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Abstract. We consider the problem of enumerating pairs of bipermutive
cellular automata (CA) which generate orthogonal Latin squares. Since
the problem has already been settled for bipermutive CA with linear
local rules, we address the general case of nonlinear rules, which could be
interesting for cryptographic applications such as the design of cheater-
immune secret sharing schemes. We first prove that two bipermutive
CA generating orthogonal Latin squares must have pairwise balanced
local rules. Then, we count the number of pairwise balanced bipermutive
Boolean functions and enumerate those which generate orthogonal Latin
squares up to n = 6 variables, classifying them with respect to their
nonlinearity values.

Keywords: Cellular automata · Latin squares · Bipermutivity · Pair-
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1 Introduction

The construction of orthogonal Latin squares is a challenging combinatorial prob-
lem. Indeed, besides being one of the most researched topics in combinatorial
design theory, orthogonal Latin squares also have numerous applications in cryp-
tography, coding theory and the design of experiments [3,6,14].

Recently, a new construction of orthogonal Latin squares based on bipermu-
tive cellular automata (CA) with linear local rules has been proposed in [10]. In
particular, the authors proved that two linear bipermutive local rules generate a
pair of orthogonal Latin squares if and only if their associated polynomials are
relatively prime.

In this paper, we address the generalized problem of enumerating orthogonal
Latin squares induced by nonlinear bipermutive CA, which could have interest-
ing cryptographic applications. As a matter of fact, orthogonal Latin squares
generated through nonlinear constructions can be employed in the design of
cheater-immune secret sharing schemes [15].
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After covering in Sect. 2 the necessary preliminary notions about Latin
squares and cellular automata, in Sect. 3 we first prove that the basic reversal
and complementation operations on local rules preserve the orthogonality rela-
tion of the resulting Latin squares. Then, we show that two bipermutive local
rules that give rise to orthogonal Latin squares must be pairwise balanced, which
basically means that the four pairs (0, 0), (1, 0), (0, 1) and (1, 1) must occur an
equal number of times in the superposition of their truth tables. Additionally,
we prove that pairwise balancedness is a property preserved from the generating
functions to the corresponding bipermutive rules, but not vice versa. In Sect. 4
we derive a formula for the number of pairwise balanced bipermutive rules, and
apply a combinatorial algorithm to enumerate all those pairs which generate
orthogonal Latin squares up to n = 6 variables. Finally, we classify these pairs
with respect to their nonlinearity values. In Sect. 5 we sum up the contributions
of this paper.

2 Preliminaries

In this section, we first recall the basic definitions about orthogonal Latin squares
and cellular automata used throughout the paper. We then review the construc-
tion of orthogonal Latin squares based on linear bipermutive cellular automata
described in [10].

2.1 Basic Definitions

In what follows, we denote by [N ] the set of the first N positive integer numbers,
i.e. [N ] = {1, · · · , N}. We begin by defining the basic combinatorial objects of
our interest, namely Latin squares:

Definition 1. Let N ∈ N. A Latin square of order N is a N ×N matrix L such
that each element of [N ] occurs exactly once in every row and in every column.
Two Latin squares L1 and L2 of order N are called orthogonal if

(L1(i1, j1), L2(i1, j1)) �= (L1(i2, j2), L2(i2, j2)) (1)

for all distinct pairs of coordinates (i1, j1), (i2, j2) ∈ [N ] × [N ].

Hence, two Latin squares are orthogonal if their superposition yields all the
ordered pairs of the Cartesian product [N ] × [N ].

In this work, we consider a basic one-dimensional model of cellular automaton
which can be considered as a special kind of vectorial Boolean function. For this
reason, we first cover the necessary notions from the theory of cryptographic
boolean functions, referring the reader to [1,2] for a more thorough presentation
of the topic.

Let F2 and F
n
2 respectively denote the finite field with two elements and the n-

dimensional vector space over F2 (that is, the set of all binary n-tuples). In what
follows, we assume that the 2n vectors of Fn

2 are lexicographically ordered, using
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least significant bit notation. A Boolean function of n variables is a mapping
f : Fn

2 → F2. The truth table of f is the vector Ω(f) ∈ F
2n

2 defined as

Ω(f) = (f(0, 0, · · · , 0), f(1, 0, · · · , 0), · · · , f(1, 1, · · · , 1)), (2)

that is, Ω(f) specifies the output values of f for each of the possible 2n values of
the input vectors. Consequently, the set of all 2n binary vectors coincides with
the space of Boolean functions of n variables Fn, which thus has size 22

n

.
Let f : F

n
2 → F2. The reversal fR : F

n
2 → F2 and the complementation

fC : Fn
2 → F2 of f are defined as

fR(x1, · · · , xn) = f(xR) = f(xn, · · · , x1), (3)
fC(x1, · · · , xn) = f(x1, · · · , xn) ⊕ 1, (4)

for all x = (x1, · · · , xn) ∈ F
n
2 . Clearly, both reversal and complementation are

idempotent operations, i.e. (fR)R = f and (fC)C = f .
A Boolean function f : Fn

2 → F2 is called affine if it is defined as:

f(x1, · · · , xn) = a ⊕ a1 · x1 ⊕ · · · ⊕ an · xn (5)

for all x = (x1, · · · , xn) ∈ F
n
2 , where a, a1, · · · , an ∈ F2 and ⊕ and · respectively

denote the XOR and AND operations. If a = 0, then the function is called linear.
The nonlinearity of a Boolean function f : F

n
2 → F2 is defined as the

minimum Hamming distance of f from the set of affine functions of n vari-
ables, a property which can be expressed using the Walsh transform of f . Given
f : Fn

2 → F2, the Walsh transform of f is the function Wf : Fn
2 → R defined as

Wf (ω) =
∑

x∈F
n
2

(−1)f(x)⊕ω·x (6)

for all ω ∈ F
n
2 , where ω · x = ω1x1 ⊕ · · · ⊕ ωnxn is the scalar product between ω

and x. The spectral radius of f , denoted as Wmax(f), is the maximum absolute
value of its Walsh transform Wf over all vectors ω ∈ F

n
2 . Then, the nonlinearity

of f is formally defined as:

Nl(f) = 2n−1 − 1
2
Wmax(f). (7)

In this work, we focus mainly on CA based on bipermutive local rules. Formally,
a bipermutive Boolean function is defined as follows:

Definition 2. A boolean function f : Fn
2 → F2 is called bipermutive if, by fixing

either the leftmost or the rightmost n−1 input coordinates to any value x̃ ∈ F
n−1
2 ,

the resulting restriction on the remaining coordinate is a permutation over F2.
Equivalently, function f : Fn

2 → F2 is bipermutive if there exists ϕ : Fn−2
2 → F2

such that

f(x1, x2, · · · , xn−1, xn) = x1 ⊕ ϕ(x2, · · · , xn−1) ⊕ xn (8)

for all x = (x1, x2, · · · , xn−1, xn) ∈ F
n
2 .
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The function ϕ appearing in Eq. (8) is also called the generating function of f .
Hence, the output of f is computed by XORing the leftmost and rightmost vari-
ables with the value of ϕ evaluated on the central variables. In [9], it has been
shown that the nonlinearity of a bipermutive Boolean function is four times the
nonlinearity of its generating function, i.e. Nl(f) = 4 ·Nl(ϕ). Notice that a linear
Boolean function is bipermutive if and only if its leftmost and rightmost coeffi-
cients a1 and an are nonzero.

Vectorial Boolean functions generalize the concept of Boolean functions to
multiple outputs. Given n,m ∈ N, a vectorial Boolean function (or (n,m)-
function) is a mapping F : F

n
2 → F

m
2 . For all i ∈ [m], the i-th coordinate

function of F is the Boolean function fi : Fn
2 → F2 that specifies the i-th output

bit of F , i.e. fi(x) = F (x)i for all x ∈ F
n
2 .

Using the above notions on Boolean functions, we can now give a formal
definition of cellular automaton.

Definition 3. Let m,n ∈ N such that m ≥ n, and let f : Fn
2 → F2 be a Boolean

function. A one-dimensional cellular automaton (CA) of length m with local rule
f is a vectorial Boolean function F : Fm

2 → F
m−n+1
2 defined as

F (x1, · · · , xm) = (f(x1, · · · , xn), · · · , f(xm−n+1, · · · , xm)) (9)

for all x = (x1, · · · , xm) ∈ F
m
2 .

The local rule of a CA is usually identified by its Wolfram code, which is the
decimal encoding of its truth table. On account of Definition 2, we call a CA
bipermutive if its local rule is a bipermutive Boolean function.

A CA can be viewed as a vectorial Boolean function where each coordinate
function fi is the local rule f evaluated on the n input variables xi, · · · , xi+n−1.
From a different perspective, one can consider the input variables of the CA as
cells whose state can be either 0 or 1, and where each of the first m − n + 1
cells updates in parallel its state by evaluating the local rule on the neighborhood
formed by itself and the n − 1 cells to its right. Notice that the rightmost n − 1
input cells are not updated, hence there is no need to enforce any boundary
condition. Remark also that, for the purposes of our work, we do not consider
the iterated behavior of a CA produced by the repeated application of the local
rule in successive time steps.

2.2 Latin Squares Generated by Cellular Automata

We now review the method for constructing Latin squares through bipermu-
tive cellular automata, following the notation of [10]. Let us consider a CA
F : F

2(n−1)
2 → F

n−1
2 based on a local rule f : Fn

2 → F2 of n variables. Thus,
F associates configurations of length 2(n − 1) to configurations of length n − 1.
We can define a square matrix SF by using the leftmost and rightmost n − 1
input variables of F to index respectively the rows and the columns of SF , while
the n − 1 output variables of F are employed to represent the entries of SF at
the respective input coordinates. More formally, let N = 2n−1 and assume that
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φ : Fn−1
2 → [N ] is a one-to-one mapping between F

n−1
2 and [N ], and let ψ be the

inverse mapping of φ. Then, the square associated to a CA of length 2(n − 1) is
defined as follows:

Definition 4. Let F : F2(n−1)
2 → F

n−1
2 be a CA with local rule f : Fn

2 → F2.
The square associated to F is the square matrix SF of size N × N defined for
all 1 ≤ i, j ≤ N as:

SF (i, j) = φ(F (ψ(i)||ψ(j))), (10)

where ψ(i)||ψ(j) ∈ F
2(n−1)
2 is the concatenation of vectors ψ(i), ψ(j) ∈ F

n−1
2 .

We remark that this particular representation has been adopted in several works
in the CA literature, even though under a different guise. Indeed, one can con-
sider the square associated to a CA as the Cayley table of an algebraic structure
(A, ◦), where A is a set of size 2n−1 isomorphic to F

n−1
2 , and ◦ is a binary oper-

ation over A. The two operands x, y ∈ A are represented by the vectors respec-
tively composed of the leftmost and rightmost n− 1 input cells of the CA, while
the n − 1 output cells represent the result z = x ◦ y. To the best of our knowl-
edge, the first who employed this algebraic characterization of cellular automata
were Pedersen [13] and Eloranta [4], respectively for investigating periodicity and
partial reversibility of CA. Other works in this line of research include Moore
and Drisko [12], which studied the algebraic properties of the square represen-
tation of CA, and Moore [11], which considered the computational complexity
of predicting CA whose local rules define solvable and nilpotent groups.

Depending on the underlying local rule, different algebraic structures can
arise from the Cayley table of a CA. The case of quasigroups is especially inter-
esting for the purposes of our work, since they are related to Latin squares. An
algebraic structure (Q, ◦) is a quasigroup if for all x, y ∈ Q the two equations
x◦z = y and z ◦x = y have a unique solution for every z ∈ Q. When the support
set Q is finite, the structure (Q, ◦) is a quasigroup if and only if its Cayley table
is a Latin square of order |Q| [14].

A natural question to investigate is what classes of CA generate Latin squares
(or equivalently, quasigroups). The following result shows that this is the case
for bipermutive CA:

Lemma 1. Let F : F2(n−1)
2 → F

n−1
2 be a bipermutive CA with rule f : Fn

2 → F2.
Then, the square SF induced by F is a Latin square of order N = 2n−1.

A proof of this fact which uses the characterization of quasigroups can be found
in [4], while [10] reports a similar proof directly based on Latin squares.

Since bipermutive CA induce Latin squares, one could additionally investi-
gate which pairs of them are orthogonal. This problem has been settled in [10] for
the case of linear bipermutive CA. Considering Eq. (8), this means that the gen-
erating functions of the local rules are linear. More precisely, let f, g : Fn

2 → F2 be
bipermutive Boolean functions with linear generating functions ϕ, γ : Fn−2

2 → F2

respectively defined as:

ϕ(x2, · · · , xn−1) = a2x2 ⊕ · · · ⊕ an−1xn−1, (11)
γ(x2, · · · , xn−1) = b2x2 ⊕ · · · ⊕ bn−1xn−1, (12)
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where ai, bi ∈ F2 for i ∈ {2, · · · , n − 1}. In this case, we can associate to f and
g two polynomials pf (X), pg(X) ∈ F2[X] of degree n − 1 using the coefficients
of their generating functions as follows:

pf (X) = 1 + a2X ⊕ · · · ⊕ an−1X
n−2 + Xn−1, (13)

pg(X) = 1 + b2X ⊕ · · · ⊕ bn−1X
n−1 + Xn−1. (14)

The following result proved in [10] gives a necessary and sufficient condition on
the polynomials pf and pg in order for F and G to generate orthogonal Latin
squares:

Theorem 1. Let F,G : F2(n−1)
2 → F

n−1
2 be two bipermutive CA with linear local

rules f, g : Fn
2 → F2, and let pf and pg be their associated polynomials. Then,

the Latin squares SF and SG respectively associated to F and G are orthogonal
if and only if pf and pg are coprime.

3 Main Results

Since the problem of characterizing pairs of bipermutive CA which generate
orthogonal Latin squares has already been solved in [10] when the underlying
local rules are linear, we now consider the more general case of nonlinear biper-
mutive CA. In order to tackle this problem, in this section we prove some results
that allow us to reduce the search space of all bipermutive functions pairs. Then,
we will use these results to enumerate all pairs of bipermutive CA that give rise
to orthogonal Latin squares, with local rules of up to n = 6 variables.

Let Bn be the set of all pairs of bipermutive Boolean functions of n variables. As
bipermutive functions are defined by their generating functions of n− 2 variables,
for all n ≥ 2 it follows that |Bn| = |Gn|, where Gn = {(ϕ, γ) ∈ Fn−2 × Fn−2}.
Since |Fn−2| = 22

n−2
, the size of Gn is 22

n−2 · 22
n−2

= 22
n−1

, meaning that Gn is
isomorphic to Fn−1, i.e. the set of Boolean functions of n − 1 variables.

Clearly, if two bipermutive CA induced by a pair of local rules (f, g) give
rise to orthogonal Latin squares, then the CA defined by the swapped pair (g, f)
will generate the same orthogonal Latin squares in reverse order. We now show
that the basic transformations of reversal and complementation introduced in
Sect. 2.1 preserve the orthogonality relation as well:

Lemma 2. Let F,G : F
2(n−1)
2 → F

n−1
2 be two bipermutive CA respectively

defined by local rules f, g : Fn
2 → F2 of n variables, and let SF , SG be the asso-

ciated Latin squares of order 2n−1. Additionally, let FR, GR and FC , GC be the
CA respectively defined by the reverses fR, gR and the complements fC , gC of
f, g, and let SFR

, SGR
and SFC

, SGC
be the corresponding Latin squares. Then,

the following hold:

– SF and SG are orthogonal if and only if SFR
, SGR

are orthogonal.
– SF and SG are orthogonal if and only if SFC

, SGC
are orthogonal.
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Proof. Since both reversal and complementation are idempotent transformations,
it suffices to show only one direction of the implications, i.e. assuming that SF

and SG are orthogonal. This means that

(F (x||y), G(x||y)) �= (F (x′||y′), G(x′||y′))

for all distinct pairs (x, y), (x′, y′) ∈ F
n−1
2 × F

n−1
2 , since the mapping φ which

associates binary vectors of length n − 1 to positive integers in the range
{1, · · · , 2n−1} is bijective.

Let us now consider the CA FR induced by the reversed local rule fR. Then,
for all (x, y) ∈ F

n−1
2 × F

n−1
2 with x = (x1, · · · , xn−1) and y = (y1, · · · , yn−1), it

follows that

FR(x||y) = (fR(x1, · · · , xn−1, y1), · · · , fR(xn−1, y1, · · · , yn−1)) =
= (f(y1, xn−1, · · · , x1), · · · , f(yn−1 · · · , y1, xn−1)) = F (yR||xR)R,

i.e., the output value of the reversed CA FR is obtained by computing the reversed
output of F evaluated on the reversed input yR||xR. Analogously, the same fact
holds for GR with respect to G. Since for all (x, y), (x′, y′) ∈ F

n−1
2 × F

n−1
2 such

that (x, y) �= (x′, y′) one has that (yR, xR) �= (y′
R, x′

R), it follows that

(F (yR||xR)R, G(yR||xR)R) �= (F (y′
R||x′

R)R, G(y′
R||x′

R)R),

which means that SFR
and SGR

are orthogonal Latin squares.
Next, let us consider the CA FC induced by the complemented local rule fC .

The output value of FC over x||y is

FC(x||y) = (fc(x1, · · · , xn−1, y1), · · · , fc(xn−1, y1, · · · , yn−1)) =
= (1 ⊕ f(x1, · · · , xn−1, y1), · · · , 1 ⊕ f(xn−1, y1, · · · , yn−1)) =
= 1 ⊕ F (x||y),

where 1 = (1, · · · , 1) ∈ F
n−1
2 . Similarly for GC , one has GC(x||y) = 1⊕G(x||y).

Given two pairs (x, y), (x′, y′) ∈ F
n−1
2 ×F

n−1
2 such that (x, y) �= (x′, y′), it clearly

holds that (1 ⊕ x, 1 ⊕ y) �= (1 ⊕ x′, 1 ⊕ y′), from which it follows

(1 ⊕ F (x||y), 1 ⊕ G(x||y)) �= (1 ⊕ F (x′||y′), 1 ⊕ G(x′||y′)).

As a consequence, the Latin squares SFC
and SGC

are orthogonal. 	

We now turn to analyze the truth tables of bipermutive rules whose CA gen-

erate orthogonal Latin squares. As an example, consider the pair of functions
f, g : F3

2 → F2 defined as f(x1, x2, x3) = x1 ⊕x3 and g(x1, x2, x3) = x1 ⊕x2 ⊕x3,
namely rules 90 and 150 usingWolfram’s numbering convention.The Latin squares
of order N = 4 induced by the corresponding bipermutive CA F,G : F4

2 → F
2
2 are

orthogonal, since by Theorem 1 f and g are linear and their associated polynomi-
als pf (X) = 1 + X2 and pg(X) = 1 + X + X2 are coprime. The truth tables
Ω(f), Ω(g) ∈ F

8
2 are the following:

Ω(f) = (0, 1, 0, 1, 1, 0, 1, 0), (15)
Ω(g) = (0, 1, 1, 0, 1, 0, 0, 1). (16)
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Placing side by side these truth tables, one can see that there are 23−2 = 2
occurrences of each of the four pairs (0, 0), (1, 0), (0, 1) and (1, 1). We call this
property pairwise balancedness, formally defined below:

Definition 5. Two Boolean functions f, g : Fn
2 → F2 of n variables are pairwise

balanced if the (n, 2)-function (f, g) : Fn
2 → F

2
2 defined as (f, g)(x) = (f(x), g(x))

is balanced, that is |(f, g)−1(y1, y2)| = 2n−2 for all (y1, y2) ∈ F
2
2.

We now prove that pairwise balancedness is a necessary condition for a pair of
bipermutive local rules whose CA generate orthogonal Latin squares:

Lemma 3. Let F,G : F2(n−1)
2 → F

n−1
2 be bipermutive CA respectively induced

by local rules f, g : Fn
2 → F2, and suppose that the associated Latin squares SF ,

SG are orthogonal. Then, f and g are pairwise balanced.

Proof. Let H : Fn−1
2 × F

n−1
2 → F

n−1
2 × F

n−1
2 be the function defined as

H(x, y) = (F (x||y), G(x||y)) (17)

for all (x, y) ∈ F
n−1
2 × F

n−1
2 . Since SF and SG are orthogonal, it follows that H

is bijective.
Consider two vectors c, d ∈ F

n−1
2 and, without loss of generality, suppose

that the first components of c and d, namely c1, d1 ∈ F2, are fixed. We want to
compute the number of preimages (x1, · · · , xn−1, y1) ∈ F

n
2 which map to (c1, d1)

under (f, g). In order to do so, we evaluate the ratio N/M , where:

– N is the number of input pairs (x, y) ∈ F
n−1
2 × F

n−1
2 such that the first

components of the respective output pairs H(x, y) equal (c1, d1).
– M is the number of input pairs (x, y) ∈ F

n−1
2 × F

n−1
2 where x and the first

component of y are fixed.

In this way, we count the total number of preimages of H which map to (c1, d1)
and normalize it by the number of preimages where the first n components of H
are fixed, thus determining the number of preimages of (c1, d1) under (f, g).

As H is bijective, N corresponds to the number of pairs of binary vectors of
length n−1 where the first components are fixed, which are 2n−2 ·2n−2 = 22(n−2).
On the other hand M = 2n−2, since we only have n − 2 free variables in the
input configuration of the CA. Hence, it follows that |(f, g)−1(y1, y2)| = N/M =
22(n−2)/2n−2 = 2n−2. 	

In the next Lemma, we show that pairwise balanced generating functions induce
pairwise balanced bipermutive CA:

Lemma 4. Let ϕ, γ : Fn−2
2 → F2 be pairwise balanced functions of n − 2 vari-

ables, with n > 2. Then, the bipermutive rules f, g : Fn
2 → F2 induced by ϕ and

γ are pairwise balanced.
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Proof. Let (y1, y2) ∈ F
2
2. One has that |(ϕ, γ)−1(y1, y2)| = 2n−4, since ϕ and

γ are balanced. Additionally, for all x̃ = (x2, · · · , xn−1) ∈ (ϕ, γ)−1(y1, y2),
let (x1, x̃, xn) = (x1, x2, · · · , xn−1, xn). Then, by Eq. (8) it follows that (0, x̃, 0)
∈ (f, g)−1(y1, y2) and (1, x̃, 1) ∈ (f, g)−1(y1, y2). Similarly, for all vectors
x̃ ∈ (ϕ, γ)−1(ȳ1, ȳ2) where ȳ1 = 1 ⊕ y1 and ȳ2 = 1 ⊕ y2, it holds that (1, x̃, 0)
∈ (f, g)−1(y1, y2) and (0, x̃, 1) ∈ (f, g)−1(y1, y2). Since the fiber of (y1, y2) under
(f, g) is given by

(f, g)−1(y1, y2) = {(0, x̃, 0) : x̃ ∈ (ϕ, γ)−1(y1, y2)} ∪
∪ {(1, x̃, 0) : x̃ ∈ (ϕ, γ)−1(ȳ1, ȳ2)} ∪
∪ {(0, x̃, 1) : x̃ ∈ (ϕ, γ)−1(ȳ1, ȳ2)} ∪
∪ {(1, x̃, 1) : x̃ ∈ (ϕ, γ)−1(y1, y2)} (18)

and since the four sets in Eq. (18) are disjoint and have the same cardinality of
(ϕ, γ)−1(y1, y2), we can finally conclude that

|(f, g)−1(y1, y2)| = 4 · |(ϕ, γ)−1(y1, y2)| = 4 · 2n−4 = 2n−2. (19)

	

Remark that the converse of Lemma 4 does not hold. As a matter of fact, already
for n = 4 variables there exist several instances of bipermutive functions pairs
which produce orthogonal Latin squares (and hence are pairwise balanced) but
whose generating functions are not pairwise balanced. An example is given by
the two following linear rules:

f(x1, x2, x3, x4) = 1 ⊕ x1 ⊕ x3 ⊕ x4,

g(x1, x2, x3, x4) = x1 ⊕ x4.

The generating function of g in this case is the constant function defined as
γ(x) = 0 for all x ∈ F

2
2. Hence, the pairs (0, 1) and (1, 1) never occur when

superimposing the truth tables of the two generating functions of f and g.

4 Enumeration of Pairwise Balanced Bipermutive Rules

In this section, we enumerate all bipermutive rules pairs generating orthogonal
Latin squares up to n = 6 variables and we classify them according to their
nonlinearity.

The space of pairs of pairwise balanced generating functions is easily charac-
terizable from the combinatorial point of view. In fact, for n > 2, each pairwise
balanced pair ϕ, γ : Fn−2

2 → F2 can be represented by a string s of length 2n−2

over the alphabet A = {1, 2, 3, 4}, where each symbol in s corresponds to the
decimal encoding of one of the possible four pairs (0, 0), (1, 0), (0, 1) and (1, 1)
occurring in the superposition of the truth tables. Since ϕ and γ are pairwise
balanced, the string s must be balanced as well, meaning that the number of
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occurrences of each of the four symbols of A must be 2n−4. Hence, the number
of pairwise balanced pairs of generating functions of n − 2 variables equals

#BalGn =
(

2n−2

2n−4

)
·
(

3 · 2n−4

2n−4

)
·
(

2n−3

2n−4

)
. (20)

As a matter of fact, to construct a balanced quaternary string of length 2n−2

one has first to select the positions of the 2n−4 occurrences of the first symbol,
which can be chosen in

(
2n−2

2n−4

)
different ways. Next, the 2n−4 occurrences of the

second symbol must be chosen among the 2n−2 − 2n−4 = 3 · 2n−4 remaining
positions, which can be done in

(
3·2n−4

2n−4

)
different ways. Finally, for the 2n−4

occurrences of the third symbol one has to choose among 2n−2 −2 ·2n−4 = 2n−3

remaining positions, corresponding to
(
2n−3

2n−4

)
possible choices. At this point, the

occurrences of the fourth symbols are fixed.
However, we saw at the end of Sect. 3 that pairwise balancedness is not

a necessary condition on the generating functions to obtain pairwise balanced
bipermutive rules. Consequently, by enumerating all balanced quaternary strings
of length 2n−2 one only explores a subset of the space of pairwise balanced biper-
mutive rules of n variables, and thus in turn a subset of the space of bipermutive
CA pairs generating orthogonal Latin squares of order 2n−1.

We thus have to resort to a combinatorial characterization of pairwise bal-
anced bipermutive functions. To this end, we adopt the graph representation of
bipermutive rules, originally introduced in [8]. Given n ∈ N, consider an undi-
rected graph G = (V,E) where V = F

n
2 . Two nodes v1, v2 ∈ V are connected

by an edge if and only if they differ either in their leftmost or rightmost coor-
dinates, while they agree on the remaining ones. Thus, G is composed of 2n−2

connected components, and each connected component is composed of 4 nodes
all having degree 2. A Boolean function f : Fn

2 → F2 can be represented as a
labeling function lf : V → {0, 1} on the nodes of G. If f is bipermutive, then
the labels of adjacent nodes must differ, while the labels of two nodes separated
by a path of length 2 must be equal.

Clearly, given a pair of bipermutive functions f, g : Fn
2 → F2, we can still

represent them on the graph as a labeling function lf,g : V → {0, 1}2 on the
nodes, where the labels are pairs specifying the outputs of the two functions.
Assume that f and g are pairwise balanced: then, each pair (y1, y2) ∈ F

2
2 occurs

2n−2 times as a label on G. As an example, Fig. 1 depicts the graph representation
of rule 90 and 150, which are pairwise balanced. Additionally, due to the property
of different labels on adjacent nodes, it follows that exactly half of the connected
components contain all (0, 0) and (1, 1) labels, while the remaining half contain
all (1, 0) and (0, 1) labels. Since there are only two types of connected components
with respect to the labels ((0, 0)/(1, 1) and (1, 0)/(0, 1)), it means that we can
choose them in

(
2n−2

2n−3

)
different ways. Moreover, let C = {v1, v2, v3, v4} be a

connected component where (v1, v2), (v1, v3), (v4, v2), (v4, v3) ∈ E, and assume
that the labels on the nodes are either (0, 0) or (1, 1). Then, the two labels
can be arranged in two different ways, namely (lf,g(v1), lf,g(v4)) = (0, 0) and
(lf,g(v2, v3)) = (1, 1) or (lf,g(v1), lf,g(v4)) = (1, 1) and (lf,g(v2), lf,g(v3)) = (0, 0).
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In the same way, the labels on the nodes of a connected component of the type
(1, 0)/(0, 1) can be placed in two different ways. As a consequence, each of the(
2n−2

2n−3

)
ways for choosing the connected components with labels (0, 0)/(1, 1) and

(1, 0)/(0, 1) gives rise to 22
n−3 · 22

n−3
= 22

n−2
pairwise balanced bipermutive

functions. We have thus proved the following result:

Lemma 5. The number of pairwise balanced pairs of bipermutive Boolean func-
tions f, g : Fn

2 → F2 of n variables is:

#BalBn =
(

2n−2

2n−3

)
· 22

n−2
. (21)

000

0,0

100

1,1

101

0,0

001

1,1

110

1,0

111

0,1

011

1,0

010

0,1

Fig. 1. Graph representation of the pairwise balanced bipermutive rules 90 and 150.

Table 1 reports the sizes of the search spaces for the sets of all pairs of biper-
mutive functions, the set of pairwise balanced generating functions and the set
of pairwise balanced bipermutive functions of up to n = 7 variables.

One can notice that for n ≥ 7 the resulting search space is too large to be
exhaustively searched, even by focusing on the subsets of pairwise balanced gener-
ating functions. For this reason, we enumerated the set of pairwise balanced biper-
mutive functions BalBn only up to n = 6 variables. To this end, we implemented

Table 1. Sizes of the search spaces for the different types of sets of bipermutive func-
tions pairs of up to n = 7 variables.

n #Bn #BalGn #BalBn

3 16 0 8

4 256 24 96

5 65536 2520 17920

6 4294967296 63006300 843448320

7 ≈1.84 · 1019 ≈9.96 · 1015 ≈2.58 · 1018
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Table 2. Distribution of CA-based orthogonal Latin squares up to n = 6.

n LS size #total #linear #nonlinear nl distribution

3 4 × 4 1 1 0 –

4 8 × 8 9 5 4 (4, 4, 4)

5 16 × 16 213 21 192 (4, 4, 96), (8, 8, 96),
(4, 4, 512), (8, 8, 4020), (12, 12, 17992)

6 32 × 32 66685 85 66600 (16, 16, 28388), (20, 20, 14384), (4, 12, 8),
(8, 16, 160), (12, 20, 128), (16, 24, 88)

an algorithm by Knuth [7] to generate all balanced binary strings of length 2n−2,
where the positions set to 0 and 1 respectively correspond to the (0, 0)/(1, 1) and
(1, 0)/(0, 1) connected components. Then, for each balanced combination of con-
nected components we generated all possible 22

n−2
arrangements of the labels, con-

structed the resulting pairs of bipermutive functions, and computed their respec-
tive nonlinearity values through the Walsh transform. Finally, we generated the
associated Latin squares of order N = 2n−1, and checked for their orthogonality.

We remark that the enumeration of BalB6 is a computationally intensive
task, since it took approximately 22 h to complete under our Java implementa-
tion on a 64-bit Linux machine with 40 Intel Xeon cores running at 2.4 GHz.

Table 2 reports the distribution of linear and nonlinear pairs of orthogonal
Latin squares. For each value of n, the corresponding size of the Latin squares
is reported, along with the number of linear and nonlinear pairs of bipermutive
functions generating orthogonal Latin squares. Additionally, in the last column
we report the distribution of nonlinearity values in triplets (nl(f), nl(g),#num)
where nl(f) and nl(g) respectively denote the nonlinearity values of f and g,
while #num is the number of pairs generating orthogonal Latin squares that
achieve those values. Notice that all reported numbers are divided by 8, since
we have to take into account the pairs with swapped order, which halve the
resulting sets, and the reversal and complementation transformations, which by
Lemma 2 additionally reduce them to a quarter.

As a qualitative remark on the distributions reported in Table 2, one may
observe that linear pairs become more sparse as the number of variables n
increases, while the majority of the pairs are nonlinear. Moreover, one can see
that for n = 6 there are pairs with functions of different nonlinearities. This find-
ing falsified our initial belief that two bipermutive functions inducing orthogonal
Latin squares must have the same value of nonlinearity, an empirical observation
which held up to n = 5 variables.

5 Conclusions

In this work, we considered the problem of exhaustively enumerating pairs of
orthogonal Latin squares generated through bipermutive CA. We first proved
that all pairs of bipermutive rules inducing orthogonal Latin squares must be
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pairwise balanced, meaning that the superposition of their truth tables must
yield an equal number of occurrences of the four pairs (0, 0), (1, 0), (0, 1) and
(1, 1). We then used a combinatorial algorithm to enumerate all pairwise bal-
anced Boolean functions of up to n = 6 variables, finding those which generate
orthogonal Latin squares and classifying them with respect to their nonlinear-
ity values. The results of our computer search showed that, as the number of
variables of the local rules increases, most of the orthogonal pairs are nonlinear.
This could have interesting applications from the cryptographic point of view,
since as mentioned in the Introduction orthogonal Latin squares arising from
nonlinear constructions have relevance in the design of cheater-immune secret
sharing schemes. We plan to study this issue in future research, in particular
by investigating sufficient conditions that two nonlinear bipermutive CA must
satisfy in order to generate orthogonal Latin squares. Another direction worth
investigating is to analyze the pairs of nonlinear rules found in this paper from
the perspective of pseudorandom number generation, and compare them with
others stemming from different classifications, like those presented in [5,9].
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