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Preface

Sometime in 1983 four of us, Sanjoy Banerjee, Gad Hetsroni, Geoff Hewitt and
George Yadigaroglu met and decided to organize a Short Course on multiphase
flows, following the model that had been successfully tested at Stanford University
previously (1979–1983). George Yadigaroglu was appointed the local organizer in
Zurich. This was the beginning of a great “enterprise” that is still going on. The first
Zurich Short Course took place in March 1984 and an unexpectedly large number
of persons participated. Zurich turned out to be an excellent venue and we are
grateful to ETH Zurich for hosting the course in its excellent facilities. The audi-
ences kept growing and over 2000 participants took part in the Zurich courses until
now. The courses that are still offered—obviously with new material and some new
lecturers—became an initiation rite for the junior staff of the research and engi-
neering departments of large companies, national laboratories, university labora-
tories, etc. Beginners, doctoral students, as well as their professors, young and older
scientists, and engineers attended.

In March 2015, Gad Hetsroni died after a short illness. He had a very protective
love for the Short Courses and had been the main organizer of the earlier sessions in
California. He was involved as a Course Director and Lecturer up to 2015 and
material from his lectures is included in these published Zurich notes. We wish to
place on record our sincere appreciation of the crucial role he had played.

The Zurich Short Courses not only offered the opportunity to the participants to
meet and interact with outstanding lecturers, but also with colleagues working
worldwide on similar topics but in different industries. An aim of the courses was to
promote interdisciplinary information exchanges between various industries and
areas where multiphase flows are important but communications poor. For the
lecturers also, the annual meetings became excellent opportunities to meet and
interact.

The courses started with the four founders mentioned above, but soon the
number of lecturers was expanded: we tried to attract not only the best specialists in
their areas but also good communicators and teachers. In 1989, two parallel ses-
sions were offered and the course became modular. The first three days were
devoted to Basics while on Thursday and Friday the participants could choose
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between two options. Part A was always the “nuclear” one, as many participants
came from nuclear industries, even when their particular research interests were not
necessarily in the narrower nuclear area. Part B, in response to the increasing
interest in computational modelling and computational multi-fluid dynamics, was
fully devoted to these topics. In fact, the computational aspects became gradually
more important throughout the course, reflecting on-going changes and progress.
From 2005 on, the course was enriched by bringing in the practical experience
of the commercial code developers. By then the number of lecturers was expanded
from the initial four to over a dozen.

Today the courses are organized in this modular form as an intensive intro-
duction for persons having basic knowledge of fluid mechanics, heat transfer and
numerical techniques and also serve as advanced courses for specialists wishing to
obtain the latest information in the field; this series of books has the same goal. In
2007 introductory tutorials were used for the first time; they were mailed to the
participants before the course to introduce the very basic concepts, fill any gaps in
their basic background and prepare them for the tough week of lectures to come:
four to five hour-and-a-half lectures per day. Tutorials are also appended to the
volumes now.

The four principals met after each course to organize the next one: Geoff Hewitt
always wrote the next outline. Obviously the lectures have evolved over the years,
older material had to be shed to make place for new knowledge. The emphasis on
the various topics also changed. After some 35 years of Short Courses, an
impressive amount of material had accumulated. We finally decided to print the
notes in book form, also allowing use of the new electronic means of disseminating
the information. We are grateful to Springer that was interested in publishing this
material as a series. We are assembling the lecture notes in thematic volumes:
basics, conservation equations and closures, phenomenological modelling, boiling
heat transfer, two-phase flow dynamics, multiphase flows in the nuclear industry,
computational multi-fluid dynamics, etc. The present volume is the first of the
series. We expect our volumes to be of interest to scientists and engineers working
in the great variety of industries, thermal, chemical, nuclear, petrochemical, food,
pharmaceutical, oil-and-gas, etc. where multiphase flows are ubiquitous.

The chapters of the volumes, although initially reflecting the state of the art at the
time they were originally written, have been continuously updated over the years
and fully updated again for this publication. Although most of the material can be
found in the notes distributed to the participants over the years, it has been rear-
ranged to better fit the format of a book. The final result approaches the form of a
handbook or a series of textbooks; the pedagogical aspects remain very present. The
best parts of lectures (often given by different persons) were re-assembled in the
newly updated chapters that continue representing the state of the art.

The reader should not be surprised if a lot of original, old, seminal work is
referenced: we prefer to cite the original author and work rather than its latest
mention or presentation in a recent paper or textbook; this may make some of the
references look “old” but they have been included only if their value has passed the
test of time. Throughout the chapters, we insist on understanding of the physics and
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on mechanistic modelling while not ignoring the empirical, well-established
methods as well as the numerical applications. Our approach is to start from the
basic principles and ideas and to progress gradually, ending up with the state of the
art and occasionally looking beyond. A special effort is made to remain as edu-
cational as possible.

A few words about the present volume on Introduction to Multiphase Flow and
Basics: After introducing the reader to multiphase and in particular two-phase
flows, the basic concepts, variables, notions and tools necessary for the following
chapters are introduced in Chap. 1. Chapter 2 discusses the various alternatives
available for modelling and studying analytically or numerically two-phase flows.
The more advanced alternatives are simply surveyed in this chapter as they need
more in-depth and formal treatment in other volumes. Chapter 3 is an introduction
to the interfacial instabilities that govern a multitude of two-phase flow phenom-
ena; the early introduction of this material will help the following presentations.
A long Chap. 4 covers in depth the flow regimes, a special characteristic of
two-phase flows that governs their mechanistic modelling; consequently this
chapter gives an excellent opportunity to introduce the reader to phenomenological
modelling. Finally, Chaps. 5 and 6 cover void fraction and pressure drop in
two-phase flow, two topics that are of particular concern to any designer or analyst
of two-phase equipment and systems.

Zurich, Switzerland George Yadigaroglu
London, UK Geoffrey F. Hewitt
January 2017
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Chapter 1
Nature of Multiphase Flows and Basic
Concepts

George Yadigaroglu and Gad Hetsroni

1.1 The Nature of Multiphase Flows

Multiphase flows and heat transfer with phase change are one specialized discipline
among many others in the much more general area combining thermodynamics,
fluid mechanics and heat transfer; often this area is referred to as thermal-hy-
draulics. The study of multiphase flows requires basic knowledge in these three
areas. Appendix I of this volume, a tutorial, provides some of the indispensable
minimal background from these three areas for the reader that may need it.

The adjective multiphase characterizes situations where several different phases
—liquids, gases, solids—are flowing simultaneously. In the case of liquids, the two
flowing media can also be two chemically different ones, e.g. oil and water.
Two-phase flows take place when only two phases are present, most often liquid
and gas.

Another categorization of flows is according to the presence or absence of heat
transfer: we speak of adiabatic or diabatic multiphase flows. In diabatic multiphase
flows, we can have phase change: vaporization or condensation. Phase change can
also take place, however, in adiabatic flows due to pressure changes; such vapor-
ization is referred as flashing.

Another important distinction is according to the flow direction: vertical, hori-
zontal, or inclined. Flow direction is more important in multiphase flows when
gravity plays a more important role in presence of large differences in the density of
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the phases; such differences can easily be of the order of 1000 (e.g. air–water flow
at atmospheric pressure).

Finally, we speak of parallel or co-current flow when the two-phases flow in the
same direction, and of counter-current flow when they flow in opposite directions
(e.g. falling liquid and rising gas).

Multiphase flows are present in everyday life, in nature, in industrial processes,
in power plants, in the oil and gas industry, etc. All phase-change processes such as
boiling and condensation produce two-phase flows; these heat and mass transfer
processes are “core” considerations in the multiphase flow area where many
applications involve phase change or at least interactions between phases. Water
boils in power plants to produce steam. In processing plants, different phases are
mixed to react or are the products of chemical reactions. Thus, heat transfer with
phase change (e.g. boiling or condensation) is intimately linked to two-phase flows.

After some reminders and formal definitions in Sect. 1.2, we will consider in
Sect. 1.3 a few examples where the nature of multiphase flows is dominant, and
controls the behaviour, the response and the operation of the whole system. In
particular, we note that some peculiarities of multiphase flow produce unique
responses that may have a profound effect on the dynamics and safe operation of
the system; we touch here only two such phenomena: the Critical Heat Flux
(CHF) phenomenon and a particular type of flow instability.

We will deal mainly with one-dimensional flows in ducts. In fluid mechanics, the
notion of one-dimensional flow is applied in a broader sense. For example, the flow
in a complex system of pipes that may have bends, enlargements, curved sections,
etc., such as the one shown in Fig. 1.1 is, strictly speaking, certainly not one
dimensional. However, as long as the three-dimensional details of the velocity and
temperature distributions do not interest us and we deal only with the average
velocity and the mass flux-weighted average fluid temperature, such systems can
still be treated as “one dimensional”. Indeed, we are dealing in this volume mainly
with one-dimensional two-phase flow, very much like in the excellent book by G.B.
Wallis that has exactly this title (Wallis 1969).

Fig. 1.1 A complex circuit
with bends, enlargements,
fittings, a pump, etc. that can
be still considered as one
dimensional when only
cross-sectional-average
variables are of interest

2 G. Yadigaroglu and G. Hetsroni



1.2 Phases, Components, Fields

A phase is a thermodynamic definition for the state of the matter, which can be
either solid, liquid or gas; these can co-exist in a conduit. Examples of multiphase
flows are abundant, e.g. when oil is produced, one normally gets oil, water, gas and
sand flowing in the pipelines (three-phase flow). Normally, by two-phase (or by
extension multiphase) flow we mean a mixture of two (or more) phases which is not
extremely dilute and the phases have a distinguishable size. Thus, though clean city
tap water is, strictly speaking, a two- (water–air) or three- (water–air–microscopic
solids) phase mixture, for practical purposes, it is considered a single phase.
However, city water carrying sand should, for filtration purposes at least, be con-
sidered a two-phase mixture.

The term mixture is most of the time used to denote the two (or more) phases
flowing together and does not necessarily imply that these are intimately mixed. For
example, in the case of annular flow that we will introduce below, we may still refer
to the flow as the two-phase mixture in spite of the fact that the liquid film on the
wall and the gaseous core are not at all “mixed”. The term “separated flow” is often
used loosely to denote two-phase flows where the two phases have different average
velocities. This distinguishes such flows from the homogeneous ones, where the
phases have the same average velocity; again, such flows may strictly speaking not
be homogeneous at all. For example, bubbly flow with fairly large bubbles can be
considered as homogeneous.

A component, is a chemical species. So, the term two-component is used to
describe the flow of two chemical species. A water–steam mixture is two-phase,
one-component, while a water–air mixture is two-phase, two-component flow; a
water–oil mixture is one-phase, two-component, etc. The approach in modelling of
the two alternative two-phase configurations—with one or two components—is
often the same or very similar, though the physical behaviour of different mixtures
may be quite different.

The term field is used to denote a topologically distinct or clearly identifiable
fraction of a phase. For example, in the so-called annular flow, the liquid can be
present as either a film on the wall or as droplets in the core where the gas flows; the
droplets and the film can be considered as different fields. In a closed vessel such as
a pressure cooker containing boiling water, we may define a field of steam bubbles
in the liquid and a field of steam in the space above the liquid surface as separate
fields.

For simplicity of presentation, the approaches and various methods that will be
covered here will be presented mainly for two-phase flows. However, their
extension to multiphase and multi-field flows is most often possible, although such
applications are less frequently encountered in practice.

In this volume, we mainly deal with liquid-gas mixtures. There are many other
two-phase flows, e.g. gas-solid flows such as fluidized beds, conveying of granular
materials by gas; liquid-solid flows where sedimentation and filtration may be
phenomena of interest, etc. Such flows will not be treated in this volume and in this

1 Nature of Multiphase Flows and Basic Concepts 3



series of books which are mostly directed to two-phase gas-liquid flows of indus-
trial interest: steam-water flows, oil and gas flows, two- or multiphase flows in
processing plants, etc. There are other texts which deal with the other types of
multiphase flows, namely the Handbook by Hetsroni (1982) and monographs such
as Fan and Zhu (1998) for gas-solid flows and Brown and Heywood (1991) for
liquid-solid flows (slurries).

1.3 Multiphase Flow Phenomena

We give examples in the following section of situations where peculiarities of
multiphase flow produce unique responses not found in single-phase flows. The
Critical Heat Flux (CHF) phenomenon and a particular type of flow instability will
be briefly introduced. In Sect. 1.3.2, we discuss phenomena that are not unique to
multiphase flows but become much more complex in the presence of several
phases.

1.3.1 Phenomena Unique to Multiphase Flows

The critical heat flux (CHF) phenomenon is a situation that may take place in heat
transfer with boiling. To illustrate the situation, we consider a very simple exper-
iment conducted with a heated tube immersed in a pool of liquid, Fig. 1.2. This is
the situation referred to as pool boiling. The heat flux from the wall is plotted in the
graph of Fig. 1.2 against the excess wall temperature (i.e. the wall temperature Tw
minus the saturation temperature Tsat of the fluid in the pool). The heat flux is
gradually increased; one can observe that once a certain heat flux is reached, the

Fig. 1.2 A pool boiling experiment (left). The boiling curve (right)
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CHF, a dramatic change takes place and a further increase in heat flux will cause a
very large, sudden rise in wall temperature, resulting most likely in the failure of the
tube. When the CHF is reached, the liquid can no longer wet the heater surface and
cooling takes place through a vapour film surrounding the heater rather than by
boiling of the liquid in contact with the wall. As the vapour has much reduced
thermal conductivity and density, heat transfer deteriorates markedly and leads to
the temperature excursion. This subject is of utmost practical importance and will
be further treated in other volumes. It is a phenomenon taking place only in heat
transfer with phase change.

We also note here that as the heat flux is reduced, the operating point stays on the
film boiling characteristic curve rather than going back at CHF to the nucleate-boiling
curve. It appears that the film surrounding the heater is stable, keeping film boiling
going on; it will take a further reduction of the heat flux to produce another jump back
to the nucleate-boiling curve. This particular hysteresis behaviour during pool boiling
was studied by Nukiyama (1934) who published the boiling curve.

Another example which is typical to two-phase flow is a flow excursion which
can occur in a two-phase loop having certain flow characteristics. The situation is
illustrated in Fig. 1.3. If the two-phase section of the loop has a negative slope in its
pressure drop—flow-rate characteristic ð _M;DpÞ; i.e. if @p=@ _M\0 something that
happens often in two-phase flow (and cannot happen in single-phase flow), a flow
excursion will occur. This situation was described first by Ledinegg (1938).
Ledinegg instabilities can be of great practical importance regarding the stability of
two-phase equipment such as steam generators. Flow instabilities will be dealt with
in another volume; some additional information is included in the following section.

1.3.2 Phenomena Complicated by the Presence of Many
Phases

A number of single-phase flow phenomena take also place in single-phase flows,
but the presence of two or more phases complicates greatly the situation.

Fig. 1.3 The flow-rate versus
pressure-drop characteristic of
a boiling channel. The
Ledinegg instability occurs if
the slope of the characteristic
is locally negative, as in the
segment BD. Point P is
unstable and the operating
point will migrate to either A
or A’
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For example, the pressure drop is a factor of importance in the design of any
hydraulic system. Its estimation is rather straightforward in single-phase systems,
but it becomes much more difficult—and inaccurate in fact—in two-phase flows.
Figure 1.4 shows the pressure drop—flow rate characteristic of a heated pipe. The
all-liquid and all-vapour characteristics are nearly parabolic, but, in between the
heated pipe exhibits a much more complex behaviour in the presence of two-phase
flow. As the heat flux increases, a negative-slope part of the characteristic emerges;
it is such behaviour that is responsible for the Ledinegg instability just mentioned.

Critical flows are another case where the multiphase nature of the problem
greatly complicates the situation. We will use this phenomenon to show the
importance of non-equilibria in two- or multiphase flows. In the simpler case of

0

100000

200000

300000

400000

500000

600000

700000

0 1000 2000 3000 4000 5000 6000 7000

P
re

ss
u

re
 d

ro
p

 (
P

a)

Mass flux  (kg/m2)

All liquid

1400 kW/m2

1200 kW/m2

1000 kW/m2

800 kw/m2

600 kW/m2

All vapour

Fig. 1.4 The flow rate—pressure drop characteristics of a heated pipe at different heat fluxes and
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two-phase flow, the gas and the liquid may have different average velocities and
temperatures; this is what we denote as non-equilibrium.

In the case of single-phase flow, the flow becomes chocked as the critical flow
condition is reached when, essentially, the flow velocity reaches the sonic velocity
of the fluid; the latter is determined as a thermodynamic fluid property depending
only on temperature and pressure (e.g. Shapiro 1953). The assumption is made that
the properties of the fluid are given along its thermodynamic path by its state
equation. The same approach can be taken for two-fluid mixtures but difficulties
appear: the state equation of the mixture depends now on whether the gas and liquid
velocities and temperatures are equal or not. As such equilibria are subject to all
sorts of flow conditions and on the history of the fluid upstream of the choking
point, there is no simple answer to this problem and the critical flow of a two-phase
mixture depends on assumptions made about the state of the mixture.

1.4 Flow Regimes

One of the major difficulties in multiphase or two-phase flows is that the phases are
distributed in the duct in particular ways; the various typical (topological) config-
urations that result are called flow regimes.

The boundaries between phases area called interfaces. The topology of the flow,
i.e. the geometry of the interfaces, is not known and cannot be determined a priori,
but is rather a part of the solution. In contrast, for example, in single-phase flow of a
fluid in a tube, knowing the geometry we can determine, either experimentally or
analytically, the velocity distributions, the shear stress distribution, the pressure
drop, etc. When two phases flow in a conduit, we cannot tell a priori how the phases
are going to distribute themselves: whether bubbles will be distributed uniformly
throughout the liquid (we call this situation bubbly flow) or whether the bubbles
will coalesce and gas will flow in the centre of the pipe, while the liquid will form a
film on the wall (this is called annular flow). Flow regime determination is needed
to answer such questions; this is treated in Chap. 4.

The cross-sectional distribution of the phases in the pipe determines other
parameters such as heat transfer, pressure drop and, without knowing this phase
distribution, we cannot calculate these. Furthermore, it is not likely that the two
phases will flow with the same average velocity. On the contrary, most likely, the
gas will flow at a higher average axial velocity than the liquid, which will cause a
change of the void fraction or volume fraction of the gas phase in the channel (i.e.
the fraction of area occupied by gas in the cross section). Often, until we have a way
to determine the flow regime, there is really no way we can accurately model and
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calculate other parameters of engineering significance. Therefore, one of the first
problems we will address in this volume is the study and determination of flow
patterns or flow regimes. The reader should be aware that flow patterns depend on
many parameters, such as the inclination of the conduit, the geometry, pressure,
type of fluid, etc.

1.5 Some Important Multiphase Flow Systems

We site now some examples where multiphase flows play a dominant effect in the
design and operation of very large engineering systems.

Offshore production has been important for the extraction of hydrocarbons since
the 1950s. It usually involves a drilling platform which operates a number of wells
to produce crude oil. The oil comes out of the ground usually as a mixture of crude
oil, sea water, sand and gas—a multi-component, multiphase mixture which needs
to be handled carefully because of various hazards and because of the extremely
costly equipment involved. Figure 1.5 shows production wells, drilling platforms,
and a floating production, storage and offloading vessel.

Electric power production from oil, coal or gas: A majority of power plants use a
steam cycle where water is the working fluid. Figure 1.6 shows the steam cycle of a
modern plant; water gets vaporized in the high-pressure steam generator section and
the low-pressure steam exiting from the turbine gets condensed in the condenser.
Again, two-phase flows and phase change processes are present throughout the
steam plant.

Fig. 1.5 FPSO, floating, production, storage and offloading for offshore production of oil
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In a nuclear power plant (NPP), the nuclear steam supply system (NSSS or
“en-triple-ess”) is the part of the plant where water at high pressure is heated in the
reactor vessel by the nuclear chain reaction taking place in the fuel rods. Steam is
then produced (either in the reactor vessel, as in a boiling water reactor, Fig. 1.7
(bottom), or in a steam generator, as in a pressurized water reactor, Fig. 1.7 (top),
and used in the turbine-generator to produce electric power. The multiphase flow of
water and steam takes place in very costly equipment. To operate the system safely
and efficiently for the lifetime of the equipment, one needs detailed knowledge of
multiphase flow and heat transfer. Understanding two-phase flow situations and
phenomena and being able to predict the outcomes becomes even more important in
case of an accident in a NPP when unusual situations are encountered. In fact, the
disciplines of two-phase flow and heat transfer with phase change progressed
tremendously the last three or four decades of the twentieth century driven by the
need to fully understand, model and simulate the complex phenomena taking place
during thermal-hydraulic accidents in NPPs. Other books in this series will be
devoted to two-phase flows in nuclear power plants.

Fig. 1.6 A modern steam power plant. Boiling and two-phase flows take place in the steam
generator while evaporation of droplets in the cooling tower (from http://www.zeroco2.no)

1 Nature of Multiphase Flows and Basic Concepts 9
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1.6 Averaging in Two-Phase Flows

It is often necessary to perform averaging in multiphase flows and in particular
averaging over the flow cross section in one-dimensional, two-phase flows. This is
in particular necessary when dealing with the conservation equations where one
starts with instantaneous local equations that must be integrated in time and space to
arrive at usable forms.

Fig. 1.7 Pressurized Water Reactor (top) and Boling Water Reactor (bottom). Figures from www.
nrc.gov. The conventional power production systems of these two main types on NPPs are quite
similar and operate under very similar thermodynamic conditions. In the BWR, direct steam
generation takes place in the reactor core while, in the PWR, it takes place in the intermediate
steam generator

10 G. Yadigaroglu and G. Hetsroni



Averaging will be applied either to two-phase mixture variables (variables for
both the liquid and the gas flowing together) or to each phase separately. We will
use averages of mixture properties such as the mixture density as well as averages
of phase variables such as the channel-cross-sectional-average liquid or gas
velocity. This section briefly introduces the concepts.

Generally, we will add the subscript k, (k = L,G), where L denotes the liquid
and G the gas, to the phase variables to differentiate them from mixture variables
that are usually written without a subscript. Thus, fk is a local instantaneous variable
pertaining to phase k, e.g. the local, instantaneous velocity or enthalpy, uk or hk.

1.6.1 Space Averaging

We consider space averages of generally instantaneous values. The following
averages can be defined:
Cross-sectional average of any variable f

\f [ ¼ 1
A

Z
A

f dA; ð1:6:1Þ

where the angle brackets operator <�> denotes the cross-sectional averaging over
the flow area A.
Phase cross-sectional average of a phase variable fk

\fk [ k ¼ 1
Ak

Z
Ak

fkdA; k ¼ L;G ð1:6:2Þ

where the integration is now performed only over the area of the channel Ak

occupied by phase k at a given moment. The second subscript outside the angle
brackets in <fk> k reminds us that the cross-sectional average of the local phase
property fk was performed over the area of the channel occupied by phase k
only: <�>k.

1.6.2 Time Averaging

The time or statistical average of any variable f is

f ¼ 1
T

Z
½T �

f dt: ð1:6:3Þ
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The integration interval [T] must be chosen such that, for example, high fre-
quency perturbations such as those created by turbulence are averaged out while the
transient nature of the process is still well represented.

The phase time or statistical average of a phase variable fk is

f
k
k ¼

1
Tk

Z
½Tk �

fkdt; ð1:6:4Þ

where [Tk] is the subset of residence time intervals where phase k is present at a
given point and Tk is the sum of the presence times of phase k at that given point.
T is the total averaging time interval. The rather heavy notation for the interval [Tk]
is necessary to remind us that it is discontinuous, Fig. 1.8.

1.7 Void Fractions and Their Measurement

The term void fraction (denoted in general by eG, where the subscript G denotes the
gas, dimensionless) generically describes in space or time the fraction occupied by
the gas phase. The notion is specialized as needed below. For each definition of the
void fraction, an experimental method that may produce such a measurement is
indicated; some additional information on void fraction measurements is given in
Chap. 5.

1.7.1 The Local Void Fraction

The local void fraction is defined as the fraction of time in which the gas phase
occupies a given point in space r. We may characterize the presence (or absence) of

Fig. 1.8 Measurements of a piecewise continuous
variable fk, such as phase velocity, pertaining to phase
k (above) and phase indicator function Pk (below). Such
signals could be actually measured, e.g. by a hot-wire
anemometer (phase velocity); the signal of the
anemometer could be treated to detected the phase
present
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phase k (k = G, L) at a given point r and at a given time t by the unit or zero value
of the phase density or phase presence function Pk(r, t)

Pkðr; tÞ ¼ 1 if r is in phase k
0 if r is in the other phase

� �
:

The instantaneous value is usually integrated over a time period T to give a
time-averaged value. Thus the time-averaged local k-phase fraction is the
time-averaged phase density function

�eKðr; tÞ ¼ 1
T

Z
T

Pkðr; tÞ dt ¼ Pkðr; tÞ ð1:7:1Þ

according to the definition of the time-averaging operator. In the case of gas, k = G,
this becomes the local statistical or time-average void fraction:

�eGðr; tÞ ¼ 1
T

Z
T

PGðr; tÞ dt ¼ PG r; tð Þ:

Alternatively, we can define the local statistical or time-average void fraction as
the fractional presence time of the gas phase at a given point:

�eG � TG
T

and also 1� �eG � �eL � TL
T

ð1:7:2Þ

where Tk (k = L,G) is the summation of all the times during which phase k was
present at the measuring point, and T is the total period of observation. The bar over
e denotes time or statistical averaging. The overbar will be dropped for simplicity of
notation when it is implicit that we are dealing with time-average values. Also, if no
subscript is added to e, it is assumed that the meaning is eG and the liquid local
time-averaged fraction becomes 1-e = eL. Clearly, eG + eL = 1.

The local void fraction can be measured by a miniature resistive probe, a
U-shaped fibre-optical sensor or a hot-wire anemometer. All these devices detect
the presence of a phase at their sensing tip.

An optical probe is sensitive to the change in the refractive index of the sur-
rounding medium enabling measurements of local void fraction. It can also record
interfacial passages and interface passage frequencies. Optical probes can operate in
conducting or non-conducting liquids. The tiny optical probe, which is frequently
used, Fig. 1.9, consists, e.g. of a single optical fibre, 40 lm in diameter, which may
be bent in a U shape. A light shines from a source through one arm of the U bend.
This light, according to Snell’s law, is either refracted (if the surrounding medium is
liquid) or reflected to the other side of the U bend (if the surrounding fluid is gas),
Fig. 1.9a. By analysing the signal of the phototransistor, one can infer the local
void fraction, Fig. 1.9d.
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1.7.2 The Chordal Void Fraction

The chordal void fraction is defined as the fraction of a chord or ray occupied at a
given instant by gas:

eG1 ¼ LG
LL þ LG

;

where Lk, k = L,G is the instantaneous cumulative length on the chord occupied by
phase k. This is best illustrated in Fig. 1.10 where LG = L1 + L2.

The chordal-average void fraction is typically measured by means of radiation
absorption methods. These methods use c or X-ray beams which are attenuated by
the material through which they pass. The intensity after absorption of a collimated
beam of initial intensity I0 (photons/m

2s) is given by

I ¼ I0e
�lz;

where l is the linear absorption coefficient, which is a property of the absorbing
material and the type of radiation and z is the distance travelled through a

Fig. 1.9 a Active parts of fibre-optical sensors showing the refraction or reflection of the light.
b U-shaped fibre-optical sensor assembly (Danel and Delhaye 1971). c Optical probe positioned
inside the channel in bubbly flow. d Probe signal indicating the presence of gas or liquid
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homogeneous absorbing medium. In applying this technique to the measurement of
void fraction, a collimated beam is passed through the channel walls and through
the two-phase mixture to a detector. First one measures the intensity of the beam at
the detector when the channel is full of liquid, IL and then full of gas, IG. The void
fraction is then related to the intensity I measured during two-phase flow by

eG1 ¼ ln
I
IL

� �
= ln

IG
IL

� �
:

The chordal void fraction can be averaged in time if necessary. An arrangement
to measure chordal-average void fractions is depicted in Fig. 1.11.

1.7.3 The Cross-Sectional Void Fraction

The cross-sectional-average instantaneous void fraction is the fraction of the cross
section occupied at a given instant by the gas:

RG � AG

A
; ð1:7:3Þ

where AG is the sum of the areas which are occupied by voids in the cross section
(the white areas in Fig. 1.12), AL is the sum of the areas which are occupied by the
liquid, and A is the total cross-sectional area. Similarly, for the liquid:

RL � AL

A
¼ 1� RG:

In terms of the phase presence function Pk(r, t), we can write

Fig. 1.10 Chordal void fraction. Left The sum of the segments L1 and L2 over the diameter define
the chordal void fraction. Right Calibration method
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RkðtÞ ¼ 1
A

Z
A

Pkðr; tÞ dA

where we have ignored the theoretical difficulties present in the integration of a
discontinuous function. The instantaneous cross-sectional void fraction can be
integrated in time to provide a time-averaged value over a time integral [T]

�RG ¼ 1
T

Z
½T �

RGðtÞdt ¼ 1
T

Z
½T �

1
A

Z
A

PGðr; tÞ dA dt:

Similarly, we can space average the local statistical void fraction

�eGh i ¼ 1
A

Z
A

�eGðrÞdA ¼ 1
A

Z
A

1
T

Z
½T �

PGðr; tÞ dt dA:

We realize that thanks to the commutativity of the space (<�>) and time ð��Þ
averaging operators the two expressions above are identical and we have, indeed for
either phase

Fig. 1.11 An early realization of a three-beam gamma densitometer measuring three
chordal-average void fractions that can be combined to obtain the cross-sectional-average value
(Lassahn 1977; redrawn figure courtesy of EPRI)
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�ekh i ¼ �Rk: ð1:7:4Þ

The cross-sectional void fraction can be obtained by integrating chordal-average
measurements over the cross section as shown in Fig. 1.11, or by using the
“one-shot” technique, or by a neutron scattering technique. Integration of
chordal-average measurements can be done either by traversing a collimated beam
across the channel (this obviously can be used only for steady-state measurements)
or by using a multi-beam arrangement, as illustrated in Fig. 1.13 that shows
multi-beam gamma densitometers that produce an estimate of the
cross-sectional-average void fraction by weighting appropriately the chordal void
fractions measured by many beams.

The “one-shot” method uses a broad radiation beam (as wide as the channel)
with special collimators to adjust for the different path length and wall absorption.

In the remainder of this volume, we will practically always use the cross sec-
tional and time-average void fraction <eG> or <e> (where we dropped the overbar
to alleviate the notation).1

Fig. 1.12 The
cross-sectional void fraction
is obtained by summing all
the areas occupied by gas in
the cross section

1Mathematically, the use of a cross-sectional-average void fraction may lead to some difficulties.
Therefore, it should really be understood as a volume-average void fraction defined over a length
dz, as dz ! 0.
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Fig. 1.13 Multi-beam x-ray systems for determination of multiple chordal-mean void fraction and
hence cross-sectional-average void fractions. Top One of the first instruments (Smith 1975).
Bottom Source and an array of rotating detectors can produce tomographic images (courtesy HM
Prasser)
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1.7.4 The Volume-Average Void Fraction

The channel (volume) average void fraction is defined as:

eG3 ¼ VL

VL þVG
;

where VG is the volume occupied by the gas and VL is the volume occupied by the
liquid in a certain volumeVG + VLof the channel. The average void fraction over a full
length of the channel can be obtained by integrating many local or cross-sectional
averages or by the quick-closing-valve technique. In thismethod two valveswhich can
be simultaneously and quickly operated are placed at the two ends of the test section.
At the appropriate time, the two valves are actuated and the volume of liquid in the test
section is captured. The liquid is left to settle and its volume measured.

1.7.5 Averages of Products

In integrating over the flow cross section or in time to obtain average quantities, we
often encounter averages of products of variables. Difficulties will arise when such
products, e.g. products of void fraction, velocity and enthalpy have to be
cross-sectionally averaged.

Time averages
The time average of the product of a phase-related quantity fk (such as the phase

velocity) by the local presence function Pk can also be written as an integral in [Tk],
as Pk is zero outside this interval:

1
T

Z
½T �

fkðr; tÞPkðr; tÞdt ¼ 1
T

Z
½Tk �

fkðr; tÞ dt

that can be written as fkPk ¼ Tk
T fk

k
:

We can verify that when fk = 1, this equation produces the identity Tk
T ¼ Tk

T .
We have already shown that thanks to the commutativity of the space and time

averaging operators, Eq. (1.7.4), we have

�ekh i ¼ �Rk

Space averages
Let us consider now space averages of products of the void fraction and another

phase variable fk, e.g. velocity—such terms will appear when the momentum
conservation equation is averaged in space:

1
A

Z
A

�ek�fkdA:
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We will derive first a fundamental relation (Delhaye 1981) that will be useful in
dealing with such space averages of products. It is going to be a fairly long
derivation; we will first show that

ek fk
k ¼ Pkfk: ð1:7:5Þ

The left-hand side, using Eq. (1.7.5), can be written as ekfk
k ¼ Tk

T fk
k
. The

right-hand side can be expanded using the definition of time averaging, Eq. (1.6.3),
and considering the fact that a time average of Pkfk over [T] is the same as a time
averaging of fk over [Tk] as

Pkfk � 1
T

Z
½T �

Pkfkdt ¼ 1
T

Z
½Tk �

fkdt ¼ 1
T
Tkfk

k
:

We have found identical expressions for both sides of Eq. (1.7.5) proving its
validity.

We integrate now Eq. (1.7.5) over the cross-sectional area, i.e. we apply the
operator <�> and expand the product using the definition of the time and space
averaging operators:

�ekfk
k

D E
¼ Pkfk

� � � 1
A

Z
A

dA
1
T

Z
½T �

Pkfkdt

0
B@

1
CA:

Inverting the order of space/time integration, this expression becomes

1
T

Z
½T �

1
A

Z
A

PkfkdA

0
@

1
Adt ¼ 1

T

Z
½T �

1
A

Z
½Ak �

fkdA

0
B@

1
CAdt ¼ 1

T

Z
½T �

1
A
Ak ekh ik

� �
dt � Rk fkh ik:

We have found the fundamental relationship:

�ekfk
k

D E
¼ Rk fkh ik ð1:7:6Þ

meaning that the time average of the instantaneous cross-sectional void fraction Rk

times the space average of a phase property is equal to the space average of the local
void fraction times the true time average of the phase property. In particular, if
fk = 1,

�ekh i ¼ Rk
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denoting that the space and time-averaged void fraction can be obtained either by
space averaging local time-average values or by time averaging instantaneous space
averages, as we have already seen above, Eq. (1.7.4).

We will be dealing usually with time-averaged quantities. If we neglect the
difference between the time average of a product and the product of the time
averages, i.e. if we write

Rk fkh i ¼ Rk � fkh i�!
Equation (1.7.6) becomes

�ekfk
k

D E
¼ Rk fkh i ¼ Rk � fkh i�! ¼ �ekh i fkh ik

��!

where we used the relation �ekh i ¼ �Rk , that is

�ekfk
k

D E
¼ �ekh i fkh i�!

k: ð1:7:7Þ

From now on we will omit time-averaging bars and consider that we are dealing
with properly time-averaged properties only. The notation ekh i, k = L,G denotes the
time and cross-sectionally averaged liquid and gas fractions. Equation (1.7.7) is
then simplified as

ekfkh i ¼ fkh ik ekh i: ð1:7:8Þ

This relationship will allow us to “open” the angle brackets of products of the
void fraction with another variable, for example, the cross-sectional-average phase
velocity:

\ekuk [ ¼ \uk [ k\ek [ : ð1:7:9Þ

A similar relationship does not exist, however, for products of variables not
containing the void fraction, e.g. uh. In this case, the angle brackets cannot be
opened; fgh i 6¼ fh i gh i. This fact will be again revisited during the derivation of the
conservation equations.

Later, during the discussion of the drift-flux model in Chap. 5, we will have to
make a distinction between local quantities and cross-sectional averages. For this
reason we will maintain the practice of using angle brackets (<�>) to denote
cross-sectional-average quantities, in spite of the fact that it burdens considerably
the notations.
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1.8 Phase Flow Rates and Flow Quality

The flow quality is defined as the ratio of the gas mass-flowrate _MG to the total
mass flowrate (in kg/s):

x �
_MG

_M
; _M ¼ _ML þ _MG: ð1:8:1Þ

This mass flow rate-based definition is different from the common thermody-
namic definition of quality, usually also denoted by the symbol x, which is the ratio
of steam mass to total mass. To be fully consistent and clear we should have used
the symbol _x instead of simply x for the flow quality. As we will practically never
use the mass-based definition, we are not going to do this to simplify the notation.

The flow rates of the phase k were denoted as _Mk (kg/s). The corresponding
volumetric flow rates are _Qk ¼ _Mk=qk (m3/s) where qk is the
cross-sectional-average density of phase k. The phase mass fluxes are the phase
flow rates per unit flow area:

_m ¼
_M
A
; _mk ¼

_Mk

A
:

Similarly, we can define the cross-sectional-average volumetric fluxes; depart-
ing, however, from the rule of using the same lower-case symbol for the fluxes, we
will follow the usual practice and denote these by <j> (rather than _q):

jkh i ¼
_Qk

A
¼ _mxk

qk
; jLh i ¼

_QL

A
¼ _m ð1� xÞ

qL
; jGh i ¼

_QG

A
¼ _mx

qG
: ð1:8:2Þ

Their sum is the total volumetric flux <j>:

jh i ¼ jLh iþ jGh i ¼ _m
x
qG

þ 1� x
qL

� �
: ð1:8:3Þ

The volumetric fluxes are cross-sectional-average quantities. They have units of
velocity, (m3/s per m2 or m/s). For this reason, the channel-average volumetric
fluxes are also called superficial phase velocities UsG and UsL.:

jkh i ¼
_Qk

A
� Usk: ð1:8:4Þ

The German term Leerrohrgeschwindigkeit, meaning “velocity in the empty
pipe” explains well the situation: the superficial phase velocities are the ones that
the phases would have had if they were flowing alone in the pipe.
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We used <jk> to denote the cross-sectional-average value. The distinction
between jk, a local value and its cross-sectional average <jk> will become necessary
later.2

1.8.1 Determination of the Flow Quality

In flows with no phase change—typically non-miscible, two-component flows such
as air–water—we usually have ways of knowing the flow rates of the two phases,
and the quality can be obtained from its basic definition, Eq. (1.8.1). For example,
if the two phases are injected and mixed in the channel, they can be metered before
injection. In this case the quality does not change along the channel.

When there is phase change in the channel, e.g. if the channel is heated and
boiling takes place, then the quality increases along the channel. The inverse is true
for condensation, the quality decreases along the channel in this case. In
two-component flows, the quality can change also, if for example, the gas is getting
dissolved in the liquid or the liquid evaporates into the gas.

More generally, in the case of multiple-component, same-phase flows, such as
oil–water we may speak of flowing mass fraction. For example:

xoil ¼
_Moil

_Moil þ _Mwater
; xwater ¼

_Mwater

_Moil þ _Mwater
:

Petroleum engineers call xwater the “water cut” (the ratio of water produced to the
volume of total liquids from an oil well).

For single-component flows with phase change, the determination of the quality
is more complex. First, we need to calculate the enthalpy of the flowing mixture. At
steady state, the enthalpy distribution along the channel h(z) can be determined
using the enthalpy balance for the channel that will be discussed in Chap. 2 as:

hðzÞ ¼ hin þ 1
_M

Zz

0

q0ðzÞdz ð1:8:5Þ

where hin is the enthalpy at the inlet, _M the mass flow rate and q′ the total “linear”
energy input into the fluid per unit channel length. The total linear heat input term q′
(W/m) may contain in addition to the heat flux from the wall q″ (W/m2) other
sources of “volumetric” heating of the fluid such as absorption of radiation or heat
from chemical reactions that we denote by q000 (W/m3). The total linear heat input
from all sources is given as:

2In Chap. 5, we will introduce the local volumetric fluxes.
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q0 ¼ q00Ph þ q000A

where Ph is the heated perimeter of the channel and A its cross-sectional area. It is
easy to understand the meaning of this equation, if its terms are multiplied by an
elementary channel length dz: Ph � dz is the heat transfer area for the heat flux q″
and Adz is volume where the volumetric heating q000 takes place.

Thermodynamically, the enthalpy of a two-phase, single-component flowing
mixture, e.g. steam-water flow in a steam generator, is given as a mass flow rate
weighted quantity as we will see later:

h ¼ xhG þð1� xÞhL ð1:8:6Þ

where, in simplified notation without the angle brackets, hL and hG are the
(cross-sectional average) enthalpies of the two phases, \hk [ k. In general, the
(actual) local quality of the mixture will be given from Eq. (1.8.6) as

x ¼ h� hL
hG � hL

: ð1:8:7Þ

Since often there is no thermal equilibrium between the phases (this will be
further discussed elsewhere), one cannot calculate easily the phase enthalpies and
then the quality merely by knowing the local enthalpy from Eq. (1.8.5) and getting
the quality from Eq. (1.8.6); we need to know the values of the average local phase
enthalpies hL and hG and these may have evolved along the channel in complex
ways. Consequently, it is difficult to calculate or even measure with high precision
the phase enthalpies and the quality of the liquid–vapour mixture flowing in a
channel where phase change takes place.

A very simple “asymptotic” or limiting case is when both phases are saturated,
i.e. if they have both the thermodynamically given saturation enthalpy hsat corre-
sponding to the local pressure in the channel p(z)

hk zð Þ ¼ hsat;k p zð Þð Þ; k ¼ L;G:

The hsat,k are the enthalpies we get from the so-called Steam Tables (e.g. Grigull
et al. 2012) or more generally from fluid-property tables (Lemmon et al. 2010) for
fluids other than water.

Notwithstanding the state of the fluid regarding thermal equilibrium, a fictitious
quality, the so-called thermal-equilibrium quality can be calculated by assuming that
both phases are saturated, i.e. that their temperatures are equal to the saturation
temperature corresponding to their local pressure. The thermal-equilibrium quality is:

xeq ¼ hðzÞ � hL;sat
hLG;sat

; hLG;sat � hG;sat � hL;sat

where hLG,sat is the latent heat of vaporization.
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The thermal-equilibrium quality is the asymptotic, limiting value that a flowing
mixture may reach in a well-mixed flow. In many situations, e.g. in the long tubes
of steam generators, it may be a good approximation to the actual quality.

The notion of the thermal-equilibrium quality is a very useful one as it charac-
terizes the properties of the flowing mixture, even when the latter is not in equi-
librium. It is widely used as a characteristic of the flow, because it is easily available
and it determines the equivalent state of the fluid that would have existed in the
presence of thermal equilibrium. Often the authors neglect even to mention that they
are referring to the thermal-equilibrium quality in their formulations; they simply
speak of “quality”. Note that, as defined above, xeq can be negative or greater than
one. A negative value of xeq denotes that the mixture would have been subcooled
liquid, while xeq > 1 means that it would have been superheated vapour, Fig. 1.14.

1.9 Velocities, the Triangular Relationship and Other
Useful Relations

There are several velocities which one can define, and we must be clear about what
the definitions mean. In general, the two phases will not have the same velocity and
there will be a relative velocity between them, as discussed below.

The true instantaneous, local velocities of the phases uG and uL are the velocities
by which the phases actually travel at a given instant and at a given point. Their
phase cross-sectional averages can be obtained as:

ukh ik¼
_Mk

qkAk
¼

_Qk

Ak
¼ A

Ak
jkh i ð1:9:1Þ

where _Mk is the mass flow rate of phase k, qk its density and _Qk ¼ _Mk=qk the
volumetric flow rate.

The cross-sectional-average velocities calculated over the entire flow area (as if
the phase were flowing alone in the entire flow area) already defined by Eq. (1.8.2)
are also called superficial velocities (subscript s)

Fig. 1.14 Variation of the
actual quality x and of the
equilibrium quality xeq along
the channel. The equilibrium
quality varies linearly in case
of a uniform heat input along
the channel
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Usk ¼
_Mk

qkA
¼

_Qk

A
� jkh i ð1:9:2Þ

These are also the volumetric fluxes that we defined earlier; this second name
represents better the physical situation and is easily understood by looking at the
last equality in Eq. (1.9.2). The sum of the volumetric fluxes is the total volumetric
flux <j>:

jh i ¼ jLh iþ jGh iorUs ¼ UsL þUsG

The total volumetric flux can also be called the velocity of the centre of volume;
we will discuss this further in the following section.

Using Eqs. (1.9.1) and (1.9.2), one obtains the relationship between the true
cross-sectional-average velocity and the superficial velocity of each phase:

uGh iG¼
UsG

eGh i ¼
jGh i
eGh i ; uLh iL¼

UsL

eLh i ¼
jLh i
eLh i ð1:9:3Þ

The velocity ratio S is the ratio of the cross-sectional average of the true
velocities of the phases, i.e.

S � uGh iG
uLh iL

:

This useful parameter is often misleadingly called the slip ratio. Clearly, how-
ever, it is not a “slip”, i.e. a velocity difference. Using Eq. (1.9.2),

S ¼
_QG

AG
=
_QL

AL
¼

_QG

_QL

AL

AG
¼

_QG

_QL

eLh i
eGh i ¼

_QG

_QL

1� eGh i
eGh i ¼ jGh i eLh i

jLh i eGh i ð1:9:4Þ

Solving for the void and liquid fractions,

eGh i ¼ jGh i
S jLh iþ jGh i ; eLh i � 1� eGh i ¼ S jLh i

S jLh iþ jGh i ð1:9:5Þ

To express the velocity ratio in terms of the quality, we recall that

_MG ¼ x _M ¼ qG _QG and _ML ¼ ð1� xÞ _M ¼ qL _QL

and substituting into Eq. (1.9.4) we readily obtain the triangular relationship:

S � uGh iG
uLh iL

¼ qL
qG

x
1� x

1� eGh i
eGh i ð1:9:6Þ

26 G. Yadigaroglu and G. Hetsroni



As the phase densities are normally known, this relationship links the three
variables, S, x and \eG [ . Usually, we know or we can calculate the quality
x. However, we need some additional information to get the void fraction such as
S or a correlation for the void fraction in terms of x. We will spend later the entire
Chap. 5 on methods to estimate the void fraction.

Solving Eq. (1.9.6) for the void and liquid fractions in terms of quality and
velocity ratio:

eGh i ¼ qGx
SqGð1� xÞþ qLx

; 1� eGh i ¼ SqGð1� xÞ
SqGð1� xÞþ qLx

ð1:9:7Þ

Another two useful relationships between the quality and the volumetric fluxes
can be obtained starting from the definition of the quality x and of 1-x and
expanding these

x �
_MG

_M
¼ A eGh iqG uGh iG

_M
¼ A jGh iqG

_M
:

1� x �
_ML

_M
¼ A eLh i eLh iqL uLh iL

_M
¼ A jLh iqL

_M

Dividing these expressions, member by member, we find the useful
relationships,

1� x
x

¼ eLh iqL uLh iL
eGh iqG uGh iG

¼ jLh iqL
jGh iqG

or
jLh i
jGh i ¼

qG
qL

1� x
x

ð1:9:8Þ

that can be solved for x:

x ¼ jLh iqG
jLh iqL þ jGh iqG

: ð1:9:9Þ

1.9.1 Velocities of the Centre of Volume and Mass

Figure 1.15a shows a two-phase flow past a plane having an area A and moving
with the velocity <j>. Let us assume that the flow is stratified as shown in the
figure. Assuming that the gas flows faster, a volume of gas equal to
\e[ ð\uG [ G �\j[ ÞA will cross the plane in the positive z direction, while a
volume of liquid equal to \1� e[ ð\jL [ �\j[ ÞA will cross it in the
opposite direction (we use e = eG). Summing up the two:
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eh i uGh iG� jh i	 

Aþ 1� eh i jLh i � jh ið ÞA

A jGh iþ jLh ið Þ � jh i eh i � 1� eh ið Þ ¼ A jh i � jh ið Þ ¼ 0

proving that no net volume will cross this plane (Yadigaroglu and Lahey 1976). In a
somewhat more sophisticated way we can show the same thing for the general case,
starting from the local quantities shown in Fig. 1.15a; we obviously obtain the same
result:

Z
A

e uG � jh ið Þþ 1� eh i uL � jh ið Þ½ � dA

¼ euGh i � e jh ih iþ ð1� eÞuLh i � ð1� eÞ jh ih i
¼ euGh iþ ð1� eÞuLh i � eh i jh i � 1� eh i jh i

¼ eh i uGh iG þ 1� eh i uLh iL� jh i ¼ jGh iþ jLh i � jh i ¼ 0:

A second useful velocity is the velocity of the centre of mass defined as:

Um � _m
qh i ¼

qL uLh iL eLh iþ qG uGh iG eGh i
qL eLh iþ qG eGh i :

This one is the velocity of a plane traversed by zero net mass flux as:

Z
A

qGeðuG � UmÞþ qLð1� eÞðuL � UmÞ½ � dA

¼ qGeuGh i � qGeUmh iþ qLð1� eÞuLh i � qLð1� eÞUmh i
¼ qG eh i uGh iG þ qL 1� eh i uLh iL�qG eh iUm � qL 1� eh iUm

¼ _m � qh iUm ¼ 0

by the definition of Um.

Fig. 1.15 Flows of volume and mass crossing plane A: a moving with velocity <j>, b with the
velocity Um
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1.9.2 Homogeneous Flow

Flows with equal phase velocities, i.e. if the velocity ratio S = 1, are called ho-
mogeneous flows. Our usage of the term does not imply any other “homogeneity”
in the flow (e.g. well mixed). For homogeneous flow, setting S = 1 in Eq. (1.9.7) we
obtain the homogeneous void fraction, often denoted by b:

eGh ihom� b ¼ qLx
qGð1� xÞþ qLx

ð1:9:10Þ

and in terms of volumetric fluxes, Eqs. (1.9.5) yield

b ¼ jGh i
jLh iþ jGh i ; 1� b ¼ jLh i

jLh iþ jGh i ð1:9:11Þ

Comparing Eqs. (1.9.7) and (1.9.10), one can immediately see that, as in most
cases S > 1, eGh i\b. Indeed, as the gas flows faster, it needs less cross-sectional
flow area.

Another useful relationship is obtained for homogeneous flow from Eq. (1.9.3):

uGh iG¼
jGh i
eGh i ¼ uLh iL¼

jLh i
eLh i or

jGh i
eGh i ¼

jLh i
eLh i ð1:9:12Þ

In the case of homogeneous flow, all mixture and phase velocities become equal:

uGh iG¼ uLh iL¼ jh i ¼ Um ¼
_M
qh iA :

The equilibrium quality was considered a limiting or asymptotic situation for
equal phase temperatures and used as an index characterizing the flow. Similarly,
the homogeneous void fraction can also be considered as the limiting case of equal
phase velocities and used as a useful two-phase flow index.

1.10 A Few Useful Non-dimensional Numbers

A few non-dimensionless numbers or groups of variables that are very often used
will be introduced in this section, in anticipation of their actual use in the following
chapters.

The density ratio
One of the most commonly used non-dimensional parameter is the density ratio

qL/qG that appears naturally on many occasions. It provides also a useful way of
considering the effect of system pressure as, e.g. in boiling flows the ratio of
saturated densities is uniquely linked to the pressure.
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The Martinelli X
Martinelli and co-workers suggested during the mid 40s (Martinelli et al. 1944,

Lockhart and Martinelli 1949) a separated flow model for the frictional pressure
drop, i.e. a model for flow with two distinct phase velocities (that will be discussed
in Chap. 6). In the formulation of their model, they arrived at the parameter

X2 ¼ ðdp=dzÞfrLP
ðdp=dzÞfrGP

ð1:10:1Þ

where ðdp=dzÞfrLP is the frictional pressure gradient of the liquid as if it were
flowing alone in the pipe at the liquid flow rate, i.e. the frictional pressure gradient
based on the superficial velocity of the liquid. The subscripts LP are used to denote
this “flowing alone” condition. ðdp=dzÞfrGP is the corresponding gradient for the
gas.

Note that the computation of the two frictional pressure gradients should be
based on a Reynolds number and a friction factor consistent with the ðdp=dzÞfrkP
assumptions, i.e. using the volumetric flux as the velocity, computing first

ReLP ¼ qL jLh iD
lL

¼ jLh iD
mL

¼ _m ð1� xÞD
lL

ReGP ¼ qG jGh iD
lG

¼ jGh iD
mG

¼ _m x D
lG

ð1:10:2Þ

and then the corresponding (Fanning) friction factors fkP, according to whether the
flow is laminar or turbulent, using the appropriate correlations, for example:

for laminar flow, fkP ¼ 16
RekP

; k ¼ L;G

and for turbulent flow,fkP ¼ C
Rem

kP

where C and m are empirical constants. The pressure gradients are then given as

� dp
dz

� �
frkP

¼ 4fkP
D

_m2ðxkÞ2
2qk

¼ 4fkP
D

qk jkh i2
2

:

The Martinelli parameter can be computed in terms of known quantities. For the
case of turbulent flow in both phases (X with subscript tt), and with the exponent of
the friction factor correlation m = 0.2, it takes the simple form

Xtt ¼ 1� x
x

� �0:9 qG
qL

� �0:5 lL
lG

� �0:1
ð1:10:3Þ

This parameter involves the ratios of the main quantities determining the pres-
sure gradient to the appropriate powers and is a quite useful reference parameter
introduced in various correlations for void fraction, and pressure drop or even
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boiling heat transfer. X2 is also a measure of the degree to which the two-phase
mixture is closer to liquid, i.e. X2 � l, or to gas, i.e. X2 << 1.

It is useful to express Xtt in terms of volumetric fluxes; we use Eq. (1.9.8) to
obtain

Xtt ¼ jLh i
jGh i

� �0:9 qL
qG

� �0:4 lL
lG

� �0:1
ð1:10:4Þ

The variation of Xtt with x (for constant properties), together with the ratio
of <jG>/<jL>, Eq. (1.9.8) vs x, are plotted in Fig. 1.16 to give the reader a feeling
for these dependencies.

Figure 1.17 is a plot of the Martinelli parameter Xtt and of the ratio of volumetric
fluxes <jL>/<jG> versus quality of saturated steam/water flows. The purpose of the
plot is to show that both vary widely with the quality. Even within the “more
reasonable” quality range (0.05–0.95), the variations are of two to three orders of
magnitude, mainly due to the wide variation of the density with pressure, as shown
in Fig. 1.17 for saturated water/steam and air/water systems.

The Laplace wavelength
As we will see in Chap. 4 on interfacial instabilities, a non-dimensional length

characterizing the balance between surface tension and gravity forces is the
so-called Laplace length of wavelength:
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Fig. 1.16 Variation of the Martinelli parameter Xtt and of the ratio of volumetric fluxes jL/jG with
quality; saturated steam/water flow at three different pressures
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L �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
gðqL � qGÞ

r

Non-dimensional volumetric fluxes
Wallis (1969) introduced the non-dimensional volumetric fluxes that find many

uses as

j�k �
jkh iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gDðqL�qGÞ
qk

q ; k ¼ L,G

where D is a characteristic system dimension, usually the diameter. There are cases,
however, where a characteristic system dimension is not available, and the

Fig. 1.17 Variation of the liquid/gas density ratio for water/air and saturated water/steam
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phenomena may depend on some intrinsic length scale such as the Laplace length.
For such cases we would rather use the Kutateladze numbers3:

Kk � jkh iffiffiffi
4

p rgðqL�qGÞ
q2k

; k ¼ L,G

where the Wallis diameter D was replaced by the Laplace length L.

1.11 System of Units

The internationally accepted SI system of units will be used, unless otherwise
necessary. This is a self-consistent set of units, which makes it easy to check
equations and eliminate ambiguities such as kg-mass or kg-force.

The basic units are: length: m (meter), mass: kg (kilogram), time: s (second),
temperature: °C or K (by convention, degree Kelvin is written as K, not °K).

Other units are derived from these, such as force: N (Newton = kg m s−2);
pressure: Pa (Pascal = N m−2). Unfortunately, Pa is a very small unit and MPa
(= 106 Pa) or bar (= 105 Pa) are frequently used instead; energy: J
(Joule = Nm = kg m2 s−2); power: W (Watt = J s−1); thermal conductivity (W m−1

°C−1 = J s−1 m−1 °C−1), etc.
A large number of older texts and papers on multiphase flows were written using

the British system of units. Appendix II gives the most often needed but more
difficult to find conversion factors for the heat-transfer and fluid-mechanics areas.

Appendix III lists the general nomenclature used in this volume. Additional
nomenclature is defined locally, as needed.

1.12 Sources of Information

There are several textbooks that have been written on the subject of two- or mul-
tiphase flows and heat transfer with phase change and several journals that publish
regularly on these topics.

Two of the first books on two-phase flow are the classical Tong (1965) and the
excellent book by Wallis (1969). A second edition by Tong and Tang (1997) has
been published more recently. The monograph byWallis (1969) has not “aged” and
remains a very valuable source of information.

The early first edition by Collier and its third edition by Collier and Thome
(1994) provide the basic information on boiling phenomena. The more recent book
by Carey (1992) contains a wealth of information on phase change phenomena.

3There are other Kutateladze numbers in addition to the ones given here.
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Ishii and Hibiki (2011) provide detailed discussions and derivations of the funda-
mental conservation equations and various models used for two-phase flows.
Noticeable in the German speaking area are the books by Mayinger (1982) and
Stephan (1988). Handbooks on multiphase systems have been published by
Hetsroni (1982), Kandlikar et al. (1999), and Crowe (2005).

More specialized textbooks are those of Hewitt (2013) on annular flows, Levy
(1999), Kleinstreuer (2003), Ghiaassiaan (2008) on “miniature systems”, Govier
and Aziz (1972) on “complex mixtures in pipes” (petroleum engineering flows).
Lahey and Moody (1977, 1993) and Tong and Weisman (1979) published books on
Boiling and Pressurized Water Reactors, respectively, that contain a lot of
two-phase flow related material. Kolev (2012a,b,c, 2015a,b) has published five
volumes containing a lot of detailed information on modelling and computing
two-phase flows. Computational methods for multiphase flows are presented in the
books by Prosperetti and Tryggvason (Prosperetti and Tryggvason 2007) and by
Tryggvason et al. (2011).

A monograph specialized on flow regimes is that of Cheng et al. (2008); Yarin
et al. (2009) wrote on two-phase flows and boiling in microchannels. Finally, there
are notable handbooks or specialized monographs sponsored by companies, such as
those of Wolverine Tube, Inc. (2014–2010) and the two monographs by Chexal
et al. (1997, 1999). The latter contain most recent models and methods for com-
puting pressure drop and void fraction in two-phase flows as well as the computer
tools for their implementation.

The interested reader will find some of the early seminal work in the proceedings
of workshops that were organized and attracted prominent researchers. The pro-
ceedings of such a meeting that took place in Istanbul were published by Kakac and
Mayinger (1977). The book by Delhaye et al. (1980) contains a series of chapters
on several topics of industrial interest. One could also mention here three
Workshops organized by the US Department of Energy (DOE) (jointly with the US
Electric Power Institute, EPRI, the third time) on “Two-Phase Flow Fundamentals”
at the National Bureau of Standards, Gaithersburg, Maryland (1985), at the
Rensselaer Polytechnic Institute, Troy, New York (1987), and for the last time at
Imperial College in London (DOE/EPRI 1992). The objective of the first workshop
was to identify, formulate and prioritize research problems in the field of multiphase
flow and heat transfer. A selection of “numerical benchmark sets” and “physical
benchmark exercises” was also chosen. These were then performed by various
international participants who compared their findings at the second
workshop. Presentations on the two-phase flow models and on interfacial rela-
tionships, and the selected Data Sets and Numerical Benchmark Tests are included
in Volume 3 of Multiphase Science and Technology (Hewitt et al. 1987). There is
also a report on the first meeting by Kestin and Podowski (1985). The results of the
second workshop were published in Vols. 5, 6, and 8 of Multiphase Science and
Technology.

Most of the articles on boiling heat transfer and two-phase flow can be found in
the following journals:
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International Journal of Multiphase Flow, IJMPF
International Journal of Heat and Mass Transfer, IJHMT
Journal of Heat Transfer, Transactions ASME, JHT
American Inst. of Chemical Engineers Journal, AIChE Journal
Chemical Engineering Progress, Symposium Series
Multiphase Science and Technology (reviews), etc.

In addition, applications to nuclear systems are found mostly in:

Nuclear Science and Engineering
Nuclear Technology
Nuclear Engineering and Design
Annals of Nuclear Energy, etc

Petroleum-industry related papers can be found in:

Petroleum Science and Technology
Journal of Petroleum Technology
Oil and Gas Journal, etc
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Chapter 2
Modelling Strategies and Two-Phase Flow
Models

Geoffrey F. Hewitt and George Yadigaroglu

2.1 Two-Phase Flows and Their Analysis

We will recall first the general methods of solution of thermal-hydraulic problems
and then show how these are complicated by the presence of multiphase flows
before entering in the following sections into the descriptions of the various
approaches.

2.1.1 General Methods of Solution

The design and transient behaviour problems are treated in a similar manner.
Starting from the general conservation laws:

• conservation of mass
• conservation of momentum
• conservation of energy,

we express these by partial differential equations. We choose the minimum
required number of space variables and consider, if necessary, time dependence.
Very often we deal with one-dimensional systems and with cross-sectionally
averaged variables. We then “close” or complete the set of equations by including
the necessary constitutive laws and relations, namely,
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• equations of state that govern the physical properties of the materials involved
• general laws of nature or rate equations, e.g. the Fourier law of conduction,

Newton’s law of viscosity, etc. These describe in an idealized or simplified
manner natural behaviour. For multiphase flows, new needs appear in this
category, or the corresponding laws become much more complex (e.g. how is
heat conducted in a two-phase mixture)

• semi-empirical relations for parameters such as friction factors, heat transfer
coefficients, turbulence parameters, etc. These often appear in the conservation
equations because of the idealizations or reductions in space variables made, e.g.
instead of resolving all details of the flow in three dimensions and getting the
heat transfer law at the wall, we work in one dimension and use a heat transfer
coefficient for the heat transfer between the wall and the average temperature of
the fluid. Again, here the situation becomes much more complex for multiphase
flows, e.g. in the determination of frictional pressure drop or of the heat transfer
law in boiling. In particular, in two-phase flows, we should make sure that the
empirical relations used remain valid in the domain of application as most
available data cover rather narrow domains.

We then define the boundary conditions of the problem. These are prescribed
according to our physical understanding of the problem and are often approxima-
tions of reality.

Finally, we solve the resulting set of equations subject to the boundary condi-
tions. Exact analytical solutions are rare; approximate analytical solutions are
sometimes possible; numerical methods embedded in computer codes are most
often used.

As said in Chap. 1, we are dealing here mainly with one-dimensional systems
and corresponding formulations. Multidimensional formulations of multiphase flow
problems will be only briefly discussed below and treated in other volumes with
methods based on Computational Fluid Dynamics (CFD).

2.1.2 Special Features of Two-Phase Flows

The most important feature of gas–liquid flows, when compared to single-phase
flows, is the existence of deformable interfaces. This, coupled with the naturally
occurring turbulence in gas–liquid flows, makes them highly complex. Some
simplification is possible by classifying the types of interfacial distributions (their
topology) under various headings, known as flow regimes or flow patterns. The
two-phase flow regimes for gas–liquid flow in vertical tubes are illustrated in
Fig. 2.1 and range from bubble flow to wispy annular flow. Vertical flows are, on
average, axi-symmetric but with horizontal flows, gravity induces the liquid to
move preferentially towards the bottom of the channel as shown in Fig. 2.2. Flow
patterns and their prediction will be discussed in another chapter.
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An exact formulation of the two-phase flow problem would have required the
description of the evolution in time of the fields (pressure, velocity, temperature,
etc.) for each phase, together with a prediction of the geometry of the interfaces.
Such an approach is impractical, except in some relatively very simple situations,
for example in horizontal stratified flow, where the geometrical configuration of the
two phases is a priori known or can be computed by interface tracking methods
(discussed later in Sect. 2.7). In most situations, however, the flow field and the
topographical distribution of the phases are chaotic and must be described using
statistical, average properties. There are two general approaches, the two-fluid
approach and the mixture formulation; we will discuss them in Sect. 2.5.

Fig. 2.1 Main flow regimes in upwards gas–liquid flow in vertical tubes

Fig. 2.2 Main flow regimes in gas–liquid flow in horizontal tubes
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2.1.3 Two-Phase Flow Equipment

Two-phase gas–liquid flow is important in a wide variety of equipment types which
include the following.

Vapour Generation Systems
In these systems, vapour is generated by the addition of heat and joins the liquid in
flowing through the system. Vapour generation equipment includes power station
boilers, waste heat boilers, coiled tube boilers and package boilers. Vapour gen-
eration is also a vital component of many process plants, with equipment ranging
from fired heaters to various kinds of reboilers (kettle, horizontal thermosiphon and
vertical thermosiphon). The generic problems in all this equipment are the pre-
diction of void fraction and pressure drop (and hence pumping power or, in the case
of natural circulation systems, circulation rate), critical heat flux, heat transfer,
system stability and fouling of the heat transfer surfaces.

Nuclear Power Plants (NPP)
Vapour generation is also, of course, vital in nuclear power generation and can
occur directly within the reactor itself (as in the Boiling Water Reactor, BWR) or in
the steam generators which are heated by hot fluid from the reactor (as in the
Pressurized Water Reactor, PWR). Two-phase flow and heat transfer with phase
change are important for the normal operation of NPPs but become very complex in
case of transient and accidental situations. A very large number of situations and
phenomena can be encountered; these will be discussed in another volume in this
series.

Vapour Condensers
Most condensers are of the indirect contact type and there is a preponderance of the
shell-and-tube type of condenser, with both condensation on the tube side and the
shell side. However, air-cooled condensers are important as are matrix (brazed
aluminium) condensers for cryogenic systems, for instance. Condensation can also
be carried out in the direct contact mode with various types of equipment being
used (pool type condensers, spray condensers, baffle column condensers, etc.).
Again, the principal requirements for design are prediction of void fraction and
pressure drop and heat transfer coefficients. In many systems, the fluids are
multi-component in nature and condensation involves simultaneous heat and mass
transfer. Where the condensation is done in counter-current flow, flooding can be an
important limitation on operation.

Mass Transfer Equipment
Many mass transfer operations (absorption, stripping, humidification, dehumidifi-
cation, distillation, etc.) involve gas–liquid two-phase flows. Equipment used
includes bubble columns, wetted wall columns, plate columns (having bubble caps
or sieve plates, etc.), packed columns and spray chambers. Again, the key problems
in design are the prediction of mass transfer coefficients and pressure
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drop. However, questions of stability, bypass and phase separation are of consid-
erable importance in this type of equipment.

In carrying out designs, information is required on the fluid physical properties
and on the expected flow rates of the respective phases. The prediction require-
ments for design are of three categories:

(1) Steady-state design parameters. These include pressure drop, heat and mass
transfer laws and coefficients and mean gas phase content (void fraction).

(2) Limiting conditions. These include critical heat flux (i.e. the heat flux at which
the heat transfer coefficient deteriorates, possibly leading to damage of the
channel surface), critical mass flux (the condition at which the flow rate
becomes independent of downstream pressure), mechanical vibration, erosion
and corrosion and instability.

(3) Plant transients. These cover a whole range of situations including plant
start-up and shutdown, emergency events (such as the loss of site power in a
nuclear power station), Loss Of Coolant Accidents (LOCAs) and atmospheric
release and dispersion of multiphase mixtures.

To meet the above design requirements, a number of approaches to prediction
can be taken. These include

(1) The empirical approach
(2) Phenomenological modelling
(3) Multi-fluid modelling
(4) Computational fluid dynamics modelling (CFD).

These various approaches will be discussed in the following sections; each
approach has limitations and there is no general “best” modelling scheme for
multiphase systems. In Sect. 2.8, some conclusions are drawn about the subject of
modelling methodologies.

2.2 The Empirical Approach

The empirical approach proceeds as follows:

(1) Data collection. A large number of data points are collected, for example, for
the pressure gradient (dp/dz), for a range of mass flux, quality, physical
properties and tube orientation and diameter.

(2) Correlation. Empirical (or semi-empirical) relationships are developed between
the dependent variables (pressure gradient (dp/dz) or pressure drop Dp, for
instance) and the independent variables (mass flow, quality, geometry and fluid
physical properties).

(3) Application. The correlations developed are then applied in hand and computer
calculations to predict the design variables. Since the correlations are largely
empirical, they are insecure outside the range of data which they cover even at
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steady state. For lack of a better alternative, empirical correlations are often,
however, applied also to transient conditions, where they may not be successful
(an example is given in Sect. 2.4.4).

An illustration of the errors associated with empirical models is amply provided
by an exercise carried out by the former Engineering Sciences Data Unit in the UK
(ESDU 2002) on pressure gradient in horizontal two-phase gas–liquid flow. A data
bank of 6453 experimental data points forpressure gradient was assembled. This
database covered a wide range of physical properties (though with a natural pre-
ponderance of low-pressure, air–water data). The database was compared with ten
published pressure gradient correlations. The comparisons were grouped into bands
of mass flux and quality and the best correlation identified for each respective band.
Comparison of the data with these “best” correlations is shown in Figs. 2.3 and 2.4.

Figure 2.3 plots the ratio of measured to predicted frictional pressure gradient as
a function of mass flux and it will be seen that in a few cases errors of more than a
factor of ten may occur, though the preponderance of the data is (as would be
expected) in better agreement than that. Figure 2.4 shows the distribution of errors
which essentially gives the same message. The ESDU publication gives methods of
assessing the uncertainties in the use of these empirical correlations and, within the
range covered by the data base, gives the expected confidence level in a range
around the central prediction. The designer is therefore able to make an assessment
of the uncertainty (which may be large) and to consider how it affects the system
design.

Fig. 2.3 Comparison of experimental data with the “best” correlation selected for each group of
data (ESDU 2002)
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The relative failure of empirical correlations for pressure drop, void fraction, etc.
has led to the search for improved models and these will be reviewed below.
However, it should be stressed that the “improved” models do not necessarily give
better results than do the empirical correlations.

The inaccuracies in empirical correlations arise because of a number of factors1:

(1) The experimental data may itself be in error. Measurements in gas–liquid
systems are quite difficult but, with adequate attention to detail, one would have
expected maximum inaccuracies in measurement of the order of 10–20%.

(2) The correlation form may be unsuitable. Even with the existence of many
adjustable constants, if the form is not adequate, then a good data fit will not be
possible.

(3) The data may be basically uncorrelatable. Factors here include the following:

(a) Not all the relevant parameters may be known, particularly local physical
properties.

(b) There may be unrecognised effects. For example, surface tension can have
a large effect on pressure gradient and is hardly ever taken full account of in
correlations.

(c) The flow may not have reached hydrodynamic equilibrium. In single-phase
flows, pressure gradient becomes relatively constant after typically ten tube
diameters. In gas–liquid two-phase flow, reaching constant values of

Fig. 2.4 Distribution of errors in comparisons of predicted and measured values of pressure drop
in vertical pipes (ESDU 2002)

1The following discussion is mainly directed to the accuracy of the pressure gradient; similar
considerations apply, however, in all other areas.
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pressure gradient may take many hundreds of diameters. Experimental data
are rarely obtained under these conditions and, in any case, changes in
pressure may occur which give rise to expansion of the gas phase and
changes in the gas velocity and hence pressure gradient. In this context, it
has been found that approximately constant values of pressure gradient are
obtained at fixed outlet pressure after several hundred diameters. Thus,
even with adiabatic flows, the pressure gradient data may contain signifi-
cant errors due to lack of equilibrium. Moreover, with diabatic (evaporating
or condensing) flows, the potential equilibrium value is in itself changing
along the channel and equilibrium conditions rarely pertain in such cases.

(d) A starting assumption in many calculations is that the phases are in ther-
modynamic equilibrium. However, this is patently not so in systems with
heat transfer where bubbles may exist in the presence of bulk liquid sub-
cooling and droplets may exist in the presence of bulk vapour superheat.

It is in the context of the non-equilibrium situations that the real benefits of
improved modelling are likely to accrue.

2.2.1 The Empirical Approach Versus Phenomenological
Modelling

As we have shown above, it is clear that the various two-phase flow and boiling
heat transfer variables of interest, such as the pressure gradient, the void fraction,
the heat transfer coefficient, etc., will depend on the particular flow regime. Thus, in
principle, one should model each flow regime separately. This is indeed often done;
flow-regime-dependent modelling becomes a necessity if high prediction accuracy
is needed; for example, in calculating phenomena taking place in pipelines. When
flow-regime-specific models are used, one can “mechanistically” take into con-
sideration the particularities of each regime. However, one drawback of the
flow-regime-oriented approach is that one must first predict the prevailing flow
regime before undertaking any calculation; this is not always easy. Moreover, the
calculation procedure is also considerably lengthened and complicated if many flow
regimes can take place.

The alternative approach often used is to largely ignore the flow regimes and
derive methods (most often empirical correlations) covering all flow regimes
continuously. When the variables used as inputs in the correlations are the same as
the ones used in determining the flow regime, such methods can be successful. For
example, if mass flux and flow quality are the two variables determining the flow
regime (they are not the only ones…), then a correlation of the frictional pressure
gradient in term of these two variables has the potential of inherently taking into
account the prevailing flow regime.
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2.3 Phenomenological Modelling

If one looks at Figs. 2.1 and 2.2, it seems obvious that a flow in the bubble flow
regime will behave quite differently to one which is in the annular flow regime. In
spite of this, empirical correlations often do not take particular account of regimes,
and this must be one of the main reasons for their relative failure. In the phe-
nomenological approach, the calculations are made for specific flow regimes; this
presents a new problem of course, which is the identification of which flow pattern
applies for the set of conditions of interest, as already mentioned. Empirical cor-
relations (in the form of flow regime maps, etc. discussed in Chap. 4) exist for flow
regime transitions, but these, too, often lack generality and phenomenological
modelling is also used in the context of the flow pattern transitions themselves.
Thus, the steps for a given flow regime modelling are as follows:

(1) Observations and detailed measurements are made not only of global param-
eters such as pressure drop and void fraction, but also of local parameters such
as film thickness and entrainment in annular flow, bubble size and bubble
distribution in bubbly flow, slug length and slug frequency in slug flow, etc.

(2) On the basis of the measurements and observations made, physical models of
theoretical or semi-theoretical type are formulated to describe the phenomena;
these are sometimes called mechanistic models.

(3) The local models are then integrated to achieve a system description, which
may notably take account of hydrodynamic and thermodynamic
non-equilibrium by modelling the evolution of the flow along the channel.

2.3.1 Example: Case of Annular Flow

By way of example, consider the case of annular flow as illustrated in Fig. 2.5.
In order to predict the important system variables (pressure gradient, local phase

contents, heat transfer coefficients and critical heat flux) it is necessary to predict the
local film and droplet flow rates (e.g. the film flow rate becomes zero at the critical
heat flux or dryout condition). The essential components of the phenomenological
model for annular flow are as follows:

(1) Establishment of the local film flow rate ( _MLF , kg/s). This is done by applying
the equation:

d _MLF

dz
¼ PðD� E � q00=hLGÞ ð2:3:1Þ
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where P(m) is the channel periphery, D is the rate of deposition of droplets, E is
the rate of entrainment of droplets per unit peripheral area (kg/m2s), q00 is the
wall heat flux and hLG is the latent heat of vaporization. This equation is
integrated along the channel starting from a given initial or boundary condition
to give the film flow rate downstream, at any point. A typical boundary
condition would be the fraction entrained at the onset of annular flow; for
evaporating flows, the initial condition for film flow rate corresponds to the
onset of annular flow. There is a difficulty in providing an accurate value of the
initial condition for film flow rate (or entrainment) but, for long enough
channels, the initial condition may not be too significant as there will be
sufficient time to reach equilibrium between entrainment and deposition.

(2) If the film flowrate is known, then local values of film thickness and wall shear
stress (frictional pressure gradient) can be obtained by combining two rela-
tionships as follows:

(a) The triangular relationship which links film thickness d, interfacial shear
stress si, and film flowrate. The interfacial shear stress si is related to
pressure gradient dp/dz and the triangular relationship can be expressed in
the form

_MLF ¼ _MLFðd; siÞ ¼ _MLFðd; dp=dzÞ: ð2:3:2Þ

Fig. 2.5 Schematic illustration of annular flow
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The relationship implicit in Eq. (2.3.2) can be obtained by determining the
velocity profile and integrating this profile through the film.

(b) The interfacial shear stress si is affected by interfacial waves and, of course,
by the gas core velocity. It is conveniently expressed in terms of an
interfacial friction factor fi which has been found to be approximately a
function only of d/D where D is the tube diameter. This relationship implies
that the effective roughness of the interface depends only on the film
thickness for a given tube diameter and this implies geometrical similarity
between the waves on the interface for a given film thickness, which is
confirmed by experimental measurements.

Annular flow modelling has been widely applied and is particularly useful in
predicting the onset of dryout. Typical dryout predictions using this kind of model
are illustrated in Fig. 2.6. Dryout occurs when the flow rate of the liquid film on the
wall goes to zero.

Fig. 2.6 Prediction of dryout for uniformly heated tubes (continuous lines) and comparison with
experimental data (points)—water flow at 70 bar, subcooled inlet condition (Whalley et al. 1974,
1978). Reprinted from Whalley et al. 1974 with permission from Begell House, Inc
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2.4 Multi-fluid Models and One-Dimensional
Conservation Equations

As mentioned above, the formulation of the two-phase-flow problem that would
have required the description of the evolution in time of the fields (pressure,
velocity, temperature, etc.) for each phase, together with a prediction of the
geometry of the interfaces, is generally impractical. The often chaotic flow fields
must be treated in terms of statistical, average properties. There are two general
approaches, the two-fluid, or more generally the multi-fluid approach and the
mixture formulation.2 A simple presentation of the two-fluid approach will be given
in this section. The basis of the method is to write conservation equations for each
phase and to include in these equations terms which represent the interaction
between the phases.

The two-fluid (or more generally, the multi-fluid) formulation is an interpene-
trating media approach to the problem: each phase is present at every point, but
with a given fractional presence time or frequency or probability, which happens to
be the local void fraction. In reality, the phases interact with one another at the
interfaces separating them. If the gas, for example, has a higher velocity than the
liquid, it will create a shear force (a drag force) acting on the liquid at the interface.
An equal drag force of opposite sign will act on the gas. This mutual interaction at
the interface can be described as an interfacial momentum exchange. When the
phases exchange energy and mass, there are also interfacial energy and mass
exchanges.

In the interpenetrating media approach, the interfacial transfers are modelled as
interfacial terms acting on each phase to explicitly take them into consideration. We
write two sets of phase conservation equations (one mass, momentum and energy
conservation equation for each phase) in terms of phase-average properties. The
dynamics of the interactions between the two phases are described by closure laws
governing the interfacial mass, momentum and energy exchanges.

When two fluids are used, this approach results in the so-called “six-equation
models”. If additional fluids or fields are used, one gets additional equations. For
example, if one considers two liquid fields—droplets and film on the wall—and the
gas, one gets nine equations. No particular assumptions are made regarding, for
example, thermal equilibrium or the velocity ratio; these are obtained naturally from
the solution of the set of conservation equations; the phases interact dynamically
according to the interfacial exchange laws specified.

Starting from the two-fluid formulation, if the phase conservation equations are
added together, the interfacial exchange terms cancel out and we end up with three

2We recall here what was discussed in Chap. 1 regarding the term mixture that is most of the time
used to denote the two (or more) phases flowing together and does not necessarily imply that these
are intimately mixed.
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mixture conservation equations that will be discussed next. In this case, instead of
specifying closure laws for the interfacial exchanges, we must specify, for example,
how the void fraction or the temperatures of the two phases vary as a function of the
quality obtained from the energy equation. We may specify, for instance, a certain
value of the velocity ratio, or a velocity ratio that is function of the local quality, etc.
Another example would be to “force” one of the phases or both to remain saturated,
i.e. to specify phase temperatures that are functions of the local pressure only.
Dynamic, thermal interaction of the phases does not take place, however, in this
case; the relative behaviour of the phases and the development of the mixture have
been prescribed externally and a priori.

The choice between the two alternative approaches depends on the nature of the
problem to be solved. The full six-equation model might be needed, for example,
for calculating the evolution of the mixture during a fast transient during which
strong departures from equilibrium are expected to occur. Slower transients during
which there is more time to reach equilibrium may be adequately described by a
mixture model.

In the simplest possible mixture model, the homogeneous equilibrium model
(HEM) equal phase velocities and thermal equilibrium between the phases is
assumed.3

Local, instantaneous conservation equations can be derived rigorously and then
averaged over the entire cross-sectional area of a duct surrounded by a wall, to
arrive at instantaneous, space-averaged equations. These can then be time (or
ensemble) averaged to arrive at space and time-averaged equations (e.g. Delhaye
1981; Ishii and Mishima 1984, Lahey and Drew 1988; Nigmatulin 1979). These
derivations will be discussed in more detail in another volume. Here, we will
proceed with a more intuitive and simplified derivation of the space and
time-averaged equations. This derivation, in spite of being rather primitive, yields
equations that have the form and contain practically all the terms obtained from the
much more sophisticated derivations mentioned above; they will be useful for the
needs of his volume.

2.4.1 Simple Derivation of Two-Fluid Conservation
Equations

The equations are derived below in a simplified manner (see, e.g. Zuber 1967;
Yadigaroglu and Lahey 1976) with reference to a simple flow configuration (in this
case annular or stratified flow) where the two phases flow separately, as shown in

3The term “separated flow” is often used loosely to denote two-phase flows where the two phases
have different average velocities. This distinguishes such flows from the homogeneous ones, where
the phases have the same average velocity; such flows may strictly speaking not be homogeneous
at all.
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Fig. 2.7 that shows the control volume used for the derivation. The simple flow
configuration allows deriving the conservation equations for the liquid and the gas
phases separately. As noted, above, in most situations, the distribution of the phases
is much more complex and a rigorous derivation must follow mathematically much
more complex procedures. As a result of the simplicity of the derivation, certain
additional terms that appear when the rigorous path is followed (e.g. the virtual
mass4 term) will not appear.

The pressure is assumed to be uniform in a cross-sectional plane; in reality the
average pressure in the liquid phase may be different from the pressure in the gas
phase (an obvious example is horizontal, stratified flow) and the pressure at the
interface may have a value between the two. The pressure may also fluctuate locally
in time and spatially within a phase. It is such fluctuations that give rise to phe-
nomena such as the virtual mass effect for bubbles which are not considered here.
The equations are written for one-dimensional flow in a duct having, however,
variable area A. All the variables are considered to be time-averaged values (as
discussed in Chap. 1). The reader is referred to the derivation of the conservation
equations for single-phase flow as a basis, given, for example, in the excellent
textbook by Bird et al. (1960).

Fig. 2.7 Control volume used for writing the two-fluid conservation equations and the variables
involved in the derivations

4A bubble accelerating in a liquid entrains the fluid surrounding it and appears to have much larger
inertia than that of the mass of gas it contains; the virtual mass effect.
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Mass Continuity
With reference to Fig. 2.7, a notable difference from the single-phase flow for-
mulations is the presence now of the interfacial mass transfer term. Mass continuity
for phase k becomes

@

@t
qkekh i½ � þ 1

A
@

@z
qkekukh iA½ � ¼ Ck k = L, G, ð2:4:1Þ

where Гk is the volumetric mass transfer rate into phase k (it has units of kg/m3s). In
case of boiling flow, for example, ГG is the rate of vapour generation per unit
volume. The first term of the equation above represents the rate of change of mass
within the control volume, while the second term is the net convective mass flux
into the control volume, as the reader can confirm by examining the various terms
in Fig. 2.7. Since there is no mass stored at the interface,

CL þCG ¼ 0;

which is the so-called jump condition for mass conservation at the interface. We can
define

C � CG ¼ �CL: ð2:4:2Þ
Momentum Conservation
The assumption was made here that the pressure is uniform across the flow area and
equal in both phases. This assumption is sometimes justified by the observation that
radial pressure differences are usually small and in most cases non-measurable; it is
not always true, however, as already mentioned. Momentum conservation for phase
k is written as
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2
k

� �
A

� �
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@z
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A

� Pisi
A

þ uiCk:

ð2:4:3Þ

The first term on the left is again the rate of change of momentum within the
control volume, while the second one is the net momentum flux term. The terms on
the right are the forces acting on phase k: the first term is the net pressure force
acting on phase k—it includes contributions due to variable duct area and to
variable phase area fraction along the duct. The second term is the gravity force,
where h is the angle between the positive z direction and the acceleration of gravity,
Fig. 2.7.

The shear stresses acting on the phase at the wall and at the interface are denoted
by swk and sik, respectively. The part of wall perimeter wetted by phase k is Pwk,
while Pi is the interfacial perimeter. The last term represents the momentum
addition into phase k by mass exchange at the interface; as mass crosses the
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interface and enters the other phase, it carries with it its original momentum. The
mass entering phase k has a velocity ui characteristic of the interface.

Considering the momentum exchanges taking place at the interface (i.e. the jump
condition for momentum exchange), we must have

siL þ siG ¼ 0;

and we can define

si � siG ¼ �siL: ð2:4:4Þ
Total Enthalpy Conservation
Defining the total enthalpy of phase k, i.e. the sum of the intrinsic enthalpy hk, and
of the kinetic and potential energies by

h0k ¼ hk þ u2k
2

� gz cos h;

we can write
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ð2:4:5Þ

with si given by Eq. (2.4.4).
The first term on the right is the internal heat generation in phase k due to a

volumetric source q000k . The second and third terms are the sensible heat inputs from
the interfacial perimeter Pi and from the heated portion of the perimeter wetted by
phase k, Phk. The fourth term accounts for energy addition to phase k due to
interfacial mass transfer; h0ik is the specific total enthalpy characteristic of this
exchange. The fifth term, \ek [ @p=@t, accounting for the reversible work due to
expansion or contraction of the phases should has been written as

� p
A
@

@t
ekh iAð Þ:

Using, however, the identity @ðabÞ=@t ¼ a � @b=@tþ b � @a=@t, we obtain

� p
A
@

@t
ekh iAð Þ ¼ � 1

A
@

@t
p ekh iAð Þþ 1

A
A ekh ið Þ @p

@t
: ð2:4:6Þ

The second term on the right side is the one appearing in Eq. (2.4.5). Moreover,
the first @=@t term on the left side of Eq. (2.4.5) should have contained the internal
energy ek, not the enthalpy hk. However, it has been combined with the @p=@t term
on the right side as follows. Expanding
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and moving the second term to the right side of Eq. (2.4.5) where we combine it
with the first term on the right side of Eq. (2.4.6), we have
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ekh ip½ � ¼ 0;

provided that the flow area is time independent.
The very last term of Eq. (2.4.5) is related to the interfacial energy dissipation.

Although such a term does not appear when the mixture is considered, the term
shows up in the phase energy equations, signifying that the dissipation energy
created at the interface is distributed in a certain way, specified by fk, between the
two phases. We must have

fL þ fG ¼ 0 or f � fG ¼ �fL:

The jump condition for energy conservation will be given and discussed below.

2.4.2 Practical Set of Two-Fluid Equations

Inspection of the conservation equations derived above reveals the presence of
cross-sectional averages of products such as <qkek>, <qkekuk> and <qkekhkuk>.
Within the framework of the one-dimensional theory presented here, we would like
to deal with cross-sectionally averaged variables only, e.g. <uk>k. It is evident that
the averages of products of several variables cannot be evaluated and replaced by
the product of their averages unless the cross-sectional distributions of these
variables (e.g. the phase velocities uk and enthalpies hk) are known. Such infor-
mation is not, however, included in the one-dimensional treatment; it was essen-
tially “lost” during the averaging process; at most it can be provided externally,
from knowledge about these distributions obtained by other means.

The angle brackets for the double products containing the void fraction can be
“opened” (i.e. the average of the product replaced by the product of averages) using
the relationship derived in Chap. 1, Eq. (1.7.8),

ek fkh i ¼ ekh i fkh ik;

and defining and using an appropriate cross-sectional-average value of the density.
This cannot be done, however, for the products of three or four variables.
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Regarding the triple products, if the density of a phase is sufficiently constant
over the cross section, it can be taken again out of the angle brackets. The
constant-density assumption may be an excellent approximation for the liquid, but
it may not be always adequate for the gas, for example, in the presence of strong
radial temperature gradients. Ignoring the density variations, the remaining double
products with the void fraction (<ekuk> and <ekhk>) can then be “opened.”

Finally, there is a fundamental difficulty with the products of four variables, e.g.
\qkeku

2
k [ . If the velocity and enthalpy profiles can be evaluated or guessed

independently, then one can use correlation coefficients C to “open the angle
brackets”, for example, to write

qkhkukh i ¼ C qkh ik hkh ik ukh ik:

If the values of such correlation coefficients are close to unity (as in the case of
single-phase turbulent flow where the velocity profile is quite flat), this poses no
great problems. We will assume that all correlation coefficients are equal to one in
the following treatment.

Terms resulting from the variation of the pressure over the cross section are not
included, as already mentioned (the virtual mass terms, for example). The terms
dealing with viscous dissipation at the interfaces are also usually ignored. With
these simplifications, and using the definitions of C, si, etc. given above, the
two-fluid conservation equations take the following practical form:

Mass Continuity
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Momentum Conservation
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@z

þ gqL 1� eh icos h� PwLswL
A

þ Pisi
A

� uiC
ð2:4:9Þ

@

@t
qG eh i uGh iG
� �þ 1

A
@

@z
qG eh i uGh i2GA
h i

¼ � eh i @p
@z

þ gqG eh icos h� PwGswG
A

� Pisi
A

þ uiC.
ð2:4:10Þ
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Total Enthalpy Conservation

@

@t
qL 1� eh i h0L

� �
L

� �þ 1
A
@

@z
qL 1� eh i h0L

� �
L uLh iLA

� �

¼ q000L 1� eh iþ q00iLPi

A
þ q00wLPhL

A
� Ch0iL þ 1� eh i @p

@t

ð2:4:11Þ

@

@t
qG eh i h0G

� �
G

h i
þ 1

A
@

@z
qG eh i h0G

� �
G uGh iGA

h i

¼ q000G eh iþ q00iGPi

A
þ q00wGPhG

A
� Ch0iG þ eh i @p

@t
:

ð2:4:12Þ

The symbols have the following meaning:

C volumetric mass generation rate (positive for vaporization) [kg/m3s]
q’’’ internal heat generation rate in phase k
Pi “interfacial perimeter”
Pwk wall perimeter wetted by phase k
Phk heated wall perimeter in contact with phase k
q00ik interfacial heat flux from the interface into phase k
q00wk heat flux from the wall into phase k
e the void fraction ðeGÞ
si interfacial shear stress acting on the gas (see Eq. (2.4.4))
swk shear between wall and phase k
ui interface velocity
h angle between positive z direction and acceleration of gravity

Note that the phase conservation equations listed above have the general form:

@

@t
qk ekh iWk½ � þ 1

A
@

@z
qk ekh i ukh ikWkA
� � ¼ efflux term + body source term,

where Wk is 1, <uk>k and <hk>k for mass, momentum and enthalpy continuity,
respectively. In Chap. 4 we will have the opportunity to make use of this set of
equations for the simple case of horizontal stratified flow.

2.4.3 Closure Laws Required

The set of one-dimensional two-fluid conservation equations given above requires
knowledge of the following eight terms governing the exchanges at the interface
between the phases and at the wall:

• the volumetric mass exchange rate between the phases, C
• the wall shear force applied to each phase, PwLswL and PwGswG
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• the interfacial shear force, Pisi
• the heat supplied from the wall to each phase, q00wLPhL and q00wGPhG

• the interfacial energy transfer rates, q00iLPi and q00iGPi:

However, one needs only seven exchange laws, since the interfacial heat fluxes
and the mass exchange rate C are linked through the following energy jump con-
dition at the interface:

CðhiG � hiLÞþ Pi

A
ðq00iG þ q00iLÞ ¼ 0; ð2:4:13Þ

where hik are the enthalpies of the phases at the interface, usually assumed to be at
saturation. Contributions from minor terms, such as the kinetic energies and surface
tension, were ignored in this jump condition. If one assumes that the interface is
saturated, Eq. (2.4.13) yields a simple relationship between mass transfer at the
interface, the latent heat of vaporization hLG and the heat fluxes into the phases:

ChLG þ Pi

A
ðq00iG þ q00iLÞ ¼ 0:

Figure 2.8a illustrates this interfacial jump condition. If one considers a control
volume enclosing the interface and having an infinitesimal thickness (and therefore
no mass or energy storage), Eq. (2.4.13) constitutes an energy balance for this
volume. Figure 2.8b shows an application of the jump condition. In the presence of
superheated steam and subcooled liquid (a possible condition in post-dryout heat

(a) (b)

Fig. 2.8 a Control volume used to illustrate interfacial energy exchanges and the jump condition.
b Application to heat transfer at the interface between superheated steam and subcooled liquid
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transfer5), there will be heat transfer from the steam to the interface. A fraction q00iL
of the heat flux q00iG from the interface penetrates into the liquid and is used to heat it
up. The remaining fraction produces saturated steam at the interface.

2.4.4 Implementation Difficulties: Application to Horizontal
Stratified Flow

The use of multi-fluid modelling implies certain basic assumptions about the
averaging of the conservation equations. Although more advanced than a purely
empirical approach, the approach still relies on lumped-parameter representation of
the quantities. An example is the assignment of a given average velocity to each
phase, which is often clearly unrealistic. An example of this would be annular flow
where a large fraction of the liquid phase may be entrained as droplets and trav-
elling at a much higher velocity than the liquid film. One could, of course, represent
such a situation using a nine-equation model (three equations each for the liquid
film, gas core and entrained droplets) but even this may not be sufficient to rep-
resent the subtleties of the flow. Lahey and Drew (2001) proposed a four-field
model that could accurately predict the distribution of the fields of continuous
vapour and liquid as well as dispersed vapour and liquid.

The major difficulty with one-dimensional multi-fluid models is that of obtaining
sufficiently general relationships for the wall and interface shear terms; these can
rarely be directly measured and correlated. An example is discussed here to point at
difficulties. The closure laws will be discussed extensively in another volume.

Shaha (1999) made a wide range of measurements on stratified gas–liquid flow
which were sufficient to determine swL; swG and si independently. Expressing the
shear stresses in terms of friction factors, Shaha was able to show that, though the
values of swG were reasonably predicted by existing models, there were large
variations between the data and the models for both wall-to-liquid shear stress and
interfacial shear stress or friction factors, as illustrated in Figs. 2.9 and 2.10,
respectively. It should be noted that the models themselves show large variations in
prediction.

For liquid-to-wall shear stress in laminar flows, it is commonly assumed that the
friction factor is given by

fL ¼ 16
ReL

; ð2:4:14Þ

5Post-dryout heat transfer refers to the heat transfer regimes that are present after the critical heat
flux condition or dryout is reached.
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Fig. 2.9 Comparison of measured liquid-wall friction factor with various correlations (Shaha
1999)

Fig. 2.10 Comparison of experimental interfacial friction factors with various correlations (Shaha
1999)
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where the Reynolds number, ReL is given by

ReL ¼ uL DHqL
lL

;

and DH is the hydraulic diameter (which may be defined either with or without
inclusion of the interfacial periphery). Calculations on laminar liquid flows with a
turbulent gas above them are described by Ng (2002); it was possible to deduce the
actual value of the constant in Eq. (2.4.14) from these calculations for a range of
conditions. The values obtained can be as low as 4 and approach the classical 16 at
the two ends of the liquid fraction spectrum (0 to 1) when the interface is not
included in Dh and are definitively lower (roughly between 2 and 8) when it is
included. As expected, the constant approaches the standard value of 16 for a
liquid-phase fraction of unity.

The one-dimensional two-fluid models are commonly also used to calculate
transients. This adds further uncertainties to those already shown in Figs. 2.9 and
2.10. Shaha (1999) explored the interfacial structure in stratified flow using multiple
twin-wire conductance probes. Figures 2.11a–c typify the results obtained for a
transient increase in gas flow rate. Figure 2.11a shows the interfacial configuration
before the transient. Figure 2.11b shows the interfacial structure during a transient
in which the gas superficial velocity was increased from 5.0 to 6.46 m/s.
Eventually, the interface settled down to the configuration shown in Fig. 2.11c at
the new value of gas superficial velocity. It is clear from these figures that the
interfacial structure during the transient is very different from what would be
expected by interpolation between the starting and final values. During the tran-
sient, the interfaces are far rougher which implies a much higher value of interfacial
shear stress and, indeed, this is borne out by the measurements which suggest that
the transient will not be well predicted using steady-state correlations. Such diffi-
culties were already announced in Sect. 2.2.

2.4.5 The Drift Flux Model

The presence of two momentum equations in the two-fluid formulation dictates the
explicit specification of the momentum exchange terms between the phases. There
are, however, difficulties in determining the interfacial closure laws, that most of the
time cannot be directly measured, as the example of the preceding section has
shown, as well as difficulties in the numerical solution of the equations.

The drift flux model, or DF model for short, (Zuber and Findlay 1967) provides
an interesting alternative: the two momentum equations are replaced by a mixture
equation where the relative motion between phases is taken into account by a
kinematic constitutive relation. The DF model will be discussed in detail in Chap. 5
as it is primarily a way of determining the void fraction. Formulations of the
two-phase problems based on the DF concept will be discussed in the volume
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Fig. 2.11 Variation of the
interfacial structure in an air–
water stratified flow during a
transient variation of the gas
superficial velocity. a steady
state with UsG = 5.0 m/s and
UsL = 0.039 m/s; b the
superficial velocity UsG is
now increased to 6.46 m/s; c a
new steady state is reached
with UsG = 6.46 m/s and
UsL = 0.039 m/s (Shaha
1999)
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dealing with the conservation equations. We can note, however, here that the DF
model provides an excellent alternative to the two-fluid model when the phases are
closely coupled and “mixed”.

2.5 Separated Flow and Mixture Models

As mentioned above, the phase conservation equations may be summed up to yield
mixture conservation equations. In doing so, we lose explicit consideration of the
interactions between the phases; as we will see below, the interfacial exchange
terms are no longer visible. The interfacial exchanges between the phases can be
considered implicitly only, e.g. by the empirical correlations describing the mixture.

The forms obtained when the mass, momentum and energy equations,
Eqs. (2.4.7) to (2.4.12) are summed up are given below.

Mass Conservation

A
@

@t
qh iþ @

@z
ð _mAÞ ¼ 0; ð2:5:1Þ

where the mixture density <q> and the mixture mass flux _m are given by

qh i � qL 1� eh iþ qG eh i ð2:5:2Þ

_m ¼ qL uLh iL 1� eh iþ qG uGh iG eh i: ð2:5:3Þ
Momentum Conservation

@

@t
_mþ 1

A
@

@z
A qL 1� eh i uLh i2L þ qG eh i uGh i2G
� 


¼ � @p
@z

þ g qh icos h� Pwsw
A

:

ð2:5:4Þ

Starting from the left, the terms in the momentum equation are identified as the
inertial or temporal acceleration, the spatial acceleration, the total pressure gradient,
the gravitational pressure gradient and the frictional pressure gradient. One notes
that the terms containing the interfacial shear have disappeared now since we are
dealing with the mixture. This mixture momentum equation will be used in Chap. 6
as the basis for calculating two-phase pressure drop.
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Total Enthalpy Conservation

@

@t
qL h0L
� �

L 1� eh iþ qG h0G
� �

G eh i
� 


þ 1
A
@

@z
A qL 1� eh i h0L

� �
L uLh iL þ qG eh i h0G

� �
G uGh iG

� 

¼ q000 þ Phq00w

A
þ @p

@t
:

ð2:5:5Þ

Again we notice that the interfacial exchanges do not appear any longer in this
equation and the heat flux from the wall heats the mixture rather than the phases
separately.

In the momentum Eq. (2.5.4), only the momentum flux term (second term) is
“different” from the corresponding terms in the single-phase momentum equation.
This term can also be written, however, in a “single-phase fluid” form by defining
(Meyer 1960) the momentum density q0 (or specific volume v0),

1
q0

� ð1� xÞ2
qL 1� eh i þ

x2

qG eh i � v0: ð2:5:6Þ

The mixture momentum conservation equation then takes the form

@

@t
_mþ 1

A
@

@z
A _m2

q0


 �
¼ � @p

@z
þ g qh icos h� Pwsw

A
: ð2:5:7Þ

Regarding the energy equation, we will generally neglect the contribution to the
total enthalpy due to kinetic and potential energy, i.e. we will assume that h0k � hk.
Indeed in most problems of thermal hydraulics the changes in kinetic energy and
potential energy are very small compared to the changes in enthalpy; this is not true,
e.g. in turbomachinery where the kinetic energy of the gas varies very significantly
to produce work.

The proper definition of mixture enthalpies can be obtained from the energy
equation. Two definitions will be needed since the enthalpy is volume or mass
weighted in the time derivative term (stemming from the rate of change of the
contents of the infinitesimal control volume), while it is mass flux weighted in the
enthalpy flux (the ∂/∂z) term. Since

qL 1� eh i uLh iL� ð1� xÞ _m and qG eh i uGh iG� x _m;
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it follows that we must have two mixture enthalpies defined: a new, mass weighted
�h and the conventional, mass-flow-rate weighted h:

�h � qL 1� eh i hLh iL þ qG eh i hGh iG
qh i ð2:5:8Þ

h � ð1� xÞ hLh iL þ x hGh iG: ð2:5:9Þ

With these definitions, the total enthalpy equation takes the visually simple form
resembling the single-phase enthalpy equation:

@

@t
qh ih� �þ 1

A
@

@z
A _mh½ � ¼ q000 þ Phq00w

A
þ @p

@t
: ð2:5:10Þ

The equation above shows that, at steady state (i.e. without the ∂/∂t term), the
enthalpy h of the mixture at a given point in the channel can be obtained from a
simple heat balance. Indeed, by integrating the steady-state form of Eq. (2.5.10)
(with the volumetric heating q000 term “included” in q00w):

h ðzÞ � hin ¼ Ph

_M

Z z

0
q00wdz ¼

1
_M

Z z

0
q0wdz; ð2:5:11Þ

where q0w ¼ Phq00w þAq000 is the total, equivalent, linear heat generation rate.
If one assumes that the two phases are in thermal equilibrium, i.e. that their

enthalpies are equal to the saturation enthalpies corresponding to the local pressure,

hL ¼ hL;satðpÞ and hG ¼ hG;satðpÞ;

then one can calculate from Eq. (2.5.9) the local equilibrium quality xeq:

xeq ¼ h� hL;sat
hLG

; ð2:5:12Þ

where hLG is the heat of vaporization, hLG = hG,sat – hL,sat.

2.6 The Homogeneous Model

If one assumes that the two-phase velocities are equal, <uL>L = <uG>G, then all the
equations are very much simplified and one obtains the homogeneous model. Note
that no assumption about any other “homogeneity” of the flow is required, the
condition S = 1, is sufficient to derive the homogeneous model conservation
equations that look very much like the single-phase conservation equations. The
various definitions of the density or specific volume and of the enthalpy of the
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mixture that were needed to write the mixture conservation equations for the sep-
arated flow model all merge into their unique homogeneous model form

qh i ¼ 1
vh i ¼

1
vL þ xvLG

or
1
qh i ¼

1� x
qL

þ x
qG

�h ¼ h ¼ ð1� xÞ hLh iL þ x hGh iG
and the homogeneous model conservation equations become

A
@

@t
qh iþ @

@z
ð _mAÞ ¼ 0 ð2:5:13Þ

@

@t
_mþ 1

A
@

@z
A

A _m2

qh i

 �

¼ � @p
@z

þ g qh icos h� swPw

A
ð2:5:14Þ

@

@t
qh i hh i½ � þ 1

A
@

@z
A qh i hh i½ � ¼ q000 þ Phq00w

A
þ @p

@t
: ð2:5:15Þ

For homogeneous flow, the unique mixture velocity is then simply

uh i ¼ _m
qh i ¼ jh i: ð2:5:16Þ

Another advantage of the homogeneous model, beyond its inherent simplicity, is
that when an expression for the quality and consequently for <q> is available, and
the fluid properties can be considered constant along the channel, the conservation
equations can often be analytically integrated (for example, to compute the pressure
drop along a channel).

Example: Computation of the Local Equilibrium Quality and of the
Homogeneous Void Fraction
The purpose of this small exercise is to familiarize the reader with the use of the
equations derived above, show the ease with which the homogeneous model can
produce analytical results and provide a flair for the orders of magnitude. We
consider a uniformly heated tube with a length L = 10 m and a diameter of 20 mm,
receiving a mass flow rate of 1 kg/s of water (for the 20 mm diameter tube this
corresponds to a mass flux of 3183 kg/m2s and a velocity of 4.3 m/s) with an inlet
subcooling of 30 °C (i.e. 30 °C below the saturation temperature corresponding to
the system pressure) and operating at a system pressure of 70 bar (assumed constant
along the tube as it should vary little with respect to its absolute value). The total
power input to the tube is uniform and amounts to 1 MW, yielding a linear heat
input rate q0 = 100 kW/m. We will calculate now the variation (along the length of
the tube z) of the equilibrium quality xeq, and, under the assumption of homoge-
neous flow, the specific volume v, the density q = <q> of the mixture and the void
fraction <e>hom = b.
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Equations (2.5.12) and (2.5.11) allow us to compute the local equilibrium
quality xeq

xeq ¼ hðzÞ � hL;sat
hLG

¼ 1
hLG

1
_M

Z z

0
q0dzþ hin


 �
� hL;sat

hLG
¼ q0z

_MhLG
� Dhin

hLG
;

where Dhin � hL;sat � hin is the inlet subcooling in terms of enthalpy. The first term
on the right side is a dimensionless enthalpy addition and the second the dimen-
sionless inlet subcooling; in both cases the non-dimensionalization is provided by
dividing by the latent heat, a fundamental phase change and fluid parameter.
Knowing the quality, we can compute the specific volume of the mixture

v ¼ vL þ xvLG with vLG � vG � vL:

Clearly, q ¼ 1=v. The homogeneous void fraction is given by Eq. (1.9.10) of
Chap. 1 as

b ¼ xvG
vL þ xvLG

:

Figure 2.12 shows the results for the case considered. One notes the linear increases
of the quality and of the specific volume (following the linear increase of the
quality), the fast drop of the density of the mixture and the corresponding rise of the
void fraction that, even at this relatively high pressure, reaches values near unity for
qualities above about 0.5.

Fig. 2.12 Variation along the length of a heated tube of the equilibrium quality, of the specific
volume and density of the mixture and of the void fraction
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2.7 Computational Multiphase Flow Dynamics

We will introduce in this section summarily these relatively new developments that
rely on computational methods to analyse and simulate multi- and two-phase flows.
As the purpose, at this point, is to make the reader only aware of their existence, we
will limit ourselves to an introduction as these will be covered in other volumes. We
will also briefly mention only the extension to 3D of the 1D methods presented
above, in particular the two-fluid approach.

Computational Fluid Dynamics (CFD) has been widely applied industrially to
single-phase flow problems, but the extension of related methods to multiphase
flows is new and at its infancy; the difficulties are much greater. We proposed to
label this relatively new discipline Computational Multi-Fluid Dynamics or CMFD
for short (Yadigaroglu 2003). The CMFD techniques are ‘‘CFD like’’ in the sense
that they are based on the well-established bases of Fluid Mechanics, are
three-dimensional, consider the turbulence and use computational techniques. In
complexity and difficulty, however, they are clearly one step beyond the classical
CFD of single-phase flows. As it happened for single-phase flows, detailed
numerical CMFD experimentation is again providing an alternative to laboratory
investigations in multiphase flow situations.

The computational developments need inputs from new experiments to provide
the detailed data necessary to verify the much more detailed computations.
Advanced instrumentation needed for future work is discussed in another volume.

2.7.1 Treatment of Separated Phases as Single-Phase Flow

We start the discussion with an example where the two phases are treated separately
by a single-phase CFD code. Indeed, in general, if the position of the interface is
known, and if the distribution of shear stress and pressure can be specified along the
interface, then solutions can be obtained which may throw valuable light on the
flow behaviour. Results of one such an early calculation (Jayanti and Hewitt 1997)
are illustrated in Fig. 2.13, which shows predicted velocity vectors within a dis-
turbance wave in annular flow, based on the use of empirical correlations for the
interfacial shear stress. The profile of the interface was assumed (and was kept fixed
throughout the calculations). The wall was moved at the wave velocity in a
direction opposite to the flow so as to keep the shape of the interface fixed, thus
permitting a steady-state calculation of the flow field. The geometry and flow
conditions specified were typical of those encountered in gas–liquid annular flow.
The results showed that the flow in the substrate layer was laminar while that in the
disturbance wave region was turbulent, leading to a local enhancement of the
transport coefficients.
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2.7.2 One-Fluid Formulation with Interface Tracking
Versus Two-Fluid Formulations

The One-Dimensional, Two-Fluid Model
At this point, it is worth recalling the basic premise of the two-fluid model. The
separate phase conservation equations are derived from an averaging procedure that
allows both phases to co-exist at any point, according to a certain phase indicator
function, or essentially a probability, that is the local instantaneous void fraction,
Fig. 2.14. The approach is also referred to as the “interpenetrating media” formu-
lation, a term that reminds us of the basic assumption made. With the two-fluid
model, each phase, governed by its own conservation equations, moves and
develops independently. The interfacial exchange terms provide the interactions
between the phases.

Fig. 2.14 Two-fluid (left) versus one-fluid (right) formulation; in this case the velocity field is
unique but, e.g. the density changes abruptly at the interface

Fig. 2.13 Predicted velocity vectors in a disturbance wave in annular flow (Jayanti and Hewitt
1997). Note that the view of the wave is considerably foreshortened in the axial direction to allow
a better view of the velocity vectors. The velocities are coloured in m/s
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Although the presence of the interfaces has been considered during the local
averaging process (and led to the definition of the local interfacial area concen-
tration for the inter-phase exchanges), the characteristics of the interfaces (their
exact shape and position) are “lost” in the interpenetrating media, formulation. The
exact topology of the phases cannot be obtained and consequently the flow regimes
cannot really be determined, except by correlation with the average flow conditions.
The two-fluid, 1D model cannot tell if, say at a 30% void fraction, the flow is
stratified or bubbly. This is fine with many problems, but there are situations where
the two phases are sharply separated (at a large scale, such as that of the duct) and
an understanding of the situation requires knowledge of the positions of the
interfaces. This could be, for example, the case of injection of subcooled water in a
pipe with stratified two-phase flow; clearly one needs to know the characteristics of
the steam-water interface to estimate the rate of condensation taking place there.

Multidimensional Implementation of the Two-Fluid Model and Alternatives
Some of the limitations mentioned above can be removed by applying the two-fluid
model to three-dimensional situations. Indeed, it is possible to write multidimen-
sional equations analogous to the one-dimensional equations described above (e.g.
Lahey and Drew 1988; Ishii and Hibiki 2011). Solutions of these equations allow
flow fields and phase fraction distributions to be determined. Of course, in three
dimensions, the closure challenge is even greater.

For example, the injection of a large bubble from a vent into water and its
condensation is a situation where the shape and extent of the liquid–gas interface
are important. Although the two-fluid model could, in some way, deal with this vent
discharge and similar problems, in practice this is not totally satisfactory. Indeed,
one could start the vent flow problem with the volume occupied by gas charac-
terized as a region of void fraction unity, and the liquid volume as a region of void
fraction zero. Numerical diffusion will very quickly mix the two phases, however,
and the interface will lose its sharpness and disappear. Interface sharpening
methods (Štrubelj et al. 2009; Gauss et al. 2016) can be used to overcome this
problem, but there are better solutions, namely the Interface Tracking (IT) methods
discussed below.

There are also cases where prediction of the location of the phases, leading
essentially to the definition of the flow pattern, is needed. Other situations that are
good candidates for application of IT methods are those for which the stability of
the interface plays an important role: the stability and break-up of jets is a good
example.

One-Fluid Formulation with Interface Tracking (IT)
All the IT methods are associated with a “one-fluid” description of the two-phase
flow system: while in the interpenetrating media formulation the conservation
equations were appropriately averaged (for example, over volume) for each phase
separately, in the one-fluid, IT formulation, the same conservation equations are
used for the entire computational domain, but the fluid properties such as density
and viscosity vary sharply across the interface as we move from one phase into the
other, Fig. 2.14. Thus, the two-phase system is treated as a continuous fluid whose
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properties vary from those of the liquid to those of the gas over a narrow range of
values of a phase-indicating scalar or “colour function” (that is typically given
limiting values of 0 and 1 for the two phases). An equation is written for the
transport of the scalar with the fluid. Kataoka (1986) discusses the bridge between
the two (one- or two-fluid) approaches.

The position of the interface is tracked using a variety of procedures; our pur-
pose is only to mention these here (and refer to some of the related seminal work) as
they will be treated in other volumes. Rider and Kothe (1998) and Lakehal et al.
(2002) review these methods that can be classified as either Lagrangian or Eulerian
according to the way the motion of the interface is tracked.

The most frequently employed Eulerian IT methods are the Volume-of-Fluid
(VOF) method that is based on the earlier multi-fluid simulations using the so-called
Marker-And-Cell (MAC) approach (see the classical work of Hirt and Nichols
(1981) and a recent implementation by Scardovelli and Zaleski (1999)) and its
Level Set (LS) variant (Osher and Sethian 1988; Sussman et al. 1994). Figure 2.15
illustrates an early, two-dimensional, VOF computation of a breaking wave.

In Lagrangian or embedded interface methods (Unverdi and Tryggvason 1992;
Tryggvason et al. 2001), particles are typically used to track the motion of the
interfaces. The grid that they form can adapt to account for any changes in the
interfacial shape. Again, an early application of this method is shown in Fig. 2.16
where the structure of an array of bubbles (originally equally spaced) has been
calculated.

The so-called “second gradient method” offers alternative capabilities (Jamet
et al. 2001). The relative merits of VOF and LS, as well as other possibilities, are
discussed by Rider and Kothe (1998) and Scardovelli and Zaleski (1999).

2.7.3 Multiplicity of Scales

System behaviour and the various physical phenomena taking place in the system
can sometimes be best addressed at a multiplicity of time and space scales. Let us
refer to these as the micro-, the meso- and the macro-scale. For example, an entire

Fig. 2.15 Example of the
application of the VOF
method: prediction of a
breaking wave (Chen et al.
1999). Reproduced from
Chen et al. 1999 with the
permission of AIP publishing
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large-scale system such as a nuclear plant or a steam generator can be modelled at
the macro-scale; a system component may need to be examined at the meso-scale.
Local flow in a critical part of a component may need to be addressed at the
micro-scale, Fig. 2.17. At each level of the scale hierarchy, the physics of the flow
are best amenable to numerical prediction by scale-specific strategies.

Cross-scale interactions (feedback and forward transfer of information) between
the micro-, meso- and macro-scales) require merging of the solutions delivered by
the scale-specific approaches at each level of the scale hierarchy. As shown in
Fig. 2.17, considering the top-down path, the computations at each level provide
the boundary conditions needed at the lower levels. On the inverse path, starting
from the bottom-up, the computations at each level will deliver the closure laws
needed at the higher level. For example, local, detailed CFD computations may
deliver the heat transfer coefficient needed to describe the behaviour of a compo-
nent, and component behaviour will provide the information needed at the system
level.

Instances where a full understanding of a situation or phenomenon requires
solution of such a “cascade” of problems at various scales with a corresponding
panoply and hierarchy of tools were discussed by Yadigaroglu (2005), Yadigaroglu
and Lakehal (2003) and Chauliac et al. (2011). For example, for nuclear systems,
the behaviour of the entire system is typically obtained using a system code based
on the two-fluid approach and operating at macro-scales comparable to the
dimensions of the system and its components. Local phenomena, or the behaviour
of parts of the system, may be addressed at the meso-scale level, with tools con-
sidering smaller scales and more detailed description of phenomena. Finally, one

Fig. 2.16 Application of the
front tracking method to the
prediction of the motion of a
three-dimensional array of
bubbles (Bunner and
Tryggvason 2002)
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may obtain, for example, wall and interfacial momentum, heat and mass transfer
laws by performing studies at micro-scales, for example, via Direct Numerical
Simulation (DNS)6; such level of spatial resolution is indeed needed to resolve the
gradients determining transfers at the interfaces.

A recent example of advanced VOF simulation and of multi-scale computing is
given in Fig. 2.18. The study by Ling et al. (2015) proposes a model for
atomization simulations, where the large-scale interfaces are resolved by the VOF
method and the resulting small droplets by a Lagrangian point-particle model.

Molecular Dynamics
Pushing the computations and the scales to the infinitesimal level, Molecular
Dynamics, studying the physical behaviour and movements of atoms and mole-
cules, is the ultimate tool in CFD and CMFD (e.g. Alder and Wainwright 1957;
Long et al. 1996). We will only mention here the possibility of investigating
phenomena such as the vaporization of an ultra-thin liquid layer on a hot metallic
surface by molecular dynamics simulations (e.g. Yi et al. 2002). In this case, the
forces acting between all combinations of pairs of wall and fluid molecules are

Macro 
(system) 

scale

Micro 
(turbulence) 

scale

Meso 
(component) 

scale

Boundary 
conditions

Closure 
laws

Fig. 2.17 Multiplicity of scales and transfers of information

6Contrary to other authors, we do not use the term DNS to characterize all “fully resolved”
computations, but apply it only to computations where all the scales of turbulence are resolved. In
this sense, an exact analytical solution for laminar flow is not a DNS (Yadigaroglu 2005).
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modelled and the evolution of the system is simulated numerically; the results of Yi
et al. (2002) show resemblance to our knowledge of such vaporization events.

2.7.4 DNS of Turbulent Multiphase Flows

Contrary to terminology used by other authors, by Direct Numerical Simulation
(DNS), we mean capturing the entire turbulence spectrum of length and time scales
without resorting to modelling (Yadigaroglu 2003). In two-phase flow, so far, DNS
has been primarily applied to study the physics of small particle dispersion using
Eulerian–Lagrangian point tracking, or, occasionally, using the Eulerian, two-fluid
formulation; as an example, we can cite the bubble-laden mixing layer work by
Druzhinin and Elghobashi (2001).

Interface tracking methods, although not limited in theory to consideration of
turbulence in the fluids by an associated DNS, are in practice not adequate for the
purpose. Even inLarge Eddy Simulation (LES) where the large scales of turbulence
are resolved, while the small ones are modelled, the scales still needed for resolving
the large scales of turbulence may be much smaller than those of the interfaces.
Thus, even rather simple turbulent bubbly flows are still often far from DNS.
Conducting true DNS studies in multiphase flows has proven, however, possible for
certain relatively very simple flow situations, for example, for counter-current gas
liquid flows separated by a sheared interface; the latter can be deformable within
limits, i.e. without the presence of breaking waves (Fulgosi et al. 2003; Lakehal
et al. 2003). As this approach tackles all the physics of the problem without
recourse to modelling, this method can be regarded as a true DNS of turbulence in

Fig. 2.18 Example of VOF computations coupled with a particle tracking method to track the
small droplets. The figure shows a snapshot of the liquid–gas interface of an atomizing pulsed jet.
a using fully resolved droplets. b using the coupled-model method where the orange droplets are
from the tracked ones (Ling et al. 2015)
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multiphase flow. Such sophisticated techniques are understandably limited to a
narrow range of applications, where they can serve as “numerical experiments” for
exploring small-scale, turbulence-induced transport phenomena at the interface.

2.8 Conclusions

One may make the following general observations about the state of prediction
methods in multiphase flow systems:

• The prediction of multiphase systems represents a formidable challenge and
great accuracy cannot be expected.

• The widely used empirical models do not predict data outside their range of
derivation.

• Phenomenological (or mechanistic) modelling offers insight into the processes
occurring but needs sub-models (e.g. for droplet entrainment and deposition)
which may not yet have a secure base.

• Multi-fluid (two-fluid) models provide an elegant framework but are less flex-
ible than phenomenological models. The identification of general closure rela-
tionships has proved a difficult goal.

• CFD and CMFD modelling are already a useful research tools, giving insights
into flow phenomena. They are far from being readily applicable to all industrial
problems.

• Single-phase CFD techniques are mature; their application to large systems is
only limited by available computing power. The commercial CFD codes are
readily usable in many areas, but specific models need often to be added to
consider particular phenomena.

• CMFD techniques can already tackle certain flow regimes. Interface tracking
methods such as VOF and level sets are capable of dealing with flows where the
interfaces are relatively simple, e.g. stratified flows or wavy annular flows.
There are much greater difficulties in dealing with flow regimes presenting
complex interfaces, such as churn flows.

• Cascades of computations at different scales are needed to address certain
problems.

• DNS and more specifically the future DNS of two-phase flows is likely to be
successfully used to investigate microscopic phenomena that are not amenable
to experimental observation in the manner of numerical experiments.

Multiphase flow is a diverse and complex subject with many subtleties and a
whole variety of solution approaches. We hope that by presenting a whole variety
of viewpoints, the richness of the subject will become apparent.
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Chapter 3
Interfacial Instabilities

George Yadigaroglu

3.1 Introduction: The Stability of Two Fluid Layers

In the chapter we will discuss instabilities of the gas-liquid interface. The behaviour
of interfaces is clearly an important consideration in two-phase flows as it deter-
mines many flow parameters such as the sizes of inclusions (bubbles in liquid,
droplets in gas), flow regimes, interfacial exchanges, etc. After a brief introduction
of the basic interfacial stability or rather instability concepts, we will apply them to
various cases such as the stability of films in boiling, stability of the dispersed phase
(droplets or bubbles) in two-phase flow, etc.

In this chapter we will consider instabilities at the “microscopic” scale of the
interface. In another volume in these series we will deal with the “macroscopic”
stability of two-phase systems, such as boiling channels, loops, etc.

The basis of all the work in this area is consideration of the stability of the
interface between two parallel layers of fluids having different properties and
velocities. We will consider for simplicity the general one-dimensional situation
which is depicted in Fig. 3.1. The figure shows a one-dimensional perturbation of
the surface along the x-direction only (there is no variation in the y-direction, the
object considered is something like a very wide wave on the sea surface or a wave
created in a long, narrow flume).

The two fluids are distinguished by the subscripts 1 and 2. They are flowing in a
channel with velocities U1 and U2 and occupy heights h1 and h2. The problem of
the stability of the interface under these conditions can be found in several classical
treatises on hydrodynamics such as the books of Lamb (1945), Milne-Thompson
(1955), and Chandrasekhar (1968).

The literature on this subject is very rich, both in mathematical formulations of
physical variations of the problem as well as in applications to particular physical
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situations. The effects of viscosity will not be considered below, although they have
been taken into consideration in certain analyses (e.g. Barnea and Taitel 1993).

In all linearized analyses of the problem, one considers a small-amplitude per-
turbation (wave) of the interface and examines its growth under the influence of the
various forces acting on it. For the general, inviscid flow case consider here, the
analysis is conducted by considering potential flow of two incompressible fluids.

If one considers a non-flow situation (or if U1 = U2) in the two horizontal layers,
the forces acting on the two fluids and at their interface are gravity and surface
tension. In this case we speak of the Rayleigh-Taylor instability. The same insta-
bility may appear, however, if two fluids of different densities are under the
influence of an acceleration field (other than gravity), for example, if one fluid is
propelled on the other.

The second simple case is that of the parallel flow of two fluids with different
velocities in the absence of gravity or other fields. In this case we speak of the
Kelvin-Helmholtz instability.

The surface tension and the pressure difference across the interface Dpi are
related to its deformation by the classical force balance relationship, Fig. 3.2,

Dpi ¼ r
1
R1

þ 1
R2

� �
ð3:1:1Þ

where R1 and R2 are the principal radii of curvature of the interface. For a sphere,
R1 = R2 = R, and Eq. (3.1.1) becomes Dpi ¼ 2r=R, as shown in Fig. 3.2.

Fig. 3.1 Stability of the
interface between two layers
of fluids

Fig. 3.2 An interfacial element and the principal radii of curvature. Left the figure helps
intuitively understand the interfacial balance of forces in the general case, Eq. (3.1.1). Right for the
case of a hemisphere, the exact derivation is given in the figure
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The principal radii of curvature can be related to deformation of the interface
η(x). In the case of Fig. 3.1, the principal radii are R1 in the plane of the figure and
R2 ! 1 perpendicular to it. The principal radius in the case of the figure is
approximated as usual by

1
R1

� @2g
@x2

and Eq. (3.1.1) becomes

Dpi ¼ r
@2g
@x2

� �
ð3:1:2Þ

The continuity and momentum equations for the two fluids are used and, for the
one-dimensional case considered for simplicity here, solutions are sought for a
periodic interfacial perturbation

gðx; tÞ ¼ g0 exp ikðx� ctÞð Þ ð3:1:3Þ

where η0 is the amplitude of the initial perturbation, k the wave number, k = 2p/k,
where k is the wavelength of the perturbation, and c the complex wave celerity,

c ¼ cr þ ici

Thus η takes the form

gðx; tÞ ¼ g0 e
ikðx�citÞekcit ð3:1:4Þ

We see now the reason for introducing a complex wave celerity: Eq. (3.1.4) has
a first exponential term that produces a sinusoidal variation, while the second one is
a real growth or decay factor, depending on the sign of kci. Regarding the stability
of the perturbed interface, if kci is positive the perturbations will grow, while any
perturbation will be damped for kci negative.

Assuming that the perturbed flow is potential (using the Bernoulli equation for
the two fluid layers), that the amplitude of the perturbation is small, and introducing
the pressure difference across the interface given by Eqs. (3.1.1) and (3.1.2) that
couples the pressure fields in the two fluid layers, the growth factor kci can be
obtained (e.g. Yih 1980) as

kci ¼ q1q2 cothðkh1ÞðU1 � U2Þ2k2
q1 cothðkh1Þþ q2 cothðkh2Þ½ �2 �

rk3 � gðq1 � q2Þk
q1 cothðkh1Þþ q2 cothðkh2Þ

" #1
2

ð3:1:5Þ
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where r is the interfacial tension (or the surface tension if we are dealing with a
liquid in contact with a gas). When the fluid layers are thick, h1 and h2 ! 1 and
cothðkh1Þ and cothðkh2Þ ! 1 and Eq. (3.1.5) takes the simpler form,

kci ¼ q1q2ðU1 � U2Þ2k2
q1 þ q2½ �2 � rk3 � gðq1 � q2Þk

q1 þ q2

" #1
2

ð3:1:6Þ

The term inside the square brackets must be positive for a solution to exist, i.e.

q1q2ðU1 � U2Þ2k2
q1 þ q2½ �2 � rk3 � gðq1 � q2Þk

q1 þ q2
[ 0

or
q1q2ðU1 � U2Þ2k

q1 þ q2
� rk2 þ gðq1 � q2Þ[ 0

ð3:1:7Þ

If this condition is satisfied, the system may be unstable. Marginal stability will
be reached when kci = 0. Solving then Eq. (3.1.6) for k one obtains the wave
number corresponding to this stability limit. This will be done for the two particular
cases considered below.

3.2 Rayleigh-Taylor (RT) Instability

We are considering now two horizontally stratified layers without relative move-
ment of the fluids, i.e. U1 − U2 = 0. Equation (3.1.6) in this case becomes

ðkciÞ2 ¼ � rk3 � gðq1 � q2Þk
q1 þ q2

ð3:2:1Þ

and the instability condition (from Eq. (3.1.7) is

� rk2 þ gðq1 � q2Þ[ 0 ð3:2:2Þ

The marginal stability criterion is obtained by setting kci equal to zero in
Eq. (3.2.1); in this case the wavelength for marginal stability is given by:

kms � 2p
kms

¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
g q1 � q2ð Þ

r
ð3:2:3Þ

This marginal stability wavelength for a liquid and a gas, without the 2p, is
called the Laplace length scale:
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L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
gðqL � qGÞ

r
ð3:2:4Þ

The fastest growing wave or most dangerous wavelength, km, can be obtained by
finding the maximum of (kci)

2 given by Eq. (3.2.1); @ðkciÞ2=@k ¼ 0 yields:

km � 2p
km

¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r

gðq1 � q2Þ

s
¼

ffiffiffi
3

p
kms ð3:2:5Þ

We conclude that the arrangement is stable for disturbances having a wavelength
shorter than kms; in this case the stabilizing effect of the surface tension overcomes
the destabilizing effect of gravity. Physically speaking, gravity tends to accentuate
any existing perturbation, while the surface tension “stretches” the surface and tries
to restore it back to its original flat shape, Fig. 3.3.

For k > kms, the arrangement is unstable and the disturbance grows most rapidly
with a wavelength km. Figure 3.4 illustrates the two situations: the liquid cannot
remain in a large tube characterized by its dimension L, while it forms a stable
meniscus in a capillary one.

Figure 3.5 shows an interesting physical phenomenon that must have its roots in
a RT-like instability. Intense volcanic activity pushed highly fluid molten basalt

Fig. 3.3 Balance of forces in Rayleigh-Taylor instability

Fig. 3.4 Illustration of stable (right) and unstable (left) situations with respect to the RT instability
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upwards to form an extensive lava plateau. As the lava cooled, contraction fractured
the material, like drying mud, creating the patters or hexagons whose dimensions
must correspond to the Laplace length. Assuming a surface tension value of
0.3 N/m for the magma and a liquid density of 3000 kg/m3, Eq. (3.2.4) yields a
value of 0.06 m for the most unstable wavelength, smaller but of the same order of
magnitude to what we see in the photograph.

3.2.1 Case when r = 0

We consider the case of two fluid layers subjected to an acceleration perpendicular
to their interface (Taylor 1950) by setting r = 0 in Eq. (3.2.1), which yields:

ðkciÞ2 ¼ g
ðq1 � q2Þk
q1 þ q2

and the instability condition becomes gðq1 � q2Þ[ 0.The net acceleration g is
positive in the direction of the z-axis, Fig. 3.1. We find, as expected, that under
gravity only, the situation with the heavier fluid on top (q2 > q1) is unstable under
all circumstances. The presence of normal gravity is not necessary, such a situation
arises if, for example, a sheet of liquid is accelerated by air pressure (Taylor 1950).
Instabilities develop and the sheet breaks down. Figure 3.6 shows the sudden
expansion of superheated liquid that was initially contained in a glass flask. One
clearly observes the creation of “fingers” resulting from the growth of RT insta-
bilities as the fluid expands violently.

The instability of interfaces accelerated by a shock-like perturbation has been
studied theoretically by Richtmyer (1960) and experimentally by Meshkov (1992).

Fig. 3.5 Giant’s causeway,
Northern Ireland
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The long-time evolution of these Richtmyer-Meshkov instabilities, i.e. the growth
of initial surface corrugations, can be well described as an impulsive RT instability.

3.2.2 Generalization

The linear treatment outlined above can be generalized to include other physical
effects such as the viscosity (e.g. Drazin and Reid 1981), compressibility,
non-uniform accelerations, heat and mass transfer at the interface, shocks, density
gradients, sphericity of the interface, etc. The literature is very rich and corre-
sponding references are too numerous to be listed here, but some can be found in
the review papers by Sharp (1984) and Kull (1991) who also includes a historical
overview of the development of the theory. Sharp also considers the non-linear
growth of the disturbances that takes place after their amplitude reaches a few tenths
of the wavelength.

Rayleigh-Taylor instabilities appear in many phase-change situations, such a
boiling, melting, condensation, and evaporation (see, e.g., Taghavi-Tafreshi and
Dhir 1980; Kutateladze and Sorokin 1969).

A typical application of the concept is the determination of the unstable wave-
length in film boiling from a horizontal surface (Dhir and Lienhard 1973).
Figure 3.7 shows film boiling from a horizontal cylindrical heater. Gerstmann and
Griffith (1967) report that the pattern of waves on the condensate appearing below a
cold plate is also described as a Taylor instability.

Fig. 3.6 Frame from a
high-speed movie showing
the violent expansion of fluid
that was suddenly
depressurized by breaking the
flask containing it (Reinke
1996)
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3.3 Kelvin-Helmholtz Instability

In this case, we consider the parallel flow of two layers of fluid with different
velocitiesU1 andU2. Gravity does not have to play a role; an initial perturbation (say a
small wave pointing upwards) restricts the passage available for the upper fluid, the
velocity of the upper fluid is locally increased, and the pressure above the interface is
reduced due to the Bernoulli effect. The decrease in pressure tends to further desta-
bilize the interface. It is the surface tension again that has a stabilizing effect, Fig. 3.8,
since it tries to keep the interface flat. From Eq. (3.1.7), the flow is unstable, if

� g
k
q1 � q2
q1 þ q2

þ rk
q1 þ q2

\q1q2
U1 � U2

q1 þ q2

� �2
ð3:3:1Þ

In the absence of gravity, by setting g = 0, we obtain

rk\q1q2
U1 � U2ð Þ2
q1 þ q2

ð3:3:2Þ

This equation can be used to derive stability criteria for a number of two-phase
flow situations: fragmentation of liquid jets flowing parallel to a gas stream, frag-
mentation of droplets, etc. Indeed, replacing the subscript 1 by L (liquid) and 2 by
G (gas) and noting that qL � qG, Eq. (3.3.2) takes the form

rk\qGðUG � ULÞ2

which suggests the use of a Weber number,

We � qGðUG � ULÞ2L
r

ð3:3:4Þ

where L is a characteristic dimension of the liquid volume (droplet or jet diameter,
for example). Indeed, constant-Weber-number criteria have been extensively used
to define the stability limits of droplets, jets, etc.

Fig. 3.7 Left illustration of film boiling from a horizontal cylindrical heater (Dhir and Lienhard
1973). Right frame from a high-speed movie by Haley and Westwater (1965) for film boiling
around a cylindrical fin
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3.3.1 Applications

The basic considerations outlined above have been applied to many physical sit-
uations, as already noted (see e.g. Taghavi-Tafreshi and Dhir 1980). Kolev (1993)
reviews fragmentation and coalescence in two-phase flows. Two interfacial stability
cases related to pool boiling are briefly outlined below, followed by a discussion on
the application of Weber-number criteria.

3.3.2 Departure from Nucleate Boiling (DNB) in Pool
Boiling

At high heat fluxes, “jets” of vapour leave the heated surface; the liquid has to reach
the wall by flowing in the areas left between the vapour columns, Fig. 3.9. This
situation (parallel flow of two non-miscible fluids) leads eventually to a Kelvin-
Helmholtz instability and breakdown of the vapour-liquid interfaces; this happens
when the relative velocity of the vapour with respect to the liquid attains a certain
critical value. Thus in the usual models of DNB in pool boiling, the controlling
parameter is the volumetric flux of the vapour away from the surface:

q00crit
qG hLG

ð3:3:5Þ

This volumetric flux or superficial vapour velocity is compared to the critical
relative velocity for the Helmholtz instability which is obtained from a Weber
number, where k, the most unstable wavelength given by Eq. (3.2.5), or the Laplace
length scale, is used as the characteristic length. Combining these expressions, one
obtains DNB (or CHF) correlations of the form

Fig. 3.8 Balance of forces
in Kelvin-Helmholz
instability

3 Interfacial Instabilities 87



q00crit
hLGqG

¼ const
grðqL � qGÞ

q2G

� �1=4
�f qL

qG

� �
ð3:3:6Þ

where the last factor f, function of the density ratio, correlates the remaining effect
of pressure.

Son and Dhir (1997) computed the shape of the interface in film boiling on a flat
plate and examined differences between the predictions of the linear theory dis-
cussed here and their CFD predictions.

3.3.3 Minimum Film Boiling (MFB) Point

MFB denotes the point in film boiling at which vapour is no longer generated at a
sufficient rate to keep the liquid from wetting the wall: below a certain wall tem-
perature, the vapour generation rate is not sufficiently large to supply the vapour
demanded for the growth of the bubbles spaced on the interface according to its the
Taylor instability wavelength. It is interesting to note that, as a result of the
dependence on the parametric groups controlling the Taylor instability, the heat flux
at the MFB point is correlated by expressions quite similar to those used for CHF,
q00crit. For example, Zuber and Tribus (1958) arrive at the following expression:

q00min
qG hLG

¼ const
grðqL � qGÞ
ðqL þ qGÞ2

" #1=4

ð3:3:7Þ

where the value of the constant varies between 0.1 and 0.2 according to various
authors. For a cylindrical heater of radius R, Lienhard and Wong (1964) give

q00min
qGhLG

¼ p2

60

ffiffiffi
4

p
3
1
R

2g
qL � qG
qL þ qG

þ r
qL þ qGð ÞR2

� �1=2 gðqL � qGÞ
r

þ 1
2R2

� ��3=4

Fig. 3.9 Columns of vapour
rising while liquid flows
downwards to cool the surface
near the DNB point
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3.3.4 Weber-Number Stability Criteria for Drops, Jets, etc.

Weber-number stability criteria are widely used in practice to predict the stability of
the liquid-gas interface. Some applications are mentioned below. The classical
reference book by Clift et al. (1978) provides useful information about the stability
of bubbles and droplets. Stone (1994) describes the dynamics of drop deformation
and breakup in viscous flows at low Reynolds numbers. Common situations include
the cases given below.

Freelyfalling liquid drops in gaseous media (Hinze 1955): We * 22 (in this
case UL is the terminal velocity of the droplet).

Drops in a high-velocity gas stream: We * 12 to 17.
Kataoka et al. (1983) also present a correlation for dispersed flow in a pipe:

We ¼ 0:031 Re2=3cd
qL
qG

� ��1=3 lG
lL

� �2=3

ð3:3:8Þ

where l is the dynamic viscosity, and Recd is the continuous (gas) phase Reynolds
number based on the hydraulic diameter of the flow channel.

The breakup of liquid jets has been reviewed by Sirignano (1993), by Chigier
and Reitz (1996) and by Lin (1996). Lin and Reitz (1998) focus on the physical
mechanisms that cause jet breakup. Jet breakup was also studied in the context of
inverted-annular film boiling1 by De Jarlais et al. (1986).

3.3.5 Stability and Breakup of Fluid Particles

Kitscha and Kocamustafaogullari (1989) presented unified breakup criteria for fluid
particles, which were probably the first that are based on consideration of the
simultaneous, combined development of Rayleigh–Taylor and Kelvin-Helmholtz
instabilities. Their analysis starts from Eq. (3.1.5) above, but considers particles
having the characteristic shapes of droplets and bubbles, namely spherical caps and
half-spheres. The curvature of the surface is assumed not to affect the stability
criterion (derived for a flat interface), but Eq. (3.1.5) is modified to account for the
flow field (tangential velocity) around such particles, Fig. 3.10. Potential flow
theory is used to compute the flow field. The effects of viscosity are neglected in the
theoretical analysis but later brought into play as correction factors to the resulting
correlations.

Since the flow field and the “thickness” hd of the liquid layer vary around the
particle (Fig. 3.8), the speed of propagation of interfacial perturbations and the
growth factor will depend on the location of the disturbance. To answer the

1This is a situation occurring in post-dryout heat transfer in a tube: the vapour forms a film on the
dry wall while the liquid flows in the middle of the channel .
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question of whether the waves that are created can lead to breakup of the particle or
not, it is necessary to know the time required for these waves to grow to a certain
amplitude and compare it to the time they need to travel to the edge of the particle.
Breakup will occur if the growth rate of interfacial waves is faster than the rate at
which the waves propagate around the interface to the sides of the particles.

To complete the analysis and arrive at breakup criteria, one also needs additional
information such as the geometry of the particles, their terminal velocity, etc. There
is also an upper limit on the wavelength imposed by the fact that too large a
disturbance represents a gross deformation of the particle, rather than a perturbation
of its surface. The authors found that the most unstable wavelengths were larger than
the particle sizes; instead of the most unstable wave, the wave which minimizes the
ratio of the propagation time to growth time was used. This leads to a theoretical
expression for the breakup criterion containing, however, the “critical” ratio of the
propagation to growth times, Cg. Defining the non-dimensional quantities,

We � qcdeu
2
c

r
; d�e � g Dqj jd2e

r

� �
; q� � qd cothðkminhdÞ

qc
; kminhd

¼ 2p
hw

sin
3hw
4

� �
sin

hw
4

� �

(the last one being a geometric factor), a general breakup criterion having the
functional form

FðWe; q�e ; Nlc ; hw ;CeÞ ¼ 0

is derived. Ce is the ratio between the mean curvature of the particle dp and its
volume-equivalent diameter de, and

Fig. 3.10 Flow around a
rising cap bubble considered
by Kitscha and
Kocamustafaogullari (1989)
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Nlc �
l2c

qc
r3

g Dq

� �1=2

2
64

3
75
1=2

is a viscosity number correction for the continuous phase. The subscripts c and d
denote the continuous and dispersed phases, respectively. A correlation for Cg is
also given. The authors propose also several more practical correlations specialized
for various particular situations.

For example, for freely falling drops: d�e � 3:52. One notes that when the slight
effects of q* and Nlc are neglected, one obtains the classical form We = 14 (instead
of the value of 22 mentioned earlier).

For drops in a high-velocity field the breakup criterion is ðd�e Þ2 þ 0:26 �Wemd�e �
4 ¼ 0 where Wem is a modified Weber number, Wem � We=d�e

For bubbles rising in stagnant liquids, d�e ¼ 27:07 � ð1þNlcÞ0:83
A fairly complex expression is also given for drops falling or rising in stagnant

liquids. Good correlation with available experimental data is shown.
Nigmatulin (1991) identifies six possible modes of droplet breakup depending

on the value of the Weber number, each resulting in different daughter droplet
spectra, Fig. 3.11. Wierzba (1990) also discusses the effect of Weber number on
breakup and the scatter in the critical Weber numbers found in the literature.

Fig. 3.11 Possible mechanisms of drop deformation and fragmentation with increasing Weber
number (Nigmatulin 1991). Mode 1: droplet oscillates and breaks up; Modes 2–5: bag mode;
Mode 6: complete fragmentation. Modes 2–5 produce droplet size distributions having two or
more peaks according to the origin of the fragments (surface of rim of the bag)
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Interfacial instabilities are important for many two-phase flow and phase change
phenomena. Certain of these are illustrated in Fig. 3.12 taken from Kutateladze and
Sorokin (1969). The authors sketch also a general theory that governs interfacial
instability problems in terms of non-dimensional numbers and provide numerous
relationships covering the situations illustrated in the figure.
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Chapter 4
Flow Regimes

George Yadigaroglu, Gad Hetsroni and Geoffrey F. Hewitt

4.1 Introduction

One of the major difficulties in modelling multiphase, or more specifically
two-phase flows that are our concern here, is to determine the geometry of the flow,
i.e. the topology or distribution of the phases, and the geometry of the interfaces,
which are not necessarily known a priori, but are rather a part of the solution of the
problem. This particular problem is not, however, solvable in general. It is only in a
very restricted number of cases that the shape of the interfaces is roughly pre-
dictable: dispersed flow of spherical particles (bubbles or droplets) and smooth
stratified or annular flow are such examples. Methods to predict the shape of
interfaces by CFD or CMFD techniques are still at their infancy and are discussed
in another volume.

In single-phase flow in a conduit, we know the geometry (the shape of the
conduit) and we are left to determine the velocity distribution, pressure drop, etc—
either experimentally or theoretically. In contrast, when there are two or more fluids
flowing simultaneously in a conduit, one cannot tell a priori how the phases are
going to distribute themselves, e.g. are the bubbles going to be distributed uni-
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formly throughout the liquid, are they going to cluster in certain areas, or are they
going to coalesce and form slugs?

The geometrical and topological configurations of the interfaces determine what
is referred to as the flow regime or flow pattern. These are a small number of
idealizations of the real situation, useful for modelling. Their definition and the
discrimination between flow regimes are, however, often quite subjective. The main
two-phase flow regimes for horizontal and vertical upwards flows are illustrated in
Figs. 4.1 and 4.2 containing both sketches as well as photographs.

Fig. 4.1 Top Sketches of main flow patterns in vertical upwards flow. Bottom selected
photographs of flow regimes (Rosa et al. 2012) © IOP Publishing; reproduced with permission; all
rights reserved. The authors are indebted to Eugenio Spano Rosa, University of Campinas—Brazil,
School of Mechanical Engineering for providing the original photographs
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4.1.1 Flow Regime Observations and Maps

Flow regime determinations are based either on direct “visual” observations,
including photography, X-ray pictures, or cross-sectional void fraction plots (based
on instruments such as optical or electrical contact probes, or multi-beam, gamma
densitometers, wire-mesh sensors, etc.), or on indirect determinations via the
analysis of signals such as the static pressure or the attenuation of an X-ray beam.
Visual observations are difficult to interpret and can be biased by the subjectivity of
the observer. Thus it may appear that an automatic determination using the sig-
nature of a (fluctuating) signal (e.g. Jones (1973); Mi et al. (1998) or Barbosa et al.
(2010), who used advanced instrumentation and neural networks) and a set of
criteria may be more objective, but this may amount to moving the subjectivity to
the determination of the criteria. This is one of the reasons that the flow regime
maps have or should be shown to have “broad” transition boundaries. Indeed, in

Fig. 4.2 Top Sketches of main flow patterns in horizontal flow. Bottom selected photographs
(Barbosa et al. 2010)
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many flow regime mappings, sub-regimes or additional flow patterns for interme-
diate situations have also been used.

Experimental observations can be used to generate a flow regime map, i.e. a
mapping of the areas occupied by each flow regime in a plane having as coordinates
variables characterizing the flow, for example quality and mass flux. Such a flow
regime map is given in Fig. 4.3. A flow regime map produced using experimental
observations can then be used to predict the flow regime in new but necessarily
similar situations.

4.1.2 Flow Regime Transitions

Flow regime transitions take place when certain flow conditions are met and the
flow pattern changes. Alternatively a flow regime map can be produced by
assembling a set of flow-regime transition criteria for the transitions between the
different flow regimes. Having such a set one can then produce the corresponding
flow regime map, or use the criteria alone to determine analytically the flow regime
for a given flow condition. This transition criteria-based approach should produce
much more reliable results than the look-up in an empirical map as the criteria could
be based on first principles and could be universally applicable. We will see lots of
such examples in this chapter.

Fig. 4.3 The Bennet et al. (1965) map for steam flow at high pressure (70 bar). One problem of
the presentation with the quality as the abscissa is that the data points get all crowded in the very
low quality region (as at small quality the void fraction that determines the flow regime changes
dramatically with quality)
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4.1.3 Need to Know the Flow Regime

Naturally, the cross-sectional distribution of the gas phase in the pipe determines
other design parameters such as heat transfer, pressure drop, etc. and without
knowing this distribution, i.e. the flow regime, one cannot accurately calculate the
other variables of engineering significance, such as pressure drop, as we have
discussed in Chap. 2. So, we should in principle start by considering flow regimes.

As more and more data has become available for two-phase fluid flows, some of
the inadequacies of the more traditional, empirical prediction methods for, say,
pressure drop, have become more apparent. The older style, but still widely used,
regime-independent methods (such as the homogeneous model and prediction
methods based on empirical correlations that we will review in Chap. 6) give
predictions which may be in extreme cases up to an order of magnitude in error.
Attempts to better correlate the data for parameters such as pressure gradient and
void fraction have led to a whole series of more recent and better correlations which
may, however, still give typical standard deviations, when compared with the data,
of up to 20–30%. Thus, the best available empirical correlations may be in many
cases unsatisfactory when compared with the existing data over broad ranges of
flow conditions. In many practical situations (for instance the flow of multiphase
mixtures in oil/gas sub-sea pipelines), one has conditions which are well outside the
range of existing data, and the empirical correlations cannot be extrapolated with
any certainty to these new ranges of conditions. This has led to the search for
prediction methods which are more securely based on the actual physics of the flow
taking place and consequently to an even greater interest in the classification of
these processes into general categories of flow patterns.

As we have seen in Chap. 2, the application of multi-fluid models, and in
particular the six-equation model, to two-phase flows requires closure relationships
for the calculation of parameters such as interfacial heat transfer, interfacial friction,
wall friction and wall heat transfer. It is clear that these closure relationships would
be affected strongly by the flow regime; for instance, the interfacial friction will be
expected to be very different in bubble flow and, say, stratified flow. Thus, the
identification of flow regimes and the associated selection of appropriate closure
relationships form an essential part of the multi-fluid modelling approach.

We shall begin by describing the various regimes. Then, flow pattern maps will
be presented and the ways in which these may be generalized, will be discussed.
Following this, there will be a discussion of the analytical description of some
individual flow pattern transitions and, finally, the generation of sets of criteria that
can be used to build flow pattern maps will be described. This touches closely to the
whole area of flow regime-based phenomenological or mechanistic modelling of
multiphase flows that is, however, the subject of another volume.

An excellent historical presentation and discussion of the flow regime transition
criteria and flow regime maps can be found in a keynote lecture presented by Taitel
(1990). Not much new work has been presented since except for the particular case
of mini and microchannels; we will not deal in this chapter with this ongoing work.
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More recently, Cheng et al. (2008) produced a review including discussion of the
empirical as well as of the analytical transition criteria and maps that includes
several useful commented tables of experimental works as well as analytical efforts
and covers also topics that are not treated in depth here such as flow regimes under
diabatic conditions (boiling and condensation), microchannels, etc. One should
remember that flow regimes depend on many parameters such as pressure, choice of
fluids, complexity of the geometry, inclination of the tube, etc. and therefore, the
discussion here cannot be totally general. In fact, one would expect to find many
engineering applications where the flow regimes are unknown.

This chapter is very extensive and long as it goes well beyond the description of
the flow regimes and introduces the mechanistic methods used to define the tran-
sitions between regimes and their assembly into analytical flow regime maps. Once
the flow regimes have been established here, their phenomenological, mechanistic
description (rather than an empirical one) is discussed in another volume.

4.2 Flow Patterns—Physical Descriptions

Flow patterns in simple geometries such as round tubes will depend on the ori-
entation of the duct (vertical, inclined, horizontal; upwards, downwards) and its
dimensions, and on whether the two-phases flow co- or counter-currently. All the
fluid parameters (density, viscosity, surface tension) and the operating conditions
(pressure, mass fluxes of the phases) will of course also play a major role. There are
several key publications on flow pattern observation and predictions, including
Spedding and Nguyen (1980), Taitel et al. (1980), Barnea et al. (1980), Mishima
and Ishii (1983), etc. Most of the work deals with adiabatic flows without phase
change.

4.2.1 Flow Patterns in Vertical Co-current Flow

The more common flow patterns which are encountered in an upwards, co-current
flow of, say, air/water in a vertical tube were shown in Fig. 4.1 and are summarily
described now. Other couples of fluids may, or may not, exhibit similar flow
patterns depending on their properties.

4.2.1.1 Bubble or Bubbly Flow

The gas is dispersed as discrete bubbles in continuous liquid. The bubbles may
have different shapes and sizes but they are smaller than the pipe diameter. The
bubble flow regime can be encountered under two different sets of conditions:
Bubbly flow (B) at low liquid flow rates and Dispersed Bubble (DB) flow at high
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liquid flow rates. At low liquid flow rates the bubbles may simply keep wandering
within the liquid as its turbulence is not sufficient to disturb or destroy them. On the
contrary, in highly turbulent DB flow small bubbles are created by the breakup of
larger volumes of gas. This distinction is, however, not always made and authors
may use the terms bubbly or bubble flow indiscriminately. In strictly adhering to the
definition based on “discrete bubbles in continuous liquid,” foams can also be
considered bubbly flows.

4.2.1.2 Slug Flow

When the quality—or the void fraction—increase, the bubbles coalesce and form
larger bubbles of a size similar to that of the pipe diameter. These are called Taylor
bubbles or plugs (or by some authors, gas slugs); they have a characteristic
spherical cap nose and are somewhat abruptly terminated. The elongated gas
bubbles are separated by liquid slugs, which may have smaller bubbles in them (the
aerated slug area). The Taylor bubbles (Davis and Taylor 1950) are separated from
the wall by a film of liquid, which may locally flow downward, even though the net
flow of the liquid is upward. The length of the slug-flow cells (plug and liquid slug)
as well as that of the individual Taylor bubbles and liquid slugs may vary
considerably.

4.2.1.3 Churn Flow

When the velocity of the flow is increased, the slugs break-down into a seemingly
unstable regime. Liquid may be flowing up and down in an oscillatory fashion. This
is a flow regime in between the slug flow where the liquid and the gas are separated
mainly axially and the annular flow where the separation becomes mainly radial as
most of the liquid is finally displaced to the tube wall. In small-diameter tubes the
chum-flow regime may not develop, and the transition slug-annular may be a
smooth one.

Slug and churn flows produce highly fluctuating signals (e.g. pressure at the
wall) and are called intermittent.

4.2.1.4 Annular Flow

The bulk of the liquid flows now on the wall as a film and the gas as the continuous
phase at the centre of the duct. Normally there is some liquid entrained in the
continuous gas core in the form of droplets, and there may be some gas in the liquid
film in the form of bubbles. If the gas velocity is sufficiently high, large-amplitude
waves may be created at the liquid–gas interface, which break up producing en-
trainment. The breakup of the waves is the continuous source of droplets for the gas
core (entrainment). The droplets may deposit, however, from the gaseous core on
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the liquid film (deposition or redeposition). There is really no simple explanation
for the fact that the liquid wets the wall and forms annular flow.

4.2.1.5 Wispy Annular Flow

When the liquid flow rate is higher, there is a considerable amount of liquid in the
gas core. These liquid droplets then coalesce to form large lumps or wisps of liquid
(Bennett et al. 1965; Hawkes et al. 2000). This regime has not been much inves-
tigated and is difficult to detect by ordinary visual methods, except using X-rays. It
occurs at high mass velocities, when the dimensionless superficial velocities (or
volumetric fluxes)

U�
sG [ 1 and U�

sL [ 2:5 to 3:0;

where the U�
sk; k ¼ L;G, are non-dimensional superficial velocities, defined in

Sect. 1.10 of Chap. 1:

U�
sk �

Uskq
1=2
k

gDðqL � qG½ �1=2
¼ j�k

This gave us an early opportunity to rely on two very commonly used
non-dimensional variables in defining a transition criterion based on these.
Transition criteria will be discussed extensively below.

4.2.2 Flow Patterns in Horizontal Co-current Flow

The more common flow patterns which are encountered in co-current flow of, say,
air/water in a horizontal tube are shown in Fig. 4.2. Other fluids may, or may not,
exhibit similar flow patterns.

The flow patterns in horizontal flow differ, naturally, from the vertical-flow ones,
because of the effects of gravity, which tend to stratify the flow. In bubble and plug
flow (as shown in Fig. 4.2), the gas bubbles tend to flow toward the top of the tube.
In stratified flow, the gas phase interacts with the liquid, causing surface waves
(stratified-wavy flow) which can grow to large sizes (semi-slug flow); the waves
sometimes reaching the top of the tube leading to the formation of slug flow.
Annular-dispersed flow can exist in horizontal tubes and is characterized usually by
a large difference in film thickness between the lower and upper parts of the tube. It
is convenient to classify elongated bubble, plug, semi-slug and slug flows as a
general class of intermittent flows. The effects of gravity will become less important
as the volumetric fluxes increase and axial momentum effects tend to dominate.
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4.2.2.1 Bubble Flow

Bubbles are dispersed in the continuous liquid, though their concentrations tend to
be higher in the upper part of the tube. At higher velocity, as the relative importance
of gravity is lesser, the bubbles tend to be more dispersed in the tube, i.e. their
concentration is more uniform.

4.2.2.2 Stratified Flow

The two phases are separated, with liquid at the bottom of the tube under normal
gravity conditions. This flow pattern occurs at low liquid and gas velocities and can
be either stratified-smooth and stratified-wavy. The stratified-smooth occurs at low
gas velocities. As the gas velocity is increased, waves are formed on the liquid–gas
interface, travelling in the direction of the flow. The amplitude of the waves
depends on the relative velocity between the phases and the properties of the fluids,
such as their densities and surface tension.

4.2.2.3 Annular Flow

Higher gas flow rates will cause the liquid to form a film on the tube wall,
somewhat similar to that observed in vertical flow, with the important exception
that the film at the bottom of the tube may be much thicker than the film at the top
(the thickness variation depends on the velocity of the gas, i.e. on the relative
importance of gravity). The film may or may not be continuous around the
periphery of the tube. The film may be wavy, as in vertical flow, and droplets are
usually dispersed in the gas core.

The question of having a continuous film around the periphery of the tube may
be of crucial importance to tube integrity in case the tube is exposed to some heat
flux around the periphery.

4.2.2.4 Plug Flow

The pattern is an intermittent flow that occurs at low flow rates and moderate liquid
rates. In this regime, liquid plugs, free of entrained gas bubbles, are separated by
zones of elongated gas bubbles. Plug flow is also termed elongated bubble flow.

4.2.2.5 Slug Flow

When the gas velocity is increased at plug flow (or elongated bubble flow), the
liquid slugs become aerated and contain small bubbles. The flow is more chaotic,
compared with plug flow, and the interface between the liquid slugs and the gas
elongated bubbles is not sharp.

4 Flow Regimes 103



4.2.3 Flow Patterns in Other Situations

There are scant experimental observations of flow patterns in inclined tubes; these
seem to be similar to the flow patterns in vertical and horizontal tubes but are very
sensitive to pipe inclination. We will deal with inclined tubes in Sect. 4.5.2 where a
map covering all inclinations is discussed. The inclined-tube patterns obviously
must “converge” towards the horizontal or vertical situations when these inclina-
tions are reached. Hewitt (1982) discusses this topic. A notable difference is the
suppression of the churn regime that exists only in vertical flows.

Other situations include vertical downward flow (Crawford et al. 1985) and flow
inside and around tube bundles. Some information can be found in the book by
Collier and Thome (1994) about flow regimes in special geometries (such as
rectangular channels, helical inserts, expansions, contractions, bends and coils, and
annuli. Hewitt (1982) presents information on flow patterns in bundle geometries—
inside and around rod bundles. Rouhani and Sohal (1983) also provide general
information of flow regimes and consider also the case of co-current flow.
Counter-current flows with the liquid flowing downwards will lead to flooding; this
limits their presence. The effect of pipe diameter is discussed by Kaji and Azzopardi
(2010). Ohnuki and Akimoto (2000) and Oddie et al. (2003) provide data on
transitions in unusually large pipes.

Figure 4.4 shows an example of the cross-flow patterns around rows of heat
exchanger tubes; clearly the regimes in such situations will depend on the complex
geometry of the equipment, in addition to the flow parameters. Here, the regimes
are analogous to those found in tubes but there are both local and overall separation
phenomena; for instance, it is possible to have an overall stratification (Fig. 4.3d)
coupled with a spray flow (with films being formed on the tube in the spray region).

All the work discussed so far concerned adiabatic conditions. The work on flow
patterns at adiabatic conditions may be extended to diabatic conditions for lack of
better information; indeed Fig. 4.5 (Collier and Thome 1994) shows flow regimes
similar to the ones expected in adiabatic vertical two-phase flow. Frankum et al.
(1997) also provide flow patterns for evaporating flow.

Consider a heated tube with subcooled flow at the inlet. As Fig. 4.5 shows,
somewhere downstream of the inlet boiling takes place (the point is referred to as
the point of Onset of Nucleate Boiling or ONB) and the first voids appear. Another
important point in the channel is the point where the Critical Heat Flux (CHF)
condition or Burnout occurs. There is post-burnout heat transfer beyond this point,
but if the heat flux is sufficiently high the heat transfer will be insufficient and the
channel wall will overheat and fail. Figure 4.5 shows also the point of suppression
of nucleate boiling; indeed, as the quality increases and the annular-flow film on the
wall becomes thin, it may be unable to support a superheat sufficient for nucleation
and nucleation will be suppressed. Beyond this point boiling will take place only by
evaporation of the liquid at the annular-flow liquid/vapour interface; this boiling
regime is called forced-convection vapourization.
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The boiling mechanisms and regimes will be considered in another volume, but
we would like to show here the succession of situations that will be present in
the channel as the heat input is increased in steps, Fig. 4.6: the various points just
mentioned will move down the channel as shown in the figure. As the equilib-
rium quality at a location z is given (Sect. 1.8.1 of Chap. 1) by

xeqðzÞ ¼ hðzÞ � hL;sat
hLG;sat

¼ 1
hLG;sat

hin þ
_Qð0 ! zÞ

_M

� �
� hL;sat
hLG;sat

¼ hin � hL;sat
hLG;sat

þ
_Qð0 ! zÞ

_M
;

Fig. 4.4 Flow patterns in cross flow over rows of heat exchanger tubes (Ribatski and Thome
2007; Grant and Chisholm 1979; Xu et al. 1988. Part of the figure with ASME permission
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Fig. 4.5 The succession of boiling regimes and the corresponding flow regimes in a heated,
boiling tube; adapted from Collier (1972) (or Collier and Thome 1994). © and courtesy of Prof.
J. Thome
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where _Qð0 ! zÞ is the heat input from the entrance to point z, we note that one can
produce the succession of regimes shown in Fig. 4.6 either by increasing the heat
input or by reducing the mass flow rate _M or by decreasing (in absolute value) the
inlet subcooling hin � hL;sat. The fundamental effects produced by the variation of
these three operating parameters, (heat input, mass flow rate and inlet subcooling),
are important to visualize and keep in mind so that the performance and the
dynamic behaviour of a boiling channel are well understood.

Thome and collaborators (Cheng et al. 2008; Kattan et al. 1998; El Hajal et al.
2003) studied the flow regimes taking place under diabatic conditions in a hori-
zontal tube and their two-way impact on two-phase heat transfer and pressure
drop. Figure 4.7 from Thome’s work shows the flow patterns in a horizontal tube
where either evaporation or condensation taking place. The figures show the
non-axisymmetric conditions produced by gravity. Cheng et al. (2008) note that
from a heat transfer viewpoint there is a possibility of intermittent drying and
rewetting of the upper surfaces of the tube in slug and wavy flows resulting in
progressive dryout of the upper circumference of the tube wall in annular flow.

Mini- and microcrochannels
The currently available methods for predicting the flow regimes and their transitions
were established mainly from observations of gas–liquid flows in pipe diameters
ranging from a few centimetres to about 13 cm (0.5- to 5-inch pipes) and should not
be expected to properly apply to mini and microchannels. Indeed, for small
diameters there is an increased role of the surface tension and the corresponding

Fig. 4.6 As the heat input is increased, or mass flux is decreased, or inlet subcooling is decreased,
the succession of regimes in the channel moves. Only one variable was varied at a time
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wetting effects (Ullman and Brauner, 2007). Kandlikar (2002) attempted a classi-
fication of channel size according to its hydraulic diameter Dh as

• conventional channels: Dh > 3 mm
• minichannels: Dh = 0.2–3 mm
• microchannels: Dh = 10–200 lm

The physical distinction (Triplett et al. 1999) is better made if one compares the
hydraulic diameter to the Laplace constant L determining the wavelength related to
Taylor instabilities (Sect. 1.10 in Chap. 1).

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
gðqL � qGÞ

r

The Laplace constant characterizes the effects of surface tension vs gravity. Here
g is the acceleration of gravity, qL and qG the liquid and gas vapour densities,
respectively, and r the surface tension. Small channels, Dh < L, will clearly be
affected by capillary effects that will also influence the flow regime. The reader
interested in microchannels should consult the works of Kawahara et al. (2002),
Serizawa et al. (2002), Triplett et al. (1999) and Ullmann and Brauner (2007).

Fig. 4.7 The flow patterns in a horizontal tube where the fluid evaporates (top) or condenses
(bottom) (adapted from Collier and Thome (1994) and Palen et al. (1979))
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4.3 Empirical Flow Regime Maps

Flow pattern, or flow regime maps are normally drawn as follows: the experimental
equipment is set to get a certain liquid superficial velocity UsL and gas superficial
velocity UsG. The flow pattern is then determined and a mark is made on, say, a UsL

vs UsG map as shown in the examples of Figs. 4.3 and 4.8; other mappings
according to combinations of dimensional or non-dimensional variables are of
course possible. The state of the system (e.g. the valves) is then changed, the flow
pattern is again observed and a new mark is made corresponding to the new flow
pattern. When the whole velocity ranges are covered this way, boundaries are
drawn delimiting the marks indicating the presence of a certain regime. Obviously
the map obtained this way will be applicable in principle only to the experimental
system used. The challenge is to find map coordinates that will make the map more
universally applicable, to other setups, fluids, etc.

The reader should also be aware of the fact that observations and their predic-
tions under steady-state conditions (the vast majority of the published work) may
vary significantly under transient conditions such as flow reversals, rapid flow
changes, etc. However, in view of the fact that all the empirical correlations are
obtained at steady state and then often used for transient conditions, this is not a
limitation only for the flow regime maps. Taitel et al. (1978) provide an example of
differences between steady-state and transient situations.

Flow pattern data for a given pair of fluids are often represented in terms of flow
parameters such as mass flux _m and quality x or phase superficial velocities, UsG

Fig. 4.8 The classical Sakaguchi et al. (1979) map for horizontal, air-water flow in a 300 mm
diameter tube. La is the length required for the establishment of fully developed annular flow;
indeed, certain flow patterns need a certain length to develop
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and UsL for the gas and the liquid phase, respectively. Two typical, classical maps
of this form are shown in Figs. 4.3 and 4.8 for upflow, high pressure steam-water
and horizontal, low-pressure air-water, respectively. Although the presentation of
the data in this form is useful in describing a particular set of experiments, such
maps cannot be extrapolated to other fluid conditions. This has led to the search for
more generalized flow pattern maps, as discussed next.

There were many attempts to generalize the flow pattern maps, but this is
obviously very difficult to achieve since there can be up to a dozen relevant physical
variables: the superficial velocities, the densities, viscosities, surface tension, pipe
geometry (length, diameter, roughness, inclination) and acceleration due to gravity.
With these, one can have eight or nine dimensionless groups (the number of
variables minus the number of basic units according to the Pi theorem). Some of the
variables may be of lesser importance, but the number of dimensionless groups is
still quite large. Some maps are now discussed and simplified modellings are then
presented, which attempt to generalize the maps and to predict the transitions from
one regime to another. Yet, it should be emphasized that the flow regime maps are
not general and should be extrapolated cautiously, since, for example, there is
experimental evidence of substantial effects of pipe diameter, pressure, etc. that may
not be included in their construction.

4.3.1 The Baker Map for Horizontal Flow

For historic reasons, but also because his work has still some relevance, we will
present the map produced by Baker (1954) who published the earliest flow-pattern
map for horizontal flow, presented in Fig. 4.9. In an attempt to produce a map
having a certain generality, Baker used

_mG

k
vs

_mL

_mG
kw

as coordinates, where

k � qG
qair

� qL
qwater

� �0:5
and w � rwater

r
lL

lwater
� qwater

qL

� �2
" #2=3

One notes that in the Baker map the horizontal coordinate is dimensionless while
the vertical one has dimensions of mass flux (the units should be British, namely,
lbm/hr ft

2). This suggests that this map cannot be very general. Note that k and w are
dimensionless parameters that should take into account the variation in the prop-
erties of the fluids with respect to air and water: k and w are equal to unity for the
“standard” case of water–air, under standard atmospheric pressure and at room
temperature. In this case, the map reduces to a plot of _mG vs _mL= _mG. Rouhani and
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Sohal (1983) have shown that indeed Baker’s map does not adequately predict
horizontal flow regimes in numerous situations.

4.3.2 The Hewitt and Roberts Generalized Map

Hewitt and Roberts (1969) presented a more generalized map for vertical tubes in
terms of the momentum fluxes of the phases qkU

2
sk or qkj

2
k , Fig. 4.10. This

Fig. 4.10 The generalized
map of Hewitt and Roberts
(1969) where the coordinates
are the phase momentum
fluxes, qkU

2
sk ¼ qkj

2
k

calculated with the superficial
phase velocities or volumetric
fluxes

Fig. 4.9 The old Baker (1954) map for horizontal flow as modified by Scott (1963) who
broadened its borders to reflect the inherent uncertainty
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representation is still recommended as fitting a fairly wide range of data for both
low and high pressures and with several fluid pairs.1

4.4 Analytical Treatment of Flow Pattern Transitions—
Flow Pattern Maps

As an alternative to the use of empirical flow regime maps, one can specify the
boundaries between the various flow regimes by examining phenomenologically
the particular mechanisms involved in the transition. In this case a flow pattern map
can be constructed using a collection of transition criteria. One of the advantages of
this analytical, mechanistic approach is that each transition may be best described
using the most appropriate variables and can take into account in a natural way
effects such as the inclination of the channel, flow direction, fluid properties, etc.

Although there have been many attempts to model the transitions from one flow
pattern to another, most of the relevant literature is limited to one or a few tran-
sitions at a time. A few research groups collected, however, the flow regime
transition mechanisms and corresponding criteria and came up with comprehensive
and unified analytical sets of transition criteria covering all regimes and transitions
in terms of non-dimensional numbers. Such sets can then be used to construct flow
regime maps for specific applications.

In particular Dukler, Taitel, Barnea (DTB) and their co-workers who collabo-
rated very closely and extensively, started from maps mainly for the horizontal
flows of interest to the oil-and-gas industry and extended over the years their
approach that finally culminated in a unified map covering all orientations. Another
group consisting of Ishii and his collaborators published extensively criteria mainly
for the vertical flows of interest to the nuclear and power industries. Both groups of
workers produced comprehensive sets of criteria that can be used to assemble a flow
regime map. The DTB work is highlighted in Sect. 4.5 and the work of Ishii and
co-workers in Sect. 4.6.

In addition to these works, the interested reader could also consult other
flow-pattern transition models, such as those proposed by Weisman et al. (1979) for
horizontal pipes, Weisman and Kang (1981) for vertical or upward inclined pipes,
Taitel and Barnea (1983) for vertical counter-current flows, Ito et al. (2004) who
propose “a simplified model,” and Crawford and Weisman (1984) for diabatic
conditions.

Before discussing in the following sections the approaches of the two groups
mentioned above, we will review first a few key mechanism for selected, particular
transitions that lead to appropriate transition criteria, as good examples of mecha-
nistic modelling. We are not going to be exhaustive, as the following two sections

1To simplify the notation, the angle brackets are eliminated in this chapter. Consequently, we write
jkfor < jk > and uk for < uk > kand e for < e >.
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on comprehensive analytical maps will cover the remaining cases. Flow transitions
will also be discussed in another volume on phenomenological modelling. As
examples of the numerous studies that have focused on specific flow regime tran-
sitions, we cite the Hurlburt and Hanratty (2002) and Johnston (1985) works on the
transitions from stratified flows, the paper by Matuszkiewicz et al. (1987) for the
transition from bubble to slug flow.

4.4.1 The Bubbly-to-Slug Flow Transition

In bubble flow, there is a natural process of bubble growth due to bubble collisions
and coalescence. The frequency of bubble collisions increases rapidly with
increasing gas volumetric fraction (void fraction) in the channel. It is this coales-
cence of the bubbles that creates the gas slugs. Since the coalescence depends on
the bubble population and on the transit time of the mixture, given enough time in
the channel (or a sufficiently long entrance length) most bubbly flows will revert to
slug flow. Typically this transition occurs for values of the void fraction between
0.1 and 0.3.

When the void fraction is increased, bubbles tend to coalesce more. One can
assume that the coalescence is proportional to the distance between the bubbles, but
it increases sharply as the distance between the bubbles is less than half their radius.
With a dense packing of the bubbles, this corresponds to e = 0.25, which is the
transition boundary from bubble flow at low liquid velocities.

In the presence of foaming agents, the flow may, however, remain bubbly for
void fractions up to nearly one; foam is an extreme case of bubbly flow. Whalley
et al. (1972) found that the transition void fraction could rise to around 0.6 with
very small amounts of hexanol or butanol present in the water. This points to the
importance of usually poorly controlled variables such as the surface tension in
determining the flow regime.

If the flow is highly turbulent, then the bubbles may be breaking up and bubble
flow may persist due to an equilibrium between bubble breakup and coalescence.
Taitel and Dukler (1980) describe an approximate theory for turbulent breakup of
bubbles.

In small tubes, spherically capped bubbles that have sizes larger than those of the
smaller distributed bubbles, have slower rise velocities; the smaller bubbles over-
take these and can coalesce with them forming progressively larger bubbles that end
up as gas slugs.

Mishima and Ishii (1984) suggested a simple bubbly-to-slug flow transition
criterion, namely

e ¼ 0:3

This criterion in terms of void fraction may not fit, however, into the framework
of computing codes not using the void fraction as primary variable or for producing
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flow pattern maps in terms of superficial velocities. For this reason, Mishima and
Ishii (1984) convert the void fraction based criterion into the superficial velocities
framework; clearly a void fraction correlation or the equivalent information is
needed for this and the Drift Flux Model (DF) of Zuber and Findlay (1965) that we
will cover in Chap. 5 on void fraction was used. The result is

jL ¼ 3:33
C0

� 1
� �

jG � 0:76
C0

rgDq
q2L

� �1=4

;

where C0 is the DF distribution parameter and Dq � qL � qG.
Figure 4.11 shows five shots from a film documenting a transition from bubbly

to slug flow (air-water). The shots were taken as the camera moves up the rect-
angular (1 � 5 cm) channel. One notices first the growth of the bubbles due to
agglomeration and then the formation of larger structures very much resembling
slugs and plugs; the liquid remains, however, highly aerated, i.e. contains lots of
small bubbles.

4.4.2 The Slug-to-Churn Transition in Vertical Upwards
Flow

Several mechanisms have been proposed for the slug-to-churn transition. These can
be essentially grouped into two categories: models that consider the destruction of
the liquid slug between two Taylor bubbles, and models based on flooding of the
liquid film surrounding the Taylor bubble, Fig. 4.12. Flooding refers to the con-
dition occurring when a counter-current smooth falling-liquid–rising-gas flow
becomes disrupted and chaotic as the gas velocity is increased. For the transition in
question, flooding occurs as the velocity of the rising-gas slug is increased and
disrupts the falling liquid film surrounding it; the long gas slug breaks up, resulting
in churn flow. More specifically various published models make the following
assumptions for the transition:

Fig. 4.11 Five shots showing the transition from bubbly to slug flow if one moves upwards in the
channel (extracted from a movie made by Milenkovic et al. 2006)
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• the liquid slug separating two consecutive Taylor bubbles becomes so short that
the wake behind the Taylor bubble destroys it (Dukler and Taitel 1977; Mishima
and lshii 1984)

• Taitel et al. (1980) treat churn flow as an entrance phenomenon, part of the
process of formation of stable slug flow further downstream; they develop a
method for calculating the entry length required to develop stable slug flow

• the mean void fraction of the entire slug cell exceeds that of the Taylor-bubble
area (Mishima and lshii, 1984)

• the void fraction within the liquid slug reaches the maximum bubble, cubic,
volumetric packing of 0.52 (Brauner and Barnea 1986; Barnea 1987)

• flooding of the liquid film surrounding the Taylor bubble (Nicklin and Davidson
1962; Wallis 1969; Porteous 1969; McQuillan and Whalley 1985; Govan et al.
1991; Jayanti and Hewitt 1992)

McQuillan and Whalley (1985) and Jayanti and Hewitt (1992) review these
mechanisms and the relative merits of the corresponding models.

We will give here some details about the McQuillan and Whalley (1985) model,
Fig. 4.12, based on the flooding assumption that builds up on the earlier works
listed above, as a good example of mechanistic modelling involving
well-established methods. The authors solve first a set of relationships to find the
thickness of the falling film and the volumetric flow rates of the falling liquid film
and of the gas slug (that they call gas plug), _Qf ; _Qgs, respectively.

The thickness of the falling-film d, assumed to be laminar, can be calculated
according to the classical Nusselt (1916) solution

Fig. 4.12 Schematic
representation of slug flow
and definition of variables
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d ¼ dlam ¼ 3 _QflL
pgDqL

� �1=3

ð4:4:1Þ

The rise velocity of the gas plug ugs is given by an expression developed by
Nicklin (1962)

ugs ¼ 1:2 ðjL þ jGÞþ 0:35
gDðqL � qGÞ

qL

� �1=2
ð4:4:2Þ

essentially stating that the plug moves at the total volumetric flux velocity plus the
velocity of the rising Taylor bubble (the second term). The factor 1.2 accounts for
the velocity profile in turbulent flow. The volumetric fluxes of the liquid and the gas
are jL and jG, respectively. The gas volumetric flow rate in the slug can be calcu-
lated as the product of the slug velocity times its flow area pD2=4� 2pDd ¼
Að1� 4d=DÞ as

_Qgs ¼ 1� 4d
D

� �
Augs ð4:4:3Þ

Continuity of volume in the entire slug-flow cell is expressed as

_Qgs ¼ � _Qf þð _QG þ _QLÞ ð4:4:4Þ

with the volumetric flow of the film being positive in the downflow direction. The
set of four Eqs. (4.4.1) to (4.4.4) can be solved to find the unknowns, d; _Qgs; _Qf

and ugs in terms of jL and jG.
As mentioned, the McQuillan and Whalley (1985) model is based on the

assumption of flooding between the liquid film and the Taylor bubble. Several
authors have developed flooding correlations having the form

ffiffiffiffi
j�G

p þm
ffiffiffiffi
j�L

p ¼ C with j�k �
jkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gDðqL�qGÞ
qk

q ; k ¼ LG

where the j�k are the non-dimensional volumetric fluxes introduced in Chap. 1,
Sect. 1.10. McQuillan and Whalley (1985) develop their transition criteria in terms
of such non-dimensional volumetric fluxes; however, they define these using the
volumetric fluxes of the gas slug and of the liquid film, jgs � _Qgs=A and jf � _Qf =A,
respectively, rather than the usual jL and jG:

j�f �
jfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gDðqL�qGÞ
qL

q and j�gs �
jgsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gDðqL�qGÞ
qG

q ;
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Their correlation is

ffiffiffiffi
j�f

q
þ

ffiffiffiffiffi
j�gs

q
¼ 1 ð4:4:5Þ

Jayanti and Hewitt (1992) proposed an improved, more sophisticated model based
on the McQuillan and Whalley (1985) approach accounting, however, for the effect
of the Taylor-bubble length on flooding and of the turbulence in the falling film.

Chen and Brill (1997) proposed a new model developed on the basis of the wake
effect behind the Taylor bubble, an idea already present in earlier models (e.g.
Duklert and Taitel, 1977; Mishima and Ishii 1984). The transition from slug to
churn is attributed to the destruction of the highly aerated liquid slug by the strong
effect of the wake behind the preceding Taylor bubble.

Alternatively, Mishima and Ishii (1984) consider the slug-to-churn transition to
occur when the average void fraction over the “cell” including the gas slug (Taylor
bubble) and the liquid plug that follows it exceeds the value over the slug-bubble
section. A criterion developed on this basis is presented in Sect. 4.6 below.

4.4.3 Transitions in Horizontal Flow

These will be discussed summarily here as a more comprehensive discussion will
be given while discussing the analytical horizontal flow maps. Figure 4.13 gives a

Fig. 4.13 A very comprehensive diagram showing the possible flow transitions in horizontal flow
(adapted from Spedding and Nguyen 1980)
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very comprehensive view of the various possible transitions in horizontal flow. We
will not enter into such detail and will cover only the main transitions sketched in
Fig. 4.2.

4.4.3.1 Transition from Horizontal-Stratified to Intermittent
or Annular Flow

The transition can be explained in terms of a solitary wave of finite amplitude
growing as the Bernoulli forces (i.e. the under-pressure created by the acceleration
of the gas flow above the wave) overcome the stabilizing effect of gravity—an
interfacial instability (Taitel and Dukler 1976; Hurlburt and Hanratty 2002). If the
wave grows sufficiently and the level of the stratified flow in the pipe is sufficiently
high, it bridges the pipe, blocks the flow of gas, and slug-flow results. If there is not
enough liquid in the channel to form a complete bridge and block the flow of the
gas, annular flow results. This model is an essential part of the maps presented in
the next section.

4.4.3.2 Appearance of Waviness in Stratified Horizontal Flow

The velocity of the gas must be sufficient to cause waves, but lower than the critical
value needed for rapid wave growth that would trigger a transition to intermittent or
annular flow. Jeffreys (1925, 1926) suggested the following criterion for wave
generation:

ðuG � cÞ2c[ 4mLgðqL � qGÞ
sqG

;

where c is the velocity of propagation of the waves and s a “sheltering” coefficient;
the kinematic viscosity of the liquid is mL. Taitel and Dukler (1976) starting from
this relationship, used c ¼ uL and developed the transition criterion for the
appearance of waves presented in the analytical maps section below.

4.4.3.3 Transition from Intermittent Horizontal to Dispersed Bubbly
Flow

This transition will take place when the turbulent fluctuations in the liquid will be
high enough to overcome the stabilizing effect of the buoyancy forces keeping the
gas at the top of the channel.
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4.5 Flow Regime Maps Based on Transition Criteria: The
Dukler-Taitel-Barnea Work

We will discuss in this section the unified approach that resulted from the extensive
collaborations between Dukler, Taitel, Barnea and their co-workers, generically
referred to here as the DTB work. Highlights of this work will be presented as
examples of well accepted approaches showing what can be accomplished in this
fashion.

The major accomplishments of the DTB work can be found in the publications
related to their maps: the early Taitel and Dukler (1976) map for horizontal or
near-horizontal flow; the Taitel et al. (1980) map for vertical flow; the Barnea et al.
(1982a,b) map for downward or downward inclined flow; and finally the unified
map presented by Barnea (1986,1987) for inclined flows continuously ranging from
horizontal to vertical. Barnea et al. (1983) includes a model and experimental
results for flow pattern transitions for small-diameter pipes where surface tension
effects are not negligible. Taitel (1990) gives an excellent summary of all the
developments. To make the chapter manageable, we will not be able to give here all
the details necessary for practical use of the maps, however, we will treat at some
length the development of transition criteria as these are excellent exercises in
mechanistic modelling of two-phase flows.

During the 90s Taitel and Barnea published papers on the transition from sep-
arated flow (stratified and annular) based on linear and nonlinear interfacial and
structural stability analyses with applications to flow pattern transitions. These were
summarized in a recently published volume by Taitel and Barnea (2016).

4.5.1 Transitions from Horizontal or Near-Horizontal
Flows—the Taitel and Dukler Map

The Taitel and Dukler (1976) analysis begins by finding the condition determining
whether the flow is stratified or not. When gas and liquid are in a horizontal, or
near-horizontal pipe (under normal gravity conditions), the heavier liquid flows on
the bottom of the pipe, whereas the gas takes its place above it, as expected,
Fig. 4.14. Stratified flow prevails unless the interface becomes unstable and wavy.
It is assumed that the instability is of a Kelvin–Helmholz type (Chap. 4) in the
presence of a gravity field, i.e. a balance between surface tension, gravity and
Bernoulli forces due to differences of velocity of two parallel steams.

4.5.1.1 The Equilibrium Liquid Height

We will start the analysis by finding the equilibrium liquid height in the pipe, i.e.
the liquid level in terms of the volumetric fluxes. The integral momentum balance
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equations that will be used for the liquid and the gas provide a good opportunity to
use the two-fluid momentum conservation equations derived in Chap. 2.

@

@t
qL 1� eh i uLh iL
� � þ 1

A
@

@z
qL 1� eh i uLh i2LA
h i

¼

� 1� eh i @p
@z

þ gqL 1� eh i cos h� PwLswL
A

þ Pisi
A

� uiC
ð2:4:9Þ

@

@t
qG eGh i uGh iG
� �þ 1

A
@

@z
qG eh i uGh i2GA
h i

¼

� eh i @p
@z

þ gqG eh i cos h� PwGswG
A

� Pisi
A

þ uiC
ð2:4:10Þ

At steady state and for fully developed flow, the time and space derivative terms
vanish; we also assume no interfacial mass exchange and we are left with

0 ¼ � 1� eh i @p
@z

þ gqL 1� eh i cos h� PwLswL
A

þ Pisi
A

0 ¼ � eh i @p
@z

þ gqG eh i cos h� PwGswG
A

� Pisi
A

Noting that \e[ ¼ AG=A and \1� e[ ¼ AL=A, we obtain

AL
dp
dz

				
L

�swLSL þ siSi � qLALg sin b ¼ 0

AG
dp
dz

				
G

�swGSG � siSi � qGAGg sin b ¼ 0;
ð4:5:1Þ

Fig. 4.14 Definition of the dimensions of the pipe considered and of the main variables; two
different flow regimes depicted

120 G. Yadigaroglu et al.



where b = h – p/2 is the angle of inclination now to the horizontal (h was the angle
between gravity and the z coordinate) and is taken as positive for upward flow. We
also kept here the nomenclature of Taitel and Dukler, namely
Si � Pi; SL � PwL and SL � PwL. All these geometric parameters depend uniquely
on the height of the liquid in the channel (i.e. the liquid fraction) and the pipe
diameter.

Eliminating the pressure gradient (by assuming that the gradients in the two
phases are equal), yields a single equation

� swLSL
AL

þ swGSG
AG

þ siSi
1
AL

� 1
AG

� �
� qL � qGð Þg sinb ¼ 0 ð4:5:2Þ

The shear stresses at liquid-wall, swL, gas-wall, swG, and gas–liquid interface, si,
control the height of the liquid in the pipe and consequently the dependent geo-
metrical parameters SL, SG and Si. The stresses can be approximated using the
relevant usual friction factors, fwL, fwG and fi

swL ¼ fL
qLu

2
L

2
; swG ¼ fG

qGu
2
G

2
; si ¼ fi

qGðuL � uGÞ uL � uGj j
2

;

where the use of the absolute value of the difference of velocities allows to take into
account the flow direction. The friction factors for smooth pipes fL and fG and the
interfacial friction factor fi are given as

fL ¼ CLRe�n
L ¼ CL

4ALuL
SLmL

� ��n

; fG ¼ CGRe�m
G ¼ CG

4AGuG
SGmG

� ��m

and fi � fG;

where CL = CG = 0.046, n = m = 0.2 for turbulent flow and CL = CG = 16 and
n = m = 1 for laminar flow. Note that by taking fi = fG, it is tacitly assumed that the
interface is smooth and that the liquid velocity is negligible compared with the gas
velocity. This assumption is quite good even when the interface is wavy.

Parenthetically, let us mention here that more recently, Gomez et al. (2000)
found that it is better to calculate fG from a standard friction-factor chart, but fL from
a correlation developed by Ouyang and Aziz (1996) that considers both the liquid
and gas flow rates

For ReG 	 2300; fG ¼ 16
ReG

For ReG [ 2300; fG ¼ 0:001375
1þ 2 � 104 er

D
þ 106

ReG

� �1=3
2
664

3
775

fL ¼ 1:6291

Re0:5161L

jG
jL

� �0:0926
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The interfacial friction factor fi for stratified-smooth flow is again taken as the
friction factor fG. However, for stratified-wavy flow, a friction factor by Baker et al.
(1988) is used.

Dimensionless quantities, denoted by a tilde over the symbol, are now defined
by dividing the actual lengths by the pipe diameter D, the areas by D2, and the
actual average phase velocities by the volumetric fluxes of the phases. The various
lengths and areas are defined in Fig. 4.14.

We have given above the balance of pressure drops in the two phases that
determines the liquid level, Eq. (4.5.2). Taitel and Dukler show that this equation
can be solved for the non-dimensional height of the liquid ~hL � hL=D that depends
only on two parameters X and Y that appear and the pipe geometry

~hL � hL
D

¼ f ðX; YÞ

The first parameter X is the Lockhart–Martinelli parameter, defined in Chap. 1,
Sect. 1.10 as the ratio between the pressure gradients which would have occurred if
the fluids were flowing alone in the pipe at their flow rate

X � dp=dzjLP
dp=dzjGP

� �1=2
;

where the frictional pressure gradients and the Reynolds numbers are also calcu-
lated assuming that each phase is flowing alone in the channel, subscript kP (i.e.
using the volumetric fluxes jk or superficial velocities of each phase)

The second parameter Y is an inclination parameter, namely the ratio of the
gravitational pressure gradient component along the pipe axis to the frictional
pressure gradient in the gas phase

Y � ðqL � qGÞg sinb
dp=dzð ÞGP

		 		 ; ð4:5:3Þ

where b is the angle between the pipe axis and the horizontal. The results of this
computation are plotted in Fig. 4.15 for turbulent flows, when X = Xtt becomes an
expression involving the ratio of volumetric fluxes and fluid properties only,
Chap. 1, Eq. (1.10.3):

Xtt¼ jL
jG

� �0:9 qL
qG

� �0:4 lL
lG

� �0:1

Therefore, the abscissa of Fig. 4.15 can be interpreted practically as jL/jG (see
Fig. 1.16 in Chap. 1). The results for laminar flow were shown by Taitel and Dukler
to be very similar. Note that negative Y values denote downflow; for fixed liquid
and gas flowrates, i.e. at constant X, the thickness of the liquid layer is decreasing
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and the liquid is accelerating for decreasing inclination Y. Positive Y indicates
upflow and now the film thickness increases as Y increases. Notice that there are
two lines for Y = 4 and 5, which probably means that there could be multiple
possible solutions.

Stability of the interface
We will next investigate whether any waves present on the interface become
unstable due to the Kelvin–Helmholz instability. The Kelvin–Helmholz theory
discussed in Chap. 3 provides a stability criterion for infinitesimal-amplitude waves.
A simplified version of the Kelvin–Helmholz instability theory that takes into
account the finite wave amplitude and the circular geometry is considered as fol-
lows. Assume a stationary solitary wave on the stratified flow interface, Fig. 4.16,
and neglect the effect of surface tension. We can identify two competing forces that
act on the wave crest. Gravity is the force that tends to flatten the wave and thereby
stabilize the stratified configuration. The Bernoulli force, which results from the
increased gas velocity above the wave and the decrease of the pressure in the
narrow air gap, tends to increase the wave amplitude. Considering a small volume
of fluid on the wave (darker, hatched area in Fig. 4.16), the condition for stability is
reached when gravity dominates, namely when

ðhG � h0GÞðqL � qGÞg cos b [
1
2
qGðu02G � u2GÞ

Fig. 4.15 The equilibrium
level of the liquid hL in the
pipe of diameter D for various
pipe inclinations b (that are
embedded in Y) (Barnea
1987)

Fig. 4.16 Instability of a
solitary wave in stratified flow
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The criterion for stability then becomes

uG\C
ðqL � qGÞg cos bAG

qG
dAL
dhL

" #1=2

; ð4:5:4Þ

where

C2 � 2
ðA0

G=AGÞ2
1þA0

G=AG

For infinitesimally small disturbances, A0
G � AG and C � 1 as suggested by

the Kelvin–Helmholz theory. For large disturbances, the value of C depends on the
liquid level. When the liquid level is very low, C = 1, since any disturbance is small
compared to the gas cross section which is almost equal to the pipe cross section.
On the other hand, when the liquid level is very high, close to the top, then any
disturbance will result in closure of the gas passage; thus we take C = 0. For any
other liquid level, Taitel and Dukler (1976) suggest a linear relation between these
two extreme cases

C ¼ 1� hL
D

Equation (4.5.4) can be written in a dimensionless form as

F2
1
C2

ðuG=jGÞ2D ðdAL=dhLÞ
AG

" #
\1 or F2

1
C2

~u2G ðd~AL=d~hLÞ
~AG

� �
\1 ð4:5:5Þ

The term in the square parentheses is a dimensionless quantity that depends only
on hL/D, and F is a non-dimensional Froude number modified by the density ratio

F �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qG
qL � qG

r
jGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dg cos b
p

expressing the fact that waves of finite size will grow and tend to block the pipe
when the balance between the Bernoulli force—tending to make the wave grow—is
greater than the gravity force tending to flatten the wave. All the terms in the square
brackets of Eq. (4.5.5) are functions of hL/D, which is a function of X, Y only (as
plotted in Fig. 4.15). We can plot now using Eq. (4.5.5) the transition from strat-
ified flow to other regimes as line A with F vs X as coordinates in the Taitel and
Dukler (1976) map given below, Fig. 4.17.

We are not going to enter into the details here of the derivation of the other
transition criteria needed to construct the Taitel and Dukler map as similar ones will
be covered in the following section regarding the Barnea map for inclined pipes.
We will rather summarize the Taitel and Dukler transition criteria.
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The Taitel and Dukler (1976) map for near-horizontal flows
The following set of five non-dimensional numbers is used; three of these X, Y and
F have already been defined and used above

X � dp=dzjLP
dp=dzjGP

� �1=2
ð4:5:6Þ

Y � ðqL � qGÞg sin b
dp=dzð ÞGP

		 		 ð4:5:7Þ

F �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qG
qL � qG

r
jGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dg cos b
p ð4:5:8Þ

In addition, we define the ratio of the frictional pressure gradient in the liquid
phase to the component of the gravitational pressure gradient in the direction
normal to the pipe axis

T � dp=dzð ÞLP
		 		

ðqL � qGÞg cos b
ð4:5:9Þ

and the product of F times the Reynolds number for the liquid phase

K � F
ffiffiffiffiffiffiffiffi
ReL

p ¼ F

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qLD jL
lL

s
ð4:5:10Þ

Fig. 4.17 The Taitel and Dukler (1976) flow regime map showing the transition boundaries
between the flow regimes for horizontal or near-horizontal flows
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Figure 4.17 Shows the Taitel and Dukler (1967) flow regime map for (Y = 0);
maps for other small inclinations can be constructed. Note that the ordinate of the
map can be either T, F or K, as shown under the figure.

Curve A plotted using F versus X represents the transition from stratified (S) to
intermittent (I) or annular—dispersed-liquid (AD) flows that satisfies the criterion
given by Eq. (4.5.5) above.

Curve B is the transition between intermittent (I) or dispersed bubble (DB) and
annular-dispersed-liquid (AD) flows. This occurs at a constant value of X. It is
based on the argument that the growing waves will have a sufficient liquid supply to
form a slug only when the height of the liquid is sufficient, i.e. when hL=D
 0:5.
Lower liquid heights will produce an annular configuration.

Curve C is the transition line between stratified-smooth (SS) and stratified-wavy
(SW) flow. It is the locus of the planes plotted in the K-X plane that satisfy

K ¼ 2ffiffiffiffiffi
~uL

p � ~uG
ffiffi
s

p ð4:5:11Þ

This criterion is based on the model by Jeffreys (1925, 1926) describing the
condition for transfer of energy to the liquid to create waves: the wave velocity is
estimated from the mean velocity of the liquid film and a sheltering coefficient
determined from the analysis of Benjamin (1968).

Curve D, the transition between intermittent (I) and dispersed bubble (DB) flow,
represents the situation when the turbulent fluctuations in the liquid balance the
buoyancy that makes the gas rise according to

T2 ¼ 8~AG

~Si~u2Lð~uL ~DLÞ�n ð4:5:12Þ

The transition depends on the value of Y that can be calculated or obtained from
Fig. 4.15.

To account for the effect of pipe roughness, the authors suggest that the (dp/dz)
values be calculated using the appropriate roughness parameters.

The criteria listed above can be used to construct a flow regime map in the (jL,
jG) plane. Such a map is shown in Fig. 4.18. The agreement with the “classical”
experimental data of Mandhane et al. (1974) is quite good. It is, of course, not
necessary to use a flow regime map at all. Given any one set of flow conditions
(rate, pressure, line size and inclination), the flow pattern that exists for that con-
dition can be determined rather simply by using hand calculations from the equa-
tions given above.
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4.5.2 The DTB Map and Unified Model for the Whole
Range of Inclinations

Building up on the previous work for horizontal flows discussed above, various
criteria developed by the group were assembled in two publications (Barnea 1986,
1987) to continuously cover all inclinations in a unified model. Indeed previously
existing work considered horizontal flows, near-horizontal flows and vertical flows
separately, while flows in inclined tubes were rarely treated. These theories do not
offer a smooth transition between vertical and horizontal flow, with all the angles
included in between. In the unified model, previously formulated transition
mechanisms were re-evaluated and modified and some new ones were presented to
yield a complete theory for transition boundaries applicable to all angles of incli-
nation. Although the validity of this approach may be still subject to extensive
experimental testing (Taitel 1990), especially for large-diameter pipes or high
pressures, it does handle the dependence of the flow pattern on the inclination angle
rather well, as shown in Fig. 4.19 presenting experimental data for the flow regimes
that take place as a function of the inclination of the pipe and the corresponding
Barnea transition lines for horizontal, upward and downward flows. The differences
made by one degree of inclination (first column of results) are striking.

The DTB unified map (Barnea 1987) is considering the following flow regimes:

• Dispersed-Bubble flow (DB) taking place at high liquid flow rates
• Annular flow (A)
• Stratified flows (ST) that can be either Smooth (SS) or Wavy (SW)
• Intermittent flows (I) that can be either Slug (SL), Elongated Bubbles (EB) or

Churn (CH)
• Bubbly flows (B) at low liquid flow rates

and the following regime transitions (or bifurcations, or conditions for existence):

Fig. 4.18 Comparison of the
Taitel and Dukler flow
boundary predictions with the
experimental map of
Mandhane et al. (1974).
Water/air, 25 °C, 1 atm,
2.5 cm diameter, horizontal.
Lines: continuous line:
theory: Mandhane
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• Transition to Dispersed Bubble due to high turbulent fluctuations in the liquid
(line D)

• Transition from Dispersed Bubble due to high void fraction (condition for
existence of dispersed bubbles, line G)

• Stratified flow condition (line A)
• Stratified—Annular transition (line L)
• Annular—Intermittent transition (line J)
• Stratified-Smooth—Stratified-Wavy transition due to downward flow (line M)
• Stratified-Smooth—Stratified-Wavy transition due to high gas velocity (“wind,”

line C)
• Slug—Elongated-Bubble transition (line N)
• Slug—Churn transition (line H)
• Bubble flow—Intermittent-flow transition (line B).

Fig. 4.19 Flow regimes in inclined pipes (Barnea, 1987). The example is drawn for air/water at
atmospheric pressure and at 25 °C in a 5.1 cm diameter pipe. The symbols designate the
experimental data, while the lines are the DTB map predictions. (The author is grateful to Y. Taitel
and D. Barnea for providing the original figures; they are not responsible for the colour rendition
of their map)
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The flow regime map is based on the volumetric fluxes jk (or superficial
velocities Usk) of the phases, pipe diameter D, inclination to the horizontal b, and
fluid properties. With many regimes and ten transition criteria, the logic for
detecting the flow regime (as well as the logic of the presentation of the transition
criteria) becomes quite complex; Barnea (1987) provides a logical flow chart to
accomplish this. We follow essentially the logic of this chart while stressing the
physics of the phenomena.

A few preliminary words can be said here about the importance of inclination
with respect to gravity under certain flow conditions. If the flows are dominated by
shear forces, the effects of gravity should be small and the transition criteria should
be applicable to all flow directions and inclinations; an example is the transition
from highly turbulent, dispersed-bubble flow to annular flow. On the contrary,
when gravity dominates, the transition criteria will depend strongly on flow incli-
nation and direction; the examples are stratified flows.

The transition A from stratified flow is modelled as shown above for the Taitel
and Dukler map. The other transitions are briefly discussed below.

4.5.2.1 Transitions D and G from Dispersed-Bubble (DB) Flow

Taitel (1990) notes that there are two distinct cases of bubble flows. At very high
liquid flow rates dispersed-bubble (DB) flow usually appears when the bubbles are
created and dispersed by high liquid turbulence. At low flow rates, small discrete
bubbles can also appear, however, and this flow regime can be designated as Bubbly
flow denoted as B. Dispersed-bubble flows can exist at any pipe inclination, while
the bubbly flow pattern is observed only in vertical or near-vertical flows and for
relatively large-diameter tubes. Indeed, in small-diameter pipes the rise velocity of
small bubbles exceeds the rise velocity of the Taylor bubbles and these coalesce
with the Taylor bubbles creating slug flow as discussed in Sect. 4.4.1.

The persistence of bubble flow can result from different reasons at low or high
liquid flow rates. At low liquid flow rate, the bubbles may stay separated simply for
lack of coalescence forces. At high liquid flow rates, the turbulence of the liquid
causes large bubbles to break up into smaller ones; this turbulent dispersion of
bubbles does not allow them to agglomerate into other forms.

4.5.2.2 Case of High Flow Rates (Transitions D and G)

The maximum diameter d of stable bubbles is given by (Barnea et al. 1982b) as

dC ¼ ð0:725þ 4:15 � e1=2Þ r
qL

� �3=5

j�2=5 with j � 2fj
D

j2; ð4:5:13Þ

where j is the rate of turbulent kinetic energy dissipation per unit mass, and fj is the
friction factor based on the mixture velocity j = jL + jG. This equation applies to
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bubbles sufficiently small to retain approximately their spherical shape. Larger
bubbles tend to deform and coalesce. Barnea et al. (1982b) use the following
expression for the critical size of such bubbles:

dCD ¼ 2
0:4r

ðqL � qGÞg
� �1=2

ð4:5:14Þ

A first condition to be used as a transition criterion becomes then dC\dCD.
However, this criterion alone is not sufficient for the persistence of bubble flow. In
horizontal and inclined pipes, buoyancy makes bubbles rise and concentrate at the
upper part of the pipe (creaming) and agglomerate to large elongated bubbles. The
critical bubble size below which creaming is prevented is obtained comparing the
buoyance forces FB to the turbulent forces FT which tend to disperse the bubbles in
the pipe (Levich 1962). The forces in the radial direction are

FB ¼ ðqL � qGÞg cos b
pd3

6

FT ¼ 1
2
qLm

02 pd
2

4
;

where m’ is the radial velocity fluctuations whose rms is estimated to be approxi-
mately equal to the friction velocity u� ¼ ffiffiffiffiffiffiffiffiffiffi

sw=q
p

:

ffiffiffiffiffiffiffiffiffi
ðm02Þ

q
¼ u� ¼ j

ffiffiffi
f
2

r

Migration of the dispersed bubbles upwards will occur when FB > FT, i.e. when
the bubble diameter dCB obtained by equating FB and FT, is smaller than the bubble
diameter d

d[ dCB ¼ 3
8

qL
qL � qG

f j2

g cos b
ð4:5:15Þ

In order to maintain the dispersed-bubble flow, neither distortion of the bubbles
nor creaming should take place. In addition, one should consider the effect of
maximum possible packing of bubbles that takes place at e < 0.52. To fit into the
map, this criterion should be expressed in terms of the volumetric fluxes. Assuming
homogeneous flow, (using Eq. 1.9.12 of Chap. 1) we obtain the equivalent criterion
in terms of phase volumetric fluxes

jL
jG

¼ eL
eG

¼ 0:52
0:48

� 1:1 ð4:5:16Þ

130 G. Yadigaroglu et al.



The set of transition criteria then becomes

dC\dCD and dC\dCB and e\0:52 or
jL
jG
\1:1 ð4:5:17Þ

The first two conditions produce the transition boundary D in the DTB map
(Fig. 4.19), while the second one the line G.

Existence of Bubbly flow (transition B)
Taitel (1990) lists the four conditions necessary for the existence of bubbly blow
(B). The pipe diameter should be large or the inclination angle should be larger than
a certain value and the void fraction should be lower than 0.25 and the flow should
not be annular. Alternatively, we can say (Barnea 1987) that the bubbly flow will
not become Intermittent (transition B). This transition bubbly to intermittent flow is
discussed now; the interested reader should refer to Barnea (1987) or Taitel (1990)
for the transitions inside the intermittent-flow area.

4.5.2.3 Transition B to Intermittent Flow

The condition e < 0.25 can be translated again using Eq. (1.9.12) of Chap. 1 as

jL
jG

¼ eL
eG

\
0:25
0:75

¼ 0:33 or jL\0:33 jG ð4:5:18Þ

If the component of the free-rise velocity of small bubbles u0 along the direction
of the flow u0 sinb is roughly equated to jG � jL, using again the homogeneous-flow
relationship (Eq. 1.9.12 of Chap. 1),jL=jG ¼ ð1� eÞ=e, we obtain

jL ¼ jG
1� e
e

� ð1� eÞ u0 sin b

The free-rise velocity of the bubbles is given by Harmathy (1960) as

u0 ¼ 1:53
gðqL � qGÞr

q2L

� �1=4

Combining the last two expressions,

jL ¼ 1� e
e

jG � ð1� eÞ gðqL � qGÞr
q2L

� �1=4
sin b ð4:5:19Þ

One can then compute e from Eq. (4.5.19) and make sure it is smaller than 0.25,
or alternatively set e = 0.25 in Eq. (4.5.19) and get
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jL\ 3jG � 1:15
gðqL � qGÞr

q2L

� �1=4
ð4:5:20Þ

as the condition for existence of bubbly flow for the transition from slug to bubbly
flow. This is line B in the Barnea map.

4.5.2.4 Transition J from Annular to Intermittent Flow

The transition from annular to intermittent flow is assumed to occur (Barnea 1986)
as a result of either: (a) a gas velocity decrease that reduces the interfacial shear
allowing the liquid to flow downward creating intermittent flow (flow reversal); or
(b) a void fraction decrease making the thicker annulus of liquid to collapse and
block the flow of gas (high liquid holdup case). These two cases are discussed in
detail by Barnea (1986) and by Taitel (1980) and lead to transition J.

Transition L: stratified to annular in steep downflow
So far annular flow was assumed to exist due to the violent action of the gas stream
in dispersing the liquid all around the pipe periphery. The exception to this type of
flow is the special case of flow down a steep incline at low gas velocities. Usually
under these conditions one would expect stratified flow to take place. However, at
steep downward inclinations the liquid level is small, the liquid velocity is very
high and the liquid tends to spread around the pipe periphery resulting in annular
flow. This type of annular flow takes place within the region of the
stratified/non-stratified transition. It is designated as transition L in Fig. 4.19; for
more details see Barnea (1987).

In summary: The first step is to check whether we have dispersed bubble flow
(transitions D or G). If the flow is not DB, we should check next whether it is
stratified (transition A). If the flow is neither of the above, we check for annular
flow (transition J). Finally, if the flow is also not annular, it will be intermittent.

Figure 4.20 shows some of the transitions (A, C, M, L) in a non-dimensional
map where F, K, W and Z are plotted versus the non-dimensional liquid height hL/
D. Two of the non-dimensional parameters, F and K given again below, were

Fig. 4.20 Generalized
transition boundaries
according to the DTB work
(Barnea 1987)
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already used for the Taitel and Dukler map (Sect. 4.5.1, Eqs. (4.5.8) and (4.5.10),
respectively) and also govern the A and C transitions. The new parameters W and Z
control the transitions M and L, respectively and are given as

F �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qG
qL � qG

r
jGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dg cos b
p ; K � F

ffiffiffiffiffiffiffiffi
ReL

p ¼ F

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qLD jL
lL

s
; W � jLffiffiffiffiffiffi

gD
p ;

Z � dp=dz½ �LP
qLg cos b

Z is similar to the Taitel and Dukler T, except that now the nominator has a
directional sign. The TDB map has the non-dimensional liquid height (equivalent to
the liquid fraction) as abscissa, while the Taitel and Dukler map has X that is
proportional to jL/jG.

4.6 Flow Regime Maps and Transition Criteria
for Vertical Upwards Flow—Ishii and Co-workers

The work by Dukler, Taitel, Barnea (DTB) and their collaborators discussed in
Sect. 4.5 produced a unified map and criteria for all inclinations. Many researchers
have been interested in vertical flows but we will concentrate here on the work of
Ishii, Mishima, Hibiki and co-workers whose reference applications were mostly
for two-phase flows in nuclear water reactors and their point of view is somewhat
different. Indeed Mishima and Ishii (1984) note that the transition criteria in terms
of the superficial velocities developed by the DTB group may not be consistent with
the framework of the two-fluid formulation of the conservation equations (used in
the modern codes developed for reactor safety analysis and other transient appli-
cations, including pipelines). In this case the void fraction and other parameters
such as the interfacial area as inputs to the models are better suited to their structure.
They also expect the flow regimes to be controlled mainly by the void fraction and
the interfacial area rather than the superficial velocities. While it is true that the void
fraction and the superficial velocities are uniquely related under steady-state con-
ditions, the steady-state relationship may not apply under rapid transients. Thus
criteria in terms of the void fraction should be preferable as these variables are more
amenable to describe the transient situations. The transition criteria proposed by
Mishima and Ishii (1984) are briefly discussed below.

Bubbly-to-slug flow transition
The very simple Mishima and Ishii (1984) criterion

e � 0:3

is the one or very close to the one based on bubble-packing geometrical consid-
erations, already discussed in Sect. 4.4.1. This transition criterion expressed in
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terms of the volumetric fluxes (as discussed in Sect. 4.4.1) is plotted as line A in
Fig. 4.20.2

Slug-to-churn flow transition
Figure 4.12 shows the control area used by Ishii and Mishima who postulate that
the transition occurs when the mean void fraction over the entire control volume e
exceeds that of the average value over the Taylor-bubble section esb, which
essentially says that the void fraction in the aerated area exceeds the void fraction in
the Taylor-bubble region—the aerated area “becomes Taylor bubble also.” The
authors also give as an explanation that, just before the transition, the Taylor
bubbles almost touch each other, the liquid slugs become unstable due to the strong
wake effect of the downstream bubble, leading to regime transition. Without
entering into the long derivation presented, we summarize here the procedure used
to obtain the transition criterion.

The local void fraction—or the film thickness—along the Taylor bubble is first
established using a Taylor-bubble or gas slug (subscript gs) velocity based on the
drift flux (DF) model

ugs ¼ C0jþ 0:35

ffiffiffiffiffiffiffiffiffiffiffiffi
gDDq
qL

s
; ð4:6:1Þ

where the second term is the Taylor-bubble velocity in stagnant flow and the first
adds the volumetric flux of the mixture corrected for the radial profile by the DF
distribution parameter C0.

The Bernouilli equation for the pressure in the liquid film, continuity, and
equality of pressures in the liquid film and the bubble are then used to obtain the
axial void fraction distribution in the Taylor-bubble region

eðhÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2ghDq
qL

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ghDq
qL

þ
q

þðC0 � 1Þjþ 0:35
ffiffiffiffiffiffiffiffiffi
gDDq
qL

q ð4:6:2Þ

The average value of this axial void fraction em is obtained by integration; a
complex expression results, but it is numerically approximated by

em � 1� 0:813 � X3=4
I ð4:6:3Þ

with

XI �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qL
2gDqLb

r
� ðC0 � 1Þjþ 0:35

ffiffiffiffiffiffiffiffiffiffiffiffi
gDDq
qL

s" #
� ð4:6:4Þ

2The labelling of the transition lines is different in this section from that used in the DTB map.
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The expression for the Taylor-bubble length Lb that is contained in XI is obtained
by assuming that the void fraction at the bottom of the Taylor bubble is equal to esb,
This void fraction is obtained from a force balance (gravity vs shear) in the liquid
film around the Taylor bubble that yields the following expressions relating the
terminal (i.e. under equilibrium between gravity and shear) film velocity ufsb, and
the corresponding void fraction esb (the subscript sb stands for the tail-end of the
slug bubble). This force balance finally yields ufsb, and esb

ufsb ¼ esbugs � j
1� esb

ð4:6:5Þ

esb ¼ 3abð1� esbÞ1:67
C0jþ 0:35b

ð4:6:6Þ

with

a � g Dq D3

qLu
2
L

� �1=18

� 3; b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g Dq D

qL

s
; Dq � ðqL � qGÞ ð4:6:7Þ

The approximation for a is valid for weakly viscous fluids such as water only.
The expression for e(h) of Eq. (4.6.2) for h = Lb is equated to esb from

Eq. (4.6.6), eðLbÞ ¼ esb, leading to an expression for Lbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gDq Lb

qL

s
¼ jþ 075 ab ð4:6:8Þ

that can be used to extract Lb and insert in Eq. (4.6.4), leading to

XI ¼ 1
jþ 0:75ab

ðC0 � 1Þjþ 0:35

ffiffiffiffiffiffiffiffiffiffiffiffi
gDDq
qL

s" #

The criterion for slug-churn transition is e
 em or

e
 1� 0:813X3=4
I

or e
 1� 0:813
ðC0 � 1Þjþ 0:35 b

jþ 0:75 ab

� �3=4
ð4:6:9Þ

where the coefficients a and b are given by Eqs. (4.6.7). This transition line is
plotted in Fig. 4.21 as line B.
Churn-to-annular flow transition
Two transition mechanisms are postulated, namely flow reversal of the liquid films
along large bubbles and destruction of large waves or liquid slugs; transition criteria
are developed for each. For flow direction reversal in the liquid film flowing along
the wall, the starting point is jL = 0. Using DF correlations, this leads to the criterion
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jG 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gDqD
qG

�
s

ðe� 0:11Þ ð4:6:10Þ

where the void fraction must also satisfy the slug-flow criterion, Eq. (4.6.9).
Equation (4.6.10) is plotted as line C in Fig. 4.20.

For destruction of the liquid slug by liquid droplet entrainment, droplet
entrainment is considered via a force balance on the liquid wave crest opposing the
shearing force of the vapour drag and the surface tension that tends to keep the
surface flat; this yields

lLjG
r

ffiffiffiffiffiffi
qG
qL

r
¼ N0:8

lL

with

NlL � lL qLr
ffiffiffiffiffiffiffiffiffiffi
r

gDq

r� �1=2

valid for low-viscous fluids at relatively high liquid Reynolds number. The criterion
is expressed as

jG 
 rgDq
q2G

� �1=4

N�0:2
lL ð4:6:11Þ

and is applicable to large-diameter tubes, i.e. when

D[

ffiffiffiffiffiffiffi
r

gDq

q
� N�0:4

lL

1�0:11�C0
C0

h i2
Figure 4.20 shows this limiting condition as line D.

Fig. 4.21 Flow regime map
developed using the Mishima
and Ishii criteria
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Mishima and Ishii maps
Figure 4.21 shows the application of the criteria developed by Ishii and Mishima
and the resulting map for air-water flow at atmospheric conditions. This map could
be compared with the TDB map, Fig. 4.19, in Sect. 4.5.2.

Figure 4.22 shows a flow regime map obtained using the relationships of
Mishima and Ishii and compares it to the empirical flow regime map obtained by
Bennet et al. (1965), Fig. 4.3, for steam-water flow at high pressure.

Hibiki and Mishima (1996) extended the Mishima-Ishii model to vertical upward
flows in narrow rectangular channels.
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Chapter 5
Void Fraction—Empirical Methods

George Yadigaroglu

5.1 Introduction—the Empirical Methods

The cross-sectional and time-average void fraction <e> (defined in Chap. 1) is the
quantity of interest in practical, industrial applications of two-phase flow. For
example, it determines the amount of liquid present in the core of a boiling water
reactor (and therefore its neutronic state) or the “holdup” of liquid in a pipeline,1 i.e.
the volume fraction of liquid in the flowing mixture. The pressure gradient or
pressure drop computation involves the void fraction, in particular when it is
dominated by the gravitational term. Thus, we must have methods for predicting it.

In the present chapter dealing with the void fraction and in the following chapter
on pressure drop we will discuss the empirical methods used to estimate these.
Usually, these do not consider the flow regime, which, however, as we discussed in
Chap. 1, is inherent or indirectly present to some extent in the empirical methods,
as the variables that determine the void fraction and the pressure drop also largely
determine the flow regime. In Chap. 2 we introduced phenomenological or
mechanistic modelling considering the topology of the flow, i.e. the flow regime.
The void fraction and the pressure drop can be determined for each flow regime
separately by modelling mechanistically the situation corresponding to the partic-
ular regime. This may lead to better, more accurate predictions. Phenomenological
methods are, however, more difficult to use and most often more difficult to insert in
computer codes. They will be dealt with in another volume.

In this chapter and in Chap. 6 wewill cover the most often used empirical methods
for predicting the void fraction and the flow regime. These methods were developed
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1The term liquid holdup is more usual in the petrochemical industries, denoting simply the liquid
fraction.
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for mixture models and are traditionally linked to homogeneous or separated flow
models and formulations of the conservation equations of two-phase flow2 that we
introduced in Chap. 2. By extension, they are often used, however, also with
two-fluid models where they may be substitutes for the closure laws needed in such
models or they may be used to derive the closure laws needed. For example, the shear
between the liquid and the wall may be obtained from an empirical, mixture
pressure-gradient model or correlation. Indeed, in most situations, there is no direct
way of measuring the shear between the wall and a phase.

In this chapter and Chap. 6 we deal mainly with relatively large-diameter ducts
such as those used in the thermal and petrochemical industries. The extensive work
related to measurements and empirical correlation of void fraction and pressure
drop and the very numerous corresponding publications practically ceased in the
80s where the interest shifted to microchannels used for electronic equipment and
chip cooling and similar applications or small channels used in refrigeration sys-
tems. These are treated elsewhere.

5.2 Void Fraction Measurement Techniques

Before considering the various empirical methods available for estimating the void
fraction, we will give a brief survey on the experimental methods available for
measuring it. In Chap. 1, we already mentioned the methods available for each type
of void fraction, namely point (local optical or conductivity probes), chordal (ra-
diation attenuation methods), cross-sectional-average (e.g. multi-beam radiation
attenuation methods), and volume average measurements (e.g. quick closing
valves). This discussion will not repeated here; additional possibilities will be
presented. Only the well-established, classical techniques will be briefly discussed
leaving the advanced methods to another volume. For exhaustive reviews of void
fraction (and other two-phase flow parameter) measurement methods, the reader is
referred to Hewitt (1978), Hewitt and Whalley (1980), Banerjee and Lahey (1981),
Delhaye (1981), Delhaye and Cognet (1984), etc.

5.2.1 Photographic Techniques

Photographic techniques are relatively simple to use and can provide void or liquid
fraction information if the dispersed phase is not densely distributed, so that the

2As discussed in Chap. 1, the term mixture is most of the time used to denote the two (or more)
phases flowing together and does not necessarily imply that these are intimately mixed. The term
separated flow is often used loosely to denote two-phase flows where the two phases have different
average velocities in contrast to the homogeneous flows, where the phases have the same average
velocity.
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field of view is not obstructed by the dispersed phase itself. Bubbly flows with very
low void fractions lend themselves to such photographic measurement of the void
fraction, provided that a transparent test section can be used. The same is true for
highly dispersed liquid flows. An example of photographic recording of the void
fraction is given in Fig. 4.11 of Chap. 4. Figure 5.1 shows another photographic
recording of a few bubbles.

With conventional photographic techniques the depth of field is necessarily
limited. Fairly short exposure times (as low as microseconds) may have to be used
even for particles moving at modest speed, especially if they are small. Successive
exposures on the same film can provide also information on particle speed and
direction. The disadvantages regarding the depth of field are overcome when laser
holographic techniques are used (e.g. Hawighorst 1984; Peterson et al. 1984).
A pulsed ruby laser (20 ns) can be used to obtain a short-exposure,
three-dimensional hologram, which is then reconstructed using a He–Ne continuous
laser and examined photographically: the hologram is photographed by focusing the
camera on narrow slices of the field. In this manner, truly three-dimensional
instantaneous information is obtained and can be (painstakingly) analysed.

5.2.2 Optical or Electrical Techniques

Optical fibre sensors can be used to detect the instantaneous local presence of a
phase, as already discussed in Chap. 1. The competing conductivity probes rely on
the conductivity of the liquid to detect its local presence. Gases are normally not
conducting, while certain liquids are or can be made conductive by addition of salts:
a miniature resistive probe detects the presence of the conducting liquid between
two electrodes. One of the electrodes is often a protruding needle isolated from a

Fig. 5.1 Photographs of
bubbles near the exit of a
special injector designed to
produce bubbles of given
sizes (Milenkovic 2005)
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coaxial sheath. The principle as well as the electronic realization are very simple.
Electrochemical effects may, however, disturb the measurements.

Hot-wire anemometers, instruments very often used in gas flows, deliver a
widely different signal when their sensing wires are immersed in liquid or gas
phases as the heat transfer from the hot wire depends on the phase surrounding it.
Thus they can be used as local void fraction detectors. They are usually, however,
fragile. Hot surface anemometers are more rugged, but less suitable for such
measurements.

One must note that the signal from all local, probes is more or less deformed due
to the piercing of the liquid–gas interfaces by the probes.

5.2.3 Techniques for Cross-Sectional Averages

The multiple-beam radiation attenuation technique was mentioned in Chap. 1.
Another possibility is the neutron scattering technique that uses a fast epithermal
neutron beam and measures the scattered and transmitted neutrons, Fig. 5.2. The
intensity of the scattered beam depends primarily on the amount of hydrogenous
material in the cross section; thus, it is inversely proportional to the voids in the
cross section.

Several methods for obtaining directly cross-sectional average values have been
proposed (Banerjee and Lahey 1981). We will briefly discuss here only the elec-
trical impedance method. The method is based on the fact that the impedance
(resistance and capacitance) measured between two electrodes immersed in a
two-phase mixture depends on the void fraction. To minimize the important sen-
sitivity to liquid-phase resistivity changes, one uses a high-frequency excitation, so
that the impedance is mainly capacitive. There is still, however, strong dependence
of the dielectric constant of the liquid phase on temperature, and dependence of the
dielectric constant of the two-phase mixture upon flow regime, i.e. the distribution
of the two phases.

Fig. 5.2 Neutron scattering
method for void
fraction measurements
(Rousseau and Riegel 1981;
Banerjee et al. 1979)
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According to the classical results of Maxwell, in uniform bubbly flow, the
dielectric constant of the mixture, e, depends on the void fraction according to:

e� eL
eþ 2eL

¼ eGh i eL � eG
eG þ 2eL

;

where eL and eG are the dielectric constants of the two phases. In uniform droplet
flow:

e� eG
eþ 2eG

� �
¼ eLh i eL � eG

eL þ 2eG
:

Thus the relationship between the measured mixture dielectric constant and
average void fraction must, in general, be obtained from calibrations. Although
quite complex impedance techniques attempting to eliminate some of the short-
comings mentioned have been developed, simpler techniques seem also to give
satisfactory results, at least under certain conditions. An example is the impedance
probe discussed by Andreussi et al. (1988) using two simple, ring electrodes flush
mounted to the (non-conducting) tube wall, 1.5–2.5 diameters apart.

Cross-sectional averaging of local measurements
If the local void fraction has been measured in a sufficient number of points in the
cross section, an average can be performed. In case of axisymmetric flow, mea-
surement of a void fraction profile suffices. Figure 5.3 shows local void fraction
profiles measured with an optical probe; it is also shown here to give the reader a

Fig. 5.3 Local void profiles
measured for varying average
void fraction (Gallaup and
Delhaye 1976)
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feeling regarding the distribution of the phases. The agreement between the
cross-sectional averages calculated from these values and average measurements
with a radiation absorption technique were good (Gallaup and Delhaye 1976).

5.2.4 Volume Average Void Fraction

Analytically, one usually deals with cross-sectional averages of the void fraction.
(There are problems, however, when volume averages may be of interest, for
example in level swell problems.) On the contrary, it is relatively easier to measure
the volume average void fraction over a length of the test section. Such measure-
ments are most interesting when the void fraction does not change rapidly over the
length of the section. At the limit, as the length over which the void fraction is
measured shrinks, one obtains an approximation of the cross-sectional average.
Two such methods are widely used: the first one consists of measuring the pressure
drop and extracting void fraction information from it. The frictional and accelera-
tion pressure drops are calculated using a suitable model and extracted from the
total measured pressure drop to arrive at the gravitational component; the void
fraction can then be calculated, as we will see in Chap. 6. The method is usable
only when the pressure drop is dominated by the gravitational term. Otherwise, the
uncertainty in the frictional and acceleration corrections is too great. In fact one
needs simultaneous independent measurements of the pressure drop and of the void
fraction to arrive at correlations of both the frictional pressure drop and of the void
fraction.

Quick Closing Valve Method
This second method consists of isolating very rapidly a segment of the test section
by quick closing valves and measuring its liquid content. This method has been
used for decades, and very rapidly closing valves are available (Agostini et al.
1969). Typical closing times for a 2-1/2 in valve can be 15 ms. The experiments
with quick closing valves may have to be repeated many times to arrive at
appropriately time- or ensemble-averaged values. This is particularly true in
intermittent flows.

The method based on quick closing valves is used mostly to calibrate other
techniques. It can be very accurate if care is taken to close the valves rapidly and
simultaneously. At high void fractions, the accuracy of the method deteriorates due
to the difficulty of measuring the small amounts of liquid left in the section between
the valves. The method is mostly used at low pressure, since the valves may leak
and produce significant errors at high pressure. The method is better suited for two
component rather than single-component flows where condensation or vaporization
of the trapped mass may alter the results.
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5.3 Prediction Methods

We start by recalling here the triangular relationship between the velocity ratio
S (also misleadingly called “slip ratio”), the cross-sectionally and time-averaged
void fraction <e> and the quality x derived in Chap. 1, Eq. (1.9.6):

S � uGh iG
uLh iL

¼ qL
qG

x
1� x

1� eGh i
eGh i ð5:3:1Þ

We recall that as the phase densities are normally known, this relationship links
the three variables, S, x and <e>. Usually, we know or we can calculate the quality
x, but we need some additional information to get the void fraction, for example S,
or a correlation for the void fraction in terms of x. We will deal now with the
empirical or semi-empirical methods for estimating the void fraction, starting from
the simplest one, the homogeneous model.

Experimental void fraction data have been used in the past to calculate and
correlate the velocity ratio S in terms of the relevant parameters. This approach is
not straightforward in general since the variation of S is not simple as we will see in
Sect. 5.3.2. below. In general, the velocity ratio is a weak function of hydraulic
diameter, pressure and total flow rate, but depends strongly on the void fraction.

5.3.1 The Homogeneous Void Fraction and Density

In the simplest possible model of two-phase flow, the homogeneous model, one
assumes that the velocity ratio is equal to one. Then the void fraction can be
calculated. The homogeneous void fraction is denoted by b and is obtained by
solving Eq. (5.3.1) for <e> with S = 1:

eGh ihom� b ¼ x=qG
ð1� xÞ=qL þ x=qG

¼ xvG
xqG þð1� xÞvL

� �
: ð5:3:2Þ

It can be easily shown that the homogeneous void fraction b is also equal to

b ¼
_QG

_QL þ _QG
¼ jGh i

jLh iþ jGh i : ð5:3:3Þ

If the quality x (or the mass fluxes of the two phases) are known, the volumetric
fluxes and the homogeneous void fraction can be calculated from Eqs. (5.3.2) and
(5.3.3) above.

The two-phase mixture density was given in Chap. 2, Eq. (2.5.2) as a
volume-weighted quantity with a definition not restricted to homogenous flow,
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qh i � qL 1� eGh iþ qG eGh i

Expressing the volumetric flow rates in terms of the flow quality x, i.e. using
Eq. (5.3.2) to express the homogeneous void fraction in terms of the quality, one
obtains the homogeneous density

1
qh ihom

¼ x
qG

þ 1� x
qL

ð5:3:4Þ

that can be more conveniently written using the phase specific volumes (the inverse
of the densities) as

qh ihom¼
1

vh ihom
¼ 1

vL þ xvLG
or vh ihom¼ vL þ xvLG;

where vLG � vG � vL.
Here, the quality x is the local value of the true quality, i.e. not necessarily the

thermal equilibrium quality, provided of course that the true quality can be esti-
mated. The equilibrium quality can generally be obtained from a heat balance, as
we have seen in Chap. 1.

5.3.2 Empirical Correlations for Separated Flows

There is a large number of empirical correlations for the void fraction when the
homogeneous flow assumption is not used. Lockhart and Martinelli (1949) pro-
posed long time ago one of the most widely used ones. This correlation is men-
tioned here as an example. It relates the void fraction to the Lockhart–Martinelli
parameter Xtt that we have introduced in Chap. 1,

Xtt ¼ 1� x
x

� �0:9 qG
qL

� �0:5 lL
lG

� �0:1

and is given originally in graphical form valid in principle for any pair of fluids.
A useful numerical approximation to this correlation was proposed by McFarlane
(1966):

eGh i ¼ 1� 1 þ 21
Xtt

þ 1
X2
tt

� ��0:5

:

This numerical fit gives a very good match (within 2–4%) with the original
Lockhart–Martinelli plot for Xtt < 10, but the errors can become as large as 10–20%
for higher values of Xtt. For a given fluid at saturation, Xtt is only a function of
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pressure and quality, and the void fraction can then be calculated or plotted directly
as a function of these variables. Figure 5.4 shows a plot of the void fraction versus
quality for saturated steam–water at different pressures obtained using this
correlation.

The original empirical plot due to Martinelli and Nelson (1948) for saturated
steam–water mixtures, where again the void fraction is simply given as a function
of the quality x is given in Fig. 5.5. The figure is convenient for obtaining rapidly
an estimate of the void fraction. One notes how rapidly the void fraction increases
at low qualities and pressures. At the critical pressure of 3206 psia the relationship
between quality and void fraction becomes linear.
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Fig. 5.4 Plot of the void
fraction for saturated stream
water at three different
pressures according to the
McFarlane (1966) formula

Fig. 5.5 The
Martinelli-Nelson (1948) void
fraction correlation for
saturated steam–water
mixtures; the pressure is given
in British units (1 bar = 14.5
psia)
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Several of the most commonly used void fraction correlations were compared
against a very large data set (Hewitt 1985); the best results were obtained by a
correlation proposed by the CISE laboratory in Italy (Premoli et al. 1971). The
Premoli (or CISE) correlation, written in terms of the velocity ratio S and of the
homogeneous void fraction b is given here:

S ¼ 1þE1
y

1þ yE2
� yE2

� �1=2

with

y � b
1� b

¼ jGh i
jLh i

E1 ¼ 1:578 � Re�0:19 qL
qG

� �0:22

; E2 ¼ 0:0273 �We � Re�0:51 qL
qG

� �0:08

:

The non-dimensional Reynolds and Weber groups are given as:

Re � _mLD
lL

; We � _m2D
rqL

:

One notes that the correlating parameter is essentially the ratio of the volumetric
fluxes y. In contrast to, say, the homogeneous model or the Martinelli-Nelson
correlation mentioned above, the CISE correlation considers the mass flux and also
includes a correction factor for the surface tension, something that most other
correlations ignore.

More specialized correlations could give better results in particular cases; the
interested reader may be find data and a more specialized and accurate correlation
for very particular or unusual situations. The drift flux approach discussed next is
the most widely used general method today.

5.4 The Drift-Flux Model

The “drift-flux formulation” or DF for short by Zuber and Findlay (1965) (see also
Wallis 1969) is presently the best available mixture model framework for represen-
tation of two-phase flows. It should give sufficient accuracy for moderate transients in
which the mixture evolves in a quasi-steady-state fashion, i.e. the transient rela-
tionships between the void fraction and the local, time-dependent parameters such as
quality and mass flux can be approximated at each instant by the corresponding
steady-state relationships. Two-fluid formulations with interfacial exchange terms
may be needed for fast transients where the mixture does not have time to reach
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equilibrium conditions.3 The conservation equations based on the DF model will be
presented in another volume. Here we focus on void fraction predictions using the DF
framework.

5.4.1 Basic Derivation

We defined in Chap.1 the cross-sectional average volumetric fluxes (using here for
simplicity the notation e = eG):

jLh i ¼ uLð1� eÞh i ¼ uLh iL 1� eh i ¼ _m ð1� xÞ
qL

jGh i ¼ uGeh i ¼ uGh iG eh i ¼ _mx
qG

ð5:4:1Þ

and their sum, the total volumetric flux

jh i ¼ jLh iþ jGh i: ð5:4:2Þ

The derivation of the basic DF formulation that is given below uses the local
volumetric fluxes of the phases,

jL ¼ uLð1� eÞ and jG ¼ uGe ð5:4:3Þ

as well as their sum j,

j ¼ jL þ jG: ð5:4:4Þ

One understands easily the physical meaning of the cross-sectional average
volumetric fluxes; they are the rates of volumetric flow per unit area. It is maybe
more difficult to explain the physical meaning of the local volumetric fluxes; these
can be thought, however, as being the limiting values of the volumetric fluxes as the
cross-sectional area over which they are computed shrinks to zero.

We consider now the basis of the DF model, the local drift velocity of the gas,
defined as

uGj ¼ uG � j: ð5:4:5Þ

This is the velocity with which the gas is locally drifting past the mixture
velocity given by the local volumetric flux. We multiply this equation by the local
void fraction e and integrate across the channel:

3The interfacial closure relationships used in the two-fluid formulations will also be discussed in
another volume.
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euGj
� � ¼ euGh i � ejh i: ð5:4:6Þ

Using Eq. (1.7.8) derived in Chap.1, we can “open” the angle brackets of the
first term on the right that contains the void fraction and a phase property and we
obtain:

euGj
� � ¼ eh i uGh iG� ejh i:

The opening of the angle brackets is not possible for the first and last terms,
which are averages of products of e with a variable that is not a phase property.
Defining, however, the distribution coefficient Co, which accounts for the
non-uniformity of the volumetric flux velocity and of the void fraction profiles
across the duct:

C0 � ejh i
eh i jh i ð5:4:7Þ

and the cross-sectional average drift velocity of the gas, UGj, which brings into
consideration the average effect of the local relative velocity (or drift) between the
phases:

UGj �
uGje
� �

eh i ¼ uGj
� �

G; ð5:4:8Þ

we can write

eh iUGj ¼ eh i uGh iG�C0 eh i jh i

or, eliminating the void fraction,

uGh iG¼ C0 jh iþUGj ð5:4:9Þ

This last expression, the foundation of the DF model, clearly shows that the
difference between <uG>G and <j> is due to the effects of the profiles (the Co

contribution), as well as to the averaged effect of the local drift (the UGj

contribution).
A mean drift velocity between the gas and the mixture can be defined as:

�UGj � uGh iG� jh i

and can be computed using Eq. (5.4.9):

�UGj ¼ ðC0 jh iþ UGjÞ � jh i ¼ ðC0 � 1Þ jh iþUGj: ð5:4:10Þ
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We easily see that if C0 = 1 and UGj = 0, there is no mean drift between the
phases.

5.4.2 Physical Significance of the DF Model Parameters

A few more useful relationships will be derived now and the physical meaning of
their terms discussed. The average velocity of the gas phase in terms of <j> and the
DF parameters was given by Eq. (5.4.9). Starting from Eq. (5.4.9), recalling that
jGh i ¼ eGh i uGh iG, and performing some algebra, we can obtain the void fraction as
follows

eGh i ¼
jGh i
jh i

C0 þ UGj

jh i
¼ jGh i

C0 jh iþUGj
¼ b

C0 þ UGj

jh i
: ð5:4:11Þ

The expression for the liquid volume fraction is more complex:

eLh i ¼ 1� eGh i ¼ jLh iþ ðC0 � 1Þ jh iþ UGj

C0 jh iþ UGj
¼

ð1� bÞþ ðC0 � 1Þþ UGj

jh i
C0 þ uGj

jh i
:

ð5:4:12Þ

We see clearly that the two DF model parameters act as correction factors to the
homogeneous void fraction b, as evident in Eq. (5.4.11). By its definition, C0 brings
into the model the effect of the combined void fraction and volumetric flux profiles,
and UGj the average effect of the void drift, Fig. 5.6. It should be noted that UGj is
not necessarily zero in horizontal flows as there may be still mechanisms promoting
drift of the voids. Normally, the value of C0 is greater than one, except when the
voids peak near the wall where the velocity is low; this is the case, e.g. of subcooled
boiling. C0 depends generally on pressure, channel geometry and to some extent
flow rate. The average drift velocity is rather independent of flow conditions and
depends only on the flow regime and the size of the voids.

Fig. 5.6 Physical
significance of the DF model
parameters
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Other useful expressions for the void and liquid fractions in terms of the quality,
mass flux and the DF parameters can be obtained using Eqs. (5.4.11) and (1.8.2 and
1.8.3) of Chap. 1:

eGh i ¼ x

C0 xþ qG
qL
ð1� xÞ

� 	
þ qGUGj

_m

eLh i ¼ 1� eGh i:

An explicit expression for <eL> can of course be developed with some algebra
but it is complex and does not bring any particular insight. The corresponding phase
velocities in terms of quality and mass flux are:

uGh iG ¼ jGh i
eGh i ¼

C0 jh iþUGj

eGh i ¼ 1
eGh i C0

x
qG

þ 1� x
qL

� �
_mþUGj

� �

uLh iL ¼ jLh i
eLh i ¼

_m ð1� xÞqL
eLh i ;

where again the last term was left implicitly defined, as the expansion of the liquid
velocity is complex and does not reveal anything very useful. Finally, the velocity
ratio S can be expressed as:

S ¼ C0 þ xðC0 � 1ÞqL
qGð1� xÞ þ qLVGj

_m ð1� xÞ :

5.4.3 Velocities in Terms of DF Parameters

It is useful to obtain the phase velocities in terms of the DF parameters and the
volumetric fluxes. The gas velocity was can be obtained from the volumetric flux of
the gas and the void fraction using Eq. (5.4.10) and rewritten as:

uGh iG¼
jGh i
eGh i ¼

jGh iðC0 jh iþUGjÞ
jGh i :

Dividing top and bottom of the last fraction by <j>:

uGh iG¼
jGh i ðC0 jh iþUGjÞ

jh i
� 	

jGh i
jh i

¼ jGh i
b

C0 þ UGl

jh i
� �

: ð5:4:13Þ
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The <jG>/b term can be recognized as the “homogeneous gas or mixture
velocity” and the last term in the parentheses as the DF corrections to it. The liquid
velocity is obtained now using Eq. (5.4.12) for the liquid volume fraction as:

uLh iL¼
jLh i
eLh i ¼

jLh i
ð1�bÞþ ðC0�1Þþ UGj

jh i
C0 þ uGj

\j[

¼
jLh iðC0 þ UGj

jh i Þ
ð1� bÞþ ðC0 � 1þ UGj

jh i Þ
ð5:4:14Þ

Again, the presence of the <jL>/(1 − b) “ratio” in the nominator and denomi-
nator of the last fraction can be recognized as the homogeneous velocity, while the
other terms are the DF corrections.

Alternative expressions for the phase velocities in terms of the mass flux rather
than the volumetric fluxes that can be obtained from \jG [ ¼
\eG [\uG [ G ¼ \eG [ ðC0\j[ þUGjÞ and _m ¼ qL\jL [ þ qG\jG [
by eliminating <jL> and <jG>, between the two, respectively:

uGh iG ¼ C0 _m=qL þVGj

1� eGh iC0ð1� qG=qLÞ

uLh iL ¼
ð1� eGh iC0Þ _m� eGh iqGVGj

1� eGh iC0

� 	
qL 1� eGh i 1� eGh iC0ð1� qG=qLÞ½ � :

These can also be expressed in terms of the mass and volumetric fluxes and the
DF parameters (Yadigaroglu and Lahey 1976) as:

uLh iL ¼
_m
qh i �

eGh i
eLh i

qG
qh i ðC0 � 1Þ jh iþUGj

 � ¼ _m

qh i �
eGh i
eLh i

qG
qh i

�UGj

uGh iG ¼ _m
qh i þ

qL
qh i ðC0 � 1Þ jh iþUGj

 � ¼ _m

qh i þ
qL
qh i

�UGj:

where �UGj was recognized above, Eq. (5.4.10), as the mean drift velocity between
the gas and the mixture, �UGj � \uG [ G �\j[ . Multiplying the first equation
by the liquid fraction and the second by the void fraction and adding them, we
obtain a relation linking the volume and mass fluxes and the mean drift velocity
between the gas and the mixture:

jh i ¼ _m
qh i þ

Dq eGh i
qh i

�UGj:
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In Sect. 1.9.1 of Chap.1, we had introduced the velocity of the centre of mass,
Um. It can be expressed now in terms of the DF parameters (Yadigaroglu and Lahey
1976)

Um ¼ uLh iL þ
eGh i
eLh i �

qG
qh i � C0 � 1ð Þ jh iþUGj


 � ¼
uLh iL þ

eGh i
eLh i �

qG
qh i �

�UGj ¼ uGh iG�
qL
qh i �

�UGj;

ð5:4:15Þ

the last two expressions containing the mean drift velocity between the gas and the
mixture, Eq. (5.4.10): �UGj � \uG [ G �\j[ ¼ C0 � 1ð Þ\j[ þ UGj. For
homogenous flow, �UGj ¼ 0 and we obtain, as expected, \uG [ G ¼ \uL [ L ¼
\j[ ¼ \jG [ ¼ \jL [ ¼ Um.

Finally, we can obtain the relative velocity between the phases (that could have
been called the average slip) from Eqs. (5.4.15) as

Ur � uGh iG� uLh iL¼
qL
qh i þ

eGh i
eLh i �

qG
qh i

� �
� �UGj ¼ 1

1� eGh i �
�UGj

or

Ur ¼ 1
1� eGh i �

�UGj: ð5:4:16Þ

This last interesting result linking the relative velocity to the mean drift velocity
is illustrated in Fig. 5.7 for the simple case of stratified flow. Considering the centre
of volume plane moving with the velocity <j>, we can see that the volumes of gas

Fig. 5.7 A simple, graphical explanation of the relationship between the relative velocity and the
mean drift velocity. a Illustration of the equal gas and liquid volumes crossing the plane moving
with the velocity <j>. b Illustration of the gas flux associated with the average drift velocity of the
gas UGj. c Geometrical proof of Eq. (5.4.16) according to the equality of the areas:
L + N=M + N as L = M according to (a)
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and liquid crossing it in opposite directions cancel out, as expected in Fig. 5.7a.
Figure 5.7c demonstrates graphically the result obtained by Eq. (5.4.16).

We had several opportunities to notice that the DF model is not “symmetric”
regarding the two phases and this leads to notable differences between the various
phase-related quantities. The possibility of defining a DF model based on the drift
velocity of the liquid with respect to j exists of course, but has not been used; it
could be useful though in treating problems where the liquid is the dispersed phase,
such as sprays.

5.4.4 Use of Experimental Data

When experimental data are plotted in a (<uG>G, <j>) plane, they often form a
straight line and the DF model parameters are obtained as the slope and the
intercept of the correlation line, as shown in Fig. 5.8. If the data do not fall on a
straight line, this means that the drift flux parameters depend on certain flow
variables, in particular the void fraction. The resulting C0 and UGjcorrelations may
then contain the void fraction and the method becomes implicit.

Figure 5.9 shows some old, actual data plotted in the (<uG>G, <j>) plane. The
trend of the data shows a “knee” around <j> = 0.25 m/s that is in fact revealing a
change in the flow regime. Both the slope and the intercept (the DF model param-
eters) have different values, as shown in the figure for the two different regimes.

The drift-flux model is intrinsically best suited for bubbly and churn flows where
there is indeed local drift between the phases. Its use becomes somewhat artificial in
clearly separated flows, where there is really no local drift between the phases. Even
in this case, however, it provides a good general framework for correlating void
fraction data. Indeed, the drift flux model parameters Co andUGjmust in principle be
provided on a case by case basis for each flow situation. Generally usable correla-
tions for these parameters have also been developed, however, as we will see below.

Fig. 5.8 Determination of
the DF model parameters
from experimental data
plotted in the <uG>G, <j>
plane
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5.5 Determination of the Parameters of the DF Model

Certain recommendations for selection of the appropriate correlations for Co and
UGj are given in the original paper by Zuber and Findlay (1965), as well in more
recent works (e.g. Hibiki and Ishii 2003a, 2005). Following the basic ideas of Zuber
and Findlay, the DF parameters should be determined on a case-by-case basis for
each situation or even data set. However, there is clearly an interest in making void
fraction estimations and many authors have attempted to propose generally appli-
cable correlations. The DF model parameters should behave at the limits of the
range of void fraction and pressure values in a way compatible with the physical
reality, yielding, e.g. the correct phase velocity values at the limits of zero or unity
void fraction and the homogeneous flow solution as the pressure approaches the
thermodynamic critical value.

Zuber and Findlay proposed the general framework but do not focus in their
original paper much on the particular values of the DF parameters; they propose the
general use of the following values for a churn-turbulent or bubbly flow regime:

C0 ¼ 1:2andUGj ¼ 1:53
g Dq r

q2L

� �1=4
; Dq � qL � qG; ð5:5:1Þ

where the UGj is the rise velocity of ellipsoid bubbles in an infinite medium
(Harmathy 1960).

Fig. 5.9 Plot of experimental air–water data in the gas velocity—volumetric flux plane revealing
a change in flow regime. Data of Bailey et al. (1956)
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We will review now mainly the works of Ishii and co-workers and Chexal and
co-workers that have been used rather extensively; the interested reader will find
full lists of all available correlations in the comparative works mentioned below and
in Sect. 5.6 Some of these may be more appropriate if the application is close to the
origins of the data.

Average drift velocity UGj

According to the work of Hibiki and Ishii (2003a, 2005) also incorporated in the
book by Ishii and Hibiki (2011), simplified expressions, already proposed earlier
are confirmed for gravity dominated flows, namely:

For bubbly flow:

UGj ¼
ffiffiffi
2

p gzDq r
q2L

� 	1=4
1� eGh i1:75 C0 given as 1.2 or by Eq. (5.5.3) below,

where the first term of UGj is again, to a slight difference in the constant,
Harmathy’s single bubble rise velocity and gz is the component of gravity along the
flow path z (in case of an inclined pipe). The relation proposed for the distribution
coefficient C0 can be more complex and will be discussed below.

For slug flow Hibiki and Ishii (2003a, 2005) propose:

UGj ¼ 0:35
gzDq D

qL

� �1=2

and C0 ¼ 1:2� 0:2
ffiffiffiffiffiffi
qG
qL

r
;

where again the value of UGj is the one given for slugs of gas by Harmathy (1960).
Finally, for churn flow:

UGj ¼
ffiffiffi
2

p gzDq r

q2L

� �1=4

and C0 ¼ 1:2� 0:2
ffiffiffiffiffiffi
qG
qL

r
;

where now the correction for the void fraction used for bubbly flow is no longer
present. The square root of the density ratio introduces the effect of pressure.

More generally, expressions forUGj, based on the terminal rise velocity of a
single bubble in an infinite medium are given, for churn-turbulent or bubbly flow
as:

UGj ¼ ð1:18 to 1:53Þ gzDq r

q2L

� �1=4

: ð5:5:2Þ

For very small bubbles obeying Stokes’ law:
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UGj ¼ gz Dq d2

18 lL
\ 1� eG [ 3;

where d is the bubble diameter. For the general case, Hibiki and Ishii (2003a, 2005)
give much more complex expressions involving also the frictional pressure
gradient.

Distribution coefficient C0

Regarding the distribution coefficient in bubbly flow, Hibiki and Ishii (2003a, 2005)
postulate an expression of the form

C0 ¼ C1ðReÞ � C1ðReÞ � 1ð Þ
ffiffiffiffiffiffi
qG
qL

r
; ð5:5:3Þ

where Re is the liquid Reynolds number, Re � \jL [D=mL, and C∞ the
asymptotic value of C0. They state that for laminar flow the value of C0 is C∞,l = 2,
but is very sensitive to the average void fraction at low void fractions. For turbulent
flows

C1;t ¼ 1:2 1� e�22DSm=D
� 	

;

where DSm is the Sauter mean diameter of the bubbles, which can be predicted by a
complex relation given in their paper and D is, as usual, the pipe diameter. The
authors propose a generalized expression taking into account the flow transition
from laminar to turbulent,

C1 � 2:0 e�0:000584 Re þ 1:2 1� e�22ðDSm=DÞ
� 	

� 1� e�0:000584 Re
 �
:

For annular flow, Hibiki and Ishii (2003a, 2005) note that there is no local drift
between the phases in the sense given to it in bubbly or churn flow; a local relative
velocity between two phases cannot be defined. If some small liquid droplets are
entrained in the gas core or small gas bubbles are entrained in the liquid film, the
average local relative velocity should be approximately zero, UGj � 0. Annular
flow can still, however, be included in the DF formulation. Hibiki and Ishii propose
the following simplified expressions for the DF parameters for the case qL � qG;
the more complex formulations for the general case can be found in their writings.

As noted above UGj � 0. Regarding the distribution coefficient C0, we can
extract it from Eq. (5.4.10) for the average drift velocity

�UGj ¼ ðC0 � 1Þ jh iþ UGj:
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We need to compute �UGj first and then extract C0 noting that UGj � 0. The
derivation starts from a development similar to the one presented in Chap.4,
Sect. 4.5 for stratified flow. The relative motions between phases are governed
again by the interfacial geometry, gravity and interfacial and wall shears. Providing
expressions for the latter, one can obtain, after a lengthy development, and several
approximations, including the use of qL � qG the following expression for the
average drift velocity of the gas (Hibiki and Ishii 2003a, 2005; Ishii and Hibiki
2011, Chap. 14),

�UGj � 1� eGh i
eGh iþ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qG=qL

p jh iþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gzDq D 1� eGh i

0:015 qL

s !

that leads, according to Eq. (5.4.10) to:

C0 ¼
�UGj þ jh iþ UGj

jh i �
�UGj þ jh i

jh i � 1� eGh i
eGh iþ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qG=qL

p 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gzDq D 1�eGh i

0:015 qL

q
jh i

0
@

1
Aþ 1:

Hibiki and Ishii (2003b) specialize the DF model parameters for the case of large
pipes and Clark et al. (2014), following the same approach, for rod bundles. The
book by Ishii and Hibiki (2011) treats numerous other particular application cases.

An interesting table summarizing the various proposals made for the DF model
parameters (well over a dozen) is given in a paper by Bhagwat andGhajar (2014). The
authors reviewed several existing DF correlations and proposed a new one that is not
based on flow patterns and pipe orientation and can predict the void fraction over a
wide range of system pressures, pipe diameters and fluid properties. They introduced
correction factors to extend the application of their correlation to non-circular pipes
(rectangular and annular geometries), large-diameter pipes and very viscous liquids.
Their correlation was verified against 8255 data points and they claim better results
than from all the other correlations they examined for all ranges of the void fraction
and fluid combinations considered. The distribution coefficient is given as:

C0 ¼ 2� ðqG=qLÞ2
1þðRetp=1000Þ2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ðqG=qLÞ2 cos b

1þ cos b

q� �ð1� eGh iÞ
þCo;1

" #

1þð1000=RetpÞ2

2=5

; ð5:5:4Þ

whereCo,1 is defined in terms of the gas-to-liquid density ratio, the homogeneous void
fraction, the two phase friction factor, the flow quality and pipe geometry. Retp is a
Reynolds number calculated with the volumetric flux and the liquid properties. The
interested reader is referred to the original paper for the numerous details. The
inclination angleb ismeasured from the horizontal. The correlation forC0 includes the
void fraction on the right side making it implicit and requiring an iterative solution.
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The average drift velocity is given by

UGj ¼ ð0:35 sin bþ 0:45 cos bÞ � g Dq Dh

qL

� �1=2

1� eGh i0:5C2C3C4;

where Dh is the hydraulic diameter and the correction coefficients C are functions of
the viscosity, the Laplace wavelength divided by the hydraulic diameterffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r=gDq
p �

Dh, and a variant of Froude number based on the volumetric flux of the
gas,

FrsG ¼
ffiffiffiffiffiffi
qG
Dq

r
UsGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gDh cos b
p :

5.5.1 The EPRI (1996) Chexal-Lellouche Correlation

A recent correlation for the drift-flux model parameters developed by Chexal et al.
(1997) at the Electric Power Research Institute, EPRI, should have a wide range of
applicability. This correlation was obtained without regard to the prevailing flow
regime; any flow regime dependence is inherently taken into consideration. The
correlation takes into account all orientations of the flow with respect to gravity:
co-current upwards and downwards flows, horizontal co-current and countercurrent
flows. Its data base includes data from rod bundles as well as from large-diameter
pipes. The authors claim that the correlation is particularly suited to “difficult”
situations such as low pressures, low mass fluxes and low steam qualities.

The distribution coefficient
The correlation for the parameter C0 has the form

C0 ¼ L
Ko þð1� KoÞ eGh ir ; ð5:5:5Þ

where the Chexal-Lellouche fluid parameter L is a weighted sum considering the
inclination of the pipe:

L ¼ FrLvert þð1� FrÞLhoriz with the orientation parameter Fr ¼ 1� h
90


 �0:2
:

In the flow orientation parameter, h is the pipe orientation measured from the
vertical axis. The Chexal-Lellouche fluid parameters Lvertand Lhoriz take different
forms for vertical and horizontal flows and according to the fluids. We give here
only the formulas for steam–water flows:

For vertical flows: Lvert ¼ 1�exp �Cp eGh ið Þ
1�expðCpÞ

For horizontal flows: Lhoriz ¼ 1�exp �Cp eGh ið Þ
1�expðCpÞ 1þ eGh i0:05 1� eGh ið Þ2

h i
:
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The coefficient Cp is function of pressure, Cp ¼ 4p2crit
pðpcrit�pÞ, pcrit being the ther-

modynamic critical pressure.
For co-current downflow, however, a limiting value of C0 is provided as:

C0 ¼ max
L

Ko þð1� KoÞ eGh ir ;
U0

Gjð1� eGh iÞ2
jLh ij j þ jGh ij j

( )
;

where U0
Gj ¼ UGj

�
C1, with C1 depending on the void fraction and other parameters

in a complex way (Chexal et al. 1997).
Ko and r in Eq. (5.5.5) have a complex dependence on pressure and on Reynolds

numbers calculated using the superficial gas or liquid velocities (positive or neg-
ative according to flow direction).

The UGj correlation has the general form (for all flow orientations and all fluids):

UGj ¼ 1:41
g Dq r

q2L

� �1=4

1� eGh iC1xC2C3C4; ð5:5:6Þ

where C1x is another coefficient with complex dependence and selection logic. The
other three correction terms (C2, C3, C4) to the basic formula for UGj are functions
of superficial Reynolds numbers, pressure, and hydraulic diameter. The details of
the extremely lengthy equations and selection logic of coefficients, and an extensive
comparison with experimental data can be found in Chexal et al. (1997). The
correlation is implicit as the void fraction appears in the DF model parameters and
requires an iterative procedure to compute the coefficients and the void fraction.
The correlation was designed for inclusion in system codes and would be
impractical to use in hand calculations. The EPRI booklet (Chexal et al. 1997)
provides, however, an embeddable software that performs this iteration as well as
Excel spreadsheets that can be used to enter the input values and obtain the void

Fig. 5.10 Values of the DF parameters according to the Chexal et al. (1997) correlation plotted
for three different pressures and two tube diameters
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fraction. Values of the DF parameters, calculated using the EPRI software are
plotted in Fig. 5.10 to get a feeling for their variation.

The EPRI group published two years later a small booklet regarding “pressure
drop technology” (Chexal et al. 1999). Values of the void fraction were needed to
correlate experimental pressure drop data and they have decided to introduce a
correction for liquid entrainment in the Chexal-Lellouche correlation of the form:

eGh i ¼ eGh iC�L þE eGh ihom� eGh iC�L


 �
; ð5:5:7Þ

where E is the liquid entrainment fraction varying between 0 and 1 (from no
entrainment, to all liquid entrained in the gaseous core). This way, the corrected
value of the void fraction has the Chexall-Lellouche value without entrainment (at
low gas velocities and void fractions) and reaches asymptotically the homogeneous
value when all the liquid is entrained (at the gas velocity). The authors claim that
this procedure improves the predictions, but no comparisons are presented. The
entrainment fraction is obtained from a correlation proposed by Ishii and Mishima
(1982):

E ¼ tanh 7:25 � 10�7We1:25Re0:25LP


 �
; We � qG jGh i2D

r
Dq
qG

� �1=3

;

ReLP � qL jLh iD
lL

;

where We is the entrainment Weber number.4

5.6 Comparisons of Various Correlations

A comparison of the performance of several DF model correlations by Bhagwat and
Ghajar (2014) was already mentioned above. Earlier, Woldesemayat and Ghajar
(2007) produced also a comparison of 68 void fraction correlations (not necessarily
based on the DF model) for different flow patterns in horizontal and upward
inclined pipes and concluded that most of the correlations are very restricted in
terms of handling a wide variety of data sets. Their paper also lists the numerous,
similar, but more limited in scope comparisons that were conducted in the past.
Woldesemayat and Ghajar confirm that even for the same or similar fluid types,
correlations developed from specific experimental data sets with fitted constants fail
to adequately predict data sets from other tests or operating conditions, something
that is not surprising. For horizontal flows, the only correlation that was able to give
a fair result was that of Premoli et al. (1971)Premoli et al. .

4The correlation is expressed in the EPRI booklet in terms of other non-dimensional numbers; the
Ishii and Mishima version is the one presented here.
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Coddington and Macian (2002) compared the 13 best performing DF model
correlations (selected from a broader comparison of correlations) using void frac-
tion data from rod bundle, level swell and boil-off experiments performed at various
(mainly nuclear-related) experimental facilities in Europe, Japan and the USA. The
pressure and mass fluxes of the analysed experiments ranged from atmospheric to
150 bar and from 1 to 2000 kg m−2s−1. Their results are mainly concerned with the
performance of the correlations when used in the so-called “system codes” (used in
the nuclear industry). Comparisons with transient void fraction data were also made
and showed that it is even possible to use a DF approach for the analysis of
moderately rapid transients. A point that was confirmed by this work and should be
keep in mind is that, according to Eq. (5.4.11) high, fixed values of the distribution
coefficient preclude correlations from predicting high void fraction values (e.g.
C0 = 1.2 will limit <eG> to less than b/1.2) that are, however, physically present
under certain conditions. Somewhat surprisingly an old and not much published,
very simple correlation (Dix 1971) for C0, combined with a proposition for the drift
velocity by Lahey and Moody (1977) predicted the (limited) data that Coddington
and Macian used as well as the Chexall-Lellouche, much more sophisticated cor-
relation that requires, rather extensive computation work to evaluate. According to
Dix (1971) and Lahey and Moody (1977)

C0 ¼ jGh i
jh i 1þ jh i

jGh i � 1
� � qG

qL

� 	0:10
B@

1
CA; UGj ¼ � 2:9

g Dq r
q2L

� �1=4

;

where the sign of UGj is dictated by the flow orientation (+ for upwards).
For vertical flows, always according to Woldesemayat and Ghajar, the very

simple drift flux correlation by Toshiba (Coddington and Macian 2002)

C0 ¼ 1:08; UGj ¼ 0:45;

also produced good results. Overall, Woldesemayat and Ghajar recommend six
correlations for void fraction in horizontal and upward inclined pipes. These are the
following correlations: the Toshiba correlation just mentioned; the simple “Rouhani
I” (Rouhani and Axelsson 1970; Rouhani 1984), with C0 = 1 + 0.2 (1 − x) and UGj

given by Eq. (5.5.2) with the coefficient set to 1.18; the Dix correlation mentioned
above; the Hughmark (1962); the Premoli et al. (1971) given above that was also
the top-ranking one in a comparison reported by Hewitt (1985); and the Filimonov
et al. (1957). The predictions were capturing about 80% of all data points correctly
within a 15% error. The comparisons did not differentiate significantly the
top-performing correlations over all aspects of the problem (fluids, pipe inclination,
sets of experimental data used, etc.) and the interested reader should look carefully
into the original paper for the numerous details provided. It was confirmed that the
drift flux analysis method is a powerful tool in developing void fraction correlations
as well as analysing experimental data.
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5.7 Correlations for Horizontal or Inclined Pipes

Horizontal pipes are obviously of interest to the oil and gas industries.
Large-diameter pipes are the main interest and the literature deals with liquid
holdup rather than void fraction. The volume fraction of the liquid phase is the
homogeneous liquid fraction k defined as

k �
_QL

_Q
¼

_QL

_QL þ _QG
¼ jLh i

jLh iþ jGh i :

The Gas-To-Oil ratio, GOR, is the ratio of the volumetric flow rates of the two
phases,

GOR �
_QG

_QL
; GOR ¼ 1� k

k
:

The GOR is often expressed in practical units of “standard cubic feet of gas per
barrel of oil,” scf/STB. A standard cubic foot is the volume of gas at conditions of
0 °C and 1 atmosphere and is equal to 0.02832 standard m3. A barrel is equal to
0.15899 m3. Thus 1 scf/STB = 0.178 m3/m3 (under standard temperature and
pressure).

The classical work in this area, aiming at correlations applicable without par-
ticular knowledge of the flow regime, will be briefly reviewed here. After the period
of the works cited here, the interest shifted to flow regime mechanistic modelling.

Chen and Spedding (1983) reviewed the methods available for predicting holdup
in horizontal pipes. These can be classified in general categories according to the
form of the equation used. Chen and Spedding conclude that there is a form that is
most suitable for each family of flow patterns: For stratified and annular flows they
recommend use of correlation forms proposed by Butterworth (1975), using
property groupings reminiscent of the Lockhart–Martinelli (1949) Xtt factor:

eLh i
eGh i ¼ K

jGh i
jLh i

� �a qG
qL

� �b lG
lL

� �c

; ð5:6:1Þ

where K, a, b, and c are empirical constants depending on the range of <eL>/<eG>
values, tabulated by Chen and Spedding (1983). A simpler form of Eq. (5.6.1) is

eLh i
eGh i ¼ K

jGh i
jLh i

� �a

:

For slug flow, data are described best by a drift-flux model (or Armand 1946)
type equation:
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eGh i
eLh i ¼

1

0:2þ 1:2 jLh i
jGh i

:

The Chexal and Lellouche drift-flux correlation described in Sect. 5.5.1 is also
applicable to horizontal flows.

5.7.1 Void Fraction Correlations for Inclined Pipes

Most of the published void fraction (or holdup) correlations and models, do not
account explicitly for pipe inclination. Gregory (1975) has reviewed holdup cor-
relations suitable for inclined pipes available up to 1975. Beggs and Brill (1973)
conducted systematic investigations of liquid holdup and pressure drop in inclined
pipes. The trends obtained in their measured values of the liquid holdup are sket-
ched versus the angle of inclination from horizontal for various values of the
homogeneous volume flow fraction k in Fig. 5.11. One observes a large variation of
the holdup with angle. For upward inclined pipes the holdup is always greater than
or equal to that occurring in a horizontal pipe.

Beggs and Brill (1973) propose a method for estimating the liquid holdup in
inclined pipes based on correction factors applied to the homogeneous liquid
fraction k:

eLh i ¼ A ka Frb W; ð5:6:2Þ

where Fr is a Froude number defined using the homogeneous mixture velocity,
uhom = <j>

Fr ¼ u2hom
gD

Fig. 5.11 Trends of the
liquid holdup with pipe
inclination according to
Beggs and Brill (1973)
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and the constants A, a, and b are given by expressions that vary according to the
flow regime (given in the original paper). The data were segregated according to the
flow regime using criteria developed by the authors. Correlations were then derived
for each group of data. For consistency, one should be using the same flow regime
determination criteria while using the correlations. The inclination factor W corrects
the holdup for the angle of inclination from the horizontal b and has the general
form

W ¼ 1þCðsin/� 1
3
sin3 /Þ; / � 1:8b:

The parameter C is again a function of flow regime and flow direction, it is also
given in terms of a “liquid velocity number” Lv:

Lv ¼ UsL
qL
gr

� �1=4

: ð5:6:3Þ

Certain comparisons of the Beggs and Brill correlation and recent data from
large pipelines indicate considerable overpredictions of holdup. More recent data
were correlated by Mukherjee and Brill (Mukherjee 1979) using linear regression
analysis as follows:

eLh i ¼ exp C1 þC2 sin bþC3 sin2 bþC4N2
L


 �GvC5

LvC6

� �
;

where Lv is given by Eq. (5.6.3) above, while the “gas velocity number” is

Gv ¼ UsG
qL
gr

� �1=4

and the “liquid viscosity number” NL is given by

NL ¼ lL
1

qLr3

� �1=4

:

The regression coefficients are given in tabular form by Mukherjee (1979). For
consistency, the flow regimes should be determined using the Mukherjee and Brill
methods also (Mukherjee 1979).
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5.7.2 Mechanistic Models Based on Two-Fluid Formulation

In a way very similar to the one presented in Sect. 4.5.1 of Chap.4, one can write
the momentum conservation equations for the two phases in stratified horizontal or
inclined flow. If closure laws for the interfacial and wall shear are available, the
equations can be solved to obtain the height of the liquid, i.e. the liquid holdup. An
early example of this approach is the work of Modisette (1983). The main difficulty
lies in formulating the proper expression for the interfacial shear.
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Chapter 6
Pressure Drop—Empirical Methods

George Yadigaroglu

6.1 Introduction

The estimation of the pressure drop, as well as of the void fraction discussed in the
previous chapter, is one of the main concerns in two-phase flow design and anal-
ysis. Seventy years after the pioneering work of Martinelli et al. (1944) and fol-
lowing a very large number of publications on the subject, there are still no
completely satisfactory procedures and it seems that not much further progress is
likely to be made. Indeed, we have probably reached the point where, in spite of the
fact that the influence of the main parameters affecting the pressure gradient and the
void fraction is well understood and can be modelled with sufficient accuracy, a
number of secondary variables (e.g. flow entrance conditions) remain unquantifi-
able. The effect of these is small but contributes to the scatter of the data around the
analytical predictions. Thus, precision of the order of 10–20% in the estimations
should be considered good. One should recall that, even for the single-phase-flow,
pressure gradient errors of that order of magnitude are not uncommon.

As already noted in Chap. 5, quite different methods are used in the oil-and-gas
and in the thermal and nuclear engineering industries; the interest in the oil-and-gas
industry is centred around different fluids and much larger-diameter and longer
pipes. This chapter is again mainly devoted to the thermal/nuclear applications, but
a separate section at the end reviews the main works in the oil-and-gas area.

We recall that the pressure gradient is the rate of change of the static pressure1

with distance along a duct (i.e. the slope of the static pressure profile along the duct,
dp/dz). In practice, it is measured as a finite pressure difference between two wall
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1we recall that the static pressure is different from the total pressure, i.e. the pressure measured
where the fluid is brought to rest.
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pressure taps spaced along the test section. These cannot be placed too closely, as
the difference in the signal would be too small to measure accurately, and not too
far so that a local-average gradient can be obtained. Details of pressure measure-
ment procedures and equipment are given by Chexal et al. (1999). Pressure gradient
measurements should be conducted for fully developed flow, though it should be
noted that reaching fully developed flow under two-phase conditions takes a longer
pipe length than for single phase flow.

In this chapter we are mainly concerned with two-phase pressure drop in
straight, constant-area channels, except for a brief section at the end regarding flow
singularities. For more complex situations, the reader is referred to the specialized
literature, e.g. Hetsroni (1982).

6.2 The Pressure Gradient in Two-Phase Flow

The approach that will be followed here for calculating pressure drop is the tra-
ditional, empirical one, based on mixture models. Although the phenomenological
or mechanistic approach discussed in another volume may be scientifically more
satisfying, it should be reminded that there is still a large measure of empiricism in
that approach also: the flow-pattern related mechanistic models depend themselves
on empirical relationships, although these may be for more fundamental quantities
such as wall friction, interfacial friction, etc. that may be difficult to estimate or
measure, however. The empirical models are still widely used in industry, and are
incorporated into the “system” codes used for nuclear power plant or pipeline
analysis.

The methods used to provide the necessary corresponding closure laws (wall
friction) in two-fluid models and codes will be discussed elsewhere. The closure
laws needed to complete the mixture momentum conservation equation are
expressions for the two-phase friction factor (determining the shear forces acting
between the wall and the mixture), the subject of this chapter, and for the void
fraction.

A large number of the available methods and correlations were developed for or
using data from adiabatic tests. There are indeed not very important differences
regarding the frictional pressure gradient between adiabatic two-component systems
and diabatic single-component systems such as steam generators. It appears that the
effects of bulk boiling on the frictional pressure gradient are minor; most of the
increase in pressure drop can be explained in terms of the increased velocities in
two-phase flow, rather than an increase of the wall friction per se due to the
nucleation of bubbles at the wall, etc. This explains why, with few exceptions, most
of the procedures and correlations do not make this distinction. In the case of
subcooled boiling, however, the presence of bubbles at and near the wall has a
dominant effect on pressure drop.
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The gravity term obviously depends on the direction of the channel. The
influence of channel orientation on the frictional and acceleration components is
often, but not always, as we will see later, ignored.

We will start by repeating here the mixture momentum conservation equation,
developed in Chap. 2, Eq. (2.5.4):

@

@t
_m þ 1

A
@

@z
A qL 1� eh i uLh i2L þ qG eh i uGh i2G
� �

¼ � @p
@z

þ g qh i cos h� Pwsw
A
ð6:2:1Þ

We are not going to be concerned with the first term on the left side of
Eq. (6.2.1). This term accounts for the rate of change of momentum within the
infinitesimal control volume considered. It is present during transients only; it is not
important, except for violent changes in flow rate. For steady state situations,
Eq. (6.2.1) can be rearranged as follows:

� dp
dz

¼ Pwsw
A

þ 1
A
d
dz

A qL 1� eh i uLh i2L þ qG eh i uGh i2G
� �

� g qh i cos h ð6:2:2Þ

where <q> denotes the two-phase density,

qh i ¼ qL 1� eh iþ qG eh i ð6:2:3Þ

The three terms on the right side of Eq. (6.2.2) are usually identified as the
partial, frictional, accelerational (or acceleration), and gravitational pressure gra-
dients, respectively. Similar terms appear also in the momentum equation for
one-dimensional single-phase flow. In this case, however, the calculation of the
gravity head and of the acceleration term are straightforward. In fact, the acceler-
ation term is often small or negligible in many single-phase flow situations, as the
density does not change drastically. This is not the case in two-phase flow, but these
two terms can be calculated if the void fraction (or the mixture density) are known.
The frictional part of the pressure gradient will require some additional modelling.

The methods presented in the following section for calculating the three com-
ponents of the pressure gradient are applicable in general, without explicitly
accounting for the prevailing particular flow regime. Any such dependence is im-
plicit in the correlations used; indeed, the same variables (the geometry, the mass
flux, the pressure and the local quality) determine both the flow regime and the
corresponding void fraction and pressure drop as already stated in the preceding
chapters. Flow-regime specific models are also available but may be often avoided
since they require, as an additional step, the determination of the flow regime first;
these phenomenological models will be treated in another volume.
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6.3 Gravitational Pressure Gradient

The gravitational pressure gradient, represented by the last term of Eq. (6.2.2), is
calculated in a straightforward way provided that the two-phase density <q> is
known. The models available for calculating the average void fraction <e> needed
for calculating <q> were the object of Chap. 5.

In the case of homogeneous flow, the mixture density is given simply by

qh i¼ 1
v
¼ 1

vL þ xvLG
ð6:3:1Þ

as already noted in Chap. 5 and is readily available to use if the quality is known. If
the flow is not homogeneous, the density and the gravitational gradient can be
calculated using Eq. (6.2.3) for the density and an appropriate void fraction
correlation.

6.4 Accelerational Pressure Gradient

The accelerational component of the pressure gradient is given by the second term
on the right side of Eq. (6.2.2). This term is generated by the spatial acceleration of
the flow because of changes in the average density. Such changes might be due to
heat addition, to vaporization, or to flashing, (i.e. to vapour generation due to a
reduction of the pressure level rather than heat addition).

In the case of homogeneous flow, and for a channel having a constant
cross-section A, this term takes the simple form

� dp
dz

� �
ac
¼ _m2 dv

dz
ð6:4:1Þ

If the fluid properties remain approximately constant along the channel (the case
of high-pressure systems, where the pressure drop is relatively small compared to
the absolute system pressure), and we further assume thermal equilibrium between
the phases, it can be easily shown that

� dp
dz

� �
ac
¼ _m

vLG q0

AhLG
; vLG � vG � vL; hLG � hG � hL ð6:4:2Þ

Thus the accelerational pressure gradient can be easily calculated in terms of the
mass flux, the total local linear heat addition rate q', and the fluid properties.

With a separated-flow model, we find
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� dp
dz

� �
ac
¼ _m2 d

dz
ð1� xÞ2
1� eh iqL

þ x2

eh iqG

 !
¼ _m

dv0

dz
ð6:4:3Þ

where v0 is the notation for the “momentum specific volume,” defined already by
Eq. (2.5.6) in Chap. 2.

The integral of the accelerational gradient, i.e. the acceleration pressure drop
from inlet to some point downstream, can be easily evaluated. Indeed, the
expressions for the accelerational gradient, Eqs. (6.4.1) or (6.4.3), involve exact
differentials and therefore only the inlet and exit values of the specific volumes v or
v0 are needed.

Since the exact radial velocity and void fraction distributions in the channel
cross-section are not taken into account for the calculation of the accelerational
gradient (see the discussion in Sect. 2.4.2 of Chap. 2), both Eqs. (6.4.1) and (6.4.3)
are approximate. The separated flow model generally underestimates the acceler-
ation effects, while the homogeneous model tends to overestimate them. In practice,
the homogeneous model was often found to yield better results.

6.5 Frictional Pressure Gradient

As noted above, the calculation of the two-phase frictional pressure gradient
requires some special modelling; this is the object of the following sections.

6.5.1 Parallel with Single-Phase Flow Situation

We start by recalling the situation in single-phase flow where the frictional pressure
gradient is function of the fluid properties, the channel hydraulic diameter and wall
roughness, and flow velocity:

� dp
dz

� �
fr;1ph

¼ 4f
D
qu2

2
¼ 4f

D
_m2

2q
ð6:5:1Þ

where u is the cross-sectional average or “bulk” velocity. The minus sign on the left
side reminds us that the frictional pressure gradient is negative. The Reynolds
number Re determines the flow regime as being either laminar or turbulent. The
simplest, typical expressions for the Fannning friction factor f defined by
Eq. (6.5.1) have the form

f ¼ CRe�m ð6:5:2Þ
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where C and m are constants (e.g. C = 0.046 and m = 0.2 for turbulent flow and
C = 16, m = 1 for laminar flow), and

Re ¼ quD
l

¼ _mD
l

ð6:5:3Þ

The situation is much more complex in two-phase flow: the flow regimes depend
in a complex way on several system and flow parameters. The momentum
exchanges between the phases and the properties of both phases influence the
pressure gradient.

6.5.2 Two-Phase Flow Situation

The effects of wall shear in two-phase flow can be evaluated by an extension of the
well-established methods used for single-phase flows, i.e. by the use of a friction
factor and an appropriate mixture velocity and properties. This is the approach
usually taken in connection with homogeneous flow models. Otherwise, the pres-
sure gradient is usually obtained by computing a reference pressure gradient for a
corresponding single-phase flow and correcting it with a two-phase multiplier,
obtained from correlation of experimental data. The value of the two-phase mul-
tiplier can be much larger than one.

The influence of the wall roughness on two-phase pressure drop is probably
flow-pattern specific. In the absence of better information, it is usual practice to
account for the effects of wall roughness through its usual influence on the reference
single-phase friction factor. Similarly, the geometry of the cross-sectional area is
accounted for through use of the channel hydraulic diameter, as is done in
single-phase flow.

6.5.3 The Homogeneous-Flow Model

For two-phase flows, the logical values of q and u in Eq. (6.5.1) are the two-phase,
homogeneous mixture density <q>hom and velocity <u>hom = <j> and the frictional
pressure gradient can be calculated as

� dp
dz

� �
fr;2p

¼ 4f
D

qh ihom uh i2hom
2

¼ 4f
D

_m2

2 qh ihom
1

qh ihom
¼ 1� x

qL
þ x

qG
; uh ihom¼

_m
qh ihom

¼ jh i
ð6:5:4Þ
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Comparing Eqs. (6.5.1) and (6.5.4) we see that the two-phase effect enters the
formulation as a density effect. The question is raised, however, as to how the value
of the friction factor should be computed; this is the only remaining degree of
freedom. Most of the industrial two-phase flows are likely to be turbulent and the
friction factor is generally obtained by an equation of the type of Eq. (6.5.2); this
requires definition of a mixture viscosity. There is no general agreement regarding
this choice. Practically all possibilities have been tried for the two-phase viscosity
l:

1
l ¼ x

lG
þ 1�x

lL
McAdams (1942)

l ¼ xlG þð1� xÞlL Cicchitti (1960)
l ¼ 1� eh ilL þ eh ilG Dukler (1964)
l ¼ lL Owens (1961)

ð6:5:5Þ

As the value of l appears at a low power (usually m = 0.2 to 0.25 in Eq. (6.5.2)
for the prevailing turbulent flows), the formulas listed above do not yield drastically
different results. Wallis (1969) goes further and recommends the use of f = 0.005 as
a reasonable average value for most cases.

More recently Beattie and Whalley (1982) proposed the following expression,
which is based on theoretical considerations including the effect of flow patterns,

l ¼ lLð1� bÞð1þ 2:5bÞþ lGb

where b is the homogeneous void fraction. They claim that their simple method
yields better results than most other available methods. The Owens choice seems
also to be a simple, good one that also makes good physical sense: it is the liquid
that is, most of the time, in contact with the wall.

Another advantage of the homogeneous model, beyond its inherent simplicity, is
that as an analytic expression for the quality and consequently for <q> is available,
when the fluid properties can be considered constant along the channel, Eq. (6.5.4)
can often be analytically integrated to yield the pressure profile along the channel.

6.5.4 Two-Phase-Multiplier Methods for the Frictional
Pressure Gradient

It has been customary, following the seminal work of Martinelli (Martinelli et al.
1944; Lockhart and Martinelli 1949) to relate the two-phase frictional pressure
gradient to some reference single-phase value through a two-phase multiplier, Ф2.

The effects of hydraulic diameter and relative wall roughness are implicitly
included in the reference single-phase pressure gradient, while those of the fluid
properties and mass flux are only partly accounted for. The multiplier, which is
mainly a function of quality and physical properties (density and viscosity) is
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occasionally corrected for additional mass-flux and other effects, as we will see
below.

Two distinct kinds of reference frictional gradients are in use. The first, distin-
guished in the literature by the subscripts g (or G) and f (or L), for gas and liquid,
respectively, or alternatively by GP and LP (the notation used here and already
introduced in Chap. 1, Sect. 1.10), are calculated assuming that only one of the two
phases is flowing alone in the channel:

� dp
dz

� �
frLP

¼ 4fLP
D

_m2ð1� xÞ2
2qL

; � dp
dz

� �
frGP

¼ 4fGP
D

_m2x2

2qG
ð6:5:6Þ

where the friction factors are calculated on the basis of the following Reynolds
numbers:

ReLP � _m ð1� xÞD
lL

and ReGP � _mxD
lG

ð6:5:7Þ

The second set of reference frictional pressure gradients, usually distinguished in
the literature by the subscripts LO and GO (or occasionally by fo and go) is
calculated assuming that the entire two-phase mass flow rate is flowing as a single
phase in the channel:

� dp
dz

� �
frLO

¼ 4fLO
D

_m2

2qL
; � dp

dz

� �
frGO

¼ 4fGO
D

_m2

2qG
ð6:5:8Þ

with the friction factors evaluated at the following Reynolds numbers:

ReLO ¼ _mD
lL

; ReGO ¼ _mD
lG

ð6:5:9Þ

Obviously the frictional pressure gradient must be the same, no matter what the
reference pressure gradient is. Thus, the two-phase frictional pressure gradient is
given by the following expressions, which also define the various multipliers used:

dp
dz

� �
fr2ph

¼ dp
dz

� �
frLP

U2
LP ¼ dp

dz

� �
frGP

U2
GP ¼ dp

dz

� �
frLO

U2
LO ¼ dp

dz

� �
frGO

U2
GO

If the friction factors are given by Eq. (6.5.2) then

dp
dz

h i
fr LP

dp
dz

h i
fr LO

¼ U2
LO

U2
LP

¼ ð1� xÞ2�m;

dp
dz

h i
fr GP

dp
dz

h i
fr GO

¼ U2
GO

U2
GP

¼ x2�m ð6:5:10Þ

178 G. Yadigaroglu



Thus the two definitions of the multiplier can be used interchangeably. When
x changes along the channel, the second definition offers computational advantages
since the reference pressure gradient remains constant (except for changes in fluid
properties). The definition of all these different but essentially equivalent multipliers
can lead to confusion and the reader of the literature should be careful since the
various contributors are not always using consistent notation and defining their
approach carefully.

Note that for the simple homogeneous flow model with l = lL,

U2
LO ¼ 1þ x

qL
qG

� 1
� �

ð6:5:11Þ

6.5.5 The Martinelli et al. Method

This approach (Martinelli et al. 1944) has formed the basis for most of the corre-
lation work that followed. It is based on a physical model of the two phases flowing
separately; this model is not really defensible, but the resulting method has been
shown to work in practice well. The important step taken by Martinelli was to
correlate the multiplier (and the void fraction) in terms of only the square root of the
ratio of the two pressure gradients:

X �
dp
dz

h i
fr LP

dp
dz

h i
fr GP

2
64

3
75
1=2

¼ UGP

ULP
ð6:5:12Þ

The useful qualities of this parameter probably stem from the fact that it contains
the relevant geometrical and fluid variables with the same exponents as in the
single-phase classical pressure drop formula. Using the appropriate expressions for
the reference pressure gradients, Eq. (6.5.6), for the friction factors, Eq. (6.5.2), and
the definition of the quality,x ¼ _mG= _m, we can compute the general expression for
X2:

X2 ¼ CL

CG

1� x
x

� �2qG
qL

RemGP
RenLP

¼ CL

CG

ð1� xÞ2�n

x2�m

qG
qL

lnL
lmG

ðpDÞn�m ð6:5:13Þ

where m and n are the exponents of the Reynolds number in Eq. (6.5.2) for the gas
and liquid friction factors, and CG and CL the coefficients the equations, respec-
tively. Four different cases are considered according to the flow regime (turbulent of
laminar) for each phase. For each case the values of C and m (or n) and the resulting
definition of X are different. The corresponding values and the limiting values of the
Reynolds numbers can be found in Lockhart and Martinelli (1949). For the most
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common, turbulent-turbulent case we find the expression already introduced in
Chap. 1, Sect. 1.10:

Xtt ¼ 1� x
x

� �0:9 qG
qL

� �0:5 lL
lG

� �0:1
ð6:5:14Þ

As noted in Chap. 1, the Martinelli parameter Xtt has also found applications in
other areas of two-phase flow and boiling heat transfer, for example, in
forced-convection vaporization.

For a given liquid-vapour mixture of a single component at saturation condi-
tions, Xtt is a function of local quality and pressure only. The figure in the Appendix
to this chapter can be used to rapidly estimate the dimensionless property group
contained in Xtt for various fluids, facilitating its computation.

The Lockhart-Martinelli correlation for the frictional multiplier

Lockhart and Martinelli (1949) correlated a variety of void fraction and pressure
drop data for two-component isothermal mixtures flowing in horizontal pipes and
arrived at values of <e> and U as functions of X that are still widely used. The
values and plots of the multipliers and of the void fraction, as proposed by Lockhart
and Martinelli separately for each combination of regimes, can be found in the
original work and in most standard reference works. A simple expression
approximating fairly well the Lockhart and Martinelli values for U2 (for the
turbulent-L/turbulent-G case) was proposed by McFarlane (1966):

U2
LPtt ¼ 1þ 20

Xtt
þ 1

X2
tt

ð6:5:15Þ

The U2
LPtt values are accurate to within 10–30% for Xtt between 0.01 and 1 and

within a few percent for higher values.

Integral pressure drop correlations

At a given system pressure level (i.e. neglecting the variations of the properties
along the channel with pressure), the total pressure drop from the bulk boiling
boundary (point where x = 0) to the exit of the heated length (x = xe) can be
estimated by integration of the pressure gradient, if the variation of the quality along
the channel is known. When the variation of the quality is linear, i.e. for a uniform
heat input distribution and no significant flashing, we obtain

Dpfr2u
DpLO

¼ U2
LO ¼ 1

xe

Z xe

0
U2

LPð1� xÞ2�mdx

where DpLO is the pressure drop calculated assuming that the entire two-phase flow
is flowing as liquid. This form of the equation is useful for practical applications
(provided, as noted above, that the variation of the quality is linear or nearly linear).
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The values of the integral can be calculated once and for all, since, for a given fluid,
these are functions of the saturation pressure only. When the heat input distribution
is not uniform and the variation of the properties must be accounted for, stepwise
numerical integration of the momentum equation is necessary using some corre-
lation for the local pressure gradient.

Thom (1964) has correlated high-pressure boiling-water data (p > 17 bar or
250 psia, x = 0.1 to 1.0). He has postulated that the velocity ratio S is a function of
system pressure only (which is clearly an oversimplification); these values of
S where then used to calculate the gravity and acceleration pressure drops using
Eqs. (6.3.1) and (6.4.3). The frictional pressure drop was correlated in terms of an
integral multiplier. Using Thom’s notations, the pressure gradient equation,
Eq. (6.2.2), integrated from the beginning of the boiling length to the point where
x = xe, assuming constant properties, is written in integral form as

Dp ¼ gqLL cos h r4 þDpLO r3 � _m2

qL
r2 ð6:5:16Þ

For a constant-quality channel,

Dp ¼ g qh iL cos hþDpLO r5

where L is the boiling length. The coefficients r of his correlations are plotted in
figures presented by Thom as functions of the exit quality and of the pressure and
are also tabulated in the original work. The density <q> in Eq. (6.5.16) must be
calculated using Thom’s S values. The graphs are convenient to use to rapidly
obtain an estimate of the void fraction in a boiling channel without lengthy com-
putations; they can be found in the Appendix to this chapter (unfortunately in the
original British units).

6.5.6 The Friedel Correlation

Friedel (1979) assembled a large data bank containing 25,000 pressure drop points
and obtained a correlation based on these as follows:

For horizontal and vertical upflow:

U2
LO ¼ Aþ 3:43 x0:685ð1� xÞ0:24 qL

qG

� �0:8 lG
lL

� �0:22

1� lG
lL

� �0:89

Fr�0:047
L We�0:0334

L

ð6:5:17Þ

An improved correlation for vertical downflow (Friedel 1984) is given by:
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U2
LO ¼ Aþ 5:7 x0:7ð1� xÞ0:14 qL

qG

� �0:85 lG
lL

� �0:36

1� lG
lL

� �0:2

Fr�0:09
L We�0:007

L

ð6:5:18Þ

with

A ¼ ð1� xÞ2 þ x2
qLfGO
qGfLO

� �

FrL � _m2

gDq2L
, WeL � _m2D

qLr

with

Fr � _m2

gD qh i2hom
; We � _m2D

qh ihomr
;

1
qh ihom

¼ x
qG

þ 1� x
qL

where <q>hom in Fr and We is calculated with the homogeneous flow
assumption. Inclusion of the surface tension via the Weber number into the cor-
relation is apparently an improvement. One notes that the effect of the surface
tension is, however, weak as the exponents of Fr and We are small.

More recent correlations for the frictional pressure gradient

Many frictional pressure drop correlations have been proposed. Baroczy (1965)
developed a broadly based correlation using data for boiling water, water-air, and
mercury-nitrogen flows. The correlation was tested satisfactorily with a variety of
other data including some boiling liquid-metal data. His method may constitute an
improvement over the Lockhart-Martinelli approach as it replaces Xtt by two sep-
arate correlating parameters: the quality, x, and a property index C,

1

C2 �
qG
qL

lL
lG

� �0:2
ð6:5:19Þ

However, Baroczy introduced also a correction to the multiplier value for mass
flux having a very complex graphical form, making it difficult to use and con-
ceptually “unattractive.” The correlation produces, however, good results (Chexal
et al. 1999).

Chisholm (1967) has shown that Eq. (6.5.15) for the frictional multiplier can be
derived analytically, provided the exponent of the viscosity in the pressure gradient
expression, (the m in Eq. (6.5.2)) is taken as zero. This gives reassurance regarding
the use of an equation having that form for correlating frictional pressure drop data.
Using the property index C proposed earlier by Baroczy (1965), Chisholm (1973)
arrives at the following formulation for the local frictional pressure gradient
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U2
LO ¼ 1þ ðC2 - 1Þ B xð1� xÞ½ �2�m

2 þ x2�m
h i

; B ¼ BðC; _mÞ ð6:5:20Þ

where m is the coefficient of the Reynolds number in the friction factor formula,
Eq. (6.5.2); usually, m = 0.2. Chisholm (1973) recommends the following
expressions for B (for smooth tubes) according to the mass flux and the property
index:

C _m (kg/m2 s) B

C < 9.5 <500 4.8

500 < _m < 1900 2400= _m

>1900 55= _m0:5

9.5 < C < 28 <600 520=ðC _m0:5Þ
>600 21=C

C > 28 15 000=ðC2 _m0:5Þ

Approach based on a two-phase friction factor

A new approach, not based on the use of the conventional reference pressure
gradient and the two-phase multiplier, was more recently presented by Shannak
(2008) who correlated directly a two-phase friction factor in the expression for the
frictional gradient, defined as:

dp
dz

� �
fr 2p

¼ f2p
D

_m2

2 qh ihom

(note that he uses the Weisbach friction factor which is four times the Fanning
friction factor used usually in this volume; there is no factor 4 in the equation).
Shannak defines a two-phase Reynolds number as the ratio of the sum of the
“inertial forces” of each phase to that of the sum of the “viscous forces” of each
phase (apparently using the volumetric fluxes or superficial velocities as “velocity
of the phase”):

Re2p �
qG jGh i2 þ qL jLh i2
� �

D2

lG jGh iþ lL jLh ið ÞD ¼
_mD x2 þð1� xÞ2 qG

qL

� �
lGxþ lLð1� xÞ qGqL

The two-phase friction factor is then correlated in terms of the two-phase
Reynolds number as:

1ffiffiffiffiffi
f2p

p ¼ �2 log
1

3:7065
er
D

� �
� 5:0452

Re2p
log

1
1:2857

er
D

� �1:1098
þ 5:8506

Re0:89812p

 !" #

ð6:5:21Þ
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where er=D is the relative pipe roughness. The correlation was obtained with the
author’s relatively low-pressure (5–14 bar), moderate mass flux (200–
1500 kg/m2s), air-water data, but was tested against other experimental data from
the literature (the 16000 experimental data points from Friedel (1979)) also against
the most common methods (including the Friedel (1979), Lockhart and Martinelli
(1949) and other correlations). The author’s experiments were conducted in a
horizontal test section 9.6 m in length and a vertical test section with a length of
5.9 m; he does not state how he evaluated the gravitational component of the
pressure gradient for the vertical test section data. Shannak concludes that his
correlation was the best-fitting one, followed by the Friedel (1979) correlation. The
author also notes that the wall roughness becomes important at high mass fluxes.

6.5.7 The EPRI Chexal-Harrison Approach

The EPRI group that had produced the EPRI Chexal-Lellouche correlation for void
fraction continued their work and produced a correlation for the two-phase pressure
drop (Chexal et al. 1997), the Chexal-Harrison (1999) set of correlations. These are,
however, mainly intended for use in system codes and therefore provide (for both
vertical and horizontal flows) the mixture-wall shear but also the shear between
each phase and the wall, as well as the interfacial shear (the last three clearly needed
in the two-fluid formulation discussed in Chap. 2).

The wall-mixture frictional two-phase pressure gradient includes contributions
from situations where the liquid or the gas on the wall “dominate” and has the
general form:

dp
dz

� �
fr wall

¼ dp
dz

� �
l
1þ fw LOs

fw LO

Y
i¼1�6

Fl i

" #
Fl þ dp

dz

� �
g
1þ fwGOs

fwGO

Y
i¼1�6

Fg i

" #
Fg

ð6:5:22Þ

with a “mixed” definition of the reference pressure gradients

dp
dz

� �
k
¼ fw kO

qk jkh i2
2D

; k ¼ L;G

The friction factors are computed assuming that the entire mixture flows as one
phase (the “LO-GO” convention) while the term fw LOs=fw LO is the ratio of wall
friction factors with a smooth-wall and the real wall roughness, (a detail not con-
sidered in other correlations where simply the equivalent single-phase reference
friction factor is used). The coefficients Fki, k = l,g, appearing in the products in
Eq. (6.5.22) are functions of non-dimensional flow parameters, flow orientation
(horizontal-vertical), void fraction, and fluid properties. Finally, the weighting
factors Fk, k = l,g
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Fl ¼ 1� eð�Cl 10 eLh iÞ; Fg ¼ eð�Cg 10 eLh iÞ

provide the necessary weighting of the two phases in the sum of the two “domi-
nant” terms of Eq. (6.5.22) with exponentially decaying functions of the liquid
fraction. The coefficients Ck10 depend on flow orientation. The method distin-
guishes between heated and unheated channels, something that no other correlation
does. Great care was taken to provide smooth forms of the equations for use in
codes that “do not like” discontinuities. Implemented in system codes, the (very
complex) Chexal-Harrison approach produced results better than those from the
traditional correlations for diabatic flows, as shown in Fig. 6.1.

The useful publication by EPRI (Chexal et al. 1999) contains also a lot of
information on pressure drop, including discussion on measurement methods,
comparisons of the traditional correlations discussed above, a long discussion of the
single-phase friction factor, etc. It also includes the necessary software for the
implementation of the methods proposed on a CD-ROM.

6.6 Comparisons of Available Correlations

In determining the total pressure drop, one should try to calculate with the greatest
accuracy the dominant components. Gravity is dominant at low flow and low
quality; friction dominates at high mass flux and high quality, while acceleration is
important at high quality and low mass flux. Figure 6.2 shows the regions of
dominance of the three components in the mass-flux vs quality plane. This is
obviously a particular case and the figure may be quite different for other combi-
nations of fluids and conditions.

An important fact to keep in mind when comparing frictional pressure gradient
correlations is that their accuracy is obscured by the fact that a void fraction
correlation must be used first to extract the frictional gradient from the total mea-
sured pressure gradient (by subtracting the gravity and acceleration components)
and the results depend on the choice of the void fraction correlation used for this. In
principle, to be consistent, one should be using the same void fraction correlation as
the authors of the frictional-pressure-gradient correlation used, but it is often not
done so.

Several comparisons of the accuracy of available (void fraction and) frictional
pressure drop correlations have been published. Idsinga et al. (1977) assessed
pressure drop correlations for steam-water systems using over 3000 adiabatic, as
well as diabatic data points. Considering the total data bank, the four methods
exhibiting minimum prediction error were the homogeneous flow models of Owens
(1963) and of Cicchitti (1960)—see Sect. 6.5.3 on the Homogeneous Flow Model;
the Thom (1964); and the Baroczy (1965) correlations. The authors also present a
useful table listing the most successful correlations according to the quality, pres-
sure, and mass flux range.

6 Pressure Drop—Empirical Methods 185



Vijayan et al. (2000) compared pressure drop and void fraction correlations
using data from two-phase natural circulation loops; they recommend the Chexal
et al. (1997) correlation discussed in Chap. 5 for the void fraction and found that the
Lockhart-Martinelli correlation for void fraction discussed in this chapter gave the

Fig. 6.1 Comparisons of the
predictions of the
Chexal-Harrison model with
the predictions of the Baroczy
(1965) and Friedel (1979)
correlations made with a
diabatic data set containing
862 points. The correlations
were incorporated in system
codes for these comparisons.
The Baroczy-correlation
graphical correction factors
for the effect of the mass flux
were replaced by tables. ©
and courtesy of EPRI
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best results for the frictional pressure gradient in relation to their data base. One
conclusion that the reader gets in reading their paper is that there is no consistent
image regarding the “best correlation” for the frictional pressure gradient.

Beattie and Whalley (1982) discuss comparisons using an adiabatic data bank.
Very good results were obtained using the Baroczy (1965), the Friedel (1979)
(except for horizontal steam/water flows), and the Beattie and Whalley (1982)
correlations. The Lockhart-Martinelli (1949) correlation gave also good results for
non-steam/water flows.

In conclusion, it can be said, that correlations, such as the Chisholm (1973), the
Friedel (1979), and the Beattie and Whalley (1982) correlations have been “tuned”
with large enough data sets to insure an acceptable degree of accuracy in most
situations. It is interesting to note that simple correlations, such as that of Beattie
and Whalley, can yield good results. Some older correlations remain good over
their respective ranges: the Lockhart-Martinelli correlation for non-steam/water

Fig. 6.2 Contour map in the ð _m; xÞ plane showing the regions of dominance of the three
components of the total pressure gradient (FR denotes friction, GR gravity and AC acceleration).
The continuous lines and the black numbers indicate the ratio FR/GR; the dotted lines and the red
numbers the ratio AC/GR. Map produced for saturated water at 146 bar flowing in a 10 mm ID
pipe. The heat input used to produce the various conditions plotted was 27 kW/m. The
computations were performed with the homogeneous flow model
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flows, the Thom correlation for high-pressure steam-water flows. The Baroczy
(1965) correlation also yields generally good results.

Figure 6.1 shows the more recent comparisons of the Chexal-Harrison, Baroczy
and Friedel models; additional comparisons can be found in the booklet by Chexal
et al. (1999). Here the comparisons were systematically made using the
Chexal-Lellouche (Lellouche et al. 1997) correlation for the void fraction. The
Chexal-Harrison model that considers boiling seems to have some advantage over
the other two correlations.

6.7 Pressure Drop Work for Large and Inclined Pipes
Used in the Oil-and-Gas Industry

In Chap. 5 we had discussed the liquid holdup correlations of interest to the
oil-and-gas industry. We will do the same now for the pressure drop in large pipes
including inclined ones (pipelines). Practically all oil-well production involves
two-phase flow in pipelines.

Most of the reliable and complete experimental information regarding two-phase
flow in horizontal and inclined pipes has been obtained in the past with pipes of
relatively modest diameter (up to a few inches, at most). Data from actual-size
pipelines are relatively scarce and often proprietary and an important extrapolation
of knowledge obtained with small diameters to large diameters must be made. It is
only recently that some data from large-diameter pipeline testing facilities have
become available but it is likely to be proprietary, given the commercial interests
and the cost of producing such data.

Aggour and Al-Yousef (1996) made a comprehenive evaluation of pressure-drop
data sets and correlations, including cases of three component flow (oil, water, gas).
They concluded that the fairly old Beggs and Brill (1973) correlation provided the
best pressure predictions. However, an older correlation (Hagedorn and Brown
1964) was better for water cuts (ratio of water produced to the volume of total
liquids from an oil well) above 80% and another phenomenological model (Hasan
and Kabir 1988) for gas/oil mixtures in vertical oil wells was better for high
production rates. Ferguson and Spedding (1995) and Vijayan et al. (2000) provide
additional comparisons and make recommendations for the selection of methods.
The papers just quoted, as well as some other papers cited below provide a lot of
additional detailed information that is beyond our scope here.

Most of the published void fraction (or holdup) and frictional pressure gradient
correlations and models, do not account explicitly for pipe inclination. Gregory
(1975) has reviewed holdup correlations suitable for inclined pipes available up to
1975. Behnia (1991) compared several correlations with vertical flow data and
states that overall, the Beggs and Brill correlation produced the most accurate
results. The same conclusion was reached by Aggour and Al-Yousef (1996) who
made detailed comparisons with various data sets.
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The Beggs and Brill (1973) correlation was derived specifically for flow in
inclined pipes but it can be used for any inclination. It presents itself as a multiplier
of a reference frictional gradient calculated assuming homogeneous flow. The
homogenous friction factor fhom for the reference gradient is estimated using the
usual Moody chart and the following Reynolds number:

Re � _mD
lLkþ lGð1� kÞ

The frictional pressure gradient takes the form

dp
dz

� �
fr
¼ 4fhom

D
_m jh i
2

es

where the exponent s of the multiplier es is given by

1
s
¼ �0:0523þ 3:182 n� 0:8725 n2 þ 0:01853 n4

n

with n = lny with y ¼ k
eGðbÞh i2

where eGðbÞh i is the void fraction in the pipe with an inclination angle b.
Somewhere in the interval 1 < y < 1.2, s, as given by the equation above, becomes
unbounded and should be calculated from s ¼ ln ð2:2y� 1:2Þ.Thus one must
estimate first the liquid holdup, as presented in Sect. 5.6.1 of Chap. 5, and then use
it for estimating the frictional pressure gradient.

6.7.1 Experimental Data

Extensive data on the frictional pressure gradient in inclined pipes are presented by
Spedding et al. (1982, 2006), who also review previously available information.
Spedding et al. (1982) conclude that the effect of inclination is greatest at low flow
rates. This should not be surprising since at high flow rates the effects of gravity
become relatively less pronounced. The data of the authors are presented as plots of
the frictional velocity U*

U� �
ffiffiffiffiffi
sw
qL

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� dp
dz

				
fr

D
4qL

s

versus the total volumetric flux <j>. The plots also include flow regime boundaries,
as shown in Fig. 6.3 taken from their work. Examination of the two plots of
Fig. 6.3 confirms the great differences due to an upward inclination of only 2.75°.
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The authors also conclude that the frictional velocity clearly depends on the flow
regime in the pipe and that a correlation of the data for all flow regimes would
necessarily be inaccurate. Minimal frictional velocities are encountered in the
stratified regimes. The transition to large waves and to slug flow is accompanied by
a large increase in wall friction. The frictional velocity in downward flow is higher
than in the corresponding horizontal case.

The authors also note that negative frictional pressure losses were measured in
upward flow situations with low liquid flow rates. Correlations never predict such
negative values. The same observation was made earlier by Singh and Griffith
(1970) who studied slug flow in inclined pipes and noticed that one could have
liquid running down at the wall and still have net liquid flow up.

Fig. 6.3 Frictional velocity plotted against the total volumetric flux with the liquid volumetric
flux as a parameter. Air-water in 45.5 mm tube. (Spedding et al. 1982). Top 2.75° upwards
inclined pipe. Bottom horizontal pipe
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6.7.2 Pipeline Design

Two-phase flow problems encountered in power or nuclear engineering typically
involve the calculation of pressure drop and void fraction for vertical or horizontal
channels of given moderate dimensions (of the order of an inch) and for specified
quality and total flow rate. In the case of pipelines the engineer often faces an
optimization problem: the pipeline diameter capable of carrying a certain load under
minimal pressure drop conditions must be found. The pipe diameters are now much
larger (6–8 inches or 0.15 to 0.2 m for short pipelines, and up to 24–36 inches or
0.6 to 0.9 m for long-distance transport lines) and the pipeline often traverses hilly
terrain where there is a continuous variation of the inclination (Gregory et al. 1975).
The authors show that the total pressure drop calculated for a pipeline traversing
hilly terrain, at very low gas-to-oil ratios (GOR), decreases monotonically with
increasing pipe diameter, as expected. This is not the case, however, at higher
GORs: they found a broad minimum around 5 inches and the pressure loss does not
diminish much by increasing the diameter beyond this value.

According to the findings of Beggs and Brill (1973) presented above, for upward
inclined pipes the holdup is always greater than or equal to that occurring in a
horizontal pipe. Thus the liquid will have the tendency to accumulate in uphill
portions of the pipelines increasing the gravitational pressure drop.

A number of additional phenomena must also be considered in pipeline design,
including phase changes along the pipeline and the effects of dropping pressure on
the gas properties. Such phenomena are beyond the scope of these notes but can
easily be accounted for when a stepwise integration of the momentum equation
along the pipe is performed.

6.7.3 Mechanistic Models Based on Two-Fluid Formulation

As we have said in the preceding chapter on void fraction, one can write the
momentum conservation equations for the two phases in stratified horizontal or
inclined flow (see Sect. 4.5.1 of Chap. 4). If closure laws for the interfacial and wall
shear are available, the equations can be solved to obtain the void fraction (or,
equivalently the height of the liquid in the pipe) and then compute the frictional
pressure gradient. Examples of this approach are the works of Taitel and Dukler
(1976), Modisette (1983), Spedding and Hand (1997) and others. Mechanistic
models will be discussed in another volume as mentioned in the introduction.
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6.8 Two-Phase Pressure Drop in Singularities

All practical two-phase flow systems or pipe arrangements include “point singu-
larities” such as enlargements, contractions, bends, fitting, valves, instrumentation,
etc. For single-phase flow, there are well-established engineering methods to deal
with these local pressure losses. These are usually defined as shown in Fig. 6.4 for
the example of a sudden expansion: the local pressure loss is obtained by extrap-
olation of the pressure gradients on both sides of the discontinuity.

Let us recall first that in single-phase flow, the total pressure drop at the discon-
tinuity has a reversible part and a non-reversible one. The reversible part is due to the
acceleration/deceleration of the flow (the acceleration term in the momentum equa-
tion) and can be positive or negative. The irreversible part is always positive (a loss)
and is due to the transformation of mechanical energy into heat due to viscous dis-
sipation. It is often represented by a loss factor Kmultiplying the kinetic energy term:

Dplocal loss ¼ K
qu2

2
¼ K

_m2

2q

Often the K coefficient is expressed as “number of equivalent diameters” Neq, as
if the pipe had become locally longer,

K ¼ 4fLeq
D

¼ 4fNeq; Neq ¼ Leq
D

consistent with the formula for pressure drop in a straight pipe where the friction
factor depends on the Reynolds number:

Dpfr ¼ 4fL
D

qu2

2
; f ¼ f ðReÞ

In two-phase flow, the reversible loss is in principle the acceleration/deceleration
term of the momentum equation that we have discussed earlier, but the situation
gets complicated as the configuration of the flow before and after the discontinuity
may be different, and, e.g. the average void fraction may have changed or the two
phases may have been accelerated in different ways. This is a complex situation that
is not easily amenable to treatment. The simplest model, homogeneous flow, seems
often to be performing adequately, it has at least the advantage of simplicity.

Fig. 6.4 Definition by
extrapolation of the pressure
loss (p1 − p2) at a singularity;
example of a sudden
expansion
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The irreversible loss is often simply obtained by applying the homogeneous or
another two-phase multiplier to the local reference single-phase pressure loss. Beattie
(1973) reviews the subject and proposes definitions of the friction factor, of the
Reynolds number and of the multiplier according to the type of singularity and the
two-phase flow regime. The book by Chisholm (1983) also treats the subject and
proposes two-phase multipliers. Ahmed et al. (2007), Harshe et al. (1976), Murakami
and Shimizu (1973), Schmidt and Friedel (1997), Azzi et (1999) and Tapucu et al.
(1989) provide additional information on pressure losses caused by singularities.

Appendix

Variation of Baroczy’s property index with temperature for various fluids.
Conversion:°F = 32 + °C�9/5

The Thom (1964) multipliers r2 to r5 for estimating the pressure drop in a boiling
length Conversion bar to psia: 1 bar = 14.504 psia. Explanations in Sect. 6.5.4,
Eq. (6.5.16) for diabatic boiling flow and following one for adiabatic flow
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Appendix A
Tutorial

A.1 Recall of the Single-Phase Flow Conservations Equations

The single-phase flow conservation equations will be given here to facilitate the
introduction of the two-phase conservations equations in this volume.

A.1.1 The Conservation Equations for “Closed Systems”

In thermodynamics, a system, is a definite mass of material. We often refer to a
closed system or an isolated body to emphasize that there is no exchange of mass
between the closed system and its surroundings. Thus a closed system is a col-
lection of mass within prescribed boundaries.

Conservation laws can be written for a closed system and constitute the basis for
the solution of all thermodynamics, mechanics, and what engineers call
“thermal-hydraulics” problems (combination of heat transfer and fluid mechanics or
hydraulics). There are three fundamental conservation laws:

Conservation of mass
Newton's equation of motion, conservation of momentum
First law of thermodynamics, conservation of energy

The law of conservation of mass states that the mass within a closed system
remains constant. The volume of the system may of course change, like in the
example of a cylinder closed by a moving piston, or a balloon that is deformed. So
we write

M ¼ constant, or
dM
dt

¼ 0 ðA:1Þ

where M is the total mass in the system.
According to Newton's law of motion, or the law of conservation of momentum,

the sum of all the external forces applied on an isolated body produces an accel-
eration, i.e. a rate of change of its momentum (the product of its mass M times the
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velocity of its centre of mass U). Note that this is a vector equation, since both the
forces and the velocity have a direction:

∑F ⃗ ¼ d
dt
ðMU ⃗Þ ðA:2Þ

The first law of thermodynamics is a law ofconservation of energy and
expresses the interplay between heat, work and internal energy of a system. It states
that the heat added to a system, denoted here Q, minus the work done by the system
W on its surroundings is equal to the change of its “total” internal energy E° (total
here means: the sum of the intrinsic internal energy of the system—essentially its
heat content, plus its kinetic energy (related to its velocity), plus its potential energy
(related to its elevation about a ground level). Considering small changes (denoted
by the δ):

δQ� δW ¼ dE
◦ ðA:3Þ

We have written dE° instead of δE° to indicate that the change in total internal
energy depends only on the initial and final states of the system and is not
dependent on the path followed; the internal energy is a thermodynamic property of
the system.

In our work, that has to do mainly with the effects of heat addition or removal,
we can often neglect the kinetic and potential energy contributions. (These, how-
ever, may be the dominant terms if we deal, e.g., with a gas turbine or compressor.)

A.1.2 Conservation Equations for a Control Volume

Since we will be dealing mostly with situations in which there is flow of a fluid
through a system, we will transform the conservation laws into laws applicable to
control volumes or flow-through systems. Acontrol volume is a well-defined volume
in space, for example, the volume of a pipe between its two ends or the internal
volume of a vessel. Figure A.1 shows a very simple control volume that will be,
however, very useful for what we will be doing.

The transformation of the closure laws to equations applicable to flow systems
can be accomplished using a form of the Leibnitz rule. For some extensive property
of the system N such as the total mass, momentum of internal energy and its specific
value n, i.e., the amount of the property per unit mass of the system:

dN
dt

¼ ∂

∂t

Z
cv

nρdV þ
Z
cs

nρðu ̄ ⋅ dA ̄Þ ðA:4Þ

The first integral on the right side is the time rate of change of the contents of the
control volume (cv); the second one is the sum of the fluxes entering the control
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surface (cs). We can use the Leibnitz rule that is a purely kinematic/mathematical
equation and has nothing to do with the physical conservation laws, to transform the
three conservation laws given for closed systems above to conservations laws for
flow volumes. The conservation laws can be obtained using the Leibnitz rule and
specializing the meaning of N and n:

Mass conservation N ¼ M and n ¼ 1
Momentum conservation N ¼ Mu ̄ and n ¼ ρu ̄=ρ ¼ u ̄
Energy conservation N ¼ Eo and n ¼ ρeo=ρ ¼ eo

where eo is the total internal specific energy of the fluid, i.e., its intrinsic internal
energy, plus its kinetic and potential energies.

The conservation equations in integral form become:

∂

∂t

Z
cv

ρdV þ
Z
cs

ρðu ̄ ⋅ dA ̄Þ ¼ 0 ðA:5Þ

∂

∂t

Z
cv

ρu ̄dV þ
Z
cs

ρu ̄ðu ̄ ⋅ dA ̄Þ ¼ ∑F ̄ ðA:6Þ

∂

∂t

Z
cv

ρeodV þ
Z
cs

ρeoðu ̄ ⋅ dĀÞ ¼ Q̇�W ̇ ðA:7Þ

We have accounted for the work of body forces due to a potential field (such as
gravity) in the total internal energy changes of the system. Q ̇ and W ̇ are the rates of
heat addition and work done by the system.

Fig. A.1 Typical “one dimensional” control volume, a “channel” of circular cross-section in this
particular case. The cross sectional areas that define the two ends of the control volume (the two
ends of the pipe) are marked 1 and 2. The coordinate (the length) along this pipe is denoted by
z. This control volume has a constant cross-sectional or flow area A, a length L and a diameter
D. The usual thermodynamic and flow variables involved are the pressure p, the
cross-sectional-average fluid velocity u, the fluid temperature T and the corresponding enthalpy h.
The pressure difference (or “pressure drop”) across the two ends of the pipe is Δp = p2– p1
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The rate of work done by the system on its surroundings can be broken now
explicitly in its two parts: the part that corresponded in Eq. (A.3) to the work done
by pressure forces on moving system boundaries and the work done by shear forces
on moving boundaries, i.e., the “shaft” work. The first term is sometimes called the
“flow work” and is due to the fact that matter entering into the control volume does
work by “pushing the matter inside the control volume out of the way.” The flow
work in Eq. (A.7) involves streams crossing control volume boundaries, while the
corresponding work term in Eq. (A.3) involved expansion or contraction of the
system. The flow term can be written as

Wṗr ¼
Z
cs

pðu ̄ ⋅ dA ̄Þ

We will not make the second term explicit but we will simply denote it byWṡ. In
the absence of capillary, electrical, magnetic or nuclear forces, the total specific
internal energy eo can be combined with the p/ρ term to yield the total enthalpy ho:

eo þ p
ρ
¼ eþ u2

2
� gz cos θþ p

ρ
≡ ho ðA:8Þ

where ho is the specific enthalpy defined as hº = eº + p/ρ, and g z cosθ represents
the potential energy due to the gravity field, θ being the angle between the accel-
eration of gravity and the positive flow direction, taken as the z–direction here
(upwards). In many heat transfer applications, the potential and kinetic energy
changes are negligible in comparison to the internal energy changes; thus eo≈ e and
ho≈ h, as we already noted above.

Using Eq. (A.8) and noting that

Z
cs

ρeoðu ̄ ⋅ dĀÞþWpr ¼
Z
cs

ρeoðu ̄ ⋅ dĀÞþ
Z
cs

ρ
p
ρ
ðu ̄ ⋅ dA ̄Þ ¼

Z
cs

ρhoðu ̄ ⋅ dA ̄Þ

Equation (A.7) takes the form

∂

∂t

Z
cv

ρeodV þ
Z
cs

ρhoðu ̄ ⋅ dA ̄Þ ¼ Q ̇�Wṡ ðA:9Þ

If we wish to have an equation in terms of enthalpy only, we can replace in the
first integral of Eq. (A.9) the internal energy (eo which is now approximated as e) by
h – p/ρ,

∂

∂t

Z
cv

ρhodV þ
Z
cs

ρhoðu ̄ ⋅ dA ̄Þ ¼ Q ̇�Wṡ þ ∂

∂t

Z
cv

pdV ðA:10Þ

202 Appendix A: Tutorial



When one applies Eqs. (A.9) or (A.10) to problems involving shaft work (tur-
bomachinery), clearly the Ws term is the most important one. On the other hand, in
heat transfer problems not involving any shaft work (e.g. a heat exchanger), the W ̇
term vanishes.

A.1.3 One-Dimensional, Differential form of the Equations

We will present here only the one-dimensional (1D) form of these laws that are
usually sufficient for solving many basic problems of interest. One dimensional here
means that the flow is predominantly in one dimension, like flow in a straight pipe
(round or of any prismatic shape) and that we are using for our formulations
cross-sectional average variables. In their 1D form, the conservation laws will be
essentially applicable to control volumes that are channels or pipes with a fluid
flowing inside, such as the one shown in Fig. A.1.

Without entering into the details, Eqs. (A.5), (A.6) and (A.10) can be written in
differential form (applied to an infinitesimal control volume) and for
one-dimensional flows as:

A
∂

∂t
ρþ ∂

∂z
ðṁAÞ ¼ 0 ðA:11Þ

∂m ̇
∂t

þ 1
A
∂

∂z
ṁ2A
ρ

� �
¼ � ∂p

∂z
þ gρ cos θ � τwPw

A
ðA:12Þ

ρ
∂h0

∂t
þm ̇

∂h0

∂z
¼ q′′′ þ Ph

A
q′′ þ ∂p

∂t
ðA:13Þ

where the external forces applicable to the momentum Eq. (A.12) are the
pressure gradient, the force of gravity and the wall shear τw. Pw is the wetted
perimeter, q′′′ a volumetric heat source, Ph the heated perimeter and q′′ the heat flux
from the wall. We have not included any shaft work.

The conservation of momentum equation leads to an equation for the pressure
gradient in the channel. This equation can be integrated to yield the pressure drop.

At steady state, the energy conservation equation for a control volume where
only heat exchange takes place takes the very simple and very useful form:

Δh ¼ q
M ̇ ; or in differential form, dh ¼ dq

M ̇

where q is the heat added to the control volume and Δh or dh is the change in
enthalpy of the fluid.
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A.1.4 Thermodynamic Variables

The density, the pressure, the specific heat, the enthalpy and the internal energy are
all thermodynamic variables. In principle, any thermodynamic variable of a (sim-
ple) fluid is defined if we know two other variables. For example, we can get the
specific enthalpy, if the pressure and the temperature of the fluid are given. The
thermodynamic properties are tabulated in property tables. For water, we call these
steam tables.

The equilibrium state, when water and steam co-exist, is called the saturation
state (denoted by the subscript sat). As the pressure, for example, is increased, a
mixture of water and steam at thermodynamic equilibrium follows the saturation
line, i.e. there is a relationship between Tsat and psat. As a consequence, the
properties of a saturated fluid depend only on one thermodynamic variable, for
example, the density of saturated water depends either on its temperature or its
pressure only.

A.2 On the Two Most Important Closure Relationships

Assume that we have a pipe heated, say electrically, at a given rate and cooled by
the flow of a fluid traversing it, and we wish to know the temperature distribution
along the heat transfer surface. If we could solve this problem analytically or
numerically, this temperature distribution would be part of the solution. Such
solutions are possible in simple cases, e.g. for laminar flow in a uniformly heated
pipe. In the more complex turbulent-flow cases analytical solutions are not possible
and it is only relatively recently that numerical simulation techniques (the simplest
one being the RANS or Reynolds Average Navier-Stokes1 solutions) have become
widespread; these remain, however, relatively expensive for simple engineering
applications. Another example would be to estimate the pressure drop in this pipe.

The engineering approach to such problems has been the following: one con-
ducts experiments and measures the wall temperature distribution or the pressure
drop. The data are then correlated to arrive at useful engineering closure laws: in
this case the heat transfer coefficient for the heated pipe and the friction factor for
the pressure drop.

More generally, we can say that we wish to establish the heat transfer and
frictional pressure drop laws for a given pipe geometry, flow conditions, fluid, etc.
For the heat transfer law, we would like to establish the relationship between the
heat flux from the wall and the difference wall temperature minus bulk temperature
(that we will define below). For the wall shear, its dependence on the flow con-
ditions, namely the average fluid velocity.

1The RANS equations are time-averaged equations of motion for fluid flow (the Navier-Stokes
equations) that consider the turbulence of the fluid in a relatively simple form.
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Without entering into all details, and assuming for simplicity axisymmetric
conditions, we could express the heat transfer and pressure drop or wall-shear τw
laws as

q′′ðzÞ ¼ q′′ D; z; TwðzÞ; uðz; rÞ; ρ; μ; cp; λ; . . .
� �

ΔpðzÞ ¼ Δp D; z; uðz; rÞ; ρ; μ; εr; . . .ð Þ or τw ¼ τw D; z; uðz; rÞ; ρ; μ; εr; . . .ð Þ

where D is a characteristic dimension of the pipe (typically its diameter), z the
coordinate along the pipe, u(z,r) the time-average velocity profile of the fluid at
location z in terms of the radial coordinate r, Tw(z) the heated wall temperature at
location z, ρ and μ the density and viscosity of the fluid, respectively, cp its specific
heat capacity at constant pressure, λ its thermal conductivity, and εr the wall
roughness of the pipe. We would have to provide the pipe inlet conditions:

uðz ¼ 0; rÞ ¼ u0ðrÞ
Tðz ¼ 0; rÞ ¼ T0ðrÞ

The relation between the wall shear τw and the pressure drop is obtained from a
simple force balance on the pipe:

A ⋅Δp ¼ πD ⋅L ⋅ τw

or

Δp ¼ πD ⋅ L
A

⋅ τw ¼ 4L
D

⋅ τw ðA:14Þ

and in differential form

dp
dz

¼ πD
A

τw ¼ 4L
D

τw

where we have considered only the frictional pressure drop.
If we could solve this problem, the solution would have provided the

(time-average) temperature and velocity distributions in the fluid, T(z,r) and u(z,r)
and from these also the velocity and temperature gradients at the heated wall that
define the heat flux to the fluid and the wall shear:

q′′ðx; rwÞ ¼ �λ
dT
dr

����
w

τwðzÞ ¼ �μ
du
dr

����
w
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(where rw is the radial position of the wall) according to the Fourier law of heat
conduction and the Newton law of viscosity. In turbulent-flow solutions we would
have also obtained the fluctuations of T and u at a given point, normally denoted T'
and u'.

The engineering approach has been to try to obtain expressions for the heat
transfer and wall shear laws in terms of non-dimensional numbers such as the
Reynolds number Re, the Prandtl number Pr and the Nusselt number Nu. Since we
do not wish to know (or cannot obtain) the details of the radial variable distribu-
tions, these expressions should be in terms of cross-sectional-average variables,
namely ub the bulk (or cross-sectional-average) velocity of the fluid and its bulk
temperature Tb

ubðzÞ ¼
Z
A

uðz; rÞdA

TbðzÞ ¼ 1
ubðzÞ

Z
A

Tðz; rÞ ⋅ uðz; rÞdA

where r is a point in the cross section. For the simple case of axisymmetric flow:

ubðzÞ ¼
Z
r

uðz; rÞ ⋅ 2πr ⋅ dr

TbðzÞ ¼ 1
ubðzÞ

Z
r

Tðz; rÞ ⋅ uðz; rÞ ⋅ 2πr ⋅ dr

We note that the bulk temperature is velocity weighted.
The wall shear is related to the kinetic energy of the fluid via the Fan-

ning2friction factor f:

τw ¼ f
ρu2b
2

ðA:15Þ

and the heat flux is related to the wall-to-bulk temperature difference via a heat
transfer coefficient α:

α ¼ q′′

Tw � Tb
ðA:16Þ

2Unfortunately there are two alternative definitions of friction factors, the Fanning friction factor

and the Weisbach friction factor. According to Eqs. (A.14) and (A.15): Δp ¼ 4L
D ⋅ τw ¼ 4L

D ⋅ f ρu2

2 .
Certain authors prefer to incorporate the factor 4 into the friction factor writing Δp ¼ L

D ⋅ fW ρu2

2 ,
where fW = 4f.
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We try to obtain correlations of the data in the following forms for the heat
transfer and shear stress laws, respectively:

Nu ¼ f ðRe; Pr; . . .Þ
f ¼ f ðRe; εr; . . .Þ

where the non-dimensional numbers are

Re≡
ρuD
μ

; Pr ≡
cpμ
λ

; Nu≡
αD
λ

We note that the heat transfer coefficient has been included in the Nusselt
number that represents also in a non-dimensional form the temperature gradient of
the fluid at the wall:

Nu ¼ αD
λ

¼ q′′=λ
ðTw � TbÞ=D

The Reynolds number is a ratio between the inertial forces and the frictional
forces:

Re ¼ ρuD
μ

¼ ρu2

μu=D

while the Prandtl number scales the kinematic viscosity to the heat conductivity,
or better said, the rate of diffusion of momentum to the rate of diffusion of heat

Pr ≡
cpμ
λ

¼ μ

λ=cp
¼ μ=ρ

λ=ρcp
¼ ν

κ

where ν is the kinematic viscosity, ν ¼ μ
ρand κ the thermal diffussivity, κ ¼ λ

ρcp
.

Most commonly used, simple, expressions for the heat transfer coefficient and
the friction factor (for smooth pipes) in turbulent flow are:

Nu ¼ 0:023 Re0:8b Pr0:4b

f ¼ 0:046
Re0:2

The Nusselt-number correlation is valid in the range 0.5 < Pr < 120 and Re >
4000. The subscript b in Re and Pr means that the properties of the fluid are to be
evaluated at the bulk temperature. There are many more sophisticated—and more
specialized to certain situations—correlations such as the two given above, but this
are clearly beyond the scope of this Tutorial.
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A.2.1 An Important Remark Regarding the Heat Transfer
Coefficient

The definition of the heat transfer coefficient, Eq. (A.16) implies that there is
proportionality between the heat flux and the wall-bulk temperature difference.
Ignoring at this point that there are minor departures from linearity due to the
variation of the physical properties with temperature, this is largely the case in
convective, single-phase heat transfer. Thus the heat transfer coefficient becomes a
very useful engineering quantity.

There are situations, however, where the heat transfer law is not linear. This is
the case, e.g. in single-phase natural convection and in boiling heat transfer where
the dependence between heat flux and wall-bulk temperature difference (in this case
usually wall minus saturation temperature difference) could be of the form q′′ ¼
ðTw � TsatÞn where the exponent n can take values say between 2 and 5. In such
situations there is no advantage of using a heat transfer coefficient, that can still be
defined, however, but will depend on (Tw– Tsat), losing most of its usefulness.
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Appendix B
Common Nomenclature

The most often used common nomenclature is listed here. Other symbols or other
meanings of the symbols may be defined locally in the various chapters.

Symbol Variable [SI units]

A Cross-sectional flow area [m2]
cp Specific heat at constant pressure [J/kg K]
D Diameter or hydraulic diameter, 4A/P [m]
e Internal specific energy [J/kg = m2/s2]
f Friction factor
g Acceleration of gravity [m/s2]
h Specific enthalpy [J/kg = m2/s2]
j Volumetric flux [m3/m2s = m/s]
m Mass [kg]
Ṁ Mass flow rate [kg/s]
ṁ Mass flux [kg/m2s]
P Perimeter [m]
p Pressure [Pa = N/m2 = kg/s2m]
Q̇ Volumetric flow rate [m3/s]
R, r Radius [m]
S Phase velocity ratio
t Time [s]
U, u Velocity [m/s]
v Specific volume, 1/ρ [m3/kg]
x Flow quality
z Axial (longitudinal) coordinate [m]
α Heat transfer coefficient [W/m2 s]
β Homogeneous void fraction
Γ Volumetric vapour generation rate [kg/m3s]
Δ Difference, for example, pressure difference Δp
δ Thickness, film thickness [m]
ε Void (presence) fraction
εk Presence-fraction of phase k, void fraction
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εr Pipe roughness [m]
θ Angle between z coordinate and gravity vector
κ Thermal diffusivity [m2/s]
λ Thermal conductivity [W/m K]
μ Viscosity [Ns/m2 = kg/s m = Pa s]
ν Kinematic viscosity [m2/s]
ρ Density [kg/m3]
σ Surface tension [N/m = kg/m2s2]
τ Shear stress [N/m2 = kg/s2m]

Subscripts

eq Equilibirum
f Liquid (also L or l)
G, g Gas
hom Homogeneous
i Interface
k Phase (G or g and L or f or l)
L or l Liquid (also f)
s Superficial (velocity)
sat Saturated
w Wall
z Along z-coordinate

Operators

< f > Cross-sectional average of variable f
< fk>k Phase-cross-sectional-average of phase variable fk
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Appendix C
Most Useful Conversion Factors Between
British and Si Units

British units are often found in older thermal-hydraulics papers. A few useful
conversion factors are listed below.

The usual basic British units are the foot (ft), the inch (in), the pound-mass
(lbm), the pound-force (lbf), the hour (hr), the British Thermal Unit (BTU or Btu)
and the degrees Fahrenheit (°F, the equivalent of the degree Celsius) and Rankine
(R, absolute scale, the equivalent of the Kelvin).

(continued)

(continued)

Length 1 ft = 12 in = 12 × 25.4 mm = 0.3048 m
Area 1 ft2 = 144 in2 = (0.3048)2 m2 = 0.092 903 m2

Mass 1 kg = 2.2046 lbm (pound-mass)
Density 1000 kg/m3 = 62.43 lbm/ft3 (the density of water)
Mass flow rate 1000'000 lbm/hr = 126.0 kg/s
Mass flux 1000'000 lbm/hr ft2 = 1360 kg/m2s
Volume 1 USG (US gallon) = 0.13368 ft3 = 3.7853 Litre
Volumetric flow rate The USG/min = 63.0915 ⋅ 10-6 m3/s
Pressure 1 bar = 14.504 psi (lbf/in2)
Temperature 1 K = 1.8 R (degree Rankine)

T[°F] = 1.8 ⋅ *T[°C] + 32
Energy 1 kWh = 3413 Btu (British thermal unit)

1 Btu = 1054.8 J
Power 1 Btu/hr = 0.29301 W
Enthalpy 1 Btu/lbm = 2326 J/kg
Specific heat 1 Btu/lbm °F = 1 kcal/kg °C (by definition)

1 Btu/lbm °F = 4186 J/kg °C
Heat flux 1 Btu/hr ft2 = 3.1546 W/m2

Heat transfer coefficient 1 Btu/hr ft2 °F = 5.6783 W/m2 °C
Thermal conductivity 1 Btu/hr ft °F = 1.7307 W/m °C
Viscosity 1 lbm/hr ft = 4.1338 ⋅ 10-4 N s /m2

Kinematic viscosity 1 ft2/hr = 25.806 ⋅ 10-6 m2/s
Surface tension 1 lbf/ft = 14.59 N/m
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(continued)

Length 1 ft = 12 in = 12 × 25.4 mm = 0.3048 m
Area 1 ft2= 144 in 2 = (0.3048) 2 m 2 = 0.092 903 m2

Mass 1 kg = 2.2046 lbm (pound-mass)
Density 1000 kg/m3 = 62.43 lbm/ft3 (the density of water)
Mass flow rate 1000'000 lbm/hr = 126.0 kg/s
Mass flux 1000'000 lbm/hr ft2 = 1360 kg/m2s
Volume 1 USG (US gallon) = 0.13368 ft3 = 3.7853 Litre
Volumetric flow rate The USG/min = 63.0915 ⋅ 10 -6 m3 /s
Pressure 1 bar = 14.504 psi (lbf/in2)
Temperature 1 K = 1.8 R (degree Rankine)

T [° F] = 1.8 ⋅ * T [° C] + 32
Energy 1 kWh = 3413 Btu (British thermal unit)

1 Btu = 1054.8 J
Power 1 Btu/hr = 0.29301 W
Enthalpy 1 Btu/lbm = 2326 J/kg
Specific heat 1 Btu/lbm °F = 1 kcal/kg °C (by definition)

1 Btu/lbm °F = 4186 J/kg °C
Heat flux 1 Btu/hr ft2 = 3.1546 W/m2

Heat transfer coefficient 1 Btu/hr ft2 °F = 5.6783 W/m2 °C
Thermal conductivity 1 Btu/hr ft °F = 1.7307 W/m °C
Viscosity 1 lbm/hr ft = 4.1338 ⋅ 10-4 N s /m2

Kinematic viscosity 1 ft2/hr = 25.806 ⋅ 10-6 m2/s
Surface tension 1 lbf/ft = 14.59 N/m
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