v/j2jrS�.u/j2d�dx:

(69)

Now

Z
D

jS�.u/ � S�.v/j2jrS�.u/j2dx
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�
4jju � vjj21

�2j�j2
1

�2j�j2

Z
D

2.jru.x C ��/j2 C jru.x/j2/dx

�
16jjrujj2jju � vjj21

�4j�j4
�

16jjujj2W
�4j�j4

jju � vjj2W :

Substituting above in (69) to get

jjI1jj2 �

�
2C3

�!d

�2

!d
NJ3=2

Z
H1.0/

J .j�j/

j�j3=2
j�j3�j�j

16jjujj2W
�4j�j4

jju � vjj2W d�

D

 
8C3

NJ3=2jjujjW

�5=2

!2

jju � vjj2W :

Let L2 D 8C3
NJ3=2 to write

jjI1jj �
L2.jjujjW C jjvjjW /

�5=2
jju � vjjW : (70)

Similarly

jjI2jj2 D

Z
D

�
2C2

�!d

�2 Z
H1.0/

Z
H1.0/

J .j�j/

j�j

J .j�j/

j�j
j�jj�j

� jrS�.u/ � rS�.v/jjrS�.u/ � rS�.v/jd�d�dx

�

�
2C2

�!d

�2

!d
NJ1

Z
H1.0/

J .j�j/

j�j
j�j2

�Z
D

jrS�.u/ � rS�.v/j2dx

�
d�:

This gives

jjI2jj �
4C2

NJ1

�2
jju � vjjW D

L1

�2
jju � vjjW : (71)

Thus

jjg1.u/ � g1.v/jj �

p
�L1 C L2.jjujjW C jjvjjW /

�5=2
jju � vjjW : (72)

We now work on jg2.u/.x/�g2.v/.x/j (see (62)). Noting the bound on r N!� , we
get

jg2.u/.x/ � g2.v/.x/j
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D

ˇ̌
ˇ̌
ˇ

2

�!d

Z
H1.0/

J .j�j/

"
F 0

1.
p

s�S�.u//
p

s�

�
F 0

1.
p

s�S�.v//
p

s�

#
e� ˝ r N!�.s/d�

ˇ̌
ˇ̌
ˇ

�
2C!1

�!d

Z
H1.0/

J .j�j/

ˇ̌
ˇ̌F 0

1

p
s�S�.u//
p

s�

�
F 0

1.
p

s�S�.v//
p

s�

ˇ̌
ˇ̌ d�

�
2C!1C2

�!d

Z
H1.0/

J .j�j/jS�.u/ � S�.v/jd�: (73)

Above is similar to (64) and therefore we get

jjg2.u/ � g2.v/jj �
4C!1C2

NJ1

�2
jju � vjjW D

C!1L1

�2
jju � vjjW : (74)

Combining (72) and (74) to write

jjrP .u/ � rP .v/jj �

p
�.1 C C!1/L1 C L2.jjujjW C jjvjjW /

�5=2
jju � vjjW : (75)

Estimating jjr2P .u/ � r2P .v/jj. From (63), we have

jjr2P .u/ � r2P .v/jj

� jjh1.u/ � h1.v/jj C jjh2.u/ � h2.v/jj C jjh3.u/ � h3.v/jj

C jjh4.u/ � h4.v/jj C jjh5.u/ � h5.v/jj: (76)

We can show, using the fact j N!�.x/j � 1 and jF 00
1 .r1/ � F 00

1 .r2/j � C3jr1 � r2j, that

jh1.u/.x/ � h1.v/.x/j �
2C3

�!d

Z
H1.0/

J .j�j/
p

s� jS�.u/ � S�.v/jjS�.r2u/jd�

C
2C2

�!d

Z
H1.0/

J .j�j/jS�.r
2u/ � S�.r2v/jd�

D I3.x/ C I4.x/: (77)

Following similar steps used above, we can show

jjI3jj �
8C3

NJ3=2jjujjW

�5=2
jju � vjjW �

L2.jjujjW C jjvjjW /

�5=2
jju � vjjW (78)

and

jjI4jj �
4C2

NJ1

�2
jju � vjjW D

L1

�2
jju � vjjW ; (79)
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where L1 D 4C2
NJ1, L2 D 8C3

NJ3=2.
Next we focus on jh2.u/.x/ � h2.v/.x/j and get

jh2.u/.x/ � h2.v/.x/j

�
2

�!d

Z
H1.0/

J .j�j/
p

s� jF 000
1 .

p
s�S�.u// � F 000

1 .
p

s�S�.v//jjS�.ru/j2d�

C
2

�!d

Z
H1.0/

J .j�j/
p

s� jF 000
1 .

p
s�S�.v//jjS�.ru/ ˝ S�.ru/

� S�.rv/ ˝ S�.rv/jd� �
2C4

�!d

Z
H1.0/

J .j�j/s� jS�.u/ � S�.v/jjS�.ru/j2d�

C
2C3

�!d

Z
H1.0/

J .j�j/
p

s� jS�.ru/ ˝ S�.ru/ � S�.rv/ ˝ S�.rv/jd�

D I5.x/ C I6.x/: (80)

Proceeding as below for jjI5jj2

jjI5jj2

�

Z
D

�
2C4

�!d

�2 Z
H1.0/

Z
H1.0/

J .j�j/

j�j2
J .j�j/

j�j2
j�j2s� j�j2s�

� jS�.u/ � S�.v/jjS�.ru/j2jS�.u/ � S�.v/jjS�.ru/j2d�d�dx

�

Z
D

�
2C4

�!d

�2

!d
NJ2

Z
H1.0/

J .j�j/

j�j2
j�j4s2

� jS�.u/ � S�.v/j2jS�.ru/j4d�dx

�

�
2C4

�!d

�2

!d
NJ2

Z
H1.0/

J .j�j/

j�j2
j�j4s2

�

4jju � vjj21
�2j�j2

�Z
D

jS�.ru/j4dx

�
d�: (81)

We estimate the term in square bracket. Using the identity .jajCjbj/4 � .2jaj2 C

2jbj2/2 � 8jaj4 C 8jbj4, we have

Z
D

jS�.ru/j4dx �
8

�4j�j4

Z
D

.jru.x C ��/j4 C jru.x/j4/dx

�
16

�4j�j4
jjrujj4

L4.DIRd�d /
: (82)

where jjujjL4.D;Rd / D
�R

D
juj4dx

�1=4
. Using Sobolev embedding property of u 2

H 2
0 .DIRd / as mentioned in (51), we get
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Z
D

jS�.ru/j4dx �
16

�4j�j4
C 4

e jjrujj4
H 1.DIRd�d /

�
16C 4

e

�4j�j4
jjujj4W : (83)

Substituting above to get

jjI5jj2 �

�
2C4

�!d

�2

!d
NJ2

Z
H1.0/

J .j�j/

j�j2
j�j4s2

�

4jju � vjj21
�2j�j2

16C 4
e

�4j�j4
jjujj4W d�

Above gives

jjI5jj �
16C4C 2

e
NJ2jjujj2W

�3
jju � vjjW �

L3.jjujjW C jjvjjW /2

�3
jju � vjjW (84)

where we let L3 D 16C4C 2
e

NJ2.
Next, using

jS�.ru/ ˝ S�.ru/�S�.rv/ ˝ S�.rv/j � .jS�.ru/jCjS�.rv/j/jS�.ru/�S�.rv/j

to estimate jjI6jj as follows:

jjI6jj2

�

Z
D

�
2C3

�!d

�2 Z
H1.0/

Z
H1.0/

J .j�j/

j�j3=2

J .j�j/

j�j3=2
j�j3=2j�j3=2p

s�s�

� .jS�.ru/j C jS�.rv/j/jS�.ru/ � S�.rv/j � .jS�.ru/j C jS�.rv/j/jS�.ru/

� S�.rv/jd�d�dx �

Z
D

�
2C3

�!d

�2

!d
NJ3=2

Z
H1.0/

J .j�j/

j�j3=2
j�j3�j�j.jS�.ru/j

C jS�.rv/j/2jS�.ru/ � S�.rv/j2d�dxD

�
2C3

�!d

�2

!d
NJ3=2

Z
H1.0/

J .j�j/

j�j3=2
j�j3�j�j

�Z
D

.jS�.ru/j C jS�.rv/j/2jS�.ru/ � S�.rv/j2dx

�
d�: (85)

We focus on the term in square bracket. Using Holder inequality, we have

Z
D

.jS�.ru/j C jS�.rv/j/2jS�.ru/ � S�.rv/j2dx

�

�Z
D

.jS�.ru/j C jS�.rv/j/4dx

�1=2 �Z
D

jS�.ru/ � S�.rv/j4dx

�1=2

: (86)
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Using .jaj C jbj/4 � 8jaj4 C 8jbj4, we get

Z
D

.jS�.ru/j C jS�.rv/j/4dx � 8

�Z
D

jS�.ru/j4dx C

Z
D

jS�.rv/j4dx

�

� 8

�
8

�4j�j4

Z
D

.jru.x C ��/j4 C jru.x/j4/dx C
8

�4j�j4

Z
D

.jrv.x C ��/j4

Cjrv.x/j4/dx

�
�

128

�4j�j4
.jjrujj4

L4.DIRd�d /
C jjrvjj4

L4.DIRd�d /
/

�
128C 4

e

�4j�j4
.jjrujj4

H 1.DIRd�d /
C jjrvjj4

H 1.DIRd�d /
/ �

128C 4
e

�4j�j4
.jjujj4W C jjvjj4W /

�
128C 4

e

�4j�j4
.jjujjW C jjvjjW /4: (87)

where we used Sobolev embedding property (51) in third last step. Proceeding
similarly to get

Z
D

jS�.ru/ � S�.rv/j4dx

�
8

�4j�j4

�Z
D

jr.u � v/.x C ��/j4dx C

Z
D

jr.u � v/.x/j4dx

�

�
16

�4j�j4
jjr.u � v/jj4

L4.D;Rd�d /

�
16C 4

e

�4j�j4
jju � vjj4W : (88)

Substituting (87) and (88) into (86) to get

Z
D

.jS�.ru/j C jS�.rv/j/2jS�.ru/ � S�.rv/j2dx

�

�
128C 4

e

�4j�j4
.jjujjW C jjvjjW /4

�1=2 �
16C 4

e

�4j�j4
jju � vjj4W

�1=2

D
32

p
2C 4

e

�4j�j4
.jjujjW C jjvjjW /2jju � vjj2W

�
64C 4

e

�4j�j4
.jjujjW C jjvjjW /2jju � vjj2W :
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Substituting above in (85) to get

jjI6jj2

�

�
2C3

�!d

�2

!d
NJ3=2

Z
H1.0/

J .j�j/

j�j3=2
j�j3�j�j

�
64C 4

e

�4j�j4
.jjujjW C jjvjjW /2jju � vjj2W

�
d�:

From above we have

jjI6jj �
16C3C 2

e
NJ3=2.jjujjW CjjvjjW /

�5=2
jju � vjjW D

L4.jjujjW C jjvjjW /

�5=2
jju� vjjW ;

(89)

where we let L4 D 16C3C 2
e

NJ3=2.
From the expression of h3.u/.x/ and h5.u/.x/, we find that it is similar to term

g1.u/.x/ from the point of view of L2 norm. Also, h4.u/.x/ is similar to P .u/.x/.
We easily have

jh4.u/.x/ � h4.v/.x/j �
2C2C!2

�!d

Z
H1.0/

J .j�j/jS�.u/ � S�.v/jd�;

where we used the fact that jr2 N!�.x/j � C!2 . Above is similar to the bound on
jP .u/.x/ � P .v/.x/j (see (64)); therefore we have

jjh4.u/ � h4.v/jj �
L1C!2

�2
jju � vjjW : (90)

Similarly, we have

jh3.u/.x/ � h3.v/.x/j �
2

�!d

Z
H1.0/

J .j�j/jF 00
1 .

p
s�S�.u//

� F 00
1 .

p
s�S�.v//jjr N!�.x/jjS�.ru/jd� C

2

�!d

Z
H1.0/

J .j�j/jF 00
1 .

p
s�S�.v//jje�

˝ r N!�.x/ ˝ S�.ru/ � e� ˝ r N!�.x/ ˝ S�.rv/jd� �
2C3C!1

�!d

Z
H1.0/

(91)

J .j�j/
p

s� jS�.u/ � S�.v/jjS�.ru/jd� C
2C2C!1

�!d

Z
H1.0/

J .j�j/jS�.ru/

� S�.rv/jd� D C!1.I1.x/ C I2.x//;
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where I1.x/ and I2.x/ are given by (68). From (70) to (71), we have

jjh3.u/ � h3.v/jj � C!1.jjI1jj C jjI2jj/

�

p
�C!1L1 C C!1L2.jjujjW C jjvjjW /

�5=2
jju � vjjW : (92)

Expression of h3.u/ and h5.u/ is similar and hence we have

jjh5.u/ � h5.v/jj � C!1.jjI1jj C jjI2jj/

�

p
�C!1L1 C C!1L2.jjujjW C jjvjjW /

�5=2
jju � vjjW : (93)

Collecting our results delivers the bound

jjr2P .u/ � r2P .v/jj

�

�
�L1C

p
�L2.jjujjW CjjvjjW /CL3.jjujjW CjjvjjW /2C

p
�L4.jjujjW CjjvjjW /

�3

C
�C!2L1 C 2�C!1L1 C 2

p
�C!1L2.jjujjW C jjvjjW /

�3

�
jju � vjjW

�

�
�.1 C 2C!1 C C!2/L1 C

p
�.L2 C 2C!1L2 C L4/.jjujjW C jjvjjW /

�3

C
L3.jjujjW C jjvjjW /2

�3

�
jju � vjjW : (94)

We now combine (65), (67), (75), and (94) to get

jjP .u/ � P .v/jjW

�

�
2�L1 C �.1 C C!1/L1 C

p
�.jjujjW C jjvjjW /

�3

C
�.1 C 2C!1 C C!2/L1 C

p
�.L2 C 2C!1L2 C L4/.jjujjW C jjvjjW /

�3

C
L3.jjujjW C jjvjjW /2

�3

�
jju � vjjW : (95)

Finally we let

NL1 WD .4 C 3C!1 C C!2/L1; NL2 WD .1 C 2C!1/L2 C L4; NL3 WD L3 (96)
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and write

jjP .u/ � P .v/jjW

�
NL1 C NL2.jjujjW C jjvjjW / C NL3.jjujjW C jjvjjW /2

�3
jju � vjjW : (97)

This completes the proof of (55).
We now obtain an upper bound on the peridynamic force. Note that F 0

1.0/ D 0

and S�.v/ D 0 if v D 0. Substituting v D 0 in (65) and (67) to get

jjP .u/jj C jjP .u/jj1 �
2L1

�2
jjujjW : (98)

For jjg1.u/jj and jjg2.u/jj we proceed differently. For jjg2.u/jj, we substitute v D 0

in (74) to get

jjg2.u/jj �
C!1L1

�2
jjujjW : (99)

To estimate jjg1.u/jj, we first estimate

jg1.u/.x/j �
2C2

�!d

Z
H1.0/

J .j�j/jrS�.u/jd�

�
2C2

�2!d

Z
H1.0/

J .j�j/

j�j
.jru.x C ��/j C jru.x/j/d�; (100)

and we obtain

jjg1.u/jj2 �

�
2C2

�2!d

�2

!d
NJ1

Z
H1.0/

J .j�j/

j�j

�Z
D

.jru.x C ��/j C jru.x/j/2dx

�
d�

�

 
4C2

NJ1

�2

!2

jjrujj2 (101)

i.e.

jjg1.u/jj �
L1

�2
jjujjW : (102)

Combining (99) and (102) gives

jjrP .u/jj �
.1 C C!1/L1

�2
jjujjW : (103)
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We need to estimate jjr2P .u/jj. We have from (63)

jjr2P .u/jj � jjh1.u/jj C jjh2.u/jj C jjh3.u/jj C jjh4.u/jj C jjh5.u/jj:

From the expression of h1.u/ and h2.u/, we find that

jjh1.u/jj�
4C2

NJ1

�2
jjujjW D

L1

�2
jjujjW and jjh2.u/jj�

8C3C 2
e

NJ3=2

�5=2
jjujj2W �

L4

�5=2
jjujj2W ;

where L4 D 16C3C 2
e

NJ3=2. Case of jjh3.u/jj and jjh5.u/jj is similar to jjg1.u/jj, and
case of jjh4.u/jj is similar to jjP .u/jj.

jjh4.u/jj �
C!2L1

�2
jjujjW

and

jjh3.u/jj �
C!1L1

�2
jjujjW and jjh5.u/jj �

C!1L1

�2
jjujjW :

We combine the inequalities listed above to get

jjr2P .u/jj �

p
�.1 C C!2 C 2C!1/L1 C L4jjujjW

�5=2
jjujjW : (104)

Finally, after combining (98), (103), and (104), we get

jjP .u/jjW �

p
�.4 C 3C!1 C C!2/L1 C L4jjujjW

�5=2
jjujjW :

We let

NL4 WD NL1 and NL5 WD L4 (105)

to write

jjP .u/jjW �
NL4jjujjW C NL5jjujj2W

�5=2
: (106)

This completes the proof of (56) and this completes the proof of Theorem 3.

Local and Global Existence of Solution in H2 \ L1 Space

We now prove Theorem 4. We first prove local existence for a finite time interval.
We find that we can choose this time interval independent of the initial data. We
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repeat the local existence theorem to uniquely continue the local solution over any
finite time interval. The existence and uniqueness of local solutions is stated in the
following theorem.

Theorem 5 (Local existence and uniqueness). Given X D W � W , b.t/ 2 W ,
and initial data x0 D .u0; v0/ 2 X . We suppose that b.t/ is continuous in time over
some time interval I0 D .�T; T / and satisfies supt2I0

jjb.t/jjW < 1. Then, there
exists a time interval I 0 D .�T 0; T 0/ � I0 and unique solution y D .y1; y2/ such
that y 2 C 1.I 0I X/ and

y.t/ D x0 C

Z t

0

F �.y.
/; 
/ d
; for t 2 I 0 (107)

or equivalently

y0.t/ D F �.y.t/; t/;with y.0/ D x0; for t 2 I 0

where y.t/ and y0.t/ are Lipschitz continuous in time for t 2 I 0 � I0.

Proof. To prove Theorem 5, we proceed as follows. Write y.t/ D .y1.t/; y2.t//

with jjyjjX D jjy1.t/jjW C jjy2.t/jjW . Let us consider R > jjx0jjX and define the
ball B.0; R/ D fy 2 X W jjyjjX < Rg. Let r < minf1; R � jjx0jjX g. We clearly
have r2 < .R � jjx0jjX /2 as well as r2 < r < R � jjx0jjX . Consider the ball
B.x0; r2/ defined by

B.x0; r2/ D fy 2 X W jjy � x0jjX < r2g: (108)

Then we have B.x0; r2/ � B.x0; r/ � B.0; R/ (see Fig. 7).
To recover the existence and uniqueness, we introduce the transformation

Sx0.y/.t/ D x0 C

Z t

0

F �.y.
/; 
/ d
:

Fig. 7 Geometry

x0
B(x0, r)

B(x0, r2)

0 R

B(0, R)
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Introduce 0 < T 0 < T and the associated set Y .T 0/ of functions in W taking
values in B.x0; r2/ for I 0 D .�T 0; T 0/ � I0 D .�T; T /. The goal is to find
appropriate interval I 0 D .�T 0; T 0/ for which Sx0 maps into the corresponding
set Y .T 0/. Writing out the transformation with y.t/ 2 Y .T 0/ gives

S1
x0

.y/.t/ D x1
0 C

Z t

0

y2.
/ d
 (109)

S2
x0

.y/.t/ D x2
0 C

Z t

0

.�rPD�.y1.
// C b.
// d
: (110)

We have from (109)

jjS1
x0

.y/.t/ � x1
0 jjW � sup

t2.�T 0;T 0/

jjy2.t/jjW T 0: (111)

Using bound on �rPD� in Theorem 3, we have from (110)

jjS2
x0

.y/.t/ � x2
0 jjW �

Z t

0

"
NL4

�5=2
jjy1.
/jjW C

NL5

�5=2
jjy1.
/jj2W C jjb.
/jjW

#
d
:

(112)
Let Nb D supt2I0

jjb.t/jjW . Noting that transformation Sx0 is defined for t 2 I 0 D

.�T 0; T 0/ and y.
/ D .y1.
/; y2.
// 2 B.x0; r2/ � B.0; R/ as y 2 Y .T 0/, we
have from (112) and (111)

jjS1
x0

.y/.t/ � x1
0 jjW � RT 0;

jjS2
x0

.y/.t/ � x2
0 jjW �

"
NL4R C NL5R2

�5=2
C Nb

#
T 0:

Adding gives

jjSx0.y/.t/ � x0jjX �

"
NL4R C NL5R2

�5=2
C R C Nb

#
T 0: (113)

Choosing T 0 as below

T 0 <
r2h

NL4RC NL5R2

�5=2 C R C Nb
i (114)

will result in Sx0.y/ 2 Y .T 0/ for all y 2 Y .T 0/ as

jjSx0.y/.t/ � x0jjX < r2: (115)
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Since r2 < .R � jjx0jjX /2, we have

T 0 <
r2h

NL4RC NL5R2

�5=2 C R C Nb
i <

.R � jjx0jjX /2h
NL4RC NL5R2

�5=2 C R C Nb
i :

Let �.R/ be given by

�.R/ WD
.R � jjx0jjX /2h

NL4RC NL5R2

�5=2 C R C Nb
i : (116)

�.R/ is increasing with R > 0 and satisfies

�1 WD lim
R!1

�.R/ D
�5=2

NL5

: (117)

So given R and jjx0jjX , we choose T 0 according to

�.R/

2
< T 0 < �.R/; (118)

and set I 0 D .�T 0; T 0/. This way we have shown that for time domain I 0 the
transformation Sx0.y/.t/ as defined in Eqs. 109 and 110 maps Y .T 0/ into itself.
Existence and uniqueness of solution can be established using (Theorem 6.10,
Driver 2003). ut

We now prove Theorem 1. From the proof of Theorem 2 above, we have a unique
local solution over a time domain .�T 0; T 0/ with �.R/

2
< T 0. Since �.R/ % �5=2= NL5

as R % 1, we can fix a tolerance � > 0 so that Œ.�5=2=2 NL5/ � �� > 0. Then for any
initial condition in W and b D supt2Œ�T;T / jjb.t/jjW , we can choose R sufficiently
large so that jjx0jjX < R and 0 < .�5=2=2 NL5/ � � < T 0. Since choice of T 0 is
independent of initial condition and R, we can always find local solutions for time
intervals .�T 0; T 0/ for T 0 larger than Œ.�5=2=2 NL5/ � �� > 0. Therefore we apply the
local existence and uniqueness result to uniquely continue local solutions up to an
arbitrary time interval .�T; T /.

Conclusions: Convergence of Regular Solutions in the Limit of
Vanishing Horizon

In this final section, we examine the behavior of bounded Hölder continuous
solutions as the peridynamic horizon tends to zero. We find that the solutions
converge to a limiting sharp fracture evolution with bounded Griffiths fracture
energy and satisfy the linear elastic wave equation away from the fracture set.
We look at a subset of Hölder solutions that are differentiable in the spatial
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variables to show that sharp fracture evolutions can be approached by spatially
smooth evolutions in the limit of vanishing nonlocality. As � approaches zero,
derivatives can become large but must localize to surfaces across which the limiting
evolution jumps. These conclusions are reported in Jha and Lipton (2017b). The
same behavior can be recovered for bounded H 2 solutions in the limit of vanishing
horizon. These results support the numerical simulation for more regular nonlocal
evolutions that approximate sharp fracture in the limit of vanishing nonlocality. In
the next chapter we provide a priori estimates of the finite difference and finite
element approximations to fracture evolution for nonlocal models with horizon
� > 0.

To fix ideas consider a sequence of peridynamic horizons �k D 1=k, k D 1; : : :

and the associated Hölder continuous solutions u�k .t; x/ of the peridynamic initial
value problem Eqs. 1, 2, and 3. We assume that the initial conditions u�k

0 ; v
�k

0 have
uniformly bounded peridynamic energy and mean square initial velocity given by

sup
�k

PD�k .u�k

0 / < 1 and sup
�k

jjv
�k

0 jjL2.DIRd / < 1:

Moreover we suppose that u�k

0 ; v
�k

0 are differentiable on D and that they converge in
L2.DIR/ to u0

0; v0
0 with bounded Griffith free energy given by

Z
D

2�jEu0
0j2 C �jdivu0

0j2 dx C GcHd�1.Ju0
0
/ � C < 1;

where Ju0
0

denotes an initial fracture surface given by the jumps in the initial

deformation u0
0 and H2.Ju0.t// is its two-dimensional Hausdorff measure of the

jump set. Here Eu0
0 is the elastic strain and div u0

0 D T r.Eu0
0/. The constants �,

� are given by the explicit formulas

and � D � D 1
5
f 0.0/

R 1

0
rd J .r/dr; d D 2; 3

and

Gc D
3

2
f1

Z 1

0

rd J .r/dr; d D 2; 3;

where f 0.0/ and f1 are defined by Eq. 6. Here � D � and is a consequence of the
central force model used in cohesive dynamics. Last we suppose as in Lipton (2016)
that the solutions are uniformly bounded, i.e.,

sup
�k

sup
Œ0;T �

jju�k .t/jjL1.DIRd / < 1;

The Hölder solutions u�k .t; x/ naturally belong to L2.DIRd / for all t 2 Œ0; T �,
and we can directly apply the Gronwall inequality (Equation (6.9) of Lipton
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2016) together with Theorems 6.2 and 6.4 of Lipton (2016) to conclude similar
to Theorems 5.1 and 5.2 of Lipton (2016) that there is at least one “cluster
point” u0.t; x/ belonging to C .Œ0; T �I L2.DIRd // and subsequence, also denoted
by u�k .t; x/ for which

lim
�k!0

max
0�t�T

˚
ku�k .t/ � u0.t/kL2.DIRd /


D 0:

Moreover it follows from Lipton (2016) that the limit evolution u0.t; x/ has a weak
derivative u0

t .t; x/ belonging to L2.Œ0; T � � DIRd /. For each time t 2 Œ0; T �, we
can apply methods outlined in Lipton (2016) to find that the cluster point u0.t; x/

is a special function of bounded deformation (see Ambrosio et al. 1997; Bellettini
et al. 1998) and has bounded linear elastic fracture energy given by

Z
D

2�jEu0.t/j2 C �jdivu0.t/j2 dx C GcH2.Ju0.t// � C;

for 0 � t � T where Ju0.t/ denotes the evolving fracture surface The deformation-
crack set pair .u0.t/; Ju0.t// records the brittle fracture evolution of the limit
dynamics.

Arguments identical to Lipton (2016) show that away from sets where
jS.y; xIu�k /j > Sc , the limit u0 satisfies the linear elastic wave equation. This
is stated as follows: Fix ı > 0 and for �k < ı and 0 � t � T consider the open set
D0 � D for which points x in D0 and y for which jy � xj < �k satisfy,

jS.y; xIu�k .t//j < Sc.y; x/:

Then the limit evolution u0.t; x/ evolves elastodynamically on D0 and is governed
by the balance of linear momentum expressed by the Navier-Lamé equations on the
domain Œ0; T � � D0 given by

u0
t t .t/ D div� .t/ C b.t/; on Œ0; T � � D0;

where the stress tensor � is given by

� D �Id T r.E u0/ C 2�Eu0;

where Id is the identity on R
d and T r.E u0/ is the trace of the strain. Here the

second derivative u0
t t is the time derivative in the sense of distributions of u0

t , and
div� is the divergence of the stress tensor � in the distributional sense. This shows
that sharp fracture evolutions can be approached by spatially smooth evolutions in
the limit of vanishing nonlocality.

Acknowledgements This material is based upon work supported by the US Army Research
Laboratory and the US Army Research Office under contract/grant number W911NF1610456.
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Abstract

In this chapter we present a rigorous convergence analysis of finite difference
and finite element approximation of nonlinear nonlocal models. In the previous
chapter, we considered a differentiable version of the original bond-based
model introduced in Silling (J Mech Phys Solids 48(1):175–209, 2000). There
we showed, for a fixed horizon of nonlocal interaction �, that well-posed
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formulations of the model can be developed over Hölder spaces and Sobolev
spaces. In this chapter we apply these formulations to show a priori convergence
for the discrete finite difference and finite element methods. We show that the
error made using the forward Euler in time and a finite difference (i.e., piecewise
constant) discretization in space with time step �t and spatial discretization h is
of the order of O.�t Ch=�2/. For a central difference approximation in time and
piecewise linear finite element approximation in space, the approximation error is
of the order ofO.�tCh2=�2/. We point out these are the first such error estimates
for nonlinear nonlocal fracture formulations and are reported in Jha and Lipton
(2017b Numerical analysis of nonlocal fracture models models in holder space.
arXiv preprint arXiv:1701.02818. To appear in SIAM Journal on Numerical
Analysis 2018) and Jha and Lipton (2017a, Finite element approximation of
nonlocal fracture models. arXiv preprint arXiv:1710.07661). We then go on
to prove the stability of the semi-discrete approximation and show that the
energy of the discrete approximation is bounded in terms of work done by
the body force and initial energy put into the system. We look forward to
improvements and development of a posteriori error estimation in the coming
years.

Keywords
Peridynamic modeling · Finite differences · Finite elements · Stability ·
Convergence

Introduction

In this chapter we present a rigorous convergence analysis of finite difference and
finite element approximation of nonlinear nonlocal fracture models. The model
considered in this work is a differentiable version of the original peridynamic bond-
based model introduced in Silling (2000) and analyzed in Lipton (2014, 2016).
It is a bond-based model characterized by a nonlinear double-well potential. As
discussed in the previous chapter, the nonlocal evolution converges to a sharp
fracture evolution with bounded Griffith fracture energy as the length scale of
nonlocality � tends to zero. In this limit the displacement field satisfies the linear
elastic wave equation off the fracture set.

We first consider the forward Euler time discretization and finite difference
approximations in space with a uniform square mesh in 2-d and cubic mesh in 3-d.
The mesh size is taken to be h and the time step is �t . An a priori bound on the
error is obtained for solutions in the Hölder space C

0;�
0 .DIRd /, where � 2 .0; 1�

is the Hölder exponent, D is the material domain, and d D 2; 3 is the dimension.
The rate of convergence is shown to be no larger than O.�t C h� =�2/. We also
show stability of the semi-discrete approximation. The semi-discrete evolution is
shown to be uniformly bounded in time in terms of initial energy and the work done
by body force. In this chapter we prove all results for the forward Euler in time
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discretization, and we refer to Jha and Lipton (2017b) for the general single-step
time discretization.

Next we consider central differences in time and a finite element discretization
in space using triangular or tetrahedral meshes and conforming linear elements.
Assuming H 2

0 .DIRd / solutions, we estimate the error and obtain a convergence rate
of O.�t C h2=�2/. We show that the semi-discrete evolution for the finite element
scheme is also stable in time. We provide a stability analysis of the fully discrete
problem, for the linearized peridynamic force. For this case we exhibit a CFL-like
stability condition for the time step �t .

The results presented here show that convergence requires h� < �2 for the finite
difference case while h2 < �2 (or h < �) for the finite element case. The technical
reason for the appearance of the factor 1=�2 in these convergence rates is that we
are numerically approximating a nonlinear but Lipschitz continuous vector valued
ODE. Here the vector space is the space of square integrable displacement fields,
and the 1=�2 factor is proportional to the Lipschitz constant of the nonlocal nonlinear
force acting on mean square integrable displacement fields. Our results requiring
h < � are consistent with the earlier work of Tian and Du (2014) for linear nonlocal
forces and finite element approximations applied to equilibrium problems. We point
out that the nonlocal nonlinear models treated here are identified with sharp fracture
evolutions as � ! 0 (see Lipton 2014, 2016). However a convergence rate with
respect to � remains to be established. We discuss this aspect in the conclusions
section.

There is a rapidly growing literature in peridynamic modeling and analysis (see,
e.g., Emmrich et al. 2007; Du and Zhou 2011; Foster et al. 2011; Aksoylu and
Parks 2011; Du et al. 2013a; Dayal 2017; Emmrich et al. 2013; Mengesha and Du
2013; Lipton 2014, 2016; Lipton et al. 2016; Emmrich and Puhst 2016; Du, Tao,
and Tian 2017; Lipton et al. 2018; Aksoylu and Mengesha 2010; Mengesha and Du
2013, 2014; Aksoylu and Unlu 2014). In Macek and Silling (2007), Gerstle et al.
(2007), Littlewood (2010), the finite element method is applied to the peridynamics
formulation for the simulation of cracks. In Du et al. (2013b), the finite element
approximation of linear peridynamic models for general quasistatic evolutions is
analyzed. For linear elastic local models, the stability of the general Newmark time
discretization is shown in Baker (1976), Grote and Schötzau (2009), and Karaa
(2012). This behavior is shown to persist for elastic nonlocal models in Guan and
Gunzburger (2015). In Chen and Gunzburger (2011), the finite element approxima-
tion with continuous and discontinuous elements is developed for nonlocal problems
in one dimension. A numerical analysis of linear peridynamics models for a 1-d bar
has been carried out in Weckner and Emmrich (2005) and Bobaru et al. (2009).
In Tian and Du (2014) and Tian et al. (2016a,b), an asymptotically compatible
approximation scheme is identified. In Askari et al. (2008), Silling et al. (2010),
Ha and Bobaru (2011), Agwai et al. (2011), Bobaru and Hu (2012), and Zhang et al.
(2016), crack prediction and crack branching phenomenon are analyzed through
peridynamics. The list of references is by no means complete; additional references
to the literature can be found in this handbook.
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Review of the Nonlocal Model

We define the strain associated with the displacement field u.x/ as

S.u/ D S.y; xIu/ D
u.y/ � u.x/

jy � xj
� ey�x and ey�x D

y � x

jy � xj
: (1)

We consider the following type of potential (see Figs. 1 and 2)

W �.S; y � x/ D !.x/!.y/
J �.jy � xj/

�
f .jy � xjS2/; (2)

where the function f W RC ! R is positive, smooth, and concave and satisfies the
following properties

lim
r!0C

f .r/

r
D f 0.0/; lim

r!1
f .r/ D f1 < 1: (3)

Fig. 1 Two-point potential
W �.S; y � x/ as a function
of strain S for fixed y � x

Fig. 2 Nonlocal force
@S W �.S; y � x/ as a function
of strain S for fixed y � x.
Second derivative of
W �.S; y � x/ is zero at
˙Nr=

p
jy � xj
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The function J �.r/ D J .r=�/ is the influence function where 0 � J .jxj/ � M for
x 2 H1.0/ and J D 0 outside. The boundary function 0 � !.x/ � 1 takes the value
0 on the boundary @D of the material domain D. For x 2 D, a distance � away from
boundary, !.x/ is 1 and smoothly decreases from 1 to zero as x approaches @D.

In the sequel we will set

N!.x/ D !.x/!.x C ��/ (4)

and we assume

jr N!j � C!1 < 1 and jr2 N!j � C!2 < 1:

The peridynamic force is written �rPD� and given by

� rPD�.u/.x/

D
2

�d !d

Z

H�.x/

@S W �.S; y � x/
y � x

jy � xj
dy

D
4

�dC1!d

Z

H�.x/

!.x/!.y/J �.jy � xj/f 0.jy � xjS.u/2/S.u/ey�xdy; (5)

Peridynamics Equation

Let u W Œ0; T ��D ! R
d be the displacement field such that it satisfies the following

evolution equation

�@2
t tu.t; x/ D �rPD�.u.t//.x/ C b.t; x/; (6)

where b.t; x/ is the body force and � is the density. We will assume � D 1

throughout the chapter. The initial condition is given by

u.0; x/ D u0.x/ and @tu.0; x/ D v0.x/ (7)

and the boundary condition is given by

u.t; x/ D 0 8x 2 @D; 8t 2 Œ0; T �: (8)

Throughout this chapter, we will assume u D 0 on the boundary @D and is extended
outside D by zero.

Additionally we can also write the evolution in weak form by multiplying Eq. 6
by a smooth test function Qu with Qu D 0 on @D to get

. Ru.t/; Qu/ D .�rPD�.u.t//; Qu/ C .b.t/; Qu/:
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We denote L2 dot product of u; v as .u; v/. An integration by parts easily shows for
all smooth u; v taking zero boundary values that

.�rPD�.u/; v/ D �a�.u; v/;

where

a�.u; v/

D
2

�dC1!d

Z

D

Z

H�.x/

!.x/!.y/J �.jy � xj/

f 0.jy � xjS.u/2/jy � xjS.u/S.v/dydx: (9)

Weak form of the evolution in terms of operator a� becomes

. Ru.t/; Qu/ C a�.u.t/; Qu/ D .b.t/; Qu/: (10)

Last we introduce the peridynamic energy. The total energy E�.u/.t/ is given by
the sum of kinetic and potential energy given by

E�.u/.t/ D
1

2
jj Pu.t/jjL2.DIRd / C PD�.u.t//; (11)

where potential energy PD� is given by

PD�.u/ D

Z

D

�
1

�d !d

Z

H�.x/

W �.S.u/; y � x/dy

�
dx:

We state the following equation which will be used later in the chapter

d

dt
E�.u/.t/ D . Ru.t/; Pu.t// � .�rPD�.u.t//; Pu.t//: (12)

In order to develop the approximation theory in the following sections, we find
it convenient to write the evolution Eq. 6 as an equivalent first order system with
y1.t/ D u.t/ and y2.t/ D v.t/ with v.t/ D @tu.t/. Let y D .y1; y2/T where
at each time y1; y2 belong to the same function space V , and let F �.y; t/ D

.F �
1 .y; t/; F �

2 .y; t//T such that

F �
1 .y; t/ WD y2 (13)

F �
2 .y; t/ WD �rPD�.y1/ C b.t/: (14)

The initial boundary value associated with the evolution Eq. 6 is equivalent to the
initial boundary value problem for the first order system given by
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d

dt
y D F �.y; t/; (15)

with initial condition given by y.0/ D .u0; v0/T 2 X D V � V .
To establish the error estimates, we will use the Lipschitz property of the

peridynamic force in X D L2.DIRd / � L2.DIRd /. It is given by Theorem 6.1
of Lipton 2016.

Theorem 1.

jjF �.y; t/ � F �.z; t /jjX �
L

�2
jjy � zjjX 8y; z 2 X; 8t 2 Œ0; T � (16)

for all y; z 2 L2.DIRd /2.
Here L does not depend on u; v.

Finite Difference Approximation

In this section, we present the finite difference scheme and compute the rate of
convergence. We also consider the semi-discrete approximation and prove the bound
on energy of semi-discrete evolution in terms of initial energy and the work done by
body forces.

Let h be the size of a mesh and �t be the size of time step. We will keep �

fixed and assume that h < � < 1. Let Dh D D \ .hZ/d be the discretization of
material domain. Let i 2 Z

d be the index such that xi D hi 2 D. Let Ui be the unit
cell of volume hd corresponding to the grid point xi , see Fig. 3. The exact solution
evaluated at grid points is denoted by .ui .t /; vi .t //.

Time Discretization

Let Œ0; T � \ .�tZ/ be the discretization of time domain where �t is the size of time
step. Denote fully discrete solution at .tk D k�t; xi D ih/ as . Ouk

i ; Ovk
i /. Similarly,

the exact solution evaluated at space-time grid points is denoted by .uk
i ; vk

i /. We
enforce the boundary condition Ouk

i D 0 for all xi … D and for all k.
We begin with the forward Euler time discretization, with respect to velocity, and

the finite difference scheme for . Ouk
i ; Ovk

i / is written

OukC1
i � Ouk

i

�t
D OvkC1

i (17)

OvkC1
i � Ovk

i

�t
D �rPD�. Ouk/.xi / C bk

i (18)
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Fig. 3 (a) Typical mesh of
size h. (b) Unit cell Ui

corresponding to material
point xi

The scheme is complemented with the discretized initial conditions Ou0
i D . Ou0/i

and Ov0
i D . Ov0/i . If we substitute Eq. 17 into Eq. 18, we get the standard central

difference scheme in time for second order in time differential equation. Here we
have assumed, without loss of generality, � D 1.

The piecewise constant extensions of the discrete sets f Ouk
i gi2Zd and fOvk

i gi2Zd are
given by

Ouk.x/ WD
X

i;xi 2D

Ouk
i �Ui .x/

Ovk.x/ WD
X

i;xi 2D

Ovk
i �Ui .x/

In this way we represent the finite difference solution as a piecewise constant
function. We will show that this function provides an L2 approximation of the exact
solution.

Convergence Results
In this section we provide upper bounds on the rate of convergence of the discrete
approximation to the solution of the peridynamic evolution. The L2 approximation
error Ek at time t k , for 0 < tk � T , is defined as

Ek WD
��
� Ouk � uk

��
�

L2.DIRd /
C
��
� Ovk � vk

��
�

L2.DIRd /

The upper bound on the convergence rate of the approximation error is given by the
following theorem.
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Theorem 2 (Convergence of finite difference approximation (forward Euler
time discretization)). Let � > 0 be fixed. Let .u; v/ be the solution of peridynamic
equation Eq. 15. We assume u; v 2 C 2.Œ0; T �I C

0;�
0 .DIRd //. Then the forward

Euler time discretization, and finite difference spatial discretization scheme given by
Eqs. 17 and 18, is consistent in both time and spatial discretization and converges
to the exact solution uniformly in time with respect to the L2.DIRd / norm. If we
assume the error at the initial step is zero, then the error Ek at time t k is bounded
and to leading order in the time step �t satisfies

sup
0�k�T =�t

Ek � O

�
Ct �t C Cs

h�

�2

�
; (19)

where constants Cs and Ct are independent of h and �t and Cs depends on the
Hölder norm of the solution and Ct depends on the L2 norms of time derivatives of
the solution.

Here we have assumed the initial error to be zero for ease of exposition only.
We remark that the explicit constants leading to Eq. 19 can be large. The

inequality that delivers Eq. 19 is given to leading order by

sup
0�k�T =�t

Ek � exp
�
T .1 C 6 NC =�2/

�
T
�
Ct �t C .Cs=�2/h�

�
; (20)

where the constants NC , Ct , and Cs are given by Eqs. 43, 45, and 46. The explicit
constant Ct depends on the spatial L2 norm of the time derivatives of the solution,
and Cs depends on the spatial Hölder continuity of the solution and the constant
NC . This constant is bounded independently of horizon �. Although the constants
are necessarily pessimistic, they deliver a priori error estimates. These constants are
discussed in Jha and Lipton (2017a) in the context of fracture experiments. Fracture
experiments are on the order of hundreds of 	-sec, and the size of the constants in
the estimate for finite element simulations remains small for tens of 	-sec. For finite
element schemes, we have a priori estimates with constants that stay small for same
order of magnitude in time as fracture experiments. These features are discussed in
Jha and Lipton (2017a,b).

Error Analysis
We define the L2 projections of the actual solutions onto the space of piecewise
constant functions defined over the cells Ui . These are given as follows. Let . Quk

i ; Qvk
i /

be the average of the exact solution .uk; vk/ in the unit cell Ui given by

Quk
i WD

1

hd

Z

Ui

uk.x/dx

Qvk
i WD

1

hd

Z

Ui

vk.x/dx
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and the L2 projection of the solution onto piecewise constant functions is . Quk; Qvk/

given by

Quk.x/ WD
X

i;xi 2D

Quk
i �Ui .x/ (21)

Qvk.x/ WD
X

i;xi 2D

Qvk
i �Ui .x/ (22)

The error between . Ouk; Ovk/T and .u.tk/; v.tk//T is now split into two parts. From
the triangle inequality, we have

��� Ouk � u.tk/
���

L2.DIRd /
�
��� Ouk � Quk

���
L2.DIRd /

C
��� Quk � uk

���
L2.DIRd /

��� Ovk � v.tk/
���

L2.DIRd /
�
��� Ovk � Qvk

���
L2.DIRd /

C
��� Qvk � vk

���
L2.DIRd /

In section “Error Analysis for Approximation of L2 Projection of the Exact
Solution” we will show that the error between the L2 projections of the actual
solution and the discrete approximation decays according to

sup
0�k�T =�t

���� Ouk � Quk
���

L2.DIRd /
C
��� Ovk � Qvk

���
L2.DIRd /

�
D O

�
�t C

h�

�2

�
: (23)

In what follows we can estimate the terms
�
�� Quk � u.tk/

�
��

L2./
and

�
�� Qvk � v.tk/

�
��

L2./
(24)

and show they go to zero at a rate of h� uniformly in time. The estimates given by
Eq. 23 together with the O.h� / estimates for Eq. 24 establish Theorem 2. We now
establish the L2 estimates for the differences Quk � u.tk/ and Qvk � v.tk/.

We write

��� Quk � uk
���

2

L2.DIRd /

D
X

i;xi 2D

Z

Ui

ˇ
ˇ̌
Quk.x/ � uk.x/

ˇ
ˇ̌2

dx

D
X

i;xi 2D

Z

Ui

ˇ̌
ˇ̌ 1

hd

Z

Ui

.uk.y/ � uk.x//dy

ˇ̌
ˇ̌
2

dx

D
X

i;xi 2D

Z

Ui

�
1

h2d

Z

Ui

Z

Ui

.uk.y/ � uk.x// � .uk.z/ � uk.x//dyd z
�

dx
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�
X

i;xi 2D

Z

Ui

�
1

hd

Z

Ui

ˇ̌
uk.y/ � uk.x/

ˇ̌2
dy

�
dx (25)

where we used Cauchy’s inequality and Jensen’s inequality. For x; y 2 Ui ,
jx � yj � ch, where c D

p
2 for d D 2 and c D

p
3 for d D 3. Since u 2 C

0;�
0

we have

ˇ̌
uk.x/ � uk.y/

ˇ̌
D jx � yj�

ˇ
ˇuk.y/ � uk.x/

ˇ
ˇ

jx � yj�

� c� h�
��uk

��
C 0;� .DIRd /

� c� h� sup
t

ku.t/kC 0;� .DIRd / (26)

and substitution in Eq. 25 gives

��� Quk � uk
���

2

L2.DIRd /
� c2� h2�

X

i;xi 2D

Z

Ui

dx

�
sup

t
ku.t/kC 0;� .DIRd /

�2

� c2� jDjh2�

�
sup

t
ku.t/kC 0;� .DIRd /

�2

:

A similar estimate can be derived for jj Qvk � vkjjL2 , and substitution of the
estimates into Eq. 24 gives

sup
k

���
� Quk � u.tk/

��
�

L2.DIRd /
C
��
� Qvk � v.tk/

��
�

L2.DIRd /

�
D O.h� /:

In the next section, we establish the error estimate (Eq. 23) for forward Euler in
section “Error Analysis for Approximation of L2 Projection of the Exact Solution.”

Error Analysis for Approximation of L2 Projection of the Exact Solution
In this subsection, we estimate the difference between approximate solution . Ouk; Ovk/

and the L2 projection of the exact solution onto piecewise constant functions given
by . Quk; Qvk/ (see Eqs. 21 and 22). Let the differences be denoted by ek.u/ WD Ouk � Quk

and ek.v/ WD Ovk � Qvk , and their evaluations at grid points are ek
i .u/ WD Ouk

i � Quk
i and

ek
i .v/ WD Ovk

i � Qvk
i . Subtracting . QukC1

i � Quk
i /=�t from Eq. 17 gives

OukC1
i � Ouk

i

�t
�

QukC1
i � Quk

i

�t

D OvkC1
i �

QukC1
i � Quk

i

�t

D OvkC1
i � QvkC1

i C

 

QvkC1
i �

@ QukC1
i

@t

!

C

 
@ QukC1

i

@t
�

QukC1
i � Quk

i

�t

!

:
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Taking the average over unit cell Ui of the exact peridynamic equation Eq. 15 at

time t k , we will get QvkC1
i �

@ QukC1
i

@t
D 0. Therefore, the equation for ek

i .u/ is given

by

ekC1
i .u/ D ek

i .u/ C �tekC1
i .v/ C �t
k

i .u/; (27)

where we identify the discretization error as


k
i .u/ WD

@ QukC1
i

@t
�

QukC1
i � Quk

i

�t
: (28)

Similarly, we subtract . QvkC1
i � Qvk

i /=�t from Eq. 18 and add and subtract terms
to get

OvkC1
i � Ovk

i

�t
�

QvkC1
i � Qvk

i

�t
D �rPD�. Ouk/.xi / C bk

i �
@vk

i

@t
C

 
@vk

i

@t
�

QvkC1
i � Qvk

i

�t

!

D �rPD�. Ouk/.xi / C bk
i �

@vk
i

@t

C

 
@ Qvk

i

@t
�

QvkC1
i � Qvk

i

�t

!

C

 
@vk

i

@t
�

@ Qvk
i

@t

!

; (29)

where we identify 
k
i .v/ as follows


k
i .v/ WD

@ Qvk
i

@t
�

QvkC1
i � Qvk

i

�t
: (30)

Note that in 
k.u/ we have
@ QukC1

i

@t
, and from the exact peridynamic equation, we

have

bk
i �

@vk
i

@t
D rPD�.uk/.xi /: (31)

Combining Eqs. 29, 30, and 31 gives

ekC1
i .v/ D ek

i .v/ C �t
k
i .v/ C �t

 
@vk

i

@t
�

@ Qvk
i

@t

!

C �t
	
�rPD�. Ouk/.xi / C rPD�.uk/.xi /
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D ek
i .v/ C �t
k

i .v/ C �t

 
@vk

i

@t
�

@ Qvk
i

@t

!

C �t
	
�rPD�. Ouk/.xi / C rPD�. Quk/.xi /




C �t
	
�rPD�. Quk/.xi / C rPD�.uk/.xi /



:

The spatial discretization error �k
i .u/ and �k

i .v/ is given by

�k
i .u/ WD

	
�rPD�. Quk/.xi / C rPD�.uk/.xi /



(32)

�k
i .v/ WD

@vk
i

@t
�

@ Qvk
i

@t
: (33)

We finally have

ekC1
i .v/ D ek

i .v/ C �t
�

k

i .v/ C �k
i .u/ C �k

i .v/
�

C �t
	
�rPD�. Ouk/.xi / C rPD�. Quk/.xi /



: (34)

We now show the consistency and stability properties of the numerical scheme.

Consistency
We deal with the error in time discretization and the error in spatial discretization
error separately. The time discretization error follows easily using the Taylor’s
series, while the spatial discretization error uses properties of the nonlinear peri-
dynamic force.

Time discretization: We first estimate the time discretization error. A Taylor
series expansion is used to estimate 
k

i .u/ as follows


k
i .u/ D

1

hd

Z

Ui

�
@uk.x/

@t
�

ukC1.x/ � uk.x/

�t

�
dx

D
1

hd

Z

Ui

�
�

1

2

@2uk.x/

@t2
�t C O..�t/2/

�
dx:

Computing the L2 norm of 
k
i .u/ and using Jensen’s inequality gives

�
�
k.u/

�
�

L2.DIRd /
�

�t

2

��
��

@2uk

@t2

��
��

L2.DIRd /

C O..�t/2/

�
�t

2
sup

t

����
@2u.t/

@t2

����
L2.DIRd /

C O..�t/2/:
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Similarly, we have

��
k.v/
��

L2.DIRd /
D

�t

2
sup

t

�
���

@2v.t/

@t2

�
���

L2.DIRd /

C O..�t/2/:

Spatial discretization: We now estimate the spatial discretization error. Substi-
tuting the definition of Qvk and following the similar steps employed in Eq. 26 gives

ˇ
ˇ�k

i .v/
ˇ
ˇD
ˇ̌
ˇ̌@vk

i

@t
�

1

hd

Z

Ui

@vk.x/

@t
dx

ˇ̌
ˇ̌�c� h�

Z

Ui

1

jxi �xj�

ˇ̌
ˇ̌@vk.xi /

@t
�

@vk.x/

@t

ˇ̌
ˇ̌ dx

� c� h�

�
���

@vk

@t

�
���

C 0;� .DIRd /

� c� h� sup
t

�
���

@v.t/

@t

�
���

C 0;� .DIRd /

:

Taking the L2 norm of error �k
i .v/ and substituting the estimate above delivers

���k.v/
��

L2.DIRd /
� h� c�

p
jDj sup

t

�
���

@v.t/

@t

�
���

C 0;� .DIRd /

:

Now we estimate
ˇ̌
�k

i .u/
ˇ̌
. Note that the force �rPD�.u/.x/ can be written as

follows

� rPD�.u/.x/ D
4

�dC1!d

Z

H�.x/

!.x/!.y/J .
jy � xj

�
/f 0.jy � xj S.y; xIu/2/

S.y; xIu/
y � x

jy � xj
dy D

4

�!d

Z

H1.0/

!.x/!.x C ��/J .j�j/f 0.� j�j

S.x C ��; xIu/2/S.x C ��; xIu/
�

j�j
d�:

where we substituted @S W � using Eq. 2. In the second step, we introduced the
change in variable y D x C ��.

Let F1 W R ! R be defined as F1.S/ D f .S2/. Then F 0
1.S/ D f 0.S2/2S .

Using the definition of F1, we have

2Sf 0.� j�j S2/ D
F 0

1.
p

� j�jS/
p

� j�j
:

Because f is assumed to be positive, smooth, and concave and is bounded far
away, we have the following bound on derivatives of F1

sup
r

ˇ̌
F 0

1.r/
ˇ̌

D F 0
1. Nr/ DW C1 (35)
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sup
r

ˇ̌
F 00

1 .r/
ˇ̌

D maxfF 00
1 .0/; F 00

1 .Ou/g DW C2 (36)

sup
r

ˇ
ˇF 000

1 .r/
ˇ
ˇ D maxfF 000

1 .Nu2/; F 000
1 .Qu2/g DW C3: (37)

where Nr is the inflection point of f .r2/, i.e., F 00
1 . Nr/ D 0. f0; Oug are the maxima

of F 00
1 .r/. fNu; Qug are the maxima of F 000

1 .r/. By chain rule and by considering
the assumption on f , we can show that Nr; Ou; Nu2; Qu2 exist and the C1; C2; C3 are
bounded. Figures 4, 5, and 6 show the generic graphs of F 0

1.r/, F 00
1 .r/, and F 000

1 .r/,
respectively.

Fig. 4 Generic plot of F 0
1 .r/.

jF 0
1 .r/j is bounded byˇ

ˇF 0
1 .Nr/

ˇ
ˇ

Fig. 5 Generic plot of
F 00

1 .r/. At ˙Nr , F 00
1 .r/ D 0.

At ˙Ou, F 000
1 .r/ D 0

r

F ′′
1 (r)

r̄−r̄

û−û

Fig. 6 Generic plot of
F 000

1 .r/. At ˙Nu2 and ˙Qu2,
F 0000

1 D 0

r

F ′′′
1 (r)

ū2

−ū2 û
−û

ũ2

−ũ2
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The nonlocal force �rPD� can be written as

� rPD�.u/.x/

D
2

�!d

Z

H1.0/

!.x/!.x C ��/J .j�j/F 0
1.
p

� j�jS.x C ��; xIu//
1

p
� j�j

�

j�j
d�:

(38)

To simplify the calculations, we use the following notation

Nu.x/ WD u.x C ��/ � u.x/;

Nu.y/ WD u.y C ��/ � u.y/;

.u � v/.x/ WD u.x/ � v.x/;

and .u � v/.x/ is defined similar to Nu.x/. Also, let

s D � j�j ; e D
�

j�j
:

In what follows, we will come across the integral of type
R

H1.0/
J .j�j/ j�j�˛ d�.

Recall that 0 � J .j�j/ � M for all � 2 H1.0/ and J .j�j/ D 0 for � … H1.0/.
Therefore, let

NJ˛ WD
1

!d

Z

H1.0/

J .j�j/ j�j�˛ d�: (39)

With notations above, we note that S.x C ��; xIu/ D Nu.x/ � e=s. �rPD� can be
written as

�rPD�.u/.x/ D
2

�!d

Z

H1.0/

!.x/!.x C ��/J .j�j/F 0
1. Nu.x/ � e=

p
s/

1
p

s
ed�:

(40)

We estimate j�rPD�.u/.x/ � .�rPD�.v/.x//j.

j�rPD�.u/.x/ � .�rPD�.v/.x//j

�

ˇ̌
ˇ̌
ˇ

2

�!d

Z

H1.0/

!.x/!.x C ��/J .j�j/

�
F 0

1. Nu.x/ � e=
p

s/ � F 0
1. Nv.x/ � e=

p
s/
�

p
s

ed�

ˇ̌
ˇ̌
ˇ

�

ˇ̌
ˇ̌ 2

�!d

Z

H1.0/

J .j�j/
1

p
s

ˇ̌
F 0

1. Nu.x/ � e=
p

s/ � F 0
1. Nv.x/ � e=

p
s/
ˇ̌
d�

ˇ̌
ˇ̌

� sup
r

ˇ
ˇF 00

1 .r/
ˇ
ˇ
ˇ̌
ˇ̌ 2

�!d

Z

H1.0/

J .j�j/
1

p
s

ˇ
ˇ Nu.x/ � e=

p
s � Nv.x/ � e=

p
s
ˇ
ˇ d�

ˇ̌
ˇ̌
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�
2C2

�!d

ˇ̌
ˇ̌
Z

H1.0/

J .j�j/
j Nu.x/ � Nv.x/j

� j�j
d�

ˇ̌
ˇ̌ : (41)

Here we have used the fact that j!.x/j � 1 and for a vector e such that jej D 1,
ja � ej � jaj holds and j˛ej � j˛j holds for all a 2 R

d ; ˛ 2 R.

We use the notation Nuk.x/ WD uk.x C ��/ � uk.x/ and Qu
k
.x/ WD Qu.x C ��/ �

Quk.x/ and choose u D uk and v D Quk in Eq. 41 to find that

ˇ̌
�k

i .u/
ˇ̌

D
ˇ̌
ˇ�rPD�. Quk/.xi / C rPD�.uk/.xi /

ˇ̌
ˇ

�
2C2

�!d

ˇ̌
ˇ̌
ˇ
ˇ

Z

H1.0/

J .j�j/

ˇ̌
ˇuk.xi C��/�Quk.xi C��/�.uk.xi /�Quk.xi //

ˇ̌
ˇ

� j�j
d�

ˇ̌
ˇ̌
ˇ
ˇ
:

(42)

Here C2 is the maximum of the second derivative of the profile describing the
potential given by Eq. 36. Following the earlier analysis (see Eq. 26), we find
that

ˇ̌
ˇuk.xi C ��/ � Quk.xi C ��/

ˇ̌
ˇ � c� h� sup

t
ku.t/kC 0;� .DIRd /

ˇ̌
ˇuk.xi / � Quk.xi /

ˇ̌
ˇ � c� h� sup

t
ku.t/kC 0;� .DIRd /:

For reference, we define the constant

NC D
C2

!d

Z

H1.0/

J .j�j/
1

j�j
d�: (43)

We now focus on Eq. 42. We substitute the above two inequalities to get

ˇ̌
�k

i .u/
ˇ̌

�
2C2

�2!d

Z

H1.0/

J .j�j/
1

j�j
	ˇ̌
ˇuk.xi C ��/ � Quk.xi C ��/

ˇ̌
ˇC

ˇ̌
ˇuk.xi / � Quk.xi /

ˇ̌
ˇ



d�

� 4h� c�
NC

�2
sup

t
ku.t/kC 0;� .DIRd /:

Therefore, we have

���k.u/
��

L2.DIRd /
� h�

 

4c�
p

jDj
NC

�2
sup

t
ku.t/kC 0;� .DIRd /

!

:

This completes the proof of consistency of numerical approximation.
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Stability
Let ek be the total error at the kth time step. It is defined as

ek WD
�
�ek.u/

�
�

L2.DIRd /
C
�
�ek.v/

�
�

L2.DIRd /
:

To simplify the calculations, we define new term 
 as


 WD sup
t

	��
k.u/
��

L2.DIRd /
C
��
k.v/

��
L2.DIRd /

C
���k.u/

��
L2.DIRd /

C
���k.v/

��
L2.DIRd /



:

From our consistency analysis, we know that to leading order


 � Ct �t C
Cs

�2
h� (44)

where,

Ct WD
1

2
sup

t

����
@2u.t/

@t2

����
L2.DIRd /

C
1

2
sup

t

����
@3u.t/

@t3

����
L2.DIRd /

; (45)

Cs WD c�
p

jDj

"

�2 sup
t

����
@2u.t/

@t2

����
C 0;� .DIRd /

C 4 NC sup
t

ku.t/kC 0;� .DIRd /

#

: (46)

We take L2 norm of Eqs. 27 and 34 and add them. Noting the definition of 
 as
above, we get

ekC1 � ek C �t
��ekC1.v/

��
L2.DIRd /

C �t


C �t

 
X

i

hd
ˇ̌
ˇ�rPD�. Ouk/.xi / C rPD�. Quk/.xi /

ˇ̌
ˇ
2

!1=2

: (47)

We only need to estimate the last term in the above equation. Similar to the
Eq. 42, we have

ˇ
ˇ̌
�rPD�. Ouk/.xi / C rPD�. Quk/.xi /

ˇ
ˇ̌

�
2C2

�2!d

Z

H1.0/

J .j�j/
1

j�j

ˇ̌
ˇ Ouk.xi C ��/ � Quk.xi C ��/ � . Ouk.xi / � Quk.xi //

ˇ̌
ˇ d�

D
2C2

�2!d

Z

H1.0/

J .j�j/
1

j�j

ˇ
ˇek.u/.xi C ��/ � ek.u/.xi /

ˇ
ˇ d�

�
2C2

�2!d

Z

H1.0/

J .j�j/
1

j�j

�ˇ̌
ek.u/.xi C ��/

ˇ̌
C
ˇ̌
ek.u/.xi /

ˇ̌�
d� :
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By ek.u/.x/ we mean evaluation of piecewise extension of set fek
i .u/gi at x. We

proceed further as follows

ˇ
ˇ̌
�rPD�. Ouk/.xi / C rPD�. Quk/.xi /

ˇ
ˇ̌2

�

�
2C2

�2!d

�2 Z

H1.0/

Z

H1.0/

J .j�j/J .j�j/
1

j�j

1

j�j
�ˇ̌

ek.u/.xi C ��/
ˇ̌
C
ˇ̌
ek.u/.xi /

ˇ̌� �ˇ̌
ek.u/.xi C ��/

ˇ̌
C
ˇ̌
ek.u/.xi /

ˇ̌�
d�d�:

Using inequality jabj � .jaj2 C jbj2/=2, we get

�ˇ̌
ek.u/.xi C ��/

ˇ̌
C
ˇ̌
ek.u/.xi /

ˇ̌� �ˇ̌
ek.u/.xi C ��/

ˇ̌
C
ˇ̌
ek.u/.xi /

ˇ̌�

� 3
	ˇ̌

ek.u/.xi C ��/
ˇ̌2

C
ˇ̌
ek.u/.xi C ��/

ˇ̌2
C
ˇ̌
ek.u/.xi /

ˇ̌2

;

and

X

xi 2D

hd
ˇ̌
ˇ�rPD�. Ouk/.xi / C rPD�. Quk/.xi /

ˇ̌
ˇ
2

�

�
2C2

�2!d

�2 Z

H1.0/

Z

H1.0/

J .j�j/J .j�j/
1

j�j

1

j�j

X

xi 2D

hd 3
	ˇ
ˇek.u/.xi C ��/

ˇ
ˇ2 C

ˇ
ˇek.u/.xi C ��/

ˇ
ˇ2 C

ˇ
ˇek.u/.xi /

ˇ
ˇ2



d�d�:

Since ek.u/.x/ D
P

xi 2D ek
i .u/�Ui .x/, we have

X

xi 2D

hd
ˇ̌
ˇ�rPD�. Ouk/.xi / C rPD�. Quk/.xi /

ˇ̌
ˇ
2

�
.6 NC /2

�4

��ek.u/
��2

L2.DIRd /
: (48)

where NC is given by Eq. 43. In summary Eq. 48 shows the Lipschitz continuity of
the peridynamic force with respect to the L2 norm (see Eq. 16) expressed in this
context as

krPD�. Ouk/.x/ � rPD�. Quk/kL2.DIRd / �
.6 NC /

�2
kek.u/kL2.DIRd /: (49)

Finally, we substitute above inequality in Eq. 47 to get

ekC1 � ek C �t
��ekC1.v/

��
L2.DIRd /

C �t
 C �t
6 NC

�2

��ek.u/
��

L2.DIRd /
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We add positive quantity �t jjekC1.u/jjL2.DIRd / C �t6 NC =�2jjek.v/jjL2.DIRd / to the
right side of above equation to get

ekC1 � .1 C �t6 NC =�2/ek C �tekC1 C �t


)ekC1 �
.1 C �t6 NC =�2/

1 � �t
ek C

�t

1 � �t

:

We recursively substitute ej on above as follows

ekC1 �
.1 C �t6 NC =�2/

1 � �t
ek C

�t

1 � �t



�

 
.1 C �t6 NC =�2/

1 � �t

!2

ek�1 C
�t

1 � �t



 

1 C
.1 C �t6 NC =�2/

1 � �t

!

� : : :

�

 
.1 C �t6 NC =�2/

1 � �t

!kC1

e0 C
�t

1 � �t



kX

j D0

 
.1 C �t6 NC =�2/

1 � �t

!k�j

: (50)

Since 1=.1 � �t/ D 1 C �t C �t2 C O.�t3/, we have

.1 C �t6 NC =�2/

1 � �t
� 1 C .1 C 6 NC =�2/�t C .1 C 6 NC =�2/�t2 C O. NC =�2/O.�t3/:

Now, for any k � T =�t , using identity .1 C a/k � expŒka� for a � 0, we have

 
1 C �t6 NC =�2

1 � �t

!k

� exp
�
k.1 C 6 NC =�2/�t C k.1 C 6 NC =�2/�t2 C kO. NC =�2/O.�t3/

�

� exp
�
T .1 C 6 NC =�2/ C T .1 C 6 NC =�2/�t C O.T NC =�2/O.�t2/

�
:

We write above equation in more compact form as follows

 
1 C �t6 NC =�2

1 � �t

!k

� exp
�
T .1 C 6 NC =�2/.1 C �t C O.�t2//

�
:

We use above estimate in Eq. 50 and get the following inequality for ek
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ekC1 � exp
�
T .1 C 6 NC =�2/.1 C �t C O.�t2//

� �
e0 C .k C 1/
�t=.1 � �t/

�

� exp
�
T .1 C 6 NC =�2/.1 C �t C O.�t2//

� �
e0 C T 
.1 C �t C O.�t2/

�
:

where we used the fact that 1=.1 � �t/ D 1 C �t C O.�t2/.
Assuming the error in initial data is zero, i.e., e0 D 0, and noting the estimate of


 in Eq. 44, we have

sup
k

ek � exp
�
T .1 C 6 NC =�2/

�
T 


and we conclude to leading order that

sup
k

ek � exp
�
T .1 C 6 NC =�2/

�
T
�
Ct �t C .Cs=�2/h�

�
; (51)

Here the constants Ct and Cs are given by Eqs. 45 and 46.This shows the stability
of the numerical scheme and Theorem 2 is proved.

Stability of the Energy for the Semi-discrete Approximation

We first spatially discretize the peridynamics equation (Eq. 6). Let f Oui .t /gi;xi 2D

denote the semi-discrete approximate solution which satisfies the following, for all
t 2 Œ0; T � and i such that xi 2 D,

ROui .t / D �rPD�. Ou.t//.xi / C bi .t / (52)

where Ou.t/ is the piecewise constant extension of discrete set f Oui .t /gi and is defined
as

Ou.t; x/ WD
X

i;xi 2D

Oui .t /�Ui .x/: (53)

The scheme is complemented with the discretized initial conditions Oui .0/ D u0.xi /

and Ovi .0/ D v0.xi /. We apply boundary condition by setting Oui .t / D 0 for all t and
for all xi … D.

We have the stability of semi-discrete evolution.

Theorem 3 (Energy stability of the semi-discrete approximation). Let f Oui .t /gi

satisfy Eq. 52 and Ou.t/ is its piecewise constant extension. Similarily let Ob.t; x/

denote the piecewise constant extension of fb.t; xi /gi;xi 2D . Then the peridynamic
energy E� as defined in Eq. 11 satisfies, 8t 2 Œ0; T �,

E�. Ou/.t/ �

�p
E�. Ou/.0/ C

T C

�3=2
C

Z T

0

jj Ob.s/jjL2.DIRd /ds

�2

: (54)
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The constant C , defined in Eq. 59, is independent of � and h.

Proof. Wemultiply Eq. 52 by �Ui .x/ and sum over i and use definition of piecewise
constant extension in Eq. 53 to get

ROu.t; x/ D �r OPD�. Ou.t//.x/ C Ob.t; x/

D �rPD�. Ou.t//.x/ C Ob.t; x/

C .�r OPD�. Ou.t//.x/ C rPD�. Ou.t//.x//

where �r OPD�. Ou.t//.x/ and Ob.t; x/ are given by

�r OPD�. Ou.t//.x/ D
X

i;xi 2D

.�rPD�. Ou.t//.xi //�Ui .x/

Ob.t; x/ D
X

i;xi 2D

b.t; xi /�Ui .x/:

We define set as follows

�.t; x/ WD �r OPD�. Ou.t//.x/ C rPD�. Ou.t//.x/: (55)

We use the following result which we will show after few steps

jj�.t/jjL2.DIRd / �
C

�3=2
: (56)

We then have

ROu.t; x/ D �rPD�. Ou.t//.x/ C Ob.t; x/ C �.t; x/: (57)

Multiply above with POu.t/ and integrate over D to get

.ROu.t/; POu.t// D .�rPD�. Ou.t//; POu.t//

C . Ob.t/; POu.t// C .�.t/; POu.t//:

Consider energy E�. Ou/.t/ given by Eq. 11 and note the identity Eq. 12, to have

d

dt
E�. Ou/.t/ D . Ob.t/; POu.t// C .�.t/; POu.t//

�
	
jj Ob.t/jjL2.DIRd / C jj�.t/jjL2.DIRd /



jjPOu.t/jjL2.DIRd /;

where we used Hölder inequality in last step. Since PD�.u/ is positive for any u,
we have
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jjPOu.t/jj � 2

r
1

2
jjPOu.t/jj2

L2.DIRd /
C PD�. Ou.t// D 2

p
E�. Ou/.t/:

Using above, we get

1

2

d

dt
E�. Ou/.t/ �

	
jj Ob.t/jjL2.DIRd / C jj�.t/jjL2.DIRd /


p
E�. Ou/.t/:

Let ı > 0 be some arbitrary but fixed real number and let A.t/ D ı C E�. Ou/.t/.
Then

1

2

d

dt
A.t/ �

	
jj Ob.t/jjL2.DIRd / C jj�.t/jjL2.DIRd /


p
A.t/:

Using the fact that 1p
A.t/

d
dt

A.t/ D 2 d
dt

p
A.t/, we have

p
A.t/ �

p
A.0/ C

Z t

0

	
jj Ob.s/jjL2.DIRd / C jj�.s/jjL2.DIRd /



ds

�
p

A.0/ C
T C

�3=2
C

Z T

0

jj Ob.s/jjL2.DIRd /ds:

where we used bound on jj�.s/jjL2.DIRd / from Eq. 56. Noting that ı > 0 is arbitrary,
we send it to zero to get

p
E�. Ou/.t/ �

p
E�. Ou/.0/ C

T C

�3=2
C

Z T

0

jj Ob.s/jjds;

and Eq. 54 follows by taking square of above equation.
It remains to show in Eq. 56. To simplify the calculations, we use the following

notations: let � 2 H1.0/ and let

s� D �j�j; e� D
�

j�j
; N!.x/ D !.x/!.x C ��/;

S�.x/ D
Ou.t; x C ��/ � Ou.t; x/

s�

� e� :

With above notations and using expression of �rPD� from Eq. 38, we have for
x 2 Ui

j�.t; x/j D j�rPD�. Ou.t//.xi / C rPD�. Ou.t//.x/j

D

ˇ̌
ˇ̌ 2

�!d

Z

H1.0/

J .j�j/
p

s�

�
N!.xi /F

0
1.

p
s�S�.xi // � N!.x/F 0

1.
p

s�S�.x//
�

e�d�

ˇ̌
ˇ̌
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�
2

�!d

Z

H1.0/

J .j�j/
p

s�

ˇ̌
N!.xi /F

0
1.

p
s�S�.xi // � N!.x/F 0

1.
p

s�S�.x//
ˇ̌
d�

�
2

�!d

Z

H1.0/

J .j�j/
p

s�

�ˇ̌
N!.xi /F

0
1.

p
s�S�.xi //

ˇ̌
C
ˇ̌
N!.x/F 0

1.
p

s�S�.x//
ˇ̌�

d�:

(58)

Using the fact that 0 � !.x/ � 1 and jF 0
1.r/j � C1, where C1 is supr jF 0

1.r/j, we
get

j�.t; x/j �
4C1

NJ1=2

�3=2
:

where NJ1=2 D .1=!d /
R

H1.0/
J .j�j/j�j�1=2d�.

Taking the L2 norm of �.t; x/, we get

jj�.t/jj2
L2.DIRd /

D
X

i;xi 2D

Z

Ui

j�.t; x/j2dx �

 
4C1

NJ1=2

�3=2

!2 X

i;xi 2D

Z

Ui

dx

thus

jj�.t/jjL2.DIRd / �
4C1

NJ1=2

p
jDj

�3=2
D

C

�3=2

where

C WD 4C1
NJ1=2

p
jDj: (59)

This completes the proof.

Finite Element Approximation

Let Vh be the approximation of H 2
0 .D;Rd / associated with linear continuous

interpolation associated with the mesh Th (triangular or tetrahedral) where h denotes
the size of finite element mesh. Let Ih.u/ be defined as below

Ih.u/.x/ D
X

T 2Th

2

4
X

i2NT

u.xi /�i .x/

3

5

whereNT is the set of global indices of nodes associated to finite element T , �i is the
linear interpolation function associated to node i , and xi is the material coordinate
of node i .
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Assuming that the size of each element in the mesh Th is bounded by h, we have
(see, e.g., [Theorem 4.6, Arnold 2011])

jju � Ih.u/jj � ch2jjujj2; 8u 2 H 2
0 .DIRd /: (60)

Projection of Function in FE Space

Let rh.u/ 2 Vh be the projection of u 2 H 2
0 .DIRd /. It is defined as

jju � rh.u/jj D inf
Qu2Vh

jju � Qujj: (61)

It also satisfies the following

.rh.u/; Qu/ D .u; Qu/; 8Qu 2 Vh: (62)

Since Ih.u/ 2 Vh, we get an upper bound on right-hand side term and we have

jju � rh.u/jj � ch2jjujj2 8u 2 H 2
0 .DIRd /: (63)

Semi-discrete Approximation

Let uh.t/ 2 Vh be the approximation of u.t/ which satisfies the following

.Ruh; Qu/ C a�.uh.t/; Qu/ D .b.t/; Qu/; 8Qu 2 Vh: (64)

We now show that the semi-discrete approximation is stable, i.e., energy at time
t is bounded by initial energy and work done by the body force.

Theorem 4 (Stability of the semi-discrete approximation). The semi-discrete
scheme is energetically stable and the energy E�.uh/.t/, defined in (11), satisfies the
following bound

E�.uh/.t/ �

�p
E�.uh/.0/ C

Z t

0

jjb.
/jjd


�2

:

We note that, while proving the stability of semi-discrete scheme corresponding
to nonlinear peridynamics, we do not require any assumption on strain S.y; xI uh/.

Proof. Letting Qu D Puh.t/ in (10) and noting the identity (12), we get

d

dt
E�.uh/.t/ D .b.t/; Puh.t// � jjb.t/jjjjPuh.t/jj
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We also have

jjPuh.t/jj � 2

r
1

2
jjPuhjj2 C PD�.uh.t// D 2

p
E�.uh/.t/

where we used the fact that PD�.u/.t/ is nonnegative. We have

d

dt
E�.uh/.t/ � 2

p
E�.uh/.t/jjb.t/jj:

Fix ı > 0 and let A.t/ D E�.uh.t// C ı. Then, from above equation, we easily have

d

dt
A.t/ � 2

p
A.t/jjb.t/jj )

1

2

d
dt

A.t/
p

A.t/
� jjb.t/jj:

Noting that 1p
a.t/

da.t/

dt
D 2 d

dt

p
a.t/, integrating from t D 0 to 
 , and relabeling 


as t , we get

p
A.t/ �

p
A.0/ C

Z t

0

jjb.s/jjds:

Letting ı ! 0 and taking the square of both sides proves the claim.

Central Difference Time Discretization

For illustration, we consider the central difference scheme and present the con-
vergence rate for the central difference scheme for the fully nonlinear problem.
We remark that the extension of these results to the general Newmark scheme is
straightforward. We then consider a linearized peridynamics and demonstrate CFL-
like conditions for stability of the fully discrete scheme.

Let �t be the time step. The exact solution at t k D k�t (or time step k) is
denoted as .uk; vk/, with vk D @uk=@t , and the projection onto Vh at t k is given by
.rh.uk/; rh.vk//. The solution of the discrete problem at time step k is denoted as
.uk

h; vk
h/.

We approximate the initial data on displacement u0 and velocity v0 by their
projection rh.u0/ and rh.v0/. Let u0

h D rh.u0/ and v0
h D rh.v0/. For k � 1, .uk

h; vk
h/

satisfies, for all Qu 2 Vh,

 
ukC1

h � uk
h

�t
; Qu

!

D .vkC1
h ; Qu/;

 
vkC1

h � vk
h

�t
; Qu

!

D .�rPD�.uk
h/; Qu/ C .bk

h ; Qu/; (65)
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where we denote projection of b.tk/, rh.b.tk//, as bk
h . Combining the two equations

delivers central difference equation for uk
h. We have

 
ukC1

h � 2uk
h C uk�1

h

�t2
; Qu

!

D .�rPD�.uk
h/; Qu/ C .bk

h ; Qu/; 8Qu 2 Vh: (66)

For k D 0, we have 8Qu 2 Vh

�
u1

h � u0
h

�t2
; Qu

�
D

1

2
.�rPD�.u0

h/; Qu/ C
1

�t
.v0

h; Qu/ C
1

2
.b0

h; Qu/: (67)

We now show that finite element discretization converges to the exact solution.

Convergence of Approximation

In this section, we establish uniform bound on the discretization error and prove that
approximate solution converges to the exact solution at the rate Ct �t C Csh

2=�2

for fixed � > 0. We first compare the exact solution with its projection in Vh

and then compare the projection with approximate solution. We further divide
the calculation of error between projection and approximate solution in two parts,
namely, consistency analysis and error analysis.

Error Ek is given by

Ek WD jjuk
h � u.tk/jj C jjvk

h � v.tk/jj:

We split the error as follows

Ek �
�
jjuk � rh.uk/jj C jjvk � rh.vk/jj

�
C
�
jjrh.uk/ � uk

hjj C jjrh.vk/ � vk
h jj
�

;

where first term is error between exact solution and projections and second term is
error between projections and approximate solution. Let

ek
h.u/ WD rh.uk/ � uk

h and ek
h.v/ WD rh.vk/ � vk

h (68)

and

ek WD jjek
h.u/jj C jjek

h.v/jj: (69)

Using (63), we have

Ek � Cph2 C ek; (70)
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where

Cp WD c

�
sup

t

jju.t/jj2 C sup
t

jj
@u.t/

@t
jj2

�
: (71)

We have the following main result.

Theorem 5 (Convergence of the central difference approximation). Let .u; v/

be the exact solution of peridynamics equation in (6). Let .uk
h; vk

h/ be the central
difference approximation in time and piecewise linear finite element approximation
in space solution of (65). If u; v 2 C 2.Œ0; T �; H 2

0 .DIRd //, then the scheme is
consistent, and the error Ek satisfies the following bound

sup
k�T =�t

Ek

D Cph2 C expŒT .1 C L=�2/.1 C �t C O.�t2//�

�
e0 C T .1 C �t C O.�t2//

�
Ct �t C Cs

h2

�2

��
(72)

where constants Cp , Ct , and Cs are given by (71) and (79). The constant L=�2 is
the Lipschitz constant of �rPD�.u/ in L2 (see Theorem 1).

If the error in initial data is zero, then Ek is of the order of Ct �t C Csh
2=�2.

Error Analysis
We derive the equation for evolution of ek

h.u/ as follows

 
ukC1

h � uk
h

�t
�

rh.ukC1/ � rh.uk/

�t
; Qu

!

D .vkC1
h ; Qu/ �

�
rh.ukC1/ � rh.uk/

�t
; Qu

�

D .vkC1
h ; Qu/ � .rh.vkC1/; Qu/ C .rh.vkC1/; Qu/ � .vkC1; Qu/

C .vkC1; Qu/ �

�
@ukC1

@t
; Qu

�

C

�
@ukC1

@t
; Qu

�
�

�
ukC1 � uk

�t
; Qu

�

C

�
ukC1 � uk

�t
; Qu

�
�

�
rh.ukC1/ � rh.uk/

�t
; Qu

�
:
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Using property .rh.u/; Qu/ D .u; Qu/ for Qu 2 Vh and the fact that @u.tkC1/

@t
D vkC1

where u is the exact solution, we get

 
ekC1

h .u/ � ek
h.u/

�t
; Qu

!

D .ekC1
h .v/; Qu/ C

�
@ukC1

@t
; Qu

�
�

�
ukC1 � uk

�t
; Qu

�
: (73)

Let .
k
h .u/; 
k

h .v// be the consistency error in time discretization given by


k
h .u/ WD

@ukC1

@t
�

ukC1 � uk

�t
;


k
h .v/ WD

@vk

@t
�

vkC1 � vk

�t
:

With above notation, we have

.ekC1
h .u/; Qu/ D .ek

h.u/; Qu/ C �t.ekC1
h .v/; Qu/ C �t.
k

h .u/; Qu/: (74)

We now derive the equation for ek
h.v/ as follows

 
vkC1

h � vk
h

�t
�

rh.vkC1/ � rh.vk/

�t
; Qu

!

D .�rPD�.uk
h/; Qu/ C .bk

h ; Qu/ �

�
rh.vkC1/ � rh.vk/

�t
; Qu

�

D .�rPD�.uk
h/; Qu/ C .bk; Qu/ �

�
@vk

@t
; Qu

�

C

�
@vk

@t
; Qu

�
�

�
vkC1 � vk

�t
; Qu

�

C

�
vkC1 � vk

�t
; Qu

�
�

�
rh.vkC1/ � rh.vk/

�t
; Qu

�

D
�
�rPD�.uk

h/ C rPD�.uk/; Qu
�

C .bk
h � b.tk/; Qu/

C

�
@vk

@t
; Qu

�
�

�
vkC1 � vk

�t
; Qu

�
C

�
vkC1 � vk

�t
; Qu

�
�

�
rh.vkC1/ � rh.vk/

�t
; Qu

�

D
�
�rPD�.uk

h/ C rPD�.uk/; Qu
�

C

�
@vk

@t
�

vkC1 � vk

�t
; Qu

�
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where we used the property of rh.u/ and the fact that

.�rPD�.uk/; Qu/ C .bk; Qu/ �

�
@vk

@t
; Qu

�
D 0; 8Qu 2 H 2

0 .DIRd /:

We further divide the error in peridynamics force as follows
�
�rPD�.uk

h/ C rPD�.uk/; Qu
�

D
�
�rPD�.uk

h/ C rPD�.rh.uk//; Qu
�

C
�
�rPD�.rh.uk// C rPD�.uk/; Qu

�
:

We will see in the next section that the second term is related to consistency error in
spatial discretization. Therefore, we define another consistency error term �k

per;h.u/

as follows

�k
per;h.u/ WD �rPD�.rh.uk// C rPD�.uk/: (75)

After substituting the notations related to consistency errors, we get

.ekC1
h .v/; Qu/ D .ek

h.v/; Qu/ C �t.�rPD�.uk
h/ C rPD�.rh.uk//; Qu/

C �t.
k
h .v/; Qu/ C �t.�k

per;h.u/; Qu/: (76)

Since u; v are C 2 in time, we can easily show

jj
k
h .u/jj � �t sup

t

jj
@2u

@t2
jj and jj
k

h .v/jj � �t sup
t

jj
@2v

@t2
jj:

To estimate �k
per;h.u/, we note the Lipschitz property of peridynamics force in

L2 norm (see Theorem 1). This leads us to

jj�k
per;h.u/jj �

L

�2
jjuk � rh.uk/jj �

Lc

�2
h2 sup

t

jju.t/jj2; (77)

where we have relabeled the L2 Lipschitz constant L1 as L.
Let 
 be given by


 WD sup
k

	
jj
k

h .u/jj C jj
k
h .v/jj C jj�k

per;h.u/jj



� Ct �t C Cs

h2

�2
: (78)

where

Ct WD jj
@2u

@t2
jj C jj

@2v

@t2
jj and Cs WD Lc sup

t

jju.t/jj2: (79)
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In equation for ek
h.u/ (see (74)), we take Qu D ekC1

h .u/. Note that ekC1
h .u/ D

uk
h � rh.uk/ 2 Vh. We have

jjekC1
h .u/jj2 D .ek

h.u/; ekC1
h .u// C �t.ekC1

h .v/; ekC1
h .u// C �t.
k

h .u/; ekC1
h .u//:

Using the fact that .u; v/ � jjujjjjvjj, we get

jjekC1
h .u/jj2 � jjek

h.u/jjjjekC1
h .u/jj C �t jjekC1

h .v/jjjjekC1
h .u/jj

C �t jj
k
h .u/jjjjekC1

h .u/jj:

Canceling jjekC1
h .u/jj from both sides gives

jjekC1
h .u/jj � jjek

h.u/jj C �t jjekC1
h .v/jj C �t jj
k

h .u/jj: (80)

Similarly, if we choose Qu D ekC1
h .v/ in (76) and use the steps similar to above,

we get

jjekC1
h .v/jj � jjek

h.v/jj C �t jj � rPD�.uk
h/ C rPD�.rh.uk//jj

C �t
	
jj
k

h .v/jj C jj�k
per;h.u/jj



: (81)

Using the Lipschitz property of the peridynamics force in L2, we have

jj � rPD�.uk
h/ C rPD�.rh.uk//jj �

L

�2
jjuk

h � rh.uk/jj D
L

�2
jjek

h.u/jj: (82)

After adding (80) and (81) and substituting (82), we get

jjekC1
h .u/jj C jjekC1

h .v/jj � jjek
h.u/jj C jjek

h.v/jj C �t jjekC1
h .v/jj

C
L

�2
�t jjek

h.u/jj C �t


where 
 is defined in (78).
Let ek WD jjek

h.u/jj C jjek
h.v/jj. Assuming L=�2 � 1, we get

ekC1 � ek C �tekC1 C �t
L

�2
ek C �t


)ekC1 �
1 C �tL=�2

1 � �t
ek C

�t

1 � �t

:
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Substituting ek recursively in above equation, we get

ekC1 �

�
1 C �tL=�2

1 � �t

�kC1

e0 C
�t

1 � �t



kX

j D0

�
1 C �tL=�2

1 � �t

�k�j

:

Noting 1=.1 � �t/ D 1 C �t C �t2 C O.�t3/,

1 C �tL=�2

1 � �t
� 1 C .1 C L=�2/�t C .1 C L=�2/�t2 C O.L=�2/O.�t3/;

and .1 C a�t/k � expŒka�t� � expŒTa� for a > 0, we get

�
1 C �tL=�2

1 � �t

�k

� expŒk�t.1 C L=�2/ C k�t2.1 C L=�2/ C kO.L=�2/O.�t3/�

� expŒT .1 C L=�2/ C T �t.1 C L=�2/ C O.TL=�2/O.�t2/�

D expŒT .1 C L=�2/.1 C �t C O.�t2//�:

Substituting above estimates, we can easily show that

ekC1 � expŒT .1 C L=�2/.1 C �t C O.�t2//�
2

4e0 C �t.1 C �t C O.�t2//


kX

j D0

1

3

5

� expŒT .1 C L=�2/.1 C �t C O.�t2//�
�
e0 C k�t.1 C �t C O.�t2//


�
:

Finally, we substitute above into (70) to have

Ek � Cph2 C expŒT .1 C L=�2/.1 C �t C O.�t2//�
�
e0 C k�t.1 C �t C O.�t2//


�
:

After taking sup over k � T =�t , we get the desired result and proof of Theorem 2
is complete.

We now consider the stability of linearized peridynamics model.

Stability Condition for Linearized Peridynamics

In this section, we linearize the peridynamics model and obtain a CFL-like stability
condition. For problems where strains are small, the stability condition for the lin-
earized model is expected to work for nonlinear model. The slope of peridynamics
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potential f is constant for sufficiently small strain, and therefore for small strain, the
nonlinear model behaves like a linear model. When displacement field is smooth, the
difference between the linearized peridynamics force and nonlinear peridynamics
force is of the order of �. See [Proposition 4, Jha and Lipton 2017c].

In (5), linearization gives

�rPD�
l .u/.x/ D

4

�dC1!d

Z

H�.x/

!.x/!.y/J �.jy � xj/f 0.0/S.u/ey�xdy: (83)

The corresponding bilinear form is denoted as a�
l and is given by

a�
l .u; v/ D

2

�dC1!d

Z

D

Z

H�.x/

!.x/!.y/J �.jy � xj/f 0.0/jy � xjS.u/S.v/dydx:

(84)

We have

.�rPD�
l .u/; v/ D �a�

l .u; v/:

We now discuss the stability of the FEM approximation to the linearized problem.
We replace �rPD� by its linearization denoted by �rPD�

l in (66) and (67). The
corresponding approximate solution in Vh is denoted by uk

l;h where

 
ukC1

l;h � 2uk
l;h C uk�1

l;h

�t2
; Qu

!

D .�rPD�
l .uk

l;h/; Qu/ C .bk
h ; Qu/; 8Qu 2 Vh (85)

and

 
u1

l;h � u0
l;h

�t2
; Qu

!

D
1

2
.�rPD�.u0

l;h/; Qu/ C
1

�t
.v0

l;h; Qu/ C
1

2
.b0

h; Qu/; 8Qu 2 Vh:

(86)

We will adopt the following notations

ukC1
h WD

ukC1
h C uk

h

2
; uk

h WD
uk

h C uk�1
h

2
;

N@tu
k
h WD

ukC1
h � uk�1

h

2�t
; N@C

t uk
h WD

ukC1
h � uk

h

�t
; N@�

t u
k
h WD

uk
h � uk�1

h

�t
: (87)

With above notations, we have

N@tu
k
h D

N@C
t uk

h C N@�
h u

k
h

2
D

ukC1
h � uk

h

�t
:
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We also define

N@t tu
k
h WD

ukC1
h � 2uk

h C uk�1
h

�t2
D

N@C
t uk

h � N@�
t u

k
h

�t
:

We introduce the discrete energy associated with uk
l;h at time step k as defined by

E.uk
l;h/ WD

1

2

�
jjN@C

t uk
l;hjj2 �

�t2

4
a�

l .N@C
t uk

l;h; N@C
t uk

l;h/ C a�
l .ukC1

l;h ; ukC1
l;h /

�

Following [Theorem 4.1, Karaa 2012], we have

Theorem 6 (Stability of the central difference approximation of linearized
peridynamics).

Let uk
l;h be the approximate solution of (85) and (86) with respect to linearized

peridynamics. In the absence of the body force b.t/ D 0 and for all t , if �t satisfies
the CFL-like condition

�t2

4
sup

u2Vhnf0g

a�
l .u; u/

.u; u/
� 1; (88)

then the discrete energy is positive and satisfies

E.uk
l;h/ D E.uk�1

l;h /; (89)

and we have the stability

E.uk
l;h/ D E.u0

l;h/: (90)

Proof. Set b.t/ D 0. Noting that a�
l is bilinear, after adding and subtracting term

.�t2=4/a�
l .N@t tuk

l;h; Qu/ to (85), and noting the following

uk
l;h C

�t2

4
N@t tu

k
l;h D

ukC1
l;h

2
C

uk
l;h

2

we get

.N@t tu
k
l;h; Qu/ �

�t2

4
a�

l .N@t tu
k
l;h; Qu/ C

1

2
a�

l .ukC1
l;h C uk

l;h; Qu/ D 0:

We let Qu D N@tuk
l;h, to write

.N@t tu
k
l;h; N@tu

k
l;h/ �

�t2

4
a�

l .N@t tu
k
l;h; N@tu

k
l;h/ C

1

2
a�

l .ukC1
l;h C uk

l;h; N@tu
k
l;h/ D 0:
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It is easily shown that

.N@t tu
k
l;h; N@tu

k
l;h/ D

 
N@C

t uk
l;h � N@�

t u
k
l;h

�t
;

N@C
t uk

l;h C N@�
t u

k
l;h

2

!

D
1

2�t

�
jjN@C

t uk
l;hjj2 � jjN@�

t u
k
l;hjj2

�

and

a�
l .N@t tu

k
l;h; N@tu

k
l;h/ D

1

2�t

�
a�

l .N@C
t uk

l;h; N@C
t uk

l;h/ � a�
l .N@�

t u
k
l;h; N@�

t u
k
l;h/
�

:

Noting that N@tuk
l;h D .ukC1

l;h � uk
l;h/=�t , we get

1

2�t
a�

l .ukC1
l;h C uk

l;h; ukC1
l;h � uk

l;h/

D
1

2�t

h
a�

l .ukC1
l;h ; ukC1

l;h / � a�
l .uk

l;h; uk
l;h/
i

:

After combining the above equations, we get

1

�t

��
1

2
jjN@C

t uk
l;hjj2 �

�t2

8
a�

l .N@C
t uk

l;h; N@C
t uk

l;h/ C
1

2
a�

l .ukC1
l;h ; ukC1

l;h /

�

�

�
1

2
jjN@�

t u
k
l;hjj2 �

�t2

8
a�

l .N@�
t u

k
l;h; N@�

t u
k
l;h/ C

1

2
a�

l .uk
l;h; uk

l;h/

��
D 0: (91)

We recognize the first term in bracket as E.uk
l;h/. We next prove that the second term

is E.uk�1
l;h /. We substitute k D k � 1 in the definition of E.uk

l;h/ to get

E.uk�1
l;h / D

1

2

�
jjN@C

t uk�1
l;h jj2 �

�t2

4
a�

l .N@C
t uk�1

l;h ; N@C
t uk�1

l;h / C a�
l .uk

l;h; uk
l;h/

�
:

We clearly have N@C
t uk�1

l;h D
uk�1C1

l;h �uk�1
l;h

�t
D N@�

t u
k
l;h, and this implies that the second

term in (91) is E.uk�1
l;h /. It now follows from (91) that E.uk

l;h/ D E.uk�1
l;h /.

The stability condition is such that discrete energy is positive. In the definition of
E.uk

l;h/, we see that the second term is negative. We now obtain a condition on the
time step that insures the sum of the first two terms is positive, and this will establish
the positivity of E.uk

l;h/. Let v D N@C
t uk

l;h 2 Vh, and then we require

jjvjj2 �
�t2

4
a�

l .v; v/ � 0 )
�t2

4

a�
l .v; v/

jjvjj2
� 1 (92)
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Clearly if �t satisfies

�t2

4
sup

v2Vhnf0g

a�
l .v; v/

jjvjj2
� 1 (93)

then (92) is also satisfied and the discrete energy is positive. Iteration gives E.uk
l;h/ D

E.u0
l;h/ and the theorem is proved.

Conclusion

In this chapter we computed the a priori error incurred in finite element and
finite difference discretizations of peridynamics. We show that for finite element
approximation with linear elements, the rate of convergence is better as compared
to rate of convergence of finite difference approximation. A CFL-like condition for
the stability of linearized peridynamics is obtained. For the fully nonlinear problem,
we find that for the semi-discrete approximation the energy at any instant is bounded
by initial energy and work done by the body force.

This model has been analyzed using a quadrature-based finite element approxi-
mation in detail in Jha and Lipton (2017c) for nonlinear nonlocal models and their
linearization assuming an a priori higher regularity of solutions. If one assumes
more regular solutions with three continuous spatial derivatives (no cracks), then
solutions of the nonlinear nonlocal model converge to those of the classical local
elastodynamic model at the rate � uniformly in time in the H 1 norm (see (Theorem
5, Jha and Lipton 2017c)). The numerical simulation of problems using finite
differences for this model is carried out in Lipton et al. (2016) and Diehl et al.
(2016). In earlier work (Tian and Du 2014) develop a framework for asymptotically
compatible finite element schemes for linear problems where the solutions of
the nonlocal problem are known to converge to a unique solution of the local
problem. For the problems treated there, the discrete approximations associated with
asymptotically compatible schemes converge if h ! 0 and � ! 0.

For the bond-based prototypical microelastic brittle material model analyzed
here, the uniqueness property for the � D 0 problem is much less clear. The
nonlinear nonlocal model treated in this chapter is an evolution in taking values in
the vector space L2 and can be identified with a sharp fracture evolution as � ! 0

(see Lipton 2014, 2016). The limit evolution is shown to be an element of the vector
space, the space of special functions of bounded deformation referred to as SBD.
The description and properties of this vector space can be found in Ambrosio et al.
(1997). Unlike the linear nonlocal models, we do not necessarily have a unique
sharp fracture evolution in the � D 0 limit. The uniqueness of the limit evolution for
the nonlocal nonlinear model is an open question and remains to be established. The
issue of nonuniqueness arises as the limit evolution is not completely characterized.
What is currently missing is a limiting kinetic relation relating crack growth to crack
driving force. Future work will seek to account for the missing information and
address the issue of uniqueness for the limit problem.
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Abstract

A model for dynamic damage propagation is developed using nonlocal poten-
tials. The model is posed using a state-based peridynamic formulation. The
resulting evolution is seen to be well posed. At each instant of the evolution,
we identify a damage set. On this set, the local strain has exceeded critical values
either for tensile or hydrostatic strain, and damage has occurred. The damage set
is nondecreasing with time and is associated with damage state variables defined
at each point in the body. We show that a rate form of energy balance holds at
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each time during the evolution. Away from the damage set, we show that the
nonlocal model converges to the linear elastic model in the limit of vanishing
nonlocal interaction.

Keywords
Damage model · Nonlocal interactions · Energy dissipation · State-based
peridynamics

Introduction

In this chapter, we address the problem of damage propagation in materials. Here
the damage evolution is not known a priori and is found as part of the problem
solution. Our approach is to use a nonlocal formulation with the purpose of using
the least number of parameters to describe the model. We will work within the small
deformation setting, and the model is developed within a state-based peridynamic
formulation. Here strains are expressed in terms of displacement differences as
opposed to spatial derivatives. For the problem at hand, the nonlocality provides the
flexibility to simultaneously model non-differentiable displacements and damage
evolution. The net force acting on a point x is due to the strain between x and
neighboring points y. The neighborhood of nonlocal interaction between x and its
neighbors y is confined to ball of radius ı centered at x denoted by Bı.x/. The
radius of the ball is called the called the horizon. Numerical implementations based
on nonlocal peridynamic models exhibit formation and localization of features
associated with phase transformation and fracture (see, e.g., Dayal and Bhattacharya
2006; Silling and Lehoucq 2008; Silling et al. 2010; Foster et al. 2011; Agwai et al.
2011; Lipton et al. 2016; Bobaru and Hu 2012; Ha and Bobaru 2010; Silling and
Bobaru 2005; Weckner and Abeyaratne 2005; Gerstle et al. 2007; Weckner and
Emmrich 2005). A recent review can be found in Bobaru et al. (2016).

The recent model studied in Lipton (2014, 2016), Lipton et al. (2016), and Jha
and Lipton (2017) is defined by double-well two-point strain potentials. Here one
potential well is centered at the origin and associated with elastic response, while
the other well is at infinity and associated with surface energy. The rational for
studying these models is that they are shown to be well posed, and in the limit of
vanishing nonlocality, the dynamics recovers features associated with sharp fracture
propagation (see Lipton 2014, 2016). While memory is not incorporated in this
model, it is seen that the inertia of the evolution keeps the forces in a softened state
over time as evidenced in simulations (Lipton et al. 2016). This modeling approach
is promising for fast cracks, but for cyclic loading and slowly propagating fractures,
an explicit damage-fracture modeling with memory is needed. In this work, we
develop this approach for more general models that allow for three-point nonlocal
interactions and irreversible damage. The use of three-point potentials allows one to
model a larger variety of elastic properties. In the lexicon of peridynamics, we adopt
an ordinary state-based formulation (Silling 2000; Silling et al. 2007). We introduce
nonlocal forces that soften irreversibly as the shear strain or dilatational strain
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increases beyond critical values. This model is shown to deliver a mathematically
well-posed evolution. Our proof of this is motivated by recent work Emrich and
Phulst (2016) where existence of solution for bond-based peridynamic models with
damage is established. Recently another well-posed bond-based model with damage
has been proposed in Du et al. (2017) where fracture simulations are carried out.

In addition to being state based, our modeling approach differs from Emrich
and Phulst (2016) and earlier bond-based work Silling and Askari (2005) and
uses differentiable damage variables. This feature allows us to establish an energy
balance equation relating kinetic energy, potential energy, and energy dissipation at
each instant during the evolution. At each instant, we identify the set undergoing
damage where the local energy dissipation rate is positive. On this set, the
local strain has exceeded a critical value, and damage has occurred. Damage is
irreversible, and the damage set is monotonically increasing with time. Explicit
damage models are illustrated, and stress strain curves for both cyclic loading
and strain to failure are provided. These models are illustrated in two numerical
examples. In the first example, we consider a square domain and apply a time
periodic y-directed displacement along the top edge while fixing the bottom, left and
right edges. We track the strain and force over three loading periods. The simulations
show that bonds suffer damage and the strain vs force plot is similar to the one
predicted by the damage law (see Fig. 14). In the second example, we apply a shear
load to the top edge while fixing the bottom edge and leaving left and right edges
free. As expected, we find that damage appears along the diagonal of square (see
Fig. 15).

We conclude by noting that for this model the forces scale inversely with the
length of the horizon. With this in mind, we consider undamaged regions, and we
are able to show that the nonlocal operator converges to a linear local operator
associated with the elastic wave equation. In this limit, the elastic tensor can have
any combination of Poisson’s ratio and Young’s modulus. The Poisson’s ratio
and Young modulus are determined uniquely by explicit formulas in terms of the
nonlocal potentials used to define the model. This result is consistent with small
horizon convergence results for convex energies (see Emmrich and Weckner 2007;
Mengesha and Du 2014; Silling and Lehoucq 2008). Further reading and complete
derivations can be found in the recent monograph Lipton et al. (2018).

Formulation

In this work, we assume the displacements u are small (infinitesimal) relative to the
size of the three-dimensional body D. The tensile strain is denoted S D S.y; x; t I u/

and given by

S.y; x; t I u/ D
u.t; y/ � u.t; x/

jy � xj
� ey�x; ey�x D

y � x

jy � xj
; (1)
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where ey�x is a unit direction vector and � is the dot product. It is evident
that S.y; x; t I u/ is the tensile strain along the direction ey�x . We introduce the
nonnegative weight !ı.jy �xj/ such that !ı D 0 for jy �xj > ı and the hydrostatic
strain at x is defined by

�.x; t I u/ D
1

Vı

Z
D\Bı.x/

!ı.jy � xj/jy � xjS.y; x; t I u/ dy; (2)

where Vı is the volume of the ball Bı.x/ of radius ı centered at x. The weight is
chosen such that !ı.jy � xj/ D !.jy � xj=ı/ and

`1 D
1

Vı

Z
Bı.x/

!ı.jy � xj/ dy < 1: (3)

We follow Silling (2000) and Emrich and Phulst (2016) and introduce a nonneg-
ative damage factor taking the value one in the undamaged region and zero in the
fully damaged region. The damage factor for the force associated with tensile strains
is written H T .u/.y; x; t/; the corresponding factor for hydrostatic strains is written
H D.u/.x; t/. Here we assume no damage and H T .u/.y; x; t/ D 1 until a critical
tensile strain Sc is reached. For tensile strains greater than Sc , damage is initiated
and H T .y; x; t/ drops below 1. The fully damaged state is H T .y; x; t/ D 0. For
hydrostatic strains, we assume no damage until a critical positive dilatational strain
�C

c or a negative compressive strain (��
c ) is reached. Again H D.x; t/ D 1 until a

critical hydrostatic strain is reached and then drops below 1 with the fully damaged
state being H D.x; t/ D 0. We postpone description of the specific form of the
history-dependent damage factors until after we have defined the nonlocal forces.

The force at a point x due to tensile strain is given by

LT .u/.x; t/ D
2

Vı

Z
D\Bı.x/

J ı.jy � xj/

ıjy � xj
H T .u/.y; x; t/@S

f .
p

jy � xjS.y; x; t I u//ey�x dy; (4)

Here J ı.jy�xj/ is a nonnegative bounded function such that J ı D 0 for jy�xj > ı

and M D supfy 2 Bı.x/I J ı.jy � xj/g and

`2 D
1

Vı

Z
Bı.x/

J ı.jy � xj/

jy � xj2
dy < 1 and `3 D

1

Vı

Z
Bı.x/

J ı.jy � xj/

jy � xj3=2
dy < 1:

(5)

Both J ı and !ı are prescribed and characterize the influence of nonlocal forces
on x by neighboring points y. Here @S is the partial derivative with respect to strain.
The function f D f .r/ is twice differentiable for all arguments r on the real line,
and f 0 and f 00 are bounded. Here we take f .r/ D ˛r2=2 for r < r1 and f D r for
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Fig. 1 Generic plot of f .r/ (Solid line) and g.r/ (Dashed line)

r2 < r , with r1 < r2 (see Fig. 1). The factor
p

jy � xj appearing in the argument of
@S f ensures that the nonlocal operator LT converges to the divergence of a stress
tensor in the small horizon limit when it’s known a priori that displacements are
smooth (see section “Linear Elastic Operators in the Small Horizon Limit”).

The force at a point x due to the hydrostatic strain is given by

LD.u/.x; t/ D
1

Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2

�
H D.u/.y; t/@� g.�.y; t I u//C (6)

H D.u/.x; t/@� g.�.x; t I u//
�

ey�x dy; (7)

where the function g.r/ D ˇr2=2 for r < r�
1 , g D r for r�

2 < r , with r�
1 < r�

2

and g is twice differentiable and g0 and g00 are bounded (see Fig. 1). It is readily
verified that the force LT .u/.x; t/ C LD.u/.x; t/ satisfies balance of linear and
angular momentum.

The damage factor for tensile strain H T .u/.y; x; t/ is given in terms of the
functions h.x/ and jS .x/. Here h is nonnegative, has bounded derivatives (hence
Lipschitz continuous), takes the value one for negative x and for x � 0 decreases,
and is zero for x > xc (see Fig. 2). Here we are free to choose xc to be any small
and positive number. The function jS .x/ is nonnegative, has bounded derivatives
(hence Lipschitz continuous), takes the value zero up to a positive critical strain SC ,
and then takes on positive values. We will suppose jS .x/ � � jxj for some � > 0

(see Fig. 3). The damage factor is now defined to be

H T .u/.y; x; t/ D h

�Z t

0

jS .S.y; x; � I u// d�

�
: (8)
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Fig. 2 Generic plot of h.x/

Fig. 3 Generic plot of jS .x/

with Sc

It is clear from this definition that damage occurs when the stress exceeds Sc for
some period of time and the bond force decreases irrevocably from its undamaged
value. The damage function defined here is symmetric, i.e., H T .u/.y; x; t/ D

H T .u/.x; y; t/. For hydrostatic strain, we introduce the nonnegative function j�

with bounded derivatives (hence Lipschitz continuous). We suppose j� D 0 for an
interval containing the origin given by .��

c ; �C
c / and take positive values outside this

interval (see Fig. 4). As before we will suppose j� .x/ � � jxj for some � > 0. The
damage factor for hydrostatic strain is given by

H D.u/.x; t/ D h

�Z t

0

j� .�.x; � I u// d�

�
: (9)

For this model, it is clear that damage can occur irreversibly for compressive or
dilatational strain when the possibly different critical values ��

c or �C
c are exceeded.
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Fig. 4 Generic plot of j� .x/

with �C
c , and ��

c

The damage set at time t is defined to be the collection of all points x for which
H T .y; x; t/ or H D.u/.x; t/ is less than one. This set is monotonically increasing
in time. The process zone at time t is the collection of points x undergoing
damage such that @t H

T .y; x; t/ < 0 or @t H
D.x; t/ < 0. Explicit examples of

H T .u/.y; x; t/ and H D.u/.x; t/ are given in section “Explicit Damage Models,
Cyclic Loading, and Strain to Failure.”

We define the body force b.x; t/, and the displacement u.x; t/ is the solution of
the initial value problem given by

�@2
t u.x; t/ D LT .u/.x; t/ C LD.u/.x; t/ C b.x; t/ for x 2 D and t 2 .0; T /;

(10)

with initial data

u.x; 0/ D u0.x/; @tu.x; 0/ D v0.x/: (11)

It is easily verified that this is an ordinary state-based peridynamic model. We show
in the next section that this initial value problem is well posed.

Existence of Solutions

The regularity and existence of the solution depend on the regularity of the initial
data and body force. In this work, we choose a general class of body forces and
initial conditions. The initial displacement u0 and velocity v0 are chosen to be
integrable and bounded and belonging to L1.DIR3/. The space of such functions
is denoted by L1.DIR3/. The body force b.x; t/ is chosen such that for every
t 2 Œ0; T0�, b takes values in L1.D;R3/ and is continuous in time. The associated
norm is defined to be kbkC .Œ0;T0�IL1.D;R3// D maxt2Œ0;T0�kb.x; t/kL1.D;R3/. The



1502 R. Lipton et al.

associated space of continuous functions in time taking values in L1.DIR3/

for which this norm is finite is denoted by C .Œ0; T0�I L1.D;R3//. The space of
functions twice differentiable in time taking values in L1.D;R3/ such that both
derivatives belong to C .Œ0; T0�I L1.D;R3// is written as C 2.Œ0; T0�I L1.D;R3//.
We now assert the existence and uniqueness for the solution of the initial value
problem.

Theorem 1 (Existence and uniqueness of the damage evolution). The initial
value problem given by (10) and (11) has a solution u.x; t/ such that for every
t 2 Œ0; T0�, u takes values in L1.D;R3/ and is the unique solution belonging to the
space C 2.Œ0; T0�I L1.D;R3//.

To prove the theorem, we will show

(1) The operator LT .u/.x; t/ C LD.u/.x; t/ is a map from C .Œ0; T0�I L1.D;R3//

into itself.
(2) The operator LT .u/.x; t/ CLD.u/.x; t/ is Lipschitz continuous with respect to

the norm of C .Œ0; T0�I L1.D;R3//.

The theorem then follows from an application of the Banach fixed point theorem.
To establish properties (1) and (2), we state and prove the following lemmas for

the damage factors.

Lemma 1. Let H T .u/.y; x; t/ and H D.u/.x; t/ be defined as in (8) and (9). Then
for u 2 C .Œ0; T0�I L1.D;R3//, the mappings

.y; x/ 7! H T .u/.y; x; t/ W D � D ! R; x 7! H D.u/.x; t/ W D ! R (12)

are measurable for every t 2 Œ0; T0�, and the mappings

t 7! H T .u/.y; x; t/ W Œ0; T0� ! R; t 7! H D.u/.x; t/ W Œ0; T0� ! R (13)

are continuous for almost all .y; x/ and x, respectively. Moreover for almost all
.y; x/ 2 D � D and all t 2 Œ0; T0�, the map

u 7! H T .u/.y; x; t/ W C .Œ0; T0�I L1.D;R3// ! R (14)

is Lipschitz continuous, and for almost all x 2 D and all t 2 Œ0; T0�, the map

u 7! H D.u/.x; t/ W C .Œ0; T0�I L1.D;R3// ! R (15)

is Lipschitz continuous.

Proof. The measurability properties are immediate. In what follows, constants are
generic and apply to the context in which they are used. We establish continuity in
time for H D.u/. For Ot and t in Œ0; T0�, we have
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jH D.u/.x; Ot / � H D.u/.x; t/j

D jh

 Z Ot

0

j� .�.x; � I u// d�

!
� h

�Z t

0

j� .�.x; � I u// d�

�
j

� C1

Z max fOt ;tg

min fOt ;tg

j� .�.x; � I u//d�

� � C1

Z max fOt ;tg

min fOt ;tg

j�.x; � I u/jd�

� � `1C1C2jOt � t j2kukC .Œ0;T0�IL1.D;R3//:

(16)

The first inequality follows from the Lipschitz continuity of h, the second follows
from the growth condition on j� , and the third follows from (3).

We establish continuity in time for H T .u/. For Ot and t in Œ0; T0�, we have

jH T .u/.x; Ot / � H T .u/.x; t/j

D jh

 Z Ot

0

jS .S.y; x; � I u// d�

!
� h

�Z t

0

jS .S.y; x; � I u// d�

�
j

� C1

Z max fOt ;tg

min fOt ;tg

jS .S.y; x; � I u//d�

� � C1

Z max fOt ;tg

min fOt ;tg

jS.y; x; � I u/jd�

� � C1C2

jOt � t j

jy � xj
2kukC .Œ0;T0�IL1.D;R3//:

(17)

The first inequality follows from the Lipschitz continuity of h, the second follows
from the growth condition on jS , and the third follows from the definition of
strain (1).

To demonstrate Lipschitz continuity for H D.u/.x; t/, we write

jH D.u/.x; t// � H D.v/.x; t/j

D jh

�Z t

0

j� .�.x; � I u// d�

�
� h

�Z t

0

j� .�.x; � I v// d�

�
j

� C1j

Z t

0

.j� .�.x; � I u/ � j� .�.x; � I v// d� j

� C1C2

Z t

0

j�.x; � I u/ � �.x; � I v/j d�

� 2t`1C1C2ku � vkC .Œ0;t �IL1.D;R3//:

(18)
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The first inequality follows from the Lipschitz continuity of h, the second follows
from the Lipschitz continuity of j� , and the third follows from (3). The Lipschitz
continuity for H S .u/.y; x; t/ follows from similar arguments using the Lipschitz
continuity of h, jS , and (1), and we get

jH T .u/.y; x; t// � H T .v/.y; x; t/j

�
2tC1C2C3

jy � xj
ku � vkC .Œ0;t �IL1.D;R3//:

(19)

ut

Proof of Theorem 1. We establish (1) by first noting that

jLT .u/.x; t/ C LD.u/.x; t/j �
C

ı2
; (20)

where C is a constant. This estimate follows from the boundedness of f 0, g0,
H T .u/, and H D.u/ and the integrability of the ratios J ı.jy � xj/=jy � xj2,
J ı.jy �xj/=jy �xj3=2, and !ı.jy �xj/. Thus kLT .u/.x; t/CLD.u/.x; t/kL1.D;R3/

is uniformly bounded for all t 2 Œ0; T0�.
To complete the demonstration of (1), we point out that the force functions @S f

and @� g are Lipschitz continuous in their arguments. The key features are given in
the following lemma.

Lemma 2. Given two functions v and w in L1.D;R3/, then

j@S f .
p

jy � xjS.y; xI v// � @S f .
p

jy � xjS.y; xIw//

j �
2Cp

jy � xj
kv � wkL1.D;R3/: (21)

and

j@� g.�.xI v// � @� g.�.xIw//j � 2`1C kv � wkL1.D;R3/: (22)

Proof.

j@S f .
p

jy � xjS.y; xI v// � @S f .
p

jy � xjS.y; xIw//j

� C
p

jy � xjjS.y; xI v/ � S.y; xIw/j �
2Cp

jy � xj
kv � wkL1.D;R3//;

(23)

where the first inequality follows from the Lipschitz continuity of @S f and the
second follows from the definition of S .
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For @� g, we have

j@� g.�.xI v// � @� g.�.xIw//j � C j�.xI v/ � �.xIw/j � 2`1C1kv � wkL1.D;R3//;

(24)
where the first inequality follows from the Lipschitz continuity of @� g and the
second follows from the definitions of � and S . ut

We have

jLT .u/.x; Ot / � LT .u/.x; t/j

�
2

Vı

Z
D\Bı.x/

J ı.jy � xj/

ıjy � xj
j@S f .

p
y � xS.y; x; Ot I u//

� @S f .
p

y � xS.y; x; t I u//j dy

C
2

Vı

Z
D\Bı.x/

J ı.jy � xj/

ıjy � xj
jH T .u/.y; x; Ot / � H T .u/.y; x; t/j dy: (25)

From the above, (19), and Lemma 2, we see that

kLT .u/.x; Ot / � LT .u/.x; t/kL1.D;R3/

�
`3C3

ı
ku.x; Ot / � u.x; t/kL1.D;R3/ C

`2� C1C2

ı
jOt � t j2kukC .Œ0;T0�IL1.D;R3//

(26)
and we see LT is well defined and maps C .Œ0; T0�I L1.D;R3// into itself.

We show the continuity in time for LD.u/.x; t/. Now we have

jLD.u/.x; Ot / � LD.u/.x; t/j

�
1

Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2
j@� g.�.y; Ot I u// � @� g.�.y; t I u//j dy

C
1

Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2
jH D.u/.y; Ot / � H D.u/.y; t/j dy

C
1

Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2
j@� g.�.x; Ot I u// � @� g.�.x; t I u//j dy

C
1

Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2
jH D.u/.x; Ot / � H D.u/.x; t/j dy

(27)

and applying Lemma 2 and (18), (19), (20), (21), (22), (23), (24), (25), (26), and
(27), we get the continuity

jLD.u/.x; Ot / � LD.u/.x; t/j �
4`2

1C1

ı2
ku.Ot ; x/ � u.t; x/kL1.D;R3/

C
� 4`2

1C1C2

ı2
jOt � t jkukC .Œ0;T0�IL1.D;R3/:

(28)
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We conclude that LD is well defined and maps C .Œ0; T0�I L1.D;R3// into itself
and item (1) is proved.

To show Lipschitz continuity, consider any two functions u and w belonging to
C .Œ0; T0�I L1.D;R3//, t 2 Œ0; T0� to write

jLT .u/.x; t/ C LD.u/.x; t/ � ŒLT .w/.x; t/ C LD.w/.x; t/�j

�
2

Vı

Z
D\Bı.x/

J ı.jy � xj/

ıjy � xj
j@S f .

p
jy � xjS.y; x; t I u//

� @S f .
p

jy � xjS.y; x; t Iw//j dy

C
2

Vı

Z
D\Bı.x/

J ı.jy � xj/

ıjy � xj
jH T .u/.y; x; t/ � H T .w/.y; x; t/j dy

C
1

Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2
j@� g.�.y; t I u// � @� g.�.y; t Iw//j dy

C
1

Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2
jH D.u/.y; t/ � H D.w/.y; t/j dy

C
1

Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2
j@� g.�.x; t I u// � @� g.�.x; t Iw//j dy

C
1

Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2
jH D.u/.x; t/ � H D.w/.x; t/j dy:

(29)

Applying (18) and (19), (20), (21), (22), (23), (24), (25), (26), (27), (28), and (29)
delivers the estimate

kLT .u/.x; t/ C LD.u/.x; t/ � ŒLT .w/.x; t/ C LD.w/.x; t/�kC .Œ0;t �IL1.D;R3//

�
C1 C tC2

ı2
ku � wkC .Œ0;t �IL1.D;R3//;

(30)
where C1 and C2 are constants not depending on time u or w. For T0 > t , we can
choose a constant L > .C1 C T0C2/=ı2 and

kLT .u/.x; t/ C LD.u/.x; t/ � ŒLT .w/.x; t/ C LD.w/.x; t/�kC .Œ0;t �IL1.D;R3//

� Lku � wkC .Œ0;t �IL1.D;R3//; for all t 2 Œ0; T0�:
(31)

This proves the Lipschitz continuity, and item (2) of the theorem is proved. Note that
u.�/ D w.�/ for all � 2 Œ0; t � implies LT .u/.x; t/ CLD.u/.x; t/ D ŒLT .w/.x; t/ C

LD.w/.x; t/� and LT .u/.x; t/ C LD.u/.x; t/ is a Volterra operator.
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We write evolutions u.x; t/ belonging to C .Œ0; t �I L1.D;R3// as u.t/ and
.V u/.t/ is the sum

.V u/.t/ D LT .u/.t/ C LD.u/.t/: (32)

We seek the unique fixed point of u.t/D.Iu/.t/where I mapsC .Œ0; t �I L1.D;R3//

into itself and is defined by

.Iu/.t/ Du0 C tv0 C

Z t

0

.t � �/.V u/.�/ C b.�/ d�: (33)

This problem is equivalent to finding the unique solution of the initial value problem
given by (10) and (11). We now show that I is a contraction map, and by virtue
of the Banach fixed point theorem, we can assert the existence of a fixed point in
C .Œ0; t �I L1.D;R3//. To see that I is a contraction map on C .Œ0; t �I L1.D;R3//,
we introduce the equivalent norm

jjjujjjC .Œ0;t �IL1.D;R3// D max
t2Œ0;T0�

fe�2LT0t kukL1.D;R3/g; (34)

and show I is a contraction map with respect to this norm. We apply (30) to find for
t 2 Œ0; T0� that

k.Iu/.t/ � .Iw/.t/kL1.D;R3/�

Z t

0

.t � �/k.V u/.�/ � .V w/.�/kL1.D;R3/ d�

�LT0

Z t

0

ku � wkC .Œ0;��IL1.D;R3// d�

�LT0

Z t

0

max
s2Œ0;��

fku.s/�w.s/kL1.D;R3/e
�2LT0sge2LT0� d�

�
e2LT0t � 1

2
jjju � wjjjC .Œ0;T0�IL1.D;R3//;

(35)
and we conclude

jjj.Iu/.t/ � .Iw/.t/jjjC .Œ0;T0�IL1.D;R3// �
1

2
jjju � wjjjC .Œ0;T0�IL1.D;R3//; (36)

so I is a contraction map. From the Banach fixed point theorem, there is a unique
fixed point u.t/ belonging to C .Œ0; T0�I L1.D;R3//, and it is evident from (33)
that u.t/ also belongs to C 2.Œ0; T0�I L1.D;R3//. This concludes the proof of
Theorem 1.
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Energy Balance

The evolution is shown to exhibit a balance of energy at all times. In this section,
we describe the potential and the energy dissipation rate and show energy balance
in rate form. The potential energy at time t for the evolution is denoted by U .t/ and
is given by

U .t/ D
2

Vı

Z
D

Z
D\Bı.x/

J ı.jy � xj/

ı
H T .u/.y; x; t/f .

p
jy�xjS.y; x; t I u// dydx

C

Z
D

1

ı2
H D.u/.x; t/g.�.x; t I u// dx:

(37)
The energy dissipation rate @t R.t/ is

@t R.t/ D�
2

Vı

Z
D

Z
D\Bı.x/

J ı.jy�xj/

ı
@t H

T.u/.y; x; t/f.
p

jy�xjS.y; x; t I u// dydx

�

Z
D

1

ı2
@t H

D.u/.x; t/g.�.x; t I u// dx:

(38)
The derivatives @t H

T .u/.y; x; t/ and @t H
D.u/.x; t/ are easily seen to be nonposi-

tive, and the dissipation rate satisfies @t R.t/ � 0. The kinetic energy is

K.t/ D �

Z
D

j@tu.x; t/j2

2
dx: (39)

The energy balance in rate form is given in the following theorem.

Theorem 2. The rate form of energy balance for the damage-fracture evolution is
given by

@t K.t/ C @t U .t/ C @t R.t/ D

Z
D

b.x; t/ � @tu.x; t/ dx: (40)

Proof of Theorem 2. We multiply both sides of the evolution Eq. (10) by @tu.x; t/

and integrate over D to get

�

Z
D

@2
t u.x; t/ � @tu.x; t/ dx D

Z
D

LT .u/.x; t/ � @tu.x; t/ dx (41)

C

Z
D

LD.u/.x; t/ � @tu.x; t/ dx

C

Z
D

b.x; t/ � @tu.x; t/ dx: (42)
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The term on the left side of the equation is immediately recognized as @t K.t/.
The first and second terms on the right-hand side of the equation are given in the
following lemma.

Lemma 3. One has the following integration by parts formulas given by

Z
D

LT .u/.x; t/ � @tu.x; t/ dx

D �
2

Vı

Z
D

Z
D\Bı.x/

J ı.jy � xj/

ı
H T .u/.y; x; t/@t f .

p
jy�xjS.y; x; t I u// dydx:

(43)
and

Z
D

LD.u/.x; t/ � @tu.x; t/ dx D �

Z
D

1

ı2
H D.u/.x; t/@t g.�.x; t I u// dx: (44)

Now note that

@t U .t/ C @t R.t/

D
2

Vı

Z
D

Z
D\Bı.x/

J ı.jy � xj/

ı
H T .u/.y; x; t/@t f .

p
jy � xjS.y; x; t I u// dydx

C

Z
D

1

ı2
H D.u/.x; t/@t g.�.x; t I u// dx;

(45)
and the energy balance theorem follows from (41) and (45).

We conclude by proving the integration by parts Lemma 3. We start by
proving (44). We expand @t g.�.x; t//

@t g.�.x; t I u//

D @� g.�.x; t I u//
1

Vı

Z
D\Bı.x/

!ı.jy � xj/jy � xj
@tu.y/ � @tu.x/

jy � xj
� ey�x dy

(46)
and write

�

Z
D

1

ı2
H D.u/.x; t/@t g.�.x; t I u// dx D A.t/ C B.t/; (47)

where

A.t/D�

Z
D

1

ı2
H D.u/.x; t/@� g.�.x; t I u//

1

Vı

Z
D\Bı.x/

!ı.jy�xj/@tu.y/ � ey�x dydx

(48)
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and

B.t/D

Z
D

1

ı2
H D.u/.x; t/@� g.�.x; t I u//

1

Vı

Z
D\Bı.x/

!ı.jy�xj/@tu.x/�ey�x dydx:

(49)
Next introduce the characteristic function of D denoted by �D.x/ taking the value
one inside D and zero outside, and together with the properties of !ı.jy � xj/, we
rewrite A.t/ as

A.t/ D �

Z
R3�R3

�D.x/�D.y/!ı.jy � xj/
1

ı2
H D.u/.x; t/@� g.�.x; t I u//

1

Vı

@tu.y/ � ey�x dydxI (50)

we switch the order of integration and note �ey�x D ex�y to obtain

A.t/D

Z
D

1

Vı

Z
D.x/\Bı.y/

!ı.jy � xj/

ı2
H D.u/.x; t/@� g.�.x; t I u//ex�y dx�@tu.y/dy:

(51)
We can move @tu.x/ outside the inner integral, regroup factors, and write B.t/ as

B.t/D

Z
D

1

Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2
H D.u/.x; t/@� g.�.x; t I u//ey�x dy �@tu.x/dx:

(52)
We rename the inner variable of integration y and the outer variable x in (51) and
add equations (51) and (52) to get

A.t/ C B.t/ D

Z
D

LD.u/.x; t/ � @tu.x; t/ dx (53)

and (44) is proved.
The steps used to prove (43) are similar to the proof of (44), so we provide only

the key points of its derivation below. We expand @t f .
p

jy � xjS/ to get

@t f .
p

jy � xjS.y; x; t I u//

D @S f .
p

jy � xjS.y; x; t I u//
@tu.y/ � @tu.x/

jy � xj
� ey�x;

(54)

and write

�
2

Vı

Z
D

Z
D\Bı.x/

J ı.jy � xj/

ı
H T .u/.y; x; t/@t f .

p
jy � xjS.y; x; t I u// dydx

D A.t/ C B.t/; (55)
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where

A.t/ D

D �

Z
D

1

Vı

Z
D\Bı.x/

J ı.jy � xj/

ıjy � xj
H T .u/.y; x; t/@S

f .
p

jy � xjS.y; x; t I u//@tu.y/ � ey�x dydx (56)

and

B.t/ D

D

Z
D

1

Vı

Z
D\Bı.x/

J ı.jy � xj/

ıjy � xj
H T .u/.y; x; t/@S

f .
p

jy � xjS.y; x; t I u//@tu.x/ � ey�x dydx: (57)

We note that S.y; x; t I u/ D S.x; y; t I u/ and H T .u/.y; x; t/ D H T .u/.x; y; t/,
and proceeding as in the proof of (44), we change the order of integration in (56)
noting that �ey�x D ex�y to get

A.t/ D

D

Z
D

1

Vı

Z
D\Bı.y/

J ı.jy � xj/

ıjy � xj
H T .u/.x; y; t/@S

f .
p

jy � xjS.x; y; t I u///ex�y dx � @tu.y/ dy: (58)

Taking @tu.x/ outside the inner integral in (57) gives

B.t/ D

D

Z
D

1

Vı

Z
D\Bı.x/

J ı.jy � xj/

ıjy � xj
H T .u/.y; x; t/@S

f .
p

jy � xjS.y; x; t I u//ey�x dy � @tu.x/ dx: (59)

We conclude noting that now

A.t/ C B.t/ D

Z
D

LT .u/.x; t/ � @tu.x; t/ dx; (60)

and (43) is proved.
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Explicit DamageModels, Cyclic Loading, and Strain to Failure

In this section, we provide concrete examples of the damage functions
H T .u/.y; x; t/ and H D.u/.x; t/. We provide an example of cyclic loading and
the associated degradation in the nonlocal force-strain law as well as the strain
to failure curve for monotonically increasing strains. In this work, both damage
functions H T and H D are given in terms of the function h. Here we give an
example of h.x/ W R ! R

C as follows

h.x/ D

8̂
<̂
ˆ̂:

Nh.x=xc/; for x 2 .0; xc/;

1; for x � 0;

0; for x � xc:

(61)

with Nh W Œ0; 1� ! R
C is defined as

Nh.x/ D expŒ1 �
1

1 � .x=xc/a
� (62)

where a > 1 is fixed. Clearly, Nh.0/ D 1, Nh.xc/ D 0 (see Fig. 5).
For a given critical strain Sc > 0, we define the threshold function for tensile

strain jS .x/ as follows

jS .x/ WD

(
Nj .x=Sc/; 8x 2 ŒSc; 1/;

0; otherwise:
(63)

where Nj W Œ1; 1/ ! R
C is given by

Fig. 5 Plot of h.x/ with
a D 2
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Fig. 6 Plot of jS .x/ with
a D 4; b D 5 and Sc D 2

Nj .x/ D
.x � 1/a

1 C xb
(64)

with a > 1 and b � a � 1 fixed. Note that jS .1/ D 0. Here the condition b � a � 1

insures the existence of a constant � > 0 for which

jS .x/ � � jxj; 8x 2 R (65)

(see Fig. 6).
For a given critical hydrostatic strains ��

c < 0 < �C
c , we define the threshold

function j� .x/ as

j� .x/ WD

8̂
<̂
ˆ̂:

Nj .x=�C
c /; 8x 2 Œ�C

c ; 1/;

Nj .�x=��
c /; 8x 2 .�1; ���

c �;

0; otherwise;

(66)

where Nj .x/ is defined by (64), and we plot j� in Fig. 7. We summarize noting that
an explicit form for H T .u/.y; x; t/ is obtained by using (61) and (63) in (8) and an
explicit form for H D.u/.x; t/ is obtained by using (61) and (66) in (9).

We first provide an example of cyclic damage incurred by a periodically varying
tensile strain. Let x; y be two fixed material points with jy � xj < ı, and let
S.y; x; t I u/ D S.t/ correspond to a temporally periodic strain (see Fig. 8a). Here
S.t/ periodically takes excursions above the critical strain Sc . During the first
period, we have

S.t/ D

(
t; 8t 2 Œ0; SC C ��;

2.SC C �/ � t 8t 2 .SC C �; 2.Sc C �/�
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Fig. 7 Plot of j� .x/ with
a D 4; b D 5, �C

c D 2, and
��

C D 3

Fig. 8 (a) Strain profile. (b)
Damage function plot
corresponding to strain
profile

and S.t/ is extended to RC by periodicity (see Fig. 8a). For this damage model, we
let 	 be the area under the curve jS .x/ from x D Sc to x D Sc C �. It is given by

	 D

Z ScC�

Sc

jS .x/dx D

Z ScC�

Sc

jS .S.t//dt:

From symmetry, the area under the curve jS .x/ under unloading from Sc C � to Sc

is also 	. The corresponding damage function H T .u/.y; x; t/ is plotted in Fig. 8b.
In Fig. 9, we plot the strain-force relation where S is the abscissa and the tensile

force given by H T ..u/.y; x; t//@S f .
p

jy � xjS.y; x; t I u/// is the ordinate. Here
the damage factor H T .u/.y; x; t/ drops in value with each cycle of strain loading.
After each cycle, the slope (elasticity) in the linear and recoverable part of the force-
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Fig. 9 Cyclic strain vs Force
plot. The initial stiffness is ˛.
Hysteresis is evident in this
model

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 10 Strain vs force plot where S.t/ D t . H T .S.t// begins to drop at Sc D 0:1 and S� �
0:55025

strain curve decreases due to damage. The force needed to soften the material is the
strength, and it is clear from the model that the strength decreases after each cycle
due to damage.

Application of this rigorously established model to fatigue is a topic of future
research but beyond the scope of this article. We note that fatigue models based on
peridynamic bond softening are introduced in Oterkus (2010) and with fatigue crack
nucleation in the context of the Paris law in Silling and Askari (2014).

The next example is strain to failure for a monotonically increasing strain. Here
we let
S.y; x; t I u/ D S.t/ D t and plot the corresponding force-strain curve in Fig. 10.
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We see that the force-strain relation is initially linear until the strain exceeds Sc ;
the force then reaches its maximum and subsequently softens to failure. At S� �

0:55025, we have
R S�

0
jS .t/dt D xc and H T D 0. Here we take ˛ D 1.

Numerical Results

In this section, we present numerical results. Explicit expressions of the functions
described in e the previous section are used in simulating the problem. The damage
function h is defined similar to Eq. 61 with exponents a D 1:01 and xc D 0:2. The
function jS is given by Eq. 63 with a D 5; b D 5; Sc D 0:01. The function j�

is given by Eq. 66 with a D 4; b D 5; �C
c D 0:3; ��

c D 0:4. Nonlinear potential
function f is given by f .r/ D ˛r2 for r < r1 and f .r/ D r for r > r2. We let
˛ D 10 and let r1 D r2 D 0:05. Similarly, the nonlinear potential function g is
given by g.r/ D ˇr2 for r < r�

1 and g.r/ D r for r > r�
2 . We let ˇ D 1 and let

r�
1 D r�

2 D 0:05. The influence function is given by J ı.jy � xj/ D !ı.jy � xj/ D

1 � jy�xj
ı

for 0 � jy � xj � ı and J ı.jy � xj/ D !ı.jy � xj/ D 0 otherwise.
We consider �C

c and ��
c sufficiently high so that we only see damage due to tensile

forces and not hydrostatic forces.
In both numerical problems, we consider the material domain D D Œ0; 1�2. We

also keep the initial condition fixed to u0 D 0 and v0 D 0. Further, we apply no
body force, i.e., b D 0. However we will consider boundary loading that is periodic
in time. Let x D .x1; x2/ where x1 corresponds to the component along horizontal
axis and x2 corresponds to the component along vertical axis.

Periodic Loading

We apply boundary condition u D 0 on edge x1 D 0, x1 D 1, and x2 D 0. We
consider function Nu of form

Nu.t/ D

(
˛bct; 8t 2 Œ0; Tbc�;

˛bcTbc � t 8t 2 .Tbc; 2Tbc�
(67)

and periodically extend the function for any time t . For point x on edge x2 D 1,
we apply u.t; x/ D .u1.t; x/; u2.t; x// D .0; Nu.t//. We consider ˛bc D 0:01 and
Tbc D 0:216.

To numerically approximate the evolution equation, we discretize the domain D

uniformly with mesh size h D ı=5, where ı D 0:15 in this problem. For time
discretization, we consider the velocity Verlet scheme for second order in time
differential equation and a midpoint quadrature for the spatial discretization. Final
time is T D 1:2 and size of time step is 
t D 10�5.

To obtain the hysteresis plot, we chose bonds as shown in Fig. 11. We track the
bond strain S.y; x; t I u/ and other relevant quantities. While we track all the bonds
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Fig. 11 Discretization of
material domain D D Œ0; 1�2.
During simulation bond
between red and black
material point is tracked to
obtain the strain vs stress
profile and other information

0.0

0.0

0.2

0.4

0.6

0.5 1.0

Fig. 12 Time vs Strain S.y; x; t I u/ plot

shown in Fig. 11, we only provide plots for the bond which is near to middle top
edge. For the bonds in either left and right of the bond at middle top edge, the
response is the same. For the bond inside the material, the strains are never greater
than Sc , and therefore it experiences no damage.

Figures 12 and 13 show the strain of the bond and damage H T of the bond as
function of time. It is quite similar to the plots shown in Figs. 8 and 9. In Fig. 14,
we show the strain vs force plot. Red line shows response of bond when damage
function is taken to be unity. We further note that the damage is defined for positive
strains above critical strain.

Shear Loading

We apply u D 0 on bottom edge and keep left and right edge free. On top, we apply
u.t; x/ D .u1.t; x/; u2.t; x// D .�tx2; 0/. We chose � D 0:0001 and simulate the
problem up to time T D 750. Time step is 
t D 10�5.
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0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0

Fig. 13 Time vs Damage function H T ..u/.y; x; t// plot
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Fig. 14 Strain S.y; x; t I u/ vs Stress H T ..u/.y; x; t//@S f .
p

jy � xjS.y; x; t I u/// plot for the
bond near middle top edge. Red color corresponds to @S f .

p
jy � xjS.y; x; t I u///

We choose the size of horizon to be ı D 0:05 and mesh size h D ı=5. As noted
in the beginning of the section that we choose hydrostatic parameters large enough
such that the damage is only due to the tensile interaction between material points.
For tensile interaction, the extent of damage experienced by a material is defined as



45 Dynamic Damage Propagation with Memory: A State-Based Model 1519

Fig. 15 Each point in figure
shows the discretized mesh
node. Strength of color shows
the damage � experienced by
the mesh node. Box shows
reference material domain
Œ0; 1�2

�.t; xI u/ D 1 �

R
D\Bı.x/

H T .u/.y; x; t/dyR
D\Bı.x/

dy
: (68)

Clearly, if all bonds in a horizon of material point x suffer no damage, then � will
be 0. As the damage of bonds increases, � also increases. In Fig. 15, we show � at
final time t D 750. As we can see, the damage is along the diagonal of square.

Linear Elastic Operators in the Small Horizon Limit

In this section, we consider smooth evolutions u in space and show that away from
damage set, the operators LT C LD acting on u converge to the operator of linear
elasticity in the limit of vanishing nonlocality. We denote the damage set by QD and
consider any open undamaged set D0 interior to D with its boundary a finite distance
away from the boundary of D and the damage set QD. In what follows, we suppose
that the nonlocal horizon ı is smaller than the distance separating the boundary of
D0 from the boundaries of D and QD.

Theorem 3. Convergence to linear elastic operators. Suppose that u.x; t/ 2

C 2.Œ0; T0�; C 3.D;R3// and no damage, i.e., H T .y; x; t/ D 1 and H D.x; t/ D 1,
for every x 2 D0 � D n QD, then there is a constant C > 0 independent of nonlocal
horizon ı such that for every .x; t/ in D0 � Œ0; T0�, one has

jLT .u.t// C LD.u.t// � r � C E.u.t//j < C ı; (69)
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where the the elastic strain is E.u/ D .ru C .ru/T /=2 and the elastic tensor is
isotropic and given by

Cijkl D 2�

�
ıikıjl C ıil ıjk

2

�
C ıij ıkl ; (70)

with shear modulus � and Lamé coefficient  given by

�D
f 00.0/

10

Z 1

0

r3J .r/ dr and Dg00.0/

�Z 1

0

r3J .r/ dr

�2

C
f 00.0/

10

Z 1

0

r3J .r/ dr:

(71)
The numbers f 00.0/ D ˛ and g00.0/ D ˇ can be chosen independently and can be
any pair of real numbers such that C is positive definite.

Proof. We start by showing

jLT .u.t// �
f 00.0/

2!3

Z
B1.0/

ej�jJ .j�j/ei ej ek d�@2
jkui .x/j < C ı; (72)

where !3 D 4�=3 and e D ey�x are unit vectors on the sphere; here
repeated indices indicate summation. To see this, recall the formula for LT .u/

and write @S f .
p

jy � xjS/ D f 0.
p

jy � xjS/
p

jy � xj. Now Taylor expand
f 0..

p
jy � xjS/ in

p
jy � xjS , and Taylor expand u.y/ about x, denoting ey�x by

e to find that all odd terms in e integrate to zero and

jLT .u.t//l �
2

Vı

Z
Bı.x/

J ı.jy � xj/

ıjy � xj

f 00.0/

4
jy � xj2@2

jkui .x/ei ej ekel ; dyj

< C ı; l D 1; 2; 3: (73)

On changing variables � D .y � x/=ı, we recover (72). Now we show

jLD.u.t//k �
1

!3

Z
B1.0/

j�j!.j�j/ei ej d�
g00.0/

!3

Z
B1.0/

j�j!.j�j/ekel d�@2
lj ui .x/j

< C ı; k D 1; 2; 3: (74)

We note for x 2 D0 that D \ Bı.x/ D Bı.x/ and the integrand in the second term
of (6) is odd and the integral vanishes. For the first term in (6), we Taylor expand
@� g.�/ about � D 0 and Taylor expand u.z/ about y inside �.y; t/ noting that terms
odd in e D ez�y integrate to zero to get

j@� g.�.y; t// � g00.0/
1

Vı

Z
Bı.y/

!ı.jz � yj/jz � yj@j ui .y/ei ej d zj < C ı3: (75)
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Now substitution for the approximation to @� g.�.y; t/ in the definition of LD gives

ˇ̌
LD.u/

�
1

Vı

Z
Bı.x/

!ı.jy � xj/

ı2
ey�x

1

Vı

Z
Bı.y/

!ı.jz�yj/jz�yjg00.0/@j ui .y/ei ej d z dy

ˇ̌
ˇ̌<C ı:

(76)
We Taylor expand @j ui .y/ about x, note that odd terms involving tensor products
of ey�x vanish when integrated with respect to y in Bı.x/, and we obtain (74).

We now calculate as in (Lipton 2016, equation (6.64)) to find that

f 00.0/

2!3

Z
B1.0/

j�jJ .j�j/ei ej ekel d�@2
jkui .x/

D

�
2�1

�
ıikıjl C ıil ıjk

2

�
C 1ıij ıkl

�
@2

jkui .x/; (77)

where

�1 D 1 D
f 00.0/

10

Z 1

0

r3J .r/ dr: (78)

Next observe that a straight forward calculation gives

1

!3

Z
B1.0/

j�j!.j�j/ei ej d� D ıij

Z 1

0

r3!.r/ dr; (79)

and we deduce that

1

!3

Z
B1.0/

j�j!.j�j/ei ej d�
g00.0/

!3

Z
B1.0/

j�j!.j�j/ekel d�@2
lj ui .x/

D g00.0/

�Z 1

0

r3!.r/ dr

�2

ıij ıkl@
2
lj ui .x/:

(80)

Theorem 3 follows on adding (77) and (80) ut

Conclusions

We have introduced a simple nonlocal model for free damage propagation in solids.
In this model, there is only one equation, and it describes the dynamics of the
displacement using Newton’s law F D ma. The damage is a consequence of
displacement history and diminishes the force-strain law as damage accumulates.
The modeling allows for both cyclic damage or damage due to abrupt loading.
The damage is irreversible, and the damage set grows with time. The dissipation



1522 R. Lipton et al.

energy due to damage together with the kinetic and potential energy satisfies energy
balance at every instant of the evolution. Future work will address the question
of localization of damage using this model. We believe that if the loading is such
that large monotonically increasing strains are generated, then damage localization
based on material softening and inertia could be anticipated.

In this treatment, we have considered dynamic problems only. For this case, we
have shown uniqueness for the model. The analysis of this model in the absence of
inertial forces leads to the quasi-static case where the effects of inertia are absent
but memory of the load history is still present. Future work aims to explore this
model for this case and understand regimes of body force specimen geometry and
boundary loads for which there is loss of uniqueness and associated instability. Such
nonuniqueness is well known for quasi-static gradient damage models (Pham and
Marigo 2013).
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Eulerian material model, 1179
Euler-Lagrange equation, 924, 1229
Euler time discretization, 1458, 1463, 1465
Euler time integration, 1052

scheme, 1012
Exact discretization of continuum derivatives,

845–847
Extended finite element method (XFEM), 448
Extrapolated motion dynamics (EMD), 80

F
Fast conjugate gradient method (FCG), 1340
Fatigue

definition, 402
strength exponents, 426
See also Indentation fatigue

Ferritic steels, ductile to brittle transition
fracture, see Ductile to brittle transition
fracture, in ferritic steels

Fick’s approach, 1332
Film prestress and substrate modulus,

indentation
fixed indenter radius, formulation for, 134
model and computation method, 132
variable indenter radius, general

formulation with, 140
Finite deformation

equivalent microstrain model, 529
gradient hyperelasticity, 524

intermediate local configuration, 540
Lagrangian strain, 531
local objective frames, 533
micromorphic approach, 524
microstrain model, 526
multiplicative decomposition, 535
single crystal plasticity, 597

Finite difference approximation, 1454
consistency, 1469–1473
convergence results, 1464–1465
error analysis, 1465–1467
L2 projection, exact solution, 1467–1469
semi-discrete approximation, 1477–1480
stability, 1474–1477

Finite element approximation, 1454,
1480–1482

Finite element implementation, 1049–1052
Finite element method (FEM), 296, 298, 305,

306, 308, 311, 1233
Finite element method (FEM) simulations,

256, 259
ABAQUS, 279
buckling spacing in, 260
helical buckling configurations, 263
membrane strain, 265
in-plane and out-of-plane displacement

amplitudes, 259
in-plane displacement amplitude, 260
in SiNW, 246

Finite element solution procedure, 1016–1025
Finite microstrain tensor model, 526
First law of thermodynamics, 1166
Fixed indenter radius, formulation

forward analysis, 134
reverse analysis, 135

Flat punch indenter, 406
Fleck-Hutchinson model, 1002
Flow rule, 564

grain boundary, 801
grain interior, 795

Fokker-Planck equation, 1332
Force-blending, 1225
Forward analysis, 134, 140
Fourier heat conduction expression, 1166
Fractal angular momentum equation, 918–920
Fractal conservation of microinertia, 919
Fractal continuity equation, 917
Fractal curl operator, 913
Fractal derivative, 912
Fractal divergence, 913
Fractal energy equation, 920–921
Fractal functions, 855
Fractal gradient, 912
Fractal Laplacian, 913
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Fractal linear momentum equation, 918
Fractal materials, continuum mechanics,

916–917
Cauchy’s tetrahedron, 916
fractal angular momentum equation,

918–920
fractal continuity equation, 917
fractal energy equation, 920–921
fractal linear momentum equation, 917
fractal second law of thermodynamics,

921–923
fractal wave equations, 923–926

Fractal second law of thermodynamics,
921–923

Fractal wave equations
3D elastodynamics, 925, 926
fractal Timoshenko beam, elastodynamics

of, 923–925
Fractional calculus

applications, 870
arc length, 865
balance principles, 889
chain rule, 864
deformation, 884
deformation geometry, 881
fractional curvature vector, 867
fractional radius of curvature, 867
fundamental forms, 875
in material deformations, 857
in mechanics, 855
normal fractional curvature, 877
origin, 854
polar decomposition, 883
properties, 858
Serret-Frenet equations, 868
stresses, 888
tangent space, 866
vector field theorems, 879
vector operators, 878
Zener viscoelastic model, 893

Fractional nonlocal continuum mechanics and
microstructural models

exact discretization of continuum
derivatives, 845–847

lattice derivatives of integer orders, 843
lattice fractional integro-differentiation,

842–843
lattice models to continuum models,

844–845
long-range interactions of lattice particles,

841–842
Fracture strength, 301, 312
Fracture toughness, 374
Free energy, 1008, 1010

Free energy density function, 1181
Free fracture model, non-local double well

potentials, see Non-local double well
potentials

Free micro-inertia, 720, 721, 728, 729, 731,
733, 735, 736

Free volume, 380, 381, 392
Freund’s theory, 462
Fréchet derivatives, 1164
Fubini’s theorem, 931, 1312
Fully-homogenized peridynamic (FH-PD)

model, 1360
Functional calculus (FC), 1318–1328
Functionally graded materials (FGMs), 1354

convergence studies, 1369
fully-homogenized peridynamic

model, 1360
intermediate-homogenization peridynamic

model, 1361

G
Gain-of-function (GOF) mutant, 117
Galerkin finite element method, 1334,

1338–1340
Galerkin methods, 1210
Gating mechanism, 82, 83, 110
Gauss divergence theorem, 881
Gauss theorem, 911, 1011
Gaussian elimination (Gauss), 1340
Generalized convolution operators, 1325
Geomaterials, 1069
Geometrically necessary dislocation (GND),

40, 50, 54, 56, 644, 783, 942,
1003, 1005

density tensor, 600
gradient, 808
hardening, 812

Glasses, 378, 380, 383, 387, 397
Glassy polymers, see Continuous stiffness

measurement (CSM) nanoindentation
experiments

Glassy polymers, see Plastic deformation
Gradient-enhanced nonlocal plasticity

theory, 783
Gradient free energy, 1014
Gradient micro-inertia, 720, 721, 724,

727–733, 735, 736
Grain boundary (GB), 5, 12, 14, 16, 20, 24

deformable boundary condition, 824
dissipative thermodynamic

microforces, 799
effects, 40, 59
energetic thermodynamic microforces, 800
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Grain boundary (GB) (cont.)
flow rule, 801
microfree boundary condition, 814
microhard boundary condition, 821
model and SGCP (see Strain gradient

crystal plasticity (SGCP))
simulation model, 371
virtual power, 798

Green-Gauss theorem, 926
Green-Lagrange strain tensor, 750
Green’s theorem, 879
Green strain tensors, 438
Griffith fracture energy, 1458
Griffith free energy, 1454
Griffith’s theory, 928
Gronwall’s inequality, 1278
Gurson porous plasticity, 1103–1106
Gurson-Tvergaard-Needleman (GTN) model,

1101, 1102, 1113

H
Hölder inequality, 1478
Hölder space

cohesive dynamics, finite time
intervals, 1425

Lipschitz continuity and bound, 1424–1425
local existence and uniqueness, 1433–1436

Hölder’s inequality, 1259
Hall-Petch effect, 1036
Hardness, 316–320, 322, 326, 330, 331
Heat flow, 796
HEC, see Hydrogen embrittlement cracking

(HEC)
Helical mode, 243, 245, 247, 254, 267, 271,

272, 276, 281–284
Helmholtz decomposition, 914
Helmholtz free energy, 557
Helmholtz free energy density, 648
Hertzian cone crack, 444
High-strength steels, 290, 291
Higher differentiability, 1256–1261
Higher integrability, 1255–1256
Higher-order beam theory, 1125
Higher order gradient plasticity

dissipative thermodynamic
microstresses, 561

energetic and dissipative components, 554
flow rule, 564
Helmholtz free energy and energetic

thermodynamic microstresses, 557
thermodynamic formulation, 553
thermo-mechanical coupled heat

equation, 565

Higher order nonlocal problems, 1261–1262
Higher-order rod model, micro-rods, see

Micro-rods
Homogeneous deformations, 885
Homogenization of fractal media, 914–915

anisotropic fractals, vector calculus on,
913–914

fractional integral theorems and fractal
derivatives, 911–913

mass power law, 907–908
product measure, 907–911

Hooke law, 926
Hoop stress, 472
Hourglass control, 701
Hydrogen embrittlement cracking (HEC),

290, 291
crack length and stress intensity

factor, 311
crack propagation, mechanism of, 305
experimental results, 303
materials and experimental

methods, 302
multiple crack formation, mechanism

of, 306
See also Threshold stress intensity factor,

HE cracking
Hydrostatic energy release rate, 1287
Hydrostatic force, 1268
Hydrostatic softening, 1277
Hydrostatic strain, 1267, 1268, 1286,

1498, 1513

I
ICME, see Integrated computational materials

engineering (ICME)
Ifpack, 1234
Influence function, 1188
Impact, 1357, 1364, 1368, 1373, 1376
Incremental theory, 783
Indentation, 169, 403

depth, 418, 425
image of polycrystalline copper, 419
instrumented, 212
load-depth curve, 404
load-displacement curve, 213
load-displacement curve vs. material

property, 214
response, 213
size effect, 5, 23, 31, 35
shape factors, 225
spherical analysis, 213, 423
strain rate, 317, 318, 320–322, 329
stress intensity factor, 406
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Indentation fatigue, 402
damage, 422
deformation, 409
depth, 424
depth propagation law, 409
mechanics theory of, 404
numerical simulation of, 411
on polycrystalline copper, 415
on semi-infinite solid, 405
strength law, 422
steady-state rate of, 413, 416
testing system, 414

Indentation, prestressed elastic
coating/substrate system, 130

fixed indenter radius, formulation for, 134
model and computation method, 132
variable indenter radius, general

formulation with, 140
Indentation test, HEC, see Hydrogen

embrittlement cracking (HEC)
Indenter angle, 214, 215, 218, 219, 223, 225,

227–229
Indistinguishable load-displacement curve, 239
Infinitesimal deformations, 888
Initial Boundary Value Problem (IBVP),

765–769
In-plane mode, 254, 267, 268, 270, 271,

283, 284
Integral operator, 1307
Integrated computational materials engineering

(ICME), 161
Interaction domain, 1202
Interfaces

dynamic properties, 367
elastic constants, 366
fracture, 369
mechanical properties, 363

Intermediate-homogenization peridynamic
model, 1361

Internal state variable, 609
Internal variable model, 729–731
Isotropy, 1168

J
Jensen’s inequality, 931, 1467, 1469
Jumarie’s derivatives, 860

K
Kernel(s), 1248–1249
Kernel function, 1296, 1298, 1300, 1301, 1303,

1305, 1307, 1312, 1316, 1326
Khun-Tucker conditions, 985

Kinematic(s), 786
Kinematically admissible displacement

field, 927
Kirchhoff stress tensor, 438, 755

L
Lévy process, 1332
Lagrangian formulation, 536
Lagrangian virtual work method, 438
Lamé coefficient, 1520
Laplace equation, 1254
Laplace operator, 1319, 1326
Laser spallation test, 157
Lattice antiderivative, 844
Lattices fractional integro-differentiation,

842–843
Lebesgue dominated convergence theorem,

1296, 1306, 1309, 1314
Leckie-Hayhurst form, 1108–1109
Leibniz L-fractional derivative, 861
Leibniz rule, 1296, 1306, 1314
Length scale, nanoindentation,

see Nanoindentation, size effects
and material length scales 4

Length scale parameter, 1124, 1133, 1137,
1142–1145, 1152, 1153

Lennard–Jones (LJ) potential, 42, 46
Lennard–Jones (LJ) type, 1267
Linear peridynamic solid (LPS) model,

1230, 1391
Linear regression analysis, 484
Linearized kinematics, 601
Lipid bilayers, continuum modeling of, 104
Lipid membrane model, equi-biaxial tension

of, 105
Lipschitz continuity, 1475, 1503, 1506
Lipschitz property, 1486, 1487
Loading curvature, 215–219, 222, 231, 232,

234, 235
Loading rate, 317, 320, 321, 331
Local Laplacian, 1249–1254
Local-to-nonlocal (LtN) coupling methods

for continuum mechanics, 1225–1226
discretization of, 1233–1234
linearized linear peridynamic solid and

classical elasticity, 1231–1232

M
Macroscopic boundary conditions, 823
Macroscopic stress, 976
Major failure on-set (MFO) stress and

strain, 459



1532 Index

Mandel stress tensor, 648
Manifold, 748
Material body, 748
Material continuum, 748
Material point, 748
Matrix-vector multiplication, 1333
MDN, see Misfit dislocation network (MDN)
MEAM, see Modified embedded atom method

(MEAM)
Mechanosensitive (MS) channels, 79, 119
Mechanosensitive channel of small/large

conductance (MscS/MscL), 79
Mechanotransduction, 82
Median vent crack, 444
Meshfree method, 1233
Metal/ceramic interfacial regions (MCIRs)

ab-initio density functional theory, 158
AIDD simulator and VPSC-CIDD

model, 163
CrN/Cu/Si(001) specimens, 170
elastic stiffness constants, 177
glancing incidence XRD pattern, 171, 172
grain structure by TEM, 175
hardness, 178
ICME, 161
indentation, 177, 178
interfacial impurities/solute-atoms, 165
interfacial spacing, 160
laser spallation test, 157
MD simulations, 159
micro-and nano-scale rougness, 166
micro-pillar fabrication and axial

compression measurements, 180
microscale mechanical testing, 159
misfit dislocation network, 159
multiscale simulation, 166
nano adhesion interlayers, 155
nanolaminate adhesion interlayer, 165
nanolaminate composites, 155
selected area diffraction patterns, 176
shear failure, 167
TEM, 176
tensile stress, 159, 160
vapor phase deposition, 167
Young’s modulus, 180
See also Ti/TiN interfacesTi/TiN interfaces

Metal matrix composite, 633
Metamaterials, 715, 736

band-gap metamaterials, 716–719
dynamics of, 721
mechanical behavior of, 720
periodic microstructures, 716
specific inertial characteristics of, 720

Micro-clamped boundary conditions, 948

Micro-free boundary conditions, 947
Micromodulus double state, 1171
Micromorphic theory

constitutive equations, 510
elastic–plastic decomposition, 517
elastoviscoplasticity theory, 507
non–dissipative mechanisms, 513

Micro-Electro Mechanical Systems
(MEMS), 805

Micromorphic crystal plasticity free energy
potentials for, 662

Micro-pillar fabrication
axial compression testing, 180
CrN/Cu/Si vs. CrN/Ti/Si pillars, 185
cylindrical micro-pillars, 182
ex-situ and in-situ compression testing, 186
in-situ axial compression, 183
in-situ compression testing, 185
interfacial locking and unlocking, 189
NanoFlip device, 180
stage of deformation, 189
using scripted FIB milling, 180

Micro-rods, 1142, 1153
axial vibration problem, solution of, 1148
clamped-free and clamped-clamped, 1152
equation of motion, 1147
geometry and coordinate system, 1145
Hamilton’s principle, 1147
initial conditions and boundary

conditions, 1148
kinetic energy, variation of, 1147
modified strain gradient theory, formulation

for, 1144
non-zero strain component, 1145
strain energy, variation of, 1146
symmetric rotation gradient tensor, 1146

Microbeam, 1124
free vibration, 1132
modified strain gradient elasticity

theory, 1125
trigonometric shear deformation beam

theory, 1127
Microcurl model, 658, 661
Microdamage model, 502
Microdeformation, 648
Microfree boundary condition, 815
Microhard boundary condition, 822
Micromorphic crystal plasticity, micropolar

and, 651
Micromorphic model with curvature,

734–736
Micromorphic theory

elastic–plastic decomposition, 508
kinematics of, 504
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Microplane models, 1067, 1069–1070
cementitious materials, 1075–1084
kinematic no-split formulation, 1070–1072
kinematic split formulation, 1072–1074
nonlocal microplane models, 1085–1095
static split formulation, 1074–1075

Micropolar crystal plasticity (MP), discrete
dislocation (DD) and, 627

Micropolar single crystal simulations, 621
Micropolar theory, 617
Microscopic boundary condition, 823
Microscopic stress, 976
Microstress vectors, 1006, 1008
Microstructure, 378, 382, 393, 715, 736

characteristic sizes of, 715
inertia of, 721
periodic microstructures, 716
vibrations of, 716, 721

Mid-point integration scheme, 1384
Misfit dislocation network (MDN), 159, 193
Model M7Auto, 1086–1095
Modified couple stress theory, 1143
Modified embedded atom method (MEAM),

42, 166
Modified Leckie-Hayhurst form, 1108–1109
Modified shear correction factor, 1133
Modified strain gradient elasticity theory, 1125
Modified strain gradient theory (MSGT)

formulation for, 1144
natural longitudinal frequencies, 1152
results of, 1153

Molecular dynamics (MD) simulation, 40, 370
boundary conditions effects, 45
grain boundary effects, 59
simulation methodology, 41
small length scales, size effects in, 52
theoretical models, 50

Molecular dynamics-decorated finite element
method (MDeFEM), 82

Momentum theorem, 479
Morse potential, 42
MTS 810 Hydraulic Materials Testing

System, 954
Multi-scale simulation, 83, 85
Mühlhaus-Vardoulakis Cosserat plasticity

model, 706

N
Nano adhesion interlayers, 155
Nanocrystalline structure, 834
NanoFlip device, 180
Nanoindentation, see Continuous stiffness

measurement (CSM)

Nanoindentation, molecular dynamics,
see Molecular dynamics (MD)
simulation

Nanoindentation, size effects and material
length scales

bicrystal metals, grain boundaries on, 24
length scale, determination of, 11
nonlocal theory, 6
physically based material length scale, 8
sample preparations, 16
single crystal and polycrystalline metals,

temperature and strain rate dependency
on, 18

Nano/micro-electromechanical systems
(N/MEMS), 402

Nanowire, 243, 244
Natural frequency, 1152, 1153
Navier-Cauchy equation (NCE), 1231
Navier solution technique, 1137
N -dimensional vectors, 1343
Neumann-type conditions, 1203
Newton’s second law, 1420
Newton-Raphson iterations, 1017

scheme, 988
Newton-Raphson solution procedure, 1052

scheme, 1012
Non-convex bond based material, 1177
Non-homogeneous deformation, 887
Non-incremental theory, 783
Non-linear Poisson-Boltzmann (NLPB)

model, 107
Non-local double well potentials

energy release rate, 1286–1288
existence of solutions, 1270–1273
linear elastic operators, 1288–1290
nonlocal dynamics, 1267–1270
peridynamic energy to elastic properties,

1281–1286
softening zone, control of, 1276–1281
stability analysis, 1273–1276

Non-local effects, 724, 731, 736
Non-proportional loading, 550
Nonlinear nonlocal fracture models

H 2 norm, Lipschitz continuity in,
1437–1453

H 2 solution, existence of, 1437–1453
Hölder continuous solution, existence of,

1425–1436
Hölder norm, Lipschitz continuity in,

1425–1436
Hölder space, solutions in, 1423–1425
nonlocal potential, 1420–1422
Sobolev space H 2, solutions in, 1436–1437
weak formulation, 1422
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Nonlocal Bernoulli-Euler beam model, 1143
Nonlocal crystal plasticity (NCP)

model, 941
strain gradient formulation, 943

Nonlocal diffusion model, 1334–1337,
1342–1346

Nonlocal force, 1428
Nonlocal Green’s identities, 1201
Nonlocal interactions, 1278, 1290, 1496
Nonlocal Laplacian

definition, 1244
elliptic properties for, 1249–1250
operator, 1202
scaling, 1250–1254

Nonlocal microplane models, 1085–1095
Nonlocal model(s), 1224, 1460–1461

accuracy of, 1224
finite difference approximation, see Finite

difference approximation
finite element approximation, see Finite

element approximation
and local, see Local-to-nonlocal (LtN)

coupling methods
higher differentiability, 1256–1261
higher integrability, 1255–1256
higher-order, 1246–1247
peridynamics equation, 1461–1463
regularity for, 1261–1262

Nonlocal operators, 1245, 1249
Nonlocal operators, local boundary conditions

in 1D, 1302–1311
in 2D, 1296–1302, 1311–1314
higher dimensions, operators in,

1316–1317
numerical experiments, 1317–1324
unctional calculus, 1318–1328
verification of BC, 1314–1316

Nonlocal theory, 6
Nonlocal wave equation, 1317–1321,

1324, 1328
Nooru-Mohamed mixed mode fracture

test, 1089
Numerical discretization, 1384
Numerical study, 213, 239

O
Optimization-based coupling (OBC) methods

domain configuration, 1227
goal of, 1227
LtN formulation, 1231–1234
non-intrusive, 1226
patch tests, 1234–1235
rectangular bar, crack, 1235–1238

state models and properties, 1229–1231
tensile test specimen, crack, 1238–1240
well-posedness, 1227–1229

P
Pairwise bond force density field, 1165
Palmitoyloleoylphosphatidylethanolamine

(POPE) lipid bilayer, 104
Partial differential equation (PDE), 1200, 1226,

1234, 1244, 1245, 1332
Partial integro-differential equations (PIDEs),

1244, 1246
Partial-volume algorithms, 1396
Patch tests, 1234–1235
Peridigm, 1234
Peridynamics (PD), 1224, 1227, 1229,

1231–1232, 1234, 1235, 1244, 1294,
1295, 1326, 1328, 1356, 1359, 1378

discretization schemes, 1205–1208
equation of motion, 1199
local limits, 1200
muliscale finite element implementation,

1210–1212
nonlocal obstacle problems, 1217
nonlocal operators, 1201
nonlocal optimal control problems,

1212–1214
nonlocal parameter identification problems,

1214, 1217
nonlocal vector calculus, 1200
steady-state problem, 1202, 1203, 1205
variational formulation, 1204

Peridynamic energy, 1477
Peridynamic equilibrium equation, 1230
Peridynamic model, 1334–1337, 1418,

1459, 1488
fast collocation method, 1346–1349
and meshfree discretization, 1391
one-dimensional, 1337–1342

Peridynamic problem
dynamic, convergence studies of, 1405
static, convergence studies

of, 1398
Peridynamic theory, 1332

damage state, 1173
balance of momentum, 1164
bond based viscoelastic material, 1176
bond-based linear material with

damage, 1174
concepts in, 1161
convergence to local theory, 1190
damage evolution, 1183
discrete systems, 1179
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energy balance and thermodynamics, 1166
energy density, 1278
force, 1420, 1421, 1437, 1439, 1486, 1487
heat transport model, restriction on, 1171
isotropic bond based material, 1177
local continuum damage mechanics, 1193
local kinematics and kinetics, 1188
material model, 1167
non-convex bond based material, 1177
non-ordinary state based material, 1176
ordinary state based material with

damage, 1175
plasticity, 1180
properties of states, 1163
purpose of, 1160
thermodynamic formulation of material

models, 1169
Permanent deformation state, 1181
Perturbation analysis, 1273
Phase field model, 516
Phase velocity, 715
Phonon damping mechanism, 747
Piola–Kirchhoff stress tensor, 648, 926
Plastic cracks, 444
Plastic deformation, glassy polymers

free volume evolution, 381
rate, effect of, 389
shear banding and indentation size

effect, 395
STZ nucleation energy evolution, 384
temperature, effect of, 391
thermal history, 393

Plastic energy density, 989, 994
Plastic flow, 1181
Plasticity, 380–382
Plastic slip, 1004–1013
Plastic strain rate, 1005, 1039
Plausible damage growth law, 1183
Poincaré inequality, 1247, 1248, 1250,

1254, 1259
Point mass, 910
Poisson’s ratio, 132, 988, 1285
Polar decomposition, 750
Polycarbonate (PC), 317, 318, 321–324, 326,

330, 331
Polycrystals, 834

grain size effects in, 674
Polymeric glasses, see Continuous stiffness

measurement (CSM) nanoindentation
experiments

Polymers, 378–380, 382, 383, 385, 388, 389,
391, 396

Polymethyl methacrylate (PMMA), 317, 318,
321–323, 326, 328, 331, 468

Porous elastic materials, 1380
Post-buckling behaviors, 281

of embedded wires, 244, 275
theoretical and FEM evolutions of, 283

Potential energy, 1269, 1420, 1462
Power-law type of interactions, 841, 842
Pre-fractals, 906
Principle of virtual power, 550
Pulsed electron-electron double resonance

(PELDOR) approach, 80
PVB laminated glass

circumferential crack propagation
characteristics, 457

computational method, 450
constitutive relation, 435
contact model, 442
dynamic out-of-plane loading, 462
impact velocity, 446
internal stress analysis, 444
material model, 442
model setup, XFEM, 449
Poisson’s ratio, 445
quasi-static loading, 458
radial crack propagation, 453
XFEM, 448
See also Radial crack propagation of PVB

laminated glassradial crack propagation

Q
Quasi Newton-Raphson method, 803
Quasi-static fracture, 1380

R
Radial crack propagation of PVB laminated

glass, 453
crack morphology, 465
driving mechanisms, 469
drop weight and height, 470
experimental condition, 463
specimen preparation, 465
See also Circular crack propagation of PVB

laminated glass
Raman spectroscopy, 364
Rank-one defect energy, 665
Rate, 378–381, 385, 387–389, 393
Rate variational formulation, 1013–1016
Rate-dependent (RD) model, 707, 988–991,

994, 995, 997
analytical solutions, 983–984
constitutive assumptions, 979
equilibrium, 979–980
evolution, 980–981
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Rate-independent (RI) model, 988, 990,
995, 997

analytical solutions, 984–987
constitutive assumptions, 981
equilibrium, 981–982
evolution, 982

Rayleigh wave, 1373
Rayleigh wave speed of glass sheet, 468
Relative deformation tensor, 603
Relaxation time, 437
Relaxed micromorphic model, 723–724, 731,

732, 734, 737
and band-gap mechanical metamaterials,

718–719
dispersion analysis, 724–726
dispersion curves, 727–729
with curvature, 734, 736

Representative volume element (RVE), 757,
830, 909, 918, 1106

Residual stress, 290, 291, 306, 311, 312
Response curves, 989, 990, 992, 995
Reverse analysis, 135, 141, 214, 232–234,

236, 239
Reynolds transport theorem, 911, 912,

917, 918
Reynold’s transfer theorem, 891
Riemann-Liouville (R-L) derivatives, 859
Riemannian space, 749
Rotation axial vector, 651
Rousselier model , 1102

S
Scanning imaging with electron-or ion-induced

secondary electrons (SE/ISE), 168
Schmid law, 649
Schmid stress, 1016
Second law of thermodynamics, 694
Serret-Frenet equations, 868
Shear deformation, 1125, 1127
Shear locking, 701
Shear modulus, 1285, 1520
Shear stress-strain response, 623
Shear transformation, 380, 381, 384, 385,

387, 397
Shear transformation zones (STZs), 380,

381, 384
Simply supported (SS) type BC, 1319
Size dependency, 1124, 1142, 1145, 1153
Size effects, 782, 785, 823, 824, 832
Small punch testing (SPT), 1118

crack depth, effects of, 1116–1118
experimental setup, 1110–1112
geometric parameters of, 1115

numerical simulations of, 1111–1113
puncher radius, effects of, 1114–1117

Small-scale effect, 1124, 1143
Sobolev embedding property, 1436, 1444, 1446
Sobolev space H 2, 1436–1437
Soft substrate, 275, 276
Space, Euclidean, 748
Spatial discretization, 1470–1473
Split Hopkinson pressure bar (SHPB)

compression, 492
Stability, 1474–1477

analysis, 1273–1276
linearized peridynamics, 1488–1492
semi-discrete approximation, 1477–1482

Standard Galerkin approach, 1049
Standard Mindlin-Eringen model, 731–734
State based peridynamics, 1266, 1270,

1496, 1501
Static classical elasticity, 1231
Statically admissible field, 927
Statistically stored dislocations (SSDs), 783,

830, 942
Stokes’ theorem, 880
Strain, 378, 379, 381–391, 393, 394, 396

energy density function, 1162
vs. force plot, 1515
gages, 957
profile, 1514
vs. stress, 1518
vs. time, 1517

Strain gradient crystal plasticity (SGCP), 1038
bi-crystal specimen, single slip system,

1053–1057
bulk material, free energy imbalance,

1042–1044
cylindrical specimen, three slip system,
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