
MIDAS-M: A Software Framework for Supporting
Multimodal Interaction on Heterogeneous Interaction

Devices for Cloud Applications

Myunghee Lee1, Gerard J. Kim1(✉), and Jeonghyun Baek2

1 Digital Experience Laboratory, Korea University, Seoul, Korea
{lmh81,gjkim}@korea.ac.kr

2 KMC Robotics, Seoul, Korea
jhbaik@kmcrobot.com

Abstract. In this paper, we present a software framework, called MIDAS-M
(Mixing and matching heterogeneous Interaction Devices to Applications and
Services) that enables an application to lend itself to many different types of
interaction methods and accommodate users with different client devices in a
flexible manner. In particular, we focus on the aspect of supporting “multimodal”
interaction by defining and mapping events that are mixed and matched by
different input/output components. The multimodal events defined this way can
be realized on various client platforms according to their capabilities. We also
describe a case study of applying MIDAS-M to developing a multimodal interface
for a virtual apartment preview system, called the SMARTIS, and demonstrate
its advantages.

Keywords: Cloud based interaction · Ubiquitous interaction · Multimodal
interaction · Software framework

1 Introduction

Cloud computing allows and simplifies the instant access of rich information and high
quality service anywhere by decoupling the core software functionality (on the server
side) and the input/output (on the client side). That is, the client can be relatively
computationally less capable supporting just the acquisition of user input, presentation
of the output and communication these between the client and server. In many cases,
the web environment is used to provide the interaction platform independence for the
cloud client. The web environment basically supports only the standard keyboard and
cursor/pointer/touch interaction. In the future, we can easily imagine a situation where
users with variant client devices (and interaction capabilities) wanting to accomplish a
given application task in a different way. For instance, in playing a first person shooting
game, one might prefer to shoot using a hardware button, another by touch button,
another by swipe gesture, and another by voice command. That is, sophisticated users
will expect to choose the most usable form of interaction for themselves, depending on
the given device (e.g. desktop, smart phone, pad, VR).

© Springer International Publishing AG 2017
N. Streitz and P. Markopoulos (Eds.): DAPI 2017, LNCS 10291, pp. 172–179, 2017.
DOI: 10.1007/978-3-319-58697-7_12



Traditionally, to accommodate the situation as described above, either separate client
programs are developed for (or ported to) different devices and operating systems,
enforcing a particular interface most suited for the given device, or a “large” client
program is developed to cover all possible interaction possibilities. Practically, this has
caused application services (cloud or local) to be compatible to only a small family or
brand of devices and leaving no choices for the users in terms of the interaction possi‐
bilities.

In the line of such a need, we had developed present a software framework, called
MIDAS (Mixing and matching heterogeneous Interaction Devices to Applications and
Services), that enables an application to lend itself to many different types of interaction
methods (namely, sensing and display) and accommodate users with different client
devices in a flexible manner [1]. In this paper, we present an important extension to
MIDAS, called MIDAS-M, for supporting “multimodal” interaction in the similar way.
Using MIDAS-M, multimodal events can be defined in an abstract manner, and mapped
to the application, e.g. to provide redundant and assured input/output delivery, alterna‐
tive interaction methods, and/or interfaces matched in modalities by the task character‐
istics. The multimodal events defined this way can be realized on various client platforms
according to their capabilities. We describe the MIDAS-M framework and present a
case study of applying it to developing a multimodal interface for a virtual apartment
preview system, called the SMARTIS.

2 Related Work

The objective of our work is similar to those of the migratory or plastic interfaces.
Migratory interfaces are those that operate on changing operating platforms or interac‐
tion resources. Cameleon-RT [2] and BEACH [3] are examples of such software archi‐
tecture/infrastructures in which multiple interaction devices could be managed and
interact with the given application. Such middlewares enable a “generically” described
interactive application to build their own “view” for a given physical interaction plat‐
form. Plasticity further requires the migrating interface to preserve the usability as much
as possible by adaptation to the specific operating platform (e.g. the control panel lay
out changed according to the size of the PDA) [4]. In these approaches, separate platform
specific implementations and compilation processes are still needed, and they do not
support the design of multimodal interaction in a flexible mix (different modalities) and
match (to various devices) fashion.

TERESA [5] is an authoring tool for “One Model, Many Interfaces” [6] type of
applications. With the help of TERESA, different user interface codes can be conven‐
iently generated from abstract user interface descriptions. However, the output appli‐
cation still compiled for a specific platform with its interaction capabilities known ahead
of time. The SEESCOA component system [7] uses abstract UI described in XML which
is interpreted to compose user interfaces at run time. Mark up languages for the inter‐
active web and cloud applications that describe UI objects, and interpreted and realized
by different platform browsers, operate on similar principles [8, 9]. Gilroy et al. has
developed a client middleware that adapts application’s “presentation styles” (expressed

MIDAS-M: A Software Framework 173



in an XML format specification document) most suited for a given device at run time.
This way, the menus, form-fills, dialogue GUIs are adjusted and presented according to
the device capabilities and thus high usability can be expected [10]. Our work focuses
on defining and managing multimodal interaction.

3 MIDAS-M Framework

Figure 1 shows the overall architecture of MIDAS-M. In the far left (and right), lie
different input (and output) modules/platforms operating in different modalities or
equipped with various sensors and displays. MIDAS-M takes the raw input signals from
the input modules (which may be separate from where the application resides), and relays
them to the application (possibly through the network) in the form of meaningful appli‐
cation “events.” The “events” can be multimodal that combines the different input
streams in different timings (but within a limited time window) and/or contributing
factors. For example, a multimodal input might be defined as a successive input of a
voice command and finger tracking data within 1 s, or a simultaneous input of voice and
touch. Such definitions are specified by the developer using a separate authoring tool
(Fig. 2) producing an XML based description of the multimodal events (Fig. 3), as an
input to the MIDAS-M engine (middle part of Fig. 1). As illustrated in Fig. 3, the events

Fig. 1. MIDAS-M: A flexible architecture that decouples the application from interaction
complexities and device heterogeneity. It also supports definitions of multimodal input and output
events as mapped to the application in a neutral and generic way.

174 M. Lee et al.



are assigned with unique identifiers and used in the given application to define their
handlers.

Fig. 2. The GUI based authoring tool to define multimodal events and mapping them to a given
application. An example of an XML description of a multimodal event

Fig. 3. An example of an XML description of a multimodal event. For instance, the output event,
“PickingBook” is triggered by a combined (sequential) multimodal input event of “0” (hand
gesture) and “1” (target object recognition).

MIDAS-M: A Software Framework 175



Just like the multimodal input events, multimodal output events can be specified in
the same way and used in the pertaining application. Important aspects of multimodal
output event might include the timing, synchronization and heterogeneous device
support and customization (e.g. according to display resolution, screen size, volume
level, etc.).

4 A Case Application: SMARTIS

We demonstrate the flexibility of the MIDAS-M framework, in providing a variety of
ways to interact and improving general usability, by applying it to the development of
a virtual apartment previewing system, called the SMARTIS. It is composed of two main
output displays, namely, a tabular and an upright monitors, and a number of sensors for
input such as the Microsoft Kinect depth sensor, an RGB camera, touch screen, and a
microphone.

With SMARTIS, the user can make commands in various ways for making selections
(e.g. particular floor plan, apartment model/size, interaction/content modes, view‐
points), querying for information (e.g. price, location, options), zooming in/out, and
navigating and exploring the scene. Many interactions are defined multimodally. For
example, the “move forward” command (for navigating the virtual apartment) can be
invoked by voice, touch or mid-air gestures separately or combined. Figure 4 shows the
system in use and Table 1 summarizes the (multimodal) interfaces for various afore‐
mentioned tasks. The output is presented through the two monitors, e.g. the 2D floor
plan on the flat monitor and 3D interior scenes on the upright, accompanied by sound/
voice feedback where appropriate. Figure 4 shows the overall system set-up and its
typical usage situation.

Fig. 4. A scene from interacting with SMARTIS (virtual apartment previewing system) using
natural gestures, finger tracking, touch, multiple displays and voice commands.

176 M. Lee et al.



Table 1. Multimodal interfaces for various tasks in SMARTIS.

Task Interface
Input Navigation (Translation and Rotation) Gesture

Voice
Touch
Object recognition

Select Object recognition
Gesture

Zoom in/Zoom out Gesture
Capturing ROI Gesture
Mode change Voice

Gesture
Touch

Output Present 2D floor plan Visual feedback (flat display)
Sound feedback

Present 3D apartment interior Visual feedback (upright display)
Sound feedback

Present instructions Visual feedback (flat/upright display)
Sound feedback

Command confirmation Visual feedback (flat/upright display)
Sound feedback

The input modules and the core applications in SMARTIS were developed separately
on different operating platforms and run on separate computers communicating through
the network. The whole system was internally integrated through the event language
and protocol of the MIDAS-M, which defined the various input and output events (some
of multimodal, see Table 1) and mapped to the core application logic. These event
specifications were mostly carried out using the aforementioned authoring tool (Fig. 2).

Fig. 5. Another smart table based object manipulation application quickly developed using the
same I/O modules and MIDAS-M framework.

MIDAS-M: A Software Framework 177



The decoupled development, between the I/O and core application follows the well-
known principle of separation of concerns [11] and the MVC (Model-View-Controller)
development methodology [12, 13]. All the input/output modules are easily reusable in
different multimodal combination for another application. Figure 5 shows a simple smart
table based object manipulation application, quickly developed using same I/O modules
and MIDAS-M middleware.

5 Discussion and Conclusion

In this paper, we presented MIDAS-M that supports multimodal interaction and inter‐
face-model decoupled application development. The multimodal events can be defined
in a variety of forms to allow rich interaction and high usability of the target application.
The framework was put to use to develop a commercially deployed product. It demon‐
strates that how MIDAS-M allows a flexible mixing and matching of and reusing of the
I/O modules at compile or even run time to suit the various interactional needs. In addi‐
tion to the logical decoupling between the I/O and core application, future MIDAS-M
framework can be applied as a cloud middleware (e.g. for hardware/platform decou‐
pling) in which clients only have to perform the necessary I/O functions with the sensors
and input modules available to themselves.

Acknowledgement. The research was supported through the “Software Convergence
Technology Development Program,” funded by the Ministry of Science, ICT and Future Planning
(S1002-13-1005), and also through the “Basic Science Research Program,” funded by the Korean
National Research Foundation (No. 2011-0030079).

References

1. Ahn, E., Lim, K., Kim, G.J.: MIDAS: a software framework for accommodating
heterogeneous interaction devices for cloud applications. In: Streitz, N., Stephanidis, C. (eds.)
DAPI 2013. LNCS, vol. 8028, pp. 339–348. Springer, Heidelberg (2013). doi:
10.1007/978-3-642-39351-8_37

2. Balme, L., Demeure, A., Barralon, N., Coutaz, J., Calvary, G.: CAMELEON-RT: a software
architecture reference model for distributed, migratable, and plastic user interfaces. In:
Markopoulos, P., Eggen, B., Aarts, E., Crowley, James L. (eds.) EUSAI 2004. LNCS, vol.
3295, pp. 291–302. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30473-9_28

3. Tandler, P.: Software infrastructure for ubiquitous computing environments: supporting
synchronous collaboration with heterogeneous devices. In: Abowd, G.D., Brumitt, B., Shafer,
S. (eds.) UbiComp 2001. LNCS, vol. 2201, pp. 96–115. Springer, Heidelberg (2001). doi:
10.1007/3-540-45427-6_9

4. Calvary, G., Coutaz, J., Thevenin, D.: A unifying reference framework for the development
of plastic user interfaces. In: Little, M.R., Nigay, L. (eds.) EHCI 2001. LNCS, vol. 2254, pp.
173–192. Springer, Heidelberg (2001). doi:10.1007/3-540-45348-2_17

5. Mori, G., Paterno, F., Santoro, C.: Design and development of multidevice user interfaces
through multiple logical descriptions. IEEE Trans. Softw. Eng. 30(8), 507–520 (2004). IEEE

178 M. Lee et al.

http://dx.doi.org/10.1007/978-3-642-39351-8_37
http://dx.doi.org/10.1007/978-3-540-30473-9_28
http://dx.doi.org/10.1007/3-540-45427-6_9
http://dx.doi.org/10.1007/3-540-45348-2_17


6. Paterno, F., Santoro, C.: One model, many interfaces. In: Kolski, C., Vanderdonckt, J. (eds.)
Computer-Aided Design of User interfaces III, vol. 3, pp. 143–154. Springer, Netherlands
(2002)

7. Luyten, K., Vandervelpen, C., Coninx, K.: Migratable user interface descriptions in
component-based development. In: Forbrig, P., Limbourg, Q., Vanderdonckt, J., Urban, B.
(eds.) DSV-IS 2002. LNCS, vol. 2545, pp. 44–58. Springer, Heidelberg (2002). doi:
10.1007/3-540-36235-5_4

8. XHTML2 Working Group Home Page. http://www.w3.org/MarkUp
9. XAML Overview (WPF). http://msdn.microsoft.com/en-us/library/ms752059.aspx

10. Gilroy, S.W., Harrison, M.D.: Using interaction style to match the ubiquitous user interface
to the device-to-hand. In: Bastide, R., Palanque, P., Roth, J. (eds.) DSV-IS 2004. LNCS, vol.
3425, pp. 325–345. Springer, Heidelberg (2005). doi:10.1007/11431879_22

11. Suh, N.P.: The Principles of Design, vol. 990. Oxford University Press, New York
12. Patterns, D., Pattern, C.: Model-View-Controller (2003)
13. Leff, A., Rayfield, J. T.: Web-application development using the model/view/controller design

pattern. In: Enterprise Distributed Object Computing Conference, pp. 118–127. IEEE (2001)

MIDAS-M: A Software Framework 179

http://dx.doi.org/10.1007/3-540-36235-5_4
http://www.w3.org/MarkUp
http://msdn.microsoft.com/en-us/library/ms752059.aspx
http://dx.doi.org/10.1007/11431879_22

	MIDAS-M: A Software Framework for Supporting Multimodal Interaction on Heterogeneous Interaction Dev ...
	Abstract
	1 Introduction
	2 Related Work
	3 MIDAS-M Framework
	4 A Case Application: SMARTIS
	5 Discussion and Conclusion
	Acknowledgement
	References


