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Abstract. Reduction of communication and efficient partitioning are
key issues for achieving scalability in hierarchical N -Body algorithms
like Fast Multipole Method (FMM). In the present work, we propose three
independent strategies to improve partitioning and reduce communica-
tion. First, we show that the conventional wisdom of using space-filling
curve partitioning may not work well for boundary integral problems,
which constitute a significant portion of FMM’s application user base. We
propose an alternative method that modifies orthogonal recursive bisec-
tion to relieve the cell-partition misalignment that has kept it from scal-
ing previously. Secondly, we optimize the granularity of communication
to find the optimal balance between a bulk-synchronous collective com-
munication of the local essential tree and an RDMA per task per cell.
Finally, we take the dynamic sparse data exchange proposed by Hoefler
et al. [1] and extend it to a hierarchical sparse data exchange, which is
demonstrated at scale to be faster than the MPI library’s MPI Alltoallv

that is commonly used.

Keywords: N -body methods · Fast multipole method · Load balancing ·
Communication reduction

1 Introduction

The N -body problem is a kernel in many scientific simulations in which the
behavior of the system is defined from mutual interactions between discrete enti-
ties (e.g., molecules, charges, astrophysical bodies). The N -body algorithm sums
up contributions due to all particles in the system, which results in quadratic
complexity. The Barnes-Hut treecode, which subdivides the 2D/3D domain into
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quad/octrees, brings the complexity down to O(N log N) by hierarchically clus-
tering the sources into multipole expansions. FMM clusters the targets into local
expansions to bring the complexity further down to O(N). For mathematical
foundations of the multipole expansions, see [2–4]. Among the applications of
FMM are [5,6] where protein-protein encounter within a biomolecular dynamics
solver is accelerated by using FMM to solve the boundary integral equation, which
is used to discretize the linearized Possion-Boltzmann equation. In [7] all-atom
molecular dynamics is performed to simulate the conditions of living cells by
calculating energy at target proteins in a solvent and a molecular crowder using
FMM. It is also used to speedup the matrix-vector multiplication, which arises
from electromagnetic scattering problems [8]. Other applications include gravity
simulations [9,10].

Due to their increased importance in large-scale simulations, there is now
a considerable literature on implementing parallel hierarchical N -body solvers,
e.g., FMM. Also, since they are among Berkeley’s seven dwarfs, the numerical
methods that are believed to be the most impactful in science and engineering
according to [11], it is important to address issues arising at exascale especially
the increasing cost of data movement (through memory hierarchy or network)
as opposed to floating point operations. Even though many of the current FMM
implementations are scalable to the full machine they run on, a communication
reducing approach that works on at least an order of magnitude more nodes tends
to be rarely the emphasis of these implementations. This tendency is justified in
accordance to the trend in enhancing a node with multi/many-core capabilities.
However, even within a many-core node, more sophisticated methods should be
used to place and exchange data to get the maximum performance reported
by the vendor. This is already implied in equipping the second generation of
Intel® Xeon Phi™ processors code-named Knights Landing (KNL) with mem-
ory ‘clustering modes’. Therefore, ideas presented in this paper complement the
literature although they mainly target distributed memory.

An example work that achieves full machine scalability using GPUs is that
of Bédorf et al. [9], where a parallel algorithm for sparse tree construction and
traversal that works completely on the GPU is introduced. At the construction
phase, they map the 3D coordinates to Hilbert’s linear (n-bit) addresses, then
particles are sorted to achieve locality in memory. To avoid the typical sequential
insertions to build Hilbert trees [12], one particle is assigned per GPU thread.
A level-wise mask is applied successively on each particle to discover its prede-
cessors such that cells with less than Nleaf are considered leaves. Grouping of
particles is done using parallel compact algorithm. To exploit the massively par-
allel GPU threads, a breadth-first traversal is used to carry out the computation.
They report a processing rate of 2.8 million particles per second. This work was
extended to an MPI parallel version where 24.77 PFlop/s (mixed precision) on
the full Titan system [13] was achieved.

Speck et al. [14] report scalability on up to 262,144 cores by introducing
temporal parallelism (parallel-in-time algorithm) on top of MPI/Pthreads spa-
tial decomposition to overcome the strong scaling limits when the number of
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particles per node becomes too small. The scalability is shown for up to 4M par-
ticles; then when they take advantage of shared and distributed memory paral-
lelism, and exploit the overlap of data-exchange and computation, they calculate
2 billion particles on 262,144 cores of JUGENE, according to [15]. Lashuk et al.
[16] propose an FMM implementation that scales on up to 196,608 cores by pro-
viding a novel domain-specific bulk synchronous all-reduce algorithm for remote
tree communication. They report communication complexity of O(

√
P ∗(NP )2/3),

which comes from their hypercube alltoall communication scheme. Hoefler et
al. [1] discuss the time and memory complexity of the common protocols used
for the dynamic sparse data exchange problem and develop the non-blocking
exchange protocol (NBX ) with constant memory overhead. Their novel algo-
rithm improves the runtime of sparse data-exchange up to 8,192 processors of
Bluegene/P by a factor of 5.6. They prove and model a generic time complexity
of O(log P ) using the LogGP model.

Zandifar et al. [17] provide a parallel FMM implementation as a benchmark
for their high-level skeletons (abstract parallel patterns) framework which exe-
cutes on top of the STAPL runtime system that dynamically schedules task on
highly heterogeneous architectures. They reuse several parallel patterns like the
bucket-sort and alltoall to perform geometric bisection and to aggregate the
local essential tree (LET) respectively. They achieve comparable performance to
the corresponding base MPI implementation by taking advantage of the under-
lying data-driven execution and asynchronous task scheduling guaranteed by the
runtime system. Many features of Charm++ like task migration and Structured
Control Flow are augmented in [18] to overlap computation with the communi-
cation of the local essential tree (LET).

Contributions of the present work can be summarized as follows:

– A novel demonstration that shows a weakness in Hilbert’s space-filling interval
partitioning for boundary element distributions.

– A communication scheme with adjustable granularity, which enables the over-
lap of local essential tree communication with computation that otherwise
cannot be overlapped.

– Introduction of the adaptive hierarchical sparse data exchange (HSDX ), a
neighborhood collective communication algorithm for exchanging the global
tree in a few steps by direct near-field communication only.

In Sect. 2, we describe our adopted partitioning techniques and justify our choice
in detail. Section 4 describes different communication strategies that we adopt
in order to avoid bulk synchronous LET communication. We also describe the
adopted load-balancing strategies and the communication complexity analysis
of our approach. Finally, we demonstrate our scalability and evaluation results.

2 Partitioning Schemes for the Fast Multipole Method
(FMM)

There are two traditional objectives associated with good partitioning of the
N -body problem: evenly splitting data among partitions to achieve work balance,
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and providing efficient access to non-local data. There is no optimal approach
that can simultaneously handle these two objectives, because of strict consider-
ations on locality of data for high arithmetic intensity, granularity, and the size
of communication, which can vary based on space-time proximity of partitions.

2.1 Preliminaries

Partitioning schemes for fast N -body methods can be categorized into orthogonal
recursive bisections (ORB) [19] or hashed octrees (HOT) [20].

Orthogonal Recursive Bisection (ORB). The ORB [19] forms a balanced
binary tree by finding a geometric bisector that splits the number of particles
equally at every bisection of the tree. The direction of the geometric bisector
alternates orthogonally (x, y, z, x, . . .) to form a cascade of rectangular subdo-
mains that contain equal number of particles similar to Fig. 1(c). For nonuniform
distributions the aspect ratio of the subdomain could become large, which leads
to suboptimal interaction list size and communication load. This problem can be
alleviated by choosing the direction of the geometric bisector to always split in
the longest dimension. The original method is limited to cases where the number
of processes is a power of two, but the method can be extended to non-powers-
of-two by using multi sections instead of bisections [21].

Hashed Oct-Tree (HOT). In HOT, initially proposed by [20], the domain is
partitioned by splitting Morton/Hilbert ordered space filling curves into equal
segments as shown in Fig. 1(a) and (b). Morton/Hilbert ordering maps the geo-
metrical location of each particle to a single key. The value of the key depends
on the depth of the tree at which the space filling curve is drawn. Three bits of
the key are used to indicate which octant the particle belongs to at every level
of the octree. Therefore, a 32-bit unsigned integer can represent a tree with 10
levels, and a 64-bit unsigned integer can represent a tree with 21 levels. Directly
mapping this key to the memory address is inefficient for non-uniform distrib-
utions since most of the keys will not be used. Therefore, a hashing function is
used to map the Morton/Hilbert key to the memory address of particles/cells.

(a) HOT (Morton) (b) HOT (Hilbert) (c) ORB (d) Present method

Fig. 1. Schematic of different partitioning schemes. (a) Shows the hashed octree with
Morton keys. (b) Shows the hashed octree with Hilbert keys. (c) Shows the orthogonal
recursive bisection with an underlying global tree. (d) Is the present method using an
orthogonal recursive bisection with independent local trees and tight bounding boxes.
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Fig. 2. Histogram-based partitioning scheme.

2.2 Adopted Partitioning Strategies

Parallel Sampling-Based Techniques for Finding Splitters/Bisectors.
Parallel sampling-based techniques have proven to be useful for both finding the
bisectors in ORB [21] and finding the splitting keys in HOT [22]. Both ORB and
HOT are constructing parallel tree structures, but in different ways. There is an
analogy between parallel tree construction and parallel sorting. The idea behind
ORB is analogous to merge sort, where a divide and conquer approach is taken.
HOT is analogous to radix sort, where each bit of the key is examined at each
step. Therefore, sampling-based techniques that are known to be effective for
parallel sorting are also effective for parallel tree partitioning. The partitioning
can be separated into two steps. The first step is to find the bisectors/key-
splitters by using a sampling-based parallel sorting algorithm. An example of
such sampling-based partitioning is shown in Fig. 2. Sorting is only performed
among the buckets (not within them) and this is done only locally. The only
global information that is communicated is the histogram counts, which is only
a few integers and can be done efficiently with an MPI allreduce operation. The
bins can be iteratively refined to narrow the search for the splitter of the HOT
key or ORB bisector. This will determine the destination process for each par-
ticle. The second step is to perform an all-to-all communication of the particles.
Since the ORB bisector is one floating point number and the HOT key is one
integer, it is much less data than sending around particle data at each step of
the parallel sort.

Weakness in Space-Filling Partitioning for Boundary Distributions. It
is well-known that the main advantage of Hilbert curve as opposed to Morton is
its locality preserving properties in 2D. It is not clear, however, to what extent
we can generalize this property in higher dimensions [23]. As a counterexample
to the locality property, we observe that it is not entirely preserved in case of
3D boundary element distributions, which increases the distributed interaction
list size. The reason for that comes from the intuitive notion of space-filling
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(a) Hilbert partition A. (b) A, B combined. (c) Underlying Hilbert curve.

Fig. 3. A Hilbert partition from a boundary spherical distribution viewed from different
perspectives. A space discontinuity exists even though partitions are in correct Hilbert
order due to the existence of hollow space in orthogonal dimensions.

curves, that is, when the space is not filled, e.g., in boundary spherical distribu-
tion, interpolation of spatial points to Hilbert curve does not necessarily map to
keys that are continuous in space. This is attributable to the fact that keys are
not interpolated in their natural order, since points are spread out on surface
patches. Figure 3 shows particles laid out in their respective Hilbert order. Due
to the geometry of the space-filling curve, movement across dimensions happens
orthogonally, hence, if hollow space is encountered in the orthogonal direction, it
will introduce discontinuity in the partition as in Fig. 3(a). Clearly, this does not
apply to uniform dense distributions, which comprise many classical applications
of FMM, making HOT partitioning an optimal choice in such cases.

Hybrid Partitioning. In our implementation, we choose a modified version
of ORB over HOT for a few other reasons. One of the main reasons is that we
were able to improve a major defect of ORB – partition-cell alignment issue.
Since geometrically closer points interact more densely with each other, it is
crucial to keep the particles in the same cell on the same process in order to
minimize communication. However, if a global Morton/Hilbert key is used to
construct the local trees, the ORB may place a bisector in the middle of a cell
as shown in Fig. 1(c). This results in an increase in the interaction list size. We
avoid this problem by using local Morton/Hilbert keys that use the bounds of
the local partition. This may at first seem to increase the interaction list near the
partition boundaries since two misaligned tree structures are formed. However,
when one considers the fact that the present method squeezes the bounding box
of each cell to tightly fit the particles as shown in Fig. 1(d), it can be seen that the
cells are not aligned at all in the first place. Furthermore, our flexible definition
of the multipole acceptance criteria optimizes the interaction list length for a
given accuracy regardless of the misalignment.

3 Communication of the Local Essential Tree

Once particles are partitioned, those in the local domain are used to construct
a local tree. We use a completely local construction of the octree using the
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local bounding box, instead of using a global Morton/Hilbert key that is derived
from the global bounding box. This allows us to reuse all parts of the serial
code and only add a few routines for the partitioning, grafting of trees, and
communication. Therefore, any modification in the serial code is immediately
reflected in the parallel code.

After the local tree structure is constructed, a post-order traversal is per-
formed on the tree structure and Particle-to-Multipole (P2M) and Multipole-to-
Multipole (M2M) kernels are executed bottom up. The P2M kernel is executed only
at the leaf cells. It loops over all particles in the leaf cell to form the multipole
expansion at the center of the leaf cell. The M2M kernel is executed only for the
non-leaf cells. It loops over all child cells and translates the multipole expansions
from its children’s centers to its center.

Once the multipole expansions for all local cells have been determined, the
multipole expansions are sent to the necessary processes in a sender-initiated
fashion [24]. This reduces the latency by communicating only once, rather than
sending a request to remote processes and then receiving the data. Such sender-
initiated communication schemes were common in cosmological N -body codes
since they tend to use only monopoles, and in this case the integer to store
the requests is as large as the data itself if they were to use a request-based
scheme. This data is used to construct the local essential tree (LET), that is,
the union of all trees representing the entire domain as seen by the local process
[25]. It gets coarser depending on the distance of the remote cell. In the present
method, it is formed by simply grafting the root nodes of the remote trees. In
conventional parallel FMM codes, a global octree is formed and partitioned using
either HOT or ORB. Therefore, the tree structure was severed in many places,
which caused the merging of the LET to become quite complicated. Typically,
code for merging the LET would take a large portion of a parallel FMM code,
and this made it difficult to implement new features such as periodic boundary
conditions, mutual interaction, more efficient translation stencils, and dual tree
traversals. ExaFMM1 is able to incorporate all these extended features and still
maintain a fast pace of development because of this simplification in how the
global tree structure is geometrically separated from the local tree structure.

While the remote information for the LET is being transferred, the local
tree can be traversed. Conventional fast N -body methods overlap the entire
LET communication with the entire local tree traversal. The LET communi-
cation becomes a bulk-synchronous MPI alltoallv type communication, where
processes corresponding to geometrically far partitions send logarithmically less
information, thus resulting in O(log P ) communication complexity where P is
the number of processes. Nonetheless, in traditional fast N -body codes this part
is performed in a bulk-synchronous manner.

1 ExaFMM is an open-source code base to utilize fast multipole algorithms, in parallel,
and with GPU capability. Algorithms pertaining to partitioning and communication
reduction are all available on the public repository https://github.com/exafmm/
exafmm.

https://github.com/exafmm/exafmm
https://github.com/exafmm/exafmm
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4 Communication Reduction for the Adaptive Tree

In the following sections, we present different novel techniques that can be used
to do the hierarchically sparse data exchange (HSDX ) of the adaptive FMM tree,
which are generally applicable to a variety of algorithms constituting Defini-
tion 1. The optimization of global tree communication is essential to achieve
strong scaling especially at a large scale. Such class of communication becomes
very challenging due to the fact that ExaFMM has a highly optimized serial code
that utilizes many-core parallelism, making communication dominates even when
overlapped with computation. The natural solution to this problem is to strong
scale communication, but to our knowledge, it is not straightforward to achieve
this for practical reasons such as network congestion, growing interaction lists,
and the different implementations of some MPI collectives that do not scale by
definition e.g., MPI Alltoallv. Therefore, it is important to look at these caveats
while implementing a domain-specific communication scheme of the global
FMM tree.

Definition 1. Let T be a global adaptive tree with L levels numbered from l0−lk
(coarse to fine) and partitioned to P processes. s is the “essential” subtree size
such that 0 < s < S. Pi, Pj ⊂ lk, if the finest level Pi, Pj share is k. We have
a hierarchically sparse data exchange HSDX if for Pi, Pj ⊂ l1 and Pi, Pv ⊂ l2,
s1 < s2 and s1! = 0

4.1 Overlapping Computation Depending on Communication
Granularity

Asynchronous communication is a limiting factor to performance at exascale espe-
cially when done collectively. This appears to be the case for hierarchical algo-
rithms such as FMM and Multigrid method (MG). Hence, communication needs
to be balanced and efficiently overlapped with local work. In FMM, it is known
that a substantial amount of time is spent in doing local Multipole-to-Local (M2L)
and Particle-to-Particle (P2P) computations, but the question is how often we
need to communicate to reduce blocking for data given the problem size, dis-
tribution and scale. To answer this question, we have parametrized our FMM to
accept different granularities of communication represented by the size of the
LET’s subset. The subsets may contain non-leaf cells requiring O(p) steps for
p = order of multipole expansion (higher p increases arithmetic intensity for low-
level kernels) or leaf cells requiring O(N/P )2 steps for P = number of processes.
The typical case would be to call a blocking MPI Recv on the expected tag because
there is no useful work to do in the current context; however, since MPI does not
provide guarantees on the order of messages when used in mixed mode, our code
consumes the available subtree and marks it as “traversed”. This mechanism will
maximize concurrency and minimize the message queuing time. The calling task
will keep traversing until requested cell is received or traversed by another task.

Conventional parallel N -body methods use a bulk-synchronous MPI
alltoallv to communicate the whole LET at once, and overlap this communi-
cation with the local tree traversal to hide latency. One could over-decompose the
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(a) Hypercube communication of 256 MPI pro-
cesses. Interactions get coarser as we move right
and finish in LogP steps.

(b) A zoomed-in version of the flat communi-
cation of 256 MPI processes, potentially causing
contention when scaling on a supercomputer’s
network.

Fig. 4. Implemented communication patterns in FMM as visualized by Extrae. (Color
figure online)

LET down to a per cell request, and then aggregate the communication to the opti-
mal granularity. The bulk-synchronous communication model can be thought of
as an extreme case of aggregation, while something like an RDMA per task per cell
would be at the other end of the granularity spectrum. There is a caveat: We still
require further tuning to reduce global communication by indirectly relaying mul-
tipoles through neighbor processes, as we will show in Sect. 4.2 using Algorithm 1.

4.2 Hierarchical Sparse Data Exchange Protocol (HSDX )

Lashuk et al. [26] define a set of parameters that denote the interaction lists,
i.e., U -, V -, W - and X-lists of the FMM tree. The same analogy can be used
for describing the relationship between adjacent processes such that exchanging
the entire LET can happen in a few steps. The mentioned lists constitute the
adjacent nodes/processes through which global cells that contribute to the local
tree are relayed. For the majority of the spatial N -Body partitioning methods, we
can use the subdomain’s bounding box to depict partitions that share a face, an
edge or a vertex in O(1) steps using Lemma 1. This enables us to create a breadth-
first data exchange graph that starts from the local tree and covers all the
cells from the essential tree. Each node in the graph contains the corresponding
partition id and the adjacent partition id, which is needed since communication
strictly happens between adjacent nodes. Figure 5 shows the exchanges needed to
receive the entire LET by target process (3,3), with overlapping direct clusters
enclosed in dashed squares. The corresponding data exchange graph of node
(3,3) contains a node with id (1,5) and an adjacent id of (2,4), meaning that cell
data of (1,5) can be acquired through (2,4) in the second stage of exchanges. To
inherently achieve algorithmic balance, we hardwire edges in such a way that
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Fig. 5. The underlying data exchange graph of central process (3,3) within a uniform
2D grid of processes.

messages are evenly distributed over direct neighbors. If we start with direct
neighbor (2,4), a naive approach would exhaust all its direct neighbors, namely
{(1,3), (1,4), (1,5), (2,5), (3,5)}, thus overloads its buffers and causes imbalance.
The next neighbor (3,4) will only have (4,5) data to relay. Therefore, we design
our communication graph such that for internal processes in a uniform domain,
the average number of messages received from direct neighbors in each step is⌈

5D−3D

3D−1

⌉
. Using notations from Table 2, we can generalize this formula to non-

uniform domains if we turn it into

NB =
⌈

τ(P, 1) − ζ(Ω(P ))
ζ(Ω(P )) − 1

⌉
(1)

We finally reach a stage where each process has access to the near and far-
field interactions, thus accomplishing global communication using multiple calls
to MPI Neighbor alltoallv. Algorithm 1 and Table 2 summarize our method.

Time Complexity of the adaptive HSDX . A good lower bound complexity
for HSDX is NBX i.e. Ω(log P ) from [1], when non-neighbor data exchange
is extremely sparse or non-existent. The hierarchical sparsity in Definition 1
increases as we move away from target processes. The data exchange graph
can be mapped to a tree since there is exactly one path from Pi to Pj , with an
order bounded by Eq. 1. An upper bound is analogous to a fully dense communi-
cation, such that O(log P ) exchanges happen O(log P ) times, which is equivalent
to O(log2 P ). Table 1 shows FMM communication complexity for uniform domains.

Lemma 1. A partition P ′ is added to the adjacency list of P iff for any
dimension D maxBound(P ′

x) − maxBound(Px) > ε and minBound(Px) −
minBound(P ′

x) > ε
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Table 1. Communication complexity of FMM.

Reference Communication complexity

Teng [27] O
(
P (N/P )2/3(log N + μ)1/3

)

Lashuk et al. [26] O
(√

P (N/P )2/3
)

Lashuk et al. [16] O (log P + (N/P ))

Yokota et al. [28] O
(
log P + (N/P )2/3

)

Table 2. HSDX Algorithm communication symbols.

Symbol Indication

P and P ′ Local and global partitions

Ω(P ) Subdomain boundary

ζ(Ω(P )) Direct neighbors of P

T Level-by-level communication adjacency graph

Algorithm 1. HSDX - Hierarchical Sparse Data Exchange
input : A list lin of cells and destinations
output: A list lout of cells and sources

foreach P ′ in Ω(P, β) do1

add(P’,ζ(Ω(P )))2

end3

T ← BuildCommTree(ζ(Ω(P )));4

create distributed MPI graph topology;5

foreach l in T .Levels do6

foreach P ′ in ζ(Ω(P )) do7

reduce tree based on the bounding box and forward to P’;8

end9

exchange meta data;10

call MPI Neighbor alltoallv;11

end12

4.3 Pairwise Exchange for Reducing Contention

It is observed at large scale that direct communication between sources and tar-
gets results in network contention which can be amortized by relaying multipoles
through neighbor processes while utilizing the well-known pattern of N -Body
interactions. Therefore, to mimic O(log P ) complexity for boundary distribu-
tions, we implement a modified version of the well-known hypercube (butterfly)
global communication scheme which starts out by the fine neighbor interactions
depicted by (P ⊕2i) and gets coarser as we move towards the ( log P ) step. This
is clearly visualized in Fig. 4 using Extrae, a tool that uses different interposition
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mechanisms to inject probes into the target application so as to gather informa-
tion regarding the application performance. During this work, the tool is used
to better understand the performance of the application pertaining to the used
communication techniques. In Fig. 4, the horizontal axis represents the visualized
timeline and the vertical axis represents the MPI processes. The yellow colors
declare communication links, whereas the blue colors represent computation and
red color symbolizes MPI Wait calls. One of the main advantages of carrying out
communication in ( log P ) steps, as in is Fig. 4(a), is that subtrees received at
intermediate stages can be asynchronously traversed, which otherwise cannot be
done if communication is done with blocking collectives.

5 Performance Analysis

5.1 Experimental Setup

Our experiments are on Shaheen XC40, the rank 15 supercomputer according to
the November 2016 Top500 list, located at King Abdullah University of Science
and Technology. It has 196,608 physical cores and HPL performance of 5.537
PFlop/s. Each node is equipped with dual socket Intel Xeon E5-2698v3 16C
2.3 GHz and Cray Aries interconnect with dragonfly topology.

Throughout the following experiments, the underlying FMM code is compiled
with the Laplace kernel, Cartesian coordinates, P = 4 (order of expansion) and
spherical boundary distribution unless otherwise stated. Problems have been
partitioned using the hybrid partitioning from Sect. 2.2. To demonstrate the
effectiveness of the presented methodologies, we start by showing how optimal
grain size for a specific problem is chosen, then assessing the scalability with the
tuned granularity of communication. Then, results from using HSDX vs. exist-
ing communication reducing approaches are presented. Good scalability shows
that an inordinate cost is not paid for intra-node communication, as opposed to
the conventional bulk-synchronous approach, for which performance depends on
the underlying network topology, the implementation of collectives like alltoall
or allgather, the available memory size and bandwidth, and the frequency at
which synchronization is triggered.

5.2 Communication Time for Different Granularities

In order to show the direct effect of asynchronous traversal on performance, we
gradually vary the grain-size and measure the communication time, which is the
most dominant factor at a large scale. Optimal granularity is a tuning parameter
that varies with problem size, distribution and other factors as depicted by the
average communication time in Fig. 6, where subtree size is gradually increased.
The unit of communication is a subtree, which has 2, 4, 8, etc., cells as shown
in the X-axis. The is a subset of the local essential FMM tree as we explain in
Sect. 3. Communication time is measured by accumulating times of individual
asynchronous sends and receives per process and taking their arithmetic mean.
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Fig. 6. Average communication time for different sizes and distributions as grain-size
is varied.

The theoretical maximum subtree size is the entire LET. We stop at a certain
threshold (32 in this case) because when it is increased further, a huge jump in
time occurs. This is attributable to the change in communication protocol as per
the Cray® MPICH specification from Eager Message to Rendezvous Message
Protocol. When the message size exceeds a specific threshold (8 KB in this case),
MPICH2 GNI NetMod alters the pathways towards a more relaxed algorithm for
point-to-point inter-node messaging. A similar approach is developed in other
MPI implementations like Open MPI and Intel® MPI. Hence, the remote tree
traversal enables us to tune the performance by reducing the communication
time enough to increase the impact of latency hiding.

5.3 Scalability of Spherical Boundary Distribution with HSDX
In Fig. 7, we test the strong scalability at optimal grain size using HSDX for
a large problem of 1010 particles. It follows that we have an efficient asynchro-
nous communication when remote calls are non-blocking, have tunable gran-
ularity and when control is handed over to useful work rather than waiting
immediately. To show this, we have integrated and compared several communi-
cation protocols within ExaFMM in Fig. 7. We note that HSDX is the closest to
ideal scaling and has the advantage of fastest time-to-solution since it limits the
inter-rack communication penalty on the dragonfly network by solely exchang-
ing data through neighbors. By just looking at Fig. 7, it is hard to see that
HSDX is at potential advantage for the exascale era. So we find it useful to
present Table 3, which shows a more detailed analysis of the strong scalability.
We notice a 6-fold increase in performance gain (from 3.87% to 23.44%) over
the corresponding MPI Alltoallv implementation as more cores are added. The
parallel efficiency decreases, however, as the problem gets smaller while com-
munication overhead prevails. Conventional O(P ) communication schemes stop
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Fig. 7. Strong scaling across different communication protocols with 1010 particles.

Table 3. HSDX strong scalability analysis with FMM.

P 4, 096 8, 192 16, 384 32, 768 65, 536

HSDX 32.72 17.02 9.27 5.008 3.05

Rel. Speedup 1 1.92 3.53 6.53 10.70

Efficiency - 0.96 0.88 0.81 0.66

Enhancement 3.87% 11.41% 10.55% 16.27% 23.44%

scaling after 2048 nodes (65,536 cores) of Shaheen XC40. According to our largest
setup that has an input of N = 1010, we have an update rate of approximately
109 particles/second.

PVFMM is a large-scale FMM library that uses a kernel independent implemen-
tation, thus widens its target range of applications that require calculation of
potential for elliptic kernels [29]. In this experiment, we attempt to compare the
strong-scaling performance of PVFMM to our ExaFMM branch. It is worth noting
that citing independent work is not meant to deem one superior to the other, but
on the contrary, it is to give rise to our promising performance boosting strategies
that tackle problematic communication and partitioning issues that are likely to
arise in the near exascale era. In their most recent reports on PVFMM, Malhotra
et al. [29] report perfect scalability up to 256 cores when running the Laplace
kernel to compute potentials for 108 distributed on the surface of an ellipsoid.
From that point onwards, communication cost starts to grow. They achieve 95%
speedup corresponding too about 37% parallel efficiency. We switch to neigh-
borhood collective communication presented in Sect. 4.2 for this comparison,
since it vastly reduces network contention by propagating cells through direct
neighbors only. Figure 8(a) shows consistent weak-scalability of communication



Communication Reducing Algorithms 93

512 1024 2048 4096 8192 16384 32768 65536 131072
Number of Cores

10 0

10 1

Ti
m

e 
(s

ec
)

HSDX
Alltoallv
NBX
LogP
Log 2P

(a) Big example comparison of different com-
munication protocols when weak-scaling 15m
particles.

4096 8192 16384 32768 65536
Number of Cores

10 -1

10 0

Ti
m

e 
(s

ec
)

HSDX
Alltoallv
Pairwise-Exchange

(b) Small example comparison of different
communication protocols when weak-scaling
200k particles

Fig. 8. Communication scaling for big and small examples.
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(b) PVFMM breakdown.
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(c) ExaFMM breakdown.

Fig. 9. Strong scaling 231 unknowns for sphere distribution and P = 4 and comparing
ExaFMM while using HSDX communication and PVFMM.

over the conventional MPI Alltoallv implementation. The presented approach
shows a faster time-to-solution in ExaFMM vs. PVFMM when computing 2 billion
unknowns as in Fig. 9. We cannot claim that scaling will persist indefinitely
beyond the depicted number of cores, but when we have an exascale application
that requires orders of magnitude larger problems that can fit in the machine’s
memory, we have a strong evidence of strong scalability.

5.4 Evaluation of Neighborhood Collective Communication Using
HSDX

Figure 8(a) compares HSDX using neighborhood collectives to NBX and
MPI Alltoallv. For the class of problems that constitute a hierarchically sparse
data exchange defined in 1, HSDX is asymptotically bounded by the c1 log P and
c2 log2 P . This behavior is shown for the boundary distribution solving Laplace
Cartesian FMM kernels with P = 4 (order of expansion). However, the figure does
not suggest that HSDX can generally replace its rivals; we still believe that
NBX would outperform our algorithm in the general sparse data exchange,
because it has the advantage of both O(log P ) upper bound in addition to the
use of a non-blocking barrier and synchronized sends [1].



94 M. Abduljabbar et al.

Figure 8(b) weak scales a small example in order to reduce the effect of non-
neighbor communication. The fact that HSDX and Pairwise exchange exhibit
similar performance is anticipated since they almost have identical logP behavior
in such cases. They seem to lose herein against MPI Alltoallv because of the
initialization overhead included in communication time.

6 Conclusion

In this work, we propose algorithms that improve data locality, remote data
access, and load-balance of the N -body problem. These algorithms contribute
to producing an FMM solver that exploits communication redundancy and com-
putation overlap. We show that Hilbert space-filling curves may not be the most
optimal choice to partition boundary domain distributions. HSDX shows good
strong and weak scalability for large adaptive hierarchically sparse problems, and
falls within proven asymptotic time complexities. Shared memory parallelism is
important to utilize resources within a node and to alleviate the problems with
MPI resource management; thus we need to consider it in future implementa-
tions. We are working on improving HSDX so that it exploits the advantages
of NBX to widen its range of use cases. As for application, we are intending to
make the presented solver a part of an FMM preconditioner for the Poisson equa-
tion, which has variety of applications in diffusive and equilibrium processes in
fluid dynamics and many other applications.
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