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Abstract. We present a prototype of a new computer system aimed at recog-
nition of manual gestures using Kinect 2.0 for Windows. This sensor allows
getting a stream of optical images having FullHD resolution with 30 frames per
second (fps) and a depth map of the scene. At present, our system is able to
recognize continuous fingerspelling gestures and sequences of digits in Russian
and Kazakh sign languages (SL). Our gesture vocabulary contains 52 finger-
spelling gestures. We have collected a visual database of SL gestures, which
consists of Kinect-based recordings of 2 persons (a man and a woman)
demonstrating manual gestures. 5 samples of each gesture were applied for
training models and the rest data were used for tuning and testing the developed
recognition system. Model of each gesture is presented as a vector of infor-
mative visual features, calculated for the hand palm and all fingers. Feature
vectors are extracted from both training and test samples of gestures, then
comparison of reference patterns (models) and sequences of test vectors is made
using the Euclidian distance. Sequences of vectors are compared using the
dynamic time warping method (dynamic programming) and a reference pattern
with a minimal distance is selected as a recognition result. According to our
experiments in the signer-dependent mode with 2 demonstrators from the visual
database, the average accuracy of gesture recognition is 87% for 52 manual
signs.
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recognition � Image processing � Kinect sensor

1 Introduction

Sign languages (SLs) are known as a natural means for verbal communication of the
deaf and hard-of-hearing people. All the SLs use visual-kinetic clues for
human-to-human communication combining manual gestures with articulation of lips,
facial expressions and mimics. At present there is no universal SL all over the world,
and almost each country has its own national SL. Any SL has a specific and simplified
grammar, which is quite different from that of spoken languages. In addition to con-
versational SLs, there are also fingerspelling alphabets, which are used to spell whole
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words (such as names, rare words, unknown signs, etc.) letter-by-letter. All the fin-
gerspelling systems depend on national alphabets and there are both one-handed fin-
gerspelling alphabets (in France, USA, Russia, Kazakhstan, etc.) and two-handed ones
(in Czechia, UK, Turkey, etc.). Russian SL (RSL) is a native communicative language
of the deaf people in the Russian Federation, Belarus, Kazakhstan, Ukraine, Moldova,
also partly in Bulgaria, Latvia, Estonia, Lithuania, etc.; almost 200 thousand people use
it daily. Many of these countries also have own national SLs like Kazakh SL (KSL),
which is very similar to RSL. In RSL, there are 33 letters, which are demonstrated as
static or dynamic finger signs, and in KSL, there are 9 additional letters (42 letters in
total); so the whole gesture vocabulary contains 52 different items.

Thus, the creation of computer systems for automatic processing of SLs such as
gesture recognition, text-to-SL synthesis, machine translation, learning systems and so
on is a current and useful topic for research. There are quite many recent articles both
on recognition [1–3] and synthesis [4, 5] of hand gestures of a sign language and
fingerspelling (finger signs) [6, 7]. SL recognition is also one of key topics at the recent
HCI conferences [8–11].

At present, Microsoft Kinect sensors are very popular in edutainment domain and
they are quite efficient for the task of SL recognition too [3, 12, 13]. MS Kinect 2.0,
which is the last version of the video sensor released by Microsoft in 2014, provides
simultaneous detection and automatic tracking of up to 6 people at the distance of 1.2–
3.5 m from the sensor. In the software, a virtual model of human’s body is presented as
a 3D skeleton of 25 points.

2 Architecture of the Recognition System

The recognition system must identify a shown gesture as precisely as possible and
minimize the recognition error. Figure 1 shows a functional scheme of the system for
sign language automatic recognition using MS Kinect 2.0. MS Kinect 2.0 is connected
to the workstation via USB 3.0. The viewing angles are 43.5° vertically and 57°
horizontally. Resolution of the video stream is 1920 � 1080 pixels with a frequency of
30 Hz (15 Hz in low light conditions) [14]. The inclination angle adjuster is pointed at
changing vertical viewing angle within the range of ± 27°. Workstation (a
high-performance personal computer) has software GestureRecognition of the sign
language recognition system and a database, part of which is used for training, and the
rest for experimental studies.

Practical studies revealed that the most optimal model of the database design,
capable of storing the multidimensional signals (received from the sensor Kinect 2.0),
is a hierarchical model [15]. The root directory of the database consists of 52 subdi-
rectories, 10 of which contain information about gestures showing the numbers 1–10.
The rest of the directories store static and dynamic gestures of finger alphabets (Russian
and Kazakh dactylology), consisting of 42 letters. The RSL has 33 letters that are
shown in the form of static gestures. In the KSL the Russian finger alphabet is sup-
plemented by 9 letters that are reproduced dynamically.

A single subdirectory includes 30–60 video files with one and the same recorded
gesture shown by demonstrators many times in a monochrome light or dark-green
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Fig. 1. Functional scheme of the automatic recognition system for sign language

Fig. 2. Human’s body model: (a) 25-point model of the human skeleton; (b) detection of a user
in the frame
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background; the same number of text files with the coordinates of the skeleton pattern
(divided into 25 joints) of the detected person. Each definite point is the intersection of
the two axes (X, Y) on the coordinate plane (Fig. 2) and the additional value of the Z
coordinate with double precision, indicating the depth of the point, which is measured
by the distance from the sensor to the object point. The optimal distance is 1.5–2 m.
Besides the above-mentioned files, there is also a text file storing service information
about the gesture. The average duration of one video file is �4–5 s.

The database contains two demonstrators (man and woman), each of whom showed
the same gesture 30 times. Examples of video frames depicting demonstrators from the
database are shown in Fig. 3. Recognition system training was carried out on the
extracted visual signs from 5 video files. These files are considered benchmark ges-
tures, while the rest are used as test data.

Method for extracting visual cues is as follows. Gesture is delivered to the
recognition system as a video signal. Then, for the entire video stream the optimal
threshold value of reducing brightness is selected. After this the filling of the inner
regions of the objects (closing) occurs. It is based on the following steps:

(1) Searching for one color square that is completely surrounded by the other one;
(2) Replacing the found region with the color of the surrounding region.

This operation is necessary for obtaining solid objects and is given according:

A � B ¼ ðA� BÞ � B

As can be seen from the expression, first dilation is applied, and the obtained result
is subjected to erosion [16].

Removal of minor noise and uneven borders around objects is carried out with the
help of masking in the form of a structural element consisting of a matrix of zeros and

Fig. 3. Examples of video frames depicting two demonstrators from the database
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ones, forming an oval square. The diameter is selected based on the best results. With
increasing the diameter, small objects disappear. Objects, which have color charac-
teristics matching hands color, but much smaller in diameter, are excluded likewise.

Finally, an square, which contains the coordinates from a set of text data obtained
from MS Kinect 2.0, will be a hand.

When testing on prerecorded gesture database, it was revealed that the deviations
from the normal functioning occur when the hand tilt angle exceeds 45°. This is due to
the fact that the sensor MS Kinect 2.0 is unable to identify the key point around the
hand center. This problem is solved by the method of averaging the last 7 previous
horizontal and vertical peaks of the hand contour, which allows us to predict in what
place the peaks will be in the subsequent time moment.

Next, using the skeleton data, obtained from the sensor MS Kinect 2.0, a
demonstrator’s hand is represented as an ellipse (Fig. 4), on condition that it constitutes
one object. The semi-major axis runs through the points that are in wrist, the center of
the hand and vertices of middle and ring fingers. The semi-minor axis runs perpen-
dicular to the major axis through the point with the coordinates of the hand center.

After finding the ellipse, the first geometrical informative feature in the form of the
orientation of hands is defined. The value is the angle between the x-axis of the
coordinate plane and the major axis of the object (hand), as illustrated in Fig. 5.

Other interrelated necessary features are the lengths of the ellipse’s axes. It should
be noted that MS Kinect 2.0 does not allow for high-precision determination of the
coordinates of the vertices, which can be reflected in false values. Therefore, a
pre-colored image of hands is transferred into binary. This allows us to separate
background from the hand and get the optimum values of lengths of both minor and
major axes of the ellipse.

Then eccentricity is determined by dividing the major axis length by the minor axis
length. The resulting value is added to the found features.

Other features are the topological properties of the binary object, such as the
number of holes inside the object and the Euler number, calculated based on the
difference in the number of objects and their inner holes in the image [17].

Fig. 4. Representation of hands in the form of an ellipse
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In continuation of analysis of the binary object, the square and convexity coefficient
are determined. The convexity coefficient is defined as the ratio of the square of the
object to the square of the quadrilateral that completely encompasses the object.

Using the Sobel operator [18] we obtain hand border (examples are shown in
Fig. 6) and find its length and diameter. Finally, we complement an array of features
with the values obtained.

In total, the defined informative features characterize the hand in the general view,
without determination of a shown gesture with a high probability. Therefore, the hand
opening process is performed using the structural element in the form of a circle with a
diameter of 1/5 of the length of the ellipse’s minor axis. Such a diameter allows
clipping the fingers from the central region of the hand, as shown in Fig. 7 in the

Fig. 5. Orientation of hands (the angle between the x-axis and the major axis of the object)

Fig. 6. Examples of determining the hand contour
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second vertical row on the left. Then, a matrix, subjected to opening, should be
excluded from the binary matrix with an object in the form of a hand. This procedure
leads to separation of the central region of the hand from the fingers, as illustrated in
Fig. 7 (the second column to the right).

As a result, we receive fingers in the form of objects with a preliminary removal of
minor noises (as shown in Fig. 7 in the right column), for which the same features as
for the hand are determined. This procedure allows us to have an idea about the hand as
a whole and of its components in the form of fingers. The values of features are stored
in the identifiers, the names of which do not coincide with each other. This allows using
features in any order during recognition. Figure 8 shows a diagram of the method of
calculating the visual features of hands.

Fig. 7. Examples of clipping fingers from the central region of the hand in the image

Fig. 8. Diagram of the method of calculating the visual features of one hand
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Vectors of visual video features of hands and fingers are shown in Tables 1 and 2.
The recognition process is as follows. If visual images are described using quantitative
descriptors (length, square, diameter, texture, etc.), then the elements of decision theory
can be applied.

Every gesture is represented as an image. An image is an arranged set of descriptors
forming the feature vectors:

X ¼ x1; x2; . . .; xnð Þ

where xi � i is a descriptor; n – total number of descriptors.
Images, which have some similar properties, form a class. In total, the recognition

system comprises 52 classes (according to the number of recognized gestures in the
database) referred to as w1;w2; . . .;w52. In each class, there are 5 records that are
benchmarks for a proper showing of a certain gesture.

Table 1. Visual features for describing a hand

Identifier Feature description

hand_or Hand orientation
hand_maj_axis_len Length of the major axis of ellipse
hand_small_axis_len Length of the minor axis of ellipse
hand_eccentr Eccentricity
hand_open Number of inner holes
hand_eul_num Euler’s number
hand_square Square (area)
hand_convex Convexity coefficient
hand_bord_len Boundary length
hand_bord_diam Boundary diameter

Table 2. Visual features for describing each finger

Identifier Feature description

fing_or Finger orientation
fing_maj_axis_len Length of the major axis of ellipse
fing_small_axis_len Length of the minor axis of ellipse
fing_eccentr Eccentricity
fing_open Number of inner holes
fing_eul_num Euler’s number
fing_square Square (area)
fing_convex Convexity coefficient
fing_bord_len Boundary length
fing_bord_diam Boundary diameter
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The process of matching the reference vectors with test ones is based on the
calculation of the Euclidean distance between them. Belonging of an object to any class
is based on the minimum distance between the reference (prototype) and unknown
objects as shown in Fig. 9.

A static classifier by the minimum Euclidean distance is as follows. A reference
class is the expectation of images vectors of the selected class:

mj ¼ 1
N

X

x2wj

xj

where j ¼ 1; 2; . . .;W is the number of classes, Nj is the number of vectors of objects
descriptors of the class wj.

Summing is carried out over all vectors. A proximity measure based on the
Euclidean distance is calculated according to the formula:

DjðxÞ ¼ x� mj

�� ��

where j ¼ 1; 2; . . .;W is the number of classes, x is an unknown object, mj is mathe-
matical expectation calculated according to the previous formula.

Thus, the unknown object x will be correlated with a certain probability to such a
class wj, or which the proximity measure DjðxÞ will be the least.

Reaching the least (on average) error probability for the classification is carried out
as follows. The probability that a certain object x belongs to the class wj is pðwjjxÞ. If
the classifier refers an image (object) to the class wj, which actually belongs to wi, this
indicates that there is a loss in the form of the classification error. These errors are
referred to as Lij. Since any image x в may be attributed to any of the existing classes
W , the average loss value (error), associated with the attribution to the class wj of the
object x is equal to the average risk. The calculation is made according to the formula:

rjðxÞ ¼
XW

k¼1

LkjpðwkjxÞ

Fig. 9. Examples of gesture recognition
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Thus, an unknown image may be attributed to any class W . The sum of the average
loss values over all admissible solutions will be minimal, because for the input image x
the functions r1ðxÞ; r2ðxÞ; . . .; rwðxÞ are calculated. This classifier is based on the Bayes
classifier, i.e. it attributes the image x to the class wi if riðxÞ\rjðxÞ on condition that
j ¼ 1; 2; . . .;W is the number of classes and the class j is not equal to the class i.

In our computer system, we employ some freely available software such as Open
Source Computer Vision Library (OpenCV v3) [19], Open Graphics Library (OpenGL)
[20] and Microsoft Kinect Software Development Kit (Kinect SDK 2.0) [21].

3 Experimental Research

The automated system was tested on different computers with various performance
characteristics, parameters of which are presented in Table 3.

The average processing time of one frame of the video sequence is 215 ms
(Table 3), which allows processing up to 5 frames per 1 s. Current results do not allow
processing video stream by an automation system in real time. However, there is a
possibility of processing the recorded video fragments with the camera Kinect 2.0
together with the values obtained from the depth sensor in the synchronous mode.

The average recognition accuracy was 87%. Calculation is done according to the
formula:

xc ¼ x1 þ x2 þ . . .þ xn
n

;

where n is the number of gestures, xn is the gesture recognition accuracy.
These results were obtained for the recorded database.
Gestures, for which it is necessary to put the fingers quite close to one another at

different angles, showed the least recognition accuracy. In this case, the increasing of
accuracy is possible by increasing the number of benchmarks and developing an

Table 3. The speed of frame processing with different computers

Processor RAM,
GB

Storage
type

Video adapter Processing
speed, ms

Intel Core i7
3.4 GHz

8 HDD Nvidia GeForce GTX 650 Ti �180

Intel Core i7
3.4 GHz

4 SSD Nvidia GeForce GTX 650 Ti �140

Intel Atom Z250
1.33 GHz

2 HDD GMA500 �415

Intel Xeon
E5-2690

128 SSD NVIDIA Tesla K20X, NVIDIA
Quadro K5000 (SLI)

�70

Intel Core
i5-3470

8 HDD NVIDIA GeForce GT 640 �270
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algorithm capable of performing the processes of opening and closing not only a binary
image, but also color one. This will allow controlling color parameters flexibly and
more accurately determine not only the coordinates of objects, but also their
descriptors.

4 Conclusions and Future Work

In this paper, we presented the computer system aimed at recognition of manual
gestures using Kinect 2.0. At present, our system is able to recognize continuous
fingerspelling gestures and sequences of digits in Russian and Kazakh SLs. Our gesture
vocabulary contains 52 isolated fingerspelling gestures. We have collected a visual
database of SL gestures, which is available on request. This corpus is stored as a
hierarchical database and consists of recordings of 2 persons. 5 samples of each gesture
were applied for training models and the rest data were used for tuning and testing the
developed recognition system. Feature vectors are extracted from both training and test
samples of gestures, then comparison of reference patterns and sequences of test
vectors is made using the Euclidian distance. Sequences of vectors are compared using
the dynamic programming method and a reference pattern with a minimal distance is
selected as a recognition result. According to our preliminary experiments in the
signer-dependent mode with 2 demonstrators from the visual database, the average
accuracy of gesture recognition is 87% for 52 manual signs.

In further research, we plan to apply statistical recognition techniques, e.g. based on
some types of Hidden Markov Models (HMM) such as multi-stream or coupled
HMMs, as well as deep learning approaches with deep neural networks [22]. We have
plans to apply a high-speed video camera with >100 fps in order to keep dynamic
gesture dynamics and to improve gesture recognition accuracy [23]. Also we plan to
create an automatic lip-reading system for the full SL recognition system and to make a
gesture-speech analysis [24] for SL. Our visual database should be extended with more
gestures and signers to create a signer-independent system for RSL recognition. In
future, this automatic SL recognition system will become a part of our universal
assistive technology [25], including ambient assisted living environment [26, 27].
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