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Abstract. Fast Fourier Transforms (FFTs) are exploited in a wide vari-
ety of fields ranging from computer science to natural sciences and engi-
neering. With the rising data production bandwidths of modern FFT
applications, judging best which algorithmic tool to apply, can be vital
to any scientific endeavor. As tailored FFT implementations exist for an
ever increasing variety of high performance computer hardware, choos-
ing the best performing FFT implementation has strong implications for
future hardware purchase decisions, for resources FFTs consume and for
possibly decisive financial and time savings ahead of the competition.
This paper therefor presents gearshifft, which is an open-source and
vendor agnostic benchmark suite to process a wide variety of problem
sizes and types with state-of-the-art FFT implementations (fftw, clFFT
and cuFFT). gearshifft provides a reproducible, unbiased and fair com-
parison on a wide variety of hardware to explore which FFT variant is
best for a given problem size.

Keywords: Signal processing · FFT · fftw · cufft · clfft · GPU ·
GPGPU · Benchmark · HPC

1 Introduction

Fast Fourier transforms (FFTs, [31]) are at the heart of many signal processing
and phase space exploration algorithms. Examples for their substantial usage
include image reconstruction in life sciences [27,28], amino acid sequence align-
ment in bioinformatics [22], phase space reduction for weather simulations [23],
option price analysis and prediction in financial mathematics [19] and machine
learning [5] to just name a few.

An FFT is a fast implementation of the discrete Fourier transform which
is a standard text-book mathematical procedure. The forward transform is a
mapping from an array x of n complex numbers in the time domain to an array
X of n complex numbers in the frequency domain (referred to as Fourier domain):

X[k] =
n−1∑

j=0

x[j]e
−2πijk

n (1)
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with k being an integer index within 0 ≤ k < n and the imaginary unit i2 = −1.
This operation was found to be computable in O(n log n) complexity by Cooley-
Turkey [8], who rediscovered findings of Gauss [16]. The basis of the Cooley-
Turkey approach is the observation that the DFT of size n can be rewritten by
smaller DFTs of size n1 and n2 by the factorization of n = n1n2. Given the
indices j = j1n2+j2 and k = k1+k2n1, Eq. (1) can be re-expressed as:

X[k1+k2n1] =
n2−1∑

j2=0

⎛

⎝

⎛

⎝
n1−1∑

j1=0

x[j1n2+j2]e
−2πij1k1

n1

⎞

⎠ e
−2πij2k1

n

⎞

⎠ e
−2πij2k2

n2 (2)

Equation (2) describes a decomposition that can be performed recursively
[15]. Here, n1 is denoted radix as it refers to n1 transforms of size n2. These
smaller transforms are combined by a butterfly graph with n2 DFTs of size n1

on the outputs of the corresponding sub-transforms. Radix-2 DFTs (n being
a power of two) are mostly implemented with the Cooley-Tukey algorithm [8].
Stockham’s formulations of the FFT can be applied [29] to avoid incoherent
memory accesses. Arbitrary and mixed radices can be tackled with the prime-
factorization or Chirp Z-transform implemented by the Bluestein’s algorithm [6].

The top ten list of the fastest worldwide computer installations (Top500
[24]) shows that the used hardware is by far not homogeneous in terms of ven-
dor and composition. This trend can be even more observed in practice, where
library architects and domain specialists are confronted with an essential ques-
tion: Which FFT implementation works best on what hardware?

With increasing experimental data production [18] and simulation output
bandwidths [23], input data to FFT libraries in the order of gigabytes becomes
the standard. With the advent of graphics processing units (GPUs) for scientific
computing around the beginning of the 21st century and the subsequent avail-
ability of general purpose programming paradigms to program these [11], vendor-
specific and open-source libraries to perform FFTs on accelerators emerged
(cuFFT [25] by Nvidia, open-source clFFT [3]) to offer performance which super-
sedes traditional high-performance implementations running on standard Cen-
tral Processing Units (CPUs) such as the open-source fftw library [15] or the
Intel specific MKL [20].

To our surprise, comprehensive and peer-reviewed benchmarks of FFT imple-
mentations across different hardware platforms have not been published exten-
sively. Either only specific hardware is chosen for the benchmark [2,12,26] or
only specific FFT implementation variants are tested [9,10]. In addition, many
performance benchmarks are tied to domain-specific implementations [14] that
either lack comprehensiveness or the ability to map the results obtained to other
implementation requirements.

Thus, a new open-source benchmark package called gearshifft [17] has
been developed. It is able to benchmark available state-of-the-art FFT libraries
in a reproducible, automated, comprehensive and vendor-independent fashion on
CPUs and GPUs. gearshifft helps library authors and domain-specific devel-
opers to choose the best FFT library available. The discussion above motivates
the following design goals of gearshifft:
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– open-source and free code
– standardized output format for downstream statistical analysis
– state-of-the-art build system
– open and extensible architecture with generic interface
– community-ready and vendor independent project infrastructure through ver-

sion control and public accessibility

Given the multitude of mathematical formulations and the heterogeneity of hard-
ware, gearshifft approaches the challenge of benchmarking a variety of FFT
libraries from a user perspective. This means, that the following parameters
should be easy to study:

– FFT dimension and radix-type (e.g. 32 × 32 × 32 as radix-2 3D FFT)
– transform kinds, i.e. real-to-complex or complex-to-complex transforms
– precision, i.e. 32-bit or 64-bit IEEE floating point number representation
– memory mode

• in-place: the input data structure is used for storing the output data (low
memory footprint and low bandwidth are to be expected)

• out-of-place: where the transformed input is written to a different memory
location than where the input resides (high memory footprint and high
bandwidth are to be expected)

– transform direction, i.e. forward (from discrete space to frequency space) or
backward (from frequency space to discrete space)

The remainder of this article is organized as follows: the C++ implementation of
gearshifft is discussed in Sect. 2 after an introduction to modern FFT APIs.
The largest part of the paper is dedicated to the presentation of first results in
Sect. 3, after which our conclusions are presented in Sect. 4.

2 Implementation

2.1 Using a Modern FFT Library

Before discussing the design of gearshifft, a brief introduction into the use and
application programming interfaces (APIs) of modern FFT libraries is required
to illustrate the design choices made. Many FFT libraries today, and particularly
those used in this study, base their API on fftw 3.0.

Here, in order to execute an FFT on a given pointer to data in memory, a
data structure for plans has to be created first using a planner. For this, the FFT
problem is defined in terms of rank (1D, 2D or 3D), shape of the input signal
(the dimensional extent), type of the input signal (single or double precision of
real or complex inputs), type of the transformation (real-to-complex, complex-
to-complex, real-to-half-complex) and memory mode of the transformation (in-
place versus out-of-place). These parameters describing the FFT problem are
then used as input to the planner.

The planner is a piece of code inside fftw that tries to find the best suited
radix factorization based on the shape of the input signal. By default, it then
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performs several FFTs derived from the mathematical descriptions discussed in
Sect. 1 on the input data to sample the runtime of different FFT implementations
available inside fftw. This ensemble of runtimes is then used to find the optimal
FFT implementation to use. After the plan has been created, it is used to execute
the FFT itself.

Listing 1. Minimal usage example of the fftw single precision real-to-complex planner
API. Memory management is omitted.
1 int shape[] = {32,32,32};
2 fftw_plan r2c_plan = fftw_plan_dft_r2c(
3 /* rank, here 3D */ 3,
4 /* shape of the input */ shape,
5 /* input data array */ (float *) input_buffer,
6 /* output data array */ (fftwf_complex *) output,
7 /* plan−rigor flag */ FFTW_ESTIMATE );
8 fftwf_execute(r2c_plan);

Listing 1 illustrates the fftw API for a single precision real-to-complex out-
of-place transform. fftw offers the freedom to choose the degree of optimization
for finding the most optimal FFT implementation for the signal at hand by
means of the planner flag, also referred to as plan rigors. Listing 1 uses the
FFTW_ESTIMATE flag as an example, which is described in the fftw manual [13]:

“FFTW_ESTIMATE specifies that, instead of actual measurements of different
algorithms, a simple heuristic is used to pick a (probably sub-optimal) plan
quickly. With this flag, the input/output arrays are not overwritten during
planning.”

fftw offers five levels for this planning flag, where two further descriptions are
given here:

“FFTW_MEASURE tells fftw to find an optimized plan by actually comput-
ing several FFTs and measuring their execution time. Depending on your
machine, this can take some time (often a few seconds).
FFTW_WISDOM_ONLY is a special planning mode in which the plan is only
created if wisdom is available for the given problem, and otherwise a NULL
plan is returned.”

In fftw terminology, wisdom is a data structure representing a more or less
optimized plan for a given transform. The fftw_wisdom binary, that comes with
the fftw bundle, generates hardware adapted wisdom files, which can be loaded
by the wisdom API into any fftw application. cuFFT and clFFT follow this API
mostly, only discarding the plan rigors and wisdom infrastructure, cp. Listing 2.

Listing 2. Minimal usage example of the cuFFT single precision real-to-complex plan-
ner API. Memory management is omitted.
1 int N = 32;
2 cufftHandle plan;
3 cufftPlan3d(&plan, N, N, N, CUFFT_R2C);
4 cufftExecR2C(plan, input_buffer, output);
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Table 1. Methods an FFT client in gearshifft has to implement

constructor get_alloc_size execute_forward

destructor get_transfer_size execute_inverse

allocate get_plan_size upload

destroy init_forward download
init_inverse

2.2 The Architecture of gearshifft

gearshifft is developed as an open-source framework using C++ (following
the 2014 ISO standard [21]) and the Boost Unit Test Framework (UTF, [7]).
One goal is to have a unified benchmark infrastructure and an extensible set of
FFT library clients. The benchmark framework is independent of the used FFT
library and provides the measuring environment, data handling and processing
of results. gearshifft involves template meta-programming for a compile-time
constant interface between the clients and the benchmark framework. Such a
generic approach is necessary to obtain comparable results between FFT libraries
and reproducible data for later statistical analysis while keeping code redundancy
and overhead at a minimum.

In gearshifft a benchmark is meant to collect performance indicators of the
operations in Table 1 defining the interface for the FFT clients. Different para-
meters such as precision, FFT extents, transform variant, device type or FFT
library relate to different benchmarks. gearshifft controls many of them by
command line arguments. The FFT libraries are related to different gearshifft
binaries (gearshifft_cufft, . . . ). For the full documentation of gearshifft
the reader is referred to [17].

There are common interfaces for the context management and for the FFT
workflow. The user has to implement the context and the FFT client class. The
create and destroy context methods of the client encapsulate time-consuming
device and library initialization, which are measured separately and run only
once. The library only must be initialized within the FFT client when the library
stores plan information (cp. fftw wisdoms). The client’s context class derives
from ContextDefault which enables to access and extend the program options.

Listing 3. Required template arguments for FFT client implementation
1 template<
2 typename TFFT, // e.g. gearshifft::FFT_Inplace_Real, ...
3 typename TPrecision, // e.g. double, float, ...
4 size_t NDim // 1,..,3
5 /* .. further template types if needed .. */ >
6 struct MyFFTClient;

The FFT client implementation in Listing 3 is instantiated once per bench-
mark run and follows the resource allocation is initialization (RAII) idiom [30].
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gearshifft invokes the FFT client methods listed in Table 1 to perform the
benchmarks and to populate the benchmark data. The FFT client can assign
user-defined template types to create different FFT client classes to mimic vari-
ous use cases.

Depending on the FFT library, after a forward transform the same plan
handle might be recreated for backward transform. This saves memory as there
is only one plan allocated at any point in time. For example, a cuFFT plan
allocation can be several times bigger than the actual signal data for the FFT.
fftw can overwrite input and output buffers during the planning phase, when
e.g. FFTW_MEASURE is used. Afterwards, the buffers can be filled with data. In
turn, this plan handle cannot be recreated later on, as the result buffer of the
previous plan would be overwritten at plan recreation. gearshifft’s compile-
time interface supports this use case, where both plans are allocated before the
round-trip FFT starts. The gearshifft interface also allows library-specific time
measurements, which is only implemented for the cuFFT library at the moment,
where CUDA events measure the runtime on GPU. For fftw and clFFT, the
CPU timer exposed by the C++14 chrono header is used.

Listing 4. Define FFT client types for corresponding FFTs
1 namespace MyFFT {
2 using Inplace_Real = gearshifft::FFT<
3 gearshifft::FFT_Inplace_Real, MyFFTClient, TimerCPU >;

Listing 4 shows a type definition for the user implemented class MyFFTClient
and specifies an in-place-real FFT (cp. Listing 3). This type is added to a list
for the benchmark runner, as demonstrated in benchmark.cpp (Listing 5). The
gearshifft::List is a compile-time constant list, which holds the different
template instantiations of an FFT client. FFT_Is_Normalized denotes a compile
time flag if the backward transformed data needs to be normalized in order to
achieve identity with the input.

Listing 5. Using FFT client types to run the benchmarks
1 using namespace gearshifft;
2 using Context = MyFFT::Context;
3 using FFTs = List<MyFFT::Inplace_Real>;
4 using Precisions = List<float, double>;
5 using FFT_Is_Normalized = std::false_type;
6 int main( int argc, char* argv[] ) {
7 try {
8 Benchmark<Context> benchmark;
9 benchmark.configure(argc, argv);

10 benchmark.run<FFT_Is_Normalized, FFTs, Precisions>();
11 } catch(const std::runtime_error& e) { \\ ...

The back-end of gearshifft uses the Boost Unit Test Framework to gener-
ate the benchmark instances within a tree data structure, which is referred to
as the benchmark tree. The measurement layout and benchmark framework are
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Fig. 1. The benchmark framework of gearshifft using Boost UTF and a realized FFT
interface; Here, only FFT interfaces are shown, that are measured (gray operations are
measured by device timers if provided); Context also has an implicit interface, which
is omitted here.

illustrated in Fig. 1. One single run comprises time measurement of each oper-
ation (allocate, . . . ). The total time measures all from allocate to destroy.
The size of the allocated buffers and the memory information of the FFT library
(if available) is recorded as well. The functor FFT calls the FFT client operations
wrapped with time measurements. The input data buffer, filled with a see-saw
function in [0, 1) in BenchmarkData, is held by the BenchmarkExecutor. A copy
is given to the FFT functor in each run and is used for the output. For each
benchmark configuration a number of warmups and benchmark repetitions is
performed. After the last benchmark run the round-trip transformed data is val-
idated against the original input data. The error ε is computed by the sample
standard deviation of input and round-trip output. When that error is greater
than 10−5, the benchmark is marked as failed and gearshifft continues with
the next configuration in the benchmark tree.

gearshifft adapts the API of the different FFT libraries to a common inter-
face. The FFT functor defines the interface of the common FFT workflow. This
pattern refers to Wrapper Facades and Static Adapter design pattern which
provides static polymorphism at compile-time [4]. Currently, gearshifft imple-
ments three different FFT libraries, cuFFT (CUDA runtime, [25]) for Nvidia
GPUs, clFFT (OpenCL runtime, [3]) for CPU and GPUs and fftw for CPU
(C/C++ runtime, [15]). By this selection, an accelerator-only, a mixed CPU-
GPU and a CPU-optimized library is covered. The cmake build system is used
to setup build paths to construct one executable for each supported FFT library
found by cmake as well as for collecting the include paths during the build process
and library locations for linking later on. There are options for disabling FFT
libraries or pointing to non-standard installation paths and to configure compile-
time constants such as the error-bound as well as the number of warmups and
repetitions.
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For the command-line arguments, Boost is utilized, particularly for bench-
mark list creation and selection. There are several gearshifft program options
to control benchmark settings, for example:

1 gearshifft_clfft −e 128x128 1024 −r */float/*/Inplace_Real −d cpu

Here, the clFFT benchmarks would first run a 128 × 128-point FFT and then a
1024-point FFT, performing in-place transforms with real input data in single-
precision. The default setting instructs gearshifft to use all CPU cores and
to store the results into result.csv. The gearshifft benchmark selection syntax
supports wildcards. The first wildcard * relates to the title of the FFT client
(ClFFT in this example). The second one refers to the FFT extents.

3 Results

3.1 Experimental Environment

This section will discuss the results obtained with gearshifft v0.2.0 on various
hardware in order to showcase the capabilities of gearshifft. Based on the
applications in [27,28], 3D real-to-complex FFTs with contiguous single-precision
input data are chosen for the experiments. If not stated, this is the transform
type assumed for all illustrations hereafter. Expeditions into other use cases will
be made where appropriate. The curious reader may rest assured that a more
comprehensive study is possible with gearshifft, however the mere multiplicity
of all possible combinations and use cases of FFT render it neither feasible nor
practical to discuss all of them here.

This study concentrates on three modern and current FFT implementations
available free of charge: fftw (3.3.6pl1, on x86 CPUs), cuFFT (8.0.44, on Nvidia
GPUs) and clFFT (2.12.2, on x86 CPUs or Nvidia GPUs). This is considered as
the natural starting point of developers beyond possible domain specific imple-
mentations. It should be noted, that this will infer not only a study in terms of
hardware performance, but also how well the APIs designed by the authors of
fftw, clFFT and cuFFT can be used in practice.

The results presented in the following sections were collected on three hard-
ware installations: All systems presented in Table 2 will be used for the bench-

Table 2. Benchmark hardware

Taurus Hypnos Islay
HPC cluster [33] HPC cluster [1] Workstation

CPU family Haswell Xeon Sandybridge Xeon Haswell Xeon Haswell Xeon

CPU model 2× E5-2680 v3 2× E5-2450 2× E5-2603 v3 2× E5-2640 v3

RAM 64GiB 48GiB 64GiB 64GiB

GPU (PCIe3.0) 4x K80 2x K20x 1x P100 1x GTX 1080

GPU memory 4x 12GiB 6GiB 16GiB 8GiB

GPU driver 367.48 367.48 367.48 367.57

OS RHEL 6.8 RHEL 6.8 Ubuntu 14.04.3 CentOS 7.2
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marks in this section. Access was performed via an ssh session without run-
ning a graphical user interface on the target system. All measurements used the
GNU compiler collection (GCC) version 5.3.0 as the underlying compiler. All
used GPU implementations on Nvidia hardware interfaced with the proprietary
driver and used the infrastructure provided by CUDA 8.0.44 if not stated oth-
erwise. After a warmup step a benchmark is executed ten times. From this, the
arithmetic mean and sample standard deviations are used for most of the figures.

3.2 Overhead of gearshifft

gearshifft is designed to be a lightweight framework with a thin wrapper for
the FFT clients, where the interface between back-end and front-end is resolved
at compile-time. Performance indicators of each benchmark are collected and
buffered to be processed after the last benchmark finished. For validation pur-
poses, a cuFFT standalone code [17] was created that provides a timer harness
like gearshifft (referred to as standalone). In addition, the time to solution
of a straightforward implementation of a round-trip FFT was measured as well
(referred to as standalone-tts). Both invoke a warm-up step and ten repeti-
tions of the entire round-trip FFT process. Figure 2 shows the impact of the
gearshifft internal time measurement with cuFFT for two input signal sizes.
Figure 2a illustrates that the time measurement distribution of gearshifft over-
laps with standalone code using multiple timers. A comparison of gearshifft and
standalone-tts visually shows a shift in the average obtained timing result (most
likely due to timer object latencies), the scale of this shift resides in the regime
below 2% which we consider negligible. We make this strong claim also because
one of the goals of gearshifft is measuring individual runs of the benchmark
for downstream statistical analysis, thus using one timer object would prohibit
this core feature of the benchmark. Figure 2b shows the impact of larger input

gearshifft standalone standalone-tts
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Fig. 2. Time-to-solution measured in gearshifft (cuFFT), in a standalone cuFFT appli-
cation using multiple timer objects and in a standalone application using one timer
object (standalone-tts) for a single-precision in-place real-to-complex round-trip FFTs
on the K80 [33].
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signals on the time measurement result. Here, the difference between gearshifft,
standalone and standalone-tts decreases even more and converges to a permille
level (the longer duration of the benchmark mitigates timer object latencies).

3.3 Time to Solution

The discussion begins with the classical use case for developers that might be
accustomed to small size transforms. As such, an out-of-place transform with
powerof2 3D signal shapes will be assumed. The memory volume required for
this operation amounts to the real input array plus an equally shaped complex
output array of the same precision. Figure 3 reports a comparison of runtime
results of powerof2 single-precision 3D real-to-complex forward transforms from
fftw and cuFFT. It is evident that given the largest device memory available of
16GiB, the GPU data does not yield any points higher than 8GiB. The more
recent GPU models supersede fftw which used all 2 × 12 CPU Intel Haswell
cores. Any judgment on the superiority of cuFFT over fftw can be considered
premature at this point, as fftw was used with the FFTW_ESTIMATE planner flag.

Fig. 3. Time-to-solution for powerof2 3D single-precision real-to-complex out-of-place
forward transforms using fftw (FFTW_ESTIMATE) and cuFFT. (b) shows the same data
as (a) but in a log10–log2 scale.

Figure 4 compares the time-to-solution to the actual time spent for the
FFT operation itself. FFTW_MEASURE imposes a total runtime penalty of 1 to
2 orders of magnitude with respect to FFTW_ESTIMATE. It however offers supe-
rior performance considering FFT execution time compared to FFTW_ESTIMATE.
To compare FFTW_ESTIMATE or FFTW_MEASURE with plans using FFTW_
WISDOM_ONLY, wisdom files are generated with the fftw_wisdom binary.
fftw_wisdom precomputed plans for a canonical set of sizes (powers of two and
ten up to 220) in FFTW_PATIENT mode, which in all took about one day on Taurus
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Fig. 4. fftw on Intel E5-2680v3 CPU with FFTW_ESTIMATE, FFTW_MEASURE and
FFTW_WISDOM_ONLY computing powerof2 3D single-precision real-to-complex in-place
forward transforms. (a) reports the time to solution, whereas (b) shows the time spent
for the execution of the forward transform only. Both figures use a log10–log2 scale.

[33] using (see [13] for command-line flag details): fftwf−wisdom −v −c −n −
T 24 −o wisdomf.

As during plan creation, the wisdom has to be loaded from disk only, the
planning times for calling the planner with FFTW_WISDOM_ONLY are drastically
reduced. Figure 4b shows that the user is rewarded by pure FFT runtimes of
less than an order of magnitude for small signal sizes. Unexpectedly, the FFT
runtimes become larger than those of FFTW_ESTIMATE for input signal sizes of
more than 32 KiB, which apparently contradicts the FFTW_PATIENT setting which
should find better plans than FFTW_MEASURE. It must be emphasized that the
planning times for FFTW_MEASURE become prohibitively long and reach minutes
for data sets in the gigabyte range. This is a well-known feature of fftw as the
authors note in [15]:

“In performance critical applications, many transforms of the same size are
typically required, and therefore a large one-time cost is usually accept-
able.”

gearshifft allows one to dissect this problem further and isolate the plan-
ning time only. Figure 5 illustrates the problem to its full extent. FFTW_MEASURE
consumes up to 3–4 orders of magnitude more planning time than other plan-
rigors and plans from GPU based libraries. The 3D planning is compared with
its counterpart in 1D (see Fig. 5b). It is important to note that fftw planning
in 1D appears to be very time consuming as the FFTW_MEASURE curve is very
steep compared to Fig. 5a. At input sizes of 128 MiB in 1D, the planning phase
exceeds the duration of 100s. The multi-threaded environment could be a prob-
lem for fftw (compiled against OpenMP): when using 24 threads in fftw the
time to solution with FFTW_MEASURE was up to 6× slower than using 1 thread.
Even worse, FFTW_PATIENT was up to 50× slower than in a single-thread envi-
ronment. Unfortunately, the number of threads used for wisdoms, which usually
run in FFTW_PATIENT mode, must be equal to the ones used by the client later on.

In practice, this imposes a challenge on the client to the fftw API. Not
only is the time to solution affected by this behavior which is a crucial quantity
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Fig. 5. Time-to-plan for powerof2 single-precision in-place real-to-complex forward
transforms using fftw (Intel E5-2680v3 CPU), cuFFT (K80 GPU) and clFFT (K80
GPU). (a) reports the complete time to plan for 3D FFTs and (b) for 1D FFTs. “None”
refers to the planning with cuFFT or clFFT as they do not support the plan rigor
concept. Both figures use a log10–log2 scale.

in FFT-heavy applications. Moreover, in an HPC environment the runtime of
applications needs to be known before executing them in order to allow efficient
and rapid job placement on compute resources. From another perspective, this
asserts a development pressure on the developer interfacing with fftw as she
has to create infrastructure in order to perform the planning of fftw only once
and reuse the resulting plan as much as possible. Furthermore, based on these
observations of Figs. 4 and 5 weighing plan time versus execution time, it becomes
more and more unclear for a user of fftw which plan rigor to use in general.

3.4 Comparing CPU versus GPU Runtimes

The last section finished by discussing a design artifact, that the fftw authors
introduced in their API and which other FFT libraries adopted. Another impor-
tant and common question is whether GPU accelerated FFT implementations
are really faster than their CPU equivalents. Although this question cannot be
answered comprehensively in our study, there are several aspects to be explored.
First of all, modern GPUs are connected via the PCIe bus to the host system in
order to transfer data, receive instructions and to be supplied with power. This
imposes a severe bottleneck to data transfer and is sometimes neglected during
library design. Therefore, the time for data transfer needs to be accounted for or
removed from the measurement. gearshiffts results data model offers access
to each individual step of a transformation, see Fig. 1. Hereby it is possible to
isolate the runtime for the FFT transform.

Figure 6 shows the runtime spent for computing the forward FFT for real
single precision input data. This illustration is a direct measure for the quality
of the implementation and the hardware underneath. For the 3D case in Fig. 6a
fftw seems to provide compelling performance if the input data is not larger than
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Fig. 6. Time for computing powerof2 out-of-place single-precision real-to-complex
forward transforms for 3D and for 1D shapes. Both figures use a log10-versus-log2
scale. Curves on the Intel E5-2680v3 based node were obtained with fftw, the data on
Nvidia GPUs was obtained with cuFFT and clFFT.

1 MiB on a double socket Haswell Intel Xeon E5 CPU. Above this limit, the GPU
implementations offer a clear advantage by up to one order of magnitude. The
current Pascal generation GPUs used with cuFFT provide the best performance,
which does not come by surprise as both cards are equipped with GDDR5X or
HBM2 memory which are clearly beneficial for an operation that yields rather
low computational complexity such as the FFT. In the 1D case of Fig. 6b, the
same observations must be made with even more certainty. The cross-over of
fftw and the GPU libraries occurs at an earlier point of 64KiB.

Another observation in Fig. 6a is that the general structure of the runtime
curves of GPU FFT implementations follows an inverse roofline curve [32]. That
is for input signals smaller than the roofline turning point at 1MiB the FFT
implementation appears to be of constant cost, i. e. to be compute bound. Above
the aforementioned threshold, the implementation appears to be memory bound
and hence exposes a linear growth with growing input signals which corresponds
to the O(n log n) complexity observed in Sect. 1 and validates the algorithmic
complexity in [32] as well.

Finally, it is not to our surprise that the clFFT results reported in Fig. 6 can-
not be considered optimal. As we executed clFFT on Nvidia hardware interfacing
with the OpenCL runtime coming with CUDA and interfaced to the Nvidia pro-
prietary driver, OpenCL performance can not be considered a first-class citizen
in this environment. Only in Fig. 6b, the clFFT runtimes are below those of fftw.
These experiments should be repeated on AMD hardware where the OpenCL
performance is expected to be better.

3.5 Non-powerof2 Transforms

It is often communicated, that input signals should be padded to powerof2
shapes in order to achieve the highest possible performance. With gearshifft
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Fig. 7. fftw and clFFT on Intel E5-2680v3 CPU with 24 threads versus cuFFT on
P100 GPU computing single-precision real-to-complex out-of-place forward transforms
of 3D shapes. Both figures use a log10-versus-log2 scale.

the availability and quality of the common mathematical approaches across many
FFT libraries can now be examined in detail. For the sake of brevity, only the
results for fftw (Intel E5-2680v3 CPU) and cuFFT (P100) are presented here.

Figure 7 confirms that powerof2 transforms are generally faster than
radix357 and oddshape transforms. Excluding the long planning time fftw
offers the fastest FFT runtime until the turning point at 1 MiB, see Fig. 7a.
However, looking at time to solution in Fig. 7b clFFT on the CPU outperforms
fftw by 1 to 2 orders of magnitude due to the long planning times of fftw.
At very small input signal sizes, cuFFT lacks behind clFFT on the CPU until 1
KiB for powerof2 shapes, where cuFFT offers superior or comparable runtimes
thereafter. clFFT only offers support for powerof2 and radix357 shape types
but has almost the same performance for either. cuFFT shows an FFT runtime
difference of up to one order of magnitude on the P100 for large input signals
(Fig. 7a) of powerof2 and oddshape type, where the time to solution converges
due to planning and transfer penalties (Fig. 7a).

For a large range of input signal sizes between 2−10 MiB 27 MiB a padding
to powerof2 might be justified when using cuFFT if enough memory is available
on the device. For fftw non-powerof2 signals can be padded at signal sizes
above 2−3 MiB = 128KiB. clFFT on CPU is only a good choice, when short
planning times are more important than transform runtime. clFFT provides
similar performance on the P100 as on CPU, but it is not shown here.

3.6 Data Types

It is a common practice that complex-to-complex transforms are considered more
performant than real-to-complex transforms. Therefore, in order to transform a
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real input array, a complex array is allocated and the real part of each datum is
filled with the signal. The imaginary part of each datum is left at 0.

Figure 8 restricts itself to larger signal sizes in order to aid the visualization.
Note that in Fig. 8a, a data point at the same number of elements of the input
signal does have different size in memory. fftw exposes a factor of 2 and more
of runtime difference for signals larger than 215 elements comparing real and
complex input data types in Fig. 8a. Below this threshold, the performance can
be considered identical except for very small input signals although real FFTs
always remain faster than complex ones. The situation is different for cuFFT,
where the overall difference is smaller in general. In the compute bound region
of cuFFT (below 219 elements), complex transforms perform equally well than
real transforms given the observed uncertainties. In the memory bound region
(above 219 elements), real transforms can be a factor of 2 ahead of complex ones
which is clearly related to twice the memory accesses.

If single-precision can be used instead of double-precision, then the possible
performance gain can be estimated by Fig. 8b. On the high grade server GPU, the
Nvidia Tesla P100, the performance difference remains around 2× in the memory
bound region due to double the memory bandwidth required. The results for
fftw vary more around 1.5 to 2.5 fold regressions between single and double
precision inputs across a wider input signal range.
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Fig. 8. Time for computing a forward FFT using 3D powerof2 input signals using
fftw and cuFFT on respective hardware versus the number of elements in the input
signal. (a) computes a real-to-complex transform and compares it to a complex-to-
complex transform for single precision input data, whereas (b) shows a real-to-complex
transform for either single or double precision. Both figures use a log2-versus-log2 scale.

4 Summary

With this paper gearshifft is presented to the HPC community and other
performance enthusiasts as an open-source, vendor-independent and free FFT
benchmark suite for heterogeneous platforms. gearshifft is a C++14 modular
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benchmark code that allows to perform forward and backward FFT transforms
on various types of input data (both in shape, memory organization, precision
and data type). gearshifft’s design offers an extensible architecture to accom-
modate FFT packages with very low overhead. gearshifft’s design choices
address both FFT practitioners, FFT library developers, HPC admins or inte-
grators and decision makers supporting a wide range of use cases.

To showcase the capabilities of gearshifft, a first study of three common
FFT libraries, fftw, clFFT and cuFFT is presented. The performances of CPU
based implementations Haswell Xeon CPUs to state-of-the-art Pascal generation
Nvidia GPUs are compared. The results indicate that for input signal sizes of
less than 1 MiB, the CPU implementation is superior whereas for larger input
data size the GPU offers better turn-around. The difference between runtimes of
powerof2, radix357 and power-of-19 shaped input data was demonstrated to be
negligible for fftw and non-negligible for cuFFT transforms used in this study.
The results further indicate runtime differences when using complex versus real
arrays and when comparing double versus single precision data types.

As we warmly welcome contributions of benchmarks from various pieces of
hardware, we hope to extend the gearshifft repository with many more data
sets from platforms used in the HPC arena of today and tomorrow. It is planned
to run gearshifft on non-x86 hardware to establish a basis for hardware perfor-
mance comparisons. Connected to this, we plan to explore more state-of-the-art
FFT libraries such as Intel IPPS, Intel MKL, AMD’s rocFFT, cusFFT etc. It is
a future task to consolidate the benchmark data structure and to open another
benchmark paths for e.g. FFT callbacks, so that many more analyses are possi-
ble than were presented in this paper both in terms of performance exploration
as well as energy consumption.
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