
Probabilistic Inductive Logic Programming
on the Web

Fabrizio Riguzzi1(B), Riccardo Zese2, and Giuseppe Cota2

1 Dipartimento di Matematica e Informatica, University of Ferrara,
Via Saragat 1, 44122 Ferrara, Italy

fabrizio.riguzzi@unife.it
2 Dipartimento di Ingegneria, University of Ferrara,

Via Saragat 1, 44122 Ferrara, Italy
{riccardo.zese,giuseppe.cota}@unife.it

Abstract. Probabilistic Inductive Logic Programming (PILP) is gain-
ing attention for its capability of modeling complex domains containing
uncertain relationships among entities. Among PILP systems, cplint

provides inference and learning algorithms competitive with the state
of the art. Besides parameter learning, cplint provides one of the few
structure learning algorithms for PLP, SLIPCOVER. Moreover, an online
version was recently developed, cplint on SWISH, that allows users to
experiment with the system using just a web browser. In this demo we
illustrate cplint on SWISH concentrating on structure learning with
SLIPCOVER. cplint on SWISH also includes many examples and a
step-by-step tutorial.

1 Introduction

Probabilistic Inductive Logic Programming (PILP) [3] uses Probabilistic Logic
Programming (PLP) for modeling in domain characterized by uncertain rela-
tionships among entities.

One of most successful approaches to PLP is based on the distribution seman-
tics [8] where a probabilistic program defines a probability distribution over non
probabilistic programs, called worlds. The probability of a query is simply the
sum of the probability of the worlds where the query is true. Various languages
follow the distribution semantics such as Probabilistic Logic Programs, Logic
Programs with Annotated Disjunctions (LPADs), CP-logic and ProbLog.

Many systems for performing inference and learning with these languages
have been proposed in the past 20 years. Among them, cplint provides an inter-
esting mix of algorithms, including structure learning algorithms.

cplint on SWISH [6] is a web application for running cplint with just a
web browser: the algorithms run on a server and the user can post queries and
see the results in his browser. cplint on SWISH is available at http://cplint.
lamping.unife.it and Fig. 1 shows its interface.

cplint on SWISH is based on SWISH, a web framework for Logic Pro-
gramming using features and packages of SWI-Prolog and its Pengines library.
c© Springer International Publishing AG 2017
P. Ciancarini et al. (Eds.): EKAW 2016 Satellite Events, LNAI 10180, pp. 172–175, 2017.
DOI: 10.1007/978-3-319-58694-6 25

http://cplint.lamping.unife.it
http://cplint.lamping.unife.it


Probabilistic Inductive Logic Programming on the Web 173

Fig. 1. cplint on SWISH interface.

SWISH allows the user to write a Logic Program in a browser window and ask a
query over it. The query and the program are sent to a server using JavaScript.
The server then builds a Pengine (Prolog Engine) that evaluates the query and
returns answers for it to the user. Both the web server and the inference back-end
are run entirely within SWI-Prolog.

cplint on SWISH uses the language of LPADs and includes two inference
algorithms: PITA, that uses knowledge compilation, and MCINTYRE, that uses
Monte Carlo sampling. For parameter learning EMBLEM [1] is available while
SLIPCOVER [2] can be used for structure learning.

cplint on SWISH is similar to ProbLog2 [4] that has also an online version1.
Problog2 offer inference and learning algorithms for ProbLog. In the online ver-
sion, users are allowed to write programs and run algorithms on a server with a
browser. ProbLog2 is written in Python, runs in an Python HTTP server and
exploits the ACE editor2 which is written in JavaScript.

The main difference between cplint on SWISH and ProbLog2 is that the first
offers also structure learning. Moreover, cplint on SWISH uses a Prolog-only
software stack. ProbLog2, instead, relies on several different technologies, includ-
ing JavaScript, Python 3 and the DSHARP compiler. In particular, it writes
intermediate files to disk in order to call external programs such as DSHARP
while we work in main memory only.

With both cplint on SWISH and ProbLog2 users who want to experiment
with PILP can do it without the need to install a system, a procedure which is
often complex, error prone and limited mainly to the Linux platform. However,
since it is impossible to predict the load of the server, the system is more targeted
at development, while for production it is recommended to use the standalone
version of cplint.

One of the main objectives of cplint on SWISH is to reach out to a wider
audience and popularize PILP, similarly to what is done for the functional prob-
abilistic language Church [5], which is equipped with the webchurch system for
compiling Church programs into JavaScript. To try to achieve this goal, cplint

1 https://dtai.cs.kuleuven.be/problog/.
2 https://ace.c9.io/.

https://dtai.cs.kuleuven.be/problog/
https://ace.c9.io/


174 F. Riguzzi et al.

on SWISH includes various learning examples3: Machines (shown below), Regis-
tration, Bongard, Shop, Hidden Markov Model, Mutagenesis, University. More-
over, a complete online tutorial is available [7] at http://ds.ing.unife.it/∼gcota/
plptutorial/.

2 EMBLEM and SLIPCOVER

EMBLEM and SLIPCOVER in cplint on SWISH take as input a program
divided in five parts: (1) a preamble where all the parameters (such as the max-
imum number of iterations and the verbosity level) are set, (2) a background
knowledge that contains information valid for all interpretations, (3) an ini-
tial LPAD if there is one, (4) a language bias for guiding the learning phase.
In particular, for EMBLEM it contains the declarations of the input and out-
put predicates. Basically, input predicates are those for which we do not want
to learn parameters, while we want to learn parameters for output predicates.
SLIPCOVER uses also bias declaration in the style of Progol and Aleph: atoms
for modeh/2 specify the literals that can appear in the head of clauses while
atoms for modeb/2 specify the atoms that can appear in the body of clauses.
Moreover, SLIPCOVER requires the use of the determination/2 predicate, as
in Aleph, for specifying which predicates can appear in the body of clauses.

Using the machine dataset of the ACE data mining system4 as a running
example5 we have:

modeh(*,class(sendback)).
modeb(*,not_replaceable(-comp)).
modeb(*,replaceable(-comp)).
determination(class/1,replaceable/1).
determination(class/1,not_replaceable/1).

Finally, (5) the last part contains example interpretations. Here, we can use
two different representations shown below, models or keys, as in ACE. The
first specifies an example interpretation as a list of Prolog facts surrounded by
begin(model(<name>)) and end(model(<name>)). In the latter the facts can
be directly listed using the first argument as the example name.

begin(model(1)).
class(sendback).
neg(class(fix)).
worn(engine).
end(model(1)).

class(1,sendback).
neg(1,class(fix)).
worn(1,engine).

We can also define folds and which examples are included so that learning
can be performed by just asking the query induce(<folds>,P). The learned
program will be returned in variable P.
3 http://cplint.lamping.unife.it/example/learning/learning examples.swinb.
4 https://dtai.cs.kuleuven.be/ACE/.
5 http://cplint.lamping.unife.it/example/learning/mach.pl.

http://ds.ing.unife.it/~gcota/plptutorial/
http://ds.ing.unife.it/~gcota/plptutorial/
http://cplint.lamping.unife.it/example/learning/learning_examples.swinb
https://dtai.cs.kuleuven.be/ACE/
http://cplint.lamping.unife.it/example/learning/mach.pl


Probabilistic Inductive Logic Programming on the Web 175

Fig. 2. ROC curve for the mutagenesis dataset.

cplint on SWISH has also facilities for testing the learned models: predicate
test/7 takes as input the learned program and the testing folds and returns the
log-likelihood, the areas under the precision-recall and receiver operating char-
acteristics curves together with the set of points forming the curves themselves.
These set of points can also be drawn on the screen as the respective curves, as
shown in Fig. 2. cplint on SWISH offers also a separate AUC calculator6 that
takes as input the list of examples together with their sign and probability.

Acknowledgement. This work was supported by the “GNCS-INdAM”.

References

1. Bellodi, E., Riguzzi, F.: Expectation maximization over binary decision diagrams
for probabilistic logic programs. Intell. Data Anal. 17(2), 343–363 (2013)

2. Bellodi, E., Riguzzi, F.: Structure learning of probabilistic logic programs by search-
ing the clause space. Theor. Pract. Log. Program. 15(2), 169–212 (2015)

3. Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: Raedt, L.,
Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic Inductive Logic Pro-
gramming. LNCS, vol. 4911, pp. 1–27. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78652-8 1

4. Fierens, D., den Broeck, G.V., Renkens, J., Shterionov, D.S., Gutmann, B., Thon, I.,
Janssens,G.,DeRaedt, L.: Inference and learning in probabilistic logic programsusing
weighted boolean formulas. Theor. Pract. Log. Program. 15(3), 358–401 (2015)

5. Goodman, N.D., Tenenbaum, J.B.: Probabilistic Models of Cognition. http://
probmods.org

6. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., Cota, G.: Probabilistic logic program-
ming on the web. Softw. Pract. Exp. 46(10), 1381–1396 (2016)

7. Riguzzi, F., Cota, G.: Probabilistic logic programming tutorial. Assoc.
Log. Program. Newsl. 29(1) (2016). http://www.cs.nmsu.edu/ALP/2016/03/
probabilistic-logic-programming-tutorial/

8. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Sterling, L. (ed.) ICLP-95, pp. 715–729. MIT Press, Cambridge (1995)

6 http://cplint.lamping.unife.it/example/learning/exauc.pl.

http://dx.doi.org/10.1007/978-3-540-78652-8_1
http://dx.doi.org/10.1007/978-3-540-78652-8_1
http://probmods.org
http://probmods.org
http://www.cs.nmsu.edu/ALP/2016/03/probabilistic-logic-programming-tutorial/
http://www.cs.nmsu.edu/ALP/2016/03/probabilistic-logic-programming-tutorial/
http://cplint.lamping.unife.it/example/learning/exauc.pl

	Probabilistic Inductive Logic Programming on the Web
	1 Introduction
	2 EMBLEM and SLIPCOVER
	References


