
EDGE: Extreme Scale Fused Seismic Simulations
with the Discontinuous Galerkin Method

Alexander Breuer1(B), Alexander Heinecke2, and Yifeng Cui1

1 University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
anbreuer@ucsd.edu

2 Intel Corporation, 2200 Mission College Blvd., Santa Clara, CA 95054, USA

Abstract. This article introduces EDGE, a solver package for fused
seismic simulations. Fused seismic simulations are a novel technique
addressing one of the grand challenges of computational seismology: large
ensemble runs of geometrically similar forward simulations. Application
fields include, but are not limited to: uncertainty quantification in the
context of seismic hazard analysis or the accurate derivation of velocity
models through tomographic inversion. For efficient and accurate han-
dling of complex model geometries (topography, fault geometries, mate-
rial heterogeneities), EDGE utilizes the Discontinuous Galerkin (DG)
method for spatial and Arbitrary high order DERivatives (ADER) for
time discretization, implemented for unstructured tetrahedral meshes.
EDGE’s ADER-DG scheme requires sparse and dense matrix-matrix
multiplications at the kernel level. By choosing a sufficient memory lay-
out and relying on runtime code generation and specialization, both,
sparse and dense operations, can be efficiently vectorized on wide-SIMD
machines. We present a convergence study of single and fused seismic
simulations, code verification in an established benchmark, as well as a
detailed performance assessment for different discretization orders. As
target architecture we select the recently released Intel Xeon Phi proces-
sor, which powers the Theta and Cori-II supercomputers. For a single
sixth order seismic forward simulation we achieved 10.4 PFLOPS of hard-
ware performance and 5.0 PFLOPS for fused simulations in fourth order,
both occupying 9,000 nodes of Cori-II. From a throughput perspective,
fused seismic simulations can outperform a single forward simulation by
1.8× to 4.6×, depending on the chosen order of the method.

1 Introduction

A popular approach for accurate numerical simulations of seismic wave propaga-
tion are Finite Difference Methods (FDM) [8,10,28,36]. FDM approximate the
partial derivatives through stencils, which combine adjacent grid points. While
low dispersion errors can be reached through high-order stencils, accurate model-
ing of sharp material contrasts remains an ongoing challenge for FDM due to the
underlying Cartesian meshes [3,29,34]. Further, the seismic wave field is often
highly heterogeneous, resulting in inefficiencies for FDM since adaptive refine-
ment in space and time is a highly non-trivial task, often limited to moderate
patch-based adaptivity [2,19,32].
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance 2017, LNCS 10266, pp. 41–60, 2017.
DOI: 10.1007/978-3-319-58667-0 3



42 A. Breuer et al.

Finite Element Methods (FEM) overcome many limitations intrinsic to
FDM, if the mesh honors major material heterogeneities. Continuous Galerkin
(CG-) FEM, often in combination with diagonal mass matrices, obtained through
mass lumping or a special choice of quadrature and interpolation nodes, became
a prominent option [16,21,26,35]. Here, the widely used Spectral Element Meth-
ods (SEM) rely almost exclusively on hexahedral meshes and have been applied
with great success on a global scale to forward runs and, more recently, to inverse
problems [7,21,31]. However, on a local scale, the complexity of the resolved
geometric features is limited by the difficult hexahedral meshing, leaving tetra-
hedral meshes as the only practical option [31,33]. While the generalization of
SEM to more flexible elements remains ongoing work, the CG scheme in [17]
couples hexahedral and tetrahedral meshes, but is limited by low convergence
rates. In contrast, Discontinuous Galerkin (DG-) FEM using tetrahedral meshes
have reached a mature status in the last decade [9,11,30]. DG-FEM allow dis-
continuities in the numerical solution between elements and the corresponding
discretized materials, which greatly simplifies the integration of sharp hetero-
geneities. Classical finite volume methods [5] are closely related to DG-FEM.

While the accurate numerical simulation of seismic wave propagation is
already demanding, many of the grand challenges in computational seismology
require large ensembles of geometrically similar forward simulations. In detail
these ensembles cover few, but very complex model geometries with a broad
range of variation influencing only the source descriptions. Important examples
include uncertainty quantification in the context of seismic hazard analysis or
the accurate derivation of velocity models through tomographic inversion. Inter-
pretation of the similarities in the source descriptions as input parallelism offers
large potential for reduced time-to-solution.

In this work we present EDGE, a new software package addressing some
of the hardest challenges in computational seismology. EDGE’s forward solver
for seismic wave propagation relies on the flexibility of the ADER-DG scheme
[9,20]. Our software supports different element types and hyperbolic partial dif-
ferential equations. However, in this work, we will focus on unstructured meshes
with 4-node tetrahedral elements and the elastic wave equations. EDGE enables
ensemble-based, high-dimensional studies with an unprecedented complexity by
fusing multiple forward simulations into one execution of the solver. Therefore
this paper makes following novel contributions: (1) EDGE as an open source
solver package (BSD-3), which was created from scratch to support fused simu-
lations for maximum throughput, and (2) a runtime code generation approach
for highest performing kernels when running fused simulations on wide-SIMD
architectures.

2 Discretization

For an isotropic medium the 3-D elastic wave equations in velocity-stress formu-
lation are given by a system of hyperbolic partial differential equations:

qt + A1qx1 + A2qx2 + A3qx3 = 0. (1)



Extreme Scale Fused Seismic Simulations 43

Time is given by t ∈ R
+ and location in space by x = (x1, x2, x3)T ∈ R

3.
q(x, t) = (σ11, σ22, σ33, σ12, σ23, σ13, u, v, w)T ∈ R

9 is the vector of quantities.
Here, σ11, σ22, and σ33 are the normal stress components in x1-, x2-, and
x3-direction. The shear stresses are given respectively by σ12, σ13, and σ23.
A1(x), A2(x), A3(x) ∈ R

9×9 are the three space-dependent Jacobians. The
Jacobians characterize the wave propagation in our hyperbolic system and are
derived from the material parameters, given by the mass density ρ(x), and
Lamé constants λ(x) and μ(x). By applying the DG-machinery in space and
the explicit ADER-scheme in time, we obtain the fully discrete form of Eq. 1 as
a series of integration kernels. These kernels describe time-, volume-, and surface-
integration and might be formulated as series of small matrix-matrix products.

Our fully discrete formulation divides the computational domain Ω into K
pair-wise disjunct tetrahedral elements Tk: Ω =

⋃K
k=1 Tk. The numerical solution

in every element k is given by a set of 9 × B(O) time-dependent Degrees Of
Freedom (DOFs) Qk(t) ∈ R

9×B. O is the order of our ADER-DG discretization
with O = P−1, where P is the degree of our orthogonal, hierarchical, polynomial
basis. We use the same order in time and space, which can be arbitrarily high.
Further, we assume piecewise constant material parameters in every element Tk,
leading to per-element, constant Jacobians.

Time Kernel: Our first kernel uses the Cauchy-Kovalewski procedure to integrate
the element-local DOFs Qk for a full time step tn → tn+1 = tn + Δt in time:

In
k = I(Qn

k ) =
O−1∑

d=0

Δtd+1

(d + 1)!
· ∂d

∂td
Qk, (2)

where the time derivatives, with the DOFs Qn
k at time step tn as initial condi-

tions, ∂0/∂t0Qk = Qn
k = Qk(tn), are obtained recursively through:

∂d+1

∂td+1
Qk = −

3∑

c=0

A∗
k,c

(
∂d

∂td
Qk

)

(Kξc)
T . (3)

Here, matrices A∗
k,c ∈ R

9×9 are linear combinations of the element-local Jaco-
bians, and matrices Kξc ∈ R

B×B the three stiffness matrices, formulated in terms
of the unique reference tetrahedron Tref and multiplied with the diagonal, inverse
mass matrix in initialization.

Volume Kernel: The volume kernel computes the volume integration based on
the element’s time integrated DOFs:

Vn
k = V(In

k ) =
3∑

c=1

A∗
k,c (In

k )Kξc . (4)

Surface Kernel: Our last kernel computes the net-updates of the surface inte-
gration based on the element’s time-integrated DOFs In

k and those of the four
face-adjacent elements In

ki
:

Sn
k = S(In

k , In
k1

, . . . , In
k4

) =
4∑

i=1

A−
k,i (In

k ) F−,i +
4∑

i=1

A+
k,i (In

k ) F+,i,jk,hk (5)



44 A. Breuer et al.

A−
k,i ∈ R

9×9 and A+
k,i ∈ R

9×9 are the flux solvers, computing the numerical
fluxes. Matrices F−,i ∈ R

B×B and F−,i,jk,hk ∈ R
B×B are the flux matrices.

Index i is the local face of element k w.r.t. the reference element. Indices jk(i) ∈
{1, 2, 3, 4} and hk(i) ∈ {1, 2, 3} depend on the vertices both adjacent elements k
and ki share with respect to their transformation to the reference element [9].
Time Step: Our ADER-DG scheme splits a time step tn → tn+1 into two steps.
First, we compute all element-local operations, not requiring any data from
adjacent elements. This is the time kernel and the first update step consisting
of the volume kernel Vn

k , and the local part of the surface kernel Sn
k :

Q̄n+1
k = Qn

k + Vn
k +

4∑

i=1

A−
k,i (In

k ) F−,i (6)

Here, we use the recently computed time integrated DOFs In
k directly and store

them for later use in our second step. The second step contains the remainder
of the surface kernel, and thus updates the elements’ DOFs with data of face-
adjacent tetrahedrons:

Qn+1
k = Q̄n+1

k +
4∑

i=1

A+
k,i (In

k ) F+,i,jk,hk . (7)

3 Fused Simulations

A non-fused setup defines fixed input i, and runs the forward solver s to obtain
observations o = s(i). Now, if we are interested in results for n different inputs,
e.g., different seismic sources, we would specify a set of inputs In = (i1, i2, . . . , in)
and run the non-fused forward solver s on all these inputs to obtain the set of
observations On = (o1, o2, . . . , on) = (s(i1), s(i2), . . . , s(in)). Typically, the n
executions of the solver are completely decoupled, which means that potential
parallelism and shared data between two instances s(ik) and s(il) is not utilized.

Fused simulations in EDGE exploit this potential by integrating the concept
of multiple but similar input parameters into the forward solver. Thus, we intro-
duce a new forward solver Sm which is capable of handling a set of m ≤ n inputs
Im = (i1, i2, . . . , im) in a single execution: Om = (o1, o2, . . . , om) = Sm(Im). We
achieve this by a fundamental paradigm in EDGE’s data layout, which sets the
m forward runs as the fastest dimension in all respective data structures. For
example the two most important data structures in our ADER-DG solver for
seismic simulations (see Sect. 2) are the DOFs Qn

k and the time integrated DOFs
In

k . Here, we use the K elements as slowest dimension, followed by the 9 quan-
tities, the B modes and finally the m simulations as fastest dimension. Each
element is therefore represented by a 3D-tensor.

Note, that one might interpret the different input parameters as multiple
right-hand sides of the PDEs, which would lead to the term parallelization over
multiple right-hand sides in literature [4,27]. However, in this work we prefer the
more general term fused simulation due the diverse advantages of the approach,



Extreme Scale Fused Seismic Simulations 45

re
la

tiv
e 

ar
ith

m
et

ic
 

in
te

ns
ity

0
1
2
3
4
5
6
7

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

1.
4

1.
4

1.
3

1.
2

1.
01.

6
1.

6
1.

5
1.

3
1.

02.
0

1.
9

1.
7

1.
4

1.
0

2.
7

2.
4

2.
0

1.
5

1.
0

4.
0

3.
3

2.
5

1.
7

1.
0

6.
8

4.
9

3.
1

1.
8

1.
0

Fig. 1. Arithmetic intensity if the material parameters and mesh are shared in an elastic
ADER-DG setup. Shown is the relative improvement over a non-fused simulation in
dependency of the order (O2-O7) and the number of fused runs (1, 2, 4, 8, 16).

and settings where interpretation as a right-hand side is more complex, e.g., in
multi-physics setups. We identify four key advantages of EDGE’s fused approach
over non-fused simulations:

1. By fusing multiples of the vector-width, we are able to perform full vector
operations, even when using sparse matrix-operations, whereas non-fused set-
tings require dense matrix operations (which have up-to a 50% zero padding
overhead) for best performance [14].

2. Data structures are automatically aligned by fusing multiples of the cache
line size. Zero-padding [14] for fast aligned loads and stores is not needed.

3. Read-only data structures might be shared among all runs. As illustrated in
Fig. 1 for our seismic setup of Sect. 2, this results in substantially increased
arithmetic intensities. For example, a non-fused fourth order accurate simu-
lation theoretically requires 8,640 bytes per element. 67% of this requirement
is read-only data. By fusing eight runs, we only need 28,800 bytes, which
reduces this ratio to 20% and therefore increases the arithmetic intensity by
2.4×. Analogue, for a sixth order configuration, the memory footprint per
element only increases from 13,824 to 70,272 bytes, which corresponds to a
1.6× higher arithmetic intensity.

4. Fused simulations are less sensitive to memory latencies and conditional
jumps, due to less frequent context switches. Here, the increased, fused work-
load per memory operation or conditional jump effectively reduces the per-
formance penalty of start-up latencies or branch mispredictions. Analogue,
they are less sensitive to network latencies due to larger MPI-messages hav-
ing identical exchange-frequencies. See [1] for details on memory latencies of
Knights Landing and [25] for the relation of message sizes and bandwidth.

However, there are also requirements and limitations. Im, the set of m inputs
has to be “similar enough” for exploitation in fused forward simulations. If a
parameter space beyond the following fusing-limitations is studied, we simply
distribute the n ≥ m inputs to respective fused and non-fused runs. Considering
our seismic use case (see Sect. 2), we formulate the following requirements for
EDGE on a set of input parameters to be fused into a single forward run:



46 A. Breuer et al.

1. The mesh needs to be identical for all m simulations. This ensures identical
adjacency information and identical element sizes, used in our explicit solver’s
stability requirements.

2. Start- and end-time of all simulations are identical. Further, all simulations
have the same order of convergence and share the same characteristics of wave
field output (frequency) and seismic receivers (frequency and location).

3. All fused simulations share the same element-local material parameters. Thus,
we obtain identical update patterns, since the resulting wave speeds, in com-
bination with the shared mesh, determine the element-local time step.

4. All simulations are allowed to have arbitrary initial DOFs. The location of
seismic sources is shared among all m simulations, but moment-rate time
histories are private and thus arbitrary. A similar approach would apply if
EDGE is extended with internal dynamic rupture boundary conditions [14]
in future work.

Nevertheless, all of these limitation and requirements are fulfilled by ensem-
ble simulations and therefore fused simulation are the perfect tool to increase
hardware efficiency and simulation throughput.

4 EDGE in a Nutshell

4.1 Runtime Code Generation of DG-FEM Kernels

Section 2 shows that that the speed of EDGE’s integrators heavily depends on
the performance of small dense or sparse matrix-matrix operators. In the case of
fused simulations, a sparse matrix needs to be multiplied with a 3D-tensor, which
represents the DOFs Qn

k , time derivatives ∂d/∂tdQn
k , or time integrated DOFs

In
k for a given mesh element. Previous work showed, that code generation is the

ideal tool to speed up single forward runs and yields extremely high hardware
efficiencies (greater than 50%) in a portable manner [14]. All previously discussed
tricks (c.f., [6]) for an efficient implementation of the ADER-DG scheme for a
single simulation have been enabled in EDGE and needed kernels are runtime
code generated in EDGE’s setup phase leveraging LIBXSMM [15]. As these
techniques are covered in the literature, we are not recapping them here.

Instead, we focus on runtime code generation for the required 3D-tensor
manipulations of fused simulations. Specifically, this requires two operations to
be optimized:

– K1 : sparse-matrix × 3D-tensor = 3D-tensor, this operation is needed for mul-
tiplication with Jacobians and flux-solvers. In BLAS-notation, the sparse
matrix A is a 9 × 9 matrix, whereas B and C are dense 3D-tensors. Matrix
A is applied to all planes enumerated by the inner-most dimension f of this
tensor, which corresponds to the number of fused forward runs.

– K2 : 3D-tensor × sparse-matrix = 3D-tensor, this operation is needed for mul-
tiplication with stiffness or flux matrices. The dimensions of the sparse matrix
B depend on the order and which stage of the integration kernels is performed.
Again, this matrix has to be applied to all forward simulations, which are
stored in the inner-most dimension f of the 3D-tensor.



Extreme Scale Fused Seismic Simulations 47

Algorithm 1. Code generator sketch of kernel K1
1: for all m = 1 to #quantities do
2: a#Entries ← rowA[m + 1] − rowA[m]
3: for k = 1 to a#Entries do
4: a ← A[rowA[m] + k]
5: for all n = 1 to #modes do
6: C[m][n][1 : f ] ← fma(bcst(a), B[colA[rowA[m] + k]][n][1 : f ], C[m][n][1 : f ])
7: end for
8: end for
9: end for

In this work, we focus on a length of f that matches the SIMD-length of the
underlying architecture. As we target Intel’s Xeon Phi processor, code-named
Knights Landing, we leverage AVX-512, offering a double precision vector length
of 8 entries. Thus, the number of fused simulations in this work is f = 8. We
are using slightly different specifiers as in Sect. 2 to allow for a BLAS-related
naming.

Under these assumptions, the code generator of K1 can be realized straight-
forward and is sketched in Algorithm1. We store the entries of all sparse matrices
in Compressed Sparse Row Format (CSR). However, the row pointer (rowA in
Algorithm 1) and column indices (colA in Algorithm 1) are only used for the
runtime code generation at EDGE’s initialization. Thus, the loops hardwire the
sparsity pattern of matrix A by fully unrolling K1 ’s implementation and there-
fore eliminating any access to row or column index structures. As A is sparse,
we have unstructured accesses to full vectors over the fused quantities in input
tensor B, c.f., line 6. Since the scalar entry of A can be reused across all fused
forward simulations, we broadcast it and we can maintain a contiguous access
pattern to the result tensor C. During the surface computation, matrix A, the
flux solver, is a dense matrix. In this case we disable unrolling over the number
of quantities to reduce code size. Additionally, for code used in the neighboring
update (7), our code generator supports insertion of last-level cache software
prefetching instructions. These help to accelerate EDGE by roughly 10% as the
negative impact of accessing face-adjacent elements in the unstructured mesh
can be mitigated.

Generating an efficient implementation of K2 is more challenging and we
cover the details by a step-by-step explanation of Algorithm2. From a high-level
point of view, we follow the same approach as in Algorithm1. However, since now
the right hand side operator, matrix B, is sparse we end up with unstructured
accesses to the result tensor C, which depend on B’s sparsity pattern. From a
performance perspective we cannot afford frequent read and write access to C,
as we already consume all L1 cache bandwidth for reading the input tensor A
and matrix B. We therefore create an in-register scratchpad for a C accumulator
set, indexed by the quantities, c.f., line 2 for loading and line 10 for storing this
scratchpad. It contains all modes for all forward simulations for a given quantity.



48 A. Breuer et al.

Algorithm 2. Code generator sketch of kernel K2
1: for all m = 1 to #quantities do
2: for all n = 1 to #modes do cn[1 : f ] ← C[m][n][1 : f ] end for
3: for all k = 1 to #modes do
4: b#Entries ← rowB [k + 1] − rowB [k]
5: for n = 1 to b#Entries do
6: j ← colB [rowB [k] + n]
7: cj [1 : f ] ← fma(A[m][k][1 : f ], bcst(B[rowB [k] + n]), cj [1 : f ])
8: end for
9: end for

10: for all n = 1 to #modes do C[m][n][1 : f ] ← cn[1 : f ] end for
11: end for

This now allows us to implement unstructured access to C, as we only need to
pick the corresponding register in the dot product calculation, c.f., lines 6 and 7.

In summary, both kernels K1 and K2 are able to achieve 25–40% of hard-
ware efficiency on a single core of the Intel Xeon Phi processor using AVX512.
However, they have a higher L2-cache pressure than dense kernels and therefore
are limited by the shared L2 cache interface of two cores in Xeon Phi’s comput-
ing tile for two reasons: (a) latencies due to unstructured tensor entry accesses
(b) L2 cache bandwidth is shared. Therefore at full chip level we can expect a
kernel compute efficiency of roughly 20%.

On an AVX512-capable processor, we can generate kernels for up to 31 modes
efficiently without additionally blocking as the architecture offers 32 vector reg-
isters. In this work we limit ourself to a maximum of fourth order runs which
have B(4) = 20 modes. Having Fig. 1 in mind, this limitation is only minor as the
expected runtime benefit decreases for higher orders. Nevertheless, an additional
blocking is planned as future work. Such a feature will also allow to use older
vector instruction sets such as AVX2 which offer a small register file with only
16 entries.

4.2 Parallelization and Data Layout

Our parallelization strategy strictly separates between shared and distributed
memory parallelization. For the latter one we use the Message Passing Interface
(MPI) and assign one rank to every of the P available nodes, sharing a mem-
ory space. Therefore, we require exactly P partitions of our unstructured mesh
for utilization of P nodes. This reduces the pressure on the partitioner, e.g.,
the Metis-library [18], and reduces relative communication costs defined as the
volume-to-surface ratio of the partitions.

In addition to using fused simulations as fastest dimension of the data lay-
out, EDGE also follows the distributed memory parallelization for the sorting of
entity-data in memory. Focusing on a single partition p ∈ P , we store inner-
entities first, send-entities second and recv-entities last. Here, we follow the
naming scheme of corresponding MPI-functions: Values of inner-entities are not



Extreme Scale Fused Seismic Simulations 49

communicated, values of send-entities are send to other ranks and values of recv-
entities received from other ranks. In terms of our ADER-DG solver for seismic
wave propagation in Sect. 2, our MPI-partitions only exchange time integrated
DOFs In

k , required in the second update step (7). Here, our inner-elements are
owned by partition p and are, within a time step, independent of element-data
owned by other partitions. Send-elements are owned by p, but their associated
In

k are required for application of Eq. (7) to send-elements of other partitions.
Similar recv-elements are owned by an adjacent partition and the respective In

k

are required for updating the DOFs of p’s send-elements in Eq. (7). We further
sort the send- and recv-elements by their corresponding neighboring rank. If one
of these elements is connected to more than one MPI-rank through its faces, we
logically duplicate the element in our data layout. Within the inner-elements and
the per-rank groups of the send- and receive-elements, we sort the elements by an
unique but arbitrary identifier. Therefore, we are able to directly use our data
layout for sending and receiving MPI-messages without the need for artificial
communication buffers.

Our shared memory parallelization uses the OpenMP library. Compared to
other work [14], we only use minimal functionality of OpenMP in the time march-
ing loop. After synchronization, e.g., after initialization or wave field output, we
open a single parallel-region until we reach the next synchronization point. Out
of a total of T threads, we use the first 1 ≤ W < T threads as workers and
the W + 1’th thread as management and communication thread. The workers
perform the numerical operations described in Sect. 2. Here, the distribution of
work, e.g., “compute Eq. (6) for all send-elements” to workers is performed sta-
tically at initialization. This approach is similar, to traditional, static OpenMP
annotation of for-loops, but allows for fine-grained load balancing and removes
unnecessary, implicit barriers. For example, a thread might directly continue
with Eq. (6) for inner-elements, after finishing its part of the send-elements. The
W + 1’th thread initiates communication through MPI Isend and MPI Irecv,
progresses communication through MPI test, and ensures correctness by resolv-
ing dependencies and signaling the workers where to head next.

Considering different layers of memory, such as High Bandwidth Memory
(HBM) and traditional DDR4 RAM in case of the Intel Xeon Phi x200 processor,
we follow the general strategy of [13]. Here, we distribute data to the different
layers, if our simulation size exceeds the size of near-memory and if the memory
layers are available at application level, e.g., in flat-quadrant mode. In our seismic
setup (see Sect. 2), we place the time-integrated DOFs In

k , having high access
frequencies and unstructured accesses, in near-memory. Further, EDGE provides
high-bandwidth scratch memory for temporary storage of intermediate results,
to avoid performance penalties of large stack-based memory chunks.

5 Experiments and Results

For the purpose of this work, we solely relied on double precision arithmetic for
every of EDGE’s floating point operations and used following machines:



50 A. Breuer et al.

– Theta is a Cray XC40 that comprises 3,200 Intel Xeon Phi 7230 64-core
processors at 1.3 GHz (with Intel Turbo Boost enabled), 16 GB of in-
package HBM and 192 GB of DDR4 RAM. Here, we used the performance-
related modules intel/17.0.1.132, craype/2.5.8, PrgEnv-intel/6.0.3,
cray-mpich/7.5.0, cray-memkind, craype-mic-knl, and the performance-
related compile-flags -O2, -xMIC-AVX512, and -qopenmp for our scaling studies.

– Cori-II is a Cray XC40 that combines 9,304 Intel Xeon Phi 7250 68-core
processors at 1.4 GHz (with Intel Turbo Boost enabled), 16 GB of in-
package HBM and 96 GB of DDR4 RAM. Except for craype/2.5.7 and
cray-mpich/7.4.4, we used the same performance-related modules and flags,
as on Theta, on Cori-II.

5.1 Benchmarks

Convergence Analysis. Our first benchmark explores EDGE’s high order con-
vergence. Similar to [9], we use a cubic domain of size [0, 100]3 and generate
24 setups by dividing the domain regularly into cubes with descending edge
lengths: 100

2 = 50, 100
4 = 25, . . . , 100

50 = 2. Within every setup, each of the
cubes is then subdivided into five tetrahedral elements. Material parameters
are ρ = 1, λ = 2, μ = 1, while the initial DOFs discretize plane waves travel-
ing in diagonal direction with a P-wave velocity of 2 and a S-wave velocity of
1. Additionally we use periodic boundary conditions, such that the solution of
the setup can be derived analytically after a given time [9]. We simulate for a
total time of

√
3 · 100. Therefore, the resulting exact solution is identical to our

initial setup. Figure 2 shows two convergence plots derived from our setups. The
plot on the left shows convergence when executing EDGE in non-fused mode.
The plot on the right presents convergence when running EDGE with m = 8
fused simulations. Here, we shifted the initial setup of the respective simulations

50 25 20 10 5 3 1/3 2.5 2
10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

lin
f-

er
ro

r

O1 Q8 C1
O2 Q8 C1
O3 Q8 C1
O4 Q8 C1
O5 Q8 C1
O6 Q8 C1
O7 Q8 C1

50 25 20 10 5 3 1/3 2.5 2
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

O1 Q8 C1
O1 Q8 C4
O1 Q8 C8
O2 Q8 C1
O2 Q8 C4
O2 Q8 C8
O3 Q8 C1
O3 Q8 C4
O3 Q8 C8
O4 Q8 C1
O4 Q8 C4
O4 Q8 C8
O5 Q8 C1
O5 Q8 C4
O5 Q8 C8

edge length (m) edge length (m)

Fig. 2. Convergence of EDGE in the L∞-norm. Shown are orders O1−O7 for the eighth
quantity v (Q8) in non-fused runs on the left. The right plot shows orders O1−O5 for
v (Q8) when utilizing EDGE’s fusion capabilities with shifted initial conditions. For
clarity, from the total of eight fused simulations, only errors of the first (C1), fourth
(C4) and last simulation (C8) are shown. (Color figure online)



Extreme Scale Fused Seismic Simulations 51

by (0, 0, 0)T , (5, 5, 5)T , . . . , (35, 35, 35)T to obtain true input-parallelism. We see
that EDGE obtains the convergence rates reported in literature when ADER-
DG is applied to seismic wave propagation [9]. The different fused simulations
show almost identical convergence behavior.

Layer Over Halfspace Benchmark 1 (LOH.1). Our second configuration is the
LOH.1 benchmark, which is part of The Spice Code Validation [22]. We used
a domain covering [−26 km, 32 km] × [−26 km × 32 km] × [0 km, 33 km]. All
boundary-conditions are outflow, except for z = 0, where free-surface boundary
conditions are set. The one seismic source of the benchmark is a point dislocation at
(0, 0, 693m) with Mxy = Myz = M0 = 1018 Nm being the only non-zero entries in
the moment tensor. The moment time history is given by M0(1−(1+ t

T )exp(− t
T ))

with T = 0.1 s. The LOH.1 benchmark compares a total of nine receivers at the sur-
face. The material parameters are ρ = 2600 kg

m3 , λ = 20.8GPa, and μ = 10.4GPa
up to a depth of 1 km. In the remainder of the domain the parameters are given by
ρ = 2700 kg

m3 , λ = 32.4GPa, and μ = 32.4GPa.
We used the software gmsh [12] to generate a problem-adapted tetrahedral

mesh. The material interface was integrated into the surface mesh, which resulted
in interface-aligned faces of our tetrahedral elements. We specified a character-
istic length of 100m in [−5 km, 13.67 km] × [−5 km × 15.392 km] × [0 km, 1 km],
257m in [−5 km, 13.67 km]×[−5 km ×15.392 km]×[1 km, 7 km], and 771m every-
where else. To ensure smooth mesh coarsening in the 1 km thick layer, we addi-
tionally defined an attractor and used the overall minimum characteristic length
for meshing. Further, we used gmsh’s built-in optimizer and Netgen-interface to
improve mesh quality. The final mesh consisted of 11,060,982 tetrahedral ele-
ments. We used fourth order in space and time and 256 nodes of Cori-II to
simulate the 9 s of the benchmark. To ensure correctness of EDGE’s full capa-
bilities, we fused eight simulations. However, we simply used identical input for
all fused simulations and therefore obtained eight identical solutions.

Figure 3 examplary compares EDGE’s obtained particle velocity in
x-direction u to the reference solution. We see that the solutions match very
well, which is confirmed by Table 1, showing the single-valued envelope misfit

Fig. 3. Synthetic seismogram of EDGE for quantity u at the nith seismic receiver
located at (8647 m, 5764 m, 0) in red. The reference solution is shown in black. (Color
figure online)



52 A. Breuer et al.

Table 1. Single-valued envelope misfit EM and single-valued phase misfit PM in per-
cent for the nine receivers in the LOH.1 benchmark. The misfits are given for non-zero
seismograms of the reference solution in a frequency range between 0.13 Hz and 5 Hz.

location (m) u (%) v (%) w (%) max (%)

x y z EM PM EM PM EM PM EM PM

1 0 693 0 0.75 0.29 0.75 0.29

2 0 5543 0 1.20 0.16 1.20 0.16

3 0 10392 0 1.17 0.17 1.17 0.17

4 490 490 0 0.80 0.31 0.74 0.34 1.05 0.23 1.05 0.34

5 3919 3919 0 1.06 0.15 1.10 0.15 0.97 0.19 1.10 0.19

6 7348 7348 0 1.12 0.17 1.13 0.17 0.96 0.19 1.13 0.19

7 577 384 0 0.84 0.32 0.73 0.33 1.09 0.23 1.09 0.33

8 4612 3075 0 0.94 0.15 1.37 0.17 0.98 0.19 1.37 0.19

9 8647 5764 0 1.01 0.18 1.33 0.18 0.96 0.19 1.33 0.19

EM and single-valued phase misfit PM [23,24] for all nine seismic receivers and
three particle velocities u, v, and w. Here, the misfits stay well below the thresh-
old of 5%, referring to the highest accuracy level of the benchmark.

5.2 Single Node Performance

In this section we discuss EDGE’s single node performance when running the
LOH.1 benchmark (see Sect. 5.1), discretized with a total of 350,264 tetrahedral
elements. Additionally, as in all following performance studies, we greatly lim-
ited the number of time steps to avoid unnecessary computations. All runs in
this section were carried out on a single node of Cori-II in flat-quadrant mode
and with all memory allocated in HBM through numactl’s membind-feature. We
used a setting identical to our per-node layout in distributed memory runs by
utilizing only 66 cores for computations in EDGE. The first of the two remaining
cores was left empty for the OS, the other core hosted the communication and
management thread. We compare EDGE’s performance to the software package
SeisSol in the version 201511 [13] using global time stepping and support for
AVX512. Here, we left the first tile idle and pinned the communication thread
to the last core, as required by SeisSol for highest performance. Figure 4 com-
pares the required time-to-solution of both codes for 500 time steps. First, we
ran traditional, non-fused simulations with both codes for orders O = 2, . . . , 6,
abbreviated with O2C1,. . .,O6C1. Additionally, Fig. 4 shows EDGE’s relative
performance when fusing eight forward simulations for orders O2, O3, and O4,
abbreviated with O2C8, O3C8 and O4C8. We see that EDGE, despite targeting
at fused simulations, is able to maintain a high fraction of SeisSol’s performance
when running single, non-fused forward simulations. In the case of O2C1, EDGE
even outperforms SeisSol since SeisSol’s zero-padding introduces a significant



Extreme Scale Fused Seismic Simulations 53

Fig. 4. Speedup of EDGE over SeisSol. For convergence rates O2 − O6 results for a
single non-fused forward simulations (O2C1-O6C1) are presented. Additionally, respec-
tive per-simulation speedups for orders O2−O4 are presented when using EDGE’s full
capabilities by fusing eight simulations (O2C8-O4C8).

overhead overturning improvements of alignment to cache lines. However, for
orders higher than O2 these optimizations pay off, leading to a higher perfor-
mance of SeisSol. For the sixth order configuration O6C1, EDGE reaches 96% of
SeisSol’s performance. The reason for this relatively higher performance, com-
pared to O4C1 and O5C1, is given by the B(6) = 56 basis function of this
setting. B(6) is a multiple of 8 and naturally leads to 64-byte aligned DOFs Qn

k

and time integrated DOFs In
k in EDGE since the base pointers of all our heap

data structures are aligned 4,096 byte boundaries.
Comparing EDGE’s performance on a simulation-by-simulation basis to Seis-

Sol, when running eight fused simulations, we observe a factor 1.8-4.6 improve-
ment in time-to-solution. This result confirms our theoretical discussion in
Sect. 3, where we identified higher arithmetic intensities and increased regu-
larity of fused simulations as key advantages. As shown in Fig. 1, the potential
speedup offered by the higher arithmetic intensities is largest in the memory-
bound, low order regime. Moving to the compute-bound high order simulations,
the increased regularity becomes more important, leading to a substantial, but
relatively smaller, 1.8× speedup over SeisSol for O4C8.

5.3 Weak Scaling

The setup of our weak scaling study follows the convergence analysis in Sect. 5.1.
However, to further avoid unnecessary computations, we replaced the initial value
computation of the DOFs, requiring an L2-projection, with zero values and dis-
abled the error-norm computation. Instead, we added a total of 8 seismic sources,
where only one of the sources was active in a single forward simulation. Further, in
comparison to other work [14], we left the more demanding periodic boundary con-
ditions intact, which is supported by EDGE for regular meshes and enables conver-
gence studies in distributed memory setups. We used a total of 276,480 tetrahedral
elements per node and studied the performance of fourth and sixth order conver-
gence. In the case of the sixth order runs we present results for a single, non-fused
simulation (O6C1). For the fourth order runs we present performance for a single
forward simulation (O4C1) and eight fused simulations (O4C8). Considering the
memory consumption of the heavy data structures touched in the time marching
loop – Qn

k , In
k , A∗

k,c, A
±
k,i in Eqs. (3), (4), and (5) – our weak scaling setup only has



54 A. Breuer et al.

10

15

20

25

30

35

40

45
1 2 4 8 16 32 48 64 96 12
8

19
2

25
6

51
2

10
24

15
36

20
48

25
60

30
72

%
 p

ea
k

O4C1 flat, hardware
O4C1 cache, hardware

O4C1 flat, non-zero
O4C1 cache, non-zero

O4C8 flat
O4C8 cache

O6C1 flat, hardware
O6C1 cache, hardware

O6C1 flat, non-zero
O6C1 cache, non-zero

#nodes

Fig. 5. Weak scaling study on Theta. Shown are hardware and non-zero hardware peak
efficiencies of all configurations in cache and flat mode. O denotes the order and C the
number of fused simulations. (Color figure online)

a moderate size, underlining the relevance of this scaling study. O4C1’s matrices
consume 2.2 GiB per node, O4C8’s matrices 7.4 GiB and O6C1’s matrices 3.6 GiB
per node

Figure 5 shows the hardware and non-zero peak efficiencies of our weak scal-
ing on 1 to 3,072 nodes of Theta. Here, the hardware peak efficiency counts every
of the double-precision floating point operation performed in hardware, while the
non-zero peak efficiency only considers those of non-zero entries in our kernel’s
matrices (see Sect. 2). We see that EDGE obtains more than 38% of hardware
peak efficiency in cache mode and more than 41% in flat mode for all O6C1 runs
on Theta. The highest sustained hardware performance on Theta was obtained
in flat mode and is 3.4 PFLOPS, which corresponds to a non-zero performance
of 1.4 PFLOPS and a parallel efficiency of 97%. Moving to the fourth order con-
figurations O4C1 and O4C8, EDGE is able to maintain the single node speedup
(see Fig. 4) offered by its fusion capabilities at scale. In fact O4C8 outperforms
O4C1 in per-simulation time-to-solution by 2.1× when running in flat mode at
scale. Due to O4C8’s sparse matrix-operators, this corresponds to a hardware
and nonzero peak efficiency of 21.5% on 3,072 nodes, which is equivalent to a
sustained performance of 1.8 PFLOPS and a parallel efficiency over 96%.

Figure 6 shows our weak scaling study on 1 to 9,000 nodes of Cori-II. The
obtained peak efficiencies are almost identical to Theta and, once again, show
EDGE’s high hardware and non-zero peak efficiencies. On Cori-II, we sustained
10.4 PFLOPS in hardware when running O6C1 in flat mode on 9,000 nodes. To
the best of our knowledge, this is the highest obtained peak performance for
seismic simulations with ADER-DG, outperforming 24,576 cards of Tianhe-2,
reaching 8.6 PFLOPS [14]. Further, O4C8 in flat mode has a 2.0× higher single
simulation throughput than O4C1 on 9,000 nodes with a sustained hardware
and non-zero peak efficiency of 18.1%, corresponding to 5.0 PFLOPS.



Extreme Scale Fused Seismic Simulations 55

10

15

20

25

30

35

40

45

1 2 4 8 16 32 48 64 96 12
8

19
2

25
6

51
2

10
24

15
36

20
48

25
60

30
72

40
96

61
44

81
92

90
00

%
 p

ea
k

O4C1 flat, hardware
O4C1 cache, hardware

O4C1 flat, non-zero
O4C1 cache, non-zero

O4C8 flat
O4C8 cache

O6C1 flat, hardware
O6C1 cache, hardware

O6C1 flat, non-zero
O6C1 cache, non-zero

#nodes

Fig. 6. Weak scaling study on Cori-II. Shown are hardware and non-zero hardware
peak efficiencies of all configurations in cache and flat mode. O denotes the order and
C the number of fused simulations. (Color figure online)

5.4 Strong Scaling

Our final performance study consists of two strong scaling setups of the LOH.1
benchmark (see Sect. 5.1). Here, we used a total of 172,386,915 tetrahedral ele-
ments on 32 to 3,072 nodes of Theta and a total of 340,727,199 tetrahedrons on
128 to 8,192 nodes of Cori-II. EDGE required a total of 1.7 TiB of memory for
O4C1, 4.7 TiB for O4C8, and 2.6 TiB for O6C1 on Theta. Analogue, the setup
consumed a total of 3.5 TiB for O4C1, 9.4 TiB for O4C8, and 5.2 TiB on Cori-II.

Figure 7 shows the hardware and non-zero peak efficiencies of the cache and
flat mode runs on Theta. We observe that the efficiencies are close to the weak
scaling depicted in Fig. 5. Here, we have to remember that the weak scaling
study relied on a perfectly balanced, artificial setup, while our strong scaling’s
mesh is fully unstructured and partitioned by Metis. When analyzing the per-
formance of the O4C8-runs in detail, we see a plateau between 192 and 2048
nodes with performance dropping below and afterwards. The reason for the
lowered performance below 192 nodes is the total memory requirements of the
computational data structures exceeding Xeon Phi’s 16 GB of HBM, required

5

10

15

20

25

30

35

40

32 48 64 96 12
8

19
2

25
6

51
2

10
24

15
36

20
48

25
60

30
72

32
00

%
 p

ea
k

O4C1 flat, hardware
O4C1 cache, hardware

O4C1 flat, non-zero
O4C1 cache, non-zero

O4C8 flat
O4C8 cache

O6C1 flat, hardware
O6C1 cache, hardware

O6C1 flat, non-zero
O6C1 cache, non-zero

#nodes

Fig. 7. Strong scaling study on Theta. Shown are hardware and non-zero peak effi-
ciencies of all configurations in cache and flat mode. O denotes the order and C the
number of fused simulations. (Color figure online)



56 A. Breuer et al.

5

10

15

20

25

30

35

40
12

8

19
2

25
6

51
2

10
24

15
36

20
48

25
60

30
72

40
96

51
20

61
44

71
68

81
92

%
 p

ea
k

O4C1 cache, hardware O4C1 cache, non-zero O4C8 cache O6C1 cache, hardware O6C1 cache, non-zero

#nodes

Fig. 8. Strong scaling study on Cori-II. Shown are hardware and non-zero hardware
peak efficiencies of all configurations in cache mode. O denotes the order and C the
number of fused simulations. (Color figure online)

for optimal performance of Eq. (7). For high node counts, we see a degrada-
tion due to the extreme layout of the strong scaling, reaching a 50× increase
of O4C8 and 100× of O4C1 and O6C1 at 3,200 nodes. Comparing the stable
flat mode performance of O4C1 to that of O4C8, we see that the parallel effi-
ciency of O4C8 drops sooner. Recalling Sect. 3, this is property of the fused
simulations, since the communication volume simply grows one-to-one with the
number of fused simulations. However, the simulation throughput of O4C8 is
greatly increased, which leaves less time spent in computations for hiding com-
munication. The highest hardware performances were obtained in flat mode on
3,200 nodes: 1.6 PFLOPS (19.1 ) for O4C1, 1.4 PFLOPS (16.3%) for O4C8, and
3.4 PFLOPS (39.6%) for O6C1. With respect to non-zero peak performances, this
corresponds to 0.7 PFLOPS (8.2%) for O4C1, 1.4 PFLOPS (16.3%) for O4C8 due
to sparse matrix-matrix operators, and 1.3 PFLOPS (15.1%) for O6C1.

Figure 8 takes our strong scaling one step further, with a cache mode node-
range of 128 to 8,192 on Cori-II. As already observed in the weak scaling in
Fig. 6, the relative performance of all runs is slightly lower on Cori-II than on
Theta, due to the higher per-socket performance. Again we observe an plateau
for O4C8 due to HBM, but dropping performance for all runs at higher node
counts. These drops are most severe for the O4C8 runs since our high single-node
speedup (see Fig. 4) significantly decreases the time per simulation and time step,
but keep the communication volume constant, exposing communication in the
strong scaling. On 8,192 nodes every node only handles a total of 41,593 elements
in average, facing an increase of 64× in potential computer power from 128 nodes.
Since cache mode is very sensitive to large compute we can observe a drop in
performance at scale. Here, we reach a hardware performance of 4.1 PFLOPS
(16.4%) for O4C1, 2.6 PFLOPS (10.4%) for O4C8 and 9.1 PFLOPS (36.6%) for
O6C1. The corresponding non-zero performances are 1.8 PFLOPS (7.1%) for
O4C1, 2.6 PFLOPS (10.4%) for O4C8 and 3.5 PFLOPS (13.9%) for O6C1.



Extreme Scale Fused Seismic Simulations 57

6 Conclusions

This article has introduced EDGE1, a novel solver for fused seismic sim-
ulations which aims at increasing the throughput of extreme scale seismic
ensemble simulations. For highest accuracy, EDGE utilizes the Discontinuous
Galerkin (DG) method for spatial and the Arbitrary high order DERivatives
(ADER) scheme for time discretization, implemented for unstructured tetrahe-
dral meshes. The occurring kernel routines, small sparse and dense matrix-matrix
multiplications, are accelerated by a sophisticated runtime code generation app-
roach. This technique allows for hardware efficiencies of more than 40% for single
runs (10–20% non-zero efficiency) and more than 20% of non-zero efficiency when
conducting fused simulations. Depending on the chosen order, fused simulations
can offer an increased throughput of 1.8× to 4.6×. With respect to achieved raw
performance EDGE weak-scaled to 9,000 nodes of the Cori-II supercomputer,
while running at 10.4 PFLOPS at order six. For a fused fourth order run EDGE
achieved 5.0 PFLOPS of non-zero/non-padded performance using small sparse
matrix kernels. In addition to these excellent weak-scaling results, EDGE also
exhibits nearly the same performance in case of strong scaling. This is achieved
by a carefully designed parallel implementation, which minimizes threading over-
head and maximizes MPI message progression. When strong scaling by 100× on
Theta and 64× on Cori-II, EDGE sustained a performance of 3.4 PFLOPS and
9.1 PFLOPS, respectively.

Acknowledgements. Only the great support of experts at NERSC and ALCF made
our extreme-scale results possible. In particular, we thank J. Deslippe, S. Dosanjh,
R. Gerber, and K. Kumaran. This work was supported by the Southern California
Earthquake Center (SCEC) through contribution #16247. This research used resources
of the National Energy Research Scientific Computing Center, a DOE Office of Science
User Facility supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231. This research used resources of the Argonne Lead-
ership Computing Facility, which is a DOE Office of Science User Facility supported
under Contract DE-AC02-06CH11357. This work used the Extreme Science and Engi-
neering Discovery Environment (XSEDE), which is supported by National Science
Foundation grant number ACI-1053575.

Optimization Notice: Software and workloads used in performance tests may have
been optimized for performance only on Intel microprocessors. Performance tests, such
as SYSmark and MobileMark, are measured using specific computer systems, com-
ponents, software, operations and functions. Any change to any of those factors may
cause the results to vary. You should consult other information and performance tests
to assist you in fully evaluating your contemplated purchases, including the perfor-
mance of that product when combined with other products. For more information go
to http://www.intel.com/performance. Intel, Xeon, and Intel Xeon Phi are trademarks
of Intel Corporation in the U.S. and/or other countries.

1 EDGE is available under the 3-clause BSD license at http://dial3343.org.

http://www.intel.com/performance
http://dial3343.org


58 A. Breuer et al.

References

1. Reinders, J., Jeffers, J., Sodani, A. (eds.) Intel Xeon Phi Processor High Perfor-
mance Programming Knights Landing Edition (2016). Ch. 4 and Ch. 6

2. Aoi, S., Fujiwara, H.: 3D finite-difference method using discontinuous grids. Bull.
Seismol. Soc. Am. 89(4), 918–930 (1999)

3. Appelö, D., Petersson, N.A.: A stable finite difference method for the elastic wave
equation on complex geometries with free surfaces. Commun. Comput. Phys. 5(1),
84–107 (2009)

4. Bastian, P., et al.: Hardware-based efficiency advances in the EXA-DUNE project.
In: Bungartz, H.-J., Neumann, P., Nagel, W.E. (eds.) Software for Exascale Com-
puting - SPPEXA 2013-2015. LNCSE, vol. 113, pp. 3–23. Springer, Cham (2016).
doi:10.1007/978-3-319-40528-5 1

5. Benjemaa, M., Glinsky-Olivier, N., Cruz-Atienza, V.M., Virieux, J.: 3D dynamic
rupture simulations by a finite volume method. Geophys. J. Int. 178, 541–560
(2009)

6. Breuer, A., Heinecke, A., Rettenberger, S., Bader, M., Gabriel, A.-A., Pelties, C.:
Sustained petascale performance of seismic simulations with SeisSol on SuperMUC.
In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2014. LNCS, vol. 8488, pp.
1–18. Springer, Cham (2014). doi:10.1007/978-3-319-07518-1 1

7. Chaljub, E., Komatitsch, D., Vilotte, J.-P., Capdeville, Y., Valette, B.,
Festa, G.: Spectral-element analysis in seismology. Adv. Geophys. 48,
365–419 (2007). Advances in Wave Propagation in Heterogenous Earth,
http://www.sciencedirect.com/science/article/pii/S0065268706480079

8. Chaljub, E., Maufroy, E., Moczo, P., Kristek, J., Hollender, F., Bard, P.-Y., Pri-
olo, E., Klin, P., de Martin, F., Zhang, Z., Zhang, W., Chen, X.: 3-D numerical
simulations of earthquake ground motion in sedimentary basins: testing accuracy
through stringent models. Geophys. J. Int. 201(1), 90–111 (2015)

9. Dumbser, M., Käser, M.: An arbitrary high-order discontinuous galerkin method
for elastic waves on unstructured meshes - II. The three-dimensional isotropic case.
Geophys. J. Int. 167(1), 319–336 (2006)

10. Duru, K., Dunham, E.M.: Dynamic earthquake rupture simulations on nonpla-
nar faults embedded in 3D geometrically complex, heterogeneous elastic solids. J.
Comput. Phys. 305, 185–207 (2016)

11. Etienne, V., Chaljub, E., Virieux, J.: An hp-adaptive discontinuous Galerkin finite-
element method for 3-D elastic wave modelling. Geophys. J. Int. 183(2), 941–962
(2010)

12. Geuzaine, C., Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator with
built-in pre-and post-processing facilities. Int. J. Numer. Methods Eng. 79(11),
1309–1331 (2009)

13. Heinecke, A., Breuer, A., Bader, M., Dubey, P.: High order seismic simulations
on the intel Xeon Phi processor (Knights Landing). In: Kunkel, J.M., Balaji, P.,
Dongarra, J. (eds.) ISC High Performance 2016. LNCS, vol. 9697, pp. 343–362.
Springer, Cham (2016). doi:10.1007/978-3-319-41321-1 18

14. Heinecke, A., Breuer, A., Rettenberger, S., Bader, M., Gabriel, A.-A., Pelties, C.,
Bode, A., Barth, W., Liao, X.-K., Vaidyanathan, K., et al.: Petascale high order
dynamic rupture earthquake simulations on heterogeneous supercomputers. In:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (2014)

http://dx.doi.org/10.1007/978-3-319-40528-5_1
http://dx.doi.org/10.1007/978-3-319-07518-1_1
http://www.sciencedirect.com/science/article/pii/S0065268706480079
http://dx.doi.org/10.1007/978-3-319-41321-1_18


Extreme Scale Fused Seismic Simulations 59

15. Heinecke, A., Henry, G., Hutchinson, M., Pabst, H.: LIBXSMM: accelerating small
matrix multiplications by runtime code generation. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis (2016)

16. Ichimura, T., Fujita, K., Quinay, P., Maddegedara, L., Hori, M., Tanaka, S.,
Shizawa, Y., Kobayashi, H., Minami, K.: Implicit nonlinear wave simulation with
1.08T DOF and 0.270T unstructured finite elements to enhance comprehensive
earthquake simulation (2015)

17. Ichimura, T., Hori, M., Bielak, J.: A hybrid multiresolution meshing technique for
finite element three-dimensional earthquake ground motion modelling in basins
including topography. Geophys. J. Int. 177(3), 1221–1232 (2009)

18. George, K., Vipin, K.: MeTis: Unstructured Graph Partitioning and Sparse Matrix
Ordering System, version 4.0 (2009)

19. Kang, T.-S., Baag, C.-E.: An efficient finite-difference method for simulating 3D
seismic response of localized basin structures. Bull. Seismol. Soc. Am. 94(5), 1690–
1705 (2004)

20. Käser, M., Dumbser, M., Puente, J., Igel, H.: An arbitrary high-order discontin-
uous galerkin method for elastic waves on unstructured meshes - III. viscoelastic
attenuation. Geophys. J. Int. 168(1), 224–242 (2007)

21. Komatitsch, D., Tromp, J.: Spectral-element simulations of global seismic wave
propagation-II. Three-dimensional models, oceans, rotation and self-gravitation.
Geophys. J. Int. 150(1), 303–318 (2002)

22. Moczo, P., Ampuero, J.P., Kristek, J., Day, S.M., Kristekova, M., Pazak, P., Galis,
M., Igel, H.: Comparison of numerical methods for seismic wave propagation and
source dynamics - the SPICE code validation. In: Third International Symposium
on the Effects of Surface Geology on Seismic Motion. Actes des journées scien-
tifiques du LCPC. Laboratoire central des ponts et chaussées, Paris, France, pp.
1–10 (2006). ISBN 9782720824654

23. Kristeková, M., Kristek, J., Moczo, P.: Time-frequency misfit and goodness-of-
fit criteria for quantitative comparison of time signals. Geophys. J. Int. 178(2),
813–825 (2009)

24. Kristeková, M., Kristek, J., Moczo, P., Day, S.M.: Misfit criteria for quantitative
comparison of seismograms. Bull. Seismol. Soc. Am. 96(5), 1836–1850 (2006)

25. Liu, J., Chandrasekaran, B., Wu, J., Jiang, W., Kini, S., Yu, W., Buntinas, D.,
Wyckoff, P., Panda, D.K.: Performance comparison of MPI implementations over
InfiniBand, Myrinet and Quadrics. In: Proceedings of the 2003 ACM/IEEE Con-
ference on Supercomputing (2003)

26. Ma, S., Liu, P.: Modeling of the perfectly matched layer absorbing boundaries and
intrinsic attenuation in explicit finite-element methods. Bull. Seismol. Soc. Am.
96(5), 1779–1794 (2006)

27. Malas, T., Kurth, T., Deslippe, J.: Optimization of the sparse matrix-vector
products of an IDR Krylov iterative solver in EMGeo for the Intel KNL many-
core processor. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.) ISC High Perfor-
mance 2016. LNCS, vol. 9945, pp. 378–389. Springer, Cham (2016). doi:10.1007/
978-3-319-46079-6 27

28. Moczo, P., Kristek, J., Vavryčuk, V.: 3D heterogeneous staggered-grid finite-
difference modeling of seismic motion with volume harmonic and arithmetic aver-
aging of elastic moduli and densities. Bull. Seismol. Soc. Am. 92(8), 3042–3066
(2002)

http://dx.doi.org/10.1007/978-3-319-46079-6_27
http://dx.doi.org/10.1007/978-3-319-46079-6_27


60 A. Breuer et al.

29. Moczo, P., Robertsson, J.O.A., Eisner, L.: The finite-difference time-domain
method for modeling of seismic wave propagation. Adv. Geophys. 48,
421–516 (2007). Advances in Wave Propagation in Heterogenous Earth,
http://www.sciencedirect.com/science/article/pii/S0065268706480080

30. Modave, A., St-Cyr, A., Warburton, T.: GPU performance analysis of a nodal
discontinuous Galerkin method for acoustic and elastic models. Comput. Geosci.
91, 64–76 (2016)

31. Peter, D., Komatitsch, D., Luo, Y., Martin, R., Goff, N., Casarotti, E., Loher,
P., Magnoni, F., Liu, Q., Blitz, C., Nissen-Meyer, T., Basini, P., Tromp, J.: For-
ward and adjoint simulations of seismic wave propagation on fully unstructured
hexahedral meshes. Geophys. J. Int. 186(2), 721–739 (2011)

32. Pitarka, A.: 3D elastic finite-difference modeling of seismic motion using staggered
grids with nonuniform spacing. Bull. Seismol. Soc. Am. 89(1), 54–68 (1999)

33. Shepherd, J.F., Johnson, C.R.: Hexahedral mesh generation constraints. Eng. Com-
put. 24(3), 195–213 (2008)

34. Symes, W.W., Vdovina, T.: Interface error analysis for numerical wave propaga-
tion. Comput. Geosci. 13(3), 363–371 (2009)

35. Taborda, R., Bielak, J.: Large-Scale earthquake simulation: computational seis-
mology and complex engineering systems. Comput. Sci. Eng. 13(4), 14–27 (2011)

36. Cruz-Atienza, V.M., Virieux, J., Aochi, H.: 3D finite-difference dynamic-rupture
modeling along nonplanar faults. Geophysics 72(5), 123–137 (2007)

http://www.sciencedirect.com/science/article/pii/S0065268706480080

	EDGE: Extreme Scale Fused Seismic Simulations with the Discontinuous Galerkin Method
	1 Introduction
	2 Discretization
	3 Fused Simulations
	4 EDGE in a Nutshell
	4.1 Runtime Code Generation of DG-FEM Kernels
	4.2 Parallelization and Data Layout

	5 Experiments and Results
	5.1 Benchmarks
	5.2 Single Node Performance
	5.3 Weak Scaling
	5.4 Strong Scaling

	6 Conclusions
	References


