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Preface

ISC High Performance, formerly known as the International Supercomputing Con-
ference, was founded in 1986 as the Supercomputer Seminar. Originally organized by
Hans Meuer, Professor of Computer Science at the University of Mannheim and former
director of the computer center, the seminar brought together a group of 81 scientists
and industrial partners who all shared an interest in high-performance computing
(HPC). Since then the annual conference has become a major international event within
the HPC community, and accompanying its growth in size over the years, the con-
ference has moved from Mannheim via Heidelberg, Dresden, Hamburg, and Leipzig to
Frankfurt. With over 3,000 attendees in 2016, we were happy to see that this steady
growth of interest also turned ISC High Performance 2017 into a powerful and
memorable event.

In 2007, we decided to strengthen the scientific part of the conference by presenting
selected talks on relevant research results within the HPC field. These research paper
sessions began as a separate day preceding the conference, where slides and accom-
panying papers were made available via the conference website. The research paper
sessions have since evolved into an integral part of the conference, and this year the
scientific presentations took place over a period of three days.

For the past several years, the ISC High Performance conference has presented an
ISC-sponsored award to encourage outstanding research in HPC and to honor the
overall best research paper submitted to the conference. Two years ago, this annual
award was renamed as the Hans Meuer Award in memory of the late Dr. Hans Meuer,
general chair of the ISC conference from 1986 through 2014, and co-founder of the
TOP500 project. From all research papers submitted, the Research Papers Program
Committee nominated the two papers with the highest review scores as finalists for the
award and, based on the final presentations during the conference, elected the best
paper.

For ISC High Performance 2017, the call for participation was issued in Fall 2016,
inviting researchers and developers to submit the latest results of their work to the
Program Committee. In all, 66 papers were submitted from authors all over the world.
This year, too, a significant effort was made to improve the overall process. The
Research Papers Program committee consisted of 52 members selected from several
countries throughout the world. Furthermore, 23 external expert reviewers were invited
from the community to help with paper reviews of specific topics. After initial reviews
were in place, a rebuttal process was organized in which authors were given an
opportunity to respond to reviewers’ questions and help clarify issues the reviewers
might have. To come to a final consensus on the papers to be accepted, we had a
face-to-face meeting where each paper was discussed. Finally, the committee selected
22 papers for publication and for presentation in the research paper sessions.



We are pleased to announce that many fascinating topics in HPC are covered by the
proceedings. The papers address the following issues in regards to the development of
an environment for exascale supercomputers:

– Cost-efficient data centers
– Scalable applications
– Advancements in algorithms
– Scientific libraries
– Programming models
– Architectures
– Performance models and analysis
– Automatic performance optimization
– Parallel I/O
– Energy efficiency

We believe that this selection is highly appealing across a number of specializations.
Two award committees selected papers considered to be of exceptional quality and
worthy of special recognition:

– The Hans Meuer Award honors the overall best research paper submitted to the
conference. The two finalists for this award were:
“Designing Dynamic and Adaptive MPI Point-to-point Communication Protocols
for Efficient Overlap of Computation and Communication” by Sourav Chakraborty,
Hari Subramoni, and Dhabaleswar Panda.
“An Overview of MPI Characteristics of Exascale Proxy Applications” by
Benjamin Klenk and Holger Fröning.

– The Gauss Centre for Supercomputing sponsors the Gauss Award. This award is
assigned to the most outstanding paper in the field of scalable supercomputing and
went to:
“Diagnosing Performance Variations in HPC Applications Using Machine Learn-
ing” by Ozan Tuncer, Emre Ates, Yijia Zhang, Ata Turk, Jim Brandt,
Vitus J. Leung, and Manuel Egele.

We would like to express our gratitude to all our colleagues for submitting papers to
the ISC scientific sessions, as well as to the members of the Program Committee for
organizing this year’s attractive program.

June 2016 Julian M. Kunkel
Rio Yokota
Pavan Balaji
David Keyes
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Fully Resolved Simulations of Dune Formation
in Riverbeds

Christoph Rettinger1(B) , Christian Godenschwager1 , Sebastian Eibl1 ,
Tobias Preclik1, Tobias Schruff2 , Roy Frings2, and Ulrich Rüde1

1 Chair for System Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg,
Cauerstraße 11, 91058 Erlangen, Germany

christoph.rettinger@fau.de
2 Institute of Hydraulic Engineering and Water Resources Management,

RWTH Aachen University, Mies-van-der-Rohe-Straße 17, 52056 Aachen, Germany

Abstract. The formation and dynamics of dunes is an important phe-
nomenon that occurs in many environmental systems, such as riverbeds.
The physical interactions are complex and thus evaluating and quanti-
fying the factors of influence is challenging. Simulation models can be
used to conduct large scale parameter studies and allow a more detailed
analysis of the system than laboratory experiments. Here, we present new
coupled numerical models for sediment transport that are based on first
principles. The lattice Boltzmann method is used in combination with
a non-smooth granular dynamics model to simulate the fluid flow and
the sediment particles. Numerical predictions of dune formation require
a fully resolved modeling of the particulate flow which is only achieved
by massively parallel simulations. For that purpose, the method employs
advanced parallel grid refinement techniques and carefully designed com-
pute kernels. The weak- and strong-scaling behavior is evaluated in detail
and shows overall excellent parallel performance and efficiency.

Keywords: High performance computing · Computational fluid
dynamics · Particulate flow · Fluid structure interaction · Dune forma-
tion · Lattice Boltzmann method · Granular dynamics · Grid refinement

1 Introduction

Sand dunes can be found in many different places on earth, for example in the
great deserts of Kalahari, Gobi, Sahara, or at the seashore where sand dunes
usually separate the sandy beaches from the hinterland. They are by no means
static topographic features but their shape changes constantly due to the forces
of wind. In fact, depending on their height and volume (some sand dunes have
a height of more than 1,000 meters), constant and strong wind can move dunes
some tens of meters per year [3]. Large sand dunes have also been found on
planet Mars [21], Titan [32], and other planets where strong winds are able to
erode and transport enormous amounts of sand on the planet surface. But besides
wind there is also another universal power that is able to model the shape of
planets, and that is flowing water.
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance 2017, LNCS 10266, pp. 3–21, 2017.
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Due to its high specific weight, flowing water is able to carry not only sand,
but also boulders and gravel, collectively also referred to as sediment [7,36,46],
for many kilometers; often the whole way from the source of a river to its mouth.
On its way down along the path of the river or channel, the sediment grain size
decreases, starting with large boulders and gravel at the source and ending up
with small silt and clay grains at the mouth [13,15]. Somewhere in between,
most sediment grains have the size of sand, which is defined to be in the range
of 0.063-2.0 mm. If the major part of the sediment mixture is sand, the sediment
transport can take place in form of sand dunes that move over the bed [25,28,44].

Those subaqueous dunes can become many meters high depending on the
water depth and flow conditions [14,24] and thus act as obstacles to navigation,
and their movement can be a threat to submarine structures. River engineers
are interested in dunes because they play an important role in determining the
sediment transport rate [44], but also because of their importance in quantifying
the resistance of a channel to flowing water [41]. For example, predicting the
depth of flow in a channel built with a given slope and designed to carry a given
water discharge necessitates knowing the bed roughness.

For over one century, engineers have been conducting laboratory experiments
on dunes and other bed forms [44,46]. Another famous method was (and still
is!) observing and measuring bed form movement in natural flows [9,16,33].
Both methods come with their individual advantages and disadvantages. Despite
significant progress in the past 25 years with regard to the understanding of the
dynamics and kinematics of alluvial dunes, there are still some important areas
where conventional methods have not been able to comprehensively shed light
into the complex nature of dunes [6].

This is why engineers, geologists, sedimentologists, and other researchers
are increasingly interested in applying high performance computing (HPC)
methods to investigate sediment transport and dunes numerically [26,27]. Such
approaches are especially helpful to drive the study of dune formation regard-
ing four specific areas: (1) the influence of dune shape on flow turbulence and
distribution of bed shear stress, (2) flow field modification resulting from bed
form superimposition and amalgamation, (3) the scale and topology of dune-
related turbulence and its interactions with sediment transport and the flow
surface, and (4) the influence of oscillatory and combined flows, e.g., in marine
environments, on dune formation. Simulations have several favorable features in
comparison to laboratory experiments. Once set up and validated, they allow for
large scale studies where single parameters can be adjusted with ease. By tracing
the motion of single particles and analyzing the flow field within the sediment
bed, a better insight into the physical processes can be obtained.

However, the challenges for a realistic simulation from first principles, i.e.,
without introducing empirical model assumptions, are numerous: On the one
hand, a large enough setup has to be regarded containing several hundred thou-
sand sediment grains. On the other hand, the developing flow structures have
to be numerically fully resolved and this may require that each single sediment
grain, their variation in size and shape, must be geometrically resolved. This, in
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turn, dictates an even finer resolution of the fluid flow, when its interaction with
the individual particles must be accounted for. This kind of direct numerical
simulation can only be tackled by a combination of efficient numerical algo-
rithms together with the computing power of today’s fastest super computers.
To fully utilize their capabilities, we employ two coupled software frameworks
that offer both, carefully tuned single-node performance and excellent scalabil-
ity. The waLBerla framework [18] has been developed for simulating complex
flows with the lattice Boltzmann method and has been employed in various appli-
cation scenarios, such as electron beam melting [2], solidification processes [5],
or electro-kinetic flows [4,29]. The physics engine pe [23,38] is used to simulate
granular dynamics. The flow over fully resolved porous structures has already
been simulated in [11,12], however, assuming a fixed and immobile particle bed.
The coupling algorithms for moving particles in a massively parallel setting are
based on the methods developed in [19,20,40].

Following this work, we will here extend the functionality of waLBerla and
the coupling mechanism with the pe. We enable grid refinement for the coupled
simulation to reduce computational burden in the computational fluid dynamics
code. Additionally, we employ a hard contact solver in the granular dynamics
code which eliminates particle overlaps and requires no fine temporal resolution
of the contact dynamics. To analyze the central aspect of our parallelization
strategy, i.e., the use of a co-partitioning between our two frameworks, we con-
duct a thorough performance study of this approach in the context of HPC and
supercomputers. This extends the work reported in [26,27], where direct numer-
ical simulations were used to study pattern formation of large sediment beds for
the first time. We describe the physical background of the application in Sect. 2
which results in an experimental setup well suited for numerical simulations. The
applied numerical methods are presented in Sects. 3.1–3.3. Details about their
implementation and the parallelization strategy are given in Sect. 4. In Sect. 5,
the outcome of a large scale simulation is discussed and both, weak and strong,
scaling behaviors are reported. Section 6 concludes the paper with a summary
of the main findings and an outlook of future research directions.

2 Physical Background

When studying bed forms produced by unidirectional (steady and uniform) flow
of water over a sand bed in a laboratory experiment, it is common to use a
flume setup like the one illustrated in Fig. 1. The flume has a rectangular cross
section with a width of about one meter and is open at the top. The length of
the flume is about a few tens of a meter. It is also possible to adjust the slope of
the flume, which is why this kind of setup is called tilting flume. The sediment
bed in our example consists of medium size sand (0.25–0.5 mm) and is planar at
the beginning. The pump controls the mean flow velocity and the slope of the
flume is adjusted to obtain a constant mean flow depth.

When continuously increasing the flow velocity for a given setup, different bed
forms can be observed as depicted in Fig. 2. Besides dunes, ripples and antidunes
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Fig. 1. Laboratory flume for studying bed forms produced by unidirectional flow.
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Fig. 2. Evolution of bed forms as a function of flow velocity at a given flow depth
and bed material: (1) initial plane bed, (2) ripples, (3) dunes, (4), planar bed, and (5)
antidunes.

are other types of bed forms that frequently occur in natural rivers and predicting
their formation still remains a challenging task even at laboratory scales. The
complexity mainly stems from the large number of influence factors. Apart from
the mean flow rate, the sediment size and the flow depth will affect the transition
and evolution of bed configurations. Other parameters are the density of the fluid
and of the sediment grains, the fluid viscosity, and the gravitational acceleration.

When attempting to simulate such a setup numerically, however, the free
flow surface imposes a degree of complexity to the system which can be avoided
by slightly changing the setup. Figure 3 illustrates the alternative setup where
the flow depth is doubled and the whole flume is covered with a solid plate,
parallel to the mean plane of the bed. The flow structure in the lower half of the
closed duct is nearly the same as in the original open-channel flow. The sediment

sediment bed
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Fig. 3. Schematic setup of numerical flow simulation for the study of dune formation.
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dynamics is thus expected to be similar as long as the effect of the free surface
can be neglected. This is the case for all bed forms shown in Fig. 2 except for
antidunes which necessitate the free surface. The advantage of a setup like this
is that the slope of the channel does not need to be adjusted, as the water depth
is fixed. This also has a positive effect on the behavior of the sediment bed, as we
do not alter the angle at which gravity forces act on grains. From a simulation
point of view, the stability is increased as large-scale eddies can now make their
way across the center plane of the flow.

The foregoing setup can be used to study the transition between different bed
configurations (ripples, dunes, etc.) or how dune height or length are affected
by the several parameters (e.g., grain size, water depth, flow velocity, etc.) in
numerical simulations.

3 Numerical Methods

3.1 Lattice Boltzmann Method

The lattice Boltzmann method (LBM) [8] is an alternative to conventional com-
putational fluid dynamics (CFD) methods to simulate hydrodynamics, classically
described by the Navier-Stokes equations. It originates from statistical mechanics
and models the evolution of particle distribution functions (PDFs) on a Carte-
sian grid. Its high locality, as it requires direct neighbor access only, leads to an
outstanding scaling behavior up to the full extent of current peta-scale super-
computers [18,22].

In this work, we apply the D3Q19 lattice model [39] which features 19 PDFs
fq, q ∈ {0 . . . 18}, where each is associated to a three-dimensional discrete lattice
velocity cq. The computational domain is discretized by cubic lattice cells with
cell centers x. Written in a general form, the lattice Boltzmann equation is
commonly subdivided into the collision step

f̃q(x) = fq(x) + Ωq(x) + Sq, (1)

with the collision operator Ωq and a source term Sq resulting in the post-collision
values f̃q. Succeeding, the streaming of the PDFs to their neighboring lattice cells

f ′
q(x + cq) = f̃q(x) (2)

is carried out to obtain the PDFs at the new time step f ′
q.

The collision operator relaxes the PDFs towards their equilibrium values,

f eq
q (ρf ,u) = wq

(
ρf + ρ0

(
3cq · u + 9

2 (cq · u)2 − 3
2u · u

))
. (3)

The macroscopic quantities, density ρf = ρ0 + δρf , with a mean density ρ0 and
a fluctuation δρf , and fluid velocity u, are obtained as moments of the PDFs in
each grid cell. The lattice weights wq are stated in [39].
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In particular, we make use of the TRT collision operator from [17] which
splits the PDFs and their equilibrium values into symmetric and anti-symmetric
parts:

f±
q = 1

2 (fq ± fq̄), f eq,±
q = 1

2 (f eq
q ± f eq

q̄ ), (4)

where q̄ is the opposite lattice direction of q, such that cq̄ = −cq. The collision
operator is then given as

ΩTRT
q (x) = − 1

τ+

(
f+

q (x) − f eq,+
q (ρf ,u)

) − 1
τ−

(
f−

q (x) − f eq,−
q (ρf ,u)

)
. (5)

This model features two relaxation times τ+, τ− ∈ ( 1
2 ;∞), here related via(

1
2 − τ+

) (
1
2 − τ−

)
= 3

16 for improved accuracy [17]. The kinematic viscosity
of the fluid can be obtained as ν = 1

3 (τ+ − 1
2 ).

To incorporate external forcing that can drive the flow, the source term

Sq = 3wqρ0

(
cq − u + 3(cq · u)cq

) · a (6)

with the external fluid acceleration a has to be added to Eq. (1) [34].
Recently, LBM variants have been proposed that allow non-uniform grids

to enable static and adaptive grid refinement. We employ the variant from [42]
which adjusts the relaxation parameters on each grid level and executes twice
the amount of LBM steps for each finer level.

3.2 Non-smooth Granular Dynamics

In contrast to the field of fluid dynamics, no equations exist that can accurately
describe the bulk behavior of granular matter [35]. Thus, to simulate the response
of the sediment bed to the fluid flow, we resolve individual grains including their
geometric shape. Each particle is described by position X, orientation Q, trans-
lational and rotational velocity V and W . The orientation is parameterized by a
quaternion. We restrict ourselves to spherical particles meaning each shape can
be simply described by its radius. Under the assumption of uniformly distributed
mass, the density then determines the particle mass m and moment of inertia I.
The Newton-Euler equations for rigid bodies describe the dynamics of the indi-
vidual particles given forces F and torques T . The contact model determines
the forces and torques arising from contacts between the grains in addition to
external forces and torques F ext and T ext. With the intention to reproduce the
stiffness of the collision micro-dynamics as accurately as possible we choose an
inelastic hard contact model, where the particles would not overlap in an exact
solution and thus leading to a better representation of the solid volume fraction
than the commonly applied discrete element method (DEM). The hard contact
model implies that velocity functions are discontinuous and position and orien-
tation functions non-smooth. In order to get around resolving impulsive contact
reactions in time, we discretize the continuous system by employing a time-
stepping scheme, where we consider integrals of contact reactions λ over small
time steps δt, which readily include the impulsive and non-impulsive contact
reactions [43]. The contact model includes Coulomb friction with a coefficient
of friction μ per contact. The time-stepping scheme is based on an integrator
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of order one resembling the semi-implicit Euler method. In each time step, the
following non-linear system of equations is to be solved for each particle and
contact, respectively:

X ′ = X + δtV ′ (7)
Q′ = (Q+δtM(Q)W ′)/‖Q+δtM(Q)W ′‖ (8)

V ′ = V + δtm−1F (9)

W ′ = W + δtI−1T (10)
F =

∑
Ca

λ − ∑
Cb

λ + F ext (11)

T =
∑

Ca
(X̂ − Xa) × λ − ∑

Cb
(X̂ − Xb) × λ + T ext (12)

δV ′ = V ′
a + W ′

a × (X̂ − Xa) − V ′
b − W ′

b × (X̂ − Xb) (13)
λn ≥ 0 ⊥ ε min(ξ,0)/δt + max(ξ,0)/δt + δV ′

n ≥ 0 (14)
‖λto‖ ≤ μλn (15)

‖δV ′
to‖λto = −μδV ′

to , (16)

where M is the quaternion matrix function, the subscript a (b) identifies the
first (second) particle involved in each contact, Ca (Cb) is the set of contacts
whose first (second) particle involved in the contact corresponds to the particle
in question, X̂ is the point of contact, n is the contact normal pointing from
particle b to particle a, and t and o extend the normal to an orthonormal con-
tact frame spanning the tangential plane. ξ is the contact distance and ε ∈ [0; 1]
the error reduction parameter. Equation (14) ensures that contact reactions are
repulsive and no penetrations are allowed. The complementarity allows reactions
to be non-zero if and only if the contact is closed. Equations (15) and (16) cor-
respond to the conditions imposed by the Coulomb friction. Instead of including
all potential collision pairs in the system, a prior contact detection algorithm
selects a set of contacts that potentially become active in the current time step
and thus reduces the number of constraints to the same order as the number of
particles. More details and the extension to non-spherical contact problems can
be found in [37,38].

The system is solved using a blend of a weighted non-linear block Jacobi
and a weighted non-linear block Gauss-Seidel with weighting factor ω ∈ (0; 1].
Whether the contact reaction approximation is chosen from the previous iterate
or from the current iterate depends on whether the contact is owned by the
local process or by a remote process. The parallelization details are described in
Sect. 4. The contact constraints of each contact form a block in the relaxation
scheme. Since the solver only efficiently removes local errors, the number of
iterations is kept low and constant. In order to remove the global error we rely
on the error correction term ε min(ξ,0)/δt in Eq. (14).

3.3 Fluid-Particle Interaction

To incorporate the fluid-solid coupling mechanism that transfers the momen-
tum from the fluid to the particulate phase and vice versa, the LBM-specific
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f̃q(x)f̃q̄(x)f̃q(x− cq)

f ′
q̄(x) δq v(xb)

solid

fluid

particle surface

Fig. 4. Sketch of the particle mapping and the boundary treatment according to the
CLI boundary scheme from Eq. (17).

momentum exchange method is applied which originates from [30] and was then
extended in [1]. The main idea is to explicitly map the particle into the com-
putational domain by marking cells with cell centers inside particles as solid in
contrast to fluid cells.

Next to the particle surface, the fluid velocity has to match the particle
velocity which is realized via boundary conditions. Here, we use the central
linear interpolation (CLI) scheme from [17], given by

f ′
q̄(x) = f̃q(x) + 1−2δq

1+2δq

(
f̃q(x − cq) − f̃q̄(x)

)
− 12 wqρ0

1+2δq
v(xb) · cq, (17)

where v(xb) = V +W ×(xb−X) is the particle velocity at the boundary location
xb. The variable δq denotes the relative distance between the cell center and the
exact surface position such that xb = x + cqδq. This increases the accuracy of
the boundary treatment as subgrid information is used to improve the staircase
approximation of the particle shape. A sketch of this boundary treatment is
given in Fig. 4.

The momentum exchange idea is applied to obtain the cell local contribution
to the hydrodynamic interaction force that acts on the submerged particles. This
contribution is given as

Fq(xb) =
(
cq − v(xb)

)
f̃q(x) − (

cq̄ − v(xb)
)
f ′

q̄(x) (18)

for a fluid-solid link q [30,45]. By summing up all contributions corresponding
to a single particle, the hydrodynamic force F hyd and torque T hyd are obtained:

F hyd =
∑

Fq(xb), (19)

T hyd =
∑

(xb − X) × Fq(xb). (20)

These quantities, together with gravitational and buoyancy forces, represent the
total external contributions, F ext and T ext, which enter Eqs. (11) and (12).

Due to the explicit mapping, cells will change its state from solid to fluid
as particles move across the grid. This requires the reconstruction of the PDF
information before the simulation can continue. Here, we initialize the PDFs of
such a converted cell with their equilibrium values, Eq. (3), based on a spatially
averaged density and the local particle velocity.
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Algorithm 1. Coupling algorithm for fluid-particle systems
for each coarse time step t do

Map particle into fluid domain and reconstruct PDFs if necessary.
for each LBM subcycle do

Apply boundary conditions, Eq. (17).
Perform LBM step, Eqs. (1) and (2) with TRT collision operator Eq. (5).
Calculate hydrodynamic forces on particles, Eq. (18).

end for
Average forces on particles over LBM subcycles.
Obtain total force and torque on particles, Eqs. (19) and (20).
for each granular dynamics solver subcycle do

Perform granular dynamics solver step, solving Eqs. (7)-(16).
end for

end for

All these parts are carried out locally and thus work well in combination with
the LBM in massively parallel setups [19,20,40]. Because of the explicit particle
mapping, the grid can remain unchanged throughout the whole simulation which
guarantees computational efficiency.

The complete algorithm for fully resolved simulations of fluid-particle systems
is summarized in Algorithm 1. Besides the already mentioned parts, it features
possible subcycling for LBM and the granular dynamics solver, i.e., these parts
are carried out multiple times in one global time step. Using two LBM sub-
cycles was proposed by [31] to damp oscillations in the hydrodynamic forces
which are therefore averaged over the two subcycles. Subcycles for the granular
dynamics integration can be necessary when applying solvers that require much
smaller time step sizes than the LBM to accurately resolve the contacts between
particles. Since our applied non-smooth granular dynamics solver uses internal
iterations to achieve this goal, this subcycling is not needed in our case. We will
refer to one iteration of Algorithm 1 as a ‘coarse time step’ to distinguish it from
a single LBM time step inside the subcycling, which internally consists again of
several subiterations because of the applied refinement strategy, see Sect. 3.1.

4 Implementation and Parallelization

All functionalities presented in Sect. 3 are implemented in the waLBerla frame-
work1 which will be used for the reported simulations. waLBerla is designed
to facilitate the creation of portable, maintainable and robust HPC applications.
However, its foremost design goals are outstanding performance and scalability
to the full extent of current supercomputers. Only with both, a carefully tuned
single-node performance and excellent scalability, the scarce and expensive com-
pute hours on modern supercomputers can be used efficiently.

To adhere to these goals, waLBerla performs the domain partitioning on
the level of structured blocks of lattice cells. The concept of blocks allows the
1 http://www.walberla.net.

http://www.walberla.net
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design of efficient LBM kernels and communication schemes due to the struc-
tured layout of the lattice cells [18]. waLBerla’s domain partitioning also allows
for a local adaption of the grid resolution to the requirements of the simulation.
The implemented refinement strategy [42] is based on a forest of octrees: each
block may be divided into eight sub-blocks, with the constraint that a neigh-
boring block may only be off by one refinement level. This strategy preserves
performance as the structured layout of the LBM cells persists.

The PDFs are stored on a block within a field of four dimensions: three
spatial dimensions and one for the 19 PDF values per cell corresponding to the
discretized lattice velocities. The communication at the block interfaces is done
per ghostlayer exchange. This is required by the streaming step of the LBM,
Eq. (2), which accesses the PDF values of the neighboring cells. The field’s size
is extended by one layer of ghost cells in each direction, which is filled with
a copy of the PDFs from the neighboring blocks via MPI communication. For
more details about waLBerla’s block layout, the reader is referred to [18,42].

The physics engine pe, that carries out the granular dynamics simulation,
uses the same block domain decomposition as the fluid simulation in waLBerla.
Each particle is associated to exactly one block based on where the center of mass
of the particle lies. All particle information like the state variables (position,
orientation, velocities) and constants (mass, inertia matrix, shape) are stored
on this block. The process this block belongs to is called parent process of the
respective particle. The parent process is responsible for the time integration
of each of its particles. If the center of mass of a particle leaves the block, the
particle will be migrated to the new block.

In order to detect all contacts between the particles, each block additionally
requires information about all particles intersecting with its bounding box. This
is realized with the help of shadow copies of the intersecting particles and follows
a similar concept as the previously described ghostlayers for the field data. Only
the parent process integrates and moves the particles and thus has to update
these particles’ shadow copies on the intersecting blocks. This is implemented by
a synchronization step after every time step. During this synchronization step
also new shadow copies are instantiated as needed and old ones are deleted if no
longer required.

The necessary communication between the shadow copies and the parent
copy can be implemented as an efficient next neighbor communication if the
following condition holds for all particles at all time steps:

r + ||V ||2δt + γ < lmin (21)

with the bounding radius of the particle r (e.g., for spheres the radius, for boxes
half the space diagonal), the particle velocity V , a safety margin γ and the
smallest diameter of the blocks lmin. This guarantees that the particles do not
extend into the bounding box of the next neighbor block and that they will not
reach this block during one single time step.

The treatment of the contacts is also distributed among the processes.
The association of one contact to a process is delicate and out of scope of this
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paper [38]. During the resolution of the contacts an additional communication
step is needed in every iteration of the solver (see Sect. 3.2) to collect all contri-
butions to the final reaction from all shadow copies. This again involves a next
neighbor communication. More details on the parallelization of the pe can be
found in [38].

The applied coupling between the fluid and the particles, Sect. 3.3, uses the
block data structures provided by LBM and the granular dynamics simulation.
To obtain a consistent body mapping into the domain and to conserve the fine
resolution, however, the particles have to remain on the same refinement level
throughout the simulation. Thus, the area at which static grid refinement is
applied has to be sufficiently large to ensure this condition.

5 Results

5.1 Compute Environment

All experiments are conducted on the petascale supercomputer SuperMUC
located at the Leibniz Supercomputing Centre in Garching near Munich. We
made use of the 18 thin node islands of SuperMUC phase 1, which consist of
512 nodes each. At most 8 islands are usable at the same time for a job during
regular operations. Every node holds two Intel Xeon E5-2680 (Sandy Bridge-
EP) eight-core processors and is equipped with 32 GiB of main memory. The
interconnect within one island is a non-blocking tree network, while the islands
are connected via a 4:1 pruned tree. We use IBM’s MPI implementation for the
interprocess communication.

5.2 Simulation Experiment Setup

The simulation of a realistic sediment bed and the subsequent dune formation
under the effect of a fluid flow above it requires a careful setup of the initial
state. This already begins with the generation of a sediment bed inside a hori-
zontally periodic domain of size Lx ×Ly ×Lz. In our case, layers of spheres with
diameter D and density ρs are continuously created at the top of the domain,
equipped with random velocities. Affected by the gravitational field acting in
negative z direction, the spheres settle and arrange at the bottom which is sim-
ulated by non-smooth granular dynamics described in Sect. 3.2. The simulation
is terminated when the spheres are at rest. The thus generated flat bed features
a solid volume fraction of around 0.63 which agrees well with findings for sphere
packings created in this way [10]. Following [26], the average bed height hs can
be defined as that height at which the solid volume fraction averaged in both
horizontal directions hits the threshold value of 0.1. This is then used as input
for the actual coupled simulation where LBM is applied to simulate the fluid
flow inside and above the bed, as explained in Sects. 3.1 and 3.3. The charac-
teristic parameters of the setup are the bulk Reynolds number Reb = ubhf/ν,
with the average velocity in streamwise direction ub and the water depth hf ,
and the Galileo number Ga = ugD/ν, with ug = ((ρs/ρf − 1)|g|D)1/2 and
the gravitational acceleration g. In x, i.e., the streamwise, direction, the flow is
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Fig. 5. Cross-sectional view of initial 3D simulation setup together with the block
structure of the static grid refinement and a zoom to the fluid solid interface showing
the grid cells.

driven via an external fluid force, Eq. (6), that results in a flow rate of qf = ubhf .
No-slip walls are applied in vertical direction z as boundary conditions. The flow
velocity above the sediment bed, i.e., hs ≤ z ≤ hs + hf , is initialized with the
Poiseuille channel flow profile to yield the desired Reb and which corresponds
to the applied external fluid force. Three levels of static refinement are applied
such that the sediment bed and an area of approximately the same height as
the bed reside on the finest level. This allows for efficient simulations of the
fluid flow in the large bulk area without losing accuracy in the vicinity of the
bed. Since the static refinement poses some restrictions on the actual number of
computational cells applied in each direction, i.e., it has to be multiples of the
coarsest applied block size, the actual domain height Lz might be larger than
hs + hf but the difference is filled up with boundary cells. An example for the
actual setup including the static refinement structure can be seen in Fig. 5 which
coincides with the one depicted in Fig. 3.

5.3 Performance Analysis

We conduct strong- and weak-scaling experiments on SuperMUC to asses the
efficiency and scalability of our implementation. We try to keep the benchmark
problems as close to our production runs as possible, to generate information
that helps steering the setup of our production runs towards a solid compromise
of efficiency and performance. For all reported scaling results at least three mea-
surements have been performed and the sample with the best performance has
been chosen.

We ran three weak-scaling experiments with the block sizes 163, 323 and
643. We started each experiment with 6 nodes, i.e., 96 processes. The number of
processes was chosen such that a refinement configuration close to the production
runs could be achieved. This base element was then doubled in size by replicating
it alternately in x- and y-direction for each successive run. The exact configu-
ration of the base element is given in Table 1. The results of the weak-scaling
experiments can be found in Fig. 6. The results show perfect linear scalability of
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Table 1. Parameters of base element of weak-scaling domain. The base element is
designed for 96 processes and is replicated in x- and y-direction to conduct weak-
scaling experiments.

Block size 163 323 643

Domain size 64 × 64 × 256 128 × 128 × 512 256 × 256 × 1024

Initial avg. bed height 39 75 144

No. of LBM cells 417,792 3,342,336 26,738,688

No. of fluid cells 328,385 2,613,619 20,822,174

No. of particles 171 1,392 11,297

No. of blocks on level 0 2 2 2

No. of blocks on level 1 4 4 4

No. of blocks on level 2 96 96 96
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Fig. 6. Weak-scaling results. For each of the block sizes the required time per coarse
time step is plotted. Each result is broken down in the four main subroutines of the
simulation. On the bottom right the parallel efficiency of all runs is shown.

the LBM and coupling subroutines. The pe scales quite well, though not perfectly
linear. The LBM communication captures not only the MPI communication but
also any load imbalance that occurs due to the unequally distributed particles.
In general we can see that the parallel efficiency at full scale is generally better
with the larger 643 blocks (89.80 %) than with the 323 blocks (89.08 %) or 163

blocks (82.88 %). We assume this is due to the small message sizes at the smaller
blocks which make the communication bound by latency instead of bandwidth.

The variations in execution time between the varying block sizes are clearly
visible when comparing the weak-scaling runs. The differences in efficiency were
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Fig. 7. Strong-scaling results of the simulation on SuperMUC. The bottom graph shows
the amount of core seconds spent in each subroutine per coarse time step. Parallel
efficiency is plotted on the bottom center graph. The top center graph illustrates the
rising number of shadow particles as blocks get smaller. At the top the number of
coarse time steps performed per second is visualized.

studied in detail during a strong-scaling experiment. The strong-scaling domain
has size 2,048×512×512 and consists of 213.91 M cells from which 160.50 M are
fluid cells. It is spread over three refinement levels. In the special case of blocks
of size 643 the domain consists of 301.99 M cells from which 248.58 M are fluid
cells. Here, the domain is spread over two refinement levels.

The riverbed consists of 101,970 particles with a diameter of 10 and has an
average height of 84. In Fig. 7, the efficiency of a fixed setup ran at different block
sizes and number of cores can be seen. We measure the efficiency in the amount
of core-seconds (core-s) we spend in each coarse time step. In general it becomes
obvious that larger blocks offer better efficiency but less performance, which
we measure in the number of coarse time steps computed per second. A slight
anomaly can be seen at the largest block size of 643, where the efficiency drops
compared to the next three smaller block sizes. This is due to the refinement
setup and the requirement that neighboring blocks may not differ by more than
one refinement level. Due to this restriction, the top layer cannot be coarsened
twice but only once. Therefore more fluid cells are created and more core seconds
have to be spent to update them. Another effect, that is well visible, is the pe’s
quickly deteriorating efficiency with small block sizes. This corresponds well with
the increasing amount of shadow particles that have to be updated in each of
pe’s iterations. While at blocks of size 643 for each particle there are 0.68 shadow
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particles, at blocks of size 163 for each particle 4.85 shadow particles have to be
updated on average.

Using the scaling runs as guideline we chose to use a block size of 323 for the
production runs, as it is a good compromise between efficiency and performance.

5.4 Dune Formation Results

To study the evolution of the sediment bed surface, we use a domain size of
Lx/D × Ly/D × Lz/D = 409.6 × 102.4 × 64 and 350, 000 spherical particles,
generated as described in the previous section. This results in the sediment bed
height hs/D = 7.5. Blocks of size 323 are used and distributed to 24, 576 cores.
The fluid height is set to hf/D = 50. Regarding the characteristic parameters,
Reb = 6022, Ga = 8.3 and ρs/ρf = 2.5 is used. To fully resolve the particles,
ten cells per diameter are applied. This setup features 864.02 M cells in total
compared to 2, 684.35 M if no refinement were used. The simulation is then
started from the initialized Poiseuille velocity profile from Fig. 5. In Fig. 8, the
temporal change of the bed surface is visualized. Initially, the structure is random
as a result from the randomized flat bed generation. Next, the sediments with
a slightly exposed position compared to their direct neighbors are carried away
by the flow. They get transported over the sediment bed which now features a
chaotic structure (t∗ = 53). Afterwards, they begin to arrange such that they
form spanwise clusters. Viewed from the top, these appear as dunes that move
across the sediment bed (t∗ = 277).
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Fig. 8. Temporal evolution of the sediment bed at different non-dimensional times
t∗ = tub/hf (top: t∗ = 0, center: t∗ = 53, bottom: t∗ = 277). The color depicts the
local bed height when viewed from the top.
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Fig. 9. Close-up top view of the riverbed and the flow properties. Left: Streamlines in
the vicinity of the bed. Right: Wall shear stress distribution in a plane placed at the
average bed height.

Furthermore, the simulation results allow a detailed analysis of the flow prop-
erties in the vicinity of the moving particles at the top of the bed. In Fig. 9, the
velocity field is visualized with the help of stream lines to show the flow struc-
tures above and below the particles resulting from the flow from left to right.
Additionally, the distribution of the wall shear stress at the position of the aver-
age bed height is given which exhibits complex pattern due to the interaction
with the particles.

6 Conclusion

In this work, we presented a suitable and flexible approach to study dune for-
mation in riverbeds via fully resolved numerical simulations. It uses the lattice
Boltzmann method to represent the fluid dynamics which is especially well-suited
for massively parallel simulations on supercomputers due to its strictly local data
accesses. The interaction of the particles inside the sediment bed is described by
non-smooth granular dynamics. The fact that momentum is transferred between
the fluid and the solid phase and vice versa is used to establish the fluid-particle
coupling. The efficient implementation of these algorithms into the waLBerla
framework in combination with static grid refinement techniques allowed us to
simulate dune formation in systems with up to 864.02 M computational cells and
350, 000 spherical particles. We conducted strong- and weak-scaling benchmarks
on the SuperMUC supercomputer that showed perfect linear scaling behavior for
the LBM and the coupling subroutines. The performance of the granular dynam-
ics simulation is affected by the applied block size as the synchronization over-
head grows drastically for smaller block sizes. This shows an apparent challenge
of such fully resolved coupled simulations: efficient particle simulations require
several hundred particles per block which would then result in a too large num-
ber of computational cells per block. This, on the other hand, is undesired in the
fluid simulation as it decreases the throughput in terms of time steps per second.
Finally, these benchmarks allowed us to identify a suitable workload per process
in terms of fluid cells and particles as a compromise between efficiency and per-
formance. This carefully tuned setup can now be used for extensive validation
against existing experimental data and ensures efficient usage of the valuable
resources provided by the supercomputer. The physical focus of this work was
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on unidirectional non-oscillatory flow and spherical particles. However, the for-
mation and dynamics of dunes is a complex physical phenomenon and depends
on various physical parameters. Future work will thus investigate the influence of
oscillatory and combined flows, different sediment shapes and size distributions
on the system. Adaptive grid refinement for the coupling method and a synchro-
nization strategy suitable for particles larger than one block will be added to the
software framework to enable these studies. Such fully resolved simulations will
then lead to a better understanding of the various physical mechanisms acting
inside a riverbed.

Acknowledgments. The authors gratefully acknowledge the Gauss Centre for Super-
computing e.V. (www.gauss-centre.eu) for funding this project by providing computing
time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ,
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Abstract. Covariance matrices are ubiquitous in computational science
and engineering. In particular, large covariance matrices arise from multi-
variate spatial data sets, for instance, in climate/weather modeling appli-
cations to improve prediction using statistical methods and spatial data.
One of the most time-consuming computational steps consists in calculat-
ing the Cholesky factorization of the symmetric, positive-definite covari-
ance matrix problem. The structure of such covariance matrices is also
often data-sparse, in other words, effectively of low rank, though formally
dense. While not typically globally of low rank, covariance matrices in
which correlation decays with distance are nearly always hierarchically
of low rank. While symmetry and positive definiteness should be, and
nearly always are, exploited for performance purposes, exploiting low
rank character in this context is very recent, and will be a key to solv-
ing these challenging problems at large-scale dimensions. The authors
design a new and flexible tile row rank Cholesky factorization and pro-
pose a high performance implementation using OpenMP task-based pro-
gramming model on various leading-edge manycore architectures. Perfor-
mance comparisons and memory footprint saving on up to 200K×200K
covariance matrix size show a gain of more than an order of magni-
tude for both metrics, against state-of-the-art open-source and vendor
optimized numerical libraries, while preserving the numerical accuracy
fidelity of the original model. This research represents an important mile-
stone in enabling large-scale simulations for covariance-based scientific
applications.

1 Introduction

The march toward exascale computing is well, underway with today’s fastest sys-
tems capable of achieving near 100 PFlop/s in sustained peak performance on
million of cores [22]. Technology scaling with incremental hardware evolution will
most probably enable to cross the exascale barrier by 2021, as recently announced
by the US Department of Energy. However, the current hardware roadmap devel-
opment will not be able to get to exascale within a power budget of 20 MW that
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many hardware architects and research agencies consider as a practical upper
limit for such a system. Although, this power gap may be further reduced with
advanced energy-efficient devices (e.g., hardware accelerators), algorithmic nov-
elties around synchronization-reducing and communication-reducing concepts
are paramount not only to ultimately design an exascale system at reasonable
power levels, but also to ensure an efficient usage of the massively parallel under-
lying hardware.

Covariance matrices are ubiquitous in computational science and engineer-
ing. Large covariance matrices arise from multivariate spatial data sets, for
instance, in seismic inversion to obtain estimates of uncertainty [11], in com-
putational ground-based astronomy to enhance the observed image quality by
filtering out the noise coming from the adaptive optics instrumentation and the
atmospheric turbulence [21], or in climate/weather modeling to improve predic-
tion using geospatial statistics approaches [24]. All the aforementioned scientific
applications boil down to calculating the Cholesky factorization of a symmetric,
positive-definite matrix problem, which turns out to be the most time consum-
ing computational phase in their various respective simulations. The structure of
these covariance matrices is often data-sparse, in other words, effectively of low
rank, though apparently dense. The dense Cholesky allows to perform an exact
factorization up to the machine precision while the low rank variant produces
an approximation of the Cholesky factor up to a desired accuracy threshold.
While not necessarily globally of low rank, covariance matrices in which corre-
lation decays with distance are nearly always hierarchically of low rank. While
symmetry and positive definiteness should be, and nearly always are, exploited
for performance purposes, exploiting low rank character in this context is very
recent, and will be a key to solving these challenging problems. Because these
low rank approximations [14] operate on a lossy (but controllable) compressed
representation of the original dense data structure, this directly translates into
lower arithmetic complexities and memory footprint saving, which are key ele-
ments for reducing data movement and time to solution, while staying within
the future exascale system power envelope.

Fully dense linear algebra approaches encounter high (O(N3)) arithmetic
complexity and the overhead of a large (O(N2)) memory footprint where N is
the number of objects to be correlated. This scaling is impractical when deal-
ing with large data sets which, today, could usefully translate into covariance
matrices with N in the billions. To tackle such problems, we study the numer-
ical accuracy, the memory footprint and the performance of the tile low rank
Cholesky factorization (TLR Cholesky) in the context of climate/weather model-
ing applications [24], by exploiting the data sparsity in the covariance matrix and
relying on task-based programming model for asynchrony and dynamic load bal-
ancing. Experiments are conducted on Intel Xeon Haswell/Broadwell and Intel
Xeon Phi Knights Landing. Results reported indicate up to an order of magni-
tude of memory saving as well as time to solution reduction on 200K × 200K
covariance matrix size, compared to the native dense Cholesky factorization,
as implemented in the state-of-the-art high performance open-source and ven-
dor software libraries. This emerging family of low rank matrix computations
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represents a breakthrough for the statistical computing community, for which
the default use of high-level simulation software tool such as R [1] may often be
limited in dimension scaling by expensive dense linear algebra kernels.

The remainder of the paper is organized as follows. Section 2 details
related work. Section 3 highlights our contributions. Section 4 describes the cli-
mate/weather modeling simulation based on a geospatial statistics approach
applied to the covariance matrix. We recall the state-of-the-art dense Cholesky
factorization in Sect. 5, which is the most time-consuming phase of the applica-
tion studied here. Section 6 outlines a new TLR Cholesky factorization, which
additionally exploits the data sparsity of the dense covariance matrix. Numerical
accuracy is provided in Sect. 7 and shows the flexible and robustness of the TLR
matrix approximation for Cholesky factorization. Section 8 gives implementation
details of the TLR Cholesky, which relies on the OpenMP task-based program-
ming model for performance purposes. Section 9 presents the performance results
and analysis and compares TLR Cholesky factorization against existing state-
of-the-art implementations. We conclude in Sect. 10.

2 Related Work

Low rank matrix approximations under the rubric of hierarchical matrices or
H-matrices [14,17] have been extensively studied in the literature since the
end of the 1990’s, mainly from a theoretical perspective, with critical bounds
derived on algorithmic complexities and memory footprint. Since then, many
new data compression formats for H-matrix approximation have emerged to
cover a wide range of scientific applications such as finite and boundary ele-
ment methods and Gaussian processes. These compression formats, e.g., hier-
archically semi-separable (HSS), H2-matrix, hierarchically off-diagonal low-rank
(HODLR), block low rank (BLR), are categorized depending on the data for-
mat structure (i.e., nested or non-nested basis) and the admissibility condition
(i.e., standard/strong or weak). The former impacts both aforementioned bounds
while the latter allows a fine-grained capture of the low rank structure of the
matrix off-diagonal blocks.

Low rank matrix approximation relying on nested bases (i.e., H2-matrix [9,
10,15,16] and HSS [23]) provides the best theoretical bounds for algorithmic
complexities and memory footprint for scientific problems which exhibit nested
row and column basis. The latter are challenging to implement efficiently on
manycore architectures due to synchronization points in the recursive tree.
Data compression formats based on non-nested bases (i.e., H-matrix [18,20],
HODLR [3,6] and BLR [4]) have higher bounds but they are often capable of
handling broader range of scientific applications than low rank data format with
nested basis. In particular, BLR is probably the most straightforward low rank
approximation format to implement because it does not rely on a recursive tree
and adopts a flattened data structure instead, at the expense of showing the high-
est algorithmic complexity. BLR is currently under investigation in MUMPS [5]
during the Schur complement involving frontal matrices [4].
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This work presents the tile low rank (TLR) data format, which is similar
to BLR, although it takes root from the well-known tile algorithms, as imple-
mented in dense linear algebra libraries such as PLASMA [27]. Last but not
least, this work aims at filling in the software gap by providing high performance
TLR approximations for matrix operations, and therefore, minimizing the mem-
ory and complexity overhead of using dense matrix computations as the native
approach.

3 Contributions

The contributions of the paper are fourfold. The authors (1) design a new and
flexible tile low rank Cholesky factorization for dense covariance matrices, (2)
provide a performance assessment on various leading-edge hardware architec-
tures by looking at numerical accuracy, memory footprint and time to solution,
(3) compare TLR Cholesky factorization against state-of-the-art vendor and
open-source dense linear algebra libraries such as MKL [19] and PLASMA [27],
respectively and (4) leverage performance of emerging architectures for cli-
mate/weather modeling applications.

4 Climate/Weather Modeling Applications

Large covariance matrices arise from multivariate spatial data sets in cli-
mate/weather modeling simulations to improve prediction using statistical meth-
ods and spatial data [24]. The crux of the modeling effort is to estimate a max-
imum likelihood objective function based on observations, as follows:

l(θ) = −1
2

ZT Σ−1(θ) Z − 1
2

log |Σ(θ)|, (1)

where θ is the vector of parameters to be tuned, Z a vector of observations, and
Σ the covariance matrix, and where the vertical bars indicate a determinant.
These matrices are symmetric, positive-definite and are based on covariances of
presumed Gaussian processes. If we have only one Gaussian process, then the
corresponding covariance matrix is simply scalar. In N -dimensional case, with N
being the number of geographical locations to be correlated, we have N Gaussian
processes, which leads to square N -by-N matrix. As is apparent from Eq. 1, the
computational bottleneck of the maximum likelihood estimation is the calcu-
lation of the Cholesky factorization of the dense covariance matrix Σ, which is
necessary to solve the linear system (i.e., forward and backward substitutions) as
well as getting the logarithm of the covariance matrix determinant (i.e., product
of the diagonal elements of the Cholesky factor). The dense Cholesky factor-
ization, for instance, as implemented in the state-of-the-art simulation software
R, requires O(N3) operations on O(N2) data. This is a prohibitive approach,
given that N may be in the order of billions in readily contemplated applica-
tions. Alternative less expensive approximation approaches exist such as element
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thresholding, subsampling and iterative methods, however, these methods sac-
rifice the fidelity of the underlying statistical model.

The main idea consists in exploiting the data sparsity of the formally dense
covariance matrix Σ(θ). This represents a cheaper computational algorithmic
design, while still preserving the model fidelity up to a given accuracy. The
resulting matrix is hierarchically of low rank and can be compressed using the
tile low rank data format, which enables to better capture the low rankness
structure of the off-diagonal blocks, thanks to its strong admissibility condition,
as opposed to HODLR data format.

In this paper, we synthesize a set of covariance matrices as follows: given
an N -by-N uniform grid of particles in unit square with exponential interaction
f(x, y) = e− |x−y|

β , we add random noise to coordinates of each particle and sort
them in Morton order. So, if we have set of N2 particles {Xi}N2

i=1, each element
of the covariance matrix Σ(θ) can be defined as follows:

Aij = e− r(Xi,Xj)
β , (2)

where r(Xi,Xj) is a distance between particles Xi and Xj and β represents
a covariance parameter, which measures the correlation between the Gaussian
processes. Although the current kernel considered for the matrix generation is the
Gaussian kernel, Matérn kernels, for instance, among other Gaussian processes
kernels, can also be handled in the same manner. All in all, these kernels are
asymptotically smooth, which lead to the possibility of low-rank approximations
of different blocks of a matrix [25]. The ranks depend on how the clusterization
of the spatial particles occurs, given the relative distance from one cluster to
another. It is also noteworthy to mention that, in case of uniform distribution of
N spatial points with N power of 2, Morton order space-filling curve may nearly
be optimal.

5 State-of-the-Art Dense Cholesky Factorization

This section recalls the algorithmic evolution of the dense Cholesky factorization.
The Cholesky factorization of an N ×N real symmetric, positive-definite matrix
A has the form A = LLT , where L is an N × N real lower triangular matrix
with positive diagonal elements.

5.1 Block Algorithms

Block algorithms, as implemented in LAPACK [7], emerged with cache-friendly
hardware architectures in the late 1990’s. The matrix computation is decom-
posed in two successive phases. The panel factorization consists in applying
Level 2 BLAS transformations within a panel of the matrix only, followed by
the update of the trailing submatrix, which accumulates all transformations
from the current panel and applies them by means of Level 3 BLAS on the
unreduced part of the matrix, as depicted in Fig. 1(a). The matrix computation
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algorithms proceed then on a smaller subset of the overall matrix as in Fig. 1(b),
until the matrix is completely transformed, as seen in Fig. 1(c). Parallel per-
formance is only exploited during the update of the trailing submatrix, during
calls to compute-intensive multithreaded Level 3 BLAS, as provided for instance
by vendor optimized BLAS implementations (e.g., Intel MKL [19]). Artifactual
synchronization points in-between computational phases impede parallel perfor-
mance, especially in presence of multicore architectures [2].
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Fig. 1. Block algorithms: LAPACK/MKL.

5.2 Tile Algorithms

Tile algorithms emerged with multicore architectures a decade ago. The dense
matrix is broken into tiles, as seen in Fig. 2, where elements are contiguous
in memory within each tile. Tile algorithms weaken the synchronization points
revealed in block algorithms by bringing the parallelism in multithreaded BLAS
to the fore. They create opportunities for asynchronous execution with potentials
for look-ahead optimizations. The whole algorithm may be then represented as
a directed acyclic graph, where nodes are computational tasks and edges define
data dependencies between them. A dynamic runtime system is employed to
schedule tasks across processing units, while ensuring data dependencies are not
violated. PLASMA [27] and FLAME [13] represent the two state-of-the-art dense
linear algebra libraries, which rely on tile algorithmic formulation.

Fig. 2. Tile algorithms: PLASMA/FLAME.
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6 The Tile Low Rank Cholesky Factorization

This section presents the tile low rank (TLR) approximation and Cholesky
factorization.

The first phase is to create an approximation of each off-diagonal tile, typi-
cally by performing a singular value decomposition (SVD) and by keeping only
the most significant singular values and their corresponding singular vectors,
depending on the selected accuracy. The latter is a parameter, which is often
application-specific. The diagonal tiles are typically full rank and cannot be
approximated. The obtained off-diagonal data structure is no more a dense
tile of contiguous elements but an outer product of two rectangular matrices
Uij × Vij of size nb × k, with nb the tile size and k the matrix rank (i.e., the k
most significative singular values/vectors), as shown in Fig. 3. Our current TLR
approximation offers two variants. Fixed ranks can be used to apply truncation
across all off-diagonal tiles, independently of the data, at the cost of obtaining
lower or higher accuracy across the tiles (see Fig. 3(a)). Though seemingly brute
force, this may be the most cost-effective and per-iteration performant form
of preconditioning for iterative solvers. The fixed accuracy variant permits to
smoothly approximate the off-diagonal tiles depending on the accuracy needed
by the application. This engenders variable ranks per tiles, as seen in Fig. 3(b),
with an arbitrary illustration for six ranks (k1 to k6).
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Fig. 3. Tile low rank matrix representation.

Once the dense matrix is approximated by means of tile low rank, a new
family of linear algebra algorithms needs to be implemented to take into consid-
eration the new compressed data layout. For the TLR Cholesky factorization,
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we reuse some of the ideas developed in the PLASMA library [27], although new
monolithic kernels have to be designed. When using fixed rank k, all off-diagonal
tiles of size nb are represented by a data structure of identical size, i.e., nb × k.
With fixed accuracy, the rank obtained may differ from one tile to another to
maintain the expected accuracy threshold. Therefore, load imbalance issues may
increase idle time and it is then paramount to rely on dynamic runtime systems
in order to mitigate this overhead by ensuring all resources stay busy throughout
the matrix computations.

7 Numerical Accuracy

This section aims at highlighting the robustness of the TLR compression and
Cholesky factorization. We look first at synthetic covariance matrices and then at
real geospatial covariance matrices from climate/weather modeling applications
based on Gaussian processes.

7.1 Synthetic Matrices

Synthetic matrices are important to demonstrate the numerical robustness for
new matrix algebra software. We create a template diagonal matrix S with three
specific singular value decay rates (named as base 2, base 3, base 4), as depicted
in Fig. 4. The singular values or diagonal elements of S in descending order
follow these decay rates and reach close to machine precision in double precision
arithmetic (1e − 16) for the first 53, 33 and 26 singular values for base 2, base 3,
and base 4, respectively. This matrix S is then multiplied on the left and right
sides by orthogonal matrices to generate each data-sparse off-diagonal tiles.

Fig. 4. Singular values decay rates and distribution of the template diagonal matrix.

Once all off-diagonal tiles have been generated, they can be compressed using
an SVD. Extensive numerical experiments have been conducted on synthetic
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covariance matrices to validate our TLR approach. The heat map Fig. 5 reports
the accuracy obtained for various fixed ranks and tile sizes (Fig. 5(a)) using
base 2 decay rate and the corresponding digit difference with the full dense
Cholesky factorization (Fig. 5(b)). The heat map Fig. 6 reports the accuracy
obtained for various fixed ranks and tile sizes (Fig. 6(a)) using base 3 decay rate
and the corresponding digit difference with the full dense Cholesky factorization
(Fig. 6(b)). The heat map Fig. 7 reports the accuracy obtained for various fixed
ranks and tile sizes (Fig. 7(a)) using base 4 decay rate and the corresponding
digit difference with the full dense Cholesky factorization (Fig. 7(b)). Indeed,
one can notice that double precision arithmetic (10−16) is achieved from rank
truncations starting from 53, 33 and 26 singular values for base 2, base 3, and
base 4, respectively.

(a) Fixed rank. (b) Digit difference.

Fig. 5. Singular value distribution base 2.

(a) Fixed rank. (b) Digit difference.

Fig. 6. Singular value distribution base 3.

Figure 8 shows fixed accuracy instead, using base 3 decay rate, and reveals the
resulting rank with the following obvious rule: the higher the accuracy needed,
the higher the rank. Last but not least, the tile size nb parameter does not really
matter for these synthetic matrices in terms of numerical accuracy because the
template diagonal tile S is the same one used during data-sparse off-diagonal
tile generation. In fact, for the dense Cholesky factorization, the parameter nb
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has an impact only on performance as it trades-off concurrency with sequential
kernel performance. For tile low rank Cholesky factorization, nb has, in addition,
a direct impact on the overall algorithmic complexity. For instance, for a given
matrix size N , a large tile size nb would engender small memory footprint as well
as number of floating-point operations at the price of a lower concurrency. On
the contrary, if the large tile size nb would have been further decomposed into
smaller ones, this would engender larger memory footprint as well as number of
floating-point operations at the price of a higher concurrency.

(a) Fixed rank. (b) Digit difference.

Fig. 7. Singular value distribution base 4.

Fig. 8. Fixed accuracy for base 3.

7.2 Geospatial Statistics

The typical accuracy required for the studied climate/weather modeling applica-
tion is 10−9. Given this accuracy, Fig. 9 highlights the rank distributions for for
16384×16384 covariance matrix generated by Eq. 2 with β = 0.1 for nb = 64, 128
and 256: the whiter the picture is, the greater its data sparsity. The diagonal
tiles are full ranks, regardless of the tile size, while the off-diagonal tiles are
mostly data-sparse and can be approximated accordingly. In fact, perhaps the
most striking feedback about this figure is that the majority of off-diagonal tiles
can be dramatically approximated, while the initial matrix is completely dense.
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Fig. 9. Rank distributions for 16384× 16384 covariance matrix using various tile sizes.

Figure 10 reveals the heat map of the rank and singular value distributions
for 16384 × 16384 covariance matrix using nb = 1024. In particular, Fig. 10(a)
shows the rank for each tile after using the application-specific accuracy of 10−9.
If dense linear algebra approaches were used, the bottom left tile of rank 17 with
U = 1024 × 17 and V = 1024 × 17 would have been considered full rank and
of size 1024 × 1024, instead. And this phenomenon is further exacerbated when
looking at Fig. 10(b), which portrays the singular value distributions of selected
off-diagonal tiles. While the singular values of the diagonal tiles are all significant,
the singular values of off-diagonal tiles are actually characterized by an expo-
nential decay, which has to be exploited for performance and storage purposes.
Such characteristic may not be captured by weak admissible data compression
formats, such as HODLR and HSS, due to nested dissection which operates only
for diagonal blocks. The off-diagonal blocks may then necessitate larger rank to
get compressed, which may have a non-negligible impact on performance and
memory footprint.

(a) Rank distributions. (b) Singular values decay of marked tiles in Fig. 10(a).

Fig. 10. Rank and singular value distributions for a 16384 × 16384 covariance matrix
using nb = 1024 with an accuracy threshold set to 10−9.



TLR Cholesky Factorization for Climate/Weather Modeling Applications 33

8 High Performance Implementations

This section describes the high performance implementation of the TLR
Cholesky factorization.

8.1 Numerical Kernels

The sequential TLR Cholesky algorithm can be expressed with the following
four computational kernels:

HCORE DPOTRF: The kernel performs the Cholesky factorization of a diag-
onal (lower triangular) tile. It is similar to LAPACK DPOTRF since the
diagonal tiles are dense and full rank.

HCORE DTRSM: The operation applies an update to an off-diagonal low-
rank tile of the input matrix, resulting from factorization of the diagonal
tile above it and overrides it with the final elements of the output matrix:
V(i,k) = V(i,k) × D−1

(k,k). The operation is a triangular solve.
HCORE DSYRK: The kernel applies updates to a diagonal (lower triangular)

tile of the input matrix, resulting from factorization of the low-rank tiles to
the left of it: D(j,j) = D(j,j)−(U(j,k)×V T

(j,k))×(U(j,k)×V T
(j,k))

T . The operation
is a symmetric rank-k update.

HCORE DGEMM: The operation applies updates to an off-diagonal low-rank
tile of the input matrix, resulting from factorization of the low-rank tiles to
the left of it. The operation involves two QR factorizations, one reduced SVD
(with a rank truncation depending on the fixed rank and/or the fixed accuracy
operation modes) and two matrix-matrix multiplications.

The most called computational kernel is HCORE DGEMM and it also represents
the one with highest arithmetic intensity. Once the sequential version of the
code based on nested loops has been designed, we need to schedule the four
aforementioned computational tasks on the underlying processing units.

8.2 Task-Based Programming Model

Task-based programming models have become methods of choice when target-
ing efficient parallel implementation, as they permit asynchronous thread exe-
cutions after exposing fine-grained computational tasks. Static scheduling may
be suboptimal here, especially in fixed accuracy mode, as this may result in load
imbalance between tasks. Therefore, dynamic runtime systems are crucial to cope
with the various tasks’ workloads, besides handling dynamic frequency scaling
of processors at runtime. Many dynamic runtime systems such as QUARK [26],
StarPU [8], and OmpSs [12] exist for shared-memory systems. We use the task-
based programming model and the dynamic runtime system, as implemented in
OpenMP, for easy portability across hardware platforms. The TLR matrix gen-
eration and compression consist in generating the TLR matrix after performing
an SVD using DGESVD on all off-diagonal tiles in an embarrassingly parallel
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Algorithm 1. HiCMA DPOTRF(HicmaLower, D, U, V, N, nb, rank, acc)
p = N / nb
for k = 1 to p do

#pragma omp task depend(inout:D(k,k))
hcore dpotrf(HicmaLower, D(k,k), rank, acc)
for i = k+1 to p do

#pragma omp task depend(in:D(k,k)) depend(inout:U(i,k))
hcore dtrsm(V(i,k), D(k,k), rank, acc)

end for
for j = k+1 to p do

#pragma omp task depend(in:U(j,k)) depend(in:V(j,k)) depend(inout:D(j,j))
hcore dsyrk(D(j,j), U(j,k), V(j,k), rank, acc)
for i = j+1 to p do

#pragma omp task
depend(in:U(i,k)) depend(in:V(i,k))
depend(in:U(j,k)) depend(in:V(j,k))
depend(inout:U(i,j)) depend(inout:V(i,j))

hcore dgemm(U(i,k), V(i,k), U(j,k), V(j,k), U(i,j), V(i,j), rank, acc)
end for

end for
end for

fashion using the parallel for loops from OpenMP. The QR-based DGESVD is
slower than the divide-and-conquer DGESDD but requires much less memory.
Other SVD variants (e.g., randomized SVD) may directly generate the TLR
data format without going to the dense representation. These variants may also
overcome these performance issues but this is beyond the scope of this paper.
Algorithm 1 shows the pseudo-code of the TLR Cholesky factorization for the
lower triangular case. Each kernel call is annotated by pragmas describing the
data directions from which the compiler is capable of tracking the data depen-
dencies. Each kernel’s API has extra parameters related to fixed rank and/or
fixed accuracy, allowing an algorithmic flexibility for end-users. The TLR com-
pression and Cholesky factorization is currently being packaged into the Hier-
archical Computations on Manycore Architectures (HiCMA) library and will be
released during 2017.

9 Performance Results and Analysis

This section presents the performance results and analysis of the TLR compres-
sion and Cholesky factorization in the context of a climate/weather modeling
application based on geospatial statistics.

9.1 Environment Systems

We have ported our OpenMP-based TLR compression and Cholesky factor-
ization to three systems. We have considered three systems representative of
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the current manycore-based hardware trends. The first system is composed of
dual-socket 18-core Intel(R) Xeon(R) Haswell CPU E5-2699 v3 @ 2.3 GHz with
256 GB of main memory. The second system hosts the latest Intel commodity
chip with dual-socket 14-core Intel(R) Xeon(R) Broadwell CPU E5-2680 v4 @
2.4 GHz with 128 GB of main memory. The third system has the latest Intel(R)
Xeon Phi(TM) Knights Landing manycore 7210 chips with 64 cores @ 1.30 GHz
with 128 GB of main memory, operating in quadrant/cache modes. For simplic-
ity, each system is named after its chip codename. Our TLR implementations
have been compiled with Intel C compiler v16 and linked against sequential
Intel MKL v11.3.1. We have run ten times each test configuration and report
the average time as the consistent metric.

9.2 Memory Footprint Assessment

Theoretical Memory Footprint for Fixed Rank. For native dense Cholesky
factorization, the memory footprint of the input matrix is simply N2

2 . For
TLR Cholesky factorization, assuming fixed rank, the memory footprint can
be calculated as follows. The numbers of diagonal and off-diagonal tiles are
ndt = N

nb and nodt = (ndt∗ndt)−ndt
2 , respectively. Therefore, assuming dou-

ble precision and given a rank k, the required memory footprint for TLR is
8 ∗ (ndt ∗ nb∗(nb+1)

2 + 2 ∗ nodt ∗ nb ∗ k) ≈ 4 ∗ ndt ∗ nb2 + 16 ∗ nodt ∗ nb ∗ k.

Actual Memory Footprint for Fixed Accuracy. Figure 11(a) shows the
memory footprint for dense and TLR Cholesky factorization up to 200K ×200K
covariance matrix size. The fixed accuracy of 10−9 is used, as required by the
application. As seen in the figure, the TLR-based compression scheme exhibits
more than an order of magnitude memory footprint saving with respect to naive
dense Cholesky factorization.

Actual Operation Count for Fixed Accuracy. Figure 11(b) shows the
operation count performed by dense and TLR Cholesky factorization up to
200K × 200K covariance matrix size. Similarly, the fixed accuracy of 10−9 is
used. As seen in the figure, the TLR Cholesky requires significantly less number
of operations with respect to naive dense Cholesky factorization.

In both Figs. 11(a) and (b), the data points for matrix size of 73984 = 162∗172

are below the general trend for TLR-based scheme. This finding can be attributed
to the better compression effect of the global Morton ordering for matrix sizes
that are multiple of power of 2, as explained at the end of Sect. 4.

9.3 Performance of TLR Compression

Although the compression phase is important, it is performed only once, while
generating the covariance matrix on the fly. Figure 12 reports the performance
and scalability of TLR compression on the Haswell system for various tile sizes.
We benchmark both DGESVD and DGESDD as MKL SVD implementations.
DGESDD is faster thanks to its efficient divide-and-conquer at the expense of
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(a) Memory footprint (GB). (b) Number of operations (Gflops).

Fig. 11. Memory footprint and number of flops (accuracy is set to 1e− 9).

Fig. 12. Time to solution to approximate all tiles of a TLR matrix by DGESDD on
various numbers of threads and block sizes.

requiring eight times more memory allocation than DGESVD. This explains
the increase in time of approximation routine, when increasing the number of
threads. TLR matrices with larger tiles tend to use more memory per tile and
may saturate the memory bus bandwidth on the system due to the memory-
bound character of the approximation phase. The scalability may be further
improved through cross approximation techniques or randomized SVD kernel
instead of ordinary dense SVD.
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9.4 Performance of TLR Cholesky Factorization
on Climate/Weather Modeling Applications

Figure 13 depicts the time to solution of the TLR Cholesky factorization (referred
to as TLR-HiCMA dpotrf) on various hardware architectures using an accuracy
of 10−9, as required by the application. In this figure, the time for compression
has not been included, since this initial phase may only be done once before

(a) Intel Haswell. (b) Intel Broadwell.

(c) Intel KNL.

Fig. 13. Time to solution for TLR Cholesky factorization using an accuracy of 10−9.
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the matrix computation starts. Optimal tile sizes nb have been selected from
empirical experiments for each Cholesky factorization variant, depending on the
matrix size (e.g., for TLR Cholesky, nb = 1156 turns out to be the most effec-
tive). The naive interface of PLASMA dpotrf call requires an out-of-place data
translation, which doubles the memory footprint and prevents PLASMA from
further scaling up. For all experiments in this section, we used almost the whole
systems’ resources as described in Sect. 9.1, except one or two cores, which are
left to ensure that basic tasks of the operation system do not interfere with our
experiments. As seen in Fig. 13, there is more than an order of magnitude time
difference between TLR and dense Cholesky factorizations across all architec-
tures. Some data points are missing for the dense approaches due to physical
memory capacity. It is noteworthy to mention that the ranks after TLR com-
pression have slightly grown after TLR Cholesky factorization, especially the
off-diagonal tiles located at the bottom right. These tiles are the most manip-
ulated tiles and receive updates throughout the TLR Cholesky factorization.
Regarding the three architectures, the elapsed times of the full dense Cholesky
factorization, as implemented in MKL and PLASMA on KNL, are considerably
lower than those obtained for Haswell and Broadwell systems, thus showing
the compute capability of KNL. However, the elapsed time of TLR Cholesky is
slightly higher on KNL than those obtained on the other two architectures, due
to the low arithmetic intensity of the sequential kernels. Moreover, we rely on the
OpenMP dynamic runtime system to schedule the tasks on the different systems.
While this shows decent performance on the commodity Intel CPU architectures
with two sockets for which all cores share the same L3 cache, it does suffer from
performance loss on KNL, for which only two cores share the same L2 cache. The
overhead of moving data becomes a bottleneck, while performing work stealing
across the higher core count KNL chip. A more regular static scheduling with
data locality may perform better for such architecture. One can also notice that
the time to solution of TLR Cholesky for the matrix size of 73984 = 172162 is
relatively less with respect to the problem size growth. The reason is that the
obtained rank after compression and total number of operations for this matrix
size are less, as previously seen in Figs. 11(a) and (b).

10 Conclusion and Future Work

We have presented the tile low rank (TLR) Cholesky factorization in the con-
text of climate/weather modeling application based on geospatial statistics on
a Gaussian covariance matrix of size up to 200K × 200K. Our TLR Cholesky
factorization achieves more than an order of magnitude in memory footprint
saving and time to solution compared to native dense Cholesky factorization, as
implemented in vendor optimized Intel MKL [19] and open-source PLASMA [27]
libraries. Although TLR does not exhibit the best theoretical bounds for H-
matrix computations, it can still leverage, with a better user-productivity, a
wide number of covariance-based applications toward much challenging hard-
ware machines such as distributed-memory systems equipped with hardware
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accelerators so that larger-scale problem dimensions can be covered. This will
lead to new scientific research opportunities, especially for simulation workloads
relying on the mainstream R software project. Moving forward, we would like
to investigate batch algorithms by redesigning the current TLR Cholesky fac-
torization from a tile-centric to a kernel-centric representation. This will help
in compensating the kernel launch overhead due to the low arithmetic intensity,
while increasing the hardware occupancy.
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Abstract. This article introduces EDGE, a solver package for fused
seismic simulations. Fused seismic simulations are a novel technique
addressing one of the grand challenges of computational seismology: large
ensemble runs of geometrically similar forward simulations. Application
fields include, but are not limited to: uncertainty quantification in the
context of seismic hazard analysis or the accurate derivation of velocity
models through tomographic inversion. For efficient and accurate han-
dling of complex model geometries (topography, fault geometries, mate-
rial heterogeneities), EDGE utilizes the Discontinuous Galerkin (DG)
method for spatial and Arbitrary high order DERivatives (ADER) for
time discretization, implemented for unstructured tetrahedral meshes.
EDGE’s ADER-DG scheme requires sparse and dense matrix-matrix
multiplications at the kernel level. By choosing a sufficient memory lay-
out and relying on runtime code generation and specialization, both,
sparse and dense operations, can be efficiently vectorized on wide-SIMD
machines. We present a convergence study of single and fused seismic
simulations, code verification in an established benchmark, as well as a
detailed performance assessment for different discretization orders. As
target architecture we select the recently released Intel Xeon Phi proces-
sor, which powers the Theta and Cori-II supercomputers. For a single
sixth order seismic forward simulation we achieved 10.4 PFLOPS of hard-
ware performance and 5.0 PFLOPS for fused simulations in fourth order,
both occupying 9,000 nodes of Cori-II. From a throughput perspective,
fused seismic simulations can outperform a single forward simulation by
1.8× to 4.6×, depending on the chosen order of the method.

1 Introduction

A popular approach for accurate numerical simulations of seismic wave propaga-
tion are Finite Difference Methods (FDM) [8,10,28,36]. FDM approximate the
partial derivatives through stencils, which combine adjacent grid points. While
low dispersion errors can be reached through high-order stencils, accurate model-
ing of sharp material contrasts remains an ongoing challenge for FDM due to the
underlying Cartesian meshes [3,29,34]. Further, the seismic wave field is often
highly heterogeneous, resulting in inefficiencies for FDM since adaptive refine-
ment in space and time is a highly non-trivial task, often limited to moderate
patch-based adaptivity [2,19,32].
c© Springer International Publishing AG 2017
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Finite Element Methods (FEM) overcome many limitations intrinsic to
FDM, if the mesh honors major material heterogeneities. Continuous Galerkin
(CG-) FEM, often in combination with diagonal mass matrices, obtained through
mass lumping or a special choice of quadrature and interpolation nodes, became
a prominent option [16,21,26,35]. Here, the widely used Spectral Element Meth-
ods (SEM) rely almost exclusively on hexahedral meshes and have been applied
with great success on a global scale to forward runs and, more recently, to inverse
problems [7,21,31]. However, on a local scale, the complexity of the resolved
geometric features is limited by the difficult hexahedral meshing, leaving tetra-
hedral meshes as the only practical option [31,33]. While the generalization of
SEM to more flexible elements remains ongoing work, the CG scheme in [17]
couples hexahedral and tetrahedral meshes, but is limited by low convergence
rates. In contrast, Discontinuous Galerkin (DG-) FEM using tetrahedral meshes
have reached a mature status in the last decade [9,11,30]. DG-FEM allow dis-
continuities in the numerical solution between elements and the corresponding
discretized materials, which greatly simplifies the integration of sharp hetero-
geneities. Classical finite volume methods [5] are closely related to DG-FEM.

While the accurate numerical simulation of seismic wave propagation is
already demanding, many of the grand challenges in computational seismology
require large ensembles of geometrically similar forward simulations. In detail
these ensembles cover few, but very complex model geometries with a broad
range of variation influencing only the source descriptions. Important examples
include uncertainty quantification in the context of seismic hazard analysis or
the accurate derivation of velocity models through tomographic inversion. Inter-
pretation of the similarities in the source descriptions as input parallelism offers
large potential for reduced time-to-solution.

In this work we present EDGE, a new software package addressing some
of the hardest challenges in computational seismology. EDGE’s forward solver
for seismic wave propagation relies on the flexibility of the ADER-DG scheme
[9,20]. Our software supports different element types and hyperbolic partial dif-
ferential equations. However, in this work, we will focus on unstructured meshes
with 4-node tetrahedral elements and the elastic wave equations. EDGE enables
ensemble-based, high-dimensional studies with an unprecedented complexity by
fusing multiple forward simulations into one execution of the solver. Therefore
this paper makes following novel contributions: (1) EDGE as an open source
solver package (BSD-3), which was created from scratch to support fused simu-
lations for maximum throughput, and (2) a runtime code generation approach
for highest performing kernels when running fused simulations on wide-SIMD
architectures.

2 Discretization

For an isotropic medium the 3-D elastic wave equations in velocity-stress formu-
lation are given by a system of hyperbolic partial differential equations:

qt + A1qx1 + A2qx2 + A3qx3 = 0. (1)
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Time is given by t ∈ R
+ and location in space by x = (x1, x2, x3)T ∈ R

3.
q(x, t) = (σ11, σ22, σ33, σ12, σ23, σ13, u, v, w)T ∈ R

9 is the vector of quantities.
Here, σ11, σ22, and σ33 are the normal stress components in x1-, x2-, and
x3-direction. The shear stresses are given respectively by σ12, σ13, and σ23.
A1(x), A2(x), A3(x) ∈ R

9×9 are the three space-dependent Jacobians. The
Jacobians characterize the wave propagation in our hyperbolic system and are
derived from the material parameters, given by the mass density ρ(x), and
Lamé constants λ(x) and μ(x). By applying the DG-machinery in space and
the explicit ADER-scheme in time, we obtain the fully discrete form of Eq. 1 as
a series of integration kernels. These kernels describe time-, volume-, and surface-
integration and might be formulated as series of small matrix-matrix products.

Our fully discrete formulation divides the computational domain Ω into K
pair-wise disjunct tetrahedral elements Tk: Ω =

⋃K
k=1 Tk. The numerical solution

in every element k is given by a set of 9 × B(O) time-dependent Degrees Of
Freedom (DOFs) Qk(t) ∈ R

9×B. O is the order of our ADER-DG discretization
with O = P−1, where P is the degree of our orthogonal, hierarchical, polynomial
basis. We use the same order in time and space, which can be arbitrarily high.
Further, we assume piecewise constant material parameters in every element Tk,
leading to per-element, constant Jacobians.

Time Kernel: Our first kernel uses the Cauchy-Kovalewski procedure to integrate
the element-local DOFs Qk for a full time step tn → tn+1 = tn + Δt in time:

In
k = I(Qn

k ) =
O−1∑

d=0

Δtd+1

(d + 1)!
· ∂d

∂td
Qk, (2)

where the time derivatives, with the DOFs Qn
k at time step tn as initial condi-

tions, ∂0/∂t0Qk = Qn
k = Qk(tn), are obtained recursively through:

∂d+1

∂td+1
Qk = −

3∑

c=0

A∗
k,c

(
∂d

∂td
Qk

)

(Kξc)
T . (3)

Here, matrices A∗
k,c ∈ R

9×9 are linear combinations of the element-local Jaco-
bians, and matrices Kξc ∈ R

B×B the three stiffness matrices, formulated in terms
of the unique reference tetrahedron Tref and multiplied with the diagonal, inverse
mass matrix in initialization.

Volume Kernel: The volume kernel computes the volume integration based on
the element’s time integrated DOFs:

Vn
k = V(In

k ) =
3∑

c=1

A∗
k,c (In

k )Kξc . (4)

Surface Kernel: Our last kernel computes the net-updates of the surface inte-
gration based on the element’s time-integrated DOFs In

k and those of the four
face-adjacent elements In

ki
:

Sn
k = S(In

k , In
k1

, . . . , In
k4

) =
4∑

i=1

A−
k,i (In

k ) F−,i +
4∑

i=1

A+
k,i (In

k ) F+,i,jk,hk (5)
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A−
k,i ∈ R

9×9 and A+
k,i ∈ R

9×9 are the flux solvers, computing the numerical
fluxes. Matrices F−,i ∈ R

B×B and F−,i,jk,hk ∈ R
B×B are the flux matrices.

Index i is the local face of element k w.r.t. the reference element. Indices jk(i) ∈
{1, 2, 3, 4} and hk(i) ∈ {1, 2, 3} depend on the vertices both adjacent elements k
and ki share with respect to their transformation to the reference element [9].
Time Step: Our ADER-DG scheme splits a time step tn → tn+1 into two steps.
First, we compute all element-local operations, not requiring any data from
adjacent elements. This is the time kernel and the first update step consisting
of the volume kernel Vn

k , and the local part of the surface kernel Sn
k :

Q̄n+1
k = Qn

k + Vn
k +

4∑

i=1

A−
k,i (In

k ) F−,i (6)

Here, we use the recently computed time integrated DOFs In
k directly and store

them for later use in our second step. The second step contains the remainder
of the surface kernel, and thus updates the elements’ DOFs with data of face-
adjacent tetrahedrons:

Qn+1
k = Q̄n+1

k +
4∑

i=1

A+
k,i (In

k ) F+,i,jk,hk . (7)

3 Fused Simulations

A non-fused setup defines fixed input i, and runs the forward solver s to obtain
observations o = s(i). Now, if we are interested in results for n different inputs,
e.g., different seismic sources, we would specify a set of inputs In = (i1, i2, . . . , in)
and run the non-fused forward solver s on all these inputs to obtain the set of
observations On = (o1, o2, . . . , on) = (s(i1), s(i2), . . . , s(in)). Typically, the n
executions of the solver are completely decoupled, which means that potential
parallelism and shared data between two instances s(ik) and s(il) is not utilized.

Fused simulations in EDGE exploit this potential by integrating the concept
of multiple but similar input parameters into the forward solver. Thus, we intro-
duce a new forward solver Sm which is capable of handling a set of m ≤ n inputs
Im = (i1, i2, . . . , im) in a single execution: Om = (o1, o2, . . . , om) = Sm(Im). We
achieve this by a fundamental paradigm in EDGE’s data layout, which sets the
m forward runs as the fastest dimension in all respective data structures. For
example the two most important data structures in our ADER-DG solver for
seismic simulations (see Sect. 2) are the DOFs Qn

k and the time integrated DOFs
In

k . Here, we use the K elements as slowest dimension, followed by the 9 quan-
tities, the B modes and finally the m simulations as fastest dimension. Each
element is therefore represented by a 3D-tensor.

Note, that one might interpret the different input parameters as multiple
right-hand sides of the PDEs, which would lead to the term parallelization over
multiple right-hand sides in literature [4,27]. However, in this work we prefer the
more general term fused simulation due the diverse advantages of the approach,
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Fig. 1. Arithmetic intensity if the material parameters and mesh are shared in an elastic
ADER-DG setup. Shown is the relative improvement over a non-fused simulation in
dependency of the order (O2-O7) and the number of fused runs (1, 2, 4, 8, 16).

and settings where interpretation as a right-hand side is more complex, e.g., in
multi-physics setups. We identify four key advantages of EDGE’s fused approach
over non-fused simulations:

1. By fusing multiples of the vector-width, we are able to perform full vector
operations, even when using sparse matrix-operations, whereas non-fused set-
tings require dense matrix operations (which have up-to a 50% zero padding
overhead) for best performance [14].

2. Data structures are automatically aligned by fusing multiples of the cache
line size. Zero-padding [14] for fast aligned loads and stores is not needed.

3. Read-only data structures might be shared among all runs. As illustrated in
Fig. 1 for our seismic setup of Sect. 2, this results in substantially increased
arithmetic intensities. For example, a non-fused fourth order accurate simu-
lation theoretically requires 8,640 bytes per element. 67% of this requirement
is read-only data. By fusing eight runs, we only need 28,800 bytes, which
reduces this ratio to 20% and therefore increases the arithmetic intensity by
2.4×. Analogue, for a sixth order configuration, the memory footprint per
element only increases from 13,824 to 70,272 bytes, which corresponds to a
1.6× higher arithmetic intensity.

4. Fused simulations are less sensitive to memory latencies and conditional
jumps, due to less frequent context switches. Here, the increased, fused work-
load per memory operation or conditional jump effectively reduces the per-
formance penalty of start-up latencies or branch mispredictions. Analogue,
they are less sensitive to network latencies due to larger MPI-messages hav-
ing identical exchange-frequencies. See [1] for details on memory latencies of
Knights Landing and [25] for the relation of message sizes and bandwidth.

However, there are also requirements and limitations. Im, the set of m inputs
has to be “similar enough” for exploitation in fused forward simulations. If a
parameter space beyond the following fusing-limitations is studied, we simply
distribute the n ≥ m inputs to respective fused and non-fused runs. Considering
our seismic use case (see Sect. 2), we formulate the following requirements for
EDGE on a set of input parameters to be fused into a single forward run:
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1. The mesh needs to be identical for all m simulations. This ensures identical
adjacency information and identical element sizes, used in our explicit solver’s
stability requirements.

2. Start- and end-time of all simulations are identical. Further, all simulations
have the same order of convergence and share the same characteristics of wave
field output (frequency) and seismic receivers (frequency and location).

3. All fused simulations share the same element-local material parameters. Thus,
we obtain identical update patterns, since the resulting wave speeds, in com-
bination with the shared mesh, determine the element-local time step.

4. All simulations are allowed to have arbitrary initial DOFs. The location of
seismic sources is shared among all m simulations, but moment-rate time
histories are private and thus arbitrary. A similar approach would apply if
EDGE is extended with internal dynamic rupture boundary conditions [14]
in future work.

Nevertheless, all of these limitation and requirements are fulfilled by ensem-
ble simulations and therefore fused simulation are the perfect tool to increase
hardware efficiency and simulation throughput.

4 EDGE in a Nutshell

4.1 Runtime Code Generation of DG-FEM Kernels

Section 2 shows that that the speed of EDGE’s integrators heavily depends on
the performance of small dense or sparse matrix-matrix operators. In the case of
fused simulations, a sparse matrix needs to be multiplied with a 3D-tensor, which
represents the DOFs Qn

k , time derivatives ∂d/∂tdQn
k , or time integrated DOFs

In
k for a given mesh element. Previous work showed, that code generation is the

ideal tool to speed up single forward runs and yields extremely high hardware
efficiencies (greater than 50%) in a portable manner [14]. All previously discussed
tricks (c.f., [6]) for an efficient implementation of the ADER-DG scheme for a
single simulation have been enabled in EDGE and needed kernels are runtime
code generated in EDGE’s setup phase leveraging LIBXSMM [15]. As these
techniques are covered in the literature, we are not recapping them here.

Instead, we focus on runtime code generation for the required 3D-tensor
manipulations of fused simulations. Specifically, this requires two operations to
be optimized:

– K1 : sparse-matrix × 3D-tensor = 3D-tensor, this operation is needed for mul-
tiplication with Jacobians and flux-solvers. In BLAS-notation, the sparse
matrix A is a 9 × 9 matrix, whereas B and C are dense 3D-tensors. Matrix
A is applied to all planes enumerated by the inner-most dimension f of this
tensor, which corresponds to the number of fused forward runs.

– K2 : 3D-tensor × sparse-matrix = 3D-tensor, this operation is needed for mul-
tiplication with stiffness or flux matrices. The dimensions of the sparse matrix
B depend on the order and which stage of the integration kernels is performed.
Again, this matrix has to be applied to all forward simulations, which are
stored in the inner-most dimension f of the 3D-tensor.
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Algorithm 1. Code generator sketch of kernel K1
1: for all m = 1 to #quantities do
2: a#Entries ← rowA[m + 1] − rowA[m]
3: for k = 1 to a#Entries do
4: a ← A[rowA[m] + k]
5: for all n = 1 to #modes do
6: C[m][n][1 : f ] ← fma(bcst(a), B[colA[rowA[m] + k]][n][1 : f ], C[m][n][1 : f ])
7: end for
8: end for
9: end for

In this work, we focus on a length of f that matches the SIMD-length of the
underlying architecture. As we target Intel’s Xeon Phi processor, code-named
Knights Landing, we leverage AVX-512, offering a double precision vector length
of 8 entries. Thus, the number of fused simulations in this work is f = 8. We
are using slightly different specifiers as in Sect. 2 to allow for a BLAS-related
naming.

Under these assumptions, the code generator of K1 can be realized straight-
forward and is sketched in Algorithm1. We store the entries of all sparse matrices
in Compressed Sparse Row Format (CSR). However, the row pointer (rowA in
Algorithm 1) and column indices (colA in Algorithm 1) are only used for the
runtime code generation at EDGE’s initialization. Thus, the loops hardwire the
sparsity pattern of matrix A by fully unrolling K1 ’s implementation and there-
fore eliminating any access to row or column index structures. As A is sparse,
we have unstructured accesses to full vectors over the fused quantities in input
tensor B, c.f., line 6. Since the scalar entry of A can be reused across all fused
forward simulations, we broadcast it and we can maintain a contiguous access
pattern to the result tensor C. During the surface computation, matrix A, the
flux solver, is a dense matrix. In this case we disable unrolling over the number
of quantities to reduce code size. Additionally, for code used in the neighboring
update (7), our code generator supports insertion of last-level cache software
prefetching instructions. These help to accelerate EDGE by roughly 10% as the
negative impact of accessing face-adjacent elements in the unstructured mesh
can be mitigated.

Generating an efficient implementation of K2 is more challenging and we
cover the details by a step-by-step explanation of Algorithm2. From a high-level
point of view, we follow the same approach as in Algorithm1. However, since now
the right hand side operator, matrix B, is sparse we end up with unstructured
accesses to the result tensor C, which depend on B’s sparsity pattern. From a
performance perspective we cannot afford frequent read and write access to C,
as we already consume all L1 cache bandwidth for reading the input tensor A
and matrix B. We therefore create an in-register scratchpad for a C accumulator
set, indexed by the quantities, c.f., line 2 for loading and line 10 for storing this
scratchpad. It contains all modes for all forward simulations for a given quantity.
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Algorithm 2. Code generator sketch of kernel K2
1: for all m = 1 to #quantities do
2: for all n = 1 to #modes do cn[1 : f ] ← C[m][n][1 : f ] end for
3: for all k = 1 to #modes do
4: b#Entries ← rowB [k + 1] − rowB [k]
5: for n = 1 to b#Entries do
6: j ← colB [rowB [k] + n]
7: cj [1 : f ] ← fma(A[m][k][1 : f ], bcst(B[rowB [k] + n]), cj [1 : f ])
8: end for
9: end for

10: for all n = 1 to #modes do C[m][n][1 : f ] ← cn[1 : f ] end for
11: end for

This now allows us to implement unstructured access to C, as we only need to
pick the corresponding register in the dot product calculation, c.f., lines 6 and 7.

In summary, both kernels K1 and K2 are able to achieve 25–40% of hard-
ware efficiency on a single core of the Intel Xeon Phi processor using AVX512.
However, they have a higher L2-cache pressure than dense kernels and therefore
are limited by the shared L2 cache interface of two cores in Xeon Phi’s comput-
ing tile for two reasons: (a) latencies due to unstructured tensor entry accesses
(b) L2 cache bandwidth is shared. Therefore at full chip level we can expect a
kernel compute efficiency of roughly 20%.

On an AVX512-capable processor, we can generate kernels for up to 31 modes
efficiently without additionally blocking as the architecture offers 32 vector reg-
isters. In this work we limit ourself to a maximum of fourth order runs which
have B(4) = 20 modes. Having Fig. 1 in mind, this limitation is only minor as the
expected runtime benefit decreases for higher orders. Nevertheless, an additional
blocking is planned as future work. Such a feature will also allow to use older
vector instruction sets such as AVX2 which offer a small register file with only
16 entries.

4.2 Parallelization and Data Layout

Our parallelization strategy strictly separates between shared and distributed
memory parallelization. For the latter one we use the Message Passing Interface
(MPI) and assign one rank to every of the P available nodes, sharing a mem-
ory space. Therefore, we require exactly P partitions of our unstructured mesh
for utilization of P nodes. This reduces the pressure on the partitioner, e.g.,
the Metis-library [18], and reduces relative communication costs defined as the
volume-to-surface ratio of the partitions.

In addition to using fused simulations as fastest dimension of the data lay-
out, EDGE also follows the distributed memory parallelization for the sorting of
entity-data in memory. Focusing on a single partition p ∈ P , we store inner-
entities first, send-entities second and recv-entities last. Here, we follow the
naming scheme of corresponding MPI-functions: Values of inner-entities are not
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communicated, values of send-entities are send to other ranks and values of recv-
entities received from other ranks. In terms of our ADER-DG solver for seismic
wave propagation in Sect. 2, our MPI-partitions only exchange time integrated
DOFs In

k , required in the second update step (7). Here, our inner-elements are
owned by partition p and are, within a time step, independent of element-data
owned by other partitions. Send-elements are owned by p, but their associated
In

k are required for application of Eq. (7) to send-elements of other partitions.
Similar recv-elements are owned by an adjacent partition and the respective In

k

are required for updating the DOFs of p’s send-elements in Eq. (7). We further
sort the send- and recv-elements by their corresponding neighboring rank. If one
of these elements is connected to more than one MPI-rank through its faces, we
logically duplicate the element in our data layout. Within the inner-elements and
the per-rank groups of the send- and receive-elements, we sort the elements by an
unique but arbitrary identifier. Therefore, we are able to directly use our data
layout for sending and receiving MPI-messages without the need for artificial
communication buffers.

Our shared memory parallelization uses the OpenMP library. Compared to
other work [14], we only use minimal functionality of OpenMP in the time march-
ing loop. After synchronization, e.g., after initialization or wave field output, we
open a single parallel-region until we reach the next synchronization point. Out
of a total of T threads, we use the first 1 ≤ W < T threads as workers and
the W + 1’th thread as management and communication thread. The workers
perform the numerical operations described in Sect. 2. Here, the distribution of
work, e.g., “compute Eq. (6) for all send-elements” to workers is performed sta-
tically at initialization. This approach is similar, to traditional, static OpenMP
annotation of for-loops, but allows for fine-grained load balancing and removes
unnecessary, implicit barriers. For example, a thread might directly continue
with Eq. (6) for inner-elements, after finishing its part of the send-elements. The
W + 1’th thread initiates communication through MPI Isend and MPI Irecv,
progresses communication through MPI test, and ensures correctness by resolv-
ing dependencies and signaling the workers where to head next.

Considering different layers of memory, such as High Bandwidth Memory
(HBM) and traditional DDR4 RAM in case of the Intel Xeon Phi x200 processor,
we follow the general strategy of [13]. Here, we distribute data to the different
layers, if our simulation size exceeds the size of near-memory and if the memory
layers are available at application level, e.g., in flat-quadrant mode. In our seismic
setup (see Sect. 2), we place the time-integrated DOFs In

k , having high access
frequencies and unstructured accesses, in near-memory. Further, EDGE provides
high-bandwidth scratch memory for temporary storage of intermediate results,
to avoid performance penalties of large stack-based memory chunks.

5 Experiments and Results

For the purpose of this work, we solely relied on double precision arithmetic for
every of EDGE’s floating point operations and used following machines:
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– Theta is a Cray XC40 that comprises 3,200 Intel Xeon Phi 7230 64-core
processors at 1.3 GHz (with Intel Turbo Boost enabled), 16 GB of in-
package HBM and 192 GB of DDR4 RAM. Here, we used the performance-
related modules intel/17.0.1.132, craype/2.5.8, PrgEnv-intel/6.0.3,
cray-mpich/7.5.0, cray-memkind, craype-mic-knl, and the performance-
related compile-flags -O2, -xMIC-AVX512, and -qopenmp for our scaling studies.

– Cori-II is a Cray XC40 that combines 9,304 Intel Xeon Phi 7250 68-core
processors at 1.4 GHz (with Intel Turbo Boost enabled), 16 GB of in-
package HBM and 96 GB of DDR4 RAM. Except for craype/2.5.7 and
cray-mpich/7.4.4, we used the same performance-related modules and flags,
as on Theta, on Cori-II.

5.1 Benchmarks

Convergence Analysis. Our first benchmark explores EDGE’s high order con-
vergence. Similar to [9], we use a cubic domain of size [0, 100]3 and generate
24 setups by dividing the domain regularly into cubes with descending edge
lengths: 100

2 = 50, 100
4 = 25, . . . , 100

50 = 2. Within every setup, each of the
cubes is then subdivided into five tetrahedral elements. Material parameters
are ρ = 1, λ = 2, μ = 1, while the initial DOFs discretize plane waves travel-
ing in diagonal direction with a P-wave velocity of 2 and a S-wave velocity of
1. Additionally we use periodic boundary conditions, such that the solution of
the setup can be derived analytically after a given time [9]. We simulate for a
total time of

√
3 · 100. Therefore, the resulting exact solution is identical to our

initial setup. Figure 2 shows two convergence plots derived from our setups. The
plot on the left shows convergence when executing EDGE in non-fused mode.
The plot on the right presents convergence when running EDGE with m = 8
fused simulations. Here, we shifted the initial setup of the respective simulations
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Fig. 2. Convergence of EDGE in the L∞-norm. Shown are orders O1−O7 for the eighth
quantity v (Q8) in non-fused runs on the left. The right plot shows orders O1−O5 for
v (Q8) when utilizing EDGE’s fusion capabilities with shifted initial conditions. For
clarity, from the total of eight fused simulations, only errors of the first (C1), fourth
(C4) and last simulation (C8) are shown. (Color figure online)
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by (0, 0, 0)T , (5, 5, 5)T , . . . , (35, 35, 35)T to obtain true input-parallelism. We see
that EDGE obtains the convergence rates reported in literature when ADER-
DG is applied to seismic wave propagation [9]. The different fused simulations
show almost identical convergence behavior.

Layer Over Halfspace Benchmark 1 (LOH.1). Our second configuration is the
LOH.1 benchmark, which is part of The Spice Code Validation [22]. We used
a domain covering [−26 km, 32 km] × [−26 km × 32 km] × [0 km, 33 km]. All
boundary-conditions are outflow, except for z = 0, where free-surface boundary
conditions are set. The one seismic source of the benchmark is a point dislocation at
(0, 0, 693m) with Mxy = Myz = M0 = 1018 Nm being the only non-zero entries in
the moment tensor. The moment time history is given by M0(1−(1+ t

T )exp(− t
T ))

with T = 0.1 s. The LOH.1 benchmark compares a total of nine receivers at the sur-
face. The material parameters are ρ = 2600 kg

m3 , λ = 20.8GPa, and μ = 10.4GPa
up to a depth of 1 km. In the remainder of the domain the parameters are given by
ρ = 2700 kg

m3 , λ = 32.4GPa, and μ = 32.4GPa.
We used the software gmsh [12] to generate a problem-adapted tetrahedral

mesh. The material interface was integrated into the surface mesh, which resulted
in interface-aligned faces of our tetrahedral elements. We specified a character-
istic length of 100m in [−5 km, 13.67 km] × [−5 km × 15.392 km] × [0 km, 1 km],
257m in [−5 km, 13.67 km]×[−5 km ×15.392 km]×[1 km, 7 km], and 771m every-
where else. To ensure smooth mesh coarsening in the 1 km thick layer, we addi-
tionally defined an attractor and used the overall minimum characteristic length
for meshing. Further, we used gmsh’s built-in optimizer and Netgen-interface to
improve mesh quality. The final mesh consisted of 11,060,982 tetrahedral ele-
ments. We used fourth order in space and time and 256 nodes of Cori-II to
simulate the 9 s of the benchmark. To ensure correctness of EDGE’s full capa-
bilities, we fused eight simulations. However, we simply used identical input for
all fused simulations and therefore obtained eight identical solutions.

Figure 3 examplary compares EDGE’s obtained particle velocity in
x-direction u to the reference solution. We see that the solutions match very
well, which is confirmed by Table 1, showing the single-valued envelope misfit

Fig. 3. Synthetic seismogram of EDGE for quantity u at the nith seismic receiver
located at (8647 m, 5764 m, 0) in red. The reference solution is shown in black. (Color
figure online)
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Table 1. Single-valued envelope misfit EM and single-valued phase misfit PM in per-
cent for the nine receivers in the LOH.1 benchmark. The misfits are given for non-zero
seismograms of the reference solution in a frequency range between 0.13 Hz and 5 Hz.

location (m) u (%) v (%) w (%) max (%)

x y z EM PM EM PM EM PM EM PM

1 0 693 0 0.75 0.29 0.75 0.29

2 0 5543 0 1.20 0.16 1.20 0.16

3 0 10392 0 1.17 0.17 1.17 0.17

4 490 490 0 0.80 0.31 0.74 0.34 1.05 0.23 1.05 0.34

5 3919 3919 0 1.06 0.15 1.10 0.15 0.97 0.19 1.10 0.19

6 7348 7348 0 1.12 0.17 1.13 0.17 0.96 0.19 1.13 0.19

7 577 384 0 0.84 0.32 0.73 0.33 1.09 0.23 1.09 0.33

8 4612 3075 0 0.94 0.15 1.37 0.17 0.98 0.19 1.37 0.19

9 8647 5764 0 1.01 0.18 1.33 0.18 0.96 0.19 1.33 0.19

EM and single-valued phase misfit PM [23,24] for all nine seismic receivers and
three particle velocities u, v, and w. Here, the misfits stay well below the thresh-
old of 5%, referring to the highest accuracy level of the benchmark.

5.2 Single Node Performance

In this section we discuss EDGE’s single node performance when running the
LOH.1 benchmark (see Sect. 5.1), discretized with a total of 350,264 tetrahedral
elements. Additionally, as in all following performance studies, we greatly lim-
ited the number of time steps to avoid unnecessary computations. All runs in
this section were carried out on a single node of Cori-II in flat-quadrant mode
and with all memory allocated in HBM through numactl’s membind-feature. We
used a setting identical to our per-node layout in distributed memory runs by
utilizing only 66 cores for computations in EDGE. The first of the two remaining
cores was left empty for the OS, the other core hosted the communication and
management thread. We compare EDGE’s performance to the software package
SeisSol in the version 201511 [13] using global time stepping and support for
AVX512. Here, we left the first tile idle and pinned the communication thread
to the last core, as required by SeisSol for highest performance. Figure 4 com-
pares the required time-to-solution of both codes for 500 time steps. First, we
ran traditional, non-fused simulations with both codes for orders O = 2, . . . , 6,
abbreviated with O2C1,. . .,O6C1. Additionally, Fig. 4 shows EDGE’s relative
performance when fusing eight forward simulations for orders O2, O3, and O4,
abbreviated with O2C8, O3C8 and O4C8. We see that EDGE, despite targeting
at fused simulations, is able to maintain a high fraction of SeisSol’s performance
when running single, non-fused forward simulations. In the case of O2C1, EDGE
even outperforms SeisSol since SeisSol’s zero-padding introduces a significant
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Fig. 4. Speedup of EDGE over SeisSol. For convergence rates O2 − O6 results for a
single non-fused forward simulations (O2C1-O6C1) are presented. Additionally, respec-
tive per-simulation speedups for orders O2−O4 are presented when using EDGE’s full
capabilities by fusing eight simulations (O2C8-O4C8).

overhead overturning improvements of alignment to cache lines. However, for
orders higher than O2 these optimizations pay off, leading to a higher perfor-
mance of SeisSol. For the sixth order configuration O6C1, EDGE reaches 96% of
SeisSol’s performance. The reason for this relatively higher performance, com-
pared to O4C1 and O5C1, is given by the B(6) = 56 basis function of this
setting. B(6) is a multiple of 8 and naturally leads to 64-byte aligned DOFs Qn

k

and time integrated DOFs In
k in EDGE since the base pointers of all our heap

data structures are aligned 4,096 byte boundaries.
Comparing EDGE’s performance on a simulation-by-simulation basis to Seis-

Sol, when running eight fused simulations, we observe a factor 1.8-4.6 improve-
ment in time-to-solution. This result confirms our theoretical discussion in
Sect. 3, where we identified higher arithmetic intensities and increased regu-
larity of fused simulations as key advantages. As shown in Fig. 1, the potential
speedup offered by the higher arithmetic intensities is largest in the memory-
bound, low order regime. Moving to the compute-bound high order simulations,
the increased regularity becomes more important, leading to a substantial, but
relatively smaller, 1.8× speedup over SeisSol for O4C8.

5.3 Weak Scaling

The setup of our weak scaling study follows the convergence analysis in Sect. 5.1.
However, to further avoid unnecessary computations, we replaced the initial value
computation of the DOFs, requiring an L2-projection, with zero values and dis-
abled the error-norm computation. Instead, we added a total of 8 seismic sources,
where only one of the sources was active in a single forward simulation. Further, in
comparison to other work [14], we left the more demanding periodic boundary con-
ditions intact, which is supported by EDGE for regular meshes and enables conver-
gence studies in distributed memory setups. We used a total of 276,480 tetrahedral
elements per node and studied the performance of fourth and sixth order conver-
gence. In the case of the sixth order runs we present results for a single, non-fused
simulation (O6C1). For the fourth order runs we present performance for a single
forward simulation (O4C1) and eight fused simulations (O4C8). Considering the
memory consumption of the heavy data structures touched in the time marching
loop – Qn

k , In
k , A∗

k,c, A
±
k,i in Eqs. (3), (4), and (5) – our weak scaling setup only has



54 A. Breuer et al.

10

15

20

25

30

35

40

45
1 2 4 8 16 32 48 64 96 12
8

19
2

25
6

51
2

10
24

15
36

20
48

25
60

30
72

%
 p

ea
k

O4C1 flat, hardware
O4C1 cache, hardware

O4C1 flat, non-zero
O4C1 cache, non-zero

O4C8 flat
O4C8 cache

O6C1 flat, hardware
O6C1 cache, hardware

O6C1 flat, non-zero
O6C1 cache, non-zero

#nodes

Fig. 5. Weak scaling study on Theta. Shown are hardware and non-zero hardware peak
efficiencies of all configurations in cache and flat mode. O denotes the order and C the
number of fused simulations. (Color figure online)

a moderate size, underlining the relevance of this scaling study. O4C1’s matrices
consume 2.2 GiB per node, O4C8’s matrices 7.4 GiB and O6C1’s matrices 3.6 GiB
per node

Figure 5 shows the hardware and non-zero peak efficiencies of our weak scal-
ing on 1 to 3,072 nodes of Theta. Here, the hardware peak efficiency counts every
of the double-precision floating point operation performed in hardware, while the
non-zero peak efficiency only considers those of non-zero entries in our kernel’s
matrices (see Sect. 2). We see that EDGE obtains more than 38% of hardware
peak efficiency in cache mode and more than 41% in flat mode for all O6C1 runs
on Theta. The highest sustained hardware performance on Theta was obtained
in flat mode and is 3.4 PFLOPS, which corresponds to a non-zero performance
of 1.4 PFLOPS and a parallel efficiency of 97%. Moving to the fourth order con-
figurations O4C1 and O4C8, EDGE is able to maintain the single node speedup
(see Fig. 4) offered by its fusion capabilities at scale. In fact O4C8 outperforms
O4C1 in per-simulation time-to-solution by 2.1× when running in flat mode at
scale. Due to O4C8’s sparse matrix-operators, this corresponds to a hardware
and nonzero peak efficiency of 21.5% on 3,072 nodes, which is equivalent to a
sustained performance of 1.8 PFLOPS and a parallel efficiency over 96%.

Figure 6 shows our weak scaling study on 1 to 9,000 nodes of Cori-II. The
obtained peak efficiencies are almost identical to Theta and, once again, show
EDGE’s high hardware and non-zero peak efficiencies. On Cori-II, we sustained
10.4 PFLOPS in hardware when running O6C1 in flat mode on 9,000 nodes. To
the best of our knowledge, this is the highest obtained peak performance for
seismic simulations with ADER-DG, outperforming 24,576 cards of Tianhe-2,
reaching 8.6 PFLOPS [14]. Further, O4C8 in flat mode has a 2.0× higher single
simulation throughput than O4C1 on 9,000 nodes with a sustained hardware
and non-zero peak efficiency of 18.1%, corresponding to 5.0 PFLOPS.
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Fig. 6. Weak scaling study on Cori-II. Shown are hardware and non-zero hardware
peak efficiencies of all configurations in cache and flat mode. O denotes the order and
C the number of fused simulations. (Color figure online)

5.4 Strong Scaling

Our final performance study consists of two strong scaling setups of the LOH.1
benchmark (see Sect. 5.1). Here, we used a total of 172,386,915 tetrahedral ele-
ments on 32 to 3,072 nodes of Theta and a total of 340,727,199 tetrahedrons on
128 to 8,192 nodes of Cori-II. EDGE required a total of 1.7 TiB of memory for
O4C1, 4.7 TiB for O4C8, and 2.6 TiB for O6C1 on Theta. Analogue, the setup
consumed a total of 3.5 TiB for O4C1, 9.4 TiB for O4C8, and 5.2 TiB on Cori-II.

Figure 7 shows the hardware and non-zero peak efficiencies of the cache and
flat mode runs on Theta. We observe that the efficiencies are close to the weak
scaling depicted in Fig. 5. Here, we have to remember that the weak scaling
study relied on a perfectly balanced, artificial setup, while our strong scaling’s
mesh is fully unstructured and partitioned by Metis. When analyzing the per-
formance of the O4C8-runs in detail, we see a plateau between 192 and 2048
nodes with performance dropping below and afterwards. The reason for the
lowered performance below 192 nodes is the total memory requirements of the
computational data structures exceeding Xeon Phi’s 16 GB of HBM, required
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for optimal performance of Eq. (7). For high node counts, we see a degrada-
tion due to the extreme layout of the strong scaling, reaching a 50× increase
of O4C8 and 100× of O4C1 and O6C1 at 3,200 nodes. Comparing the stable
flat mode performance of O4C1 to that of O4C8, we see that the parallel effi-
ciency of O4C8 drops sooner. Recalling Sect. 3, this is property of the fused
simulations, since the communication volume simply grows one-to-one with the
number of fused simulations. However, the simulation throughput of O4C8 is
greatly increased, which leaves less time spent in computations for hiding com-
munication. The highest hardware performances were obtained in flat mode on
3,200 nodes: 1.6 PFLOPS (19.1 ) for O4C1, 1.4 PFLOPS (16.3%) for O4C8, and
3.4 PFLOPS (39.6%) for O6C1. With respect to non-zero peak performances, this
corresponds to 0.7 PFLOPS (8.2%) for O4C1, 1.4 PFLOPS (16.3%) for O4C8 due
to sparse matrix-matrix operators, and 1.3 PFLOPS (15.1%) for O6C1.

Figure 8 takes our strong scaling one step further, with a cache mode node-
range of 128 to 8,192 on Cori-II. As already observed in the weak scaling in
Fig. 6, the relative performance of all runs is slightly lower on Cori-II than on
Theta, due to the higher per-socket performance. Again we observe an plateau
for O4C8 due to HBM, but dropping performance for all runs at higher node
counts. These drops are most severe for the O4C8 runs since our high single-node
speedup (see Fig. 4) significantly decreases the time per simulation and time step,
but keep the communication volume constant, exposing communication in the
strong scaling. On 8,192 nodes every node only handles a total of 41,593 elements
in average, facing an increase of 64× in potential computer power from 128 nodes.
Since cache mode is very sensitive to large compute we can observe a drop in
performance at scale. Here, we reach a hardware performance of 4.1 PFLOPS
(16.4%) for O4C1, 2.6 PFLOPS (10.4%) for O4C8 and 9.1 PFLOPS (36.6%) for
O6C1. The corresponding non-zero performances are 1.8 PFLOPS (7.1%) for
O4C1, 2.6 PFLOPS (10.4%) for O4C8 and 3.5 PFLOPS (13.9%) for O6C1.
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6 Conclusions

This article has introduced EDGE1, a novel solver for fused seismic sim-
ulations which aims at increasing the throughput of extreme scale seismic
ensemble simulations. For highest accuracy, EDGE utilizes the Discontinuous
Galerkin (DG) method for spatial and the Arbitrary high order DERivatives
(ADER) scheme for time discretization, implemented for unstructured tetrahe-
dral meshes. The occurring kernel routines, small sparse and dense matrix-matrix
multiplications, are accelerated by a sophisticated runtime code generation app-
roach. This technique allows for hardware efficiencies of more than 40% for single
runs (10–20% non-zero efficiency) and more than 20% of non-zero efficiency when
conducting fused simulations. Depending on the chosen order, fused simulations
can offer an increased throughput of 1.8× to 4.6×. With respect to achieved raw
performance EDGE weak-scaled to 9,000 nodes of the Cori-II supercomputer,
while running at 10.4 PFLOPS at order six. For a fused fourth order run EDGE
achieved 5.0 PFLOPS of non-zero/non-padded performance using small sparse
matrix kernels. In addition to these excellent weak-scaling results, EDGE also
exhibits nearly the same performance in case of strong scaling. This is achieved
by a carefully designed parallel implementation, which minimizes threading over-
head and maximizes MPI message progression. When strong scaling by 100× on
Theta and 64× on Cori-II, EDGE sustained a performance of 3.4 PFLOPS and
9.1 PFLOPS, respectively.
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Abstract. Molecular Dynamics is an important tool for computational
biologists, chemists, and materials scientists, consuming a sizable amount
of supercomputing resources. Many of the investigated systems contain
charged particles, which can only be simulated accurately using a long-
range solver, such as PPPM. We extend the popular LAMMPS molecular
dynamics code with an implementation of PPPM particularly suitable
for the second generation Intel Xeon Phi. Our main target is the opti-
mization of computational kernels by means of vectorization, and we
observe speedups in these kernels of up to 12×. These improvements
carry over to LAMMPS users, with overall speedups ranging between
2–3×, without requiring users to retune input parameters. Furthermore,
our optimizations make it easier for users to determine optimal input
parameters for attaining top performance.

1 Introduction

Molecular dynamics simulations are used to compute the evolution of systems
of atoms in fields as diverse as biology, chemistry, and materials science. Such
simulations target millions or billions of particles, are frequently run in parallel,
and consume a sizable portion of supercomputers’ cycles. Since in principle each
atom interacts with all the other atoms in the system, efficient methods to com-
pute the pairwise forces are vital. The most widespread method for electrostatic
interactions is the “Particle-Particle Particle-Mesh” (PPPM) method [1], which
makes it possible to efficiently compute even the interactions between distant
particles.

Due to its popularity, we target the open-source LAMMPS code [2], which
offers the PPPM method. LAMMPS is a C++ code designed for large parallel
simulations using MPI, and is written to be modular and extensible. LAMMPS
can be compiled with a variety of packages that provide different implementa-
tions of key methods for the calculation of short-range and long-range interac-
tions. For example, the USER-OMP package includes versions of methods such
as PPPM which are specifically designed for shared-memory parallelism. In this
paper, we extend the LAMMPS molecular dynamics simulator with a version
of PPPM that is especially suitable for architectures with wide vector registers,
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such as the Xeon Phi. In the past, long-ranged solvers have been optimized for
GPUs, with issues similar to those encountered with Xeon Phi accelerators [3,4].

On these systems, one of the main routes towards high-performance is the
exploitation of the wide (512-bit) vector registers. To this end, we create vec-
torized kernels for all the computational components that are not directly sup-
ported by highly optimized math libraries (e.g. FFTs). These routines account
for between 20% and 80% of the time spent in PPPM. As such, their optimization
leads to notable speedups in the overall performance of the simulation.

One challenge is that the innermost loops of said computational routines
are very short, with trip-counts between 3 and 7. This is a common problem
for vectorizing molecular dynamics even outside of PPPM. For example, it was
encountered by Höhnerbach et al. in their multi-platform vectorization of the
extremely short loops of the Tersoff potential [5]. It turns out that work can be
saved elsewhere by increasing these trip counts, simultaneously enabling efficient
vectorization. Similarly, work can be shifted away from poorly-scaling FFTs and
into newly-optimized functions, and, within the optimized functions, memory
bandwidth can be traded against additional computation.

In this paper, in addition to discussing vectorization techniques, we also pro-
vide insights into the parametrization of PPPM for performance. In particular,
we consider three tunable parameters: the real-space cutoff, the interpolation
order, and the differentiation mode. Many users will stick to the default choices
where such exist, since these promise accurate and reasonably performant calcu-
lations. Others will have taken time to tune these parameters for their particular
problems, but even expert users often make suboptimal choices that can up to
double time-to-solution for a given desired accuracy, depending on the prob-
lem [6]. We achieve 2–3× speedups for a wide range of input parameters, and
our optimizations also make the careful tuning of several parameters unnecessary
by making particular options superior to the others for almost all cases.

The code presented in this paper is contributed to the USER-INTEL package
of LAMMPS [7]. It has been shown that this package can not just yield impressive
speedups on Intel architecture, but also improve the energy efficiency of the
calculation [8].

2 Molecular Dynamics and PPPM

2.1 An Algorithmic Overview

The interaction between atoms in a molecular dynamics simulation is governed
by a so-called potential function. For example, the Lennard-Jones (LJ) and the
Coulombic (Coul) potentials are given by:

V ij
LJ = 4εij

[(
σij

rij

)12

−
(

σij

rij

)6
]

, and V ij
Coul =

C qi qj
ε rij

. (1)
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For a given pair of atoms (i, j), the potential depends on the distance between
them, rij , as well as their charges qi and qj (in the Coulombic case), or the
parameters εij and σij (in the Lennard-Jones case), which describe the minimum
of the potential function and its root. In order to obtain the forces on atoms,
MD simulations can compute these potential functions for all pairs of atoms,
but O(n2) pairs have to be evaluated, and this quickly becomes infeasible.

A simple solution is to introduce a cutoff. One only considers interactions
among atoms within a given cutoff radius rC of each other. Consequently, the
number of pairs to be evaluated decreases to O(nr3C). Since all the potential
functions (e.g., Eq. 1) fall off with distance, the cutoff provides a reasonable
strategy to approximate the total potential on atoms.

There are, however, numerous situations in which long-range interactions
between atoms cannot be neglected, and instead have to be approximated numer-
ically. A plain cutoff strategy does not work well for Coulomb interactions, which
are relevant when a system contains charged particles or polar molecules, because
the potential falls off only as r−1. In contrast, the cutoff is perfectly fine for the
Lennard-Jones potential, as long as the system is uniform.

In non-uniform problems, such as those featuring an interface, even Lennard-
Jones interactions may need to be calculated using a long-ranged solver and can
not be approximated [9]. In these cases, it is necessary to approximate these
long-range interactions without explicitly computing pair-wise potential func-
tions; for this task, Particle-Particle Particle-Mesh is often the method of choice.
PPPM approximates long-range interactions in a periodic system by obtaining
the potential of the entire system of atoms as a function of space, discretized
to a grid [1]. While originally developed for electrostatics, the method was later
adapted to the r−6 term of the Lennard-Jones potential [10].

In this work, we focus on PPPM for electrostatics, i.e., the Coulomb potential.
PPPM uses an idea due to Ewald, and splits the potential into two components
[11]. The first component, the “short-ranged” part of PPPM, contains the dis-
continuity due to the r−1 term, and a smooth screening term that limits the
support to a small spherical region around a given atom; this component can
be calculated directly between each atom and its neighbors in a certain cutoff
radius rC . The second component is the “long-ranged” part of PPPM; due to
its smooth nature, this can be solved accurately on a grid.

The efficient solution of the long-ranged component is the key ingredient of
the PPPM method. Since we are operating with smooth quantities, the electro-
static potential is related to the charge distribution ρ via Poisson’s equation

∇2Φ = − ρ

ε0
. (2)

From the electrical potential Φ, one can compute the forces on all the atoms due
to it. The forces on an atom j with charge qj can be obtained from the gradient
of the potential evaluated at the particle’s position:

F j = −qj∇Φ. (3)
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PPPM approximates these forces on each particle by proceeding in three steps:

1. First, particle charges are mapped to a grid using a stencil, obtaining a dis-
cretized form of the charge distribution ρ.

2. Second, Poisson’s equation (Eq. 2) is solved in order to obtain the potential
Φ. This is done by first taking the 3D Fourier transform of the charge distri-
bution, as Poisson’s equation is easier to solve in reciprocal space, and then
performing one or more inverse FFTs to obtain a result in real space.

3. Third, this result is mapped back to the atoms with the same stencil used
when mapping charges.

The forces are obtained from the gradient of the potential, and this gradi-
ent can be taken in reciprocal or real space, determined by the user-specified
differentiation mode. For ik differentiation, the gradient is calculated in recipro-
cal space, immediately after solving Poisson’s equation, and three inverse FFTs
bring it back into real space, where its components are mapped to the atoms. For
ad differentiation, one inverse FFT yields the scalar potential in real space, and
this is mapped to the atoms using different sets of coefficients for each component
of the gradient to be obtained.

Our optimizations focus especially on the mapping steps (steps 1 and 3).
Step 2 is not as interesting for manual optimization since it is dominated by
FFT calculations, for which highly optimized libraries exist. The mapping steps,
on the contrary, are deeply nested loops performing calculations on data that
is likely already in cache. We will show that optimizations, especially proper
vectorization, will speed up these steps by at least a factor of four.

2.2 Related Work

Besides LAMMPS, many other popular molecular dynamics codes contain
long-ranged solvers. Examples include, but are not limited to, Gromacs [12],
DL POLY [13], AMBER [14], Desmond [15], and NAMD [16]. These codes tend
not to implement PPPM itself, in favor of related schemes such as PME [17],
SPME [18], and k-GSE [19]. The main differences with respect to PPPM lie
in the function used to interpolate atom charges onto the grid and back, and
in the corresponding Green’s function used to solve for the smooth part of the
potential. There also exist schemes for long-ranged force evaluation that are not
based on Fourier transforms, such as lattice Gaussian multigrid [20], Multilevel
Summation [21], and r-GSE [19].

2.3 Parametrization of PPPM

Since LAMMPS is used for a wide variety of problems, users have many choices
about input parameters for the target physical system. Several of these parame-
ters influence the accuracy and/or speed of the simulation, including the cutoff
distance (rC), the prescribed error in forces relative to a reference (ε), the sten-
cil size (S), and the differentiation mode, ik or ad. rC expresses the distance
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within which pair-wise interactions are computed directly, and outside of which
the interactions are approximated using the PPPM grid; the short-ranged cal-
culations scale with r3C . The work done when computing FFTs is controlled
by ε; LAMMPS automatically determines the coarseness of the FFT grid to
satisfy this accuracy constraint, depending on the values chosen for the other
parameters. A 73 stencil (S = 7) causes writing to, and reading from, about
2.7 times as many grid cells compared to the default 53 stencil. A higher-order
stencil produces more accurate results, and LAMMPS takes this into account
when deciding the resolution of the PPPM grid. Therefore, a higher-order stencil
shifts work out of the FFT functions, and into the mapping functions. Users can
also choose between the ik and ad differentiation modes described above, and
LAMMPS again takes their different accuracies into account when setting up
the FFT grid, with the ik mode yielding a slightly coarser grid.

Users will typically want to use a set of inputs that nearly minimize run-
time, subject to an accuracy constraint. Unfortunately, short of trial-and-error
for a specific problem it can be difficult to find a good set of parameters. In a
recent work [6], Fabregat et al. developed a method for automatically searching
the space of input parameters to find a good set, guided by cost and accuracy
models; their case studies suggest that even expert users systematically under-
estimate the expense of PPPM: they invariably predicted lower-than-optimal
cutoffs, which minimize the work done in computing pair interactions while
forcing a finer FFT grid. The impact of stencil size was not considered, leaving
the choice at LAMMPS’ default. In the next sections we demonstrate that an
appropriate choice of stencil size is needed to achieve good vectorization.

2.4 Profiling

In order to investigate the effects of the input parameters on runtime, we execute
our baseline on a single core of a KNL machine with a single thread. The system
is an Intel Xeon Phi 7210 chip (64 cores and 16 GB of HBM RAM) in quadrant
and flat memory mode, connected to other nodes via OmniPath. Our software is
based on the May 11, 2016 version of LAMMPS with the RIGID, USER-OMP
and USER-INTEL packages enabled. It was compiled using the Intel C++ Com-
piler version 16.01 (build 20151021), and uses Intel MPI 5.0 (build 20150128).
The reference runs use the code provided by the USER-OMP package, and our
runs are based on code from USER-INTEL package running in mixed precision
mode. Our benchmark is an SPC/E water simulation [22], a benchmark provided
with LAMMPS. We modified it to have a cubic domain.

Since all the atoms in the system carry partial charges, the simulation uses
PPPM to calculate forces. Unless otherwise specified, the default settings that
we use are relative error ε = 10−4, and short-range cutoff rC = 5 Å. The basecase
contains 36,000 atoms, and will later be scaled up for more extensive benchmarks.

Figure 1 shows timings as the cutoff, relative error, and differentiation mode
vary. The vertical sections denote the time spent in FFTs (“PPPM FFT”), and
in PPPM aside from FFTs (“PPPM non-FFT”), the time spent in the pair-wise
short-ranged interactions (“Pair”), and everything else (“Other”).
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Fig. 1. Profile of SPC/E water test case running single-threaded on one core of a KNL.
Left bar: ik differentiation, right bar: ad differentiation.

For cutoff, there actually is a minimum of the runtime, i.e., reducing the
cutoff will not reduce runtime beyond a certain point where the long-ranged
part gets less efficient: The rC = 3 Å case spends a disproportionate amount of
time in PPPM. The cutoff mostly impacts the “Pair” time—since it scales as
O(r3C)—and the “PPPM FFT” time—since it forces the grid to grow or shrink.

For ε, there of course is no minimum—lower accuracy results in faster
simulations—mostly due to less time spent in FFT calculations (i.e. smaller
grids). Outliers in FFT performance can be attributed to pathological cases (in
terms of size) of the FFT library.

In both panels of Fig. 1, the “Other” and the “PPPM non-FFT” sections are
largely unaffected by changes in cutoff or relative error. In both, ad differentia-
tion performs best (except for one outlier). For cutoff-optimal cases, the majority
of the runtime is spent on long-ranged calculation, suggesting that optimization
in that area might be quite fruitful.

3 Optimizations

The optimizations for the different stages of the algorithm are discussed here. In
particular, we cover the functions that map atoms to grid points and grid values
to atoms, the Poisson solver, and the routines responsible for the short-ranged
contribution.

3.1 Mapping Functions

All three mapping functions—Map-Charge and both the ik and the ad versions
of Distribute-Force—share the same structure: a loop over all atoms, the cal-
culation of stencil coefficients, and then a loop over stencil points. Map-Charge
multiplies the particle charge by the stencil coefficient and adds that value to a
point on the grid. Distribute-Force proceeds in a slightly different way depending
on the differentiation mode. The ik mode multiplies the grid values for each spa-
tial dimension at each grid point by the corresponding stencil coefficient, then
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adds them to three totals, one for each dimension; after the loop over stencil
points, these components are multiplied by the atom’s charge and a scaling fac-
tor to obtain force components. The ad mode multiplies the scalar potential at
a grid point by three different stencil coefficients to obtain a vector, which is
added on the atom; after the loop over stencil points, substantially more cal-
culation than is required for ik differentiation transforms these totals into the
components of the force vector.

The stencil coefficients are the product of three polynomials of order equal
to the stencil size, one for each dimension. The iteration over stencil points
consists of a triple loop (one for each dimension of the stencil). This represents
the bulk (80%+) of the work, and accounts for almost all the memory accesses
in the mapping functions. Map-Charge accesses only a single value at each grid
point, but does very little computation. The ik mode of Distribute-Force uses
three different values at each grid point. The ad mode uses only one value at
each grid point, but performs more floating point operations. The arithmetic
intensity of all these routines is relatively low, and memory access patterns will
determine the best approach to vectorization.

Since the number of grid points is typically comparable to or smaller than
the number of atoms, and NS3 stencil points are touched when looping over
N atoms, there is a great deal of data reuse. With so few calculations being
performed on data which is almost always found in cache, managing vectoriza-
tion overhead will prove to be vital. In general, we find that it is important to
minimize the amount of data shuffling or masking required to prepare for vec-
tor operations; whenever possible, a full vector should be pulled from memory,
operated on, and returned.

With an understanding of the structure of the mapping functions, we now
walk through our process of optimizing each one, pointing out what worked and
what did not. A summary of progressive speedups for each function is shown in
Fig. 2.
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Fig. 2. Speedups for different implementations of each of the three mapping functions
relative to the USER-OMP baseline version. Charge mapping timings were obtained
from simulations using ik differentiation.
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Function Map-Charge

Rethread: To avoid race conditions when writing to the grid, the USER-
OMP package has threads own disjoint chunks of the grid, and uses conditional
statements in the innermost loop over stencil points. By giving threads disjoint
sets of atoms and maintaining private copies of the grid—which are then summed
together—we achieve a ∼2× speedup.

Vector: We vectorize the innermost loop over stencil points, which features
unit stride memory accesses as it iterates through grid points. We target a new
default stencil size of 7, instead of 5, to make better use of 256-bit vector reg-
isters. This implementation achieves another factor of ∼2 speedup (“vector”
implementation), which is significant but not close to the theoretical 7× we
might hope for.

Simd8: Masking associated with the 7-iteration loop is a significant over-
heard. By explicitly setting the loop length to 8 and padding the stencil coef-
ficient arrays with zeros, we avoid masking and obtain a total of ∼6× speedup
over the re-threaded scalar version.

Precompute: Rather than evaluating polynomials to obtain the stencil coef-
ficients for each atom every time step, we precompute 5000 values for each poly-
nomial and refer to the nearest entry in this lookup table instead. This brings
total speedup to over 12× of the baseline.

Function Distribute-Force (ik Differentiation)

Atom Simd: Since Distribute-Force performs reads from the grid rather
than writes, the atom loop can be vectorized easily, yielding a ∼2× speedup.
The gather operations required to read grid point values cause this to be a poor
choice.

Inner Simd: Reproducing the inner loop vectorization from Map-Charge,
setting the loop length to 8, produces a ∼3.7× speedup over the scalar imple-
mentation.

Repacking: Distribute-Force for ik differentiation uses three different grids
with their own force components. By modifying the Poisson solver to instead
output the x and y components interweaved, and the z component interweaved
with 0 s, the innermost loop can be extended to 16 iterations and the x and y
components can be computed together by taking advantage of the 512-bit vector
register on Xeon Phi. This provides an additional ∼1.1× speedup.

Precompute: As with Map-Charge, the polynomial evaluations to obtain
stencil coefficients can be replaced with references to a lookup table, for a similar
∼1.1× additional speedup and a total speedup of ∼4.4× relative to the reference.

Function Distribute-Force (ad Differentiation)

Vector: Transferring over all of the optimizations from the ik mode of
Distribute-Force, except the inapplicable repacking of the Poisson solver out-
put, yields speedup below 3× relative to the reference. This is because the extra
work after the loop over stencil points has become relatively expensive.
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Split Atom: We split the loop over atoms in two. The first atom loop ends
after the triple loop over stencil points, having summed weighted potentials into
three arrays of length equal to the number of atoms. The second atom loop
operates on these arrays to obtain force components, and can be vectorized as
it contains no inner loops and has unit stride access to the weighted potential
arrays. This brings the overall speedup to just above 4×.

3.2 Poisson Solver

The Poisson solver is a poorly-scaling, communication-intense function which
performs 3D FFTs, solves Poisson’s equation in reciprocal space, and then per-
forms a number of inverse 3D FFTs depending on the differentiation mode (3
for ik and 1 for ad). These 3D FFTs are performed in parallel as a series of
1D FFTs with communication steps in between. The FFT functions are from
high-performance libraries (in our case MKL) and we do not attempt to optimize
them. Our optimization of the solver comes from three ideas.

Shift Work: Switching to a stencil size of 7 creates more work in the mapping
functions, but causes LAMMPS to choose a coarser grid resolution, requiring
fewer calculations to perform the FFTs.

2D FFTs: The series of 1D FFTs is inefficient [23]. We replace it with a 2D
FFT followed by a 1D FFT, and in the first communication step we ensure that
planes of data are located on each MPI rank. This saves one communication step
and is roughly (∼10%) faster. Even for poorly load-balanced cases, where the
number of necessary 2D FFTs is only slightly greater than the number of MPI
ranks, it does not perform worse.

Adjust Grid Sizes: The FFT calls of Intel’s MKL library do not perform
well for particular unfortunate values, which can catch users by surprise (com-
pare time spent in FFTs across the cases in Fig. 1). A simple fix that catches
many problem cases is to check whether the number FFT grid points in any
dimension is a multiple of 16, and increase it by 1 if necessary. Users will now
only rarely find that their simulations run substantially slower after making a
tiny change to their input file, and, as an added bonus, these simulations will
gain slightly improved accuracy.

3.3 Short-Ranged Interactions

To avoid shifting the bottleneck to the short-range calculation, it is desirable
that it be vectorized. Mike Brown of Intel contributed code vectorizing the pair
potential used in simulations containing electrostatic interactions (optionally
with cut off Lennard-Jones interactions), where his strategy was to vectorize the
loop over each atom’s neighbors. This achieves a ∼3× speedup (for example,
compare the time spent in “Pair” between the reference and optimized versions
in Fig. 3). We provide similar code compatible with the Buckingham potential,
optimized for PPPM and USER-INTEL, and also versions of pair potentials
compatible with PPPM for dispersion.
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4 Results

We now present comparisons between the reference and optimized versions of
LAMMPS using full simulations, profiling the code as in Fig. 1, to show how
the various parts of the code contribute to total runtime. We also investigate
the opaque way in which the user-facing knobs impact accuracy, and provide
evidence that our optimizations do not sacrifice accuracy. The experiments were
conducted on a single core, a full node, and multiple nodes. While the speedup
is both problem dependent and parameter dependent, the optimized version is
faster in every case simulated.

Because of our decision to target a new default stencil size of 7, it would not
be fair to make like-to-like comparisons between the reference and our optimized
versions. Further, LAMMPS’ input files do not even require an explicit choice of
stencil size, so many users will just allow it to take on its default value. Figure 3
compares the two versions as stencil order varies for our baseline test cases, using
ik differentiation to demonstrate that the new value is faster for the optimized
version. We simulate the standard 5 Å case on a single core and a 64× scaled-up
7 Å case on a full KNL node, which are nearly-optimal cutoff radii for each case.
The trend in total runtime is expected: on both a single core and the full node
the reference version is fastest with a stencil size of 5 while the new version is
fastest with a value of 7. For all future cases presented, the reference code uses
S = 5 while ours uses S = 7.
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Fig. 3. Profiles of SPC/E water as stencil size varies for both single-core and scaled-up
full-node cases. Left bar: reference, right bar: optimized.

4.1 Accuracy

Since the optimizations proposed involve both parameter-tuning and numerical
approximations, we now verify that our code is as accurate as the reference. To
this end, we compare to an Ewald summation run with a relative error of 10−5,
and a cutoff of 10 Å.
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Table 1. RMS errors for force after one timestep compared to Ewald summation

Version Mode rc S Precompute RMS error Version Mode rc S RMS error

ref ik 7 Å 7 - 0.0186 ref ad 7 Å 7 0.0189

opt ik 7 Å 7 - 0.0186 ref ik 3 Å 7 0.5853

opt ik 7 Å 7 500 points 0.0313 ref ik 5 Å 7 0.0124

opt ik 7 Å 7 5000 points 0.0188 ref ik 7 Å 3 0.0197

opt ad 7 Å 7 5000 points 0.0188 ref ik 7 Å 5 0.0194

As seen in Table 1, without stencil coefficient precomputation, the optimized
and reference versions obtain almost identical forces for both differentiation
modes. 5000 precomputed stencil polynomial evaluations are sufficient to retain
overall accuracy with our approximation. In addition, the optimized version
conserves momentum (the sum of forces on all atoms remains nearly zero) and
the macroscopic temperature difference between reference and optimized simu-
lations after 100 time steps is always small (∼0.1%), and nearly zero without
stencil precomputation.

Many users may not expect that their choice of cutoff can have a large effect
on accuracy, and LAMMPS’ internal accuracy model does not do as good of a job
with stencil size as it does with differentiation mode. After 100 time steps, the
temperature is almost 10 degrees higher for a 3 Å cutoff than for cutoffs greater
than or equal to 4 Å. In addition to speedup, our optimized version becomes
slightly more accurate by moving to a stencil size of 7.

4.2 Single-Core Simulations

We first compare simulations using our optimized version to the reference cases
we presented earlier in Fig. 1. Figure 4 shows both versions as cutoff varies for
ik and ad differentiation, respectively. As with the reference version, there is a
runtime-optimal cutoff for the optimized version at 5 Å where a balance is struck
between the pair interactions and the FFTs. Total speedup at this optimal cutoff
is 2.21× for ik and 2.75× for ad differentiation. With our optimizations, ad dif-
ferentiation goes from being only marginally faster at the runtime-optimal cutoff
to being 32% faster, making it a compelling choice even for serial simulations
where the FFTs do not take up much time.

The calculation of long-range interactions, inclusive of the mapping functions,
the FFTs, and various minor functions (PPPM FFT plus PPPM non-FFT), is
sped up by a factor of 3.44× for ad differentiation. The calculation of the long-
range interactions excluding the FFTs has actually sped up by a higher factor
of 3.61× despite the larger stencil requiring looping over 2.74 times as many
grid points. The calculation of pair interactions is sped up by about 2.5×. ad
differentiation is now faster than ik differentiation for every cutoff, due to the
smooth decrease in time spent performing FFTs as cutoff increases.

The relative penalty for choosing a poor cutoff has not changed much except
for cases where an unfortunate number of FFT grid points was doubling the cost
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Fig. 4. Profiles of SPC/E water test case running single-threaded on one core of a KNL
as cutoff varies. Left bar: reference, right bar: optimized.

of FFTs. In general, an overestimate of the runtime-optimal cutoff is much less
penalizing than an underestimate because the cost of the FFTs increases rapidly
as cutoff decreases. Because the optimized long-range calculations are sped up
by about as much as the optimized short-range calculations, users will find that
pre-existing input files and intuitions about runtime-optimal cutoffs still yield
good results.

Figure 5 compares the optimized implementation to the reference as relative
error varies. Speedups are between 2.1× and 2.77× for all cases, without an
apparent pattern other than that ad differentiation has gained more from the
optimizations than ik differentiation. There is not a clear optimal relative error,
since users will want to adjust this parameter depending on how important
accuracy is in the long-range calculation for their specific problems.
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Fig. 5. Profiles of SPC/E water test case running single-threaded on one core of a KNL
as PPPM relative error varies. Left bar: reference, right bar: optimized.



LAMMPS’ PPPM Long-Range Solver for the Second Generation Xeon Phi 73

4.3 OpenMP and MPI Parallelism

With the additional complication of parallelism, we do not attempt to deter-
mine optimal choices of input parameters for our test case, though users will go
through this complex process for their individual problems, often settling on a
suboptimal set of parameters [6]. Here we just show that ouroptimized version
is much faster than the reference for a range of cutoffs on a full KNL node, for
varying numbers of cores on up to two full nodes, and for varying numbers of
OpenMP threads per rank.

LAMMPS is intended to be scalable to very large numbers of cores, but this
scalability is highly dependent on the details of the simulation. As the number
of MPI ranks increases, the runtime-optimal input parameters change. Using
just one set of input parameters might result in poor scalability (if the chosen
set is optimal for small numbers of ranks) or good scalability (if the chosen set
is optimal for a large number of ranks). As the number of ranks grows, FFTs
and other functions requiring communication become relatively more expensive.
This increases the runtime-optimal cutoff and can also make using a stencil size
of 7 more efficient even for reference LAMMPS. Parallelism provides yet more
knobs for users to consider. These include the number of MPI ranks per node and
a number of OpenMP threads per rank. The optimal choice is again problem-
dependent, but generally LAMMPS should be run with around 1 core per rank
and 1–2 threads per core.

Figure 6 contains results for running a proportionally scaled-up benchmark
on an entire KNL node with all 64 of its cores. Now we present results for cutoffs
from 4 to 9 Å instead of 3 to 7 Å, since at 3 Å the FFTs for both versions take
much longer. For reference LAMMPS the runtime-optimal cutoff is now at 7 Å.
The optimized version is fastest at 6 Å, although 7 Å is only slightly slower.
This set of simulations features the same number of atoms per core as Fig. 4,
but its efficiency is reduced by parallelism overhead. For the single-core optimal
cutoff of 5 Å, this scaled-up simulation takes 2.5 times as long per atom with our
optimized code. It still takes about twice as long even at the new optimal cutoff
of 6 Å. The reference version fares a little better, taking “only” twice as long at
5 Å and 1.4 times as long at its new optimal cutoff of 7 Å. If instead we compare
the times required at the new runtime-optimal cutoffs to that required for the
single-core optimal cutoff, the full node simulations take 1.8 and 2.1 times longer
for the reference and optimized codes, respectively. Scalability aside, however,
the same general patterns are apparent here as were seen earlier. Total speedup
is about 2.4× for optimal cutoffs, lower than for the single-core case due to the
relative increase in the expense of communication-intensive functions.

As it appears on the LAMMPS website, the SPC/E water benchmark we use
here defaults to a cutoff of 9.8 Å. This is of course far higher than the runtime-
optimal cutoff on a single core—the simulation takes more than twice as long
as at 5 Å for reference LAMMPS and about twice as long for our optimized
version. However, this exhibits much better scalability since runtime-optimal
cutoffs are higher for higher core counts. This is because less time is spent per-
forming poorly-scaling FFTs while more time is spent computing short-range
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Fig. 6. Profiles of SPC/E water test case scaled up by 64× running single-threaded on
a full KNL node as cutoff varies, for ad differentiation. Left bar: reference, right bar:
optimized.

pair interactions. Figure 7a shows core-seconds taken to simulate a fixed-size
problem as the number of cores used increases. There is one MPI rank per core
and 1 thread per rank. For the 10 Å case this scales well up to 32 cores, but
for the full KNL node parallel efficiencies are 82% for reference LAMMPS and
63% for optimized LAMMPS. Running on 128 cores across two full nodes is very
inefficient; the optimized version actually runs faster on one node, in part due
to using an unfortunate number of FFT grid points, although it remains faster
than the reference. Both versions see a comparable increase in core-seconds as
communication costs rise, and this has a larger relative impact on the optimized
version because it was faster to begin with. These observations are consistent
with benchmarks published on the LAMMPS website, which exhibit large losses
in parallel efficiency after about 16 processors for a variety of systems when
running fixed-size benchmarks.
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Fig. 7. Strong and weak scalability comparisons up to 2 full KNL nodes. Left bar:
reference, right bar: optimized.
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More commonly, users will simulate large problems on large numbers of cores.
Figure 7b shows core-seconds per atom as problem size and core count both vary,
such that there are 36k atoms per core in each simulation. Parallel efficiencies on
a full KNL node are now 85% and 71% for the reference and optimized versions,
respectively, and 79% and 60% for two full nodes. Again we see the optimized
version scaling less well because the rise in communication costs with core count
is roughly the same for both versions, but it remains 2–3× faster over the entire
range.

Users can also make use of OpenMP parallelism, by either assigning multiple
cores to each MPI rank or using multiple threads per physical core, or both.
Figure 8 shows profiles for the same 64×-scale water test case being simulated
on a full KNL node, where the number of MPI ranks and OpenMP threads per
rank is varied. We use a cutoff of 6 Å, as this was close to the runtime-optimal
cutoff for this case on the full node when using 64 MPI ranks and 1 thread
per rank. Best results are obtained when using one MPI rank per core, which
is expected when not running on many nodes—the behavior on two full nodes
is similar. Slight performance gain is obtained by using two OpenMP threads
per core, which helps a little when computing the short-range interactions. The
optimized version behaves similarly to the reference, and is at least twice as fast
except when using too few MPI ranks.
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Fig. 8. Profiles of 64×-scale SPC/E water test case running on a full KNL node, for ad
differentiation, varying the number of MPI ranks and OpenMP threads per rank. The
reference user-omp implementation is on the left and our optimized implementation is
on the right. The reference cases were run with a stencil size of 5 and the optimized
cases with a stencil size of 7. Left bar: reference, right bar: optimized.

5 Conclusion

Efficient vectorization proved to be key to attaining significant speedups over
reference LAMMPS. For the PPPM functions, we tested several approaches and
found memory access patterns to be particularly important. However, because
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the contiguous memory accesses were to be found in loops over stencil points,
the stencil size limited vectorization efficiency. At the same time, as other parts
of the code were optimized, the FFTs became relatively more expensive. And
from the beginning we were concerned with users having difficulty choosing an
optimal stencil size.

All of these problems turn out to have the same solution. Targeting a higher
default stencil size allowed whole rows of a larger stencil to be computed at
once, enabling efficient vectorization. Work shifted away from the FFTs and into
newly-optimized functions when LAMMPS automatically adjusted the FFT grid
to preserve accuracy. And users who do not test a variety of stencil sizes are no
longer missing out on potential performance, because S = 7 is optimal for every
case and can be made the default. The relatively more expensive FFTs also
made another previously-hard choice much easier, as now ad differentiation is
significantly faster than ik differentiation due to its requiring only half as many
FFTs. Although not discussed here, most of our optimizations are applicable to
256-bit vector registers and yield significant speedup on Xeon architectures, and
similar speedup is also observed for different types of physical problems, such as
an interfacial system where half of the domain is a vacuum.

LAMMPS is an extremely flexible program that allows and requires users
to make numerous choices when simulating their different physical problems,
and our optimized code is a significant improvement over reference LAMMPS,
regardless of a user’s particular needs, for simulations which make use of the
PPPM method for electrostatics. We achieve 2–3× speedup across a wide range
of cutoff radii, for different accuracy requirements of the long-range solver, for
both differentiation modes, and for different approaches to parallelization.

Many of these choices have a large impact on performance and even on sim-
ulation accuracy, often in ways that are not intuitive and not transparent to
users as they try to work out how best to approach their problems. Some, like
the choice of stencil size, are sufficiently obscure that many users likely use the
default value, some without even knowing that they even had a choice. Other
users will have gone to great lengths to set up their simulations in the best pos-
sible way, and will have made nearly-optimal choices for their specific problems.
Our optimizations are particularly helpful to the first group because several of
the user-facing knobs now have clearly best settings for a range of problem sizes,
and these settings can be clearly communicated without much qualification as
to which cases they work for, or they can even be made the default selections.
Users with long experience and carefully-crafted input files will benefit from sig-
nificant speedup for their existing set of inputs and can also expect that the
optimal inputs for the new version are close to what they were already using.
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Abstract. Reduction of communication and efficient partitioning are
key issues for achieving scalability in hierarchical N -Body algorithms
like Fast Multipole Method (FMM). In the present work, we propose three
independent strategies to improve partitioning and reduce communica-
tion. First, we show that the conventional wisdom of using space-filling
curve partitioning may not work well for boundary integral problems,
which constitute a significant portion of FMM’s application user base. We
propose an alternative method that modifies orthogonal recursive bisec-
tion to relieve the cell-partition misalignment that has kept it from scal-
ing previously. Secondly, we optimize the granularity of communication
to find the optimal balance between a bulk-synchronous collective com-
munication of the local essential tree and an RDMA per task per cell.
Finally, we take the dynamic sparse data exchange proposed by Hoefler
et al. [1] and extend it to a hierarchical sparse data exchange, which is
demonstrated at scale to be faster than the MPI library’s MPI Alltoallv

that is commonly used.

Keywords: N -body methods · Fast multipole method · Load balancing ·
Communication reduction

1 Introduction

The N -body problem is a kernel in many scientific simulations in which the
behavior of the system is defined from mutual interactions between discrete enti-
ties (e.g., molecules, charges, astrophysical bodies). The N -body algorithm sums
up contributions due to all particles in the system, which results in quadratic
complexity. The Barnes-Hut treecode, which subdivides the 2D/3D domain into
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quad/octrees, brings the complexity down to O(N log N) by hierarchically clus-
tering the sources into multipole expansions. FMM clusters the targets into local
expansions to bring the complexity further down to O(N). For mathematical
foundations of the multipole expansions, see [2–4]. Among the applications of
FMM are [5,6] where protein-protein encounter within a biomolecular dynamics
solver is accelerated by using FMM to solve the boundary integral equation, which
is used to discretize the linearized Possion-Boltzmann equation. In [7] all-atom
molecular dynamics is performed to simulate the conditions of living cells by
calculating energy at target proteins in a solvent and a molecular crowder using
FMM. It is also used to speedup the matrix-vector multiplication, which arises
from electromagnetic scattering problems [8]. Other applications include gravity
simulations [9,10].

Due to their increased importance in large-scale simulations, there is now
a considerable literature on implementing parallel hierarchical N -body solvers,
e.g., FMM. Also, since they are among Berkeley’s seven dwarfs, the numerical
methods that are believed to be the most impactful in science and engineering
according to [11], it is important to address issues arising at exascale especially
the increasing cost of data movement (through memory hierarchy or network)
as opposed to floating point operations. Even though many of the current FMM
implementations are scalable to the full machine they run on, a communication
reducing approach that works on at least an order of magnitude more nodes tends
to be rarely the emphasis of these implementations. This tendency is justified in
accordance to the trend in enhancing a node with multi/many-core capabilities.
However, even within a many-core node, more sophisticated methods should be
used to place and exchange data to get the maximum performance reported
by the vendor. This is already implied in equipping the second generation of
Intel® Xeon Phi™ processors code-named Knights Landing (KNL) with mem-
ory ‘clustering modes’. Therefore, ideas presented in this paper complement the
literature although they mainly target distributed memory.

An example work that achieves full machine scalability using GPUs is that
of Bédorf et al. [9], where a parallel algorithm for sparse tree construction and
traversal that works completely on the GPU is introduced. At the construction
phase, they map the 3D coordinates to Hilbert’s linear (n-bit) addresses, then
particles are sorted to achieve locality in memory. To avoid the typical sequential
insertions to build Hilbert trees [12], one particle is assigned per GPU thread.
A level-wise mask is applied successively on each particle to discover its prede-
cessors such that cells with less than Nleaf are considered leaves. Grouping of
particles is done using parallel compact algorithm. To exploit the massively par-
allel GPU threads, a breadth-first traversal is used to carry out the computation.
They report a processing rate of 2.8 million particles per second. This work was
extended to an MPI parallel version where 24.77 PFlop/s (mixed precision) on
the full Titan system [13] was achieved.

Speck et al. [14] report scalability on up to 262,144 cores by introducing
temporal parallelism (parallel-in-time algorithm) on top of MPI/Pthreads spa-
tial decomposition to overcome the strong scaling limits when the number of
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particles per node becomes too small. The scalability is shown for up to 4M par-
ticles; then when they take advantage of shared and distributed memory paral-
lelism, and exploit the overlap of data-exchange and computation, they calculate
2 billion particles on 262,144 cores of JUGENE, according to [15]. Lashuk et al.
[16] propose an FMM implementation that scales on up to 196,608 cores by pro-
viding a novel domain-specific bulk synchronous all-reduce algorithm for remote
tree communication. They report communication complexity of O(

√
P ∗(NP )2/3),

which comes from their hypercube alltoall communication scheme. Hoefler et
al. [1] discuss the time and memory complexity of the common protocols used
for the dynamic sparse data exchange problem and develop the non-blocking
exchange protocol (NBX ) with constant memory overhead. Their novel algo-
rithm improves the runtime of sparse data-exchange up to 8,192 processors of
Bluegene/P by a factor of 5.6. They prove and model a generic time complexity
of O(log P ) using the LogGP model.

Zandifar et al. [17] provide a parallel FMM implementation as a benchmark
for their high-level skeletons (abstract parallel patterns) framework which exe-
cutes on top of the STAPL runtime system that dynamically schedules task on
highly heterogeneous architectures. They reuse several parallel patterns like the
bucket-sort and alltoall to perform geometric bisection and to aggregate the
local essential tree (LET) respectively. They achieve comparable performance to
the corresponding base MPI implementation by taking advantage of the under-
lying data-driven execution and asynchronous task scheduling guaranteed by the
runtime system. Many features of Charm++ like task migration and Structured
Control Flow are augmented in [18] to overlap computation with the communi-
cation of the local essential tree (LET).

Contributions of the present work can be summarized as follows:

– A novel demonstration that shows a weakness in Hilbert’s space-filling interval
partitioning for boundary element distributions.

– A communication scheme with adjustable granularity, which enables the over-
lap of local essential tree communication with computation that otherwise
cannot be overlapped.

– Introduction of the adaptive hierarchical sparse data exchange (HSDX ), a
neighborhood collective communication algorithm for exchanging the global
tree in a few steps by direct near-field communication only.

In Sect. 2, we describe our adopted partitioning techniques and justify our choice
in detail. Section 4 describes different communication strategies that we adopt
in order to avoid bulk synchronous LET communication. We also describe the
adopted load-balancing strategies and the communication complexity analysis
of our approach. Finally, we demonstrate our scalability and evaluation results.

2 Partitioning Schemes for the Fast Multipole Method
(FMM)

There are two traditional objectives associated with good partitioning of the
N -body problem: evenly splitting data among partitions to achieve work balance,
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and providing efficient access to non-local data. There is no optimal approach
that can simultaneously handle these two objectives, because of strict consider-
ations on locality of data for high arithmetic intensity, granularity, and the size
of communication, which can vary based on space-time proximity of partitions.

2.1 Preliminaries

Partitioning schemes for fast N -body methods can be categorized into orthogonal
recursive bisections (ORB) [19] or hashed octrees (HOT) [20].

Orthogonal Recursive Bisection (ORB). The ORB [19] forms a balanced
binary tree by finding a geometric bisector that splits the number of particles
equally at every bisection of the tree. The direction of the geometric bisector
alternates orthogonally (x, y, z, x, . . .) to form a cascade of rectangular subdo-
mains that contain equal number of particles similar to Fig. 1(c). For nonuniform
distributions the aspect ratio of the subdomain could become large, which leads
to suboptimal interaction list size and communication load. This problem can be
alleviated by choosing the direction of the geometric bisector to always split in
the longest dimension. The original method is limited to cases where the number
of processes is a power of two, but the method can be extended to non-powers-
of-two by using multi sections instead of bisections [21].

Hashed Oct-Tree (HOT). In HOT, initially proposed by [20], the domain is
partitioned by splitting Morton/Hilbert ordered space filling curves into equal
segments as shown in Fig. 1(a) and (b). Morton/Hilbert ordering maps the geo-
metrical location of each particle to a single key. The value of the key depends
on the depth of the tree at which the space filling curve is drawn. Three bits of
the key are used to indicate which octant the particle belongs to at every level
of the octree. Therefore, a 32-bit unsigned integer can represent a tree with 10
levels, and a 64-bit unsigned integer can represent a tree with 21 levels. Directly
mapping this key to the memory address is inefficient for non-uniform distrib-
utions since most of the keys will not be used. Therefore, a hashing function is
used to map the Morton/Hilbert key to the memory address of particles/cells.

(a) HOT (Morton) (b) HOT (Hilbert) (c) ORB (d) Present method

Fig. 1. Schematic of different partitioning schemes. (a) Shows the hashed octree with
Morton keys. (b) Shows the hashed octree with Hilbert keys. (c) Shows the orthogonal
recursive bisection with an underlying global tree. (d) Is the present method using an
orthogonal recursive bisection with independent local trees and tight bounding boxes.



Communication Reducing Algorithms 83

+ +
rank 0

histogram
rank 1

histogram
rank 2

histogram

reduce to global histogram

refine
only

bin

local
bucket
sort

AllReduce
only

eight
integers

Fig. 2. Histogram-based partitioning scheme.

2.2 Adopted Partitioning Strategies

Parallel Sampling-Based Techniques for Finding Splitters/Bisectors.
Parallel sampling-based techniques have proven to be useful for both finding the
bisectors in ORB [21] and finding the splitting keys in HOT [22]. Both ORB and
HOT are constructing parallel tree structures, but in different ways. There is an
analogy between parallel tree construction and parallel sorting. The idea behind
ORB is analogous to merge sort, where a divide and conquer approach is taken.
HOT is analogous to radix sort, where each bit of the key is examined at each
step. Therefore, sampling-based techniques that are known to be effective for
parallel sorting are also effective for parallel tree partitioning. The partitioning
can be separated into two steps. The first step is to find the bisectors/key-
splitters by using a sampling-based parallel sorting algorithm. An example of
such sampling-based partitioning is shown in Fig. 2. Sorting is only performed
among the buckets (not within them) and this is done only locally. The only
global information that is communicated is the histogram counts, which is only
a few integers and can be done efficiently with an MPI allreduce operation. The
bins can be iteratively refined to narrow the search for the splitter of the HOT
key or ORB bisector. This will determine the destination process for each par-
ticle. The second step is to perform an all-to-all communication of the particles.
Since the ORB bisector is one floating point number and the HOT key is one
integer, it is much less data than sending around particle data at each step of
the parallel sort.

Weakness in Space-Filling Partitioning for Boundary Distributions. It
is well-known that the main advantage of Hilbert curve as opposed to Morton is
its locality preserving properties in 2D. It is not clear, however, to what extent
we can generalize this property in higher dimensions [23]. As a counterexample
to the locality property, we observe that it is not entirely preserved in case of
3D boundary element distributions, which increases the distributed interaction
list size. The reason for that comes from the intuitive notion of space-filling
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(a) Hilbert partition A. (b) A, B combined. (c) Underlying Hilbert curve.

Fig. 3. A Hilbert partition from a boundary spherical distribution viewed from different
perspectives. A space discontinuity exists even though partitions are in correct Hilbert
order due to the existence of hollow space in orthogonal dimensions.

curves, that is, when the space is not filled, e.g., in boundary spherical distribu-
tion, interpolation of spatial points to Hilbert curve does not necessarily map to
keys that are continuous in space. This is attributable to the fact that keys are
not interpolated in their natural order, since points are spread out on surface
patches. Figure 3 shows particles laid out in their respective Hilbert order. Due
to the geometry of the space-filling curve, movement across dimensions happens
orthogonally, hence, if hollow space is encountered in the orthogonal direction, it
will introduce discontinuity in the partition as in Fig. 3(a). Clearly, this does not
apply to uniform dense distributions, which comprise many classical applications
of FMM, making HOT partitioning an optimal choice in such cases.

Hybrid Partitioning. In our implementation, we choose a modified version
of ORB over HOT for a few other reasons. One of the main reasons is that we
were able to improve a major defect of ORB – partition-cell alignment issue.
Since geometrically closer points interact more densely with each other, it is
crucial to keep the particles in the same cell on the same process in order to
minimize communication. However, if a global Morton/Hilbert key is used to
construct the local trees, the ORB may place a bisector in the middle of a cell
as shown in Fig. 1(c). This results in an increase in the interaction list size. We
avoid this problem by using local Morton/Hilbert keys that use the bounds of
the local partition. This may at first seem to increase the interaction list near the
partition boundaries since two misaligned tree structures are formed. However,
when one considers the fact that the present method squeezes the bounding box
of each cell to tightly fit the particles as shown in Fig. 1(d), it can be seen that the
cells are not aligned at all in the first place. Furthermore, our flexible definition
of the multipole acceptance criteria optimizes the interaction list length for a
given accuracy regardless of the misalignment.

3 Communication of the Local Essential Tree

Once particles are partitioned, those in the local domain are used to construct
a local tree. We use a completely local construction of the octree using the
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local bounding box, instead of using a global Morton/Hilbert key that is derived
from the global bounding box. This allows us to reuse all parts of the serial
code and only add a few routines for the partitioning, grafting of trees, and
communication. Therefore, any modification in the serial code is immediately
reflected in the parallel code.

After the local tree structure is constructed, a post-order traversal is per-
formed on the tree structure and Particle-to-Multipole (P2M) and Multipole-to-
Multipole (M2M) kernels are executed bottom up. The P2M kernel is executed only
at the leaf cells. It loops over all particles in the leaf cell to form the multipole
expansion at the center of the leaf cell. The M2M kernel is executed only for the
non-leaf cells. It loops over all child cells and translates the multipole expansions
from its children’s centers to its center.

Once the multipole expansions for all local cells have been determined, the
multipole expansions are sent to the necessary processes in a sender-initiated
fashion [24]. This reduces the latency by communicating only once, rather than
sending a request to remote processes and then receiving the data. Such sender-
initiated communication schemes were common in cosmological N -body codes
since they tend to use only monopoles, and in this case the integer to store
the requests is as large as the data itself if they were to use a request-based
scheme. This data is used to construct the local essential tree (LET), that is,
the union of all trees representing the entire domain as seen by the local process
[25]. It gets coarser depending on the distance of the remote cell. In the present
method, it is formed by simply grafting the root nodes of the remote trees. In
conventional parallel FMM codes, a global octree is formed and partitioned using
either HOT or ORB. Therefore, the tree structure was severed in many places,
which caused the merging of the LET to become quite complicated. Typically,
code for merging the LET would take a large portion of a parallel FMM code,
and this made it difficult to implement new features such as periodic boundary
conditions, mutual interaction, more efficient translation stencils, and dual tree
traversals. ExaFMM1 is able to incorporate all these extended features and still
maintain a fast pace of development because of this simplification in how the
global tree structure is geometrically separated from the local tree structure.

While the remote information for the LET is being transferred, the local
tree can be traversed. Conventional fast N -body methods overlap the entire
LET communication with the entire local tree traversal. The LET communi-
cation becomes a bulk-synchronous MPI alltoallv type communication, where
processes corresponding to geometrically far partitions send logarithmically less
information, thus resulting in O(log P ) communication complexity where P is
the number of processes. Nonetheless, in traditional fast N -body codes this part
is performed in a bulk-synchronous manner.

1 ExaFMM is an open-source code base to utilize fast multipole algorithms, in parallel,
and with GPU capability. Algorithms pertaining to partitioning and communication
reduction are all available on the public repository https://github.com/exafmm/
exafmm.

https://github.com/exafmm/exafmm
https://github.com/exafmm/exafmm
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4 Communication Reduction for the Adaptive Tree

In the following sections, we present different novel techniques that can be used
to do the hierarchically sparse data exchange (HSDX ) of the adaptive FMM tree,
which are generally applicable to a variety of algorithms constituting Defini-
tion 1. The optimization of global tree communication is essential to achieve
strong scaling especially at a large scale. Such class of communication becomes
very challenging due to the fact that ExaFMM has a highly optimized serial code
that utilizes many-core parallelism, making communication dominates even when
overlapped with computation. The natural solution to this problem is to strong
scale communication, but to our knowledge, it is not straightforward to achieve
this for practical reasons such as network congestion, growing interaction lists,
and the different implementations of some MPI collectives that do not scale by
definition e.g., MPI Alltoallv. Therefore, it is important to look at these caveats
while implementing a domain-specific communication scheme of the global
FMM tree.

Definition 1. Let T be a global adaptive tree with L levels numbered from l0−lk
(coarse to fine) and partitioned to P processes. s is the “essential” subtree size
such that 0 < s < S. Pi, Pj ⊂ lk, if the finest level Pi, Pj share is k. We have
a hierarchically sparse data exchange HSDX if for Pi, Pj ⊂ l1 and Pi, Pv ⊂ l2,
s1 < s2 and s1! = 0

4.1 Overlapping Computation Depending on Communication
Granularity

Asynchronous communication is a limiting factor to performance at exascale espe-
cially when done collectively. This appears to be the case for hierarchical algo-
rithms such as FMM and Multigrid method (MG). Hence, communication needs
to be balanced and efficiently overlapped with local work. In FMM, it is known
that a substantial amount of time is spent in doing local Multipole-to-Local (M2L)
and Particle-to-Particle (P2P) computations, but the question is how often we
need to communicate to reduce blocking for data given the problem size, dis-
tribution and scale. To answer this question, we have parametrized our FMM to
accept different granularities of communication represented by the size of the
LET’s subset. The subsets may contain non-leaf cells requiring O(p) steps for
p = order of multipole expansion (higher p increases arithmetic intensity for low-
level kernels) or leaf cells requiring O(N/P )2 steps for P = number of processes.
The typical case would be to call a blocking MPI Recv on the expected tag because
there is no useful work to do in the current context; however, since MPI does not
provide guarantees on the order of messages when used in mixed mode, our code
consumes the available subtree and marks it as “traversed”. This mechanism will
maximize concurrency and minimize the message queuing time. The calling task
will keep traversing until requested cell is received or traversed by another task.

Conventional parallel N -body methods use a bulk-synchronous MPI
alltoallv to communicate the whole LET at once, and overlap this communi-
cation with the local tree traversal to hide latency. One could over-decompose the
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(a) Hypercube communication of 256 MPI pro-
cesses. Interactions get coarser as we move right
and finish in LogP steps.

(b) A zoomed-in version of the flat communi-
cation of 256 MPI processes, potentially causing
contention when scaling on a supercomputer’s
network.

Fig. 4. Implemented communication patterns in FMM as visualized by Extrae. (Color
figure online)

LET down to a per cell request, and then aggregate the communication to the opti-
mal granularity. The bulk-synchronous communication model can be thought of
as an extreme case of aggregation, while something like an RDMA per task per cell
would be at the other end of the granularity spectrum. There is a caveat: We still
require further tuning to reduce global communication by indirectly relaying mul-
tipoles through neighbor processes, as we will show in Sect. 4.2 using Algorithm 1.

4.2 Hierarchical Sparse Data Exchange Protocol (HSDX )

Lashuk et al. [26] define a set of parameters that denote the interaction lists,
i.e., U -, V -, W - and X-lists of the FMM tree. The same analogy can be used
for describing the relationship between adjacent processes such that exchanging
the entire LET can happen in a few steps. The mentioned lists constitute the
adjacent nodes/processes through which global cells that contribute to the local
tree are relayed. For the majority of the spatial N -Body partitioning methods, we
can use the subdomain’s bounding box to depict partitions that share a face, an
edge or a vertex in O(1) steps using Lemma 1. This enables us to create a breadth-
first data exchange graph that starts from the local tree and covers all the
cells from the essential tree. Each node in the graph contains the corresponding
partition id and the adjacent partition id, which is needed since communication
strictly happens between adjacent nodes. Figure 5 shows the exchanges needed to
receive the entire LET by target process (3,3), with overlapping direct clusters
enclosed in dashed squares. The corresponding data exchange graph of node
(3,3) contains a node with id (1,5) and an adjacent id of (2,4), meaning that cell
data of (1,5) can be acquired through (2,4) in the second stage of exchanges. To
inherently achieve algorithmic balance, we hardwire edges in such a way that
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Fig. 5. The underlying data exchange graph of central process (3,3) within a uniform
2D grid of processes.

messages are evenly distributed over direct neighbors. If we start with direct
neighbor (2,4), a naive approach would exhaust all its direct neighbors, namely
{(1,3), (1,4), (1,5), (2,5), (3,5)}, thus overloads its buffers and causes imbalance.
The next neighbor (3,4) will only have (4,5) data to relay. Therefore, we design
our communication graph such that for internal processes in a uniform domain,
the average number of messages received from direct neighbors in each step is⌈

5D−3D

3D−1

⌉
. Using notations from Table 2, we can generalize this formula to non-

uniform domains if we turn it into

NB =
⌈

τ(P, 1) − ζ(Ω(P ))
ζ(Ω(P )) − 1

⌉
(1)

We finally reach a stage where each process has access to the near and far-
field interactions, thus accomplishing global communication using multiple calls
to MPI Neighbor alltoallv. Algorithm 1 and Table 2 summarize our method.

Time Complexity of the adaptive HSDX . A good lower bound complexity
for HSDX is NBX i.e. Ω(log P ) from [1], when non-neighbor data exchange
is extremely sparse or non-existent. The hierarchical sparsity in Definition 1
increases as we move away from target processes. The data exchange graph
can be mapped to a tree since there is exactly one path from Pi to Pj , with an
order bounded by Eq. 1. An upper bound is analogous to a fully dense communi-
cation, such that O(log P ) exchanges happen O(log P ) times, which is equivalent
to O(log2 P ). Table 1 shows FMM communication complexity for uniform domains.

Lemma 1. A partition P ′ is added to the adjacency list of P iff for any
dimension D maxBound(P ′

x) − maxBound(Px) > ε and minBound(Px) −
minBound(P ′

x) > ε
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Table 1. Communication complexity of FMM.

Reference Communication complexity

Teng [27] O
(
P (N/P )2/3(log N + μ)1/3

)

Lashuk et al. [26] O
(√

P (N/P )2/3
)

Lashuk et al. [16] O (log P + (N/P ))

Yokota et al. [28] O
(
log P + (N/P )2/3

)

Table 2. HSDX Algorithm communication symbols.

Symbol Indication

P and P ′ Local and global partitions

Ω(P ) Subdomain boundary

ζ(Ω(P )) Direct neighbors of P

T Level-by-level communication adjacency graph

Algorithm 1. HSDX - Hierarchical Sparse Data Exchange
input : A list lin of cells and destinations
output: A list lout of cells and sources

foreach P ′ in Ω(P, β) do1

add(P’,ζ(Ω(P )))2

end3

T ← BuildCommTree(ζ(Ω(P )));4

create distributed MPI graph topology;5

foreach l in T .Levels do6

foreach P ′ in ζ(Ω(P )) do7

reduce tree based on the bounding box and forward to P’;8

end9

exchange meta data;10

call MPI Neighbor alltoallv;11

end12

4.3 Pairwise Exchange for Reducing Contention

It is observed at large scale that direct communication between sources and tar-
gets results in network contention which can be amortized by relaying multipoles
through neighbor processes while utilizing the well-known pattern of N -Body
interactions. Therefore, to mimic O(log P ) complexity for boundary distribu-
tions, we implement a modified version of the well-known hypercube (butterfly)
global communication scheme which starts out by the fine neighbor interactions
depicted by (P ⊕2i) and gets coarser as we move towards the ( log P ) step. This
is clearly visualized in Fig. 4 using Extrae, a tool that uses different interposition
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mechanisms to inject probes into the target application so as to gather informa-
tion regarding the application performance. During this work, the tool is used
to better understand the performance of the application pertaining to the used
communication techniques. In Fig. 4, the horizontal axis represents the visualized
timeline and the vertical axis represents the MPI processes. The yellow colors
declare communication links, whereas the blue colors represent computation and
red color symbolizes MPI Wait calls. One of the main advantages of carrying out
communication in ( log P ) steps, as in is Fig. 4(a), is that subtrees received at
intermediate stages can be asynchronously traversed, which otherwise cannot be
done if communication is done with blocking collectives.

5 Performance Analysis

5.1 Experimental Setup

Our experiments are on Shaheen XC40, the rank 15 supercomputer according to
the November 2016 Top500 list, located at King Abdullah University of Science
and Technology. It has 196,608 physical cores and HPL performance of 5.537
PFlop/s. Each node is equipped with dual socket Intel Xeon E5-2698v3 16C
2.3 GHz and Cray Aries interconnect with dragonfly topology.

Throughout the following experiments, the underlying FMM code is compiled
with the Laplace kernel, Cartesian coordinates, P = 4 (order of expansion) and
spherical boundary distribution unless otherwise stated. Problems have been
partitioned using the hybrid partitioning from Sect. 2.2. To demonstrate the
effectiveness of the presented methodologies, we start by showing how optimal
grain size for a specific problem is chosen, then assessing the scalability with the
tuned granularity of communication. Then, results from using HSDX vs. exist-
ing communication reducing approaches are presented. Good scalability shows
that an inordinate cost is not paid for intra-node communication, as opposed to
the conventional bulk-synchronous approach, for which performance depends on
the underlying network topology, the implementation of collectives like alltoall
or allgather, the available memory size and bandwidth, and the frequency at
which synchronization is triggered.

5.2 Communication Time for Different Granularities

In order to show the direct effect of asynchronous traversal on performance, we
gradually vary the grain-size and measure the communication time, which is the
most dominant factor at a large scale. Optimal granularity is a tuning parameter
that varies with problem size, distribution and other factors as depicted by the
average communication time in Fig. 6, where subtree size is gradually increased.
The unit of communication is a subtree, which has 2, 4, 8, etc., cells as shown
in the X-axis. The is a subset of the local essential FMM tree as we explain in
Sect. 3. Communication time is measured by accumulating times of individual
asynchronous sends and receives per process and taking their arithmetic mean.
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Fig. 6. Average communication time for different sizes and distributions as grain-size
is varied.

The theoretical maximum subtree size is the entire LET. We stop at a certain
threshold (32 in this case) because when it is increased further, a huge jump in
time occurs. This is attributable to the change in communication protocol as per
the Cray® MPICH specification from Eager Message to Rendezvous Message
Protocol. When the message size exceeds a specific threshold (8 KB in this case),
MPICH2 GNI NetMod alters the pathways towards a more relaxed algorithm for
point-to-point inter-node messaging. A similar approach is developed in other
MPI implementations like Open MPI and Intel® MPI. Hence, the remote tree
traversal enables us to tune the performance by reducing the communication
time enough to increase the impact of latency hiding.

5.3 Scalability of Spherical Boundary Distribution with HSDX
In Fig. 7, we test the strong scalability at optimal grain size using HSDX for
a large problem of 1010 particles. It follows that we have an efficient asynchro-
nous communication when remote calls are non-blocking, have tunable gran-
ularity and when control is handed over to useful work rather than waiting
immediately. To show this, we have integrated and compared several communi-
cation protocols within ExaFMM in Fig. 7. We note that HSDX is the closest to
ideal scaling and has the advantage of fastest time-to-solution since it limits the
inter-rack communication penalty on the dragonfly network by solely exchang-
ing data through neighbors. By just looking at Fig. 7, it is hard to see that
HSDX is at potential advantage for the exascale era. So we find it useful to
present Table 3, which shows a more detailed analysis of the strong scalability.
We notice a 6-fold increase in performance gain (from 3.87% to 23.44%) over
the corresponding MPI Alltoallv implementation as more cores are added. The
parallel efficiency decreases, however, as the problem gets smaller while com-
munication overhead prevails. Conventional O(P ) communication schemes stop
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Fig. 7. Strong scaling across different communication protocols with 1010 particles.

Table 3. HSDX strong scalability analysis with FMM.

P 4, 096 8, 192 16, 384 32, 768 65, 536

HSDX 32.72 17.02 9.27 5.008 3.05

Rel. Speedup 1 1.92 3.53 6.53 10.70

Efficiency - 0.96 0.88 0.81 0.66

Enhancement 3.87% 11.41% 10.55% 16.27% 23.44%

scaling after 2048 nodes (65,536 cores) of Shaheen XC40. According to our largest
setup that has an input of N = 1010, we have an update rate of approximately
109 particles/second.

PVFMM is a large-scale FMM library that uses a kernel independent implemen-
tation, thus widens its target range of applications that require calculation of
potential for elliptic kernels [29]. In this experiment, we attempt to compare the
strong-scaling performance of PVFMM to our ExaFMM branch. It is worth noting
that citing independent work is not meant to deem one superior to the other, but
on the contrary, it is to give rise to our promising performance boosting strategies
that tackle problematic communication and partitioning issues that are likely to
arise in the near exascale era. In their most recent reports on PVFMM, Malhotra
et al. [29] report perfect scalability up to 256 cores when running the Laplace
kernel to compute potentials for 108 distributed on the surface of an ellipsoid.
From that point onwards, communication cost starts to grow. They achieve 95%
speedup corresponding too about 37% parallel efficiency. We switch to neigh-
borhood collective communication presented in Sect. 4.2 for this comparison,
since it vastly reduces network contention by propagating cells through direct
neighbors only. Figure 8(a) shows consistent weak-scalability of communication
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Fig. 8. Communication scaling for big and small examples.
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(c) ExaFMM breakdown.

Fig. 9. Strong scaling 231 unknowns for sphere distribution and P = 4 and comparing
ExaFMM while using HSDX communication and PVFMM.

over the conventional MPI Alltoallv implementation. The presented approach
shows a faster time-to-solution in ExaFMM vs. PVFMM when computing 2 billion
unknowns as in Fig. 9. We cannot claim that scaling will persist indefinitely
beyond the depicted number of cores, but when we have an exascale application
that requires orders of magnitude larger problems that can fit in the machine’s
memory, we have a strong evidence of strong scalability.

5.4 Evaluation of Neighborhood Collective Communication Using
HSDX

Figure 8(a) compares HSDX using neighborhood collectives to NBX and
MPI Alltoallv. For the class of problems that constitute a hierarchically sparse
data exchange defined in 1, HSDX is asymptotically bounded by the c1 log P and
c2 log2 P . This behavior is shown for the boundary distribution solving Laplace
Cartesian FMM kernels with P = 4 (order of expansion). However, the figure does
not suggest that HSDX can generally replace its rivals; we still believe that
NBX would outperform our algorithm in the general sparse data exchange,
because it has the advantage of both O(log P ) upper bound in addition to the
use of a non-blocking barrier and synchronized sends [1].
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Figure 8(b) weak scales a small example in order to reduce the effect of non-
neighbor communication. The fact that HSDX and Pairwise exchange exhibit
similar performance is anticipated since they almost have identical logP behavior
in such cases. They seem to lose herein against MPI Alltoallv because of the
initialization overhead included in communication time.

6 Conclusion

In this work, we propose algorithms that improve data locality, remote data
access, and load-balance of the N -body problem. These algorithms contribute
to producing an FMM solver that exploits communication redundancy and com-
putation overlap. We show that Hilbert space-filling curves may not be the most
optimal choice to partition boundary domain distributions. HSDX shows good
strong and weak scalability for large adaptive hierarchically sparse problems, and
falls within proven asymptotic time complexities. Shared memory parallelism is
important to utilize resources within a node and to alleviate the problems with
MPI resource management; thus we need to consider it in future implementa-
tions. We are working on improving HSDX so that it exploits the advantages
of NBX to widen its range of use cases. As for application, we are intending to
make the presented solver a part of an FMM preconditioner for the Poisson equa-
tion, which has variety of applications in diffusive and equilibrium processes in
fluid dynamics and many other applications.
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22. Solomonik, E., Kalé, L.V.: Highly scalable parallel sorting. In: Proceedings of
the 2010 IEEE International Symposium on Parallel and Distributed Processing
(IPDPS), pp. 1–12 (2010)

23. Haverkort, H.: An inventory of three-dimensional Hilbert space-filling curves. arXiv
preprint arXiv:1109.2323 (2011)

http://arxiv.org/abs/1405.7487
http://arxiv.org/abs/1109.2323


96 M. Abduljabbar et al.

24. Dubinski, J.: A parallel tree code. New Astron. 1, 133–147 (1996)
25. Warren, M.S., Salmon, J.K.: Astrophysical N -body simulations using hierarchi-

cal tree data structures. In: Proceedings of the 1992 ACM/IEEE Conference on
Supercomputing, ser. Supercomputing 1992, pp. 570–576. IEEE Computer Society
Press, Los Alamitos (1992)

26. Lashuk, I., Chandramowlishwaran, A., Langston, H., Nguyen, T.-A., Sampath, R.,
Shringarpure, A., Vuduc, R., Ying, L., Zorin, D., Biros, G.: A massively parallel
adaptive fast multipole method on heterogeneous architectures. In: Proceedings of
the Conference on High Performance Computing Networking, Storage and Analysis
(2009)

27. Teng, S.-H.: Provably good partitioning and load balancing algorithms for parallel
adaptive N -body simulation. SIAM J. Sci. Comput. 19(2), 635–656 (1998)

28. Yokota, R., Turkiyyah, G., Keyes, D.: Communication complexity of the fast mul-
tipole method and its algebraic variants. Supercomput. Front. Innov.: Int. J. 1(1),
63–84 (2014)

29. Malhotra, D., Biros, G.: PVFMM: a parallel kernel independent fmm for particle
and volume potentials. Commun. Comput. Phys. 18(3), 808–830 (2015)



EvoGraph: On-the-Fly Efficient Mining
of Evolving Graphs on GPU

Dipanjan Sengupta1 and Shuaiwen Leon Song2(B)

1 Georgia Tech, Atlanta, USA
dsengupta6@gatech.edu

2 Pacific Northwest National Lab, Richland, USA
Shuaiwen.Song@pnnl.gov

Abstract. With the prevalence of the World Wide Web and social net-
works, there has been a growing interest in high performance analytics
for constantly-evolving dynamic graphs. Modern GPUs provide massive
amount of parallelism for efficient graph processing, but the challenges
remain due to their lack of support for the near real-time streaming
nature of dynamic graphs. Specifically, due to the current high vol-
ume and velocity of graph data combined with the complexity of user
queries, traditional processing methods by first storing the updates and
then repeatedly running static graph analytics on a sequence of ver-
sions or snapshots are deemed undesirable and computational infeasible
on GPU. We present EvoGraph, a highly efficient and scalable GPU-
based dynamic graph analytics framework that incrementally processes
graphs on-the-fly using fixed-sized batches of updates. The runtime real-
izes this vision with a user friendly programming model, along with a
vertex property-based optimization to choose between static and incre-
mental execution; and efficient utilization of all hardware resources using
GPU streams, including its computational and data movement engines.
Extensive experimental evaluations for a wide variety of graph inputs
and algorithms demonstrate that EvoGraph achieves up to 429 million
updates/sec and over 232x speedup compared to the competing frame-
works such as STINGER.

1 Introduction

High performance machines are increasingly using GPUs to leverage their scala-
bility and low dollar to FLOPS ratios [1–4]. As a result, GPUs have become the
main compute engines for today’s HPC supercomputers such as Titan in Oak
Ridge [5]. Another recent trend is the gain in popularity of GPU processing in
many domains such as social networks, e-commerce, advertising, and genomics.
This has motivated the growing interest in large-scale real-world graph process-
ing for both scientific and commercial applications, as well as the recent efforts in
accelerator-based graph processing frameworks such as MapGraph [6], CuSha [7],
GraphReduce [8,9], and so on. An important aspect of real-world graphs, like
Facebook friend lists or Twitter follower graphs, is that they are dynamic and
evolving. Given the billions of Facebook [10] users sharing more than 100 billion
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance 2017, LNCS 10266, pp. 97–119, 2017.
DOI: 10.1007/978-3-319-58667-0 6
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photos and posts per month, let alone the volume on Twitter [11], there is a
huge need to quickly analyze this high velocity stream of graph data.

However, state-of-the-art graph analytics for dynamic graphs [12–14] follow
a store-and-static-compute model that involves batching these updates into dis-
crete time intervals, applying all of the updates to the total graph, and then
rerunning the static analysis. There is considerable redundancy and inefficiency
in this approach to analyzing this evolving graph sequence. Static graph ana-
lytics on a single version of the evolving graph, even when leveraging massive
amount of parallelism offered by thousands of cores in a GPU, can be very slow
due to the large scale of many real-world graphs (e.g., one Facebook graph pur-
portedly has a trillion edges [10]) and/or because of the complexity of the graph
queries that are traditionally both compute and memory intensive. Second, data
movement of the entire input graph repeatedly between the host and the GPU
over the slow PCIe link can result in substantial overhead, which in turn can
overshadow the benefits from the massive parallelism offered by a GPU. Finally,
there are real world graph analytics problems that inherently require soft or hard
real-time guarantees, e.g., real-time anomaly detection, disease spreading, etc.,
and hence cannot use the traditional static recomputation model. Beyond just
hardware performance, we also note that the skills to write high-performance
GPU code are substantially different from the coding skills that many analysts
have learned. As one can therefore see, the many demands of high velocity graph
data, both commercial and scientific, have outstripped the traditional, batched
static graph analytics models when using GPUs.

To address this, we propose a two-pronged approach to deal with both
the performance and programmability challenges. We introduce an accelerator-
based incremental graph processing framework named EvoGraph. EvoGraph
employs a new variant of the popular Gather-Apply-Scatter (GAS) programming
model [15–17], which we call Incremental-GAS (or I-GAS), to incrementally
process a batched stream of updates (i.e., edge/vertex insertions and deletions)
on-the-fly. The key insight is that I-GAS algorithms are designed to work over a
dynamically determined sub-graph of the previous version of the evolving graph.
For many popular graph algorithms and real-world graphs, the corresponding I-
GAS logic affects only a fractional portion of the graph; this reduction in problem
size can result in tremendous performance benefits compared to the traditional
static recomputation on the entire graph. The modest additions of the I-GAS
model to the already-published GAS model interface enable an easy transition of
analysts from coding in a static sequential to a dynamic streaming environment.

From a simplistic view, it would seem that incremental methods would always
be preferable. However, there are scenarios when a streamed update may affect
a very large portion of the graph, and incremental processing may become worse
than static recomputation due to the overheads from incremental execution.
One such counterexample is in the incremental version of Breadth First Search
(BFS), where updates that affect vertices close to the source/root node will
affect nearly the entire BFS tree. Thus the incremental run can at best perform
as good as the static re-run. In order to handle such scenarios, we employ a per



EvoGraph: On-the-Fly Efficient Mining of Evolving Graphs on GPU 99

batch, property-based mechanism named ‘property-guard’, which dynamically
selects between incremental and static graph processing. Utilizing user-defined
and built-in properties (e.g., vertex degree and parent ID) along with program-
mable control policies, EvoGraph analyzes each update batch and dynamically
decides whether to process the graph incrementally using I-GAS or to fall back
to static recomputation. To the best of our knowledge, EvoGraph is the first
GPU-based graph analytics framework that enables efficient online processing
of evolving graphs.

Contributions. We make the following contributions:

– EvoGraph, an accelerator-based high-performance incremental graph process-
ing framework built on top of GraphReduce [8], processes evolving graphs
by avoiding the naive static graph recomputation approach. It seamlessly
maps users’ sequential codes for incremental graph algorithms onto GPU for
acceleration.

– Improved GPU core utilization via dynamic merging of GPU contexts (or
context packing) from different graph applications, and additional hardware
parallelism extracted using deep copy operations on separate CUDA streams1

to leverage multiple GPU hardware queues.
– An extensive evaluation of three general classes of graph algorithms (i.e.,

Stateful, Partially Stateless and Fully Stateless) on real-world and synthetic
graph datasets demonstrates that EvoGraph can significantly outperform the
existing static recomputation approaches. Compared to competitive frame-
works like STINGER, EvoGraph achieves a speedup of up to 232x and overall
throughput of 429 million updates/sec.

– Graph-property-based performance optimization called property-guard to
dynamically decide between static and dynamic graph execution based on
user-defined and built-in graph properties, resulting in a speedup of up to
18.4x over a common streaming approach.

2 Background and Motivation

2.1 Computation Abstraction

As introduced in the previous work [8,15–17], the Gather-Apply-Scatter (GAS)
computation model has been widely adopted in research and industry to simply
and effectively express a broad range of graph algorithms (e.g., heat simulation,
nuclear trafficking and sparse linear algebra). Under GAS, the input data can
be described as a directed graph, G = (V,E), where V denotes the vertex set
and E denotes the directed edge set. A GAS-based computation iterates over
three sequential phases, the eponymous Gather, Apply and Scatter. The iteration
process continues until the vertex state no longer changes. In the Gather phase,
in-coming messages are processed and combined (reduced) into one message.

1 In this paper, we use the NVIDIA CUDA terminology to describe the GPU archi-
tecture. However, our work is independent of the terminology itself.
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In the Apply phase, vertices use the combined message to update their states.
Finally, in the Scatter phase, vertices can send a message to their neighbors
along their edges. Depending on whether the Scatter and Gather phases iterate
over and update edges or vertices, there are three ways to implement GAS-based
algorithms: vertex centric [18], edge centric [19] and hybrid [8].

2.2 Motivation and Challenges

Compared to its counterpart CPU, GPU often provides superior acceleration for
general graph algorithms because of their unparalleled massive amount of par-
allelism. Figure 1 demonstrates that for processing three real-world in-memory
graphs under BFS, recent frameworks for processing static graphs on GPU [6–8]
significantly outperform one of the state-of-the-art CPU-based graph analytics
(i.e., X-Stream [19]). This motivates us to leverage GPU’s high computation
power for processing dynamic graphs.

Figure 2 shows an example of an evolving Linkedin social network graph, in
which a subgraph (circled by red dashed line) is going through update batches
(e.g., insert:(1,4) and delete:(1,3)) at different time points. Different colors of dots
on the social network represent work fields. Processing such common constantly-
evolving social network graphs on GPU is very challenging because (i) highly
efficient computation model and convenient programming constructs do not exist
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Fig. 1. State-of-the-art GPU frameworks (i.e., MapGraph, GraphReduce and Cusha)
for processing static graphs under BFS significantly outperform a CPU-based frame-
work X-Stream (baseline). X-Stream runs on a 16-core Xeon E5-2670 CPU with 32GB
memory. GPU frameworks run on a NVIDIA Tesla K40c GPU with 15 SMX and 12GB
GDDR5 RAM.

Fig. 2. A subgraph of a Linkedin social network has been updated over time but the
majority of the network remains unchanged. (Color figure online)
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for programmers to effectively express their algorithms on GPU, (ii) how to
efficiently utilize the parallelism provided by GPU to deal with the computa-
tion and data storage overlap in dynamic graphs is complicated, and (iii) how
to extract the most throughput from GPU without burdening the users with
hardware details is unclear. To address these challenges, we designed a runtime
graph analytics framework named EvoGraph to enable online processing of com-
plex evolving graphs on modern GPUs. Under EvoGraph, users only need to
write sequential codes and the sophisticated runtime will seamlessly map the
incremental graphs to GPU for acceleration.

3 Design Choices

In general, there are two major strategies for processing evolving graphs: (1)
Offline evolving graph processing where multiple versions of the graph are stored
and analyzed for the change in certain graph properties over time. (2) Online
evolving graph processing that involves real-time continuous query processing
over streaming updates on an evolving graph. EvoGraph is a framework designed
for (2).

From the design perspective, we will discuss the four key aspects of evolving
graphs that dictate the design decisions for EvoGraph in this section.

3.1 Computation Overlap and Programming Model

As shown in Fig. 2, across multiple versions or snapshots of an evolving graph,
the vertex states or values for many vertices remain the same over time, and thus
their recomputation is essentially redundant. We define an inconsistent vertex
as a vertex for which one or more properties are affected when an update batch
is applied. For instance, when calculating out-degree of vertices, an insertion
or deletion of edge (vi,vj) only makes vertex vi inconsistent. However, under
BFS (Breadth-First Search) algorithm, insertion of edge (vi,vj) makes vj and
all the vertices that are descendants of vj inconsistent. One may consider the
entire vertex set V to be inconsistent by default. But for many real-world evolv-
ing graphs (e.g., social network), changes affect only a very small subset of the
graph. Therefore, computing the vertex states only for those inconsistent ver-
tices while maintaining the vertex states for the rest will significantly reduce
the computation time. To enable this, we propose Incremental GAS Program-
ming Model (or I-GAS) based on the classic GAS abstraction (Sect. 2.1) for
incremental graph processing. To reduce overheads, I-GAS builds a group of
inconsistent vertex sets and sub-graphs that are affected by an update batch
and then reduce the incremental graph problem to a sub-problem under GAS.
We provide detailed discussion for I-GAS in Sect. 4.3.

3.2 Working Set Overlap and Data Structure Choice

Another key observation is that there can be a significant overlap in the edge and
vertex sets between the consecutive versions of an evolving graph. For instance, if
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a graph evolved from G to G’ during a certain time epoch T and let δ1 = G′ −G
(insertions), δ2 = G − G′ (deletions), then G ∩ G′ = G − δ2 = G′ − δ1 is the
overlap between the working sets of the two consecutive versions.

There are multiple options for choosing data structures to store an evolv-
ing graph. Assume the graph has n vertices and m edges at certain time point.
Adjacency matrices allow fast update (i.e., O(1) time cost) with both inser-
tions and deletions but require O(n2) space. Adjacency lists are space efficient
(O(m+n)) and allow fast update, but graph traversals are very inefficient due to
the non-contiguous memory nodes in the adjacency edge list. Compressed Sparse
Row (CSR) [20] formats provide both space efficiency and fast traversal through
storing offsets rather than all the valid fields in an adjacency matrix. But its
insertions and deletions are very expensive because each update requires shift-
ing of the graph data throughout the compressed array to match the compressed
format. To allow efficient updates and processing for both the incremental and
static graph algorithms, EvoGraph applies a hybrid data structure: edge-lists
to store incremental updates and compressed format to store the previous sta-
tic version of the graph. As mentioned previously, the edge-list will allow faster
updates without adversely affecting the performance of the incremental compu-
tation. Meanwhile, the compressed matrix format allows faster traversal over the
static version of the graph. EvoGraph merges both whenever required (Sect. 4.3).

3.3 Static vs. Dynamic Runtime

Runtime of online graph analytics varies widely depending on the algorithm and
the update mechanism. On one hand, there are cases in which incremental algo-
rithms affect only a small local portion of the entire graph (e.g., making a small
subset of the graph inconsistent). As demonstrated in [21–23], per-vertex prop-
erties that depend on a fixed radius affect only a local portion of the graph and
hence the runtime is proportional to the update batch size (e.g. triangle count-
ing algorithm). On the other hand, there are classes of incremental algorithms
whose properties depend on the graph path which may cause a large portion
of the graph to be inconsistent, resulting in a complete recomputation of the
graph. Under such scenario, incremental processing will not achieve any perfor-
mance benefit over static recomputation, and may even suffer from a performance
degradation due to the overheads associated with the incremental execution. To
effectively handle both scenarios, EvoGraph applies a heuristic to select the
execution path: incremental processing or static recomputation. The decision
is made dynamically based on a set of built-in or user-defined graph property
checks (e.g., vertex degree information) and the fraction of inconsistent vertices
in the update batch that meets the criteria. More specifically, if the update is
predicted to affect a small portion of the graph then the incremental execution
path is taken. Otherwise, the update is merged with the static graph, which will
then be recomputed. Take BFS as an example. If 90% of the inconsistent vertices
in an update batch are of high degree, a large portion of the graph is likely to be
impacted, so the static execution path will be taken. The metadata for making
decisions on the execution path will be discussed later.
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3.4 Context Packing and Multi-level GPU Sharing

During the graph processing, some incremental computation may only affect a
small portion of the graph, resulting in GPU cores being significantly underuti-
lized. This gives us opportunities for GPU resource sharing among static and
incremental graph computation. Taking NVIDIA GPUs for example, since the
CUDA runtime does not allow more than one host process to share the same
GPU context (or protection domain), the GPU workloads of two different appli-
cations cannot run concurrently on a single GPU. When processing incremental
graphs, this could result in high context switching overhead and potential core
idling. To avoid this, EvoGraph enables ‘Context Packing ’ which packs different
application contexts into a single protection domain. Specifically, all the graph
workloads (static and incremental) collocated on a GPU are dynamically mapped
to separate host threads of the same per GPU host process, with their respec-
tive GPU operations invoked via separate CUDA streams shown in Fig. 3. Using
a single GPU context to host all applications enables (i) the cross-application
sharing of GPU resources, i.e., graph operations from different applications can
run concurrently on a single GPU, thereby achieving the benefits of space and
time sharing- a true multi-tenancy, (ii) minimal context switching overhead
reduced further by pinning the per GPU host threads to certain CPU cores,
(iii) high scalability achieved with GPU requests being channelized through sep-
arate CUDA Streams, thereby reducing the overheads of request synchronization
and pipelined execution to the minimum, and (iv) high fault tolerance as the
faults due to one corrupt graph application can be localized to certain threads
and will not affect other graph applications. One specific advantage of leverag-
ing CUDA streams is that all three GPU engines, (a) memory copy from host
to device (H2D), (b) from device to host (D2H ), and (c) computation, can be
concurrently executed by different applications.
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Fig. 3. Context packing and multi-level GPU sharing: (a) Deep copy mechanism
between host and device. (b) Context packing mechanism for true multi-tenancy.



104 D. Sengupta and S.L. Song

4 EvoGraph: The Runtime Framework

EvoGraph can efficiently process evolving graphs that incrementally change over
time due to edge or vertex insertions and/or deletions by leveraging hundreds
of cores available on GPU. The continuous stream of updates is divided into
fixed size batches prior to being processed by EvoGraph in the order of their
arrival. EvoGraph simplifies evolving graph analytics programming by support-
ing a multi-phase, asynchronous, property guarded execution model. Figure 4
shows the general software architecture of EvoGraph which consists of five major
components: Static-/Meta-computation Engine, Stream Engine, Inconsistency
Graph Builder, I-GAS Engine and Graph Merger. All of them support GAS-
based APIs.

4.1 User Interface

Table 1 shows the six user-defined functions for representing the different com-
putation phases in EvoGraph. By customizing these functions, programmers can
simply write sequential graph algorithms on the host CPU side. The runtime of
EvoGraph will then generate parallelized code to incrementally process evolving
graph updates and execute them on the targeted GPU. The user-defined func-
tions including meta computation(), build inconsistency list(), property guard(),
frontier activate(), update inconsistency list() and merge state() correspond to
the five computation phases of EvoGraph which are summarized as follows:

1. Processing Static Graph and Metadata: computing the static version of
the graph and any optional metadata that will be used later for incremental
processing.

2. Extracting Graph Inconsistency: creating a list of inconsistent vertices,
and optionally, an inconsistent subgraph.

3. Determining the Execution Path: using the user-defined and built-in
property list to examine the current update batch to proactively decide
between incremental processing vs. static recomputation.

Fig. 4. The software architecture diagram of EvoGraph.
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Fig. 5. Computation phases of CC in EvoGraph with inconsistent vertices marked red.
(Color figure online)

4. Incremental GAS (I-GAS) [24,25]: applying incremental version of the
GAS programming model to move the computational frontier one step per
iteration.

5. Merging: Merging the incremental and static graph states.

As examples, Fig. 5 illustrates the five computation phases in Connected
Component (CC) algorithm. CC requires a separate inconsistent subgraph G’
in Phase IV. Before discussing each of these phases in detail, we first look into
the Stream Engine shown in Fig. 4, which conducts multi-level GPU related
optimizations.

4.2 Stream Engine: Data Movement and Context Packing

The Stream Engine (SE) is mainly responsible for (i) efficient asynchronous data
transfer between host and GPU, (ii) context merging of static and incremental
computation, and (iii) context packing of multiple graph workloads on the same
GPU to enable multi-level GPU sharing.

For (i), SE leverages CUDA Streams, double buffering, and hardware support
like Hyper-Qs provided by the architecture to effectively overlap data streaming
and computation. SE spawns separate CUDA Streams to launch multiple kernels
simultaneously and transfer batches of incremental updates to the graph asyn-
chronously, overlapping memory copies within and across computation phases.
Furthermore, as shown in Fig. 3(a), EvoGraph uses separate CUDA Streams to
enable deep copy operations [26] in order to take advantage of the large number
of hardware queues offered by modern GPU architectures. This is motivated
by the fact that an update batch in EvoGraph is not a single contiguous byte-
array, but consists of many sub-arrays that contain edge, vertex, and vertex/edge
property update information. EvoGraph exploits this by not moving the entire
update batch in one copy performed by a single CUDA stream, but instead mak-
ing SE to dynamically spawn multiple CUDA Streams to move these sub-arrays
to GPU. The outcome is the concurrent usage of the GPU’s many hardware
queues, which consequently improves the overall throughput.
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As shown in Fig. 3(b), SE achieves (ii) and (iii) by packing multiple applica-
tions’ GPU contexts into a single protection domain on-the-fly to maximize GPU
resource utilization and avoid core idling. When a GPU request from a graph
application (static or incremental computation) arrives, SE creates a separate
CUDA stream object for it by calling cudaStreamCreate(), the handler to which
is stored in a thread local storage. Using this handler, subsequent requests from
this application is dispatched over this designated stream. Upon application exit,
SE tears down the stream by calling cudaStreamDestroy() on the stream handler.
To ensure all the applications packed into a single GPU context associated with a
particular GPU are not blocked when one of them explicitly synchronizes its host
thread with the device, EvoGraph dynamically maps all device synchronization
calls to their respective stream synchronization counterparts (e.g., cudaDevice-
Synchronize() is converted to cudaStreamSynchronize()). Next we discuss each
computation phase in detail.

4.3 Computation Phases in EvoGraph

Phase I: Static Graph and Metadata Preprocessing. Shown as 1 in Fig. 4
and meta computation() in Table 1, this phase has two main purposes. First, it
computes the static version of the input graph based on the traditional GAS
model. In theory, any GAS-based static graph processing frameworks can be
applied here for the static computation. In this work, we chose the highly opti-
mized GPU-based static-graph processing framework GraphReduce [8] as our
static computation engine. Due to its hybrid GAS-based programming model
and ability to handle out-of-memory big graph inputs, GraphReduce fits well
into our overall design methodology. Second, this phase computes the graph
property metadata, such as parent id, vertex degree and minimum spanning tree
(MST). These property metadata plays an important role in processing incre-
mental graph algorithm in the upcoming phases. Table 1 lists what metadata
is required to be computed in Phase I using meta computation() for different
incremental graph algorithms.

Phase II: Marking Out Graph Inconsistency. As illustrated in Fig. 5, this
is the phase where incremental graph processing begins. This phase identifies
the inconsistent part of the graph after applying the update batch ( 2 in Fig. 4)
using the build inconsistency list() function shown in Table 1. This user-defined
function takes the update batch information (e.g., edge/vertex insertions and/or
deletions) and the priority attribute of each vertex to build a list of inconsistent
vertices. EvoGraph also provides an option for users to construct an inconsistent
sub-graph G′ which can be used later. Table 1 lists the action items from Phase
II for three different graph algorithms.

Phase III: Determining the Execution Path Through Property Check-
ing. ( 3 ) This is the phase that decides which execution path, incremental
processing or static recomputation, should be taken based on the area effect
caused by the incremental graph algorithms. Specifically, if an incremental
algorithm causes the majority portion of the graph to become inconsistent,
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incremental processing may not be a better option than static recomputation
due to its extra execution overheads. Such overheads may occur in multiple
phases, including (1) marking inconsistent vertices and/or building an optional
inconsistent subgraph, (2) resolving such inconsistencies in the I-GAS compu-
tation loop, and (3) merging the incremental states with the static graph. The
static computation does not have these overheads of finding inconsistencies or
merging different vertex states.

For every update batch, EvoGraph uses a selected set of graph properties
(e.g., vertex degree, neighbor info, distance, depth, etc.) that will affect the run-
time performance of the algorithm to make the selection for execution path.
Table 1 shows such essential graph properties for different graph algorithms,
and the corresponding API call property guard(). Using BFS as an example,
for each batch update, EvoGraph will check the vertex depth threshold below
which incremental processing will degrade the performance, and the inconsis-
tency fraction which is the percentage of inconsistent vertices that are under the
vertex depth. For instance, EvoGraph with batch X will stop benefiting from
incremental processing if more than 80% (inconsistency fraction) of the incon-
sistent vertices have vertex depth less than 3. We want to emphasize that these
selected graph properties are input and algorithm dependent and can be tuned
for optimal performance by users.

Listing 1.1. I-GAS computation loop per update batch

While(! inconsistency_list.empty ())
// activate vertices in the inconsistency_list
frontier = frontier_activate(G,inconsistency_list)
IGAS(G’)
update_inconsistency_list(G’,inconsistency_list ,frontier)

Phase IV: Incremental GAS. ( 4 ) As mentioned previously, we propose
Incremental GAS (or I-GAS) to compute the vertex states only for those incon-
sistent vertices that are affected by the batch updates, while maintaining the
vertex states for the rest to reduce computation overhead. I-GAS will only incre-
mentally operate on the new computational frontiers2, avoiding the processing
of the overlap between two consecutive versions of the graph. More specifically,
I-GAS has four key differences from the classic GAS, including (1) identifying
the vertex state inconsistencies, (2) determining incremental computation order
by the priority attributed to each inconsistent vertice (Phase II), (3) providing
an option for user-defined heuristics to choose between static and incremental
execution, and (4) merging the incremental vertex states with the original graph.
Figure 5 shows the example of I-GAS loops for CC. A typical I-GAS computation
loop per update batch is demonstrated in Listing 1.1. Basically, EvoGraph main-
tains a inconsistency list and the three functions will iterate until the list becomes
empty. Note that in each iteration function frontier activate() will activate new

2 Computational frontier describes the number of inconsistent/active vertices in a
given iteration.
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computational frontiers using the vertex priority to feed IGAS(), which then
calls incremental versions of Gather, Apply and Scatter. Finally, the new frontier
information will update the inconsistency list.

Phase V: State-Merging. ( 4 ) During this phase, EvoGraph merges the
updated vertex property with the previous version of the graph. Based on indi-
vidual algorithms’ merge pattern, it decides if edge insertions or deletions are
required to be applied to the recent version of the static graph G before process-
ing the next update batch. Table 1 shows three general classes of merge patterns
represented by three graph algorithms: Stateful (Breadth-First Search), Partially
Stateless (Connected Components) and Fully Stateless (Triangle Counting). We
summarize the characteristics of these patterns as follows:

– Stateful: This type of incremental algorithms typically operate on the graph
properties that have global effects, and must apply all the updates (both
insertions and deletions) of the current batch to G at the end of the I-GAS
loop. For example, vertex depth calculation in BFS requires consideration of
any added/deleted edges.

– Partially Stateless: In each incremental iteration, this type of algorithms
has dependency on either deletions or insertions from the previous update
batch, but not both. In other words, either deletions or insertions are required
to be merged with G at the end of the I-GAS loop. Hence the rest of the
updates that lack dependency can be processed anytime during the execution
without influencing the final result, and their merger with G is deferred by
EvoGraph. Connected Components belongs to this category.

– Fully Stateless: This category of incremental algorithms update the graph
properties that only have local effects. In other words, neither insertions nor
deletions within each incremental iteration have any dependency on the pre-
vious update batch. Therefore, both insertions and deletions are deferred
by EvoGraph. Triangle Counting shown in Table 1 belongs to this category.
Other examples include Clustering Coefficients and Vertex-degree Counting.

Next, we will showcase the implementation of these incremental algorithms
representing the three merge patterns.

5 Case Studies

Stateful. Detailed in Table 1, BFS is an example of a Stateful algorithm as it
requires all the updates from one batch to be merged with the original graph
before processing the next batch. Phase I involves static computation of BFS
depths from the source vertex (handled by GraphReduce [8]) and metadata com-
putation of properties such as degree and parent vertex id information for each
vertex in the graph. In Phase II, vertices that have incorrect depth values [27]
after applying the current update batch are marked as inconsistent and added to
a container with min-priority that is ordered by depth value. Phase III checks for
any listed property to decide if the framework should run the incremental version
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or re-run the static recomputation algorithm. In BFS, we use vertex depth as
the property and check if the fraction of inconsistent vertices with depth values
below a certain threshold have surpassed a certain limit. In Phase IV, EvoGraph
fixes the inconsistency in the vertices of the graph in the order of their mini-
mum depth values, as described in the algorithm by Ramalingam and Reps [27].
Thus, in each iteration of I-GAS loop, inconsistent vertices with the minimum
depth value (can be multiple vertices) are activated and made consistent; and the
inconsistency list is updated. Phase V is trivial as the vertex states are shared
and hence do not require merging.

Partially Stateless. Shown in Table 1 and Fig. 5, Connected Components (CC)
is a partially stateless algorithm because only deletions are required to be merged
with G. For deletions we need to re-run the static algorithm and there are few
proposed optimizations [22,23] to eliminate false delections so that a component
will not be broken. Phase I calculates the static version of CC. In Phase II,
EvoGraph builds the inconsistent graph G′ with vertex ids as the component
labels in the original graph, and for each edge insertion in G it adds an edge in
G′ if the endpoints of the edge belong to different components. G′ is also known
as component graph [23]. Phase III checks for the fraction of inconsistent vertices
that belong to disjoint components. Phase IV runs static connected components
algorithm on G′. Note that EvoGraph has successfully reduced the incremental
problem in G to a static problem in G′. Finally, Phase V relabels the vertices in
G from the computed component labels in G′.

Fully Stateless. As illustrated in Table 1, Triangle Counting (TC), which
measures the total number of closed triangles in a graph (representing small-
worldness of a graph), is a fully stateless algorithm because both insertions and
deletions from an update batch are not required to be merged with the original
graph before processing the next batch. Phase I computes the static version of
the algorithm and the degree property for each vertex. In Phase II, EvoGraph
marks the endpoints of every edge inserted or deleted and their respective neigh-
boring vertices as inconsistent. Then it builds the inconsistent graph G′ with
edges incident on every inconsistent vertex. Phase III checks for the fraction of
inconsistent vertices in G that have degree above certain threshold. Phase IV is
similar to that in CC, activating all the vertices in G′ and then running the sta-
tic algorithm on G′. Note that EvoGraph has again successfully reduced a fully
dynamic (having both insertions and deletions) problem in G to a static prob-
lem in G′. Finally, Phase V updates the triangle counts and the degree info in G
using the corresponding computed values in G′. A Bloom Filter version of the
incremental algorithm can also be implemented for fast membership queries [21].

6 Evaluation

6.1 Experimental Setup

Evaluation Platform. We evaluate EvoGraph on a heterogeneous HPC node
equipped with 12-core Intel Xeon X5660 processors running at 2.8 GHz with
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12 GB of DDR3 RAM, and one attached NVIDIA Tesla K40c GPU with 15
SMX multiprocessors and 12 GB GDDR5 RAM. The Kepler GPU is enabled
with CUDA 7.0 runtime and the version 352.79 driver, while the host CPU is
running Fedora version 20 with kernel v.3.11.10-301× 86. To evaluate the effec-
tiveness of EvoGraph framework, we use GraphReduce [8], GraphMat [28] and
STINGER [21,23,29] for performance comparisons. GraphReduce is a state-of-
the-art GPU-based static graph processing framework that process larger-than-
GPU-memory graphs. GraphMat is a state-of-the-art CPU-based high perfor-
mance graph processing framework that takes vertex programs and compiles
them into sparse matrix operations (e.g. sparse matrix-vector multiplication).
GraphReduce and GraphMat are both used as the GPU- and CPU-based static
engine of EvoGraph and hence act as our comparison baseline. Note that other
static graph processing engine (e.g., BlazeGraph [30]) can also serve as the sta-
tic engine in EvoGraph as long as they are based on GAS programming model.
Since different static engines maintain very similar optimization opportunities in
evolving graphs, they can be selected based on their base performance. Further-
more, shared-memory based STINGER [13] proposes an efficient representation
for implementing evolving graphs (i.e., abstract data structures) to enable fast
real-time processing of queries. STINGER’s graph data structures have been
used to implement several applications on shared-memory CPU-based systems,
including Clustering Coefficients and Connected Components. Unlike EvoGraph,
STINGER is not a graph analytics framework. Updates are provided in batches
to EvoGraph and STINGER where each batch size can range from 100,000 up to
one million and consist of 99% edge insertions and 1% deletions. The endpoints
of the edges used for batch updates are generated randomly.

Graph Dataset and Evaluated Algorithms. For evaluating the performance
of EvoGraph, we use a mix of real-world and synthetic datasets. Their graph
properties are shown in Table 2. The five real-world datasets are from University
of Florida Sparse Matrix Collection [31]. The synthetic datasets are obtained
from the Graph500 RMAT data generator [32] using scale 19, 20 and 21 with

Table 2. Graph datasets under evaluation

Graph dataset Type #Vertices #Edges

hollywood-2009 real world 1,139,905 113,891,327
indochina-2004 real world 7,414,866 194,109,311
ljournal-2008 real world 5,363,260 79,023,142
kron g500-logn21 real world 2,097,152 182,082,942
uk-2002 real world 18,520,486 298,113,762
G19D16 synthetic 524,288 8,388,608
G20D16 synthetic 1,048,576 15,700,394
G21D16 synthetic 2,097,152 31,771,509
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average degree of 16 per vertex, labeled as G19D16, G20D16, and G21D16
respectively. The three widely used graph algorithms discussed in Sect. 5 are
evaluated, representing the three merge patterns. Algorithms requiring undi-
rected graphs as inputs are stored as pairs of directed edges.

6.2 Results Summary: EvoGraph vs. Static Recomputation

To process evolving graphs, the state-of-the-art GPU framework, which only
process static graphs, have to follow a store-and-static-compute model, repeat-
edly running static graph computation on the “snapshots” of the evolving graph.
Here we showcase the benefits of our EvoGraph (incremental graph analytics)
over such recomputation schemes. For the overall speedup, Fig. 6 shows that
EvoGraph achieves an average performance improvement of 12278x, 9.13x and
1.16x over GraphReduce across all the datasets for TC, CC and BFS respectively,
with the update batch size as high as 1 million updates. Additionally, Fig. 7
demonstrates that EvoGraph is able to achieve up to 429 million updates/sec
(indochina-2004 for TC). Several factors contribute to such high performance
improvement: (i) the use of incremental computation in the I-GAS execution
model to compute the vertex states for only the inconsistent set of vertices, as
opposed to executing the algorithm on the entire input graph (Sect. 3.3); (ii)
asynchronous mode and deep copy operations between host and device lever-
aging CUDA Streams and Hyper-Qs to keep both compute and memory-copy
engines occupied simultaneously; (iii) concurrent static and incremental graph
processing via time and space sharing on GPU (Sects. 3.4 and 4.2), resulting in
substantial reduction in context-switching overhead and GPU core idling. An
important observation to make here is that the performance benefit of Evograph
is inversely proportional to the number of inconsistent vertices after applying
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Fig. 6. EvoGraph’s speedup over the static computation (GraphReduce) for TC, CC
and BFS.
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the update batch, i.e., if the inconsistency graph G’ is very small compared to
the original graph after applying the updates, the performance benefit of Evo-
Graph will be very large. But if the size of G’ is too large the performance will
be comparable to static recomputation or sometimes even worse (Sect. 6.4). This
is why we see the large speedup in the case of fully-stateless applications like
Triangle Counting where the inconsistency graph G’ is small. Next, we draw key
inferences as how the performance of the incremental execution in EvoGraph
varies with algorithm type, update batch size and input graph size.

Effect of Graph Algorithm. Figure 6 shows that the maximum speedup
achieved by EvoGraph over static recomputation occurs with TC (fully state-
less), followed by CC (partially stateless) and then BFS (stateful). Also, the
average system throughputs achieved across all graph algorithms for a batch size
of 1 million updates are 372 million, 7.3 million and 50 K updates/sec for TC,
CC and BFS, respectively. This drastic difference in performance across different
merge patterns is because the fraction of the graph that becomes inconsistent
after applying an update batch as the I-GAS loop unfolds increases in the order
of fully-stateless, partially-stateless, and stateful. In other words, fully-stateless
or partially-stateless algorithms only affect the graph locally, so the incremen-
tal runtime is bounded by the size of the update batch. On the contrary, since
the stateful algorithms like BFS calculate a global property (e.g., vertex depth),
the incremental computation affects a larger portion of the graph and hence
achieves lower speedup. Furthermore, during the State-Merging phase of incre-
mental BFS, the new update batch is applied or merged with the current static
version which in turn is copied back to the GPU. This incurs some data transfer
overhead, whereas for TC and CC the data transfers are of the order of the
update batch size, keeping the memcpy time low.

Effect of Update Batch Size. Shown in Fig. 6, the speedup decreases as the
update batch size increases due to the increasing problem size. We also observe
that both the runtime and update rate (Fig. 7) increase with the batch size,
which implies that speedup decreases slower with respect to the drastic update
rate increase for larger batches.

Effect of Input Graph Size. Figure 7 shows that BFS’s throughput increases
with the batch size a lot faster for smaller graphs (e.g., ijournal-2008) than
larger graphs (e.g., uk-2002). This happens because for the updates affecting a
particular BFS level, the cost of incremental computation increases with the size
of the inconsistent subgraph which in turn is proportional to the size of the input
graph. However, the update rates of CC and TC show no correlation with the
input size as the graph properties under consideration are local or semi-local.

6.3 Performance Implications of Graph Properties

We chose specific graph property for each of the three algorithms: vertex degree
for TC, vertices with disjoint components for CC, and vertex depth from the
source for BFS. These properties heavily impact the runtime of the static versions
of these algorithms.
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Fig. 8. Impact of properties on the update rate: (a) vertex degree: TC; (b) disjoint
components: CC; and (c) vertex depth: BFS.

Triangle Counting (Vertex Degree): Figure 8(a) shows the change in the
update rate for TC versus the fraction of updates (insertions and deletions)
affecting vertices with degree greater than a certain threshold (e.g., 1900 for
hollywood-2009). We vary the fraction of inconsistent vertices with degree higher
than the threshold degree in a given update batch and then evaluate its effect
on the incremental runtime and the update rate. From the figure we can observe
that vertex degree does not have a significant impact on the update rate for TC.
This is because TC is a stateless algorithm for both insertions and deletions, and
hence the size of the sub-graph G′ created in Phase II (Table 1) as well as the
incremental runtime are independent of the vertex degree. Thus the update rate
remains relatively constant even when more edges are inserted and/or deleted
near high degree vertices.

Connected Components (Disjoint Components): Figure 8(b) shows that
the update rate for CC decreases as the fraction of edges inserted (whose end-
points belong to different components in the original graph) is increased, with a
maximum slowdown of 10.2x across all the datasets. This slowdown of update
rate is caused by: (i) the endpoints of an edge falling in the same component
results in a self-edge in the component graph which is ignored by EvoGraph; (ii)
since EvoGraph reduces the problem of incremental CC processing on G to static
CC processing on G′, the size increase of G′ caused by the increasing number of
vertices with disjoint components subsequently increase the processing time.

BFS (Vertex Depth): Figure 8(c) shows that increasing the fraction of vertices
with depth below a given threshold (MAX DEPTH/4 in our case) causes a
sharp decline in the update rate. This slowdown comes from more insertions and
deletions on the lower-depth vertices closer to the root vertex, which results in
the I-GAS loop making a much larger portion of the graph inconsistent with each
increment. The maximum slowdown (max to min ratio of the update rate) across
all datasets is 213x which leads to drastic system performance degradation and
hence motivates our property-guard heuristic design.

6.4 Property-Guard Heuristic

In these sets of experiments we show how EvoGraph uses property information
to adapt to situations where the incremental processing performs worse than the
static recomputation. Figure 9 shows that the performance of incremental BFS
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Fig. 9. Property-guard heuristic vs. naive streaming in incremental BFS using vertex
depth property for five graph inputs. The x-axis represents the fraction of vertices
below depth threshold of MAX DEPTH/4.

for naive streaming without considering the property information of the current
update batch falls relative to the static processing beyond a threshold (mea-
sured by the fraction of vertices with depth threshold below MAX DEPTH/4).
For hollywood, Indochina, ijournal, kronLogn21 and uk-2002, this threshold frac-
tion is 0.2, 0.3, 0.1, 0.5 and 0.1 respectively. The reason for this degradation in
incremental performance is that a larger number of updates to the lower-depth
vertices results in a large portion of inconsistent graph and hence significant
increase in processing time. In phase III, EvoGraph analyzes the current update
batch for the depth threshold and if the batch has a fraction of vertices beyond a
certain threshold, it processes the update batch with static recomputation. This
ensures the worst-case performance has the same lower bound as static recom-
putation instead of proceeding to I-GAS incremental execution. We achieve a
maximum speedup of 18.4x using this heuristic over a naive streaming approach
(Indochina-2004).

6.5 EvoGraph vs. STINGER

Figure 10 shows the comparison between the update rate for EvoGraph vs.
STINGER [29] for TC and CC. For fairness, data transfer time between host
and GPU has been included for EvoGraph computation while STINGER (a
shared memory solution) is not subject to such overhead. Across all 3 synthetic
datasets, STINGER shows a max update rate of 2.1 million updates/sec versus
488 million updates/sec from EvoGraph (S19D16), a 232.4x increase in through-
put. EvoGraph also shows better scalability as batch size increases because of
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(1) the massive parallelism provided by context packing and multi-level GPU
sharing from EvoGraph is sufficient to overcome the overheads from the data
movement over PCIe, (2) EvoGraph’s hybrid data structure of edge-list for incre-
mental updates and compressed matrix format for static versions of the graph.
STINGER uses edge-list based data structures for both the static and incremen-
tal graph processing, which results in faster data structure update but slower
traversal time. EvoGraph’s hybrid data structure enables faster updates (via the
edge-list) as well as faster static computation (via compressed matrix format).

In order to compare performance of CPU-based STINGER with pure I-GAS
programming model based EvoGraph (without GPU), we implemented a CPU-
version of EvoGraph with GraphMat as its static engine. As shown in Fig. 11,
triangle counting (TC) using STINGER attains a maximum update rate of 1.32
million/sec as compared to 8.7 million updates/sec with EvoGraph using CPU-
based GraphMat as the static engine for the G20D16 case, which results in 6.6×
speedup in throughput. The reason for such high performance are two folds.
First, the use of incremental computation in the I-GAS execution model to
compute the vertex states for only the inconsistent vertices, as opposed to exe-
cuting the graph algorithm for the entire input graph in the static case avoids
a lot of redundant computation and results in large speedup. Second, unlike
STINGER, which uses edge-list based data structures for both static and incre-
mental graph processing, EvoGraph’s hybrid data structure of edge-list for incre-
mental updates enabling faster updates and compressed matrix format for static
versions of the graph enabling fast static computation on the triangle counting
subproblem.

7 Related Work

Static Graph Processing. There is a large body of work on efficiently process-
ing static graph inputs on a single node CPU-based systems (shared memory)
including GraphChi [18], X-Stream [19], etc.; distributed CPU-based systems
including Pregel [15], GraphLab [17], PowerGraph [16]; and GPU-based frame-
works (either single GPU or heterogeneous scale-up CPU+GPU) including Map-
Graph [6], Cusha [7], GraphReduce [8] etc. EvoGraph is a scale-up heterogeneous
solution for processing evolving graphs that can be integrated into the distrib-
uted CPU-based solutions, especially the ones using GAS programming models
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(e.g., Pregel and PowerGraph). Most of the GPU frameworks above can be used
as the static graph processing core of EvoGraph (Sect. 4.3 Phase I). In this work,
we applied the recent GraphReduce [8] as our static graph processing engine due
to its unique features and high throughput achieved by mapping sub-graphs to
the different memory abstractions of slow and fast memory [33].

Evolving Graph Processing. Broadly, there are two categories of evolving
graphs processing (1) offline mining of evolving graphs that involves the genera-
tion, storing, and analysis of a sequence of versions or time-stamped snapshots of
the evolving graphs (i.e., historic data) for the calculation of some global graph
property; and (2) online processing of evolving graphs that enables real-time,
continuous query processing over streaming updates. EvoGraph is a framework
designed to address (2).

– Offline Mining of Evolving Graphs: Chronos [12], GraphScope [13], and
TEG [14] are some examples of the most recent work in offline evolving graph
processing. Chronos [12] supports incremental processing on temporal graphs
using a graph representation that places graph vertex data from different
versions together leading to good cache locality. GraphScope [13] proposes
encoding for evolving graphs for community discovery and anomaly detec-
tion. Both Chronos and GraphScope are shared-memory CPU-based solution.
TEG [14] provides a distributed CPU-based solution focusing on partitioning
time evolving graphs across nodes and enables subgraph queries.

– Online Processing Providing Real-time Continuous Query: This type of app-
roach implies certain memory constraints that may not allow keeping mul-
tiple versions of the evolving graph as historical data for future process-
ing. STINGER [29] defines an efficient data structure to represent stream-
ing graphs that enables fast, real-time insertions and/or deletions to the
graph. Unlike STINGER which uses a single data structure for both static and
dynamic graph analysis, EvoGraph applies a novel hybrid data structure that
allows for incremental computation on edge lists and a compressed format for
static graph computation. More importantly, STINGER is not a highly effi-
cient runtime framework that maximizes the heterogeneous (CPU + GPU)
performance in a single node and provides unified virtual functions for users
to write sequential graph algorithms to process complex evolving graphs.
Thus all the complex runtime and architecture-specific optimizations become
the burden of the users. Built upon STINGER, DSTINGER [34] provides
a distributed CPU-based graph representation (data structure) to store and
process streaming updates, but it neither unleashes the massive computation
power of CPU+GPU heterogeneous system nor provides a unified program-
ming framework.

8 Conclusions and Future Work

This paper presents EvoGraph, an accelerator-based high-performance incre-
mental graph analytics framework for processing time-evolving graphs. Technical
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advances offered by EvoGraph include: (1) an incremental variant of Gather-
Apply-Scatter called I-GAS to compute graph properties only for the inconsistent
subgraphs, (2) a user-tunable property-based optimization called property-guard
for switching between I-GAS and static recomputation, (3) GPU context pack-
ing and deep memory copy operations for improved asynchronous computation
and communication performance, and (4) an hybrid data structure for efficient
incremental updates and static graph storage. Evaluation on a variety of graph
inputs and algorithms demonstrates that EvoGraph achieves a system through-
put of up to 429 million updates/sec and a 232x speedup when compared to
competitive frameworks like STINGER. Furthermore, the property-guard opti-
mization on BFS (Stateful type) achieves a speed up of up to 18.4x over a naive
streaming approach. Future work will look at incorporating EvoGraph in dis-
tributed setups which will help the community study extreme-scale datasets and
scenarios.
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Abstract. Support vector machines (SVMs) are conventionally batch
trained. Such implementations can be very inefficient for online stream-
ing applications demanding real-time guarantees, as the inclusion of each
new data point requires retraining of the model from scratch. This paper
focuses on the high-performance implementation of an accurate incre-
mental SVM algorithm on IntelR© Xeon Phitm processors that efficiently
updates the trained SVM model with streaming data. We propose a
novel cycle break heuristic to fix an inherent drawback of the algorithm
that leads to a deadlock scenario which is not acceptable in real-world
applications. We further employ intelligent caching of dynamically chang-
ing data as well as other programming optimization ideas to speed up
the incremental SVM algorithm. Experiments on a number of real-world
datasets show that our implementation achieves high performance on
IntelR© Xeon Phitm processors (1.1 − 2.1× faster than IntelR© XeonR©

processors) and is up to 2.1× faster than existing high-performance incre-
mental algorithms while achieving comparable accuracy.

Keywords: High-performance · Incremental SVM · Intel Xeon Phi
processor

1 Introduction

Support Vector Machine (SVM) [24] has established itself as one of the most
popular and successful methods in example-based learning as an effective pattern
classification tool where after training on a series of examples, the resulting model
can generalize well on new input samples. Conventionally, SVMs are trained
in batch mode, which can be formulated as a quadratic optimization problem.
Several special-purpose optimization algorithms have been proposed for batch
SVM learning, among which Sequential minimal optimization (SMO) [15] is one
of the most commonly used. SVMs are widely applied to many application areas
from scientific computing such as neuroscience and bioinformatics to Internet-
based information retrieval like text classification, etc.
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The batch training algorithms assume that the training set is fixed. If there is
any sample addition/deletion/modification on the training set, the batch algo-
rithms have to retrain the model on the entire data set from scratch to pro-
duce a new model, which is inefficient and expensive. However, in many cases
datasets are under change. For example, when training on a data stream, the
model should be updated incrementally after getting a new sample (incremental
training). Also, an efficient way to do cross validation on a dataset is to train a
model on all data and update it by removing different sets of left-out samples
(decremental training).

Standardized packages for batch SVM training such as LibSV M [4] and
SV M light [11] have been around for years. There are also highly optimized
implementations on top of them targeted towards many-core architectures like
GPU [3] and the first generation of Intel Xeon Phi products [25]. However, incre-
mental SVM algorithms are not widely popular in machine learning community
because there are no efficient implementations of the proposed algorithms readily
available for use.

An accurate incremental and decremental SVM learning algorithm has been
previously proposed by Cauwenberghs and Poggio [16] and their approach was
adapted to other variants of kernel machines [12,13]. When a single sample is
added (or removed) this algorithm updates the exact optimal solution recursively
without retraining it from scratch. The key idea is to retain the Karush-Kuhn-
Tucker (KKT) conditions [24] on all previously trained samples, while adding (or
removing) a new sample to the solution. In principle, this is better than other
incremental algorithms such as [2,21] which tweak the model without globally
optimal solution guarantee. A detailed comparison to related work is in Sect. 6.

Although theoretically possible, there are several challenges to implement
a practical, especially high-performance version of incremental SVM algorithm
that can be used by potential practitioners in real-world applications on mod-
ern many-core architectures. First, an incremental SVM algorithm is usually a
multi-stage solution with varying compute and memory requirements. Therefore,
a per stage detailed analysis of compute efficiency and memory access pattern
is required to design well-tailored data structures and intelligent computation
techniques to achieve maximal performance. Moreover, the algorithm involves
multiple branching cases (Sect. 3.3) which makes it quite challenging to par-
allelize. Second, the incremental algorithm may have inherent limitations for
convergence in particular scenarios where it fails to making progress as trapping
into an infinite loop [12]. In real-world applications such behavior is not accept-
able and requires to be handled intelligently. Third, as the algorithm dynamically
updates the model, i.e. the support vector set, with each insertion (or deletion)
of a sample, in order to get desired running performance, it needs an efficient
data caching mechanism to deal with the dynamic change of the support vector
set and other corresponding data structures.

In this paper, we propose and implement a high-performance incremental
SVM algorithm that runs efficiently on Intel Xeon Phi processors based on Intel
Many Integrated Core architecture (referred to hereinafter as MIC processors).
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We are in the progress of open-sourcing the code. In brief, this paper makes
following key contributions:

1. We propose cycle-breaking, a practical heuristic to avoid scenarios where the
incremental algorithm stops making progress (happening on average once
every 27 samples - Sect. 5.3).

2. We conduct several programming optimizations. Caching dynamically chang-
ing data results in up to 3.3× speedup for the overall application. Intelligently
using efficient data structures and memory access patterns tailored for each
stage of the incremental algorithm towards the MIC processors further gives
an overall speedup of up to 1.5×.

3. Compared to existing incremental SVM algorithms such as warm-start SMO
(described and discussed in Sects. 5.1 and 6), our algorithm is up to 2.1×
faster. Our implementation is faster than warm-start SMO for over 90% of
samples.

4. Our incremental SVM training algorithm optimized for the MIC processors is
up to 1.3× faster than running on the Intel Xeon processors. For performing
Leave-One-Out cross validation using the decremental variation of our incre-
mental algorithm, running on the MIC processors is up to 2.1× faster than
Intel Xeon processors.

The rest of the paper is organized as follows: Sect. 2 gives a brief overview of
the MIC processors. Section 3 explains the incremental SVM training algorithm
and our algorithmic contributions. Section 4 explains our optimization ideas for
improving the performance on many-core architectures. Section 5 discusses the
results and shows how we outperform other batch and incremental SVM algo-
rithms without sacrificing accuracy. We compare our work to the related work
in Sect. 6 and conclude in Sect. 7.

2 IntelR© Xeon Phi
TM

Processors

The IntelR© Xeon Phitm processor is based on the IntelR© Many Integrated Core
(MIC) architecture. Unlike the graphic processing units (GPUs), this many-core
processor provides a general-purpose programming environment similar to that
of a regular Intel Xeon processor.

We describe the high-level architecture of Intel Xeon Phi processor 7250 (for-
merly codenamed Knights Landing or KNL) used in this paper. This processor
has 68 cores, each of which runs at a processor base frequency of 1.40 GHz and
supports up to 4 hardware threads. The cores are tiled in pairs, with each core
having 32 KB L1 data cache, 32 KB L1 instruction cache and 1 MB unified L2
cache shared within the tile. The tiles are interconnected via 2D mesh. Cache
coherence across cores/tiles is maintained via a global-distributed tag directory
provided by caching/home agent (CHA). In this paper, the tiles are clustered in
quadrant mode [20] for better performance and productivity trade-off.

Each core has two 512-bit vector processing units (VPUs), which allows 16
single precision or 8 double precision floating point numbers to be processed
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in a single CPU cycle. This makes vectorization challenging and critical to the
performance. The theoretical peak floating point performance of the processor
is 6.10 TFLOPS for single precision and 3.05 TFLOPS for double precision.

This processor has 16 GB multi-channel DRAM (MCDRAM) with band-
width larger than 400 GB/s, and supports up to 384 GB DDR4 memory. In
order to have the full control of the MCDRAM usage, in this paper we config-
ured the memory subsystem in flat mode [20], working as a NUMA system in
which MCDRAM serves the local memory to all cores.

3 Algorithm

In this section, we start from the SVM batch training to describe the incremental
SVM algorithm we implemented in detail. We also highlight the changes we
made to scale up the incremental algorithm to practical problem sizes on the
MIC processors.

3.1 Support Vector Machine and KKT Conditions

Suppose we have a set of training data and their labels given by T = {(xi, yi), i =
1 . . . m}, where xi ∈ X ⊆ R

d is the input, yi ∈ {−1,+1} is the corresponding
output label. We can write out the classification function as:

f(x) = wT Φ(x) + b (1)

where Φ(x) is a fixed feature space transformation mapping the input x to a
vector in feature space F . The model parameters can be obtained by solving the
optimization problem:

max
α

W(α) =
m∑

i=1

αi − 1
2

m∑

i=1

m∑

j=1

Qijαiαj

s.t.
∑

αiyi = 0 (2)

0 ≤αi ≤ C, i = 1, . . . , m

where C ∈ R
+ is the regularization parameter that controls the relative

weighting between maximizing the margin and minimizing the error rate, and
Qij = yiyjK(xi, xj) is the kernel matrix where K(xi, xj) = Φ(xi)T Φ(xj) is a
kernel function [19].

Given the solution to (2), the optimal classification function f : X → R in
formula (1) can be written as f(x) =

∑m
i=1 αiyiK(xi, xj) + b.

From the Karush-Kuhn-Tucker (KKT) conditions, the margin function
g(xi) = yif(xi)−1 and the corresponding αi must satisfy the following relation-
ship at the optimal solution:

g(xi) ≥ 0; αi = 0
g(xi) = 0; 0 < αi < C (3)
g(xi) ≤ 0; αi = C
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This partitions the samples in training set T into three categories. Let us define
the following partitioned index sets:

S := {i : yif(xi) = 1, 0 < αi < C} (On-margin support vectors)
E := {i : yif(xi) ≤ 1, αi = C} (Error support vectors) (4)
R := {i : yif(xi) ≥ 1, αi = 0} (Within-margin vectors)

The incremental SVM algorithm essentially moves the samples across these three
sets to reach an optimal solution.

3.2 Incremental SVM Algorithm

The incremental SVM algorithm updates the previously trained SVM model
with the inclusion of a new sample point (xc, yc) to the training set T instead of
batch training the entire training set plus the new sample point. Figure 1 shows
the complete software workflow of incremental SVM including the optimizations
proposed in this paper. The key idea of the algorithm is to change the coeffi-
cient αc (initialized to 0) corresponding to the new sample xc in discrete steps
with largest possible increments under the constraint that the change is small
enough to keep other elements in training set T satisfying the KKT optimality
conditions, i.e. no old training samples move across S, E or R sets. The update
ends when the new sample satisfies the KKT optimality conditions.

Fig. 1. Software workflow of incremental SVM.
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Let us define the indices of the samples in the margin set S as {s1, s2, . . . , slS}.
As derived in [16], we need to solve:

Q

⎡

⎢⎢⎢⎣

Δb
Δαs1

...
ΔαslS

⎤

⎥⎥⎥⎦ = −QSc · Δαc (5)

where Q =

⎡

⎢⎢⎢⎣

0 ys1 · · · yslS

ys1 Qs1s1 · · · Qs1slS

...
...

. . .
...

yslS
QslS

s1 · · · QslS
slS

⎤

⎥⎥⎥⎦ and QSc =

⎡

⎢⎢⎢⎣

yc

Qs1c

...
QslS

⎤

⎥⎥⎥⎦ (6)

If we define β = −R · QSc with R = Q
−1 then the bias and coefficients can be

expressed in terms of Δαc as:

Δb = β0Δαc (7)
Δαj = βjΔαc, ∀j ∈ S (8)

The margin for all the sample points change according to:

Δg(xi) = γiΔαc ∀ ∈ T ∪ {c}
where, γi = Qic +

∑

j∈S

Qijβj + yiβ0 (9)

and γi = 0 ∀i ∈ S

As γi is non-zero if i /∈ S set, we define N = {E ∪ R} = {n1, n2, . . . , nlN} and
rewrite γ in matrix form:

γ =

⎡

⎢⎢⎢⎣

Qn1c

Qn2c

...
QnlN

c

⎤

⎥⎥⎥⎦ + QNS · β +

⎡

⎢⎢⎢⎣

yn1

yn2

...
ynlN

⎤

⎥⎥⎥⎦β0

where, QNS =

⎡

⎢⎣
Qn1s1 · · · Qn1slN

...
. . .

...
QnlN

s1 · · · QnlN
slN

⎤

⎥⎦

(10)

To summarize, given Δαc we can update αi for i ∈ S and bias b using the
Eqs. (7) and (8), and update Δg(xi) for i ∈ {E ∪ R} using Eq. (9).

3.3 Accounting: Largest Increment Δαc

Equations (5) and (9) hold only when there are no changes to the S set. Once
the newly included sample affects the S set, the updated SVM state cannot be
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directly computed from these equations. Using KKT conditions (3) and Eq. (7),
we can also observe that Δαi, ∀i ∈ S and Δαc affect the composition of S.
Therefore, in the process of incrementing αc towards the optimal solution, the
SVM parameters are required to be updated in discrete steps with the largest
possible Δαc such that KKT optimality conditions are not violated for any of
the existing samples. The following bookkeeping is required to ensure that KKT
conditions are not violated in each of the discrete steps:

1. If g(xc) changes from g(xc) < 0 to g(xc) = 0, the new sample xc is moved to
set S and the algorithm terminates. The proposed ΔαS

c = −gc

γc
.

2. If αc changes from αc < C to α = C, the new sample xc is moved to set E
and the algorithm terminates. The proposed ΔαE

c = C − αc.
3. ∀i ∈ set S with 0 < αi < C:

– If βi < 0 and αi changes to αi = 0, sample xi is moved from S to R set
and the proposed ΔαSR

c = min
i∈S

−αi

βi
.

– If βi > 0 and αi changes to αi = C, sample xi is moved from S to E set
and the proposed ΔαSE

c = min
i∈S

C−αi

βi
.

4. ∀i ∈ set E, if γi > 0 and g(xi) changes from g(xi) < 0 to g(xi) = 0, sample
xi is moved from E to S set and the proposed ΔαLE

c = min
i∈E

−gi

γi
.

5. ∀i ∈ set R, if γi < 0 and g(xi) changes from g(xi) > 0 to g(xi) = 0, sample
xi is moved from R to S set and the proposed ΔαLR

c = min
i∈R

−gi

γi
.

The above five cases are used to determine the allowed values of Δαc, among
which the minimum value is chosen to ensure that the KKT conditions hold for
all samples in the training set.

Δαc = min(ΔαS
c , ΔαE

c , ΔαSR
c , ΔαSE

c , ΔαLE
c , ΔαLR

c ) (11)

Finally, the algorithm terminates on either αc = C or gc = 0.

3.4 Incremental Update of R Matrix

R matrix must be updated whenever the S set changes but it is impractical to
invert the matrix Q every time this happens. We apply the Sherman-Morrison-
Woodbury formula for block matrix inversion [7] that recursively updates R
matrix to avoid the explicit computation of matrix inverse [16]. To add a sample
xc to the S set, R is expanded as:

R =

⎡

⎢⎢⎢⎣

0

R
...
0

0 · · · 0 0

⎤

⎥⎥⎥⎦ +
1
γc

⎡

⎢⎢⎢⎢⎢⎣

β0

βs1

...
βslS

1

⎤

⎥⎥⎥⎥⎥⎦

[
β0 βs1 . . . βslS

1
]

(12)

To remove the kth support vector xsk
from set S, R matrix can be contracted

as follows:
Rij = Rij − 1

Rkk
RikRkj∀i, j ∈ S ∪ {0}; i, j 	= k (13)
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3.5 Convergence and Breaking Immediate Cycling

One of the key characteristics of the incremental algorithm proposed in [16] is
that it converges in a finite number of steps only if in each of these steps a
non-zero update Δαc is found. This brings us to ‘zero-progress’ scenarios where
Δαc = 0 is encountered. We next discuss in detail two such scenarios, namely
empty support vector set and immediate cycling.

Empty Support Vector Set: Equation (5) requires that the support vector
set S to be non-empty. Otherwise the matrix Q, which is to be inverted to get
R, is an empty matrix. To handle this special case, we first try to find a sample
point xi : i ∈ {E ∪ R} with g(xi) = 0. If this sample exists, we can move it
to the S set which does not violate the KKT conditions and continue with the
algorithm.

Otherwise, the expression for the margin update (formula (9)) reduces to:

Δg(xi) = yiΔb, ∀i ∈ {E ∪ R} ∪ {c} (14)

Using this we can find the maximum change in Δb such that g(xi) for one of the
samples becomes 0 and hence can be moved to the S set. With the S set being
non-empty, we can continue with the algorithm.

Immediate Cycling and Cycle Breaking: There is another scenario in which
Δαc = 0 and the algorithm fails to making progress. In this scenario, a sample
migrating from one set to another is immediately removed from that set in
the very next iteration without making any progress towards convergence. For
example, suppose a sample xi moves from R to S set in an iteration, αi = 0
because xi was in the R set. In the next iteration, Δαi = 0 if βi < 0, hence xi

becomes a potential candidate to be selected as the sample with the minimum
Δαc. This results in a transition from S set back to R set and because the
algorithm does not make any progress in the previous iteration it falls into this
infinite loop of transitioning xi back and forth between S and R sets. This
is called immediate cycling. Laskov et al. [12] showed that it is theoretically
impossible to encounter an immediate cycle if the symmetric augmented kernel
matrix Q is positive semi-definite. But in the real world setup Q matrix might
not always be positive semi-definite so that the immediate cycle is inevitable.
One simple solution to this issue is to fall back to retrain the model from scratch
which is usually not acceptable in streaming applications. Hence there is a need
for solutions that can handle such scenarios incrementally without retraining
from scratch.

One of the reasons for the Q matrix becoming non semi-positive is the exis-
tence of duplicate sample points in the training set. Hence, as shown in Fig. 1,
in the De-duplication stage, the framework ensures that a newly arrived sample
is ignored if its duplicate already exists in the training set.

Sample deduplication only fixes one kind of immediate cycling. We use a
heuristic when other immediate cycling occurs. The heuristic involves two steps:
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(1) cycle detection and (2) cycle break. The cycle detection step identifies the
zero-progress scenario and the corresponding sample responsible for it. In par-
ticular, going from (t − 1)th to tth iteration, the cycle detection conditions are
as follows:

βi > 0 and αi = C; it−1 ∈ E ∧ it ∈ S

βi < 0 and αi = 0; it−1 ∈ R ∧ it ∈ S
(15)

After the sample xi, which is responsible for the cycle, has been detected, the
heuristic artificially adds a small positive perturbation in the cycle break step,
using a user defined sensitivity parameter, ensuring Δαc > 0. This is achieved
by modifying the coefficient αi of xi using the following rule:

αi = C · sensitivity; it−1 ∈ R ∧ it ∈ S

αi = C · (1 − sensitivity); it−1 ∈ E ∧ it ∈ S (16)
where sensitivity ∈ [0, 1]

Note that sensitivity controls the progress rate of convergence. Choosing very
small values for sensitivity might require a lot of iterations for a new sample xc,
that encountered a cycle, to reach the optimal solution. Choosing a large value
(≈1) might deteriorate the accuracy of the SVM solution. In all our experiments
we have chosen a sensitivity of 0.01.

3.6 Algorithm Summary and Runtime Analysis

We summarize the incremental SVM algorithms in Algorithm 1. As revealed in
the pseudo-code as well as in the flow chart of Fig. 1, the incremental algorithm
can be viewed as a multi-stage pipeline, involving arithmetic (matrix-vector and
matrix-matrix multiplications) and memory operations, which is iterated until
convergence. These iterations also involve sample migration between S, R and
E sets before the algorithm converges to an optimal solution. We list the stages
as follows, assuming that an existing SVM model is available.

– Deduplication: This is the preprocessing stage to check for duplication.
Only unseen samples to the model is allowed to enter the pipeline since dupli-
cated ones do not carry additional information to the model.

– Kernel Matrix Augmentation: A new row and a new column correspond-
ing to the new sample xc are computed using Qij = yiyjK(xi, xj) to augment
the kernel matrix Q.

– Gradient/Margin Calculation: The margin or gradient gi for each of the
sample xi is calculated. This stage is computationally intensive involving a
matrix-vector multiplication (GEMV ) between the kernel matrix Q and the
sample coefficient vector α.

– γ Calculation: This stage involves a matrix-vector multiplication of matrix
QNS and vector β (Eq. 10). Note that QNS is a data structure that depends
on the S set which dynamically changes between iterations. Because S set



High-Performance Incremental SVM Learning 129

Algorithm 1. Incremental SVM algorithm
1: Read sample xc, compute gradient gc, αc ← 0.
2: if CheckDuplicate(xc) = true or gc > 0 then
3: return
4: end if
5: while gc > 0 and αc < C do
6: if Margin g not in Cache then
7: g ← CalculateMargin()
8: end if
9: β ← CalculateBeta()

10: γ ← CalculateGamma()
11: Δαc ← FindMinProgress()
12: if Δαc = 0 then
13: Δαc ← BreakCycle(sensitivity)
14: end if
15: /* Update SVM solution state*/
16: αc ← αc + Δαc

17: αs ← βΔαc, ∀s ∈ S
18: gn ← γΔαc, ∀n ∈ {R ∪ E}
19:
20: MoveVector() {See Sect. 3.3}
21: Incrementally update R matrix. {see Sect. 3.4}
22: end while

has substantial temporal and spacial locality between consecutive iterations,
efficient storage and caching of QNS can avoid expensive recomputation and
irregular memory accesses.

– Minimum Progress and Cycle Check: Using the accounting rules of
Sect. 3.3, all possible Δαc values are calculated from five different cases and
the minimum is used as the maximum progress towards optimal solution with-
out violating KKT conditions for other samples. If zero-progress scenarios is
encountered i.e. Δαc = 0: empty support vector set is handled using Eq. (14)
and immediate cycling using CycleBreak heuristic (see Sect. 3.5).

– Update SVM State: Using (8), (7) and (9) we update the coefficient αi,
bias b and gradient gi for every sample xi ∈ T .

– Sample Movement: After updating the coefficient αi, some samples might
need to be migrated to different sample sets due to the change of memberships.
Using the migration rules described in Sect. 3.3 and the case that was respon-
sible for the minimum Δαc, a particular sample is migrated to an appropriate
destination set. If in this process S set changes (grows or shrinks), then matrix
R is updated using the incremental update trick described in Sect. 3.4.

– KKT Condition Check: Finally, the KKT optimality conditions for xc are
checked to terminate the iteration if αc = C or gc = 0.
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3.7 Decremental Algorithm

The decremental algorithm is very similar to the incremental version with minor
changes. When a sample xc is removed from the training set T , the algorithm
gradually decreases the value of the coefficient αc to zero, while ensuring that
all other samples satisfy the KKT conditions. In other words, it finds the maxi-
mum decrement in the value of αc instead of maximum increment (as in case of
incremental algorithm) following the rules described in Sect. 3.3. Based on the
previously discussed incremental version, the decremental algorithm makes the
following specific changes:

– If sample xc ∈ R set, then remove it from the training set without making
any change to the SVM solution.

– There is no case 1 in Sect. 3.3 as the removed sample xc will never be moved
to S set.

– Case 2 is modified to: if αc changes from αc > 0 to αc = 0, remove the sample
xc and the algorithm terminates.

4 Optimization

In this section, we describe how we optimize the incremental and decremen-
tal SVM algorithms described in Sect. 3. The codebase we used to implement
the incremental SVM algorithms is originally from a well optimized high-
performance GPU-based batch SVM implementation [3], which was also suc-
cessfully adapted to run efficiently on the previous version of Intel Xeon Phi
products [25].

4.1 Caching Dynamic Data Structures

Caching S Set Related Buffer: As mentioned previously, S,R and E sets
dynamically change due to sample migrations as the algorithm progresses
towards the optimal solution. Because most of the data structures are either
dependent on the cardinality of T (|T | = m) or S set, we focus on dynamic data
structures related to |S|. We make two key observations about S: (1) |S| << m
(from bounds on error expectation for SVMs [23]), and (2) between two con-
secutive iterations, S set either remains the same or, grows or shrinks by one
sample.

The dynamically changing buffers dependent on S set are β, R,QSc, Q and
QNS. Since |S| << m, the buffer with the most significant memory footprint
among all is QNS. QNS is required in the gamma calculation stage and with
a changing S set this buffer also dynamically changes every iteration. Recom-
puting the entire QNS matrix every time S set changes is very computationally
intensive. On the other hand, copying all the corresponding elements from the
cached kernel matrix Q to create QNS will cause a lot of cache misses because
of the large memory footprint of both Q and QNS. Therefore, we employ an
efficient caching mechanism for QNS and dynamically grow and shrink it as the
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algorithm progresses. To track the dynamics of the buffer between iterations we
maintain two copies of S set indices: St−1 and St, corresponding to index set for
support vectors in iteration t-1 and t respectively. Hence, if there are no changes
to the S set from the previous iteration, we use QNS from previous iteration.
Otherwise, we compute the difference between St−1 and St set: δ1 = St − St−1

(grow), δ2 = St−1 − St (shrink). If δ1 is not empty, we grow QNS by copying
only the corresponding elements from the row in Q matrix indexed by the newly
migrated support vector. If δ2 is not empty, we erase the corresponding row in
QNS indexed by the sample removed from support vector set from previous
iteration. It is worth noting that all buffers including Q matrix are stored in
row-major fashion except for QNS which is stored in column major fashion.
This is to make sure that both ‘grow’ and ‘shrink’ operations in QNS can be
indexed using support vector indices.

Caching Gradient Vector: The gradient information of samples is used in
the calculation of minimum progress Δαc as described in the accounting rules
of Sect. 3.3 and hence is required to be updated every single iteration. Note that
gradient calculation is a computationally expensive operation involving a matrix-
vector multiplication between huge kernel matrix Q of size m × m and sample
coefficient vector α. Hence whenever possible gradient information is cached from
previous iterations and is reused to avoid this expensive recomputations. Using
formula (9) we update the gradient for each sample and reuse it in the next
iteration. Note that because the gradients are cached as SVM state, they can
be reused across samples as well i.e. we also avoid the gradient recomputation
whenever a new sample is inserted.

4.2 Memory Access Pattern

In the incremental SVM training process, a lot of operations (e.g. GEMV ) are
memory-bound. Therefore, it makes sense to place data to MCDRAM which
has larger memory bandwidth when running it on the MIC processors. However,
since the capacity of MCDRAM is limited (typically 16 GB), we cannot fit the
entire working set in. Instead, we explicitly allocated the frequently retrieved
data (e.g. QNS matrix, R matrix) to be in MCDRAM using the memkind
library. As described above, QNS is a matrix of m × |S|, and R is a |S| × |S|
square matrix. The fact that |S| << m makes it possible to fit QNS and R in
MCDRAM.

As an m × |S| matrix, QNS is maintained in column-major fashion to facil-
itate the memory access of an entire column corresponding to the kernel values
of a specific support vector. And both QNS and R are aligned to 64 bytes so
that the vectorization can easily take the entire cache line in for achieving the
high performance.

4.3 Parallelization and Vectorization-Friendly Workflow

The workflow of incremental SVM contains multiple stages with various
branches. For example, in the bookkeeping process of sample movement, there
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are five different conditions and within each condition the samples in the same
set are handled differently according to their own situations. This characteristics
largely prevents the thread-level parallelization and vectorization within a loop.

To facilitate thread-level parallelization, we carefully define stages of the
workflow (Fig. 1), so that within each stage the thread-level parallelization can be
conducted via OpenMP easily. The philosophy is to make the parallel granularity
as large as possible to reduce the OpenMP thread launching overhead while
making sure all available cores are utilized. For enabling the vectorization within
a loop, we simplify the control flow logic by reducing the number of branches.

5 Evaluation

5.1 Experimental Setup

We tested our implementation of incremental SVM on both the MIC processors
and Intel Xeon processors (referred to hereinafter as processors). The configura-
tion of the MIC processors we used was described in Sect. 2. In the experiments
we launched 67 threads, one per core, leaving the last core for OS usage. Regard-
ing the processors, we used Intel Xeon E5-2699 v4 (codenamed Broadwell) with
22 cores running at 2.2 GHz. In the experiments we launched 22 threads, one
per core.

Table 1 summarizes the datasets we used for evaluation. They are all real
datasets in various domains. We z-scored the datasets to bring values of every
dimension to the same scale. covtype is originally with multiple classes, we
converted it into binary classification for our usage.

Table 1. Summary of datasets

Dataset #samples #dimensions

covtype [5] 50,000 54

cod-rna [22] 49,466 7

ijcnn [18] 49,990 22

susy [1] 60,000 18

In addition to our incremental algorithm, for comparison purpose we also
ran another incremental SVM algorithm named warm-start SMO which is used
in [26]. The warm-start SMO shares the same high-performance SVM training
codebase as our incremental SVM code. Therefore, it is a decent baseline which
is supposed to largely outperform the off-the-shelf SVM packages, let alone most
of them do not have incremental training component built in. In the warm-start
SMO, when a new sample is added, the training takes place from the state of
the current model until it gets converged again. Both our incremental algorithm
and the warm-start SMO are based on a batch trained model with C = 1 and
Gaussian kernel with γ = 1/#dimensions.



High-Performance Incremental SVM Learning 133

5.2 Overall Performance

We first thoroughly test out the performance of the incremental SVM algorithms
by starting from very small models that contain only tens of samples, and incre-
mentally training all the way to the entire dataset, except for 500 samples kept
for accuracy testing. Table 2 shows the running time of both our incremental algo-
rithm and the warm-start SMO on the MIC processors. From the table we can see
that our incremental algorithm runs 1.1 − 2.1× faster than warm-start SMO.

Table 2. Performance of incremental SVM and warm-start SMO on MIC processors

Dataset Incremental (s) Warm-start (s)

covtype 238.5 397.6

cod-rna 240.2 454.9

ijcnn 192.5 409.7

susy 3069.5 3344.4

We compared the models we obtained using our incremental algorithm, the
warm-start SMO and batch training to verify the correctness of the methods in
Table 3. We counted the number of support vectors (the samples in S set plus
E set) as well as applied the models to the left-out 500 samples of each dataset.
The results show that the models obtained from our incremental SVM is close to
the batch training and warm-start SMO training, which verifies the correctness
of our implementation.

Table 3. SVM model comparison

Dataset Incremental Warm-start Batch

#SV Accuracy #SV Accuracy #SV Accuracy

covtype 7593 77.8% 7552 77.0% 7704 77.2%

cod-rna 7807 94.2% 7764 95.6% 7805 95.8%

ijcnn 4849 96.8% 4772 98.0% 4843 98.0%

susy 27742 80.6% 27825 80.4% 27881 80.6%

In practice, the incremental training may take place on top of a model trained
from a large number of samples in batch. For example, in a real-time data analy-
sis application, one may want to tweak a well-trained model using the incoming
data stream. For this scenario, we evaluated the running time of adding 100
samples to a model trained via tens of thousands of samples on both the MIC
processors and the processors in Table 4. The results show that running on the
MIC processors outperforms the processors by 1.1 − 1.3×, which is limited by
the unavoidable sequential code spread in the workflow.
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Table 4. Streaming in 100 samples on different processors

Dataset MIC processors (s) Processors (s)

covtype 4.61 5.59

cod-rna 0.84 1.04

ijcnn 0.65 0.73

susy 12.75 15.94

We also investigated the time it takes to incorporate each new sample using
both our incremental algorithm and the warm-start SMO on the MIC processors.
Similar to what we have done in Table 4, we streamed in 100 samples of each
dataset and record the time it took to process them one by one. Figure 2 depicts
the results sorted by processing times, from which we see that in most of the cases
(90% of the samples) our incremental algorithm processes the samples faster.
Especially, for the samples that do not affect the distinguishing hyperplane, the
processing rate using our incremental algorithms is more than 10× faster than
the warm-start SMO (e.g. 0.3 ms/sample vs. 4 ms/sample). Even for the samples
that requires longer training (hundreds of milliseconds), the incremental training
is still much faster than batch which typically takes seconds to tens of seconds.

Fig. 2. The time duration of processing single samples in logarithmic scale.
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5.3 Performance Gain of Optimization

This subsection shows the performance gain of our proposed optimizations to
the incremental SVM algorithm. We summarized the optimization speedup in
Table 5 by streaming in 1000 samples to each dataset. Overall, our optimization
speed up the algorithm by 4.2−4.8×. Table 5 also listed the number of immediate
cycles (Sect. 3.5) encountered during the incremental training. We observed a
considerable amount of immediate cycles (in average 1 cycle per 27 samples
across all datasets), which suggests that our cycle breaking heuristic is critical
in achieving high-performance incremental SVM training.

Table 5. Speedup of optimization and the immediate cycles broken whiling training

Dataset Caching dynamic data Memory and
vectorization optimization

#cycles

covtype 2.8× 1.5× 28

cod-rna 3.2× 1.5× 6

ijcnn 3.3× 1.4× 7

susy 3.0× 1.5× 108

5.4 Leave-One-Out Cross-Validation

Cross-validation (CV) [10] is a popular method to assess the generalization abil-
ity of a machine learning model by dividing the dataset into disjoint training and
validation sets for training in rotation. Leave-one-out cross-validation (LOOCV)
which maintains a one-sample validation set is useful especially when the dataset
size is small. In batch processing of SVM, LOOCV can be expensive as retrain-
ing of the entire dataset but one sample is required for each sample. LOOCV
can be implemented much more efficiently using the decremental variation of
our incremental SVM algorithm as follows:

1. Learn the SVM parameter for the entire dataset T in batch;
2. For each sample xi ∈ T , using the decremental algorithm described in

Sect. 3.7, remove xi to learn the model of T − {xi} to apply to xi;
3. Summarize the overall classification accuracy on all samples.

We randomly chose 100 samples from each dataset shown in Table 1 to simu-
late small datasets and ran LOOCV using both batch training and decremental
training. From Table 6, we can observe that the decremental algorithm achieves
substantial performance benefit over the batch training on the MIC processors.
Furthermore, our decremental algorithm on the MIC processors outperforms the
processors by 1.1 − 2.1×.
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Table 6. LOOCV speedup using decremental training

Dataset Incremental on MIC processors
vs. batch on MIC processors

Incremental on MIC processors
vs. incremental on processors

covtype 121.3× 1.6×
cod-rna 11.7× 1.1×
ijcnn 108.0× 2.2×
susy 15.4× 2.1×

6 Related Work

Incremental training is a popular technique for many machine learning classifiers.
For algorithms built by techniques like stochastic gradient descent etc., it is
quite simple to train incrementally. For example, incremental learning of neural
networks [17] already exist.

Support vector machine training, on the other hand, relies on the convexity of
the data space. Therefore, the batch training algorithms are much more efficient
than techniques like gradient descent. Techniques such as Sequential Minimal
Optimization (SMO), decomposition based SVMlight [11] etc. are only slightly
worse than linear time in practice [15]. Efficient implementations of SVM train-
ing exist in many software packages optimized for different hardware platforms
including GPU [3] and the first generation of Intel Xeon Phi products [25].

A good incremental SVM training algorithm in practice must both perform
precisely to produce similar results, if not identical, to the batch training, and
run in high-performance. Incremental SVM training algorithms such as [2,21] do
not solve the problem to full optimality. They are only approximate approaches
by applying updates to the set of support vectors instead of the full dataset.
Errors can accumulate if these algorithms run for a large number of samples.
Incremental SVM training algorithms based on SMO (called warm-start SMO
which trains from the previously converged states) [6,8,9,27] have been proposed
earlier, but perform slowly especially for the non-support vector new samples.

Our work uses the incremental algorithm presented in [16] which can be used
to update models when adding or removing samples. This algorithm was not
practical to use due to two reasons - (1) there were no good methods to break
out of cycles (Sect. 3.5) and (2) naive implementation of this algorithm would not
be faster than warm-start SMO. [12] characterizes the cycling phenomenon but
does not propose a feasible solution beyond doing batch retraining. Incremental
SVM training is particularly challenging to implement on many-core architec-
tures because of its highly irregular workflow (Sect. 3) and branch-heavy code. As
a consequence, there is no existing implementation optimized for highly parallel
platforms. We largely relieve these limitations to present a usable and efficient
implementation of the algorithm optimized for the MIC processors in this paper.
Given that other work [13,14] has extended [16] to support vector regression,
our improvements should apply to those techniques as well.
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7 Conclusions and Future Work

This paper discussed how to construct an efficient implementation of the incre-
mental SVM training algorithm that runs well on many-core architectures such
as Intel Xeon Phi processors. We started from a known algorithm [16] and fixed
several issues (immediate cycle, data recompuation, irregular memory access pat-
tern, lack of parallelization and vectorization) to improve the performance. We
have shown that our implementation is up to 2.1× faster than warm-start SMO,
another high-performance incremental SVM algorithm, on average. Our algo-
rithm is better than warm-start SMO for 90% of samples. The code is planned
to be released as open source and we hope it will benefit SVM training in real-
time and other streaming-oriented applications in various domains.

Our further work focuses on scaling up the current incremental SVM imple-
mentation for very large datasets. The major limitation of current implementa-
tion is that the support vectors are required to be maintained in the memory
for the entire learning process. Two largest data structures in play are Q and
QNS, with memory complexities O(|S|2) and O(m ∗ |S|) respectively, where |S|
is the size of the support vector set, and m is the number of all training samples.
From [24], we know that for an SVM solution to generalize well on test set,
|S| << m holds. Hence the size of Q matrix in all practical scenarios should
not become the bottleneck. However QNS can be too large to fit in the main
memory. Therefore, in order to scale the algorithm to a very large m (m → ∞),
we would need an intelligent way to handle the QNS matrix efficiently. For
example, we may extend the algorithm implementation to more than one MIC
processor.
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Abstract. In this work we present AWP-ODC-OS, an end-to-end opti-
mization of AWP-ODC targeting homogeneous, manycore supercomput-
ers. AWP-ODC is an established community software package simulat-
ing seismic wave propagation using a staggered finite difference scheme
which is fourth order accurate in space and second order in time. Recent
production simulations, e.g. using the software for the computation of
seismic hazard maps, largely relied on GPU accelerated supercomputers.
In contrast, our work gives a comprehensive overview of the required
steps to achieve near-optimal performance on the IntelR© Xeon PhiTM

x200 processor (code-named Knights Landing), and compares our com-
petitive performance results to the most recent GPU architectures.

At the level of a single vector operation, we apply the vector fold-
ing technique to AWP-ODC-OS, yielding a 1.6× performance increase
over traditional vectorization. Further, we present a novel strategy uti-
lizing both DDR4 RAM and High Bandwidth Memory, increasing the
maximum problem size by 26% while still operating at maximum per-
formance. The presented shared and distributed parallelization carefully
schedules work to the cores and ensures overlapping communication and
computation. We conclude with a detailed study of AWP-ODC-OS’s full-
application performance on the Intel Xeon Phi x200 processor, achieving
up to 98.5% of the most recent P100 GPU generation’s performance.
Additionally, our weak scaling study on up to 9,000 nodes of the super-
computer Cori Phase II achieves a parallel efficiency of greater than
91%, equivalent to the performance of over twenty thousand NVIDIA
Tesla K20X GPUs.

Keywords: Seismic · Wave propagation · Xeon Phi · Knights Landing ·
KNL · Earthquake · Large scale · Stencil vectorization · Finite difference
method

1 Introduction

Finite difference schemes are the most popular choice for the simulation of seis-
mic waves. These schemes are attractive for a variety of reasons: the imple-
mentation is simple and efficient due to stencil-approximations of the partial
c© Springer International Publishing AG 2017
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differentials; there are very low dispersion errors if high-order stencils are used;
and the literature contains a vast number of model extensions, allowing compu-
tational scientists to incorporate many advanced physical features. In the past
many of those extensions have greatly increased the accuracy of earthquake
simulations [1,3,8,12,14–16,18,23]. For example, state-of-the-art finite differ-
ence solvers are able to handle realistic dynamic rupture source descriptions and
detailed physics-based anelasticity together with small-scale heterogeneities and
near-surface nonlinearity.

AWP-ODC is a widely-used code that simulates the propagation of seismic
waves through a viscoelastic medium, using a staggered grid finite difference
scheme. It has been crucial in many high impact projects including the San
Andreas fault scenarios in the TeraShake simulations [19], the “M8” simula-
tion, revealing a wave-guide amplification for the Los Angeles area [6], a Pacific
Northwest megathrust scenario [20], and a realistic earthquake ground motion
simulation reaching a frequency content up to 10 Hz on OLCF’s Titan [7]. The
software is used by many academic institutions worldwide and is part of the com-
putational platform of the Southern California Earthquake Center (SCEC), e.g.
high-frequency ground motion forward simulations (High-F), inverse problems
(F3DT) or seismic hazard analysis in the CyberShake studies [5].

In this project, we present AWP-ODC-OS1, our end-to-end optimization of
AWP-ODC targeting self-hosted manycore architectures, in particular the Intel
Xeon Phi Knights Landing processor. AWP-ODC-OS is an open source code
that unifies both the newly optimized Xeon Phi targeting code, and the previ-
ous GPU optimized code. AWP-ODC, or “Anelastic Wave Propagation - ODC”
is named after the initials of three of its initial main developers. It began as
a personal research code of Kim Olsen at the University of Utah [21] and has
existed in several different incarnations over the following two decades. Recently,
AWP-ODC was heavily optimized for heterogeneous, GPU-accelerated super-
computers [6,7,22]. Consequently, the processor based implementations fell
behind in terms of optimization for modern hardware. This project aims to
address this, and empower AWP-ODC and its users to take full advantage of
current and future generations of manycore architectures.

In Sect. 2 we give an overview of the governing partial differential equations
and the numerical scheme that AWP-ODC-OS employs to solve these equations.
In Sect. 3 we exploit the technique of vector folding [24,26] which promotes data
locality, and ensures that the stencil code is vectorized. Since this technique relies
on carefully constructed data structures and vector permutation instructions for
optimal performance, we use the YASK2 software package [26] to generate the
stencil operators of our code. This general approach of using tool-generated ker-
nels in AWP-ODC has been undertaken previously, using the PATUS code gen-
eration framework [4]; these PATUS kernels targeted AMD and Intel R© XeonTM

CPUs using traditional vectorization, rather than the vector folding technique
we consider here. In addition to vector folding, we present a novel scheme that

1 https://github.com/HPGeoC/awp-odc-os.
2 https://github.com/01org/yask.

https://github.com/HPGeoC/awp-odc-os
https://github.com/01org/yask
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utilizes both DDR and MCDRAM bandwidths to increase available problem size
while retaining or improving pure-MCDRAM performance. We give a detailed
description of these contributions, as well as our OpenMP and MPI paralleliza-
tion schemes, in Sect. 3. In Sect. 4 we present weak and strong scaling studies.
In the largest of these simulations, we utilized 9,000 nodes of NERSC’s Cori
Phase II supercomputer, attaining an aggregate performance that is equivalent
to 20,400 NVIDIA Tesla K20X GPUs. Finally we present our conclusions in
Sect. 5.

2 Numerics

2.1 Governing Equations

The AWP-ODC-OS code simulates the propagation of seismic waves, by solving
a velocity-stress formulation of the three-dimensional elastodynamic equations.
The governing hyperbolic partial differential equations are

δtv =
1
ρ
∇ · σ

δtσ = λ(∇ · v)I + μ(∇v + ∇vT )

(where ρ represents density, λ, μ are the Lamé parameters of the medium, σ is
the stress tensor and v is the vector of velocities vx, vy, vz). Component-wise,
these equations yield a system of nine equations in nine variables, one for each
of the three components of the velocity v and six upper-triangular elements of
the stress tensor σ. This system is solved using a staggered-grid finite difference
scheme, with time derivatives approximated by second-order accurate central
differences:

δtv(t) ≈ v(t + Δt/2) − v(t − Δt/2)
Δt

δtσ(t + Δt/2) ≈ σ(t + Δt) − σ(t)
Δt

Similarly, space derivatives are approximated by fourth-order accurate central
differences:

δxΦi,j,k ≈ c1(Φi+1/2,j,k − Φi−1/2,j,k) + c2(Φi+3/2,j,k − Φi−3/2,j,k)
h

where Φ represents either a velocity or stress component, c1 = 9/8, c2 = −1/24,
and h is the mesh spacing (partial derivatives in the y and z directions are
approximated similarly).

Due to the staggered grid, to perform a single timestep update first the entire
velocity grid is updated, and then the stress grid is updated using the newly
updated velocity values. The velocity components and the diagonal stress com-
ponents σxx, σyy, σzz are updated using 13-point stencils, while the off-diagonal
stress components use 9-point stencils.
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2.2 Boundary Conditions

AWP-ODC-OS currently supports absorbing boundary conditions and free sur-
face boundary conditions. For the absorbing boundaries, a sponge layer is applied
to the velocity and stress components [2]. These absorbing boundary conditions
are applied on all of the faces of the domain excluding the z = zmax face. On the
z = zmax face, which represents the free surface of the Earth, the free surface
boundary conditions denoted FS2 in [13] are applied.

2.3 Anelastic Attenuation and Source Terms

To accurately simulate the propogation of seismic waves, it is necessary to incor-
porate the effects of anelastic attenuation, which is quantified by a quality factor
denoted by Q. The effects of anelasticity potentially depend on the entire history
of the stress tensor, which imposes infeasible memory requirements on a simu-
lation. To resolve this problem, accurate approximations have been developed
which require only a constant number of “memory variables” per grid point [10].
AWP-ODC-OS uses the coarse-grained approach of [9], which requires a single
memory variable for each component of the stress tensor.

Many previous seismic simulations that have incorporated anelastic attenu-
ation use a value of Q that is a constant, independent of frequency. As noted in
[23], this scheme becomes inappropriate at frequencies higher than 1 Hz. Instead,
the authors of [23] propose a model where Q follows a power-law above a certain
threshold and is constant below that threshold, and incorporate this into the
coarse-grained approach. We adopt these same numerics in AWP-ODC-OS.

AWP-ODC-OS supports kinematic point source descriptions, which are input
as moment-rate time histories applied to a number of grid points in the computa-
tion domain, using a custom binary format. These point sources can be arranged
along a fault plane to represent a finite source.

3 Implementation

3.1 Overview

In this section we describe the implementation of AWP-ODC-OS, from the
prospective of a single core, to a single node, to multiple nodes. We begin with
a high-level overview of the control flow.

Upon initialization, the background velocity model, consisting of the density
and Lamé parameters, and the source terms are read from disk, and the neces-
sary data structures are allocated and initialized. In total there are 26 regular
three-dimensional grids used: a velocity grid for each of the x, y and z com-
ponents; six stress grids, representing the upper-triangular components of the
stress tensor; a grid for the density ρ and Lamé parameters λ, μ; a grid for the
Cerjan sponge layer; and finally 13 grids for the anelastic attenuation, composed
of the six upper-triangular components of the memory matrix and seven grids
for the coarse-grained attenuation.



Accelerating Seismic Simulations Using Knights Landing 143

A timestep in AWP-ODC-OS’s time marching loop consists of a velocity
stencil update of the whole domain, followed by a stress stencil update, source
term updates and possibly output. Additionally, if the domain has a free surface
boundary, there are velocity and stress free surface computations applied on that
boundary, which occur after the velocity and stress stencil updates respectively.
A schematic diagram of this control flow is given in Fig. 1.

Fig. 1. Diagram of AWP-ODC-OS’s control flow. Green boxes represent domain-wide
stencil updates, free surface boundary updates are in grey and all other procedures are
in blue. For multinode runs, MPI communication also occurs as part of the velocity
and stress grid updates. (Color figure online)

3.2 Architecture Description

The Intel Xeon Phi x200 family of processors, codenamed Knights Landing
(KNL), is the second generation in the Intel Xeon Phi product line, and the
first generation to be available as a self-hosted processor.

A Knights Landing processor contains up to 36 active tiles. Each tile contains
two cores and a 1 MB L2 cache shared between these cores. Each core contains
two Vector Processing Units, which support 512-bit wide vector instructions,
and a 64 KB L1 cache (broken into 32 KB for instructions and data). Each core
supports up to four hyperthreads, giving a total of up to 288 logical cores.
AWP-ODC-OS performs best with a single thread per core, and this is the
setting we will use throughout this work.

In addition to 6 DDR controllers (supporting up to 384 GB), each KNL part is
equipped with 16 GB on-package high-bandwidth MCDRAM. This memory can
be used in one of several modes, chosen at boot time. In Flat mode, this memory
is accessible as a separate NUMA node. The programmer can either explicitly
allocate memory on this node, or rely on a utility such as numactl to intercept
all allocations in an existing executable and place them in MCDRAM. In Cache
mode, MCDRAM acts as a large direct-mapped last level cache. This provides
many benefits of high-bandwidth memory without requiring code changes; how-
ever, it provides the programmer less control, since in this mode MCDRAM
cannot be accessed directly. In addition, hybrid modes exist, in which some per-
centage of MCDRAM is exposed as a NUMA node and the remainder acts as a
cache, as in Cache mode. In this work, when allocating memory in MCDRAM
in Flat mode, we perform these allocations using libnuma. Additionally KNL
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provides various clustering modes; for all of our Flat mode results, we use the
Quadrant clustering mode.

We will evaluate the performance of AWP-ODC-OS on a variety of Intel
Xeon Phi installations, in addition to a number of other architectures, includ-
ing Haswell-generation Intel Xeon processors and NVIDIA Tesla P100 GPUs.
In Table 1 we summarize the different KNL machines which we have used for
benchmarking, including two local nodes and two clusters: the TACC Stampede
KNL Upgrade and NERSC Cori Phase II at LBNL.

Table 1. A summary of the KNL systems used for AWP-ODC-OS benchmarks. For
each system, we list which Xeon Phi processor is present, and the output of the
STREAM Triad benchmark [17].

Name SKU Triad Description

KNL-LC 7210 470 GB/s Local KNL

KNL-STMP 7250 480 GB/s TACC Stampede KNL

KNL-CORI 7250 480 GB/s NERSC Cori Phase II

KNL-FAST 7290 490 GB/s Local KNL

3.3 Single Core

Since memory bandwidth is the principal performance bottleneck for
AWP-ODC-OS, to optimize performance on a single core, we exploit spatial
data locality in the stencil updates. To achieve this, we utilize the vector folding
technique [24].

Vector folding is based on the observation that neighboring data values are
often reused between consecutive stencil computations. When this reuse occurs
along the same dimension that SIMD vectorization is applied, memory band-
width can be reduced because many of the values in a previous vector can be
reused. Vector folding extends this reuse from the traditional one dimension to
multiple dimensions; typically 2D is used, but higher dimensionality is possible.
When performing the SIMD stencil calculations, small multi-dimensional tiles
of data are stored within each SIMD register. For example, in traditional 1D
vectorization, a 512-bit SIMD register might contain 16 consecutive single pre-
cision floating-point values in the x dimension, but when using vector-folding,
a SIMD register of the same size might contain a 4 × 4 tile of values in the x
and y dimensions, or a 4× 2× 2 tile in three dimensions [25]. Figure 2 illustrates
three different ways of “folding” data in an 8-element SIMD format and how
each of these folds would be applied to calculate 8 results in a simple 25-point
stencil. The benefit of vector folding can be seen by observing that fewer unique
elements need to be loaded in the 2D and 3D formats compared to the tradi-
tional 1D format, even though the number of results calculated in each case is
the same.

To enable this SIMD-element reuse and to also reduce the number of memory
loads, the memory layout must also be modified to match the vector folding
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a. 1 × 1 × 8 1D fold

b. 1 × 2 × 4 2D fold c. 2 × 2 × 2 3D fold

Fig. 2. Various folds of 8 elements [24]. The smaller diagram in the upper-left of each
sub-figure illustrates a single SIMD layout, and the larger diagram shows the input
values needed to calculate an example 25-point stencil for the entire vector.

scheme. For example, if 4 × 4 vector folding is used in the SIMD representation,
each 16 consecutive elements in memory must also contain values from a 4×4 tile
as specified by the logical multi-dimensional indices of the problem domain. This
more efficient layout comes at the cost of added complexity when constructing
folded SIMD tiles from their constituent elements when the access is unaligned,
e.g. when one or more indices are not a multiple of the folded vector length in its
corresponding dimension. Figure 3 compares the traditional 1D memory layout
to the 4 × 4 example layout and illustrates the added complexity of assembling
unaligned data. Creating the shuffle and permutation instructions required to
properly assemble the unaligned data can be tedious and error-prone. We use
the stencil compiler from the YASK software package [26] to automate this task.

To determine the most efficient vector fold scheme for AWP-ODC-OS, we
explored the performance of a variety of vector-fold dimensions using a per-
formance proxy that is part of the YASK software. Since AWP-ODC-OS uses
single-precision floating point arithmetic, we considered vector folds consisting
of 16 elements each to fill 512-bit SIMD registers.

Table 2 shows the performance for a range of vector-fold sizes x × y × z on
KNL-LC. Performance is measured by number of millions of lattice update
points completed per second (MLUPS), where one lattice update includes both
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Fig. 3. Exploiting data locality of vector folding requires modifying the memory layout
and generating code to assemble unaligned vectors from aligned loads [26].

a velocity and stress update. We observe that a 1 × 1 × 16 vector fold has the
lowest performance, while 4 × 4 × 1 fold attains the highest performance, with
a factor of 1.6 between these two extremes. Since z is the innermost dimension
in our grids, 1 × 1 × 16 fold corresponds to a traditionally-vectorized kernel
with no vector folding (i.e. 1D vectorization). Thus, the vector-folding technique
provides a 1.6× speedup compared to using a traditional SIMD representation
and memory-layout. Additionally, we can see that overall the best performing
fold sizes are those orthogonal to the innermost dimension z. This matches our
expectations, since a vector fold of this type has a higher proportion of data
dependencies in the innermost dimension, which will generally already be in
cache. Since a fold of size 4 × 4 × 1 achieves the best performance, this is the
size that we have used for the remainder of the Xeon Phi results in this work.

Table 2. Comparison of performance of velocity and stencil kernels for different vector
fold sizes. Given is the performance in MLUPS for each choice of vector fold size, and
the relative performance of that fold size compared to the best observed performance.
A domain size of 1024×1024×64 was used, and all performances were measured using
YASK, which provides a performance proxy for measuring performance of kernels under
different folding sizes.

Fold size 1× 1× 16 1× 16× 1 2× 8× 1 4× 1× 4 4× 4× 1 8× 2× 1 16× 1× 1

MULPS 812 1140 1311 1280 1313 1273 1260

Relative perf 1.00 1.40 1.61 1.58 1.62 1.57 1.55

In addition to vector folding, we exploit the AVX-512ER instruction set
extension. AWP-ODC-OS’s stencils require 8 divisions per timestep. We can
replace these divisions with the single precision reciprocal approximation instruc-
tion, RCP28, which is accurate to 2−23 and has a reciprocal throughput several
times smaller than VDIVPS. This achieves almost IEEE 754 single precision,
which has 24 mantissa bits. The resulting performance gain is 7%.
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3.4 Task Scheduling on a Single Node

We have developed a dynamic scheduling scheme for AWP-ODC-OS, with a
single dedicated management core which assigns work packages to the remaining
cores (which we refer to as computation cores); where a work package is a stencil
update in a subset of the domain, or MPI communication to one of the adjacent
nodes. Although we are using the OpenMP library, within the main loop we
manage the parallelism directly using thread IDs, rather than using OpenMP
annotated for loops. This allows us greater control and more flexibility in our
scheme. During the initialization phase of the code however, where performance
is less critical, we do make use of standard OpenMP annotated loops.

Since each timestep in the main loop is composed of the same computations,
the set of work packages required for each timestep is identical, and can be
generated at initialization. There are two types of work packages:

1. A velocity or stress stencil update on a portion of the domain, of fixed
size wx × wy × wz. If the domain size on a node is NX × NY × NZ , then
the total number of work packages of this type per timestep is Nstencil =
2�NX

wx
��NY

wy
��NZ

wz
�. The factor of two is due to the fact that there is both a

velocity and stress stencil update every timestep.
2. MPI communication that sends and receives velocity or stress halo regions to

or from all MPI neighbors of that node. There are two such work packages per
timestep, Nmpi = 2: one for the communication of velocity boundaries and
one for stress boundaries. During such a work package, first MPI Isend and
MPI Irecv are posted for each MPI neighbor, and then MPI Test is repeatedly
called until all requests are complete.

Additionally, each stencil update work package contains metadata to denote if
free surface boundary conditions should be applied after the stencil update. The
total number of work packages is then given by Nwp = Nstencil + Nmpi. For
optimal load balancing, this number should be large compared to the number of
computation cores. For example, for a problem size 512×512×512, the optimal
work package size for stencil updates is 16 × 16 × 128, yielding Nwp = 8194
(determined by comparing a range of sizes on the system KNL-LC).

The management core assigns work to a computation core via two integers
which are accessible only to that computation core and the management core.
These integers represent the next work package index that a core should com-
plete, and are initially negative to signal that no work package is ready. First
each computation core continually checks the corresponding two integers until
it reads a positive number, at which point it begins that work package. Upon
completion, it sets that integer to be negative. The management core continually
loops through these integers, and when it encounters a negative integer it checks
if there is a work package with no outstanding dependencies, and if so it sets
that integer to be that work package index. For simplicity, the work packages
are arranged in an order so that work package i is assigned to a computation
core only when all work packages j < i have already been assigned (though not
necessarily completed).
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During each timestep, there are several dependencies among the work pack-
ages. For example a stress stencil update requires all nearby velocity stencil
updates have completed, and an MPI work package cannot begin until all MPI
boundary computations are complete. These dependencies can be expressed by
sorting the work packages accordingly and insisting that no work package after
some index i can be assigned until all work packages with index j ≤ di are
complete. In order to reduce the time spent waiting for dependencies, the work
packages are arranged so that the difference i − di is large compared to the
number of computation cores.

Fig. 4. Illustration of our shared memory parallelization scheme. On top, the ordering
of work packages is listed; barriers are depicted by vertical lines, and their corresponding
dependency indicated by arrows. On the bottom, a two dimensional representation of
the domain is given, indicating the order in which the stencil updates are applied.

The ordering of the work packages and the corresponding dependencies are
illustrated in Fig. 4. The first work packages to be assigned are the velocity
updates for the parts of the domain which will need to be sent to that node’s
MPI neighbors. These MPI messages cannot be sent until the boundary compu-
tations are completed; this dependency barrier is depicted by the first vertical
red bar in Fig. 4. To prevent computation cores idling until this dependency is
met, some additional work packages are ordered before the MPI communication,
with the aim that by the time the dependency barrier is reached, the boundary
computations are complete and no core will idle. The next dependencies are for
the stress MPI boundary computations, which cannot be completed until the
neighboring rank has finished its boundary velocity updates and our MPI Irecv
of the velocity has completed. To mitigate the impact of these barriers, the stress
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boundary is broken into two parts, where the first part depends only on work
packages up to the velocity MPI work package. The second part of the bound-
ary is then started only when all of the velocity updates are finished. The final
dependency barrier ensures that the stress MPI communication does not begin
until the stress boundary updates have completed; this is arranged in the same
way as the velocity MPI communication, described above.

3.5 Multiple Node Parallelism

In this subsection we describe the multiple node parallelism scheme we have
developed for AWP-ODC-OS, as well as an alternative scheme that is more effi-
cient in cases where MPI scheduling becomes a bottleneck. Multinode parallelism
in AWP-ODC-OS utilizes an overlapping MPI scheme, and currently supports
domain decomposition in the X and Y dimensions. To perform a single update
of both velocity and stress, a node requires a layer of width two from the veloc-
ity and stress grids from all neighboring nodes, where two nodes are considered
neighbors if they share a face.

Each node communicates with its MPI neighbors twice during each timestep,
once for each kernel. These MPI communications are scheduled like all other work
packages, in particular, there is no dedicated communication core. As illustrated
in Fig. 4, the work packages are ordered so that first the boundaries are com-
puted, with the MPI communication work package being placed soon after the
boundary computations. The MPI communications cannot begin until all bound-
aries have been updated, which introduces a dependency in our work scheduling.
In order to reduce the impact of this dependency, a small portion of the interior
computation occurs between the end of the boundary computation and the MPI
communication.

An alternative MPI scheduling scheme is provided to enhance performance
in cases when the above scheme is not appropriate. For example, if the domain is
small enough that there are more cores than work packages on the boundary then
some cores will remain idle until the boundary computations are complete. The
alternative scheme enables a dedicated communication core, and then removes
the MPI work packages from the queue. This sacrifices a core, but in return
removes two dependencies, and ensures that the MPI communication will begin
immediately after the required stencil updates have completed.

3.6 Simultaneously Utilizing MCDRAM and DDR

In order to increase available memory bandwidth, when operating in Flat mode
we utilize both MCDRAM and DDR simultaneously. By placing a small num-
ber of the grids storing the 26 variables in DDR and leaving the remaining
grids in MCDRAM, we reduce the load on MCDRAM while ensuring that DDR
bandwidth does not become a bottleneck. Additionally, since the AWP-ODC-
OS kernels exhibit a substantial read/write imbalance (approximately 5:1), by
placing heavily-read grids in DDR we can reduce this imbalance which yields an



150 J. Tobin et al.

increase in the theoretical peak MCDRAM bandwidth. As an additional bene-
fit, this increases the total memory available, thereby allowing us to run larger
simulations on a single node.

Since we have 26 grids, there is a large number of possible partitions of
these grids between MCDRAM and DDR. We want to reduce the read/write
imbalance in MCDRAM accesses, so the 6 stress and 3 velocity grids which
are heavily written to are poor candidates to be placed in DDR. Furthermore,
more computation time is spent in the stress kernel than the velocity kernel,
and the sets of grids accessed by each kernel are not the same. This further
suggests which grids are good candidates to be placed in DDR. There are still
many combinations to check, and since the different grids are accessed quite
asymmetrically, it is difficult to predict which precise combination will perform
best. So we employed a search, using these initial observations as a guide to
reduce the search space, for example by always placing the velocity and stress
grids in MCDRAM.

The performance of all combinations of up to three grids in MCDRAM was
exhaustively checked, and for the remaining possibilities a random sample was
taken. The results are presented in Fig. 5. The best performing combination
involved placing four grids in DDR, attaining a performance increase of 5%.
Moreover, it is possible to place seven grids in DDR without decreasing overall
performance, thereby increasing the available memory by a factor of 7/26, or a
total of 21.89 GB. If we only place the 9 grids corresponding to velocity and stress
components in MCDRAM and place the remaining 17 grids in DDR, performance
degrades by a factor of two, while increasing available memory to 46.2 GB.

Fig. 5. Best performance improvement obtained by moving a fixed number of grids
from MCDRAM to DDR. For one to three grids, all possible combinations were tested,
for the remaining values a random sample was used instead. In each case, performance
was measured for 400 timesteps on a domain of size 128 × 96 × 192.
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4 Experiments and Results

4.1 Architecture Comparison

For the purposes of comparison, we ran AWP-ODC-OS on a variety of archi-
tectures. We tested two different code branches: Firstly, a GPU branch which
we have tested on several NVIDIA cards: a Tesla K20X, an Tesla M40 and a
Tesla P100 (250 W PCIE part); and secondly an x86 version, which was tested
on KNL-FAST and KNL-CORI and a single-socket Intel Xeon E5-2630v3.
These two branches contain independent implementations of the same numer-
ics, with identical physical features, including viscoelasticity through frequency-
dependent attenuation described in Sect. 2.

In Fig. 6, the performance of AWP-ODC-OS is shown for each of these archi-
tectures. In each case, a problem size was chosen that resulted in the best perfor-
mance, and for the KNL systems and the GPUs, this size was fixed to occupy a
large fraction of MCDRAM capacity and device memory capacity, respectively.
In the case of Xeon Phi the problem dimensions were 512 × 256 × 1024, for the
K20X and M40 160×320×512 was used, for the P100 320×320×1024 was used
and finally for the Xeon a problem size of 1024×1024×64 was used. In addition
to the performance of AWP-ODC-OS, memory bandwidth is benchmarked. For
the Xeon and KNL systems, we measured this by the STREAM-Triad bench-
mark [17]. In the case of the Flat mode KNL systems, the bandwidth listed
is the aggregate of the MCDRAM and DDR STREAM-Triad results, since we
utilize both. For the GPUs, bandwidth is measured by the HPCG-SpMV bench-
mark [11], which is bound by read-bandwidth, in order to accurately capture the
read/write imbalance of AWP-ODC-OS. As we can see these bandwidth test can

Fig. 6. AWP-ODC-OS performance on a variety of architectures, as well as memory
bandwidth for each system (measured by the HPCG-SpMV benchmark for the GPUs
and STREAM-Triad for the other architectures).
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Fig. 7. Weak scaling performance on up to 9,000 nodes of NERSC Cori and 90 nodes
of TACC Stampede KNL Upgrade, in Flat mode. On 9,000 nodes, a parallel efficiency
of 91% is attained.

be regarded as proxy for AWP-ODC-OS maximum possible performance. It also
demonstrates the high degree of tuning in AWP-ODC-OS as the entire solver is
able to achieve close to peak bandwidth.

4.2 Weak Scaling

We completed two weak scaling studies of AWP-ODC-OS, both in Flat mode.
Scaling plots are presented in Fig. 7. On KNL-CORI, this scaling ranges from
1 to 9,000 nodes, out of a total of 9,300 KNL nodes in the cluster, and a parallel
efficiency of above 91% is achieved. On KNL-STMP, it ranges from 1 to 90
nodes, of the 96 available Flat mode nodes, with a parallel efficiency above 94%.

In both scaling studies, each node was responsible for a computational
domain of size 512 × 512 × 512, which corresponds to 13 GB per node to store
the grids for each of the 26 variables. We utilize the scheme described in Sect. 3.6
where 7 variables are stored in DDR and 19 variables in MCDRAM, which cor-
responds to 9.5 GB in MCDRAM and 3.5 GB in DDR. There are 7,744 point
sources active for the first 400 time steps, out of a total of 2,000 time steps. Two
cores were set aside for use by the operating system.

For the 9,000 node run on KNL-CORI, AWP-ODC-OS attained an average
performance of 1,230 MLUPS per node, or 11.07 TLUPS aggregate between all
nodes. Since every LUP consists of 270 FLOPS (single precision), this yields a
total perfomance of 2.989 PFLOPS (single precision). 1,230 MLUPS corresponds
to a performance that is 2.27 times the performance of a single NVIDIA K20X
card. It would require 20,430 K20X cards, running at 100% parallel efficiency to
match the performance we have attained on KNL-CORI.

4.3 Strong Scaling

We completed strong scaling studies on both KNL-CORI and KNL-STMP,
ranging from 4 nodes to 128 nodes on KNL-CORI and from 4 nodes to 80
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Fig. 8. Strong scaling performance on up to 128 nodes of Cori and 80 nodes of Stam-
pede. Both studies begin with 4 nodes, representing a scaling factor of 32 on Cori and
20 on Stampede. In both cases, we achieve greater than 80% parallel efficiency when
scaling to a factor of 16.

nodes on KNL-STMP. In both cases, the total problem size across all nodes
was 2560 × 1536 × 192, and all runs were completed in Flat mode, using the
DDR/MCDRAM hybrid scheme, where we place 7 of the 26 variable grids in
DDR. Additionally, since for strong scaling the ratio of communication to com-
putation time increases as the number of nodes grows, we used the variant MPI
scheme with a dedicated communication core.

The results of both studies are presented in Fig. 8. Parallel efficiency remained
above 80% while scaling to a factor of 16. Beyond this, parallel efficiency began
to decay reapidly, as it became increasingly difficult to hide the communication
time behind computation time. Additionally, as the number of nodes increases
the total number of work packages becomes smaller relative to the number of
cores, and this increases time spent by cores waiting for previous, dependent work
packages to be completed. For example, for the 128 node run on KNL-CORI,
there are a total of only 120 stencil update work packages for each stencil, and
64 computation cores.

4.4 Memory Mode Comparison

As large KNL installations are deployed, there is great interest in the relative
performance of the different memory modes it provides. Cache mode aims at pro-
viding the benefits of MCDRAM without requiring that the developer undertake
code changes, while Flat mode requires some action on the part of the devel-
oper but provides much more control. From the comparatively low arithmetic
intensity (and from Fig. 6), it is clear that AWP-ODC-OS is sensitive to the
amount of memory bandwidth available, and hence there are large performance
improvements to be gained on KNL if MCDRAM is fully exploited.

In Fig. 9, the performance of AWP-ODC-OS over a range of combinations
of memory modes and problem sizes is presented, measured on KNL-STMP.
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Fig. 9. Comparison of AWP-ODC-OS performance on a single KNL node, in different
memory modes and with different problem sizes, measured on KNL-STMP.

For the 7 GB problem sizes, a domain of 512 × 512 × 256 was used, and the
larger problem sizes were attained by taking 512 × 512 × 256 and multiplying
the z dimension as necessary to achieve the desired size. Firstly, as a reference
point the performance for Flat mode running completely from MCDRAM and
running completely from DDR are given. The Cache mode performances all lie
within these two extremes, with performance in Cache mode degrading as the
problem size decreases. This is as we expect: if the problem size is much smaller
than 16 GB we expect relatively few MCDRAM cache conflicts, and then Cache
mode should provide similar performance to Flat mode running entirely from
MCDRAM. On the other hand, as the problem size gets larger there are nec-
essarily MCDRAM cache misses as we iterate over the domain, and we then
increasingly depend on DDR bandwidth to supply data. Note that when run-
ning completely from MCDRAM we are not using the hybrid MCDRAM/DDR
technique, and the measurements in this section were completed on a system
without the tickless kernel setting. These two factors, combined with a different
problem size, account for the difference in performance observed in this section
and in the Architecture Comparison section.

Overall, for problem sizes smaller than MCDRAM, Cache mode provides
similar performance to Flat mode. For example, for the 13 GB problem size we
observe 95.6% of Flat mode performance. We conclude that Cache mode is a
viable option for AWP-ODC-OS in terms of single node performance, though
Flat mode is superior in terms of performance and control. For a 39 GB prob-
lem size we see a performance drop to 35% of Flat mode performance. As was
noted in Sect. 3.6, by placing some grids in DDR in Flat mode, we can increase
the available problem size to 46 GB with performance of 50% of the maximum
observed performance. This is an improvement on using Cache mode in this case,
which means that especially for problem sizes larger than 16 GB, Flat mode is
advantageous.
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5 Conclusion

We have presented AWP-ODC-OS, an end-to-end optimization of the seismic
simulation code AWP-ODC, enabling this widely-used code to run close to opti-
mally on the Intel Xeon Phi Knights Landing microarchitecture. In recent years
AWP-ODC has primarily run on GPU accelerated supercomputers, and the
developments we have made will allow this code to additionally exploit a new
range of current and upcoming HPC installations.

We have optimized AWP-ODC for Xeon Phi from end-to-end: from the level
of a single vector processing unit via the vector folding technique, which yields a
factor of 1.6 improvement over traditional vectorization; to single- and multiple-
nodes via a custom dynamic scheduling scheme, which promotes efficient load
balancing and allows for overlapping computation and communication. The per-
formance of the resulting code is competitive with the cutting-edge of GPU
offerings, including the NVIDIA Tesla P100, compared to which AWP-ODC-OS
on Xeon Phi achieves 98.5% performance. On a large scale weak scaling study
on the supercomputer Cori Phase II, AWP-ODC-OS achieved a parallel effi-
ciency of greater than 91%. The combined performance of this run is equivalent
to 20,430 NVIDIA Tesla K20X GPUs, running at 100% parallel efficiency. This
very promising result demonstrates that Knights Landing supercomputers are a
prime candidate for future high-impact simulations using AWP-ODC-OS.
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Abstract. Many important applications – from big data analytics to
information retrieval, gene expression analysis, and numerical weather
prediction – require the solution of large dense singular value decom-
positions (SVD). In many cases the problems are too large to fit into
the computer’s main memory, and thus require specialized out-of-core
algorithms that use disk storage. In this paper, we analyze the SVD
communications, as related to hierarchical memories, and design a class
of algorithms that minimizes them. This class includes out-of-core SVDs
but can also be applied between other consecutive levels of the memory
hierarchy, e.g., GPU SVD using the CPU memory for large problems.
We call these out-of-memory (OOM) algorithms. To design OOM SVDs,
we first study the communications for both classical one-stage blocked
SVD and two-stage tiled SVD. We present the theoretical analysis and
strategies to design, as well as implement, these communication avoid-
ing OOM SVD algorithms. We show performance results for multicore
architecture that illustrate our theoretical findings and match our per-
formance models.

1 Introduction

The singular value decomposition (SVD) of an m×n matrix A finds two orthog-
onal matrices U, V , and a diagonal matrix Σ with non-negative numbers, such
that A = UΣV T . The diagonal elements of Σ are called the singular values,
and the orthogonal matrices U and V contain the left and right singular vec-
tors of A, respectively. The SVD is typically done by a three-phase process:
(1) Reduction phase: orthogonal matrices Q and P are applied on both the left
and the right side of A to reduce it to a bidiagonal form matrix, B; (2) Solver
phase: a singular value solver computes the singular values Σ, and the left and
right singular vectors ˜U and ˜V , respectively, of the bidiagonal matrix B; (3)
Singular vectors update phase: if required, the left and the right singular vectors
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of A are computed as U = QT
˜U and V = P ˜V . In this work, we are interested

in the computation of the singular values only. When the matrix A is too large
and does not fit in-memory, our goal is to design efficient algorithms to perform
the computation while A is out-of-memory (e.g., A could be in the hard disk
drive, flash memory, or fast buffer when a CPU computation is considered, or in
the CPU memory for GPU or Xeon Phi computations). The memory bottleneck
of the SVD computation is the first phase (e.g., illustrated by the difference in
columns 7 and 8 in Tables 4 and 5 from the experimental results section). Once
A is reduced, B consists of two vectors that fit (in general) in-memory, where
the singular value solver will be able to compute the singular values of B in-
memory. If the singular vectors are needed, the second phase also requires the
use of OOM techniques. To reduce a general matrix to bidiagonal form we can
use either the standard approach which is implemented in LAPACK (we call it
one-stage algorithm since it reduces the matrix to bidiagonal in one step), or a
two-stage algorithm which reduces the matrix to a bidiagonal form in two steps:
first to a band, and then to the bidiagonal form.

Since A resides out-of-memory, the communications to bring parts of A in-
memory and back will have a high impact on the overall run time of any OOM
algorithm. Thus, to develop efficient OOM SVDs, first and foremost we must
study the SVD computational processes and communication patterns, in order
to successfully design next the algorithms that minimize communications, as well
as overlap them with computation as much as possible.

2 Related Work

A number of dense linear algebra algorithms have been designed to solve prob-
lems that are too large to fit in the main memory of a computer at once, and are
therefore stored on disks [4,6,18]. Called out-of-core, these algorithms mainly
targeted one-sided factorizations (LU, QR, and Cholesky). Similar algorithms
can be derived between other levels of the memory hierarchy, e.g., for problems
that use GPUs but can not fit in the GPU’s memory and therefore also use CPU
memory, e.g., called non-GPU-resident in [19,20].

Similar algorithms are computationally not feasible for the standard eigen-
solvers or SVD problems in LAPACK, as we show in this paper, and there-
fore have not been developed before. Exceptions are special cases, e.g., SVD on
tall-and skinny matrices, where a direct SVD computation is replaced by an
out-of-core QR first, followed by an in-core SVD of the resulting small R [17].

The development of two-stage eigensolvers and SVD algorithms made it fea-
sible to consider designing their out-of-core counterparts. A two-step reduction
for the generalized symmetric eigenvalue problem was reported for the first time
in the context of an out-of-core solver [8,9]. Later, the two-stage approach [2,14]
was generalized to a multi-stage implementation [3] to reduce a matrix to tridi-
agonal, bidiagonal, and Hessenberg forms. The two-stage approach was applied
to the TRD (Triangular Reduction) [12] and to SVD [13,15,16] in combination
with tile algorithms and runtime scheduling based on data dependences between
tasks that operate on the tiles. This resulted in very good performance but has
never been used to compute the singular vectors.
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We note that the principle of the two-stage approach is similar to [12], as in
both cases the matrix is first reduced to condensed forms. However, the final form
and the transformations used are different, e.g., [12] is for symmetric eigenvalue
problems, so reduction is to block diagonal and symmetry is preserved, while the
reduction for SVD is to band with shape as shown in Fig. 2. The second stages
are also different in terms of transformations, their application, and final matrix
shape (tridiagonal vs. bidiagonal). Figure 7 shows the effect of specific strategies
for retaining data in memory vs. a generic approach, e.g., that would follow the
computation as coded in [12].

More recently, a new parallel, high-performance implementation of the tile
reduction phase on homogeneous multicore architectures was introduced [15].
It used a two-stage approach and a runtime scheduler that keeps track of data
dependences. Algorithmically, the two-stage approach is the latest development
in the field.

3 Contributions

The primary goal of this paper is to design communication avoiding OOM SVD
algorithms and their efficient implementations that overlap communications with
computations as much as possible. An efficient (and acceptable) OOM SVD
design must perform the computation in a realistic time and hide the commu-
nication overhead to the fullest. Our main contributions towards achieving this
goal are as follows:

– We developed and presented the analysis of the communication costs for
the one-stage and two-stage SVD algorithms on hierarchical memories, e.g.,
CPU memory for main memory and disk for out-of-memory storage, or the
GPU/Coprocessor memory for main memory and CPU DRAM memory for
out-of-memory storage;

– We investigated different communication avoiding strategies and developed a
design with optimal communication pattern;

– We created techniques, along with their theoretical analysis, to hide commu-
nication overheads for OOM SVD;

– We also designed a communication avoiding OOM SVD algorithm and devel-
oped an optimized implementation for multicore architecture. We showed
performance results that illustrate its efficiency and high performance.

4 Background

The first phase of the SVD computation is called bidiagonal reduction or BRD,
and as mentioned, is considered to be the most expensive part of the computa-
tion. In particular, when only singular values are to be computed, it takes more
than 90% of the time on modern computer architectures. The BRD’s computa-
tion cost in terms of floating point operations (flops) is O( 83n3). The two main
approaches for the BRD phase are:
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– One-stage approach: the standard one-stage approach as implemented in
LAPACK [1], applies Householder transformations in a blocked fashion to
reduce the dense matrix to bidiagonal form in one step;

– Two-stage approach: the newly developed two-stage approach [12] reduces
the general matrix to band form in a first stage, and then reduces the band
matrix to bidiagonal form in a second stage.

4.1 The One-Stage Algorithm for SVD

The one-stage reduction of a matrix A to bidiagonal form, as is implemented in
LAPACK, applies orthogonal transformation matrices on the left and right side
of A. The transformations are applied from both left- and right-side of A, and
therefore BRD is also called a “two-sided factorization.” The blocked BRD [5]
proceeds by “panel/trailing matrix update” and can be summarized as follows.
The panel factorization zeroes the entries below the subdiagonal and above the
diagonal. It goes over its “nb” columns and rows (red portion of Fig. 1) and
annihilates them one after another in an alternating fashion (a column followed
by a row, as shown in Fig. 1). The panel computation requires two matrix-vector
multiplications: one with the trailing matrix to the right of the column that
is being annihilated, and a second one with the trailing matrix below the row
that is being annihilated. The panel computation generates the left and right
reflectors U and V , and the left and right accumulation X and Y . Once the panel
is done, the trailing matrix is updated by two matrix-matrix multiplications:

As+nb:n,s+nb:n ← As+nb:n,s+nb:n − U × Y T − X × V T,

where s denotes the step and nb denotes the panel width. The process is repeated
until the whole matrix is reduced to bidiagonal form.

Fig. 1. LAPACK one-stage blocked algorithm: illustration of the main BLAS kernels
used. (Color figure online)
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4.2 The Two-Stage Algorithm for SVD

Because of the cost of the reduction step, renewed research has focused on
improving this step, resulting in a novel technique based on a two-stage reduc-
tion [3,5,7,10,12]. The two-stage reduction is designed to overcome the limi-
tations of the one-stage approach by exchanging memory-bound operations for
compute intensive ones. It relies heavily on compute-intensive operations so that
performance scales up with CPU core count. As the name implied, the two-
stage approach splits the original one-stage approach into two phases - the first
stage reduces the general matrix to band form and the second stage reduces
the band matrix to bidiagonal form. The first stage is compute-intensive and
heavily depends on Level 3 BLAS, whereas the second stage which represents
a small percentage of the flops and is memory bound, but can be implemented
with cache-friendly and memory-aware kernels to make it efficient.

First Stage: Compute-Intensive. The first stage reduces general matrix to
band form using a sequence of blocked Householder transformations. Compared
with the one-stage algorithm, this stage eliminates matrix-vector operations and
replaces them with matrix-matrix multiply kernels. Conceptually the matrix
of size n × n is split into u × u tiles of size nb each, where u = n/nb. The
algorithm then proceeds as a collection of interdependent tasks that can be
scheduled for execution by either static or dynamic scheduler. Algorithm1 shows
the tile algorithm for the reduction of general matrix to band form. Figure 2
shows the execution foot-print for the second step of the reduction to band
(stage 1) algorithm. The process consists of a QR sweep followed by an LQ

for s = 1 to u do
GEQRT (A(s, s));
for j = s + 1 to u do

UNMQR(A(s, s), A(s, j));

for k = s + 1 to u do
TSQRT (A(s, s), A(k, s));
for j = s + 1 to u do

TSMQR(A(s, j), A(k, j), A(k, s));

if (s < u) then
GELQT (A(s, s + 1));
for j = s + 1 to u do

UNMLQ(A(s, s + 1), A(j, s + 1));

for k = s + 2 to u do
TSLQT (A(s, s + 1), A(s, k));
for j = s + 1 to u do

TSMLQ(A(j, s + 1), A(j, k), A(s, k));

Algorithm 1. Two-stage algorithm to reduce a general matrix to band
form.



A Framework for Out of Memory SVD Algorithms 163

sweep at each step. A QR factorization (GEQRT) is computed for the tile A2,2

(the red tile). When this QR factorization is finished, all the tiles to right of
A2,2 (the light blue tiles of Fig. 2a) are updated by the UNMQR function (each
tile is updated by multiplying it on the left by QT ). At the same time, all the
tiles A•,2 (the magenta tiles of Fig. 2a) can also be factorized using the TSQRT
kernel (computing the QR factorization of a matrix built by coupling the R
factor of the QR of A2,2 and the A•,2 tiles) one after another as all of them
modify the upper triangular portion of A2,2. Once the factorization of any of
the tiles Ai,2 (for example the dark magenta tile of Fig. 2a), is finished, all the
tiles of the block row i (the dark yellow tiles of Fig. 2a) are updated by the
TSMQR kernel. Moreover, when all the operation on tile A2,3 are finished, LQ
factorization (GELQT) can now proceed for this tile (the green tile of Fig. 2b).
Just like the QR process, all the tiles in the third column A3:u,3 (the light blue
tiles of Fig. 2b) are now updated by the Householder vectors computed during
the LQ factorization (UNMLQ). Note, however, that this last update has to
wait until the prior QR operations have completed. Similarly, all the tiles A2,4:u

(the blue tiles of Fig. 2b) can also be factorized (TSLQT), and once any of the
tiles A2,i (for example, the dark blue tile of Fig. 2b) finish it factorization, it
enables the update of the tiles in the block column i (the dark yellow tiles of
Fig. 2b) using the TSMLQ kernel. The interleaving of QR and LQ factorization
at each step, as explained above, repeats until the end of the algorithm. At
the end, it generates a band matrix of band size nb. Such restructuring of the
algorithm removes the fork-join bottleneck of LAPACK and increases the overall
performance efficiency.

(a) QR factorization of tile A2,2 (b) LQ factorization of tile A2,3

Fig. 2. Kernel execution of the BRD algorithm during the first stage. (Color figure
online)

Second Stage: Cache-Friendly Computational Kernels. The band form
is further reduced to the final condensed form using the bulge chasing technique.
This procedure annihilates the extra off-diagonal elements by chasing the cre-
ated fill-in elements down to the bottom right side of the matrix using successive
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orthogonal transformations. Since the band “nb” is supposed to be small, we con-
sider that the data of this phase fit into the main memory and thus an in-memory
algorithm can be applied. This stage involves memory-bound operations that
require irregular memory accesses throughout the band matrix. In other words,
a straightforward implementation will start accumulating substantial latency
overheads each time different portions of the matrix are loaded into cache mem-
ory, and the loads can not be compensated for by the low execution rate of the
actual computations on that data. To overcome these critical limitations, we
employ a bulge chasing technique – originally designed for symmetric eigenvalue
problems (tridiagonal reductions) [12] – to extensively use cache friendly kernels
combined with fine-grained, memory-aware tasks in an out-of-order scheduling
technique, which considerably enhances data locality. This reduction has been
designed for newest architectures, and results have shown its efficiency. It has
been well optimized so that it takes between 5% to 10% of the global time of
the reduction from dense to tridiagonal on modern multicore architectures. We
refer the reader to [10,12] for a detailed description of the technique.

5 An Analytical Study of the Communication Cost
of Data Movement

In this section we develop and present the communication minimization pattern
for the OOM reduction to bidiagonal form. We provide the analysis for the
two techniques – one-stage v.s. two-stage – that we use to design OOM SVDs
minimizing the communication cost.

As described in Sect. 4.1, the one-stage bidiagonal reduction needs two
matrix-vector multiplications (GEMV) with the trailing matrix at every col-
umn and row annihilation, and two matrix-matrix multiplications (GEMM) after
every panel computation. Thus, when the matrix is large and does not fit into
the main memory, it must be loaded from out-of-memory once for each column
and once for each row annihilation (e.g., to perform the two GEMV opera-
tions) as well as loaded and stored once after each nb columns/rows annihilation
(e.g., after each panel) for the two GEMM operations. The algorithm requires
2(m × nb + n × nb) in-memory workspace to hold the panel (U and V ) and the
arrays X and Y of Eq. (4.1). Therefore, for an m × n matrix, the amount of
words to be read and written (i.e., the amount of data movement) is given by
the following formula:

Read A for dgemv #1 + Read A for dgemv #2 + Read/Write A for dgemm

=

n−1∑

s=0

(m − s)(n − s) +

n−1∑

s=0

(m − s)(n − s − 1) + 2

n/nb∑

s=1

(m − s × nb)(n − s × nb).

Thus, for an n × n matrix, the amount of word movements is about ≈ 2
3n3 +

1
nb × 2

3n3.
On the other hand, for the two-stage approach, there is no notion of panel

and trailing matrix update. We also note that, since the whole band matrix of
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size min(m,n)×nb is considered to fit into the main memory, the second stage
runs efficiently in-memory, and the main attention must be brought to the first
stage (i.e., reduction from dense to band), which needs to be performed in on
OOM fashion. Overall, if we follow the description in Sect. 4.2, we find that a
tile that needs to be updated must be “loaded from/stored to” out-of-memory
(e.g., disk) once every step. As a result, for an m × n matrix and band of width
nb, the amount of data movement is given by:

Read/Write A for QR + Read/Write A for LQ

= 2 ×
n/nb−1∑

s=0

(m − s × nb)(n − s × nb) + 2 ×
n/nb−1∑

s=0

(m − s × nb)[n − (s + 1) × nb]

≈ 2

nb
(mn2 − n3

3
).

Thus, for an n × n matrix, the amount of word movements is about 4n3

3nb .
From this formulation, one can easily observe that the classical one-stage

algorithm for the reduction to bidiagonal requires O(n3) more word transfers
between the in-memory and the out-of-memory storage than the two-stage app-
roach. This is a huge amount of extra communication that dramatically affects
the performance. To highlight the importance of the communications, we start
by giving an example. Consider a matrix of size n = 100, 000. The classical
one-stage algorithm needs 2

3n3 + 1
nb × 2

3n3 word movements. In double precision
arithmetic, for a recent Hard Drive, Solid State Drives (SSD), or out-of-GPU
memory where the communication bandwidths are about 150 MB/s, 500 MB/s,
and 8 GB/s, respectively, the standard one-stage technique requires 411, 123, and
7.72 days, respectively, to perform the reduction. The two-stage technique needs
approximatively 1

nb × 4
3n3 word movements, and thus, in double precision, it

necessitates 5.14, 1.54, and 0.09 days, respectively (with nb equal 160). Figure 3

Fig. 3. OOM SVD time comparison between the one-stage and two-stage algorithms.
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compares the times required to reduce a general matrix to bidiagonal form,
using either the one-stage or the two-stage algorithm for different matrix sizes
when the matrix resides in SSD. In conclusion, these results illustrate that it is
unacceptable to build an OOM algorithm based on the one-stage approach. For
that, it has long been thought that an OOM SVD implementation is practically
impossible.

To further emphasize the choice of the two-stage approach, consider one
more example where the matrix fits in-memory, and therefore word movements
are between the main memory and the cache levels. For a recent hardware, like
the Intel Haswell E5-2650 v3 multicore system, achieving a bandwidth of about
60 GB/s, the one-stage takes about 24.71 h to finish the reduction to bidiagonal
form in double precision arithmetic, while the two-stage algorithm takes about
0.31 h (with nb equal 160).

6 A Theoretical Study of the Design of an OOM SVD
Solver

In this section, we present the theoretical analysis of the OOM algorithm and
provide a detailed study of the communication pattern required by the OOM
algorithm. Also, we investigate different strategies to design one that is provably
optimal in term of data movement and performance. Using the conclusion from
the previous section, the design path for an efficient OOM SVD must follow the
two-stage approach. The reduction from dense to band form is thus the main
component that needs to be studied and implemented as an OOM algorithm. The
algorithm starts with A stored out-of-memory, loads in-memory parts of A by
block, performs computation on the in-memory data, and sends back results in
order to allow other blocks to be loaded as the algorithm proceeds to completion.
For simplicity, we use the specifics for out-of-core algorithms, where the matrix
is on disk and the CPU DRAM is considered to be the main memory. However,
the formulation and theorem proved here are general and applicable to OOM
SVDs designs targeting other levels of the memory hierarchy.

Besides algorithmic designs to reduce communication, we create techniques
to overlap the remaining communications with computation (when possible). We
show that this is not always possible for SVD (and eigenvalue solvers) because
of the two-sided process that must modify the whole trailing matrix in order to
proceed from column to column of the (panel) reduction. We note that this is
in contrast to linear solvers that use either Cholesky, LU, or QR factorizations,
which do not need the trailing matrix when factorizing a panel [4,6,18,19].

6.1 A Study of the Ratio of Communication to Computation

While the main goal in designing efficient OOM algorithms is to minimize com-
munication, as determined in Sect. 5, the second major objective is to overlap
the remaining communications with computation (when possible). Ideally, com-
munication is totally overlapped, in which case the OOM algorithm runs as fast
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Fig. 4. Reduction of general matrix to band form – update (multi-threaded single task
vs. sequential multi-task). (Color figure online)

as its in-core counterpart. We study and formulate a theorem that theoretically
answers the question to what degree this overlap is possible for an OOM SVD.
The basic principle that we apply to hide the communication overhead is: if a
computation is using and operating on data of block k, we write back the data
of block k − 1 and read the data of block k + 1. For full overlap, the commu-
nication must be in less or equal time to the computation task on the data of
block k. The main and the most time consuming type of tasks in the two-stage
algorithm are the update tasks (e.g., TSMQR and TSMLQ) [11]. Therefore, we
focus our analysis and description on this type, as the substitution to other type
can be derived easily. Figure 4 shows two scenarios for the update tasks: (1) All
the threads are participating on the computation of a single task that we call
multi-threaded single task. To hide communication we must write back the tile
computed previously (pink color) and bring the next tile (cyan color) in mem-
ory in less time than the computation of the current tile (red color); and (2)
Each thread works on a separate tile – called sequential multi-task. If there are
p threads, we must write back the previously computed “p” tiles and load the
next “p” tiles for the next computation while computation is happening on the
current p tiles.

Theorem 1. The OOM two-stage SVD reduction algorithm fully overlaps data

communication with computation if the tile size b is at least
3.2α

β
for double

precision (DP) arithmetic, where β is the communication bandwidth (in Bytes/s)
and α is the computational performance capability of the system (in flops/s).

Proof. First, we consider the case when all threads are working on a single task,
as shown in Fig. 4 (left). A tile of size b consists of b2 elements, which is 8b2 bytes
in DP arithmetic. We use the DP arithmetic representation for all the subsequent
formulations. Assuming that the read and write bandwidths are similar, the time
tread to read (or the time twrite to write) a tile of size b in seconds (s) is given by:

tread = twrite =
8b2

β
,
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where β is the bandwidth of the transfer between disk and memory. The com-
putation cost of the update task (TSMQR or TSMLQ routine) for a tile of size

b is 5b3 flops, yielding tcompute =
5b3

α
, where α is the performance capability

in flops/s for the in-memory operation that must be performed (e.g., update
operation; we note that TSMQR/TSMLQ reach about 80–85% of the machine
peak). The necessary condition to hide the communication overhead is:

tcompute ≥ tread + twrite

=>
5b3

α
≥ 16b2

β

=> b ≥ 3.2α

β
.

Now consider the case where tasks are running in parallel (see Fig. 4 (right)) and
each thread is working on a separate tile. If p tasks run in parallel, p tiles are
brought in-memory and sent back to disk after the computation. Thus,

tread = twrite =
p × 8b2

β
and tcompute =

5b3

α
p

=
p × 5b3

α
.

Thus, to overlap communication with the computation, we must have b ≥ 3.2α

β
.

�

Table 1 shows the minimum tile sizes “b”, required to completely overlap the
communication with the computation for various systems. The higher the per-
formance capability is, the larger the required tile size is in order to overcome the

Table 1. Minimum tile sizes needed in order to overlap communication time by com-
putation for OOM SVD solver on various systems.

System Communication
bandwidth β
(GB/s)

Update kernel
performance
(Gflop/s)

Minimum tile
size to hide
communication

Sandy Bridge E5-2670
WDC1002FAEX

0.05 250 16000

Haswell i7-5930K
Samsung SSD EVO

0.5 200 1280

Haswell E5 2650V3
Seagate Constellation

0.15 300 6400

K40 PCI 8 960 384

P100 PCI 8 3760 1504

KNC PCI 8 768 308

KNL PCI 8 1600 640
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Fig. 5. Roofline performance model for the OOM SVD solver.

communication time. For example, a Sandy Bridge machine, having a computa-
tional performance of α = 250 Gflop/s, connected to an HDD with bandwidth
of 50 MB/s, requires the tile to be of size 16, 000. Such big tile size is however
not computationally feasible for the following reason:

– The tile size defines the width of the reduced band matrix. Band matrix of
this size (n × b), may not fit in-memory for the second stage;

– Even if the band matrix fits in-memory, the second stage of the algorithm
(reduction from band to bidiagonal form) will be extremely inefficient and
will adversely affect the overall run-time.

The performance of the two-stage OOM SVD can be estimated by a roofline
model for the update tasks. For double precision data, the update task computes
5b3 flops for a tile of size b, and communicates 16b2 bytes of data. In short update
task computes 5b3 flop for 16b2 byte data. The arithmetic intensity, i.e. flop to
byte ratio for update task is 5b

16 . If the system has bandwidth β, performance
of two-stage OOM SVD is computed multiplying arithmetic intensity by system
bandwidth, i.e. 5b×β

16 . Figure 5 shows the roofline performance model of the OOM
SVD solver for different tile sizes and for different types of systems. Figure 5
shows that the peak performance is not achievable with small tile size. At the
same time, big tile sizes, that are required to reach peak performance, are also
not feasible. Therefore, it can be concluded that the performance of the OOM
two-stage algorithm is bounded by disk bandwidth.

7 Algorithmic Design

Sections 5 and 6 addressed the two main design considerations for OOM SVD.
These are: (1) algorithms to minimize the communications between the in- and
out-memory layers, and (2) overlapping the remaining communications with
computation, respectively. In this section, since any system will have some avail-
able main physical memory, we analyze and develop strategies to further reduce
the communication overhead for the two-stage OOM SVD algorithm by taking
advantage of such memory holding data and reusing it as much as possible.
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7.1 Proposition 1 - Global Communication Reducing Strategy

In order to minimize the communication overhead, our first strategy follows the
idea to hold and keep in memory the tiles that are the most accessed during the
whole reduction process which we call global access pattern. As we are reading
and writing data in tile granularity, our first algorithmic design comprised of
finding out the tiles that are used the most in order keep them in the main
memory. If one tile of the matrix is held in memory, then, at each step of Algo-
rithm1, we can save one read and one write for the QR sweep, and similar for
the LQ sweep till the step reach the tile index. For example if we hold the tile in
the lower right corner, the amount of reads and writes that can be reduced by
holding it in memory is 2(u − 1)R + 2(u − 1)W . The most used tiles are in the
lower right corner of the matrix as those tiles are used for both the QR and LQ
sweeps in each step of the algorithm. Figure 6a shows the total number of reads
(R) and writes (W) required during the process for each tile of a square matrix
of u×u tiles. As a results, according to the proposed strategy, the available phys-
ical memory will be used to hold tiles from the lower right corner of the matrix
based on their global access number of R/W. Our strategy is implemented as
a decision maker engine which decide which tile is to keep in memory, when to
release it back (write it back) as well as when to read it. Based on the decision
a task with the corresponding dependencies is submitted to the runtime system
and this task return the pointer to the data (that has been held, copied) that
the next computational kernel will need. Similarly, when a computational task
is done, the decision maker decide whether to keep it in memory or to initiate a
task that send it back to the disk.

(a) Total number of R/W (b) number of R/W for 1 step

Fig. 6. Snapshot of the amount of reads and writes required overall (left) and by step
(right). (Color figure online)
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7.2 Proposition 2 - Optimal Communication Reducing Strategy

We analyzed in detail the characteristic of the reduction algorithm. As mentioned
above, it is composed of a QR followed by an LQ sweep or vice versa. The QR
and the LQ sweeps consist of applying the Householder reflectors generated dur-
ing the panel factorization at each step “i” to the trailing matrix. The QR and
the LQ panels of a step “i” consists of the tiles in position A(:,i) and A(i,:)
respectively, for example, the tiles highlighted in purple and green in Fig. 6b
corresponds to the panels of step 1). The trailing matrix is the portion on the
right/bottom side of the panel for the QR and LQ update respectively). Diving
into the detail of the algorithm, we can find that the Householder reflectors gener-
ated at step “i” are needed as input data by all the update tasks corresponding to
step “i”. Thus, these tiles are read as many times as they are needed. Moreover,
we can also observe that these tiles are never accessed in the upcomings steps > i.
For example, the tiles highlighted in purple and green in Fig. 6b are read (u− 1)
and u times for the QR and LQ sweep, respectively. This is done only in step 1
and they are never referenced after that. As consequence of our analysis, holding
one tile from the purple block during the QR sweep, then, when the QR is done,
using the same space to hold one tile form the green area (LQ sweep), saves about
2(u−2) reads in step 1, 2(u−3) reads in step 2, and so on. As a result, if we have
physical memory to hold one tile, we can reduce (u2 − 3u + 2) reads using our
proposition 2 compared to 2(u−1)R+2(u−1)W using proposition 1. Compared
to the first strategy, we can expect a very large gain using this strategy.

Thus, if we consider that the minimum workspace of the OOM algorithm
is composed of one panel (e.g., u tiles), we can find that the gain is about
∑u−1

s=1 (u − s − 1)(u − s) +
∑u−1

s=1 (u − s − 1)(u − s − 1) = 2
3u3 − 5

2u2 + 17
6 u − 1

reads. Since in practice the available space can be larger than a panel, then after
holding the panel, we can start holding from the right bottom corner, since then
these tiles become the most used step-wise or global-wise. Figure 7 compares the
amount of the read that can be reduced by our two strategies. It is easy to notice
that the optimal solution is the second strategy.

Fig. 7. Amount of reduced tile reads/writes by using the two new strategies that we
propose.
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8 Runtime Estimation Model for the OOM Two-Stage
SVD Solver

In this section we define the model to estimate the run-time for reduction to band
form of the OOM two-stage SVD solver. We first start by assuming that there
is enough memory to store only u tiles for the panel and 4 tiles for temporary
data. Since, as described in the above section, the algorithm is bound by the
amount of tiles to be read/written, we compute the total number of tiles to be
read/written. For a matrix of u × v tiles, we compute that the total number of
tiles to be read or written is:

1 ×
v−1
∑

s=0

(u − s) + 2 ×
v−1
∑

s=0

(u − s)(v − s − 1) = uv2 − 1
3
v3 +

1
2
v2 − 1

6
v. (1)

For a square matrix with u × u tiles, the amount of communication is 2
3u3 +

1
2u2 − 1

6u tiles to be read and 2
3u3 + u2

2 − u
6 tiles to be written (Fig. 8).

Fig. 8. Extra memory available used to hold tiles to reduce communications (Color
figure online)

Usually the system memory will have more space, and thus more tiles can be
kept in memory. In order to provide a correct model for the runtime estimation,
we present the possible scenarios. First, if the tile size b is larger than the minimal
needed to overlap communications by computation, as described in Sect. 6.1,
then the total time can be estimated to be the in-memory computational time,
since the communication is hidden in this case. The reduction operations – 8

3n3,
where n = u×b – are mostly computed by the update kernel. Thus, the estimated
time is equal to:

Test =
8n3

3α
,

where α is the performance of the update kernel.
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The other scenario, which is commonly faced in practice for the DRAM/disk
case, is when b is smaller than the minimal tile size required to entirely hide the
communication. In this case, the estimated run-time is given by:

Test = Tread + Twrite + Tcompute,

where Tread and Twrite are the times required for all the read and write, respec-
tively, and Tcomputation is the computation time. Tcomputation is not straightfor-
ward to estimate. For the yellow area, it is equal to the computational time of
the kernel since this data is in memory, while for the white tiles, it is equal to
the communication time (since the tile size b is smaller than the minimal, the
communication time is larger than the computation time). So, Tcomputation will
be included in Tread and Twrite, and therefore, Tcomputation = l2 5b3

α .
We define Topti to be the time that has been optimized by avoiding the read

and the write of the yellow area. From steps 1 to u − l, each tile in the yellow
area is read twice and written twice (see Sect. 7.2 and Fig. 6b), meaning that at
every step for each tile of the yellow area, we optimize 2 reads and 2 writes in
terms of communication. Consequently, we optimize (v − l) × (2R + 2W ). For
the steps from l + 1 to u all the tiles are in memory and thus all the read and
the write required for this area are avoided, which is 2

3 l3 + 1
2 l2 − 1

6 l reads and
2
3 l3 + 1

2 l2 − 1
6 l writes. Therefore:

Topti = (2(v − l) +
2
3
l3 +

1
2
l2 − 1

6
l)(R + W ).

Thus, the Tread or Twrite is equal to the total amount of read needed without
holding or optimizing, minus the Topti for the read:

Twrite = Tread =
2
3
u3 +

1
2
u2 − 1

6
u2 − 2(v − l) − 2

3
l3 − 1

2
l2 +

1
6
l

Consequently, the model for estimating the time of the OOM SVD is defined by:

Test =
4
3
u3 + u2 − 1

3
u2 − 4(v − l) − 4

3
l3 − l2 +

1
3
l + l2

5b3

α
. (2)

9 Experimental Results

To evaluate the performance of the OOM two-stage algorithm, we have done a set
of experiments. This section presents the results and analysis of the experimental
data collected. We run our experiment on both Haswell i7-5930K and Haswell
E5 2650 V3 machines. We use a few different systems to run our experiments.
The details of the machines we used are given in Table 2. We first studied the
effect of the bandwidth size on the performance. A low bandwidth predestines
low performance for the OOM solver since communication will be dominant.
The maximum performance in this case will be bound somewhere in the lower
portion of the roofline model, since the block size must be small. Consequently,
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Table 2. Machine configurations.

SSD System:
Haswell i7-5930K

Spindle System:
Haswell Xeon E5 2650V3

Clock 3.5 GHz 2.3 GHz

Core 6 10

Memory 32GB 32 GB

L2 Cache 15MB 25 MB

Peak performance 336 Gflop/s 368 Gflops

Disk Samsung SSD EVO 465GB Seagate ES.3 1000GB

the generation of many small Read/Write tasks further increases disk traffic, and
affects bandwidth of the disk negatively. Even though Samsung SSD and Sea-
gate Constellation HDD have high theoretical R/W bandwidth, we are unable
to achieve it because of complex access order and small tile sizes. Big tile sizes
help to have less tasks and overcome some of these short comings, but at the
same time increase run-time for the second stage (reduction of band matrix to
bidiagonal form) of the two-stage algorithm. Table 3 shows the effect of tile size
for the OOM SVD solver for 100k × 60k matrix when we run it on the Spin-
dle System. Basically, the second stage of the SVD solver is memory bound, and
its performance depends on the memory bandwidth. Table 3 shows the execu-
tion time for both stages for two tile size. Big tile size, e.g., 512, improves the
performance of the first stage compared to tiles of size 128, but it requires longer
time for the second stage. However, since the second stage runs in-memory, its
time remain negligible compared to the first stage.

Table 3. Effect of tile size on the runtime of the two-stage OOM SVD algorithm on
the Spindle System, with a matrix of size 100k × 60k.

Tile size Obtained
disk
bandwidth
(GB/s)

Update
kernel
performance
(Gflop/s)

First stage
of two-stage
SVD algorithm

Second stage
of two-stage
SVD algorithm
time (hour)

Estimated
time (hour)

Obtained
time (hour)

128 80 300 13.42 13.90 0.06

512 110 300 3.94 3.68 0.53

Tables 4 and 5 present details of our experiments. We report the obtained
bandwidth (e.g., the average of the measured bandwidth) as well as the perfor-
mance of the main kernel (e.g., the update kernel) since our roofline performance
model depends on it. We also report the estimated time to compute the first stage
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using Eq. 2 and the actual time obtained during our runs. Moreover, we report
the time to performs the second stage, and thus the total time for the OOM
reduction to bidiagonal using the two-stage algorithm. To give the reader a clear
view about the benefit and the efficiency of our proposed OOM algorithm, we
show the estimated runtime for an OOM reduction to bidiagonal using the stan-
dard one-stage algorithm. Our OOM SVD solver uses the maximum amount
of memory that the system allows us to use (32 GB on these systems). From
Tables 4 and 5 we can observe that the estimated execution time for the first
stage is close to the observed run-time. This also highlights the importance of the
performance analysis discussed above, and shows that our performance model
is good enough. For example, in the Spindle System (e.g., Haswell E5 2650V3
machine), for 100k×100k matrix, the actual run time for the first stage is 19.04 h,
whereas the estimated run-time using Eq. 2 is 19.70 h.

Table 4. Obtained and estimated runtime of the two-/one- stage algorithms on the
SSD System.

Table 5. Obtained and estimated runtime of the two-/one- stage algorithms on the
Spindle System.

Tables 4 and 5 show the overall runtime for the two-stage OOM SVD solver
for both systems. We compare it to the obtained/estimated time for an OOM
SVD solver by using the standard one-stage algorithm since both methods reduce
a general matrix to bidiagonal form. To make the estimation as accurate as pos-
sible, we did not use the manufacturer data for the bandwidth and performance,
instead, we used α and β obtained from benchmarking the bandwidth and the
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update kernel performance. As seen in the tables, and as expected based on our
theoretical study presented in Sect. 5, the OOM two-stage algorithm is much
faster than the one-stage algorithm, and can be used in practice, versus the non-
practical use of the one-stage algorithm. For example, for 100k × 100k matrix
the two-stage OOM SVD algorithm is taking only 20.57 h, whereas the one-stage
algorithm takes 562 days. Also, we notice that our optimized two-stage OOM
SVD can solve big problems that are not possible to solve using the traditional
SVD algorithm in limited time. This is because the two-stage OOM SVD reduces
disk traffic significantly, using all the strategies and techniques explained above.
In addition to what has been described and showed above in term of importance
and efficiency of our proposed OOM SVD solver, we note that the 100k × 20k
and 100k ×40k test case fits into the main memory, and thus, all algorithms run
in-memory. We can see here that even for in-memory, our two-stage approach
remains about 3–5 times faster than the standard one-stage approach. Last, we
also note that simply using swap space in a memory constrained environment is
not a viable option. We performed SWAP experiment, we force the algorithm to
execute in a memory constrained environment by locking away 90% of physical
memory from the application. The memory management is thus delegated to the
operating system and inactive pages are sent to a disk-backed swap space. The
observed disk bandwidth sampled during the execution of the algorithm is lower
than 5 MB/s. The execution time of the two-stage reduction algorithm using
disk SWAP was about 580 times more expensive for a small test case of size
10k × 10k, while the one using the one-stage algorithm cannot complete after a
full two days of execution. For that, we consider that using the swap disk is not
a acceptable option at all.

10 Conclusion

We developed and presented the analysis of the communication costs for the
one-stage and two-stage SVD algorithms on hierarchical memories. Different
communication avoiding strategies were investigated and a design with optimal
communication pattern was developed. Moreover, techniques to hide communi-
cation overheads for the OOM SVD were created. Optimized implementations
of the algorithms developed now enable us to solve efficiently SVD problems
where the matrix is too large and does not fit into the system memory, and for
which traditional SVD algorithms can not be used. We provided a clear picture
about the possible optimizations and improvements. Future work includes efforts
to further improve the performance of the OOM SVD by developing OOM QR
factorization for tall matrices. The idea here is to precede the SVD by an OOM
QR decomposition, and then perform an in-memory SVD on the small upper
triangular matrix R. In case R does not fit in-memory, our OOM SVD can be
applied to it to still benefit from R’s smaller size.
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Abstract. The increasing complexity and heterogeneity of extreme
scale systems makes the optimization of large scale scientific applications
particularly challenging. Efficiently leveraging these complex systems
requires a great deal of technical expertise and a considerable amount
of man-hours. The computational neuroscience community relies on an
handful of those frameworks to model the electrical activity of brain tis-
sue at different scales. As the members of the Blue Brain Project actively
contribute to a large part of those frameworks, it becomes mandatory to
implement a strategy to reduce the overall development cost. Therefore,
we present Neuromapp, a computational neuroscience mini-application
framework. Neuromapp consists of a number of mini-apps (small stand-
alone applications) that represent a single functionality in one of the
large scientific frameworks. The collection of several mini-apps forms a
skeleton which is able to reproduce the original workflow of the scientific
application. Thus, it becomes easy to investigate both single compo-
nent and workflow optimizations, new software and hardware systems
or future system design. New solutions can then be integrated into the
large scientific applications if proved to be successful, reducing the overall
development and optimization effort.

1 Introduction

In 2005, the Blue Brain Project (BBP) [2] was launched with the objective of sys-
tematic integration of the heterogeneous neuroscience data into unifying models
of simulation-based research in neuroscience. For that purpose, a unique software
infrastructure has been co-designed with neuroscientists resulting in a first-of-
a-kind opportunity to perform in silico experiments on virtual tissues that are
impossible using current experimental technique [12]. The HPC team of the BBP
actively supports the scientists and the neuroscience community through contri-
butions to three major neural simulators: Nest [14], NEURON [8] and STEPS [6].
These three simulators are complementary and simulate the brain and its com-
ponents at different scales: mmetric (point neuron scale), µmetric (cellular scale)
and nmetric (sub-cellular scale) respectively. All these simulators have years of
development, even three decades for the NEURON simulator, and its half million
lines of code (including DSL, scripting language and source to source compiler).
c© Springer International Publishing AG 2017
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In Silico Experiments: In a standard electrophysiological in silico exper-
iment, the neuroscientists define a portion of in silico tissue by specifying the
morphology of each neuron (the shape and geometry of all its cellular processes),
a set of connectivity rules (e.g. which neurons are connected by synapses) and a
stimulation protocol (incoming spike trains delivered to the dendrites of target
neurons) [5,11]. At the BBP, in silico circuits are populated with virtual neurons
in a data-derived, biologically realistic way through a multi-step procedure.

Once the portion of in silico tissue is defined, the neural simulation is exe-
cuted. Neuroscientists typically change the stimulation protocol between exper-
iments, in order to capture different aspects of the propagation of the electri-
cal signals across the neural network. We consider here three kinds of stim-
ulation patterns applied to the same neural circuit: original-stim is a strong
injection of current in a ring-shaped portion of the tissue, weaker-stim has
the same ring-pattern, but a weaker current, and finally, Neocortical-stim is
a stimulation pattern taken from [12] that is intended to mimic thalamocortical
innervations.

(a) threshold detection
(b) event-driven spike delivery

(c) ionic, synaptic currents
(d) neurons’ states

(e) ionic, synaptic states

(f) if TIO: I/O operations

every Tsynch

repeat

Tsynch

Δt

times

(g) spike exchange & enqueuing

Temporal
Granularity

Shared
Information

Coupling
Ratio

Component
Complexity

Fig. 1. Left: In silico experiments common algorithm. Right: performance metrics for
Diesmann et al. [3] (blue) and Markram et al. [12] (red). Vertical shading denotes
metrics that can be related to single node performance requirements in the roofline
model, whereas horizontal shading denotes metrics associated to network communica-
tion. Component complexity represents the number of variables to represent a single
neuron; temporal granularity is the inverse of the time step; shared information is the
number of variables communicated between neurons; coupling ratio is the number of
computation steps before a communication step is required. (Color figure online)

Even though in silico experiments can be quite different, and can even use
different software, it is possible to extract a common algorithm. The required
steps that any in silico experiment needs to go through are presented in Fig. 1.
The approach can be summarized as a hybrid clock-/event-driven algorithm.
In the event-driven part, spike events are issued for every neuron that satisfies
certain threshold conditions (a), and spike events from other presynaptic neurons
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are integrated (b). For this phase, computation is performed only in case of
an event. In the clock-driven part, first the contributions of ion channels and
synapses to the membrane equations are computed (c), then, the membrane
equations are integrated numerically to update the states of neurons (d), and, if
needed, the states of channels and synapses1 are also updated (e). In this phase,
computations are performed regularly at every time step. If the simulation time
reaches a multiple of a user-defined parameter TIO, expensive I/O operations
are performed to output simulation results (f). Finally, every few time steps
(determined by the peculiar biological properties of the neural network being
simulated) a synchronization step is performed to ensure all neurons receive the
events they need to perform the next few states’ updates (g).

Computational Challenges in Neural Simulations: Simulating faithful
models of the human brain requires a great amount of biological detail, thus
making the effort intractable despite the constant improvement in overall per-
formance of software and hardware technologies. Hardware improvement projec-
tions seem to indicate that a model of the scale of the human brain might become
in reach within the exascale or post-exascale era. It is however anticipated that
simulation software may experience delays to support the execution of extreme
scale faithful models. The main reasons for this are of two folds: the complexity of
large legacy software validated on numerous experiments over the years makes it
hard to provide implementations able to fully exploit the rapidly changing hard-
ware. The second main reason lies in the great diversity of biological models,
each requiring a specific set of tailored solutions. This observation is illustrated
in Fig. 1 where we consider two publications: a fully detailed model comprising
31,000 rat neurons [12] (i.e. a factor of 2.6 billion times smaller than the human
brain) and a simplified model comprising 1.73 billion neurons [3] (i.e. 1% of the
human brain scale). Figure 1 shows that different neuroscience models, whilst all
representing the same biological entity, can have different performance profiles:
detailed models appear to be bounded by on-node memory bandwidth whereas
non-detailed models suffer more from interconnect communication specifications.

As exascale will likely require the development of unconventional solutions,
a new strategy needs to be developed that allows rapid prototyping. Building on
previous work presented in [4] initially focused on the NEURON software and
the POWER8 platform, we introduce in this paper the Neuromapp framework.
Neuromapp consists of a collection of mini-applications (generally less than a
thousand lines of code) where each mini-app represents only a single critical
algorithm extracted from one of the major computational neuroscientific frame-
works. Each extracted mini-app provides a template from which further imple-
mentations and experiments can unfold. From these experiments, it becomes
easier to verify the suitability of alternative implementations at low develop-
ment cost before integrating it to the large scientific application. Furthermore,

1 In the vocabulary of NEURON simulator, the synonym mechanisms is used for
channels/synapses key word.
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by assembling mini-apps together, one can reconstruct the skeleton of the origi-
nal scientific application to experiment workflow optimization opportunities.

The novelty of Neuromapp, whose initial concept is based on efforts under-
taken primarily in the US National Laboratories [7,16] lies in the fact that, on
the one hand, it is only targeting application software used by the computa-
tional neuroscience community and, on the other hand, it makes an effort by
design to attempt to break down large scientific applications using a very low
level of algorithmic granularity. For the sake of this paper, we will only focus
on a subset of mini-apps that were extracted to model the complete workflow of
the NEURON software. Our hope is however that all major computational neu-
roscience frameworks will participate in this effort to identify common solutions
and community-based performance requirements for future systems.

In summary, the key contributions of this paper are the following: (i) the
development of Neuromapp, (ii) the validation of the mini-applications against
parent code behaviors and (iii) the conclusions drawn from the performance
analysis of the particular mini-applications.

The structure of the paper is as follows: the main concepts of the Neuromapp
and their implementation are described in Sect. 2. Building on the framework, the
following Sects. 3–6 describe four different case studies that model the aforemen-
tioned neuroscience applications. Each case study includes a detailed description
of a mini-app, its performance analysis as well as a derived discussion. Finally,
Sect. 7 concludes the paper.

2 Neuron Mini-application Framework

Neuromapp consists of a collection of mini-apps (generally less than a thousand
lines of code) that represent the relevant functionalities of neural simulators.
Individual mini-apps have multiple objectives and advantages as follows:

– Simple: Small portions of code extracted from the original frameworks and
carefully interfaced are easy to understand, thus allowing several developers
with complementary skills to rapidly become productive. The minimal set of
dependencies provides opportunities for the community to share, participate
and contribute to their development and improvement.

– Fast: The execution time of the mini-app is considerably faster than the
full simulation execution time, thus, enabling faster experiments and devel-
opments. This allows faster prototyping of software/hardware solutions.

– Realistic: In order to ensure that the mini-apps can have a concrete impact
on neuroscience software development, each mini-app is required to reproduce
the same behavior as the original code with a great level of accuracy. In
addition, it gives system designers the opportunity to extract performance
requirements which form the basis of the co-design process.

A collection of mini-apps can be assembled to form the skeleton of the original
scientific application offering the following opportunities:



Neuromapp: A Mini-application Framework to Improve Neural Simulators 185

– Workflow optimization: The optimization of scientific applications tends
to focus on a small subset of major bottlenecks. By offering the possibility
to quickly analyze the entire workflow, it becomes easier to identify kernel
execution overlapping opportunities.

– Software design: mini-apps offer the possibility to suggest modifications of
their programming interface and later on the original scientific application. In
addition the definition of an application skeleton may require the implementa-
tion of common building blocks. These two factors favor software modularity
and thus re-usability.

– Community driven: By extracting the key algorithms of multiple scientific
applications within the same community, it becomes easier to identify com-
monalities and discrepancies. This favors the development of joint solutions
and reusable software across the community.

Implementation: As the targeted hardware platforms come in a large variety
that includes non-commodity hardware e.g. from Linux clusters to proprietary
solutions like the IBM BlueGene/Q (BG/Q), the success of a mini-application
framework lies in both its flexibility and simplicity of execution.

To this aim, Neuromapp implementation consists of a collection of libraries
(to support shared memory applications) and applications (to support distrib-
uted memory applications), referred as mini-apps and organized around a main
driver. The driver provides an interactive command line interface to the mini-
app collection from which individual mini-apps can be accessed both for docu-
mentation (helper function implemented on top of Boost::program options) and
execution.

The distinction between shared and distributed applications in Neuromapp
comes from the specificity of MPI program execution (or similar alternatives)
when using schedulers such as SLURM. Schedulers require the total number of
desired processors to be specified whereas the Neuromapp driver is expected to
be serially executed, creating a discrepancy. To solve this issue, MPI provides the
mpi comm spawn functionality which however may not always be well supported
on unconventional hardware. To alleviate this issue and ensure the portability
of the framework, the following options are supported in Neuromapp: The user
can either start an MPI application using a system command (e.g. mpirun/srun)
or directly start the mini-app MPI applications using their preferred scheduling
environment. It is worthwhile to notice that such caveat does not exist in the
case of shared memory applications as the threading environment is independent
of the driver.

In either cases, the libraries or applications of the mini-apps must respect
the simplest signature possible: my miniapp(int argc, char* argv[]). This
signature enables collaboration between the mini-apps to form a scientific appli-
cation skeleton as long as the user sets the appropriate command line arguments
for each mini-app. A summary of all the mini-apps included in Neuromapp with
their inter-dependencies is shown in Table 1.

As previous performance studies [4] prove to be difficult on new hardware
and sometimes required very specific solutions, Neuromapp does not provide
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Table 1. Description of all mini-apps with the main hardware elements they evaluate

Mini-app Objective

1-hello Simple mini-app with a Hello World example

2-kernel Reproduce the main computations of NEURON kernels (CPU)

3-solver Linear algebra (Hines) solver of NEURON (CPU)

4-queue Reproduce NEURON queueing (CPU)

5-cstep Reproduce NEURON simple workflow (CPU)

6-event Reproduce NEURON spike exchange (CPU, network)

7-synapse Reproduce Nest synapse computation (CPU, network)

8-key/value Generate I/O load to evaluate key/value libraries for neuroscience (I/O)

9-replib Mimic ReportingLib (used by NEURON to store results) (I/O)

any specific performance analysis tools beyond the recording of time stamps
for which utility functions are provided. It is therefore the responsibility of the
developer to use external tools such as the PAPI or SCOREP libraries, to analyze
performance and build performance models [15].

3 Case Study 1: Kernels

Motivation: The profiling of the NEURON simulator shows that approxi-
mately 85–90% of the computational time is spent in resolving the non-linear
PDEs/ODEs representing biological mechanisms such as synapses and ion chan-
nels (step (c), (d) and (e) in Fig. 1). Therefore, the goals of this mini-app is
to measure the actual performance of the kernel implementation that includes
gather/scatter operations, evaluate the capacity of the compiler to improve per-
formance using vectorization and build performance models to identify which
part of the hardware is limiting performance.

Description of Mini-app: The mini-app Kernel reproduces the three repre-
sentative kernels of the NEURON simulator among hundreds: two ionic channels
(Na and Ih) and one synapse. These are among the most common and compu-
tationally costly kernels in the fully detailed model from [12]. In NEURON,
an application DSL describes biological mechanisms (such as synapses and ion
channels) in “mod” files. The mod2c source-to-source utility converts the DSL
language written in the “mod” files to generate a corresponding C implemen-
tation. All generated files are then compiled and linked against the rest of the
NEURON framework. In the mini-app, for simplification, the C generated ker-
nel is directly used and augmented by #pragma hints to facilitate vectorization
(Fig. 2).

Performance Evaluation: In this section the benchmarking of one million
mechanism instances are performed on the POWER8 processor. The investigated
system comes in two sockets where each socket includes a POWER8 processor
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Fig. 2. Top: Example of the state functor extracted from the synapse mechanism (mem-
ory bound limited). Bottom: Roofline model of the different kernels when executing
benchmark on 1 to 20 cores, with a single thread per core for both vectorized (plain line)
and non-vectorized (dash-line) implementations. Peak bandwidth has been measured
using the STREAM benchmark with 20 threads while the peak FLOP performance
corresponds to the theoretical measure. Numbers correspond to the number of threads
used for a dedicated experiment.

embarking 10 cores. Each core can manage up to 8 threads simultaneously (SMT
technology). The compiler used as part of this experiment is the IBM-XLC 13.01
for its excellent auto-vectorization and prefetching capacity. Measurements of the
bandwidth and FLOP performances are carried out using hardware counters
provided by the PAPI library. A detailed description of the tested hardware and
measurement method can be found in [4].

In this benchmark a single thread per core is used and the number of cores is
increased until the maximum (20). The application performance is tested with
and without vectorization. A roofline model is plotted using the best results
obtained from a triad STREAM benchmark and the theoretical FLOP perfor-
mance. From this plot, it can be observed that the performance of the ker-
nels increases linearly. Most of the kernels reach peak memory bandwidth at 20
threads (memory-bound kernels). We can also observe from these results that
if the vectorization is efficient it is not required for the memory bound kernels
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to reach hardware performance limits. The compute-bound kernels were on the
other hand only able to reach 88 GFlop/s i.e. 15% FLOP peak performance
with the state kernel of the Na mechanism. We believe that such a low perfor-
mance is due to the dependency chain between instructions. However further
investigations are needed to confirm this hypothesis.

Discussion: From the analysis of this mini-app, we can conclude that memory
bandwidth is the key limiting factor of the NEURON simulator. We observe that
vectorization can help with the compute bound kernels but is not a mandatory
as most of the NEURON kernels prove to be memory bound. Therefore future
system design aiming at providing optimal performance for the NEURON appli-
cation must favor memory bandwidth over FLOP performance.

4 Case Study 2: Spike Exchange

The peculiarity of neural cells to exchange information via electrical and chemical
connections, called synapses, is believed to be at the heart of the brain’s ability
to perform cognitive tasks. The spike exchange routine which supports this data
exchange must ensure that any generated spike is communicated to all relevant
targets before the delivery time of the spike event. Although there are many
different strategies for enforcing this requirement, we focus here on the method
at the basis of popular computational neuroscience software such as NEST and
NEURON, which consists of: (i) Associating a synaptic delay to each connection
between neurons corresponding to the time taken by the signal to travel through
the axon; (ii) Performing a blocking communication step at fixed times during
the simulation (depending on the minimum synaptic delay).

Motivation: Depending on the choice of neuron abstraction, the relative com-
putational cost of the spike exchange routines in the simulation of biological net-
works can vary significantly (see Fig. 1). However it is still important to study its
performance in details, in particular when trying to extrapolate performance at
extreme scale. For example, even though historically only small improvements in
performance were obtained after significant explorations on the possible imple-
mentations of the spike exchange algorithm [9], a recent study has shown that in
a weak scaling scenario at extreme scales the relative importance of MPI routines
begins to grow, thus causing a drop in weak scaling efficiency [13].

Description of Mini-app: This mini-app reproduces the spike exchange and
enqueueing functionality of biological neural network simulators. In particu-
lar, it reproduces a hybrid shared/distributed memory implementation based
on Address Event Representation (AER) [14] and blocking collective communi-
cations optimized using the concept of minimum synaptic delay [9]. The main
data structures involved in the spike exchange algorithm are the following:

– spike contains spike time (double) and GID of the spiking neuron (int);
– inter thread events a buffer of spikes shared by all the threads on a rank;
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Fig. 3. Left: workflow of the core algorithm. Dashed boxes represent shared-memory,
parallel tasks, whereas the non-dashed tasks are only performed by the master thread.
Right: The corresponding listing of the core algorithm.

– queue a spikes’ priority queue, local to each thread and sorted by time;
– spikeout a spikes buffer generated by neurons belonging to a given rank;
– gid2out a table of all the GIDs of neurons that are sources to at least one

connection on a given rank.

Figure 3 shows the core algorithm, divided into six phases:

– threshold detection a condition is checked for every neuron to determine
whether it generates a spike event at that time step; every spike event thus
populates the spikeout buffer;

– local enqueue the inter thread events buffer is emptied and spikes are
pushed to the local queue;

– event delivery a function is called for every spike on the queue whose deliv-
ery time is smaller than the current time step;

– update the states of all neurons are updated; all the sub-tasks that make up
this task are lumped together, as they are irrelevant for understanding the
spike exchange functionality;

– communication only performed whenever the simulated time exceeds a mul-
tiple of the minimum synaptic delay; it consists of two steps: first, a blocking
call to MPI Allgather is issued, during which every rank communicates to
others how many spikes it intends to communicate; second a blocking call to
MPI Allgatherv is used to distribute the spike information;

– shared enqueue every rank consults the table gid2out to find out which
spikes have a source GID relevant for itself, and populates the buffer of
inter thread events.

The pseudo-code of the spike exchange mini-app is listed in Fig. 3. The fun-
damental assumption behind this mini-app is that, in contrast with an actual
simulation, the time series of events is generated a priori.

Comparison with Original Code: The intended use case for this mini-app
is to replicate the performance of the original application but with a simpler
infrastructure. In this context, by performance we mean the measured wallclock
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time for the execution of each-individual call to the communication routine
(MPI Allgatherv). This level of detail is necessary in view of using this data
to make analytical performance models and predictions. Care is taken to respect
as much as possible the original data structures (with some flexibility) and to
replicate exactly the original algorithm. We ran validation tests on two archi-
tectures: a small x86 cluster consisting of 8 Intel Xeon E5-2670 v2 @ 2.60 GHz
nodes, each with 16 cores, 64 GB memory and connected by MVAPICH2 version
2.2b on a 100 Gb/s InfiniBand network; the larger architecture is 1 rack (1024
nodes) of BlueGene/Q (described in Sect. 6).

For validation purposes, we have implemented a version of the mini-app capa-
ble of replaying the exact same communication pattern of an actual simulation
use case. We found that the required information consists of: distribution of
neurons across ranks, times at which communication occurs, times and GIDs
of each spike event. Inserting MPI Barrier calls just before starting the timers
and performing the Allgatherv collective operation appears to be sufficient to
ensure a good degree of similarity on the small x86 cluster, but less so for the
large-scale tests on BlueGene/Q. Figure 4 shows the 95% confidence intervals for
the difference between measurements of the mini-app and the original code.
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Fig. 4. Confidence intervals (level 0.95) for the mean difference between time mea-
surements of the Allgatherv from the original code and the mini-app. Whenever the
vertical lines cross the red line of value 0, there is no statistically significant difference
between the code and the mini-app. (Color figure online)

On the x86 cluster, at least for P = 2 and P = 4, the value 0 lies within the
confidence interval for several values of the total message size, thus allowing us to
reject the hypothesis that the measurements were different. For P = 8, the mini-
app predictions are quite good for message sizes in the range 100–200 B, but for
smaller messages the mini-app consistently over-estimates the performance by
roughly 100 us. On BG/Q as well the mini-app consistently over-estimates the
performance by roughly 200 us; As a measure of comparison, sending a message
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of 100 B within an iteration of the CoreNeuron application costs roughly 40,80
and 140 us for P = 2, 4 and 8 on the x86 cluster; on the BlueGene/Q it costs 500
and 650 us for P = 512 and 1024, thus meaning that the 200 us error in prediction
corresponds to roughly 30% of the original performance at larger scales.

Discussion: We demonstrated a mini-app capable of replicating exactly
the communication workload of the spike exchange routines in the software
CoreNeuron. Moreover, we demonstrated that the mini-app can reproduce
the actual performance of the original code on small clusters of x86 hard-
ware, but appears to consistently predict faster communication times on large
architectures.

Once the validation step is completed and the mini-app produces performance
predictions within an acceptable range, it is no longer necessary to provide all
the detailed input information required by the validation. Instead, it becomes
interesting to explore different configurations, or even different hardware archi-
tectures, by using a simpler version of the mini-app (e.g. one for which the
distribution of neurons and events is determined randomly).

5 Case Study 3: Queueing

Motivation: During the execution of the spike exchange algorithm, the
NEURON simulator may be considered as a discrete/event simulation. The sim-
ulator schedules events (spikes) that are enqueued and dequeued, i.e. removed
and returned with the highest priority (smallest time). Support of this function-
ality is through the use of the priority queue data structure for which NEURON
implements a customization: a “splay tree”.

The splay tree [10] is used in variable time step simulations. A splay tree is
set up as a binary search tree: all items lower than the root are in the left subtree
whereas those larger than the root are in the right subtree. Using comparators,
the dequeue operation removes either the leftmost or the rightmost item. For
enqueueing, the splay tree offers amortized O(log n) performance; and a sequence
of M operations on an n-node splay tree takes O(M log n) time.

Description of Mini-app: This mini-app implements the queueing algorithm
presented in Fig. 3. The benchmark evaluates the performance of the implemen-
tations and relies on a random generator with a uniform distribution. The goal
of this mini-app is to evaluate the legacy container, comparing its performance
against standard libraries (boost and std). Pseudo-code and results are reported
in Fig. 5, the three test cases are referred as: weaker-stim, Neocortical-stim and
original-stim. It is worthwhile to point out that through the development of this
mini-app an alternative API to the legacy code based on the std one (push(T),
pop() and top()) has been proposed.

Comparison with Original Code: This benchmark mimics the original code
performance only in a single-thread version, for which an inter-thread buffer does
not exist (it is merged with the single queue).
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Fig. 5. Left: Benchmark suggested by Michael Hines, the x-axis is the number of ele-
ments pushed in the queue at each time step (line 3 of code on the left). +−+ indicates
the weaker-stim, ×−× the Neocortical-stim and � − � the original-stim case. Right:
pseudo-code of the queueing algorithm for single thread version.

Performance Evaluation: Execution of the benchmark is carried out on an
x86 cluster that includes Intel Xeon E2670@2.6 GHz nodes. Applications have
been compiled using GCC 5.1 and Boost library version 1.54.

The obtained results show that std::priority queue is the fastest, followed
by boost::d ary heap, both using a contiguous buffer implementation. Those
results show that the contiguous memory pattern increases performance as it
allows better memory accesses, prefetching, etc. The legacy queue (splay tree)
is approximately 10 times slower than the std::priority queue, like all other
implementations based on trees. However, we do not take into account the input
random distribution; in fact, splay trees are efficient when using bias distribution.

Discussion: From this mini-app, we can conclude that std::priority queue
provides the best performance in the case of fixed/variable time step simulation
respectively. Although the decrease in the overall time to solution of the full
scientific application is negligible in the cases investigated by the neuroscientists
so far (queuing being responsible for less than 2% of the total wall time), future
use cases requiring faster than real time execution may benefit from this work. In
addition, it is worthwhile to point out that this work allows suggesting a better
interface of the queuing component which is currently under investigation for
integration. Finally, as this version of the mini-app was only supporting the
single thread use case, future experiments will focus on exploring the multi-
threaded implementation which requires the use of an additional buffer and
mutual exclusion mechanisms. One of the objectives will be to test alternative
concurrent containers to avoid the use of dual containers.

6 Case Study 4: I/O Simulation Data

Although optimizing the execution of neuroscience frameworks is important,
the process of creating simulation results plays a key role as well. In typical
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in silico experiments, first, the neural simulation produces and stores the results
in persistent storage (usually hard disk) and, in a second step, neuroscientists
use visualization or analysis tools to interpret the results. The amount of data
produced varies from a few megabytes to hundreds of gigabytes or terabytes,
directly impacting both simulation and analysis execution time. In some experi-
ments, even output data is read, processed and rewritten by external applications
on-the-fly, imposing a strong requirement in I/O performance. But, in any case,
the step of storing simulation results is mandatory for their immediate or later
analysis. For this reason, we created a mini-app to study the process of writing
neural simulation results.

Motivation: NEURON offers the capability of connecting external libraries
as plug-ins. At BBP, since the past ten years, neuroscientists have been using
this feature to connect the simulation results to an I/O library that writes the
data into a binary file. The I/O library is implemented on top of MPI and uses
an in-house-defined structured format. It leverages from MPI I/O to write the
simulation results in a single, large file stored in a parallel file system. Figure 6
shows how the results are structured in the file. Results are stored in a matrix
format: for each simulation time step, a single row is written at once through
the use of collective MPI I/O calls. Each cell of the row contains information
about one neuron (GID) and there are as many cells as neurons in the simulated
circuit. The contents of each cell depend on the simulation configuration set by
the user: it can contain a single value per neuron or a set of values per neuron
(usually, one value for each neuron compartment). Therefore, cells of the same
color are written in the same collective call.

Since the real I/O bottleneck appears only when large results are produced,
we mainly focus on these use cases: the process of storing a large report of
neural activity. In this case study, the stimulation pattern explained and ana-
lyzed in the previous sections is not relevant, as the amount of data produced
by the simulation depends only on the number of neurons and the amount of
simulation time steps. However, the same configurations have been used to keep
consistency across this paper. Understanding and addressing the writing prob-
lem with the real, in production application would be costly and complicated,
as each simulation runs for, at least, a few hours. Moreover, understanding the
code is not straightforward, so evaluating different approaches and layouts would
be extremely complicated and time consuming. Therefore, trying to improve the
I/O phase in this environment is not feasible.

Description of Mini-app: This mini-app reproduces the writing patterns of
NEURON for output report generation. Since there are no simulation computa-
tions in the code, the mini-app just creates random data to represent the output
of a real NEURON simulation and then writes the output data into a file. Even
if the output data is generated randomly, different biological characteristics have
been taken into account to make the output data as similar as possible to a real
simulation output. For example, a full-compartment voltage report contains the
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voltage of all neuron compartments for each time step, represented as single-
precision floating-point numbers. One biological characteristic of these values is
that they are always in the range between −75.0 and +75.0. Therefore, we devel-
oped the mini-app very carefully to take all these characteristics into account.

Listing 1 shows the pseudo-code of the mini-app. First, the output data is
generated randomly with the same values as a real output report could hold (line
1). Then, like NEURON does, output data is collected for several simulation steps
(lines 3–5) and finally, written at once in a binary file (line 7). Although output
data can be written at the end of each simulation step, NEURON aggregates
the data of several simulation steps to get higher bandwidth. Therefore, there
is one reporting step every few simulation steps. Since the mini-app does not
do any simulation computation, a sleep() system call is performed in its place2

(line 4), following an overwrite of the output data to avoid caching benefits
(line 5). In addition, we added a timer (lines 6,8) in the mini-app to measure
the performance of collective I/O. The mini-app can be configured with several
parameters to test the I/O behavior in different situations. For example, the
number of processes, the number of reporting steps, the number of simulation
steps per one reporting step, etc. In addition, the specific amount of data written
by each process can also be set, as well as the way all data blocks are combined
in the file. With this last feature, we are able to run NEURON with a real use
case once and generate a file with real data distributions per process. Then, the
mini-app can read this file and use exactly the same data distributions.

Fig. 6. Simulation results layout.

1generate_random_output_data();

2for"r"reporting_steps {

3 for"s" simulation_steps {

4 sleep_to_simulate_computing_phase();

5 overwrite_output_data(); }

6 start_io_timer();

7 MPI_collective_write(output_data);

8 stop_io_timer(); }

Listing 1. Mini-app pseudo-code.

The specific objectives of this mini-app are the following: (i) provide an easy-
to-use tool that mimics the I/O pattern of a real neural simulator, (ii) understand
the I/O behavior of the real framework and (iii) serve as the base to investigate
new approaches to improve the I/O performance.

Comparison with Original Code: Before proceeding with any investigation,
we must ensure that mini-app behavior matches the behavior of the original code,
so any improvements obtained in the former will apply as well in the latter.
2 One could argue that the sleeping phase is not needed, or it is even disturbing the

I/O results, as it allows time for the I/O library to flush internal buffers in between
two I/O calls. However, if we remove the sleep call, the mini-app would no longer
mimic the behavior of the real framework and, therefore, any extrapolation to the
real framework would be incorrect.
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We added in NEURON a few lines of code to output how the real output
data is distributed across process, i.e., which block of the output file is written by
which process. With this information we can reproduce the exact I/O patterns
of NEURON in the mini-app, and, in fact, we have checked that they match with
exhaustive profiling and benchmarking. Since the data distribution is constant
for each reporting time step, we just need to run the real neural simulator for one
reporting time step. This execution takes in the order of a few minutes, so we can
quickly get a real data distribution. Since NEURON distributes neurons across
processors according to their computational weight, this leads to a scenario where
different processes will write different amounts of output data. With the mini-
app, it is very easy to change data distribution through command line arguments
to explore which distributions give optimal performance.

Performance Evaluation: In this section, we use our mini-app to demonstrate
its flexibility and adaptability to different types of systems. There is a large set
of options to explore, but due to space limitations we focus on one use case and
evaluate it across different systems. We run the mini-app for a certain number
of reporting steps with different number of processes. Each process writes a data
block of a given size at each step. The number of reporting steps was always
large enough to generate a file with a final size of 10–100 GB, depending on
the system, and running for at least 100 reporting steps. We determined that,
on average, in a real simulation, each process writes in the order of 650 KB
at each reporting step. Therefore, we chose this value as our starting point.
Additionally, we include two extra points with lower and larger block sizes to
evaluate their impact in bandwidth performance. The evaluation was performed
on the following three systems:

– BG/Q system: the tests were always run on the same mid-plane of a 4-rack
BlueGene/Q system (8 mid-planes in total). Each mid-plane has 512 nodes,
each node has 16 IBM PowerPC A2 1.6 GHz and 16 GB SDRAM-DDR3.
Nodes are connected through a 5D Torus-40 GBps network. Benchmark data
was stored on GPFS. We used MPICH2 version 1.5 and IBM XL 12.01 to
compile and run the mini-app.

– x86 system: We used 4 nodes of an x86 cluster. Each node has 8 Intel Xeon
E5-1620 v3 3.50 GHz and 64 GB of DRAM. Nodes are connected through a
100 Gb/s InfiniBand network. Benchmark data was stored on a Lustre file
system. We used GCC 5.3 and MVAPICH2 version 2.2b.

– NVM system: We used the same x86 system described above plus a set of 4
extra nodes with non-volatile memory (NVM). The nodes were provided by
DDN, using their IME technology [1]. Each node has 2 Intel Xeon E5-2650 v2
2.6 GHz (16 cores/node) with hyper-threading enabled, 64 GB of DRAM and
12 Intel SSDs of 256 GB each. The total SSD capacity is 3 TB/node. IME
offers a burst buffer technology from the client point of view over POSIX,
MPI or IME interfaces. The SSDs of the servers are used as a caching system
to the final file system. In our case, we used the MPI interface. All nodes are
connected through the same InfiniBand network described before. We used
GCC 5.3 and a customized implementation of MPI provided by DDN (based
on MVAPICH2 version 2.1).
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In order to perform the evaluation, we measured the bandwidth of the col-
lective call MPI File write all(). Only in the case of the NVM system tests,
we disabled MPI’s collective buffers, as suggested by IME developers.
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Fig. 7. I/O performance of the mini-app on different systems: BG/Q with GPFS (top),
x86 system with Lustre (bottom left) and NVM system with IME (bottom right).
(Color figure online)

Figure 7 shows the aggregated bandwidth reported by the mini-app on the
different evaluated platforms. We evaluate three different cases where each rank
writes a block of 100 KB (purple), 650 KB (orange) or 1024 KB (blue) at each
I/O operation. The tag nrsci (solid lines) corresponds to the mini-app explained
in this section, whereas the tag bench (dashed lines) corresponds to the mini-app
without the simulation phase, so it behaves as a purely I/O benchmark.

We cannot explain all the results in the detail, but we would like to highlight
the necessity of having a good representation of the application’s I/O pattern. As
we can see, the results substantially vary from the different block sizes used. In
addition, in some cases, especially on the NVM system, the performance reported
by an I/O benchmark does not match to the I/O impact that the application
would experiment. The reason why the mini-app reports higher bandwidth is
because the I/O library (IME) uses the simulation phase of the mini-app to
flush internal buffers, thus resulting in a transparent overlapping of computation
(on the mini-app side) and I/O flushing (on the I/O library side). In this case,
increasing block size to match a large scale simulation output converges to a
more realistic bandwidth, close to the bench values, but still slightly higher.

Discussion: We developed a mini-app that mimics how output reports are gen-
erated from a widely used neuroscience framework. With this, we demonstrate
that (i) the I/O patterns of complex neuroscience frameworks can be extracted
and simplified as a mini-app to be deeply analyzed and (ii) the ability of our
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mini-app to easily adapt to a wide range of hardware and software technologies
and predict the expected performance of the real neural simulator. We test the
mini-app on three different environments: a supercomputer, an x86 cluster and
an NVM cluster, and proved its flexibility to adapt to any type of system. The
power of this mini-app is that we can now present a simple, portable code to
hardware vendors and software developers and work closely with them towards
improving the performance of our real neuroscience framework.

7 Conclusions

Neural simulators are large frameworks used by neuroscientists on a daily basis to
simulate the electrical activity of brain tissue. However, with the current software
and hardware technologies, these frameworks are far from being able to simulate
a human brain in real time at scale. Thus adapting these frameworks to the
new, more powerful software and hardware technologies becomes a challenging
necessity, especially when dealing with non-modular legacy community software.

To facilitate the long term development of the neuroscience community as
well as future system design, we introduced in this paper the Neuromapp frame-
work. Neuromapp consists of a set of small mini-apps that mimic individual
parts of neural simulators which may be combined to form the original scien-
tific application. Our approach offers numerous benefits to the computational
neuroscience community, like simplicity, flexibility and, of course, they are a
faithful reproduction of the original frameworks.

In this paper, we demonstrate that Neuromapp can be used to try new soft-
ware or hardware solutions, analyze their performance and then extrapolate the
results to decide whether they benefit the original framework. With our app-
roach, we can considerably reduce the software development cycle by providing
the infrastructure to quickly test new hardware and software design solutions.

We encourage the computational neuroscience community to actively con-
tribute to it so that it becomes the place where key algorithms used in the
community can be implemented. As future work, we plan to keep extending the
framework with more mini-apps that cover a wider range of neural simulators
and their functionalities, more specifically, the “in-memory compression” topic
due to the huge amount of dynamic memory that brain simulators need. In
addition, we expect additional positive outcomes such as code refactoring and
redesign, but also the identification of common algorithms across scientific appli-
cations which could be better placed into a common library. Neuromapp source
code can be found at: https://github.com/BlueBrain/neuromapp.
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Abstract. Fast Fourier Transforms (FFTs) are exploited in a wide vari-
ety of fields ranging from computer science to natural sciences and engi-
neering. With the rising data production bandwidths of modern FFT
applications, judging best which algorithmic tool to apply, can be vital
to any scientific endeavor. As tailored FFT implementations exist for an
ever increasing variety of high performance computer hardware, choos-
ing the best performing FFT implementation has strong implications for
future hardware purchase decisions, for resources FFTs consume and for
possibly decisive financial and time savings ahead of the competition.
This paper therefor presents gearshifft, which is an open-source and
vendor agnostic benchmark suite to process a wide variety of problem
sizes and types with state-of-the-art FFT implementations (fftw, clFFT
and cuFFT). gearshifft provides a reproducible, unbiased and fair com-
parison on a wide variety of hardware to explore which FFT variant is
best for a given problem size.

Keywords: Signal processing · FFT · fftw · cufft · clfft · GPU ·
GPGPU · Benchmark · HPC

1 Introduction

Fast Fourier transforms (FFTs, [31]) are at the heart of many signal processing
and phase space exploration algorithms. Examples for their substantial usage
include image reconstruction in life sciences [27,28], amino acid sequence align-
ment in bioinformatics [22], phase space reduction for weather simulations [23],
option price analysis and prediction in financial mathematics [19] and machine
learning [5] to just name a few.

An FFT is a fast implementation of the discrete Fourier transform which
is a standard text-book mathematical procedure. The forward transform is a
mapping from an array x of n complex numbers in the time domain to an array
X of n complex numbers in the frequency domain (referred to as Fourier domain):

X[k] =
n−1∑

j=0

x[j]e
−2πijk

n (1)
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with k being an integer index within 0 ≤ k < n and the imaginary unit i2 = −1.
This operation was found to be computable in O(n log n) complexity by Cooley-
Turkey [8], who rediscovered findings of Gauss [16]. The basis of the Cooley-
Turkey approach is the observation that the DFT of size n can be rewritten by
smaller DFTs of size n1 and n2 by the factorization of n = n1n2. Given the
indices j = j1n2+j2 and k = k1+k2n1, Eq. (1) can be re-expressed as:

X[k1+k2n1] =
n2−1∑

j2=0

⎛

⎝

⎛

⎝
n1−1∑

j1=0

x[j1n2+j2]e
−2πij1k1

n1

⎞

⎠ e
−2πij2k1

n

⎞

⎠ e
−2πij2k2

n2 (2)

Equation (2) describes a decomposition that can be performed recursively
[15]. Here, n1 is denoted radix as it refers to n1 transforms of size n2. These
smaller transforms are combined by a butterfly graph with n2 DFTs of size n1

on the outputs of the corresponding sub-transforms. Radix-2 DFTs (n being
a power of two) are mostly implemented with the Cooley-Tukey algorithm [8].
Stockham’s formulations of the FFT can be applied [29] to avoid incoherent
memory accesses. Arbitrary and mixed radices can be tackled with the prime-
factorization or Chirp Z-transform implemented by the Bluestein’s algorithm [6].

The top ten list of the fastest worldwide computer installations (Top500
[24]) shows that the used hardware is by far not homogeneous in terms of ven-
dor and composition. This trend can be even more observed in practice, where
library architects and domain specialists are confronted with an essential ques-
tion: Which FFT implementation works best on what hardware?

With increasing experimental data production [18] and simulation output
bandwidths [23], input data to FFT libraries in the order of gigabytes becomes
the standard. With the advent of graphics processing units (GPUs) for scientific
computing around the beginning of the 21st century and the subsequent avail-
ability of general purpose programming paradigms to program these [11], vendor-
specific and open-source libraries to perform FFTs on accelerators emerged
(cuFFT [25] by Nvidia, open-source clFFT [3]) to offer performance which super-
sedes traditional high-performance implementations running on standard Cen-
tral Processing Units (CPUs) such as the open-source fftw library [15] or the
Intel specific MKL [20].

To our surprise, comprehensive and peer-reviewed benchmarks of FFT imple-
mentations across different hardware platforms have not been published exten-
sively. Either only specific hardware is chosen for the benchmark [2,12,26] or
only specific FFT implementation variants are tested [9,10]. In addition, many
performance benchmarks are tied to domain-specific implementations [14] that
either lack comprehensiveness or the ability to map the results obtained to other
implementation requirements.

Thus, a new open-source benchmark package called gearshifft [17] has
been developed. It is able to benchmark available state-of-the-art FFT libraries
in a reproducible, automated, comprehensive and vendor-independent fashion on
CPUs and GPUs. gearshifft helps library authors and domain-specific devel-
opers to choose the best FFT library available. The discussion above motivates
the following design goals of gearshifft:
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– open-source and free code
– standardized output format for downstream statistical analysis
– state-of-the-art build system
– open and extensible architecture with generic interface
– community-ready and vendor independent project infrastructure through ver-

sion control and public accessibility

Given the multitude of mathematical formulations and the heterogeneity of hard-
ware, gearshifft approaches the challenge of benchmarking a variety of FFT
libraries from a user perspective. This means, that the following parameters
should be easy to study:

– FFT dimension and radix-type (e.g. 32 × 32 × 32 as radix-2 3D FFT)
– transform kinds, i.e. real-to-complex or complex-to-complex transforms
– precision, i.e. 32-bit or 64-bit IEEE floating point number representation
– memory mode

• in-place: the input data structure is used for storing the output data (low
memory footprint and low bandwidth are to be expected)

• out-of-place: where the transformed input is written to a different memory
location than where the input resides (high memory footprint and high
bandwidth are to be expected)

– transform direction, i.e. forward (from discrete space to frequency space) or
backward (from frequency space to discrete space)

The remainder of this article is organized as follows: the C++ implementation of
gearshifft is discussed in Sect. 2 after an introduction to modern FFT APIs.
The largest part of the paper is dedicated to the presentation of first results in
Sect. 3, after which our conclusions are presented in Sect. 4.

2 Implementation

2.1 Using a Modern FFT Library

Before discussing the design of gearshifft, a brief introduction into the use and
application programming interfaces (APIs) of modern FFT libraries is required
to illustrate the design choices made. Many FFT libraries today, and particularly
those used in this study, base their API on fftw 3.0.

Here, in order to execute an FFT on a given pointer to data in memory, a
data structure for plans has to be created first using a planner. For this, the FFT
problem is defined in terms of rank (1D, 2D or 3D), shape of the input signal
(the dimensional extent), type of the input signal (single or double precision of
real or complex inputs), type of the transformation (real-to-complex, complex-
to-complex, real-to-half-complex) and memory mode of the transformation (in-
place versus out-of-place). These parameters describing the FFT problem are
then used as input to the planner.

The planner is a piece of code inside fftw that tries to find the best suited
radix factorization based on the shape of the input signal. By default, it then
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performs several FFTs derived from the mathematical descriptions discussed in
Sect. 1 on the input data to sample the runtime of different FFT implementations
available inside fftw. This ensemble of runtimes is then used to find the optimal
FFT implementation to use. After the plan has been created, it is used to execute
the FFT itself.

Listing 1. Minimal usage example of the fftw single precision real-to-complex planner
API. Memory management is omitted.
1 int shape[] = {32,32,32};
2 fftw_plan r2c_plan = fftw_plan_dft_r2c(
3 /* rank, here 3D */ 3,
4 /* shape of the input */ shape,
5 /* input data array */ (float *) input_buffer,
6 /* output data array */ (fftwf_complex *) output,
7 /* plan−rigor flag */ FFTW_ESTIMATE );
8 fftwf_execute(r2c_plan);

Listing 1 illustrates the fftw API for a single precision real-to-complex out-
of-place transform. fftw offers the freedom to choose the degree of optimization
for finding the most optimal FFT implementation for the signal at hand by
means of the planner flag, also referred to as plan rigors. Listing 1 uses the
FFTW_ESTIMATE flag as an example, which is described in the fftw manual [13]:

“FFTW_ESTIMATE specifies that, instead of actual measurements of different
algorithms, a simple heuristic is used to pick a (probably sub-optimal) plan
quickly. With this flag, the input/output arrays are not overwritten during
planning.”

fftw offers five levels for this planning flag, where two further descriptions are
given here:

“FFTW_MEASURE tells fftw to find an optimized plan by actually comput-
ing several FFTs and measuring their execution time. Depending on your
machine, this can take some time (often a few seconds).
FFTW_WISDOM_ONLY is a special planning mode in which the plan is only
created if wisdom is available for the given problem, and otherwise a NULL
plan is returned.”

In fftw terminology, wisdom is a data structure representing a more or less
optimized plan for a given transform. The fftw_wisdom binary, that comes with
the fftw bundle, generates hardware adapted wisdom files, which can be loaded
by the wisdom API into any fftw application. cuFFT and clFFT follow this API
mostly, only discarding the plan rigors and wisdom infrastructure, cp. Listing 2.

Listing 2. Minimal usage example of the cuFFT single precision real-to-complex plan-
ner API. Memory management is omitted.
1 int N = 32;
2 cufftHandle plan;
3 cufftPlan3d(&plan, N, N, N, CUFFT_R2C);
4 cufftExecR2C(plan, input_buffer, output);
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Table 1. Methods an FFT client in gearshifft has to implement

constructor get_alloc_size execute_forward

destructor get_transfer_size execute_inverse

allocate get_plan_size upload

destroy init_forward download
init_inverse

2.2 The Architecture of gearshifft

gearshifft is developed as an open-source framework using C++ (following
the 2014 ISO standard [21]) and the Boost Unit Test Framework (UTF, [7]).
One goal is to have a unified benchmark infrastructure and an extensible set of
FFT library clients. The benchmark framework is independent of the used FFT
library and provides the measuring environment, data handling and processing
of results. gearshifft involves template meta-programming for a compile-time
constant interface between the clients and the benchmark framework. Such a
generic approach is necessary to obtain comparable results between FFT libraries
and reproducible data for later statistical analysis while keeping code redundancy
and overhead at a minimum.

In gearshifft a benchmark is meant to collect performance indicators of the
operations in Table 1 defining the interface for the FFT clients. Different para-
meters such as precision, FFT extents, transform variant, device type or FFT
library relate to different benchmarks. gearshifft controls many of them by
command line arguments. The FFT libraries are related to different gearshifft
binaries (gearshifft_cufft, . . . ). For the full documentation of gearshifft
the reader is referred to [17].

There are common interfaces for the context management and for the FFT
workflow. The user has to implement the context and the FFT client class. The
create and destroy context methods of the client encapsulate time-consuming
device and library initialization, which are measured separately and run only
once. The library only must be initialized within the FFT client when the library
stores plan information (cp. fftw wisdoms). The client’s context class derives
from ContextDefault which enables to access and extend the program options.

Listing 3. Required template arguments for FFT client implementation
1 template<
2 typename TFFT, // e.g. gearshifft::FFT_Inplace_Real, ...
3 typename TPrecision, // e.g. double, float, ...
4 size_t NDim // 1,..,3
5 /* .. further template types if needed .. */ >
6 struct MyFFTClient;

The FFT client implementation in Listing 3 is instantiated once per bench-
mark run and follows the resource allocation is initialization (RAII) idiom [30].
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gearshifft invokes the FFT client methods listed in Table 1 to perform the
benchmarks and to populate the benchmark data. The FFT client can assign
user-defined template types to create different FFT client classes to mimic vari-
ous use cases.

Depending on the FFT library, after a forward transform the same plan
handle might be recreated for backward transform. This saves memory as there
is only one plan allocated at any point in time. For example, a cuFFT plan
allocation can be several times bigger than the actual signal data for the FFT.
fftw can overwrite input and output buffers during the planning phase, when
e.g. FFTW_MEASURE is used. Afterwards, the buffers can be filled with data. In
turn, this plan handle cannot be recreated later on, as the result buffer of the
previous plan would be overwritten at plan recreation. gearshifft’s compile-
time interface supports this use case, where both plans are allocated before the
round-trip FFT starts. The gearshifft interface also allows library-specific time
measurements, which is only implemented for the cuFFT library at the moment,
where CUDA events measure the runtime on GPU. For fftw and clFFT, the
CPU timer exposed by the C++14 chrono header is used.

Listing 4. Define FFT client types for corresponding FFTs
1 namespace MyFFT {
2 using Inplace_Real = gearshifft::FFT<
3 gearshifft::FFT_Inplace_Real, MyFFTClient, TimerCPU >;

Listing 4 shows a type definition for the user implemented class MyFFTClient
and specifies an in-place-real FFT (cp. Listing 3). This type is added to a list
for the benchmark runner, as demonstrated in benchmark.cpp (Listing 5). The
gearshifft::List is a compile-time constant list, which holds the different
template instantiations of an FFT client. FFT_Is_Normalized denotes a compile
time flag if the backward transformed data needs to be normalized in order to
achieve identity with the input.

Listing 5. Using FFT client types to run the benchmarks
1 using namespace gearshifft;
2 using Context = MyFFT::Context;
3 using FFTs = List<MyFFT::Inplace_Real>;
4 using Precisions = List<float, double>;
5 using FFT_Is_Normalized = std::false_type;
6 int main( int argc, char* argv[] ) {
7 try {
8 Benchmark<Context> benchmark;
9 benchmark.configure(argc, argv);

10 benchmark.run<FFT_Is_Normalized, FFTs, Precisions>();
11 } catch(const std::runtime_error& e) { \\ ...

The back-end of gearshifft uses the Boost Unit Test Framework to gener-
ate the benchmark instances within a tree data structure, which is referred to
as the benchmark tree. The measurement layout and benchmark framework are
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Fig. 1. The benchmark framework of gearshifft using Boost UTF and a realized FFT
interface; Here, only FFT interfaces are shown, that are measured (gray operations are
measured by device timers if provided); Context also has an implicit interface, which
is omitted here.

illustrated in Fig. 1. One single run comprises time measurement of each oper-
ation (allocate, . . . ). The total time measures all from allocate to destroy.
The size of the allocated buffers and the memory information of the FFT library
(if available) is recorded as well. The functor FFT calls the FFT client operations
wrapped with time measurements. The input data buffer, filled with a see-saw
function in [0, 1) in BenchmarkData, is held by the BenchmarkExecutor. A copy
is given to the FFT functor in each run and is used for the output. For each
benchmark configuration a number of warmups and benchmark repetitions is
performed. After the last benchmark run the round-trip transformed data is val-
idated against the original input data. The error ε is computed by the sample
standard deviation of input and round-trip output. When that error is greater
than 10−5, the benchmark is marked as failed and gearshifft continues with
the next configuration in the benchmark tree.

gearshifft adapts the API of the different FFT libraries to a common inter-
face. The FFT functor defines the interface of the common FFT workflow. This
pattern refers to Wrapper Facades and Static Adapter design pattern which
provides static polymorphism at compile-time [4]. Currently, gearshifft imple-
ments three different FFT libraries, cuFFT (CUDA runtime, [25]) for Nvidia
GPUs, clFFT (OpenCL runtime, [3]) for CPU and GPUs and fftw for CPU
(C/C++ runtime, [15]). By this selection, an accelerator-only, a mixed CPU-
GPU and a CPU-optimized library is covered. The cmake build system is used
to setup build paths to construct one executable for each supported FFT library
found by cmake as well as for collecting the include paths during the build process
and library locations for linking later on. There are options for disabling FFT
libraries or pointing to non-standard installation paths and to configure compile-
time constants such as the error-bound as well as the number of warmups and
repetitions.
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For the command-line arguments, Boost is utilized, particularly for bench-
mark list creation and selection. There are several gearshifft program options
to control benchmark settings, for example:

1 gearshifft_clfft −e 128x128 1024 −r */float/*/Inplace_Real −d cpu

Here, the clFFT benchmarks would first run a 128 × 128-point FFT and then a
1024-point FFT, performing in-place transforms with real input data in single-
precision. The default setting instructs gearshifft to use all CPU cores and
to store the results into result.csv. The gearshifft benchmark selection syntax
supports wildcards. The first wildcard * relates to the title of the FFT client
(ClFFT in this example). The second one refers to the FFT extents.

3 Results

3.1 Experimental Environment

This section will discuss the results obtained with gearshifft v0.2.0 on various
hardware in order to showcase the capabilities of gearshifft. Based on the
applications in [27,28], 3D real-to-complex FFTs with contiguous single-precision
input data are chosen for the experiments. If not stated, this is the transform
type assumed for all illustrations hereafter. Expeditions into other use cases will
be made where appropriate. The curious reader may rest assured that a more
comprehensive study is possible with gearshifft, however the mere multiplicity
of all possible combinations and use cases of FFT render it neither feasible nor
practical to discuss all of them here.

This study concentrates on three modern and current FFT implementations
available free of charge: fftw (3.3.6pl1, on x86 CPUs), cuFFT (8.0.44, on Nvidia
GPUs) and clFFT (2.12.2, on x86 CPUs or Nvidia GPUs). This is considered as
the natural starting point of developers beyond possible domain specific imple-
mentations. It should be noted, that this will infer not only a study in terms of
hardware performance, but also how well the APIs designed by the authors of
fftw, clFFT and cuFFT can be used in practice.

The results presented in the following sections were collected on three hard-
ware installations: All systems presented in Table 2 will be used for the bench-

Table 2. Benchmark hardware

Taurus Hypnos Islay
HPC cluster [33] HPC cluster [1] Workstation

CPU family Haswell Xeon Sandybridge Xeon Haswell Xeon Haswell Xeon

CPU model 2× E5-2680 v3 2× E5-2450 2× E5-2603 v3 2× E5-2640 v3

RAM 64GiB 48GiB 64GiB 64GiB

GPU (PCIe3.0) 4x K80 2x K20x 1x P100 1x GTX 1080

GPU memory 4x 12GiB 6GiB 16GiB 8GiB

GPU driver 367.48 367.48 367.48 367.57

OS RHEL 6.8 RHEL 6.8 Ubuntu 14.04.3 CentOS 7.2
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marks in this section. Access was performed via an ssh session without run-
ning a graphical user interface on the target system. All measurements used the
GNU compiler collection (GCC) version 5.3.0 as the underlying compiler. All
used GPU implementations on Nvidia hardware interfaced with the proprietary
driver and used the infrastructure provided by CUDA 8.0.44 if not stated oth-
erwise. After a warmup step a benchmark is executed ten times. From this, the
arithmetic mean and sample standard deviations are used for most of the figures.

3.2 Overhead of gearshifft

gearshifft is designed to be a lightweight framework with a thin wrapper for
the FFT clients, where the interface between back-end and front-end is resolved
at compile-time. Performance indicators of each benchmark are collected and
buffered to be processed after the last benchmark finished. For validation pur-
poses, a cuFFT standalone code [17] was created that provides a timer harness
like gearshifft (referred to as standalone). In addition, the time to solution
of a straightforward implementation of a round-trip FFT was measured as well
(referred to as standalone-tts). Both invoke a warm-up step and ten repeti-
tions of the entire round-trip FFT process. Figure 2 shows the impact of the
gearshifft internal time measurement with cuFFT for two input signal sizes.
Figure 2a illustrates that the time measurement distribution of gearshifft over-
laps with standalone code using multiple timers. A comparison of gearshifft and
standalone-tts visually shows a shift in the average obtained timing result (most
likely due to timer object latencies), the scale of this shift resides in the regime
below 2% which we consider negligible. We make this strong claim also because
one of the goals of gearshifft is measuring individual runs of the benchmark
for downstream statistical analysis, thus using one timer object would prohibit
this core feature of the benchmark. Figure 2b shows the impact of larger input
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Fig. 2. Time-to-solution measured in gearshifft (cuFFT), in a standalone cuFFT appli-
cation using multiple timer objects and in a standalone application using one timer
object (standalone-tts) for a single-precision in-place real-to-complex round-trip FFTs
on the K80 [33].
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signals on the time measurement result. Here, the difference between gearshifft,
standalone and standalone-tts decreases even more and converges to a permille
level (the longer duration of the benchmark mitigates timer object latencies).

3.3 Time to Solution

The discussion begins with the classical use case for developers that might be
accustomed to small size transforms. As such, an out-of-place transform with
powerof2 3D signal shapes will be assumed. The memory volume required for
this operation amounts to the real input array plus an equally shaped complex
output array of the same precision. Figure 3 reports a comparison of runtime
results of powerof2 single-precision 3D real-to-complex forward transforms from
fftw and cuFFT. It is evident that given the largest device memory available of
16GiB, the GPU data does not yield any points higher than 8GiB. The more
recent GPU models supersede fftw which used all 2 × 12 CPU Intel Haswell
cores. Any judgment on the superiority of cuFFT over fftw can be considered
premature at this point, as fftw was used with the FFTW_ESTIMATE planner flag.

Fig. 3. Time-to-solution for powerof2 3D single-precision real-to-complex out-of-place
forward transforms using fftw (FFTW_ESTIMATE) and cuFFT. (b) shows the same data
as (a) but in a log10–log2 scale.

Figure 4 compares the time-to-solution to the actual time spent for the
FFT operation itself. FFTW_MEASURE imposes a total runtime penalty of 1 to
2 orders of magnitude with respect to FFTW_ESTIMATE. It however offers supe-
rior performance considering FFT execution time compared to FFTW_ESTIMATE.
To compare FFTW_ESTIMATE or FFTW_MEASURE with plans using FFTW_
WISDOM_ONLY, wisdom files are generated with the fftw_wisdom binary.
fftw_wisdom precomputed plans for a canonical set of sizes (powers of two and
ten up to 220) in FFTW_PATIENT mode, which in all took about one day on Taurus
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Fig. 4. fftw on Intel E5-2680v3 CPU with FFTW_ESTIMATE, FFTW_MEASURE and
FFTW_WISDOM_ONLY computing powerof2 3D single-precision real-to-complex in-place
forward transforms. (a) reports the time to solution, whereas (b) shows the time spent
for the execution of the forward transform only. Both figures use a log10–log2 scale.

[33] using (see [13] for command-line flag details): fftwf−wisdom −v −c −n −
T 24 −o wisdomf.

As during plan creation, the wisdom has to be loaded from disk only, the
planning times for calling the planner with FFTW_WISDOM_ONLY are drastically
reduced. Figure 4b shows that the user is rewarded by pure FFT runtimes of
less than an order of magnitude for small signal sizes. Unexpectedly, the FFT
runtimes become larger than those of FFTW_ESTIMATE for input signal sizes of
more than 32 KiB, which apparently contradicts the FFTW_PATIENT setting which
should find better plans than FFTW_MEASURE. It must be emphasized that the
planning times for FFTW_MEASURE become prohibitively long and reach minutes
for data sets in the gigabyte range. This is a well-known feature of fftw as the
authors note in [15]:

“In performance critical applications, many transforms of the same size are
typically required, and therefore a large one-time cost is usually accept-
able.”

gearshifft allows one to dissect this problem further and isolate the plan-
ning time only. Figure 5 illustrates the problem to its full extent. FFTW_MEASURE
consumes up to 3–4 orders of magnitude more planning time than other plan-
rigors and plans from GPU based libraries. The 3D planning is compared with
its counterpart in 1D (see Fig. 5b). It is important to note that fftw planning
in 1D appears to be very time consuming as the FFTW_MEASURE curve is very
steep compared to Fig. 5a. At input sizes of 128 MiB in 1D, the planning phase
exceeds the duration of 100s. The multi-threaded environment could be a prob-
lem for fftw (compiled against OpenMP): when using 24 threads in fftw the
time to solution with FFTW_MEASURE was up to 6× slower than using 1 thread.
Even worse, FFTW_PATIENT was up to 50× slower than in a single-thread envi-
ronment. Unfortunately, the number of threads used for wisdoms, which usually
run in FFTW_PATIENT mode, must be equal to the ones used by the client later on.

In practice, this imposes a challenge on the client to the fftw API. Not
only is the time to solution affected by this behavior which is a crucial quantity
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Fig. 5. Time-to-plan for powerof2 single-precision in-place real-to-complex forward
transforms using fftw (Intel E5-2680v3 CPU), cuFFT (K80 GPU) and clFFT (K80
GPU). (a) reports the complete time to plan for 3D FFTs and (b) for 1D FFTs. “None”
refers to the planning with cuFFT or clFFT as they do not support the plan rigor
concept. Both figures use a log10–log2 scale.

in FFT-heavy applications. Moreover, in an HPC environment the runtime of
applications needs to be known before executing them in order to allow efficient
and rapid job placement on compute resources. From another perspective, this
asserts a development pressure on the developer interfacing with fftw as she
has to create infrastructure in order to perform the planning of fftw only once
and reuse the resulting plan as much as possible. Furthermore, based on these
observations of Figs. 4 and 5 weighing plan time versus execution time, it becomes
more and more unclear for a user of fftw which plan rigor to use in general.

3.4 Comparing CPU versus GPU Runtimes

The last section finished by discussing a design artifact, that the fftw authors
introduced in their API and which other FFT libraries adopted. Another impor-
tant and common question is whether GPU accelerated FFT implementations
are really faster than their CPU equivalents. Although this question cannot be
answered comprehensively in our study, there are several aspects to be explored.
First of all, modern GPUs are connected via the PCIe bus to the host system in
order to transfer data, receive instructions and to be supplied with power. This
imposes a severe bottleneck to data transfer and is sometimes neglected during
library design. Therefore, the time for data transfer needs to be accounted for or
removed from the measurement. gearshiffts results data model offers access
to each individual step of a transformation, see Fig. 1. Hereby it is possible to
isolate the runtime for the FFT transform.

Figure 6 shows the runtime spent for computing the forward FFT for real
single precision input data. This illustration is a direct measure for the quality
of the implementation and the hardware underneath. For the 3D case in Fig. 6a
fftw seems to provide compelling performance if the input data is not larger than
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Fig. 6. Time for computing powerof2 out-of-place single-precision real-to-complex
forward transforms for 3D and for 1D shapes. Both figures use a log10-versus-log2
scale. Curves on the Intel E5-2680v3 based node were obtained with fftw, the data on
Nvidia GPUs was obtained with cuFFT and clFFT.

1 MiB on a double socket Haswell Intel Xeon E5 CPU. Above this limit, the GPU
implementations offer a clear advantage by up to one order of magnitude. The
current Pascal generation GPUs used with cuFFT provide the best performance,
which does not come by surprise as both cards are equipped with GDDR5X or
HBM2 memory which are clearly beneficial for an operation that yields rather
low computational complexity such as the FFT. In the 1D case of Fig. 6b, the
same observations must be made with even more certainty. The cross-over of
fftw and the GPU libraries occurs at an earlier point of 64KiB.

Another observation in Fig. 6a is that the general structure of the runtime
curves of GPU FFT implementations follows an inverse roofline curve [32]. That
is for input signals smaller than the roofline turning point at 1MiB the FFT
implementation appears to be of constant cost, i. e. to be compute bound. Above
the aforementioned threshold, the implementation appears to be memory bound
and hence exposes a linear growth with growing input signals which corresponds
to the O(n log n) complexity observed in Sect. 1 and validates the algorithmic
complexity in [32] as well.

Finally, it is not to our surprise that the clFFT results reported in Fig. 6 can-
not be considered optimal. As we executed clFFT on Nvidia hardware interfacing
with the OpenCL runtime coming with CUDA and interfaced to the Nvidia pro-
prietary driver, OpenCL performance can not be considered a first-class citizen
in this environment. Only in Fig. 6b, the clFFT runtimes are below those of fftw.
These experiments should be repeated on AMD hardware where the OpenCL
performance is expected to be better.

3.5 Non-powerof2 Transforms

It is often communicated, that input signals should be padded to powerof2
shapes in order to achieve the highest possible performance. With gearshifft
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Fig. 7. fftw and clFFT on Intel E5-2680v3 CPU with 24 threads versus cuFFT on
P100 GPU computing single-precision real-to-complex out-of-place forward transforms
of 3D shapes. Both figures use a log10-versus-log2 scale.

the availability and quality of the common mathematical approaches across many
FFT libraries can now be examined in detail. For the sake of brevity, only the
results for fftw (Intel E5-2680v3 CPU) and cuFFT (P100) are presented here.

Figure 7 confirms that powerof2 transforms are generally faster than
radix357 and oddshape transforms. Excluding the long planning time fftw
offers the fastest FFT runtime until the turning point at 1 MiB, see Fig. 7a.
However, looking at time to solution in Fig. 7b clFFT on the CPU outperforms
fftw by 1 to 2 orders of magnitude due to the long planning times of fftw.
At very small input signal sizes, cuFFT lacks behind clFFT on the CPU until 1
KiB for powerof2 shapes, where cuFFT offers superior or comparable runtimes
thereafter. clFFT only offers support for powerof2 and radix357 shape types
but has almost the same performance for either. cuFFT shows an FFT runtime
difference of up to one order of magnitude on the P100 for large input signals
(Fig. 7a) of powerof2 and oddshape type, where the time to solution converges
due to planning and transfer penalties (Fig. 7a).

For a large range of input signal sizes between 2−10 MiB 27 MiB a padding
to powerof2 might be justified when using cuFFT if enough memory is available
on the device. For fftw non-powerof2 signals can be padded at signal sizes
above 2−3 MiB = 128KiB. clFFT on CPU is only a good choice, when short
planning times are more important than transform runtime. clFFT provides
similar performance on the P100 as on CPU, but it is not shown here.

3.6 Data Types

It is a common practice that complex-to-complex transforms are considered more
performant than real-to-complex transforms. Therefore, in order to transform a
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real input array, a complex array is allocated and the real part of each datum is
filled with the signal. The imaginary part of each datum is left at 0.

Figure 8 restricts itself to larger signal sizes in order to aid the visualization.
Note that in Fig. 8a, a data point at the same number of elements of the input
signal does have different size in memory. fftw exposes a factor of 2 and more
of runtime difference for signals larger than 215 elements comparing real and
complex input data types in Fig. 8a. Below this threshold, the performance can
be considered identical except for very small input signals although real FFTs
always remain faster than complex ones. The situation is different for cuFFT,
where the overall difference is smaller in general. In the compute bound region
of cuFFT (below 219 elements), complex transforms perform equally well than
real transforms given the observed uncertainties. In the memory bound region
(above 219 elements), real transforms can be a factor of 2 ahead of complex ones
which is clearly related to twice the memory accesses.

If single-precision can be used instead of double-precision, then the possible
performance gain can be estimated by Fig. 8b. On the high grade server GPU, the
Nvidia Tesla P100, the performance difference remains around 2× in the memory
bound region due to double the memory bandwidth required. The results for
fftw vary more around 1.5 to 2.5 fold regressions between single and double
precision inputs across a wider input signal range.
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Fig. 8. Time for computing a forward FFT using 3D powerof2 input signals using
fftw and cuFFT on respective hardware versus the number of elements in the input
signal. (a) computes a real-to-complex transform and compares it to a complex-to-
complex transform for single precision input data, whereas (b) shows a real-to-complex
transform for either single or double precision. Both figures use a log2-versus-log2 scale.

4 Summary

With this paper gearshifft is presented to the HPC community and other
performance enthusiasts as an open-source, vendor-independent and free FFT
benchmark suite for heterogeneous platforms. gearshifft is a C++14 modular
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benchmark code that allows to perform forward and backward FFT transforms
on various types of input data (both in shape, memory organization, precision
and data type). gearshifft’s design offers an extensible architecture to accom-
modate FFT packages with very low overhead. gearshifft’s design choices
address both FFT practitioners, FFT library developers, HPC admins or inte-
grators and decision makers supporting a wide range of use cases.

To showcase the capabilities of gearshifft, a first study of three common
FFT libraries, fftw, clFFT and cuFFT is presented. The performances of CPU
based implementations Haswell Xeon CPUs to state-of-the-art Pascal generation
Nvidia GPUs are compared. The results indicate that for input signal sizes of
less than 1 MiB, the CPU implementation is superior whereas for larger input
data size the GPU offers better turn-around. The difference between runtimes of
powerof2, radix357 and power-of-19 shaped input data was demonstrated to be
negligible for fftw and non-negligible for cuFFT transforms used in this study.
The results further indicate runtime differences when using complex versus real
arrays and when comparing double versus single precision data types.

As we warmly welcome contributions of benchmarks from various pieces of
hardware, we hope to extend the gearshifft repository with many more data
sets from platforms used in the HPC arena of today and tomorrow. It is planned
to run gearshifft on non-x86 hardware to establish a basis for hardware perfor-
mance comparisons. Connected to this, we plan to explore more state-of-the-art
FFT libraries such as Intel IPPS, Intel MKL, AMD’s rocFFT, cusFFT etc. It is
a future task to consolidate the benchmark data structure and to open another
benchmark paths for e.g. FFT callbacks, so that many more analyses are possi-
ble than were presented in this paper both in terms of performance exploration
as well as energy consumption.
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Abstract. The scale of applications and computing systems is tremen-
dously increasing and needs to increase even more to realize exascale
systems. As the number of nodes keeps growing, communication has
become key to high performance.

The Message Passing Interface (MPI) has evolved to the de facto stan-
dard for inter-node data transfers. Consequently, MPI is well suited to
serve as proxy for an analysis of communication characteristics of exas-
cale proxy applications.

This work presents characteristics like time spent in certain opera-
tions, point-to-point versus collective communication, and message sizes
and rates, gathered from a comprehensive trace analysis. We provide an
understanding of how applications use MPI to exploit node-level par-
allelism, always with respect to scalability, and also locate parts which
require more optimization. We emphasize on the analysis of the message
matching and report queue lengths and associated matching rates.

It is shown that most data is transferred via point-to-point operations,
but the most time is spent in collectives. Message matching rates signif-
icantly depend on the length of message queues, which tend to increase
with the number of processes. As messages are also become smaller, the
matching is important to high message rates in large-scale applications.

1 Introduction

While there are many challenges on the road toward exascale computing, com-
munication is key to both performance and energy efficiency. It is projected
that an exascale computing system comprises 50 times more nodes than systems
deployed in 2010 [1]. Additionally, the number of available processing elements
increases even more as nodes become more parallel themselves, including mas-
sively parallel and heterogeneous processors.

Data movement within such highly parallel environments cannot rely on a
single paradigm, but needs to be hierarchical and specialized. A single global
address space is just as unpromising as solely relying on message passing. Com-
puting has become heterogeneous and thus the processor’s different execution
models require different communication models [2].

Nonetheless, message passing has become the de facto standard for data
movement between nodes as it abstracts communication to a well understood
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance 2017, LNCS 10266, pp. 217–236, 2017.
DOI: 10.1007/978-3-319-58667-0 12
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concept of messages being sent and received by a source and destination process.
Besides high productivity, message passing allows messages to be sent asyn-
chronously to overlap communication with computation, and provides collective
operations, such as barrier and broadcast. In particular, the Message Passing
Interface (MPI) is in wide use, especially in large scale applications. In spite
of increasing heterogeneity, message passing is expected to remain the domi-
nating communication model for data exchanges across operating system (OS)
boundaries, even in future hierarchical communication systems.

With exascale computing ahead of us, application developers as well as sys-
tem architects need to understand how data is exchanged. Applications have to
be optimized to minimize communication overhead and systems have to provide
an environment for the application to achieve best possible performance. Both
cases require communication to be well understood in order to tweak applications
and systems for performance.

Consequently, a set of MPI applications has been compiled by the U.S.
Department of Energy (DOE), representing applications that are expected to
run on exascale systems. Traces are provided that reflect the communication
behavior on current systems with varying scale.

In this work, we analyze these trace files to provide an understanding of var-
ious aspects of message passing for such large-scale applications. Besides general
statistics, such as overall communication time, message size, and data transfer
volume, we provide a comprehensive analysis with regard to the message match-
ing. The matching process significantly adds latency if long queues have to be
searched in order to find a matching message. The matching is important, as
it has been shown that solely speeding up the matching process can reduce an
application’s run time by a factor of 3.5× [3]. We report queue lengths as well
as search depths and message rates of various exascale-like applications.

The results of this work can be used by application developers to under-
stand consequences of various MPI aspects. Furthermore, systems architects
learn about applications’ demands, hence systems can be tailored to further
accelerate common patterns. We also want to motivate programmers to consider
similar analyses for their applications. In summary, we provide the following
contributions:

– Comprehensive analysis of exascale proxy applications with respect to com-
munication characteristics, such as message size and rate, number of commu-
nication partners, and time spent in particular MPI routines

– Analysis of queue lengths and search depths to further understand perfor-
mance and implications of the matching process

– Based on our data, we discuss our observations and show limitations and
challenges that arise at large scale.

The remainder of this work is structured as follows: Sect. 2 provides the
background on MPI and our methodology. Section 3 shows related work, followed
by an overview of the applications we are analyzing in Sect. 4. Next, Sect. 5



An Overview of MPI Characteristics of Exascale Proxy Applications 219

reports general MPI statistics, while Sect. 6 particularly assesses the message
matching process. We discuss our observations in Sect. 7 before we conclude in
Sect. 8.

2 Background

In this section we want to introduce MPI as prominent and widely used message
passing system. A brief overview of our methodology completes this section.

2.1 The Message Passing Interface

MPI has become the de facto standard for data transfers in High Performance
Computing (HPC) systems, due to its productivity and abstract interface. Each
data transfer is declared as a message that is sent and received by two processes.
Messages are delivered according to their origin and destination, but also require
to be annotated with a tag and communicator. The tag allows for selection of
messages between the same process pair and the communicator is a subset of all
available processes, but can also comprise all processes of an application.

A process receives messages by calling a recv routine. The receive request
needs to be matched with the right message, based on origin, tag, and commu-
nicator. This is widely known as tag matching and can significantly contribute
to latency [4].

An important aspect of the matching performance is the length of the Unex-
pected Messages Queue (UMQ) and Posted Receive Queue (PRQ). Any incom-
ing message for which a receive request has not been posted yet is added to the
UMQ. Similarly, any receive request is added to the PRQ for which no message
has been received yet. With longer queues, the search time and thus latency is
increased, particularly limiting the rate at which small messages are exchanged.

Apart from direct messages between two distinct processes, MPI allows mul-
tiple processes to participate in collective communication routines. Collectives
are executed by all processes of the communicator that is passed to the MPI rou-
tine and allow for synchronization, such as the barrier. Others enable collective
data processing, such as determining the maximum of data that is distributed
across multiple processes, namely (all-)reduce operation. Collectives for plain
data distribution are implemented by broadcast, gather, and scatter operations.

Other MPI extensions, such as one-sided semantics, are beyond of this work’s
scope as we did not encounter them in the traces we analyzed.

2.2 Methodology

The foundation of our work are the exascale proxy application traces, made
available by the U.S. Department of Energy (DOE) [5]. The traces cover a wide
range of applications with different communication patterns and characteristics.
Traces of the Design Forward program comprise only a single iteration, whereas
the other programs do not provide any information on this manner.
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For our analyses, we developed a script-based framework in Python and R
to parse and analyze trace files and verified results with a different approach
using bash commands. Traces are available in the dumpi format1, whose library
intercepts and logs every MPI call with its entrance and exit timestamp. In
addition to the calls themselves, routine-specific meta data is logged. While an
MPI Send contains the destination rank and message size, an MPI Allreduce
also comprises the operation that is executed on the data. Traces are available
for each rank separately.

While some data can be gathered by simply parsing the files, more complex
characteristics require additional processing. For example, the determination
of MPI queue length and search depth requires the queues to be rebuilt and
searched for every occurring MPI Send, MPI Recv, and MPI Wait(all).

Although plenty of insights can be gained by a trace-based analysis, there
are limitations. For example, not all traces provide information on custom data
types, thus the exact size of messages cannot be reported for all applications.
Instead, we can only report the number of elements in given messages. Similarly,
if a new mapping of ranks is generated by MPI Cart create, for example, the
queues cannot be rebuilt easily. Furthermore, it remains unclear whether and
how much communication is overlapped with computation as dumpi tracks MPI
calls only.

Unfortunately not all applications provide information on the systems the
traces were generated on. Applications from the Design Forward program also
offer Integrated Performance Monitoring (IPM) data2, which contains MPI time,
message size distribution, and load balancing information. Nonetheless, we want
to report these metrics for all applications and chose to report numbers from
our own analyses. Note that these numbers can differ since metrics are collected
by different methods.

3 Related Work

There are two fields that are related to this work: general MPI statistics and the
analyses of matching and queues, respectively. A brief overview of existing work
is presented in the following.

Early work on analyzing communication characteristics focused on the NAS
Parallel Benchmark (NPB) suite [6,7]. Their finding was that collectives are
rather static, meaning that parameters can be determined at compile time and
associated messages sizes are rather small. Furthermore, 5 out of 8 applications
heavily use point-to-point communication with a share of more than 80%. Mes-
sage sizes never exceed 64kB on 64 nodes in any NPB applications.

Vetter and Mueller [8] and Kamil et al. [9] looked at a small set of various
applications and analyzed MPI metrics similar to our choice. They also found
that in their set of applications the number of peer processes any rank commu-
nicates with and the message size of collective operations are rather small.
1 http://sst.sandia.gov/about dumpi.html.
2 http://ipm-hpc.sourceforge.net/.

http://sst.sandia.gov/about_dumpi.html
http://ipm-hpc.sourceforge.net/
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A similar analysis was done by Raponi et al. [10], in which MPI time and
number of calls were studied. The set of applications differs from ours, except for
AMG. However, they looked at small scale with only one application exceeding
512 ranks, while AMG was run with 128 ranks. The analysis showed similar
results regarding the data transfer volume, which is strongly dominated by point-
to-point communication. Traces were also analyzed by Lammel et al. [11], who
proposes a trace analysis tool. Various MPI metrics are reported as well.

Other work also exists in the area of queue and matching analyses. UMQ
and PRQ lengths were analyzed by Brightwell and Underwood [12], but only
for the NPB applications again. They found that a significant amount of unex-
pected messages results in queue lengths of up to 200 entries with up to 140
processes. Furthermore, PRQ is always smaller than UMQ and average search
lengths never exceed 30 entries. Note that they stated that it is necessary to
analyze real applications, rather than benchmarks. Based on this, Underwood
et al. [13] developed a list-acceleration unit in hardware. Benefits were shown
as long as the queues fit in on-NIC memory. Keller and Graham [14] analyzed
large-scale applications, showing that the UMQ length scales linearly with the
process count for a thermodynamics application on the Jaguar and JaguarPF
systems. However, ranks other than 0 differ significantly with not exceeding a
queue length of 200. Reported UMQ lengths for other applications are much
smaller, ranging between 10 and 30 entries.

New matching algorithms have been proposed by Zounmevo and Afsahi [15],
aiming at reduced memory footprint and enhanced scalability. One algorithm
uses multiple queues, statically assigned to ranks. Sequence numbers are used
to comply with wildcards. Significant relative performance improvements were
achieved for two applications (nbody and radix sort), but absolute numbers are
missing. Flajslik et al. [3] also proposed a new matching algorithm, based on
hash tables. Using this algorithm, the Fire Dynamics Simulator was run 3.5×
faster by only replacing the matching algorithm and no further optimization of
the application. The authors in [4] proposed a dynamic matching algorithm and
reported matching times for several benchmarks. However, no queue lengths or
search depths were analyzed.

In previous work [16], we analyzed the GPU’s capability to perform message
matching and proposed an appropriate algorithm. We found that the message
passing protocol would need to be relaxed with regard to wildcards and ordering
to suit the GPU’s execution model. The conclusions can also be applied to the
CPU’s protocol to allow for more optimizations and faster matching, especially
as the number of cores per CPU keeps increasing.

4 Application Overview

This section provides an overview of the applications we are analyzing in this
work. Table 1 summarizes the applications’ communication pattern and general
statistics for each application. Note that numbers of our scalability analysis can
differ from this table since we did not include small scale configurations.
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Table 1. Exascale proxy applications and various MPI characteristics (Non.Bl.
S/R = share of non-blocking send/recv operations; Unxp.Msgs. = share of unexpected
messages).

Application Pattern Ranks MPI (comm)
time

Unxp.Msgs. Non-Bl. S/R Peers

MOCFE
(CESAR)∗

Nearest
neighbor
(Near.N.)

64 74 (8)% n/a 100/100% 2

256 86 (6)% n/a 100/100% 3

1, 024 92 (9)% n/a 100/100% 4

NEKBONE
(CESAR)

Nearest
neighbor

64 11 (7)% 40% 99.9/99.9% 18

256 34 (11)% 35% 99.9/99.9% 8

1, 024 78 (23)% 45% 99.9/99.9% 29

CNS
(EXACT)

Nearest
neighbor

64 3 (2)% 28% 0/92.5% 26

256 24 (20)% 40% 0/98.5% 44

CNS Large
(EXACT)

Nearest
neighbor

64 3 (3)% 30% 0/60.8% 26

256 11 (11)% 27% 0/85.7% 20

1, 024 43 (39)% 34% 0/98.4% 72

MultiGrid
(EXACT)

Nearest
neighbor

64 6 (3)% 27% 0/100% 14

256 16 (12)% 47% 0/100% 37

MultiGrid
Large
(EXACT)

Nearest
neighbor

64 3 (1)% 40% 0/100% 14

256 5 (3)% 31% 0/100% 17

1, 024 22 (18)% 33% 0/100% 20

LULESH
(EXMATEX)

Nearest
neighbor

64 1 (1)% 21% 100/100% 14

512 8 (8)% 29% 100/100% 19

CMC 2D
(EXMATEX)

Nearest
neighbor

64 76 (76)% n/a n/a n/a

256 78 (78)% n/a n/a n/a

1, 024 84 (84)% n/a n/a n/a

AMG (DF) Nearest
neighbor

216 3 (3)% 44% 100/100% 57

1, 728 1 (1)% 46% 100/100% 79

13, 824 0 (0)% 48% 100/100% 92

AMR Boxlib
(DF)

Irregular 64 9 (5)% 27% 0/99.9% 18

(continued)
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Table 1. (continued)

Application Pattern Ranks MPI (comm)
time

Unxp.Msgs. Non-Bl. S/R Peers

1, 728 12 (10)% 37% 0/99.9% 35

BigFFT (DF) Many-to-
many

100 99 (3)% n/a n/a n/a

1, 024 99 (3)% n/a n/a n/a

10, 000 99 (0)% n/a n/a n/a

BigFFT
Medium (DF)

Many-to-
man

100 72 (29)% n/a n/a n/a

1, 024 81 (19)% n/a n/a n/a

10, 000 99 (1)% n/a n/a n/a

Crystal
Router (DF)

Staged
all-to-all

10 23 (23)% 46% 0/100% 3

100 63 (63)% 31% 0/100% 6

Fill Boundary
(DF)

Nearest
neighbor

125 40 (27)% 34% 0/100% 16

1, 000 52 (44)% 30% 0/100% 20

10, 648 72 (70)% 32% 0/100% 23

MultiGrid
(DF)

Nearest
neighbor

125 40 (17)% 41% 0/100% 14

1, 000 66 (58)% 39% 0/100% 10

10, 648 70 (69)% 38% 0/100% 8

MiniDFT
(DF)∗

Many-to-
many

125 15 (15)% n/a 32/3.4% 19

424 11 (11)% n/a 31.3/2.2% 30

MiniFE
(Mantevo)∗

Staged
all-to-all

144 7 (6)% n/a 0/100% 12

1, 152 7 (6)% n/a 0/100% 15

PARTISN
(DF)∗

Near.N 168 51 (50)% n/a 0/0% 1

Average n/a n/a 41 (21)% 36% n/a 23
∗The queue analysis of this application was not possible since rank numbers are
renamed, resulting from MPI’s cart create.

The second column of the table shows the communication pattern of the
applications. Although we analyze a wide range of applications, it seems that
nearest neighbor communication is by far the most prominent one, whereas no
application relies on pure all-to-all communication. Only Crystal Router and
MiniFE, both from the Design Forward program, implement a staged form of
all-to-all. Crystal Router and AMG use send/receive operations only and refrain
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from using any collective data transfer operation. BigFFT (Design Forward)
and EXMATEX’s CMC 2D, on the other hand, completely rely on collective
communication.

We determine the number of peer ranks a rank is communicating with by
counting how many different ranks are addressed with all send and receive oper-
ations together. On average across all applications, only a mean of 23 ranks
participate in point-to-point communication with any given rank. It suggests
that point-to-point communication is rather local, which allows for optimiza-
tions regarding process mapping and topology.

We also want to constitute that except for two applications, namely MiniDFT
and MiniFE, we did not see any wildcard for the source specifier in any MPI Recv
operation. Wildcards introduce additional complexity in the message matching
process, which seems quite unnecessary for the vast majority of applications.
Additionally, we could not find tag wildcards in any trace file either, questioning
whether MPI needs to support wildcards at the cost of complex matching algo-
rithms. However, it is possible that trace files omit MPI’s initialization phases,
in which wildcards may be used more often. It would still be desirably if MPI
allows the user to refrain from using wildcards during compute phases to allow
for optimized message matching algorithms [3,15].

Although messages within different communicators can be matched in par-
allel by replicating the associated data structures, applications do not seem to
use multiple communicators. We observe that only MiniDFT groups ranks in 7
different communicators for point-to-point messages and Nekbone in 2, respec-
tively, while all other applications rely on a single communicator. Given that
communicators can be matched independently, we advocate to use multiple com-
municators to reduce matching overhead, allowing for higher message rates to
be achieved.

The fifth column of the table shows the share of all messages that are unex-
pected. On average across all applications, 36% of all messages do not find a
matching receive upon arrival and need to be placed in the UMQ. This is dis-
tributed as follows: applications and configurations with less than 100 ranks send
30% unexpected messages (15 samples), less than 500 ranks 34% (28 samples),
and more than 1,000 ranks 39% (8 samples). Although the number of unexpected
messages seems to increase with the scale of the application, the increment is
not significant. Nonetheless, we observe a significant increase of unexpected mes-
sages with the number of ranks in the AMG (Design Forward) application, from
12% with 8 processes to 46% with 216 processes. However, increasing the scale
to 1,728 processes has no further impact. Another example is Crystal Router,
for which we observe that the number of unexpected messages increases with
scale, from 31% at 10 processes to 46% at 100 processes. However, more samples
would be needed to allow for more profound statements.

A mechanism to avoid unexpected messages is to post non-blocking
MPI Irecv operations in advance to provide MPI with the appropriate user-
space buffer for the expected message. We count occurrences of blocking and
non-blocking send and receive operations for each application and found that no
general statement for all applications can be made and refer to the results shown
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in the table. Nonetheless, it seems to be a common pattern to send messages in
a blocking way and receive them by non-blocking receive operations.

We also want to state that Design Forward’s MiniDFT is the only application
that uses MPI Rsend and MPI Sendrecv replace in addition to the standard
blocking and non-blocking send routines. We have not observed any synchronous
or buffered send operations in any other application.

Another important metric of any large-scale application is how much time is
actually spent for data transfers versus computation. The accumulated time of
all MPI calls is divided by the total application time, which is determined here
by the first and last MPI operation that appears in the traces. Although this
approach does not represent the exact application time as it does not account
for non-MPI operations, it still allows for a good estimate. Second, the commu-
nication time is the accumulated time for all data transferring or synchroniz-
ing MPI calls, such send/recv, collectives, and MPI Wait(all). Comparing both
times provides insights on how much MPI overhead an application contains. For
example, overhead is increased by creating new datatypes, communicators, or
groups. Both MPI and communication time are determined for rank 0.

The time spent in MPI routines averages about 36% of the application time
across all applications and configurations (67 samples). If we consider only appli-
cations with less than 100 ranks, the MPI time averages 20% (24 samples),
whereas applications with less than 500 ranks spent 27% (48 samples) of their
time in MPI functions. The larger the scale the more time is spent in MPI, as
applications with more than 500 ranks show an average MPI time of 57% (19
samples) and more than 1,000 ranks result in 60% (16 samples). This is not sur-
prising as most traces are generated with the same input and problem size and
the impact of communication usually increases with strong scaling. The actual
communication time, however, is lower with an average of 20% across all appli-
cations and only 12% for applications with less than 100 ranks. Again, increasing
the scale also increases the communication time as applications with more than
500 ranks show an average of 29%.

On average, 73% of the MPI time is spent for communication routines like
send/recv or collectives. However, there are a few applications with significantly
higher MPI than communication time. Mocfe and BigFFT both contain the
most overhead with spending only 10–20% of their MPI time for communication
and synchronization. For example, Mocfe (1,024) spends 75% of its application
time a single MPI Cart create call. Thus, actual communication times may be
higher during the application after initialization is complete.

Traces for different problem sizes are also available for some applications,
namely BigFFT (Design Forward), and EXACT ’s CNS and MultiGrid. In all
cases the MPI time is lower for larger problem sizes due to an increased amount
of computation.

5 General MPI Statistics

This section presents our findings regarding general MPI characteristics, such as
data volume, message size, and usage of various MPI operations and features.
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Fig. 1. Message sizes for various MPI operations and applications.

Fig. 2. Datatype distribution for each application.

Message Size: The message size for common MPI operations and various appli-
cations is depicted in Fig. 1. The graph shows the message size as a boxplot (1st,
2nd, and 3rd quartile, minimum, maximum) and considers all messages from all
ranks of a given application and configuration. At last, an overall message size
distribution is shown across all applications and configurations, however, appli-
cations are not equally represented as some applications exchange much more
messages. Generally it can be said that point-to-point messages contain more
elements than collective messages. In fact, collectives are often called with a
single data element.

Taking the scale of applications into account, point-to-point messages tend
to become smaller with an increasing number of ranks. This is observed in half
of the applications (6 out of 12), whereas Crystal Router, DF MiniDFT, and DF
MultiGrid show an increase in message size at larger scale. Contrary, messages
remain roughly constant in Mocfe, Fillboundary, and LULESH.
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(a) Transferred data

(b) Communication time

Fig. 3. Transferred data and communication time, broken into various MPI operations

Broadcasts are mostly unaffected by scale as only MiniDFT shows an increase
in message size while other applications’ messages remain constant in size. The
message size of alltoall operations always decreases with an increasing number
of ranks. This is observed in BigFFT, EXACT MultiGrid, and AMR.

The most prominently used collective operation is (all-)reduce. Here, the
message size is constant over scale in two-thirds of the applications (6 out of
9). However, MiniDFT and AMR show an increase in message size. Nekbone,
however, first uses larger messages when the scale is increased from 64 to 256
processes, but messages become smaller again for 1,024 processes.

Summarizing it can be said that messages tend to become smaller or remain
constant in size at larger scale. Nonetheless, a few applications show an increased
message size, for example MiniDFT ’s messages become larger for both point-to-
point and collective messages.

Note that we cannot report the exact size of messages in terms of bytes
since some traces lack information on the composition of user-defined types.
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Fig. 4. Message rates for various time intervals, measured across all applications. The
orange points indicate the number of messages (mean) that fall into a given time
interval.

However, Fig. 2 shows the datatype distribution for each application. While most
applications represent their data as double, user defined data structures are also
prominent. Most applications use the same datatypes for point-to-point and
collectives, however, there are exceptions. Fillboundary, for example, mainly uses
double for point-to-point and long for collective operations. Nekbone uses char
for point-to-point and user-defined types for collectives.

Transferred Data Volume: Figure 3(a) breaks down the total volume of trans-
ferred data into various MPI operations. As can be seen, most data is sent via
point-to-point communication, except for a few workloads that primarily rely
on collective operations for data movement. For example, CESAR’s Mocfe and
EXMATEX’s CMC heavily rely on reduce and allreduce, respectively. Design
Forward’s MiniDFT almost entirely exchanges the data via all-to-all. Nonethe-
less, it is surprising how many applications rely on send/receive communication
for data movement.

An interesting aspect is the data volume transferred during an application’s
run time. However, this is relative since we can only determine how many ele-
ments are sent, rather than the exact number of bytes. The most communication-
intensive applications are Crystal Router (100 ranks) with 5.7 G elements per
application time, and BigFFT (1,024 ranks) and Fillboundary (10,648 ranks)
with 3.3 G elements/s each. Substituting application time with communication
time yields different results. Here, BigFFT (10,000 ranks) is by far the most
communication-intensive application with 112 G elements/s, followed by AMG
(13,824) and LULESH (512) with 37G and 24 G elements/s, respectively. The
lowest rate is achieved by CMC with 1.2K (64 ranks) to 24K (1,024) elements
per communication time. DF MultiGrid shows also low rates with an average of
about 100K elements/s across 125, 1000, and 10648 ranks.

The transfer rate can also be determined with regard to the number of ranks.
Here, MiniFe (18 ranks) shows the highest rate with 900M elements per com-
munication time and rank, followed by LULESH (16) and Crystal Router (10)
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with each yielding about 400M elements/s per rank. Again, CMC also shows
the lowest rate in this analysis.

The vast majority of applications responds to an increase in scale with a
decrease in transferred elements per communication time. As we have shown
earlier, messages tend to become smaller at larger scale and thus communication
and synchronization overhead predominates at some point as well. Contrary, the
total data volume tends to increase with scale in most applications.

Communication Time: Besides transferred data volume, the time spent in cer-
tain MPI operations is used to break down the MPI time. Results are shown
in Fig. 3(b). Although each application behaves differently, collective operations
tend to contribute most to the application’s MPI time. This is due their implicit
synchronization and dependency on all ranks of the collective’s communicator,
whereas point-to-point communication just depends on two ranks, thus imbal-
ances are less impactful regarding the operation’s latency. However, only small
amounts of data are moved by collective operations.

Looking at the graph suggests that point-to-point operations take less time
than collectives, however, due to non-blocking send and receive operations the
time spent in MPI Wait(all) routines needs to be factored in as well. For exam-
ple, Design Forward’s Crystal Router and AMG spent most of their communi-
cation time on waiting for non-blocking operations to be completed, as it only
uses non-blocking receive operations (see Table 1). Barriers, on the other hand,
are especially time consuming in large-scale applications, such as Fillboundary
and MultiGrid, both comprising 10,648 ranks.

Optimization of MPI communication needs to focus on collective operations
and load balancing at large scale. While the data volume is lower than for point-
to-point communication, the time spent in collectives is substantially higher.

Message Rate: The message rate of an application can be determined by count-
ing all messages that are sent during an application and divide the result by the
application’s run time. However, this does not reflect the application’s require-
ments regarding the network’s performance. A better approach is to define a
time interval and count all messages that fall into it. If a bulk of messages is
sent before a long period of computation, the message rate during the actual
communication phase can demand high message rates from the network while
the network could idle during computation.

Figure 4 shows the message rate observed across all applications for a given
time interval and the number of messages that were counted during the time slot
(orange points). As expected, high message rates are measured for short intervals,
but the actual number of messages is fairly low. For example, 2 messages are
exchanged within 1µs, resulting in a message rate of 2M messages/s. The sample
size is also low with 4 applications out of 48. We believe 100µs to be more
representative as at least the median of the message count amounts to about
10 messages. The associated message rate is above 100k messages/s for half of
the applications with the maximum being 500k messages/s. It can also be seen
that the time between subsequent collective operations is larger than between
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(a) Best case (b) Average case (randomized)

Fig. 5. Matching rate of different MPI implementations for best and average cases.

Fig. 6. Length and depth of the UMQ.

point-to-point operations, also an effect that is caused by collective’s implicit
synchronization.

6 MPI Message Matching

Two-sided communication requires messages to be matched with the target’s
receive requests. The matching is complex as MPI guarantees in-order delivery
of messages and allows for source and tag wildcards. Also, messages can arrive
unexpectedly.

Matching Performance: Messages and receive requests that cannot be matched
need to be stored in queues, although all major MPI implementations implement
lists. The length of these queues, or lists respectively, contributes to the memory
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Fig. 7. Length and depth of the PRQ.

footprint and increases latency if matching elements are found toward the queues’
tail. Figure 5 shows the matching performance for two synthetic scenarios: best
case, in which each receive request matches the head of the UMQ and average
case with a randomized match position within the queue. The experiment has two
MPI processes running on the same node, whereas one process sends a certain
number of messages to the other process, followed by a barrier. The second
process receives all messages after the barrier. The match position is determined
by the tag used in the send and receive functions. The tag is ascending linearly
for the best case and randomized for the average case. Our test system is a single
node with an Intel Xeon CPU E5-2630 (Ivy Bridge) processor at 2.60 GHz with
1600 MHz DDR3 memory. We evaluate OpenMPI 1.10, MPICH 3.2, MVAPICH
2.2.2rc1, and a list implementation based on C++’s Standard Template Library
(STL). Results are reported as average of thousands of iterations.

Results indicate that OpenMPI is optimized for small queues, while MPICH
becomes superior for queues longer than 64 elements. The STL implementation
is outperformed by far, demonstrating how MPI’s lists are optimized for the
matching purpose. Note that STL’s queue container performs even worse due to
its costly remove operation of elements at arbitrary positions.

Regarding the average case, matching rates drop significantly for queues
longer than 32 elements, reaching half of the peak matching rate at queue lengths
of about 128 elements. This can be observed for all MPI implementations. Note
that we also determined the worst case matching rate with receive requests
always matching the tail of the UMQ, however, the course of performance is
similar to the average case with slightly lower absolute matching rates.

Queue Lengths and Search Depth: As shown, the length of the queues has a
significant impact on the matching time, thus also on latency and message rate.
On the other side, if receive requests always match messages at the queue’s
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head, the actual length is unconcerned, though memory footprint is still affected.
Consequently, the search depth is another important aspect. Together with the
length, the search depth is shown in Figs. 6 (UMQ) and 7 (PRQ).

Generally, both UMQ and PRQ show similar lengths and search depths,
although the UMQ tends to be slightly larger in most applications. The longest
queues are observed in Nekbone and MultiGrid with the median length being
about 1,024. Overall, the length is smaller than 128 elements in half and smaller
than 512 in 75% of the measured moments. Note that we determine the queue
length and search depth in any event of send/recv or wait operation and espe-
cially toward the end of the application the queues become often zero in length.
Thus, queues may be larger during the application’s most active communication
periods.

Furthermore, it is also interesting to compare search depth and length. If both
are similar, matches tend to be found rather at the end of the queue. However, if
the search depth is smaller than the length matches are often found near the head
of the queue. Regarding the UMQ, search depth is never significantly lower than
the measured length. Significantly lower would mean that the depth’s median is
below the length’s 1st quartile. This is different from the PRQ, where at least 6
applications show significant lower depth than length.

While lengths of UMQ and PRQ are similar, the PRQ’s search depth tends
to be lower. If a receive is posted, the UMQ needs to be searched for a matching
message and according to our results, the message tends to be found somewhere
near the end of the queue. However, if a message arrives the matching receive
tends to be found near the head of the PRQ. That suggests that the order of
which receive requests are posted likely matches the order of which messages
arrive, or receive requests match with multiple messages.

The median of all applications’ search depth ranges below 100 elements, both
for UMQ and PRQ. Combining this with the average case matching performance
in Fig. 5, the effective matching rate in most cases amounts to less than 18M
matches/s. This is about 30% lower than the peak rate of 25M matches/s. Again,
communication intensive periods might show even longer queues and thus the
matching rate drops even further.

Strong Scaling Effects: The overall mean search depth of the mean across all
of the application’s ranks with less than 100 processes amounts to 29 elements,
while the median is 6. CESAR’s Nekbone’s search depth is 140 for 64 ranks,
significantly adding to the mean. Considering all applications with less than 500
ranks, the mean search depth increases to 68, while the median increases to 14.
On the other hand, the mean search depths for applications with more than 500
ranks amounts to 143 with a median of 38. The UMQ shows the same trends
with higher absolute values. With applications sending more messages at larger
scale, it is not surprising that queue lengths increase accordingly.
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7 Discussion

This section summarizes the results and discusses our findings. While some
insights are already widely assumed to be true in the community, this work
aims to quantify these believes.

MPI Time: We observed that a significant amount of time is spent in MPI rou-
tines, averaging about 36% across all studied applications. Directing research
towards optimizing communication, especially MPI, is therefore important.
Especially at large scale, MPI can easily contribute to more than half of the
total application time. On the other hand, strong scaling applications show an
increased amount of messages and data volume, but also a decreased amount
of data per message. Consequently, large scale applications tend to send a sig-
nificant amount of small messages. This emphasizes the need for low latency
communication, thus rendering the matching of messages and receive requests
even more important.

Breaking down the MPI time into various operations, we have shown that
collective operations consume a significant amount of time compared to plain
send/receive communication. This is mainly due to the implicit synchronization
and the large number of processes that are involved. Contrary, the amount of
data that is transferred collectively is rather small since the bulk of data is
transferred via send/receive operations. We advise to use MPI’s non-blocking
collective operations to hide synchronization time through overlap with compu-
tation. Non-blocking collectives were introduced in MPI 3 [17].

Similar recommendations apply to send/receive communications as we sug-
gest using non-blocking operations whenever possible. Note that instead of
MPI Wait, a non-blocking scheme using MPI Test can be implemented to avoid
busy waiting on requests. On average across all applications, almost 40% of
messages are unexpected and all applications heavily use non-blocking receive
operations. Nonetheless, Design Forward’s Crystal Router and AMG spend still
more than 80% of their MPI time in MPI Wait(all), possibly allowing for further
optimization.

The last important factor that contributes to MPI time is the barrier. We
observed that almost every application uses only a single communicator, even at
large scale. Hence, a large number of processes participate in barriers, penalizing
imbalances. Barriers need to be used carefully and programmers need to con-
sider using more communicators and groups to avoid synchronization at large
scale, as also advocated in [18]. However, we understand that this might not
be applicable for all applications. Another solution could be the non-blocking
barrier, introduced with MPI 3. Instead of busy waiting on the arrival of all
processes, useful work could be done in the meantime.

It would be interesting to analyze the MPI time of certain operations even
further to obtain a detailed understanding of limiting aspects. For example,
the actual time spent for message matching can be assessed for point-to-point
operations. However, traces in the present form do not allow for such an analysis
and a more detailed profiling framework is required.
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Message Matching: The most dominant process within the whole matching of
messages and receive requests is to search through unexpected messages and
posted receives, respectively. We presented queue lengths and search depths to
assess the matching performance. As we have seen, an optimistic 70% of the
peak matching performance is achieved in most cases.

With an increased amount of messages and them becoming smaller at large
scale, the importance of the matching increases as well. While the choice of
algorithms is limited by MPI’s in-order delivery, source and tag wildcards, and
support for unexpected messages, not all of these features are required [16].
Although we understand that out-of-order delivery could require to restructure
applications, we do not see a strong need for wildcards. Regarding the applica-
tions, none of them uses the tag wildcard and only two apply wildcards to the
source. Alternative matching algorithms [3,4,15] steer in the right direction, but
are still limited by wildcards. We suggest to support a mechanism that allows
users to disable wildcards and select a more performant messaging mode. As
for out-of-order delivery, tags can be used to re-establish ordering on user level.
This allows to replace queue structures with hash tables, for example, enabling
better performance.

Message Rate and Throughput: Surprisingly, we observed that message rates are
rather low in all applications we have studied. Within 100µs, which we found
to be a reasonable time interval, a median message rate of 100k messages/s is
achieved with a maximum of 500k messages/s. Together with most applications’
mean message size of about 1K elements/s for point-to-point and collective oper-
ations, an effective message rate of 100M elements/s is achieved. This translates
to a throughput of about 400 MB/s for single precision and 800MB/s for double
precision data, respectively. Since messages are most likely not aggregated, this
is in the order of PCIe 2.0’s bandwidth [19]. While it can also suggests that the
message rate is limited by PCIe’s bandwidth, our trace-based methodology is not
sufficient to answer this question. Nonetheless, extremely fast interconnects are
still limited by PCIe at end-point level. Tighter coupling of networking hardware
and processors certainly steer into the right direction and will help to increase
the network injection bandwidth.

8 Conclusion

We have presented and discussed several MPI characteristics of exascale proxy
applications like time spent in certain operations, message size and rate, and
queue lengths. Taking all applications with various scale into account, an appli-
cation spends 36% of its time in MPI routines. Strong scaling applications with
more than 1,000 ranks average an MPI time of even 60%. Most of this time is
spent in collective operations, while the majority of data is transferred by point-
to-point operations. We showed that messages become smaller at larger scale,
emphasizing the importance of message matching.

We showed that search depth and queue length for both UMQ and PRQ
are similar in most cases, suggesting that matching messages are rather found
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toward the end of the queues. Across all applications again, the median queue
length amounts to about 100 elements. This translates to a matching rate of 70%
of peak performance. Again, scaling applications to a large number of processes
renders queues longer and reduces matching rates even further.

Another important aspect we have shown is the effective message rate. We
observed that message rates are rather low, so that within a time interval of
100µs only a median of 10 messages was counted, resulting in a message rate of
100k messages/s. Message sizes, on the other hand, show a median of about 512
elements/s for point-to-point and around 10 for collective operations.

While we gained valuable insights from the trace-based analysis, there are
limitations and not all questions can be answered. The MPI time, for exam-
ple, needs to be analyzed in more detail to understand what exactly is causing
overhead. We assume that load imbalances lead to significant overhead for col-
lective operations, but this needs to be verified using more detailed profiling
frameworks, which is not trivial at large scale.

We also encourage operators of large computing facilities to provide more
traces of their applications as access to these systems is often restricted. This
allows for more applications to be analyzed and understood.
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Abstract. This study compares the performance of high-order discon-
tinuous Galerkin finite elements on modern hardware. The main com-
putational kernel is the matrix-free evaluation of differential operators
by sum factorization, exemplified on the symmetric interior penalty dis-
cretization of the Laplacian as a metric for a complex application code in
fluid dynamics. State-of-the-art implementations of these kernels stress
both arithmetics and memory transfer. The implementations of SIMD
vectorization and shared-memory parallelization are detailed. Compu-
tational results are presented for dual-socket Intel Haswell CPUs at 28
cores, a 64-core Intel Knights Landing, and a 16-core IBM Power8 proces-
sor. Up to polynomial degree six, Knights Landing is approximately twice
as fast as Haswell. Power8 performs similarly to Haswell, trading a higher
frequency for narrower SIMD units. The performance comparison shows
that simple ways to express parallelism through for loops perform better
on medium and high core counts than a more elaborate task-based par-
allelization with dynamic scheduling according to dependency graphs,
despite less memory transfer in the latter algorithm.

1 Introduction

The increasing accuracy requirements when simulating partial differential equa-
tions in engineering applications can often not be satisfied by simply scaling up
existing codes. A limitation in the solver design of many codes is their heavy
use of sparse linear algebra routines, with matrices coming from some low-order
discretization on unstructured meshes. Sparse matrix algebra is heavily mem-
ory bandwidth bound and has only seen moderate performance gains from the
advances in computer architecture during the last decade. On systems with a
limited amount of high-bandwidth memory, such as the 16 GB of MCDRAM on
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the Intel Knights Landing architecture, the sheer memory consumption of sparse
matrices can further limit the applicability of legacy implementations.

In iterative linear solvers which are dominated by matrix-vector products, an
alternative to matrix-based schemes is an evaluation on the fly without actually
constructing the matrix. Stencil-based realizations such as finite differences often
impose too strong restrictions on the computational mesh. On the other hand,
the integrals underlying a matrix-vector product in a finite element discretization
are amenable to fast matrix-free implementation by sum factorization [6] for
meshes consisting of quadrilaterals or hexahedra. A generic sum factorization
finite element kernel was introduced to the deal.II finite element library [1] in
[11]. For polynomial degrees two and higher, it has been shown to be several
times faster than matrix-based schemes.

For discretization of complex transport phenomena, higher-order discontinu-
ous Galerkin (DG) methods are very attractive: As opposed to continuous finite
elements, they do not strongly impose the continuity of the solution over ele-
ment interfaces but rather link the elements by integrals involving numerical
fluxes as a combination of the solution on both sides. This flexibility allows for
taking directionality into account, such as upwinding [2], and makes the method
robust also in complex flow scenarios. Furthermore, the independent definition
of the solution on each element in DG avoids the indirect addressing inherent to
the access of degrees of freedom in continuous spectral element methods [6] in
favor of “packed” data access. Its combination of highly desirable characteristics
makes DG an essential building block in next-generation solvers and motivates
the development of efficient and tuned implementations. The present work has its
background in a high-order discontinuous Galerkin solver for simulating incom-
pressible turbulent flow described by the Navier–Stokes equations, where one of
the central algorithmic components is a solver for the pressure Poisson equation
which is implemented via the multigrid infrastructure described in [12].

For this purpose, we have extended the sum-factorization finite element
framework presented in [11] to discontinuous elements with face integrals. In
this work, we consider single node code optimizations. Two central aspects
of high-performance DG implementations on modern compute architecture are
addressed, namely efficient SIMD vectorization and shared-memory paralleliza-
tion. These two components form the basis for hybrid codes that additionally
use MPI to span over several nodes. Our shared memory parallelization is real-
ized with the Intel Threading Building Blocks (TBB) library (tightly integrated
into deal.II) with support for both parallel for loops as well as task-based
parallelism that schedules according to dependencies [13].

A major contribution of the present study is the identification of code pat-
terns that provide best performance in shared memory, given several options.
Most previous HPC implementations of DG use patterns similar to what we
identify as the loop variant in the following, which also we find to perform best
when parallelized. However, the pure performance metrics in terms of memory
transfer are better for the alternative task implementation adapted from [9] as
seen in Sect. 5.1, thus motivating our comparative analysis.
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The second major contribution is the documentation of the absolute per-
formance of our kernels on contemporary hardware, namely an Intel Xeon Phi
system based on the Knights Landing architecture, a dual-socked Intel Haswell
system, and an IBM Power8 system. Table 1 lists the key characteristics of
these systems. While the Haswell and Power8 systems are conventional (latency-
optimized) CPUs with a moderate number of cores, the KNL system is through-
put-oriented with more parallelism but slower two-wide cores derived from the
Intel Atom processor [5]. The Knights Landing architecture also comes with a
new memory technology, a high bandwidth on-package memory called Multi-
Channel DRAM (MCDRAM) in addition to the traditional DDR4 memory.
MCDRAM provides up to 5× the bandwidth of DDR4 but is of lower capacity
(16 GB), accessible through the “cache”, “flat” and “hybrid” modes, respectively.
The optimal usage of MCDRAM is an open issue, and addressed in our work by
memory-lean kernels that can fit into this fast memory.

Table 1. Specification of hardware systems used for evaluation. Memory bandwidth
on KNL according to the STREAM benchmark.

Xeon Phi KNL Haswell Power8

Cores 64 14 16

Threads 4 Threads/core 2 Threads/core 8 Threads/core

Frequency 1.3 GHz/core 2.6 GHz/core 3.8 GHz/core

L1 cache 32 kB/core 32 kB/core 64 kB/core

L2 cache 1MB/(2 cores) 256 kB/core 512 kB/core

Memory 16GB MCDRAM @ 430 GB/s L3 Cache: 2*17.5 MB L3 Cache: 8MB

384GB DDR4 @ 90 GB/s 2.3 GB/core 8 GB/core

SIMD 512 bit 256 bit 128 bit

The remainder of this text is structured as follows. Section 2 presents the fluid
dynamics application underlying the tuning. Section 3 gives an overview of the
implementation used for benchmarking. In Sect. 4, tuning steps of the code are
described. Section 5 compares the performance on three systems using relevant
test cases.

2 Application Background and Discretization

Incompressible fluid flow is governed by the Navier–Stokes equations,

∂u

∂t
+ ∇ ·

(
u ⊗ u + pI − 1

Re
(∇u + ∇uT)

)
= f ,

∇ · u = 0,

(1)
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where u denotes the (non-dimensional) fluid velocity, p is the pressure, and
f represents body forces. For large Reynolds numbers Re, the flow becomes
turbulent and develops instationary and small-scale features that needs high
resolution and efficient solvers. The physically relevant scale range in space and
time behaves as Re3. For moderate to large Reynolds numbers Re = 104 . . . 108

whose resolution requirements exceed even the power of large supercomputers,
modeling approaches such as large or detached eddy simulation complement
direct numerical simulation.

For time discretization of Eq. (1), splitting schemes are most common at
larger Reynolds numbers, such as the dual-splitting approach by Karniadakis
et al. [7], where each time step involves an explicit convection step, a pressure
Poisson equation, a projection to make the velocity field divergence-free, and an
implicit viscous step. In Fig. 1, the result of a direct numerical simulation of the
turbulent flow around a periodic hill is shown, i.e., a highly resolved computation
that covers all length scales relevant to the flow physics. The simulation results
have been obtained for a polynomial degree k = 4 on a mesh of 128 × 64 × 64
elements, producing 260 million spatial degrees of freedom that are followed over
several million time steps.

Fig. 1. Turbulent flow along a periodic hill, visualized through the Q-criterion, on a
computation on a 128 × 64 × 64 boundary-fitted mesh with fourth-degree elements
involving 260 million degrees of freedom.

Table 2 details the distribution of run time in the four phases of a time step
in this application, the fraction of time spent in integration kernels similar to the
matrix-vector product analyzed in the sequel of this work, and the active access
of memory of each step. The active memory can be compared to the global
resident memory of 332 GB as measured by accumulation over all 128 nodes
involved in the computation. The most demanding part is to solve the pressure
Poisson equation with 65 million equations. To ensure optimal complexity and
thus efficient use of computational resources, we use an iterative conjugate gradi-
ent solver preconditioned by a geometric multigrid V-cycle [12]. The smoothing
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Table 2. Run times of the sub-steps involved in one time step of the incompressible
flow solver with 260 million degrees of freedom when running on 2048 Sandy Bridge
cores. The projection step includes a stabilization according to [10], which invokes fast
local conjugate gradient solvers independently for each element.

Run time # iterations Share mat-vec Memory accessed

Explicit convective step 0.012 s — 100% 59 GB of 332 GB

Pressure Poisson equation 0.29 s 11 77% 41 GB of 332 GB

Projection step 0.045 s 20–50 100% 26 GB of 332 GB

Viscous step 0.066 s 3 73% 36 GB of 332 GB

on each level is done by the Chebyshev iteration which only needs access to the
inverse of the entries on the matrix diagonal besides the matrix-vector product.

The numbers in Table 2 highlight that code optimizations need to concen-
trate on the matrix-vector product which accounts for approximately 80% of the
total run time. Note that the implementation according to [11] uses a generic
interface to integration and improvements made for one kernel typically trans-
late to similar profits in the other variants of the integration loops and thus the
whole complex application code. Besides the times for a time step listed in the
table, the code also consists an initial setup phase and small data analysis parts
take less than 1% of overall run time.

A discretized partial differential operator corresponds to a matrix-vector
product in our model. We assume a triangulation of the computational domain
into elements K ∈ Th. The set of interior faces is denoted by F i

h with p− and p+

the pressure solution on the respective side of the face, and the set of boundary
faces by Fb

h . The bilinear forms (a, b)K =
∫

K
a � b dx and 〈a, b〉F =

∫
F

a � b dx
denote the inner product of the two quantities and subsequent integration over
the element K or the face F , respectively. Using this notation, the discretization
of the pressure Poisson equation finds ph such that the equation

∑
K∈Th

(∇qh,∇ph)K +
∑

F∈F i
h

[
〈q−

h − q+h , σ(p−
h − p+h )〉F

−
〈

(q−
h − q+h )n−,

∇p−
h + ∇p+h

2

〉
F

−
〈∇q−

h + ∇q+h
2

,n−(p−
h − p+h )

〉
F

]

+
∑

F∈Fb
h

〈qh, 2σph〉F − 〈qhn ,∇ph〉F − 〈∇qh,nph〉F =
∑

K∈Th

(
qh,− γ0

Δt
∇ · û

)
K

(2)
holds for all test functions qh. In this equation, γ0

Δt∇ · û is the forcing given by
the divergence of some intermediate-step velocity û that is usually used in a
slightly modified form with integration by parts including central fluxes for the
velocity for stability reasons according to [10]. The interior penalty parameter
is denoted by σ and penalizes jumps of the solution over faces, see e.g. [2].
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3 Implementation

The operator evaluation is realized by fast integration, using an extension of the
framework presented in [11] to discontinuous Galerkin. For the linear operator
L implementing the left hand side of Eq. (2), an input vector P is interpreted
by its solution function ph and tested by all basis functions qh, giving rise to an
output vector Q ,

Q = LP . (3)

The integrals are performed according to Eq. (2) on both cells K and faces
F . For the cell integrals, the degrees of freedom related to the cell from the
global vector are extracted, the local operator is evaluated by integration and
tested by all local basis functions and, finally, the local integrals are written into
the global result vector. In the integrals, the gradient operators ∇ with respect
to the spatial variable x in Eq. (2) are replaced by gradients in the reference
coordinate ξ ∈ (0, 1)3 and multiplied by the Jacobian of the transformation in
the usual finite element fashion [11]. The unit-cell operation is the same on all
elements and implemented by sum factorization kernels for hexahedra [6,8]. The
Jacobian transformation on Cartesian meshes is the same throughout an element
(and possibly over many different elements), whereas a separate d×d matrix for
each quadrature point is necessary for curved meshes. Our realization makes use
of these optimizations if the mesh allows for that, significantly reducing memory
transfer in the Cartesian mesh case.

The face integrals involve interpolated solutions from the two neighboring
cells, tested by basis functions and integrated by a quadrature formula on the
faces. In order to avoid double computations when evaluating the integrals to all
faces of a cell, we use a separate loop indexing for the faces. Integrals on inner
faces combine the information from both adjacent cells in a single step.

The evaluation complexity per degree of freedom with sum factorization is
O(k + 1) in the polynomial degree k for cell integrals [11] and O(1) for face
integrals. The proportionality constants are such that the number of arithmetic
operations for on-the-fly integration is lower than with the final matrix “sten-
cils” starting at polynomial degrees three to four for continuous elements [11]
and at degree two to three of discontinuous ansatz spaces. Since a matrix-based
scheme is usually heavily memory-bandwidth bound, matrix-free evaluation is
the fastest available evaluation option already for quadratic shape functions. The
specific characteristics of the method allow for an almost constant run time per
degree of freedom for a wide range of polynomial degrees 2 ≤ k ≤ 8 [11,12],
making the polynomial degree essentially a parameter that can be adapted to
the complexity of the geometry to be meshed: A more complex geometry will use
more elements of somewhat lower polynomial degree. On more regular domains,
the higher solution quality of high-order shape functions can be leveraged. Our
kernels are integrated into the deal.II finite element library [1], which provides
the infrastructure of the mesh, definition of degrees of freedom and paralleliza-
tion for our application code. This allows for implementing weak forms such as
the Laplacian (2) in compact form with only up to a few dozens of lines of code.



Fast Matrix-Free Discontinuous Galerkin Kernels 243

Despite their generality, the matrix-free kernels outperform the benchmark code
from the HPGMG project1 by 1.5 to 2.5 times on continuous elements [12], which
is due to the careful selection of stored data structures vs. on-the-fly computa-
tion. The arithmetic intensities of the resulting algorithms are between 1 and 6
FLOP/byte, depending on the geometry, i.e., close to the ridge of memory-bound
and computation-bound algorithms [12]. This characteristic makes it necessary
to consider both memory efficiency as well as optimizations addressing arith-
metics and instruction scheduling.

Since several faces compute integral contributions to the same cell in this
layout, the face computations cannot be simply split into subranges within a
parallel for loop over the faces, and they cannot be arbitrarily mixed with cell
integrals in order to avoid race conditions when accessing the global result vector
Q in Eq. (3). In the following, we discuss two shared-memory parallelizations
that avoid these race conditions in different ways. We focus on implementation
with the Intel TBB library which is the main thread parallelism paradigm in
deal.II. An alternative OpenMP-based implementation of our loops has shown
very similar performance. We do not consider atomic operations or locks in this
work because they have been found to be less efficient on preliminary tests.
For the former, no vectorized versions are implemented in CPU hardware yet,
reducing efficiency.

3.1 Parallel Evaluation Through Tasks

The task-based parallel scheme adapts the partition-partition scheme described
in [9] for finite element operator application. In the discontinuous Galerkin set-
ting, each task includes operations on a range of cells, a range of inner faces,
and a range of boundary faces. The latter two ranges are associated with the
cell range in order to leverage solution data already in caches from the cell inte-
grals. A race condition can appear if one task operates on an inner face accessing
cells K1 and K2 and another task simultaneously operates on another inner face
involving either K1 or K2 or a cell integral on K1/2. We note that at least one
of the two cells—the one the face is associated with—will be part of the same
task and not conflict. However, this does not necessarily hold true for the other
cell.

The idea of the partitioning strategy is to compute the connectivity between
tasks based on the access pattern of face integrals. The connectivity graph is
then split in such a way that layer i is only connected to layers i − 1 and i + 1.
With this layout, the cells in all even partitions can be parallelized without race
conditions. Afterwards, all odd partitions can be run in parallel. Starting with
a group of cells for the first partition, the size of the partitions can increase and
the total number of partitions might be rather small. In order to create enough
parallelism, we therefore create another layer of partitions inside each partition.
Each partition on the second level is a multiple of a certain block size in order
to make sure that vectorization is possible. The idea is related to graph coloring

1 https://hpgmg.org.

https://hpgmg.org
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but adapted such that only local synchronization points between the adjacent
tasks are necessary, as opposed to global synchronization when running parallel
loops on one color at a time, see [9].

The algorithm can be summarized as follows

– Preprocessing: Find the connectivity structure where each cell is associated
with a list of cells that share a face with it.

– Assign each block to one partition:
• Assign the first cells (up to a user-specified grain size) to partition zero.
• Assign all cells that are connected with cells in partition zero, but not

already assigned a partition to partition one. If the number of cells is
not a multiple of the grain size, add neighbors of the cells in partition
one. This fill-up avoids empty lanes when vectorizing over several cells as
described in Sect. 3.3 below.

• Repeat this procedure until all cells are assigned to a partition.
– For each partition, create a second layer of partitions analogously.
– Create an integer cell indexing according to the double partitioning.

Note that the algorithm is analogous to one described in [9] with the only dif-
ference that the connectivity graph uses the dependency of the face integrals
instead of the degrees of freedom shared at the element boundary in continuous
finite elements.

3.2 Parallel Evaluation Through for loops

An alternative approach to avoid simultaneous writes into the same vector posi-
tions is to introduce temporary data structures that hold information for each
face integral separately. A common approach in discontinuous Galerkin methods
[2,3] is to interpolate the function uh to all the faces. In the context of integra-
tion where the differential operator is implemented by quadrature and tensor
products are involved, the most efficient approach is to perform an interpolation
step in face-normal direction and store this data in a global auxiliary variable.
This gives the following algorithm for the SIP discretization (2):

1. Loop over all cells K ∈ Th:
– Read values from input vector.
– Interpolate elemental input values to all 2d faces for both values and the

reference-cell normal derivative. This gives 2(k + 1)d−1 data values per
face that are stored in a global auxiliary vector.

– Perform cell integration by sum factorization and write result into desti-
nation vector.

2. Loop over all inner faces F ∈ F i
h:

– Load the values and normal derivatives from the global auxiliary vector
from the element storage on both elements K− and K+ and local face
numbers f− and f+ involved in the face.

– Sum factorization provides values and reference gradients in face quadra-
ture points.
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– On each quadrature point, implement all face terms involved in (2).
– Sum over quadrature points and multiplication by test function v±

h and
unit cell gradient ∇v±

h with sum factorization.
– Write the resulting contribution to value and normal derivative to be

tested back into the global auxiliary vector, indexed by the element num-
bers K− and K+ and local face numbers f− and f+ involved in the
face.

3. Loop over all boundary faces F ∈ Fb
h : Similar steps to inner faces.

4. Loop over all cells K ∈ Th:
– Read global auxiliary vector for values and normal derivatives on each

face.
– Finalize integration step by expanding the test functions into the

elements.
– Add resulting contribution into destination vector.

This algorithm has the advantage that all quantities accessed inside the loops
are independent from one another. This includes the face loops where different
faces access different sections in the auxiliary vector also when they refer to the
same element. Thus, a simple parallel for loop can be used. The price to pay
for this alternative is the global auxiliary vector which needs to be transferred
from/to main memory five times, twice for the initial write operation (write,
including read-for-ownership), twice during the face loops (read and write), and
once for the final interpolation (read). This increased memory access possibly
reduces performance in memory-constrained situations.

3.3 Vectorization

An essential ingredient to high performance of the matrix-free operator evalu-
ation is to use SIMD instructions. Automatic vectorization or OpenMP-SIMD
annotations apply vectorization to the innermost loops, which is not the optimal
strategy for the complex data flow in local integration with sum factorization
that runs through the local vectors in different orders when passing through
one direction at a time. Also, the subsequent operations on quadrature points
use yet another data access pattern. Thus, full vectorization would involve a
series of cross-lane permutations on each element. In addition, some lanes might
remain empty or non-vectorized peel and remainder loops arise in case the num-
ber of degrees of freedom per direction, k + 1, is not a multiple of the SIMD
width, reducing the effective throughput. Finally, we note that vectorization in
the sum factorization kernel alone is not enough, as the operation on quadrature
points can account for 10 to 50% of the instructions on non-vectorized code [11],
with higher values for more complex operators like the convective term in the
incompressible Navier–Stokes equations.

Instead, our work follows the approach proposed in [11], evaluating the con-
tributions from several cells or faces within a SIMD instruction. This is profitable
since the operation on each element is the same, albeit with different data from
the vector and different geometries and coefficients. This approach only involves
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a single cross-lane or gather operation when the global vector data is read and
written in the task-based algorithm according to Sect. 3.1. The data in solution
vectors is stored contiguously for each element and needs to be “transposed” in
this step for putting the same nodal point on all elements involved in the SIMD
array next to each other. This transposition transforms an array of structures
into a structure-of-array data layout. For the loop-based approach from Sect. 3.2,
there are two additional transpose operations involved, one when cells access the
auxiliary vector in steps 1 and 4 and one when faces access the auxiliary vec-
tor in steps 2 and 3, the latter accessing different components as compared to
the cell. Note that some transpositions could be avoided by storing the solution
vector in an array-of-structure-of-array data layout. However, the access into at
least half of the faces would be considerably more complicated, involving gather
and scatter operations where each index points into different cache lines, an
operation which typically serializes the data access on contemporary hardware
implementations and is less efficient than the vectorized access proposed here.

On Haswell, SIMD instructions process four cells/faces (double precision) or
eight cells/faces (single precision) at once. On Knights Landing, the numbers are
eight for double precision and 16 for single precision, whereas the numbers are
two and four on Power8. A disadvantage of the proposed vectorization scheme
is that the size of the scratch data fields holding temporary results from sum
factorization increases with increasing vector width. The size of the scratch data
used for processing a cell integral scales as 6(k+1)d, which is multiplied by 32 or
64 bytes in case of Haswell and Knights Landing, respectively. Thus, the scratch
data spills L1 caches of Haswell for k = 5 and for k = 4 on KNL, relying on
fast next-level caches for higher degrees. However, the results below show that
memory hierarchies are sufficiently capable on both systems, with the exception
of KNL on high degrees k ≥ 9 when the L2 cache capacity is exhausted.

4 Performance Tuning

The performance tuning is driven by identifying the most significant bottlenecks
in our code and making appropriate changes that reduce or eliminate the effect of
these bottlenecks. Node level tuning is performed using the Intel VTune Ampli-
fier Tool [4]. We conduct our analysis and optimization on a dual-socket Intel
Xeon E5-2697 v3 according to Table 1 using the double-precision matrix-vector
product. To reduce the amount of collected information the hot spot analysis is
performed using one thread. The vector load intrinsic operation _mm256_loadu_pd

which is called several times from the function vectorized_load_and_transpose

is the most time-consuming operation as can be seen from the top-down view of
the function call stack for the case of the Cartesian grid configuration shown in
Fig. 2, which appears inside the aforementioned transposition step. The loop in
the function vectorized_load_and_transpose_base performs vector load opera-
tions based on offset values inside a loop. We could improve this code by moving
the redundant calculation of the offset indices outside the loop by introducing
double pointers that can be held in registers.
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Furthemore the same function vectorized_load_and_transpose appears in
the code vectorization analysis performed by Intel Advisor. The analy-
sis shows an inefficient use of vector registers due to the complex struc-
tures of the array indices. Keeping this in mind, we modify the function
vectorized_load_and_transpose correspondingly. To help the compiler perform-
ing vectorization of the loop we additionally inserted an OMP SIMD pragma.

Fig. 2. Top-down view of the function call stack for the Cartesian grid case.

Going to the case of a curvilinear grid configuration, Fig. 3 identifies the
same function vectorized_load_and_transpose among the hot spots. However,
the most time consuming function in this case is the overloaded += operation
called from the function get_gradient. The source code has multiple layers of
abstractions for performing SIMD data additions. However, this function repre-
senting the actual arithmetic work maps to optimal assembler code, including
fused multiply-add instruction identified by the compiler.

Fig. 3. Top-down view of the function call stack for curvilinear grid case.

5 Performance Comparison

All code was compiled with the gcc compiler, version 6.2, at optimization level
-O3 -march=native. The performance with gcc is within 2% of the perfor-
mance with the Intel compiler (v. 16.0 and 17.0) when compiled at -O3 -xhost
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on Haswell. The similar performance is due to the explicit vectorization and it
depends on the particular instruction scheduling and loop unrolling which of
these two compilers performs slightly better. On KNL, the code generated by
gcc provides around 1.5 times higher throughput because the Intel compiler for
KNL is not able to merge vectorized multiplications and additions arising in the
high-level C++ implementation in deal.II into fused multiply-add instructions
for m512d data types. For the Power8 system the code is compiled using the
Advanced Toolchain for PowerLinux.9.0 with the IBM’s Mathematical Acceler-
ation Subsystem (MASS) libraries. It exploits the advanced capabilities for the
POWER vector instruction set from the Vector Multimedia eXtension (VMX).
Scalability tests on Power8 are performed by varying the number of hardware
threads in each core via the SMT option.

All times are reported as the minimal run time of the matrix-vector prod-
uct out of ten experiments. Since Intel TBB dynamically distributes the tasks
to threads without direct pinning [13], we use the “affinity partitioner” in the
for loop variant to ensure that repeated loops run on the same threads. This
is beneficial for the non-uniform memory access on the Haswell system where a
first-touch page assignment of the data stored on cells such as Jacobian trans-
formations for the loop-based algorithm from Sect. 3.2 is used. No affinity can
be used for the task-based scheme. For KNL, MCDRAM memory is config-
ured in “flat” mode where it is mapped to physical address space and exposed
as a NUMA node (allocatable memory) in all experiments except the detailed
analysis in Sect. 5.4.

5.1 Comparison of Task and Loop Parallelization

Figure 4 compares the parallel scaling of a code with Q4 elements and 32.8 million
degrees of freedom for the two algorithmic variants presented in Sect. 3 on the
Haswell, Knights Landing, and Power8 architectures.

On a single Haswell core, the task-based scheme is faster than the loop-based
scheme that splits computations into several parts, using 0.72 s rather than 1.17 s.
This is due to the lower memory transfer and better cache utilization. An analy-
sis of the matrix-vector product with the likwid tool2 on a single core reports
0.63GB of read transfer and 0.32GB of write transfer to main memory for the
layout from Sect. 3.1 (one solution vector: 0.26GB). Conversely, the for loop
from Sect. 3.2 involves 2.76GB of reads and 1.82GB of writes (size of auxiliary
vector: 0.63GB).

Despite the advantage in terms of memory transfer, the parallel task imple-
mentation scales considerably worse than the for loops. Therefore, the latter
reaches 0.068 s on 28 Haswell cores, faster than the task-based scheme at 0.092 s.
Power8 is slower with a single thread than Haswell due to the narrower SIMD
width, but reaches similar performance to Haswell at higher thread counts and in
particular with SMT thanks to more parallelism inside the cores and presumably
a better memory controller.

2 https://github.com/RRZE-HPC/likwid, retrieved on September 18, 2016.

https://github.com/RRZE-HPC/likwid
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Fig. 4. Parallel scaling study of various task parallelization schemes on Haswell and
Knights Landing using a problem with Q4 elements on a 643 Cartesian mesh, using
32.7 million degrees of freedom. Dashed lines indicate the step to logical cores with
simultaneous multithreading (SMT).

On a single core, the Knights Landing system is slowest with a wall time of
around 1.7 s according to Fig. 4. Given that a KNL core is weak with only half
the clock frequency of Haswell and restricted capabilities, a slowdown of only
about 30% is remarkable particularly for the loop kernel and shows the effect
of wider vectorization. The loop-based algorithm shows excellent strong scaling
when increasing the core count to 64, reaching a parallel speedup of more than
50 (and 55 when going to 128 cores). For comparison, the parallel speedup is 17
on the Haswell system.

The task-based parallelization from Sect. 3.1 shows worse behavior on both
Intel systems, in particular the KNL system with more cores. Since the code
analysis shows that CPUs are mostly busy in that case, we suspect that the
dynamic scheduling of tasks with complex dependencies results in less optimal
usage of the memory hierarchy such as prefetchers and caches.

5.2 Analysis of Vectorization

In order to leverage the higher performance of single-precision arithmetics, our
solvers use mixed precision: The outer residual computations and matrix-vector
products according to Eq. (2) are done with double precision for algorithmic sta-
bility, whereas it is enough to use single precision for preconditioning the linear
systems, which applies to the full multigrid V-cycle in the Poisson solver. Thus,
the throughput of operator evaluation is recorded for both single precision and
double precision. Figure 5 displays the number of degrees of freedom processed
per second on the Haswell and Knights Landing architectures, respectively. For
large problem sizes, evaluation in single precision is between 1.6 and 1.9 times
as fast. The gap to the ideal factor 2 is mainly because the global loops are half
as long when the number of element batches due to SIMD halves. This can be
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seen from the fact that the gap still widens as the problem size increases and
more parallelism becomes available.

When turning to the absolute throughput numbers, our results show that
the dual-socket Haswell system can evaluate the DG operator (2) for up to
480 million degrees of freedom per second in double precision, whereas Knights
landing reaches 1.1 billion degrees of freedom per second. This speedup of a
factor of 2.3 at a somewhat lower power consumption shows the capabilities of
the KNL system for throughput-oriented tasks such as the massively parallel
integration tasks in DG. On the other hand, initialization routines including
many indirections and a mix of integer and floating point code run half as fast
on KNL as on Haswell when both systems are fully populated.
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Fig. 5. Performance of matrix-vector product on discontinuous Q3 elements. Loop
parallelization from Sect. 3.2.

Figure 6 evaluates the effectiveness of the explicit vectorization over elements
as described in Sect. 3.3 by comparison with auto-vectorization explored by the
compiler. In order to increase the possibilities for automatic vectorization, the
pointers inside the sum-factorization kernels are annotated with the C/C++
restrict keyword and OMP SIMD pragmas to exclude pointer aliasing. In

all configurations, the explicit vectorization holds a clear performance advan-
tage with up to a factor of 4.3. For Knights Landing with wider vector units,
the gain with explicit vectorization is larger than on Haswell. Likewise, single
precision shows larger gains than double precision. We note that the explicit
vectorization path performs essentially all arithmetic operations in packed form.
Measurements of the Haswell code with the likwid tool shows that more than
99% of floating point instructions in the relevant sections are on 256-bit packed
data, whereas only up to 15% of arithmetic operations are vectorized by auto-
vectorization according to the likwid analysis, both measured for Q3 elements.
Despite a potential fourfold improvement for AVX vectorization on Haswell,
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Fig. 6. Effectiveness of vectorization measured as the ratio in throughput of auto-
vectorized code and the explicit vectorization over several elements with intrinsics
according to Sect. 3.3 for Q3 elements. Numbers larger than 1 point to an advantage
of the explicit vectorization.

the actual speedup is between 20% and 80% because of memory bottlenecks in
the wider code. This is explained by a substantially higher instruction through-
put for the non-vectorized code at 2.38 instructions per clock cycle versus 1.47
instructions per cycle for the explicitly vectorized code.

The comparison of vectorization efficiency of Haswell and KNL also allows for
projections about the run time on future systems: As soon as Intel Xeon CPUs
move to AVX-512 instructions with the Skylake Server architecture, we expect
them to surpass KNL in efficiency on computation bound kernels on Cartesian
meshes with twice the theoretical throughput of Haswell. However, we expect
KNL to remain faster due to the higher memory throughput of MCDRAM on
the curved mesh which is memory bound.

5.3 Performance Metrics of Loop Kernel

Table 3 details the run time of the individual components in the loop paral-
lelization according to Sect. 3.2 together with an analysis of memory transfer
and arithmetic operations measured with the likwid tool. Steps 2 + 3 as well as
the part that computes the cell integral in step 1 involve more arithmetics as
compared to the other operations. For the cell integration, Haswell reaches an
arithmetic throughput of almost 400 GFLOP/s when counting FMA instruc-
tions as two operations.3 About 55% of the arithmetic instructions are FMAs
and the others separate additions and multiplications. This relatively low pro-
portion of FMAs is due to our implementation that targets minimal execution
3 As a complement to the numbers given by likwid that count FMAs as one FLOP, we

recorded FMAs and additions and multiplication separately with the Intel software
development emulator.
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Table 3. Run time analysis of loop-parallel code in terms of memory transfer and
GFLOP/s as measured with the likwid tool on 32.7 million degrees of freedom with
Q4 elements.

Haswell 56 threads KNL 128 threads

time [s] GB/s GFLOP/s time [s] GB/s GFLOP/s

Step 1, all 0.026 80 230 0.013 160 460

Step 1, cell part 0.012 67 386 0.0092 87 510

Steps 2 + 3 0.024 55 210 0.012 110 420

Step 4 0.020 60 72 0.0063 190 220

time rather than maximal FLOP rates by using the so-called even-odd decompo-
sition [8]. With these numbers, the cell integration part from step 1 reaches more
than 60% of arithmetic peak on Haswell. In the memory-dominated parts, the
complicated access patterns and possible issues in the memory pipeline prevent
the implementation to reach the full memory performance which is measured
as 95 GB/s for the STREAM add kernel on the Haswell system and 430 GB/s
on KNL. Due to different memory intensities in these four steps, the complete
matrix-vector product is relatively far away from the performance limits of the
architectures, reaching 67 GB/s and 182 GFLOP/s on Haswell and 150 GB/s and
406 GFLOP/s on KNL. KNL is generally a bit farther from theoretical perfor-
mance limits, showing the impact of the weaker core with instruction-scheduling
bottlenecks.

As a metric for the performance in different application scenarios, Fig. 7
shows the throughput of the matrix-vector product as a function of the polyno-
mial degree. Results have been generated for problem sizes between 16 and 134
million degrees of freedom on the Cartesian mesh and 4.5 to 25 million degrees of
freedom on the curved mesh, both chosen such that the local kernels fit into the
16GB MCDRAM memory of KNL that is operated in flat mode. As the poly-
nomial degree increases, there are jumps in the number of elements which have
a slight effect on the throughput, namely between k = 3 and k = 4 and between
k = 7 and k = 8, respectively. The results show more than a two-fold advan-
tage of KNL over Haswell on moderate polynomial degrees k ≤ 6. Moreover,
the advantage is more pronounced on the curved mesh case which has a lower
arithmetic intensity (2 FLOP/byte versus 5 FLOP/byte). This result highlights
the importance of fast MCDRAM memory as compared to the Haswell system,
see also the results in Table 4 below.

5.4 Memory Mode of KNL

For the KNL system, the fast MCDRAM is an essentially ingredient to reach high
performance, in particular due to the high dependence on memory throughput
documented by the kernel analysis in Sect. 5.3. In Table 4 the performance of “flat”
mode is compared to “cache” mode. For the “flat” mode, we use numactl to ensure
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Fig. 7. Performance of double-precision matrix-vector product on discontinuous ele-
ments as a function of the polynomial degree.

that all memory allocations go to the MCDRAM or the DDR4 RAM, respec-
tively. In flat mode, the code runs two to three times faster from MCDRAM than
from DDR4 memory. When comparing the results of the flat mode with the cache
mode, we see that the cache mode reaches similar or even slightly better perfor-
mance than the flat mode for algorithms which repeatedly access the same mem-
ory. According to the numbers shown in Table 2, the fluid dynamics application
is an ideal target for this mode: The application code does not need to specify at
compile time where the memory should be allocated (like when using hbwmalloc
through memkind [5] going to MCDRAM): In case the whole application fits into
MCDRAM, full performance is reached in the steady state of many time steps.
In case the overall program exceeds the MCDRAM cache, all steps except for the
explicit convection step (with only one sweep through data) involve iterations with
repeated access to at most one tenth of global resident memory.

Table 4. Comparison of memory modes on KNL, measured as degrees of freedom
processed per second (DoFs/s).

Cache mode Flat mode

1st run Avg 100 runs MCDRAM DDR4

Cartesian mesh Q2 0.46 · 109 0.89 · 109 0.89 · 109 0.53 · 109

Curved mesh Q2 0.25 · 109 0.68 · 109 0.66 · 109 0.20 · 109

Cartesian mesh Q4 0.44 · 109 1.22 · 109 1.08 · 109 0.59 · 109

Curved mesh Q4 0.24 · 109 0.82 · 109 0.75 · 109 0.24 · 109

Cartesian mesh Q8 0.41 · 109 1.16 · 109 0.92 · 109 0.53 · 109

Curved mesh Q8 0.30 · 109 0.75 · 109 0.68 · 109 0.22 · 109



254 M. Kronbichler et al.

6 Conclusions and Outlook

In this paper, we have discussed the portability of a matrix-free discontinuous
Galerkin code to the new KNL and Power8 architectures. We have analyzed
and optimized node-level performance by vectorization and thread parallelism
with two different algorithms. The first algorithm is based on tasks scheduled
according to nearest-neighbor dependencies, while the second is based on sim-
ple for loops. While the latter parallelization scheme is simpler and allows for
more regular data access, it comes with the overhead of additional transfer from
RAM memory for temporary face data buffers. Due to the memory overhead
this option performs generally worse for low order elements where the amount of
face data as compared to cell data is larger and the arithmetic intensity is lower.
Nonetheless, it performs considerably better when parallelized on the many-core
KNL, highlighting that for loops with regular scheduling is beneficial.

Our code implements an explicit vectorization of the integrals which improves
runtime significantly as compared to automatic vectorization. This effect is more
pronounced for wider vector units, rendering this feature essential for new Intel
architectures with 512-bit vector units. Explicit vectorization makes the double-
precision kernel run around 2.5 times faster and the single-precision kernel more
than four times faster on KNL. When going from Haswell to KNL, we obtain a
speedup of a factor 1.5 to 2.5 for our matrix-vector products. Despite different
hardware architectures, the IBM Power8 and the Intel Haswell system showed
very similar performance, with a slight advantage of the former on memory-heavy
operations and a slight advantage of the latter on more arithmetic-heavy parts.

In the future, we plan to combine shared-memory performance obtained on
single KNL nodes with MPI in a hybrid parallelization scheme to obtain results
in computational engineering with unprecedented accuracy on emerging KNL
clusters.
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Abstract. The Parallel Research Kernels (PRK) are a tool to study
parallel architectures and runtime systems from an application perspec-
tive. They provide paper and pencil specifications and reference imple-
mentations of elementary operations covering a broad range of parallel
application patterns. Most of the current PRK are trivially statically
load-balanced. In a prior study we described a novel PRK that requires
dynamic load balancing, and demonstrated its effectiveness to assess
automatic dynamic load balancing capabilities of runtimes. While useful,
it did not fully represent the problem of greatest interest to researchers
of extreme scale computing systems, namely the occurrence of local-
ized, discrete, transient disturbances (system noise). For that purpose we
introduce a new PRK, inspired by Adaptive Mesh Refinement (AMR)
applications, which provides a proxy for the most detrimental property
of noise, namely abrupt and discrete change of local system load. We
give a detailed specification of the new PRK, highlighting the challenges
and corresponding design choices that make it compact, arbitrarily scal-
able and self-verifying. We also present an implementation of the AMR
PRK in MPI, with application-specific load balancing, as well as one in
Adaptive MPI that leverages the MPI version, but adds runtime orches-
trated dynamic load balancing, along with a set of performance results.
These show that for applications that can be load balanced statically,
but experience occasional local changes in computational load, automatic
dynamic load balancing typically does not offer an advantage.

1 Introduction

The Parallel Research Kernels (PRK) [13,29] are a suite of kernels to study the
efficiency of distributed and parallel computer systems, including all software
and hardware components that make up the system. They cover a wide range
of common parallel application patterns, especially from the area of High Per-
formance Computing (HPC). The original kernels were all comprised of regular
operations whose work and data could easily be distributed evenly statically
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance 2017, LNCS 10266, pp. 256–274, 2017.
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among the computational resources. This approach was chosen to avoid measur-
ing load imbalance, which carries no useful information for the system designer
or analyst. However, load imbalance is a major factor in the execution of appli-
cations, and its importance is growing as the sizes of computer systems keep
growing and as applications become more dynamic algorithmically.

We define load balancing as the process of ensuring that computational
resources reach synchronization points at the same time, and hence are never
idle. While a perfectly balanced load, i.e. full resource utilization, need not lead
to optimal performance, a bad load balance is often the hallmark of poor per-
formance, and application and runtime designers go to great lengths to avoid it.

In our prior work [13] we introduced a new kernel, the Particle-in-Cell (PIC)
PRK, specifically designed to measure objectively, precisely, and in a controlled
fashion the efficiency and effectiveness of techniques and technologies to balance
load dynamically. While a useful tool, it did not fully capture the most trou-
blesome source of load imbalance on large scale systems, namely localized and
transient discrete system disturbances, which we term “noise.”

In this paper we describe another kernel that better fills this gap. It is based
on adaptive mesh refinement (AMR) workloads, which compute a certain quan-
tity across an entire spatial domain, and create local refinements where extra
resolution is needed. As in the case of PIC, the source of load imbalance in the
AMR PRK is deterministic, which means it can be exercised at any system and
problem scale, an important practical consideration. Unlike PIC’s, AMR’s load
imbalances do not grow continually, but occur at discrete points in time, and
have a duration and severity that can be specified precisely.

We provide a serial and multiple parallel implementations in open source
(github.com/ParRes/Kernels/Kernels/tree/master/{SERIAL, MPI1, AMPI}/
AMR), and discuss our experiences with them to demonstrate utility of AMR
as a tool. However, the true contribution of the AMR PRK is not the quality of
its implementations, but its specification.

The remainder of this paper is organized as follows. Section 2 describes the
context of this work and its specific contribution. Section 3 contains the paper-
and-pencil specification of the kernel. The multiple reference implementations
are described in Sect. 4, and experimental results with these implementations
are discussed in Sect. 5. Conclusions and plans for future work are in the last
section.

2 Related Work

Many studies have been published about dynamic load balancing techniques. We
are especially interested in general solutions, applicable in various contexts, that
require little effort by the application programmer. Usually, such solutions come
in the form of frameworks covering a certain application domain (e.g. Zoltan
[10], PREMA [1], JOVE [26], ARMaDA [8], Uintah [21], Scotio [11]), or even as
parts of general-purpose runtimes (e.g. Charm++ [19], Chapel [7], Grappa [22],
HPX [27], X10 [25], Legion [2]).
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However, not much work has been done on methodologies for assessing and
comparing the merits of such solutions. A notable exception is the UTS bench-
mark [23]. It represents workloads whose source of load imbalances is strictly
the emergence of local new work during program execution. There is no global
field data on which UTS operates, so the load balancing consists mostly of (re-)
distribution of work, not data. In addition, new work occurs in (pseudo-)random
locations on the system, which means that the past can not be used as a predictor
for new work. That is a particularly harsh test for load balancing technologies,
though these are greatly helped by the fact that only meta-data data of negligible
size needs to be transferred along with work.

In contrast, HPC usually involves sizeable arrays, and changing data depen-
dencies are important sources of load imbalance, and affect the efficiency with
which load balancers can operate. But most HPC applications are of an iterative
nature, and depending on the speed with which data dependencies change or the
frequency with which new work shows up, the past can be used as a predictor
for the future, which can be exploited by load balancers.

We list two more tools to assess dynamic load balancing technologies, namely
workloads in the SPLASH-2 [33] and PARSEC [6] suite of programs. While
useful for determining the effect of dynamic load balancing, they do not come
with paper and pencil specifications, and for each workload they provide only
one implementation for distributed memory systems–the focus of our interest–so
that it is not possibe to compare different approaches.

The main reason for the dearth of test cases of sources of load imbalance
is that such workloads tend to be complicated, and hence not easily ported to
new environments and runtimes. They also tend to be quite domain specific,
limiting their utility to the scientific community at large. The Particle-In-Cell
(PIC) Parallel Research Kernel [13] was developed especially with the goals of
simplicity, compactness, and portability in mind, as well as with the ability to
adjust the type and severity of load skewing events.

It proved an insightful tool to study dynamic load balancing capabilities,
especially in the context of runtime-orchestrated load balancing (i.e. without
explicit programmer intervention). We used PIC to compare such capabilities
when sources of load imbalances are present continually. While a research ver-
sion of PIC also allowed the discrete injection and removal of work (i.e. particles),
it did not have very precise control over actual load imbalance, because the injec-
tion/removal would be superimposed on an already fluctuating load signature.
The new AMR PRK allows such precise control that it is possible to deter-
mine the actual load (im)balance analytically, see Sect. 5.1. In addition, it only
features discrete changes in the load signature, so complements the continuous
evolution of the load signature of PIC.

3 The Adaptive Mesh Refinement PRK

3.1 Algorithmic Structure of Adaptive Mesh Refinement Codes

Adaptive Mesh Refinement [5] is a technique used by computational science
applications to focus computational work in numerical simulations that span a
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range of disparate length and time scales. It dynamically increases local grid
resolution to resolve important fine scale features in the solution, achieving a
more efficient computation than one in which a globally-uniform fine grid is
applied. The approach has been used in numerous scientific computing applica-
tions, including Monte-Carlo simulations [12], geophysics [15], flame physics [4],
airborne dispersion [30], helicopter wake resolution [32], and many others.

A number of successful Cartesian AMR meshing infrastructures are in use to
support the complex mesh generation, adaptation, parallelization, and to vari-
ous degrees, solvers and interfaces to solver packages. These include Chombo [9]
and BoxLib [3] from Lawrence Berkeley National Laboratory, GrACE [24]
from Rutgers University, PARAMESH [20] from NASA Goddard, and SAM-
RAI [14,16,31] from Lawrence Livermore National Laboratory. These infrastruc-
tures have played a key role in advancing adaptive meshing capabilities to new
applications in computational physics. By isolating much of the meshing and
parallel computing complexity in the infrastructure, they provide the scientist
with a way to introduce adaptive meshing into their application in much less time
than would be required to develop this capability in their own standalone codes.

In Cartesian AMR techniques new grid points are introduced as entire blocks
of points or Refinement Grids (RGs) with the same topology as the original mesh
or Background Grid (BG), but with a finer spacing. Some of the advantages of
this approach are that memory access is very regular, locality is good, and logic
is simple (no time spent exploring local mesh topology). AMR methods generally
consist of the following phases.

1. Create and initialize a background grid (BG).
2. Advance solution on BG.
3. Monitor local BG solution error and create RGs where needed.
4. Initialize RG solution, interpolating data from BG.
5. Advance solutions on BG and RG(s).
6. Depending on the problem, inject computed solution on RG back onto BG.
7. Monitor solution and remove RG when error has diminished sufficiently.

Steps 2–7 are carried out in an iterative fashion.
The parallelization of general AMR codes poses numerous challenges, see the

references cited above. We focus specifically on the load imbalances triggered by
the RGs, and minimize work not strictly related to reducing the impact of those
imbalances. Note that we deliberately do not create a full-fledged, numerically
accurate AMR application. It would be too involved (hard to implement/port),
too domain specific to be useful for scientists in different subject areas, and
not exactly verifiable, and thus would not satify our PRK requirements [13,29].
Consequently, we simplify steps 3 and 7, and completely skip step 6.

3.2 Specification of the Adaptive Mesh Refinement PRK

We define a BG of a certain size, and start/stop work on smaller RGs with a
specified frequency. An RG does not necessarily have fewer points than the BG,
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as it can have a much finer mesh spacing. We apply the same stencil operation, S,
implementing the discrete divergence, to all interior grid points (see specification
of the Stencil PRK [28]).

Star-shaped
stencil, R=3

Compact
stencil, R=2

Star-shaped
stencil, R=2

Fig. 1. Examples of stencils with different shapes and radii.

At any time at most one RG is active. RGs are aligned with the BG and
are totally contained within it, and each point of the BG that falls within an
RG coincides with a grid point of that RG. These two criteria ensure that inter-
polation from BG to RG is simple and inexpensive, so that for most practical
purposes we can ignore its cost.
Problem parameters:

– T : total number of iterations on BG.
– R: radius of difference stencil; see Fig. 1 for examples of stencils.
– n: linear dimension of square BG (n2 points). The mesh spacing is one.
– r: refinement level (mesh spacing of RG is 2−r).
– k: linear dimension of square RG in terms of BG points, so ((k − 1) ∗ 2r + 1)2

refinement points.
– P : duration in terms of iterations on the BG of one full cycle of activation of

one RG until that of the next RG (period).
– D: duration in terms of iterations on the BG of activity on each RG; D ≤ P .
– d: number of iterations on a RG per iteration on the BG.

Initialization. The BG input field INbg is initialized with function U(x, y),
which is linear in the coordinates: U(x, y) = cxx + cyy,with cx, cy >= 0. The
bottom left corner of the BG coincides with the origin of the coordinate system.
A set of four distinct RGs is created at the start of the program. Their input fields
are initialized to all zeroes: INi ≡ 0, i ∈ {0, 1, 2, 3}. Note that the subscript i is
always used to indicate a refinement with index i, and that it can assume integral
values beween 0 and 3. The output fields on BG and RGs are all initialized to
all zeroes: OUTbg ≡ OUTi ≡ 0.

Computations. The result of each application of the stencil operation on
the BG (an iteration or time step) is accumulated in OUTbg, i.e. OUTbg =
OUTbg + S(R)INbg, (R=stencil radius) after which the input field INbg is
uniformly incremented by one. When an RG is actived, its input values are
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interpolated from the BG input values at that time, using bi-linear interpola-
tion1. Subsequently, for each of the D iterations on the BG, d stencil iterations
are carried out on the activated RG i, the results of which are accumulated in its
corresponding output field, i.e. OUTi = OUTi + S(R)INi. After each iteration
on RG i, its input field INi is uniformly incremented by one.

Refinements. We define a set of four RGs, located at the bottom left, top right,
top left, and bottom right corners of the BG, respectively, that are activated and
deactivated cyclically in that order. The bottom left corners of the RGs coincide
with the following points of the BG, respectively: {(0, 0), (n−k, n−k), (0, n−k),
(n−k, 0)}. The iteration on the BG at which refinement i is activated for the ath

time is: P ∗ (i + 4a), a = 0, 1, 2, · · · . This cyclic pattern does not qualify as real
noise, due to its fixed frequency and amplitude. However, its block wave nature
does provide the salient aspect of system noise, namely the abrupt, discrete, and
localized variation of system load. It is possible, in principle, for a runtime to
detect the fixed frequency and take preemptive action, but we are not aware
of any runtimes that do this. In Fig. 2 we show an example configuration with
grid and refinement parameters n = 10, r = 2, and k = 3, duration D = 4, and
period P = 8. The BG has 100 points, and each RG has 81 points.

Verification. After all iterations have finished we compute the L1 norm of the
computed divergence over the interior points of the BG and all RGs, normalized
by the respective numbers of grid points. These values are compared to the
analytical values. Absolute values of the differences must satisfy a fixed error
tolerance.

To determine the analytical values of the OUT array on a grid we need to
know how many times τ it has been visited. For RG i we find: τi = d ∗ {�T/(P ∗
4)� ∗D +min(max[0, T mod (P ∗ 4)− i ∗P ],D)}. The relative complexity of this
formula is due to the fact that RGs emerge intermittently, and may not complete
an entire cycle of P ∗4 iterations before the total number of iterations, T , on the
BG is reached and the code terminates. If T were divisible by P ∗4, we would find
τi = d∗T ∗D/(P ∗4). For the BG, τbg simply equals T . Only the linear terms of the
input fields contribute to the divergence, and these do not change. Each iteration
on a grid adds cx + cy to the divergence at each point, where cx and cy are the
constant coefficients of the linear BG initialization function. Consequently, the
verification value of the divergence on any grid equals τ ∗ (cx+cy). This function
is linear in the total number of time steps, and while this may ultimately result
in arithmetic overflow, it is considered stable in a numerical sense, since growth
is less than exponential.

Performance Metric. Performance of this kernel is reported in terms of nom-
inal floating point operations related to the application of the stencil, to the
1 Bi-linear interpolation is a standard technique in which two 1D linear interpolations

are combined to compute interpolations in 2D. See, e.g. [18], Appendix D. Taking
advantage of the regular structure of BG and RGs, we can implement it with just
three floating point operations per RG point.
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Background grid

R0

Background grid

R3

Background grid

R2

Background grid

R1

a. Time steps 0-3 b. Time steps 8-11

c. Time steps 16-19 d. Time steps 24-27

Fig. 2. Example BG with successive refinements R0–R3; n = 10, r = 2, and k = 3,
duration D = 4, and period P = 8.

update of the input fields, and to the interpolation, divided by the time it took
to carry out all computations. If the spacing of the RGs equals that of the BG,
no floating point operations are assigned to the interpolations, since these can be
implemented efficiently and conveniently as copy operations. In all other cases
we assign a fixed number of floating point operations to each RG point to carry
out the interpolation, corresponding to the number of operations necessary to
determine the interpolant at each point.

Rationale. As for all PRK, we ensure that all required work is done, and that
any work that is skipped or incorrectly carried out results in verification failure.
Hence, each operation on the BG and the RGs needs to have an effect on the
final result that can be verified. We therefore accumulate each computed result
into the output fields in each iteration, rather than overwriting the output fields.

In a real stencil application there is usually no distinction between input and
output field; a single solution field that is updated during each iteration. To
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evaluate the stencil of the solution field near grid partition boundaries requires
communications to exchange ghost point values before each iteration. To make
such communication necessary in this kernel as well, we change the BG and RG
input field values after each iteration. The additon of a constant throughout has
no influence on the computed divergence, which simplifies the verification test.

To keep the amount of state that needs to be preserved during the execution
of the kernel constant, we opt for a fixed set of refinements that are statically
determined, but that are activated and deactivated periodically. This allows us
to accumulate results on refinements into a small, fixed set of arrays.

Note that the special initialization, particular positioning of RGs, and the
accumulation and unit increment operations solely serve to catch errors and
facilitate verification. The stencil operations on BG and RGs and the potential
for load imbalance–the true focus of this kernel–are agnostic of these features.

4 Parallel AMR PRK Reference Implementations

The AMR PRK differs fundamentally from the Particle-In-Cell PRK when it
comes to parallel implementation. There are essentially only two different states
of the execution, one with active refinement, and one without. While the RGs
occupy different parts of the BG, depending on which one is active, they are
all of the same size and involve the same amount of work, so can all be treated
similarly. Either of the two distinct states can be load balanced easily by the
programmer, but alternation in time between the two requires important trade-
offs. We describe the three most plausible methods for making those tradeoffs,
assuming MPI as the basic parallelization method.

– FINE-GRAIN: The configuration without an RG is evenly distributed among
all ranks. When an RG is activated, its work is distributed evenly among some
or all of the existing ranks, without regard for communications between BG
and RG needed to initialize RG. Each rank is responsible for one Cartesian
subset (a tile) of BG data and one tile of each actived RG. This always
produces a balanced load, but can cause very fine granularity.

– NO-TALK: The configuration without an RG is evenly distributed among all
ranks. When an RG is activated, its work is distributed among the ranks, such
that no communication is required to initialize it. Each rank is responsible
for one BG tile and potentially one RG tile with which its BG tile coincides
when that RG is active. This leads to a balanced load when no RG is active,
but becomes unbalanced upon RG activation. The smaller the extent of an
RG relative to the BG, the worse the load imbalance.

– HIGH-WATER: The configuration with an RG is evenly distributed among
all ranks. Each rank is responsible either for one tile of the BG, or for one of
the active RG. This means the load is only balanced when an RG is active.
Granularity is typically coarser than FINE-GRAIN.

Each of these approaches can be optimal under certain conditions. When
communications are very fast, the fully load-balanced FINE-GRAIN would be
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Fig. 3. Example of different work assignment policies for a mesh configuration of BG
size n = 36864, RG size k = 1536, and refinement level r = 2.

optimal. When communication costs are significant, NO-TALK offers the benefit
of no communication between grid levels, but can become very unbalanced during
refinements, especially with small RGs with a higher level of refinement. In Fig. 3
we give an give an example of how a particular choice of BG and RGs–which we
also use for shared memory experiments in Sect. 5–fares under the above three
work distribution approaches.
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Note that load balance of NO-TALK and HIGH-WATER could be improved
by over-decomposing BG and RGs and assigning multiple tiles of these grids
to each rank. The programmer would have to determine the proper tile-to-
rank assignment, including how that assignment would change when refinements
appear or disappear. We deliberately do not provide this option, as it leads to
substantially more complicated programming, and is covered–in principle–by
dynamic runtimes of the type discussed in Sect. 4.1. In addition, we want to
mimic the scenario in which one does not know in advance which rank becomes
overloaded with extra work, since that is the result of noise at large system
scales.

4.1 Dynamic Load Balancing with Adaptive MPI

Adaptive MPI (AMPI) is an implementation of MPI, built on top of the
Charm++ runtime [17], that supports dynamic load balancing and multithread-
ing for MPI applications. According to the AMPI execution model, multiple
user-level threads, named virtual processors, each representing an MPI rank, are
assigned per operating system process, and typically one OS process is mapped to
a single processor core, or–in the case of shared memory nodes with non-trivial
extent–to a single node. The main strategy for implementing an application
with AMPI is to over-decompose the problem to more ranks than the number
of available physical cores and delegate the load balancing task to the runtime.
The AMPI runtime utilizes the Charm++ scheduler to coordinate the execution
and, more importantly, the migration of ranks to different system resources.

Porting an existing MPI application to AMPI is conceptually trivial; Any
MPI application is a valid AMPI code as long as it does not include static or
global variables. Every MPI process is mapped to a different virtual process and
therefore the over-decomposition results in merely creating more MPI processes
than resources. Additionally, AMPI provides the function AMPI Migrate(),
which activates the Charm++ load balancer. The duration of load monitor-
ing and the frequency of triggering the load balancer, along with the degree
of the over-decomposition, are tunable parameters. Finally, the heap allocated
data can be migrated either automatically by employing the isomalloc mem-
ory allocation infrastructure that comes with the AMPI runtime, or the user
can provide appropriate packing/unpacking (PUP) routines. We opt for PUP
on distributed-memory memory systems, as it yields higher performance. On
shared memory systems isomalloc is faster, because it does not require actual
heap data movement, but simple pointer exchange. Consequently, we select this
option for our experiments on a single shared-memory node.

5 Experimental Results

In this section we present experiments that provide examples of how to use the
new AMR PRK to assess the performance of runtime assisted load balancing.
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We compare the performance of the parallel implementations described in
Sect. 4 (we used the Intel R© C compiler icc version 15.0.1, Intel R© MPI Library
for Linux version 5.0, and Adaptive MPI with Charm++ version 6.7.1) in both
shared and distributed memory settings. A few quick checks after installation of
icc compiler version 17.0.0 on our shared memory system showed no impact on
the performance of the AMR PRK.

First, we need to construct our experiments carefully to make sure they
represent scenarios of interest. We focus on the NO-TALK policy, and an RG that
is sufficiently small that even for the finest partitioning it fits within one tile of
the BG assigned to each rank. This choice implies that whenever an RG appears,
no additional communication and synchronization is incurred by the rank that
needs to work on it. It proxies a scenario in which a single core at a time is
slowed down because of synthetic noise. To be specific, we choose the number of
points in the RG such that it requires the same amount of computational work
as one tile of the BG, see Sect. 5.1. Consequently, whenever an RG appears,
the rank that is responsible for it under the NO-TALK policy suddenly has
its computational load doubled. For the canonical MPI implementation without
overdecomposition or rank migration this is nominally equivalent to an abrupt
halving of the frequency of the core whose rank receives the RG.

5.1 Shared Memory Experiments

Our shared-memory experiments are conducted on a workstation equipped with
two 18-core Intel R© Xeon R© E5-2699 processors at 2.30 GHz, with total memory
of 64 GB. We choose a total problem size that can be accommodated by the
machine, without much space to spare. We keep the size fixed, and use all avail-
able cores. The BG/RG configuration corresponds to that of Fig. 3. The full list
of fixed numerical and configuration parameters is as follows.

– T = 400: total number of iterations
– R = 2: radius of difference stencil
– n = 36864: linear dimension of BG (36, 8642 points)
– r = 2: refinement level
– k = 1536: linear dimension of RG in terms of BG points (61412 refinement

points)
– d = 1: number of iterations on a RG per iteration on the BG
– NP = 36: number of physical cores used (full system)

For the following parameters we choose ranges to determine sensitivity to their
variation.

– D ∈ {10, 20, 40, 80}: duration in terms of iterations on the BG of activity on
each RG

– P = 2 ∗ D: duration in terms of iterations on the BG of one full cycle of
activation of one RG until that of the next RG (period)

– Z ∈ {1, 2, 4, 8}: overdecomposition factor, i.e. number of MPI ranks per core
– LB ∈ {RefineLB,GreedyLB}: Charm++ load balancing strategy
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– Δ ∈ {0, 1, 2, 3, 4}: delay in BG iterations between the change in grid
configuration (activation or deactivation of an RG) and the invocation of
AMPI Migrate()

Because the ratio of P and D is fixed, increasing D corresponds to a decrease
in the synthetic noise frequency, with a fixed fraction of time spent in the RG-
activated and deactivated epochs.

The quartet (r, d, n, k) = (2, 1, 36864, 1536) ensures that with full system
occupation and minimal assignment of one MPI rank to each core, the amount
of computational work for the core working on an RG is nominally double that
of a core that only works on the BG (number of discretization points in the BG
tile and the RG are equal). With exactly two ranks per core the overloaded core
has 1.5 times as much work as all others. In general, with exactly Z ranks per
core the overloaded core has 2−1/Z,Z > 1 as much work as the other cores. We
define load imbalance Φ as 1−Tavg/Tmax, where Tmax equals the time the slowest
core takes to reach successive synchronization points, and Tavg the time it takes
all cores on average. It is a solid measure of total idle time (resources wasted)
due to load imbalance. If epochs of RG activation and deactivation are equally
long, load imbalance without rank migration would be, assuming a one-to-one
correspondence between computational work and wall clock time:

Φstatic(Z) = 1/3 (1)

If ranks are allowed to migrate, the core responsible for an RG would move
all (or all but one) of the ranks responsible for BG tiles to other cores during
times of refinement, but no more than one BG tile extra per core. This would
lead to the following load imbalance.

Φadapt(Z) =
1

2Z + 1
(2)

These functions are depicted in Fig. 4. Without migration the load imbalance
is constant at 0.33, the same as for the plain MPI version. With migration
the load imbalance can be made arbitrarily small, but at the cost of very fine
granularity.

We executed each of the experiments four times, and picked the best of
the four results to represent that case. Even though the tests were run on an
unloaded system, there was a fair amount of noise on the data. However, the
results showed clearly that there was no correlation between parameter settings
and performance, except with respect to the load balancer. Obviously, the best
migration strategy would be the one described above (and captured by Eq. (2)),
namely distributing just a few ranks from the overloaded core evenly among
neighboring cores, and leaving everybody else alone. The RefineLB load balanc-
ing strategy indeed focuses on local migration only, whereas GreedyLB always
moves work from the most overloaded core to the least overloaded, in a recur-
sive fashion. Any Charm++ load balancing strategy requires load information
from the runtime, as it has no knowledge of the actual workload. To obtain
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Fig. 4. Analytical load imbalance (1 − Tavg/Tmax) for both shared and distributed-
memory scenarios, with and without rank migration

that, the runtime monitors core idle times caused by synchronizations. To give
the runtime sufficient opportunity to collect such data after each change in the
grid configuration, we insert a (variable) delay, Δ, between such change and the
execution of the rank migration scheme.

The performance figures for RefineLB and GreedyLB load balancers for the
entire range of parameters tested were 42.2 GFlops and 35.3 GFlops, respectively,
with corresponding standard deviations of 1.2% and 5.3%. These numbers corre-
late strongly with the average numbers of ranks migrated in each load balancing
step, which were (0, 4.6, 10.2, 17.9) and (34.8, 69.5, 140.0, 280.4) for RefineLB and
GreedyLB, respectively, for total numbers of ranks of (36, 72, 144, 288). Obvi-
ously, the GreedyLB algorithm is too aggressive in moving ranks (almost 100%
of all ranks migrate, even if there is only one rank per core, in which case–to
first order–migration cannot improve load balance), and will no longer be con-
sidered. We also note that the number of ranks moved in each migration by
the RefineLB algorithm differed substantially from one load change to the next
within the same program execution, often by as much as 50%, even though there
are only two distinct, repeated load states during the execution. In principle, all
ranks save one (during refinement) have the exact same load, but noise and
effects such as being close to a grid boundary can introduce small variations.
Evidently, this leads to somewhat erratic scheduling decisions by the load bal-
ancer. At the longest duration of the refinements of D = 80 (lowest synthetic
noise frequency), one such activation period equaled 26 s.

Keeping the work on BG and RGs the same, but changing the RGs’ extent
by increasing their size by a factor of four in both directions, while at the same
time dropping the refinement level r to 0 (RG and BG are equally fine) produces
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a configuration in which some communication within RGs is required. This did
not affect the performance numbers under Adaptive MPI, which points to the
fact that communication costs within RGs can be ignored.

We repeated the original experiment using the plain MPI implementation
and the same NO-TALK work-to-rank assignment. In this case each core receives
one rank, which never migrates. Performance was identical to that of Adaptive
MPI with the Refine load balancer, i.e. 42.2 GFlops for the range of refine-
ment frequencies used. The absence of variation between different refinement
frequencies is to be expected, since no new communications are introduced by
the refinements, and the only thing that counts is the ratio of times the grid
system spends in a refined and non-refined state. This ratio is constant across
refinement frequencies in our experiments.

We also did experiments without any refinements, using the standard MPI
Stencil PRK (see [28]), with as input sizes the full BG size (36, 8642 points) for
36 ranks, and the full RG size (61412 points) for 1 rank. The RG computation
(5.3 GFlops) could be finished much faster than the BG computation (43.8
GFlops), among others because of the need for the ranks in the BG run to
communicate. Average times per iteration were 0.14 and 0.58 for the RG and
BG computations, respectively. The formulas for load balancing, Eqs. (1) and
(2) do not take this effect into account. In general, when the ratio of the times it
takes to finish computations on RG and BG, respectively, equals α, the scenario
without migration has a load imbalance of Φstatic(∞) = α/(2+α), which in this
case equals 10.8%. The observed reduction in performance of the AMR PRK
without migration, relative to the plain Stencil PRK with the 36, 8642 grid, is
actually less than 10.8%, namely appoximately 4%, and is not affected by the
level of overdecomposition. In case migration is allowed, the load imbalance can
again be made arbitrarily small, but with a high communication cost.

Finally, we also repeated the Adaptive MPI experiment with the same ratio of
work between BG and RGs, but with a smaller overall problem size. Specifically,
we reduced the linear BG and RG dimensions by a factor of four (so work on
each reduced by a factor of 16), and kept all other parameters in our experiment
the same. This resulted in an increase in frequency of synthetic noise by a factor
of 16. Again, there was no observable correlation between number of ranks per
core and performance, but there was one for the duration of the refinement. For
durations of 10, 20, and 40 iterations we recorded performance of 32.4, 42.6, and
42.8 GFlops, respectively. While the migration for durations 20 and 40 again did
not offer any improvement (nor deficit) over regular MPI runs without migration,
the higher frequency corresponding to duration 10 evidently incurred significant
overhead. For this small problem size the total activation of one refinement at
this highest frequency lasted approximately 0.52 s.

5.2 Distributed Memory Experiments

Distributed-memory experiments are conducted on Edison, a Cray XC30 system
located at NERSC. Edison has a peak performance of 2.57 petaflops/sec, with
5,576 compute nodes, each equipped with 64 GB RAM and two 12-core Intel R©
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Xeon R© E5-2695 processors at 2.40 GHz for a total of 133,824 compute cores.
The nodes are interconnected with the Cray Aries network using a Dragonfly
topology.

In this case we kept the size and level of refinement of the RGs the same,
but adjusted the size of the BG as follows. A full node contains 24 cores, so we
multiply the size of the baseline BG by approximately 24/36 to maintain the
same ratio of work on the RG and on one tile of the BG assigned to a single
rank (without overdecomposition) as in the shared memory case. Consequently,
the baseline BG size is n = 30, 000 for a single node. With more nodes we
employ weak scaling, so that the amount of BG work assigned to each rank
remains constant. Since the size of the RG is also constant, a nominally fixed
(source of) load imbalance holds. We also fix the overdecomposition factor at
Z = 4, and the migration delay at Δ = 2, since these did not show noticeable
influence on performance in the shared memory case. We did vary the duration
of the RG existence as before (D ∈ {10, 20, 40}), and varied the number of nodes
from 1 to 64.

The performance results are shown in Fig. 5, along with the corresponding
results for plain MPI (no overdecomposition or rank migration). All performance
data are normalized by dividing aggregate performance by that of the AMPI code
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with one node, one RG sub-iteration, and a duration of D = 10, as well as by
the number of nodes used. Evidently, in this case dynamic load balancing was
even less favorable than in the shared memory case, especially for the shorter
durations (higher frequency synthetic noise).

In the final experiment, illustrated in Fig. 6, we set the number of sub-
iterations on RGs to d = 4. This means that the intensity of the source of load
imbalance increased by a factor of four, compared to the previous experiment.
In this case we would expect a more beneficial effect of dynamic load balancing
compared to the plain MPI implementation, because of the greater imbalance
caused by the refinements. That worsened load imbalance is evident from the
reduced performance of the plain MPI code (compare Fig. 5, which uses the same
scale). However, as Fig. 6 demonstrates, the dynamic load balancing again does
not deliver any benefit for any of the noise frequencies. We note that the expected
performance of the plain MPI implementation is independent of the refinement
duration, but our results show that shorter duration corresponds with higher
performance. This was repeatable. We do not yet have an explanation for this
phenomenon.
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6 Conclusions and Future Work

The first observation we can make is that the newly developed AMR Par-
allel Research Kernel has sufficient flexibility to construct relevant, fully-
parameterized scenarios in large-scale computing with respect to the salient
disruptive effect of localized system noise. That includes the capability to con-
struct carefully tuned sources of load imbalance.

The second is that in our investigations of runtimes that are capable of exe-
cuting automatic dynamic load balancing policies based on overdecomposition of
the computational domain, which focused on the employment of Adaptive MPI
in this paper, we could not find any parameter settings that led to better perfor-
mance than a simple, dual-phase, static domain decomposition in standard MPI.
This is true, even though the latter can not remove the load imbalances caused by
the recurring introduction of adaptive refinements prescribed by the AMR kernel.
Our tests covered shared as well as distributed memory experiments. Even for rel-
atively low frequency synthetic noise caused by the refinements (up to 26 s), the
adaptive runtime experiments did not improve performance over standard MPI.
The performance deficit was largest for the highest frequency of synthetic noise.

We conjecture that part of the reason for the failure of our experiments is
the fundamental nature of the load imbalances incurred by the AMR kernel.
There are only two different load states, which are entered and exited abruptly,
so that each load transition creates a “shock,” as unpredictable noise would.
Consequently, the runtime cannot properly use the past to predict the future,
and always operates in a reactive mode.

In the future we plan to use the AMR PRK to investigate other runtimes that
offer automatic dynamic load balancing capabilities. We will also construct some
experiments that reflect an aspect of synthetic system noise that the experiments
in this paper did not cover. Specifically, when we defined the refinement scenarios
in Sect. 5, we ensured that even in case of overdecomposition only a single rank
at a time was affected by the appearance of a refinement. But if actual system
noise would slow down an entire core for a certain period of time, all ranks
owned by that core would be affected. Simulating that effect requires a revision
of our experiments.
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Abstract. Numerical simulations present challenges because they gen-
erate petabyte-scale data that must be extracted and reduced during the
simulation. We demonstrate a seamless integration of feature extraction
for a simulation of turbulent fluid dynamics. The simulation produces on
the order of 6 TB per timestep. In order to analyze and store this data, we
extract velocity data from a dilated volume of the strong vortical regions
and also store a lossy compressed representation of the data. Both reduce
data by one or more orders of magnitude. We extract data from user check-
points in transit while they reside on temporary burst buffer SSD stores.
In this way, analysis and compression algorithms are designed to meet spe-
cific time constraints so they do not interfere with simulation computa-
tions. Our results demonstrate that we can perform feature extraction on
a world-class direct numerical simulation of turbulence while it is running
and gather meaningful scientific data for archival and post analysis.

1 Introduction

Supercomputing trends toward exascale motivate our research, specifically the
increasing performance gap between processing and I/O. At exascale, simulations
will output fewer than one byte for every 105 bytes of system state; they will pro-
duce 200–300 PB/s in memory [1] and only 1 TB/s [2] will be saved to persistent
storage. Next generation architectures must define meaningful ways to output
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data that preserve scientific discovery on reduced data representations. The Trin-
ity supercomputer at Los Alamos has deployed a burst buffer architecture [3]
to fill the performance gap between cluster memory and disk filesystems. Burst
buffers place the SSD storage on the fast network to catch I/O bursts that would
overwhelm the filesystem. Data on burst buffers are short lived; they must be
discarded or stored to file system in (tens of) minutes. Our experiments run on a
research cluster with nodes designed to mimic the performance of Trinity’s burst
buffers and reduce data by orders of magnitude while preserving usable data for
visualization and extreme event analysis [4]. Our experiences using the Johns
Hopkins Turbulence Databases [5] (JHTDB) inform the choice of data products
that we extract from burst buffers. Specifically, we create compressed lower pre-
cision representations of the full field velocity data and extract high-resolution
velocity data from regions of relatively high vorticity. JHTDB contains multiple
datasets from direct numerical simulations that range from tens to 150 TB. In
particular, the isotropic turbulence dataset contains 5028 timesteps of velocity
with three components of floating point values and one component of floating
point pressure values on a 10243 spatially dense regular grid. This dataset pro-
vides scientists all over the world an opportunity to discover many aspects of
turbulence without the need to run their own large simulation. A number of
discoveries from the JHTDB have come from the combination of visualization
and analysis of high vorticity regions. These include a vorticity hierarchy that
is not evident on smaller scale simulations [6] and that magnetic flux freezing in
high-conductivity plasmas fails in the presence of MHD turbulence, explaining
why solar flares can erupt in minutes or hours rather than the millions of years
predicted by flux freezing [7].

Going forward, the lack of I/O bandwidth to long term storage will slow
down the simulation. Transferring output every few timesteps from a larger
simulation (81923) would slow down the simulation by an order of magnitude;
JHTDB’s isotropic database stores every tenth timestep because the integration
time-step for stably solving the system is smaller than that needed for analyses.
Each timestep serves as a checkpoint which is utilized if a restart is required due
to simulation failure. The I/O needed to checkpoint simulations to file systems
has become the performance limiting workload in scalable HPC [8] and exposure
to failure governs checkpoint frequency; they are taken much less frequently than
needed for time-resolved analysis of the simulated processes of turbulence.

We develop methods that capture and extract relevant scientific data of a
direct numerical simulation as it runs. We propose a model in which checkpoints
are written to burst buffers at the frequency needed for analysis and then we
extract a subset of the data and reduced representations that can be utilized
for scientific analysis in real-time as well as post simulation. The extraction
requires little processing power and it does not disrupt the running simulation.
On Trinity [9], the burst buffers are located on additional nodes that are separate
from compute nodes. Burst buffers in recent architectures collocate compute and
SSDs [10] and extraction codes can be run within the burst buffer nodes.
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In the first part of the process, we extract a subset of velocity data in 3D
space only at points where the vorticity magnitude exceeds a defined threshold.1

Next we dilate the volumes within this 3D space by a kernel size based on
the requirements for post analysis and extract the velocity field in the dilated
regions. The dilation allows us to capture data just outside the high vorticity
regions needed for iso-surface extraction and Lagrangian interpolation in post-
processing. Many filters and derivative equations also rely on this additional
data gained from the dilation for interpolation kernels around the region, which
makes the extracted data useful for scientific analysis.

This method deliberately leaves out regions of low vorticity. Understanding
that we cannot save the entire dataset, we extract a separate dataset that con-
tains full field lower precision data by using lossy compression. We leverage the
zfp algorithm [12], which is specifically designed to compress floating point sci-
entific data in 1D, 2D, or 3D space. zfp’s lossy compression is error-bounded;
it guarantees that the values differ from the original by less than a specified
amount. zfp achieves an order of magnitude or more compression and the loss
of accuracy is indistinguishable when visualizing the data. These characteristics
lend themselves well to capturing exascale simulation data for visualization.

Combining these extraction techniques allows one to visualize the simula-
tion while it runs and create an archival database that is exact in regions of
high-vorticity and error-bounded elsewhere. The data products are an order of
magnitude or more smaller than simulation output and suitable for scientific
post analysis. Although our focus is on vorticity and velocity data from direct
numerical simulation of the single-phase incompressible Navier Stokes equations,
the velocity extraction technique generalizes to richer fluid mechanical simula-
tions that may include magnetic field, magnetic potential and density, to other
governing equations, such as Large Eddy Simulations, and to numerical simula-
tions from other domains that run on regular and irregular grids, such as climate,
material fracture, and combustion.

Our evaluation utilized 32 burst buffer nodes that contained either 4, 10, or 16
cores. For extracting velocity in high vorticity regions, we reduce an 81923 grid by
one order of magnitude in under 10 min (the 4 core node was not able to meet this
time constraint). For lossy compression of velocity for the entire grid, we reduced
by one order of magnitude and it took approximately 10 min for a single timestep.
These results inform us that having 32 burst buffer nodes with a minimum of 10
cores each would allow us to execute either extraction task in under ten minutes
for a world-class turbulence Direct Numerical Simulation (DNS).

2 Related Work

Supercomputing continues to evolve with speed increases and hardware architec-
ture changes that coincide with application development to leverage these new
architectures. Bent et al. [13] explore burst buffer configurations and demonstrate
1 Thresholds are easy to choose because turbulence has threshold values with physical

meaning derived from the inverse Kolmogorov scale that describes the near absence
of, medium, and high vorticity [11].
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that placing SSDs between compute nodes and the storage array allow jitter-free
co-processing of their visualization tasks and reduce total time to completion by
up to thirty percent. We utilize a similar architecture in our work. Ma et al. [14]
discuss in-situ data extraction and visualization. They modify the simulation
code to provide data useful for visualization in-situ, whereas our work performs
feature extraction in-transit via burst buffers without having to modify exist-
ing simulation codes. Ahrens et al. [15] describe and test methods of utilizing
multi-core CPU and GPU based processors in the Roadrunner supercomputer
to perform visualization of an exascale simulation in-situ. Chen et al. [16] uti-
lize the HemeLB lattice-Boltzmann code for large-scale fluid flow. They discuss
pre- and post-processing along with computational steering to modify simulation
parameters in situ. This work differs from ours in the way the data is saved and
utilized for post-processing. They create a multi-resolution data structure by
storing their simulation output in a hierarchical order. This method allows for
visualization without reading the entire dataset. In our work, we utilize the SSD
burst buffers to read the entire timestep and perform thresholding and extrac-
tion of high-magnitude events on a per-timestep basis. Wang et al. [17] developed
a file system (BurstFS) that aggregates I/O bandwidth from burst buffers and
maintains a distributed key-value store of metadata for the files. This system
allows an application to perform small non-contiguous read operations on the
burst buffer. Because our feature extraction reads of all the data, this file system
would not benefit our work.

We build upon the concept of burst buffers [18] to integrate non-volatile
memory into the supercomputing storage hierarchy. We focus specifically on
using the SSD to capture write bursts, particularly those from checkpoint work-
loads. Other concept papers have discussed using burst buffers more generally
in the HPC memory hierarchy [19].

3 Problem Overview

Extreme scale simulations produce petabyte-scale data that must be read for fea-
ture extraction and/or down-sampling in real time without hindering the compu-
tation of the underlying simulation. This presents a host of challenges due to the
competition for memory resources, bandwidth, I/O, and storage. The burst buffer
architecture adds to the storage hierarchy to enable a temporary storage area in
between permanent storage and resident RAM for fast reading and writing. Once a
timestep is written, a feature extraction application must read, process, and store
the extracted data prior to the simulation overwriting the burst buffer space with
a subsequent timestep. Typically, burst buffer capacity is chosen to be more than
two times cluster memory so that the burst buffer will hold two to three consecu-
tive timesteps. In addition, the data reduction and the simulation must maintain
synchrony throughout the simulation. The feature extraction must process data
prior to the simulation writing the next timestep.

The primary problem with world-class numerical simulation data is the
sheer size of the output. Our target fluid simulation has a desired output (not
every solved timestep) with dimension 81923 over 4000 timesteps and produces
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4 attributes: 1 component for pressure and 3 for a velocity vector with 4 byte
floating point (single precision) values resulting in total data of

81923 ∗ 4 ∗ 4 ∗ 4000 = 3.518 × 1016

bytes, or approximately 31.25 PB of data. Although our simulation generates a
pressure field, the remainder of this paper focuses only on storing the velocity
data. Each timestep contains about 6 TB of velocity data that must be read,
processed, and written on the order of tens of minutes. This process must com-
plete in time in order to maintain synchronization with the simulation to ensure
data extraction successfully finishes. Any delay would cause the simulation to
stall.

The data extraction itself presents a complex problem, because it takes com-
putational power to perform the extraction and it must complete in a timely
fashion. If we were to do in-situ analysis, extraction resources compete directly
with the processing required to perform the simulation. Our method leverages
burst buffers in order to perform this extraction in-transit without interfering
with the simulation.

4 Methods of Extraction

We present our two methods of extraction: velocity data in regions of high vor-
ticity and lossy compression of the full field. Extraction produces two datasets,
each an order of magnitude or more smaller than simulation output. Prior to
presenting methods, we motivate our use of Q-criterion for identifying vortices.

4.1 Calculating Highly-Vortical Regions

In turbulent flows, identification of coherent structures, specifically vortices, aids
in scientific understanding of these flows. Inside and around these high vortical
regions, energy dissipation and squared vorticity (enstrophy) are orders of magni-
tude higher than the mean values, which we refer to as extreme events [20]. There
are various methods for identifying vortices. Vortices are defined by the veloc-
ity field that reflects the rotational qualities and there is not a single approved
method to describe vortices. Dubief and Delcayre [21] examine four methods of
vortex identification: pressure, vorticity magnitude, λ2, and Q-criterion. Because
pressure fails to capture fine details in isotropic turbulence [21] and λ2 appears to
be affected by small noise present in all data, we examine visualizations based on
vorticity magnitude and Q-criterion. Each of these two methods provide good
visualizations of vortical flow structure when utilized to generate iso-surfaces.
However, one particular issue with vorticity magnitude is that the vorticity cri-
terion does not distinguish between swirling motions and shearing motions. Thus,
vorticity magnitude can also present layered structures that are vorticity sheets
and not vortices [22]. Q-criterion is also not perfect as it fails to reliably identify
Bödewadt vorticies. However note that such vorticies occur normal to a wall, and
our isotropic turbulence dataset is periodic and does not contain any walls [23].
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We chose to compare the performance of the vorticity magnitude and Q-criterion
for generating vortical flow iso-surfaces on an isotropic turbulence dataset.

In order to compare Q-criterion versus vorticity performance we defined a
threshold that is equivalent for each calculation. The thresholds and resulting
data can be constrained based on either scientific concerns (the loss of accu-
racy when evaluating averages of gradient norms over the entire flow volume)
or system resources that set a target data size. This adjustment allows us to
produce data that fits within available storage in the computing center, while
still gathering useful scientific data to study these high vorticity regions. In
order to determine the threshold, we begin by using a multiple of the root-
mean-square value of the vorticity fluctuations. This value is known a-priori,
based on knowledge of the dissipation rate ε and fluid viscosity ν according to
〈ω · ω〉1/2 =

√
ε/ν [24] where ω is the vorticity vector (curl of the velocity).

For the data from the JHTDB, this value is
√

.0928/.000185 = 22.4, which
is also the inverse Kolomogorov time scale τη. Since we are interested in high
vorticity regions, we scale this low reference threshold to achieve a clear visual
representation of high vorticity regions.

Fig. 1. Vorticity magnitude contour at threshold 22.4 (left) and 55.98 (right)

We tested various multiples of 1/τη and found that a multiple of 2.5 presented
clear vorticity structures without obvious erroneous surfaces. The threshold cho-
sen in this case is 2.5 ∗ 22.4 = 55.98. The visualization of vorticity magnitude
at this threshold was a much clearer representation of vortices than using a
threshold of 22.4 as seen in Fig. 1.

Upon finding a reasonable threshold, we calculated the equivalent threshold
for Q-criterion. In the absence of straining motions, the relationship between the
threshold of vorticity and Q-criterion can be taken to be as follows: Q = 1

4ω2.
Therefore the threshold value for Q that we chose is Q = .25(55.98)2 = 783.
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Fig. 2. Vorticity magnitude (left) and Q-criterion (right)

Figure 2 shows the visualization of vorticity magnitude contour versus the
Q-criterion contour. Though they look very similar, the bottom left corner of
the left image (vorticity magnitude) displays a structure that is not present
in the Q-criterion visualization. This is due to shearing, because the vorticity
magnitude does not differentiate between shearing and curl. In the definition of
Q, strain is subtracted from vorticity which results in a lower Q value and filters
out shearing.

We performed additional tests at various thresholds and cube dimensions
(subsets of the full 81923 grid) to determine whether the computation of Q-
criterion or vorticity magnitude has an impact on overall feature extraction
time. Table 1 compares total computation times, which includes reading from and
writing to the burst buffer. Our results show that Q-criterion computes slightly
faster than vorticity regardless of cube size. As a result of these considerations
and tests, we choose to use Q-criterion for all analyses in the remainder of this
paper. We also note that Q-criterion is generally accepted in the turbulence
community for vortex identification.

Table 1. Vorticity vs. Q thresholding in seconds total time per cube on a single core

Cube size Vorticity threshold Q threshold

64 .257 .222

128 1.597 1.375

192 5.070 4.500

256 11.120 9.522

4.2 Thresholded Vorticity Volumes

In order to capture the velocity data, we create a three-dimensional stencil that
encompasses the regions of high-vorticity. This stencil masks out low Q regions
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and generates a sparse representation of velocity data within the regions. This
sparse representation is a vtkUnstructuredGrid that consists of floating point
coordinates in real space and the corresponding velocity vector at each point,
thus each point contains six corresponding floating point values. This is not an
ideal method of storage, however it works well enough in this application. Since
the representation of vorticies in isotropic turbulence appear as worms, the goal
is to capture velocities within all points within these worms, while discarding the
velocity data outside of these structures. This data is the losslessly compressed
to preserve the original values.

We begin by creating a stencil that “cuts out” high-vorticity regions from
the full data. This includes points above the Q-criterion threshold. These regions
are then dilated to include nearby points that are below the threshold. Dilating
by four cells allows us to later compute most quantities of interest, including Q-
criterion, vorticity magnitude, marching cubes for iso-surface extraction, velocity
derivatives, and 4th-order Lagrangian interpolation. In order to create the stencil
we create a bitmask dataset of the same dimensions of the original dataset and
set all values above the threshold to one and those below to zero. Next we dilate
this stencil with kernel size of four, meaning that each point that is already set
to one sets all points within four voxels to one. Then we mask the velocity field
with this zero/one data set, which extracts velocity values from the high vorticity
regions and zeros out all other regions. The resultant data set contains a subset of
velocity where each velocity vector retained contains a point coordinate to define
its spatial location. The data can be utilized to reconstruct Q-criterion and iso-
surfaces at or above the specified threshold. Figure 3 illustrates a visualization of
dilated velocity volume utilizing the Q threshold of 783. Figure 4 demonstrates
the ability to extract contours at higher thresholds from the thresholded velocity
volume shown in Fig. 3.

4.3 Lossy Compression

While thresholding works well for scientists studying events specifically within
extreme vortical regions, it may be necessary to save information outside those
regions for post analysis. For example, vortex precursors may occur in initially
weak vortical regions, which then act as seeds for subsequent vortex intensifi-
cation. In addition, a researcher may need information about conditions where
velocity may be relatively high, which may not be contained in our thresholded
data due to the fact that vorticity is a measurement of curl or rotation. We
present a method for storing all of the data in a lossy compressed form for post
analysis and visualization. This does not provide exact raw simulation data,
however, it provides data that is within a defined error tolerance. The error
introduced on these data will be shown to be insignificant for the purposes of
visualization, making the data desirable for post visualization analysis.

In order to store the data in a lossy form, we utilize a recent compression algo-
rithm, zfp [12], designed specifically for the compression of multi-dimensional,
floating-point scientific data. It contains various options for compression, one of
which is to specify an absolute error tolerance. Utilizing this method at an error
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Fig. 3. Visualization of a 256 cube of dilated velocity in regions above Q threshold
of 783

Fig. 4. Iso-surface extraction from dilated velocity threshold at Q thresholds 1700 (left)
and 2500 (right)

tolerance of 10−1 on the velocity data (the root-mean-square value of the veloc-
ity fluctuations is 0.686 while its mean is zero), we achieve an effective reduction
of one order of magnitude from the raw velocity data. We note that this reduced
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dataset is intended for post analysis and visualization, and cannot be used as
checkpoint data to restart the simulation.

While zfp operates on one scalar component, it contains a striding option
that allows us to compress all three velocity vector components and store them
as separate compressed blocks of data. We extended the Visualization Toolkit
(VTK) [25] compression options to provide dimensions and component sizes to
the compressor in order for zfp to have the information required to compress the
data. Utilizing the striding option, each of the three velocity vector components
(x, y, z) are compressed separately and stored as concatenated binary data. The
data sizes for each axis are stored within the VTK XML file format as metadata
in order for VTK to correctly decompress the data. During decompression, each
component is decompressed into a separate array and interleaved back to their
original representation creating a VTK float array of velocity vector values. If
pressure or another scalar field were added, this could be compressed as well,
and we would expect similar results.

5 Experimental Results

Experiments utilize the Visualization Toolkit version 7.1.0 by Kitware [25]. While
we focus our experiments on finding high-Q vortical regions, VTK provides the
flexibility of performing many other scientific computations on the simulation
data. VTK provides a rich toolset for analysis and visualization. In addition to
VTK, we utilize the zfp compression algorithm [12]. We compiled this natively
into VTK in order to provide 3 dimensional lossy compression on VTK struc-
tured grid data.

We conducted all experiments on nodes in the Los Alamos National Lab
development cluster called Darwin. We began by utilizing a partition built to
emulate the performance of burst buffer nodes on Trinity which is used to test
development software, such as the hierarchical input/output library [9]. Each
node is equipped with a 6-core, 12-thread Intel Xeon E5-2630 2.30 GHz processor,
128 GB of RAM, and an Intel P3700 400 GB SSD that is rated for 2.8 GB/s of
sequential throughput and up to 460 K random read IOPs.

5.1 Dilated Threshold

We perform a threshold and dilation velocity cutout operation on a cluster with
SSD burst buffers that contains a single timestep of raw simulation data. We
vary the cube size into which we decompose the problem in order to find the
cube size that maximizes throughput. Smaller cubes reduce I/O throughput
and reduce skew and memory pressure. Larger cubes increase I/O throughput,
but reduce the efficacy of caching, particularly on smaller processor caches up
the memory hierarchy. We find that a cube size of 2563 maximizes throughput
for this computation (Table 2). Above 1923, performance is stable and degrades
slightly above 2563, which we attribute to increased cache misses.
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Table 2. Comparison of I/O and computation times in seconds when processing a
single cube

Size Read Q Comp Thresh Write Total Throughput

64 .029 .117 .0154 .0266 .222 13.51 MB/s

128 .043 .877 .064 .136 1.34 17.91 MB/s

192 .080 2.83 .206 .542 4.46 19.32 MB/s

256 .136 6.15 .399 1.08 9.522 20.17 MB/s

384 .373 20.68 2.23 5.67 34.337 18.87 MB/s

512 .788 48.76 5.31 13.17 78.86 19.47 MB/s

Averaged over all cubes, the extracted thresholded velocity data is reduced
by a factor of 29 times. The raw size of 2563 of velocity data is 192 MB and the
dilated extraction averages 6.7 MB. As mentioned previously, if we increase the
threshold, the extracted data size will decrease.

Based on the throughput in Table 2, we measured the resources required to
perform a dilated velocity extraction of an 81923 grid on the order of ten minutes.
Our results show that this can be done utilizing 32 nodes with 10 cores each (320
cores) and 6 TB of SSD storage to achieve a full extraction of the data within
the time constraint.

Next, we performed read tests on the 32 heterogeneous nodes to compare the
local hard drive throughput with the SSD. Of these nodes, 15 did not contain
a spinning hard drive therefore there are no hard disk throughput results for
those nodes. This test demonstrates the performance gains of the burst buffer
by comparing it to the node’s local hard disk. The burst buffer was between 5
to 20 times faster depending on the node as shown in Fig. 5.

Fig. 5. Burst buffer throughput compared to hard disk throughput

5.2 Lossy Compression with zfp

The compression algorithm zfp provides an order of magnitude reduction by com-
pressing scientific floating point data where the values spatially near each other
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have low variance. Although it provides many features like in-memory compres-
sion, we specifically use it for compressing data for storage with a predefined
lossy tolerance of 10−1. At this tolerance we achieve an order of magnitude
of compression with visually lossless reconstruction, which is far superior to the
default ZLib library utilized in VTK. We also note that while the error threshold
is set at 10−1 our reconstructed data maximum error was .017. Table 3 shows
the resulting size of compressing different sized cubes of isotropic turbulence
data, along with the amount of time required to compress the cube. Visually the
results of the lossy compression are indistinguishable from the original data as
show in Fig. 6.

Table 3. zfp compression by cube and time

Cube size Raw size zfp size Total time (s) Reduction Throughput

128 25 MB 2.3 MB .334 ×10.9 74.85 MB/s

192 81 MB 8.1 MB 1.05 ×10 77.14 MB/s

256 192 MB 18MB 2.09 ×10.7 91.87 MB/s

zfp provides the ability to store the entire dataset in a lossy compressed mode.
Each cube is saved as a VTK Image Data file which uses a few lines of XML for
metadata about the object (for example, dimensions and array names), and a
VTK float array that is compressed using zfp and saved as binary appended data
to the XML file. Figure 6 shows a surface representation of a 256 cube of velocity
data. The left figure is the raw velocity magnitude, while the right figure was

Fig. 6. Isosurface of a 256 cube of isotropic turbulence velocity data. Left: Raw velocity.
Right: zfp compressed at 10−1 tolerance.
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compressed by zfp and then decompressed for visual representation. The two
cubes are indistinguishable in this figure and also when viewing at all zoom
levels. Visual equivalence holds when deriving fields of interest from compressed
velocity data, including Q-criterion and vorticity magnitude.

5.3 Compressing Dilated Threshold with zfp

We also evaluate using zfp as a compressor for threshold reduced data as com-
pared with VTK’s default ZLib and we conclude that ZLib is preferable; it is
lossless and provides comparable compression. The data output from a threshold
is sparse and best represented by an irregular grid.

While zfp does not work on an unstructured grid, version 0.5 added the
capability of reducing storage of a block of 43 values to one bit if all values within
a block are below the error tolerance, since then the block can be approximated
as all zeros. To test zfp on sparse data, we performed another experiment to
determine if zfp can be used instead of ZLib for our dilated threshold extraction.
In this test, we compress a 2563 block of dilated thresholded data. The data is
stored on a structured grid with zero values where the threshold was not met.
Utilizing ZLib compression, the result is 6.7 MB, and using zfp it was reduced to
5.8 MB. This compression was performed using a loss threshold of 1×10−1. Using
a decreased threshold of 1×10−2 resulted in a file size of 8.1 MB. Since the lossy
compression did not create a significant reduction in data size, we recommend
using a lossless compressor for dilated velocity extraction.

5.4 Multiprocessing Simulation Outputs

We move from microbenchmarks on individual cubes, to the parallel extraction
of an entire simulation timestep across many nodes in order to demonstrate that
extraction can meet the time constraints of data lifetimes in burst buffers. Our
target is to scale these results to the Trinity supercomputer. However, we have
to use the development cluster as a proxy. We start by examining the amount of
parallelism appropriate for a single burst buffer node. Our treatment examines
the amount of parallelism per node to maximize throughput. We initially utilized
a node for testing that contained 6 cores and an SSD burst buffer. The results
of executing velocity extraction in parallel are shown in Table 4.

The first test labled “Single” in the table displays the times for a single
threaded extraction running on a single core. This test was performed in order
to benchmark throughput on a single core. Next we performed the extraction in
parallel across six cores. While the overall throughput is the combined speed of
all six cores (approximately 93 MB/s), the individual throughput per core is less
than when the extraction is performed on a single thread. Since I/O is shared
on the burst buffer and memory, each core must compete for disk and memory
I/O. The data shows that the resultant per core slowdown is about 25% for disk
I/O and 20% for Q-Criterion computation. These results informs us that adding
more cores to an extraction node will not linearly improve extraction throughput
due to memory I/O contention.
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Table 4. 256 Cube: Single vs. Multiprocessing I/O by core and averaged (in seconds).
Multi throughput is the sum of throughput for all cores.

Core Read Q Comp Write Total Speed

Single .136 6.55 1.08 9.522 20.17 MB/s

Core 0 .179 8.28 1.81 12.34 15.56 MB/s

Core 1 .179 8.29 1.82 12.37 15.52 MB/s

Core 2 .181 8.37 1.77 12.38 15.51 MB/s

Core 3 .180 8.35 1.79 12.40 15.48 MB/s

Core 4 .183 8.37 1.79 12.41 15.47 MB/s

Core 5 .179 8.15 1.79 12.42 15.46 MB/s

Multi .180 8.30 1.80 12.39 93 MB/s (total)

In the next step of testing, we utilized 32 burst buffer nodes to perform
the computation in parallel on the number of cubes required to build an entire
81923 timestep. We performed dilated velocity extraction and zfp compression
on 32,768 blocks of 2563 raw velocity data (1024 blocks per node). Figure 7 shows
the results of the total extraction time by node and extraction type. Since the
Darwin cluster is heterogeneous, the number of cores per node are specified.
As evidenced by nodes 27 through 32, four cores were not enough to complete
either extraction in under ten minutes. However, nodes 1 through 26 were able
to complete each extraction in less than ten minutes.

Fig. 7. Times per node for extraction and compression



Extreme Event Analysis in Next Generation Simulation Architectures 291

For in-transit analysis and visualization, the extracted data could be read in
place by a viewer such as Paraview to monitor the simulation during the run, and
burst buffers provide fast reads in this process. For extracted data that needs
to be saved for long term storage, a secondary process copies the results to a
shared storage. The extracted data is significantly reduced in size, which also
reduces the I/O burden when writing to shared storage. Due to the reduction,
the write would not interfere with the simulation.

6 Recommendations for Exascale Simulations

Prior to performing an exascale simulation with the intent to store significant
data, it is important to determine what data must be extracted to perform the
post scientific analysis. Thus far, we have proposed a method to gather velocity
data that contain high vorticity in a scientific dataset, while still capturing a
broad view of the overall simulation utilizing a modern lossy data compression
algorithm. These two methods combined present a state-of-the-art way to extract
useful data from a world class computational fluid dynamics simulation. The
lossy compression method with zfp can be used on virtually any scientific dataset
that is on a dense structured grid. The compression works optimally on 3D data,
but also can work on 2D and 1D floating point datasets. Our extraction tech-
niques present a way forward on how to handle petabyte or even exabyte scale
information. The essential part of these exascale simulations is to have a method
to extract relevant data utilizing the architecture of modern supercomputers.
Having a plan and understanding the data necessary to make scientific discover-
ies in the future is the key to gathering useful data from an exascale simulation.

7 Conclusion

We have demonstrated the ability to extract scientific data from a world class
simulation using burst buffer SSD technology. We demonstrated a two-pronged
approach that captures velocity in highly vortical regions along with a lossy
compressed representation of the entire velocity dataset for concise storage and
future scientific analysis. We demonstrated that we can reduce data by at least an
order of magnitude for full field lossy compressed form, and nearly 30× reduction
for dilated velocity in high vorticity regions by utilizing the burst-buffer to read
raw data and writing extracted and/or compressed data to shared storage. The
extracted data can be utilized for various scientific applications from visualiza-
tion to tracking highly vortical regions. The lossy compression can be utilized on
any dense grid dataset, therefore this method is not limited to turbulence data.

8 Future Work

Since we have outlined and demonstrated the ability to create a meaningful
dataset of an exascale simulation, we intend to gather data from an exascale
simulation and ingest it into the Johns Hopkins Turbulence Databases a publicly
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accessible database, providing world-wide access to this compressed and high-
Q velocity region dataset. The two-pronged approach will provide scientists the
ability to query and perform analysis across the entire exascale simulation result.
In addition, we will explore more efficient representations of sparse data. The
vtkUnstructuredGrid primitive we utilized stores real space coordinates that
result in each velocity vector containing three additional floating point coor-
dinates. A custom representation method that more efficiently represents the
points would allow us to even further reduce the space required for this data.
In this work we defined a threshold for the simulation, however this may not be
optimal in detecting all vortex structures. Our methodology could be expanded
to utilize an adaptive threshold for feature extraction as explained in [26]. As
scientific needs emerge and new practices for detecting high-vorticity regions are
introduced, they could be implemented using our approach to feature extraction.
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Abstract. This paper presents a survey of architectural features among
four generations of Intel server processors (Sandy Bridge, Ivy Bridge,
Haswell, and Broadwell) with a focus on performance with floating point
workloads. Starting at the core level and going down the memory hier-
archy we cover instruction throughput for floating-point instructions, L1
cache, address generation capabilities, core clock speed and its limita-
tions, L2 and L3 cache bandwidth and latency, the impact of Cluster on
Die (CoD) and cache snoop modes, and the Uncore clock speed. Using
microbenchmarks we study the influence of these factors on code perfor-
mance. We show that the energy efficiency of the LINPACK and HPCG
benchmarks can be improved significantly by tuning the Uncore clock
speed without sacrificing performance, and that the Graph500 bench-
mark performance may benefit from a suitable choice of cache snoop
mode settings.

Keywords: Intel architecture · Performance modeling · LINPACK ·
HPCG · Graph500

1 Introduction

Intel Xeon server CPUs dominate in the commodity HPC market. Although
their microarchitecture is ubiquitous and can also be found in mobile and desk-
top devices, many developers of numerical software hardly care about architec-
tural details and rely on the compiler to produce “decent” code with “good”
performance. If we actually want to know what “good performance” means we
have to build analytic models that describe the interaction between software
and hardware. Despite the necessary simplifications, such models can give useful
hints towards the relevant bottlenecks of code execution and thus point to viable
optimization approaches. The Roofline model [6,22] and the Execution-Cache-
Memory (ECM) model [5,18] are typical examples. Analytic modeling requires
simplified machine and execution models, with details about properties of execu-
tion units, caches, memory, etc. Much of this data is provided by manufacturers,
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance 2017, LNCS 10266, pp. 294–314, 2017.
DOI: 10.1007/978-3-319-58667-0 16
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but many relevant features can only be understood via microbenchmarks, either
because they are not documented or because the hardware cannot leverage its full
potential in practice. One simple example is the maximum memory bandwidth
of a chip, which can be calculated from the number, frequency, and width of
the DRAM channels but which, in practice, may be significantly lower than this
absolute limit. Hence, microbenchmarks such as STREAM [13] or likwid-bench
[20] are used to measure the limits achievable in practice.

There has been some convergence in processor microarchitecures for high per-
formance computing, but the latest CPU models show interesting differences in
their performance-relevant features. Building good analytic performance models
and, in general, making sense of performance data, requires intimate knowledge
of such details. The main goal of this paper is to provide a coverage and crit-
ical discussion of those details on the latest four Intel architecture generations
for server CPUs: Sandy Bridge (SNB), Ivy Bridge (IVB), Haswell (HSW), and
Broadwell (BDW). The actual CPU models used for the analysis are described
in Sect. 3.1 below.

1.1 Performance on Modern Multicore CPUs

Out of the many possible approaches to performance analysis and optimiza-
tion (coined performance engineering [PE]) we favor concepts based on analytic
performance models. For recent server multicore designs the ECM performance
model allows for a very accurate description of single-core performance and scal-
ability. In contrast to the Roofline model it drops the assumption of a single
bottleneck for the steady-state execution of a loop. A brief introduction to the
ECM model is given in Sect. 2 below. For a complete coverage we refer to [8,18].
The model has been shown to work well for the analysis of implementations of
several important computational kernels [2,9,18,19,23].

In order to construct analytic models accurately, data about the capabilities
of the microarchitecture and how it interacts with the code at hand is needed.
For floating-point centric code in scientific computing, maximum throughput
and latency numbers for arithmetic and LOAD/STORE instructions are most
useful in all their vectorized and non-vectorized, single (SP) and double preci-
sion (DP) variants. On Intel multicore CPUs up to Haswell, this encompasses
scalar, streaming SIMD extensions (SSE), advanced vector extensions (AVX),
and AVX2 instructions. Modeling the memory hierarchy in the ECM model
requires the maximum data bandwidth between adjacent cache levels (assuming
that the hierarchy is inclusive) and the maximum (saturated) memory band-
width. As for the caches it is usually sufficient to assume the maximum docu-
mented theoretical bandwidth (presupposing that all prefetchers work perfectly
to hide latencies), although latency penalties might apply [9]. The main mem-
ory bandwidth and latency may depend on the cluster-on-die (CoD) mode and
cache snoop mode settings. Finally, the latest Intel CPUs work with at least
two clock speed domains: one for the core (or even individual cores) and one
for the Uncore, which includes the L3 cache and memory controllers. Both are
subject to automatic changes; in case of AVX code on Haswell and later CPUs
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the guaranteed baseline clock speed is lower than the standard speed rating of
the chip. The performance and energy consumption of code depends crucially
on the interplay between these clock speed domains. Finally, especially when
it comes to power dissipation and capping, considerable variations among the
specimen of the same CPU model can be observed.

All these intricate architectural details influence benchmark and application
performance, and it is insufficient to look up the raw specs in a data sheet in
order to understand this influence.

1.2 Related Work

There is a large number of papers dealing with details in the architecture of CPUs
and their impact on performance and energy consumption. In [1] the authors
assessed the capabilities of the then-new Nehalem server processor for work-
loads in scientific computing and compared its capabilities with its predecessors
and competing designs. In [17], tools and techniques for measuring and tuning
power and energy consumption of HPC systems were discussed. The QuickPath
Interconnect (QPI) snoop modes on the Haswell EP processor were investigated
in [15]. Energy efficiency features, including the AVX and Uncore clock speeds,
on the same architecture were studied in [4,7]. Our work differs from all those by
systematically investigating relevant architectural features, from the core level
down to memory, via microbenchmarks in view of analytic performance mod-
eling as well as important benchmark workloads such as LINPACK, Graph500,
and HPCG.

1.3 Contribution

Apart from confirming or highlighting some documented or previously published
findings, this paper makes the following new contributions:

– We present benchmark results showing the improvement in the performance
of the vector gather instruction from HSW to BDW. On BDW it is now
advantageous to actually use the gather instruction instead of “emulating” it.

– We fathom the capabilities of the L2 cache on all four microarchitectures and
establish practical limits for L2 bandwidth that can be used in analytic ECM
modeling. These limits are far below the advertised 64 B/cy on HSW and
BDW.

– We study the bandwidth scalability of the L3 cache depending on the Clus-
ter on Die (CoD) mode and show that, although the parallel efficiency for
streaming code is never below 85%, CoD has a measurable advantage over
non-CoD.

– We present latency data for all caches and main memory under various
cache snoop modes and CoD/non-CoD. We find that although CoD is best
for streaming and non-uniform memory access (NUMA) aware workloads in
terms of latency and bandwidth, highly irregular, NUMA-unfriendly code
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such as the Graph500 benchmark benefits dramatically from non-CoD mode
with Home Snoop and Opportunistic Snoop Broadcast by as much as 50%
on BDW.

– We show how the Uncore clock speed on HSW and BDW has considerable
impact on the power consumption of bandwidth- and cache-bound code, open-
ing new options for energy efficient and power-capped execution.

2 A Brief Introduction to the ECM Performance Model

In order to get a prediction of the single-core performance of a loop, the data
transfer volumes through all levels of the cache hierarchy must be known. For
instance, for a certain number of iterations a loop may transfer five cache lines
(CLs) between L2 and L1, three between L3 and L2, and another three between
memory and L3 (assuming an inclusive cache hierarchy here; the model is not
restricted to inclusive caches, though). Each of those transfers takes a certain
amount of cycles, which can be obtained by dividing the data volume by the
theoretical bandwidth in bytes per cycle for each data path. In the example
above, if the data paths between adjacent caches have a bandwidth of 32 bytes/cy
and the CL size is 64 bytes, we get TL1L2 = 10 cy and TL2L3 = 6 cy. For main
memory transfers we use the saturated full-chip memory bandwidth (as obtained,
e.g., from a suitable streaming benchmark) so that for a memory bandwidth of
50 GByte/s we get TL3Mem = 3 × 64 bytes/50GByte/s × f , where f is the clock
speed of the CPU in cycles per second.

Instruction execution on data in L1 takes a number of cycles, which can be
predicted by manual analysis or by tools such as the Intel Architecture Code
Analyzer (IACA)1. Here we distinguish between non-overlapping time (TnOL),
which encompasses data transfers between the L1 and the registers, and over-
lapping time (TOL) for all the rest such as arithmetic, branching, etc.

Putting all these contributions together to get a prediction for execution time
requires a machine model. The machine model for current Intel Xeon CPUs is
to add all the data transfer contributions (including TnOL) down to the level
of the memory hierarchy where the working set resides to get a data trans-
fer time prediction Tdata and compare this to TOL. The predicted time is then
max (TOL, Tdata). Other architectures call for different machine models; e.g., on
the IBM Power8 most of the data transfer contributions overlap with each other,
while on the Intel Xeon Phi “Knights Corner” we have to augment the transfer
times with additional latency penalties [9].

A prediction for multiple cores is obtained by assuming perfect scalability
until a bandwidth bottleneck (typically the main memory bandwith) is satu-
rated. In absence of other scalability limiters such as load imbalance, this makes
it possible to determine the number of cores at which the performance will
saturate.

The crucial difference between the ECM model and the Roofline model is that
Roofline requires maximum bandwidth measurements for all possibly relevant
1 http://software.intel.com/en-us/articles/intel-architecture-code-analyzer/.

http://software.intel.com/en-us/articles/intel-architecture-code-analyzer/
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data paths on the chip. A prediction is then obtained by taking the execution
time determined by the data path that takes the longest time to deliver the data
or the in-core execution, assuming perfect overlap of all contributions. The ECM
model ideally only requires one measured value, which is the saturated memory
bandwidth. All other measurable bandwidths are predicted.

3 Test Bed

3.1 Hardware Description

All measurements were performed on standard two-socket Intel Xeon servers. A
summary of key specifications of the four generations of processors is shown in
Table 1. According to Intel’s “tick-tock” model, a “tick” represents a shrink of
the manufacturing process technology; however, it should be noted that “ticks”
are often accompanied by minor microarchitectural improvements while a “tock”
usually involves larger changes.

SNB (a “tock”) first introduced AVX, doubling the single instruction, multi-
ple data (SIMD) width from SSE’s 128 bit to 256 bit. One major shortcoming of
SNB is directly related to AVX: Although the SIMD register width has doubled
and a second LOAD unit was added, data path widths between the L1 cache
and individual LOAD/STORE units were left at 16 B/cy. This leads to AVX
stores requiring two cycles to retire on SNB, and AVX LOADs block both units.
IVB, a “tick”, saw an increase in core count as well as a higher memory clock;
in addition, IVB brought speedups for several instructions, e.g., floating-point
(FP) divide and square root; see Table 2 for details.

HSW, a “tock”, introduced AVX2, extending the existing 256 bit SIMD vec-
torization from floating-point to integer data types. Instructions introduced by

Table 1. Key test machine specifications. All reported numbers taken from data sheets.

Microarchitecture Sandy bridge-EP Ivy bridge-EP Haswell-EP Broadwell-EP

Shorthand SNB IVB HSW BDW

Chip model Xeon E5-2680 Xeon E5-2690 v2 Xeon E5-2695 v3 E5-2697 v4

Release date Q1/2012 Q3/2013 Q3/2014 Q1/2016

Base freq. 2.7GHz 3.0GHz 2.3GHz 2.3GHz

Max all core turbo freq. — — 2.8GHz 2.8GHz

AVX base freq. — — 1.9GHz 2.0GHz

AVX all core turbo freq. — — 2.6GHz 2.7GHz

Cores/threads 8/16 10/20 14/28 18/36

Latest SIMD extensions AVX AVX AVX2, FMA3 AVX2, FMA3

Memory configuration 4 ch. DDR3-1600 4 ch. DDR3-1866 4 ch. DDR4-2133 4 ch. DDR4-2400

Theor. mem. bandwidth 51.2GB/s 59.7GB/s 68.2GB/s 76.8GB/s

L1 cache capacity 8 × 32 kB 10 × 32 kB 14 × 32 kB 18 × 32 kB

L2 cache capacity 8 × 256 kB 10 × 256 kB 14 × 256 kB 18 × 256 kB

L3 cache capacity 20MB (8 × 2.5MB) 25MB (10 × 2.5MB) 35MB (14 × 2.5MB) 45MB (18 × 2.5MB)

L1→Reg bandwidth 2 × 16B/cy 2 × 16B/cy 2 × 32B/cy 2 × 32B/cy

Reg→L1 bandwidth 1 × 16B/cy 1 × 16B/cy 1 × 32B/cy 1 × 32B/cy

L1↔L2 bandwidth 32B/cy 32B/cy 64B/cy 64B/cy

L2↔L3 bandwidth 32B/cy 32B/cy 32B/cy 32B/cy



An Analysis of Core- and Chip-Level Architectural Features 299

the fused multiply-add (FMA) extension are handled by two new, AVX-capable
execution units. Data path widths between the L1 cache and registers as well
as the L1 and L2 caches were doubled. A vector gather instruction provides a
simple means to fill SIMD registers with non-contiguous data, making it easier
for the compiler to vectorize code with indirect accesses. To maintain scalabil-
ity of the core interconnect, HSW chips with more than eight cores move from
a single-ring core interconnect to a dual-ring design. At the same time, HSW
introduced the new CoD mode, in which a chip is optionally partitioned into two
equally sized NUMA domains in order to reduce latencies and increase scalabil-
ity. Starting with HSW, the system’s QPI snoop mode can also be configured.
HSW no longer guarantees to run at the base frequency with AVX code. The
guaranteed frequency when running AVX code on all cores is referred to as
“AVX base frequency,” which can be significantly lower than the nominal fre-
quency [12,14]. Also there is a separation of frequency domains between cores
and Uncore. The Uncore clock is now independent and can either be set auto-
matically (when Uncore frequency scaling (UFS) is enabled) or manually via
model specific registers (MSRs).

As a “tick,” BDW, the most recent Xeon-EP processor, offers minor archi-
tectural improvements. Floating-point and gather instruction latencies and
throughput have partially improved. The dual-ring design was made symmetric
and an additional QPI snoop mode is available.

3.2 Software and Benchmarks

The benchmarks LINPACK, HPCG, and Graph500 were chosen because they are
de facto industry standards and are particularly suited to evaluate a chip’s peak
Flop/s, memory bandwidth, and latency properties. High-level language bench-
marks (Graph500, HPCG) were compiled using Intel ICC 16.0.3. For Graph500
we used the reference implementation in version 2.1.4, and for LINPACK we ran
the Intel-provided binary contained in MKL 2017.1.013, the most recent version
available at the time of writing.

The LIKWID2 tool suite in its current stable version 4.1.2 was employed
in many of our experiments. All low-level benchmarks consisted of hand-written
assembly. When available (e.g., for streaming kernels such as STREAM triad and
others) we used the assembly implementations in the likwid-bench microbench-
marking tool. Latency measurements in the memory hierarchy were done with
all prefetchers turned off (via likwid-features) and a pointer chasing code
that ensures consecutive cache line accesses. Energy consumption measurements
were taken with the likwid-perfctr tool via the RAPL (Running Average
Power Limit) interface, and the clock speed of the CPUs was controlled with
likwid-setFrequencies.

2 http://tiny.cc/LIKWID.

http://tiny.cc/LIKWID


300 J. Hofmann et al.

4 In-Core Features

4.1 Core Frequency

Starting with HSW, Intel chips have provided different base and turbo frequen-
cies for AVX and SSE or scalar instruction mixes. This is due to the higher power
requirement of using all SIMD lanes in case of AVX. To reflect this behavior,
Intel introduced a new frequency nomenclature for these chips.

The “base frequency,” also known as the “non-AVX base frequency” or “nom-
inal frequency” is the minimum frequency that is guaranteed when running scalar
or SSE code on all cores. This is also the frequency the chip is advertised with,
e.g., 2.30 GHz for the Xeon E5-2695v3 in Table 1. The maximum frequency that
can be achieved when running scalar or SSE code on all cores is called “max
all core turbo frequency.” The “AVX base frequency” is the minimum frequency
that is guaranteed when running AVX code on all cores and is typically signif-
icantly lower than the (non-AVX) base frequency. Analogously, the maximum
frequency that can be attained when running AVX code on all cores is called
“AVX max all core turbo frequency.”

On HSW, at least core running AVX code resulted in a chip-wide frequency
restriction to the AVX max all core turbo frequency. On BDW, cores running
scalar or SSE code are allowed to float between the non-AVX base and max all
core turbo frequencies even when other cores are running AVX code.

All relevant values for the HSW and BDW specimen used can be found in
Table 1. According to official documentation the actually used frequency depends
on the workload; more specifically, it depends on the percentage of AVX instruc-
tions in a certain instruction execution window. To get a better idea about
what to expect for demanding workloads, LINPACK and FIRESTARTER [3]
were selected to determine those frequencies. The maximum frequency differ-
ence between both benchmarks was 20 MHz, so Fig. 1 shows only results obtained
with LINPACK. Figure 1a shows that HSW drops below the non-AVX base fre-
quency of 2.3 GHz, but stays well above the AVX base frequency of 1.9 GHz
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Fig. 1. Attained chip frequency during LINPACK runs on all cores on (a) BDW and (b)
HSW. (c) Variation of clock speed and package power among all 1456 Xeon E5-2630v4
CPUs in RRZE’s “Meggie” cluster running LINPACK.
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while consuming 119.4 W out of a 120 W TDP. BDW, shown in Fig. 1b, can
maintain a frequency well above the AVX and the non-AVX base frequency for
workloads running at its TDP limit of 145 W (measured package power during
stress tests was 144.8 W). When running SSE BDW consumes 141.8 W and man-
ages to run at the max all core turbo frequency of 2.8 GHz. On HSW, running
LINPACK with SSE instructions still keeps the chip at its TDP limit (119.7 W
out of 120 W); the attained frequency of 2.6 GHz is slightly below the max all
core turbo frequency of 2.7 GHz.

While it might be tempting to generalize from these results, we must empha-
size that statistical variations even between specimen of the same CPU type are
very common [21]. When examining all 1456 Xeon E5-2630v4 (10-core, 2.2 GHz
base frequency) chips of RRZE’s new “Meggie” cluster,3 we found significant
variations across the individual CPUs. The chip has a max all core turbo and
AVX max all core turbo frequency of 2.4 GHz [14]. Figure 1c shows each chip’s
frequency and package power when running LINPACK with SSE or AVX on all
cores. With SSE code, each chip manages to attain the max all core turbo fre-
quency of 2.4 GHz. However, a variation in power consumption can be observed.
When running AVX code, not all chips reach the defined peak frequency but stay
well above the AVX base frequency of 1.8 GHz. Some chips do hit the frequency
ceiling; for these, a strong variation can be observed in the power domain.

4.2 Instruction Throughput and Latency

Accurate predictions of instruction execution (i.e., how many clock cycles it
takes to execute a loop body assuming a steady state situation with all data
coming from the L1 cache) are notoriously difficult in all but the simplest cases,
but they are needed as input for analytic models. As a “lowest-order” and most
optimistic approximation one can assume full throughput, i.e., all instructions
can be executed independently and are dynamically fed to the execution ports
(and the pipelines connected to them) by the out-of-order engine. The pipeline
that takes the largest number of cycles to execute all its instructions determines
the runtime. The worst-case assumption would be an execution fully determined
by the critical path through the code, heeding all dependencies. In practice, the
actual runtime will be between these limits unless other bottlenecks apply that
are not covered by the in-core execution, such as data transfers from beyond
the L1 cache, instruction cache misses, etc. Even if a loop body contains strong
dependencies the throughput assumption may still hold if there are no loop-
carried dependencies.

Calculating the throughput and critical path predictions requires informa-
tion about the maximum throughput and latency of all relevant instructions as
well as general limits such as decoder/retirement throughput, L1I bandwidth,
and the number and types of address generation units. The Intel Architecture
Code Analyzer (IACA) can help with this, but the software and its models are
proprietary with an unclear future development path and they do not always

3 http://www.hpc.rrze.fau.de/systeme/meggie-cluster.shtml.

http://www.hpc.rrze.fau.de/systeme/meggie-cluster.shtml
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Table 2. Measured worst-case latency and inverse throughput for floating-point arith-
metic instructions. For all of these numbers, lower is better.

Latency [cy] Inverse throughput [cy/inst.]

µarch BDW HSW IVB SNB BDW HSW IVB SNB

vdivpd (AVX) 24 35 35 45 16 28 28 44

divpd (SSE) 14 20 20 22 8 14 14 22

divsd (scalar) 14 20 20 22 4.5 14 14 22

vdivps (AVX) 17 21 21 29 10 14 14 28

divps (SSE) 11 13 13 14 5 7 7 14

divss (scalar) 11 13 13 14 2.5 7 7 14

vsqrtpd (AVX) 35 35 35 44 28 28 28 43

sqrtpd (SSE) 20 20 20 23 14 14 14 22

sqrtsd (scalar) 20 20 20 23 7 14 14 22

vsqrtps (AVX) 21 21 21 23 14 14 14 22

sqrtps (SSE) 13 13 13 15 7 7 7 14

sqrtss (scalar) 13 13 13 15 4 7 7 14

vrcpps (AVX) 7 7 7 7 2 2 2 2

rcpps (SSE, scalar) 5 5 5 5 1 1 1 1

*add* 3,4† 3 3 3 1 1 1 1

*mul* 3 5 5 5 0.5 0.5 1 1

*fma* 5,6‡ 5,6§ — — 0.5 0.5 — —
†SP/DP AVX addition: 3 cycles; SP/DP SSE and scalar addition: 4 cycles
‡ SP/DP AVX FMA: 5 cycles; SP/DP SSE and scalar FMA: 6 cycles
§SP scalar FMA: 6 cycles; all other: 5 cycles

yield accurate predictions. Moreover, it can only analyze object code and does
not work on the high-level language constructs. Thus one must often revert to
manual analysis to get predictions for the best possible code, even if the com-
piler cannot produce it. In Table 2 we give worst-case4 measured latency and
inverse throughput numbers for arithmetic instructions in AVX, SSE, and scalar
mode. In the following we point out some notable changes over the four processor
generations.

The most profound change happened in the performance of the divide units.
From SNB to BDW we observe a massive decrease in latency and an almost three-
fold increase in throughput for AVX and SSE instructions, in single and double
precision alike. Divides are still slow compared to multiply and add instructions,
of course. The fact that the divide throughput per operation is the same for
AVX and SSE is well known, but with BDW we see a significant rise in scalar

4 The latencies of some instructions (e.g., FP division) depend on their operands.
When working with “trivial” denominators, such as whole numbers, latency can be
significantly lower than when operating on non-trivial floating-point numbers.
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divide throughput, even beyond the documented limit of one instruction every
five cycles. The scalar square root instruction shows a similar improvement, but
is in line with the documentation.

The standard multiply, add, and fused multiply-add instructions have not
changed dramatically over four generations, with two exceptions: Together with
the introduction of FMA instructions with HSW, it became possible to execute
two plain multiply (but not add) instructions per cycle. The latency of the add
instruction in scalar and SSE mode on BDW has increased from three to four
cycles; this result is not documented by Intel for BDW but announced for AVX
code in the upcoming Skylake architecture. The fma instruction shows the same
characteristic (latency increase from 5 to 6 cycles when using SSE or scalar
mode).

One architectural feature that is not directly evident from single-instruction
measurements is the number of address generation units (AGUs). Up to IVB
there are two such units, each paired with a LOAD unit with which it shares
a port. As a consequence, only two addresses per cycle can be generated. HSW
introduced a third AGU on the new port 7, but it can only handle simple
addresses for STORE instructions, which may lead to some restrictions. See
Sect. 4.3 for details.

4.3 L1 Cache/AGU

The cores of all four microarchitectures feature two load units and one store unit.
The data paths between each unit and the L1 cache are 16 B on SNB and IVB,
and 32 B on HSW and BDW. The theoretical bandwidth is thus 48 B/cy on SNB
and IVB and 96 B/cy on HSW and BDW; however, several restrictions apply.

An AVX vectorized STREAM triad benchmark uses two AVX loads, one AVX
FMA, and one AVX store instruction to update four DP elements. On HSW and
BDW, only two address generation units (AGUs) are capable of performing the
necessary address computations, i.e., (base + scaled index + offset), typically
used in streaming memory accesses; HSW’s newly introduced third store AGU
can only perform offset computations. This means that only two addresses per
cycle can be calculated, limiting the L1 bandwidth to 64 B/cy. STREAM triad
performance using only two AGUs is shown in Fig. 2a. One can make use of
the new AGU by using one of the “fast LEA” units (which can perform only
indexed and no offset addressing) to pre-compute an intermediate address, which
is then used by the simple AGU to complete the address calculation. This way
both AVX load units and the AVX store unit can be used simultaneously. When
the store is paired with address generation on the new store AGU, both micro-
ops are fused into a single micro-op. This means that the four micro-op per
cycle front end retirement constraint should not be a problem: in each cycle two
AVX load instructions, the micro-op fused AVX store instruction, and one AVX
FMA instruction is retired. With sufficient unrolling, loop instruction overhead
becomes negligible and the bandwidth should approach 96 B/cy. Figure 2 shows,
however, that micro-op throughput still seems to be the bottleneck because
bandwidth can be further increased by removing the FMA instructions from the
loop body.



304 J. Hofmann et al.

0 10 20 30
Dataset size [kB]

0

20

40

60

80

100
B

an
dw

id
th

 [
by

te
/c

yc
le

]

two AGUs
three AGUs
three AGUs,
no arithmetic

96 B/c limit

(a)

0 10 20 30
Dataset size [kB]

0

20

40

60

80

100

B
an

dw
id

th
 [

by
te

/c
yc

le
]

SNB
IVB
HSW
BDW

96 B/c limit

48 B/c limit

(b)

Fig. 2. (a) L1 bandwidth achieved with STREAM triad and various optimizations
on BDW. (b) Comparison of achieved L1 bandwidths using STREAM triad on all
microarchitectures.

Figure 2b compares the bandwidths achievable by different microarchitec-
tures (using no arithmetic instructions on HSW and BDW for the reasons
described above). On SNB and IVB a regular STREAM triad code can almost
reach maximum theoretical L1 performance because it only requires half the
number of address calculations per cycle, i.e., two AGUs are sufficient to gener-
ate three addresses every two cycles.

4.4 Gather

Vector gather is a microcode solution for loading noncontinuous data into vector
registers. The instruction was first implemented in Intel multicore CPUs with
AVX2 on HSW. The first implementation offered a poor latency (i.e., the time
until all data was placed in the vector register) and using hand-written assembly
to manually load distributed data into vector registers proved to be faster than
using the gather instruction in some cases [10].

Table 3 shows the gather instruction latency for both HSW and BDW. The
latency depends on where the data is coming from and, in case data is not in
L1, over how many CLs it is distributed. We find that the instruction is 40%
faster on BDW in L1. When data is coming from L2 on HSW and distributed

Table 3. Time in cycles per gather instruction on HSW and BDW depending on data
distribution across CLs.

Microarchitecture Haswell-EP Broadwell-EP

Location of data L1 L2 L3 Mem L1 L2 L3 Mem

Distributed across 1 CLs 12.3 12.3 12.4 15.5 7.3 7.3 7.7 13.3

Distributed across 2 CLs 12.5 12.5 13.2 23.0 7.5 7.6 11.0 24.5

Distributed across 4 CLs 12.5 12.7 20.6 42.7 7.5 9.9 20.0 47.5

Distributed across 8 CLs 12.3 18.4 38.5 89.3 7.3 18.1 38.2 94.4
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across eight CLs, the latency is dominated by time required to transfer eight CLs
from L2 to L1 cache. On BDW, this effect is already visible when data is coming
from the L2 cache and distributed across four CLs. BDW’s improvement of the
instruction offers no returns when the latency is dominated by CL transfers,
which is the case when loading more than four CLs from L2, two from L3, or
one from memory.

5 L2 Cache

According to official documentation, the L2 cache bandwidth on HSW was
increased from 32 B/cy to 64 B/cy compared to IVB. To validate this expec-
tation, knowledge about overlapping transfers in the cache hierarchy is required.
The ECM model for x86 assumes that no CLs are transferred between L2 and L1
in any cycle in which a LOAD instruction retires. Hence, the maximum of 64 B/cy
can never be attained by design but an improvement may still be expected.
To derive the time spent transferring data, cycles in which load instructions
are retired are subtracted from the overall runtime with an in-L2 working set.
The resulting bandwidth should be compared with the documented theoretical
maximum.

Table 4. Measured L1-L2 bandwidth on different microarchitectures for dot product
and STREAM triad access patterns.

Pattern Code SNB IVB HSW BDW

Dot product dot+=A[i]+B[i] 28 27 43 43

STREAM triad A[i]=B[i]+s*C[i] 29 29 32 32

Table 4 shows the measured bandwidths for a dot product (a load-only bench-
mark) and the STREAM triad. Both SNB and IVB operate near the specified
bandwidth of 32 B/cy for both access patterns. Although HSW and BDW offer
bandwidth improvements, especially in case of the dot product, measured band-
widths are significantly below the advertised 64 B/cy.

The question arises of how this result may be incorporated into the ECM
model. Preliminary experiments indicate that the ECM predictions for in-L3
data are quite accurate when assuming theoretical L2 throughput. We could
thus interpret the low L2 performance as a consequence of a latency penalty,
which can be overlapped when the data is further out in the hierarchy. Further
experiments are needed to substantiate this conjecture.

6 Uncore

6.1 L3 Cache

Cluster-on-Die. Together with the dual-ring interconnect, HSW introduced
the CoD mode, in which a single chip can be partitioned into two equally-sized



306 J. Hofmann et al.

4 8 12 16
Number of cores

85

90

95

100
Pa

ra
lle

l e
ff

ic
ie

nc
y 

[%
]

HSW, COD

   HSW,
 no COD BDW,

COD

   BDW,
 no COD(a)

4 8 12 16
Number of cores

94

96

98

100

SNB

IVB BDW,
COD

HSW,
COD

(b)

4 8 12 16
Number of cores

0

100

200

300

400

500

B
an

dw
id

th
 [

G
B

/s
]

BDW
HSW
IVB
SNB

(c)

Fig. 3. (a) L3 scalability on HSW and BDW depending on whether CoD is used. (b)
Comparison of microarchitectures regarding L3 scalability. (c) Absolute L3 bandwidth
for STREAM triad as function of cores on different microarchitectures.

NUMA clusters. HSW features a so-called “eight plus x” design, in which the
first physical ring features eight cores and the second ring contains the remaining
cores (six for our HSW chip). This asymmetry leads to a scenario in which the
seven cores in the first cluster domain are physically located on the first ring;
the second cluster domain contains the remaining core from the first and six
cores from the second physical ring. The asymmetry was removed on BDW:
here both physical rings are of equal size so both cluster domains contain cores
from dedicated rings. CoD is intended for NUMA-optimized code and impacts
L3 scalability and latency and, implicitly, main memory bandwidth because it
uses a dedicated snoop mode that makes use of a directory to avoid unnecessary
snoop requests (see Sect. 6.2 for more details).

Figure 3a shows the influence of CoD on L3 bandwidth (using STREAM
triad) for HSW and BDW. When data is distributed across both rings on HSW,
the parallel efficiency of the L3 cache is 92%; it can be raised to 98% by using
CoD. The higher core count of BDW results in a more pronounced effect; here,
parallel efficiency is only 86% in non-CoD mode. Using CoD the efficiency goes
above 95%. Figure 3b shows that HSW and BDW with CoD offer similar L3
scalability as SNB and IVB.

Given an n-core chip, the topological diameter (and with it the average dis-
tance from a core to data in an L3 segment) is smaller inside each of the n/2-core
cluster domains in comparison to the non-CoD domain, consisting of n cores.
Shorter ways between cores and data result in lower latencies when using CoD
mode. On BDW, the L3 latency is 41 cycles when with CoD and 47 cycles
without (see Table 5).

6.2 Memory

Snoop Modes. Starting with HSW, the QPI snoop mode can be selected
at boot time. HSW supports three snoop modes: early snoop (ES), home
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snoop (HS), and directory (DIR) (often only indirectly selectable by enabling
CoD in the BIOS) [11,15,16]. BDW introduced a fourth snoop mode called
HS+opportunistic snoop broadcast (OSB) [16]. The remainder of this section
discusses the differences among the modes and the immediate impact on mem-
ory latency and bandwidth.

On an L3 miss inside a NUMA domain, in addition to fetching the CL con-
taining the requested data from main memory, cache coherency mandates other
NUMA domains be checked for modified copies of the CL. Attached to each
L3 segment is a cache agent (CA) responsible for sending and receiving snoop
information. In addition to multiple CAs, each NUMA domain features a home
agent (HA), which plays a major role in snooping.

In ES, snoop requests are sent directly from the CA of the L3 segment in
which the L3 miss occurred to the respective5 CAs in other NUMA domains.
Queried remote CAs directly respond back to the requesting CA; in addition,
they report to the HA in the requesting CA’s domain, so it can resolve potential
conflicts. ES involves a lot of requests and replies, but offers low latencies.

In HS, CAs forward snoop requests to their NUMA domain’s HA. The HA
proceeds to fetch the requested CL from memory but stalls snoop requests to
remote NUMA domains until the CL is available. For each CL, so-called directory
information is stored in its memory ECC bits. The bits indicate whether a copy
of the CL exists in other NUMA domains. The directory bits only tell whether
a CL is present or not in other NUMA domains; they do not tell which NUMA
domain to query, so snoops have to broadcast to all NUMA domains. By waiting
for directory data, unnecessary snoop requests are avoided at the cost of higher
latency due to delayed snoops. By reducing snoop requests, overall bandwidth
can be increased. As in ES, potentially queried remote CAs respond to the
initiating CA and HA, which resolves potential conflicts.

In DIR, a two-step approach is used. Starting with HSW, each HA features a
14 kB directory cache (also called “HitMe” cache) holding additional directory
information for CLs present in remote NUMA domains.6 In addition to the
directory information recorded in the ECC bits, the directory cache stores the
particular NUMA domain in which the copy of a CL resides; this means that on
a hit in the directory cache only a single snoop request has to be sent. This mech-
anism further reduces snoop traffic, potentially increasing bandwidth. When the
directory cache is hit, latency is also improved in DIR compared to HS, because
snoops are not delayed until directory information stored in ECC bits from main
memory becomes available. In case of a directory cache miss, DIR mode proceeds
similarly to HS. Note, however, that DIR mode is recommended only for NUMA-
aware workloads. The directory cache can only hold data for a small number of

5 CLs are mapped to L3 segments based on their addresses according to a hashing
function. Thus, each CA knows which CA in other NUMA domains is responsible
for a certain CL.

6 Investigations using the HITME * performance counter events indicate this cache is
exclusively used in DIR mode.
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Table 5. Measured access latencies of all memory hierarchy levels in base frequency
core cycles

µarch L1 L2 L3 MEM

SNB 4 12 40 230

IVB 4 12 40 208

HSW 4 12 37b 168f

BDW 4 12 47a, 41b 248c, 280d, 190e, 178f

aCOD disabled, bCOD enabled, cES
dHS, eHS+OSB, fDIR

CLs. If the number of CLs shared between both cluster domains exceeds the
directory cache capacity, DIR mode degrades to HS mode, resulting in high
latencies.

BDW’s new HS+OSB mode works similarly to HS. However, HAs will send
opportunistic snoop requests while waiting for directory information stored in
the ECC bits under “light” traffic conditions. Latency is reduced in case the
directory information indicates snoop requests have to be sent, because they
were already sent opportunistically. Redundant snoop requests are not supposed
to impact performance under “light” traffic conditions.

The impact of snoop modes is largest on main memory latency. As expected,
DIR produces the best results with 178 cy (see Table 5). Pointer chasing in main
memory does not generate a lot of traffic on the ring interconnect, which is why
HS+OSB will generate opportunistic snoops, achieving a latency of 190 cy. The
difference in latency of 12 cy compared to DIR can be explained through shorter
paths inside a single cluster domain in CoD mode. We measured an L3 latency of
41 cy for CoD and 47 cy for non-CoD mode. Since memory accesses pass through
the interconnect twice (one to request the CL, once to deliver it) the memory
latency of non-CoD mode is expected to be twice the L3 latency penalty of six
cycles. In ES, the requesting CA has to wait for its HA to acknowledge that it
received all snoop replies from the remote CAs, which causes a latency penalty.
On BDW, the measured memory latency is 248 cy. As expected, HS offers the
worst latency at 280 cy, because necessary snoop broadcasts are delayed until
directory information becomes available from main memory.

Graph500 was chosen to evaluate the influence of snoop modes on the perfor-
mance of latency-sensitive workloads. Figure 4a shows Graph500 performance for
a single BDW chip. A direct correlation between latency and performance can be
observed for HS, ES, and HS+OSB. DIR mode performs worst despite offering
the best memory latency. This can be explained by the non-NUMA-awareness
of the Graph500 benchmarks. Too much data is shared between both cluster
domains; this means the directory cache can not hold information on all shared
CLs. As a result, snoops are delayed until directory information from main mem-
ory becomes available. Figure 4b shows an overview of Graph500 performance
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Fig. 4. (a) Graph500 performance in millions of traversed edges per second (MTEP/s)
as function of snoop mode on BDW. (b) Graph500 performance of all chips. (c) HPCG
performance and performance per Watt as function of Uncore frequency.

on all chips and the qualitative improvement offered by the new HS+OSB snoop
mode introduced with BDW.

The effect of snoop mode on memory bandwidth for BDW is shown in Fig. 5.
The data is roughly in line with the reasoning above. For NUMA-aware work-
loads, DIR should produce the least snoop traffic due to snoop information stored
in the directory cache. This is reflected in a slightly better bandwidth compared
to other snoop modes (with the exception of the non-temporal (NT) store access
pattern, which seems to be a toxic case for DIR mode). DIR offers up to 10 GB/s
more for load-only access patterns when compared to ES, which produces the
most amount of snoop traffic. The effect is less pronounced but still observable
when comparing DIR to HS and HS+OSB. Figure 6 shows the evolution of sus-
tained memory bandwidth for all examined microarchitectures, using the best
snoop mode on HSW and BDW. Increases in bandwidths over the generations
is explained by new DDR standards as well as increased memory clock speeds
(see Table 1).

ddot load store  store
 (NT)

update copy  copy
 (NT)

Stream
  triad

   Stream
 triad (NT) 

0

20

40

60

80

B
an

dw
id

th
 [

G
B

/s
] ES HS HS+OSB DIR (COD)

Fig. 5. Sustained main memory bandwidth on BDW for various access patterns.
NT = nontemporal stores.
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6.3 Uncore Clock, Bandwidth, and Energy Efficiency

Before HSW, the Uncore was clocked at the same frequency as the cores. Starting
with HSW, the Uncore has its own clock frequency. The motivation for this lies
in potential energy savings: When cores do not require much data via the Uncore
(i.e., from/to L3 cache and main memory) the Uncore can be slowed down to
save power. This mode of operation is called UFS. For our BDW chip, the Uncore
frequency can vary automatically between 1.2–2.8 GHz, but one can also define
custom minimum and maximum settings within this range via MSRs.

We examine the default UFS behavior for both extremes of the Roofline
spectrum and use HPCG as a bandwidth-bound and LINPACK as a compute-
bound benchmark. Our findings indicate that at both ends of the spectrum, UFS
tends to select higher than necessary frequencies, pointlessly boosting power and
in the case of LINPACK even hurting performance.

Figure 4c shows HPCG performance and energy efficiency versus Uncore fre-
quency for a fixed core clock of 2.3 GHz on HSW. We find that the Uncore is
the performance bottleneck only for Uncore frequencies below 2.0 GHz. Increas-
ing it beyond this point does not improve performance, because main memory
is now the bottleneck. Using performance counters the Uncore frequency was
determined to be the maximum of 2.8 GHz when running HPCG in UFS mode.
The energy efficiency of 64.7 GFLOP/s/W at 2.8 GHz is 26% lower than the
87.2 GFLOP/s/W observed at 2.0 GHz Uncore frequency, at almost the same
performance. Energy efficiency can be increased even more by further lowering
the Uncore clock; however, below 2.0 GHz performance is degraded.

For LINPACK, we observe a particularly interesting side effect of varying
Uncore frequency. Figure 7 shows LINPACK performance on BDW as a function
of core and Uncore clock. Note that in Turbo mode, the performance increases
when going from the highest Uncore frequencies towards 1.8 GHz. This effect is
caused by Uncore and cores competing for the chip’s TDP. When the Uncore
clock speed is reduced, a larger part of the chip’s power budget can be con-
sumed by the cores, which in turn boost their frequency. The core frequency in
Turbo mode is 2479 MHz when the Uncore clock is set to 2.8 GHz (the Uncore
actually only achieves a clock rate of 2475 MHz) vs 2595 MHz when the Uncore
clock is set to 1.8 GHz. Below 1.8 GHz the CPU frequency increases further, e.g.,
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Fig. 7. LINPACK performance on BDW as a function of core and uncore frequency.

to 2617 MHz at an Uncore clock of 1.7 GHz and up to 2720 MHz at an Uncore
clock of 1.2 GHz. LINPACK performance starts to degrade at this point despite
an increasing core frequency due to the Uncore becoming a data bottleneck. In
UFS mode, the Uncore is clocked at 2489 MHz and the cores run at 2491 MHz.
Compared to the optimum, UFS degrades performance by 3%. Energy efficiency
is reduced by 6% from 4.94 GFLOP/s/W at an Uncore clock of 1.8 GHz to
4.65 GFLOP/s/W in UFS. The most energy-efficient operating point for LIN-
PACK is 5.74 GFLOP/s/W at a core clock of 1.6 GHz and an Uncore clock of
1.2 GHz.

7 Summary and Outlook

We have conducted an analysis of core- and chip-level performance features of
four recent Intel server CPU architectures. On Broadwell the variability among
chips of the same model in achieved AVX turbo frequencies and package power
consumption that could already be observed on Haswell persists. Overall the
documented instruction latency and throughput numbers fit our measurements,
with slight deviations in scalar DP divide throughput; also, in contrast to docu-
mentation, scalar/SSE and AVX floating-point addition and multiply-add have
different latencies on Broadwell. We could also demonstrate the consequences of
limited instruction throughput and the special properties of Haswell’s and Broad-
well’s address generation units for L1 cache bandwidth. The gather instruction,
which was newly introduced with the AVX2 instruction set, is now faster than
hand-crafted assembly on Broadwell. The L2 cache on Haswell and Broadwell
does not keep its promise of doubled bandwidth to L1 but only delivers between
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32 and 43 B/cy, as opposed to Sandy Bridge and Ivy Bridge, which get close to
their architectural limit of 32 B/cy.

The scalable L3 cache was one of the major innovations in the Sandy Bridge
architecture. While Sandy Bridge and Ivy Bridge achieved parallel L3 bandwidth
efficiencies in the range of 96%, without Cluster on Die (CoD) the full-chip
efficiency on Broadwell (at up to 18 cores) can drop to 85% while Haswell can
maintain above 95%. In CoD mode, the bandwidth scalability of the L3 cache
is substantially improved. We have also quantified the effects of snoop modes
on Broadwell and found variations of up to 70 cycles in memory latency and
10 GB/s in memory bandwidth. In the L3 and memory domains CoD provides
the highest bandwidth (except with streaming stores) and lowest latency as
long as no cache line migration between the clusters is required. The Graph500
benchmark, where data migration occurs frequently, shows a 50% speedup when
switching from non-CoD to Home Snoop with Opportunistic Snoop Broadcast.

Finally, our analysis of core and Uncore clock speed domains revealed that
Uncore frequency scaling and manually set high Uncore frequencies can be detri-
mental to the performance of compute-intensive codes. For memory-bound codes
analysis exhibited significant potential for saving energy in via a sensible setting
of the Uncore frequency, without compromising time to solution.

Future work will include a thorough evaluation of the ECM performance
model on all recent Intel architectures, putting to use the insights generated in
this study. Additionally, existing analytic power and energy consumption mod-
els will be extended to account for the Uncore power more accurately. Signifi-
cant changes in performance- and power-relevant features are expected for the
upcoming Skylake architecture, such as (among others) an L3 victim cache and
AVX-512 on selected models, and will pose challenges of their own.
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Abstract. Nowadays parallel file systems have been widely used in
many supercomputers. Lustre is one of the most used parallel file sys-
tems, and its enhanced file system named FEFS (Fujitsu Exabyte File
System) has been used at K computer. The K computer has adopted two-
layered file system consisting of a local file system and a shared global
file system with data staging scheme in order to guarantee sufficient I/O
throughput on the local file system during computation. However, huge
data staging on the shared file system sometimes has led to big I/O
interference in light-weight file accesses which have taken place at the
same time. Alleviation of such I/O interference on shared file systems
is an important issue in managing a big scale of parallel file systems in
shared use. In this paper, we focus on I/O interference alleviation by
using workload-aware striping and load-balancing. Appropriate striping
configuration with effective load-balancing in service thread allocation
for incoming I/O requests has improved performance of light-weight file
accesses against huge data accesses without excessive sacrifice to data
staging performance at the K computer. It is expected that the proposed
optimization can be used as a system-wide I/O interference mitigation
approach.

Keywords: Workload-awareness · Striping · Lustre · FEFS · Data
staging · K computer

1 Introduction

High I/O throughput is the most important feature for parallel file systems.
However, concurrent I/O accesses on the same file system sometimes cause I/O
interference among I/O tasks [19]. Especially relatively light-weigh I/O tasks
can be affected by heavy I/O tasks because such heavy tasks utilize almost all
of I/O bandwidth [4]. Therefore, effective fair-share I/O load-balancing is one of
the important issues.
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Regarding parallel file systems, Lustre [8] has been widely used in many kinds
of supercomputers. In using a huge scale of Lustre file system, striping config-
uration plays a big role to gain high I/O throughput. There have been many
works focused on striping configuration optimization based on their experience
or empirical performance studies [2,5,10,14,15]. Load-balancing among Object
Storage Servers (OSSs) or Object Storage Targets (OSTs) is another optimiza-
tion approach. Optimization for RPC request generations and I/O congestion
elimination in network request scheduler (NRS) is addressing to have fair-share
utilization in I/O bandwidth among multiple I/O tasks [7,11,12]. Topology-
awareness and balanced data placement have solved I/O load imbalance and
contention in accessing a Lustre file system [18]. Their work has focused on
load-balancing by having cost model taking resource utilization frequency into
account by using previous I/O requests generated from the same application in
order to obtain balanced I/O workload. Congestion in scalable network system
in a parallel file system is an another issue to be optimized. A research work in
[3] has avoided such congestion by optimized I/O task placement with network
topology-awareness. However, enough discussions have not been done about the
way to reduce I/O interference caused by huge data accesses using workload-
aware striping and load-balancing configuration without undue sacrifice to I/O
performance.

The K computer [9] has been utilizing asynchronous data staging scheme [6]
on two-layered parallel file system consisting of a local file system (LFS) and
a global file system (GFS) using FEFS in order to guarantee enough I/O per-
formance for programs running on compute nodes and effective job scheduling.
Although the asynchronous data staging scheme has improved job scheduling
efficiency and sufficient I/O performance on an LFS has been achieved during
computation, I/O performance on a GFS in accesses from frontend servers was
degraded by I/O interference caused by huge data accesses in data staging oper-
ations. We propose workload-aware striping configuration and load-balancing for
data staging operation in order to mitigate I/O interference by huge data staging
without reducing data staging performance. The optimization has two primary
contributions; (1) stripe count configuration for balanced amount of I/O work-
load among OSTs and (2) available I/O resource management by limiting the
number of service threads on FEFS [16,17] for effective load-balancing among
multiple I/O tasks. Through our performance evaluation on the K computer,
we have found that workload-aware striping configuration and load-balancing of
FEFS have achieved balanced distribution of data among OSTs in data stag-
ing and effective load-balancing in service thread allocation for each I/O task.
Consequently I/O interference by huge data staging has been mitigated without
degrading data staging performance.

It should be remarked that our proposed scheme can also be implemented
as system-wide I/O interference mitigation approach. However, for simplicity in
demonstration on available huge system, we decide to start the proposed scheme
at the K computer because it has a large scale of parallel file systems. Although
the implementation and experimental context of our work are focused on the
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K computer, the I/O workload-aware striping configuration and I/O load-
balancing are not uncommon at other large scale supercomputers. Given the
popularity of the Lustre file system, we think that our proposed scheme can find
wider applicability in supercomputing community at large.

The rest of this paper is organized as follows. In Sect. 2, we give a detailed
description of the K computer and discussions about related research works
concerning our optimization proposal. Asynchronous data staging scheme using
two-staged parallel file systems and observed I/O interference issues at the K
computer motivate the design of the I/O workload-aware striping and load bal-
ancing scheme, which is elaborated in Sect. 3. Section 4 discusses our experimen-
tal strategy and evaluation results, followed by conclusion and future work in
Sect. 5.

2 Background and Related Work

This section describes research background and related work. Since we evaluate
our proposed scheme on the K computer, we describe a file system of the K
computer briefly and the access response time degradation issue regarding huge
data staging. Since the past and current research efforts on optimizations for
Lustre motivate our proposed scheme, we review those works by comparing with
our approach in the latter part of this section.

The K computer consists of 82,944 compute nodes, where each system rack
consists of 96 compute nodes. Figure 1(a) depicts overview of the K computer
system including its two-staged parallel file system using FEFS. Currently FEFS
file systems at the K computer are based on Lustre version 1.8 technology. I/O
nodes play a big role in accessing a GFS and an LFS.

Detailed configuration of I/O nodes associated with a GFS and an LFS is
illustrated in Fig. 1(b). The K computer has 432 cabinets holding 192 compute
nodes each, where one cabinet consists of two system racks. Every system rack
is also equipped with I/O nodes, which are connected through Tofu intercon-
nects [1]. Boot-I/O nodes (BIOs) are responsible for system software start-up.
The LFS is accessible from compute nodes through local-I/O nodes (LIOs), and
it is used for high performance file I/O during computation. Every system rack
consists of three LIOs, and thus 6 LIOs per cabinet. The LFS has 2,592 OSSs
and 5,184 OSTs, where each OSS running on LIO manages 2 OSTs. Network
connections between OSSs and OSTs are established by FibreChannel. While a
GFS is used to keep user’s programs or data files, where a huge storage space is
provided. More than 30 PB of the GFS is divided into multiple volumes, where
each volume consists of 12 OSSs and 384 OSTs, except several volumes.

Every global-I/O node (GIO) in a system rack can access OSSs of each GFS
volume via 4×QDR InfiniBand interconnects. Every OST is accessible by OSSs
using FibreChannel. GIOs are responsible for asynchronous data staging, which
is dedicated for efficient job scheduling at the K computer. Since every GIO is
responsible for accessing up to 12 OSTs of the LFS, each GIO can manage up to
12 files at the same time in asynchronous data staging. Every GIO copies target
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(a) Overview of the K computer

(b) I/O node configuration (upper) and typical asynchronous data staging scheme
(lower)

Fig. 1. Overview of the K computer and I/O node configuration in a pair of system
racks

files from the GFS through 4×QDR InfiniBand interconnects and writes them in
target OSTs of the LFS in “stage-in” phase prior to computation phase, where
“stage-in” phase is initiated in advance to catch up job start-up time with the
help of staging and job scheduler systems at the K computer. After computation
phase, “stage-out” phase moves specified data files from the LFS to the GFS in
an asynchronous way during the next job runs on the used computation nodes.
It is remarked that the number of GIOs is dependent on the 3D layout of used
compute nodes. If we have A,B, and C in 3D layout for compute nodes in x, y,
and z-directions, respectively, the number of available GIOs is (A/2)× (B/3)×2
according to the K computer configuration.

Regarding storage spaces, a loop-back file system is employed in the LFS
to provide individual local file system per MPI rank named “rank-directory” in
addition to shared storage spaces. A single stripe count was configured for a
rank-directory because we need to localize I/O accesses inside a rank-directory
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Fig. 2. Shared and rank-directories created on an LFS

Fig. 3. Averaged file size of each completed job in stage-out phase during six months
from October 2015

by creating it on a single OST. A rank-directory addresses to mitigate workload
of FEFS’s Meta Data Server (MDS) by meta data access distribution. Schematic
view of the shared and rank-directories is depicted in Fig. 2. Shared directories
are accessible from every MPI ranks, however accesses for many files lead to high
MDS workload. While a rank-directory is accessible from only an associated MPI
rank, thus leading to mitigation not only in MDS workload but also in I/O inter-
ference by other MPI ranks. In this context, rank-directories are recommended
for applications generating files independently by each MPI rank.

The GFS is accessed by many I/O tasks not only in data staging but also in
file accesses from frontend servers. When a huge scale of data accesses are done
in “stage-out” phase, file accesses from frontend servers have been sometimes
affected by such huge data staging. Figure 3 shows averaged file size distribution
generated in stage-out phase among completed jobs during 6 months from Octo-
ber 2015. As seen in this figure, about 68% of generated files were below 16 MB.
Although files more than or equal to 128 MB were about 11% for instance, appli-
cations that generated such big files utilized a large number of compute nodes,
and took longer time in staging operations because of a large number of files and
there sizes. Therefore, performance degradation by such huge data staging should
be alleviated in case of accidental coincidence in shared accesses for the GFS.

Figure 4 shows a typical write performance degradation by huge data stage-
out operation. Vertical axis represents write times for 1 MB using dd from a
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frontend server to every OST in every 5 min and horizontal axis denotes time-
line in measurement. Big degradation was observed for about 3 h from 15:00 due
to huge data staging for 24,000 files, which were amounted for about 58 TB, with
a default single stripe count. Staging operation with a single stripe count for such
huge data led to high load situation in some of OSSs (Object Storage Servers) or
OSTs, and it resulted in a big increase in write time by dd. For suitable situation
in file accesses, appropriate treatment in staging operation has been required.

Fig. 4. Write performance degradation due to huge data stage-out operation

In the context of performance improvement aspects, many computer sites
using Lustre have been working on tuning parameters including striping charac-
teristics [2,5,10,14,15]. Tuning parameters was done based on empirical study or
operation profiles in those works. On the other hand, our work has been trying to
obtain a model to tune stripe count in order to achieve balanced I/O workloads
among OSTs although relying on past operation profiles to some extent.

QoS management including load-balancing has been studied in many research
works [7,11–13,18,20]. Qian et al. [11] proposed network request scheduler (NRS)
by equipping optimized RPC requests that minimized seek operations and dead-
line scheduling. They also proposed I/O congestion minimization using the sim-
ilar technique in network congestion control. There have been extensive works
about QoS policies concerning the NRS such as token bucket filter [7]. Those
QoS implementations schedule RPC requests, while FEFS in our work provides
different implementation managing RPC request dispatching to service threads
based on source IP addresses of RPC request senders. The work in [13] guaran-
teed network bandwidth for MPI communications by QoS of InfiniBand against
heavy data staging. Another work in [20] realized QoS based on machine learn-
ing to estimate I/O bandwidth for file I/O on PVFS2. Wang et al. [18] proposed
balanced data placement among OSTs with topology-awareness for I/O perfor-
mance improvements on a Lustre file system. Their approach addressed to have a
cost model for I/O client placement regarding to multiple possible paths to reach
the same OST via different I/O routers, OSSs, and so forth. The model took
weighted average of how frequently different resources have been used by previ-
ous I/O requests originating from the same application. However, performance
impact of striping configuration has not been examined sufficiently. Congestion
avoidance is another important issue to achieve high I/O performance. Since
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recent huge parallel file systems are built upon scalable interconnection tech-
nology, there is a chance to cause network congestion in accessing parallel file
systems. Such congestion has been avoided by optimized I/O task placement
with network topology-awareness [3].

Through examination of research works above, we have proposed two opti-
mization approaches in our I/O framework. One is striping configuration and
another is load-balancing to mitigate I/O interference caused by huge data
accesses. Our proposal is different from the above works in terms of implemen-
tation approach and target situation. We focus on I/O interference alleviation
coming from huge data accesses by a large number of files. Since such huge data
accesses happen in a shared parallel file system at large scale of supercomputers,
it is worth to study how to mitigate I/O interference in such case. In general,
data staging scheme is implemented in an asynchronous way for effective schedul-
ing as we explained in Fig. 1. Therefore preventing small I/O accesses from I/O
interference is difficult because we need a kind of interrupt scheme to pose either
of huge data accesses or small I/O accesses. Instead, we propose to incorporate
I/O workload awareness in our optimization. Optimization in stripe count takes
care of balanced I/O workloads among OSTs. Besides, fair-share approach has
been adopted in our I/O load-balancing among heavy data accesses and small
I/O accesses. Details of our proposal are described in the next section.

3 Alleviation of I/O Interference

In this paper, we focus on alleviation of I/O interference happened on GFS
volumes by stage-out operations using rank-directories because rank-directories
are utilized to generate files by every rank in huge scale of computation. Unlike
shared file accesses among many processes such as collective MPI-IO, a large
number of files are transferred between the LFS and the GFS at the same time
in the data staging scheme. In order to alleviate degradation described in Sects. 1
and 2, we have adopted workload-aware stripe count configuration in data stag-
ing and load balancing service thread allocation between file accesses from fron-
tend servers and data staging. The former one addresses to have same amount
of data among OSTs for balanced I/O operations, while the latter one guarantee
available service threads on OSSs for data staging and file accesses from frontend
servers not to cause I/O interference by huge data accesses.

3.1 Stripe Count Optimization

In this subsection, we examine how to tune the number of stripe count by taking
care of amount of data among OSTs. Here we consider data staging for nstg files
by NIO client nodes using one volume of the GFS consisting of NOSS OSSs
and NOST OSTs. In each OSS, lthr service threads are invoked for incoming
RPC requests from clients. When every client node manages up to kstg files, the
number of required iterations to complete data staging is calculated as

� nstg

NIO · kstg
�.
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Note that

kstg = min(
nstg

NIO
, kmax

stg ), (1)

where kmax
stg is the maximum number of files that each GIO can manage in

asynchronous data staging at the same time. For instance, kmax
stg = 12 at the K

computer as we explained in Sect. 2. While RPC requests from NIO ·kstg files are
managed by NOSS · lthr service threads on OSSs for �(NIO · kstg)/(NOSS · lthr)�
times if we assume that one RPC request per file is transferred to target service
thread. Consequently the number of files that each service thread manages (α)
is described as follows:

α = � nstg

NIO · kstg
� · � NIO · kstg

NOSS · lthr
� = � nstg

NOSS · lthr
�. (2)

On the other hand, the total number of striped files is NIO · kstg · CS , where
CS is given stripe count, and the cumulative number of used OSTs is described
as α · NOST . According to the above numbers, the averaged number of striped
files that each OST manages is described as

�NIO · kstg · CS

α · NOST
�

if round-robin deployment of striped files among OSTs is applied. However, the
number varies within a range of one striped file in realistic case even if we have
balanced data layout among OSTs.

Concerning the amount of data on each OST, we discuss the amount of
striped files of each OST. If we adopt the ideal number of files above, averaged
size of striped files per OST (FOST ) is calculated as follows:

FOST = �NIO · kstg · CS

α · NOST
� × Fstg

CS
= �NIO · kstg · Fstg

α · NOST
�,

where Fstg is an averaged size of files in data staging. It is noted that cumulative
size of striped files per OST for each file is described as Fstg/CS , and this size
is a variance in the data size per OST. At least Fstg/CS should be more than
or equal to stripe size in our performance model. If we allow the variance in the
data size per OST within a ratio of β of FOST ,

Fstg

CS
= β × FOST = �β × NIO · kstg · Fstg

α · NOST
�.

Consequently,

CS = �α

β
× NOST

NIO · kstg
�. (3)

An increase in stripe count leads to an increase in memory cache size on each
client because client process prepares memory cache for every OST connections.
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Besides, we can proceed a sort of multiple RPC data transfers, amounted by
max rpcs in flight× max pages per rpc× (page size), to each OST in write
operations before each OST receives RPC data. While Lustre’s read-ahead
scheme established for each OST improves read performance, where the maxi-
mum size of read-ahead data size is configured by max read ahead mb. Therefore,
we can expect to have enough memory cache to achieve higher I/O performance
with utilizing a large number of OSTs in other words. However, further increase
in stripe count leads to an increase not only in memory consumption on each
client but also congestion in RPC request transfers between clients and OSSs.
Therefore, stripe count should be tuned as small as possible to keep balanced
amount of data among OSTs using the above calculation model.

3.2 Load Balancing Among I/O Tasks

As discussed in Sect. 2, shared accesses on a parallel file system without any load
balancing awareness are sometimes degraded by I/O interference by a heavy file
I/O task. Although there have been many research works about load-balancing
in order to have fair-share utilization among a variety of I/O jobs, we propose
alternative I/O workload balancing according to RPC request sources to suit for
our data staging framework.

FEFS realizes I/O workload balancing function by limiting the number of
available service threads for each I/O task [16]. Figure 5 depicts rough sketches
of the load balancing by FEFS and our proposal to alleviate I/O interference
by huge data staging from GIOs in light-weight accesses from frontend servers.
Figure 5(a) shows I/O load-balancing by FEFS for multiple client groups such
as clients A, B, C, and so forth. The function manages upper limit of avail-
able number of service threads (nA, nB , nC , and so forth relative to the total
number of threads denoted as Nthr) at server side of FEFS for each client group
according to IP addresses of RPC clients. Therefore ratios of available I/O band-
width relative to total I/O bandwidth for clients A, B, and C are described as
nA/Nthr, nB/Nthr, and nC/Nthr, respectively in rough estimation.

(a) I/O load-balancing of FEFS (b) Our approach addressing to allevi-
ate I/O interference by huge data stag-
ing at the K computer

Fig. 5. I/O load-balancing scheme by FEFS and its adoption in alleviation of I/O
interference by huge data staging at the K computer
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We have adopted the function to guarantee available I/O resources for data
staging and I/O accesses from frontend servers as shown in Fig. 5(b). In case
of the K computer, the GFS is accessed not only from GIOs in data staging
but also from other nodes such as frontend servers. Therefore, effective I/O load
balancing among different kinds of I/O tasks is essential to guarantee enough
I/O throughput for each I/O task. Given the upper limit of number of threads
for data staging and I/O accesses from frontend servers as nstage and nfront,
respectively, ratios of upper limit of guaranteed I/O bandwidth relative to total
I/O bandwidth for data staging and I/O accesses from frontend servers are
estimated as nstage/(nstage + nfront) and nfront/(nstage + nfront), respectively.
By using this function, we have addressed to alleviate interference by huge data
staging to give enough I/O resources for file accesses from frontend servers in
addition to the stripe count configuration.

4 Performance Evaluation

Performance evaluation has been carried out at the K computer to examine
effectiveness of our proposal by using heavy data staging. We have used one
volume of the GFS consisting 12 OSSs at the K computer, where each OSS
managed 32 OSTs. Therefore one volume consisted of 384 OSTs in total. Each
OSS deployed up to 256 service threads for incoming RPC requests. Note that the
used GFS volume was isolated from shared use in order to eliminate noises from
user applications, while data staging was scheduled by common job scheduler.
Therefore start time of data staging was out of our control. In data staging,
every GIO copied assigned target files from the GFS to a target rank-directory
in stage-in phase, and vice-versa in stage-out phase. Every GIO was able to
copy up to 12 files concurrently in data staging as explained in Sect. 2. Several
stripe counts were arranged for file accesses on the GFS volume, while we had
only a single stripe count for rank-directories on the LFS due to K computer
configuration.

Dirty buffer sizes (max dirty mb) of a GIO for the GFS and the LFS were
1 MB and 4 MB, respectively. Regarding read-ahead operation, max read ahead
mb was 40 MB. Two parameters about RPC, max rpcs in flight and max
pages per rpc, were 8 and 128, respectively. Note that page size of GIO was
8 KB, and thus it enabled advanced RPC transfers up to 8 MB (=8 × 128 ×
8/1, 024) before RPC management by OSSs.

We have evaluated performance of writing for 1 MB data on every OST of
a target GFS volume from a frontend server using dd command in every 5 min
during imitated data staging to check performance impacts in write operations
from a frontend server. Meanwhile we also have evaluated data staging times.
The data staging had both stage-in and stage-out between a target GFS volume
and rank-directories built on the LFS with a default stripe size (1 MB). The
data staging was imitated by moving data files in both stage-in and stage-out
phases, where there was not any computation tasks. The imitated data staging
job was executed twice for each parameter set, and we have picked up better
performance value out of two.
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Table 1. Parameters of data staging in performance evaluation

# compute nodes Node layout # GIO File size # files Load-balancing

576 12 × 24 × 2 96 12GB/file 576 No

288 12 × 24 × 1 96 24GB/file 288 No

576 12 × 24 × 2 96 12GB/file 576 Yes

41, 472 48 × 54 × 16 864 512MB/file 41, 472 Yes

Table 1 shows parameters for data staging used in performance evaluation.
The first two sets are aimed for evaluation to examine performance impact about
the number of files that each GIO manages. Here we have the same total data
size in data staging among the two sets. We address to examine our stripe count
estimation model through results obtained from the two sets. The third case is
same with the first case except the third case includes I/O load-balancing scheme
of FEFS among data staging and I/O accesses by dd from a frontend server.
Here we address to examine effectiveness of the load-balancing. The last one is
for evaluation using the whole GIOs that the K computer has. Due to limited
computing time to utilize whole GIOs, we minimize file size as 512 MB in order
to get enough performance results for this paper. We discuss each performance
results in the following subsections.

4.1 Workload-Aware Stripe Count Impact

At first, stripe count impact was examined using 576 compute nodes allocated
in 12×24×2 logical 3D layout, where 96 GIOs were responsible for data staging
of 576 files against the one GFS volume consisting of 384 OSTs. Here 12 GB files
were managed in data staging using rank-directories and every GIO managed
6 files (kstg = min(576/96, 12) = 6) concurrently, and 576 files amounted for
6.75 TB in total were handled by the 96 GIOs.

Figure 6 shows write time distributions among 384 OSTs from a frontend
server during data staging. Horizontal axis of these graphs represents time of
measurement for 10 h, while vertical axis represents write time distribution
among 384 OSTs. There is a horizontal bar on top of each graph and green and
red colored rectangles on each bar indicate stage-in and stage-out, respectively.
An attached blue-colored line starting from stage-in and ending-up by stage-out
indicates the target staging job. An interval between stage-in and stage-out was
waiting time to start stage-out phase because the imitated job did not consist
of any computation tasks. The interval varied in time based on scheduling sit-
uation, and stage-out phase started once essential GIOs were available. In each
graph, dark-blue colored region stands for OSTs with the shortest write times
less than 0.01 s (OSTs in good response times). With an increase in write times
for OSTs, color of each region changes from green, orange, and red. The worst
case colored in black indicates write times more than or equal to 300 s.
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Fig. 6. Write time distributions over a period of 10 h against 384 OSTs during data
staging for 576 files (12GB/file) by 96 GIOs, where CS represents stripe count (Color
figure online)

Giving 1 in stripe count led to miserable situation as shown in the upper-left
graph of Fig. 6. High I/O workload in each OST disturbed I/O accesses from
frontend servers, and it resulted in such poor response times. In this case, every
OST received a large number of RPC requests in a consecutive way from associ-
ated GIOs. Besides, this stripe count and RPC configuration against the GFS led
to minimization of cache effect by client cache on each client and advanced RPCs
in flight. Therefore each OST could not catch up with RPC requests from GIOs,
thus leading to many retries of RPC requests. Consequently response time was
degraded. Once we increased stripe count, degradation in dd’s write response
time was gradually mitigated because of I/O load-balancing improvements as
shown in the lower left graph (stripe count = 12) of Fig. 6. However, stripe count
at 32 increased response times as shown in the lower right graph of Fig. 6.
A further increase in stripe count has a risk to incur congestion in RPC trans-
fers, and thus leading to an increase in write response time by dd. It is remarked
that degradation in write responses was big in stage-out phase compared with
stage-in phase. It is considered that read-ahead scheme mitigated contention in
I/O accesses happened in stage-in phase. While we had contention in stage-out
phase because every client sent RPC requests once write function was called in
stage-out phase.

The first five rows of Table 2 shows shorter data staging times out of two
staging jobs by 96 GIOs in the above evaluation. Regarding times for stage-out,
stripe count more than 2 is considered to be better. Although stage-out times
were minimized with an increase in stripe count, dd’s write times were increased
as shown in Fig. 6. By taking the increase in write times into account, giving
12 in stripe count seems to be the best. On the other hand, times for stage-in
were almost the same in terms of stripe count. This was due to single stripe
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Table 2. Data staging times by 96 GIOs

File size # files Load-balancing Stripe count for GFS Stage-in (sec) Stage-out (sec)

12GB/file 576 No 1 776 838

2 727 531

8 751 426

12 649 451

32 711 416

24GB/file 288 No 1 571 961

2 571 621

8 579 358

12 612 379

24 627 361

32 609 427

12GB/file 576 Yes 1 721 1,422

2 761 739

8 788 461

12 794 444

32 679 574

count configuration for each rank-directory, and we can say that staging times
were dependent on stripe count configuration of destination. As we described,
we focus on behavior and I/O interference alleviation in stage-out operations in
this paper.

Figure 7 shows the amount of data among OSTs in four stripe count cases
(1, 2, 12, and 32) out of evaluated 5 cases. In case of stripe count = 1, apparently
unbalanced amount of data among OSTs is observed. By increasing the stripe
count from 1 to 2, we see better balanced situation compared with the case of
stripe count = 1. However, unbalanced situation is still observed. Some OSTs had
smaller amount of data, while some other OSTs had larger amount of data. Dif-
ferences between the minimum and maximum sizes were 12 GB (24GB−12GB),
which was the same with one file size. Compared with averaged amount of data
per OST (18 GB), ratio in variance was about 66% (∼(12/18)×100). As a result,
unbalanced situation happened among OSTs in terms of cumulative amount of
data. With an increase in stripe count, we obtained balanced situation as seen
in the cases of 12 and 32 in stripe count. In those cases, difference between min-
imum and maximum sizes became small or negligible with an increase in stripe
count. Giving 12 and 32 in stripe count led to the differences to be about 5%
and 2% of the averaged data amount per OST, respectively. Giving 64 in stripe
count led to about 1%, and it is turned out that such large number is excessive
in terms of balanced I/O workloads. Giving 12 in stripe count was sufficient
regarding both I/O interference mitigation observed in Fig. 6 and Table 2 and
balanced data amount within 5% variances among OSTs shown in Fig. 7.
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(a) CS=1 (b) CS=2

(c) CS=12 (d) CS=32

Fig. 7. Data amount distributions among 384 OSTs for striped 576 files in data staging
by 96 GIOs about four stripe counts (CS = 1, 2, 12, and 32)

In other words, we can estimate appropriate stripe count based on our model
once we define upper limit in the variances. If we accept 10% (β = 0.1) of
averaged amount of data per OST (18 GB) in variances, stripe count is estimated
as 7 (= �(1/0.1) × 384/(96 × 6)�), where α in the stripe count calculation model
is 1. If 10% is not acceptable for balanced I/O and upper limit is minimized
within 5% (β = 0.05), stripe count is expected to be 14 (= �(1/0.05)×384/(96×
6)�), which is near from appropriate stripe count in the above evaluation.

The same evaluation was carried out by changing the number of files, where
total amount of file sizes was the same with previous case. The evaluation was
done by 288 compute nodes (12 × 24 × 1 in 3D layout) using 96 GIOs, where
every GIO managed 3 files (kstg = min(288/96, 12) = 3) and each file was 24 GB
to have the same amount of total data size in the previous evaluation.

Our model estimated 27 in stripe count in this case if we accepted 5% in
variances for data amount on OSTs. Figure 8 shows write time distributions
during data staging. From this figure, giving 24 in stripe count is better than
other cases. Roughly speaking, the estimated value is close to the preferable
stripe count. Concerning stage-out times shown in the six rows ranging from
sixth to eleventh ones of Table 2, stripe counts between 8 and 24 performed
shorter times in stage-out, while we did not see significant differences in stage-in
times as we saw in the previous evaluation.

4.2 FEFS Load Balancing

Service thread based load-balancing function of FEFS was additionally intro-
duced in the above stripe count examination. Write time distributions under the
data staging for 576 files (12 GB/file) by 96 GIOs were examined under the load
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Fig. 8. Write time distributions over a period of 10 h against 384 OSTs during data
staging of 288 files (24GB/file) by 96 GIOs

balancing which guaranteed 20% of service threads for I/O accesses from fron-
tend servers. Results are shown in Fig. 9. Here we show four stripe count cases
(1, 2, 12, and 32). Compared with results in Fig. 6, I/O interference reduction
is observed, especially big alleviation is seen when stripe count is 1. Thus the
load-balancing is effective for I/O throughput guarantee even if we have heavy
data staging.

Concerning data staging, lower five rows of Table 2 show staging times
observed in the results in Fig. 9. Compared with results of the first five rows
of Table 2, stage-out time increased when stripe count was 1. This is due to
I/O load balancing of FEFS which limited the number of service threads in
data staging. On the other hand, such heavy data staging with a single stripe
count utilized almost all available service threads by beating other light-weight
file accesses from a frontend server. With an increase in stripe count, stage-out
time has been minimized and it has been in the same range with those times
in the first five rows of Table 2. Consequently giving 12 in stripe count is the
best case regarding with both I/O interference alleviation and staging perfor-
mance. From these results, data amount aware striping configuration with the
I/O load-balancing of FEFS is effective.
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Fig. 9. Write time distributions over a period of 10 h against 384 OSTs during data
staging for 576 files (12 GB/file) by 96 GIOs under FEFS load-balancing

4.3 Impact of Data Accesses by Full Scale of GIO Nodes

According to the performance evaluations, we did the same evaluations for write
response times from frontend servers and staging times using the full scale of
GIOs with utilizing 41,472 compute nodes allocated on 48 × 54 × 16 3D logi-
cal node layout. Figure 10 shows write time distributions among 384 OSTs in
the range of 10 h in each graph. In this evaluation, every process managed 1
file amounted for 512 MB each, and those files were transferred between rank-
directories on the LFS and the GFS. Because of limited times for such huge scale
of execution at the K computer, we decreased file size so as to get performance
results in reasonable time duration. As seen in this figure, giving 12 in stripe
count minimized write response times among the evaluated five cases.

Table 3 shows staging times observed in the evaluations shown in Fig. 10.
As seen in this table, giving 12 or 32 in stripe count minimized staging times.
Considering both write response times and staging times, having 12 in stripe
count was the best case among the evaluated stripe counts.

According to the estimation model in Eq. 3, appropriate stripe count is
expected to be 11 (=�(14/0.05) × (384/(864 × 12))�). This value is almost the
same with the measured results, and thus the model is expected to perform
prediction for stripe count in each staging scheme.

5 Conclusion and Future Work

We have proposed workload-aware striping and I/O load-balancing in order to
alleviate I/O interference by huge data staging at the K computer. The proposed
scheme consists of striping configuration in data staging for balanced amount of
data on each OST and load-balancing by service thread allocation for incoming
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Fig. 10. Write time distributions over a period of 10 h against 384 OSTs during data
staging for 41,472 files (512 MB/file) by 864 GIOs

Table 3. Data staging times by 864 GIOs

File size # files Load-balancing Stripe count for GFS Stage-in (sec) Stage-out (sec)

512MiB/file 41,472 Yes 2 1, 039 1,898

4 1, 012 1,424

6 910 1,433

12 998 1,218

32 1, 130 1,168

RPC requests. Combination of the two optimizations has reduced I/O interfer-
ence due to huge data staging impressively without excessive sacrifice to data
staging performance in performance evaluation. As a future work, adoption of
the optimizations in real machine operation is considered. Based on our model,
we can tune stripe count once we give upper limit ratio in terms of data amount
per OST. Load-balancing among many requests on an MDS is another challenge
to mitigate heavy workload of MDS due to huge data accesses on shared storage
spaces. Since FEFS development has been intended to contribute to Lustre devel-
opment, we expect that our optimization scheme including the load-balancing
function of FEFS will be adopted in future Lustre development.
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Abstract. Broadly, there exist two protocols for point-to-point data
transfer in the Message Passing Interface (MPI) programming model -
Eager and Rendezvous. State-of-the-art MPI libraries decide the switch
point between these protocols based on the trade-off between memory
footprint of the MPI library and communication performance without
considering the overlap potential of these communication protocols. This
results in sub-par overlap of communication and computation at the
application level. While application developers can manually tune this
threshold to achieve better overlap, it involves significant effort. Further,
the communication pattern may change based on the size of the job and
the input requiring constant re-tuning making such a solution impracti-
cal. In this paper, we take up this challenge and propose designs for point-
to-point data transfer in MPI which accounts for overlap in addition to
performance and memory footprint. The proposed designs dynamically
adapt to the communication characteristic of each communicating pair of
processes at runtime. Our proposed full in-band design is able to transi-
tion from one eager-threshold to another without impacting the commu-
nication throughput of the application. The proposed enhancements to
limit the memory footprint by dynamically freeing unused internal com-
munication buffer is able to significantly cut down on memory footprint
of the MPI library without affecting the communication performance.

Experimental evaluations show that the proposed dynamic and adap-
tive design is able to deliver performance on-par with what exhaustive
manual tuning provides while limiting the memory consumed to the
absolute minimum necessary to deliver the desired benefits. For instance,
with the Amber molecular dynamics application at 1,024 processes, the
proposed design is able to perform on-par with the best manually tuned
versions while reducing the memory footprint of the MPI library by 25%.
With the 3D-Stencil benchmark at 8,192 processes, the proposed design
is able to deliver much better overlap of computation and communica-
tion as well as improved overall time compared to the default version.
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To the best of our knowledge, this is the first point-to-point communi-
cation protocol design that is capable of dynamically adapting to the
communication requirements of end applications.

Keywords: MPI · Point-to-point communication · Overlap of commu-
nication and computation

1 Introduction

Message Passing Interface (MPI) [16] is a very popular parallel programming
model for developing high-performance scientific applications. The MPI Stan-
dard [18] offers various point-to-point, collective, remote memory and synchro-
nization operations. The point-to-point operation is a fundamental building
block in MPI as one can orchestrate almost all higher level primitives that
MPI provides using point-to-point operations. Point-to-point operations can
be broadly classified as blocking and non-blocking depending on when the
buffer that has been posted to the MPI library is available for reuse. While
the semantics of blocking primitives (e.g.: MPI Send, MPI Recv) is geared
towards delivering the best communication performance, non-blocking primitives
(e.g.: MPI Isend, MPI Irecv) have the dual objective of delivering best perfor-
mance while ensuring that applications can achieve overlap of computation and
communication.

Over the last several years, point-to-point non-blocking communication has
emerged as a popular method for application scientists to hide the communi-
cation overhead by overlapping communication and computation. While mod-
ern primitives like the Remote Memory Access (RMA) semantics proposed by
the MPI-3 standard are specifically geared towards this, many popular applica-
tion kernels and applications like conjugate gradient solvers [15], adaptive mesh
refinement [12], multi-physics [26], molecular dynamics [7], and earthquake pre-
diction codes [9] still take advantage of non-blocking point-to-point communica-
tion primitives to hide the communication overhead.

Although the concept of non-blocking point-to-point primitive seems simple
and the benefits obvious, there are several caveats that need to be addressed
before end applications can reap the benefits offered by this programming inter-
face. One needs to carefully match the semantics expected by the programming
interface to that offered by the underlying communication protocol in order to
ensure optimal performance.

1.1 Motivation

There broadly exists two protocols for point-to-point data transfer in MPI —
Eager and Rendezvous. Eager protocol sends data to the peer without waiting for
an acknowledgment first and is thus used to transfer data of limited size to the
receiver (typically small messages). The rendezvous protocol, on the other hand,
uses control messages to ensure that the receiver has enough memory available
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to accommodate the incoming message. Thus it is typically used to transfer large
messages. More details about these protocols are available in Sect. 2.1.

With modern multi-/many-core architectures and high-performance inter-
connects, there is always a “sweet-spot” where (1) the cost of exchanging the
control information is not large enough to have an impact on the overall time
of data transfer, and (2) the cost of memory copies to the internal buffer starts
to be higher than the cost of exchanging control information. Most open source
high-performance implementations of the MPI standard such as OpenMPI [8],
MVAPICH2 [14], and MPICH [11] switch to the rendezvous protocol from eager
protocol at this “sweet-spot” typically referred to as the “eager-threshold”. In
order to avoid the performance penalties seen with packetized data transfers,
high-performance MPI libraries typically match the size of the internal commu-
nication buffers to be same as that of the eager-threshold. Thus, a secondary
factor of consideration is the size of the internal communication buffers used to
stage data in the eager protocol. Designers need to ensure that this is not so
large that the memory footprint of the MPI library becomes too high.

As described above, while significant attention has been given to ensure that
these protocols deliver best trade-off between performance and memory foot-
print, not much attention has been paid to the overlap aspect of these proto-
cols. We employ a simple case-study with a 3D-stencil benchmark (described
in Sect. 2.3) to clearly motivate the need to account for overlap of computation
and communication. Note that this communication pattern is representative of
several large applications mentioned in Sect. 1. Figure 1(a) compares the raw
communication performance of the 3D-stencil benchmark run with the default
eager-threshold value of 17 KB against a version where we manually forced the
eager-threshold and the internal communication staging buffer to be 1 MB. These
numbers were taken with 8,192 processes (512 nodes) on the Stampede supercom-
puting system at TACC [25]. As expected, a smaller eager threshold forces use
of rendezvous protocol which provides better raw communication time for large
messages. However, as seen in Fig. 1(b), this does not take into account the over-
lap potential of the different protocols. When there is computation that can be
overlapped, use of the eager protocol is able to deliver better overall performance
due to the higher overlap obtained. This is basically due to the fact that, with
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Fig. 1. Performance and overlap offered by eager and rendezvous protocols for 3D-
Stencil benchmark at 8,192 processes on Stampede
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rendezvous transfer, the data transfer (which consumes the most time) does not
start until an MPI Wait or MPI Waitall operation is called. However by switch-
ing to the eager protocol, the small loss of raw communication performance due
to multiple memory copies are more than compensated by overlapping the most
time-consuming data transfer part with computation, thereby reducing overall
execution time Fig. 1(c).

While it is possible for application developers to manually tune this thresh-
old to achieve better overlap, it involves significant effort and complexity. Mod-
ern high-performance MPI libraries have hundreds of tunable parameters each
impacting a different aspect of communication. Thus, it is rather difficult for an
application developer to effectively optimize a particular application using such
manual tuning. Further, the communication pattern may change based on the
size of the job and the input requiring constant re-tuning making such a solution
impractical. To make matters worse, blindly increasing the eager-threshold can
also have the negative consequence of increasing the overall memory footprint of
the MPI library leaving less memory for the application to perform its science.
Large internal communication buffers can also negatively affect the communi-
cation performance of small message operations due to poor cache locality on
the sender and the receiver sides. Figure 2 shows the adverse effect of larger
eager-threshold (and consequently larger communication buffers) on the mes-
sage throughput. These issues lead us to the following broad challenge: Can we
design an adaptive and dynamic point-to-point communication mech-
anism for high-performance MPI libraries that can deliver the best
communication performance, overlap of computation and communi-
cation, and memory footprint for all classes of applications?

1.2 Contributions
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In this paper, we take up this challenge
and explore multiple point-to-point
communication protocol designs to
enable efficient overlap of computation
and communication. We highlight the
merits and deficiencies of each design
and evaluate its performance with
microbenchmarks and applications on
modern HPC systems. Finally, we pro-
pose a dynamic and adaptive design
for point-to-point communication that
enables efficient overlap while ensur-
ing basic communication performance
and memory footprint is not adversely
impacted. Our proposed full in-band
design is able to transition from one
eager-threshold to another without impacting the communication throughput
of the application while taking care of all possible corner cases. The proposed
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enhancements to limit the memory footprint by dynamically freeing unused inter-
nal communication buffers is able to significantly cut down on memory footprint
of the MPI library without affecting the communication performance. Our exper-
imental results show that, our proposed dynamic and adaptive approach is able
to deliver performance on par with what exhaustive manual tuning provides
while cutting down on the overall memory footprint of the MPI library. For
instance, with the Amber molecular dynamics application at 1,024 processes, the
proposed design was able to perform on-par with the best manually tuned ver-
sions while reducing the memory footprint of the MPI library by 25%. With the
3D-Stencil benchmark at 8,192 processes, the proposed design is able to deliver
much better overlap of computation and communication as well as improved
overall time compared to the default version. To the best of our knowledge,
this is the first point-to-point communication protocol design that is capable of
dynamically adapting to the communication requirements of end applications.
To summarize, the major contributions of this paper are:

– Study the interplay between communication pattern of applications and
point-to-point communication protocols

– Propose, design, implement and study multiple dynamic and adaptive point-
to-point communication protocols to deliver better overlap of computation
and communication

– Explore alternate design approaches to overlap computation and communi-
cation and study its benefits and deficiencies

– Propose secondary designs to tackle the additional challenge of limiting mem-
ory footprint of the MPI library

– Demonstrate the benefits of the proposed scheme on performance with
microbenchmarks and applications.

Fig. 3. Comparison of existing and
proposed designs

Figure 3 compares the default, man-
ually tuned, and the new designs along
the metrics of performance, productivity,
memory scalability, and overlap achieved.
In all axes, the higher value is better. As
we can see, the proposed dynamic and
adaptive design performs the best when all
metrics are considered. For instance, the
proposed design is able to deliver overlap
of computation and communication and
overall application performance compara-
ble to the best manually tuned version
while providing a high degree of produc-
tivity similar to the default versions. It is
also able to significantly cut down on the
memory requirement of the MPI library when compared to best manually tuned
version.
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2 Background

In this section, necessary background information for this paper is provided.

2.1 Protocols for High-Performance Point-to-Point Communication
in MPI

Figures 4(a) and (b) depict how the eager and rendezvous protocol respectively
are typically implemented. The eager protocol consists of four steps — (1) copy-
ing the data from application buffer to buffers internal to the MPI library, (2)
initiating the data transfer to the remote process, (3) detecting the reception of
data in buffers internal to the MPI library, and (4) copying the data back to the
application buffer. With most high-performance networks like InfiniBand, the
network itself takes care of the actual data transfer. Thus, initiating the data
transfer at the sender and detecting the reception of the data at the receiver
are low overhead tasks. So, apart from the time to transfer data over the net-
work, the main costs involved in an eager transfer are the memory copies at the
sender/receiver. Note that steps #1 and #2 happen inside the send function call
itself. With a rendezvous protocol on the other hand (Fig. 4(b)), MPI designers
take advantage of the RDMA feature that high-performance interconnects like
InfiniBand offers and transfers data directly from the source application buffer to
the target application buffer (with appropriate exchange of control information),
thereby avoiding the extra large memory copies from the application buffer to
internal communication buffers within the library.

Fig. 4. Point-to-point communication protocols in MPI

2.2 Amber

Amber [7] is a molecular dynamics package including numerous programs that
work in conjunction to perform end-to-end molecular dynamics simulation (from
the creation of input files to the analysis of results).
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2.3 3D-Stencil Benchmark

The processes in the benchmark are mapped onto a 3D grid and each process
talks to its neighbors in each dimension (6 neighbors). In every step, each process
posts MPI Irecv operations for all of the messages it expects and then posts all
of the MPI Isend calls. It waits for all of the transfers to complete with one
MPI Waitall call. At the end of each iteration, the benchmark executes a call to
MPI Allreduce to collect boundary information from all processes participating
in the job. To calculate the overlap of communication and computation, we first
measure the time to perform all the MPI Irecvs and MPI Isends immediately
followed by a MPI Waitall. The benchmark also computes the overall latency
(the total time taken when computation is overlapped with communication),
the communication and the computation time, and the overlap percentage. In
addition, we are also time the initialization overhead and the wait time.

3 Common Challenges in Designing Dynamic and
Adaptive Point-to-point Communication Protocols

Several applications tend to communicate with its peer processes using varying
message sizes. Thus, one of the first design challenge is to enable the ability to
have different eager-threshold values for different process pairs. To this end, we
introduce two adaptive and dynamic designs — (1) partial in-band and (2) fully
in-band that are capable of updating the eager-threshold for a pair of processes.
However, there are some common design challenges that need to be addressed
before such a change of eager-threshold can occur. We enumerate these challenges
and our solutions to address these challenges in the following sub-sections.

3.1 Triggering Eager-Threshold Change

It is important for the MPI library to correctly identify when it needs to migrate
to a higher eager-threshold in order to obtain better overlap of computation and
communication. We find that two conditions need to hold for such a change
of eager-threshold to have a positive impact on the performance of the end
application:

1. The use of non-blocking send and/or recv operation (e.g.: MPI Isend,
MPI Irecv) by the application

2. The time elapsed between posting non-blocking send/recv operation and
polling for completion of the operation (through MPI Wait, MPI Waitall etc.)
should be a reasonable proportion (50% or more) of the total estimated time
for data transfer.

If either one of these conditions does not hold, then it is unlikely that the
application will see any benefits because of the eager-threshold change. For
instance, in an application using blocking send/recv operations there is no poten-
tial for overlap. On the other hand, if the time between posting the non-blocking
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operation and polling for completion is very fast (like in the case of a typical
bandwidth benchmark), the potential for overlap is significantly reduced. Fur-
ther, as shown in Sect. 1.1, incorrectly increasing the eager-threshold can nega-
tively impact the performance of small messages due to the paging behavior at
the receiver process. Finally, the initiating process must also ensure that there
are enough resources available locally to allocate the resources necessary to per-
form an eager-threshold switch as described in Sect. 3.3.

3.2 Identifying the New Eager-Threshold

As the average size of messages being sent from process A to process B need
not be the same as those being sent in the opposite direction, a “handshake”
or “agreement” protocol is required to ensure that both processes settle on the
same value for eager-threshold. This is very critical as different values for eager-
threshold for a process pair can result in undefined communication behavior
(like a hung data transfer). Further, it is possible that any one of the processes
is unable to honor the eager-threshold change request (due to lack of resources
or some internal errors). In this scenario, the process encountering the failure
needs a mechanism to inform the peer process of its inability to proceed with
the eager-threshold change.

We introduce two new packet types “NEW CONN HANDSHAKE REQ”
and “NEW CONN HANDSHAKE REP” to address these issues. When a
process decides to trigger an eager-threshold change (as identified in Sect. 3.1), it
sends out a “NEW CONN HANDSHAKE REQ” packet to its peer and marks
the virtual communication channel that exists between the two processes to indi-
cate that an eager-threshold change is in progress. This packet contains the new
value of eager-threshold the initiating process wants the communication chan-
nel to be moved to. The new eager-threshold is calculated using the following
equation:

Thresholdnew = 2
⌈
log2

(∑ sizeof(Rndv Msg+Pkt Header)
Number of Rndv Msgs

)⌉
+ offset

The new threshold is chosen based on the average size of rendezvous messages
being sent from the initiating process to the peer process. The goal here is
to allow most of the large messages to go through the eager path while not
increasing the eager-threshold to an unnecessarily large value. An “offset” of
1,024 bytes is added to ensure that messages falling right on the boundary of
the new eager-threshold can also be accounted for with this change.

The remote process on receiving the “NEW CONN HANDSHAKE REQ”
packet, first checks if it can allocate the resources necessary to proceed with
the eager-threshold change (as described in Sect. 3.3). If so, it proceeds to
identify the local eager-threshold value using the formula described above. It
then compares the local value with the value sent by the remote peer and
uses the maximum of the two values as the new eager-threshold for the com-
munication channel. This value is communicated to the peer process using a
“NEW CONN HANDSHAKE REP” message and the communication channel
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is marked as “in-active” indicating that an eager-threshold change is in progress.
If, for some reason, the process is unable to allocate the necessary resources or
is unable to proceed with the eager-threshold change for any other reason, it
responds back with an eager-threshold value of “−1”.

The initiating process on receiving the “NEW CONN HANDSHAKE REP”
packet extracts the value of eager-threshold indicated by peer. If the value is
“−1”, the peer has indicated that it cannot proceed with the eager-threshold
change and the process marks the communication channel as being incapable of
processing an eager-threshold change so that no future eager-threshold changes
are initiated by this process for the communication channel with the peer. If
the value is non-negative, the process initiates either the partially in-band or
the fully in-band mechanism (described in Sects. 4.1 and 4.2 respectively) to
establish a new connection with the larger eager-threshold.

3.3 Allocating Resources for Eager-Threshold Change

High-performance MPI libraries for InfiniBand typically use shared receive
queues (SRQ) for improved scalability [22,24]. With this technology, a process
can have just one queue to receive data from any peer process. However, the
buffers that are posted to receive data on the shared receive queue must be
large enough to hold the data any sender may possibly send to it in a gratuitous
fashion. In other words, the buffers posted to the SRQ must be equal to the
new eager-threshold size the process wants to use identified by the “handshake”
protocol described in Sect. 3.2. We introduce a pool based design where each
process creates a set of internal communication buffers whose size is equal to the
new eager-threshold agreed upon by the pair of processes. If such a pool already
exists (from a previous dynamic eager-threshold change with another process),
the pool and the associated SRQ is reused. Otherwise, a new pool and the SRQ
are created and added to the list of available pools. We limit the number of such
pools that a process can create, to a value that can be set at runtime by the user
through an environment variable (default value: 20).

4 Dynamic and Adaptive Design for Point-to-Point
Communication Protocols

In this section we discuss the various alternative designs as well as their ben-
efits and deficiencies. We use the open-source MVAPICH2 [14] library for the
proposed designs and studies in this paper. However, the proposed designs are
generic and can be incorporated into other MPI libraries.

4.1 Partial In-Band Design

We first explore a partial in-band design to re-establish the connections between
the process pairs with an increased eager-threshold. The various messages



Designing Dynamic and Adaptive MPI 343

Process 1 Process 2

Channel Inactive
Create/Reuse 

SRQ/VBUF
Channel Inactive

Drain Send
Destroy QP

Create/Reuse 
SRQ/VBUF
Drain Send
Destroy QP

Start UD CM

(a) Partial in-band design

Process 1 Process 2

Create/Reuse
VBUF Pool 

Create QP, SRQ
Create VBUF
Pool, new QP
QP->RTRQP->RTR->RTS

Poll for Send 
completions

QP->RTS
Poll for Send 
completions

Transition to
new QP

Transition to
new QP

(b) Full in-band design

Fig. 5. Connection establishment in partial and full in-band designs

exchanged in this design are depicted in Fig. 5(a). One of the major ben-
efits of this approach is its ability to take advantage of the existing on-
demand connection establishment design in MVAPICH2 [27,28]. Once the new
eager-threshold has been successfully identified as described in Sect. 3.2, the
design marks the communication channel as inactive to prevent the applica-
tion from sending any further messages. The initiator process then allocates
resources as described in Sect. 3.3 and sends a “RECONN REQUEST” to the
peer process. This will be the last message the initiator process transmits
over the existing IB connection (also know as a queue pair - QP). The peer
process on receiving the “RECONN REQUEST” proceeds to mark the com-
munication channel as inactive and replies back with a “RECONN REPLY”.
This will be the last message that the peer process transmits over the
existing QP. When the initiator process receives the “RECONN REPLY”, it
initiates an “OUT OF BAND RECONN REQUEST” through the QP being
used for the on-demand connection management design. On reception of the
“OUT OF BAND RECONN REQUEST”, the peer process allocates resources
as described in Sect. 3.3, drains all the send completions from the exist-
ing QP and destroys it. After completing this successfully, it transmits a
“OUT OF BAND RECONN REPLY” to the initiator. The initiator on receiv-
ing the request drains all the send completions from the existing QP, destroys it,
and starts the on-demand connection establishment using the newly allocated
resources. As we can see, one of the major cons of this approach is the dura-
tion of time for which the communication channel is marked as inactive. Such a
long duration of inactivity has the potential to negatively impact the application
throughput. Thus we discard this design from further consideration.

4.2 Full In-Band Design

In the full in-band design, we completely avoid using the on-demand connection
management design in MVAPICH2 and instead use the regular communication
channel to exchange messages. The various messages exchanged in this design
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are depicted in Fig. 5(b). The major benefit of this design when compared to the
partial in-band design is that the communication channel is always active and
thus does not affect the communication throughput of the application. Once the
new eager-threshold has been successfully identified as described in Sect. 3.2, the
initiator process allocates resources as described in Sect. 3.3, creates a QP for new
eager-threshold and transmits a “NEW CONN REQ” message to the peer. The
message contains the end-point information of the initiator process so that the
peer can begin the process of IB connection management. The peer on receiving
the “NEW CONN REQ” allocates resources as described in Sect. 3.3, extracts
the initiator end-point information from the message, transitions the newly cre-
ated IB QP to ready-to-receive (RTR) state, and responds to the initiator with
a “NEW CONN REP” message containing the local end-point information.

The initiator process on receiving the “NEW CONN REP” extracts the peer
processes end-point information and uses that to transition the new local QP
to RTR and ready-to-send (RTS) states. At this point, the new QP is capable
of gratuitously sending messages to the peer at the increased eager-threshold
size. Once this is complete, the initiator will ensure that all the previous send
operations on the existing QP has completed and will send out a “CONN EST”
message to the peer with the local end-point information. This will be the last
message that is sent on the old QP. All future messages are sent over the newly
created QP. The peer on receiving the “CONN EST” message will transition its
newly created QP to the RTS state and is thus capable of gratuitously send-
ing messages to the peer at the increased eager-threshold size. After this, the
process will ensure that all the previous send operations on the existing QP has
completed and will send out a “CONN EST” message to the peer with the local
end-point information. This will be the last message that is sent on the old QP.
All future messages are sent over the newly created QP.

The initiator on receiving the “CONN EST” message responds back with
a “CONN EST ACK” message over the new QP to indicate that there are no
more messages in flight on the old QP. The peer on receiving this message will
destroy the old QP and send a “CONN EST ACK” message over the new QP
to indicate that the initiator can destroy the old QP as well thus completing
the transition to the new eager-threshold size. As this design proceeds without
having to throttle application communication, it has the potential to deliver the
best performance. Thus we use the “Full In-band” design for all experimental
evaluations in the paper.

4.3 Avoiding Message Loss During Threshold Migration

It should be noted that in our design, eager thresholds are not bidirectional,
i.e. a message from Process A to Process B could go over the eager protocol
while a message of the same size from Process B to Process A could go through
the rendezvous path. Furthermore, each process can independently decide to
change the eager-threshold for a peer process based on its past communication
with said peer. To prevent loss of messages, both peers must be able to identify
when to switch to the new QP as well as handle in-flight messages during the



Designing Dynamic and Adaptive MPI 345

handshake. The handshake protocol used in the “Full In-band” design achieves
this by ensuring that (a) the initiator process starts sending messages through
the new QP only after the target process has acknowledged that it is ready to
receive on the new QP, and (b) the target process destroys the old QP only after
getting a confirmation from the initiator that it has processes send completions
for all messages sent through the old QP.

4.4 Mitigating Memory Footprint Requirements

A major concern with manually and exhaustively tuning the eager-threshold and
the proposed dynamic and adaptive design is the potential increase in memory
footprint of the MPI library due to the increased size of internal communication
buffers. To address this issue, we propose a design that dynamically identifies
unused internal communication buffers and reclaims them. However, unless per-
formed carefully, this operation can lead to a continuous cycle of allocation and
freeing of internal communication buffers leading to poor performance.

Most high-performance MPI libraries dynamically allocate internal commu-
nication buffers as and when the library runs out of these buffers due to commu-
nication pressure from the application. Further, most applications have phases
where the communication activity increases and decreases. Thus, if proposed
design is too aggressive in freeing internal communication buffers, it could free
a large number of buffers in the phase with low communication only to reallo-
cate them when the communication pressure increases again. To avoid such a
cycle, we add weights to the communication buffers and only free them if they
have not been used for a specific period of time which is tunable. We have done
extensive tuning of this value on multiple supercomputing systems and identified
appropriate values for it to ensure that such cycles of allocation and freeing are
avoided as much as possible. With such a design, we are able to significantly
reduce the memory overhead caused by the dynamic and adaptive designs to
less than 50% of what the manually tuned designs can offer.

4.5 Alternate Design Approaches

In this section, we explore possible alternate designs to avoid the requirement to
exchange the control information in the rendezvous exchange which is the major
cause for the lack of overlap. The ideal solution here would be to have a hardware
component to which the rendezvous exchange can be offloaded. Unfortunately,
such technology is still not available in the public domain. In this context, we
create a new design that uses the “Receiver-Not-Ready” or RNR mechanism
of InifniBand to avoid (1) the need to exchange control information and (2)
the need for intermediate memory copies from the application buffer to internal
MPI buffers and back. Figure 6 depicts how the communication proceeds in the
RNR-based design.
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Fig. 6. Communication in RNR-based
design

In the RNR design, the sender and
receiver create a special QP for each
tag used for communication. Once
the QP has been created, the sender
directly registers the send buffer with
the IB HCA and sends the data to the
receiver’s QP. At this point, the IB
HCA takes over and continually checks
with the target HCA as to whether it
is ready to receive the data. The target
HCA becomes ready to receive data
when the receiver arrives and posts a
corresponding receive operation to the
special QP created earlier. Until this
event occurs, the receiver HCA will respond back to the sender HCA’s queries
indicating that the receiver is not ready (RNR). Although there is a timeout
after which the sender will stop trying to transmit the data to the receiver, we
increase it so that the sender keeps retrying infinitely. Finally, when the receiver
arrives, the target HCA indicates that the receiver is ready causing the sender
to place the data in the buffer pointed to by the receive QP which happens to be
the application level buffer in the RNR design. This design eliminates the need
for the application to explicitly use control messages to stage the rendezvous
transfer or to use intermediate memory copies to transfer the data using the
eager protocol.

However, this design has several functionality and performance issues mak-
ing it more constrained to use in real world applications. (1) Due to the
lack of hardware-based tag matching, it cannot support wild cards such as
MPI ANY SOURCE and MPI ANY TAG which is very common in MPI as
well as application communication. Further, as described above each commu-
nicating process pair needs to use a separate QP for communication creating
a scalability bottleneck. On the performance side, the RNR design is unable
to send a continuous stream of data as a typical eager or rendezvous protocol
does. This is mainly due to the fact that it cannot start a subsequent transfer
until the previous transfer is complete. Thus, it is hard to keep the communi-
cation pipeline resulting in sub-par communication throughput. Due to these
performance and functionality constraints, we discount this design from further
performance evaluations.

5 Experimental Results

In this section, we describe the experimental setup, provide the results of our
experiments, and give an in-depth analysis of these results. All numbers reported
here are averages of a minimum of five runs. There was little to no variance
between the different runs. As described in Sects. 4.1 and 4.5, we discard the Par-
tial In-band design and RNR-based design from further performance evaluation
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due to their inherent design limitations. Thus, for the remainder of the perfor-
mance evaluation section, “dynamic threshold” refers to the Full In-band design
described in Sect. 4.2.

5.1 Experimental Setup

We used multiple high-performance computing systems to obtain the results for
this paper:

Gordon @ SDSC [21]: Each node contains two 8-core 2.6 GHz Intel EM64T
Xeon E5 (Sandy Bridge) processors and 64 GB of DDR3-1333 memory. The
operating system used is CentOS release 6.4 (Final), with kernel version
2.6.32-431.29.2.el6. The network topology is a 4 × 4 × 4 3D torus with adja-
cent switches connected by three 4x QDR InfiniBand links (120 Gb/s). Compute
nodes (16 per switch) and I/O nodes (1 per switch) are connected to the switches
by 4x QDR (40 Gb/s).

Stampede @ TACC: Each node is equipped with an Intel SandyBridge series of
processors using Xeon dual eight-core sockets, operating at 2.70 GHz with 32 GB
RAM. Each host is equipped with MT4099 FDR ConnectX HCAs (54 Gbps
data rate) with PCI-Ex Gen3 interfaces. The operating system used is CentOS
release 6.7 (Final), with kernel version 2.6.32-431.17.1.el6, and OpenFabrics ver-
sion 1.5.4.1. The network is a five-stage partial Fat-Tree with 5:4 oversubscription
on the links.

5.2 Performance of 3D-Stencil Benchmark

In this section, we analyze the performance results of the 3D-stencil benchmark
(described in Sect. 2.3) for different process counts on Stampede. In Fig. 7(a), we
compare the raw communication performance of the default, manually tuned,
and the proposed dynamic design at 8,192 processes. The default scheme pro-
vides the best pure communication time. However, when seen in conjunction
with the overlapping computation, the default scheme performs worse than the
manually tuned and proposed dynamic schemes as indicated by the overall time
and overlap numbers in Figs. 7(c) and (b) respectively. We also observe that,
while the default scheme is able to offer better communication initialization
time by avoiding the large memory copies associated with eager protocol indi-
cated in Sect. 2.1, it loses out significantly in the time spent in MPI Wait. This is
because, with the rendezvous protocol being used in the default scheme, almost
all of the time consuming data transfer happens in the MPI Wait operation with
little or no overlap of computation and communication actually happening. Due
to lack of space, we are unable to include the figures describing the initialization
and wait times in the paper.

Finally in Fig. 8, we study the pure communication performance, overlap
obtained, and overall communication time for the 128 KB message size of the
3D-stencil benchmark for various system sizes on Stampede. As we can see, while
the proposed dynamic threshold design takes a slight hit in raw communication
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Fig. 7. Performance and overlap offered by various point-to-point communication pro-
tocols for 3D-Stencil benchmark at 8,192 processes on Stampede
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Fig. 8. Comparison of performance and overlap offered by Default and Dynamic
Threshold design for 128 KB messages in 3D-Stencil benchmark at different scales on
Stampede

performance (depicted in Fig. 8(a)), is able to provide much better overlap
(depicted in Fig. 8(b)) and overall time (depicted in Fig. 8(c)) when compared
to the default design.

5.3 Performance of Amber

We perform an in-depth study and analysis of the performance of the Amber
molecular dynamics code with the different point-to-point communication pro-
tocol designs in this section. Figure 9(a) shows the overall application execution
time with the default design, various manual tuning options, and the proposed
dynamic design. As we can see, for different system sizes, best performance is
given by different manual tuning options. Such unpredictable behavior (as indi-
cated in Sect. 1.1) makes this kind of manual tuning cumbersome, error prone,
and impractical. The proposed dynamic design, on the other hand, is able to
deliver performance on par with the best manual tuned design in a user trans-
parent way making it a high-productivity and high-performance option for appli-
cation developers.

Figure 9(b) illustrates the memory used for the internal communication
buffers used by the MPI library to stage the data transfers. The data is plotted
relative to the amount of memory taken by the default design for internal
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Fig. 9. Performance of Amber on Gordon with different values of Eager-Threshold

communication buffers. As we can see, the default design gives best memory
scalability. However, we also observe from Fig. 9(a) that, it is unable to deliver
the best performance due to its inability to effectively overlap communication
and computation. The proposed dynamic design, on the other hand, is able to
keep the memory footprint to the absolute minimum required by the design
described in Sect. 4.4.

Figure 10 depicts the number times various processes performed switches of
eager thresholds during the execution of the program for different system sizes.
Although, due to space limitations, we only show details of the larger system
sizes, note that the trends for smaller system sizes are similar. As we can see,
at 256 and 512 processes the processes perform a lot of eager-threshold changes.
This is reflected as increased memory usage for the dynamic design for the
corresponding system sizes in Fig. 9(b). However, at 1,024 processes, we observe
that a large percentage of the processes perform no eager-threshold changes
(indicated by the large value for zero in Fig. 10(c)). This trend translates to
relatively lower memory consumption for the dynamic design (when compared
to 256 and 512 processes) as seen in Fig. 9(b).
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Fig. 10. Number of eager-threshold switches performed by different number of
processes with Amber on Gordon

Figure 11 shows the maximum value of eager message size that various
processes in the job end up with for different job sizes with Amber. We can
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Fig. 11. Maximum value of eager-threshold used by different number of processes with
Amber on Gordon

see a clear trend with the maximum value of the message continually decreas-
ing as the size of the system increases. While the median max eager-threshold
size with 256 processes is 128 KB, it reduces to 64 KB at 512 processes and
further reduces to 32 KB at 1,024 processes. This indicates a distribution of
computation load among the different processes - in other words, strong scal-
ing. Another interesting trend to observe is the similarity in the number of
processes whose max eager-threshold value is 17 KB (the default value) at 1,024
processes as depicted in Fig. 11(c) and the number of processes that perform
no eager-threshold changes indicated by the large value for zero in Fig. 10(c).
These values corroborate each other indicating that the processes that do not
have to perform eager-threshold switch are actually those whose desired max
eager-threshold value happens to be equal to the default value the MPI library
is configured with.

Figure 12(a) depicts the average and maximum time taken for one eager
threshold switch across all processes for various system sizes. As we can see, the
maximum overhead of establishing a new connection is very low (of the order
of 40 ms) indicating the efficiency of the proposed design. Figure 12(b) on the
other hand measures the maximum and average cumulative time spent by each
process for eager-threshold switching during the lifetime of the job. As we can
see, while the maximum value fluctuates a little, it is still very low (<0.5 s). Note
that this is for jobs that take 300 s to 350 s to execute on average (depicted in
Fig. 9(a)). Thus, we can clearly see that even the maximum cumulative time for
eager-threshold switching only forms a negligible percentage (0.1%) of the over-
all execution time. Finally in Fig. 12(c), we measure the time taken to perform
dynamic de-allocation of internal communication buffers described in Sect. 4.4
for various system sizes with Amber on Gordon. As with the cumulative time
for eager-threshold switching, we see that the maximum time taken to handle
the overheads associated with dynamically allocating and freeing internal com-
munication buffers are always less than one second. As we mentioned above, this
only forms a negligible percentage (0.3%) of the overall execution time of the
application.
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6 Related Work

The use of extra threads, commonly known as asynchronous progress threads,
to progress communication in the background has been a popular method to
progress communication in the background while the application is computing
in the foreground. While this allows progression of messages without the appli-
cation having to enter the MPI library to progress the communication, it takes
away a valuable computation core away from the application process which can
adversely affect the overall performance of the application.

Brightwell et al. [5] showed that eagerly sending large messages can improve
latency for pre-posted receives. However, this scheme has to resend unexpected
large messages in presence of application skew, which does not affect our design.
In [3], Barrett et al. proposed the use of triggered operations in the portals [20]
interface to perform large message rendezvous operations. This method is similar
to the RNR-based design proposed in Sect. 4.5 and also suffers from the same
drawbacks as the RNR-based design in that it is not able to handle wild cards
in the MPI library (e.g.: MPI ANY SOURCE).

Researchers have also explored the use hardware-assisted tag matching
techniques to offload rendezvous transfers to the hardware. While several
high-performance network interconnect such as Intel Omni-Path, Myrinet [4],
Quadrics [2], Bull BXI [10], and Mellanox [1] have proposed and are proposing
solutions that expose such capabilities to high performance MPI libraries.

Automatic tuning for MPI libraries and applications has been explored by
many researchers [6,17,19,23]. However, such tools generally cannot perform
more targeted tuning, such as changing eager-threshold for a small number of
peers. Although the introduction of MPI-T [13] might enable such fine-grained
tuning, good designs are still required inside the MPI library to minimize the
overhead involved.

The emerging remote memory access (RMA) model semantically relieves
the remote process from having to actively participate in communication. Thus
it has the potential to completely overlap computation and communication.
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Although the use of the MPI3-RMA models is slowly catching up, the vast
majority of scientific applications in use today still use the two-sided communi-
cation model. Further, collective operations, that are widely used across various
scientific domains, still rely on two-sided point-to-point operations. Thus the
proposed schemes are likely to remain very relevant in the future.

7 Conclusion and Future Work

In this paper, we proposed designs for point-to-point data transfer in MPI which
accounts for overlap in addition to performance and memory footprint. The pro-
posed designs dynamically adapt to the communication characteristic of each
communicating pair of processes at runtime. Our proposed fully in-band design
is able to transition from one eager-threshold to another without impacting
the communication throughput of the application while taking care of all pos-
sible corner cases. The proposed enhancements to limit the memory footprint
by dynamically freeing unused internal communication buffers is able to signif-
icantly cut down on memory footprint of the MPI library without affecting the
communication performance. Our experimental evaluation showed that the pro-
posed dynamic and adaptive design is able to deliver performance on-par with
what exhaustive manual tuning provides while limiting the memory consumed
to the absolute minimum necessary to deliver the desired benefits. For instance,
with the Amber molecular dynamics application at 1,024 processes, the proposed
design was able to perform on-par with the best manually tuned versions while
reducing the memory footprint of the MPI library by 25%. With the 3D-Stencil
benchmark at 8,192 processes, the proposed design is able to deliver much bet-
ter overlap of computation and communication as well as improved overall time
compared to the default version. To the best of our knowledge, this is the first
point-to-point communication protocol design that is capable of dynamically
adapting to the communication requirements of end applications.

As part of future work, we plan to study the benefits of the proposed design
with multiple applications at scale.
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6. Brunet, É., Trahay, F., Denis, A., Namyst, R.: A Sampling-based approach for
communication libraries auto-tuning. In: 2011 IEEE International Conference on
Cluster Computing (CLUSTER), pp. 299–307. IEEE (2011)

7. Case, D.A., Darden, T.A., Cheatham, T.E., Simmerling, C.L., Wang, J., Duke, R.E.,
Luo, R., Walker, R.C., Zhang, W., Merz, K.M., Roberts, B.P., Wang, B., Hayik,
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7782, pp. 328–342. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36803-5 24

18. MPI-3 Standard Document. http://www.mpi-forum.org/docs/mpi-3.0/mpi30-
report.pdf

19. Pimenta, A., Cesar, E., Sikora, A.: Methodology for MPI applications autotuning.
In: Proceedings of the 20th European MPI Users’ Group Meeting, pp. 145–146.
ACM (2013)

20. Portals Network Programming Interface. http://www.cs.sandia.gov/Portals/
21. San Diego Supercomputing Center. Gordon Supercomputer. http://www.sdsc.edu/

services/hpc/hpc systems.html#gordon
22. Shipman, G.M., Woodall, T.S., Graham, R.L., Maccabe, A.B., Bridges, P.G.:

InfiniBand scalability in open MPI. In: Proceedings of the 20th International Con-
ference on Parallel and Distributed Processing, IPDPS 2006, p. 100. IEEE Com-
puter Society, Washington, DC (2006)

http://www.open-mpi.org
http://www.open-mpi.org
http://dx.doi.org/10.1007/978-3-642-36803-5_24
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.cs.sandia.gov/Portals/
http://www.sdsc.edu/services/hpc/hpc_systems.html#gordon
http://www.sdsc.edu/services/hpc/hpc_systems.html#gordon


354 H. Subramoni et al.

23. Sikora, A., César, E., Comprés, I., Gerndt, M.: Autotuning of MPI applications
using PTF. In: Proceedings of the ACM Workshop on Software Engineering Meth-
ods for Parallel and High Performance Applications, pp. 31–38. ACM (2016)

24. Sur, S., Chai, L., Jin, H., Panda, D.K.: Shared receive queue based scalable MPI
design for InfiniBand clusters. In: Proceedings of the 20th International Confer-
ence on Parallel and Distributed Processing, IPDPS 2006, p. 101. IEEE Computer
Society, Washington, DC (2006)

25. Texas Advanced Computing Center. Stampede Supercomputer. http://www.tacc.
utexas.edu/

26. The MIMD Lattice Computation (MILC) Collaboration. http://physics.indiana.
edu/∼sg/milc.html

27. Wu, J., Liu, J., Wyckoff, P., Panda, D.: Impact of on-demand connection manage-
ment in MPI over via. In: Proceedings of the 2002 IEEE International Conference
on Cluster Computing, pp. 152–159 (2002)

28. Yu, W., Gao, Q., Panda, D.K.: Adaptive connection management for scalable
MPI over InfiniBand. In: Proceedings 20th IEEE International Parallel Distrib-
uted Processing Symposium, p. 10, April 2006

http://www.tacc.utexas.edu/
http://www.tacc.utexas.edu/
http://physics.indiana.edu/~sg/milc.html
http://physics.indiana.edu/~sg/milc.html


Diagnosing Performance Variations
in HPC Applications Using Machine Learning

Ozan Tuncer1(B), Emre Ates1, Yijia Zhang1, Ata Turk1, Jim Brandt2,
Vitus J. Leung2, Manuel Egele1, and Ayse K. Coskun1

1 Boston University, Boston, MA, USA
{otuncer,ates,zhangyj,ataturk,megele,acoskun}@bu.edu

2 Sandia National Laboratories, Albuquerque, NM, USA
{brandt,vjleung}@sandia.gov

Abstract. With the growing complexity and scale of high perfor-
mance computing (HPC) systems, application performance variation has
become a significant challenge in efficient and resilient system manage-
ment. Application performance variation can be caused by resource con-
tention as well as software- and firmware-related problems, and can lead
to premature job termination, reduced performance, and wasted compute
platform resources. To effectively alleviate this problem, system admin-
istrators must detect and identify the anomalies that are responsible for
performance variation and take preventive actions. However, diagnosing
anomalies is often a difficult task given the vast amount of noisy and
high-dimensional data being collected via a variety of system monitoring
infrastructures.

In this paper, we present a novel framework that uses machine learning
to automatically diagnose previously encountered performance anomalies
in HPC systems. Our framework leverages resource usage and perfor-
mance counter data collected during application runs. We first convert
the collected time series data into statistical features that retain applica-
tion characteristics to significantly reduce the computational overhead of
our technique. We then use machine learning algorithms to learn anomaly
characteristics from this historical data and to identify the types of anom-
alies observed while running applications. We evaluate our framework
both on an HPC cluster and on a public cloud, and demonstrate that
our approach outperforms current state-of-the-art techniques in detect-
ing anomalies, reaching an F-score over 0.97.

1 Introduction

Application performance variations are among the significant challenges
in today’s high performance computing (HPC) systems as they adversely impact
system efficiency. For example, the amount of variation in application running
times can reach 100% on real-life systems [12,28,31]. In addition to leading to
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unpredictable application running times, performance variations can also cause
premature job terminations and wasted compute cycles. Common examples of
anomalies that can lead to performance variation include orphan processes left
over from previous jobs consuming system resources [16], firmware bugs [1], mem-
ory leaks [6], CPU throttling for thermal control [15], and resource contention
[12,18,28]. These anomalies manifest themselves in system logs, performance
counters, or resource usage data.

To detect performance variations and determine the associated root causes,
HPC operators typically monitor system health by continuously collecting sys-
tem logs along with performance counters and resource usage data such as avail-
able network link bandwidth and CPU utilization. Hundreds of metrics collected
from thousands of nodes at frequencies suitable for performance analysis trans-
late to billions of data points per day [7]. As HPC systems grow in size and
complexity, it is becoming increasingly impractical to analyze this data man-
ually. Thus, it is essential to have tools that automatically identify problems
through continuous and/or periodic analysis of data.

In this study, we describe a machine learning framework that can automat-
ically detect compute nodes that have exhibited known performance anomalies
and also diagnose the type of the anomaly. Our framework avoids data deluge by
using easy-to-compute statistical features extracted from applications’ resource
utilization patterns. We evaluate the effectiveness of our framework in two envi-
ronments: a Cray XC30m machine, and a public cloud hosted on a Beowulf-
like cluster [33]. We demonstrate that our framework can detect and classify
anomalies with an F-score above 0.97, while the F-score of the state-of-the-art
techniques are between 0.89 and 0.97. Our specific contributions are:

– An easy-to-compute and fast statistical feature extraction approach that sig-
nificantly reduces the amount of data required for performance analysis at
runtime, while retaining relevant information for anomaly detection.

– A novel low-overhead method based on machine learning algorithms that can
automatically detect and identify the anomalies that cause performance vari-
ations. We demonstrate that our approach outperforms the state-of-the-art
techniques on identifying anomalies on two fundamentally different platforms:
a CRAY XC30m HPC cluster and a public cloud.

The rest of the paper is organized as follows: Sect. 2 provides an overview
of related work, Sect. 3 describes our machine-learning-based anomaly detection
framework, Sect. 4 describes the state-of-the-art algorithms that we implement
as baselines, Sect. 5 explains our experimental methodology, and Sect. 6 provides
our experimental findings. Finally, we conclude in Sect. 7.

2 Related Work

Analysis of performance anomalies in large scale computing systems is a widely
studied topic in the literature [25,32]. Some monitoring systems utilize raw
data directly to define thresholds on monitored metrics to trigger alarms that
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warn system administrators about possible performance impasses [13]. Such
approaches do not provide root cause analysis, and manually defining thresh-
olds for root cause analysis requires expert knowledge and is hard to maintain.

A critical problem in automated anomaly diagnosis based on application
performance and resource usage is the overwhelming volume of data monitored at
runtime [25]. Time series analysis methods such as correlation and dynamic time
warping [10] incur unacceptable computational overhead when used with high
dimensional data. Various dimensionality reduction techniques such as principal
component analysis (PCA) have been used to address this problem [20,23,27].
However, techniques focused on reducing the dataset can sometimes eliminate
features that are useful for anomaly detection (see Sect. 6.1).

Another way of addressing the data volume problem is to generate finger-
prints (i.e., signatures) by transforming monitored data. Bodik et al. [14] use
quantiles of measured values (e.g., 95th percentile) at different time epochs to
summarize the collected metric time series in a fingerprint. They further reduce
this data using logistic regression to eliminate metrics that are irrelevant for
anomaly detection. We use Bodik et al.’s technique as a baseline and demon-
strate that our approach has superior anomaly detection accuracy (See Sect. 6).

Anomaly detection is typically orthogonal to dimensionality reduction tech-
niques. Researchers have used statistical techniques and machine learning algo-
rithms (i.e., either alone or after dimension reduction) for detecting and classi-
fying specific subsystem anomalies such as high network congestion [11], poor
file system performance [26], temperature-related issues [9], or out-of-memory
errors [16]. These techniques can detect specific anomalies with high precision,
but existing methods do not provide a generic framework to detect and classify
anomalies occurring in compute nodes.

Most of the related work on automated anomaly detection use low-
dimensional data collected via coarse-grained monitoring tools (e.g., 1 min or
greater sampling period). Several researchers have demonstrated that a detailed
view on how platform resources are being utilized using finer-grained monitoring
(e.g., sampling every second) can provide better insight into application behavior
and can be leveraged to more effectively discover anomalies. For this purpose,
they use manually selected examples of power- and thermal-issues [15] as well as
file system congestion and runaway memory demands [6]. These studies do not
propose an automated method to discover these problems.

A large number of studies focus on anomaly detection via log file analysis
(e.g., [19,21,24]). In this work, we use application resource usage and perfor-
mance characteristics to detect anomalies instead of relying on system logs;
hence, our work is orthogonal to log-file based anomaly detection approaches.

To the best of our knowledge, our work is the first to address the anomaly
detection and classification problem using an automated framework in conjunc-
tion with fine-grained monitoring tools in HPC systems. By leveraging statistical
features that are useful for time series clustering, our anomaly detection method
is able to diagnose anomalies more accurately than other known approaches.
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3 Anomaly Detection and Classification

Our goal is to detect anomalies that cause performance variations and to classify
the anomaly into one of the previously encountered anomaly types. To this end,
we propose an automated anomaly detection technique, which takes advantage
of historical data collected from known healthy runs and anomalies, and builds
generic machine learning models that can distinguish anomaly characteristics
in the collected data. In this way, we are able to detect and classify anomalies
when running applications with a variety of previously unobserved inputs. With
a training set that represents the expected application characteristics, our tech-
nique is successful even when a known anomaly impacts an application we have
not encountered during training.

Directly using raw time series data that is continuously collected from thou-
sands of nodes for anomaly detection can incur unacceptable computational
overhead. This can lead to significant time gaps between data collection and
analysis, delayed remedies, and wasted compute resources. Instead of using raw
time series data, we extract concise statistical features that retain the character-
istics of the time series. This significantly reduces our data set, thus decreasing
the computational overhead and storage requirements of our approach. We apply
our anomaly diagnosis offline after application runs are complete. In future work,
online or periodic anomaly detection can be performed by extending our frame-
work. In the next subsections, we explain the details of our proposed approach
on feature extraction and machine learning.

3.1 Feature Extraction

HPC monitoring infrastructures are rapidly evolving and new monitoring sys-
tems are able to periodically collect resource usage metrics (e.g., CPU utiliza-
tion, available memory) and performance counters (e.g., received/transmitted
network packets, CPU interrupt counts) during application runs [7]. This data
provides a detailed view on applications’ runtime characteristics.

While an application is running, we periodically collect resource usage and
performance counter metrics from each node during the entire application run.
Note that our technique is also applicable when metrics are collected for a slid-
ing history window to investigate only recent data. The metrics we collect, as
described in detail in Sect. 5.1, are not specific to any monitoring infrastructure
and the proposed framework can be coupled with different HPC monitoring sys-
tems (e.g., [2,5,7]). From the time series of collected metrics, we extract the
following easy-to-compute features to enable fast anomaly analysis:

– Simple order statistics that help differentiate between healthy and anomalous
behavior: the minimum value, 5th, 25th, 50th, 75th, and 95th percentile values,
the maximum value, and the standard deviation;

– Features that are known to be useful for time-series clustering [35]:
• Skewness indicates lack of symmetry. In a time series Xt, skewness S is

defined by S = 1
nσ3

∑n
t=1

(
Xt − Xt

)3
, where Xt is the mean, σ is standard

deviation, and n is the number of data points.
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• Kurtosis refers to the heaviness of the tails of a distribution. The kurtosis
coefficient is defined as K = 1

nσ4

∑n
t=1

(
Xt − Xt

)4
.

• Serial correlation measures the noisiness in given data, and can be esti-
mated by the Box-Pierce statistic [36].

• Linearity is a measure of how well a time series can be forecasted with
traditional linear models [22].

• Self-similarity measures the long-range dependence, i.e., the correlation
of Xt and Xt+k in time series Xt for large values of k.

The calculation of statistical features is a low-overhead procedure, and can
be further optimized to work with data streams for on the fly feature generation.
We provide an evaluation of the overhead of our implementation in Sect. 6.5.

3.2 Anomaly Diagnosis Using Machine Learning

Our machine-learning-based anomaly diagnosis approach is depicted in Fig. 1. As
seen in the figure, during offline training, we run various types of applications
(denoted as A, B, C in the figure) using different input sizes and input data
(denoted with subscripts 1, 2, etc. in the figure). We gather resource usage and
performance counter metrics from the nodes used by each application both when
running without any anomaly and when we inject a synthetic anomaly to one of
the nodes (see Sect. 5.2 for details on injected anomalies). When an application
finishes executing, we compute statistical features using the metrics collected
from individual nodes as described in Sect. 3.1. We label each node with the type
of the introduced anomaly (or healthy). We use these labels and computed per-
node features as input data to train various machine learning algorithms such as
k-nearest neighbors and random forests. As machine learning algorithms do not
use application type as input, they extract anomaly characteristics independent
of applications.

At runtime, we again monitor application resource usage and performance
counter metrics and extract their statistical features. We then use the machine
learning models built during the training phase to detect anomalies and identify
the types of anomalies in the nodes used by the application.

Fig. 1. Overall system architecture. Machine learning models built offline are used for
classifying observations at runtime.
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4 Baseline Methods

We implemented two state-of-the art methods as baselines of comparisons: the
statistical approach proposed by Lan et al. [27] (referred as “ST-Lan”), and the
fingerprinting approach of Bodik et al. [14] (referred as “FP-Bodik”).

4.1 ST-Lan [27]

The core idea of ST-Lan is to detect anomalies based on distances between time
series. ST-Lan applies Independent Component Analysis (ICA) to transform
the monitored time series data into independent components, which represent
the directions of maximal independence in data by using a linear combination
of metrics. The first 3 independent components are used as a behavioral profile
of a node. At runtime, the authors compare the behavioral profiles of the nodes
that are used in new application runs to the profiles of known healthy nodes
to identify whether the collected time series is an outlier using a distance-based
outlier detection algorithm.

4.2 FP-Bodik [14]

This method first divides each metric’s time series into equal-sized epochs. Each
epoch is represented by three values: 25th, 50th, and 95th percentiles within that
epoch. FP-Bodik further reduces data by selecting a subset of monitored metrics
that are indicative of anomalies in the training set using logistic regression with
L1 regularization. Next, a healthy range for the percentiles of each metric is
identified using the values observed in healthy nodes while running applications.
FP-Bodik then creates a summary vector for each percentile of each epoch based
on whether observed metrics are within healthy ranges. The average of all sum-
mary vectors from a node constructs a fingerprint vector of the node. In order
to find and classify anomalies, FP-Bodik compares L2 distances among these
fingerprint vectors and chooses the nearest neighbor’s category as the predicted
anomaly type.

5 Experimental Methodology

Our experiments aim to provide a realistic evaluation of the proposed method in
comparison with the baseline techniques. We run kernels representing common
HPC workloads and infuse synthetic anomalies to mimic anomalies observed in
real-world HPC systems. This section describes our anomaly generation tech-
niques, experimental environments, and the HPC applications we run in detail.

5.1 HPC Systems and Monitoring Infrastructures

We use two fundamentally different environments to evaluate our anomaly detec-
tion technique: a supercomputer, specifically a Cray XC30m cluster named Volta,
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and the Massachusetts Open Cloud (MOC), a public cloud running on a Beowulf-
like [33] cluster. We select these two environments as they represent modern
deployment options for HPC systems.

Volta is a Cray XC30m cluster located at Sandia National Laboratories and
accessed through Sandia External Collaboration Network1. It consists of 52 com-
pute nodes, organized in 13 fully connected switches with 4 nodes per switch.
The nodes run SUSE Linux with kernel version 3.0.101. Each node has 64 GB
of memory and two sockets, each with an Intel Xeon E5-2695 v2 CPU with 12
2-way hyper-threaded cores, leading to a total of 48 threads per node.

Volta is monitored by the Lightweight Distributed Metric Service (LDMS)
[7]. This service enables aggregation of a number of metrics from a large number
of nodes. At every second, LDMS collects 721 different metrics as described
below:

– Memory metrics (e.g., free, cached, active, inactive, dirty memory)
– CPU metrics (e.g., per core and overall idle time, I/O wait time, hard and

soft interrupt counts, context switch count)
– Virtual memory statistics (e.g., free, active/inactive pages; read/write counts)
– Cray performance counters (e.g., power consumption, dirty, writeback coun-

ters; received/transmitted bytes/packets)
– Aries network interface controller counters (e.g., received/transmitted pack-

ets, flits, blocked packets)

Massachusetts Open Cloud (MOC) is an infrastructure as a service (IaaS)
cloud running in the Massachusetts Green High Performance Computing Center,
which is a 15 MW datacenter dedicated for research purposes [3].

In MOC, we use virtual machines (VMs) managed by OpenStack [30], where
the compute nodes are VMs running on commodity-grade servers which commu-
nicate through the local area network. Although we take measurements from the
VMs, we do not have control or visibility over other VMs running on the same
host. Other VMs naturally add noise to our measurements, making anomaly
detection more challenging.

We periodically collect resource usage data using the monitoring infrastruc-
ture built in MOC [34]. Every 5 s, this infrastructure collects 53 metrics,
which are subset of node-level metrics read from the Linux /proc/stat and
/proc/meminfo pseudo-files as well as iostat and vmstat tools. The specific
set of collected metrics are selected by MOC developers and can be found in the
public MOC code repository [4].

5.2 Synthetic Anomalies

We focus on node-level anomalies that create performance variations. These
anomalies can result from system or application-level issues. Examples of such
anomalies are as follows:
1 http://www.sandia.gov/FSO/docs/ECN Account Process.pdf.

http://www.sandia.gov/FSO/docs/ECN_Account_Process.pdf
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– Out-of-memory: When the system memory is exhausted in an HPC platform,
the Linux out-of-memory killer terminates the executing application. This is
typically caused by memory leaks [6].

– Orphan processes: When a job terminates incorrectly, it may result in
orphan processes that continue using system resources such as memory and
CPU [16,17].

– Hidden hardware problems: Automatic compensation mechanisms for hard-
ware faults can lead to poor overall system performance. An example of such
problems was experienced in Sandia National Laboratories’ Redstorm system
as slower performance in specific nodes, where several CPUs were running at
2.0 GHz instead of 2.2 GHz [32].

We run synthetic anomalies on a single node of a multi-node HPC application
to mimic the anomalies seen in real-life systems by stressing individual compo-
nents of the node (e.g., CPU or memory), emulating interference or malfunction
in that component. As synthetic anomalies, we use the following programs with
two different anomaly intensities:

1. leak: This program allocates a 16 MB char array, fills the array with charac-
ters, and sleeps for two seconds in an infinite loop. The allocated memory is
never released, leading to a memory leak. If the available system memory is
consumed before the running application finishes, the leak program restarts.
In the low intensity mode, a 4 MB array is used.

2. memeater: This program allocates a 36 MB int array and fills the array with
random integers. It then periodically increases the size of the array using
realloc and fills in new elements. After 10 iterations, the application restarts.
In the low intensity mode, an 18 MB array is used.

3. ddot: This program allocates two equally sized matrices of double type, using
memalign, fills them with a number, and calculates the dot product of the
two matrices repeatedly. We change the matrix size periodically to be 0.9, 5
and 10 times the sizes of the caches. It simulates CPU and cache interference
by re-using the same array. The low intensity mode allocates arrays half the
size of the original.

4. dcopy: This program again allocates two matrices of sizes equal to those of
ddot, however it copies one matrix to the other one repeatedly. Compared to
ddot, it has less CPU interference and writes back to the matrix.

5. dial: Repeatedly generates random floating point numbers, and performs
arithmetic operations, thus stresses the ALU. In low intensity mode, the
anomaly sleeps for 125 ms every 250 ms.

5.3 Applications

In order to test our system with a variety of applications, we use the NAS Parallel
Benchmarks (NPB) [8]. We pick five NPB applications (bt, cg, ft, lu and sp),
with which we can obtain feasible running times (10–15 min) for three different
custom input sizes. Each application run uses 4 nodes on Volta and 4 VMs on
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MOC. As some of our applications require the number of MPI ranks to be the
square of an integer or to be a power of two, we adjust the number of ranks used
in our experiments to meet these requirements and run applications with 64 and
16 ranks in Volta and MOC, respectively.

In our experiments, we run the selected 5 NPB applications for every com-
bination of 3 different application input sizes and 20 and 10 randomized input
data set in Volta and MOC, respectively. We repeat each of these runs 20 times:
10 without any anomaly, and 10 with one of the 4 application nodes having
a synthetic anomaly for every combination of 5 anomaly types and 2 anomaly
intensities. This results in 3000 application runs in Volta and 1500 in MOC, half
of which use a single unhealthy node, i.e., a node with an anomaly.

We have observed that for the application runs with a single unhealthy node,
the characteristics of the remaining (i.e., healthy) nodes are more similar to the
nodes in a completely healthy application run than to an unhealthy node. This is
because even when the runtime of an application changes due to inclusion of an
unhealthy node, the characteristics that we evaluate do not change significantly
on the remaining healthy nodes for the applications we use.

5.4 Implementation Details

We implement most of our preprocessing and classification steps in python.
Before feature generation, we remove the first and last 30 s of the collected time
series data to strip out the initialization and termination phases of the applica-
tions. Note that the choice of 30 s is based on these particular applications and
the configuration parameters used.

During pre-processing, we take the derivative of the performance counters
so that the resulting metrics represent the number of events that occurred over
the sample interval (e.g., interrupts per second). This is automatically done in
MOC, and can be easily integrated into LDMS in Volta.

Proposed Framework: For feature generation, we use the python scipy-
stats package to calculate skewness and kurtosis. We use R to calculate Box-
Pierce statistics, the tseries R package to calculate the Teräsvirta neural net-
work test for linearity, and the fracdiff R package for self-similarity.

We evaluate the following machine learning algorithms: k-nearest neighbors,
support vector classifiers with the radial basis function kernel, decision trees,
random forests, and AdaBoost. We use python’s scikit-learn packages [29]
for the implementations of these algorithms.

ST-Lan: This algorithm uses the first N = 3 independent components deter-
mined by ICA as the behavioral profile of a node. The first 3 independent compo-
nents do not capture the independent dimensions in our data because the metric
set we monitor is significantly larger than that used by Lan et al. As the authors
do not provide a methodology to select N , we have swept N values within [3, 20]
range and compared accuracy in terms of the percentage of correctly labeled
nodes on both of our experimental platforms as shown in Fig. 2. N = 7 and
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Fig. 2. Classification accuracy of ST-Lan w.r.t. number of independent components
used in the algorithm for the two platforms used in this study.

N = 12 provide the highest accuracy on Volta and MOC, respectively. We set-
tled on N = 10 as it provides a good middleground value that results in high
accuracy on both platforms. In addition to selecting N , we extend ST-Lan to
be able to do multi-class classification (i.e., to identify the type of an anomaly)
as well by using a kNN classifier instead of the distance-based outlier detection
algorithm used by the authors.

FP-Bodik: This algorithm uses divides the collected metric time series into
epochs before generating fingerprints. In their work [14], Bodik et al. select
the epoch length as 15 min with a sampling rate of a few minutes due to the
restrictions in their monitoring infrastructure. In our implementation, we use
the epoch length as 100 measurements, which corresponds to 100 s.

6 Results

We evaluate the detection algorithms using 5-fold stratified cross validation,
which is a standard technique for evaluating machine learning algorithms, and
is performed as follows: We randomly divide our data set into 5 equal-sized
partitions with each partition having data from a balanced number of application
runs for each anomaly. We use a single partition for testing while using the
other 4 disjoint partitions for training; and repeat this procedure 5 times, where
each partition is used once for testing. Furthermore, we repeat the 5-fold cross
validation 10 times with different randomly-selected partitions.

We calculate the average precision and recall for each class across all test
sets, where the classes are the 5 anomalies we use and “healthy”, and precision
and recall of class Ci are defined as follows:

precisionCi
= (# of correct predictions)Ci

/(# of predictions)Ci
(1)

recallCi
= (# of correct predictions)Ci

/(# of elements)Ci
(2)

For each class, we report F-score, which is the harmonic mean of precision
and recall. In addition, we calculate an overall F-score for each algorithm as
follows: We first calculate the weighted average of precision and recall, where
the precision and recall of each class is weighted by the number of instances of
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that class in our data set. The harmonic mean of these weighted average values
is the overall F-score.

We use the following classifiers in our machine learning framework: k-nearest
neighbors (kNN), support vector classifier (SVC), AdaBoost, decision tree (DT),
and random forest (RF).

The rest of this section begins with comparing anomaly detection techniques
when the disjoint training and test sets include data from the same applications,
application input sizes, and anomaly intensities, but using different application
input data. However, it is not a realistic scenario to know all the possible jobs that
will run on an HPC system. Hence, in the following subsections, we evaluate the
robustness of our approach and the baseline techniques to unknown application
input sizes, unknown applications, and unknown anomaly intensities. Finally,
we provide an experimental evaluation of the computational overhead of our
anomaly detection approach.

6.1 Anomaly Detection and Classification

Figures 3 and 4 show the effectiveness of the anomaly detection approaches in
terms of overall and per-anomaly F-scores in Volta and MOC environments,
respectively. Note that half of our application runs use 4 healthy nodes and the
other half use 3 healthy nodes and a single unhealthy node. Hence, the overall
F-score of majority voting, which simply marks every node as “healthy”, is 0.875
(represented by a dashed line in Figs. 3a and 4a).

(a) Overall F-score
(b) F-scores for each anomaly

Fig. 3. F-scores for anomaly classification in Volta. ST-Lan and FP-Bodik are baseline
algorithms. Majority voting in (a) marks everything as “healthy”.

(a) Overall F-score
(b) F-scores for each anomaly

Fig. 4. F-scores for anomaly classification in MOC.
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Table 1. The most important 10 fea-
tures selected by RF in Volta

Source Feature

/proc/stat avg user

/proc/stat perc5 idle

/proc/stat perc95 softirq

/proc/vmstat std dirty backgnd thrshld

/proc/stat perc25 idle

/proc/vmstat std dirty threshold

cray aries r std current freemem

/proc/stat perc50 idle

/proc/vmstat perc95 pgfault

/proc/vmstat min numa hit

Table 2. The most important 10 met-
rics selected by ST-Lan in Volta

Source Metric

nic WC FLITS

/proc/meminfo VmallocUsed

nic WC PKTS

/proc/meminfo Committed AS

/proc/vmstat nr page table pages

/proc/meminfo PageTables

/proc/meminfo VmallocChunk

nic WC BLOCKED

/proc/vmstat nr active anon

/proc/meminfo Active(anon)

In Volta, DT and RF result in close to ideal detection accuracy. As ddot and
dcopy anomalies both stress caches, all algorithms tend to mislabel them as each
other, resulting in lower F-scores.

The relatively poor performance on ST-Lan in Fig. 3 demonstrates the impor-
tance of feature selection. ST-Lan leverages ICA for dimensionality reduction
and uses features that represent the maximal independence in data but are not
necessarily relevant for anomaly detection. Table 1 presents the most useful 10
features selected by random forests based on the normalized total Gini reduc-
tion brought by each feature as reported by python scikit-learn package. For
comparison, we present the metrics with the 10 highest absolute weight in the
independent components used in ST-Lan in Table 2. Indeed, none of the top-level
metrics used by ST-Lan is used in the most important features of RF.

In MOC, however, the important metrics in the independent components
match with the important features of RF as shown in Tables 3 and 4. The reason
is that we collect 53 metrics in MOC compared to 721 metrics in Volta; and
hence, there is a higher overlap between the metrics in the first 10 independent
components and those selected by decision trees. As the metric space increases,
the independent components become less relevant for anomaly detection.

The overall detection performance in MOC is lower for all algorithms. There
are 4 main factors that can cause the reduced accuracy in MOC: the number of
collected metrics, dataset size, sampling frequency, and platform-related noise.
To measure the impact of the difference in the metric set, we choose 53 metrics
from the Volta dataset that are closest to the MOC metrics and re-run our
analysis with the reduced metric set. This decreases F-score by 0.01 for SVC
and kNN and poses no significant reduction for DT, RF, and AdaBoost. Next,
we reduce the size of the Volta dataset and use 5 randomized application input
data instead of 10. The combined F-score reduction due to reduced dataset size
and metric set is around 0.02 except for DT, RF, and AdaBoost, where the
F-score reduction is insignificant. We also measure the impact of data collection
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Table 3. The most important 10 fea-
tures selected by RF in MOC

Source Feature

/proc/meminfo std free

/proc/meminfo std used

/proc/stat avg cpu idle

vmstat std free memory

/proc/meminfo std freeWOBuffersCaches

/proc/meminfo std used percentage

vmstat perc75 cpu user

/proc/stat max cpu idle

/proc/meminfo std usedWOBuffersCaches

/proc/stat perc75 cpu idle

Table 4. The most important 10 met-
rics selected by ST-Lan in MOC

Source Metric

vmstat cpu user

/proc/stat cpu user

iostat user

vmstat cpu idle

iostat idle

vmstat cpu system

iostat system

/proc/stat cpu system

/proc/meminfo freeWOBuffersCaches

/proc/meminfo usedWOBuffersCaches

period by increasing it to 5 s; however, the impact on classification accuracy is
negligible. We believe that the reduction in accuracy in MOC mainly stems from
the noise in the virtualized environment, caused by the interference due to VM
consolidation and migration.

Considering both MOC and Volta results, our results indicate that RF is the
best-performing algorithm with overall F-scores between 0.97 and 1.0 on both
platforms, while the baselines have overall F-scores between 0.89 and 0.97.

6.2 Classification with Unknown Application Input Sizes

In a real-world scenario, we expect to encounter application input sizes other
than those used during training. This can result in observing application resource
usage and performance characteristics that are new to the anomaly detection
algorithms. To evaluate the robustness of our approach against input sizes that
have not been encountered before, we modify our training and test sets in our
5-fold cross validation, where we remove an unknown input size from all training
sets and the other input sizes from all test sets. We repeat this procedure 3 times
so that all input sizes are selected as the unknown size once. We also evaluate
detection algorithms when two input sizes are simultaneously removed from the
training sets, for all input size combinations.

Figure 5 presents the overall F-score achieved by anomaly detection algo-
rithms for unknown input sizes. As we train the algorithms with a smaller vari-
ety of application input sizes, their effectiveness decrease as expected. In MOC,
FP-Bodik’s F-score decreases down to the majority voting level. However, the
proposed machine learning approach consistently outperforms the baselines, with
RF keeping its near-ideal accuracy in Volta.
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(a) Volta (b) MOC

Fig. 5. Overall F-score when the training data excludes one or two input sizes and the
testing is done using only the excluded input sizes

6.3 Classification with Unknown Applications

In order to evaluate how well our anomaly detection technique identifies anomaly
characteristics independent of specific applications, we remove all runs of an
application from the training sets, and then, remove all the other applications
from the test sets. We repeat this procedure for all 5 applications we use.

Figure 6 shows the overall F-score of the detection algorithms for each
unknown application. The most prominent result in the figure is that most algo-
rithms have very poor classification accuracy in MOC when the unknown appli-
cation is ft. Figure 7a illustrates how ft is different than other applications in
terms of the most important two features used by DT to classify healthy runs.
When not trained with ft, DT uses the threshold indicated by the dashed line
to identify the majority of the healthy nodes, which results in most healthy ft
nodes being marked as unhealthy. In Volta, however, the data has less noise due
to the absence of VM interference and the number of metrics is significantly
larger. Hence, DT is able to find more reliable features to classify healthy runs
as depicted in Fig. 7b.

Figure 6 shows that the F-score of FP-Bodik also decreases significantly in
both Volta and MOC when ft is the unknown application. This is because when

(a) Volta (b) MOC

Fig. 6. Overall F-score when the training data excludes one application and the testing
is done using only the excluded application
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(a) MOC. When ft is excluded from the training set, DT classifies runs below the
dashed line as unhealthy, which causes healthy ft nodes to be classified as unhealthy.

(b) Volta. The distinction between healthy and unhealthy clusters is clearly visible.

Fig. 7. The scatter plots of the datasets for the most important two features used by
DT to classify healthy data.

not trained with ft, the generated fingerprint of the memeater anomaly by FP-
Bodik is similar to the fingerprint of healthy ft, resulting in FP-Bodik marking
healthy ft nodes as memeater.

These examples show that when the training set does not represent the
expected application runtime characteristics, both our framework and the base-
line algorithms may mislabel the nodes where unknown applications run. To
avoid such problems, a diverse and representative set of applications should be
used during training.

6.4 Classification with Unknown Anomaly Intensities

In this section, we evaluate the robustness of the anomaly detection algorithms
when they encounter previously-unknown anomaly intensities. Thus, we train the
algorithms with data collected when running with either high- or low-intensity
anomalies test with the other intensity. Figure 8 shows the resulting F-scores
in Volta and MOC environments. When the detection algorithms are trained
with anomalies with high intensity, the thresholds placed by the algorithms are
adjusted for highly anomalous behavior. Hence, when tested with low anomaly
intensity, the algorithms misclassify some of the unhealthy nodes as healthy,
leading to a slightly lower F-score. The baseline algorithms demonstrate a more
robust behavior against unknown anomaly intensities compared to our approach
except for RF, which outperforms the baselines on Volta and performs similarly
on MOC when trained with low anomaly intensity.
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(a) Volta (b) MOC

Fig. 8. Overall F-score when the training data excludes one anomaly intensity and the
testing is done using only the excluded anomaly intensity

6.5 Overhead

In our framework, the most computationally intensive part is feature generation.
Generating features for a 900-second time window in Volta, i.e., from a 48-thread
server for 721 metrics with 1 s sampling period, takes 10.1 s on average using a
single thread. This translates into 11 ms single-thread computational overhead
per second to calculate features for the metrics collected from a 48-thread server.
Assuming that these features are calculated on the server by monitoring agents,
this corresponds to a total of 11/48 = 0.23ms computational overhead per sec-
ond (0.02%) on Volta servers. Performing classification with trained machine
learning algorithms takes approximately 10 ms and this overhead is negligible
compared to application running times. With our implementations, the classifi-
cation overheads of FP-Bodik and ST-Lan are 0.01% and below 0.01%, respec-
tively. The training overhead of both the machine learning algorithms and the
baseline algorithms is negligible as it can be done offline.

Regarding the storage savings, the data collected for a 4-node 15-minute run
on Volta takes 6.2 MB as raw time series, and only 252 KB as features (4% of
the raw data). This number can be further reduced for tree-based classifiers by
storing only the features that are deemed to be important by the classifiers.

7 Conclusion and Future Work

Performance variation is an important factor that degrades efficiency and
resiliency of HPC systems. Detection and diagnosis of the root causes of perfor-
mance variation is a hard task due to the complexity and size of HPC systems. In
this paper, we present an automated, low-overhead, and highly-accurate frame-
work using machine learning for detection and identification of anomalies in HPC
systems. We evaluate our proposed framework on two fundamentally different
platforms and demonstrate that our framework is superior to other state-of-the-
art approaches in detecting and diagnosing anomalies, and robust to previously
unencountered applications and application characteristics.
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In this work, we have focused on a subset of NPB applications, for which
we have observed mostly flat profiles. As future work, we will explore runtime
detection of anomalies considering applications that contain substantial varia-
tions in their resource usage. We are also planning to embed our solutions within
the LDMS monitoring framework and evaluate our approach with a wider set of
real-life applications.
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Abstract. The reduction of the CPU frequency and voltage is a well-
known approach to improve energy consumption of memory-bound appli-
cations. This is based on the conception that the performance of the main
memory sees little or no degradation at reduced processor clock speeds
while power consumption decreases significantly improving the overall
energy efficiency. We study this effect on the Haswell generation of Intel
Xeon processors as well as the ARMv7 generation of the 32-bit ARM
big.LITTLE architecture. The goal is to analyse and compare computa-
tional performance, energy consumption and energy efficiency on a series
of tasks, each focusing on different parts of the system and provide an
analysis and generalisation to other similar architectures.

The benchmark suit consists of compute and memory intensive bench-
marks as well as both single and multi-threaded scientific applications.
The results show that frequency and voltage scaling can significantly
improve algorithms’ energy efficiency. Up to 2.5× on ARM and 1.5×
on Intel compared to the maximum frequency. ARM is up to 2× more
efficient than Intel.

Keywords: Haswell · ARMv7 · Odroid XU4 · k-Wave · LAMMPS ·
Energy efficiency

1 Introduction

Nowadays, the energy efficiency of modem processors is becoming more and
more important next to the overall performance itself. Many programming tasks
and problems do cannot use the hardware very efficiently due to being mem-
ory or communication-bound. Many clock cycles are wasted while waiting for
data or a dependency conflict. Therefore, it is often not beneficial to use faster
chips to achieve better runtimes. In this case, underclocking and undervolting,
or employing slower low power processors or accelerators may be much more
efficient. Mainly because of the possibility to get the same results using much
less energy and often without any significant performance penalties.
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An average Intel Xeon processor provides around 150–300 GFlop/s in dou-
ble precision, with the Thermal Power Design (TDP) of 85–130 W. This gives
roughly 2 GFlops/W of peak energy efficiency. These chips consist of about 6–18
cores being the most widely used CPUs in today’s high performance clusters and
supercomputers, according to the Top5001 ladder.

Searching for even better efficiency, mobile ARM processors have attracted
a lot of interest since their performance is comparable to the x86 CPUs. For
example, an ARM based development board Nvidia Tegra X12 and its GPU can
provide 512 GFlop/s while consuming only about 11 W of energy. This yields
almost 50 GFlops/W in single precision.

The Green5003 list provides a ranking of the most efficient supercomputers
in the world. The most efficient machine reaches almost 10 GFlops/W using the
nVidia DGX-1 system4. Current estimates indicate that processor efficiency will
have to evolve to 50 GFlops/W for exascale machines to meet the realistic power
budget of 20 MW.

Last but not least, an important reason to focus more on power efficiency
is the resource allocation policy of supercomputing centers. Currently, resources
are distributed among users based on core-hours. The energy efficiency of users’
applications is defined simply by the runtime, faster is almost always more effi-
cient. The processors are almost always running at the highest possible frequency,
even when the application being executed may not fully utilise the processors’
resources. This leads to a lot of wasted energy. However, due to rapidly increas-
ing energy demands of modern clusters, the way the resources are allocated may
change. Instead of using the core-hour metric, the users will be charged based on
consumed kWhs. Hand to hand with this approach, users will be able to manually
change hardware parameters such as frequency and voltage or shut down parts
of the system. The SuperMUC5 supercomputer already provides a frequency
scaling options in the job scheduler for its users. The Taurus6 supercomputer
additionally allows users to change the processor frequency dynamically during
job runtime. Taurus is able to measure the energy consumption of each of its
Haswell nodes using a built-in FPGA probe. This is going to put much more
emphasis on energy efficiency from both the software and hardware viewpoints.
The hardware side will be much more dynamic and the ways to use provided
resources as efficiently as possible will have to be exploited and optimised.

Much research effort in the area of the energy efficient computing makes use
of the Dynamic Voltage and Frequency Scaling (DVFS) to improve energy effi-
ciency [1,6,8,12]. The incentive is often that a system’s main memory bandwidth
is unaffected by reduced clock speeds, while the power consumption decreases sig-
nificantly. The examples of memory-bound algorithms are sorting and searching

1 https://www.top500.org/.
2 http://www.nvidia.com/object/tegra-x1-processor.html.
3 https://www.top500.org/green500/.
4 http://www.nvidia.com/object/deep-learning-system.html.
5 https://www.lrz.de/services/compute/supermuc/.
6 https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus.

https://www.top500.org/
http://www.nvidia.com/object/tegra-x1-processor.html
https://www.top500.org/green500/
http://www.nvidia.com/object/deep-learning-system.html
https://www.lrz.de/services/compute/supermuc/
https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus
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algorithms, sparse vector-matrix algebra or multidimensional fast Fourier trans-
forms, assuming the input data cannot fit into caches. These algorithms spend
most of the time accessing the main memory and their compute intensity is often
very low. Besides DVFS, another approach might be to switch off unneeded cores
to save energy and let the others work at maximum frequency. However, this
requires a direct hardware support.

This paper presents a study of DVFS and its impact on the energy efficiency.
The investigated architectures are the latest Haswell generation of x86 64 Xeon
systems from Intel and ARMv7 big.LITTLE architectures. A series of differ-
ent benchmarks is tested, ranging from synthetic compute and memory ones to
scientific applications.

2 Related Work

The Mont-Blanc project [10] based in Barcelona, Spain, has developed a high per-
formance parallel system based on the ARMv7 architecture and its Cortex-A15
cores. The system was compared to a production supercomputer MareNostrum
III composed of the Intel Xeon Sandy Bridge architecture. A single node of Mont-
Blanc is 9× slower while saving 40% energy. MPI applications are 3.5× slower
using the same number of processes, but consuming 9% less energy. A single node
of Mont-Blanc consumes 5.3 W and 9.5 W while idle or load, respectively. Very
similar architectures are compared in our paper, however, instead of focusing
on MPI and GPUs, the emphasis is put on single-threaded and multi-threaded
applications.

The READEX project [11] is improving energy efficiency of applications in
the field of High Performance Computing by means of dynamic auto-tuning. This
allows users to automatically exploit the dynamic behaviour of their applications
by adjusting the hardware parameters to match the actual resource requirements.
Their software consists of 3 main parts, the Periscope Tuning Framework (PTF)
for design time analysis, the READEX Runtime Library (RRL) for tuning at
runtime and the Score-P framework for the instrumentation and measurements
of HPC applications. The outcome of the automatic READEX methodology
is expected to be at least 50% of the manually achievable gains. Similarly to
READEX, the goal is to analyse and find the optimal settings for a specific
system running a given algorithm or its kernel. READEX exploits dynamism
during the application’s runtime on the Intel x86 64 architecture only. In this
paper, a static frequency is set for each run.

Choi et al. [3] conducted a microbenchmarking study of the time, energy
and power consumption on several existing platforms including modern GPUs,
ARM (Arndale dual-core Cortex-A15) and Intel processors (Nehalem and mobile
Ivy-Bridge) and an Intel Phi KNC accelerator. The dual-core ARM Cortex-A15
achieved 2.2 GFlops/W and 0.56 GB/W, Intel Nehalem achieved 0.62 GFlops/W
and 0.14 GB/W using an architecture-specific hand-tuned benchmark. Our paper
focuses only on the ARM and Intel x86 architectures, however, it provides a much
wider set of benchmarks using actual scientific HPC applications.
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Huang et al. [7] analyse the energy consumption of both the compute (HPL)
and memory-bound (STREAM) problems on Haswell E5-2600 v3 architecture.
The PAPI RAPL framework [14] is used to track the energy consumption of
different parts of the system. The effect of different P-states, hyper-threading,
socket power imbalance and core affinity on power consumption and performance
were analysed. The results showed that different P-state settings provide up to
33% energy savings. Enabling the hyper-threading and core affinity improves
energy efficiency by 19–48%. Minor power imbalances can be observed between
the two sockets. Compiler optimisations improved the energy demands by 28.6%.
Regarding to this paper, three different P-states are analysed in terms of per-
formance and energy efficiency, threads and processes are always pinned to the
cores, maximum compiler optimisations are used and a wider range of bench-
marks is tested.

Hackenberg et al. [5] analyse a number of Haswell energy features, such as the
enhanced RAPL implementation with better accuracy, integrated voltage and
frequency regulators for each core, lower and unpredictable clock frequency for
workloads with substantial amounts of AVX instructions and the P-state (volt-
age and frequency operation point) transition behaviour. The most important
information for this paper is that RAPL measurements were verified using several
microbenchmarks avoiding interference effects due to time synchronisation. The
results show almost perfect correlation to the total system power consumption
(AC) measured with high-accuracy power meter.

The contribution of our paper is the comparison of two architectures on a
unique set of benchmarks. Two different methodologies are used for expressing
the energy efficiency. A unique hardware setup of the Samsung Odroid-XU47

kit, based on a more powerful power supply, cooling and an accumulative power
consumption sensor, is utilised.

3 Investigated Systems

The system configurations, all the benchmarks were run on, are summarised in
Tables 1 and 2.

Table 1. Intel Haswell system hardware overview

Server Supermicro 7048GR-TR

Motherboard Supermicro X10DRG-Q

Processor 2× Intel Xeon E5-2620v3 TDP 2× 85W, 2× 230.4GFlop/s (SP, no Turbo),

2× 15MB L3, 12× 256KB L2, 12× 32KB L1

RAM 2× 32GB DDR4-2133 2× 59GB/s, 2× 4 channels

Storage SSD Crucial MX200 250GB

7 http://www.hardkernel.com/main/products/prdt info.php?g
code=G143452239825.

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G143452239825
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G143452239825
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Table 2. Samsung ARMv7 system hardware overview

Device Samsung Odroid-XU4

Processor Samsung Exynos5422
(4× Cortex-A15 + 4× Cortex-A7)

TDP ∼15 W, 4 × 4 + 4 × 2.8 GFlop/s (SP)
2 × 2 MB L2, 8 × 32 KB L1

RAM 2 GB LPDDR3 933 MHz 14.9 GB/s, dual channel

Storage eMMC5.0 HS400 Flash Storage

The operating system was Ubuntu 16.04 on both systems.
On Intel, the energy measurements were taken using the Intel Performance

Counter Monitor8 and its pcm-power module, which can directly access the
Running Average Power Limit Model Specific Registers (RAPL MSRs) of the
CPU. It measures the energy consumption of three main components of each
CPU - package, powerplane and dram. The package measures the whole socket
including the memory controller. Powerplane only measures the cores them-
selves and dram measures the corresponding DRAM modules. The powerplane
measurements are not supported by the Haswell architecture. The total power
consumption in Watts was calculated as

package0 + dram0 + package1 + dram1 (1)

The Samsung Odroid-XU4 kit does not support any hardware counters for
measuring power consumption. The energy consumption was measured by the
KCX-0179 USB meter connected in-between the power supply and the power
connector of the board to display actual electric voltage and current. The current
is also accumulated into mAh used to manually calculate the overall energy
consumption. Each benchmark ran long enough or was run multiple times in a
loop to consume at least 20 mAh. The average deviation caused by reading the
display manually is about 5 %.

The original Odroid power supply is not sufficient during high loads, the
voltage dropped below 4.2 V and the kit got frozen. A programmable power
supply Diametral P230R51D10 was used instead.

The original cooler is also sufficient during high loads. It was replaced by
Primecooler PC-NBHP1, originally used for motherboards’ north bridges.
The heat-conducting tape was replaced by the Arctic Ceramique paste. This dra-
matically improved the temperatures, however, due to the plastic heat spreader,
95 °C was often reached and the processor began throttling under High Perfor-
mance Linpack at 2000 MHz on 4× Cortex-A15. This resulted in slightly poorer
results in this particular test. All other tests performed within the range of safe
temperatures and did not alter the performance. The complete hardware setup
is shown in Fig. 1.

8 https://software.intel.com/en-us/articles/intel-performance-counter-monitor.
9 https://cdn.solarbotics.com/products/datasheets/kcx-017%20power%20bank%20te

sting.pdf.
10 http://diametral.cz/ac-dc-zdroje/dc-regulovatelne-zdroje/laboratorni/

laboratorni-zdroj-p230r51d-2x-030v/4a-1x-5v/3a.html.

https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://cdn.solarbotics.com/products/datasheets/kcx-017%20power%20bank%20testing.pdf
https://cdn.solarbotics.com/products/datasheets/kcx-017%20power%20bank%20testing.pdf
http://diametral.cz/ac-dc-zdroje/dc-regulovatelne-zdroje/laboratorni/laboratorni-zdroj-p230r51d-2x-030v/4a-1x-5v/3a.html
http://diametral.cz/ac-dc-zdroje/dc-regulovatelne-zdroje/laboratorni/laboratorni-zdroj-p230r51d-2x-030v/4a-1x-5v/3a.html
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Fig. 1. A complete hardware setup for the Samsung Odroid-XU4 kit - the Diametral
P230R51D power supply, the Primecooler PC-NBHP1 cooler and the KCX-017 power
meter.

Our Haswell CPU supports frequencies ranging from 1.2 to 2.4 GHz, exclud-
ing the Intel Turbo boost. To be able to manually set a chosen frequency, the
Intel P-state driver had to be replaced with the ACPI driver and the governor
(power scheme for the CPU) was set from balanced to userspace using the sys-
tem’s cpupower utility. Similarly on Odroid, the cpufreq-set utility was used
to change the frequency.

All the benchmarks were compiled using the GNU Compiler Collection
5.3.0 compiler. The optimisation flags used for Haswell and ARM respectively
were

−O3 −mavx2 −mtune = native −march = native (2)

−O3 −mfpu = neon−vfpv4 −mtune = cortex−a15 −march = armv7−a (3)

On Haswell, three main frequencies for all the cores were chosen to be bench-
marked, 1.2, 1.8 and 2.4 GHz. The Haswell architecture supports setting an indi-
vidual frequency for each core, however, this feature is not utilised because all
the benchmarks were run on all 2 × 6 cores. The single-threaded ones where the
uniform frequency was set to keep the results comparable. Intel Turbo boost
was turned off. Voltages for all frequencies were set automatically based on the
default CPU stepping provided by Intel. On Odroid, 200, 800 and 1400 MHz
were chosen for both A7 and A15, in addition to 2000 MHz for A15. The Exynos
processor supports switching off all the cores except the first A7 core. However,
using even a single core from either the A7 or A15 quadcore cluster keeps the
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whole cluster running. Therefore switching off the A15 cluster only proved bene-
ficial. All benchmarks run on the A7 cluster were executed with the A15 cluster
cores switched off to further isolate the A7 cores in terms of energy demands.

One parallel benchmark was parallelised using OpenMPI 1.8.4, the rest
using OpenMP. Each MPI process was bound to its core using the mpirun
binding arguments, non-MPI and serial processes were bound using the taskset
system utility. If threading was used, each thread was bound to its core using the
GOMP CPU AFFINITY variable. All data arrays were aligned using posix memalign
to 64 bytes, which is the cache line width on both architectures’ memory.

The number of floating point operations of each test run was obtained using
the PAPI [14] library and the PAPI SP OPS event for single precision and the
PAPI DP OPS event for double precision floating point operations.

Two different metrics of understanding the energy demands are used in this
paper called the overall and the net. The overall energy is the energy used
by the whole system, in our case summing the RAPL readings from sockets
and DRAMs on Haswell, or using the voltage and current readings from the
USB meter on Odroid. The net energy is the overall energy minus the energy
the system would require to run for the same amount of time in standby. This
metric is marked � in the following tables. For example, if the computation takes
10 s and the system’s power consumption is 10 W under load and 2 W in idle,
the overall energy demands are 100 Joules while the net energy demands are 80
Joules. This way, we can isolate the algorithm’s energy requirements from the
system’s underlying overhead and also more accurately compare results across
different architectures. Similar metrics are used in the READEX project [11].

4 Benchmarks

Three main groups of benchmarks were tested: synthetic ones focusing on CPU
and memory, simple single-thread and parallel scientific applications.

The CPU’s attainable performance was tested using the High Performance
Linpack 2.2 [4] compiled with the ATLAS 3.10.311 library. The compilation
of ATLAS took over 24 h on a single Odroid kit. The memory and cache sub-
system was benchmarked using LMBench 3 [9], which can measure read/write
bandwidth and latency on data of a chosen size.

The single-threaded benchmarks consisted of the Linpack benchmark, a
recursive quicksort, an iterative calculation of π using a continued fraction,
and a recursive Fibonacci series calculations. The quicksort focuses mainly on
random data access and can be considered a memory-bound problem for large
input data. The π calculation is a representative of common naive codes written
by a non-HPC user. The Fibonacci series is similarly naive and focuses on the
stack usage and its implementation.

The multi-threaded algorithms consisted of LAMMPS [2], a molecular
dynamics simulator and its Fene bead/spring benchmark (polymer melt sys-
tem with 32 000 atoms), the k-Wave toolbox [13], an ultrasound simulation
11 http://math-atlas.sourceforge.net/.

http://math-atlas.sourceforge.net/
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toolkit based on a k-space pseudospectral method, and a 2D heat propagation
algorithm using the 4th order Finite Difference Time Domain (FDTD) method
in space and the 1st order in time.

5 Experimental Results

This section presents the results measured on both the Intel Haswell and ARMv7
architectures. Colours in tables represent the order of the particular result in a
given group of results (red being the worst, yellow being the median and green
being the best), tables with rows separated by a small vertical space have rows
coloured separately.

5.1 Synthetic CPU and Memory Benchmarks

While Haswell being the most powerful CPU in the HPL benchmark, it is also the
most energy efficient chip in both the overall and net parameters (see Fig. 2).
Generally, an optimised compute-bound code which uses given resources effi-
ciently should produce a low number of stalls and NOP operations. The static
power is reduced by shorter runtimes and translating in a very good energy
efficiency. Compute-bound problems are therefore not going to be very efficient
on low power systems such as ARMs. Intel’s more complex architecture is more
preferred.

The LMBench memory benchmark shows the bandwidth of all level caches
scales linearly with the frequency of the specific CPU (see Fig. 3 and the same
data rearranged in Fig. 4b). This is expected, as the caches’ frequency correspond
to the core frequency of both architectures. In the main memory, Haswell looses
only 4–5% bandwidth when downscaling the frequency by a factor of 2. The
DRAM and memory controller frequency does not scale down with the CPU,
which should be a considerable advantage mainly in memory-bound problems.
On ARM, however, the DRAM bandwidth starts to decrease significantly once
the CPU frequency drops below the DRAM frequency, which is 933 MHz. Above
this point, the bandwidth is almost independent on the CPU frequency scaling
showing only a slight drop probably due to an imperfect clock divider.

Comparing the maximum overall bandwidth of a dual-socket Haswell, A15
and A7 quadcores, Haswell is 7× faster in L1 cache, 15× faster in the last
level cache and 20× faster in the main memory than A15. A15 is 4× faster in

Fig. 2. Performance, overall and net energy efficiency for High Performance Linpack.
(Color figure online)
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Fig. 3. Bandwidth comparison of memory and cache data read using LMBench.

L1 cache, 2× faster in L2 cache and 2.5× faster in the main memory than A7.
These numbers roughly correspond to the differences in power consumption and
theoretical performance of the CPU.

The single-core bandwidth shows that Haswell’s performance drops almost
10× across all cache levels and the main memory compared to employing all
the 2 × 6 cores. At least 10 cores is necessary to fully saturate the data trans-
fers. Lowering the frequency also negatively impacts the performance much more
prominently. On ARM, the caches’ bandwidth drops by a factor of unused cores,
however, the main memory bandwidth reaches almost 70% compared to using
all cores. Using 2 cores (not shown in the tables) saturates the main memory
by almost 90% on both Cortexes. This fact could be exploited on appropri-
ate ARM architectures in heavy memory-bound applications where most of the
cores could be switched off to improve energy-efficiency without significant per-
formance penalties.

The overall energy efficiency is presented in Fig. 4c. As long as data sits
in caches, the lowest frequency of Haswell performs the best, followed by A15
on 1400 MHz and A7 on its maximum 1400 MHz. In the main memory, both
Cortexes are the most efficient right around the frequency of their DRAM
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Fig. 4. Memory and cache data read bandwidth and energy efficiency using LMBench.
(Color figure online)

module (933 MHz). Dropping the frequency any lower results in a very poor effi-
ciency mainly because of the increasingly prominent drop in bandwidth, and also
because the static power becoming dominant as the computing time increases.

Figure 4d shows the net energy efficiency. This metric almost completely
suppresses the effect of static power and computing time on the energy demands.
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Lower frequencies become more favourable and even the lowest frequency is
very often the most efficient one on all architectures. This metric suits both
Cortexes better. The more efficient A7 as its overhead of the static power is more
prominent due to the whole kit being measured for energy demands whereas only
sockets’ and DRAMs’ hardware counters are taken into account on Haswell.

5.2 Single-Threaded Algorithms

All benchmarks run on a single core only (performance in Fig. 5) and there-
fore the overhead energy (mainly the static power) becomes much more signif-
icant (upper blue-coloured bars in Fig. 6). The overall energy (upper blue and
bottom green bar pairs) is the lowest at the maximum frequency on all archi-
tectures except A15 being a bit more efficient calculating the Fibonacci and
quicksort benchmarks on 1400 MHz. The cause is, similarly to the previous syn-
thetic benchmarks but even more noticeable in this case, the static power of the
system. Having only one core working and the other ones idling, the static power
becomes the most dominant energy consumer and any decrease in frequency only
prolongs the runtime and the system energy overhead problem.

The net energy, shown as green bars, can benefit from frequency scaling
because it suppresses the effect of the static power, specifically on Intel, where
each frequency drop results in a linear decrease in power demands. A15 is the
most efficient around 800–1400 MHz and A7 at 800 MHz. A7 is overall the most
efficient core.

Fig. 5. Performance of single-threaded algorithms - Linpack using 4096 repetitions on
512×512 grid, recursive Fibonacci series calculating the 47th element, π calculation
iteratively for 5 × 109 iterations and recursive quicksort sorting 150 000 000 elements.
(Color figure online)
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Fig. 6. Energy efficiency of single-threaded algorithms (bottom green part shows the
net energy, blue and green together the overall, green arrow points to the lowest net
energy of a given benchmark, black arrows points to the lowest overall energy) - Linpack
using 4096 repetitions on 512×512 grid, recursive Fibonacci series calculating the 47th

element, π calculation iteratively for 5 × 109 iterations and recursive quicksort sorting
150 000 000 elements. (Color figure online)

5.3 Multi-threaded Algorithms

The last group of benchmarks represents parallel algorithms corresponding to
common HPC workloads.

The k-Wave toolbox [13] is based on the k-space pseudospectral method,
which is characterised by high accuracy, fast convergence and a low number of
grid points per wavelength. The 3D fast Fourier transforms are computed using
the FFTW12 3.3.4 library.

Performance-wise, Haswell achieves more than 50 GFlop/s, which is about
15% of Linpack’s performance. A15 is capable of almost 2.9 GFlop/s, almost a
third of Linpack, and A7 achieves 0.85 Gflop/s, almost half of Linpack’s perfor-
mance. The CPUs are limited by the main memory bandwidth, and as the less
powerful architecture is used, the performance is much closer to its theoretical
limit. This can be observed even more prominently on the FDTD method.

Figure 7b shows all three CPUs behaving similarly in terms of the peak energy
efficiency, achieving around 0.3 GFlops/W, A15 being the most efficient running
at 800 MHz. Intel’s efficiency drops considerably using the prime domain size
of 2573 (which is the worst case scenario and should be avoided), breaking the
vectorisation and memory access patterns. Since the code is unable to be vec-
torised on ARM, because the FFTW library did not provide a support for Neon
vectorisation at the time of writing this paper, A15’s and A7’s drops are not so
significant.

12 http://www.fftw.org/.

http://www.fftw.org/
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Fig. 7. The k-Wave simulation toolbox (the k-space pseudospectral method). (Color
figure online)

Fig. 8. Performance (double precision), overall and net energy efficiency comparison
using the LAMMPS molecular dynamics simulator and its Fene benchmark. (Color
figure online)

k-Wave’s net energy efficiency (Fig. 7c) shows A7 as the most efficient at
800 MHz, followed by A15 also at 800 MHz and Haswell at 1200 MHz. Haswell
is much closer to ARM compared to the FDTD method mainly because the raw
performance is much higher using k-Wave.

LAMMPS is the only benchmark presented using MPI instead of a thread-
ing and double precision floating point arithmetic. The main difference is that
ARMv7 does not support the double precision vectorisation, its 128-bit NEON
registers support only a single precision. LAMMPS is a typical example of a
problem with mutual interactions of a high number of independent and rela-
tively simple elements. The performance of this algorithm class is often lower,
however it should theoretically benefit even more from frequency scaling and the
usage of low power architectures.

Performance-wise (see Fig. 8), Haswell achieves more than 5 GFlop/s, while
A15 is about 11× slower and A7 is roughly 25× slower. Overall energy efficiency
on A15 and A7 is about 1.5–2× better than on Haswell, which is the biggest
difference of all the presented benchmarks. Net energy efficiency is the best on
A7, followed by A15 and Haswell being the least efficient.



390 V. Nikl et al.

Fig. 9. The Finite Difference Time Domain method - 4th order in space, 1st order in
time. (Color figure online)

The FDTD’s performance overview is shown in Fig. 9a. FDTD is an example
of a memory-bound problem because the number of operations per one byte
of data is relatively low characterised by local data sharing only (no global
information is needed), good scalability and a low number of cache misses.

In terms of performance, the dual-socket Haswell is almost 4–5× faster than
A15, which is 2–3× more powerful than A7. While in the HPL benchmark,
Haswell was more than 30× faster than A15, the difference in memory-bound
applications shrinks quite dramatically. The 5122 domain size does not fit into the
L2 cache (two separate matrices are allocated for even and odd iterations and two
matrices for heat conductivity properties of each point) of both Cortexes (2 MB)
and the performance drop is quite radical. However, in the case of Haswell,
exceeding the L3 cache size (15 MB) with the 10242 domain size does not hinder
the performance. The 20482 and 40962 sizes were also tested (not shown in the
table for the sake of brevity) and the performance stayed around the 20 GFlop/s
mark, most likely because of the help of prefetcher.

Figure 9b displays the energy efficiency across all CPUs and domain sizes. A7
is the most efficient, capable of more than 0.6 GFlops/W running at 1400 MHz.
A15’s best frequency is between 800–1400 MHz, for Intel it is its highest -
2400 MHz.

The net energy efficiency, presented in Fig. 9c, shows A7 as the most efficient
reaching 2.2 GFlops/W running at 800 MHz. A15 is about half as efficient as A7,
running the most efficiently at 800 MHz. Intel is the least efficient giving best
results at its lowest frequency - 1200 MHz.
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6 Conclusion

In this paper, the effect of voltage and frequency scaling on performance and
energy efficiency was studied comparing the Intel Xeon Haswell and ARMv7
big.LITTLE architectures. Two different techniques for measuring energy effi-
ciency were presented, the overall and the net, isolating only the algorithm’s
energy demands.

The results showed that frequency scaling can bring significant energy savings
mainly on the ARM architecture (1.5–2× on the optimal frequency compared to
the maximum one). While Intel processors can also benefit from the frequency
scaling, the profit is not so significant due to the higher energy demands for the
rest of the system (the static power), mainly the DRAM modules and also lower
flexibility regarding the frequency range.

The Samsung Odroid-XU4 board on the other hand provides a very flexible
range of frequencies and a much lower energy overhead required to power the
system around the processor. Overall, the lower range of frequencies does not
prove to be efficient on any set of benchmarks. The “sweet spot” for both the
Cortex-A7 and Cortex-A15 quadcores lies around the frequency of its DRAM,
which is 933 MHz, providing better energy efficiency than the Haswell processors.

In High Performance Linpack, the peak performance of the dual-socket
Haswell is 30× better than the Cortex-A15 quadcore. However, in parallel scien-
tific applications, the difference shrank to about 5–15×, which results in a better
performance to purchase price ratio in favour of ARM ($70 for the ARM kit vs.
2× $500 for only the Haswell processors).

Table 3 presents a 10-year lifetime comparison of all architectures running
the LAMMPS simulator using the most energy-efficient setting. For ∼30× more
energy consumed, Haswell provides ∼20× better performance.

Table 4 shows a complete comparison of all architectures and benchmarks
relative to 4× Cortex-A15. For each benchmark, each architecture runs at the
most overall energy-efficient frequency, and then, using the same frequency, the
performance is compared. For example, in the HPL benchmark Haswell pro-
vides 1.67× more GFlops per Watt, while the performance is 52.6× better (251
GFlop/s at 1800 MHz vs. 4.77 GFlop/s at 800 MHz). The dual-socket Haswell is
the most energy efficient in the synthetic benchmarks - HPL and LMBench, on
average the efficiency is 0.66× worse than A15’s for 14.1× better performance.
Overall, Odroid is more energy-efficient in most of the presented benchmarks,
but for the price of a significant performance drop.

Table 3. 10-year lifetime comparison running LAMMPS using the most overall energy-
efficient setting (A7 1400MHz, A15 800MHz, Haswell 1800MHz), considering e0.2 for
1 kWh.

Processor Energy [MJ] Electricity costs [e] PFlops

4× Cortex-A7 0.975 194 60.2

4× Cortex-A15 1.16 232 83.6

2 × 6 Haswell 29 900 5 970 1 330
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Table 4. Comparison of the overall energy efficiency and performance relative to 4×
Cortex-A15. For each benchmark and architecture, the most energy efficient frequency
is chosen. The same frequency is then used to compare performance (higher number is
better).

Algorithm Overall energy efficiency Performance

4 × A7 4 × A15 2 × 6 Haswell 4 × A7 4 × A15 2 × 6 Haswell

HPL 0.496 1 1.67 0.415 1 52.6

LMBench 16 KB (L1) 0.909 1 1.13 0.334 1 4.51

LMBench 1 MB (L2) 0.295 1 1.83 0.116 1 9.41

LMBench 64 MB (Main) 1.01 1 0.555 0.588 1 26.3

Linpack (single core) 1.29 1 0.204 0.259 1 3.04

Fibonacci (single core) 1.42 1 0.109 0.398 1 3.18

π (single core) 0.904 1 0.221 1.01 1 2.47

Quicksort (single core) 0.931 1 0.137 0.668 1 3.38

k-Wave 1283 0.855 1 0.889 0.637 1 22.5

k-Wave 2563 0.678 1 0.796 0.517 1 22.7

k-Wave 2573 0.939 1 0.267 0.781 1 8.53

LAMMPS 0.849 1 0.603 0.721 1 15.9

FDTD 1282 1.16 1 0.308 0.897 1 8.21

FDTD 2562 0.809 1 0.403 0.677 1 11.3

FDTD 5122 1.07 1 0.606 0.839 1 16.1

FDTD 10242 1.07 1 0.833 0.567 1 15.3

Average 0.918 1 0.660 0.589 1 14.1

The results presented in this paper can be used to save energy on similar
systems. However, our study focuses only on single shared memory “nodes”,
leaving further measurements of power and energy on similar distributed systems
for future work, which will focus on distributed ARMv8 clusters provided by the
Mont-Blanc project.
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Abstract. The power scaling challenge associated with Exascale sys-
tems is a well-known issue. In this work, we introduce the Global Exten-
sible Open Power Manager (GEOPM): a tree-hierarchical, open source
runtime framework we are contributing to the HPC community to fos-
ter increased collaboration and accelerated progress toward software-
hardware co-designed energy management solutions that address Exas-
cale power challenges and improve performance and energy efficiency
in current systems. Through its plugin extensible architecture, GEOPM
enables rapid prototyping of new energy management strategies. Differ-
ent plugins can be tailored to the specific performance or energy effi-
ciency priorities of each HPC center. To demonstrate the potential of
the framework, this work develops an example plugin for GEOPM. This
power rebalancing plugin targets power-capped systems and improves
efficiency by minimizing job time-to-solution within a power budget. Our
results demonstrate up to 30% improvements in the time-to-solution of
CORAL system procurement benchmarks on a Xeon Phi cluster.

1 Introduction

Performance of future large-scale HPC systems will be constrained by power
costs. Some HPC centers are already incentivized through government taxes to
operate their systems at more energy-efficient points below peak performance
and power [3]. Others may prefer peak performance today, but they face cost-
pressure of a different kind to deploy more efficient systems in the future: system
power draw is increasing by a substantial factor generation-over-generation, and
without a breakthrough in system energy efficiency, industry trends forewarn
that large-scale systems will exceed the limits of the existent power delivery
infrastructure at typical centers by a 2–3× margin by 2022. This forces costly
upgrades or limited system scale. Overcoming the 2–3× gap will require co-
designed hardware and software system energy management solutions as well
as increased collaboration between hardware vendors and the HPC software
community.
c© Springer International Publishing AG 2017
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In this paper, we introduce the Global Extensible Open Power Manager
(GEOPM). GEOPM is an open source, plugin extensible runtime for power
management. The primary goal of the project is to provide an open platform for
community collaboration and research on co-designed energy management solu-
tions to close the energy efficiency gap. We demonstrate a power rebalancing
plugin for GEOPM targeting power-constrained systems which leverages feed-
back from the application to identify which nodes are on the critical path then
adjusts processor power cap settings to accelerate the critical path and improve
the application’s time-to-solution. Subject to the power cap it is given, each
processor attempts to maximize its performance while our software provides
coordination of power budgets (and thus performance) across nodes. Through
this marriage of software and hardware management of power and performance,
we obtain up to 30% improvements in time-to-solution for CORAL procurement
benchmarks on a power-constrained Knights Landing system.

In contributing this paper and the first plugin for GEOPM, we have taken a
significant step toward closing the 2–3× energy efficiency gap. Much community
collaboration will be required to close the remainder. For example, hardware
vendors will need to provide improved or new software-tunable knobs in the
future; GEOPM is influencing research along these lines at Intel. Additionally,
the HPC software community will need to expose tunable knobs from various
software layers to GEOPM (e.g. the application, runtime, system software, or
operating system layers). Fully leveraging these knobs will require algorithmic
advances in GEOPM and extensions enabling it to target different knobs than
are supported today. These extensions will be developed in collaboration with
the HPC community and will be added to GEOPM via plugins over time.

The GEOPM runtime framework is being developed for broad deployment on
Xeon, Xeon Phi, and other HPC system architectures. The first deployment is
expected on the Theta system, a Knights Landing Xeon Phi system at Argonne.
The GEOPM software package is available under the BSD three clause open
source software license in the GEOPM source code repository on GitHub (project
page: http://geopm.github.io/geopm). The GEOPM runtime framework, test
infrastructure, and power rebalancing plugin are all open source.

The remainder of the paper is organized as follows. Section 2 high-
lights GEOPM’s primary contributions over prior works. Section 3 overviews
GEOPM’s design. Section 4 analyzes time-to-solution improvements obtained
with the power rebalancing plugin for CORAL procurement and other bench-
marks. Section 5 concludes and discusses future work.

2 Related Work

To our knowledge, GEOPM is the first open extensible runtime framework to
be contributed to the community by a hardware vendor with the intent of col-
laborative research toward software-hardware co-designed energy management
solutions in future HPC systems. This vision and early work was first publicized
broadly to the community in a short workshop paper in PMBS’16 [1] and the

http://geopm.github.io/geopm
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Emerging Technologies Showcase at SC’16. In this ISC paper, we have further
developed the early work presented at PMBS for a full conference publication.

There are parallel software efforts to GEOPM contributed by a hardware
vendor: OpenHPC [2] facilitates community collaboration on the HPC software
stack by providing a framework for integrating, configuring, and testing open
source components. OpenHPC has not been focused on fostering co-designed
energy management solutions, but we note that we intend to submit the GEOPM
package to the OpenHPC Technical Steering Committee for inclusion in the
OpenHPC distribution when the production version 1.0 of GEOPM is released.
There are parallel software-hardware co-design efforts to GEOPM such as Open-
POWER [19]. While OpenPOWER enables the community to customize systems
based on the IBM POWER architecture, we are not aware of activity within the
OpenPOWER project to research software-hardware co-designed energy man-
agement solutions exploiting runtime feedback from applications. While GEOPM
only currently provides plugins supporting x86 systems, users can add platform
implementation plugins supporting POWER or other system architectures.

To our knowledge, GEOPM is the first open source job-level power manage-
ment runtime for HPC systems to support extensible energy management con-
trol strategies through a plugin architecture, making it suitable for the differing
energy management needs of a wide range of HPC installations around the world.
The Power API Specification from Sandia [18] is a synergistic effort, but it is
an orthogonal effort because it emphasizes power interfaces rather than runtime
techniques for optimizing energy. The Power API project is defining community-
standard interfaces for power monitoring and control at various granularities
throughout the HPC stack. Runtimes like GEOPM and other components can
collectively target these interfaces to achieve interoperability. We are collaborat-
ing with Sandia to explore changes targeted at future releases of the specification
to increase support for GEOPM and its interfaces.

In this work, we develop a plugin for GEOPM for power rebalancing within
a job. Prior works such as Conductor [4], Adagio [5], and Jitter [6] have demon-
strated effective algorithms for reallocating power between nodes to compensate
for application load imbalance – whether for the purpose of increasing appli-
cation performance under a job power cap by accelerating the critical path or
improving application energy efficiency by reducing performance in nodes off
of the critical path. While these algorithms are effective at smaller scales (i.e.
less than a few thousand nodes), their centralized designs are not intended for
today’s large-scale deployments or future Exascale deployments. The key differ-
ence is that the GEOPM power balancing plugin has a flexible tree-hierarchical
design suitable for deployments ranging in scale from rack-scale to extreme-scale
deployments. We note, however, that we have a collaboration underway with the
authors of these prior works to compare approaches and meld together the best
aspects of each approach in a future GEOPM plugin and paper.

There is a parallel work to GEOPM called the Argo project [26] which is
developing a task-based programming model and runtime for Exascale HPC
systems. Its design includes a hierarchical power manager. Unlike GEOPM, the
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Argo power manager is not intended as a vehicle for the community and hard-
ware vendors to collaborate on researching new energy management solutions.
Furthermore, while the Argo project envisions this power manager performing
automatic hierarchical power budgeting, that functionality is not complete to our
knowledge. What has been demonstrated is hierarchical enforcement of power
budgets that were adjusted manually at runtime. That said, the authors are
interested in exploring if Argo’s algorithms could be implemented as GEOPM
plugins and brought to fruition in production deployments through GEOPM.

We note that there have also been orthogonal efforts [27] to develop hierar-
chical power management frameworks for enterprise data centers. They employ
significantly different energy management strategies suitable for enterprise work-
loads and virtualized environments. There have been other related works that
focused on saving power given a time bound. Some have used linear program-
ming to optimize energy savings with nearly no runtime increase [21]. Others
have achieved bigger power savings in exchange for small performance degrada-
tions [22–25].

Aside from prior works on saving energy while maintaining performance lev-
els, hierarchical power capping, and rebalancing power across nodes to increase
job performance under a power cap, there have also been prior works on power-
aware scheduling algorithms for energy management at the system level [7–9].
These algorithms comprehend system-level power caps and assign a different
power cap to each job based on its runtime and power characteristics with
the goal of reducing job wait times or optimizing overall system throughput.
GEOPM is synergistic with these works: the intent is for GEOPM to integrate
with a power-aware scheduler in an extended energy management hierarchy. In
particular, the scheduler can view GEOPM as a mechanism for optimizing the
job’s performance or energy efficiency within the scheduler-specified job power
budget, and the scheduler can optimize system performance and efficiency by
deciding the best allocation of the system budget among concurrent jobs. For
maximum benefits, GEOPM supports dynamic adjustments to the job cap.

3 GEOPM Design Overview

This section provides an overview of the GEOPM design, beginning with discus-
sion of how GEOPM integrates into the HPC system stack. We cover GEOPM’s
interfaces and responsibilities as well as its scalable, extensible design.

3.1 GEOPM Interfaces and Integration Architecture

Figure 1 illustrates how the GEOPM runtime fits into the HPC system stack.
GEOPM is a job-level power manager. The GEOPM runtime interacts with the
scheduling functions of the workload manager through the workload manager
interface. This interface lets future power-aware schedulers assign an objective
for the job and configure which energy management plugin GEOPM should use
to manage the job. Supported objectives include but are not limited to managing
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Fig. 1. GEOPM interfaces and HPC system stack integration

the job to stay within a power budget while optimizing job time-to-solution; in
this case, the scheduler would use the interface to assign a job power budget
as well. The workload manager interface allows GEOPM to report back how
much power the job consumed and statistics about the job that GEOPM has
collected. There is an option for the interface to be used at job start and finish
(statically) or periodically while the job is running (dynamically). The GEOPM
runtime runs in user space. Therefore, GEOPM does not control resources that
are shared between users like network switches or the distributed file system; its
scope is control of power and performance knobs in compute node resources.

There is also an interface to the application software or libraries shown at
the middle right of the figure. The interface functions are listed in Table 1. This
software profiling interface allows the programmer to mark up their code to
hint to GEOPM about loops with global synchronization events in the appli-
cation that could result in performance loss if some MPI ranks fall behind in
the computation and reach synchronization points late (i.e. epochs). The inter-
face also enables programmers to hint to GEOPM about phases (i.e. regions) in
the application or library code between synchronization events as well as pro-
vide an application-level performance signal (i.e. progress) that GEOPM can
use to adapt its decisions as the application transitions between phases. For

Table 1. Function list for GEOPM profiling interface

geopm prof epoch(): Synchronization loop iteration beacon

geopm prof region(): Get region ID from name

geopm prof enter(): Mark region entry

geopm prof exit(): Mark region exit

geopm prof progress(): Report region progress
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example, GEOPM may use region information to monitor for memory-intensive
or communication-intensive phases where processor frequency can be decreased
to save power with little or no impact on runtime.

The GEOPM profiling interface is designed to be lightweight and minimally
invasive, but future work will explore methods of automatically inferring phase
and performance information to enable use cases where GEOPM can make per-
phase decisions effectively without requiring programmers to mark up applica-
tion or library code. See the GEOPM man pages in [10] for full details on the
signatures and use of these functions. We also provide further documentation,
tutorials, and example MPI applications in the GEOPM source code reposi-
tory illustrating how to use them. See [20] for tutorial video walk-throughs on
YouTube.

As depicted in Fig. 1, GEOPM provides interfaces to the user or adminis-
trator enabling them to configure GEOPM and request specific energy man-
agement plugins for a job. The interface is a JSON configuration file. The
GEOPM software package provides a tool to generate configuration files from
the command line called geopmpolicy and a C interface as well through the
geopm policy *() APIs. The GEOPM configuration file is selected at runtime
through the GEOPM POLICY environment variable. On a system deploying the
SLURM workload manager, SLURM’s plugin infrastructure can be used to gen-
erate the file and set the environment variable. It can also be used to launch
the GEOPM runtime and configure CPU affinity. Some other workload man-
agers offer similar infrastructure. For those that do not, wrappers can be placed
around MPI launch commands to configure and enable GEOPM.

3.2 GEOPM Scalable Tree-Hierarchical Design

The GEOPM runtime is designed for use on a wide range of system scales. This is
accomplished through a flexible tree-hierarchical design. As illustrated in Fig. 2,
the GEOPM runtime is implemented as a hierarchical feedback guided control
system using a balanced tree. The energy management strategy employed is
extensible through a plugin architecture. The depth and fan-out of the tree are
automatically adjusted by the GEOPM runtime to accommodate different job
sizes.

Controllers in the tree (and therefore energy management plugins) take a
recursive approach to coordinating energy and performance policy decisions glob-
ally, across all nodes in the job. The root controller sets policy for its children,
each of its children set policy for their children, and so on. Policies are defined
hierarchically such that the parent constrains the space of policies that its chil-
dren can select from and, in so doing, effects their decisions. Decisions at each
level of the tree are based on feedback from each child. This feedback consists
of a history of energy, performance, and other statistics collected over the last
few control intervals. For scalability, the feedback is aggregated as it is commu-
nicated back from the leaves toward the root. Thus, decisions at the root are
informed by feedback from the leaves, and decisions flowing down the tree effect
decisions made at each leaf.
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Fig. 2. GEOPM hierarchical design and communication mechanisms

To run the control tree hierarchy, the GEOPM runtime launches one user
thread on each compute node. This thread runs for the duration of the job.
On each compute node, this thread executes the responsibilities of the leaf con-
troller. On some compute nodes, this thread also executes responsibilities of the
aggregator controllers at higher levels in the tree. On one compute node in the
job, the thread also executes responsibilities of the root controller of the tree.

The GEOPM thread can be launched in several ways, and the affinity of
this thread should be controlled for best performance. On manycore systems
with low single-thread performance and high-cost context switching, it may be
a general performance benefit to leave a core unused by the application so that
the operating system can execute threads without interrupting the application.
In such systems, the GEOPM thread can be affinitized to this core and use it
as well. In cases where GEOPM is run with computationally-intense plugins,
results may be best if the GEOPM thread runs on the core that the application
stays off of; developers and users should keep this in mind. For other application
and system hardware combinations, it may benefit performance for the GEOPM
thread to share a core with the application through context switching. See [10]
for further information on GEOPM’s launch and affinitization options.

Dynamic communication between levels of the GEOPM control tree hier-
archy is currently achieved using MPI over the application’s in-band network
fabric. We use MPI’s Cartesian topology functionality to map the leaf, aggrega-
tor, and root controllers to the GEOPM runtime threads on the compute nodes.
When GEOPM is built against an MPI implementation with optimized Carte-
sian topology functionality, this minimizes communication distances over the
network fabric for the controllers. We also use MPI’s Cartesian topology to effi-
ciently implement a balanced tree hierarchy supporting a wide range of job node
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counts. All communication uses one-sided operations through the MPI Put()
interface. In Sect. 4.4, we provide measurements of GEOPM’s communication
bandwidth requirements on the OmniPath network fabric in our test system.
We demonstrate that bandwidth use is orders of magnitude less than 1% of
the total available bandwidth. GEOPM can be extended to support out-of-band
communication in the future.

Inter-process shared memory is used both for dynamic communication
between the GEOPM root controller and power-aware scheduler and for com-
munication between leaf controllers and application processes on the compute
nodes. Communication between leaf controllers and processors is achieved via
GEOPM PlatformImp plugins (discussed in Sect. 3.3). In the case of Intel sys-
tems, processors expose Model Specific Registers (MSRs) [17] for communication
with software. GEOPM PlatformImp plugins for Intel systems perform MSR
access from userspace via the msr-safe Linux driver developed by LLNL [11].

3.3 GEOPM Extensible Plugin Architecture

There are three types of plugins supported by GEOPM which enable user exten-
sion of the runtime. From lowest to highest level of abstraction these are: the
PlatformImp, the Platform, and the Decider. The PlatformImp plugin is used
to expose low-level hardware features to Platform plugins. The GEOPM pack-
age provides PlatformImp plugins for a range of Intel platforms exposing hard-
ware features implemented with Model Specific Registers (MSRs). Support for
other hardware platforms would be implemented with this type of plugin. The
Platform plugin is used to express higher-level abstractions of the hardware fea-
tures exposed by the PlatformImp, and it provides the bridge interface called
by the controller to enforce a policy provided by a leaf Decider.

There are two types of Deciders: tree Deciders and leaf Deciders. The
leaf Decider is responsible for managing power or other controls within a sin-
gle compute node. The tree Decider is used for all levels of the control tree
hierarchy above the leaf level. The lowest-level tree Decider is the parent of
a leaf Decider. Collectively, the tree Deciders are responsible for managing
power across nodes. The leaf and tree Deciders are each selected by name in the
GEOPM configuration file provided by the end user, administrator, or workload
manager.

All Deciders have six main responsibilities: collecting feedback information
from their children in the GEOPM control tree hierarchy (or the software profil-
ing interface and Platform in the case of leaf Deciders), aggregating this data
into a reduced form, passing this reduced version up to their parent in the tree,
receiving policy information from their parent above them in the tree, deciding
how to set policy for their children (or how to set node power controls or other
controls in the case of leaf Deciders) based on the policy given by their parent,
and passing policy decisions down to their children (or to the Platform in the
case of leaf Deciders).

The GEOPM policy defines a power budget, so each Decider is taking in a
power budget from its parent and deciding how to divide that budget among its
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children (or how to divide that budget among the node hardware components
that support control in the case of the leaf Decider). The leaf Decider may
also manage controls beyond power limit controls to enable various additional
optimizations. Each Decider plugin defines for itself the objective function it will
try to maximize when making policy decisions for its children and implements
an algorithm to maximize this objective function. Thus, by selecting a particular
Decider: GEOPM users, administrators, or the workload manager are selecting
a particular objective function and a particular energy management algorithm
to try to maximize that objective function.

To help the Decider tree hierarchy achieve control stability, the GEOPM
Decider interface includes functions that express convergence. Before introduc-
ing a new policy, the parent Decider waits for its children to signal that the
existing policy has been enacted stably. Child Deciders wait until the aggre-
gated feedback they would send to their parent would reflect the current policy
before signaling convergence to their parent.

GEOPM is designed to support per-phase adaptation of node hardware con-
trols and other node-level controls via the leaf Decider. To support this, the
GEOPM framework and leaf Deciders must collect feedback and adjust con-
trols at the cadence of application phase transitions. The current implementa-
tion of the GEOPM framework and governing leaf Decider provided with the
GEOPM software package can sustain a 5 ms cadence with standard deviation
of less than .5 ms when running on an Intel Knights Landing Xeon Phi platform.
The control loop includes computations to feed input to the governing Decider
and enact its decisions in the Platform. Those computations include sampling
processor performance counters, reading from a log of application interface calls
stored in shared memory, extrapolating application progress forward to when
the processor counters were read, estimating power consumption over the last
interval by applying linear least squares parameter fit over a moving window
of energy counter readings, and writing RAPL MSRs to enact the governing
Decider’s allocation. The control loop computation also includes the algorithm
in the governing Decider that adaptively allocates power among the processor
and external DRAM from the node power budget.

3.4 Example Power Balancing Plugin

We have developed an example plugin for GEOPM to demonstrate both its
extensible architecture and a scalable hierarchical power management strategy
to address the performance variation challenges expected in Exascale systems
due to their need for power-capping. Power-capping exposes differences in the
energy efficiency of like hardware components. These differences derive from
manufacturing variation. Under power caps, even like hardware components from
the same Stock Keeping Unit (SKU) will exhibit different performance which
results in the nodes of the system taking different amounts of time to complete
equal amounts of work [12,13].

The GEOPM power balancing plugin mitigates this performance varia-
tion, minimizing its impact on application time-to-solution. The plugin targets
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iterative bulk-synchronous MPI applications running on power-capped systems
and leverages application-awareness to first identify the nodes that are on the
critical path due to their lower performance at a given power cap then accelerate
them by diverting power away from nodes that are off of that path. This provides
an overall improvement in application time-to-solution. The source code for this
power balancing tree Decider plugin is hosted in the GEOPM repository [10].

The tree Deciders identify and accelerate the critical path hierarchically.
The GEOPM controller framework provides the lowest-level tree Decider with
samples of its children’s runtime (not including time spent waiting for MPI
synchronization) between application calls to the geopm prof epoch() function
averaged over a moving window. The geopm prof epoch() call acts as a beacon,
signaling each time the application reaches a new iteration of an outer loop
containing an inter-node synchronization operation. The tree Decider takes in
a power budget from its parent, compares the runtime reported by its children,
then computes how to divide its power budget among its children such that they
will reach the synchronization point at roughly the same time, avoiding wait
time and associated performance loss. Each tree Decider reports the max of its
children’s runtime as aggregated runtime feedback to its parent.

4 Results

This section presents our analysis of the power balancing plugin for GEOPM. We
describe our experimental setup, we demonstrate the improvements to applica-
tion time-to-solution that the plugin provides, we analyze how the plugin obtains
these improvements, and we report measurements of GEOPM’s computational,
communication, and memory requirements.

4.1 Experimental Setup

Our experiments use standard benchmark output as the final reference for time-
to-solution and the other statistics we report. However, our analysis additionally
leverages GEOPM’s report and trace features. GEOPM may be configured with
the environment variables GEOPM REPORT and GEOPM TRACE to generate two types
of profiles after each application run: a summarizing report or a time series trace.
The report file aggregates performance and energy metrics for the application
both overall and for each individual region that the programmer has annotated
in the application using the profiling interface described in Sect. 3.1. The trace
file is a table of time series data containing samples of processor performance
counters, information collected via application calls to the profiling interface,
and control knob setting outputs recorded by GEOPM during the application
run. This table contains exactly the same data provided to the leaf Decider
plugin in the GEOPM control tree hierarchy.

In this paper, we performed our experiments on a cluster of 12 compute
nodes. Each compute node has one Intel Xeon Phi Knights Landing processor
(KNL-F B0 Beta SKU) and 256 GB of external DRAM. This processor SKU
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has 64 Turbo-enabled, 4-way hyperthreaded cores each with a 1.3 GHz sticker
frequency. It has 16 GB of MCDRAM on-package memory, an integrated Omni-
Path HFI used for communication over the network fabric, and a 230 W Thermal
Design Power (TDP). The operating system is CentOS 7 Linux with the ‘per-
formance’ frequency governor enabled. The C/C++ and Fortran software was
compiled with the Intel tool-chain while using the MVAPICH2 MPI implemen-
tation. We used version 0.2.2 of the GEOPM software package [10].

In our experiments, we targeted the following workloads: Qbox, HACC, Nek-
bone, AMG, miniFE, CoMD, and FFT. Qbox is a quantum molecular dynamics
code, HACC is a cosmology code for simulating the evolution of the universe,
Nekbone is a thermal hydraulics code, AMG is an algebraic multi-grid solver for
unstructured meshes, miniFE is a finite element code, CoMD is a proxy molecu-
lar dynamics simulation code, and FFT is a discrete 3-d Fast Fourier Transform
kernel. Qbox, HACC, and Nekbone are Tier 1 scalable science workloads from the
CORAL procurement benchmarks; AMG is a Tier 1 throughput benchmark; and
miniFE is a Tier 2 throughput benchmark from the CORAL benchmarks [14].
CoMD is an ExMatEx benchmark for software-hardware co-design [15]. FFT is
a key kernel from the NAS Parallel Benchmarks suite [16].

When configuring workloads, we applied standard conventions. We sized the
problem to use the majority of the MCDRAM (on-package memory) in each
node. With the system not power-capped – i.e. with the processors running at
TDP – we swept over the different numbers of MPI ranks and OpenMP threads
per rank using up all or almost all of the available hyperthreads in the processor;
we then determined which configuration resulted in the best runtime for each
workload and used it in all evaluations of our power balancing plugin. We found
that all workloads performed best if they were affinitized to leave Linux CPU
0 unused by the application to avoid interference by operating system threads.
We found that miniFE and CoMD performed best if using two hyperthreads per
core, while all other workloads performed best if using one. Using the GEOPM
profiling interface, we added mark up to these workloads to enable tuning them
with the power balancing plugin. The modifications are available in [10].

To study how much application speedup our power-balancing plugin provides
in power-constrained systems, we swept over a range of job power caps and
compared the workload runtime achieved while using our power-balancing plugin
versus a baseline. Our power-balancing plugin dynamically reallocates the job
power budget among nodes to mitigate load imbalance while the baseline applies
a static uniform division of the job power budget among nodes. In the baseline,
all tree Deciders are inactive. However, both cases employ active leaf Deciders
to enforce the node-level power budgets.

The leaves enforce the budget as follows: they dynamically measure the power
consumed in the external DRAM via the processor RAPL feature, they subtract
this power from the node budget (obtained from their parents in the GEOPM
control tree hierarchy), and then they set the RAPL socket power limit equal
to the remaining power so that the sum of socket and external DRAM power
matches the node power budget. Node power budgets are defined in terms of
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the dynamic power controllable via the processor RAPL feature. The remainder
of node power is not included but it is approximately static. Power consumed
by the job in shared resources like the network fabric interface is not currently
accounted for but may be in future work.

The workloads under study have well-balanced assignments of work across
ranks yet they still exhibit load imbalance deriving from the effects of hardware
manufacturing variation which have been discussed in Sect. 3.4. When interpret-
ing the results in this paper, it is important to note that, while the analysis
focuses on manufacturing variation, the GEOPM power balancing plugin can
address load imbalance due to imbalanced work assignments across ranks as
well. However, evaluating benefits of the plugin in that scenario is beyond the
scope of this paper. We also note that we made no attempt to cherry-pick proces-
sors from extreme ends of the power efficiency distribution in the processor SKU.
Therefore, we do not know if the processors in our cluster reflect the full potential
for load imbalance. We will explore this in future work.

In our power cap sweep experiments, we set the max job power cap equal
to the power at which each workload’s time-to-solution reached its minimum
(i.e. unconstrained performance), and we set the min job power cap to the value
at which performance scaling hit an inflection point where the processor spent
in excess of 8% of its time throttling inefficiently to reach the required power.
Results at power caps below this inflection point may be meaningful in some
research or production scenarios but they are omitted from this paper for brevity.

4.2 Runtime Improvements with Power Balancing Plugin

Figure 3 shows the mean runtime improvements obtained by our power balancing
plugin over a range of job power caps. These experiments were repeated 5 times.
The lighter colored bars are the results with our power balancing plugin, and
lower values are better. Runtimes are normalized based on the rightmost darker
colored bar (representing the baseline data) for each plot such that this bar
always has a value of 1.0. The red whiskers that are above and below the top of
the bars represent the max and min (respectively) of the observed runtimes. As
the figure indicates, our power balancing plugin is able to provide substantial
runtime improvements of up to 30% for Nekbone, miniFE, and CoMD. For the
other workloads, the runtime improvements are up to 9–23%.

The amount of improvement varies depending on the power cap and the
workload, but it tends to increase as the job power is increasingly constrained
since the critical path can be operated at a higher and higher frequency relative
to the other nodes. At the right side of each graph, job power is not very con-
strained and the nodes have enough power to run at closer to full frequency, so
the critical path cannot be accelerated.

In all experiments, we note that we confirmed that the power balancing plugin
obtains its runtime improvements without going over the job power budget. We
also note that, in other clusters, the improvements may vary if the processors
exhibit differing amounts of manufacturing variation than seen in our cluster.
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Fig. 3. Runtime improvements obtained with GEOPM power balancing plugin on a
12-node Knights Landing cluster. 5 runs averaged for each bar. (Color figure online)
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4.3 Analysis of Runtime Improvements via Traces

Next, we trace the action of the power balancing plugin over the course of a
run to show how the runtime improvements were obtained. In the left column
of plots in Fig. 4, we show traces from a run of the HACC workload. In the
right column, we show traces from a run of the Nekbone workload. For each, we
highlight a run from one of the power caps studied in our sweeps. For brevity,
we omit results collected for the other power caps and other benchmarks, but
we note that we observed consistent trends in that data.

The top plot in the HACC traces shows the normalized runtime of each
iteration of the HACC outer loop in the critical path node (i.e. the node with
lowest power efficiency due to manufacturing variation) and compares the time
taken when using the power balancing plugin versus the baseline. In the middle
plot, we plot the power allocated to each node for each iteration of the outer
loop when using the power balancing plugin. In the bottom plot, we plot the
mean frequency that each node’s processor runs at in each iteration of the outer
loop when using the power balancing plugin. These traces were collected through
GEOPM’s tracing features.

As demonstrated in the top plot, the power balancing plugin is able to reduce
the runtime of each iteration of the HACC outer loop which reduces the overall
time-to-solution. The middle plot demonstrates how the power balancing plugin
achieves this: it identifies the critical path nodes and allocates them a larger
portion of the job power budget. In particular, Node 8 is allocated more power.

The power allocation is tuned using an objective function that penalizes vari-
ance in the time it takes the nodes to complete each iteration. From one iteration
to the next, the amount of computation needs not be constant. In fact, the top
plot demonstrates that the computation is not constant in HACC. Nonethe-
less, the power balancing plugin readily handles it. The bottom plot confirms
that the variance-minimizing power allocation was the allocation that equalized
frequency across processors in all nodes. This is expected when manufacturing
variation is the cause of variation in iteration runtime across nodes.

The right column of Fig. 4 shows the corresponding traces for Nekbone, a
more complicated example. The iteration loop time data in the top plot exhibits
two phases. In the first phase, the runtime of the outer loop is slightly better than
the baseline runtime when using the power balancing plugin, but in the second
phase the power balancing plugin significantly improves the runtime. The two
phases can be explained by observing that the Nekbone benchmark executes two
conjugate gradient computations of different problem sizes. The second one is
more sensitive to manufacturing variation because it is more compute-intensive.
Thus, it offers more opportunity for acceleration.

In the middle and bottom plots, the traces confirm that the power balancing
plugin is responding to differences in the outer loop runtime across nodes. In
particular, Node 8 is allocated more power. This is expected based on additional
experiments we performed to confirm that Node 8 has the processor with the low-
est power efficiency (due to manufacturing variation) in our cluster: over a sweep
of different power caps, we compared the average frequency each node’s processor
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Fig. 4. Traces for an example run and power cap of HACC (Left) and Nekbone (Right).
Top to bottom: time taken in the critical path node to complete each iteration, power
allocated to each node in each iteration, and mean frequency in each node in each
iteration
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achieved when running a single-node compute-intensive synthetic workload and
confirmed that the average frequency was consistently lowest on Node 8. We also
note that the data demonstrates that our plugin adapts readily when Nekbone
moves from the first conjugate gradient computation to the second. When the
second begins, the plugin realizes that the previous power allocation is no longer
ideal and it learns a new power allocation.

4.4 Overhead Measurements

Next we measure and report the memory usage and communication bandwidth
costs associated with running the GEOPM framework and power balancing plu-
gin as well as the overhead to the application’s runtime associated with calling
into GEOPM’s profiling interface functions. GEOPM and its interfaces have
been designed to minimize these costs.

To measure the memory working set, we queried the peak resident set size
statistic (VmHWM) provided by Linux in /proc/<pid>/status/ for the GEOPM
process on each node, at GEOPM shutdown time. To track communication band-
width usage, we implemented accounting logic in the GEOPM code for tree com-
munications to accumulate how many payload bytes are sent over the network.
To track application overhead, we wrapped each GEOPM interface function with
timers and implemented logic to accumulate the total time spent in all interface
function calls. For each type of overhead, we obtain measurements on each node
and report the maximum overhead across nodes.

We note that taking the maximum actually overestimates both the average
network bandwidth usage per node and the overall application overhead. The
node in which the GEOPM root controller lives uses more communication band-
width than any other node, but it is the value we are reporting. Overhead on
the critical path node will have greatest impact to overall application runtime,
but we are reporting the maximum across any node; in our experiments, the
overhead was typically lowest on the critical path node.

Table 2. Per-node memory usage, communication bandwidth, and application over-
head

Workload Memory
working set

Communication BW
(upper bound)

Application overhead
(upper bound)

Qbox 40.8 MB 7.8 B/sec 2.32%

HACC 48.7 MB 36.2 B/sec 0.54%

Nekbone 37.1 MB 1121.3 B/sec 1.45%

AMG 34.9 MB 24.4 B/sec 0.97%

miniFE 34.8 MB 414.9 B/sec 2.38%

CoMD 34.7 MB 735.8 B/sec 2.88%

FFT 38.4 MB 338.6 B/sec 4.52%
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Nonetheless, the costs are minimal as demonstrated in Table 2. They are eas-
ily outweighed by the large improvements in application time-to-solution pre-
sented earlier in this paper. We note, however, that we have not yet made a
thorough effort to optimize the GEOPM code, so the overheads may be further
reduced in the future.

5 Conclusion and Future Work

This paper introduced an open source, extensible, scalable runtime framework
called GEOPM. GEOPM is being contributed to the community to accelerate
collaboration and research toward software-hardware co-designed HPC energy
management solutions. To demonstrate GEOPM’s potential as a framework,
this paper developed a power balancing plugin for GEOPM, and it presented
results from our experiments with that plugin which demonstrated substantial
improvements in time-to-solution for key CORAL system procurement and other
benchmarks in power-capped systems.

In future work, we will expand upon our studies of the power balancing
plugin to (a) determine bounds on how much benefit the plugin will provide
in systems with processors spanning the full range of manufacturing variation
possible in a given SKU, (b) evaluate benefits on additional benchmarks, and
(c) demonstrate that the plugin’s tree-hierarchical algorithm scales as well as
expected in larger systems. In fact, the first scaling studies have already begun
through a collaboration with Argonne National Laboratory. They are planned for
the Theta system, a production system based on Intel Knights Landing hardware
and Cray Aries Interconnect.

Lastly, the promising results presented in this paper motivate future work to
spin up additional collaborations with the community to research new energy
optimization strategies through GEOPM’s plugin framework. It would be espe-
cially interesting to prototype plugins for GEOPM that optimize energy-to-
solution or other objective functions beyond those demonstrated in this paper.
It would also be interesting to explore optimizations that run in conjunction
with power balancing optimizations to achieve speedups and energy efficiency
improvements on top of the benefits of power balancing.

The authors are also seeking collaborations to (a) explore further integra-
tion of GEOPM with emerging power-aware scheduling functions in SLURM (or
other workload managers) and (b) explore tuning power-performance knobs in
software libraries/runtimes like MPI or OpenMP as well as knobs in the library
or application layer of the HPC stack.
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Abstract. Energy consumption is rapidly becoming a limiting factor
in scientific computing. As a result, hardware manufacturers increas-
ingly prioritise energy efficiency in their processor designs. Performance
engineers are also beginning to explore software optimisation and hard-
ware/software co-design as a means to reduce energy consumption.
Energy efficiency metrics developed by the hardware community are
often re-purposed to guide these software optimisation efforts.

In this paper we argue that established metrics, and in particular those
in the Energy Delay Product (Etn) family, are unsuitable for energy-
aware software optimisation. A good metric should provide meaningful
values for a single experiment, allow fair comparison between experi-
ments, and drive optimisation in a sensible direction. We show that Etn

metrics are unable to fulfil these basic requirements and present suitable
alternatives for guiding energy-aware software optimisation. We finish
with a practical demonstration of the utility of our proposed metrics.

1 Introduction

Advances in processor design have delivered improvements in CPU performance
for decades. As physical limits are reached, however, refinements to the same
basic technologies are beginning to show diminishing returns [6]. One side-effect
of this is an unsustainable rise in system power consumption, which has been
identified as a primary constraint for exascale systems [20].

Moore’s law, which states that transistor density doubles every 18–24 months,
led to exponential increases in processor performance during a period often
referred to as the “free lunch” [23]. More recently, the breakdown of Dennard
scaling has meant that performance improvements are increasingly reliant on
microarchitectural changes rather than increases in processor clock speed.

Hardware manufacturers are increasingly prioritising energy efficiency in
their processor designs [15]. Research suggests that software modifications will be
required to fully exploit the resulting improvements in modern architectures [21].
This has spurred interest in the possibility of optimising software for increased
energy efficiency.

A fundamental aspect of performance engineering is performance assessment.
To comment on the performance of a high performance computing system or a
particular software package, we must first define an assessment metric. Met-
rics provide a means to evaluate a code or system based on some property of
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance 2017, LNCS 10266, pp. 413–430, 2017.
DOI: 10.1007/978-3-319-58667-0 22
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interest, allowing developers to perform high-level comparisons between different
implementations and approaches. Some metrics also serve as fitness functions,
combining various costs into a single figure of merit (FoM). Such metrics can be
used to guide optimisation attempts and the search for better solutions [12].

New metrics which incorporate both energy and runtime costs will be
required if developers are to identify and capitalise on new classes of energy-
aware optimisations. Many early efforts have borrowed metrics developed by the
hardware community, which has a long history of energy efficiency research. In
particular, the Energy Delay Product (Etn) family of metrics are frequently used
for software optimisation.

In this paper we argue that Etn and related metrics are not suitable for soft-
ware optimisation. We discuss their shortcomings and provide examples of their
failures in this domain. We then propose alternative metrics which address these
shortcomings and compare their performance with Etn. Finally, we demonstrate
our metrics with an investigation of the energy efficiency of scientific codes.
Specifically, this paper makes the following contributions:

– We present a set of criteria that we believe are necessary for effective software
optimisation metrics. Additionally, we introduce fitness landscape diagrams
to visualise the behaviour of these metrics;

– We evaluate the Etn family of metrics against our criteria. Our analysis high-
lights weaknesses in metrics commonly used in the energy efficiency optimi-
sation literature;

– We propose two new metrics to measure software energy efficiency. We eval-
uate our proposals against the same criteria and describe how they improve
on established metrics;

– Finally, we validate our proposed metrics with a study into the efficiency of
codes from the Mantevo application suite.

The remainder of this paper is structured as follows: Sect. 2 presents a survey of
related work; Sect. 3 lays the foundations for this work, providing formal defini-
tions and criteria which we use to compare and assess different metrics; Sect. 4
uses these criteria to assess the suitability of Etn metrics for software optimi-
sation; Sect. 5 introduces our proposed metrics and evaluates them against the
same criteria; Sect. 6 demonstrates the metrics discussed in previous sections by
studying the energy efficiency of various applications; and finally Sect. 7 con-
cludes this paper and describes upcoming research.

2 Related Work

Although energy consumption is becoming a constraint for scientific computing,
minimising runtime is still an important optimisation objective. Optimising soft-
ware according to multiple properties simultaneously is known as Multi-Objective
Optimisation (MOO). MOO requires a balance to be struck between the poten-
tially conflicting requirements imposed by different objectives.
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The simplest approach to dealing with multiple optimisation criteria is to han-
dle each one in isolation. A solution is said to be Pareto-Efficient if it is not
dominated by any other solution across all objectives. Pareto-Efficiency yields a
partial ordering, with a set of maximal elements but no ordering between them.
The set of maximal elements delineates the Pareto Front, as shown in Fig. 1.

Fig. 1. Pareto-Efficiency

Pareto-Efficiency is useful when the relative importance of different requirements
is unknown and the final choice of optimal solution can be deferred to the end
user. For this reason it is often used by library developers who want their code
to run efficiently in many different execution environments.

Balaprakash et al. use this approach to investigate the trade-offs between
runtime and energy consumption for common kernels in scientific computing [2].
A similar technique has also been used to determine optimal checkpoint intervals
for energy efficient fault tolerance [1].

A second MOO approach combines multiple objectives into a single scalar
fitness function. This function then serves as a FoM metric for the overall utility
of different solutions. Scalar fitness functions are in some sense fundamental to
MOO; they can be used in isolation, but are also required by users choosing
between solutions from a Pareto-efficient set.

Energy Delay Product was first proposed by Gonzalez et al. to measure the
energy and runtime efficiency of microprocessors [9]. Martin et al. generalised
this concept into the Etn family of FoM metrics, with parameters E and t corre-
sponding to energy and time [17]. They argue that Et2 provides the best balance
between the two optimisation objectives for microprocessor design. Srinivasan
et al. reached the same conclusion, although for slightly different reasons [22].

Many authors have adopted these metrics originating from the hardware
community and applied them to software optimisation problems. Vincent et al.
describe a technique which minimises Et1 using CPU throttling [8]. Bingham
and Greenstreet use Etn metrics to analyse runtime constraints imposed by a
fixed energy budget for various algorithms [4]. Laros et al. use Etn metrics to
assess a number of production applications and state that Et3 strikes the right
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balance between runtime and energy for high performance computing [16]. Et1

has also been used extensively to quantify the efficiency of resource provisioning
in a cloud computing environment [19,24].

Bekas and Curioni further generalised Etn metrics to the form E · f(t), a
product between energy and an application dependent function of time [3].

Another metric related to energy efficiency is FLOPS Per Watt, which relates
the number of Floating Point Operations Per Second (FLOPS) and the rate of
power consumption. Despite its name, this metric is quoted in units of Operations
per Joule (1 Joule is defined as 1 Watt-Second). FLOPS/Watt measures how
effective an application is at converting energy into floating point results.

Unlike Etn, FLOPS/Watt does not measure application cost and hence can-
not be used as a fitness function. This is analogous to metrics like branch mis-
prediction rate, which may inform optimisation attempts but are not measures
of utility. Branch misprediction can be eliminated by disabling speculative exe-
cution, but this does not result in better performance. Similarly, optimising for
FLOPS/Watt may increase both runtime and energy consumption.

Heuristic models offer another source of optimisation guidance. Choi et
al. proposed the Energy Roofline model to identify the algorithmic conditions
needed for trade-offs between runtime and energy [5]. Similarly, in previous work
we developed the Power Optimised Software Envelope model to assess the scope
a code has for power optimisations on any given platform [18].

Some of our objections to existing metrics have been raised before, most
notably by Hsu et al. [14]. They point out that Etn and related metrics are
unfairly biased towards massive parallelism and argue that there is a need for
the development of new metrics.

We believe our work is timely and interesting because it offers a rigorous
assessment of energy-aware software optimisation metrics. We show the flaws
in current approaches and propose novel metrics which can be used as fitness
functions to guide energy-aware software optimisation. We believe this work will
be useful to practitioners in this nascent area of performance engineering.

3 Foundations

In this section we provide formal definitions which underpin later discussions
and outline the desirable properties an optimisation metric should exhibit. We
begin by formalising the notion of a code as a repeatable sequence of instructions
which, when executed by a processor, incurs energy and runtime costs.

Definition 1. All processors consume non-zero amounts of time and energy to
run programs. The cost of a code θ is the pair (Eθ, tθ) ∈ R+ × R+ corresponding
to the energy and runtime costs incurred by running it on a given platform.

Definition 2. Codes can be composed by concatenating their instruction
sequences. The composition of codes θ and λ yields the following cost:

θ ◦ λ = (Eθ + Eλ, tθ + tλ)
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The goal of energy-aware software optimisation is to minimise the runtime and
energy costs of a given application. Energy-aware optimisation metrics are func-
tions of energy and time which capture the utility of a code.

Definition 3. An energy-aware optimisation metric is an element-wise
monotonic function M which combines energy and runtime costs into a scalar
FoM:

M : (E, t) ∈ R+ × R+ → R+

Element-wise monotonicity means that for all fixed E0, t0 ∈ R+, the functions
M(E0, t) and M(E, t0) are monotonic. In other words, increasing one cost with-
out a corresponding reduction in the other leads to a worse FoM.

Software optimisation can be modelled as a hill-climbing problem. Starting from
an initial code θ, performance engineers make incremental changes and measure
their impact using a FoM metric. Changes which improve performance against
this metric are kept while those which reduce it are discarded. Whether a given
code change represents an optimisation depends on the metric chosen.

Definition 4. For logically equivalent codes θ and λ, the transformation θ → λ
is an optimisation with respect to metric M iff M(λ) strictly dominates M(θ).

By Definition 3, all valid metrics identify code changes which reduce both energy
and time costs as optimisations. Similarly, all code changes leading to strictly
worse performance will be disregarded. Energy-aware optimisation metrics only
differ in cases where energy-time trade-offs are possible.

Figure 2 shows how two valid metrics can disagree on whether the same code
change θ → λ is an optimisation. Lighter green areas correspond to optimisa-
tions and darker red areas to performance degradations. They are separated
by a dashed Isometric line that connects all points with FoM values equal to
M(θ). Both metrics agree on code changes in the solid shaded regions where
costs change in tandem. Energy-time trade-offs are represented by cross-hatched
quadrants. The MOO metric in Fig. 2a identifies θ → λ as a valid energy-time
trade-off, whereas Fig. 2b shows it is not an energy optimisation.

Energy-aware optimisation metrics ascribe a FoM to all (E, t) cost pairs.
Returning to the hill-climbing analogy, we say that an optimisation metric defines
a fitness landscape over the energy/time plane. Figure 3 shows how plots similar
to Fig. 2 can be used to visualise the fitness landscape of a metric.

The isometric lines in Fig. 3 connect all points where the FoM is some multiple
of a fixed value. Mathematically these lines represent level sets of our M function;
intuitively they are contours in our fitness landscape. The closeness of these lines
corresponds to the gradient of the fitness landscape.

Isotopic lines run perpendicular to isometric lines, and correspond to the
path of fastest decent (steepest gradient) within the fitness landscape. Mathe-
matically, these lines are orthogonal trajectories of a metric function M . Con-
ceptually, they show the direction in which a metric drives optimisation.

Having formally defined what an energy-aware optimisation metric is and
how it can be visualised, we now turn our attention to how it should behave.
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Fig. 2. Metric optimisation regions (Color figure online)

The goal of an optimisation metric is to condense the utility of an application
into a single, meaningful FoM. We have identified the following properties which
an idealised optimisation metric should possess:

1. Bounded: A metric should bound regions of the optimisation space;
2. Directed: Drive optimisation efforts in a sensible direction;
3. Additive: Remain additive (linear) under code composition;
4. Stable: Provide a stable definition of optimisation under code composition;
5. Tunable: Be tunable to different application domains; and
6. Intuitive: Correspond to a tangible and intuitive property of the system.

We explore these properties in more detail in the next section.

4 Etn Evaluation

In the previous section we listed several desirable criteria for energy-aware opti-
misation metrics. We now use these criteria to evaluate the suitability of Etn

metrics for guiding software optimisation.

4.1 Analysis of Etn

Bounded: Our first criteria states that energy-aware optimisation metrics
should bound regions of the optimisation space. By this we mean that a met-
ric should place upper limits on how much energy or runtime can be consumed
under a given FoM. This requirement is met if the isometric lines described by
a metric intercept both the energy and runtime axes.

Figure 3 shows that Etn isometric lines do not intercept either axis. In theory,
codes can be modified to consume an arbitrarily large amount of either time or
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Fig. 3. Etn metric fitness landscapes

energy while still improving their overall performance. We consider this to be a
flaw and assert that such changes should not count as optimisations. Another
benefit of bounded metrics is that they limit the space in which to search for
optimisations; something which Etn cannot do.

Directed: Our second criteria requires metrics to guide optimisation in sensible
directions. Intuitively, we wish to speed up slow codes and reduce the power
consumption of energy intensive ones. On the contrary, Etn disproportionately
rewards speeding up fast codes and saving energy in frugal ones. As energy
consumption increases, Etn gives higher priority to runtime optimisation and
vice versa. This fault was encountered by Hsu et al. when they noted that Etn

metrics are unfairly biased towards massive parallelism in HPC systems [14].
Our first two criteria are linked. It is necessary (but not sufficient) for a

metric to be bounded in order for it to guide optimisation in a sensible direction.
The isometric lines of an unbounded metric never touch either axis, meaning the
corresponding isotopic lines must intersect the axes at right angles. As the energy
or time cost of a code approaches zero, the path of fastest decent therefore tends
exclusively towards further reductions in this already close-to-zero cost.

Additive: Our third criteria states that FoM metrics should be additive under
code composition. Performance engineers focus their attention on expensive pro-
cedures within a code. This involves profiling the code to identify areas causing
poor performance, based on the assumption that the cost of a code is the sum of
the costs of its constituent parts. While true for simple metrics like energy and
time, this is not generally the case for compound metrics.

Definition 5. A metric is additive iff for code segments θ and λ:

M(θ ◦ λ) = M(θ) + M(λ)
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Metric functions must be linear in terms of both time and energy in order to fulfil
this requirement. This is not the case for Etn, where the cost of a code tends to
be much greater than the costs of its constituent parts. Profilers cannot be relied
upon to identify targets for Etn optimisation. Furthermore, this additional non-
local cost depends on total application runtime and energy consumption. An Etn

FoM is therefore meaningless outside the context of a single fixed application.

Stable: Our fourth criteria requires metrics to provide a stable definition for
optimisation. If the same code change alters the cost of two applications by the
same amount, and it is an optimisation with respect to metric M for one of the
codes, then it should count as an optimisation for both of them.

Definition 6. A metric is stable iff for equivalent code segments λ and λ′:

M(λ′) < M(λ) =⇒ M(θ ◦ λ′) < M(θ ◦ λ)

It is worth noting that linear metrics automatically fulfil this requirement. Linear
metrics are inherently stable, however stable non-linear metrics also exist.

Etn is an unstable metric as it does not provide a consistent definition of
optimisation. Whether or not a code change counts as an optimisation under
Etn is context sensitive. Code changes can be counted as optimisations only
when evaluated in the context of the full application. Targeted optimisation
of particular subroutines is impossible, and all past optimisations must be re-
evaluated every time a change is made to the application.

This failure of Etn is best illustrated with an example. Suppose an application
contains a procedure which consumes 10 J over 10 s to produce some result. This
corresponds to an Et1 FoM of 10 × 10 = 100. We then modify our procedure
to produce the same result in 11 J and 9 s. This is a valid optimisation because
although it increases energy consumption it reduces Etn to 11 × 9 = 99.

Once the procedure completes we are given the option to output results at
a cost of (5 J, 10 s). Our un-optimised application could execute its tasks and
output the results with an EDP of (10 + 5) × (10 + 10) = 300. The same
sequence of actions in the ‘optimised’ application results in a higher (worse)
EDP of (11 + 5) × (9 + 10) = 304. Under Etn, choosing to save the results
of our procedure retroactively invalidates our optimisation.

Figure 4a shows how the same cost change applied to two codes with the same
starting Etn FoM may be considered either an optimisation or a performance
degradation. Furthermore, Fig. 4b shows how any energy-time trade-off can be
made to appear as an optimisation or a performance degradation depending on
the context. Different ratios of Eθ and tθ can shift the optimisation/degradation
boundary to any point within the indeterminate quadrants.

Mini-applications are powerful tools in scientific computing [13]. They
package relevant features of large production applications into smaller, more
manageable codes. Performance engineers use them as test beds to search for
optimisations which can be ported back to the original application. Sometimes
optimisations which work at small scale will fail to improve the production appli-
cation, signalling a discrepancy between the mini and production applications.
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Fig. 4. Etn optimisation instability

Using Etn metrics, however, optimisations to the mini-app may not count as
optimisations to the production code even when they yield identical cost changes
in both cases. This is further proof that Etn metrics are incompatible with mod-
ern performance engineering techniques.

Tunable: Our penultimate criteria is that it should be possible to tune a metric
to reflect the energy and time constraints of different domains. The Etn metric
meets this criteria via its n parameter. This parameter sets the ‘exchange rate’
at which small changes in runtime and energy can be traded against each other.
This can be shown by equating the partial derivatives of Etn as shown in Eq. 1:

∂

∂E
(Etn) = tn and

∂

∂t
(Etn) = nEtn−1

tn · ∂E = nEtn−1 · ∂t

∂E

E
= n

∂t

t
(1)

Intuitive: Our final and most subjective criteria is that a metric should be
intuitive. In practice, this means it should correspond to some tangible property
of a system, ideally with values measured in meaningful units. Etn does not meet
this requirement.

The costs of an extra Joule or second are not fixed under Etn; in fact, the
cost of increasing each factor depends on the current magnitude of the other.
This implies that a Joule consumed by a long running process somehow costs
more than a Joule consumed by a short-lived one. Furthermore, real systems
impose maximum and minimum rates of power consumption on a code which
we refer to as Pmax and Pmin. Given that Pmin · t < E < Pmax · t, the growth
rate of Etn is Θ(tn+1). The FoM cost of an additional second or Joule grows
polynomially, hindering comparison between different scales.
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4.2 Justification of Etn

The continued use of Etn metrics despite their flaws is a testament to the need
for standardised energy-aware optimisation metrics. In the absence of better
alternatives, software engineers rely on Etn because of its popularity and relative
ease of use. Etn metrics remain the de-facto standard technique for combining
energy and runtime costs into a single FoM.

One factor which hides the problems with Etn metrics is the small range of
power consumption exhibited by modern hardware running HPC workloads as a
result of high base power consumption and marginal differences under load [10].
Figure 5a shows isometric lines for Et1 and our proposed metrics. It shows how
a small [Pmin, Pmax] range confines (Eθ, tθ) costs to a narrow envelope within
the energy/time plane. This envelope limits the scope for divergence between
different metrics. In the extreme case, when Pmin = Pmax, Eθ is a scalar multiple
of tθ and all energy-aware metrics become functions of time.

The scarcity of power-instrumented hardware means energy-aware optimi-
sation is typically carried out at the level of individual nodes. Although single
nodes exhibit narrow [Pmin, Pmax] ranges, multi-node and system-level power
draw is much less constrained. Figure 5b shows two performance envelopes, with
the larger having Pmin and Pmax values three times those of the smaller one.
This models the effect of running the same code on a single node and over
three nodes in parallel. Similar discrepancies would occur when running code on
alternative architectures with significantly differing power characteristics, such
as GPUs and FPGAs, that are emerging as candidate platforms for improved
efficiency [7]. Even at this small scale the discrepancies between Etn and other
metrics become readily apparent.

5 Proposed Metrics

In this section we propose two new FoM metrics for energy-aware software opti-
misation. These metrics have slightly different properties and the choice of which
to use is left to the performance engineer. That said, they both significantly out-
perform Etn metrics according to our assessment criteria.

Our first metric is a weighted sum of energy and runtime costs. Our second
metric measures the cost of an application in terms of Euclidean distance from
an ‘optimal’ point at the energy/time origin. The fitness landscapes for both
metrics are shown in Fig. 6a and b respectively.

5.1 Proposed Metric 1: Energy Delay Summation (EDS)

Energy and compute time are limited resources which have costs associated with
their consumption. The primary cost of energy consumption is the purchase price
of electricity. Environmental impact and other concerns can also be included.
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Fig. 5. Power-limited isometric lines

Runtime also has a monetary cost – the purchase costs of the machine amortised
over its limited lifespan. Energy and runtime costs are captured by the α and β
parameters in Eq. 2.

M(θ) = αEθ + βtθ

= (α, β) · (Eθ, tθ)
(2)

Bounded: Our first criteria requires metrics to bound regions of the
energy/time space. The isometric lines in Fig. 6a intercept both axes, satisfy-
ing this criteria. An EDS FoM therefore places upper limits on energy and run-
time costs. The runtime contribution to a metric is maximised when energy is
minimised and vice versa, allowing us to deduce cost limits under a given FoM:

M(θ) = α · Emax + β · 0

∴ Emax =
M(θ)

α
M(θ) = α · 0 + β · tmax

∴ tmax =
M(θ)

β

Performance engineers need not evaluate code changes with energy costs greater
than Emax, or runtime costs greater than tmax. This is in stark contrast to
the Etn case, where any given energy or runtime cost could be considered an
optimisation under the right circumstances.

Directed: Our second criteria requires metrics to guide optimisation in sensible
directions. Fast, energy intensive codes are likely to require different optimisa-
tions to slow, energy efficient ones. As a linear function, EDS does not differ-
entiate between these cases; the isotopic lines in Fig. 6a all run in parallel. Our
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Fig. 6. Proposed metrics fitness landscapes

metric still outperforms Etn in this regard however as it does not introduce
perverse optimisation incentives.

Additive and Stable: Our third and fourth criteria require metrics to be
linear functions of time and energy and to provide stable definitions of optimi-
sation. The function αE + βt is linear in both parameters. Linear functions are
automatically stable; meaning this metric fulfils both criteria, providing stable
definitions for optimisation and allowing for meaningful code profiling.

Tunable: Our penultimate criteria is that metrics be tunable to different appli-
cation domains. Different energy and runtime costs can be specified via the α
and β parameters. Unlike the exponential formulation of Etn, it is immediately
apparent how different values will alter the balance between energy and runtime.

A single scalar parameter would be enough to express any ratio of energy and
time components. One property of this metric is that with appropriate tuning
factors it can be used as a proxy for the monetary cost of running a code. This
use-case is why we include two tuning parameters within this metric, to allow
us to provide notional value results.

Intuitive: Our final criteria requires metrics to correspond to some meaningful
property of the system. Given appropriate coefficients this metric can report
results in terms of monetary cost. Monetary cost has meaningful units, allows
for fair comparisons to be made between different platforms and architectures,
and is useful during procurement.

Equation 2 provides a dot product formulation of the EDS metric which sug-
gests a second geometric interpretation. Dot products correspond to the projec-
tion of one vector onto another – in this case of (Eλ, tλ) onto (α, β).
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5.2 Proposed Metric 2: Energy Delay Distance (EDD)

Our first metric measured code performance in terms of separable energy and
time costs. This definition fulfilled all but one of our criteria; as a linear function
it was not able to direct the optimisation of codes according to their starting
costs. Our second metric remedies this by defining the cost of a code as its
distance from the most optimal point on our fitness landscape – the origin.

M(θ) =
√

Eθ
2 + (βtθ)

2

EDD can also be expressed as the magnitude of a weighted cost vector:

M(θ) = ‖(Eθ, β · tθ)‖

Bounded: The isometric lines in Fig. 6b follow semi-circular trajectories which
intercept the axes. This satisfies our first criteria, meaning this metric also limits
Emax and tmax for a given FoM. We can derive these limits as follows:

M(θ) =
√

Emax
2 + β · 0

∴ Emax = M(θ)

M(θ) =
√

0 + β · tmax
2

∴ tmax =
M(θ)

β

Directed: The isometric lines for this metric form concentric ellipse segments
centred about the origin. As a result, the corresponding isotopic lines converge
on the origin. Figure 6b makes it clear that as a result this metric prioritises
optimisations which minimise whichever cost is greater.

Additive: The formula for EDD is non-linear, meaning the overall FoM of a
code is not equivalent to the sum of its parts. This is an unavoidable consequence
of being a directed metric, and means that EDD is not well suited for accurate
code profiling. Unlike Etn, the discrepancy between the sum of component FoMs
and the overall code FoM for EDD is bounded. As EDD is defined in terms of
vector magnitude it obeys the triangle inequality. As energy and time costs are
always positive, we have:

√
M(θ)2 + M(λ)2 < M(θ ◦ λ) ≤ M(θ) + M(λ)

Stable: EDD does not meet our stability criteria. Figure 7 shows a case where
M(λ′) < M(λ), yet M(θ ◦ λ′) > M(θ ◦ λ). The runtime axis is scaled so that
isometric lines remain concentric for all values of β. That said, EDD instability is
bounded by M(θ)+M(λ)−M(θ◦λ) as this metric obeys the following inequality:

M(λ′) < M(λ) =⇒ M(θ ◦ λ′) < M(θ) + M(λ)
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Fig. 7. EDD instability

Tunable: This metric is tunable via the β parameter. A single parameter is
sufficient to achieve any ratio of energy to runtime contribution.

Intuitive: This metric has a direct geometric interpretation as the Euclidean
distance to the origin. It does not treat energy and runtime as separate and
distinct costs; in reality they are inseparable. In general, reducing the runtime of
a code will also reduce its energy consumption. EDD defines the cost of a code
in terms of how far away it is from being perfectly optimal.

6 Case Study

In this section we investigate the energy-efficiency characteristics of codes in the
Mantevo [13] mini-application benchmark suite. Our results show that the issues
with Etn become more evident at larger scales.

We carried out our experiments on the Taurus system at TU Dresden, which
is equipped with High Density Energy Efficiency Monitoring (HDEEM) instru-
mentation [11]. Taurus is a heterogeneous cluster with several classes of node.
This work was carried out on the largest of these classes, with each node featuring
two 12-core Intel Xeon E5-2680 v3 CPUs and 64 GB of memory.

All codes were compiled with ICC version 15.0.3. Application parameters
were based on default values, with problem sizes tuned where necessary to ensure
reasonable run times on single nodes. Results were averaged over 5 runs to
minimise the impact of random variations in runtime and energy.

We use Et3 in these experiments because Laros et al. found that this strikes
the right balance between runtime and energy for high performance comput-
ing [16]. This implies that a 1% reduction in runtime is approximately three
times more valuable than the same reduction in energy consumption.

In order to facilitate comparison we have based our EDS and EDD parameter-
isation on the same 3:1 ratio. Whereas the Etn parameter operates in a relative
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fashion, however, EDS and EDD parameters are based on absolute costs of con-
sumption. The power drawn by active Taurus nodes ranges between 207.68 W
and 345.33 W [18], meaning the magnitude of energy costs will be around 300
times greater than that of runtime. In order to compensate for this effect we
scale the runtime cost by a factor of 300 before applying the 3:1 ratio, resulting
in the parameters α = 1 and β = 3 × 300 = 900.

In practice we would prefer to adopt a more fine-grained parameterisation
which reflects real-world costs incurred by HPC systems. That said, exact cost
figures are seldom made available in the public domain.

For our first test we measured the runtime and energy consumption of various
codes running on a single node. The results for this test are presented in Table 1.

Table 1. Single node code costs

Code Runtime (s) Energy (J) Et3 EDS EDD

TeaLeaf 323.8 99,810.3 3,388,489,410,000 391,230 100,280
PathFinder 337.1 71,943.9 2,755,945,330,000 375,334 72,646
CloverLeaf 214.3 57,861.2 569,447,289,000 250,731 58,214
CloverLeaf3D 153.1 43,755.9 157,022,581,000 181,546 43,991
MiniMD 125.5 31,162.1 61,596,822,000 144,112 31,387
CoMD 105.6 24,837.8 29,248,540,000 119,878 25,037
MiniFE 36.7 8,465.6 418,461,937 41,496 8,536
HPCCG 36.5 8,059.5 391,910,164 40,910 8,133

The first thing to note is that Etn results rapidly become unwieldy even for
relatively short runtimes and low node counts. The runtime of HPCCG is around
11.4% that of TeaLeaf, and it also exhibits a slightly lower rate of power draw.
This translates to a four orders of magnitude difference in their Etn values.
Adding a single second to the runtime of TeaLeaf would further increase its
FoM by 8613 times the total Etn of HPCCG.

Another thing to note is that despite large variations in values, all metrics
assign the same efficiency ordering to these codes. As previously mentioned, the
limits of single-node power draw limit the scope for metrics to disagree.

For our second test we measured the runtime and energy consumption of
MiniMD running at scale. The results for this test are presented in Table 2.

These results show how biased Etn metrics are in favour of massive paral-
lelism. The efficiency of MiniMD according to Etn improves as the node count
increases to 18. It is only at the point when adding nodes delivers little or no
reduction in runtime that this trend reverses.

EDS identifies 4 nodes as the optimal node count. This configuration delivers
roughly twice the runtime performance of a single node at the cost of doubling
the energy consumption. Adding nodes beyond this point results in energy costs
increasing faster than runtime performance improves.

EDD identifies 1 node as the optimal node count. This corresponds to the
intuition that parallelism introduces overhead. As the parallel overhead grows,
so too does inefficiency as measured by this metric.
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Table 2. MiniMD Multi-node costs

Nodes Runtime (s) Energy (J) Et3 EDS EDD

1 125.5 31,162.4 61,597,424,000 144,112 31,388
2 94.2 44,999.0 37,614,512,300 129,779 45,086
4 66.8 63,166.0 18,828,375,900 123,286 63,190
6 55.2 76,400.0 12,850,216,400 126,080 76,412
8 54.0 99,032.6 15,594,067,100 147,633 99,043

12 44.0 119,008.9 10,137,658,200 158,609 119,011
16 39.8 145,198.3 9,154,006,200 181,018 145,197
18 37.8 152,380.5 8,230,099,000 186,401 152,376
24 36.0 191,056.9 8,913,951,100 223,457 191,046
28 37.2 231,525.5 11,918,663,500 265,006 231,516
32 37.5 258,054.5 13,608,342,900 291,805 258,041
64 39.4 518,748.6 31,728,187,600 554,209 518,713

128 46.2 1,203,476.1 118,676,068,000 1,245,056 1,203,410

Et3 gives the impression that below-linear speed-ups coupled with above-linear
rises in energy consumption represent efficiency gains. Conversely, our EDS and
EDD metrics conform to a more conventional understanding of energy efficiency.
They identify optimal configurations which can be justified intiutively.

7 Conclusion

In this paper we argue that the Etn family of metrics are not appropriate for
energy-aware software engineering. We propose alternative metrics which can be
used to measure the cost of applications and guide their optimisation. Finally,
we compare the performance of our metrics against established techniques by
studying codes taken from the Mantevo mini-application suite.

We began by showing how Etn metrics are unable to provide meaningful
values for individual experiments, cannot be compared between experiments
and do not support optimisation efforts. Improving the Etn FoM of a section of
code can degrade overall performance. Etn metrics drive optimisation efforts in
counterproductive directions, encouraging developers to speed up already fast
code and seek energy efficiency gains in energy efficient codes. Finally, these
metrics provide no meaningful definition of an optimisation. In total, Etn was
able to fulfil only one of our seven criteria for software optimisation metrics.

We then proposed EDS and EDD, novel metrics which outperform Etn

against all of our assessment criteria. EDS is appropriate for measuring the
cost of applications, while EDD is well suited to guiding application optimisa-
tion. Both our metrics fulfil the majority of our criteria, and EDS fulfils the
maximum number possible.

Our paper finishes with a study into the energy-efficiency costs of several
popular applications. This study shows how the flaws of Etn have managed
to remain hidden in small-scale optimisation studies. It also demonstrates that
these flaws will prevent Etn from being employed at scale. As a result, new
metrics like EDS and EDD will be required to support performance engineers as
interest in energy optimisation continues to grow.
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7.1 Future Work

The properties of our metrics makes them particularly well suited to compar-
ing codes running at different scales and on different architectures. We intend
to use EDS and EDD to investigate the power optimisation characteristics of
various codes running on accelerator-based technologies. Our ultimate aim is to
demonstrate how the correct metric can facilitate the discovery of energy-aware
software optimisations. In our ongoing work we focus our search towards GPU
and FPGA platforms as promising candidates for energy optimisation.
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