
Chapter 11
Applications of Complexity Analysis in Clinical
Heart Failure

Chengyu Liu and Alan Murray

Abstract Heart failure is known to influence heart rhythm in patients. Complexity
analysis techniques, including techniques associated with entropy, have great
potential for providing a better understanding of cardiac rhythms, and for helping
research in this area. We review the analysis principles of conventional time-domain
analysis, frequency-domain analysis and of newer complexity analysis. We then
illustrate the techniques using real clinical data, allowing a comparison of the
techniques, and also of the differences between normal heart rate variability and
that associated with heart failure.

11.1 Introduction

11.1.1 Introduction to Non-Linear Heart Rate Variability
Methods for Cardiovascular Analysis

The application of non-linear dynamic methods to quantify the complexity of
the cardiovascular system has opened up new ways to perform cardiac rhythm
analysis, thereby enhancing our knowledge, and stimulating significant and inno-
vative research into cardiovascular dynamics. Heart rate variability (HRV) has
been conventionally analyzed with time- and frequency-domain methods, which
allowed researcher to obtain information on the sinus node response to sympathetic
and parasympathetic activities. However, heart rate (HR) regulation is one of the
most complex systems in humans due to the variety of influence factors, e.g.
parasympathetic and sympathetic ganglia, humoral effect, and respiration or mental
load. Therefore, to extract the relevant properties of a non-linear cardiovascular
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dynamic system, classical linear signal analysis methods (time- and frequency-
domain) are often inadequate. HRV can exhibit very complex behaviour, which is
far from a simple periodicity. Thus the application of non-linear HRV methods can
provide essential information regarding the physiological and pathological states of
cardiovascular time series [1–4].

Typical non-linear HRV analysis methods can be classified as four types:

(1) Poincare plot

The Poincare plot is a quantitative visual technique, whereby the shape of the plot
is categorized into functional classes and provides detailed beat-to-beat information
on the behaviour of the heart. Weiss et al. observed the respective Poincare plots
of interbeat intervals from a variety of arrhythmia patients [5]. Brennan et al.
proposed a physiological oscillator model of which the output could mimic the
shape of the R–R interval Poincare plot [6]. By defining the quantitative indices
for Poincare plots, different cardiovascular diseases can be identified from healthy
control subjects, including: parasympathetic nervous activity [7], postoperative
ischaemia [8], ventricular tachyarrhythmia [5], and heart failure [9].

(2) Fractal method

Fractal measures aim to assess self-affinity of heartbeat fluctuations over multiple
time scales [4]. Kobayashi & Musha first reported the frequency dependence of
the power spectrum of RR interval time series fluctuations [10]. The broadband
spectrum, characterized by the slow HR fluctuations, indicates a fractal-like pro-
cess with a long-term dependence [11]. Peng et al. developed this method to
detrended fluctuation analysis (DFA) [12], which quantifies the presence or absence
of fractal correlation properties in non-stationary time series data. Using DFA,
healthy subjects revealed a scaling exponent of approximately 1, indicating fractal-
like behaviour, and cardiovascular patients revealed reduced scaling exponents,
suggesting a loss of fractal-like HR dynamics [13, 14]. The fractal method was also
extended into multifractality applications [15].

(3) Symbolic dynamics measures

In 1898, Hadamard proposed a symbolic dynamics measure named as SDyn,
which investigates short-term fluctuations caused by vagal and baroreflex activities
and allows a simple description of a system’s dynamics with a limited amount of
symbols [16]. SDyn was applied in detecting the disease of sudden cardiac death
[17, 18]. Later, Porta et al. developed this SDyn method into short-term 300 beat
RR intervals [19] and 24 h Holter recording analysis [20].

Another popular symbolic dynamics measure, named LZ complexity, was pro-
posed by Lempel and Ziv (LZ) [21]. LZ can evaluate the irregularity of RR interval
time series. In most cases, LZ complexity algorithm is executed by transforming an
original signal into a binary sequence. However, the binary coarse-graining process
is associated with a risk of losing detailed information. Thus higher quantification
levels (or symbols) are employed in the coarse-graining process. Abásolo et al. used
three quantification levels for LZ calculation [22] and Sarlabous et al. developed
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a multistate LZ complexity algorithm [23]. Unlike the multistate coarse-graining,
Zhang et al. recently proposed an encoding LZ algorithm aiming to explicitly
discern between the irregularity and chaotic characteristics of RR interval time
series [24].

(4) Entropy methods

Entropy can assess the regularity/irregularity or randomness of RR interval time
series. Since Pincus proposed the approximate entropy (ApEn) method in 1991
[25], ApEn has achieved wide applications for analyzing physiological time series
in clinic research. The popularity of ApEn stems from its capability in providing
quantitative information about the complexity of both short- and long-term data
recordings that are often corrupted with noise, and the calculation methods are
relatively easy [26–29]. As an improved version of ApEn, Richman and Moorman
proposed the sample entropy (SampEn) method in 2010 [29], which enhances
the inherent bias estimation of ApEn method. SampEn quantifies the conditional
probability that two sequences of m consecutive data points that are similar to
each other (within a given tolerance r) will remain similar when one consecutive
point is included. Self-matches are not included in calculating the probability. In
a clinical application, reductions in SampEn of neonatal HR prior to the clinical
diagnosis of sepsis and sepsis-like illness were reported in [30] and before the
onset of atrial fibrillation [31]. The new improvements for entropy methods include:
fuzzy-function based entropy methods [32, 33], multiscale entropy (MSE) methods
[26] and multivariate multiscale entropy methods [34–36].

11.1.2 Common Heart Rate Variability Analysis in Congestive
Heart Failure Patients

Congestive heart failure (CHF) is a typical degeneration of the heart function
featured by the reduced ability for the heart to pump blood efficiently. CHF is also
a difficult condition to manage in clinical practice, and the mortality from CHF
remains high. Previous studies have proven that HRV indices relate to outcome for
CHF patients [37–40].

For healthy subjects, it has been proven that the increased sympathetic and the
decreased parasympathetic activity results in the decrease of mean RR interval, as
well as the decrease of indices of the standard deviation of beat-to-beat intervals
(SDNN), low frequency content (LF), and also non-linear indices VAI and VLI
[7]. Moreover, the decreased parasympathetic activity has been proven to be a the
major contributor to the increase in the index for high frequency (HF) content [41].
HRV analysis has also given an insight into understanding the abnormalities of CHF,
and can also be used to identify the higher-risk CHF patients. Depressed HRV has
been used as a risk predictor in CHF [42–44]. CHF patients usually have a higher
sympathetic and a lower parasympathetic activity [42, 44].
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Typical linear HRV analysis for CHF patients include the following publications:
Nolan et al. performed a prospective study on recruited 433 CHF patients and found
that SDNN was the most powerful predictor of the risk of death for CHF disease
[38]. Binkley et al. studied 15 healthy subjects and 10 CHF patients, and reported
that parasympathetic withdrawal, in addition to the augmentation of sympathetic
drive, is an integral component of the autonomic imbalance characteristic for CHF
patients and can be detected noninvasively by HRV spectral analysis [42]. Rovere
et al. studied 202 CHF patients and reported that the LF component was a powerful
predictor of sudden death in CHF patients [45]. Hadase et al. also confirmed that the
very low frequency (VLF) content was a powerful predictor from a 54 CHF patient
study [46]. All those studies have verified that decreased HRV was associated with
the increased mortality in CHF patients.

Typical non-linear HRV analysis for CHF patients include the following pub-
lications: Woo et al. studied 21 patients with heart failure and demonstrated that
Poincare plot analysis is associated with marked sympathetic activation for heart
failure patients and may provide additional prognostic information and an insight
into autonomic alterations and sudden cardiac death [44]. Guzzetti et al. tracked
20 normal subjects and 30 CHF patients for 2 years and found significantly lower
normalized LF power and lower 1/f slope in CHF patients compared with controls.
Moreover, the patients who died during the follow-up period presented further
reduced LF power and steeper 1/f slope than the survivors [47]. Makikallio et al.
studied 499 CHF patients and showed that a short-term fractal scaling exponent
was the strongest predictor of mortality of CHF [48]. Poon and Merrill studied
8 healthy subjects and 11 CHF patients, and found that the short-term variations
of beat-to-beat interval exhibited strongly and consistently chaotic behaviour in
all healthy subjects but were frequently interrupted by periods of seemingly non-
chaotic fluctuations in patients with CHF [43]. Peng et al. used DFA analysis and
confirmed a reduction in HR complexity in CHF patients [12]. Liu et al. studied
60 CHF patients and 60 healthy control subjects, and reported decrease of ApEn
values in CHF group [27]. Costa et al. [49] used the MSE method for classifying
CHF patients and healthy subjects, and reported that the best discrimination between
CHF and healthy HR signals with the scale 5 in MSE calculation [49].

11.1.3 Main Aims of This Review

We seek by the use of examples to illustrate the differences between normal cardiac
physiology and those associated with CHF, determined from both time-domain,
frequency-domain and typical short-term (5 min) complexity analysis, and also
show the differences between the three types of analysis. These subjects can be seen
as proof of the concept that, from the current literature on cardiovascular complexity
and heart failure, the methods do have potential.
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11.2 Review of Typical Methods and Indices for Heart Rate
Variability Analysis

11.2.1 Time-Domain Indices

The typical and commonly used time-domain indices include: SDNN where SD
is the standard deviation and NN was originally derived from the Normal-to-
Normal interval, the square root of the mean squared successive differences in
RR intervals (RMSSD), and the proportion of differences between successive RR
intervals greater than 50 ms (PNN50) [50, 51].

11.2.2 Frequency-Domain Indices

Frequency-domain analysis is usually performed by a modern spectral estimation
method, such as Burg’s method, to produce the HRV spectrum [52]. The HRV
spectrum is then integrated to derive a low-frequency power (in frequency range
0.04–0.15 Hz) and a high-frequency power (0.15–0.40 Hz). Indices are obtained
by the calculation of the normalized low-frequency power (LFn), normalized high-
frequency power (HFn), and the ratio of low-frequency power to high-frequency
power (LF/HF) [51].

11.2.3 Non-Linear Methods

11.2.3.1 Poincare Plot

The Poincare plot analysis is a graphical non-linear method to assess the dynamics
of HRV. This method provides summary information as well as detailed beat-to-
beat information on the behaviour of the heart. It is a graphical representation of
temporal correlations within RR intervals. The Poincare plot is known as a return
map or scatter plot, where each RR interval from the RR time series is plotted against
the next RR interval. Two paired parameters are commonly used as indices derived
from the Poincare plot. One pair of parameters includes SD1 and SD2, another pair
of parameters is vector length index (VLI) and vector angle index (VAI). SD2 is
defined as the standard deviation of the projection of the Poincare plot on the line of
identity (y D x), and SD1 is the standard deviation of projection of the Poincare plot
on the line perpendicular to the line of identity. SD1 has been correlated with high
frequency power, while SD2 has been correlated with both low and high frequency
power [51]. VAI measures the mean departure of all Poincare points from the line
of identity (y D x) and VLI measures the mean distance of all Poincare points from
the centre poincare point. They are defined as:
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VAI D
NX

iD1

j�i � 45j =N (11.1)

VLI D
vuut

NX

iD1

.li � L/2=N (11.2)

where, � i is the vector angle in degree, li is the vector length for each Poincare
point, L is the mean vector length of all Poincare points, and N is the total number
of Poincare points.

11.2.3.2 Histogram Plot

A histogram plot is another graphical method for the HRV analysis, which reflects
directly the distribution of the RR sequence. There is no specific quantitative index
in the traditional histogram plot. To resolve this, Liu et al. proposed a new histogram
analysis for HRV, referred to as RR sequence normalized histogram [53]. The RR
sequence normalized histogram divides all sequence elements into seven sections
based on the element values. Then, three quantitative indices are defined from
the normalized histogram, named as center-edge ratio (CER), cumulative energy
(CE) and range information entropy (RIEn) respectively [53]. CER characterizes
the element fluctuation apart from the sequence mean value. CE indicates the
equilibrium of the percentage pi in all seven sections and RIEn reflects the
element distributions. If the element distribution in the RR sequence exhibits more
uniformity in each section, RIEn is larger, the RR sequence is more complex, and
the uncertainty of the sequence is higher. The general construction procedure for the
RR sequence normalized histogram and the calculations for the three quantitative
indices are summarized in the Appendix.

11.2.3.3 Entropy Measures

ApEn represents a simple index for the overall complexity and predictability of
time series [25]. ApEn quantifies the likelihood that runs of patterns which are
close, remain similar for subsequent incremental comparisons [54]. High values
of ApEn indicate high irregularity and complexity in time-series data. However,
inherent bias exists in ApEn due to the counting of self-matches, resulting in ApEn
having a dependency on the record length and lacking relative consistency. SampEn,
improving ApEn, quantifies the conditional probability that two sequences of m
consecutive data points that are similar to each other (within a given tolerance r)
will remain similar when one consecutive point is included. Self-matches are not
included in SampEn when calculating the probability [29].
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Fig. 11.1 The transient curve
of the membership degree
with the increase of
normalized distance between
two vectors. The black dotted
line shows the determination
criterion of the Heaviside
function and the blue dashed
line shows the determination
criterion of the fuzzy function

Whether ApEn or SampEn is utilized, the decision rule for vector similarity
is based on the Heaviside function and it is very rigid because two vectors are
considered as similar vectors only when they are within the tolerance threshold r,
whereas the vectors just outside this tolerance are ignored [32, 33, 55]. This rigid
boundary may induce abrupt changes of entropy values when the tolerance threshold
r changes slightly, and even fail to define the entropy if no vector-matching could be
found for very small r. To enhance the statistical stability, a fuzzy measure entropy
(FuzzyMEn) method was proposed in [33, 56], which used a fuzzy membership
function to substitute the Heaviside function to make a gradually varied entropy
value when r monotonously changes. Figure 11.1 illustrates the Heaviside and fuzzy
functions that are mathematically given as

For Heaviside function W Membership_degree
�
di;j; r

� D
�

1 di;j � r
0 di;j > r

For Fuzzy function W Membership_degree
�
di;j; r

� D exp

�
� .di;j/

n

r

� (11.3)

where di , j represents the distance of two vectors Xi and Yj, r is the tolerate threshold
and n is the vector similarity weight. The rigid membership degree determination in
the Heaviside function could induce the weak consistency of SampEn, which means
that the entropy value may have a sudden change when the parameter r changes
slightly. This phenomenon has been reported in recent studies [32, 33, 57]. For fuzzy
functions, this determination criterion exhibits a smooth boundary effect, while the
traditional 0–1 judgment criterion of the Heaviside function is rigid in the boundary
of the parameter r. Besides, FuzzyMEn also uses the information from both local and
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global vector sequences by removing both local baseline and global mean values,
thus introducing the fact that FuzzyMEn has better consistency than SampEn.

The detailed calculation processes of SampEn and FuzzyMEn are given in the
Appendix.

11.2.3.4 Lempel-Ziv (LZ) Complexity

Lempel-Ziv (LZ) complexity is a measure of signal complexity and has been applied
to a variety of biomedical signals, including identification of ventricular tachycardia
or atrial fibrillation [58]. In most cases, the LZ complexity algorithm is executed
by transforming an original signal into a binary sequence by comparing it with
a preset median [59] or mean value [58] as the threshold. So the HRV signal
should be coarse-grained and be transformed into a symbol sequence before the
LZ calculation. For generating the binary sequence, the signal x is converted into a
0–1 sequence R by comparing with the threshold Th, producing the binary symbolic
sequence R D fs1, s2, : : : , sng as follows:

si D
�

0; if x.i/ < Th

1; otherwise
; i D 1; 2; : : : ; n; (11.4)

where n is the length of x(n) and the mean value of the sequence is used as the
threshold Th in this chapter.

LZ complexity reflects the rate of new patterns arising within the sequence, and
index C(n) is usually denoted as the measure for the arising rate of new patterns in a
normalized LZ complexity. The detailed calculation for index C(n) is also attached
in the Appendix to simple the text content.

11.3 Demonstration of Heart Rate Variability Analysis for
Normal and Congestive Heart Failure RR time series

In this section, 5-min RR time series from a NSR subject and a CHF patient are
employed as shown in Fig. 11.2, and are used to illustrate the various analysis
techniques. Note that this is a “proof of the concept” about the current literature
on cardiovascular complexity and heart failure, without statistical inference. The
chapter focuses on demonstrating the differences of different techniques when
dealing with the examples, using the same examples in each analysis to allow
easy comparison. The graphical results for the various HRV methods are shown
to facilitate the comparison between these example RR time series.

It can be seen in Fig. 11.2 that the CHF patient has a shorter mean RR, and
hence, a faster heart rate. However, the more important difference can be seen in the
variability.
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Fig. 11.2 Sequential 5-min RR interval time series with mean line (red dotted line) from (a)
NSR subject and (b) CHF patient. The mean values of 5-min RR time series are 775 and 621 ms
respectively

11.3.1 Time-Domain Indices

Figure 11.3 shows the calculations for the time-domain HRV indices. In each sub-
figure, the upper panel shows the difference from the MEAN of the 5-min RR
interval time series with ˙ SD lines (red dashed lines) and the lower panel shows the
modulus of the sequential differences. RR intervals greater than 50 ms are marked
as ‘red squares’. The values of time-domain indices of SDNN, RMSSD and PNN50
are shown.

11.3.2 Frequency-Domain Indices

Figure 11.4 shows the analysis for the frequency-domain HRV indices. In each
sub-figure, the left panel shows the classical spectrum estimation from the Fast
Fourier Transform (FFT) method, and the right panel shows the modern spectrum
estimation using the Burg method. Low frequency power (LF, 0.04–0.15 Hz) and
high frequency power (HF, 0.15–0.40 Hz) areas are marked. The index values of
LF/HF are also shown.
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Fig. 11.3 Time-domain indices calculated for (a) NSR subject and (b) CHF patient

11.3.3 Non-Linear Methods

11.3.3.1 Poincare Plot

Figure 11.5 shows the analysis for the Poincare plot. In each sub-figure, the values
of the four indices, i.e., SD1, SD2, VAI and VLI, are shown.

11.3.3.2 Histogram Plot

Figure 11.6 shows a traditional histogram plot. It is clear that the RR intervals
have a more uniform distribution for the NSR subject, in comparison with a more
concentrated distribution for the CHF patient.

Figure 11.7 demonstrates the RR sequence normalized histogram plot. The
percentage pi in NSR subject is fairly evenly distributed in all seven sections, while
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Fig. 11.4 Frequency-domain indices calculated for (a) NSR subject and (b) CHF patient
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the percentage pi in the CHF patient has an uneven distribution. In each sub-figure,
the values of the three indices CER, CE and RIEn are shown.

11.3.3.3 Entropy Measures

As an intermediate step, SampEn needs to determine the similarity degree between
any two vectors Xm

i and Ym
i at both embedding dimension m and m C 1 respectively,

by calculating the distance between them. As shown in Appendix, the distance

between Xm
i and Ym

i is defined as dm
i;j D m�1

max
kD0

jx .i C k/ � x .j C k/j. In SampEn,

if the distance is within the threshold parameter r D 0.2, the similarity degree
between the two vectors is 1; if the distance is beyond the threshold parameter r, the
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Fig. 11.8 Similarity degree matrices in the intermediate calculation procedure of SampEn for (a)
NSR subject and (b) CHF patient

similarity degree is 0. There is absolutely a 0 or 1 determination. Figure 11.8 shows
the demonstrations of the similarity degree matrices in this intermediate calculation
procedure of SampEn. Only 1 � i � 100 and 1 � j � 100 are shown for illustrating
the details. Black-coloured areas indicate the similarity degree D 1 and vice versa.
In each sub-figure, the upper panel shows the results from the embedding dimension
m D 2, and the lower panel shows the results from the embedding dimension
m C 1 D 3. As shown in Fig. 11.8, it is clear that when the embedding dimension
changes from m to m C 1, the number of similar vectors (i.e., matching vectors)
decreases.

Unlike the 0 or 1 discrete determination for vector similarity degree in Sam-
pEn, FuzzyMEn permits the outputs of continuous real values between 0 and 1
for the vector similarity degree, by converting the absolute distance of dm

i;j D
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Fig. 11.9 The global similarity degree matrices in the intermediate calculation procedure of
FuzzyMEn for (a) NSR subject and (b) CHF patient

m�1
max
kD0

jx .i C k/ � x .j C k/j using a fuzzy exponential function (see Appendix). Since

FuzzyMEn not only measures the global vector similarity degree, but also refers
to the local vector similarity degree, thus, Figs. 11.9 and 11.10 show the global
and local similarity degree matrices in this intermediate calculation procedure of
FuzzyMEn respectively. Furthermore, only 1 � i � 100 and 1 � j � 100 are shown
to illustrate the details. Dark-colored areas indicate the higher similarity degree and
vice versa. In each sub-figure, the upper panel shows the results from the embedding
dimension m D 2, and the lower panel shows the results from the embedding
dimension m C 1 D 3. As shown in Figs. 11.9 and 11.10, it is also evident that
when the embedding dimension changes from m to m C 1, the similarity degrees in
both Figures decrease.
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Figure 11.11 demonstrates the results for the index of SampEn calculation. The
SampEn was calculated by counting the mean percentages of matching vectors of
the dimension m D 2 and m C 1 D 3, respectively. The percentages of matching
vectors are illustrated for different threshold values r, and the corresponding
SampEn values are shown. The NSR subject exhibits higher SampEn values than
the CHF patient, indicating the more complicated component or irregular change in
the RR time series.

Figure 11.12 demonstrates the results for the index of the FuzzyMEn calculation.
Unlike SampEn identifying the vector similarity degree as binary determination
(matching vector with similarity degree D 1 or not matching vector with similarity
degree D 0), FuzzyMEn could output any value for similarity degree between 0
and 1. In each sub-figure, the upper panel shows the mean level of the global
similarity degree, while the lower panel shows the mean level of the local similarity
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Fig. 11.12 FuzzyMEn calculation for (a) NSR subject and (b) CHF patient

degree, at the dimension m D 2 and dimension m C 1 D 3 respectively. The results
corresponding to different threshold values r, and the corresponding FuzzyMEn
values are shown. The NSR subject exhibits lower FuzzyMEn values than the CHF
patient, although the mean levels of the vector similarity degree in the NSR subject
are higher than those in the CHF patient, for both global and local aspects.
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Fig. 11.13 LZ complexity calculation for (a) NSR subject and (b) CHF patient

11.3.3.4 LZ Complexity

Figure 11.13 shows the results for the LZ complexity index. With the increase of
the RR sequence length, the number of the new patterns increases. The number of
new patterns in the CHF patient increases more significantly than that in the NSR
subject. The final LZ complexity values for the 5-min RR time series are depicted
in this Figure.

11.4 Discussion

It is well accepted in the literature reviewed that congestive heart failure patients
have a reduced heart rate variability in comparison with normal subjects, and
also a different pattern in this variability. We have reviewed both the traditional
linear analysis techniques (time- and frequency-domain) and the newer non-linear
complexity techniques.

We have shown that this difference in heart rate variability in congestive heart
failure has been identified by most of the techniques investigated. Those that were
less successful in the examples analysed were the time-domain RMSSD index, but
we have shown that other time-domain HRV indices were able to clearly separate
heart failure from normal. For the newer non-linear complexity techniques, rather
than only showing the values of the indices, we performed a detailed calculation
progress analysis and revealed the inherent change of time series or patterns,
providing further clear observations for these techniques. As expected, all newer
non-linear complexity techniques were able to distinguish the differences between
the illustrated examples.
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We accept that this analysis is illustrative, and requires follow up analysis, but by
illustrating the differences between normal and congestive heart failure rhythms we
hope that this will encourage the use of the complete range of analysis techniques
in research into both normal and abnormal cardiac rhythms.

Acknowledgement We acknowledge and thank Dr. Charalampos Tsimenidis of Newcastle
University for his helpful review of the manuscript.

A. Appendix

A.1 RR Sequence Normalized Histogram

The general construction procedure for the RR sequence normalized histogram is
summarized as follows [53]:

Given an RR sequence fRR1, RR2, : : : , RRNg, where N denotes the sequence
length. The maximum (RRmax) and minimum (RRmin) values were firstly determined
to calculate the range in the sequence:

RRrange D RRmax � RRmin (11.5)

The threshold a D 0.1 � RRrange is set and then the left-step parameter Hl and
right-step parameter Hr can be calculated as

Hl D RRmean � .RRmin C ˛/

5
(11.6)

Hr D .RRmax � ˛/ � RRmean

5
(11.7)

where RRmean denotes the mean value of the RR sequence. Based on these
parameters, the RRi is divided into seven sections. Table 11.1 details the element
division rules.

The element percentage pi in each of the sections is calculated as follows:

pi D Pi

N
i D 1; 2; � � � ; 7 (11.8)

In a rectangular coordinate system, the pi corresponding to the seven sections
(i.e. L1, L2, L3, C, R3, R2 and R1) is drawn to form the normalized histogram.
Three quantitative indices can be obtained from the normalized histogram. They are
respectively named as center-edge ratio (CER), cumulative energy (CE) and range
information entropy (RIEn) and are defined as [53]:
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Table 11.1 Element division rules for constructing the RR sequence normalized histogram

Section
location

Section
name Element division rules

Element
number Element %

Leftmost
section

L1 RRmin � RRi<RRmin C a P1 p1

Left second
section

L2 RRmin C a � RRi<RRmin C a C 2 � Hl P2 p2

Left third L3 RRmin C a C 2 � Hl � RRi<RRmin C a P3 p3

section C 4 � Hl

Middle
section

C RRmean-Hl � RRi<RRmean C Hr P4 p4

Right third
section

R3 RRmean C Hr � RRi<RRmean C 3 � Hr P5 p5

Right second
section

R2 RRmean C 3 � Hr � RRi<RRmax-a P6 p6

Rightmost
section

R1 RRmax-a � RRi � RRmax P7 p7

CER D p4

p1 C p2 C p6 C p7

(11.9)

CE D
7X

iD1

p2
i (11.10)

RIEn D �
X7

iD1
pi � ln pi (11.11)

A.2 Sample Entropy (SampEn)

The algorithm for SampEn is summarized as follows [29]: For the HRV series x(i),
1 � i � N, forms N � m C 1 vectors Xm

i D fx.i/; x .i C 1/ ; � � � ; x .i C m � 1/g,
1 � i � N � m C 1. The distance between two vectors Xm

i and Ym
i is defined as:

dm
i;j D m�1

max
kD0

jx .i C k/ � x .j C k/j. Denote Bm
i .r/ the average number of j that meets

dm
i;j � r for all 1 � j � N � m, and similarly define Am

i .r/ by dmC1
i;j . SampEn is then

defined by:

SampEn .m; r; N/ D � ln

 
N�mX

iD1

Am
i .r/=

N�mX

iD1

Bm
i .r/

!
(11.12)
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wherein the embedding dimension is usually set at m D 2 and the threshold at
r D 0.2 � sd (sd indicates the standard deviation of the HRV series under-analyzed)
[57, 60].

A.3 Fuzzy Measure Entropy (FuzzyMEn)

The calculation process of FuzzyMEn is summarized as follows [33, 56]:
For the RR or PTT segment x(i) (1 � i � N), firstly form the local vector

sequences XLm
i and global vector sequences XGm

i respectively:

XLm
i D fx.i/; x .i C 1/ ; � � � ; x .i C m � 1/g � x.i/

XGm
i D fx.i/; x .i C 1/ ; � � � ; x .i C m � 1/g � x

1 � i � N � m (11.13)

The vector XLm
i represents m consecutive x(i) values but removing the local

baseline x.i/, which is defined as:

x.i/ D 1

m

m�1X

kD0

x .i C k/ 1 � i � N � m (11.14)

The vector XGm
i also represents m consecutive x(i) values but removing the global

mean value x of the segment x(i), which is defined as:

x D 1

N

NX

iD1

x.i/ (11.15)

Subsequently, the distance between the local vector sequences XLm
i and XLm

j ,
and the distance between the global vector sequences XGm

i and XGm
j are computed

respectively as:

dLm
i;j D d

�
XLm

i ; XLm
j

� D m�1
max
kD0

j.x .i C k/ � x.i// � .x .j C k/ � x.j//j

dGm
i;j D d

�
XGm

i ; XGm
j

� D m�1
max
kD0

j.x .i C k/ � x/ � .x .j C k/ � x/j
(11.16)

Given the parameters nL, rL, nG and rG, we calculate the similarity degree
DLm

i;j .nL; rL/ between the local vectors XLm
i and XLm

j by the fuzzy function
�L

�
dLm

i;j; nL; rL
�
, as well as the similarity degree DGm

i;j .nG; rG/ between the global
vectors XGm

i and XGm
j by the fuzzy function �G

�
dGm

i;j; nG; rG
�
:
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DLm
i;j .nL; rL/ D �L

�
dLm

i;j; nL; rL
� D exp

 
�
	

dLm
i;j


nL

rL

!

DGm
i;j .nG; rG/ D �G

�
dGm

i;j; nG; rG
� D exp

 
�
	

dGm
i;j


nG

rG

! (11.17)

We define the functions �Lm(nL, rL) and �Gm(nG, rG) as:

�Lm .nL; rL/ D 1
N�m

PN�m
iD1

	
1

N�m

PN�m
jD1 DLm

i;j .nL; rL/



�Gm .nG; rG/ D 1
N�m

PN�m
iD1

	
1

N�m

PN�m
jD1 DGm

i;j .nG; rG/

 (11.18)

Similarly, we define the function �Lm C 1(nL, rL) for m C 1 dimensional vectors
XLmC1

i and XLmC1
j the function �Gm C 1(nG, rG) for m C 1 dimensional vectors

XGmC1
i and YGmC1

j :

�LmC1 .nL; rL/ D 1
N�m

PN�m
iD1

	
1

N�m

PN�m
jD1 DLmC1

i;j .nL; rL/



�GmC1 .nL; rL/ D 1
N�m

PN�m
iD1

	
1

N�m

PN�m
jD1 DGmC1

i;j .nG; rG/

 (11.19)

Then the fuzzy local measure entropy (FuzzyLMEn) and fuzzy global measure
entropy (FuzzyGMEn) are computed as:

FuzzyLMEn .m; nL; rL; N/ D � ln
	
�LmC1 .nL; rL/ =�Lm

	
nL; rL





FuzzyGMEn .m; nG; rG; N/ D � ln
	
�GmC1 .nG; rG/ =�Gm

	
nG; rG



 (11.20)

Finally, the FuzzyMEn of RR segment x(i) is calculated as follows:

FuzzyMEn .m; nL; rL; nG; rG; N/ D FuzzyLMEn .m; nL; rL; N/

C FuzzyGMEn .m; nG; rG; N/ (11.21)

In this study, the local similarity weight was set to nL D 3 and the global vector
similarity weight was set to nG D 2. The local tolerance threshold rL was set equal
to the global threshold rG, i.e., rL D rG D r. Hence, the formula (11.21) becomes:

FuzzyMEn .m; r; N/ D FuzzyLMEn .m; r; N/ C FuzzyGMEn .m; r; N/ (11.22)

For both SampEn and FuzzyMEn, the entropy results were only based on the
three parameters: the embedding dimension m, the tolerance threshold r and the RR
segment length N.
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A.4 Lempel-Ziv (LZ) Complexity

The calculation process of LZ complexity is summarized as follows [21, 59]:

1. For a binary symbolic sequence R D fs1, s2, : : : , sng, let S and Q denote two
strings, respectively, and SQ is the concatenation of S and Q, while the string
SQ� is derived from SQ after its last character is deleted (� means the operation
to delete the last character in the string). v(SQ�) denotes the vocabulary of all
different substrings of SQ� . Initially, c(n) D 1, S D s1, Q D s2, and so SQ� D s1;

2. In summary, S D s1 s2, : : : , sr, Q D srC1, and so SQ� D s1 s2, : : : , sr; if Q
belongs to v(SQ�), then srC1, that is, Q is a substring of SQ� , and so S does not
change, and Q is updated to be srC1srC2, and then judge if Q belongs to v(SQ�)
or not. Repeat this process until Q does not belong to v(SQ�);

3. Now, Q D srC1srC2, : : : , srCi, which is not a substring of SQ� D s1 s2, : : : ,
srsrC1, : : : , srCi-1, so increase c(n) by one;

4. Thereafter, S is renewed to be S D s1 s2, : : : , srCi, and Q D srCiC1;
5. Then the procedures repeat until Q is the last character. At this time c(n) is the

number of different substrings contained in R. For practical application, c(n)
should be normalized. It has been proved that the upper bound of c(n) is

c.n/ <
n

.1 � "n/ log˛.n/
; (11.23)

where "n is a small quantity and "n ! 0 (n ! 1). In fact,

lim
n!1c.n/ D b.n/ D n

log˛.n/
: (11.24)

6. Finally, LZ complexity is defined as the normalized output of c(n):

C.n/ D c.n/

b.n/
; (11.25)

where C(n) is the normalized LZ complexity, and denotes the arising rate of new
patterns within the sequence.
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