Global Extensible Open Power Manager:
A Vehicle for HPC Community Collaboration
on Co-Designed Energy Management Solutions

Jonathan Eastep®), Steve Sylvester, Christopher Cantalupo, Brad Geltz,
Federico Ardanaz, Asma Al-Rawi, Kelly Livingston, Fuat Keceli,
Matthias Maiterth, and Siddhartha Jana

Power Pathfinding to Product (P3) Team, Data Center Group,
Intel Corporation, Hillsboro, OR, USA
jonathan.m.eastep@intel.com

Abstract. The power scaling challenge associated with Exascale sys-
tems is a well-known issue. In this work, we introduce the Global Exten-
sible Open Power Manager (GEOPM): a tree-hierarchical, open source
runtime framework we are contributing to the HPC community to fos-
ter increased collaboration and accelerated progress toward software-
hardware co-designed energy management solutions that address Exas-
cale power challenges and improve performance and energy efficiency
in current systems. Through its plugin extensible architecture, GEOPM
enables rapid prototyping of new energy management strategies. Differ-
ent plugins can be tailored to the specific performance or energy effi-
ciency priorities of each HPC center. To demonstrate the potential of
the framework, this work develops an example plugin for GEOPM. This
power rebalancing plugin targets power-capped systems and improves
efficiency by minimizing job time-to-solution within a power budget. Our
results demonstrate up to 30% improvements in the time-to-solution of
CORAL system procurement benchmarks on a Xeon Phi cluster.

1 Introduction

Performance of future large-scale HPC systems will be constrained by power
costs. Some HPC centers are already incentivized through government taxes to
operate their systems at more energy-efficient points below peak performance
and power [3]. Others may prefer peak performance today, but they face cost-
pressure of a different kind to deploy more efficient systems in the future: system
power draw is increasing by a substantial factor generation-over-generation, and
without a breakthrough in system energy efficiency, industry trends forewarn
that large-scale systems will exceed the limits of the existent power delivery
infrastructure at typical centers by a 2-3x margin by 2022. This forces costly
upgrades or limited system scale. Overcoming the 2-3x gap will require co-
designed hardware and software system energy management solutions as well
as increased collaboration between hardware vendors and the HPC software
community.

© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance 2017, LNCS 10266, pp. 394-412, 2017.
DOI: 10.1007/978-3-319-58667-0_21

Global Extensible Open Power Manager: A Vehicle for HPC Community 395

In this paper, we introduce the Global Extensible Open Power Manager
(GEOPM). GEOPM is an open source, plugin extensible runtime for power
management. The primary goal of the project is to provide an open platform for
community collaboration and research on co-designed energy management solu-
tions to close the energy efficiency gap. We demonstrate a power rebalancing
plugin for GEOPM targeting power-constrained systems which leverages feed-
back from the application to identify which nodes are on the critical path then
adjusts processor power cap settings to accelerate the critical path and improve
the application’s time-to-solution. Subject to the power cap it is given, each
processor attempts to maximize its performance while our software provides
coordination of power budgets (and thus performance) across nodes. Through
this marriage of software and hardware management of power and performance,
we obtain up to 30% improvements in time-to-solution for CORAL procurement
benchmarks on a power-constrained Knights Landing system.

In contributing this paper and the first plugin for GEOPM, we have taken a
significant step toward closing the 2-3x energy efficiency gap. Much community
collaboration will be required to close the remainder. For example, hardware
vendors will need to provide improved or new software-tunable knobs in the
future; GEOPM is influencing research along these lines at Intel. Additionally,
the HPC software community will need to expose tunable knobs from various
software layers to GEOPM (e.g. the application, runtime, system software, or
operating system layers). Fully leveraging these knobs will require algorithmic
advances in GEOPM and extensions enabling it to target different knobs than
are supported today. These extensions will be developed in collaboration with
the HPC community and will be added to GEOPM via plugins over time.

The GEOPM runtime framework is being developed for broad deployment on
Xeon, Xeon Phi, and other HPC system architectures. The first deployment is
expected on the Theta system, a Knights Landing Xeon Phi system at Argonne.
The GEOPM software package is available under the BSD three clause open
source software license in the GEOPM source code repository on GitHub (project
page: http://geopm.github.io/geopm). The GEOPM runtime framework, test
infrastructure, and power rebalancing plugin are all open source.

The remainder of the paper is organized as follows. Section2 high-
lights GEOPM’s primary contributions over prior works. Section3 overviews
GEOPM’s design. Section4 analyzes time-to-solution improvements obtained
with the power rebalancing plugin for CORAL procurement and other bench-
marks. Section 5 concludes and discusses future work.

2 Related Work

To our knowledge, GEOPM is the first open extensible runtime framework to
be contributed to the community by a hardware vendor with the intent of col-
laborative research toward software-hardware co-designed energy management
solutions in future HPC systems. This vision and early work was first publicized
broadly to the community in a short workshop paper in PMBS’16 [1] and the

http://geopm.github.io/geopm

396 J. Eastep et al.

Emerging Technologies Showcase at SC’16. In this ISC paper, we have further
developed the early work presented at PMBS for a full conference publication.

There are parallel software efforts to GEOPM contributed by a hardware
vendor: OpenHPC [2] facilitates community collaboration on the HPC software
stack by providing a framework for integrating, configuring, and testing open
source components. OpenHPC has not been focused on fostering co-designed
energy management solutions, but we note that we intend to submit the GEOPM
package to the OpenHPC Technical Steering Committee for inclusion in the
OpenHPC distribution when the production version 1.0 of GEOPM is released.
There are parallel software-hardware co-design efforts to GEOPM such as Open-
POWER [19]. While OpenPOWER enables the community to customize systems
based on the IBM POWER architecture, we are not aware of activity within the
OpenPOWER project to research software-hardware co-designed energy man-
agement solutions exploiting runtime feedback from applications. While GEOPM
only currently provides plugins supporting x86 systems, users can add platform
implementation plugins supporting POWER or other system architectures.

To our knowledge, GEOPM is the first open source job-level power manage-
ment runtime for HPC systems to support extensible energy management con-
trol strategies through a plugin architecture, making it suitable for the differing
energy management needs of a wide range of HPC installations around the world.
The Power API Specification from Sandia [18] is a synergistic effort, but it is
an orthogonal effort because it emphasizes power interfaces rather than runtime
techniques for optimizing energy. The Power API project is defining community-
standard interfaces for power monitoring and control at various granularities
throughout the HPC stack. Runtimes like GEOPM and other components can
collectively target these interfaces to achieve interoperability. We are collaborat-
ing with Sandia to explore changes targeted at future releases of the specification
to increase support for GEOPM and its interfaces.

In this work, we develop a plugin for GEOPM for power rebalancing within
a job. Prior works such as Conductor [4], Adagio [5], and Jitter [6] have demon-
strated effective algorithms for reallocating power between nodes to compensate
for application load imbalance — whether for the purpose of increasing appli-
cation performance under a job power cap by accelerating the critical path or
improving application energy efficiency by reducing performance in nodes off
of the critical path. While these algorithms are effective at smaller scales (i.e.
less than a few thousand nodes), their centralized designs are not intended for
today’s large-scale deployments or future Exascale deployments. The key differ-
ence is that the GEOPM power balancing plugin has a flexible tree-hierarchical
design suitable for deployments ranging in scale from rack-scale to extreme-scale
deployments. We note, however, that we have a collaboration underway with the
authors of these prior works to compare approaches and meld together the best
aspects of each approach in a future GEOPM plugin and paper.

There is a parallel work to GEOPM called the Argo project [26] which is
developing a task-based programming model and runtime for Exascale HPC
systems. Its design includes a hierarchical power manager. Unlike GEOPM, the

Global Extensible Open Power Manager: A Vehicle for HPC Community 397

Argo power manager is not intended as a vehicle for the community and hard-
ware vendors to collaborate on researching new energy management solutions.
Furthermore, while the Argo project envisions this power manager performing
automatic hierarchical power budgeting, that functionality is not complete to our
knowledge. What has been demonstrated is hierarchical enforcement of power
budgets that were adjusted manually at runtime. That said, the authors are
interested in exploring if Argo’s algorithms could be implemented as GEOPM
plugins and brought to fruition in production deployments through GEOPM.

We note that there have also been orthogonal efforts [27] to develop hierar-
chical power management frameworks for enterprise data centers. They employ
significantly different energy management strategies suitable for enterprise work-
loads and virtualized environments. There have been other related works that
focused on saving power given a time bound. Some have used linear program-
ming to optimize energy savings with nearly no runtime increase [21]. Others
have achieved bigger power savings in exchange for small performance degrada-
tions [22-25].

Aside from prior works on saving energy while maintaining performance lev-
els, hierarchical power capping, and rebalancing power across nodes to increase
job performance under a power cap, there have also been prior works on power-
aware scheduling algorithms for energy management at the system level [7-9].
These algorithms comprehend system-level power caps and assign a different
power cap to each job based on its runtime and power characteristics with
the goal of reducing job wait times or optimizing overall system throughput.
GEOPM is synergistic with these works: the intent is for GEOPM to integrate
with a power-aware scheduler in an extended energy management hierarchy. In
particular, the scheduler can view GEOPM as a mechanism for optimizing the
job’s performance or energy efficiency within the scheduler-specified job power
budget, and the scheduler can optimize system performance and efficiency by
deciding the best allocation of the system budget among concurrent jobs. For
maximum benefits, GEOPM supports dynamic adjustments to the job cap.

3 GEOPM Design Overview

This section provides an overview of the GEOPM design, beginning with discus-
sion of how GEOPM integrates into the HPC system stack. We cover GEOPM’s
interfaces and responsibilities as well as its scalable, extensible design.

3.1 GEOPM Interfaces and Integration Architecture

Figure1 illustrates how the GEOPM runtime fits into the HPC system stack.
GEOPM is a job-level power manager. The GEOPM runtime interacts with the
scheduling functions of the workload manager through the workload manager
interface. This interface lets future power-aware schedulers assign an objective
for the job and configure which energy management plugin GEOPM should use
to manage the job. Supported objectives include but are not limited to managing

398 J. Eastep et al.

User Workload
Interface Manager

Power-Aware
Admin Scheduler . 3rd party SW Components
Interface D GEOPM SW Components

D HW Components

Workload Manager
Interface

Manager Interf
GEOPM Runtime nierface pb

Dl | Profiling [libs |

Processor Power/Perf
Monitor & Controls

Fig. 1. GEOPM interfaces and HPC system stack integration

the job to stay within a power budget while optimizing job time-to-solution; in
this case, the scheduler would use the interface to assign a job power budget
as well. The workload manager interface allows GEOPM to report back how
much power the job consumed and statistics about the job that GEOPM has
collected. There is an option for the interface to be used at job start and finish
(statically) or periodically while the job is running (dynamically). The GEOPM
runtime runs in user space. Therefore, GEOPM does not control resources that
are shared between users like network switches or the distributed file system; its
scope is control of power and performance knobs in compute node resources.
There is also an interface to the application software or libraries shown at
the middle right of the figure. The interface functions are listed in Table 1. This
software profiling interface allows the programmer to mark up their code to
hint to GEOPM about loops with global synchronization events in the appli-
cation that could result in performance loss if some MPI ranks fall behind in
the computation and reach synchronization points late (i.e. epochs). The inter-
face also enables programmers to hint to GEOPM about phases (i.e. regions) in
the application or library code between synchronization events as well as pro-
vide an application-level performance signal (i.e. progress) that GEOPM can
use to adapt its decisions as the application transitions between phases. For

Table 1. Function list for GEOPM profiling interface

geopm_prof_epoch(): Synchronization loop iteration beacon
geopm_prof_region(): Get region ID from name
geopm_prof_enter(): Mark region entry
geopm_prof_exit(): Mark region exit
geopm_prof_progress(): | Report region progress

Global Extensible Open Power Manager: A Vehicle for HPC Community 399

example, GEOPM may use region information to monitor for memory-intensive
or communication-intensive phases where processor frequency can be decreased
to save power with little or no impact on runtime.

The GEOPM profiling interface is designed to be lightweight and minimally
invasive, but future work will explore methods of automatically inferring phase
and performance information to enable use cases where GEOPM can make per-
phase decisions effectively without requiring programmers to mark up applica-
tion or library code. See the GEOPM man pages in [10] for full details on the
signatures and use of these functions. We also provide further documentation,
tutorials, and example MPI applications in the GEOPM source code reposi-
tory illustrating how to use them. See [20] for tutorial video walk-throughs on
YouTube.

As depicted in Fig.1, GEOPM provides interfaces to the user or adminis-
trator enabling them to configure GEOPM and request specific energy man-
agement plugins for a job. The interface is a JSON configuration file. The
GEOPM software package provides a tool to generate configuration files from
the command line called geopmpolicy and a C interface as well through the
geopm_policy_*() APIs. The GEOPM configuration file is selected at runtime
through the GEOPM_POLICY environment variable. On a system deploying the
SLURM workload manager, SLURM’s plugin infrastructure can be used to gen-
erate the file and set the environment variable. It can also be used to launch
the GEOPM runtime and configure CPU affinity. Some other workload man-
agers offer similar infrastructure. For those that do not, wrappers can be placed
around MPI launch commands to configure and enable GEOPM.

3.2 GEOPM Scalable Tree-Hierarchical Design

The GEOPM runtime is designed for use on a wide range of system scales. This is
accomplished through a flexible tree-hierarchical design. As illustrated in Fig. 2,
the GEOPM runtime is implemented as a hierarchical feedback guided control
system using a balanced tree. The energy management strategy employed is
extensible through a plugin architecture. The depth and fan-out of the tree are
automatically adjusted by the GEOPM runtime to accommodate different job
sizes.

Controllers in the tree (and therefore energy management plugins) take a
recursive approach to coordinating energy and performance policy decisions glob-
ally, across all nodes in the job. The root controller sets policy for its children,
each of its children set policy for their children, and so on. Policies are defined
hierarchically such that the parent constrains the space of policies that its chil-
dren can select from and, in so doing, effects their decisions. Decisions at each
level of the tree are based on feedback from each child. This feedback consists
of a history of energy, performance, and other statistics collected over the last
few control intervals. For scalability, the feedback is aggregated as it is commu-
nicated back from the leaves toward the root. Thus, decisions at the root are
informed by feedback from the leaves, and decisions flowing down the tree effect
decisions made at each leaf.

400 J. Eastep et al.

Power-Aware

Scheduler
+ <> MPI Comms Overlay
D msr-safe Driver
GEOPM D GEOPM Controller

Root

- Shared Mem Region

GEOPM
Aggregator

GEOPM
Aggregator

GEOPM GEOPM
Leaf Leaf
Processor] [Processor] [Processor] [Processor]

Fig. 2. GEOPM hierarchical design and communication mechanisms

To run the control tree hierarchy, the GEOPM runtime launches one user
thread on each compute node. This thread runs for the duration of the job.
On each compute node, this thread executes the responsibilities of the leaf con-
troller. On some compute nodes, this thread also executes responsibilities of the
aggregator controllers at higher levels in the tree. On one compute node in the
job, the thread also executes responsibilities of the root controller of the tree.

The GEOPM thread can be launched in several ways, and the affinity of
this thread should be controlled for best performance. On manycore systems
with low single-thread performance and high-cost context switching, it may be
a general performance benefit to leave a core unused by the application so that
the operating system can execute threads without interrupting the application.
In such systems, the GEOPM thread can be affinitized to this core and use it
as well. In cases where GEOPM is run with computationally-intense plugins,
results may be best if the GEOPM thread runs on the core that the application
stays off of; developers and users should keep this in mind. For other application
and system hardware combinations, it may benefit performance for the GEOPM
thread to share a core with the application through context switching. See [10]
for further information on GEOPM’s launch and affinitization options.

Dynamic communication between levels of the GEOPM control tree hier-
archy is currently achieved using MPI over the application’s in-band network
fabric. We use MPI’s Cartesian topology functionality to map the leaf, aggrega-
tor, and root controllers to the GEOPM runtime threads on the compute nodes.
When GEOPM is built against an MPI implementation with optimized Carte-
sian topology functionality, this minimizes communication distances over the
network fabric for the controllers. We also use MPI’s Cartesian topology to effi-
ciently implement a balanced tree hierarchy supporting a wide range of job node

Global Extensible Open Power Manager: A Vehicle for HPC Community 401

counts. All communication uses one-sided operations through the MPI_Put ()
interface. In Sect. 4.4, we provide measurements of GEOPM’s communication
bandwidth requirements on the OmniPath network fabric in our test system.
We demonstrate that bandwidth use is orders of magnitude less than 1% of
the total available bandwidth. GEOPM can be extended to support out-of-band
communication in the future.

Inter-process shared memory is used both for dynamic communication
between the GEOPM root controller and power-aware scheduler and for com-
munication between leaf controllers and application processes on the compute
nodes. Communication between leaf controllers and processors is achieved via
GEOPM PlatformImp plugins (discussed in Sect.3.3). In the case of Intel sys-
tems, processors expose Model Specific Registers (MSRs) [17] for communication
with software. GEOPM PlatformImp plugins for Intel systems perform MSR
access from userspace via the msr-safe Linux driver developed by LLNL [11].

3.3 GEOPM Extensible Plugin Architecture

There are three types of plugins supported by GEOPM which enable user exten-
sion of the runtime. From lowest to highest level of abstraction these are: the
PlatformImp, the Platform, and the Decider. The PlatformImp plugin is used
to expose low-level hardware features to Platform plugins. The GEOPM pack-
age provides PlatformImp plugins for a range of Intel platforms exposing hard-
ware features implemented with Model Specific Registers (MSRs). Support for
other hardware platforms would be implemented with this type of plugin. The
Platform plugin is used to express higher-level abstractions of the hardware fea-
tures exposed by the PlatformImp, and it provides the bridge interface called
by the controller to enforce a policy provided by a leaf Decider.

There are two types of Deciders: tree Deciders and leaf Deciders. The
leaf Decider is responsible for managing power or other controls within a sin-
gle compute node. The tree Decider is used for all levels of the control tree
hierarchy above the leaf level. The lowest-level tree Decider is the parent of
a leaf Decider. Collectively, the tree Deciders are responsible for managing
power across nodes. The leaf and tree Deciders are each selected by name in the
GEOPM configuration file provided by the end user, administrator, or workload
manager.

All Deciders have six main responsibilities: collecting feedback information
from their children in the GEOPM control tree hierarchy (or the software profil-
ing interface and Platform in the case of leaf Deciders), aggregating this data
into a reduced form, passing this reduced version up to their parent in the tree,
receiving policy information from their parent above them in the tree, deciding
how to set policy for their children (or how to set node power controls or other
controls in the case of leaf Deciders) based on the policy given by their parent,
and passing policy decisions down to their children (or to the Platform in the
case of leaf Deciders).

The GEOPM policy defines a power budget, so each Decider is taking in a
power budget from its parent and deciding how to divide that budget among its

402 J. Eastep et al.

children (or how to divide that budget among the node hardware components
that support control in the case of the leaf Decider). The leaf Decider may
also manage controls beyond power limit controls to enable various additional
optimizations. Each Decider plugin defines for itself the objective function it will
try to maximize when making policy decisions for its children and implements
an algorithm to maximize this objective function. Thus, by selecting a particular
Decider: GEOPM users, administrators, or the workload manager are selecting
a particular objective function and a particular energy management algorithm
to try to maximize that objective function.

To help the Decider tree hierarchy achieve control stability, the GEOPM
Decider interface includes functions that express convergence. Before introduc-
ing a new policy, the parent Decider waits for its children to signal that the
existing policy has been enacted stably. Child Deciders wait until the aggre-
gated feedback they would send to their parent would reflect the current policy
before signaling convergence to their parent.

GEOPM is designed to support per-phase adaptation of node hardware con-
trols and other node-level controls via the leaf Decider. To support this, the
GEOPM framework and leaf Deciders must collect feedback and adjust con-
trols at the cadence of application phase transitions. The current implementa-
tion of the GEOPM framework and governing leaf Decider provided with the
GEOPM software package can sustain a 5 ms cadence with standard deviation
of less than .5 ms when running on an Intel Knights Landing Xeon Phi platform.
The control loop includes computations to feed input to the governing Decider
and enact its decisions in the Platform. Those computations include sampling
processor performance counters, reading from a log of application interface calls
stored in shared memory, extrapolating application progress forward to when
the processor counters were read, estimating power consumption over the last
interval by applying linear least squares parameter fit over a moving window
of energy counter readings, and writing RAPL MSRs to enact the governing
Decider’s allocation. The control loop computation also includes the algorithm
in the governing Decider that adaptively allocates power among the processor
and external DRAM from the node power budget.

3.4 Example Power Balancing Plugin

We have developed an example plugin for GEOPM to demonstrate both its
extensible architecture and a scalable hierarchical power management strategy
to address the performance variation challenges expected in Exascale systems
due to their need for power-capping. Power-capping exposes differences in the
energy efficiency of like hardware components. These differences derive from
manufacturing variation. Under power caps, even like hardware components from
the same Stock Keeping Unit (SKU) will exhibit different performance which
results in the nodes of the system taking different amounts of time to complete
equal amounts of work [12,13].

The GEOPM power balancing plugin mitigates this performance varia-
tion, minimizing its impact on application time-to-solution. The plugin targets

Global Extensible Open Power Manager: A Vehicle for HPC Community 403

iterative bulk-synchronous MPI applications running on power-capped systems
and leverages application-awareness to first identify the nodes that are on the
critical path due to their lower performance at a given power cap then accelerate
them by diverting power away from nodes that are off of that path. This provides
an overall improvement in application time-to-solution. The source code for this
power balancing tree Decider plugin is hosted in the GEOPM repository [10].

The tree Deciders identify and accelerate the critical path hierarchically.
The GEOPM controller framework provides the lowest-level tree Decider with
samples of its children’s runtime (not including time spent waiting for MPI
synchronization) between application calls to the geopm_prof_epoch() function
averaged over a moving window. The geopm_prof_epoch() call acts as a beacon,
signaling each time the application reaches a new iteration of an outer loop
containing an inter-node synchronization operation. The tree Decider takes in
a power budget from its parent, compares the runtime reported by its children,
then computes how to divide its power budget among its children such that they
will reach the synchronization point at roughly the same time, avoiding wait
time and associated performance loss. Each tree Decider reports the max of its
children’s runtime as aggregated runtime feedback to its parent.

4 Results

This section presents our analysis of the power balancing plugin for GEOPM. We
describe our experimental setup, we demonstrate the improvements to applica-
tion time-to-solution that the plugin provides, we analyze how the plugin obtains
these improvements, and we report measurements of GEOPM’s computational,
communication, and memory requirements.

4.1 Experimental Setup

Our experiments use standard benchmark output as the final reference for time-
to-solution and the other statistics we report. However, our analysis additionally
leverages GEOPM’s report and trace features. GEOPM may be configured with
the environment variables GEOPM_REPORT and GEOPM_TRACE to generate two types
of profiles after each application run: a summarizing report or a time series trace.
The report file aggregates performance and energy metrics for the application
both overall and for each individual region that the programmer has annotated
in the application using the profiling interface described in Sect. 3.1. The trace
file is a table of time series data containing samples of processor performance
counters, information collected via application calls to the profiling interface,
and control knob setting outputs recorded by GEOPM during the application
run. This table contains exactly the same data provided to the leaf Decider
plugin in the GEOPM control tree hierarchy.

In this paper, we performed our experiments on a cluster of 12 compute
nodes. Each compute node has one Intel Xeon Phi Knights Landing processor
(KNL-F B0 Beta SKU) and 256 GB of external DRAM. This processor SKU

404 J. Eastep et al.

has 64 Turbo-enabled, 4-way hyperthreaded cores each with a 1.3 GHz sticker
frequency. It has 16 GB of MCDRAM on-package memory, an integrated Omni-
Path HFT used for communication over the network fabric, and a 230 W Thermal
Design Power (TDP). The operating system is CentOS 7 Linux with the ‘per-
formance’ frequency governor enabled. The C/C++ and Fortran software was
compiled with the Intel tool-chain while using the MVAPICH2 MPI implemen-
tation. We used version 0.2.2 of the GEOPM software package [10].

In our experiments, we targeted the following workloads: Qbox, HACC, Nek-
bone, AMG, miniFE, CoMD, and FFT. Qbox is a quantum molecular dynamics
code, HACC is a cosmology code for simulating the evolution of the universe,
Nekbone is a thermal hydraulics code, AMG is an algebraic multi-grid solver for
unstructured meshes, miniFE is a finite element code, CoMD is a proxy molecu-
lar dynamics simulation code, and FFT is a discrete 3-d Fast Fourier Transform
kernel. Qbox, HACC, and Nekbone are Tier 1 scalable science workloads from the
CORAL procurement benchmarks; AMG is a Tier 1 throughput benchmark; and
miniFE is a Tier 2 throughput benchmark from the CORAL benchmarks [14].
CoMD is an ExMatEx benchmark for software-hardware co-design [15]. FFT is
a key kernel from the NAS Parallel Benchmarks suite [16].

When configuring workloads, we applied standard conventions. We sized the
problem to use the majority of the MCDRAM (on-package memory) in each
node. With the system not power-capped — i.e. with the processors running at
TDP — we swept over the different numbers of MPI ranks and OpenMP threads
per rank using up all or almost all of the available hyperthreads in the processor;
we then determined which configuration resulted in the best runtime for each
workload and used it in all evaluations of our power balancing plugin. We found
that all workloads performed best if they were affinitized to leave Linux CPU
0 unused by the application to avoid interference by operating system threads.
We found that miniFE and CoMD performed best if using two hyperthreads per
core, while all other workloads performed best if using one. Using the GEOPM
profiling interface, we added mark up to these workloads to enable tuning them
with the power balancing plugin. The modifications are available in [10].

To study how much application speedup our power-balancing plugin provides
in power-constrained systems, we swept over a range of job power caps and
compared the workload runtime achieved while using our power-balancing plugin
versus a baseline. Our power-balancing plugin dynamically reallocates the job
power budget among nodes to mitigate load imbalance while the baseline applies
a static uniform division of the job power budget among nodes. In the baseline,
all tree Deciders are inactive. However, both cases employ active leaf Deciders
to enforce the node-level power budgets.

The leaves enforce the budget as follows: they dynamically measure the power
consumed in the external DRAM via the processor RAPL feature, they subtract
this power from the node budget (obtained from their parents in the GEOPM
control tree hierarchy), and then they set the RAPL socket power limit equal
to the remaining power so that the sum of socket and external DRAM power
matches the node power budget. Node power budgets are defined in terms of

Global Extensible Open Power Manager: A Vehicle for HPC Community 405

the dynamic power controllable via the processor RAPL feature. The remainder
of node power is not included but it is approximately static. Power consumed
by the job in shared resources like the network fabric interface is not currently
accounted for but may be in future work.

The workloads under study have well-balanced assignments of work across
ranks yet they still exhibit load imbalance deriving from the effects of hardware
manufacturing variation which have been discussed in Sect. 3.4. When interpret-
ing the results in this paper, it is important to note that, while the analysis
focuses on manufacturing variation, the GEOPM power balancing plugin can
address load imbalance due to imbalanced work assignments across ranks as
well. However, evaluating benefits of the plugin in that scenario is beyond the
scope of this paper. We also note that we made no attempt to cherry-pick proces-
sors from extreme ends of the power efficiency distribution in the processor SKU.
Therefore, we do not know if the processors in our cluster reflect the full potential
for load imbalance. We will explore this in future work.

In our power cap sweep experiments, we set the max job power cap equal
to the power at which each workload’s time-to-solution reached its minimum
(i.e. unconstrained performance), and we set the min job power cap to the value
at which performance scaling hit an inflection point where the processor spent
in excess of 8% of its time throttling inefficiently to reach the required power.
Results at power caps below this inflection point may be meaningful in some
research or production scenarios but they are omitted from this paper for brevity.

4.2 Runtime Improvements with Power Balancing Plugin

Figure 3 shows the mean runtime improvements obtained by our power balancing
plugin over a range of job power caps. These experiments were repeated 5 times.
The lighter colored bars are the results with our power balancing plugin, and
lower values are better. Runtimes are normalized based on the rightmost darker
colored bar (representing the baseline data) for each plot such that this bar
always has a value of 1.0. The red whiskers that are above and below the top of
the bars represent the max and min (respectively) of the observed runtimes. As
the figure indicates, our power balancing plugin is able to provide substantial
runtime improvements of up to 30% for Nekbone, miniFE, and CoMD. For the
other workloads, the runtime improvements are up to 9-23%.

The amount of improvement varies depending on the power cap and the
workload, but it tends to increase as the job power is increasingly constrained
since the critical path can be operated at a higher and higher frequency relative
to the other nodes. At the right side of each graph, job power is not very con-
strained and the nodes have enough power to run at closer to full frequency, so
the critical path cannot be accelerated.

In all experiments, we note that we confirmed that the power balancing plugin
obtains its runtime improvements without going over the job power budget. We
also note that, in other clusters, the improvements may vary if the processors
exhibit differing amounts of manufacturing variation than seen in our cluster.

406

Normalized Runtime

Normalized Runtime

Normalized Solve Time

Fig. 3. Runtime improvements obtained with GEOPM power balancing plugin on a

J. Eastep et al.

miniFE Runtime Comparison - Knights Landing

150 155 160 165 170 175 180 185 190 195
Per-Node Socket+DRAM Power Limit (W)

CoMD Runtime Comparison - Knights Landing

135 140 145 150 155 160 165 170 175 180
Per-Node Socket+DRAM Power Limit (W)

Nekbone CG Time Comparison - Knights Landing
18 — ™ s — — —

-
o

150 155 160 165 170 175 180 185 190
Per-Node Socket+DRAM Power Limit (W)

FFT Runtime Comparison

Normalized Runtime Normalized Runtime

Normalized Runtime

16

14

12

10

0.8

0.6

0.4

AMG Runtime Comparison - Knights Landing

135 140 145 150 155 160 165

Per-Node Socket+DRAM Power Limit (W)

170

HACC Runtime Comparison - Knights Landing

135 140 145 150 155 160 165 170 175
Per-Node Socket+DRAM Power Limit (W)

Qbox Runtime Comparison - Knights Landing

140 145 150 155 160 165 170

Per-Node Socket+DRAM Power Limit (W)

- Knights Landing

Normalized Runtime

135

140 145

155

160 165 170

Per-Node Socket+DRAM Power Limit (W)

12-node Knights Landing cluster. 5 runs averaged for each bar. (Color figure online)

Global Extensible Open Power Manager: A Vehicle for HPC Community 407

4.3 Analysis of Runtime Improvements via Traces

Next, we trace the action of the power balancing plugin over the course of a
run to show how the runtime improvements were obtained. In the left column
of plots in Fig.4, we show traces from a run of the HACC workload. In the
right column, we show traces from a run of the Nekbone workload. For each, we
highlight a run from one of the power caps studied in our sweeps. For brevity,
we omit results collected for the other power caps and other benchmarks, but
we note that we observed consistent trends in that data.

The top plot in the HACC traces shows the normalized runtime of each
iteration of the HACC outer loop in the critical path node (i.e. the node with
lowest power efficiency due to manufacturing variation) and compares the time
taken when using the power balancing plugin versus the baseline. In the middle
plot, we plot the power allocated to each node for each iteration of the outer
loop when using the power balancing plugin. In the bottom plot, we plot the
mean frequency that each node’s processor runs at in each iteration of the outer
loop when using the power balancing plugin. These traces were collected through
GEOPM’s tracing features.

As demonstrated in the top plot, the power balancing plugin is able to reduce
the runtime of each iteration of the HACC outer loop which reduces the overall
time-to-solution. The middle plot demonstrates how the power balancing plugin
achieves this: it identifies the critical path nodes and allocates them a larger
portion of the job power budget. In particular, Node 8 is allocated more power.

The power allocation is tuned using an objective function that penalizes vari-
ance in the time it takes the nodes to complete each iteration. From one iteration
to the next, the amount of computation needs not be constant. In fact, the top
plot demonstrates that the computation is not constant in HACC. Nonethe-
less, the power balancing plugin readily handles it. The bottom plot confirms
that the variance-minimizing power allocation was the allocation that equalized
frequency across processors in all nodes. This is expected when manufacturing
variation is the cause of variation in iteration runtime across nodes.

The right column of Fig.4 shows the corresponding traces for Nekbone, a
more complicated example. The iteration loop time data in the top plot exhibits
two phases. In the first phase, the runtime of the outer loop is slightly better than
the baseline runtime when using the power balancing plugin, but in the second
phase the power balancing plugin significantly improves the runtime. The two
phases can be explained by observing that the Nekbone benchmark executes two
conjugate gradient computations of different problem sizes. The second one is
more sensitive to manufacturing variation because it is more compute-intensive.
Thus, it offers more opportunity for acceleration.

In the middle and bottom plots, the traces confirm that the power balancing
plugin is responding to differences in the outer loop runtime across nodes. In
particular, Node 8 is allocated more power. This is expected based on additional
experiments we performed to confirm that Node 8 has the processor with the low-
est power efficiency (due to manufacturing variation) in our cluster: over a sweep
of different power caps, we compared the average frequency each node’s processor

408 J. Eastep et al.

HACC Critical Path Iteration Loop Time Nekbone Critical Path Iteration Loop Time
@ 135 W - Knights Landing @ 150 W - Knights Landing
1.0

Balancer Plugin Balancer Plugin
0.0l — Baseline L| — Baseline

Iy
o

<
©

g g
E Eosf
o o
g 20.7f
Q Q
© ©
w w 0.6
o o
[[
N Nos
£ £
5 50.4
=z =z
0.3
0'30 20 40 60 80 100 0'20 20 40 60 80 100
Iteration # (Normalized) Iteration # (Normalized)
HACC lIteration Loop Power Nekbone Iteration Loop Power
@ 135 W - Knights Landing @ 150 W - Knights Landing
160 220
200
= =
o = 180
4 CU
3 B3
& & 160
z 2
o4 < 140
[a) o
+ +
g @120
[%3 %3
O o
«n 125 — Nodel — Node5 — Node9 1 W 100} — Nodel — Node5 — Node9
— Node 2 — Node 6 —— Node 10 — Node 2 — Node 6 —— Node 10
120 — Node3 — Node7 Node 11] — Node3 — Node 7 Node 11
— Node 4 === Node 8 Node 12 80} — Node 4 === Node 8 Node 12
0 20 40 60 80 100 0 20 40 60 80 100
Iteration # (Normalized) Iteration # (Normalized)
HACC lIteration Loop Mean Frequency Nekbone Iteration Loop Mean Frequency
@ 135 W - Knights Landing @ 150 W - Knights Landing
1.2 1.2
1.0\ 1.0
> >
9 9
[=4 C
Sos 208
o o
o o
w ('S
- 0.6 - 0.6
[[
N N
© ©
£0.4 4 £ 0.4f
S 5
= =
0.2 — Nodel — Node5 — Node9] 0.2} — Nodel — Node5 — Node9
— Node 2 — Node 6 —— Node 10 . — Node 2 — Node 6 —— Node 10
— Node3 — Node 7 Node 11 — Node3 — Node7 Node 11
— Node 4 == Node 8 Node 12 — Node 4 == Node 8 Node 12
0‘00 20 40 60 80 100 0'00 20 40 60 80 100
Iteration # (Normalized) Iteration # (Normalized)

Fig. 4. Traces for an example run and power cap of HACC (Left) and Nekbone (Right).
Top to bottom: time taken in the critical path node to complete each iteration, power
allocated to each node in each iteration, and mean frequency in each node in each
iteration

Global Extensible Open Power Manager: A Vehicle for HPC Community 409

achieved when running a single-node compute-intensive synthetic workload and
confirmed that the average frequency was consistently lowest on Node 8. We also
note that the data demonstrates that our plugin adapts readily when Nekbone
moves from the first conjugate gradient computation to the second. When the
second begins, the plugin realizes that the previous power allocation is no longer
ideal and it learns a new power allocation.

4.4 Overhead Measurements

Next we measure and report the memory usage and communication bandwidth
costs associated with running the GEOPM framework and power balancing plu-
gin as well as the overhead to the application’s runtime associated with calling
into GEOPM’s profiling interface functions. GEOPM and its interfaces have
been designed to minimize these costs.

To measure the memory working set, we queried the peak resident set size
statistic (VmHWM) provided by Linux in /proc/<pid>/status/ for the GEOPM
process on each node, at GEOPM shutdown time. To track communication band-
width usage, we implemented accounting logic in the GEOPM code for tree com-
munications to accumulate how many payload bytes are sent over the network.
To track application overhead, we wrapped each GEOPM interface function with
timers and implemented logic to accumulate the total time spent in all interface
function calls. For each type of overhead, we obtain measurements on each node
and report the maximum overhead across nodes.

We note that taking the maximum actually overestimates both the average
network bandwidth usage per node and the overall application overhead. The
node in which the GEOPM root controller lives uses more communication band-
width than any other node, but it is the value we are reporting. Overhead on
the critical path node will have greatest impact to overall application runtime,
but we are reporting the maximum across any node; in our experiments, the
overhead was typically lowest on the critical path node.

Table 2. Per-node memory usage, communication bandwidth, and application over-
head

Workload | Memory Communication BW | Application overhead
working set (upper bound) (upper bound)
Qbox 40.8 MB 7.8 B/sec 2.32%
HACC 48.7MB 36.2B/sec 0.54%
Nekbone |37.1MB 1121.3 B/sec 1.45%
AMG 34.9MB 24.4B/sec 0.97%
miniFE | 34.8 MB 414.9B/sec 2.38%
CoMD 34.7MB 735.8 B/sec 2.88%
FFT 38.4MB 338.6 B/sec 4.52%

410 J. Eastep et al.

Nonetheless, the costs are minimal as demonstrated in Table 2. They are eas-
ily outweighed by the large improvements in application time-to-solution pre-
sented earlier in this paper. We note, however, that we have not yet made a
thorough effort to optimize the GEOPM code, so the overheads may be further
reduced in the future.

5 Conclusion and Future Work

This paper introduced an open source, extensible, scalable runtime framework
called GEOPM. GEOPM is being contributed to the community to accelerate
collaboration and research toward software-hardware co-designed HPC energy
management solutions. To demonstrate GEOPM’s potential as a framework,
this paper developed a power balancing plugin for GEOPM, and it presented
results from our experiments with that plugin which demonstrated substantial
improvements in time-to-solution for key CORAL system procurement and other
benchmarks in power-capped systems.

In future work, we will expand upon our studies of the power balancing
plugin to (a) determine bounds on how much benefit the plugin will provide
in systems with processors spanning the full range of manufacturing variation
possible in a given SKU, (b) evaluate benefits on additional benchmarks, and
(c) demonstrate that the plugin’s tree-hierarchical algorithm scales as well as
expected in larger systems. In fact, the first scaling studies have already begun
through a collaboration with Argonne National Laboratory. They are planned for
the Theta system, a production system based on Intel Knights Landing hardware
and Cray Aries Interconnect.

Lastly, the promising results presented in this paper motivate future work to
spin up additional collaborations with the community to research new energy
optimization strategies through GEOPM’s plugin framework. It would be espe-
cially interesting to prototype plugins for GEOPM that optimize energy-to-
solution or other objective functions beyond those demonstrated in this paper.
It would also be interesting to explore optimizations that run in conjunction
with power balancing optimizations to achieve speedups and energy efficiency
improvements on top of the benefits of power balancing.

The authors are also seeking collaborations to (a) explore further integra-
tion of GEOPM with emerging power-aware scheduling functions in SLURM (or
other workload managers) and (b) explore tuning power-performance knobs in
software libraries/runtimes like MPI or OpenMP as well as knobs in the library
or application layer of the HPC stack.

Acknowledgments. The authors would like to thank the following individuals for
their input on this work: Vitali Morozov and Kalyan Kumaran of Argonne; Barry
Rountree, Martin Schulz, and their teams from LLNL; James Laros, Ryan Grant, and
their team from Sandia; and Richard Greco, Tryggve Fossum, David Lombard, Michael
Patterson, and Alan Gara of Intel. Development of the GEOPM software package has
been partially funded through contract B609815 with Argonne National Laboratory.

Global Extensible Open Power Manager: A Vehicle for HPC Community 411

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Eastep, J., Sylvester, S., Cantalupo, C., et al.: Global extensible open power man-
ager: a vehicle for HPC community collaboration toward co-designed energy man-
agement solutions. In: Supercomputing PMBS (2016)

Schulz, K., Baird, C.R., Brayford, D., et al.: Cluster computing with OpenHPC.
In: Supercomputing HPC Systems Professionals (2016)

Auweter, A., et al.: A case study of energy aware scheduling on SuperMUC. In:
Kunkel, J.M., Ludwig, T., Meuer, H-W. (eds.) ISC 2014. LNCS, vol. 8488, pp.
394-409. Springer, Cham (2014). doi:10.1007/978-3-319-07518-1_25

Marathe, A., Bailey, P.E., Lowenthal, D.K., Rountree, B., Schulz, M., de Supinski,
B.R.: A run-time system for power-constrained HPC applications. In: Kunkel, J.M.,
Ludwig, T. (eds.) ISC High Performance 2015. LNCS, vol. 9137, pp. 394-408.
Springer, Cham (2015). doi:10.1007/978-3-319-20119-1_28

Rountree, B., Lowenthal, D.K., de Supinski, B., Schulz, M., Freeh, V.W.: Adagio:
making DVS practical for complex HPC applications. In: ICS (2009)

Kappiah, N., Freeh, V.W., Lowenthal, D.K.: Just in time dynamic voltage scaling:
exploiting inter-node slack to save energy in MPI programs. In: Supercomputing
(2005)

Etinski, M., Corbalan, J., Labarta, J., Valero, M.: Optimizing job performance
under a given power constraint in HPC centers. In: IGCC (2010)

Etinski, M., Corbalan, J., Labarta, J., Valero, M.: Linear programming based par-
allel job scheduling for power constrained systems. In: HPCS (2011)

Sarood, O., Langer, A., Gupta, A., Kale, L.: Maximizing throughput of overprovi-
sioned HPC data centers under a strict power budget. In: Supercomputing (2014)
Global Extensible Open Power Manager Project. Intel Corporation (2016). http://
geopm.github.io/geopm/

Shoga, K., Rountree, B., Schulz, M., Shafer, J.: Whitelisting MSRs with MSR-safe.
In: Supercomputing Exascale Systems Programming Tools (2014)

Rountree, B., Ahn, D.H., de Supinski, B.R., et al.: Beyond DVFS: a first look at
performance under a hardware-enforced power bound. In: HPPAC (2012)
Inadomi, Y., Patki, T., Inoue, K., et al.: Analyzing and mitigating the impact of
manufacturing variability in power-constrained supercomputing. In: Supercomput-
ing (2015)

CORAL Procurement Benchmarks. Livermore National Lab (2016). https://asc.
lInl.gov/CORAL-benchmarks/ CORALBenchmarksProcedure-v26.pdf
Mohd-Yusof, J.: Codesign molecular dynamics (CoMD) proxy app. In: ExMatEx
All-Hands Meeting (2012)

Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi,
R., Frederickson, P., Lasinski, T., Schreiber, R., et al.: The NAS parallel bench-
marks summary and preliminary results. In: Supercomputing (1991)

Intel: Intel-64 and TA-32 Architectures Software Developer’s Manual, vols. 3A and
3B. System Programming Guide, Intel Corporation (2011)

Laros, J., DeBonis, D., Grant, R., et al.: High performance computing - power
application programming interface specification, version 1.0. Sandia National Lab-
oratories, Technical report SAND2014-17061 (2014)

Gschwind, M.: OpenPOWER: reengineering a server ecosystem for large-scale data
centers. In: Hot Chips Symposium (HCS) (2014)

GEOPM Video Tutorials: Intel Corporation (2016). https://www.youtube.com/
playlist?list=PLwm-z8c2AbIBU-T7HnMi_Pux7i0O3gQQnz

http://dx.doi.org/10.1007/978-3-319-07518-1_25
http://dx.doi.org/10.1007/978-3-319-20119-1_28
http://geopm.github.io/geopm/
http://geopm.github.io/geopm/
https://asc.llnl.gov/CORAL-benchmarks/CORALBenchmarksProcedure-v26.pdf
https://asc.llnl.gov/CORAL-benchmarks/CORALBenchmarksProcedure-v26.pdf
https://www.youtube.com/playlist?list=PLwm-z8c2AbIBU-T7HnMi_Pux7iO3gQQnz
https://www.youtube.com/playlist?list=PLwm-z8c2AbIBU-T7HnMi_Pux7iO3gQQnz

412

21.

22.

23.

24.

25.

26.

27.

J. Eastep et al.

Rountree, B., Lowenthal, D.K., Funk, S., et al.: Bounding energy consumption in
large-scale MPI programs. In: Supercomputing (2007)

Cameron, K.W., Feng, X., Ge, R.: Performance-constrained distributed DVS
scheduling for scientific applications on power-aware clusters. In: Supercomput-
ing (2005)

Ge, R., Feng, X., Feng, W., Cameron, K.W.: CPU MISER: a performance-directed,
run-time system for power-aware clusters. In: ICPP (2007)

Hsu, C.-H., Feng, W.-C.: A power-aware run-time system for high-performance
computing. In: Supercomputing (2005)

Li, D., de Supinski, B., Schulz, M., Cameron, K., Nikolopoulos, D.: Hybrid
MPI/OpenMP power-aware computing. In: IPDPS (2010)

Ellsworth, D., Patki, T., Perarnau, S., et al.: Systemwide power management with
Argo. In: Parallel and Distributed Processing Symposium Workshops (2016)
Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z., Zhu, X.: No “power”
struggles: coordinated multi-level power management for the data center. In: ASP-
LOS (2008)

	Global Extensible Open Power Manager: A Vehicle for HPC Community Collaboration on Co-Designed Energy Management Solutions
	1 Introduction
	2 Related Work
	3 GEOPM Design Overview
	3.1 GEOPM Interfaces and Integration Architecture
	3.2 GEOPM Scalable Tree-Hierarchical Design
	3.3 GEOPM Extensible Plugin Architecture
	3.4 Example Power Balancing Plugin

	4 Results
	4.1 Experimental Setup
	4.2 Runtime Improvements with Power Balancing Plugin
	4.3 Analysis of Runtime Improvements via Traces
	4.4 Overhead Measurements

	5 Conclusion and Future Work
	References

