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Preface

The 23rd International Workshop on Cellular Automata and Discrete Complex Sys-
tems, AUTOMATA 2017, was held in Milan, Italy, during June 7–9, 2017.

It was organized by the Department of Informatics, Systems, and Communication
of the University of Milano-Bicocca. The event was an IFIP Working Conference and
it hosted the annual meeting of the IFIP Working Group 1.5.

AUTOMATA 2017 continued an annual series of events established in 1995 as a
forum for the collaboration between researchers in the field of cellular automata and
related discrete complex systems. Over the years, the topics have been progressively
expanded. This year the scope was further broadened including new topics concerning
correlated models of automata.

Current topics include (but are not limited to) the following aspects and features of
such systems: dynamics, topological, ergodic, and algebraic aspects, algorithmic and
complexity issues, emergent properties, formal languages, symbolic dynamics, tilings,
models of parallelism and distributed systems, timing schemes, synchronous versus
asynchronous models, phenomenological descriptions, scientific modelling, and prac-
tical applications. The conference attracted a good number of submissions, which
indicates a continued interest in these topics.

There were three invited talks at the conference, and we wish to thank the speakers
Eric Goles, Adrien Richard, and Ville Salo for accepting the invitation and for their
very interesting presentations. The invited contributions are included in this volume.

There were 29 submissions as full papers to the conference. Each submission was
managed by two or three Program Committee members. Based on the reviews and
discussions, the committee decided to accept 14 papers to be presented at the con-
ference and to be included in the proceedings. We would like to thank all authors for
their contributions and work without which this event would not have been possible.
The conference program also involved short presentations of exploratory papers that
are not included in these proceedings, and we wish to extend our thanks also to the
authors of the exploratory submissions.

We are indebted to the Program Committee and the additional reviewers for their
valuable help in selecting the papers. We extend our thanks to the remaining member
of the local Organizing Committee, Luca Mariot. We are also grateful for the support
by the Department of Informatics, Systems and Communication and the University of
Milano-Bicocca. Finally, we acknowledge the excellent cooperation from the Lecture
Notes in Computer Science team of Springer for their help in producing this volume in
time for the conference.

April 2017 Alberto Dennunzio
Enrico Formenti
Luca Manzoni

Antonio E. Porreca
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Two Dimensional Cellular Automata
and Computational Complexity

Eric Goles

Facultad de Tecnología y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile

Let us consider a two-dimensional automata with states {0, 1} and the von Neumann
neighborhood. I will present results about the computational complexity of some
prediction problems related with the strict majority as well as the class of freezing local
functions.

The strict majority function considers the most represented state in its neighbor-
hood. In case of tie the central state remains unchanged. On the other hand, in a
freezing local functions the state 1 remains invariant, so dynamics appears only by
updating sites in state 0. For the von Neumann neighborhood (considering 0 as a
quiescent state) there are 32 rotation invariant local functions, so 16 totalistic ones, i.e.,
depending only of the sum of the states). In the next table we exhibit the totalistic local
rules:

To exhibit the non-totalistic but rotation invariant rules, it is enough to differentiate
the output when there are exactly two states at value 1:

Table 1. Possible rules and their complexity when 0 62 I. The ✓ in the i-th column means that
the local rule is 1 for that value of the sum.

Rule 1 2 I 2 2 I 3 2 I 4 2 I EventPred AsyncPred

T O(1) O(1)
4 ✓ O(1) O(1)
3 ✓ in NC ?
34 ✓ ✓ in NC NC
2 ✓ P-Complete ?
24 ✓ ✓ P-Complete ?
23 ✓ ✓ ? ?
234 ✓ ✓ ✓ in NC NC
1 ✓ ? in NC
14 ✓ ✓ ? in NC
13 ✓ ✓ ? in NC
134 ✓ ✓ ✓ ? in NC
12 ✓ ✓ in NC in NC
124 ✓ ✓ ✓ in NC in NC
123 ✓ ✓ ✓ in NC in NC
1234 ✓ ✓ ✓ ✓ O(1) O(1)



For the automaton’s dynamics we will consider two update models, synchronous
(every site is updated at the same time) and asynchronous: sites are updated one by one
in a prescribed order or equivalently following a permutation of the set of sites. In this
case, we call the permutation a sequential updating scheme. From that we define the
following decision problems:

Eventual-Prediction (EventPred)
Input: A finite configuration x of dimensions n � n and a site u 2 [n] � [n] such
that
xu = 0.
Question: Does there exist t* > 0 such that (Ft* (x))u = 1?

and

Asynchronous-Prediction (AsyncPred)
Input: A finite configuration x of dimensions n � n, a site u 2 [n] � [n] such that
xu = 0.
Question: Does there exist a sequential updating scheme r and t* > 0 such that
(Frt* (x))u = 1.

For some of those problems we will exhibit their computational complexity as well
as the tools developed to prove it. Further, for AsyncPred, we proved that the Strict
Majority Automata is in NC. given an answer to the conjecture proposed by C. Moore.

References

1. Goles, E., Montealegre, P.: The complexity of the asynchronous prediction for the strict
majority automata (2016, preprint)

2. Goles, E., Maldonado, D., Montealegre, P., Ollinger, N.: Two state totalistic freezing cellular
automata and their complexity. In: Cellular Automata (2016). Exploratory paper

3. Moore, C.: Majority vote cellular automata, Ising dynamics, and P-completeness. J. Stat.
Phys. 88(3), 795–805 (1977)
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Fig. 1. Non-totalistic update for von Neumann neighborhood. a 2 {0, 1}
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Fixed Points in Boolean Networks

Adrien Richard

CNRS & Université de Nice Sophia Antipolis, Laboratoire I3S,
UMR CNRS 7271, 06900 Sophia-Antipolis, France

richard@unice.fr

A Boolean network is defined from a finite digraph G by associating to each vertex a
binary variable and a local transition function, which depends on in-neighbors’ vari-
ables. Dynamics are then obtained by applying the local transition functions, syn-
chronously or asynchronously.

Boolean networks have many applications. For instance, they are classical models
for gene networks. In this context, the interaction graph G is often known, or at least
well approximated, while the actual dynamics are not. A natural question is then the
following: what can be said on the dynamics according to the interaction graph G
only?

In this presentation, we give partial answers, focusing on the maximum number of
fixed points and some particular classes of networks, such as monotone networks.

References

1. Aracena, J., Richard, A., Salinas, L.: Number of fixed points and disjoint cycles in monotone
boolean networks. SIAM J. Discrete Math. (2017, to appear)

2. Gadouleau, M., Richard, A., Riis, S.: Fixed points of boolean networks, guessing graphs, and
coding theory. SIAM J. Discrete Math. 29(4), 2312–2335 (2015)
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Strict Asymptotic Nilpotency
in Cellular Automata

Ville Salo(B)

University of Turku, Turku, Finland
vosalo@utu.fi

Abstract. We discuss the problem of which subshifts support strictly
asymptotically nilpotent CA, that is, asymptotically nilpotent CA which
are not nilpotent. The author talked about this problem in AUTOMATA
and JAC 2012, and this paper discusses the (lack of) progress since.
While the problem was already solved in 2012 on a large class of multi-
dimensional SFTs, the full solutions are not known for one-dimensional
sofics, multidimensional SFTs, and full shifts on general groups. We
believe all of these questions are interesting in their own way, and discuss
them in some detail, along with some context.

1 Introduction

A cellular automaton is nilpotent if every configuration is eventually mapped to
the all-zero configuration. This notion is best known as an undecidable property
of one-dimensional CA, see [1,6]. Here, we discuss its dynamical aspects. We
study the relation of nilpotency and its asymptotic version in the setting of
cellular automata on subshifts. Our main point is to state the following questions.

Question 1. Which one-dimensional sofic shifts support cellular automata which
are asymptotically nilpotent but not nilpotent?

Question 2. Which multidimensional SFTs support cellular automata that are
asymptotically nilpotent but not nilpotent? Do any?

Question 3. Which full shifts on countable groups support cellular automata
that are asymptotically nilpotent but not nilpotent? Do any?

Below, these are Questions 4, 6 and 9, respectively. They are discussed in their
natural contexts, and we try to include some informal guesses about what the
solutions might look like. We also ask other questions, and share some lemmas
and examples.

2 Nilpotency on Multidimensional Full Shifts

We begin with an introduction of the problem and its full solution in the classical
multidimensional full shift setting.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Dennunzio et al. (Eds.): AUTOMATA 2017, LNCS 10248, pp. 3–15, 2017.
DOI: 10.1007/978-3-319-58631-1 1



4 V. Salo

Let Σ � 0 be a finite alphabet.1 The d-dimensional full shift is the dynamical
system ΣZ

d

where Z
d acts by translations σv(x)u = xu+v. A cellular automaton

is a continuous shift-commuting function f : ΣZ
d → ΣZ

d

. Cellular automata can
be characterized concretely as follows: if f is a cellular automaton, then there
is a local rule floc : ΣF → Σ where F ⊂ Z

d is a finite neighborhood such that
f(x)v = floc(σv(x)|F ) for all x ∈ ΣZ

d

and v ∈ Z
d.

A cellular automaton is nilpotent if it is a root of the trivial (constant-zero)
cellular automaton, that is, there exists n ∈ N such that fn(x) = 0Z for all
x ∈ ΣZ

d

.
The second kind of nilpotency we are interested in is asymptotic nilpotency.

A cellular automaton is asymptotically nilpotent if every configuration converges
to the same point in the limit. More precisely,

∀x ∈ ΣZ
d

: ∀v ∈ Z
d : ∃n0 ∈ N : ∀n ≥ n0 : fn(x)v = 0.

Clearly a nilpotent cellular automaton is asymptotically nilpotent. If a cel-
lular automaton is asymptotically nilpotent but not nilpotent, then it is strictly
asymptotically nilpotent or SAN. This cannot happen on a d-dimensional full
shift:

Theorem 1. A cellular automaton f : ΣZ
d → ΣZ

d

is asymptotically nilpotent
if and only if it is nilpotent.

This is proved for d = 1 in [5], and for general d in [12]. One might think the
proof is direct compactness argument, but in fact the first relies on the geometry
of Z and the second on algebraic properties of Zd. We discuss the ideas behind
these proofs in Sect. 6.

3 Nilpotency from a Subset of Configurations

In this section, we show examples of how taking our initial configurations from
a noncompact set can lead to SAN-like phenomena. These will be used as the
basis of constructions in compact settings.

Let f : ΣZ
d → ΣZ

d

be a cellular automaton. Let X ⊂ ΣZ be a subset of ΣZ.
We say f is weakly nilpotent on X if and only if

∀x ∈ X : ∃n : fn(x) = 0,

nilpotent on X if and only if fn(X) = {0Z
d} for some n ∈ N, and asymptotically

nilpotent on X if fn(x) −→ 0Z
d

for all x ∈ X.
If X = ΣZ

d

, then clearly f is nilpotent (in the sense of the previous section)
if and only if it is nilpotent on X (in the sense of this section). It is also known
that f is weakly nilpotent on ΣZ

d

if and only if it is nilpotent on ΣZ
d

.
We note two trivial examples that are useful to keep in mind:

1 Nilpotency discussions are at their clearest when subshifts are pointed, that is, they

have a special point 0Z
d

as part of their structure, and all nilpotency is toward this
special point.
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Example 1 (The shift). Let X ⊂ ΣZ
d

contain only finite configurations, that is,
only configurations x ∈ ΣZ

d

such that the support supp(x) = {v ∈ Z
d | xv 	= 0}

is finite. Then the shift map σv (for any nonzero vector v) is asymptotically
nilpotent on X, but is weakly nilpotent on X if and only if X = {0Z

d}.

Example 2 (The spreading state CA). Let S ⊂ Z
d be any generating set for the

group Z
d such that S contains the all-zero vector 0d ∈ Z

d. Consider the CA f
with neighborhood S and local rule floc(P ) = a where a = 0 if Pv = 0 for some
v ∈ S and a = P0d otherwise. Thus, 0 is a spreading state that spreads into
every cell that ‘sees it’. If a configuration x contains 0, then f is asymptotically
nilpotent on {x}, and it is nilpotent on {x} if and only if 0 occurs in a syndetic
set, that is, in every translate of a ball of large enough radius. Now the following
are easy to see:

– f is weakly nilpotent but not nilpotent on the (dense) set of all finite points,
– f is asymptotically nilpotent on X when X is the (dense) set of generic config-

urations for some full support ergodic measure μ, but is not weakly nilpotent
on this set for any such μ.

The second item is based on the fact that in a generic point for an ergodic
measure, we (by definition) see every pattern with the correct frequency, so in
particular we see every pattern.

For finite configurations, these trivial examples are sufficient for our pur-
poses, but we note that erasing/eroding finite patterns is a much-studied topic
in cellular automata, and there are several interesting constructions and results
in this setting. Perhaps the most famous eroder is the GKL automaton [4].

Periodic points are another important non-compact set of starting
configurations.

Theorem 2. There is a CA on a one-dimensional full shift which is nilpotent
on periodic configurations but is not nilpotent.

The existence of such CA is a direct corollary of the undecidability of nilpo-
tency [1,6], as nilpotency is semi-decidable, and non-nilpotency on periodic con-
figurations is semi-decidable. There are also very simple examples if we consider
only periodic configurations whose periods are restricted, and they are actually
enough for our application in Sect. 6: the XOR CA f : Z

Z

2 → Z
Z

2 defined by
f(x)i = xi + xi+1 (where Z2 = Z/2Z) is well-known to be nilpotent on periodic
configurations with period of the form 2n.

4 Nilpotency on Multidimensional Subshifts

In the previous section we considered nilpotency when starting from a noncom-
pact set of configurations. Perhaps more natural is to consider the initial set of
configurations X to be a subshift, that is, σv(X) = X for all v ∈ Z

d and X is
topologically closed, or equivalently X is defined by a set of forbidden patterns.
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In this section, we concentrate on the case when X is a subshift and is also
closed under f , so that f : X → X is the restriction of a cellular automaton on
ΣZ

d

; this is the setting of cellular automata on multidimensional subshifts, and
such f are precisely the continuous shift-commuting functions on X.

4.1 SFTs

First, consider the case d = 1. Let X ⊂ ΣZ be a subshift of finite type or SFT,
that is, a closed shift-invariant subset of ΣZ obtained by forbidding a finite set
of words. Such X is conjugate2 to the set of paths in a finite graph [8]. It is
shown in [5,12] that in this setting there are no SAN cellular automata.

Theorem 3 (Corollary 1 in [12]). Let X ⊂ ΣZ be an SFT. Then a cellular
automaton f on X is nilpotent if and only if it is asymptotically nilpotent.

One can try to generalize this to SFTs in higher dimensions. SFTs of ΣZ
d

are defined like in one dimension, by forbidding finitely many patterns from
occurring (and such systems are conjugate to tiling systems induced by finitely
many tiles).

Theorem 4 (Theorem 4 in [12]). Let X ⊂ ΣZ
d

be an SFT where finite
points are dense. Then a cellular automaton f on X is nilpotent if and only if
it is asymptotically nilpotent.

The denseness of finite points is not a property that is often assumed from
multidimensional SFTs. A more commonly used gluing property is so-called
strong irreducibility. Many other gluing properties have been defined, and some
are listed for example in [2].

Definition 1. Let X ⊂ ΣZ
d

be a subshift. We say X is strongly irreducible if
there exists m ∈ N such that for any y, z ∈ X and any finite sets N,N ′ ⊂ Z

d

with min{|v−v′| | v ∈ N, v′ ∈ N ′} ≥ m, there exists a point x ∈ X with xN = yN

and xN ′ = zN ′ .

By compactness, the sets N and N ′ can then be taken infinite as well, and
we easily obtain the following lemma.

Lemma 1. Let X ⊂ ΣZ
d

be a strongly irreducible SFT and let x ∈ X. Then the
points asymptotic to x are dense in X.

Since a subshift has to have the point 0Z
d

in order to support asymptot-
ically nilpotent cellular automata, we see that in our case of interest, strong
irreducibility is a stronger requirement than the density of 0-finite points:

Corollary 1. Let X ⊂ ΣZ
d

be a strongly irreducible SFT. Then a cellular
automaton f on X is nilpotent if and only if it is asymptotically nilpotent.
2 Equal up to shift-commuting homeomorphism.
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I do not know if any such property is required.

Question 4. Is there an SFT X ⊂ ΣZ
d

for some d ≥ 2 and a CA f : X → X
such that f is asymptotically nilpotent but not nilpotent?

If the answer is yes, then the solution would presumably involve constructing
an SFT where every configurations sets up some zones where we eventually have
only zeroes, in some controlled way. There are many known constructions that
might allow this [3,15], but since the SFT must be closed under f , this seems
difficult.

It is known that the shift is not SAN on any Z
2-SFT [10,13]. In [13], this

is shown using topological arguments: by passing to a minimal subsystem (in a
technical sense) we can always find certain abstract ‘spaceships’, which prevent
nilpotency. The proof is very specific to d = 2, and does not seem to extend to
d = 3.

In fact, a cellular automaton on an SFT can be seen as a shift on a higher-
dimensional SFT by looking at its spacetime diagrams, and thus a positive
answer to Question 4 would imply a positive answer to the following (where
by the previous paragraph we can just as well restrict to d ≥ 3):

Question 5. Is there an SFT X ⊂ ΣZ
d

for some d ≥ 3 such that X contains at
least two points, and σv is asymptotically nilpotent for some v ∈ Z

d?

A shift map is nilpotent on an SFT X (as a cellular automaton) if and only
if X = {0Z

d}, so we may replace the assumption that σv is not nilpotent by the
assumption that X has at least two points. The direction v of the shift does not
matter, since SFTs are closed under rotating the lattice by elements of GL(n,Z).

4.2 Sofics (and Beyond)

The proof of Theorem 4 in [12] in fact does not require that X is an SFT, but
only the property that taking the union of the supports of two configurations of
X gives a point in X assuming the supports have large enough distance. This
is called zero-gluing in [13], where nilpotency is studied in the nondeterministic
setting.

SFTs are always zero-gluing, but sofic shifts, which are images of SFTs under
cellular automata (which clearly generalizes SFTs), are not. Let us show how
the trivial idea of shifting finite points from the last section leads to an equally
trivial example of a sofic shift where we can have SAN maps. We remark that sofic
shifts on Z are precisely the subshifts whose language is regular, and precisely
the subshifts that are defined by a regular language of forbidden words.

Example 3 (One-one). Let Σ = {0, 1} and let X ⊂ ΣZ be defined by the for-
bidden patterns 10∗1. This is the one-one subshift. Then X is a countable sofic
shift. Then σ is asymptotically nilpotent but not nilpotent on X: on the con-
figuration xi where xi

j = 1 ⇐⇒ i = j, the cell at the origin contains 0 after i
steps if i ≥ 0, so σ is not nilpotent. However, there can only be one occurrence
of 1 in a configuration of X, so σ is asymptotically nilpotent.
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If X is sofic and has points with infinite support, then the shift is not SAN
(because it is not even asymptotically nilpotent). Using a different CA, there is
an example that is topologically transitive, that is for any words u, v that occur
in points of X, there exists a word w such that uwv occurs in a point of X.

Example 4. Let Σ = {←,→, 0} and let X be the sofic shift with forbidden
patterns the regular language ←0∗← + →0∗→. Let f be the cellular automaton
that moves every ← to the left and every → to the right, removing both on
collision. Then f is asymptotically nilpotent but not nilpotent.

Of course, similar examples are obtained on Z
d – the one-one example directly

generalizes to higher dimensions, and any one-dimensional subshift can be turned
into a higher-dimensional one by having an independent copy of it in every Z-
coset.

There are also sofic shifts which are not zero-gluing (and thus are in particular
not SFTs), but which do not support SAN maps. The following result can be
shown with the proof of [5].

Example 5 (The even and odd shifts). Let Σ = {0, 1} and let X ⊂ ΣZ be the
subshift with forbidden patterns the regular language 1(00)∗1, and Y ⊂ ΣZ the
one with forbidden patterns 10(00)∗1. The subshift X is called the odd shift, and
Y the even shift. Both are proper sofic, and neither supports SAN CA.

Intuitively, what is going on is that the even and odd shifts are ‘almost’ zero-
gluing, in that two finite configurations can be glued together, up to shifting one
of them by one, allowing the same constructions as are used in [5].

Every known one-dimensional sofic shift that does allow SAN maps is based
on either the one-one or the idea of colliding particles, and subshifts that are,
intuitively, ‘almost’ of finite type do not support SAN CA. Can one find a char-
acterization of sofic shifts allowing such behavior?

Question 6. Let X ⊂ ΣZ be a sofic shift. Under what conditions does there exist
a cellular automaton on X which is asymptotically nilpotent but not nilpotent?

Question 7. Let X ⊂ ΣZ be a subshift. Are there natural specification, mixing,
or gluing properties that forbid the existence of SAN maps X? What properties
of X are needed for the proofs of [5,12] to go through?

Another classification question is which sofic shifts have an undecidable nilpo-
tency problem. In [14] it is shown that nilpotency is decidable on countable sofic
shifts, and we know it is undecidable on full shifts, so this class is something
in-between.

5 Nilpotency as Uniform Convergence to a Point

We now set up a more general framework for nilpotency, so that we do not need
to give new definitions every time we generalize our model, and so that we can
discuss nilpotency also in positive-dimensional settings.
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By definition, a cellular automaton is asymptotically nilpotent if and only
if the limit of every point in the action of the CA is the all-zero point. We can
characterize nilpotency in terms of this convergence:

Lemma 2. Let X ⊂ ΣZ
d

be any subshift with 0Z
d ∈ X and let f : X → X be a

CA. Then f is nilpotent if and only if fn(x) −→ 0Z
d

uniformly in x ∈ X.

Inspired by this, we give the following definitions: If (X, f) is an N-dynamical
system (X is a topological space and f : X → X is a continuous function), then
we say it is nilpotent, if there is a point 0 ∈ X such that for some n ∈ N,
fn(x) = 0 for all x ∈ X, asymptotically nilpotent or AN if there is a point 0 ∈ X
such that fn(x) −→ 0 for all x ∈ X, and uniformly asymptotically nilpotent or
UAN if this convergence is uniform over X.

We have
nilpotent =⇒ UAN =⇒ AN,

and we will see these implications are strict in general.
A system is non-uniformly asymptotically nilpotent or NUAN if it is asymp-

totically nilpotent but not uniformly so, and we define SAN as before as being
asymptotically nilpotent but not nilpotent:

SAN = AN ∧ ¬nilpotent, NUAN = AN ∧ ¬UAN

There are many systems that are uniformly asymptotically nilpotent but not
nilpotent, even in the zero-dimensional setting, but the previous lemma shows a
CA is nilpotent if and only if it is UAN, so a cellular automaton is SAN if and
only if it is NUAN.3 In general, for a dynamical system we can only say

NUAN =⇒ SAN.

The questions we are interested in are of the following type: Given a class
D of dynamical systems, are there NUAN/SAN systems in D? In this article,
we mostly study the case where we fix a dynamical system (a subshift) and let
D be its endomorphisms, but we can consider the NUAN/SAN behavior more
generally.

We make some basic remarks (see also [5]) and give some examples: A Z-
subshift X, seen as an N-system with the action of σ is, by definition, AN if
and only if the cellular automaton σ is asymptotically nilpotent on it, and this
happens precisely when all points of X contain only zeros in their eventual
right tail. Such a subshift is only UAN if and only it is nilpotent if and only if
X = {0Z}. Thus the notions NUAN and SAN agree for Z-subshifts as well.

For an N-subshift X, the characterization of AN is the same. Such X is UAN
if and only if it is nilpotent if and only if there is a bound m ∈ N such that
x ∈ X =⇒ ∀n ≥ m : xn = 0. These are precisely the N-subshifts which are
finite and contain only finite points. Thus the notions NUAN and SAN agree for
N-subshifts.
3 See, however, Example 6.
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If X ⊂ ΣZ
d

is a subshift, then a cellular automaton f : X → X is AN if and
only if its trace {y ∈ ΣN | ∃x ∈ X : yn = fn(x)0d} is AN as a one-dimensional
subshift, and f is nilpotent if and only if its trace is.

As we have seen, there are subshifts which are SAN (equivalently NUAN),
for example the one-one subshift. The one-sided one-one subshift (the set of right
tails of the one from the previous section) can also be described as follows: Let
Ṅ = N ∪ {∞} be the one-point compactification of N, with its usual topology.
Then the map f defined by f(n) �→ n − 1 (with ∞ − 1 = ∞) for n ≥ 1 and
f(0) = ∞ is continuous on Ṅ, and (Ṅ, f) is NUAN.

The two-sided one-one subshift can similarly be seen as the subtraction home-
omorphism on Ż. There is also a more geometric way to implement this idea:
Seeing the circle S1 as [0, 1] with 0 and 1 identified, the map f(x) = x2 is well-
defined and continuous. In this system (S1, f), every point converges to 0, but
this convergence cannot be uniform, as f is a homeomorphism (so every point
has a preimage). This example is also NUAN.

The map x �→ x/2 also gives us continuous dynamics on [0, 1]. This map is
not nilpotent, but is UAN. Thus, it is SAN but not NUAN.

6 Cellular Automata on Graphs and Groups

Next, we generalize in another direction, and replace Z
d by a graph.

Let G be any road-colored graph whose edges are colored with colors from a
finite set S in such a way that for every vertex v ∈ G, for each s ∈ S there is a
unique edge with v as initial vertex and s as label. The terminal vertex of this
unique edge is denoted by vs. If u ∈ S∗, we write vu = (· · · ((vu0)u1) · · · u|u|−1)
(with vε = v where ε is the empty word).

Write ΣG for the set of colorings of the nodes of G. A cellular automaton
on ΣG is a function f : ΣG → ΣG such that for some function floc : ΣF → Σ
where F ⊂ S∗ is finite, we have f(x)v = floc(a �→ xva) for all x ∈ ΣG and a ∈ F .

An important example are cellular automata on groups: Let G be a group
generated by a finite set S, and Σ a finite alphabet. Then G acts on ΣG by left
translations g · xh = xg−1h, and continuous functions f : ΣG → ΣG commuting
with them are precisely the functions that are cellular automata in the sense
of the previous definition on any Cayley graph of G, that is, there always exist
floc : ΣF → Σ such that

f(x)v = floc(xvs1 , xvs2 , . . . , xvsk
)

where s1, s2, . . . , sk ∈ G. Setting G = Z
d, we obtain the classical setting of

multidimensional CA. For cellular automata on groups, UAN is equivalent to
nilpotency. Thus, in this setting SAN and NUAN are equivalent concepts as well.

One can similarly define cellular automata on monoids: If M is a monoid
generated by a set S, then M has right Cayley graph with edges (m,ms) where
s ∈ S, and we can consider cellular automata on this graph. Setting M = N,
this corresponds to the usual one-sided cellular automata.
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Example 6. Let f : ΣZ → ΣZ be a cellular automaton which is asymptotically
nilpotent on periodic points, but not nilpotent, see Theorem 2. Let Cn be the
graph with n nodes in a single cycle, with label 1 on each edge. Let G =

⋃
n Cn be

a disjoint union of these graphs, and let g : ΣG → ΣG be the cellular automaton
with the same local rule as f . Then clearly g is asymptotically nilpotent. In fact,
g is UAN: for every cycle, there is a bounded time after which it contains only
zeroes. Nevertheless, g is not nilpotent, as f is not. It follows that this example
is not nilpotent, but is UAN. Thus, it is SAN but not NUAN.

Intuitively, this example comes from the fact that the graph is not homoge-
nous, in the sense that the neighborhoods of different nodes look different. If
we could ‘translate the graph’ and take limits of this translation process, we
would in a natural sense obtain copies of Z where f is not even asymptotically
nilpotent. We do not formalize this idea here.

Example 6 can be seen as a cellular automaton on a group action, as the
cellular automaton we define commutes with the action of Z that rotates the
information on each Cn. We do not formalize this idea either.

While we can have SAN in the setting of CA on graphs (by the previous
example), I do not know whether NUAN behavior is possible.

Question 8. Is there a road-colored graph G and an alphabet Σ such that some
CA f : ΣG → ΣG is NUAN?

The main question is whether we can obtain SAN maps in the group setting:

Question 9. Is there a countable group G and an alphabet Σ such that some
CA f : ΣG → ΣG is SAN?

6.1 What Works on General Groups?

Many of the arguments of [5,12] work on every group, but have only been stated
in the Z

d case. The first is from [5], and states that there are some patterns that
empty a particular cell (or set of cells) forever, in any context.

Lemma 3. Suppose G is a countable group and f : ΣG → ΣG is an asymptoti-
cally nilpotent CA. Then for every neighborhood V of 0G there exists a nonempty
open set U and n0 ∈ N such that x ∈ U =⇒ ∀n ≥ n0 : fn(x) ∈ V .

The second and third lemmas deal with mortal finite configurations. If f :
X → X is a CA and x ∈ X, then x is mortal if f is nilpotent on {x}, that is,
fn(x) = 0G for some n ∈ N. The proof of both lemmas below are based on the
observation that in an asymptotically nilpotent CA, every cell (or set of cells)
must regularly visit the all-zero cylinder.

The second lemma states that if a finite configuration does not spread under
an asymptotically nilpotent CA, then it is mortal.

Lemma 4. Suppose G is a countable group and f : ΣG → ΣG is an asymptot-
ically nilpotent CA. If x is a finite configuration such that the set {v ∈ G | ∃n :
fn(x)v 	= 0} is finite, then x is mortal.
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The following is proved like Lemma 2 of [12].

Lemma 5. Suppose G is a countable group, f : ΣG → ΣG is an asymptotically
nilpotent CA and there is a dense set of finite mortal configurations. Then f is
nilpotent.

We give an intuitive outline of the proof of the case G = Z of Theorem 1 in [5],
highlighting how the geometry of Z is used: Suppose we have an asymptotically
nilpotent CA. We use Lemma 3 to get a word w which blocks information flow
through its central coordinate. One half of such word (after a few iterations)
must then block information flow from one side. Sticking such halves around a
finite configuration, the configuration becomes stuck in a finite segment, and it
must then be mortal by Lemma 4. This means there is a dense set of mortal
finite configurations, and we conclude with Lemma 5.4

In this proof, we make essential use of the fact Z has multiple ends: Cutting
w in half effectively splits the group in two, and the CA will never see over the
gap. However, everything else follows from general arguments.

In the d ≥ 2 case, the same idea does not work directly, as the blocking
words w are replaced by blocking patterns, and they need not block information
flow in any essential way. The new idea in [12] is that periodizing a point makes
the cellular automaton simulate a one-dimensional CA, and we already know
the result for such CA. The periodization must be doable in any direction, so
we make essential use of the fact that there are quotient maps Z

d → Z ‘for
every dimension d’, which is almost the definition of Zd. In this sense, we make
essential use of the algebraic structure of Zd.

For some specific groups, it is plausible that SAN behavior can be ruled
out easily, by a more assiduous application of these ideas. In the case of free
groups (which also have multiple ends), one can directly attempt to mimic the
proof of [5], while in the case of the Heisenberg group, one can try to mimic the
periodization idea of [12].

Conjecture 1. If G is a free group or G is the Heisenberg group, then there are
no SAN cellular automata on any full shift on G.

7 CA with Very Sparse Spacetime Diagrams

In this section, we list some results of [15]. The construction of [15] gives insight
into why it is difficult to show that SAN behavior is impossible: we can ‘almost’
have it on a full shift, in the sense that a non-nilpotent cellular automaton can
have both very sparse rows and very sparse columns in the limit.

Consider the full shift ΣZ. Then the Besicovitch pseudometric is defined by

dB(x, y) = lim sup
n→∞

1
2n + 1

|{−n ≤ i ≤ n | xi 	= yi}|.
4 As we only want to emphasize what property of Z is used, we are of course omitting
some technical details. Interested readers will find the details in the references.
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Then (ΣZ, dB) is a topological (non-Hausdorff non-compact) space called the
Besicovitch space, and if f : ΣZ → ΣZ is a cellular automaton on ΣZ (in the usual
sense), then f is also an endomorphism (continuous shift-commuting self-map)
of (ΣZ, dB). We write dC for the usual metric inducing the product topology
on ΣZ.

We cite some results of [15] about nilpotency on the Besicovitch space.

Proposition 1. Let f : ΣZ → ΣZ be a cellular automaton. Then

– f is nilpotent on (ΣZ, dB) if and only if it is nilpotent on (ΣZ, dC), and
– if f is AN on (ΣZ, dB), then it is UAN on (ΣZ, dB).

These follow from [15, Proposition 41] and [15, Lemma 43], respectively. The
second item shows that there are no cellular automata that are NUAN over the
Besicovitch space.

The main result of [15] is the construction of a CA with very sparse spacetime
diagrams, and the following is one of the corollaries of the construction:

Theorem 5. There is a cellular automaton which is UAN on (ΣZ, dB) but is
not nilpotent on (ΣZ, dC).

Thus, there are cellular automata that are SAN over the Besicovitch space.
Asymptotic nilpotency for the Besicovitch metric is ‘spatial nilpotency’, that

is, most cells being zero on every row. Thus, to formulate this notion, we need
a notion of ‘space’. For the temporal direction, we can formulate a notion of
nilpotency in density directly: If f : X → X is a dynamical system and 0 ∈ X,
then f is asymptotically nilpotent in temporal density or ANTD5 if

∀ε > 0 : ∀x ∈ X : lim inf
n→∞

1
n

|{0 ≤ i < n | d(f i(x), 0) < ε}| = 1.

If the convergence is uniform in X for all ε, we use the obvious acronym UANTD.

Proposition 2. Let f : ΣZ → ΣZ be a cellular automaton. Then

– f has a unique invariant measure if and only if it is ANTD, and
– if f is ANTD then it is UANTD.

The first observation is well-known, see [15, Proposition 5] for a proof. It is the
reason why ANTD cellular automata are usually called uniquely ergodic, since
this is the term for having a unique invariant measure in ergodic theory. The sec-
ond condition says that there are no CA that are ‘non-uniformly asymptotically
nilpotent in temporal density’, and it is also shown in [15, Proposition 5].

The construction of [15] also gives a CA where the temporal density of zeroes
is high:

Theorem 6. There exists a cellular automaton f : ΣZ → ΣZ which is ANTD
but not nilpotent.
5 It would be nice to call this just ‘asymptotic nilpotency in density’, but this is used
in [15] in the spatial sense.
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Thus, there are cellular automata that are ‘strictly asymptotically nilpotent
in temporal density’.

We can formalize the property of [15] that the density of zeroes becomes high
from every starting configuration also using measures: the CA of [15] proving
Theorem 5 also has the property that every shift-invariant measure converges
to the Dirac measure at zero in the iteration of the CA. In other words, there
is a non-nilpotent CA f : ΣZ → ΣZ which, acting over the space of shift-
invariant probability measures on ΣZ, is asymptotically nilpotent toward the
Dirac measure at 0Z.

We mention that for cellular automata, there is also another well-known kind
of nilpotency on the space of measures, namely randomization:

Example 7. Let f : ZZ

2 → Z
Z

2 be the two-neighbor XOR f(x)i = xi +xi+1. Then
f acts on the space of shift-invariant measures Mσ on Z

Z

2 . It is known that f is
randomizing in density [7,9,11] in the sense that fn(μ) converges weakly to the
uniform Bernoulli measure ‘except for a set of times of density zero’, whenever μ
is a full-support Bernoulli measure.6 Combining the terminology of Sect. 3 with
that of this section means precisely that f is ANTD on the set of full-support
Bernoulli measures, with nilpotency towards the uniform measure.
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Abstract. A two-dimensional code is defined as a set of rectangular
pictures over an alphabet Σ such that any picture over Σ is tilable in at
most one way with pictures in X. It is in general undecidable whether
a set of pictures is a code, even in the finite case. Recently, finite strong
prefix codes were introduced in [3] as a family of decidable picture codes.
In this paper we study infinite strong prefix codes and give a character-
ization for the maximal ones based on iterated extensions. Moreover, we
prove some properties regarding the measure of these codes.

Keywords: Two-dimensional languages · Prefix codes · Measure

1 Introduction

Extending the theory of formal (string) languages to two dimensions is a very
interesting and challenging task. Our motivations are mainly theoretical but, as
formal language theory had very significant impact in several applications, we
expect that results on two-dimensional languages will be exploited in practical
fields like image processing, pattern recognition and matching.

A two dimensional word, or picture, is a rectangular array of symbols taken
from a finite alphabet Σ; a two-dimensional language is thus a subset of Σ∗∗. The
notion of finite state recognizability can be transferred into a two-dimensional
(2D) world in different ways (e.g. [10,15,17,19,22–24]). A crucial difference with
the string language theory is that in two dimensions many problems become
undecidable and even for finite-state recognizability we loose the equivalence
between determinism and non-determinism [2,6,17].
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In the theoretical study of formal string languages, string codes have been
always a relevant subject of research, also because of their applications to prac-
tical problems (see [14] for complete references). An important and easy-to-
construct class of string codes are prefix codes. Recall that a set S of strings
is called prefix if inside S no word is (left-)prefix of another one. It holds that
any prefix set of words is also a code, referred to as a prefix code. The notion
of code can be intuitively and naturally transposed to two-dimensional objects
by exploiting the notion of unique tiling decomposition. Several attempts of
developing a formal theory of two-dimensional codes have been done by using
polyominoes (connected two-dimensional figures, not necessarily rectangular).
Unfortunately, most of the published results show that in the 2D context we
loose important properties. In [13] D. Beauquier and M. Nivat proved that the
problem whether a finite set of polyominoes is a code is undecidable, and that
the same result holds also for dominoes. Codes of other variants of polyomi-
noes including bricks (i.e. labelled polyominoes) and pictures are also studied in
[1,16,18,20,21] and further undecidability results are proved.

In [4,7], a new definition of picture code was introduced by referring to the
operation of tiling star as defined in [24]; the tiling star of a set X is the set X∗∗ of
all pictures that are tilable (in the polyominoes style) by elements of X. Then, X
is a code if any picture in X∗∗ is tilable in a unique way. Unfortunately, it is again
not decidable whether a finite language of pictures is a code. The aim was finding
decidable subclasses of picture codes. For this, two definitions of prefix code of
pictures have been proposed by associating to the pictures a preferred scanning
direction from top-left corner towards the bottom-right one. Note that, moving
to the 2D setting, the main concern is that if we delete a “prefix” from a picture
(i.e. delete a rectangular portion starting at top-left corner) the remaining part
is not in general a picture itself. As consequence, the proof techniques for string
codes fail when transposed to two dimensions. Further generalizations to 2D of
classes of string codes are presented in [8,11,12].

A first definition of two-dimensional prefix code is proposed in [4,7]. It is
based on some special kind of polyominoes that have straight top border. A
smaller class, referred to as the class of strong prefix sets, was then proposed in
[3,9]; it is defined in a simpler way, it is easier to manage and more robust, while
it preserves all positive features of the first definition. In order to prevent to start
decoding a picture message in two different ways, no prefix-overlapping pictures
are admitted in a strong prefix set. More precisely, any two pictures in the set
cannot coincide in their common top-left part. Finite strong prefix sets are a
decidable family of picture codes with a simple polynomial decoding algorithm.
The results in [5,9], show a recursive procedure to construct all finite maximal
strong prefix codes of pictures, starting from the “singleton” pictures containing
only one alphabet symbol. The construction extends the literal representation of
prefix codes of strings (cf. [14]). It is the starting point for most considerations
in this paper.

All the mentioned results on two-dimensional codes regard finite codes, unless
for some first examples of infinite codes of pictures in [8], in the framework of
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the deciphering delay. Here, the attention is devoted to the infinite strong prefix
codes. We present a recursive definition of a family of languages based on the
iterated extensions. We prove that all languages defined by iterated extensions are
maximal strong prefix codes. Moreover, we show that, vice versa, any maximal
strong prefix code can be obtained by iterated extensions. We investigate also the
measure of such codes by associating a probability to each letter of the alphabet.
We prove that, as in the string case, the measure of a two-dimensional strong
prefix code is less than or equal to one. Nevertheless, we show that there exist
infinite maximal strong prefix codes whose measure is strictly less than one and
discuss the reason of this difference with the string case.

2 Preliminaries

We recall some definitions about two-dimensional languages (see [17]). A picture
over a finite alphabet Σ is a two-dimensional rectangular array of elements of
Σ. Given a picture p, |p|row and |p|col denote the number of rows and columns,
respectively, while size(p) = (|p|row, |p|col) and area(p) = |p|row × |p|col denote
the picture size and area, respectively. We also consider all the empty pictures
that correspond to all pictures of size (m, 0) or (0, n). The set of all pictures
over Σ of fixed size (m,n) is denoted by Σm,n. The set of all pictures over Σ
is denoted by Σ∗∗ while Σ++ refers to the set Σ∗∗ without the empty pictures.
A two-dimensional language (or picture language) over Σ is a subset of Σ∗∗. Any
string on Σ can be viewed as a one-row picture in Σ∗∗. With a little abuse of
notation, in the sequel, Σ will sometimes denote Σ1,1, and a the corresponding
picture in Σ1,1.

In order to locate a position in a picture, it is necessary to put the pic-
ture in a reference system. The set of coordinates dom(p) = {1, 2, . . . , |p|row} ×
{1, 2, . . . , |p|col} is referred to as the domain of a picture p. We let p(i, j) denote
the symbol in p at coordinates (i, j). We assume the top-left corner of the pic-
ture to be at position (1, 1), and fix the scanning direction for a picture from the
top-left corner toward the bottom right one.

A subdomain of dom(p) is a set d of the form {i, i + 1, . . . , i′} × {j, j +
1, . . . , j′}, where 1 ≤ i ≤ i′ ≤ |p|row, 1 ≤ j ≤ j′ ≤ |p|col, also specified by the
pair [(i, j), (i′, j′)]. The portion of p corresponding to positions in subdomain
[(i, j), (i′, j′)] is denoted by p[(i, j), (i′, j′)]. Then a picture x is subpicture of p if
x = p[(i, j), (i′, j′)], for some 1 ≤ i ≤ i′ ≤ |p|row, 1 ≤ j ≤ j′ ≤ |p|col. Prefixes
of pictures are special subpictures. Given pictures x, p, with |x|row ≤ |p|row and
|x|col ≤ |p|col, picture x is a prefix of p, denoted x � p, if x is a subpicture of p
corresponding to its top-left portion, i.e. if x = p[(1, 1), (|x|row, |x|col)].

Dealing with pictures, two concatenation products are classically defined.
Let p, q ∈ Σ∗∗ be pictures of size (m,n) and (m′, n′), respectively. The column
and the row concatenation of p and q are defined by horizontally and vertically
juxtaposing p and q. They are partial operations, defined only if m = m′ and
if n = n′, respectively. These operations can be extended to define row- and
column- concatenations, and row- and column- stars on languages. We consider
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another interesting star operation for picture languages, as introduced by D.
Simplot in [24], the tiling star. The idea is to compose pictures in some way to
cover a rectangular area as, for example, in the following figures.

The tiling star of X, denoted by X∗∗, is the set that contains all the empty
pictures together with all the non-empty pictures p whose domain can be parti-
tioned in disjoint subdomains {d1, d2, . . . , dk} such that any subpicture ph of p
associated with the subdomain dh belongs to X, for all h = 1, ..., k.

Then X++ denotes the set X∗∗ without the empty pictures. In the sequel, if
p ∈ X++, we say that p is tilable in X while the partition t = {d1, d2, . . . , dk}
of dom(p), together with the corresponding pictures {p1, p2, . . . , pk}, is called a
tiling decomposition of p in X.

3 Two-Dimensional Codes

Let us recall the definitions of codes and strong prefix codes of pictures given in
[3,4,7,9], together with some examples. Let Σ be a finite alphabet. X ⊆ Σ++

is a code iff any p ∈ Σ++ has at most one tiling decomposition in X.

Example 1. Let Σ = {a, b} be the alphabet and let X =
{

a b ,
a
b

,
a a
a a

}
.

It is easy to see that X is a code. Any picture p ∈ X++ can be decomposed
starting at top-left-corner and checking the subpicture p[(1, 1), (2, 2)]; it can be
univocally decomposed in X. Then, proceed similarly for the next contiguous
subpictures of size (2, 2).

Example 2. Let X =
{

a b , b a ,
a
a

}
. Notice that no picture in X is prefix of

another picture in X (see definition in Sect. 2). Nevertheless, X is not a code.

Indeed, picture
a b a
a b a

has the two following different tiling decompositions in X:

t1 =
a b a
a b a

and t2 =
a b a
a b a

.

Taking inspiration from the very remarkable family of prefix codes of strings,
let us introduce strong prefix codes, defined in [3,9]. The idea is that, given a
strong prefix set of pictures X ⊂ Σ++, each picture in Σ++ can “start” with at
most one of the pictures in X.

Definition 3. Let p, q ∈ Σ++. Pictures p and q prefix-overlap if for any (i, j) ∈
dom(p) ∩ dom(q), p(i, j) = q(i, j). Moreover pictures p and q strictly prefix-
overlap if they prefix-overlap, but neither p � q nor q � p.
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For example, in the following figure, picture p and q strictly prefix-overlap:

a b
a a

a b a a
a b a a
a a

p q p and q prefix-overlap

Definition 4. Let X ⊆ Σ++. X is strong prefix if for any pictures p, q in X
with p �= q, p and q do not prefix-overlap.

Example 5. The following language X is strong prefix; no two pictures in X
prefix-overlap.

X =
{

a b a , a b b ,
b
b

,
a a
a a

,
a a
a b

,
a a
b a

,
a a
b b

,
b a
a a

,
b a
a b

,
b b
a a

,
b b
a b

}
.

Definition 6. A strong prefix set X ⊆ Σ++ is maximal strong prefix over Σ
if it is not properly contained in any other strong prefix set over Σ; that is,
X ⊆ Y ⊆ Σ++ and Y strong prefix imply X = Y .

The results in [5,9] prove that finite strong prefix codes have a recursive
structure and describe an effective procedure to construct all (maximal) finite
strong prefix codes of pictures, starting from the “singleton” pictures containing
only one alphabet symbol. The construction in some sense extends the literal
representation of prefix codes of strings and is based on the notion of extensions
of a picture. The set of extensions of a picture p to some bigger size (m,n), is
the set of all pictures of fixed size (m,n), obtained by adding some columns to
the right and some rows to the bottom of p filled with all possible combinations
of alphabet symbols.

Let us fix an order between pairs of integers. We write (m,n) < (m′, n′) if
m ≤ m′, n ≤ n′ and m �= m′ or n �= n′.

Definition 7. Let Σ be an alphabet, p ∈ Σ++, m,n ≥ 0 be positive integers
with size(p) < (m,n). The set of extensions of p to size (m,n) is E(m,n)(p) =
{q ∈ Σm,n | q[(1, 1), (|p|row, |p|col)] = p}.
In [9] the finite maximal strong prefix codes are characterized as follows.

Proposition 8. X ⊆ Σ++ is a finite maximal strong prefix code if and only if
there exists a finite sequence of picture languages over Σ, X1,X2, . . . , Xk, such
that X1 = Σ, X = Xk, and for i = 1, . . . , k−1, Xi+1 = (Xi\{pi})∪E(mi,ni)(pi),
for some pi ∈ Xi, mi, ni ≥ 0.
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4 Infinite Strong Prefix Codes

In this section we consider the strong prefix codes introduced in [3,9] and recalled
in the previous Sect. 3. We define a construction for infinite maximal strong prefix
codes that provides an interesting inside view of their structure.

We first observe that, as in the one-dimensional case, any strong prefix code of
pictures can be embedded into a maximal one. This result allows to concentrate
our attention on the infinite strong prefix codes that are maximal.

Proposition 9. Any strong prefix code X ⊆ Σ++ is contained in some maximal
strong prefix code over Σ.

The proof is similar to the corresponding one in the one dimensional case
(Proposition 1.5 in [14]). It considers, given a strong prefix code X, a chain of
strong prefix codes containing X, ordered by set inclusion, and uses the remark
that, in view of Zorn’s lemma, this chain admits a least upper bound. We omit
here all the details.

The following is a simple example of an infinite picture language that is a
strong prefix code.

Example 10. Let X be the language of square pictures over Σ = {a, b} that
contains b in all positions apart for the bottom-right corner where symbol a
occurs.

X =

⎧⎪⎪⎨
⎪⎪⎩

a ,
b b
b a

,
b b b
b b b
b b a

,

b b b b
b b b b
b b b b
b b b a

, , . . .

⎫⎪⎪⎬
⎪⎪⎭

X is an infinite strong prefix code. Furthermore, X is not maximal strong prefix.

Indeed, consider, for example, the picture p =
b b a
b b a
a a a

; it is easy to see that X∪{p}

is still strong prefix.
Note that X can be viewed as a generalization to 2D of the well known

infinite code of strings S = {bna, n ≥ 0}.

The following example provides a maximal strong prefix code.

Example 11. The language X∞ contains all square pictures over Σ = {a, b} such
that if p has size (n, n), its prefix of size (n − 1, n − 1) contains only b’s while
there should be at least one a in the bottom row or in the rightmost column.
Then,

X∞ =

⎧⎨
⎩a ,

b a
a a

,
b a
a b

,
b a
b a

,
b a
b b

,
b b
a a

,
b b
a b

,
b b
b a

,
b b a
b b a
a a a

,
b b b
b b a
a a a

,
b b b
b b b
a a a

, . . .

⎫⎬
⎭ .
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The language X∞ is an infinite maximal strong prefix code. It is immediate to
see that it is strong prefix. Indeed, by definition, no picture in X∞ is prefix of
another picture in X∞ and this implies, since they are all square pictures, that
no pair of pictures in X∞ can prefix-overlap.

To prove the maximality, consider a picture p ∈ Σ++ \ X∞. It cannot be
p(1, 1) = a otherwise a ∈ X∞ is a prefix of p. Assume therefore that p(1, 1) = b.
Two cases arise: either p ∈ {b}++ or not. In the first case p is a prefix of an
infinite number of pictures of X∞. In the second case, let bk,k be the prefix of
p with maximal k, and k < |p|row, |p|col. Then there exists a picture q ∈ X∞ of
size (k + 1, k + 1), that is a prefix of p. In both cases X∞ ∪ {p} is not strong
prefix.

Note that the language X∞ of the previous example contains the language
X of the Example 10 (as already noted, X was not maximal strong prefix).

The language X∞ can be viewed inside a more general family that is obtained
by means of iterated extensions; the definition takes as starting point the con-
struction of finite maximal strong prefix codes recalled in Proposition 8.

We use the notion of extension of a picture (see Definition 7) to define infinite
languages that will result to be maximal strong prefix codes. We give first an
informal description. The idea is to construct a language X as infinite union of
sets Xk. We start from the initial set Y0 = Σ of all pictures of size (1, 1). Then
we partition Y0 = X1 ∪ A0 where X1 is added to X, while the pictures in A0

will be extended to get a set of pictures of bigger size. Let Y1 be the union of all
possible extensions of pictures p ∈ A0 to a size (m(p), n(p)) that depends on p.
Again we partition Y1 = X2∪A1 and again we add X2 to X and take all pictures
in A1 for new extensions to produce the set Y2. And so on. A further condition
ensures that whenever a picture p ∈ Yk is not chosen to belong to Xk+1 (i.e. p
stays in Ak to be extended and put in Yk+1), then in some future step, one of
its extensions will be surely added to some Xi. Such condition will be crucial in
the proof of maximality of Proposition 15. Here below is the formal definition.

Definition 12. Let Σ be a finite alphabet. A language X ⊆ Σ++ is generated
by iterated extensions on Σ if X = ∪k≥1Xk where, for any k ≥ 0,

(1) Y0 = Σ
(2) Ak ⊆ Yk, Xk+1 = Yk \ Ak

(3) Yk+1 =
⋃

p∈Ak
E(m(p),n(p))(p), for some (m(p), n(p)) > size(p)

(4) for any p ∈ Ak, there exist h > k and some extension q of p, with q ∈ Xh.
The family of all languages generated by iterated extensions on Σ will be
denoted by I(±), or simply I, when no ambiguity is possible.

Example 13. The language X∞ introduced in Example 11 is in I. In fact, X∞ =
∪k≥1Xk, where Y0 = Σ, A0 = {b}, and for any k ≥ 1, Xk = Yk−1 \ Ak−1, with
Ak−1 = {pk} where pk is the picture of size (k, k) composed of all b’s, and
Yk−1 = E(k,k)(pk−1).

Many different and involved languages can be defined by using Definition
12. The matter is to fix the rule to “extract” the set Xk+1 from Yk and the
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criterion to choose the size of the extensions of the pictures in Ak. Consider as
an example, the following language.

Example 14. Use iterated extensions on Y0 = {a, b} and take X1 = {a} (A0 =
{b}) and Y1 = E(2,2)(b). For any k ≥ 1, put in Xk+1 those pictures of Yk that
have the first column equal to the last one. The remaining pictures p ∈ Yk

(actually pictures of the set Ak) are extended in two different ways. If the last
row of p contains an even number of a, add a row to p; if it contains an odd
number of a, add a column. This will generate the next set Yk+1 containing
pictures of many different sizes. Here below, we calculate some of the pictures.

X =

⎧⎨
⎩a ,

b b
a a

,
b b
b b

,
b a b
a b a

,
b b b
a b a

,
b b b
b a b

,
b a b
a a a
b b b

,
b b b
a a a
b b b

, . . .

⎫⎬
⎭ .

Note that in Definition 12 if, for some k ≥ 0, Ak = ∅, then Yk+1,Xk+1 = ∅
and the language X is finite. This is the unique case where X can be finite.
Otherwise, if for any k ≥ 0, Ak �= ∅, then condition (4) in Definition 12 guaran-
tees that the language is infinite. Moreover, we will see in the next proposition,
that condition (4) will be crucial also in proving the maximality of the obtained
language.

On the other hand, observe that for some k ≥ 0, it can hold that Ak = Yk,
that is Xk+1 = ∅ (without forcing the finiteness of the language).

Next proposition shows that any language generated by iterated extensions
is a maximal strong prefix code.

Proposition 15. Any set X ∈ I(Σ) is a maximal strong prefix code over Σ.

Proof. Let X ∈ I(Σ). First of all, let us show by induction that, for any h ≥ 1,( ⋃
i=1...h Xi

) ∪ Ah−1 is a finite maximal strong prefix code. In the base case,
h = 1, we have X1 ∪ A0 = {a, b} and this is a maximal strong prefix code.
Inductively, suppose that the set Z =

⋃
i=1...h−1 Xi ∪ Ah−2 is a maximal strong

prefix code. Note that the set
⋃

i=1...h Xi ∪ Ah−1 can be obtained from Z, by
replacing any p ∈ Ah−2 ⊆ Z with the set of all its extensions to some bigger
size. Hence, it is a finite maximal strong prefix code (see the characterization in
Proposition 8).

To show that X is a strong prefix code consider two pictures p, q ∈ X
and suppose p ∈ Xh, q ∈ Xk and h ≥ k. Then p, q ∈ ⋃

i=1...h Xi and, since⋃
i=1...h Xi ∪ Ah−1 is a strong prefix code, p and q cannot prefix-overlap.

Now, let us show that X is a maximal strong prefix code. Suppose by contra-
diction that there exists a picture p ∈ Σ∗∗ \X such that X ∪{p} is strong prefix.
Let size(p) = (m,n) and set K = max{k | ∀x ∈ ⋃

i=1...k Xi, |x|row ≤ m and
|x|col ≤ n}. Consider the set T =

⋃
i=1...K Xi ∪ AK−1. We have p /∈ ⋃

i=1...k Xi

(since p /∈ X) and p /∈ AK−1 (since, if p ∈ AK−1, then, by condition 4) there
exists an extension of p in X, against X ∪ {p} strong prefix). Therefore, p /∈ T .
Let us show that T ∪ {p} is a strong prefix code, against the maximality of T .
Note that p cannot prefix-overlap a picture in

⋃
i=1...K Xi, since X∪{p} is strong

prefix. Furthermore, p cannot strictly prefix-overlap a picture in AK−1. Indeed,
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any q ∈ AK−1 has a size less than size(p); hence, p and q could strictly prefix-
overlap only if q is a prefix of p. This would imply that, there exist some K ′ > K
and some p′ ∈ XK′ ⊆ X, p′ extension of q, such that p′ and p prefix-overlap,
against X ∪ {p} strong prefix. We can conclude that T ∪ {p} is a strong prefix
code against the maximality of T . �

We now show the reverse of Proposition 15, i.e. that any maximal infinite
strong prefix code can be obtained by iterated extensions.

Proposition 16. If X is a maximal strong prefix code over Σ then X ∈ I(Σ).

Proof (Sketch). Let Y0 = Σ, X1 = X ∩ Σ and A0 = Y0 \ X1. The proof is
sketched only in the case Σ = {a, b} and X1 = {b}; a similar proof can be used
in the other cases. Let us show how to construct the sets X2, X3, . . ., and so on.

Denote ra = min{|p|row | p ∈ X and a � p} and ca =min{|p|col | p ∈ X
and a � p}. Clearly (ra, ca) �= (1, 1). Set Y1 = E(ra,ca)(a) and X2 = X ∩ Y1;
then A1 = Y1 \ X2. Note that it could be X2 = ∅. Observe that the pictures
in X \ (X1 ∪ X2) must be the extensions of some pictures in A1. Indeed, they
cannot have a size smaller than the elements in A1 (for the choice of ra and ca);
moreover, A1 contains all pictures in Σra,ca , except those pictures that are in
X1∪X2 (whose extensions cannot be in X, since it is strong prefix). Subsequently,
for any t1 ∈ A1, at least one extension of t1 is in X, otherwise the set X ∪ {t1}
would be strong prefix, against the maximality of X.

For any q ∈ A1, let rq =min{|p|row | p ∈ X and q�p} and cq =min{|p|col | p ∈
X and q � p}. Clearly, rq > |q|row or cq > |q|col. Set Y2 =

⋃
q∈A1

E(rq,cq)(q),
X3 = X ∩ Y2 and A2 = Y2 \ X3. Again, for any t2 ∈ A2, at least one extension
of t2 is in X, otherwise the set X ∪ {t2} would be strong prefix. Iterating this
scheme, one obtains all the subsequent Xk such that X = ∪k≥1Xk. �
The results in the two previous propositions can be summarized in the follow-
ing theorem which gives a characterization of maximal strong prefix codes of
pictures. It holds both for finite and infinite codes.

Theorem 17. Let X ⊆ Σ++. X is a maximal strong prefix code over Σ if and
only if X ∈ I(Σ).

5 Measure of Two-Dimensional Languages and Codes

Some important results on codes of strings deal with the notion of measure
(cf. [14]). A probability is assigned to each symbol of the alphabet and, for a
given string, one multiplies the probability of each letter. Then, the measure of a
language is simply the sum of the probability of its strings. A major result states
that the measure of a string code is always less than or equal to 1, whereas a thin
string code is maximal if and only if its measure is 1. Roughly speaking, a set of
strings is not a code if there are “too many too short strings”. In this section,
we consider the measure of infinite strong prefix codes of pictures as introduced
in [5].
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Definition 18. Let Σ be an alphabet and π be a probability distribution
on Σ. The probability of a picture p ∈ Σ++ is defined as π(p) =∏

1≤i≤m,1≤j≤n π(p(i, j)). The measure of a language X ⊆ Σ++ relative to π
is μπ(X) =

∑
p∈X π(p).

Particular interest is devoted to the uniform distribution, which associates to
every symbol a in the alphabet Σ of cardinality k, the probability πu(a) = 1

k .
Then, the uniform probability of a picture p ∈ Σ++ is πu(p) = 1

karea(p) . The
uniform measure of a language X ⊆ Σ++, is μu(X) =

∑
p∈X πu(p).

Example 19. Let Σ = {a, b} and consider language X =
{

b b ,
a
b

,
a a
a a

,
a a
a b

}

on Σ. Its uniform measure is μu(X) = 5/8 < 1. In general for any probability
distribution π(a) = p, π(b) = 1 − p, 0 < p < 1, then μπ(X) = p3 − p + 1 < 1.
Note that X is a code.

A main result in [5] shows that for any finite strong prefix code X ⊆ Σ++

and measure μ, we have that μ(X) ≤ 1. Moreover μ(X) = 1 if and only if X is a
finite maximal strong prefix code. We show that without the finiteness hypotesis
the scenario is different. Coherently with the intuitive relation between code and
measure, we prove first the following result.

Theorem 20. Let X ⊆ Σ++ be a maximal strong prefix code and μ be a mea-
sure. Then μ(X) ≤ 1.

Proof. By Theorem 17, and following the notation of Definition 12, X is the
union of some languages Xi, for i ≥ 1. Since the languages Xi’s are pairwise
disjoint, taking sn =

∑n
i=1 μ(Xi), we can write μ(X) = limn→∞ sn. Consider

now, for any n ≥ 1, the sets Zn =
⋃

i=1...n Xi ∪ An−1. For any n ≥ 1, Zn is a
finite maximal strong prefix code (as shown in the proof of Proposition 15) and
therefore μ(Zn) = 1. Hence, sn ≤ μ(Zn) = 1. Finally, μ(X) = lim sn ≤ 1. �
The measure of infinite maximal strong prefix codes does not behave as the
measure of the finite ones. To show this, we propose another example.

Example 21. Consider the language Z∞ over Σ = {a, b} that contains the size
(1, 1) picture with a and all square pictures p that have symbol b in the top-left
position and in all positions of the bottom row and of the rightmost column.
Moreover all square prefixes of p should have at least one a in their bottom row
or last column.

Z∞ =

⎧⎪⎪⎨
⎪⎪⎩

a ,
b b
b b

,
b a b
a a b
b b b

,
b b b
a a b
b b b

,
b a b
b a b
b b b

, . . . ,

b a a b
a a a b
a a a b
b b b b

,

b a b b
a a a b
a a a b
b b b b

,

b b b b
a a a b
a a a b
b b b b

, . . .

⎫⎪⎪⎬
⎪⎪⎭

.

The language Z∞ can be obtained following Definition 12. Z∞ = ∪i≥1Xi, where
Y0 = Σ, A0 = {b}, and for any i ≥ 1, Xi = Yi−1 \Ai−1, with Ai−1 = {p ∈ Σi,i| p
has at least one a’s in the last row or column}, and Yi−1 =

⋃
p∈Ai−2

E(i,i)(p).
Then, by Theorem 17, Z∞ is a maximal strong prefix code.
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Proposition 22. There exist maximal strong prefix codes whose measure is
strictly less than 1.

Proof. Consider the language Z∞ together with the languages Xi, Yi−1, Ai−1

resulting by the associated iterated extensions as defined in Example 21. Let
us calculate the uniform measure of Z∞. Since the languages Xi’s are pairwise
disjoint, μ(Z∞) =

∑
i≥1 μ(Xi). We have:

– μ(X1) = 1/2,
– μ(X2) = 1/24, and
– μ(Xi) = (23−1)(25−1)···(22(i−1)−1−1)

21+3+5+···+(2i−1) , for any i ≥ 3.

Recall that Xi ⊆ Σi,i and 1 + 3 + 5 + · · · + (2i − 1) = i2. Then, for any i ≥ 3,
μ(Xi) ≤ 2325···22(i−1)−1

21+3+5+···+(2i−1) = 1
21+(2i−1) = 1

22i = 1
4i .

Hence, μ(Z∞) ≤ 1/2 + 1/24 +
∑∞

i=3
1
4i = 1/2 +

∑∞
i=2(

1
4 )i = 1/2 +

∑∞
i=0(

1
4 )i −

1 − 1/4 = 4/3 − 3/4 = 7/12. This shows that μ(Z∞) < 1. �
The next Proposition characterizes the maximal strong prefix codes which have
measure equal to 1, in terms of the measure of the languages involved in its
construction by iterated extensions.

Proposition 23. Let X ∈ I(Σ) and let An, for any n ≥ 0, be the corresponding
languages. The measure of X is equal to 1 if and only if limn→∞ μ(An) = 0.

Proof. Let Xi, Yi−1, Ai−1, for any i ≥ 1, be the languages involved in the iterated
extensions for X as in Definition 12.

Since the languages Xi’s are pairwise disjoint, μ(X) = limn→∞ sn, where
sn =

∑n
i=1 μ(Xi). Observe that, for any i ≥ 1, μ(Xi) = μ(Yi−1) − μ(Ai−1) and

μ(Yi) = μ(Ai−1), since Yi contains all the extensions of all the pictures in Ai−1.
Therefore, sn = (μ(Y0) − μ(A0)) + (μ(Y1) − μ(A1)) + · · · + (μ(Yn) − μ(An)) =
μ(Y0) − μ(An) = 1 − μ(An). Finally, μ(X) = limn→∞ sn = 1 − limn→∞ μ(An).
Hence, μ(X) = 1 if and only if limn→∞ μ(An) = 0. �

As an application of the previous proposition we prove the following.

Proposition 24. There exist maximal strong prefix codes whose measure is
exactly 1.

Proof. We consider the language X∞ as in Example 13 and we show that the
uniform measure μ(X∞) = 1. Following the construction by iterated extensions,
each set An contains a single picture p of size (n + 1, n + 1) then the measure
μ(An) = 1/2(n+1)2 and limn→∞ 1/2(n+1)2 = 0. By applying Proposition 23 we
complete the proof. �
We conclude the paper by observing that the proofs of Propositions 22 and 24
are based on two languages X∞ and Z∞ that have somehow complementary
structure with respect to the definition by iterated extensions. Starting from
Y0 = {a, b}, for both languages we take X1 = {a} and Y1 = E(2,2)(b). At each
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step i we use the same criterion to partition the respective current sets Yi (in
one side, the only picture with all b’s in the bottom row and in the rightmost
column and in the other side, all the remaining ones). Nevertheless, for X∞ such
single picture is put in the set Ai to be extended, while for Z∞ such picture is
the only one which is kept in the code. The difference in the cardinality of the
two sides of the partition makes the substantial discrepancy in the calculation
of the measure.
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Abstract. We provide some interesting relations involving k-generalized
Fibonacci numbers between the set F

(k)
n of length n binary strings avoid-

ing k of consecutive 0’s and the set of length n strings avoiding k + 1
consecutive 0’s and 1’s with some more restriction on the first and last
letter, via a simple bijection. In the special case k = 2 a probably new
interpretation of Fibonacci numbers is given.

Moreover, we describe in a combinatorial way the relation between
the strings of F

(k)
n with an odd numbers of 1’s and the ones with an even

number of 1’s.

Keywords: Generalized Fibonacci numbers · Restricted strings ·
Consecutive patterns avoidance

1 Introduction

In the paper we mainly faces with binary strings avoiding consecutive patterns,
providing some enumerative and constructive properties. The notion of pattern
was introduced by Knuth [12] about permutations. Then, it was also absorbed
within the context of other combinatorial objects as set partitions [11,14], trees
[1,6,8,13], so that the notion of pattern has become one of the most studied
in the last decades in Combinatorics. Actually, in our paper we are dealing
with consecutive patterns [5,10], which probably are the most useful from an
applicative point of view being often related to the Theory of Codes [3,4,7].

Very often, during the study of a particular matter, it is possible to have to
deal with some related problems which could be deeper investigated. This is what
happened during the writing of the paper [2] about non-overlapping matrices.
There, it was very important the analysis of some sets of binary strings with
some constraints, constituting the row of the studied matrices. In particular,
due to enumerative reasons, we needed to find the cardinality of Bn(0k, 1k) (the
binary strings of length n avoiding k consecutive 0’s and k consecutive 1’s),
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Zn(0k, 1k) (the strings in Bn(0k, 1k) ending with 0), and Rn(0k, 1k) (the strings
in Bn(0k, 1k) starting with 1 and ending with 0). We observed a strong similarity
between the recurrence relation defining the sequence enumerating Bn(0k, 1k)
and the one defining the k-generalized Fibonacci numbers, and we proved [2], in
a very easy analytic way and by induction, that the cardinalities of Bn(0k, 1k),
Zn(0k, 1k), and Rn(0k, 1k) are strictly related to the well-known sequence.

One result of the present paper is an alternative explanation of that interest-
ing link. It is well-known [12] that the set of binary strings having length n and
avoiding k consecutive 0’s, denoted by F

(k)
n , is enumerated by the k-generalized

Fibonacci numbers. Section 2 is devoted to the definition of a bijection between
Zn(0k, 1k) and the set F

(k−1)
n−1 , so providing a combinatorial and constructive

description for the cardinalities of Zn(0k, 1k), Bn(0k, 1k), and Rn(0k, 1k). More-
over, this section contains a reading of the famous Fibonacci numbers which is
new to the best of our knowledge.

The bijection restricted to Rn(0k, 1k) maps its strings in the strings of F
(k−1)
n−1

having an odd numbers of 1’s, and a purely analytic argument leads to the
intriguing fact that the strings in F

(k)
n with an odd number of 1’s and the ones

with an even number of 1’s are equinumerous or differ by one string, depending
on n and k. Section 3 presents a construction of the set Fn(k) via generating
trees, and it reveals the reason why it happens.

2 A Simple Bijection and Some Applications

Let F
(k)
n be the set of length n binary strings avoiding k consecutive 0’s, with

k ≥ 2. It is known [12] that, ∀n ≥ 0, denoting by |F (k)
n | the cardinality of F

(k)
n ,

|F (k)
n | = f(k)n+k ,

where f(k)n is the sequence of the k-generalized Fibonacci numbers defined by

f(k)n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ n < k − 1

1 if n = k − 1

k∑

i=1

f(k)n−i if n ≥ k.

Posing f
(k)
n = f(k)n+k we have, ∀n ≥ 0,

f (k)
n =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2n if 0 ≤ n ≤ k − 1

k∑

i=1

f
(k)
n−i if n ≥ k

(1)
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and
|F (k)

n | = f (k)
n .

We denote by Zn(0k, 1k) the set of length n binary strings ending with 0,
avoiding k consecutive 0’s and k consecutive 1’s (these two patterns in the fol-
lowing will be denoted by 0k and 1k, respectively). Let z

(k)
n = |Zn(0k, 1k)|. It

can be proved, by induction [2], that

z(k)n =

⎧
⎨

⎩

1 if n = 0

f
(k−1)
n−1 if n ≥ 1.

(2)

We provide a simple bijection ϕ between Zn(0k, 1k) and F
(k−1)
n−1 , so giving a

combinatorial interpretation of the above formula.

Definition 1. Let u ∈ Zn(0k, 1k), u = u1u2 . . . un and let v = v1v2 . . . vn−1 be
a string of length n − 1. We define the map ϕ from Zn(0k, 1k) into the set of
binary strings of length n − 1 such that ϕ(u) = v where

vi =

⎧
⎨

⎩

1 if ui �= ui+1

0 if ui = ui+1 ,

or, equivalently, vi = ui XOR ui+1, for i = 1, 2, . . . , n − 1.

We have the following proposition:

Proposition 1. The map ϕ is a bijection between Zn(0k, 1k) and F
(k−1)
n−1 .

Proof. First of all, if u ∈ Zn(0k, 1k), we show that ϕ(u) = v ∈ F
(k−1)
n−1 . Clearly,

v has length n− 1 by its definition. Moreover, being u ∈ Zn(0k, 1k), the string u
presents at most k − 1 equal consecutive symbols (0 and/or 1) so that the string
v = ϕ(u) has at most k − 2 consecutive symbols equal to 0. In other words, the
string v avoids k − 1 consecutive 0’s and so v ∈ F

(k−1)
n−1 .

It is not difficult to see that the map ϕ is an injective function: if u(1) and
u(2) are two different strings in Zn(0k, 1k), let j be the greatest index such that
u
(1)
j �= u

(2)
j (surely j �= n and u

(1)
j+1 = u

(2)
j+1). Then, the two pairs u

(1)
j u

(1)
j+1 and

u
(2)
j u

(2)
j+1 are mapped in two different symbols by ϕ, so that ϕ(u(1)) �= ϕ(u(2)).

Since |Zn(0k, 1k)| = |F (k−1)
n−1 | (see (2)) and ϕ is injective, then ϕ is also

surjective and the thesis follows. �

The inverse of ϕ is easily seen to be defined by ϕ−1(v) = u with

ui =

⎧
⎪⎨

⎪⎩

0 if i = n

ui+1 if vi = 0
ūi+1 if vi = 1 ,



Restricted Binary Strings and Generalized Fibonacci Numbers 35

for i = n, n − 1, . . . 3, 2, 1, where ūj = 1 if uj = 0 and ūj = 0 if uj = 1. The
string u can be recovered from v by starting from the right side: starting from
un = 0, one entry ui is equal to the successive one if vi = 0, while if vi = 1, then
ui is the complement of ui+1.

The set of length n binary strings avoiding 0k and 1k, denoted by Bn(0k, 1k)
whose cardinality is defined by b

(k)
n , is strictly related to the set Zn(0k, 1k). More

precisely, from [2], we have that

z(k)n =

{
1 if n = 0
b
(k)
n /2 if n ≥ 1 ,

so that, using (2), it is

b(k)n =

{
1 if n = 0
2f

(k−1)
n−1 if n ≥ 1.

(3)

Proposition 1 can be used to provide a combinatorial proof of (2) and (3). More-
over, in the special case k = 3, it allows the interpretation, probably new, of
Fibonacci sequence as the numbers counting the length n binary strings ending
with 0 and avoiding 000 and 111 (3 consecutive 0’s and 3 consecutive 1’s).

Besides the sets Bn(0k, 1k) and Zn(0k, 1k), we also consider the set Rn(0k, 1k)
of the length n binary strings, starting with 1, ending with 0 and avoiding 0k

and 1k, for n ≥ 1. Note that if k = 2, then Rn(02, 12) = {(10)n/2} if n is even,
while if n is odd, then Rn(02, 12) = ∅, therefore we consider k ≥ 3. Posing
R0(0k, 1k) = {λ} and r

(k)
n = |Rn(0k, 1k)|, it can be proved by induction (see [2])

that

r(k)n =

⎧
⎪⎨

⎪⎩

1 if n = 0

f
(k−1)
n−1 +d(k)

n

2 if n ≥ 1
(4)

where

d(k)n =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if (n mod k) = 0

−1 if (n mod k) = 1

0 if 2 ≤ (n mod k) ≤ k − 1.

If u ∈ Rn(0k, 1k), then ϕ(u) is a string of F
(k−1)
n−1 with an odd number of 1’s

since, clearly, u has an odd number of consecutive pairs of different bits (01 or
10) which are mapped by ϕ in the bit 1. Inversely, if v is a string of F

(k−1)
n−1 with

an odd number of 1’s, then it is easily seen that ϕ−1(v) ∈ Rn(0k, 1k). Denoting
by F

(k)
n,odd the subset of F

(k)
n of the strings with an odd number of 1’s and by

f
(k)
n,o its cardinality, then Rn(0k, 1k) is in bijection with F

(k−1)
n−1,odd (via ϕ) and, for

n ≥ 1 and k ≥ 3, due to the above argument,

r(k)n = f
(k−1)
n−1,o . (5)
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With the additional notation of F
(k)
n,even for the subset of F

(k)
n of the strings with

an even number of 1’s and of f
(k)
n,e for its cardinality, using (4), and (5) and the

trivial fact that f
(k−1)
n−1 = f

(k−1)
n−1,o + f

(k−1)
n−1,e , we deduce that

f
(k−1)
n−1,o = f

(k−1)
n−1,e + d(k)n for n ≥ 1 and k ≥ 3 , (6)

which is clearly equivalent to

f (k)
n,o = f (k)

n,e + d
(k+1)
n+1 for n ≥ 0 and k ≥ 2 , (7)

The aim of the next paragraph is to give a combinatorial description of (7).

3 Number of 1’s in the Strings of F (k)
n

We recall the construction for the strings in F
(k)
n : if their length is n ≤ k−1, then

all the binary strings having length n belong to F
(k)
n , while if n ≥ k, the strings

in F
(k)
n can be obtained by appending the prefixes 1, 01, 001, . . . , 0k−11 to all the

strings with length n − 1, n − 2, n − 1, . . . , n − k, respectively. In other words,
denoting by Bn the length n binary strings and using the notation proposed in
[15], we have:

F (k)
n =

⎧
⎪⎨

⎪⎩

{λ} if n = 0
Bn if 1 ≤ n < k

1 · F
(k)
n−1 ∪ 01 · F

(k)
n−2 ∪ . . . ∪ 0k−11 · F

(k)
n−k if n ≥ k .

(8)

Note that the binary strings in Bn can be obtained in a recursive way by
prepending 0 and 1 to the strings in Bn−1, starting from the empty string λ:

Bn =

{
{λ} if n = 0
0 · Bn−1 ∪ 1 · Bn−1 if n ≥ 1.

(9)

The recursive definition (8) of F
(k)
n can also be read by means of a set of gen-

erating trees. They are a useful tool which is widely employed in Combinatorics
(see for example [9,16,17]). Each node of such trees is a binary string of F

(k)
n

which generates its children at different levels, as we are going to explain in the
following.

Definition 2. Given k ≥ 2, let w be a length j binary string belonging to Bj,
with 0 ≤ j < k. We define a generating tree Tw as follows:

– w is the root of Tw;
– w has j + 1 children which are strings obtained by adding to the left of w the

prefixes 0k−1−i1, from left to right, with i = j, j − 1, . . . , 1, 0, so that the first
child is obtained for i = j.
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– each node with length t ≥ k has k children which are strings obtained by adding
to its left the prefixes 0k−1−i1 from left to right with i = k − 1, k − 2, . . . , 1, 0,
so that the first child is for i = k − 1.

– the level of each node v, indicated by L(v), of Tw which is a child of u,
v = 0k−1−i1u for some i, is recursively defined as follows:

L(v) =

{
j if v = w (u is the root)
L(u) + k − i otherwise.

Clearly, the level of a node gives the length of the represented string.

Notice that the children of the root appear only starting from level k, while the
children of any other node at level t ≥ k appear at each level from t + 1 to
t + k. Actually, also the children of a node at level k − 1 appear in the levels
from k to 2k − 1. Therefore, we observe that each node v at level t ≥ k − 1
has k children as described in Definition 2, namely 1v, 01v, 001v, . . . , 0k−11v.
They can be visualized in Fig. 1 where we have labelled the edges leaving v with
1, 01, . . . , 0k−1 (corresponding to the prefixes added on the left of v) from left
to right, according to Definition 2.

vleel t > k − 2

. . . .

1v

00...01v

01v
00...01

001

01

1

001v

k − 1

k − 1

level t + 1

level t + 2

level t + k

. . .

. . .

.

.

.

.

level t + 3

Fig. 1. The children of a node v at level t ≥ k − 1.

In Fig. 2 we present two different generating trees Tw with roots w = 0 and
w = 01, with k = 4. In the next figures we omit the labels of the edges.

Considering all the generating trees Tw rooted in each w ∈ Bn with 0 ≤ n <
k, we obtain a set T of 2k − 1 generating trees which are clearly disjoint. It is
also straightforward to see that the set F

(k)
n coincides with the set of strings

appearing in the nodes of the trees of T , since the definition of the children of a
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level 3

level 4

level 5

level 6

level 7

...

...

w = 01

w = 0

level 0

level 1

level 2

001 0

00010

0101

00101

000101

Fig. 2. Two generating trees in the case k = 4. The added prefixes are in bold character.
Each little circle replaces a string.

node, given in (2), reflects the recursive definition (8). For example, for k = 3 we
have 7 generating trees as depicted in Fig. 3, where only the first levels of each
tree are presented. In each level n ≥ 0, all the strings of F

(k)
n are obtained.

In order to give a combinatorial proof of (7) we will attempt to provide a
matching between the strings in F

(k)
n with an odd number of 1’s and the ones

with an even number of 1’s. We will see that the construction of an exact pairing
is not possible at each level n, since it depends on the value of n mod (k + 1).

We first analyse the strings (appearing in the nodes) of T not belonging to
Tλ. We start with a simple remark on the list of the binary strings of the same
length j ≥ 1 obtained by recursive definition (9). Such strings differ only for the
last bit if we start from the first one and we consider them two by two. More
precisely, if Bj = {a1, a2, a3, . . . , a2j−1, a2j}, then a2i−1 and a2i differ for the last
bit, for i = 1, 2, . . . , 2j−1. For example, if j = 3, then

B3 = {000, 001, 010, 011, 100, 101, 110, 111}

and within the couples {a1 = 000, a2 = 001}, {a3 = 010, a4 = 011}, {a5 =
100, a6 = 101}, {a7 = 110, a8 = 111} the strings differ only for the last bit.
This fact implies evidently that the strings at the same level in the generating
trees Ta2i−1 and Ta2i (i = 1, 2, . . . , 2j−1) can be obtained each from each other
by switching the last bit, since they are generated by adding the same prefixes
to two roots, a2i−1 and a2i, differing only in the last bit. In other words, the
generating trees Ta2i−1 and Ta2i are isomorphic and two corresponding nodes
are obtained by switching the last bit. This is clearly true for each length j of
the roots, with 1 ≤ j ≤ k − 1. Therefore, if at a level n of T \{Tλ} there are a
certain number of strings in F

(k)
n with an odd number of 1’s, there are also the
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level 3

level 4

level 5

level 6

level 0

level 1

level 2

level 7

...

...

λ

0 1

1001

001

0111111101101110010111010100110000111011

111

1110

110

01

101

00

011 100010

1010 0010

Fig. 3. The seven generating trees in the case k = 3. The generated strings are shown
only up to level 4. Differently from Fig. 2, we omit the little circles at the end of each
edge.

same number of strings with an even number of 1’s, at that level. Summarizing,
the following proposition holds:

Proposition 2. The strings in F
(k)
n,odd and in F

(k)
n,even not belonging to the gen-

erating tree Tλ are equinumerous, for each n ≥ 1.

What is left to do in order to combinatorially describe formula (7) is the
analysis of the generating tree rooted in the empty string λ. Following Definition
2 the root λ has only one child, namely the string 0k−11 at level k, which, on its
turn, has k children (see Fig. 4). We denote by ci(v) = 0i−11v, with |v| ≥ k and
i = 1, 2, . . . , k, the k children of a node v. Note that c1(0k−11) = 10k−11 is the
only node at level k+1 of the sub-tree T0k−11. Moreover, it can be observed that
ci(c1(0k−11)) = 0i−1110k−11 and ci+1(0k−11) = 0i10k−11, for i = 1, 2, . . . , k − 1,
at level k+1+i, differ only by the (k+2)-th from last digit. Consequently, the sub-
trees Tci(c1(0k−11)) and Tci+1(0k−11) are isomorphic and the corresponding strings
can be obtained by switching the (k + 2)-th from last bit (in Fig. 4 isomorphic
subtrees have been framed in a rectangular border) . Then, referring to T0k−11

and to Fig. 4, we can summarize that:

1. at level k there is only the string 0k−11 ∈ F
(k)
k,odd;

2. at level k + 1 there is only the string 10k−11 ∈ F
(k)
k,even;

3. from level k + 2 on, the strings in F
(k)
n,odd belonging to Tci(c1(0k−11)) and

Tci+1(0k−11), for i = 1, 2, . . . , k − 1, are as many as the strings in F
(k)
n,even

belonging to the same subtrees, for each n ≥ k + 2.
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(1031) p  = vp

1(1031) p

01(1031) p

021(1031) p
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level 5p + 2

level 5p + 3
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010 31

 310

10 31

0 210 31

0 310 31

031(1031) 2

110 31

0110 31

0 2  3011 1

0 3110 31

03(1031) 2
02(1031) 2

0(1031) 2

(1031) 2

1(1031) 2

3 201(10 1)
0 21(1031) 2

031(1031) p−1 = up

Fig. 4. The subtree T0k−11 in the case k = 4. Within each rectangular border there
are two isomorphic subtrees.

Note that in point 3 of the above list i �= k, but we have to consider the k-th
child of 10k−11, i.e. ck(10k−11) = 0k−1110k−11, which is the root of a new subtree
generating many other strings. We observe that this subtree, T0k−1110k−11, is
isomorphic to T0k−11 and all its nodes can be obtained from the nodes of T0k−11

by appending the suffix 10k−11 to each of them. This fact induces a recursive
structure on T0k−11. In general, it can be observed that, for any p ≥ 1, each
level n = (k + 1)p − 1 contains the string up = 0k−11(10k−11)p−1 and each level
n = (k + 1)p contains the string vp = (10k−11)p. Note that up and vp are the
only strings which do not belong to any sub-tree rooted in ci(vp−1) or ci+1(up−1),
for i = 1, 2, . . . , k − 1 and p > 1. Moreover, the strings ci(vp) and ci+1(up) for
i = 1, 2, . . . , k − 1 at level (k + 1)p + i differ only for the ((k + 1)p + 1)-th by
last bit. Consequently, the sub-trees Tci(vp) and Tci+1(up) are isomorphic and
the corresponding strings can be obtained by switching the ((k + 1)p + 1)-th
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from last bit. At any level n ≥ (k + 1)p + i, the number of strings with an odd
number of 1’s deriving from the root ci(vp) is equal to the number of strings
with an even number of 1’s deriving from the root ci+1(up), for any p ≥ 1 and
i = 1, 2, . . . , k − 1.

Since, evidently, up ∈ F
(k)
n,odd and vp ∈ F

(k)
n,even, we can more generally rephrase

the above numbered list in the following proposition:

Proposition 3. The strings in F
(k)
n,odd and in F

(k)
n,even belonging to the generating

tree T0k−11 are such that, for any p ≥ 1,

– at each level n = (k +1)p−1 the set F
(k)
n,odd has one string more than F

(k)
n,even,

namely up = 0k−11(10k−11)p−1;
– at each level n = (k + 1)p the set F

(k)
n,even has one string more than F

(k)
n,odd,

namely vp = (10k−11)p;
– from level (k+1)p+1 on, the strings in F

(k)
n,odd belonging to the subtrees Tci(vp)

and Tci+1(up), for i = 1, 2, . . . , k − 1, are as many as the strings in F
(k)
n,even

belonging to the same subtrees.

Recalling that |F (k)
n,odd| = f

(k)
n,o and |F (k)

n,even| = f
(k)
n,e , Propositions 2 and 3 ensure

that there is an imbalance between f
(k)
n,o and f

(k)
n,e only in the case n = (k+1)p−1

and n = (k + 1)p, for any p ≥ 1. More precisely, noting that if n = (k + 1)p − 1
then n mod (k + 1) = k,

f (k)
n,o = f (k)

n,e + 1 if n mod (k + 1) = k

and
f (k)

n,o = f (k)
n,e − 1 if n mod (k + 1) = 0.

In all the remaining levels, again from Propositions 2 and 3, it is

f (k)
n,o = f (k)

n,e .

Defining

d̄n
(k+1) =

⎧
⎪⎨

⎪⎩

1 if (n mod (k + 1)) = k

−1 if (n mod (k + 1)) = 0
0 otherwise ,

we can write
f (k)

n,o = f (k)
n,e + d̄n

(k+1)
.

which is equivalent to (7) since, clearly, d̄n
(k+1) = d

(k+1)
n+1 .
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4 Conclusion

Binary unrestricted strings of length n with an odd number of 1’s and the ones
with an even number of 1’s are clearly equinumerous, since, for instance, a string
of the first group gives a string of the second one by switching the last bit. If
we consider binary strings of length n avoiding the consecutive pattern 0k, even
if the above easy fact is not true anymore, it is natural to expect that the two
subsets have almost the same cardinality. In Sect. 3 of the present paper we
provided a rigorous proof of this, showing that they are always the same, except
that in particular cases depending on the values of n and k.

The simple bijection ϕ presented in Sect. 2 let to find a combinatorial and
constructive explanation of the cardinalities of the sets Z

(k)
n and R

(k)
n which

formerly were proved only by induction. Moreover, bijection ϕ led to a probably
new interpretation of the famous Fibonacci numbers.
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146, 247–262 (1995)

17. West, J.: Generating trees and forbidden subsequences. Discrete Math. 157, 363–
374 (1996)



Von Neumann Regular Cellular Automata

Alonso Castillo-Ramirez1(B) and Maximilien Gadouleau2
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Abstract. For any group G and any set A, a cellular automaton (CA)
is a transformation of the configuration space AG defined via a finite
memory set and a local function. Let CA(G; A) be the monoid of all CA
over AG. In this paper, we investigate a generalisation of the inverse of a
CA from the semigroup-theoretic perspective. An element τ ∈ CA(G; A)
is von Neumann regular (or simply regular) if there exists σ ∈ CA(G; A)
such that τ ◦ σ ◦ τ = τ and σ ◦ τ ◦ σ = σ, where ◦ is the composi-
tion of functions. Such an element σ is called a generalised inverse of τ .
The monoid CA(G; A) itself is regular if all its elements are regular. We
establish that CA(G; A) is regular if and only if |G| = 1 or |A| = 1, and
we characterise all regular elements in CA(G; A) when G and A are both
finite. Furthermore, we study regular linear CA when A = V is a vector
space over a field F; in particular, we show that every regular linear CA
is invertible when G is torsion-free (e.g. when G = Z

d, d ≥ 1), and that
every linear CA is regular when V is finite-dimensional and G is locally
finite with char(F) � o(g) for all g ∈ G.

Keywords: Cellular automata · Linear cellular automata · Monoids ·
von Neumann regular elements · Generalised inverses

1 Introduction

Cellular automata (CA), introduced by John von Neumann and Stanislaw Ulam
in the 1940s, are models of computation with important applications to computer
science, physics, and theoretical biology. We follow the modern general setting
for CA presented in [5]. For any group G and any set A, a CA over G and A is a
transformation of the configuration space AG defined via a finite memory set and
a local function. Most of the classical literature on CA focus on the case when
G = Z

d, for d ≥ 1, and A is a finite set (see [11]), but important results have
been obtained for larger classes of groups (e.g., see [5] and references therein).

Recall that a semigroup is a set equipped with an associative binary opera-
tion, and that a monoid is a semigroup with an identity element. Let CA(G;A)
be the set of all CA over G and A. It turns out that, equipped with the compo-
sition of functions, CA(G;A) is a monoid. In this paper we apply functions on
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A. Dennunzio et al. (Eds.): AUTOMATA 2017, LNCS 10248, pp. 44–55, 2017.
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the right; hence, for τ, σ ∈ CA(G;A), the composition τ ◦ σ, denoted simply by
τσ, means applying first τ and then σ.

In general, τ ∈ CA(G;A) is invertible, or reversible, or a unit, if there exists
σ ∈ CA(G;A) such that τσ = στ = id. In such case, σ is called the inverse of τ
and denoted by σ = τ−1. When A is finite, it may be shown that τ ∈ CA(G;A)
is invertible if and only if it is a bijective function (see [5, Theorem 1.10.2]).

We shall consider the notion of regularity which, coincidentally, was intro-
duced by John von Neumann in the context of rings, and has been widely studied
in semigroup theory (recall that the multiplicative structure of a ring is precisely
a semigroup). Intuitively, cellular automaton τ ∈ CA(G;A) is von Neumann reg-
ular if there exists σ ∈ CA(G;A) mapping any configuration in the image of τ to
one of its preimages under τ . Clearly, this generalises the notion of reversibility.

Henceforth, we use the term ‘regular’ to mean ‘von Neumann regular’. Let S
be any semigroup. For a, b ∈ S, we say that b is a weak generalised inverse of a if

aba = a.

We say that b is a generalised inverse (often just called an inverse) of a if

aba = a and bab = b.

An element a ∈ S may have none, one, or more (weak) generalised inverses. It
is clear that any generalised inverse of a is also a weak generalised inverse; not
so obvious is that, given the set W (a) of weak generalised inverses of a we may
obtain the set V (a) of generalised inverses of a as follows (see [6, Exercise 1.9.7]):

V (a) = {bab′ : b, b′ ∈ W (a)}.

An element a ∈ S is regular if it has at least one generalised inverse (which
is equivalent of having at least one weak generalised inverse). A semigroup S
itself is called regular if all its elements are regular. Many of the well-known
types of semigroups are regular, such as idempotent semigroups (or bands), full
transformation semigroups, and Rees matrix semigroups. Among various advan-
tages, regular semigroups have a particularly manageable structure which may
be studied using the so-called Green’s relations. For further basic results on
regular semigroups see [6, Sect. 1.9].

Another generalisation of reversible CA has appeared in the literature before
[13,14] using the concept of Drazin inverse [8]. However, as Drazin invertible
elements are a special kind of regular elements, our approach turns out to be
more general and natural.

In the following sections we study the regular elements in monoids of CA.
First, in Sect. 2 we present some basic results and examples, and we establish
that, except for the trivial cases |G| = 1 and |A| = 1, the monoid CA(G;A) is not
regular. In Sect. 3, we study the regular elements of CA(G;A) when G and A are
both finite; in particular, we characterise them and describe a regular submonoid.
In Sect. 4, we study the regular elements of the monoid LCA(G;V ) of linear CA,
when V is a vector space over a field F. Specifically, using results on group rings,
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we show that, when G is torsion-free (e.g., G = Z
d), τ ∈ LCA(G;V ) is regular if

and only if it is invertible, and that, for finite-dimensional V , LCA(G;V ) itself is
regular if and only if G is locally finite and char(F) � |〈g〉|, for all g ∈ G. Finally,
for the particular case when G ∼= Zn is a cyclic group, V := F is a finite field,
and char(F) | n, we count the total number of regular elements in LCA(Zn; F).

2 Regular Cellular Automata

For any set X, let Tran(X), Sym(X), and Sing(X), be the sets of all functions,
all bijective functions, and all non-bijective (or singular) functions of the form
τ : X → X, respectively. Equipped with the composition of functions, Tran(X)
is known as the full transformation monoid on X, Sym(X) is the symmetric
group on X, and Sing(X) is the singular transformation semigroup on X. When
X is a finite set of size α, we simply write Tranα, Symα, and Singα, in each case.

We shall review the broad definition of CA that appears in [5, Sect. 1.4]. Let
G be a group and A a set. Denote by AG the configuration space, i.e. the set of
all functions of the form x : G → A. For each g ∈ G, denote by Rg : G → G
the right multiplication function, i.e. (h)Rg := hg for any h ∈ G. We emphasise
that we apply functions on the right, while [5] applies functions on the left.

Definition 1. Let G be a group and A a set. A cellular automaton over G and
A is a transformation τ : AG → AG satisfying the following: there is a finite
subset S ⊆ G, called a memory set of τ , and a local function μ : AS → A such
that

(g)(x)τ = ((Rg ◦ x)|S)μ, ∀x ∈ AG, g ∈ G,

where (Rg ◦ x)|S is the restriction to S of (Rg ◦ x) : G → A.

The group G acts on the configuration space AG as follows: for each g ∈ G
and x ∈ AG, the configuration x · g ∈ AG is defined by

(h)x · g := (hg−1)x, ∀h ∈ G.

A transformation τ : AG → AG is G-equivariant if, for all x ∈ AG, g ∈ G,

(x · g)τ = ((x)τ) · g.

Any cellular automaton is G-equivariant, but the converse is not true in general.
A generalisation of Curtis-Hedlund Theorem (see [5, Theorem 1.8.1]) establishes
that, when A is finite, τ : AG → AG is a CA if and only if τ is G-equivariant
and continuous in the prodiscrete topology of AG; in particular, when G and A
are both finite, G-equivariance completely characterises CA over G and A.

A configuration x ∈ AG is called constant if (g)x = k, for a fixed k ∈ A, for
all g ∈ G. In such case, we denote x by k ∈ AG.

Remark 1. It follows by G-equivariance that any τ ∈ CA(G;A) maps constant
configurations to constant configurations.
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Recall from Sect. 1 that τ ∈ CA(G;A) is invertible if there exists σ ∈
CA(G;A) such that τσ = στ = id, and that τ ∈ CA(G;A) is regular if there
exists σ ∈ CA(G;A) such that τστ = τ . We now present some examples of CA
that are regular but not invertible.

Example 1. Let G be any nontrivial group and A any set with at least two
elements. Let σ ∈ CA(G;A) be a CA with memory set {s} ⊆ G and local
function μ : A → A that is non-bijective. Clearly, σ is not invertible. As Sing(A)
is a regular semigroup (see [10, Theorem II]), there exists μ′ : A → A such that
μμ′μ = μ. If σ′ is the CA with memory set {s−1} and local function μ′, then
σσ′σ = σ. Hence σ is regular.

Example 2. Suppose that A = {0, 1, . . . , q − 1}, with q ≥ 2. Consider τ1, τ2 ∈
CA(Z;A) with memory set S := {−1, 0, 1} and local functions

(x)μ1 = min{(−1)x, (0)x, (1)x} and (x)μ2 = max{(−1)x, (0)x, (1)x},

respectively, for all x ∈ AS . Clearly, τ1 and τ2 are not invertible, but we show
that they are generalised inverses of each other, i.e. τ1τ2τ1 = τ1 and τ2τ1τ2 = τ2,
so they are both regular. We prove only the first of the previous identities, as the
second one is symmetrical. Let x ∈ AZ, y := (x)τ1, z := (y)τ2, and a := (z)τ1.
We want to show that y = a. For all i ∈ Z and ε ∈ {−1, 0, 1}, we have

(i + ε)y = min{(i + ε − 1)x, (i + ε)x, (i + ε + 1)x} ≤ (i)x.

Hence,
(i)z = max{(i − 1)y, (i)y, (i + 1)y} ≤ (i)x.

Similarly (i − 1)z ≤ (i − 1)x and (i + 1)z ≤ (i + 1)x, so

(i)a = min{(i − 1)z, (i)z, (i + 1)z} ≤ (i)y = min{(i − 1)x, (i)x, (i + 1)x}.

Conversely, we have (i − 1)z, (i)z, (i + 1)z ≥ (i)y, so (i)a ≥ (i)y. In particular,
when q = 2, τ1 and τ2 are the elementary CA known as Rules 128 and 254,
respectively.

The following lemma gives an equivalent definition of regular CA. Note that
this result still holds if we replace CA(G;A) with any monoid of transformations.

Lemma 1. Let G be a group and A a set. Then, τ ∈ CA(G;A) is regular if and
only if there exists σ ∈ CA(G;A) such that for every y ∈ (AG)τ there is ŷ ∈ AG

with (ŷ)τ = y and (y)σ = ŷ.

Proof. If τ ∈ CA(G;A) is regular, there exists σ ∈ CA(G;A) such that τστ = τ .
Let x ∈ AG be such that (x)τ = y (which exists because y ∈ (AG)τ) and define
ŷ := (y)σ. Now,

(ŷ)τ = (y)στ = (x)τστ = (x)τ = y.

Conversely, assume there exists σ ∈ CA(G;A) satisfying the statement of the
lemma. Then, for any x ∈ AG with y := (x)τ we have

(x)τστ = (y)στ = (ŷ)τ = y = (x)τ.

Therefore, τ is regular. �
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Corollary 1. Let G be a nontrivial group and A a set with at least two elements.
Let τ ∈ CA(G;A), and suppose there is a constant configuration k ∈ (AG)τ such
that there is no constant configuration of AG mapped to k under τ . Then τ is
not regular.

Proof. The result follows by Remark 1 and Lemma 1. �
In the following examples we see how Corollary 1 may be used to show that

some well-known CA are not regular.

Example 3. Let φ ∈ CA(Z; {0, 1}) be the Rule 110 elementary CA, and consider
the constant configuration 1. Define x := . . . 10101010 · · · ∈ {0, 1}Z, and note
that (x)φ = 1. Since (1)φ = 0 and (0)φ = 0, Corollary 1 implies that φ is not
regular.

Example 4. Let τ ∈ CA(Z2; {0, 1}) be Conway’s Game of Life, and consider the
constant configuration 1 (all cells alive). By [5, Exercise 1.7.], 1 is in the image
of τ ; since (1)τ = 0 (all cells die from overpopulation) and (0)τ = 0, Corollary 1
implies that τ is not regular.

The following theorem applies to CA over arbitrary groups and sets, and it
shows that, except for the trivial cases, CA(G;A) always contains non-regular
elements.

Theorem 1. Let G be a group and A a set. The semigroup CA(G;A) is regular
if and only if |G| = 1 or |A| = 1.

Proof. If |G| = 1 or |A| = 1, then CA(G;A) = Tran(A) or CA(G;A) is the trivial
semigroup with one element, respectively. In both cases, CA(G;A) is regular (see
[6, Exercise 1.9.1]).

Assume that |G| ≥ 2 and |A| ≥ 2. Suppose that {0, 1} ⊆ A. Let S :=
{e, g, g−1} ⊆ G, where e is the identity of G and e �= g ∈ G (we do not require
g �= g−1). For i = 1, 2, let τi ∈ CA(G;A) be the cellular automaton defined by
the local function μi : AS → A, where, for any x ∈ AS ,

(x)μ1 :=

{
(e)x if (e)x = (g)x = (g−1)x,

0 otherwise;

(x)μ2 :=

{
1 if (e)x = (g)x = (g−1)x = 0,

(e)x otherwise.

We shall show that τ := τ2τ1 ∈ CA(G;A) is not regular.
Consider the constant configurations 0,1 ∈ AG. Let z ∈ AG be defined by

(h)z :=

{
m mod (2) if h = gm,m ∈ N minimal,
0 otherwise.
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z

k0

1

τ2

τ1, τ2

τ1

τ1, τ2

τ1

τ2

Fig. 1. Images of τ1 and τ2.

Figure 1 illustrates the images z, 0, 1, and k �= 0,1 (in case it exists) under
τ1 and τ2. Clearly,

(0)τ = (0)τ2τ1 = (1)τ1 = 1.

In fact,

(k)τ =

{
1 if k = 0,

k otherwise.

Furthermore,
(z)τ = (z)τ2τ1 = (z)τ1 = 0.

Hence, 0 is a constant configuration in the image of τ but with no preimage
among the constant configurations. By Corollary 1, τ is not regular. �

Now that we know that CA(G;A) always contains both regular and non-
regular elements (when |G| ≥ 2 and |A| ≥ 2), an interesting problem is to find
a criterion that describes all regular CA. In the following sections, we solve this
problem by adding some extra assumptions, such as finiteness and linearity.

3 Regular Finite Cellular Automata

In this section we characterise the regular elements in the monoid CA(G;A) when
G and A are both finite (Theorem 3). In order to achieve this, we summarise some
of the notation and results obtained in [2–4].

Definition 2. The following definitions apply for an arbitrary group G and an
arbitrary set A:

1. For any x ∈ AG, the G-orbit of x in AG is xG := {x · g : g ∈ G}.
2. For any x ∈ AG, the stabiliser of x in G is Gx := {g ∈ G : x · g = x}.
3. A subshift of AG is a subset X ⊆ AG that is G-invariant, i.e. for all x ∈ X,

g ∈ G, we have x · g ∈ X, and closed in the prodiscrete topology of AG.
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4. The group of invertible cellular automata over G and A is

ICA(G;A) := {τ ∈ CA(G;A) : ∃φ ∈ CA(G;A) such that τφ = φτ = id}.

In the case when G and A are both finite, every subset of AG is closed in
the prodiscrete topology, so the subshifts of AG are simply unions of G-orbits.
Moreover, as every map τ : AG → AG is continuous in this case, CA(G;A)
consists of all the G-equivariant maps of AG. Theorem 2 is easily deduced from
Lemmas 3, 9 and 10 in [4].

If M is a group, or a monoid, write K ≤ M if K is a subgroup, or a sub-
monoid, of M , respectively.

Theorem 2. Let G be a finite group of size n ≥ 2 and A a finite set of size
q ≥ 2. Let x, y ∈ AG.

(i) Let τ ∈ CA(G;A). If (x)τ ∈ (xG), then τ |xG ∈ Sym(xG).
(ii) There exists τ ∈ ICA(G;A) such that (x)τ = y if and only if Gx = Gy.
(iii) There exists τ ∈ CA(G;A) such that (x)τ = y if and only if Gx ≤ Gy.

Theorem 3. Let G be a finite group and A a finite set of size q ≥ 2. Let
τ ∈ CA(G;A). Then, τ is regular if and only if for every y ∈ (AG)τ there is
x ∈ AG such that (x)τ = y and Gx = Gy.

Proof. First, suppose that τ is regular. By Lemma 1, there exists φ ∈ CA(G;A)
such that for every y ∈ (AG)τ there is ŷ ∈ AG with (ŷ)τ = y and (y)φ = ŷ. Take
x := ŷ. By Theorem 2, Gx ≤ Gy and Gy ≤ Gx. Therefore, Gx = Gy.

Conversely, suppose that for every y ∈ (AG)τ there is x ∈ AG such that
(x)τ = y and Gx = Gy. Choose pairwise distinct G-orbits y1G, . . . , y�G such
that

(AG)τ =
�⋃

i=1

yiG.

For each i, fix y′
i ∈ AG such that (y′

i)τ = yi and Gyi
= Gy′

i
. We define φ : AG →

AG as follows: for any z ∈ AG,

(z)φ :=

{
z if z �∈ (AG)τ,
y′

i · g if z = yi · g ∈ yiG.

The map φ is well-defined because

yi · g = yi · h ⇐⇒ hg−1 ∈ Gyi
= Gy′

i
⇐⇒ y′

i · g = y′
i · h.

Clearly, φ is G-equivariant, so φ ∈ CA(G;A). Now, for any x ∈ AG with (x)τ =
yi · g,

(x)τφτ = (yi · g)φτ = (y′
i · g)τ = (y′

i)τ · g = yi · g = (x)τ.

This proves that τφτ = τ , so τ is regular. �
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Our goal now is to find a regular submonoid of CA(G;A) and describe its
structure (see Theorem 4). In order to achieve this, we need some further termi-
nology and basic results.

Say that two subgroups H1 and H2 of G are conjugate in G if there exists
g ∈ G such that g−1H1g = H2. This defines an equivalence relation on the
subgroups of G. Denote by [H] the conjugacy class of H ≤ G. Define the box in
AG corresponding to [H], where H ≤ G, by

B[H](G;A) := {x ∈ AG : [Gx] = [H]}.

As any subgroup of G is the stabiliser of some configuration in AG, the set
{B[H](G;A) : H ≤ G} is a partition of AG. Note that B[H](G;A) is a subshift
of AG (because G(x·g) = g−1Gxg) and, by the Orbit-Stabiliser Theorem, all the
G-orbits contained in B[H](G;A) have equal sizes. When G and A are clear from
the context, we write simply B[H] instead of B[H](G;A).

Example 5. For any finite group G and finite set A of size q, we have

B[G] = {k ∈ AG : k is constant}.

For any subshift C ⊆ AG, define

CA(C) := {τ ∈ Tran(C) : τ is G-equivariant}.

In particular, CA(AG) = CA(G;A). Clearly,

CA(C) = {τ |C : τ ∈ CA(G;A), τ(C) ⊆ C}.

A submonoid R ≤ M is called maximal regular if there is no regular monoid
K such that R < K < M .

Theorem 4. Let G be a finite group and A a finite set of size q ≥ 2. Let

R :=
{
σ ∈ CA(G;A) : Gx = G(x)σ for all x ∈ AG

}
.

(i) ICA(G;A) ≤ R.
(ii) R is a regular monoid.
(iii) R ∼= ∏

H≤G CA(B[H]).
(iv) R is not a maximal regular submonoid of CA(G;A).

Proof. Part (i) and (iii) are trivial while part (ii) follows by Theorem3.
For part (iv), let x, y ∈ AG be such that Gx < Gy, so x and y are in different

boxes. Define τ ∈ CA(G;A) such that (x)τ = y, (B[Gy])τ = yG, and τ fixes
any other configuration in AG\(B[Gy] ∪ {xG}). It is clear by Theorem 3 that τ
is regular. We will show that K := 〈R, τ〉 is a regular submonoid of CA(G;A).
Let σ ∈ K and z ∈ (AG)σ. If σ ∈ R, then it is obviously regular, so assume
that σ = ρ1τρ2 with ρ1 ∈ K and ρ2 ∈ R. If z ∈ AG\(B[Gy]), it is clear that z
has a preimage in its own box; otherwise (B[Gy])σ = (yG)ρ2 = zG and z has a
preimage in B[Gy]. Hence σ is regular and so is K. �
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4 Regular Linear Cellular Automata

Let V a vector space over a field F. For any group G, the configuration space
V G is also a vector space over F equipped with the pointwise addition and scalar
multiplication. Denote by EndF(V G) the set of all F-linear transformations of
the form τ : V G → V G. Define

LCA(G;V ) := CA(G;V ) ∩ EndF(V G).

Note that LCA(G;V ) is not only a monoid, but also an F-algebra (i.e. a vec-
tor space over F equipped with a bilinear binary product), because, again, we
may equip LCA(G;V ) with the pointwise addition and scalar multiplication. In
particular, LCA(G;V ) is also a ring.

As in the case of semigroups, von Neumann regular rings have been widely
studied and many important results have been obtained. In this chapter, we
study the regular elements of LCA(G;V ) under some natural assumptions on
the group G.

First, we introduce some preliminary results and notation. The group ring
R[G] is the set of all functions f : G → R with finite support (i.e. the set
{g ∈ G : (g)f �= 0} is finite). Equivalently, the group ring R[G] may be defined
as the set of all formal finite sums

∑
g∈G agg with ag ∈ R. The multiplication in

R[G] is defined naturally using the multiplications of G and R:∑
g∈G

agg
∑
h∈G

ahh =
∑

g,h∈G

agahgh.

If we let R := EndF(V ), it turns out that EndF(V )[G] is isomorphic to LCA(G;V )
as F-algebras (see [5, Theorem 8.5.2]).

Define the order of g ∈ G by o(g) := |〈g〉| (i.e. the size of the subgroup
generated by g). The group G is torsion-free if the identity is the only element
of finite order; for instance, the groups Z

d, for d ∈ N, are torsion-free groups.
In the following theorem we characterise the regular linear cellular automata

over torsion-free groups.

Theorem 5. Let G be a torsion-free group and let V be any vector space. A
non-zero element τ ∈ LCA(G;V ) is regular if and only if it is invertible.

Proof. It is clear that any invertible element is regular. Let τ ∈ LCA(G;V ) ∼=
End(V )[G] be non-zero regular. By definition, there exists σ ∈ LCA(G;V ) such
that τστ = τ . As LCA(G;V ) is a ring, the previous is equivalent to

τ(στ − 1) = 0,

where 1 = 1e and 0 = 0e are the identity and zero endomorphisms, respectively.
Since τ �= 0, either στ − 1 = 0, in which case τ is invertible, or στ − 1 is a zero-
divisor. In the latter case, [7, Proposition 6] implies that στ has finite order;
since G is torsion-free, we must have στ = 1, so τ is invertible. �
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The characteristic of a field F, denoted by char(F), is the smallest k ∈ N such
that

1 + 1 + · · · + 1︸ ︷︷ ︸
k times

= 0,

where 1 is the multiplicative identity of F. If no such k exists we say that F has
characteristic 0.

A group G is locally finite if every finitely generated subgroup of G is finite;
in particular, the order of every element of G is finite. Examples of such groups
are finite groups and infinite direct sums of finite groups.

Theorem 6. Let G be a group and let V be a finite-dimensional vector space
over F. Then, LCA(G;V ) is regular if and only if G is locally finite and char(F) �

o(g), for all g ∈ G.

Proof. By [7, Theorem 3] (see also [1,12]), we have that a group ring R[G] is
regular if and only if R is regular, G is locally finite and o(g) is a unit in R for
all g ∈ G. In the case of LCA(G;V ) ∼= End(V )[G], since dim(V ) := n < ∞, the
ring R := End(V ) ∼= Mn×n(F) is regular (see [9, Theorem 1.7]. The condition
that o(g), seen as the matrix o(g)In, is a unit in Mn×n(F) is satisfied if and only
if o(g) is nonzero in F, which is equivalent to char(F) � o(g), for all g ∈ G. �
Corollary 2. Let G be a group and let V be a finite-dimensional vector space
over a field F of characteristic 0. Then, LCA(G;V ) is regular if and only if G
is locally finite.

Henceforth, we focus on the regular elements of LCA(G;V ) when V is a one-
dimensional vector space (i.e. V is just the field F). In this case, EndF(F) ∼= F,
so LCA(G; F) and F[G] are isomorphic as F-algebras.

A non-zero element a of a ring R is called nilpotent if there exists n > 0 such
that an = 0. The following basic result will be quite useful in the rest of this
section.

Lemma 2. Let R be a commutative ring. If a ∈ R is nilpotent, then a is not a
regular element.

Proof. Let R be a commutative ring and a ∈ R a nilpotent element. Let n > 0 be
the smallest integer such that an = 0. Suppose a is a regular element, so there is
x ∈ R such that axa = a. By commutativity, we have a2x = a. Multiplying both
sides of this equation by an−2 we obtain 0 = anx = an−1, which contradicts the
minimality of n. �
Example 6. Suppose that G is a finite abelian group and let F be a field such
that char(F) | |G|. By Theorem 6, LCA(G; F) must have elements that are not
regular. For example, let s :=

∑
g∈G g ∈ F[G]. As sg = s, for all g ∈ G, and

char(F) | |G|, we have s2 = |G|s = 0. Clearly, F[G] is commutative because G is
abelian, so, by Lemma 2, s is not a regular element.
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We finish this section with the special case when G is the cyclic group Zn

and F is a finite field with char(F) | n. By Theorem 6, not all the elements of
LCA(Zn; F) are regular, so how many of them are there? In order to count them
we need a few technical results about commutative rings.

An ideal I of a commutative ring R is a subring such that rb ∈ I for all
r ∈ R, b ∈ I. For any a ∈ R, the principal ideal generated by a is the ideal
〈a〉 := {ra : r ∈ R}. A ring is called local if it has a unique maximal ideal.

Denote by F[x] the ring of polynomials with coefficients in F. When G ∼= Zn,
we have the following isomorphisms as F-algebras:

LCA(Zn; F) ∼= F[Zn] ∼= F[x]/〈xn − 1〉,
where 〈xn − 1〉 is a principal ideal in F[x].

Theorem 7. Let n ≥ 2 be an integer, and let F be a finite field of size q such
that char(F) | n. Consider the following factorization of xn − 1 into irreducible
elements of F[x]:

xn − 1 = p1(x)m1p2(x)m2 . . . pr(x)mr .

For each i = 1, . . . r, let di := deg(pi(x)). Then, the number of regular elements
in LCA(Zn; F) is exactly

r∏
i=1

(
(qdi − 1)qdi(mi−1) + 1

)
.

Proof. Recall that
LCA(Zn; F) ∼= F[x]/〈xn − 1〉.

By the Chinese Remainder Theorem,

F[x]/〈xn − 1〉 ∼= F[x]/〈p1(x)m1〉 × F[x]/〈p2(x)m2〉 × · · · × F[x]/〈pr(x)mr 〉.
An element a = (a1, . . . , ar) in the right-hand side of the above isomorphism is
a regular element if and only if ai is a regular element in F[x]/〈pi(x)mi〉 for all
i = 1, . . . , r.

Fix m := mi, p(x) = pi(x), and d := di. Consider the principal ideals A :=
〈p(x)〉 and B := 〈p(x)m〉 in F[x]. Then, F[x]/B is a local ring with unique
maximal ideal A/B, and each of its nonzero elements is either nilpotent or a unit
(i.e. invertible): in particular, the set of units of F[x]/B is precisely (F[x]/B) −
(A/B). By the Third Isomorphism Theorem, (F[x]/B)/(A/B) ∼= (F[x]/A), so

|A/B| =
|F[x]/B|
|F[x]/A| =

qdm

qd
= qd(m−1).

Thus, the number of units in F[x]/B is

|(F[x]/B) − (A/B)| = qdm − qd(m−1) = (qd − 1)qd(m−1).

As nilpotent elements are not regular by Lemma 2, every regular element
of F[x]/〈pi(x)mi〉 is zero or a unit. Thus, the number of regular elements in
F[x]/〈pi(x)mi〉 is (qdi − 1)qdi(mi−1) + 1. �
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on the Schröder Pattern Poset
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Abstract. The set of Schröder words (Schröder language) is endowed
with a natural partial order, which can be conveniently described by
interpreting Schröder words as lattice paths. The resulting poset is called
the Schröder pattern poset. We find closed formulas for the number of
Schröder words covering/covered by a given Schröder word in terms of
classical parameters of the associated Schröder path. We also enumerate
several classes of Schröder avoiding words (with respect to the length),
i.e. sets of Schröder words which do not contain a given Schröder word.

1 Introduction

In the literature several definitions of patterns in words can be found. In the
present article we consider a notion of pattern which is rather natural when words
are interpreted as lattice paths, by using each letter of the alphabet of the word
to encode a possible step. The notion of pattern in a lattice path investigated
here has been introduced in [1,2], where it has been studied in the case of Dyck
paths. Aim of the present work is to find some analogous enumerative results
in the case of Schröder paths. In order to make this paper self-contained, we
will now briefly recall the main definitions and notations concerning patterns
in paths, and we introduce the basic notions concerning the Schröder pattern
poset.

For our purposes, a lattice path is a path in the discrete plane starting at the
origin of a fixed Cartesian coordinate system, ending somewhere on the x-axis,
never going below the x-axis and using only a prescribed set of steps Γ . We
will refer to such paths as Γ -paths. As a word, a Γ -path can be represented by
the sequence of the letters encoding the sequence of its steps. In view of this,
in the following we will often use the terms “path” and “word” referred to the
same object. Classical examples of lattice paths are Dyck, Motzkin and Schröder
paths, which are obtained by taking Γ to be the set of steps {U,D}, {U,D,H}
and {U,D,H2}, respectively (see Fig. 1). Here letters represent the steps U(p) =
(1, 1), D(own) = (1,−1), H(orizontal) = (1, 0) and H2(orizontal of length 2 ) =
(2, 0), respectively.
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Fig. 1. The Schröder word UUDUH2UDDDH2H2UH2UDH2D represented as a
Schröder path.

Given a Γ -path P , its length is given by the final abscissa of P . Also important
is the word length of P , which is the length of the word associated with P .
For instance, the Schröder path in Fig. 1 has length 22 and word length 17.
Notice that the length of a Schröder path is necessarily even; for this reason it
is sometimes more meaningful to refer to the semilength of a Schröder path.

Given two Γ -paths P and Q, we declare P ≤ Q whenever P occurs as a (not
necessarily contiguous) subword of Q. In this case, we say that P is a pattern
of Q. So, for instance, the Schröder path UH2UDDH2UH2H2D is a pattern of
the Schröder path in Fig. 1. When P is not a pattern of Q we will also say that
Q avoids P . The set PΓ of all Γ -paths endowed with the above binary relation
is clearly a poset.

In the case of Schröder paths, the resulting poset will be denoted S. It is
immediate to see that S has a minimum (the empty path), does not have max-
imum and is locally finite (i.e. all intervals are finite). Moreover, S is a ranked
poset, and the rank of a Schröder path is given by its semilength. An important
fact concerning S is that it is a partial well order, i.e. it contains neither an
infinite properly decreasing sequence nor an infinite antichain (this is actually
a consequence of a well known theorem by Higman [5]). Notice that this is not
the case in another famous pattern poset, the permutation pattern poset, where
infinite antichains do exist (see [8]).

The present paper is devoted to the investigation of some structural and
enumerative properties of the Schröder pattern poset. Specifically, in Sect. 2 we
study the covering relation of S and in Sect. 3 we enumerate some classes of
Schröder paths avoiding a single pattern.

We would like to remark that, even when Γ -paths are interpreted as words
over a suitable alphabet, other kinds of patterns can be defined which are equally
natural and interesting. Just to mention one of the most natural, one can require
an occurrence of a pattern to be constituted by consecutive letters. This orig-
inates what is sometimes called the factor order, which has been studied for
instance in [4] (in the unrestricted case of all words on a given alphabet). Many
papers, such as [3], investigate properties and applications of this more restric-
tive notion of pattern, also extending it to the case in which the pattern is not
required to be a Γ -path itself.
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2 The Covering Relation in the Schröder Pattern Poset

In the Schröder pattern poset S, following the usual notation for the covering
relation, we write P ≺ Q (Q covers P ) to indicate that P ≤ Q and the rank of P
is one less than the rank of Q (i.e., rank(P ) = rank(Q)−1). The results contained
in the present section concern the enumeration of Schröder paths covered by and
covering a given Dyck path Q. We need some notation before stating them.

In a Schröder path Q, let k + 1 be the number of points of Q (having integer
coordinates) lying on the x-axis (call such points p0 = (0, 0), p1, . . . , pk). Then
Q can be factorized (in a unique way) into k Schröder factors F1, . . . , Fk, each
Fi starting at pi−1 and ending at pi. Denote with fi and hi the number of U
and H2 steps of factor Fi, respectively. Notice that fi also equals the number of
D steps of the same factor. Let ai (resp., di) be the number of ascents (resp.
descents) in Fi, where an ascent (resp. descent) is a maximal consecutive run
of U (resp., D) steps. Moreover, we denote with p(Q) and v(Q) the number of
occurrences in Q of a consecutive factor UDU and DUD, respectively. Finally,
we denote with h(Q) the total number of flats of Q, a flat being a maximal
sequence of consecutive H2 steps. The path depicted in Fig. 1 has 4 factors, and
we have f1 = 4, f2 = f3 = 0, f4 = 2, h1 = h2 = h3 = 1, h4 = 2, a1 = 3, a2 =
a3 = 0, a4 = 2, d1 = 2, d2 = d3 = 0, d4 = 2, p(Q) = 1, v(Q) = 0 and h(Q) = 4.

Proposition 1. If Q = F1F2 · · · Fk is a Schröder path with k factors, with Fi

having ai ascents and di descents, then the number of Schröder paths covered by
Q is given by ∑

1≤i≤j≤k

diaj − p(Q) − v(Q) + h(Q). (1)

Proof. There are two (mutually exclusive) ways to obtain a Schröder path cov-
ered by Q, namely:

1. by removing a H2 step, or
2. by removing a U step and a D step.

We examine the two cases separately.

1. It is immediate to observe that one obtains the same path by removing any of
the steps belonging to the same flat, whereas removing a step from different
flats gives rise to different paths. Therefore, the number of distinct Schröder
paths obtained from Q by removing an H2 step is h(Q).

2. We wish to prove that there are
∑

1≤i≤j≤k diaj −p(Q)−v(Q) ways to remove
a U step and a D step from Q and to obtain another Schröder path. We
will proceed by induction on the number k of factors of Q. If k = 1, then
necessarily Q starts with a U step and ends with a D step (otherwise Q = H2,
which has no U and D steps). Observe that, in this case, we can remove any of
the U steps and any of the D steps and the resulting path is still a Schröder
path. Removing steps from the same ascent (and from the same descent)
returns the same path, so we have a1 possible choices to remove a U step
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and d1 possible choices to remove a D step. However, there are some special
cases in which, though removing from different ascents or descents, we obtain
the same path. Specifically, if we have a consecutive string UDU in Q, then
removing from Q the UD of such a string returns the same path as removing
the DU , in spite of the fact that the two U steps belong to different ascents.
In a similar way, the presence of a factor DUD in Q gives the possibility of
getting the same Schröder path by removing steps from different descents. To
avoid overcount, we thus have to subtract the number of consecutive strings
UDU and DUD of Q, thus obtaining a total of d1a1 − p(Q) − v(Q) paths.
Now suppose that k > 1. There are three distinct cases to analyze.

– If we remove both the U and the D steps from the prefix F1 · · · Fk−1

of Q consisting of the first k − 1 factors (which is a Schröder path in
itself, of course), by induction we have

∑
1≤i≤j≤k−1 diaj−p(F1 · · · Fk−1)−

v(F1 · · · Fk−1) distinct choices.
– If we remove both the U and the D steps from the last factor Fk, using

the same argument as in the case k = 1 we get dkak − p(Fk) − v(Fk)
distinct paths.

– Finally, suppose we choose to remove the D step from the prefix
F1 · · · Fk−1 and the U step from the last factor Fk (notice that we are
not allowed to do the opposite, otherwise the resulting path would not
be Schröder). In this case we have ak possible choices for U and

∑k−1
i=1 di

possible choices for D. Once again, however, there are some paths that
are overcounted, occurring when F1 · · · Fk−1 and Fk share a consecutive
UDU or a consecutive DUD. A quick look shows that this overcount is
corrected by subtracting the number of such shared occurrences of con-
secutive UDU and DUD.

The sum of the above three cases gives the required expression.

Finally, summing up the quantities in the two cases above, we obtain precisely
formula (1). �

Remark. If Q is a Dyck path, then h(Q) = 0, and formula (1) reduces to the
analogous formula for Dyck paths obtained in [1,2], since a Schröder path covered
by a Dyck path is necessarily a Dyck path.

Proposition 2. Let P = F1 · · · Fk be a Schröder path having k factors. Denote
with fi the number of U steps in the factor Fi (this is also the number of D steps
in Fi) and with hi the number of H2 steps in Fi. Moreover, let � be the word
length of P . Then the number of Schröder paths covering P is given by

2 + � +
∑

(i,j)
1≤i≤j≤k

(fi + hi)(fj + hj). (2)

Proof. We have two options to obtain a Schröder path covering P :

1. either we add a H2 step, or
2. we add a U step and a D step.
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As in the previous proposition, we examine the two cases separately.

1. Adding a new H2 step in any point of a flat of P returns the same path.
Hence, in order to obtain distinct paths, we can add a H2 step either before
a U step, or before a D step, or at the end of P . Thus we have a total of

2
k∑

i=1

fi + 1

paths covering P in this case.
2. We start by observing that adding a U step in any point of an ascent returns

the same path, and the same holds for D steps (with ascents replaced by
descents). Suppose to add a new U step to P first. In order to obtain distinct
paths, we can add U either before a D step, or before a H2 step, or at the
end of P .

If a U step is added before a D step in Fi, we observe that we cannot add
the new D step in a factor Fj , with j < i, otherwise the path would fall below
the x-axis. With this constraint in mind, we are now allowed to add the new
D step either before a U or before a H2 or at the end of the path. However,
in the first of the three previous cases, we cannot of course add the new D
step before the first allowed U (i.e., at the beginning of the factor); moreover,
adding the new D right before the new U step just added would produce a
substring DUD, which can be obtained also by first adding the U step in
the following available position of P and then adding the D step immediately
after it. Thus, in this case, the number of paths covering P is obtained by
considering the number of possible choices for U to be added in Fi, which is
fi, and the number of possible choices for D, which is

∑
j≥i(fj + hj), and so

it is ∑

(i,j)
1≤i≤j≤k

fi(fj + hj).

If a U step is added before a H2 step in Fi, as in the previous case, we cannot
add the new D step in a factor Fj , with j < i. We can now add the new D
step either before a U (except for the first U of Fi, of course), or before a
H2 or at the end of P . So, in this case, the number of paths covering P is
given by

k∑

i=1

hi ·
⎛

⎝1 +
k∑

j=i

(fj + hj)

⎞

⎠.

Finally, if we add the new U step at the end of P , then the new D step must
necessarily be added after it.
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Summing up, we therefore obtain the following expression for the total num-
ber of paths covering P :

2
k∑

i=1

fi + 1 +
∑

(i,j)
1≤i≤j≤k

fi(fj + hj) +
k∑

i=1

hi ·
⎛

⎝1 +
k∑

j=i

(fj + hj)

⎞

⎠ + 1

=2 +
k∑

i=1

(2fi + hi) +
∑

(i,j)
1≤i≤j≤k

fi(fj + hj) +
∑

(i,j)
1≤i≤j≤k

hi(fj + hj)

=2 + � +
∑

(i,j)
1≤i≤j≤k

(fi + hi)(fj + hj), (3)

which is formula (2). �

Remark 1. Notice that fi + hi is the semilength of the factor Fi. Denoting it
with ϕi, formula (2) can be equivalently written as

2 + � +
∑

(i,j)
1≤i≤j≤k

ϕiϕj .

Remark 2. If P is a Dyck path, then, in the first expression in the chain of
equalities (3), the summand 2

∑k
i=1 fi + 1 gives the number of non-Dyck paths

covering P (i.e., those having one H2 step), and the remaining summands give
the number of Dyck paths covering P . Also in this case, recalling that hi = 0
for all i, we recover the analogous formula for Dyck paths obtained in [1,2].

3 Enumerative Results on Pattern Avoiding Schröder
Paths

Main goal of the present section is to enumerate several classes of Schröder paths
avoiding a given pattern. For any Schröder path P , denote with Sn(P ) the set
of Schröder paths of semilength n avoiding P , and let sn(P ) = |Sn(P )| be its
cardinality. It is completely trivial to observe that

– sn(∅) = 0;
– sn(H2) = Cn, where Cn = 1

n+1

(
2n
n

)
is the n-th Catalan number (sequence

A000108 of [7]), counting the number of Dyck paths of semilength n;
– sn(UD) = 1 when n > 0.

Starting from patterns of semilength 2, we get some interesting enumerative
results. In the next subsections we define several classes of Schröder paths avoid-
ing a single pattern, each of which suitably generalizes the case of a pattern of
semilength 2. In all cases, after having described a general enumeration formula,
we illustrate it in the specific case of the relevant pattern of semilength 2.
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Before delving into computations we state an important lemma, which in
several cases reduces the enumeration of pattern avoiding Schröder paths to
the case of pattern avoiding Dyck paths. In this lemma, as well as in several
subsequent proofs, we will deal with the multiset coefficient

((
n
k

))
, counting the

number of multisets of cardinality k of a set of cardinality n. As it is well known,
the multiset coefficients can be expressed in terms of the binomial coefficients,
namely

((
n
k

))
=

(
n+k−1

k

)
.

Lemma 1. Given a Dyck path P , denote with dn(P ) the number of Dyck paths
of semilength n avoiding P . Then

sn(P ) =
n∑

h=0

(
n + h

n − h

)
dh(P ). (4)

Proof. Let Q be a Schröder path. Clearly Q avoids P if and only if the Dyck
path Q̃ obtained from Q by deleting all horizontal steps avoids P . Therefore, the
set of Schröder paths of semilength n with n − h horizontal steps avoiding P is
obtained by taking in all possible way a Dyck path of semilength h avoiding P
and then adding to it n − h horizontal steps in all possible ways. Observe that,
in a Dyck path of semilength h, one has 2h + 1 possible sites where to insert
a horizontal step, and any number of horizontal steps can be inserted into the
same site. Thus, if n − h horizontal steps have to be inserted, it is necessary to
select a multiset of cardinality n − h from the set of the possible 2h + 1 sites.
This can be done in

(
(2h+1)+(n−h)−1

n−h

)
=

(
n+h
n−h

)
ways, as it is well known. Since h

can be chosen arbitrarily in the set {0, 1, 2, . . . , n}, the total number of Schröder
paths of semilength n avoiding P is given by formula (4), as desired. �

3.1 The Pattern (UD)k

Since (UD)k is a Dyck path, this case can be seen as an immediate consequence
of Lemma 1 together with the results of [1,2].

Proposition 3. For i, j ≥ 1, let Ni,j = 1
i

(
i
j

)(
i

j−1

)
be the Narayana numbers

(sequence A001263 of [7]). Extend such a sequence by setting N0,0 = 1 and
Ni,0 = N0,j = 0, for all i, j > 0. Then

sn((UD)k) =
n∑

h=0

k−1∑

j=0

(
n + h

n − h

)
Nh,j . (5)

The case k = 2 gives rise to an interesting situation. In fact, for the pattern
UDUD, recalling that N0,0 = 1, Ni,0 = 0 and Ni,1 = 1 for all i > 0, formula (5)
gives

sn(UDUD) =
n∑

h=0

(
n + h

n − h

)
Nh,0 +

n∑

h=0

(
n + h

n − h

)
Nh,1

= 1 +
n∑

h=1

(
n + h

n − h

)
=

n∑

h=0

(
2n − h

h

)
. (6)
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Since it is well known that Fibonacci numbers (Fn)n (sequence A000045 in
[7]) can be expressed in terms of binomial coefficients as1 Fn+1 =

∑
k≥0

(
n−k

k

)
,

we get sn(UDUD) = F2n+1, i.e. Schröder paths avoiding UDUD are counted
by Fibonacci numbers having odd index (sequence A122367 of [7]).

Remark. Notice that, for a Schröder path, avoiding the (Schröder) path UDUD
is equivalent to avoiding the (non-Schröder) path DU . As suggested by one of the
referees, a simple combinatorial argument to count Schröder words of semilength
n avoiding the subword DU is the following: if the word contains k H2 steps,
then it can be constructed by taking the word Un−kDn−k and inserting k H2

steps. Taking into account all possibilities, and summing over k, gives precisely
formula (6).

3.2 The Pattern UkDk

This case is similar to the previous one, in that it can be easily inferred from
Lemma 1, since the generic pattern of the class is a Dyck path. Thus, applying
the above mentioned lemma and using results of [1,2], we obtain the following
result.

Proposition 4. For all k ≥ 0, we have

sn(UkDk) =
k−1∑

h=0

(
n + h

n − h

)
Ch +

(
n + k

n − k

)
(Ck − 1)

+
min{2k−1,n}∑

h=k+1

∑

j≥1

(
n + h

n − h

)
b2k−j,h−k+j , (7)

where the Cn’s are the Catalan numbers and the bi,j’s are the ballot numbers
(sequence A009766 of [7]).

Setting k = 2 in formula (7), for Schröder paths of semilength n ≥ 3 avoiding
UUDD we obtain the following polynomial of degree 4 (sequence A027927 of [7]):

sn(UUDD) = 1 +
(

n + 1
n − 1

)
+

(
n + 2
n − 2

)
= 1 +

n(n + 1)(n2 + n + 10)
24

.

3.3 The Pattern Hk
2

In this case the generic pattern of this class is not a Dyck path. However, we are
able to give a direct argument to count Schröder paths avoiding Hk

2 .

1 Notice that the sum contains only a finite number of nonzero terms, since the bino-
mial coefficients vanish when k > �n/2�.
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Proposition 5. For all n, k ≥ 0, we have

sn(Hk
2 ) =

k−1∑

i=0

(
2n − i

i

)
Cn−i. (8)

Proof. We observe that a Schröder path avoids the pattern Hk
2 if and only if it

has at most k − 1 H2 steps. Thus, the set of all Schröder paths of semilength n
avoiding Hk

2 can be obtained by taking the set of all Dyck paths of semilength
n − i and inserting in all possible ways i H2 steps, for i running from 0 to k − 1.
Since in a Dyck path of semilength n − i there are precisely 2n − 2i + 1 points
in which inserting the horizontal steps, and we have to insert i horizontal steps
(possibly inserting more than one H2 step in the same place), we get

sn(Hk
2 ) =

k−1∑

i=0

((
2n − 2i + 1

i

))
Cn−i =

k−1∑

i=0

(
2n − 2i + 1 + i − 1

i

)
Cn−i

=
k−1∑

i=0

(
2n − i

i

)
Cn−i,

as desired. �

When k = 2 we obtain the following special case:

sn(H2H2) = Cn + (2n − 1)Cn−1 =
n + 3

2
Cn =

n + 3
2(n + 1)

(
2n

n

)
,

which is valid for n ≥ 1. This is sequence A189176 of [7], whose generating
function is 1−5x+4x2−(1−5x)

√
1−4x

2x(1−4x) , and can be also obtained as the row sums of
a certain Riordan matrix (see [7] for details).

3.4 The Pattern UHk−1
2 D

This class of patterns requires a little bit more care, nevertheless we are able to
get a rather neat enumeration formula.

Proposition 6. For all n ≥ 0, k > 1, we have

sn(UHk−1
2 D) = 1 +

n∑

h=1

min{k−2,n−h}∑

i=0

((
2h − 1

i

))
(n − h − i + 1)Ch. (9)

Proof. Let P be a Schröder path of semilength n avoiding UHk−1
2 D. If P does

not contain U steps, then necessarily P = Hn
2 . Otherwise, P can be decomposed

into three subpaths, namely:
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– a prefix, consisting of a (possibly empty) sequence of horizontal steps;
– a path starting with the first U step and ending with the last D step (neces-

sarily not empty);
– a suffix, consisting of a (possibly empty) sequence of horizontal steps.

The central portion of P in the above decomposition has at most k − 2
horizontal steps. Thus it can be obtained starting from a Dyck path of semilength
h, for some 1 ≤ h ≤ n, and adding i horizontal steps, for some 0 ≤ i ≤ min{k −
2, n−h}. Such horizontal steps can be inserted into 2h−1 possible sites (here we
have to exclude the starting and the ending points, since the subpath is required
to start with a U and end with a D), with the possibility of inserting several
steps into the same site, as usual. The resulting path has therefore semilength
h + i, and has to be completed by adding a suitable number of horizontal steps
at the beginning and at the end, to obtain a Schröder path of semilength n:
there are n − h − i + 1 possible ways to do it. We thus obtain formula (9) for
sn(UHk−1

2 D), as desired. �

Formula (9) becomes much simpler in the special case k = 2 of Schröder
paths of semilength n avoiding UH2D. Indeed we obtain:

sn(UH2D) = 1 +
n∑

h=1

(n − h + 1)Ch =
n∑

h=0

Ch(n − h) +
n∑

h=0

Ch − n.

In this case, we can find an interesting expression for the generating function
of these coefficients in terms of the generating function C(x) =

∑
n≥0 Cnxn of

Catalan numbers, which provides an easy way to compute them:
∑

n≥0

sn(UH2D)xn = C(x) ·
∑

n≥0

nxn + C(x) ·
∑

n≥0

xn −
∑

n≥0

nxn

= C(x)
(

x

(1 − x)2
+

1
1 − x

)
− x

(1 − x)2

=
1

(1 − x)2
(C(x) − x).

Roughly speaking, the above generating function tells us that sn(UH2D)
is given by the partial sums of the partial sums of the sequence of Catalan
numbers where C1 is replaced by 0. The associated number sequence starts with
1, 2, 5, 13, 35, 99, 295, . . . and does not appear in [7].

3.5 The Pattern Hk−1
2 UD

The last class of patterns we consider is the most challenging one. It gives rise
to an enumeration formula which is certainly less appealing than the previous
ones. Due to space limitation, we will just sketch its proof and simply state the
special case corresponding to k = 2. Before illustrating our final results, we need
to introduce a couple of notations.



66 L. Cioni and L. Ferrari

We denote with Pk,h the number of Dyck prefixes of length k ending at height
h. Notice that we can express these coefficients in terms of the ballot numbers
bi,j = i−j+1

i+1

(
i+j

i

)
, counting the number of Dyck prefixes with i up steps and j

down steps, as follows:
Ph,k =

∑

i,j
i−j=h
i+j=k

bi,j .

Moreover, we denote with Sn,q the number of Schröder paths of semilength
n having exactly q horizontal steps. Since each such path can be uniquely deter-
mined by a Dyck path of semilength n − q with q horizontal steps added, we
have a rather easy way to compute Sn,q in terms of the Catalan numbers Cn:

Sn,q = Cn−q

((
2(n − q) + 1

q

))
=

(
2n − q

q

)
Cn−q.

Proposition 7. For all n ≥ 0, k > 1, we have

sn(Hk−1
2 UD) =

k−2∑

q=0

Sn,q

+
2n−2k+2∑

p=0

2n−p−2k+2∑

h=0

Pp,h

((
p + 1
k − 2

)) (( 2n−h−p−2k+4
2

h

))
. (10)

Proof. Let P be a Schröder path of semilength n. If P contains less than k−1 hor-
izontal steps, then it necessarily avoids Hk−1

2 UD. This gives the term
∑k−2

q=0 Sn,q

in the r.h.s. of (10). If instead P contains at least k −1 horizontal steps, then, in
order to avoid Hk−1

2 UD, it has to be decomposable into a Schröder prefix ending
at some height h and having exactly k − 2 horizontal steps, and a suffix starting
with a horizontal step followed exclusively by H2 and D step (with exactly h D
steps). The generic Schröder prefix of the required form can be obtained by tak-
ing a Dyck prefix of length p, for some 0 ≤ p ≤ 2n−2k +2, and adding k −2 H2

steps in all possible ways. We thus get a total of Pp,h ·
((

p+1
k−2

))
Schröder prefixes

of length p + 2k − 4 ending at height h and containing exactly k − 2 H2 steps.
The generic suffix of the required form contains h D steps and 2n−h−p−2k+4

2
H2 steps. Such a suffix can be obtained by inserting the h down steps into the
sequence of horizontal steps in all possible ways. Since the first step has to be
a horizontal one, this gives a total of

(( 2n−h−p−2k+4
2
h

))
allowed suffixes. Putting

together all the contributions, we get the desired expression for sn(Hk−1
2 UD).

�

Specializing to k = 2 we obtain

sn(H2UD) = Cn +
2n−2∑

p=0

2n−p−2∑

h=0

Pp,h

(( 2n−h−p
2

h

))
.
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4 Suggestions for Further Work

It would be very interesting to investigate in more detail the structural properties
of the Schröder pattern poset. A typical question in this context concerns the
computation of the Möbius function, which is still open even in the Dyck pattern
poset. Another (partially related) issue is the enumeration of (saturated) chains.
More generally, can we say anything about the order structure of intervals (for
instance, is it possible to determine when they are lattices?)?

Concerning the enumeration of pattern avoiding classes, the next step would
be to count classes of Schröder words simultaneously avoiding two or more
patterns.

Finally, it would be nice to have information on the asymptotic behavior of
integer sequences counting pattern avoiding Schröder words. In the Dyck case,
all the sequences which count Dyck words avoiding a single pattern P have the
same asymptotic behavior (which is roughly exponential in the length of P ).
This is in contrast, for instance with the permutation pattern poset, where the
asymptotic behavior of a class of pattern avoiding permutations depends on the
patterns to be avoided (this is the ex Stanley-Wilf conjecture, proven by Marcus
and Tardos [6]). What does it happen in the Schröder pattern poset?
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Abstract. In previous works, the idea of walking into a N-cube where
a balanced Hamiltonian cycle have been removed has been proposed as
the basis of a chaotic PRNG whose chaotic behavior has been proven.
However, the construction and selection of the most suited balanced
Hamiltonian cycles implies practical and theoretical issues. We propose
in this paper a canonical form for representing isomorphic Gray codes.
It provides a drastic complexity reduction of the exploration of all the
Hamiltonian cycles and we discuss some criteria for the selection of the
most suited cycles for use in our chaotic PRNG.

1 Introduction

The problem of designing Pseudo-Random Number Generators (PRNG) that
satisfy the probabilistic properties to produce a uniform distribution is diffi-
cult. Moreover, the knowledge of the generation algorithm and any sequence
of previously generated bits should not constitute a sufficient piece of informa-
tion to predict the next generated bits without knowing initial conditions. In
order to build such PRNG, some studies have focused on the use of chaotic
systems [2,6,7].

In a previous work [4], some of the authors have proposed a PRNG based
on random walk in a N-cube where a balanced Hamiltonian cycle has been
removed, and its chaotic nature has been proved. Moreover, it has been shown
that the removed Hamiltonian cycle should be balanced in order to produce more
efficient PRNG. Balanced Hamiltonian cycles are cycles in which the numbers of
occurrences of the traversed dimensions are equal or differ at most by 2. In [8], the
authors have proposed an approach that provides a subset of all the Hamiltonian
cycles. This approach is however undeterministic and the cardinal number of the
produced subset is dramatically small compared to the one of all the Hamiltonian
cycles. In some sense, it is a partial solution of finding Hamiltonian cycles.

The undeterministic aspect of this approach has been tackled in [3] where
we have proposed a particularization of it. This new procedure succeed to find
balanced Hamiltonian cycles for any dimension N and solves this issue. Never-
theless, pursuing our objective to enhance the specification of the Hamiltonian
cycles most suited to the use in our PRNG, we have been confronted to the fact
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A. Dennunzio et al. (Eds.): AUTOMATA 2017, LNCS 10248, pp. 68–80, 2017.
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that procedure detailed in [3] cannot produce all non-isomorphic balanced codes:
it is indeed a particularization of a partial solution.

In [10], the author proposed an approach to produce all the cycles of a
graph. This work may thus solve the problem of finding a large set of bal-
anced Hamiltonian given a dimension N. However, the approach suffers from
being too exhaustive and cannot be applied as soon as the dimension of the
N-cube is larger than 5. One solution could be to study cycles, whose embedding
into PRNG gives distinct behaviors, i.e. which do not belong in the same class
w.r.t an equivalence relation. For that, this work proposes a canonical form ded-
icated to cycles and its application to the generation of a large set of balanced
Hamiltonian cycles.

This paper presents these two elements. In the following section is presented
the canonical form of Hamiltonian cycles, followed in Sect. 3 by the description
of our novel algorithm. The practical interest of the algorithm is discussed in
Sect. 4.

2 Canonical Form of Gray Codes

Let SN = {1, ...,N}2N , the set of sequences of length 2N with values in {1, ...,N}.
Let HN ⊂ SN, the set of sequences describing Hamiltonian cycles in a N-cube.
Each of these sequences gives the succession of the dimensions followed by the
path. Any Hamiltonian cycle of HN can be written as h = (h1, ..., h2N). Also, we
remind the reader that a Hamiltonian cycle in a N-cube is a Gray code.

We call the canonical form of a Hamiltonian cycle, an equivalent description
of the cycle that is obtained, through a specific computation process, for all its
isomorphic cycles.

Before describing our computation process of the canonical forms, we provide
below an overview of the different cases of isomorphism between cycles.

2.1 Isomorphic Cycles

Intuitively, Hamiltonian cycles are isomorphic to each other when the paths
they describe can be topologically superposed. Indeed, a same Hamiltonian
cycle can be expressed in many sequences according to some simple (global)
transformations of the N-cube, leading to a set of isomorphic cycles. We list
below the different transformations that can be applied to a sequence to produce
isomorphic cycles.

First of all, it can be noticed that describing a cycle by the sequence of the
traversed dimensions in the N-cube does not specify any starting vertex. So,
a sequence does not represent only a single cycle but the 2N cycles that are
isomorphic up to the starting position in the N-cube.

In a similar way, applying a cyclic shift to a sequence, in any direction, is
equivalent to change only its starting vertex, but this does not change the path
topology. So, shifted sequences are also isomorphic cycles.
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Moreover, as the N-cubes considered in the scope of this paper are not ori-
ented, the direction of the cycle is not significant and then, an isomorphic cycle
is obtained by inverting the order of a sequence.

Finally, cycles can also be isomorphic up to rotations/symmetries, which are
obtained by renumbering the dimensions of the N-cube. For example, exchanging
dimensions 2 and 3 in a 3-cube is similar to performing a 90◦ rotation around
dimension 1. In the following, that operation may also be referred to as the
relabeling of a sequence since it only changes the dimensions labels. It is worth
noticing that some dimensions relabelings are equivalent to the sequence inver-
sion combined with a cyclic shift.

In order to define the canonical form of Hamiltonian cycle, we need to intro-
duce some functions over HN.

2.2 Preliminary Tools

Let R : HN → HN, the function that renumbers a Hamiltonian cycle h to a
sequence R(h) by mapping the successive distinct values (dimensions) of h to
the ordered values from 1 to N. So, the first value h1 of h is necessarily mapped
to 1, then the first distinct value in the remaining of h (that is (h2, . . . , h2N)) is
mapped to 2, and so on. As function R applies a renumbering, it follows that
∀i, j ∈ {1, . . . , 2N}, hi = hj ⇔ R(h)i = R(h)j .

The effect of function R is to apply rotations/symmetries to a sequence, by
relabeling the dimensions of the N-cube, in order to express it in a specific order
of the traversed dimensions, without modifying topology of the path. So, this
function is an automorphism on HN.

As an example, if we have N = 3 and the sequence h = (2, 3, 1, 3, 2, 3, 1, 3),
then R(h) = (1, 2, 3, 2, 1, 2, 3, 2). So, the dimensions 1, 2 and 3 are respectively
replaced by (relabeled) 3, 1 and 2 (as shown in Fig. 1), where the three dimensions
labels and the starting vertex are fixed. It can be seen that both sequences are
isomorphic up to a rotation around dimension 1 and an orientation inversion.

As the lexicographic order over sequences of length N provides a total order
on HN, the results of R are totally ordered. So, for any subset X of HN there

R

Starting
vertex

1

2

3

h = (2,3,1,3,2,3,1,3)

1

2

3

R(h) = (1,2,3,2,1,2,3,2)

Fig. 1. Application of function R on sequence h = (2, 3, 1, 3, 2, 3, 1, 3).
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exists a unique minimal value of the results of R applied to any h ∈ X. This
property is used in the computation of our canonical form.

Let D : HN × {1, . . . , 2N} → HN, the function that associates to a sequence
h = (h1, . . . , h2N) and an integer k, the sequence D(h, k) = (hk, hk+1, . . . ,
h2N , h1, h2, . . . , hk−1), which is h after k − 1 successive left cyclic shifts, so that
hk becomes the first value of the sequence.

The effect of function D is simply to change the starting point of the sequence,
without modifying the cycle itself, as can be seen on Fig. 2. As well as function
R, this function is also an automorphism on HN and it is also used to compute
our canonical form of isomorphic cycles.

Going back to our previous example sequence h = (2, 3, 1, 3, 2, 3, 1, 3) and
choosing k = 3, we obtain D(h, 3) = (1, 3, 2, 3, 1, 3, 2, 3).

Starting
vertex

D

1

2

3

h = (2,3,1,3,2,3,1,3)

1

2

3

D(h,3) = (1,3,2,3,1,3,2,3)

Fig. 2. Application of function D on sequence h = (2, 3, 1, 3, 2, 3, 1, 3) and k = 3.

Let W : Hn × {1, . . . , 2N} → {1, . . . , 2N}, the function that associates to a
sequence h and an integer k, the length of the minimal sub-sequence of cycle h
starting at hk and containing all the values in {1, . . . , n}.

Getting back to our example h and choosing k = 4, we have
W ((2, 3, 1, 3, 2, 3, 1, 3), 4) = 4 as the smallest sub-sequence containing {1, 2, 3}
starting from h4 = 3 in h is (2, 3, 1, 3, 2, 3, 1, 3), that is to say (3, 2, 3, 1), whose
length is 4. In the same way, we have W ((2, 3, 1, 3, 2, 3, 1, 3), 7) = 3 as the min-
imal sub-sequence from h7 = 1 is (1, 3, 2). However, we can notice too that
W ((2, 3, 1, 3, 2, 3, 1, 3), 8) = 4.

In [1], Bykov uses this notion of minimal sub-sequence containing all the
dimensions of the N-cube to define the window width of a sequence h. It corre-
sponds to the maximal value of function W over all the possible starting points
in the sequence. It provides information about the local balance between the tra-
versed dimensions along the cycle. This window width can be defined by M(h),
for h ∈ HN as:

M(h) = max
k∈{1,...,2N}

W (h, k) (1)
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2.3 Canonical Form

The function C : HN → HN, defined by:

C(h) = min {R(D(h, k))| k is s.t. W (h, k) = M(h)} (2)

produces the canonical form of any sequence from HN. Notice that this set is
ordered according to the aforementioned lexical ordering, which is total.

The role of the C function is to provide a unique representative of for each
class of Hamiltonian cycle. By class of Hamiltonian cycle, we mean the set of
isomorphic Hamiltonian cycles according to translations (changing the start-
ing point of the sequence) and rotations/symmetries (changing the dimensions
labels). So, we have the following theorem.

Theorem 1. For any cycles a and b in HN, C(a) = C(b) if and only if a and b
are isomorphic cycles.

Proof. As both functions R and D are automorphisms on HN, the composite
function R ◦ D also is an automorphism on HN. Thus, for any integer k ∈
{1, . . . , 2N}, sequence R(D(h, k)) is isomorphic to sequence h, and so is C(h).
Also, this implies that for any two non-isomorphic sequences h and g in HN,
there does not exist any couples of integers i and j in {1, . . . , 2N} such that
R(D(h, i)) = R(D(g, j)). Thus, the results of C(h) and C(g) are necessarily
different when h and g are not in the same classes of isomorphic cycles.

However, there remains the question of uniqueness of the result of C for all
sequences in a same class of HN. That property induces that for any two iso-
morphic sequences h and g in HN, there exist two integers i and j in {1, . . . , 2N}
such that R(D(h, i)) = R(D(g, j)). From the previous observations, it is obvious
that R(D(h, k)) is isomorphic to R(D(g, j)), but we have to show that for some
adequately chosen i and j, they are identical sequences.

As a first step, let us consider two sequences h = (h1, . . . , hl) and g =
(g1, . . . , gl) that are isomorphic only up to rotations/symmetries. As such trans-
formations can be expressed by dimensions relabeling, it follows that g and h
are mutual relabelings of each others:

h1 ↔ g1, h2 ↔ g2, . . . , hl ↔ gl (3)

and
∀i, j ∈ {1, . . . , l} hi = hj ⇔ gi = gj (4)

Moreover, R(h) and R(g) are also respective relabelings of h and g. The fact
that R(h) = R(g) is ensured by the ordered relabeling over {1, . . . , n}. Indeed,
as the relabeling follows the numerical order of integers, it produces the same
sequence for h and g according to the total lexicographic order over HN:

h1 → 1, g1 → 1
h2 → 2, g2 → 2 (5)
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and due to (4), we have:

∀i ∈ {3, . . . , l}, k ∈ {1, . . . , n}, hi → k ⇔ gi → k (6)

Thus, function R produces the same result for sequences that are isomorphic
up to rotations/symmetries.

The next step consists in taking into account cyclic shifts between sequences.
Solving this problem is similar to finding a way to re-align all isomorphic cycles
according to a common starting vertex. Fortunately, this is possible according to
the notion of window width, previously introduced and expressed by functions W
and M . Indeed, the window width discriminates the positions in a sequence, by
identifying the ones with the highest local balance, that is to say the ones from
which starts the longest minimal sub-sequence containing all values in {1, .., n}.
Obviously, the window width is the same for all isomorphic cycles, as they have
the same sequence of local balances up to a cyclic shift, whatever the labels of the
dimensions. For any class of cycles, there is at least one position corresponding
to the window width and we use it as the reference starting position to force the
alignment of all cycles in the class.

When there is exactly one such position in a class, there is no ambiguity and
every cycle of the class if shifted to begin at this position. However, for some
classes, there might exist several positions corresponding to the window width.
Thus, an additional deterministic selection must be applied to those possibilities.
This is where the total lexicographic order is exploited, by selecting the position
whose ordered relabeling produces the smallest sequence relatively to that order.
This is what is expressed by the min operator in function C. As the result is
a minimal value over a totally ordered space, it is unique and it ensures the
common re-alignment of all the cycles in a same class.

So, function C re-aligns isomorphic cycles to a common starting position
and relabels their dimensions in an ordered way that ensures a unique result for
isomorphic cycles. 	


Finally, it is worth noticing that it is the use of the window width notion com-
bined to cyclic shifts, the total lexicographic order over HN and the dimensions
relabeling that allows us to compute a unique class representative.

So, the binary relation E induced by function C:

∀a, b ∈ HN, E(a, b) =
{

1 if C(a) = C(b)
0 otherwise (7)

is an equivalence relation over HN since C is a function.

2.4 Examples of Application of C

Applying function C to our example sequence h = (2, 3, 1, 3, 2, 3, 1, 3) yields
C(h) = (1, 2, 1, 3, 1, 2, 1, 3) and M(h) = 4. Moreover, that maximal value is
obtained for the positions: 2, 4, 6 and 8. So, it is necessary to compute the
sequences R(D(h, 2)), R(D(h, 4)), R(D(h, 6)), and R(D(h, 8)) in order to get the
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Table 1. Application of R ◦ D to h = (2, 3, 1, 3, 2, 3, 1, 3).

k D(h, k) R(D(h, k))

2 (3,1,3,2,3,1,3,2) (1,2,1,3,1,2,1,3)

4 (3,2,3,1,3,2,3,1) (1,2,1,3,1,2,1,3)

6 (3,1,3,2,3,1,3,2) (1,2,1,3,1,2,1,3)

8 (3,2,3,1,3,2,3,1) (1,2,1,3,1,2,1,3)

minimal one according to the lexicographic order over HN, leading to results
in Table 1.

Finally, as the four results are identical, the minimal sequence is this unique
result, leading to C(h) = (1, 2, 1, 3, 1, 2, 1, 3).

In fact, it can be checked that all the sequences in H3 lead to that unique
result of function C. This comes from the fact that there is only one Gray code
up to isomorphism in H3.

In order to provide a more representative example, let us apply function
C to some cycles from a N-cube providing several classes of Hamiltonian
cycles. If we consider h = (1, 2, 1, 3, 4, 3, 2, 1, 2, 3, 4, 2, 4, 1, 4, 3) in H4, then
M(h) = 6 and there are five possible starting positions: 6, 9, 11, 13 and 16.
Figure 3(a) gives the results of R◦D for those possibilities. The minimal vector is
(1, 2, 1, 3, 1, 4, 3, 2, 3, 4, 1, 4, 2, 3, 2, 4), and so is C(h).

Now, let us build a cycle g that is isomorphic to h by applying to h the
following operations:

1- invert the sequence order → (3, 4, 1, 4, 2, 4, 3, 2, 1, 2, 3, 4, 3, 1, 2, 1)
2- apply 4 left cyclic shifts → (2, 4, 3, 2, 1, 2, 3, 4, 3, 1, 2, 1, 3, 4, 1, 4)
3- exchange dimensions 2 and 3 → (3, 4, 2, 3, 1, 3, 2, 4, 2, 1, 3, 1, 2, 4, 1, 4)

We thus have g = (3, 4, 2, 3, 1, 3, 2, 4, 2, 1, 3, 1, 2, 4, 1, 4) and M(g) = 6 with
five corresponding starting positions: 3, 9, 12, 14 and 16. From the appli-
cation of R ◦ D on those instances, depicted in Fig. 3(b), we deduce that
C(g) = (1, 2, 1, 3, 1, 4, 3, 2, 3, 4, 1, 4, 2, 3, 2, 4) and that C(g) = C(h).

As a last example, let us consider another cycle in H4 that is not isomorphic to
g and h. This is the case for f = (3, 1, 4, 1, 2, 1, 4, 1, 3, 1, 4, 1, 2, 1, 4, 1) because the
numbers of occurrences of the dimensions are not equal in f , whereas they are for
g and h. For the computation of C(f), we have M(f) = 8 and four corresponding
starting positions: 2, 6, 10 and 14. All four positions produce the same result by
R ◦D, shown in Fig. 3(c), and then C(f) = (1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4),
which is different from C(g) and C(h).

This illustrates the class separation realized by function C when there are
several classes in the considered HN space, as non-isomorphic cycles lead to
distinct results whereas isomorphic cycles lead to the same one.
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k D(h, k) R(D(h, k))

6 (3, 2, 1, 2, 3, 4, 2, 4, 1, 4, 3, 1, 2, 1, 3, 4) (1, 2, 3, 2, 1, 4, 1, 3, 2, 3, 1, 4, 3, 4, 2, 4)
9 (2, 3, 4, 2, 4, 1, 4, 3, 1, 2, 1, 3, 4, 3, 2, 1) (1, 2, 3, 1, 3, 4, 3, 2, 4, 1, 4, 2, 3, 2, 1, 4)
11 (4, 2, 4, 1, 4, 3, 1, 2, 1, 3, 4, 3, 2, 1, 2, 3) (1, 2, 1, 3, 1, 4, 3, 2, 3, 4, 1, 4, 2, 3, 2, 4)
13 (4, 1, 4, 3, 1, 2, 1, 3, 4, 3, 2, 1, 2, 3, 4, 2) (1, 2, 1, 3, 2, 4, 2, 3, 1, 3, 4, 2, 4, 3, 1, 4)
16 (3, 1, 2, 1, 3, 4, 3, 2, 1, 2, 3, 4, 2, 4, 1, 4) (1, 2, 3, 2, 1, 4, 1, 3, 2, 3, 1, 4, 3, 4, 2, 4)

(a) h = (1, 2, 1, 3, 4, 3, 2, 1, 2, 3, 4, 2, 4, 1, 4, 3).

k D(g, k) R(D(g, k))

3 (2, 3, 1, 3, 2, 4, 2, 1, 3, 1, 2, 4, 1, 4, 3, 4) (1, 2, 3, 2, 1, 4, 1, 3, 2, 3, 1, 4, 3, 4, 2, 4)
9 (2, 1, 3, 1, 2, 4, 1, 4, 3, 4, 2, 3, 1, 3, 2, 4) (1, 2, 3, 2, 1, 4, 2, 4, 3, 4, 1, 3, 2, 3, 1, 4)
12 (1, 2, 4, 1, 4, 3, 4, 2, 3, 1, 3, 2, 4, 2, 1, 3) (1, 2, 3, 1, 3, 4, 3, 2, 4, 1, 4, 2, 3, 2, 1, 4)
14 (4, 1, 4, 3, 4, 2, 3, 1, 3, 2, 4, 2, 1, 3, 1, 2) (1, 2, 1, 3, 1, 4, 3, 2, 3, 4, 1, 4, 2, 3, 2, 4)
16 (4, 3, 4, 2, 3, 1, 3, 2, 4, 2, 1, 3, 1, 2, 4, 1) (1, 2, 1, 3, 2, 4, 2, 3, 1, 3, 4, 2, 4, 3, 1, 4)

(b) g = (3, 4, 2, 3, 1, 3, 2, 4, 2, 1, 3, 1, 2, 4, 1, 4).

k D(f, k) R(D(f, k))

2 (1, 4, 1, 2, 1, 4, 1, 3, 1, 4, 1, 2, 1, 4, 1, 3) (1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4)
6 (1, 4, 1, 3, 1, 4, 1, 2, 1, 4, 1, 3, 1, 4, 1, 2) (1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4)
10 (1, 4, 1, 2, 1, 4, 1, 3, 1, 4, 1, 2, 1, 4, 1, 3) (1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4)
14 (1, 4, 1, 3, 1, 4, 1, 2, 1, 4, 1, 3, 1, 4, 1, 2) (1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4)

(c) f = (3, 1, 4, 1, 2, 1, 4, 1, 3, 1, 4, 1, 2, 1, 4, 1)

Fig. 3. Application of R ◦ D to cycles from H4.

2.5 Discussion over the Interest of the Canonical Form

This work provides an efficient way to partition the HN space up to isomorphisms
by computing unique representatives of the classes. Such partitions are very
useful as soon as one wants to study properties of Gray codes in dimensions
larger than 3, as it is possible to focus only on classes representatives. This lead
to more efficient algorithms as the number of classes increases much slowly than
the number of instances. Moreover, the total order over the class representatives
can also be exploited to implement efficient storage and classification algorithms
when exploring a given HN space.

3 Balanced Gray Codes Generation Algorithm

We remind the reader that in balanced Gray codes, the dimensions of the N-cube
are used a same number of times or at most with a difference of two occurrences.
When all the dimensions are used exactly the same number of times, we speak of
totally balanced Gray codes. This is only possible for N-cubes whose dimension
is a power of 2.

In order to generate the complete subset of balanced Gray codes in a given HN

space, we have adapted the (d, g)−algorithm proposed by Wild [10] to generate
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all the Hamiltonian cycles. As this algorithm produces more cycles than the ones
we are interested in, we had to insert an additional selection phase during the
generation process in order to discard branches that would lead to imbalanced
Hamiltonian cycles.

That additional selection can be placed before the other treatments
(coherency, small cycles elimination,...) applied to each generation node (in the
generation tree). By this way, it cuts any unproductive branch as soon as possi-
ble, thus avoiding useless computations.

That selection consists in checking that the occurrences of the dimensions
already used in the partial construction of the cycle are compatible with a bal-
anced cycle. When this is not the case, the candidate is discarded. To check this,
we compute two values that are respectively, the maximal number of occur-
rences allowed per dimension in a balanced code (O), and the maximal number
of dimensions (D) with that specific number of occurrences.

Those two numbers can be directly deduced from the dimension N of the
N-cube:

O =
⌊
2N

N

⌋
+ 2(

⌈
2N

N

⌉
−

⌊
2N

N

⌋
) and D = 2N mod N

2 (8)

The imbalance detection algorithm is given in Algorithm1.1.

Algorithm 1.1. Imbalance detection algorithm

1 Input : a p a r t i a l l y bu i l t path p
2 Output : a boolean i nd i c a t i n g True i f the path i s imbalanced and ←↩

↪→ False otherwi se

4 I n i t i a l i z e array od [ ] o f s i z e n with 0
5 nbD ← 0 // Number o f dimensions with max occur r ence s
6 imb ← False // We s t a r t with balanced path assumption

8 f o r each va l i d move in p do
9 get the dimension d along which the move i s done

10 od [ d ] ← od [ d ] + 1 // move added to occur r ence s o f d
11 i f od [ d ]> O then // too much moves on dimension d
12 imb ← True // imbalance
13 e l s e
14 i f od [ d ]= O // dim d reaches max occur rence s
15 i f nbD= D then // too much dims with max occs
16 imb ← True // imbalance
17 e l s e // new dim with max occs added
18 nbD ← nbD + 1
19 end i f
20 end i f
21 end i f
22 endfor
23 re turn imb

The imbalance is detected as soon as the number of occurrences of one dimen-
sion exceeds O or the number of dimensions having reached O exceeds D.

Two other algorithmic enhancements may be added to the process. The for-
mer is a treatment of the nodes in the generation tree that aims at speeding up
the descent towards the leafs, by jumping several levels in the tree in a same iter-
ation. The latter is quite an extension of the former as it consists in starting the
generation process not at the root of the tree but several levels deeper. However,
experiments show that such additions do not systematically reduce the cost of
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the algorithm. A deeper study is necessary to precisely determine the impact of
those additions.

Finally, all the paths that are totally specified within the generation process
(the leaves of the generation tree) are transformed into their canonical form.
That form is added to the lexicographically ordered list of balanced Gray codes
if not already present.

So, we obtain an algorithm that generates all the non-isomorphic balanced
Gray codes in a given HN space.

4 Application

The first series of experiments is dedicated to the validation of the canonical
form previously presented. Then, the second part is dedicated to the balanced
Gray code generation algorithm.

4.1 Validation of the Canonical Form and the Generation Algorithm

The first set of experiments consists in checking the completeness of the obtained
generation algorithm described in Sect. 3. So, this algorithm is used to exper-
imentally retrieve all the classes in N-cubes up to dimension five. For larger
dimensions, the number of distinct cycles is too large to be exhaustively com-
puted (777739016577752714 for H6).

For each set HN, all Hamiltonian cycles are generated by the algorithm with-
out activating the balance selection. Then, canonical forms of the cycles are
computed according to C in order to deduce the distinct classes in the space.

The numbers of resulting classes have been compared to the references pro-
vided in [1] and initially coming from [5]. Our algorithm has successfully found
a unique class for dimensions 2, and 3. It found 9 classes for dimension 4 and
237675 classes for dimension 5. These results confirm the completeness of the
generation algorithm.

4.2 Application of the Balanced Gray Code Generation Algorithm

In theory, the presented algorithm can generate all the balanced cycles for a
given dimension of N-cube. However, this is not pertinent in practice due to the
exponential increase of the number of cycles. In such case, any algorithm would
be confronted to two limitations: memory and execution time. For example, our
algorithm can generate all the balanced Gray codes for dimensions up to 5 in a
few seconds whereas it would take non reasonable time to generate all the cycles
for dimensions 6 and above.

Indeed, in our application context of PRNGs, we need only to generate some
particular balanced cycles, according to the regarded properties. It is then pos-
sible to restrict the search to some particular cycles. So, it should be possible to
obtain a fast algorithm for generating specific balanced Gray codes.
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Table 2. The 2 balanced cycles generated by e-RB method in dimension 5 and their
corresponding mixing time when ε is 10−6.

Num Sequence of traversed dimensions of the N-cube Local Mixing

balance time

19708 1 2 3 1 4 1 3 2 3 4 1 5 4 5 3 5 1 2 3 2 4 2 1 4 3 5 4 5 1 2 1 5 12 31

20904 1 2 3 2 1 2 3 4 3 2 1 5 1 4 1 2 4 5 3 5 4 2 4 5 1 5 2 3 4 3 2 5 12 31

Table 3. Excerpt of the 26155 non isomorphic Hamiltonian cycles generated by our
method with either the smallest local balance or the smallest mixing time with ε = 10−6

for dimension N = 5.

Num Sequence of traversed dimensions of the N-cube Local Mixing

balance time

22534 1 2 3 2 1 4 5 4 1 3 2 3 1 5 4 5 1 2 3 2 1 4 5 4 1 3 2 3 1 5 4 5 7 34

962 1 2 1 3 1 2 4 1 4 5 2 4 5 3 2 1 5 4 3 2 3 1 4 1 5 3 5 2 1 3 4 5 10 29

983 1 2 1 3 1 2 4 1 4 5 4 3 2 1 5 3 5 2 4 2 3 1 3 4 5 3 2 1 5 4 1 5 10 29

8962 1 2 1 3 2 4 2 1 4 5 3 2 4 1 5 1 3 4 5 4 1 2 1 3 5 1 5 4 3 2 3 5 10 29

22624 1 2 3 2 4 1 2 3 4 5 3 5 2 5 1 4 1 2 3 2 5 1 2 3 5 4 3 4 2 4 1 5 10 29

24059 1 2 3 2 4 3 2 1 4 5 3 5 2 5 1 4 1 2 3 2 5 3 2 1 5 4 3 4 2 4 1 5 10 29

11087 1 2 1 3 4 1 2 3 2 1 5 4 3 1 5 2 5 4 1 2 1 3 4 2 4 1 5 3 4 5 3 5 11 29

18407 1 2 3 1 3 4 2 3 2 1 5 3 5 2 5 4 2 1 3 1 2 4 5 4 1 5 4 2 3 2 4 5 11 29

772 1 2 1 3 1 2 1 4 3 2 3 5 2 4 2 3 4 1 5 3 5 4 3 2 3 4 5 3 5 1 4 5 12 29

6759 1 2 1 3 2 1 4 1 3 2 3 5 4 3 4 1 5 2 5 3 2 5 4 5 3 2 3 1 4 3 4 5 12 29

14967 1 2 1 3 4 3 2 1 3 1 4 5 2 1 5 2 5 4 2 5 3 5 4 1 4 3 2 3 1 4 1 5 12 29

16317 1 2 3 1 2 1 4 3 1 3 2 5 1 5 3 5 4 2 4 3 4 2 1 3 5 4 5 2 3 4 3 5 12 29

17396 1 2 3 1 3 4 1 2 1 3 4 5 2 3 4 2 3 2 5 1 5 3 4 3 2 5 4 5 3 4 1 5 12 29

Moreover, compared to other methods to generate balanced Gray codes, like
the extended Robinson-Cohn (further denoted as e-RB) algorithm [9] or the
Bykov’s one [1], our approach presents the advantage of being more complete,
and thus more flexible. It is able to find any balanced cycle that has some specific
properties, namely which is locally balanced and whose mixing time (time until
the Markov chain is ε close to the uniform distribution) is reduced.

As a first example, if we consider dimension 5, the e-RB method can only
generate 2 balanced cycles (modulo cycle isomorphism), given in Table 2. The
cycles are given in canonical form and the numbers in the left column correspond
to their positions in the totally ordered set of all balanced cycles for dimension 5
(26155). Both cycles have a local balance of 12 and a mixing time of 31 where ε is
10−6. However, for this dimension, the minimal local balance is 7 (only one cycle)
and the best mixing time is 29 (several cycles with different local balances). All
those cycles are listed in Table 3, together with their local balance and mixing
time. So, it is clear that our method is better suited to find cycles of interest for
the construction of PRNGs.
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A second example is related to the Bykov’s construction of locally balanced
cycles. The proposed algorithm builds a family of Hamiltonian cycles in a N-cube
with a specific local balance of at most n+3.log2(n). However, Table 3 shows us
two facts. The former is that only two cycles among the 7403 with this particular
local balance (11 for dimension 5) obtain the minimal mixing time. The latter
is that this minimum is reached also by some cycles with other local balances
(10 and 12). Thus, a more exhaustive algorithm, like the one we propose, is useful
to get all the cycles better suited to the inclusion in a PRNG and to provide a
wider choice.

5 Conclusion

A canonical form has been proposed to provide unique representations of Hamil-
tonian cycles in N-cubes. All the properties of an equivalence relation over the
set HN have been proved. Based on this form and the Wild’s algorithm that
generates cycles in graphs, a new algorithm has been designed to generate all
the balanced Hamiltonian cycles in any N-cube. Restrictions to specific cycles
can be used to limit the generation and to avoid the combinatorial explosion on
the number of cycles for dimensions greater than 6.

In the application context of PRNG construction, we have shown that our
algorithm is better suited than other existing methods that generate only specific
cycles, like the extended Robinson-Cohn and the Bykov ones.

Hence, our algorithm provides a useful tool to study the cycles properties
that are relevant to the inclusion in a PRNG. This study is planned as our next
work, together with performance optimization of our generation algorithm.
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Abstract. Nondeterministic Cellular Automata (NCA) are the class
of multivalued functions characterized by nondeterministic block maps.
We extend the notions of equicontinuity and sensitivity to multivalued
functions and investigate the characteristics of equicontinuous, almost
equicontinuous and sensitive NCA. The dynamical behavior of nonde-
terministic CA in these classes is much less constrained than in the
deterministic setting. In particular, we show that there are transitive
NCA with equicontinuous points and equicontinuous NCA that are not
reversible.
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Sensitivity · Transitivity

1 Introduction

Cellular Automata (CA) are discrete dynamical systems on the space of dou-
bly infinite grid of cells. At any temporal instant, each cell can be in one of a
finite number of possible states. The state of every cell is updated synchronously
according to some fixed local rule that depends on the current state of the cell
and that of its neighboring cells. CA represent also one of the simplest abstract
models for parallel computation. The dynamical [3,6,10,17] and computational
[7,9,11,12] properties of the CA formalism, as well as of its asynchronous and
non-uniform variants [4,5,8], have been well studied in literature.

Cellular Automata can be easily extended to nondeterminism by simply
allowing a nondeterministic local rule. Nondeterminism is an important notion
in Computation Theory, hence Nondeterministic Cellular Automata (NCA) rep-
resent a natural model for nondeterministic parallel computation. Despite its
attractiveness, so far NCA received very little attention in literature. This may
be due to the fact that NCA are a special class of multivalued functions and
there is a substantial lack of mathematical background for studying multivalued
dynamical systems [1].

The first mention of NCA in literature traces back to the seventies [20,21],
and then there is a gap on the subject until very recently [2,13–15,19]. In [13]
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we started to study the most basic properties of the NCA mappings. In partic-
ular, we proved necessary and sufficient conditions that characterize the class of
nondeterministic block mappings.

In [13] we focused essentially on surjective and reversible NCA, i.e. nondeter-
ministic block mappings whose inverse can be still defined by a nondeterministic
block map. In this work we continue our investigation on NCA from the dynami-
cal point of view. We extend some widely studied topological properties, such as
equicontinuity and sensitivity, to nondeterministic mappings. These two proper-
ties do not have a standardized definition in the multivalued setting. We show
several examples of equicontinuous, almost equicontinuous and sensitive NCA.
In comparison to CA, the dynamical behavior of NCA is much more complex
and less constrained. The largest differences are probably found in the class of
equicontinuous NCA. Surjective and equicontinuous CA have a strongly peri-
odic behavior, hence they are bijective and reversible. On the contrary, there
are equicontinuous NCA that are transitive and not reversible. Several questions
about the NCA dynamics are open. In particular, it is an open question whether
there are NCA whose set of equicontinuous points is not empty and non dense,
which would imply that there are not sensitive and not almost equicontinuous
NCA.

The paper is organized as follows. In Sect. 2 we introduce the basic notation
and background. Sections 3 and 4, are devoted to equicontinuity and sensitivity,
respectively. In Sect. 5 we consider transitive NCA. Section 6 contains the final
remarks.

2 Preliminaries

2.1 Cellular Automata

We introduce the basic notation and terminology we will use throughout the rest
of the paper. We assume that the reader is familiar with the elementary notions
from Symbolic Dynamics and Topology Theory [16,18].

Let A be a finite set with at least two elements. We denote with Ak, the
set of words over A of length k > 0, with A+ = ∪k>0A

k the set of finite words
on A and with A∗ the set of finite words of A, including the empty word. The
set AZ denotes the set of doubly infinite sequences (xi)i∈Z of symbols xi ∈ A.
Given x ∈ AZ we use the shortcut x[i,j] for the sub-word xixi+1..xj ∈ Aj−i+1. A
sequence containing a periodic repetition of the word w ∈ A+ is denoted with
∞w∞, i.e. x = ∞w∞ if ∀i ∈ Z, x[i·|w|,(i+1)|w|−1] = w.

The mapping σ : AZ → AZ, defined by σ(x)i = xi+1, is called shift map. The
pair (AZ, σ) is a dynamical system, called full shift.

Consider the metric d(x, y) = 2−n on AZ, where n = min{|i| | xi �= yi}.
The full shift AZ endowed with metric d is a Cantor space, i.e. a compact,
totally disconnected, metric space. For every word u ∈ A+ and i ∈ Z, the set
[u]i = {x ∈ AZ | x[i,|u|−1] = u} is called cylinder set. A cylinder set is a clopen
(closed and open) set in AZ. Given x ∈ AZ and ε = 2−r > 0, the open ball
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Bε(x) = {y ∈ AZ | d(x, y) < ε} coincides with the cylinder set [x[−r,r]]−r. Every
open set U ⊆ AZ is defined by a countable union of cylinders.

An endomorphism F : AZ → AZ is a sliding block code if there exists a
block map f : A2r+1 → A, for some radius r ≥ 0, such that for every point
x ∈ AZ, F (x)i = f(x[i−r,i+r]). We call f local rule of F . The fundamental
Theorem of symbolic dynamics [16], states that a mapping F : AZ → AZ is a
sliding block code if and only if F is continuous and commutes with the shift, i.e.
F (σ(x)) = σ(F (x)). The shift map σ itself is a sliding block code. The continuous
and σ-commuting endomorphisms of the full shift (AZ, F ) are usually known as
Cellular Automata (CA).

2.2 Nondeterministic Cellular Automata

Nondeterministic Cellular Automata (NCA) are the class of multivalued func-
tions (or multimaps) definable by nondeterministic block maps.

Definition 1. Let A be some alphabet A with at least two elements.

– A mutivalued mapping f : A2r+1 ⇒ A of radius r ≥ 0 is a nondeterministic
block map if,

∀w ∈ A2r+1, f(w) ⊆ A

– A multivalued function F : AZ ⇒ AZ is a nondeterministic cellular automaton
if there is some nondeterministic block map f : A2r+1 ⇒ A such that:

∀x ∈ AZ, F (x) = {y ∈ AZ | ∀i ∈ Z, yi ∈ f(x[i−r,i+r])}
Continuity notion for (single-valued) functions can be extended to multivalued
functions by means of the dual concepts of upper and lower semicontinuity (also
referred to as upper and lower hemicontinuity), which collapse to the ordinary
notion of continuity in the single-valued setting. The upper and lower semicon-
tinuity properties have a simple characterization in terms of preimages of closed
and open sets.

Definition 2. Let F : AZ ⇒ AZ be a multimap.

– F is said upper semicontinuous at x ∈ AZ if for any open subset V ⊆ AZ

such that F (x) ⊆ V ,

∃δ > 0 such that ∀x′ ∈ Bδ(x), F (x′) ⊆ V

– F is said lower semicontinuous at x ∈ AZ if for any open subset V ⊆ AZ such
that F (x) ∩ V �= ∅,

∃δ > 0 such that ∀x′ ∈ Bδ(x), F (x′) ∩ V �= ∅
– F is said continuous if it is both lower and upper semicontinuous at every

x ∈ AZ. �
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Proposition 1. Let F : AZ ⇒ AZ be a multimap.

1. F is upper semicontinuous if and only if for any closed set V ⊆ AZ, F−1(V )
is closed in AZ.

2. F is lower semicontinuous if and only if for any open set V ⊆ AZ, F−1(V )
is open in AZ.

It is easy to prove that nondeterministic block mappings are σ-commuting and
continuous. However, these two properties alone are not sufficient to characterize
the class of multi-valued functions definable by nondeterministic block maps.

Definition 3. Let F : AZ ⇒ AZ be a multimap.

– We say that F is locally independent at x ∈ AZ if

y /∈ F (x) if and only if ∃i ∈ Z such that yi /∈ F (x)i

where
F (x)i = {a ∈ A | ∃z ∈ F (x), zi = a}

– We say that F is locally independent if it is locally independent at every
x ∈ AZ. �

Theorem 1 [13]. A multimap F : AZ ⇒ AZ is a NCA if and only if it is
continuous, σ-commuting and locally independent.

It is not generally true for multivalued functions that the continuous image
of a compact set is compact. It is possible to prove that this property holds for
nondeterministic block mappings.

Theorem 2 [13]. Let (AZ, F ) be a NCA. Then F (U) is compact for every com-
pact subset U ⊆ AZ.

An interesting class of NCA is the class of reversible NCA.

Definition 4. Let (AZ, F ) be a NCA.

– The reversed map F−1 : F (AZ) ⇒ AZ is defined by

F−1(x) = {y ∈ AZ | x ∈ F (y)}
– We say that F is a reversible NCA if F−1 is defined by a nondeterministic

block map. �
In the deterministic setting reversibility coincides with the injectivity property.
In the nondeterministic setting, the scenario is more complex.

Definition 5. Let (AZ, F ) be a NCA. We say that F is injective if

∀x, y ∈ AZ, x �= y, F (x) ∩ F (y) = ∅.

�
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In [13] we showed that there are no injective NCA other than the class of injec-
tive CA. Moreover, if a CA (AZ, F ) is reversible, then (AZ, F−1) is an injective
CA, which implies that if (AZ, F ) is strictly nondeterministic, surjective and
reversible, then (AZ, F−1) is again strictly nondeterministic. A further charac-
teristic of reversible NCA is that they don’t need to be surjective. The simplest
non trivial examples of (surjective or not surjective) reversible NCA are the class
of NCA with radius zero.

3 Equicontinuity

Equicontinuous dynamical systems are characterized by the presence of stable
points, called equicontinuity points, under the iterations of the map. Dynamical
systems whose set of equicontinuity points is dense (residual), are called almost
equicontinuous. In the CA dynamical systems, the set of equicontinuity points
is either dense or empty, and it is inversely invariant. We show an example of
NCA whose set of equicontinuous points is not inversely invariant, while it is an
open question whether there are NCA that have a non empty and non dense set
of equicontinuous points. Furthermore, it is well known that surjective equicon-
tinuous CA are injective, hence bijective. We show an example of surjective,
equicontinuous NCA that is not reversible.

y

y'

x

x' x''
y'''

y''

B (x) 

Fn(x)

B (x') B (x'')

Fn(x)Fn(y)Fn(y)

Fn(y)

Fig. 1. lower equicontinuous point -
upper sensitive

y
x

x' x''
y'

B (x) 

Fn(x)

B (x') B (x'')

Fn(x)Fn(y)

Fig. 2. upper equicontinuous point -
lower sensitive

A point x is called equicontinuous if the family of iterations (Fn)n≥0 is
equicontinuous at x. As for the continuity notion for multivalued functions, the
dual properties of lower equicontinuity and upper equicontinuity facilitate the
extension of equicontinuity to iterations of the multimap.
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Definition 6. Let F : AZ ⇒ AZ be a NCA.

– We say that x ∈ AZ is an upper equicontinuous point (Fig. 2) if

∀ε > 0,∃δ > 0 such that ∀y ∈ Bδ(x),∀n ≥ 0, Fn(y) ⊆ Bε(Fn(x))

– We say that x ∈ AZ is a lower equicontinuous point (Fig. 1) if

∀ε > 0,∃δ > 0 such that ∀y ∈ Bδ(x),∀n ≥ 0, Fn(x) ⊆ Bε(Fn(y))

– We say that x ∈ AZ is an equicontinuous point if it is both upper and lower
equicontinuous:

∀ε > 0,∃δ > 0 such that ∀y ∈ Bδ(x),∀n ≥ 0, Bε(Fn(x)) = Bε(Fn(y))

�
Definition 7. Let E ⊆ AZ be the set of equicontinuous points of (AZ, F ).

– We say that (AZ, F ) is equicontinuous if E = AZ.
– We say that (AZ, F ) is almost equicontinuous if E is a residual set. �
The most simple class of equicontinuous CA is the class of mappings defined by
local rules of radius zero. Such class can be easily characterized also for NCA.

Proposition 2. Any NCA with radius zero is equicontinuous.

Proof. If the local rule f has radius zero, we have that ∀x ∈ AZ, ∀n ≥ 0,
Fn(x)i = fn(xi). This implies that ∀ε = 2−k > 0, if y ∈ Bε(x) = [x[−k,k]]−k

then ∀n ≥ 0

Bε(Fn(x)) = [Fn(x)[−k,k]]−k = [fn(x[−k,k])]−k = [fn(y[−k,k])]−k =
= [Fn(y)[−k,k]]−k = Bε(Fn(y))

�
It is well known that every surjective equicontinuous CA is injective, hence
reversible. We have already shown in [13] that every NCA with radius zero,
surjective or not, is reversible. Thus nondeterministic local rules or radius zero
give rise to a non trivial class of (either surjective or not) equicontinuous and
reversible NCA. However, we can easily show that not every surjective and
equicontinuous NCA is reversible.

Example 1 (Irreversible and equicontinuous NCA). Consider the NCA
(AZ, F ) on the alphabet A = {0, 1}, defined by the following local rule:

∀a, b, c ∈ A, f(a, b, c) =
{{0, 1} if a = 1, b = 0, c = 1

{b} otherwise

The mapping F is essentially the identity on A, except for the word 101, which
is mapped nondeterministically by the local rule to {0, 1}. F is clearly surjective,
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since ∀x ∈ AZ, x ∈ F (x). In order to see that (AZ, F ) is equicontinuous, note
that 1 is a quiescent symbol, i.e. ∀x ∈ AZ,∀n ≥ 0 if xi = 1 then Fn(x)i = {1}.
The symbol 0 is quiescent everywhere except when it is immediately surrounded
by two (quiescent) 1s. Then,

∀w ∈ A3,∀x, y ∈ [w]−1,∀n ≥ 0, Fn(x)0 = Fn(y)0

and, generalizing,

∀w ∈ A2k+1,∀x, y ∈ [w]−1,∀n ≥ 0, Fn(x)[−k+1,k−1] = Fn(y)[−k+1,k−1]

which implies equicontinuity. We conclude by showing that F is not reversible.
Consider the configuration x̃ = ∞1∞, and note that x̃ ∈ F (∞(01)∞) and
x̃ /∈ F (∞0∞). Now, if F−1 is defined by some nondeterministic block map
f−1 : A2k+1 ⇒ A, the only possibility is that f−1(12k+1) = {0, 1}. But in this
way, F−1(x̃) = AZ, while ∞0∞ /∈ F−1(x̃). �
In topological (single-valued) dynamical systems, the set of equicontinuous
points is inversely invariant. This property does not hold for multivalued map-
pings. The following example shows an almost equicontinuous NCA whose set
of equicontinuous points is not invariant.

Example 2 (Almost equicontinuous NCA with not inversely invariant
equicontinuous points). Consider the NCA (AZ, F ) on alphabet A = {0, 1, 2},
defined by the following nondeterministic local rule:

∀a, b, c ∈ A, f(a, b, c) =

⎧⎨
⎩

{2} if a = 2 or b = 2 or c = 2
{0, 2} if a = b = c = 0
{c} otherwise

Note that, the symbol 2 is a quiescent symbol that spreads to the left and to the
right. The point ∞2∞ is thus an equicontinuous point of (AZ, F ). Consider the
set of sequences that contain infinitely many occurrences of the symbol 2 to the
left and to the right.

U = {x ∈ AZ | ∀i ∈ N,∃k′ ≥ i, k′′ ≤ −i, such that xk′ = 2, xk′′ = 2}
It is easy to prove (exactly the same proof as in the deterministic case) that U
is residual and contains equicontinuous points of (AZ, F ), i.e. U ⊆ E . We show
that x̃ = ∞0∞ is not an equicontinuous point of (AZ, F ). Let δ = 2−k, k ≥ 0 and
consider the point y ∈ Bδ = [02k+1]−k such that

yi =
{

xi if i �= k + 1
1 if i = k + 1

Then F k+1(x̃)0 = {0, 2} �= {1, 2} = F k+1(y), which implies that x̃ is not an
equicontinuous point and that (AZ, F ) is almost equicontinuous but not equicon-
tinuous. To conclude, note that x̃ = ∞0∞ ∈ F−1(U), but since x̃ /∈ U we con-
clude that F−1(E) �⊂ E . �
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In CA equicontinuity is strictly related to the presence of blocking words.

Definition 8. Let ε = 2−k, k ≥ 0. A word w ∈ A2d+1, is a blocking word if

∀x, y ∈ [w]−d,∀n ≥ 0, Fn(x)[−k,k] = Fn(y)[−k,k].

�
In particular, equicontinuous points of CA are characterized by the presence
of infinitely many occurrences of blocking words. This strong characterization
implies that the set of equicontinuous points of a cellular automaton is either
empty or dense (residual). There is no immediate generalization of such property
for blocking words of NCA, as shown by the following example. This leaves open
the question whether there are NCA whose set of equicontinuous points is non
empty and not dense.

Example 3 (NCA with dense set of equicontinuous points). Consider the
NCA (AZ, F ) on the alphabet A = {0, 1}, defined by the following nondetermin-
istic local rule

∀a, b, c ∈ A, f(a, b, c) =

⎧⎨
⎩

{0, 1, 2} if b = 2
{b} if c = 2
{c} otherwise

Note that the function F behaves like the shift map on {0, 1}Z and that for
every x ∈ AZ, F (x)∩{0, 1}Z �= ∅. On the other end, the symbol 2 does not move
and generates all the other symbols. We first show that (AZ, F ) has a dense set
of equicontinuous points. It is easy to see that x̃ = ∞2∞ is an equicontinuous
point, since ∀ε = 2−k, k ≥ 0 and for every δ ≤ ε

∀y ∈ Bδ(x̃),∀n > 0, Fn(y)[−k,k] = Fn(x̃)[−k,k] = A2k+1

In the same way, for every w ∈ A∗, all the points in

Uw = {x ∈ AZ | ∃i ∈ Z, x[i, i + |w| − 1] = w ∧ ∀j /∈ [i, i + |w| − 1], xj = 2}
are equicontinuous. Then the dense set U = ∪w∈A∗Uw is contained in E .

Now, fix some ε = 2−k, k ≥ 0. For simplicity we consider k = 0, but what
follows can be generalized to larger k. By definition, the word w = 22k+1 = 2
is blocking. We show that there are sequences containing infinite occurrences of
w to left and to the right that are not equicontinuous. Consider, for example,
the periodic sequence x̃ = ∞(0002)∞, such that x̃[−1,1] = 000. Since the word 2
cannot generate all the 3-words on {0, 1}, for ε = 2−1 and for every δ = 2−d we
can build the configuration y ∈ Bδ(x̃) such that y[d+1,d+3] = 111 and yi = xi for
every i /∈ [d + 1, d + 3]. Then, it is easy to see that:

∃n > 0, 111 ∈ Fn(y)[−1,1], while∀n ≥ 0, 111 /∈ Fn(x̃)[−1,1]

which implies that x̃ is not a point of equicontinuity for F . �
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4 Sensitivity

In sensitive dynamical systems small perturbations of an orbit may lead to signif-
icantly different trajectories. In some sense, sensitivity is the opposite of equicon-
tinuity and, in fact, the two notions are strictly related: a sensitive dynamical
system cannot have points of equicontinuity. The converse is not generally true,
although it is for the CA dynamical systems. The question is open for NCA
and it is strictly related to the question whether there is a NCA whose set of
equicontinuous points is not empty and not dense.

sensitive

strongly sensitive

upper sensitive

lower sensitive

Fig. 3. Sensitivity classes

There is no standard definition of sensitivity for multimaps. We extend the
usual definition of sensitivity to multimaps by introducing the notion of upper
and lower sensitivity. We get different classes of sensitivity that coincide with
the classical definition when the mapping is single-valued.

Definition 9. Let F : AZ ⇒ AZ be a NCA.

– We say that (AZ, F ) is upper sensitive (Fig. 1) if

∃ε > 0, ∀x ∈ AZ,∀δ > 0,∃y ∈ Bδ(x),∃n ≥ 0, Fn(y) �⊂ Bε(Fn(x))

– We say that (AZ, F ) is lower sensitive (Fig. 2) if

∃ε > 0, ∀x ∈ AZ,∀δ > 0,∃y ∈ Bδ(x),∃n ≥ 0, Fn(x) �⊂ Bε(Fn(y))

– We say that (AZ, F ) is sensitive if

∃ε > 0, ∀x ∈ AZ, ∀δ > 0, ∃y ∈ Bδ(x), ∃n ≥ 0, F n(y) �⊂ Bε(F
n(x)) ∨ F n(x) �⊂ Bε(F

n(y))

– We say that (AZ, F ) is strongly sensitive if

∃ε > 0,∀x ∈ AZ,∀δ > 0,∃y ∈ Bδ(x),∃n ≥ 0, Fn(y) ∩ Bε(Fn(x)) = ∅
�
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The ε constant is called sensitivity constant of the map. All four sensitivity
classes imply no equicontinuous points. Note that upper and lower sensitivity
imply sensitivity but the converse is not immediately false. Strong sensitivity
immediately implies lower and upper sensitivity. While in the deterministic set-
ting all four definitions are equivalent, in the nondeterministic setting, the four
definitions give rise to different classes of sensitivity. We show that all such classes
are non empty and distinct (see Fig. 3).
In the following two lemmas we prove the following properties:

1. If some nondeterministic orbit appears in every other orbit, then the NCA is
not lower sensitive,

2. If there is a point that is mapped to the entire space, then the NCA is not
upper sensitive.

We will use these two properties to build examples of NCA that are not lower-
or-upper sensitive.

Lemma 1. Let (AZ, F ) be an NCA. Assume that there is some point x ∈ AZ

such that
∀n > 0,∀y ∈ AZ, Fn(x) ⊆ Fn(y)

then (AZ, F ) is not lower sensitive.

Proof. Let (AZ, F ) be of radius r ≥ 0 and assume there is one point x ∈ AZ as
defined in the statement. Consider some ε > 0, then

∀δ > 0,∀y ∈ Bδ(x),∀n > 0, Fn(x) ⊆ Fn(y) ⊆ Bε(Fn(y)),

which implies that F is not lower sensitive. �
Lemma 2. Let (AZ, F ) be an NCA. Assume that there is some point x ∈ AZ

such that
F (x) = AZ.

Then F in not upper sensitive.

Proof. First of all, note that if F (x) = AZ, then ∀n > 0, Fn(x) = AZ. Consider
some ε > 0, then

∀δ > 0,∀y ∈ Bδ(x),∀n > 0, Fn(y) ⊆ Bε(Fn(x)) = Bε(AZ),

which implies that F is not upper sensitive. �
All the following examples are based on the shift map. We first show that

sensitivity does not imply lower and upper sensitivity.

Example 4 (Sensitive but not lower/upper sensitive NCA). Consider the
NCA (AZ, F ) on alphabet A = {0, 1} defined by the following nondeterministic
local rule:

∀a, b, c ∈ A, f(a, b, c) =
{{0} if c = 0

{0, 1} if c = 1



Equicontinuity and Sensitivity of Nondeterministic Cellular Automata 91

This nondeterministic map contains both the shift map and the constant map,
which sends every configuration to the uniform configuration ∞0∞.

We first show that (AZ, F ) is sensitive. Consider some configuration x ∈ AZ

and note that, by definition of the local rule f , for every i > 0

F i(x)0 =
{{0} if xi = 0

{0, 1} if xi = 1

Let x ∈ AZ and let k > 0. Let y ∈ [x[−k,k]]−k be such that

yi =
{

xi if i �= k + 1
1 − xi if i = k + 1

Then F k+1(x)0 �= F k+1(y)0, which implies that F is sensitive with sensitivity
constant ε = 20. We now show that F is neither lower nor upper sensitive.

1. F is not upper sensitive. Consider the configuration x̃ = ∞1∞ ∈ AZ. We have
that, x̃ is mapped to the entire configuration space, i.e.

∀n > 0, Fn(x̃) = AZ.

then, by Lemma 2, F is not upper sensitive.
2. F is not lower sensitive. Consider the configuration x̃ = ∞0∞ ∈ AZ. We have

that x̃ is a quiescent configuration that appears in every orbit, i.e.

∀n > 0,∀y ∈ AZ, Fn(x̃) = {x̃} ⊆ Fn(y).

then, by Lemma 1, F is not lower sensitive.

�
The following two examples show that upper sensitivity does not imply lower
sensitivity, and conversely.

Example 5 (Upper sensitive and not lower sensitive NCA). Consider the
NCA (AZ, F ) on alphabet A = {0, 1, 2} defined by the following nondeterministic
local rule:

∀a, b, c ∈ A, f(a, b, c) =

⎧⎨
⎩

{0} if c = 0
{0, 1} if c = 1
{0, 2} if c = 2

Consider some configuration x ∈ AZ and note that, by definition of the local
rule f , for every i > 0

– if xi = 0, then F i(x)0 = {0},
– if xi = 1, then F i(x)0 = {0, 1},
– if xi = 2, then F i(x)0 = {0, 2},
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Then, for every x ∈ AZ and δ = 2−k, k ≥ 0 we can build the configuration
y ∈ Bδ(x) = [x[−k,k]]−k such that

yi =

⎧⎨
⎩

xi if i �= k + 1
2 if i = k + 1 and xi ∈ {0, 1}
1 if i = k + 1 and xi = 2

It is clear that F k+1(y)0 �⊂ F k+1(x)0, which proves that F is upper sensitive
with sensitivity constant ε = 20. In order to see that F is not lower sensitive,
consider the uniform configuration x̃ = ∞0∞ ∈ AZ, which is mapped to itself,
i.e. ∀n ≥ 0, Fn(x̃) = {x̃}. Note that ∀y ∈ AZ and ∀n > 0, Fn(x̃) ⊆ Fn(y), then
by Lemma 1, F is not lower sensitive. �
Example 6 (Lower sensitive and not upper sensitive NCA). Consider the
one-sided NCA on alphabet A = {0, 1, 2} defined by the following nondetermin-
istic local rule:

∀a, b, c ∈ A, f(a, b, c) =
{{0, 1, 2} if a = b = c = 0

{c} otherwise

Note that, for every x ∈ AZ and i > 0

F i(x)0 =
{{0, 1, 2} if x[i−2,i] = 000

{xi} otherwise

For every x ∈ AZ and for every δ = 2−k, k ≥ 0 we can build the configuration
y ∈ Bδ(x) = [x[−k,k]]−k such that

yi =

⎧⎨
⎩

xi if i �= k + 1
2 if i = k + 1 and xi ∈ {0, 1}
1 if i = k + 1 and xi = 2

By construction, we have that, if F k+1(x) = {0, 1, 2} or F k+1(x) = {1}, then
F k+1(y) = {2}, while if F k+1(x) = {1} then F k+1(y) = {2}. In both cases,
F k+1(x) �⊂ F k+1(y), which implies that F is lower sensitive with sensitivity
constant ε = 20. In order to see that F is not upper sensitive, note that the
configuration x̃ =∞ 0∞ ∈ AZ is mapped to the entire space, i.e. Fn(x̃) = AZ,
∀n > 0. Then, by Lemma 2, F is not upper sensitive. �
Since CA are a subset of NCA, all sensitive CA belong to the strongly sensitive
class. We show that such class contains also strictly NCA. The simples example
is the nondeterministic reformulation of the shift map.

Example 7 (Strongly sensitive NCA). Consider the NCA (AZ, F ) on alpha-
bet A = {0, 1, 2.3} defined by the following nondeterministic local rule:

∀a, b, c ∈ A, f(a, b, c) =
{{0, 2} if c ∈ {0, 2}

{1, 3} if c ∈ {1, 3}
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Note that, F is essentially a nondeterministic shift map on the two sets {0, 2}
and {1, 3}:

∀i > 0, F i(x)0 =
{{0, 2} if xi ∈ {0, 2}

{1, 3} if xi ∈ {1, 3}

For every x ∈ AZ and δ = 2−k, k ≥ 0 there is the configuration y ∈ Bδ(x) such
that

yi =
{

xi if i �= k + 1
(xi + 1) mod 4 if i = k + 1

It is easy to see that F k+1(x)0 ∩ F k+1(y)0 = ∅, which implies that F is strongly
sensitive with sensitivity constant ε = 20. �

It is open the question whether there are NCA, both upper and lower sensi-
tive, that are not strongly sensitive.

5 Transitivity

In a topologically transitive dynamical system every open set has points whose
orbits intersect any other open set. While, in general, a transitive dynamical
system can be either sensitive or almost equicontinuous, it is well known that
topologically transitive CA are sensitive. This strong characteristic does not hold
for NCA.

Definition 10. A NCA (AZ, F ) is topologically transitive if for every non-
empty open sets U, V ∈ AZ,∃n ≥ 0, Fn(U) ∩ V �= 0.

The following general property holds for any continuous endomorphism of a
compact space.

Proposition 3. Any transitive NCA is surjective.

Proof. Since F is topologically transitive, for every non-empty open set U ∈ AZ,
F (AZ) ∩ U �= ∅, which implies that F (AZ) is dense in AZ. Since F is continuous
and AZ compact, F (AZ) is closed, then F (AZ) = AZ. �
The following sufficient condition is useful to build examples of transitive NCA.

Definition 11. Let (AZ, F ) be a NCA with local rule f : A2r+1 ⇒ A. We say
that F ′ is a sub-NCA of F if its local rule f ′ : A2r+1 ⇒ A is such that

∀w ∈ A2r+1, f ′(w) ⊆ f(w).

If a sub-NCA F ′ of F is deterministic, we denote it as sub-CA.

Lemma 3. If there is a sub-NCA F ′ such that (AZ, F ′) is transitive, then
(AZ, F ) is transitive.
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Proof. If (AZ, F ′) is transitive then, for every non-empty open sets U, V ⊆ AZ

there is n ≥ 0 such that Fn(U) ∩ V ⊇ (F ′)n(U) ∩ V �= ∅. �
By Lemma 3, all the examples of sensitive NCA in Sect. 4 are transitive, since
all of them contain the shift map as sub-CA. However, while it is well known
that transitive CA are sensitive, this is not true in the nondeterministic setting.
We conclude this section by showing examples of reversible and not reversible
transitive NCA that are equicontinuous.

The most simple example of transitive NCA is the map that sends every
point into the entire configuration space. Such map is equicontinuous.

Example 8 (Transitive, reversible and equicontinuous NCA). Consider
the NCA on alphabet A = {0, 1} defined by the following nondeterministic local
rule of radius zero

∀a ∈ A, f(a) = A

By Proposition 2, (AZ, F ) is equicontinuous. It is clearly transitive, since
∀n > 0, ∀x ∈ AZ, and for every open set U ⊆ AZ, Fn(x) ∩ U = AZ ∩ U = U .
This example is also easily reversible and the inverse is the map itself. �
With a small modification of the previous example, we can get a non-reversible,
equicontinuous and transitive NCA.

Example 9 (Transitive, irreversible and equicontinuous NCA). Consider
the NCA on alphabet A = {0, 1} defined by the following nondeterministic
local rule:

∀a, b, c ∈ A, f(a, b, c) =
{{0} if a = c = 1, b = 0

{0, 1} otherwise

By Lemma 3, (AZ, F ) is transitive, since it contains the sensitive elementary rule
90. It is easy to see that it is equicontinuous, since ∀x ∈ AZ,∀n ≥ 2, Fn(x) = AZ.
In order to see that it is not reversible, consider the configurations x̃ = ∞1∞ and
ỹ = ∞0∞. Note that x̃ ∈ F (x̃) and x̃ ∈ F (ỹ), thus, if F−1 is a nondeterministic
block map, the only possibility is that for some r ≥ 0, f−1(12r+1) = {0, 1}, which
implies that F−1(x̃) = AZ. This is not possible, since x̃ /∈ F (∞(01)∞). �

6 Conclusions

We investigated topological dynamical properties of Nondeterministic Cellular
Automata. First, we extended to multivalued functions the notions of equicon-
tinuity and sensitivity, which do not have a standard definition as in the single-
valued setting. Then, we studied the classes of equicontinuous, almost equicon-
tinuous and sensitive NCA and their intersections with the class of transitive
NCA. The topological dynamics of NCA is extremely complex and there are
strong differences with respect to their deterministic counterpart. The largest
differences are probably found in the class of equicontinuous NCA. Surjective
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and equicontinuous CA have a strongly periodic behavior, hence they are bijec-
tive and reversible. On the contrary, there are equicontinuous NCA that are
transitive and not reversible.

There are several interesting open questions. It is unknown whether there
is a NCA whose set of equicontinuous point is not empty and not dense. This
question is strictly related to the question whether there are NCA that are not
sensitive and not almost equicontinuous, which is also open.

References

1. Berge, C.: Topological Spaces. Including a Treatment of Multi-Valued Functions,
Vector Spaces and Convexity. Dover Publications Inc., Mineola (1963)

2. Burkhead, E., Hawkins, J.M.: Nondeterministic and stochastic cellular automata
and virus dynamics. Preprint

3. Dennunzio, A., Di Lena, P., Formenti, E., Margara, L.: On the directional dynamics
of additive cellular automata. Theoret. Comput. Sci. 410, 4823–4833 (2009)

4. Dennunzio, A., Formenti, E., Manzoni, L., Mauri, G.: m-Asynchronous cellular
automata: from fairness to quasi-fairness. Natural Comput. 12, 561–572 (2013)

5. Dennunzio, A., Formenti, E., Provillard, J.: Local rule distributions, language com-
plexity and non-uniform cellular automata. Theor. Comput. Sci. 504, 38–51 (2013)

6. Dennunzio, A., Di Lena, P., Formenti, E., Margara, L.: Periodic orbits and dynam-
ical complexity in cellular automata. Fundam. Inform. 126, 183–199 (2013)

7. Dennunzio, A., Formenti, E., Weiss, M.: Multidimensional cellular automata: clos-
ing property, quasi-expansivity, and (un)decidability issues. Theor. Comput. Sci.
516, 40–59 (2014)

8. Dennunzio, A., Formenti, E., Manzoni, L., Mauri, G., Porreca, A.E.: Computa-
tional complexity of finite asynchronous cellular automata. Theor. Comput. Sci.
664, 131–143 (2017)

9. Di Lena, P.: Decidable properties for regular cellular automata. In: Fourth IFIP
International Conference on Theoretical computer Science, pp. 185–196 (2006)

10. Di Lena, P., Margara, L.: Computational complexity of dynamical systems: the
case of cellular automata. Inform. Comput. 206, 1104–1116 (2008)

11. Di Lena, P., Margara, L.: On the undecidability of the limit behavior of Cellular
Automata. Theoret. Comput. Sci. 411, 1075–1084 (2010)

12. Di Lena, P., Margara, L.: On the undecidability of attractor properties for cellular
automata. Fund. Inform. 115, 78–85 (2012)

13. Di Lena, P., Margara, L.: Nondeterministic cellular automata. Inform. Sci. 287,
13–25 (2014)

14. Furusawa, H., Ishida, T., Kawahara, Y.: Continuous relations and Richardson’s
Theorem. In: Kahl, W., Griffin, T.G. (eds.) RAMICS 2012. LNCS, vol. 7560, pp.
310–325. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33314-9 21

15. Furusawa, H.: Uniform continuity of relations and nondeterministic cellular
automata. Theoret. Comput. Sci. 673, 19–29 (2017)

16. Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system.
Math. Syst. Theory 3, 320–375 (1969)

17. Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Ergod.
Theor. Dyn. Syst. 17, 417–433 (1997)
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Abstract. We study a small part of the 8088 diploid cellular automata.
These rules are obtained with a random mixture of two deterministic
Elementary Cellular Automata. We use numerical simulations to study
the mixtures obtained with three blind rules: the null rule, the identity
rule and the inversion rule. As the mathematical analysis of such systems
is a difficult task, we use numerical simulations to get insights into the
dynamics of this class of stochastic cellular automata. We are particularly
interested in studying phase transitions and various types of symmetry
breaking.

Keywords: Stochastic cellular automata · Probabilistic cellular
automata · Symmetry breaking · Synchronisation

1 Introduction

As introduced by Turing in his article on morphogenesis [15], the question of
randomness is fundamental to understand the laws of life. Turing was puzzled
by the capacity of biological organisms to realise a form of “symmetry break-
ing”: given a dynamical system which is invariant under some symmetry and
an initial condition which is also invariant under this symmetry, such systems
evolve to a state which is stable and which is no longer invariant under this
symmetry. The typical case is the embryo which initially has a spherical form
and needs to “break” this form to develop different organs. To produce such a
phenomenon, two mechanisms can be at play: (a) the initial condition possesses
a small asymmetry which is amplified in the evolution of the system; (b) the
components of the system evolve with some randomness, which allows them to
“choose” one of the symmetric directions of evolutions.

The framework of stochastic cellular automata is adapted for the study of
such phenomena. In this note, we deal with one-dimensional cellular automata
with random transitions, binary states and nearest neighbours. More specifically,
we restrict our scope to the rules defined as a random mixture of two determin-
istic Elementary cellular automata (see the definitions below). As we will see,
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this case is sufficiently rich to provide many worthy examples, with potential
applications in the study of physical, chemical or biological systems. We are par-
ticularly interested in the qualitative transformations that a cellular system may
undergo when one progressively varies the mixing rate of its two deterministic
components.

2 Definitions

Elementary Cellular Automata. We consider finite cellular automata with
binary states and periodic boundary conditions. We denote by Q = {0, 1} the
set of states and let L = Z/nZ denote the set of n cells arranged in a ring. A
configuration represents the collection of states of all the cells at a given time
step; the set of configurations is denoted by QL.

In this note, we are only interested in the systems where the cells update their
state according to their own state and the state of their left and right neighbour.
This set of three cells forms the neighbourhood of a given cell. At each time step,
the updates are made synchronously according to a local rule f : Q3 → Q. Given
a local function f and a set of cells L, one can define the Elementary Cellular
Automaton F : QL → QL such that, the image y = F (x) of a configuration
x ∈ QL is given by:

∀i ∈ L, yi = f(xi−1, xi, xi+1).
An initial condition x ∈ QL is then associated to its trajectory, that is, the

infinite sequence (xt)t∈N such that x0 = x and xt+1 = F (x) for all t ∈ N.
Classically, a rule f is identified by the decimal number W which results from

the conversion of the binary number [f(1, 1, 1)f(1, 1, 0) . . . f(0, 0, 0)]b. (In other
words W (f) = f(0, 0, 0) ·20 + f(0, 0, 1) ·21 + · · ·+ f(1, 1, 1) ·27.) It is common to
identify the rule with its decimal code. When the ring size n and the local rule
f are clear from the context, it is also common to identify the local rule with
the Elementary Cellular Automaton (ECA) F .

We now turn our attention to stochastic cellular automata1. In this model,
each cell has a probability to turn to 0 or to 1 according to the states of its
neighbourhood. This means that we need to replace the trajectories (xt)t∈N by
a random process (ξt)t∈N. Each ξt is formed by the random variables (ξti)i∈L,
which represent the random state of the cell i at time t. Starting from given
probability distribution ξ0, the evolution of the stochastic cellular automaton is
a Markov chain: intuitively this means that the knowledge of the state of the
system at time t is sufficient to calculate the probability distribution at time t+1.
Since the state of each cell is calculated independently, we can use a function
φ : Q3 → [0, 1], which gives the probability to be in state 1 if the neighbourhood
of a cell is (x, y, z). Starting from an initial random distribution ξ0, the evolution
of our stochastic cellular automaton can thus be obtained for each t ∈ N and for
each i ∈ L with:

Pr{ξt+1
i = 1} =

∑

(x,y,z)∈Q3

Pr{(ξti−1, ξ
t
i , ξ

t
i+1) = (x, y, z)}.φ(x, y, z) (1)

1 The name probabilistic cellular automata is also frequently used and is a synonym.
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An alternative way of defining the Markov chain (xt)t∈N is to specify, for two
configurations x, y ∈ QL, the probability to go from x to y; we then have:

Pr{ξt+1 = y|ξt = x} =
∏

i∈L
yi ·φ(xi−1, xi, xi+1)+ (1− yi) · (1−φ(xi−1, xi, xi+1)

)
.

The formalism defined above is convenient for binary finite systems but it
requires more elaborate definitions for infinite-size systems [8] or systems with
more states or continuous states [2]. Note that other types of presentations of
the rules may be used to facilitate the analysis [2,5].

Diploid ECA. Since a stochastic ECA φ is defined with eight probabilities,
it is rather intuitive to try to understand how the combination of these eight
probabilities influences the behaviour of a rule, for example if the rule may
converge to a fixed point or not, and what is the average time of convergence.
An important question is to determine what are the various “behaviours” that
this space contains and how these behaviours are modified when one moves
continuously in this space. Since this space already contains the 256 deterministic
ECAs, which are difficult to understand theoretically (see e.g. [12]), one can
easily guess that its generalisation to the space of probabilistic CA will generate
a great number of new problems [1,8].

In order to get some insights on this question, it is thus necessary to con-
centrate on a subset of the stochastic ECA space. We thus propose to focus
on the stochastic mixtures of two deterministic ECA. Such rules have already
been studied by many authors (e.g. [9]), but to our knowledge only in particular
contexts. We want here to enlarge our view of this space of rules: as a first step,
we examine some of their simple properties and explore their dynamics with
numerical simulations.

We denote by S8 the set of stochastic ECA; this set is isomorphic to [0, 1]8

and for the sake of simplicity we will identify a stochastic rule and the function
which maps each neighbourhood (x, y, z) ∈ Q3 to its probability to update to
state 1. Let φ ∈ S8 be a stochastic ECA, we say that φ is a randomly-mixed
ECA if there exists two ECAs f1 : Q3 → Q and f2 : Q3 → Q and a constant
λ ∈ [0, 1], called the mixing rate, such that:

∀(x, y, z) ∈ Q3, φ(x, y, z) = (1 − λ) · f1(x, y, z) + λ · f2(x, y, z) (2)

We will write φ = (f1, f2)[λ] to denote this relation. When f1 �= f2 and λ ∈ (0, 1),
we say that φ is a diploid ECA2.

It can be noted that not all randomly-mixed ECAs are diploids and that
the decomposition of a diploid is not always unique. The following proposition
clarifies this fact.

2 The name is composed from the ancient Greek (diplous), which means
twofold, double, and (eidos), which evokes the form, the shape, the face, etc.
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Proposition 1. Let φ be a stochastic ECA, φ is a diploid if and only if there
exists λ ∈ (0, 1) and (x, y, z) ∈ Q3 such that φ(x, y, z) = λ and ∀(x, y, z) ∈
Q3, φ(x, y, z) ∈ {0, λ, 1 − λ, 1}.
Indeed, if φ is a diploid such that φ = (f1, f2)[λ] then there exists a triplet
(x, y, z) ∈ Q3 such that φ(x, y, z) /∈ {0, 1}, which implies that λ = φ(x, y, z) or
λ = 1−φ(x, y, z). Moreover, it can be noted that if the mixing rate λ is different
from 1/2, then the decomposition of a diploid into its components f1 and f2 is
unique, up to the exchange symmetry, that is, the symmetry that exchanges f1
and f2 and inverts λ into 1 − λ.

Let f1 and f2 be two different ECAs, we call a diagonal the set of diploids
that can be obtained by combining f1 and f2 with a mixing rate λ ∈ (0, 1).
Diagonals can be seen as lying on the diagonals of the hypercube [0, 1]8, where
the vertices of the hypercube represent the deterministic ECAs. They are simply
denoted by (f1, f2) = {(f1, f2)[λ], λ ∈ (0, 1)}.

Since there are 256 ECAs, there exist 256 × 256 = 65 536 couples of ECAs
that allow one to define a randomly-mixed ECA. If one is interested in diagonals
then there exist 256 · (256 − 1)/2 = 32640 couples to study, taking into account
the exchange symmetry. However, the conjugation symmetry, which exchanges
the 0s and 1s, and the reflection symmetry, which exchanges the left and right
directions, can also be employed to reduce the number of couples that one may
study to explore the space of diploid rules. Let us now enumerate the number of
couples that are non-equivalent according to these symmetries.

Let R,C, T be the operators which respectively represent the reflection, the
conjugation, and the composition of both operations. Formally for an ECA f :
Q3 → Q, we define:

R(f) = f(z, y, x),
C(f) = 1 − f(1 − x, 1 − y, 1 − z),
T (f) = R ◦ C(f) = C ◦ R(f) = 1 − f(1 − z, 1 − y, 1 − x).

It is straightforward to generalise the definitions above to the stochastic rules,
either by applying the symmetries to the local function or by applying them to
the configurations that define the Markov chain of the ECA (see above).

Proposition 2. Under the symmetries R, C, and T , there are 8808 non-
equivalent diagonals that define the diploid rules.

Proof. Let B be the set of ECAs which are invariant under both symmetries R
and C (and thus T ), let R, C, T be respectively the ECAs which are invariant
under only the symmetry R, C, or T only and let N represent the rules which
have no invariance. It can be easily verified that we have |B| = 23 = 8, |C| =
|T| = 24 − |B| = 8, |R| = 26 − |B| = 56 and |N| = 256 − (|B| + |R| + |C| + |T|) = 176.

Let b, r, c, t, n represent the number of classes of equivalences of the sets B,
R, C, T and N, respectively. We have b = |B| = 8, r = |R|/2 = 28, c = |C|/2 = 4,
t = |T|/2 = 4 and n = |N|/4 = 44. The total number of non-equivalent ECAs is
thus equal to b + c + r + t + n = 88, we represent each class of equivalence by
the rule which has the smallest decimal code, the minimal representative.
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We say that a couple of rules (f, g) is invariant under the symmetry S if
(a): (f, g) = (S(f), S(g)) or (b): (f, g) = (S(g), S(f)). Unfortunately, it is not
possible to obtain the equivalence classes of the diagonals by only considering the
couples formed by the minimal representatives and the exchange symmetry. For
example, if one considers the two ECAs 0 and 255, 0 is a minimal representative
but not 255, but, obviously, it is not possible to form a couple of two minimal
representative rules that would generate an equivalent diagonal.

Let S = QQ3
denote the ECA space and Sd = S×S be the space of couples of

ECAs. Taking similar notations as we did for the ECA space, let Bd be the set
of couples that are invariant under both symmetries R and C, and Rd, Cd and
Td the set of couples that are invariant under only the symmetry R, C and T ,
respectively, and let Nd be the set of couples that have no invariance. Note that
Sd contains 256 repetitive couples, that is, couples in the form (f, f).

Invariance by R and C. The set Bd is formed by the couples (f, g) such that:
(1) (f, g) = (R(f), R(g)) or (2) (f, g) = (R(g), R(f)); and such that: (3) (f, g) =
(C(f), C(g)) or (4) (f, g) = (C(g), C(f)). Let B1d be the set of couples which
verify (1) and (3), we have

∣∣B1d
∣∣ = |B × B| = 8 · 8 = 64. Let B2d be the set of

couples which verify (1) and (4) and which do not belong to B1d. It can be easily
verified that B2d = {(f, g), f ∈ R, g = C(f)}, which gives

∣∣B2d
∣∣ = |R| = 56. Let

B3d be the set of couples which verify (2) and (3) and which do not belong to
B1d. Similarly, it can be easily verified that B3d = {(f, g), f ∈ C, g = R(f)}, which
gives

∣∣B3d
∣∣ = |C| = 8. In a similar way: B4d = {(f, g), f ∈ T, g = R(f) = C(f)},

which gives
∣∣B4d

∣∣ = |T| = 8.
One may easily verify that the sets B1d, B

2
d, B

3
d, B

4
d form a partition of Bd. We

thus have: |Bd| = 64 + 56 + 8 + 8 = 128 + 8 = 136. Given that Bd contains 8
repetitive couples and given that each pair of non-repetitive couples (f, g) and
(g, f) counts for one diagonal, the number of diagonals that can be generated
by elements of Bd is #(Bd) = (136 − 8)/2 = 64.

Invariance by R only. The set Rd is formed by the couples such that: (1)
(f, g) = (R(f), R(g)) or (2) (f, g) = (R(g), R(f)), and such that: (3) (f, g) /∈ Bd.

Let R1d be the set of couples that verify condition (1) and not condition (2),
and let R2d be the set of couples that verify condition (2) but not condition (1).
We have: R1d = (B ∪ R) × (B ∪ R), which gives

∣∣R1d
∣∣ = 64 · 64 = 4096. We have:

R2d = {(f, g) ∈ Sd, f ∈ S\ (B∪R), g = R(f)}, which gives:
∣∣R2d

∣∣ = 256− (56+8) =
192. As Rd = (R1d ∪ R2d) \ Bd, we find that |Rd| = 4096 + 192 − 136 = 4152. Given
that Rd contains |R| = 56 repetitive couples, and given that each quadruplet
(f, g), (g, f), (C(f), C(g)), (C(g), C(f) counts for one non-equivalent diagonal,
we have: #(Rd) = (4152 − 56)/4 = 4096/4 = 1024.

Invariance by C only and by R ◦C only. The same arguments as seen above
can be repeated. We count: |Cd| = |Td| = 256 + 240 − 136 = 360. The number of
non-equivalent diagonals found in Cd and Td is: #(Td) = #(Cd) = 88.

No invariance. We now enumerate the number of couples which show no invari-
ance by R, C or R ◦ C. We have Nd = Sd \ (Bd ∪ Rd ∪ Cd ∪ Td) and we count:
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|Nd| = 256.256 − (136 + 4152 + 360 + 360) = 65536 − 5008 = 60528. Since this
set of couples contains |N| = 256 − (8 + 56 + 8 + 8) = 176 repetitive couples
and since the exchange symmetry and the symmetries C, R or R ◦ C allow
one to associate 8 different couples in one equivalence class, we find that the
number of non-equivalent diagonals that can be generated by elements of Nd is
#(Nd) = (60528 − 176)/8 = 7544.

We are now in position to add the set cardinals calculated above to find how
many non-equivalent diagonals there are to generate all the possible diploids:
#(Sd) = 64 + 1024 + 88 + 88 + 7544 = 8808. �	
To introduce an order on these 8808 couples of diploid generators, we may simply
use the lexicographic order on the pair of decimal codes attached to each rule. In
other words, given two pairs of rules(f, g) and (f ′, g′) we say that (f, g) ≤ (f ′, g′)
if and only if f < f ′ or if f = f ′ and g ≤ g′. As seen above, the couples may
be grouped by sets of equivalent pairs of size 2 (elements of Bd), 4 (elements
of Rd, Cd, Td), or 8 (elements of Nd). We call a minimal representative the pair
which has the smallest code in its class of equivalence.

3 First Steps in the Space of Diploids

As already mentioned, there exists a plethora of interesting questions that can
be asked on stochastic cellular automata. As a first step, we propose to examine
a simple question: given a diagonal (f1, f2), what kind of qualitative change may
happen to the diploids of this diagonal when λ is varied? In particular, we want
to know if there exists some values of λ where the behaviour of the system
changes drastically. Here again, the answer we give may vary widely depending
on how we estimate the“behaviour” of our cellular automaton. We thus simply
propose to use two macroscopic parameters: the density, the ratio of the states
1 and the kinks density, the ratio of the occurrence of the length-2 patterns 01
and 10.

The exhaustive study of the 8808 diagonals is a daunting task, we thus need
to focus on some families of diploids. We propose to begin our examination with
the diagonals that are formed with the most simple rules: the null rule, the
identity rule, and the inversion rule.

3.1 Experimental Protocol

For a given ring size n and a configuration x ∈ QL, we call the density the
ratio d(x) = |x|1/n where |x|1 = |{i ∈ L, xi = 1}| and kinks density the ratio
dk(x) = (|x|10 + |x|x01)/n where |x|qq′ = |{i ∈ L, xi = q and xi+1 = q′}|. For
each couple of rules (f, g) we will sample the value of d and dk of the stochastic
mixtures of two ECAs for a system composed of n = 10 000 cells. We vary λ
from 0 to 1 by increasing λ from 0 to 0.05 by steps of 0.01, then from 0.05 to
0.95 by steps of 0.05, and then from 0.95 to 1 by steps of 0.01. The step length is
made smaller for high and small values of λ to give a more precise view close to
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Fig. 1. Density as a function of λ for the diagonals (0,22) and (0,150).

the special points λ = 0 and λ = 1, where important modifications may occur.
Indeed, the transition from a deterministic system to a non-deterministic one is
likely to produce an abrupt change of behaviour; however, we leave for future
work the study of such effects and we concentrate on the changes which occur for
non-extremal values, as they are in some sense more surprising. For each diploid,
we start from a uniform initial condition where each cell has an equal probability
to be in state 0 or 1; we let the system evolve during Ttrans = 5000 time steps and
we sample the value of the parameters d and dk to have a numerical estimation of
the asymptotic density, that is, the average value we would obtain if the system’s
size would tend to infinity and if the sampling operation was repeated an infinite
number of times. We sample only one value of this density for each value of α.

3.2 Mixtures with the Null Rule (ECA 0)

We applied the protocol described above for the 159 minimal non-equivalent
diagonals in the form (0, f). Figure 1 shows the estimation of the asymptotic
density as function of the mixture rate in two diagonals where a qualitative
modification of the behaviour occurs. This type of brutal change of behaviour
is well-known and is called a second-order phase transition: the function d(λ)
is continuous but its derivative is not. There exists a critical mixing rate λc

which separates a behaviour where the system converges to 0L (passive phase)
and a behaviour with a stationary non-zero density (active phase). If the system
were composed of an infinite number of cells, the property stated above would be
exact. However, because of finite-size effects, it should be noted that even for the
active phase, there exists a small but non-zero probability to reach the absorbing
state 0L, for example if all the cells apply rule 0 at the same time step. Regnault
studied these type of phenomenon of convergence and he gave analytical results
for a particular α-asynchronous ECA rule (see below) [10]. Second-order phase
transitions were detected in no less than 34 diagonals (0, f) and where f is found
in the following ECA list: 18, 22, 26, 28, 30, 50, 54, 58, 60, 62, 78, 90, 94, 110,
122, 126, 146, 150, 154, 156, 158, 178, 182, 186, 188, 190, 202, 206, 218, 22, 234,
238, 250, 254 (see also Table 1).

It can be noted that the diagonals (0,250) and (0,254) correspond to two
cases of oriented site percolation: in this problem an infinite grid is formed of
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Fig. 2. Space-time diagrams of diploids (0,73) with (left): λ = 0.25, (middle): λ = 0.50,
right: λ = 0.75. Time goes from bottom to top. Cells in state 0 and 1 are respectively
represented by squares in white or blue (or dark gray). (Color figure online)

(13,51)[0.20] (13,51)[0.80] (15,51)[0.20] (15,51)[0.80]

Fig. 3. Analysis of the diagonals (13,51) and (15,51). (top) Kinks density as a function
of λ; (bottom) space-time diagrams for two arbitrary values of λ.

sites which can be open with probability p and closed with probability 1 − p
and starting from a particular site, a fluid flows from open site to open site
in a given direction. There exists a critical threshold for p for which the fluid
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(57,51)[0.25] (57,51)[0.75] (160,51)[0.25] (160,51)[0.75]

Fig. 4. Analysis of the diagonals (57,51) and (160,51). (top) Kinks density as a function
of λ; (bottom) space-time diagrams for two arbitrary values of λ.

percolates, that is, has the possibility to travel arbitrary distances in the medium.
The critical threshold has been measured with Monte Carlo simulations and
various analytical estimates have been proposed. One may report to the study
by Taggi [14] for more details and for a more general view on such percolation
operators with various neighbourhoods.

We did not observe any phase transitions within the diagonals formed by
ECA 0 and the ECAs with an odd code, that is, the rules for which f(0, 0, 0) = 1.
Figure 2 shows the space-time diagrams of three diploids taken in the diagonal
(0,73) with λ ∈ {0.25, 0.5, 0.75}. These samples allow one to understand why
the mixtures between rule 0 and an “odd” rule does not create any interest-
ing structure: on the one hand, the null rule has a tendency to remove the 1s
independently on any information on the neighbourhood. On the other hand,
the odd rule may create a 1 in any place where there are three successive 0s.
This idea needs of course to be studied with more attention and if possible by
analytical means.

3.3 Mixtures with the Identity Rule: α-asynchronous ECA

The diploids defined with a mixture of the identity rule (ECA 204) and another
ECA rule correspond to the α-asynchronous CA (where the mixing rate λ cor-
responds to the synchrony rate α). Such a family of rules has been studied quite
in detail both numerically and analytically but there are still many challenges
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in their understanding [3,4,6,13]. The most surprising aspect of α-asynchronous
CA is their great diversity of behaviour. There are 9 diagonals which contain a
second-order phase transition for the density, but, contrarily to “mixed-with-0”
diploids, it is not possible to predict the respective positions of the absorbing and
active phases. For example, for ECA 50, the active phase is for high values of α
and the absorbing phase is for low values, while the situation is inverted for ECA
6 or ECA 138. We refer to our survey on asynchronous for more information on
this topic and on closely-related questions [6].

3.4 Mixtures with the Inversion Rule (ECA 51)

An interesting family of diploids to study is formed by the rules obtained as
a mixture with ECA 51, that is, the rule f(x, y, z) = 1 − y. Contrarily to the
previous families of diagonals, we did not observe any phase transition related
to the evolution of the density. However, a new behaviour appears: there are
some rules for which the kinks density take extremal values and become close
(or equal) to 0 or 1.

First, let us examine the cases where the kinks density is close to 0. This
happens in 16 diagonals (f, 51) for the rules f which have the following codes:
1, 3, 5, 7, 9, 11, 13, 15, 25, 27, 29, 33, 37, 45, 73, and 77. The diagonals formed
with rules written in bold font show the presence of a critical threshold: they
converge to a zero kink value only for sufficiently high values of λ (see also
Table 1). The other rules seem to remove the kinks for any value of the mixing
rate. A peculiar behaviour appears for the diagonal (33,51) where the kinks
disappear very slowly for high values of λ. Experiments do not show a critical
phenomenon here. Figure 3 displays the evolution of the kinks density for the
diagonals (13,51) and (15,51).

We represented examples of the space-time diagrams of the four diploids:
(13,51)[.2],(13,51)[.8], (15,51)[.2], and (15,51)[.8] in Fig. 3. The space-time dia-
grams of the diploids which remove the kinks show that the qualitative behaviour
of these rules is quite regular: they tend to form blinking regions of consecutive
0s and 1s. This blinking phenomenon is joined to a random walk of the fron-
tiers. The regions disappear when their frontiers meet (annihilation phenom-
enon) which allows to infer that all these diploids solve the global synchronisa-
tion problem [7]: from any initial condition, they converge to the deterministic
period-2 cycle where the uniform configurations 0L and 1L alternate. Interest-
ingly, Richard has shown that it is not possible to solve this problem with a deter-
ministic cellular automaton (see Ref. [11] and the extended version of Ref. [7]),
but as it can be seen here, solving the problem with diploids is rather easy. It
can be shown analytically that the convergence time of the diploid (15,51) scales
quadratically with the number of cells. The proof of this property relies on a
coupling with the shift rule (ECA 170) with an α-asynchronous updating [7].

Let us now turn our attention on the diagonals which show values of the
kinks density which are close or equal to 1. There are 15 such diagonals (f, 51)
where f has the code: 32, 34, 40, 42, 56, 57, 58, 104, 106, 122, 160, 162,
168, 170, 232. The rules written in bold font show the presence of a critical
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Table 1. List of diagonals where second-order phase transitions were observed. The
first column shows the order parameter for which the critical phenomenon is observed,
the second and third columns show the two elements of the diagonal.

Param. Diagonal with Rule list

Dens. 0 (null) 18, 22, 26, 28, 30, 50, 54, 58, 60, 62, 78, 90, 94, 110,
122, 126, 146, 150, 154, 156, 158, 178, 182, 186, 188,
190, 202, 206, 218, 22, 234, 238, 250, 254

Dens. 204 (identity) 6, 18, 26, 38, 50, 58, 106, 134, 146

Kinks dens. 51 (inversion) 9, 13, 32, 40, 45, 73, 104, 106, 122, 160, 168, 232

threshold: they converge to configurations where the states 0 and 1 alternate
(high kinks density) only for a sufficiently high values of the mixing rate λ. The
other diagonals seem to contain diploids which attain a kinks density of 1 for any
value of λ ∈ (0, 1). The diagonal (57,51) shows a slowdown of the convergence
for high values of λ.

As it can be seen on Fig. 4, this behaviour can be associated to another form
of symmetry breaking: the creation of a pattern where all the cells alternate their
state in space and time. Here again, the synchronisation of the whole system is
achieved by the random movements of the frontiers between non-synchronised
regions, which act as defects which annihilate when they meet.

4 Discussion

This note constitutes a first step in the exploration of the space of the diploids.
Such mixtures of two deterministic rules have been studied by various authors
and it would be interesting to compile and “digest” the various phenomena that
were studied on such models. Here, we systematically explored the mixtures
formed with three “blind” rules which do not depend on their neighbourhood:
the null rule, the identity rule and the inversion rule, and obtained some quite
puzzling observations.

First, in the space of diploids, the occurrence of second-order phase tran-
sitions is not a rare phenomenon. So far, similar observations were linked to
percolation phenomena [14], to the study of the effects of asynchronism [6], or
rely on specific constructions. Note that if one takes a “randomly” chosen rule
in the space of the elementary stochastic rules S8, this rule is most likely a
positive-rate rule, that is, for each neighbourhood there is a non-zero probability
to reach both states. As a consequence, the chances to observe a phase transition
by slightly modifying this rule is quite small (see Ref. [8] for more explanations).
By contrast, the space of diploids may prove an appropriate subset of rules to
find various forms of critical phenomena.

The second interesting aspect observed with our diploids is their ability to
produce various forms of symmetry breaking: their inherent randomness allow
them to easily create patterns with alternating states, or to reach homogeneous
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and synchronised blinking configurations. So far, diploids have provided simple
solutions to the density classification problem (Fukś’ rule, Schüle’s rule and the
traffic-majority rule) [5] or to the global synchronisation problem [7]. It is an
open question to know how such models may perform some more complex forms
of decentralised computations, and, if possible, solve problems that would be
difficult or impossible to solve without the help of randomness3.
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Abstract. Consider a two dimensional lattice with the von Neumann
neighborhood such that each site has a value belonging to {0, 1} which
changes state following a freezing non-strict majority rule, i.e., sites at
state 1 remain unchanged and those at 0 change iff two or more of it
neighbors are at state 1. We study the complexity of the decision problem
consisting in to decide whether an arbitrary site initially in state 0 will
change to state 1. We show that the problem in the class NC proving a
characterization of the maximal sets of stable sites as the tri-connected
components.

1 Introduction

Majority automata can be defined as the two-state cellular automata, where in
each synchronous step each site takes most represented state in its neighborhood.
This kind of automata models many kinds of physic and social phenomena [1–5].
Let us denote by 1 and 0 the two states of the majority automata, which may
represent respectively states active or inactive, alive or dead, etc. This paper is
about the problem of predicting, given an initial configuration of a states, if a
given site will change its state.

The computational complexity of a prediction problem can be defined as the
amount of resources, like time or space, needed to predict it. In this case, we con-
sider two fundamental classes: P, the class of problems solvable in polynomial
time on a serial computer, and NC, the class of problems solvable in poly-
logarithmic time in a PRAM machine, with a polynomial number of processors
[6]. We say that NC is the class of problems which have a fast parallel algorithm.
It is a well-known conjecture that NC �= P, and so, if there exists “inherently
sequential” problems, this is, problems that belong to P and do not belong to
NC. The most likely to be inherently sequential are P-Complete problems, to
which any other problem in P can be reduced (by an NC-reduction or a loga-
rithmic space reduction). If any of these problems has a fast parallel algorithm,
then P = NC [6,7].
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In [7] Moore studied the computational complexity of the majority automata
in a d-dimensional lattice. He showed that in three or more dimensions the pre-
diction problem is as hard as evaluating monotone circuits, which implies that
the prediction problem is P-Complete. Roughly speaking, this means that in
order to compute the state in a given site, the only option (unless P = NC) is
to simulate the dynamics of the automaton until it reaches an attractor. How-
ever, Moore suggested that in two dimensions with von Neumann neighborhood
it would be possible to predict exponentially faster, i.e., the problem is not
P-Complete. In the same article, Moore also studied the non-strict majority
automata (called also Half-or-More automata), which corresponds to the major-
ity automata where the sites privilege state 1 over 0 in tie cases, not considering
its own state in the neighborhood. Moore stated that the prediction problem for
non-strict majority automaton is P-Complete in three or more dimensions, and
also conjectured that in two dimensions the problem would not P-Complete.

In this article we study the prediction problem on the freezing non-strict
majority automata. The freezing property means that a site in state 1 remains
in that state in every future time step. Freezing automata model forest fires
[8], infection spreading [9], bootstrap percolation [10] and voting systems [7].
Theoretical facts about those automata can be seen in [11].

The prediction problem for the freezing majority automata was studied by
Goles et al. in [12], where the authors show that the prediction problem for the
freezing majority automata is in NC, restricted to a two dimensional lattice with
von Neumann neighborhood. This result is based on a characterization of stable
sets of sites. A set of sites is called stable if a site in 0 remain in state 0 on any
future time-step. The authors showed that for the freezing majority automata the
stable sets can be characterized in terms of connected and biconnected components
of the sets of sites initially in state 0. The prediction algorithm uses fast parallel
algorithms computing connected and biconnected components due to Jájá [13].

In this paper, we show that the prediction problem for the non-strict majority
automata is in NC. Our algorithm is based in a characterization of the stable sets
for this rule. Unfortunately, the characterizations of stable sets for the freezing
majority automaton is not valid for the non-strict one. In its place, we show that
the stable sets in this case are roughly a set of sites initially in state 0 which
form a tri-connected component, i.e., there are three disjoint paths between every
pair of sites in the set. Then, we use a fast-parallel algorithm due to Jájá [14] to
compute the tri-connected components of the sites initially in 0.

The article is organized as follows. In next section, we begin with the main
formal definitions. In Sect. 3 we present a characterization of the stable sets for
the freezing non-strict majority automata. In Sect. 4 we use the characterization
of the previous section to obtain the main result. Finally, in Sect. 5 we conclude
this article with a discussion and some open questions.

2 Preliminaries

Let us consider the freezing non-strict majority cellular automata (fnsmca)
as the cellular automata defined by the tuple (Z2, {0, 1}, N, f), where
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N = {(0, 0), (1, 0), (−1, 0), (0, 1), (0,−1)} is the von Neumann neighborhood and
f : {0, 1}5 → {0, 1} the local freezing non-strict majority function:

f(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if x1 = 1

1 if (x1 = 0) ∧
⎛

⎝
∑

i∈[5]

xi ≥ 2

⎞

⎠

0 otherwise

For c ∈ {0, 1}Z2
and i, j ∈ Z, call c(i,j)+N the vector ((i, j), (i + 1, j), (i −

1, j), (i, j+1), (i, j−1)). The new state of each site of the lattice is computed syn-
chronously, i.e., every site is updated at the same time, which is equivalent to the
application of the global function F : {0, 1}Z2 → {0, 1}Z2

with F (c)v = f(cv+N ).
The following definition characterizes the sites that are initially in 0 and

never change, we call such sites stable.

Definition 1. Given a configuration c ∈ {0, 1}Z2
, we say that a site v is stable

if and only if cv = 0 and it remains at state 0 after any iterated application of
the global rule, i.e., F t(c)v = 0 for all t ≥ 0.

One property of the strict majority automata that will be useful in our proofs
is the monotonicity. For two configurations c and c′, denote by ≤ the partial order
relation over configurations, where c ≤ c′ if and only if cu ≤ c′

u for every u ∈ Z
2.

A function G : {0, 1}Z2 → {0, 1}Z2
is called monotone if c ≤ c′ implies that

G(c) ≤ G(c′). Clearly, the strict majority automata (and its freezing version) is
monotone.

A configuration c ∈ {0, 1}Z2
is called a periodic configuration if c consists in

the periodic repetition of a finite configuration x ∈ {0, 1}[n]×[m], for n,m > 0. In
such a case, we also call c = c(x). Note that a fnsmca in a periodic configuration
c(x), with x ∈ {0, 1}[n]×[n], reaches a fixed point in at most n2 steps. Indeed, at
each step before the dynamic reaches the fixed point, at least one site change
from state 0 to state 1.

A natural problem consists in computing, given a periodic configuration c,
the configuration obtained by the automata when it reaches the fixed point
corresponding to c. We define the decision version of this problem, called
(Prediction), as the problem consisting in decide, given a configuration, if
a specific site initially in state 0 is not stable.

Prediction (Prediction)
Input: A finite configuration x of dimensions n × n and a site u ∈ [n] × [n]
such that xu = 0.
Question: Does there exists T > 0 such that FT (c(x))u = 1?

Clearly, if this problem is in NC, then we can compute the fixed point of the
automaton running O(n2) copies of the algorithm in each site initially in state 0.
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Indeed, the fixed point obtained from c can be computed choosing state 1 on all
sites that are not stable for configuration c.

For a finite set of sites S ⊆ Z
2, we call G[S] = (S,E) the graph defined

with vertex set S, where two vertices are adjacent if the corresponding sites
are neighbors for the von Neumann neighborhood. For a graph G = (V,E), a
sequence of vertices P = v1, . . . , vk is called a v1, vk- path if {vi, vi+1} is an edge
of G, for each i ∈ [k]. Two u, v-paths P1, P2 are called disjoint if P1∩P2 = {u, v}.

Definition 2. A graph G is called tri-connected if for every pair of vertices
u, v ∈ V (G), G contains three disjoint u, v-paths.

A maximal set of vertices of a graph G that induces a tri-connected subgraph
is called a tri-connected component of G. The following proposition states that
is decidable in NC if a graph is tri-connected, moreover, gives a fast-parallel
algorithm computing the tri-connected components of an input graph.

Proposition 1 ([14]). There is an algorithm that computes the tri-connected
components of a graph in time O(log2 n) with O(n4) processors.

Consider the relation R over vertices of a graph, which states that two vertices
u and v are related by R if there exist three disjoint paths connecting u and v.
For a pair of vertices u and v of a graph G, call Gu,v the transitive closure of
graph G − {u, v}. The transitive closure of a graph G is the graph in the same
vertex set, where each connected component is a clique. In [14] it is shown that
two vertices s, t are related by R if they are connected in Gu,v for every pair
u, v ∈ V (G)\{s, t}. Moreover, the transitive closure can be computed in time
O(log2 n) with O(n2) processors [14]. The tri-connected components are then
constructed roughly as follows: for every triple u, v, w of vertices of G that are
mutually tri-connected (i.e. related by R), the set {l ∈ V : lRu ∧ lRv ∧ lRw} is
the tri-connected component that contains vertices u, v and w.

3 A Characterization of Stable Sets

In this section, we characterize stable sets of a configuration c, i.e. sets of sites
that are stable for c.

Lemma 1. Let x ∈ {0, 1}n2
be a finite configuration and u ∈ [n] × [n] a site.

Then, u is stable for c = c(x) if and only if there exist a set S ⊆ [n] × [n] such
that:

– u ∈ S,
– cu = 0 for every u ∈ S, and
– G[S] is a graph of minimum degree 3.

Proof. Suppose that u is stable and let S be the subset of [n] × [n] containing
all the sites that are stable for c. We claim that S satisfy the desired properties.
Indeed, since S contains all the sites stable for c, then u is contained in S. On
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the other hand, since the automata is freezing, all the sites in S must be in state
0 on the configuration c. Finally, if G[S] contains a vertex v of degree less than 3,
it means that necessarily the corresponding site v has two non-stable neighbors
that become 1 in the fixed point reached from c, contradicting the fact that v is
stable.

On the other direction suppose that S contains a site that is not stable and
let t > 0 be the minimum step such that a site v in S changes to state 1, i.e.,
v ∈ S and t are such F t−1(c)w = 0 for every w ∈ S, and F t(c)v = 1. This implies
that v has at least two neighbors in state 1 in the configuration F t−1(c). This
contradicts the fact that v has three neighbors in S. We conclude that all the
sites contained in S are stable, in particular u. 
�

For a finite configuration x ∈ {0, 1}[n]2 , let D(x) ∈ {0, 1}{−n2−n,...,n2+2n}2
be

the finite configuration of dimensions m×m, where m = 2n2 + 3n, constructed
with repetitions of configuration x in a rectangular shape, as is depicted in
Fig. 1, and sites in state 0 elsewhere. We also call D(c) the periodic configura-
tion c(D(x)). It is important to distinguish between c(x) and c(D(x)): the first
one is the periodic configuration defined as the repetition of the finite config-
uration x, while c(D(x)) corresponds to the periodic configuration obtained as
repetitions of D(x).

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

0 n n2 + n−n2

Fig. 1. Construction of the finite configuration D(x) obtained from a finite configura-
tion x of dimension n × n = 2 × 2. Note that D(x) is of dimensions 14 × 14.

Lemma 2. Let x ∈ {0, 1}[n]2 be a finite configuration, and let u be a site in
[n]× [n] such that xu = 0. Then u is stable for c = c(x) if and only if it is stable
for D(c).
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Proof. Suppose first that u is stable for c, i.e. in the fixed point c′ reached from c,
c′
u = 0. Call c′′ the fixed point reached from D(c). Note that D(c) ≤ c (where ≤

represent the inequalities coordinate by coordinate). Since the fnsmca automata
is monotonic, we have that c′′ ≤ c′, so c′′

u = 0. Then u is stable for D(c).
Conversely, suppose that u ∈ [n] × [n] is not stable for c, and let S be the

set of all sites at distance at most n2 from u. We know that in each step on the
dynamics of c, at least one site in the periodic configuration changes its state,
then in at most n2 steps the site u will be in state 1. In other words, the state
of u depends only on the states of the sites at distance at most n2 from u. Note
that for every v ∈ S, cv = D(c)v. Therefore, u is not stable in D(c). 
�

The set of sites (i, j) of D(x) satisfying (i, j) ∈ [m] × (
[−n2 − n,−n2 − 1)∪

(n2 + n + 1, n2 + 2n]
)

or (i, j) ∈ (
[−n2 − n,−n2 − 1) ∪ (n2 + n + 1, n2 + 2n]

)×
[m], are called the border B of D(x). Note that the border of D(x) contains
only sites in state 0. We call D(x) − B the interior of D(x). Note that B is
tri-connected and forms a set of sites stable for D(c) thanks to Lemma 1. We
call Z the set of sites w in [m] × [m] such that D(x)w = 0.

Lemma 3. Let u be a site in [n] × [n] stable for D(c). Then, there exist three
disjoint paths on G[Z] connecting u with sites of the border B. Moreover, the
paths contain only sites that are stable for B(c).

Proof. Suppose that u is stable. From Lemma 1 this implies that u has three
stable neighbors. Let 0 ≤ i, j ≤ n be such that u = (i, j). We divide the interior
of D(c) in four quadrants:

– The first quadrant contain all the sites in D(x) with coordinates at the north-
east of u, i.e., all the sites v = (k, l) such that k ≥ i and l ≥ j.

– The second quadrant contain all the sites in D(x) with coordinates at the
north-west of u, i.e., all the sites v = (k, l) such that k ≤ i and l ≥ j.

– The third quadrant contain all the sites in D(x) with coordinates at the
south-west of u, i.e., all the sites v = (k, l) such that k ≤ i and l ≤ j.

– The fourth quadrant contain all the sites in D(x) with coordinates at the
south-east of u, i.e., all the sites v = (k, l) such that k ≥ i and l ≤ j.

We will construct three disjoint paths in G[Z] connecting u with the bor-
der, each one passing through a different quadrant. The idea is to first choose
three quadrants, and then extend three paths starting from u iteratively picking
different stable sites in the chosen quadrants, until the paths reach the border.

Suppose without loss of generality that we choose the first, second and third
quadrants, and let u1, u2 and u3 be three stable neighbors of u, named according
to Fig. 2.

Starting from u, u1, we extend the path P1 through the endpoint different
than u, picking iteratively a stable site at the east, or at the north if the site
in the north is not stable. Such sites will always exist since by construction the
current endpoint of the path will be a stable site, and stable sites must have
three stable neighbors (so either one neighbor at east or one neighbor at north).
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uu3 u1

u2

?

(a) Case 1

u? u1

u2

u3

(b) Case 2

uu2 u1

?

u3

(c) Case 3

uu2 ?

u1

u3

(d) Case 4

Fig. 2. Four possible cases for u1, u2 and u3. Note that one of these four cases must
exist, since u has at least three stable neighbors. From u1 we will extend a path through
the first quadrant, from u2 a path through the second quadrant, and from u3 a path
through the third quadrant.

The iterative process finishes when P1 reaches the border. Note that necessarily
P1 is contained in the first quadrant. Analogously, we define paths P2 and P3,
starting from u2 and u3, respectively, and extending the corresponding paths
picking neighbors at the north-west or south-west, respectively. We obtain that
P2 and P3 belong to the second and third quadrants, and are disjoint from P1

and from each other.
This argument is analogous for any choice of three quadrants. We conclude

there exist three disjoint paths of stable sites from u to the border B. 
�
Lemma 4. Let u, v be two sites in [n] × [n] stable for D(c). Then, there exist
three disjoint u, v-paths in G[Z] consisting only of sites that are stable for D(c).

Proof. Let u, v be stable vertices. Without loss of generality, we can suppose
that u = (i, j), v = (k, l) with i ≤ k and j ≤ l (otherwise we can rotate x
to obtain this property). In this case u and v divide the interior of D(x) into
nine regions (see Fig. 3). Let Pu,2, Pu,3, Pu,4 be three disjoint paths that connect
u with the border through the second, third and fourth quadrants of u. These
paths exist according to the proof of Lemma 3. Similarly, define Pv,1, Pv,2, Pv,3

three disjoint paths that connect v to the border through the first, second and
third quadrants of v.

Observe fist that Pu,3 touches regions that are disjoint from the ones touched
by Pv,1, Pv,2 and Pv,3. The same is true for Pv,1 with respect to Pu,2, Pu,3, Pu,4.
The first observation implies that paths Pu,3 and Pv,1 reach the border without
intersecting any other path. Let w1 and w2 be respectively the intersections of
Pu,3 and Pv,1 with the border. Let now Pw1,w2 be any path in GB connecting
w1 and w2. We call P1,3 the path induced by Pu,3 ∪ Pw1,w2 ∪ Pv,1.

Observe now that Pu,2 and Pv,4 must be disjoint, as well as Pu,4 and Pv,2.
This observation implies that Pu,2 either intersects Pv,2 or it do not intersect
any other path, and the same is true for Pu,4 and Pv,4. If Pu,2 does not intersect
Pv,2, then we define a path P2,2 in a similar way than P1,3, i.e., we connect
the endpoints of Pu,2 and Pv,2 through a path in the border (we can choose this
path disjoint from P1,3 since the border is tri-connected). Suppose now that Pu,2

intersects Pv,2. Let w the first site where Pu,2 and Pv,2 intersect, let Pu,w be the
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u

Pv,2
Pv,1

Pv,4

v

Pu,2

Pu,3

Pu,4

•

•

0

0

0

0

0

0

0

0

0

0

0

0

0

00 00 00 00

0 00 00 00

•

Fig. 3. Vertices u and v divides the interior of D(x) into four regions each. Together
they split the space into nine regions. According to Lemma 3), we can choose three
disjoint paths connecting u and v, in such a way that each of the nine regions intersect
at most one path. We use the border of D(x) to connect the paths that do do not
intersect in the interior of D(x).

u,w-path contained in Pu,2, and let Pw,v be the w, v-path contained in Pv,2. We
call in this case P2,2 the path Pu,w ∪ Pw,v. Note that also in this case P2,2 is
disjoint from P1,3. Finally, we define P4,4 in a similar way using paths Pu,4 and
Pv,4. We conclude that P1,3, P2,2, and P4,4 are three disjoint paths of stable sites
connecting u and v in G[Z]. 
�
We are now ready to show our characterization of stable set of vertices.

Theorem 1. Let x ∈ {0, 1}[n]2 be a finite configuration, and let u be a site
in [n] × [n]. Then, u is stable for c = c(x) if and only if u is contained in a
tri-connected component of G[Z].

Proof. From Lemma 2, we know that u is stable for c if and only if it is stable
D(c). Let S be the set of sites stable for D(c). We claim that S is a tri-connected
component of G[Z]. From Lemma 4, we know that for every pair of sites in S
there exist three disjoint paths in G[S] connecting them, so the set S must be
contained in some tri-connected component T of G[Z]. Since G[T ] is a graph
of degree at least three, and the sites in T are contained in Z, then Lemma 1
implies that T must form a stable set of vertices, then T equals S.

On the other direction, Lemma 1 implies that any tri-connected component
of G[Z] must form a stable set of vertices for D(c), so u is stable for c. 
�

4 The Algorithm

We are now ready to show the main result of this paper.
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Theorem 2. Prediction is in NC.

Proof. Let (x, u) be an input of Prediction, i.e. x is a finite configuration
of dimensions n × n, and u is a site in [n] × [n]. Our algorithm for Predic-
tion first computes from x the finite configuration D(x). Then, the algorithm
uses the algorithm of Proposition 1 to compute the tri-connected components of
G[Z], where Z is the set of sites w such that D(x)w = 0. Finally, the algorithm
answers no if u belongs to some tri-connected component of G[Z], and answer
yes otherwise.

Algorithm 1. Prediction
Input: x a finite configuration of dimensions n×n and u ∈ [n]× [n] such that xu = 0.

1: Compute the finite configuration D(x) of dimensions m × m with m = 2n2 + 3n
2: Compute the set Z = {w ∈ [m] × [m] : D(x)w = 0}.
3: Compute the graph G[Z].
4: Compute the set T of tri-connected components of G[Z].
5: for each T ∈ T do
6: if u ∈ T then
7: return no
8: end if
9: end for

10: return yes

The correctness of Algorithm 1 is given by Theorem 1. Indeed, the algorithm
answers yes on input (x, u) only when u does not belong to a tri-connected
component of G[Z]. From Theorem 1, it means that u is not stable, so there
exists t > 0 such that F t(c(x))u = 1.

Step 1 can be done in O(log n) time with m2 = O(n6) processors: one proces-
sor for each site of D(x) computes from x the value of the corresponding site in
D(x). Step 2 can be done in time in O(logm) = O(log n) with O(m2) proces-
sors, representing Z as a vector in {0, 1}m2

, each coordinate is computed by a
processor. Step 3 can be done in time O(log n) and O(m2) processors: we give
one processor to each site in Z, which fill the corresponding four coordinates of
the adjacency matrix of G[Z]. Step 4 can be done in time O(log2 n) with O(n)
processors using the algorithm of Proposition 1. Finally, steps 5 to 10 can be
done in time O(log n) with O(n2) processors: the algorithm checks in parallel if
u is contained in each tri-connected components. There are O(n) tri-connected
components, each of them containing O(n) elements. All together the algorithm
runs in time O(log2 n) with O(n6) processors.

5 Conclusion

We showed that the prediction problem for the two-dimensional freezing non-
strict majority automaton is in NC. This question was posed in [7,12].
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In [12] it is shown that the prediction problem for freezing non-strict majority
automaton on an arbitrary graph of degree at most four is P-Complete, and in
graphs of degree at most three is in NC. The authors conjectured that this
problem is in NC on any planar topology. We remark that if we remove the
hypothesis that the topology is a grid, then our characterization of stable sets
(Theorem 1) is no longer true, even for planar regular graphs of degree four.
Indeed a regular graph of degree four might not be tri-connected (see Fig. 4).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Fig. 4. Non-triconnected degree 4 graph. If all the vertices are initially in state 0, then
the configuration is stable.

In our prediction problem, our goal was to compute the configuration
obtained once the fixed point is reached. A variant of this problem could consider
the complexity of the problem consisting in, given a configuration c and T > 0
and a site v, compute state of v in the configuration obtained after T steps, i.e.,
compute FT (c)v. Our algorithm is not valid for this problem, since a site might
not be stable for the input configuration, but change its state in more than T
steps. We believe that this version of the prediction problem is harder than the
one treated in this paper. Indeed, we can create very simple gadgets that allow to
simulate planar monotone circuitry only for a fixed number of steps, but that are
destroyed when we do not bound the time of the simulation. To our knowledge,
there are no example of an automata network capable to both simulate planar
monotone circuitry, and which corresponding prediction problem is in NC.
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Abstract. We give two families of examples of automorphisms of sub-
shifts that are range-distorted, that is, the radius of their iterations grows
sublinearly. One of these families comes from one-head machines, and
allows us to build such automorphisms for the full shift, and to obtain
undecidability results. We also give some conditions on the functions that
can occur as such growths.

1 Introduction

In this article, ‘distortion’ means that something that typically grows or moves
linearly or not at all instead does so at an intermediate rate. In one-head
machines, we consider sublinear head movement (the head visits o(t) cells in
t steps), and in cellular automata sublinear radius growth (the radius of the
iterates grows in o(t)), which corresponds to range distortion in the terminology
of [1]. In both cases, we show ‘trichotomy’ results: there are logarithmic gaps
between periodic and distorted cases, and between distorted and positive-speed
machines.

We show that every aperiodic one-head machine is distorted. The existence
of aperiodic one-head machines is well-established, in particular [2] shows that
they not only exist but form a computationally hard (undecidable) set. The
single most beautiful example of an aperiodic machine is probably the SMART
machine [3], whose moving tape dynamics is even minimal.

We discuss two ways of achieving distortion in automorphism groups of sub-
shifts. To every one-head machine, we can associate a cellular automaton (on
a full shift) whose radius grows at roughly the same speed as the head of the
one-head machine moves. Given that there exist distorted one-head machines,
there also exist distorted cellular automata. The examples given are reversible,
and thus we obtain distorted automorphisms on a transitive subshift, answer-
ing an implicit question of [1]. By known embedding theorems, we obtain such
examples on all uncountable sofic shifts.
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Published by Springer International Publishing AG 2017. All Rights Reserved
A. Dennunzio et al. (Eds.): AUTOMATA 2017, LNCS 10248, pp. 120–138, 2017.
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We also construct an example of an automorphism on a general subshift with
‘highly unbalanced distortion’, in the sense that for an infinite set of times t ∈ N,
f t has a ‘right-leaning’ neighborhood (one of the form �a,∞�) that contains only
slightly more than logarithmically many cells to the left of the origin, and ‘left-
leaning’ neighborhood with the symmetric property, yet all its two-sided neigh-
borhoods grow at an almost linear rate. In particular, the intersection of all neigh-
borhoods is far from being a neighborhood, answering Question 3.26 of [1].

2 Definitions

2.1 Subshifts and Cellular Automata

Let Σ be a finite set called the alphabet. Then ΣZ with the product topology
is called the full shift, and it is a Z-dynamical system under the shift map
σ : ΣZ → ΣZ defined by σ(x)i = xi+1. Closed shift-invariant subsets of it are
called subshifts.

If X and Y are subshifts, a function f : X → Y is called a morphism if
it is continuous and σ ◦ f = f ◦ σ. It is an endomorphism if Y = X and an
automorphism if, besides, it is bijective (in which case it automatically has a left
and right inverse endomorphism). A cellular automaton is another name for an
endomorphism, though often this term is reserved for the case X = Y = ΣZ.
Automorphisms are also called reversible cellular automata.

An endomorphism f is preperiodic if fp+q = fq for some preperiod q ∈ N
and some period p ∈ N\{0}. If an automorphism is preperiodic with q = 0, it is
periodic.

The trace map Tf : X → ΣN is the map defined by Tf (x)t = f t(x)0 for all
x ∈ X and t ∈ N. It is clear that τf = Tf (X) is a one-sided subshift (closed and
shift-invariant), which is finite if and only if f is preperiodic.

For X a subshift and n ∈ N we define the complexity function KX by
KX(n) =

∣
∣
{

x�0,n�

∣
∣ x ∈ X

}∣
∣, the number of distinct patterns occuring in con-

figurations of X. It is easy to see that if X is infinite, then KX is increasing.

2.2 Neighborhoods and Radii

It is quite well-known [4] that if f : X → Y is a morphism, then it admits a
neighborhood, that is a finite interval I ⊂ Z such that ∀x, y ∈ X,xI = yI ⇒
f(x)0 = f(y)0.

Let X and Y be Z-subshifts and f : X → Y a morphism. We define the set
of neighborhoods as

N(f) = I = �a, b� ⊂ Z | ∀x, y ∈ X,xI = yI =⇒ f(x)0 = f(y)0.

The diameter D(f) of a morphism f is then the least possible diameter 2r+1
of a central neighborhood �−r, r� ∈ N(f).

Remark 1. It is easy to see thatN(f) is an upset: I ∈ N(f), J ⊃ I =⇒ J ∈ N(f).
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The case when N(f) is a principal filter, that is when N(f) = {J |J ⊃ I}
for some finite interval I (it is well-known that this happens for the full shift),
is especially desirable. In that case, I must be the intersection of all elements in
N(f), and thus we define I(f) =

⋂

J∈N(f) J (it corresponds to I(−1, f) in the
notation of [1]). Let us also define d(f) as the diameter of {0} ∪ I(f), which is
at most D(f) (and is equal if X is the full shift for example). Theorem 5 will
give an example of endomorphism where N(f) is far from being a filter.

2.3 Distortion

Let f be an endomorphism of a subshift X. For t ∈ N, let us define Dt(f)
as maxk≤t D(fk). It is clear that Dt(f) ≤ t(D(f) − 1) + 1 = O(t), and that
Dt(f) ≤ Dp+q(f) is bounded if fp+q = fq. f will be called range-distorted (or
simply, in this article, distorted) if Dt(f) = o(t) but f is not preperiodic.

This definition is equivalent to the one from [1,5], and comparable to the
notion of distortion from group theory: if f t can be expressed as a product of
o(t) generators of some finitely generated endomorphism submonoid, then f is
range-distorted.

The distortion function t �→ Dt(f) cannot be arbitrarily low. In fact, naively
counting the possible local rules gives a log log lower bound, but the Morse-
Hedlund theorem allows to ‘remove’ one log in the following proposition, which
is a direct adaptation from the main argument in [5, Theorem 3.8].

Proposition 1. If X is a subshift and f : X → X an endomorphism. Then
exactly one of the following holds:

– (Dt) is bounded (f is preperiodic);
– ∀t ∈ N,Dt(f) ≥ K−1

X (Kτf
(t)) > K−1

X (t) = Ω(log t) and Dt(f) = o(t) (f is
distorted);

– Dt(f) = Θ(t), and d(f t) = Θ(t) (f has non-0 Lyapunov exponents).

Note that if X has linear complexity or if f has positive entropy, then the central
class is empty. Moreover, if KX(n) = O(nd) (resp. O(2nε

)), then endomorphisms
of this class must even have Dt(f) = Ω(t1/d) (resp. Ω((log t)−ε)).

Proof. Let t ∈ N. If f is not preperiodic, then neither is its trace τf . By
the Morse-Hedlund theorem, we must have Kτf

(t) > t. By definition, Dt can
be written as 2r + 1 such that for all x, y ∈ X such that x�−r,r� = y�−r,r�,
we have Tf (x)�0,t� = Tf (y)�0,t�, so that Kτf

(t) ≤ KX(Dt). We obtain Dt ≥
K−1

X (Kτf
(t)) > K−1

X (t) because KX is increasing.
Now, suppose that Dt is not o(t), then subadditivity and the Fekete lemma

imply that Dt = Θ(t) (and the same for d(f t)). This argument is formalized for
example in [6] or [1], and the limit of Dt/2t corresponds to the maximal so-called
Lyapunov exponent, in absolute value. ��
It is not known if there is the same lower gap for d(f t), or in general which kinds
of growths are possible.
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A natural object is the two-dimensional subshift of (two-sided) space-time
diagrams of f : Xf = {x | ∀t ∈ Z, (xn,t)n∈Z = f((xn,t−1)n∈Z) ∈ X}. Following
[7], we say that a vector line (or direction) � ⊂ R2 is expansive in Xf if there
exists a width r ∈ N such that:

∀x, y ∈ Xf : (∀v ∈ Z2 : d(v, �) < r =⇒ xv = yv) =⇒ x = y.

The following proposition is not difficult. It is for example a particular case
of [1, Proposition 4.5].

Proposition 2. A non-periodic automorphism f and its inverse are distorted if
and only if Xf has the vertical direction as unique direction of nonexpansiveness.

Actually, any 2D subshift is expansive in every nonvertical direction if and only
if it is conjugate to Xf for some automorphism f such that both f and f−1 are
periodic or distorted (a particular case of [1, Proposition 5.6]).

Note that Proposition 2 could motivate a notion of directional distortion, cor-
responding to endomorphisms whose space-times have a unique direction of non-
expansiveness, and whose composition with the corresponding shift is not prepe-
riodic (in particular, if the unique direction of nonexpansiveness is irrational).

Several examples of such extremely expansive two-dimensional subshifts are
known. A general self-simulating construction is given in [8], and effectivized (so
that f is obtained as a partial local rule from the full shift) in [9,10].

We give in Sect. 4 a construction which is very similar to a second construction
in [8], though independent. But first, in Sect. 3, we prove a link with one-head
machines, which allows us to get distorted automorphisms of the full shift.

3 Distorted One-Head Machines

3.1 One-Head Machines

Let Δ = {−1,+1} be the set of directions. A one-head machine (or Turing
machine) M is a triple (Q,Σ, δ) where Q is a finite set of states, Σ is a finite set
of symbols, and δ ⊂ (Q × Δ × Q) � (Q × Σ × Q × Σ) is the transition function.
This model (for example introduced in [11]) is equivalent to the one in [12], but
handles reversibility better.

Noting Σ̃ = Σ � (Q × Σ), where elements of Q × Σ are called heads, and
XM =

{

xΣ̃Z | ∀i, j ∈ Z, xi ∈ Σ or xj ∈ Σ
}

(set of tapes with at most one head
somewhere), we can associate to it the so-called moving-head model as the closed
shift-invariant relation MM of XM defined by: (x, x′) ∈ MM if one of the
following occurs:

x = x′ ∈ ΣZ;
∃i ∈ Z, (xi, x

′
i) ∈ δ and ∀j �= i, xj = x′

j ∈ Σ;
∃i, i′ ∈ Z, (q, i′ − i, q′) ∈ δ, xi = (q, x′

i) ; x′
i′ = (q′, xi′) ; ∀j /∈ {i, i′}, xj = x′

j ∈ Σ.
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We actually focus on total deterministic machines, that is, machines where
every configuration has exactly one successor, which makes MM induce an endo-
morphism of XM, also noted MM. A reversible one-head machine (RTM) is a
deterministic one-head machine for which MM is actually an automorphism.

A (total deterministic) one-head machine M is periodic or preperiodic if the
corresponding endomorphism is.

A configuration x ∈ XM is weakly periodic if Mp
M(x) = σj(x) for some

p ≥ 1 and j ∈ Z. We will say that it is aperiodic if it has no weakly periodic
configuration containing a head1 (that is, no configuration x with a nontrivial
p ≥ 1 and q ∈ Z such that Mp

M(x) = σq(x)).
Fix a one-head machine M = (Q,Σ, δ). If x ∈ Σ̃Z contains a head, we write

st(x) for the number of distinct cells that the head of M visits in the first t
steps starting from configuration x (taking the number of distinct cells rather
than the position makes it nondecreasing, which simplifies some arguments).
The function m : N → N defined by m(t) = maxx st(x) is called the movement
bound of M. The speed of M is defined in [14] as the limit of m(t)/t, which
exists by subadditivity. A one-head machine will be called distorted if it is not
periodic but m is sublinear in t.

Remark 2. It is easy to see that Dt(MM) = m(t). In particular, M is distorted
if and only if MM is a distorted endomorphism.

We will prove that aperiodic one-head machines are examples of distorted
machines.

3.2 Speed Trichotomy

In this section, we give some information on the possible speeds of one-head
machines, namely that there are two gaps of impossible movements.

Theorem 1. Let M = (Q,Σ, δ) be a one-head machine with movement bound
m. Then exactly one of the following holds:

– m is bounded (M is preperiodic);
– m(t) = Ω(log t) and m(t) = O(t/ log t) (M is distorted);
– m(t) = Θ(t) (M has positive speed).

The preperiodic and positive speed cases are quite well understood. It can
even be shown that some periodic configuration achieves the maximal speed [14].
We do not know what kinds of intermediate growth functions can be realized
with distorted one-head machines.

Here is a simple counting lemma. If H : N → N is nondecreasing, we write
�H−1(n)� for the largest � such that H(�) ≤ n.

Lemma 1. Let a0, . . . , an be in N and suppose that |{ i ∈ �0, n� | ai = �}| ≤ h(�)
for all �. We have the following.
1 This corresponds to classical aperiodicity in the so-called moving-tape model or trace
subshift from [12,13].
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1. If H(�) =
∑�

i=0 h(i), then
n∑

i=0

ai ≥
�H−1(n)�

∑

i=0

ih(i).

2. Moreover, if h(�) = α�, then
n∑

i=0

ai = Ω(n log n).

Proof. 1. Define bi = k ⇐⇒ i ∈ �H(k − 1),H(k)� for k ≥ 0. Then we have

n∑

i=0

ai ≥
n∑

i=0

bi ≥
�H−1(n)�

∑

i=0

ih(i),

where the first inequality follows by sorting the ai in increasing order and
observing that then necessarily ai ≥ bi for all i, and the second follows by a
direct counting argument.

2. If � ≤ logα n − 1, then H(�) =
∑�

i=0 h(i) ≤ α�+1 ≤ n, so �H−1(n)� ≥
logα n − 2. Thus

n∑

i=0

ai ≥
�H−1(n)�

∑

i=0

ih(i)

≥
logα n−2

∑

i=0

ih(i)

≥ (logα n − 2)h(logα n − 2)

= (logα n − 2)αlogα n−2

= (logα n − 2)nα−2

= Ω(n log n).

��
The upper bound is achieved by a counting argument, and the right object

to count are the crossing sequences, which we now define.
To any machine M, configuration x ∈ XM and position J ⊂ Z, we can

associate the crossing times θJ(x) as the ordered set of times k ∈ N such that
∃i ∈ J,Mk

M(x)i ∈ Q × Σ; it is formally a tuple, but sometimes we use set
notation, like its cardinality |θJ(x)| or diameter max θJ(x)−min θJ(x). Moreover
for all steps t ∈ N, we can associate the (partial) crossing sequence uJ,t(x) =
(Mk

M(x)J )k∈θJ,t(x) ∈ (Σ̃J )∗, where θJ,t(x) = θi(x)∩�0, t�. This definition is close
to a finitary version of the notion in [14,15], except we take the sequence at a
given cell rather than between two neighboring cells, which makes no difference
except for writing. We use notations θi, θi,t, ui,t if J = {i}.

We are now ready to prove the main equivalence of this section.

Proposition 3. Let M be a one-head machine. The following are equivalent.

1. m(n) is not O(n/ log n).
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2. There exist a configuration x ∈ XM, two distinct positions i, j ∈ Z, and a
step t ∈ N such that ui,t(x) = uj,t(x) are nonempty.

3. There exists a configuration x ∈ XM such that the cardinality of θi(x) is
uniformly bounded for i ∈ Z.

4. There exists a configuration x ∈ XM such that the diameter of θi(x) is uni-
formly bounded for i ∈ Z.

5. There exists a weakly periodic configuration which is not periodic.
6. M has positive speed: m(n) = Ω(n).

Point 2 actually remains equivalent if the first visited crossing sequence admits
the other one as a prefix. The implications 2 ⇒ 3 (resp. 3 ⇒ 4) could also
have been derived from looking at the countable-state Markov shift built in [14]
(resp. from a general result over path spaces [16]), but we give specific proofs for
completeness.

Proof. 1 ⇒ 2 Let x be a configuration and t a step, and J = {i ∈ Z|θi,t(x) �= ∅}
the set of visited cells. Since �0, t�=

⊔

i∈J θi,t(x), we get that t =
∑

i∈J |θi,t|,
which is the sum of lengths of the crossing sequences. Suppose that every
crossing sequence ui,t(x) is distinct, for i ∈ J . There are at most (|Σ| |Q|)�

distinct crossing sequences of length �, so it follows from Lemma 1 that t =
Ω(|J | log |J |). We get:

m(t) = sup
x

st(x) = sup
x

sγ(t) log γ(t)(x) ≤ Bγ(t) ≤ 2B
t

log t
,

for some constant B and all large enough t, and where γ is the inverse of the
function t �→ t log t, which satisfies γ(t) ≤ t

log t−log log t ≤ 2 t
log t for large t.

2 ⇒ 3 By symmetry, we can assume that j > i and min θj,t(x) > min θi,t(x). By
shifting and applying MM, we can assume that i = 0 and min θi,t(x) = 0. We
can also assume that t is minimal for the property that u0,t(x) = uj,t(x) is not
empty. Equivalently, t is the first step n for which kn = |θ0,n(x)|−|θj,n(x)| = 0.
Since k0 = 1 and for n ∈ N, kn+1 ∈ kn + {−1, 0, 1}, we get that kn > 0 if
n < t, which means that t′ = max θ0,t(x) < t = max θj,t(x). Note that
t + 1 ∈ θj+1(x), because M t

M(x)j = M t′
M(x)0 gives a right movement by δ (if

the machine head had been going to the left on 0 at t′ = max θ0,t(x), then it
could not have reached position j before time t).
Let J−1 =� − ∞, 0� and, for n ∈ N, Jn = jn + �0, j�. Let y ∈ XM have
a tape that is periodic on the right in the following way: yJ−1 = xJ−1 and
yjn+�0,j� = x�0,j�.
Let us build inductively a nondecreasing map φ : N× (N�{−1}) → �0, t + 1�
such that for all steps k ∈ N and n ∈ N � {−1}, if θJn,k(y) is non-
empty then Mk

M(y)Jn
= M

φ(k,n)
M (x)Jmin(n,0) ; besides, φ(�0, k� × {n}) =

{0}∪θJmin(n,0),φ(k,n)∪(θJmin(n,0),φ(k,n)+1) (in particular, this gives uJn,k(y) =
uJmin(n,0),φ(k,n)(x)); moreover, the restriction of φ to θJn,k(y)×{n} is an injec-
tion onto θJmin(n,0),φ(k,n)(x).
φ(0, n) = 0 clearly satisfies this. Now, suppose that φ has been built up to
step k ∈ N for all n ∈ N � {−1}. Let n ∈ N � {−1}.
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• If k, k + 1 /∈ θJn
(y), then φ(k + 1, n) = φ(k, n) is satisfying because Jn is

unchanged at this moment.
• If k ∈ θJn

(y), then it is clear that φ(k + 1, n) = φ(k, n) + 1 satisfies
the two properties. By hypothesis, Mk

M(y)Jn
= M

φ(k,n)
M (x)Jmin(n,0) , so

that φ(k, n) ∈ θJmin(n,0)(x). By the first remark of the proof, we see that
φ(k, n) �= t + 1.

• Now if k+1 ∈ θJn
but k /∈ θJn

, then one can note that k+1 ∈ θjn ∪θj(n+1)

(the head should be in one boundary), say k + 1 ∈ θjn (the other case
can be dealt with by symmetry), and in that case k ∈ θjn−1, so that
we have already defined φ(k + 1, n − 1) = φ(k, n − 1) + 1, which is at
most t (by hypothesis and because φ(k + 1, n − 1) ∈ θJn−1(y)). We know
that Mk+1

M (y)Jn−1 = M
φ(k+1,n−1)
M (x)Jmin(n,0) . In particular, Mk+1

M (y)jn =

M
φ(k+1,n−1)
M (x)0 contains the head, and the main hypothesis gives a corre-

sponding time φ(k +1, n) ≤ t such that uj,φ(k+1,n−1)(x) = u0,φ(k+1,n)(x).
From the construction of the previous steps, φ(k, n) is either 0 if θJn,k

is empty, or φ(max θJn,k, n) + 1 = max θJn,φ(k,n)(x) + 1 < φ(k + 1, n)
otherwise. In both cases, we get the wanted properties.

The last property of φ gives that for all n ∈ N, |θJn,k| =
∣
∣
∣θJmin(n,0),φ(k,n)

∣
∣
∣ and

the fact that the map is bounded gives that this is at most
∣
∣θJmin(n,0),t

∣
∣ ≤ t.

We obtain that the number of visited cells in the first k steps on y is Ω(jk/t).
3 ⇒ 4 Let � ≥ 1 be minimal such that there is a configuration x ∈ XM\ΣZ

such that ∀i ∈ Z, |θi(x)| ≤ �. Assume that for all n ∈ N, there exists in ∈ Z
for which the diameter of θin

(x) is at least n. Let us consider a limit point
y of (Mmin θin (x)

M σin(x))n∈N. By minimality of �, we know that |θi(y)| ≥ �
for some i ∈ Z. Let t = max θi(y), and n be such that for all m ≥ n,
∀k ≤ t,Mk

Mσim(x)i = Mk
M(y)i. In particular, ui,t(σim(x)) = ui,t(y) has

length at least �. By assumption, it actually has length � and θi+im
(x) =

θi(σim(x)) ⊂ �0, t�. For every m ≥ max(n, t), we have max θim
(x) ≥ m ≥ t,

so that, after time t, the head is in the connected component of Z\{i + im}
that contains im. Let us assume that i > 0 (the argument is symmetric), so
that this connected component is �−∞, i+ im� for every m, and let j be one
position taken by the head after time t. Then for all m ≥ max(n, t), j < i+im,
which means im > j − i. On the other hand, if im is itself a position that the
head takes after time t, so it must be in � − ∞, i + imax(n,t)�. It results that
{im |m ≥ max(n, t)} is included in the finite set �j − i, i + imax(n,t)�, which
contradicts its infinity.

4 ⇒ 5 Let n ≥ 1 and x ∈ XM\ΣZ such that for all i ∈ Z, the diameter of θi(x)
is at most n. By the pigeonhole principle, there are two distinct positions
i, j ∈ Z such that θi(x) − min θi(x) = θj(x) − min θj(x) and ui(x) = uj(x).
Assume that i = 0 < j and min θi(x) = 0 < p = θj(x) (by symmetry).
Then our assumption says that (M t

M(x)i)t∈N = (M t
M(x)j)t∈�p,∞�. Let us

define y ∈ XM by yjm+n = M
(max(0,−pm)
M (x)n if m ∈ Z and n ∈ �1, j�. A

standard cellular automata argument (an a little drawing) can convince that
the pieces of space-time diagrams fit, so that, by induction on t ∈ �0, p�: if
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n ∈ �1, j� and m > 0, then M t
M(y)jm+n = xn = yj(m−1)+n, and if m ≤

0, M t
M(y)jm+n = M t−pm

M (x)n. In particular, we get that Mp
M(y)jm+n =

yj(m−1)+n = σj(y)jm+n.
5 ⇒ 6 It is clear that any configuration x such that Mp

M(x) = σj(x) has a
speed st(x) ∼ jt/p.

6 ⇒ 1 This is obvious.
��

Proof (of Theorem 1). From Proposition 1 together with Remark 2, we know
that if M is not preperiodic, then m(t) = Ω(log t). The other gap corresponds
to the implication 1 ⇒ 6 in Proposition 3. ��

3.3 Aperiodic Machines

Theorem 2. Every aperiodic one-head machine is distorted.

In particular, there exist distorted one-head machines: see for example [3,17] for
constructions of aperiodic machines. The latter is even minimal in the moving
tape model (which directly implies aperiodicity, except over the trivial alphabet).

Proof. Consider the three cases of Theorem 1. If M is aperiodic, it naturally
cannot be preperiodic. If M were in the last case of the theorem, its trace
subshift would contain a periodic point y ∈ (Q × Σ)N with positive speed. On
a configuration where this movement is realized, every cell is visited a bounded
number of times, during a time interval of bounded length. Thus M is essentially
performing a finite transduction, and it is easy to extract, by the pigeonhole
principle, a configuration in Q × ΣZ where M acts periodicially. ��

The machine constructed in [3] also has the property that the trace subshift
of the one-head machine (the subshift encoding possible sequences of states that
the head can enter when acting on a configuration) has a substitutive structure,
and an explicit substitution is given. As the head movement only depends on
the trace, it should be possible to compute the movement bound explicitly using
spectral properties of the matrix associated to the substitution (see [18]), but
this requires a bit of work since the substitution given in [3] is not primitive.

3.4 Distortion on Sofic Shifts

The question of distortion is most interesting on simple subshifts, as then distor-
tion comes from the automorphism itself and not the structure of the subshift.
In [1], it is stated in particular that it is not known whether range-distortion
can be achieved on transitive subshifts. In this section, we show that the exis-
tence of distorted one-head machines directly implies the existence of distorted
automorphisms on all uncountable sofic shifts.

The following lemma is a direct corollary of the construction in [19, Lemma 7]
(the result is proved for mixing SFTs in [20], with essentially the same
construction).
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Lemma 2. Let X be a full shift and Y an uncountable sofic shift. Then there
exist C,B ∈ N and an embedding φ from the endomorphism monoid of X to
that of Y such that |D(φ(f)) − BD(f)| ≤ C for all endomorphisms f of X.

The number B comes from the fact that individual (pairs of) letters are
written as words of length B occurring in Y , and C comes from the fact that
the rule is only applied in “safe contexts”.

Lemma 3. Let M = (Q,Σ, δ) be a deterministic total one-head machine. Then,
letting

Γ = ((Σ2 × Δ) ∪ (Q × Σ) ∪ (Σ × Q)),

there is a cellular automaton f : ΓZ → ΓZ such that if m : N → N is the
movement bound for M, then D(f t) ≤ m(t) for all t ∈ N. Moreover, f is
reversible (resp. preperiodic) if and only if M is.

The proof uses so-called ‘conveyor belts’ to deal with configurations with several
heads. One could also use the construction of [2] to embed the one-head machine
to a cellular automaton, and obtain the same result.

Proof (of Lemma 3). The proof is similar to that of [19, Lemma 7]. For a residual
set of points x ∈ ΓZ, we can split x into a product x = · · · w−2w−1w0w1w2 · · ·
such that for each i ∈ Z, we have

wi ∈ (Σ2×{+1})∗((Q×Σ)∪(Σ×Q))(Σ2×{−1})∗∪(Σ2×{+1})∗(Σ2×{−1})∗,

and this factorization is clearly unique: every point in ΓZ can be seen as a point
of this form, but the leftmost and/or rightmost words can be degenerate, and
have an infinite number of ±1. It is enough to define how f transforms these
words, and if the resulting map is uniformly continuous (which will be evident
from the construction), then f uniquely extends to a continuous function on the
full shift. Shift-commutation follows automatically because the decomposition of
x is unique and the decomposition process is shift-invariant, and thus we obtain
a cellular automaton.

On words in (Σ2 × {+1})∗(Σ2 × {−1})∗, we do nothing. If w ∈ (Σ2 ×
{+1})∗((Q×Σ)∪(Σ×Q))(Σ2×{−1})∗, let w′ ∈ (Σ2)∗((Q×Σ)∪(Σ×Q))(Σ2)∗ be
the word obtained from w by erasing the arrows. We see w′ as a ‘conveyor belt’,
wrapped around which is a word of length 2 |w′|. More precisely, let u = π1(w′)
and v equals the reversal π2(w′), of π2(w′), and observe that one of these words
is in Σ+ and the other one is in Σ∗QΣ∗.

Apply the transition function of the one-head machine to the configuration
(uv)Z. Note that this configuration contains infinitely many heads, but as they
move with the same rule, the movement is still well-defined. Note also that if
the machine M is reversible, then this application is reversible as well, in the
sense that the inverse of M−1 applied at every head undoes the transition step
of M even on this periodic configuration. (This justifies the last sentence in the
statement of the lemma.)
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Now, the resulting configuration (u′v′)Z still contains exactly one head
in every pattern u′v′. This configuration was obtained by a bijection that
unwrapped a word w′ ∈ (Σ2)∗((Q × Σ) ∪ (Σ × Q))(Σ2)∗ to a pair of words.
Perform the inverse of this bijection, rewrapping u′ and v′ to a word in
(Σ2)∗((Q × Σ) ∪ (Σ × Q))(Σ2)∗, and add a +1 and −1 component pointing
towards the machine head to each cell containing a symbol in Σ2. This defines
f . Note that x and f(x) always have the same decomposition, and if the one-
head machine is reversible, its reverse one-head machine defines f−1, so f is
reversible if M is.

To see that D(f t) ≤ m(t), consider any configuration x ∈ ΓZ. If there is
no machine head in x�−m(t),m(t)�, then f t(x)0 = x0, since no machine head
can travel by more than m(t) cells in t steps. If there is a machine head in
this interval in some coordinate j ∈ Z, we start simulating its movement (also
modifying the tape according to its movement). Note that the one-head machines
stay neatly in their separate conveyor belts, so no machines crash into each other
during this simulation. If a head steps out of the interval �−m(t),m(t)� during
the simulation, we can stop simulating it, as it will not reach the origin. After
simulating heads for t steps, we know the value of f t(x)0. (Of course, we really
only have to simulate a head if its conveyor belt contains the origin, and there
is a unique such a head, but it does not hurt to simulate all of them.) ��
Theorem 3. Let X be an uncountable sofic shift. Then there exists a distorted
automorphism on X.

Proof. Let M be a distorted one-head machine. Then the cellular automaton
f constructed in the previous lemma is distorted. By Lemma 2, we obtain the
same cellular automaton on any uncountable sofic shift. ��

3.5 Undecidability of Distortion

In this section, we show that distortion is undecidable.

Theorem 4. It is undecidable, given a reversible one-head machine M, whether
M is distorted.

We can actually see from the proof (and from the reduction in [2]) that it is
Π0

1 -complete.

Proof. Every one-head machine lies in exactly one of the three cases of
Theorem 1. We have a semialgorithm for the periodic case (by simply computing
powers of M and checking whether they are the identity map), and we have a
semialgorithm for the case when M has positive speed by the computability of
speed, presented in [14, Theorem 2.7]. If we had a semialgorithm for detecting
distortion, we would then be able to decide all three classes, contradicting the
undecidability of periodicity, established in [2, Theorem 8]. ��
Corollary 1. For every uncountable sofic subshift X, it is undecidable, given
an automorphism Φ of X, whether Φ is distorted.
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Proof. Lemmas 2 and 3 are effective: if some reversible one-head machine is
given, an automorphism of X can be built such that the radius growth differs at
most by a multiplicative constant. If we could decide whether the corresponding
automorphism is distorted, we could then decide whether the original machine
is, which contradicts Theorem 4. ��

4 Unbalanced Distortion in General Subshifts

We give a general construction of a distorted automorphism. The distortion we
aim for is ‘highly unbalanced’.

As mentioned above, it is desirable that N(f) is generated by a single interval,
that is, I(f) ∈ N(f). Thus the size of the difference between I(f) and the
minimal intervals in N(f) somehow measures the ‘badness’ of N(f). We give
an automorphism where this difference grows fast along iterations of f : The
following theorem shows that we can have d(f t) be close to logarithmic, while
D(f t) is close to linear.

We note that our construction is very similar to a construction in [8], though
ours is not (at least consciously) based on it. Our proof is based on self-similar
mud machinery that allows the construction of tracks that take a long time to
walk over, but return to their original state once passed. To organize the behavior
required in the theorem is then not difficult, though getting the numbers right
requires some care because φ and ψ are arbitrary.

Theorem 5. Let φ : N → N be any sublinear function and let ψ : N → N be
any nondecreasing superlogarithmic function. Then there exist a subshift X and
an automorphism f : X → X such that there exist arbitrarily large ti such that
d(f ti) ≤ ψ(ti) but D(f ti) ≥ φ(ti).

By Proposition 1, the function φ cannot be made linear and ψ cannot be made
logarithmic from a subshift X with subexponential complexity.

The following is shown in [1, Theorem 3.24]. Let us say that f is weakly
periodic if there exist p ≥ 1 an j ∈ Z such that fp = σj .

Theorem 6. Let X be an SFT and f : X → X an automorphism which is not
weakly periodic. Then I(f t) ∈ N(f t) for all large enough t.

They ask [1, Question 3.26] whether the assumption that X is an SFT is needed.
Theorem 5 answers by showing a general subshift and an automorphism of it for
which at infinitely many t the interval I(f t) is arbitrarily close to logarithmic in
size, but all contiguous neighborhoods are arbitrarily close to linear in size.

The proof of Theorem 5 first needs a technical but simple lemma. A function
φ : N → R is sublinear if φ(t) = o(t). Functions with this property can have
weird local behavior, which complicates the argument. We show that all sub-
linear functions are majored by sublinear functions with some additional nice
properties.

A nondecreasing function ψ : N → R has asymptotic slope zero if |ψ(t+1)−
ψ(t)| tends to zero as t −→ ∞. Note that if for a function φ, we write ∂φ : N → R
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for its discrete derivative ∂φ(t) = φ(t+1)−φ(t), then asymptotic slope zero, for
an increasing function means just that ∂φ(t) tends to 0 as t −→ ∞. If ψ : R → R
is piecewise linear and it is linear on every interval �i, i + 1� where i ∈ N, then
the restriction ψ : N → R has asymptotic slope zero if and only if the slopes of
the linear pieces of ψ tend to zero.

Lemma 4. If φ : N → R is sublinear, then there is a sublinear increasing
piecewise linear function ψ : R → R with asymptotic slope zero such that ψ(t) ≥
φ(t) for all t ∈ N.

Proof. First, we may assume that φ is nondecreasing, by replacing φ(t) with
maxt

i=0 φ(t), as the resulting function stays sublinear.
By sublinearity, for all k ≥ 1 there exists tk such that t ≥ tk ⇒ φ(t) ≤ t/k.

Pick such tk ∈ N for all k ≥ 1, and observe that we can increase any of the
tk without changing their relevant property. Thus, we can assume the following
further properties:

– tk is increasing in k,
– tk+1/k > tk/(k − 1) for k ≥ 2.

Consider the sequence of points (tk+1, tk+1/k) ∈ N × R. The second item
makes sure that this sequence of points increases on the first axis, and the second
makes sure the sequence also increases on the second axis. On �t2,∞�, define ψ
as the piecewise linear function obtained by linearly interpolating values in the
interval �tk, tk+1� between �tk/(k − 1), tk+1/k�.

The function ψ is now increasing �t2,∞�, because the point (tk+1, tk+1/k) is
strictly below point (tk+2, tk+2/(k + 1)) for all k ≥ 1.

Note that in the interval �tk,∞� where k ≥ 2, we have ψ(t) ≤ t/(k − 1):
Each of the points (t�, t�/(� − 1)) for � > k are strictly below the line Lk =
{(x, x/(k − 1))|x ∈ N} because x/(k−1) > x/(�−1). Thus, interpolating linearly
between these points, we obtain a path that stays under Lk, and values of ψ(t)
are by definition on this path. It follows from this that ψ is sublinear.

Next, observe that ψ(t + 1) ≤ ψ(t) + 1
k whenever t ≥ tk+1. This is because

the slope of the line between (t�+1, t�+1/�) and (t�+2, t�+2/(� + 1)) is

t�+2/(� + 1) − t�+1/�

t�+2 − t�+1
≤ t�+2/� − t�+1/�

t�+2 − t�+1
= 1/�,

for all � ≥ 1. Thus, increasing t by one can increase the value of ψ(t) by at most
1/k whenever t ≥ tk+1, since any such t fits in one of the intervals �t� + 1, t�+1�
where � ≥ k.

Finally, we show that ψ(t) ≥ φ(t) for all but finitely many t, from which
the claim follows by choosing the first few values of ψ suitably, and then
increasing other values by a constant. Suppose then that k ≥ 2. On the inter-
val t ∈ �tk, tk+1�, ψ(t) is linearly interpolated between (tk, tk/(k − 1)) and
(tk+1, tk+1/k). In particular the line between (tk, tk/k) and (tk+1, tk+1/k) is
strictly below the graph of ψ. But t ∈ �tk, tk+1�⇒ φ(t) ≤ t/k, implying that
(t, ψ(t)) is below the the point (t, t/k), thus below the graph of ψ. ��
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With a slightly more careful construction, ψ could be made to have strictly
nonincreasing first difference function (that is, such that the slopes of the linear
pieces decrease from piece to piece), though we do not need this.

A function ψ : N → R is 2-nice if for all C ∈ N, ψ(t + C) ≤ 2ψ(t) for all but
finitely many t.

Corollary 2. If φ : N → N is sublinear, then there is a sublinear nondecreasing
2-nice function ψ : N → N such that ψ(t) ≥ φ(t) for all t.

Proof. Seeing φ as a function φ : N → R, the previous lemma gives us a sublinear
increasing ψ : N → R with asymptotic slope zero. It is easy to see (by separate
easy proofs in the bounded and in the unbounded case) that any nondecreasing
function ψ : N → R with asymptotic slope zero is 2-nice. If ψ : N → R is
increasing and 2-nice, then t �→ �ψ(t)� : N → N is nondecreasing and 2-nice as
well, and it clearly majors ψ, thus φ. ��
Proof (of Theorem 5). By the previous corollary, we may assume that φ is sub-
linear and 2-nice.

Take the alphabet {0, 1, 2, 3, 4, 5} × {0, >,<}. The number {0, 1, 2, 3, 4, 5} is
the mud state and < and > are called runners. We construct a cellular automaton
f that preserves the number of runners in every configuration with the property
that on every f -invariant subshift, the map h flipping left and right runners is
a time-symmetry for f , assuming that two runners never meet (that is, no word
in {<<,<>,><,>>} appears in the configuration).

We only describe how the CA behaves when runners do not meet, as we will
construct our subshift so that this does not happen. Our CA is composed of two
CA, f = g2 ◦ g1. The CA g1 moves every occurrence of < to the left and > to
the right. The CA g2 maps

(0, >) �→ (2, >)
(1, >) �→ (3, <)
(2, <) �→ (0, >)
(3, >) �→ (1, >)

(1, <) �→ (5, <)
(0, <) �→ (4, >)
(5, >) �→ (1, <)
(4, <) �→ (0, <)

and the local rule is filled arbitrarily so that this is a symbol permutation. It
is a good idea to think of a left-going runner < as already being on the left of
the symbol, and > as being on the right. We use a shorthand notation reflecting
this2, and write (a, 0) as simply a, (a,>) as a> and (a,<) as <a. We also write
>w and w< when the mud state of the cell the runner is on is not important.

Now, the idea is the following: We call a word w ∈ {0, 1}∗ a track if, when
a runner > enters it from one side, it eventually goes out from the other side,
leaving w in whatever state it was originally in, with the additional property
that the number of times the mud state of a cell in w turns from zero 0 or 1 to
2 We could just as well actually define our cellular automaton this way, but then tracks

(defined below) move on the tape when a runner passes over them, which muddies
up the global picture.
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a symbol in {2, 3, 4, 5} is odd. The first property means that there exists t such
that for all a ∈ {0, 1, 2, 3, 4, 5} we have

f t(>0|w|, aw) = (0|w|>, aw)

and
f t(0|w|<,wa) = (<0|w|, wa).

The importance of the second requirement will be clarified later. Note that on
the first step, the runner is not yet on the support of the word, and on the
last step, it is on the last symbol of the word w. To a track w, we associate its
duration t(w) ∈ N, which is the least t with the property above.

We show an example of a track. The word 01 is a track, and t(01) = 4, since
(showing configurations from left to right) we have the evolutions

>01; 2>1; 2<3; 0>3; 01>

01<; 0<5; 4>5; 4<1; <01

where we see that the word returned to its original state, and both 0 and 1
changed their state an odd number of times. Clearly the composition of two
tracks is a track, and it is easy to show by induction that if w is a track, then
0w1 is a track as well, so we have a full Dyck language of tracks. One can check
the formulas t(uv) = t(u) + t(v) and t(0w1) = 4 + 3t(w). For example

t(001011) = 4 + 3t(0101) = 4 + 3(t(01) + t(01)) = 28.

Just for fun, let us show how the head moves through 001011, representing
configurations top-down, then left to right. We have

>001011
2>01011
22>1011
22<3011
20>3011
201>011

2012>11
2012<31
2010>31
20101>1
20101<3
2010<53

2014>53
2014<13
201<013
20<5013
24>5013
24<1013

2<01013
0>01013
02>1013
02<3013
00>3013
001>013

0012>13
0012<33
0010>33
00101>3
001011>

and one can check that the vector recording the number of times each symbol
0 or 1 was changed is the all-odd vector (1, 3, 3, 3, 3, 1). The right-to-left case is
symmetric.

Now fix w0 = 01. Suppose wi has been defined and define wi+1 ∈ {0, 1}∗ as

wi+1 = (wi0)ki+1wi(1wi)ki+1

where ki+1 ∈ N. Then, writing �j = |wj | for all j ∈ N, we have

�i+1 = (2ki+1 + 1)�i + 2ki+1 ≤ 4ki+1�i
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if ki+1 is large enough as a function of �i (note that �i ≥ 2). Then wi+1 is a
track, and writing tj = t(wj) for all j ∈ N, we have

ti+1 = 3ki+1(2ti + 2) − ti − 2 ≥ 3ki+1ti

if ki+1 is large enough. (The exact formula is provided for completeness, but we
only need ti+1 ≥ 3ki+1ti which obviously follows by induction from t(0w1) =
4 + 3t(w).)

We pick ki+1 so that ψ( 12 ti+1) > 2�i+1. This is possible because when ki+1

grows, �i+1 grows at a linear rate, and ti+1 grows exponentially, while ψ is
superlogarithmic. More precisely, since ti > 2 we have log3

1
2 ti+1 ≥ ki+1 and

�i+1 ≤ 4ki+1�i. By the assumption on ψ, if n is large enough, we have ψ(n) >
8�i log3 n, so in particular if ki+1 is large enough, we have

ψ(
1
2
ti+1) > 8�i log3

1
2
ti+1 > 8�iki+1 ≥ 2�i+1.

We have obtained that ti grows very fast as a function of �, as it must make
the function ψ – which can be arbitrarily close to logarithmic – overtake �.
Reversing our point of view, we have achieved that �i grows ‘arbitrarily close to
logarithmically’ in ti.

It is easy to prove by induction that for every j < i, we have a decomposition

wi = wjb1wjb2 · · · bmwj

for some m, where the bk are individual bits bk ∈ {0, 1}.
Now, we construct our subshift X, which we call the mud run subshift. For

each i ∈ N, pick qi ∈ N and ki ∈ N so that φ(qiti) < qi�i (which is true for any
large enough qi since φ is sublinear), and additionally so that 1

2 tki
< φ(qiti) ≤

tki
, using the fact that φ(n + ti) ≤ 2φ(n) for all large enough n. (Note that, if

we pick ki ≥ i + 1, the value of tki
is not determined by the values k1, . . . , ki,

but rather values up to kki
, so it is easy to make sure that tki

is much larger
than φ(qiti), and we can then increase qi to get φ(qiti) in the desired interval.)

For each i, take the periodic points xi = (>wqi

i )Z. Then xi is a temporally
periodic point for f , and the length of its f -orbit is qiti, while the length of its
σ-orbit is qi�i. Let χ : {0, 1, 2, 3, 4, 5} × {0, <,>} → {0, 1, 2, 3, 4, 5} × {0} be the
map that removes runners, and define the subshift Y as the closure of

{

σa(f b(xi)), σa(f b(χ(xi))) | a ∈ Z, b ∈ Z, i ∈ N
}

.

It is easy to see that f is still an automorphism of this limit subshift (since it
has the same inverse), and that every point in Y that is not in the {σ, f}-orbits
of xi has at most one runner (simply because �i → ∞).

Finally, define X = Y × {0, 1}Z and modify the behavior of f so that it
behaves as before on Y , but additionally flips the bit on the second track when-
ever it turns a symbol from 0 or 1 to another symbol on the Y -component. Then
by the assumption that we originally made for tracks that 0 and 1 are changed
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to another symbol an odd number of times, we have that for all i ∈ N and
z ∈ {0, 1}Z we have fqiti(xi, z) = (xi, z

′) where z′
j = 1 − zj for all j ∈ Z.

We will now prove that the evolution of the neighborhoods of f on X has
the properties we claim. More precisely, we pick a suitable sequence of times,
ni = qiti ∈ N, at which we look at the neighborhoods N(fni). We show that
due to our choice of the qi, every interval in N(fni) is of size at least φ(ni). The
reason for this is that already on the periodic points xi generating X, we need
neighborhoods of this size, since the runners move at a linear speed for a long
time. We then show that simply due to the way the words wi were constructed,
we necessarily have

�−ψ(ni),∞�, � − ∞, ψ(ni)� ∈ N(fni),

for these ni. This is because, knowing the infinite tails, if we see no runners in
those tails, we must be in a limit point, and in such points there is at most one
runner, running at speed asymptotically slower than ψ. We do not have to look
far to find it.

More precisely, for the first claim suppose �a, b�∈ N(fni). Then if b − a + 1
< qi�i, we see runners in �a, b� in neither of the points σ−a+1(xi) and σ−a+1(χ(xi)).
However, fni(σ−a+1(xi))0 �= σ−a+1(xi)0 and fni(σ−a+1(χ(xi)))0 �= σ−a+1(χ
(xi))0. This contradicts �a, b�∈ N(fni). Since φ(ni) = φ(qiti) < qi�i, in partic-
ular every interval in N(fni) is of length at least φ(ni).

To see that �−ψ(ni),∞�∈ N(fni), note that if there are at least two runners
in the �−ψ(ni),∞�-tail of a point x ∈ X, then runners appear periodically in x,
and in fact we know precisely what will be at the origin after ni steps. It remains
to consider the limit set. It is enough to show that if x is in the limit set, and
the unique runner on x is in cell 0, then after ni steps it has moved by at most
ψ(ni) steps (in either direction). Namely, if this is the case, then knowing the
contents of �−ψ(ni), ψ(ni)� allows us to determine the contents of the cell 0 after
the application of fni by simply simulating the movement of the runner as long
as it does not exit �−ψ(ni), ψ(ni)� (and if it does, the contents of cell 0 will no
longer change).

To see this, consider the movement of a runner on one of the periodic points
xk. We claim that if j < k, then if a runner is in cell a of fn(xk), then in
fn+tj (xk), it will be in some cell in the interval �a − 2�j , a + 2�j�. To see this,
recall that xk is a concatenation of the words wj separated by individual bits.
Since tracks return to their original state after the runner has passed through
them, in fn(xk) a full intact copy of the track wj appears in both of the intervals
�a, a + 2�j� and �a − 2�j , a�. It follows that exiting the interval �a − 2�j , a + 2�j�
requires passing through at least one complete track wj , which takes time tj .

Since f is continuous, the same will be true in the limit: every runner in a
limit point x moves at most 2�j cells in tj time steps. Remember that we have
1
2 tki

< ni = qiti ≤ tki
. In tki

time steps, the head moves at most 2�ki
steps, so

since ni = qiti ≤ tki
, in ni time steps we move a distance of at most

2�ki
< ψ

(
ti+1

2

)

≤ ψ(ni)
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cells, as required, where the last inequality follows because ψ is nondecreasing.
This concludes the proof. ��

5 Future Work

As mentioned in the section on one-head machines, we do not know much about
the actual speeds of distorted machines. We tend to believe that the movement
of the known examples is closer to log t than t/log t, but have no rigorous proofs
for any examples. It should be routine to compute the movement bound for the
SMART machine, given that its trace subshift is known, and this would already
clarify the situation quite a bit.

The group generated by reversible one-head machines is of prime interest and
is the purpose of [21], though defined in a more natural way, which emphasizes
its relation to the topological full group. In group theory, an element g ∈ G is
called distorted if powers of g grow sublinearly in the word norm of some finitely
generated subgroup. We do not give examples of cellular automata or one-head
machines that are distorted in this sense, but we do believe constructing them
is possible.

Conjecture 1. The group generated by reversible one-head machines contains a
distortion element.

More concretely, we find it plausible that the SMART machine is distorted.
In the journal version of [21], which is in preparation, it will be shown that the
subgroup of elementary one-head machines is finitely generated. Our conjecture
is based on the fact that it seems plausible that a word expressing SMART in
terms of these generators will not be linear, but doing this construction explicitly
would presumably be a lot of work. If the conjecture is true, it follows (see
Sect. 3.4) that automorphism groups of full shifts also have distortion elements.
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Abstract. We investigate cellular automata that are composed of
reversible components with regard to the recognition of formal languages.
In particular, real-time one-way cellular automata (OCA) are considered
which are composed of reversible Mealy automata. Moreover, we differ-
entiate between three notions of reversibility in the Mealy automata,
namely, between weak and strong reversibility as well as reversible par-
titioned OCA which have been introduced by Morita in [14]. Here, it
turns out that every real-time OCA can be transformed into an equiva-
lent real-time OCA with weakly reversible automata in its cells, whereas
the remaining two notions seem to be weaker. However, a non-semilinear
language is provided that can be accepted by a real-time OCA with
strongly reversible cells. On the other hand, we present a context-free,
non-regular language that is accepted by some real-time reversible par-
titioned OCA.

1 Introduction

The study of computational devices performing reversible computations is mostly
motivated by the physical observation that a loss of information yields heat dissi-
pation [12]. To avoid such situations computations are of interest in which every
configuration has a unique successor configuration as well as a unique prede-
cessor configuration so that at every point of the computation no information
gets lost. Reversibility has been studied for many computational devices starting
with Bennett’s investigations for Turing machines in [3] where it is shown that
for every (possibly irreversible) Turing machine an equivalent reversible Turing
machine can be constructed. A similar result has been obtained for determinis-
tic space-bounded Turing machines, in particular, deterministic linear bounded
automata by Lange, McKenzie, and Tapp in [13]. For deterministic pushdown
automata and deterministic queue automata the situation is different: in both
cases it is possible to show (see, for example, [8,11]) that the reversible variant is
weaker than the general model, that is, there are languages which can be accepted
by the general model, but not by its reversible variant. In these cases, the loss
of information in computations is inevitable. For deterministic multi-head finite
automata the picture is split: for two-way multi-head finite automata Morita
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has shown in [17] that the general model and the reversible model coincide. On
the other hand, in case of one-way motion it is shown in [9] that the reversible
model is weaker than the general model. Reversible computations in determinis-
tic finite automata have been introduced in [2] and it is shown in [20] that there
are regular languages which cannot be accepted by any (one-way) reversible
deterministic finite automaton. However, if two-way motion of the input head
is allowed, it is known due to [5] that the general model and the reversible
model coincide. A structural approach to reversible computing not depending
on specific computational models has been proposed in [1].

For cellular automata (CA), the notion of reversibility has been investigated
from several points of view. One fundamental result is that the reversibility of a
cellular automaton is equivalent to the injectivity of the global transition func-
tion. Moreover, the injectivity of the global transition function is decidable for
one-dimensional CAs, but becomes undecidable in higher dimensions. Details
and literature for these results may be found in the survey paper [4]. The ques-
tion whether every cellular automaton can be made reversible has been answered
in the affirmative first by Toffoli who shows in [21] that every k-dimensional CA
can be simulated by a (k + 1)-dimensional reversible CA. This result has been
improved by Morita and Harao in [19] where it is shown that every reversible
Turing machine can be simulated by a one-dimensional reversible CA. By intro-
ducing the notion of partitioned cellular automata further improvements are
given by Morita in [14,15] where, for example, the latter result is shown to hold
also for one-dimensional one-way reversible CAs. More results on reversible CAs
may be found in the survey paper [16].

In the context of language recognition, cellular automata are working on
finite configurations with fixed boundary conditions. With regard to reversible
computations, it is clear that reversibility in such devices cannot be defined on
the injectivity of the global transition function. Thus, one considers computa-
tions that are reversible on the core of computation, namely, starting in the
initial configuration and ending in the configuration given by the time com-
plexity. From this point of view, language recognition by reversible devices has
been studied for real-time two-way CAs [6], for real-time iterative arrays [7], and
more recently for real-time one-way CAs [10]. Another recent result is provided
by Morita in [18] where it is shown that every deterministic linear bounded
automaton can be simulated by a reversible CA working on finite configurations
with fixed boundary conditions.

In this paper, we consider another aspect of reversibility. In all cellular mod-
els studied so far the reversibility concerns configurations, that is, from every
configuration the successor as well as the predecessor configuration can be com-
puted in a unique way. Since CAs are basically arrays of interacting determin-
istic finite automata, one can also consider the reversibility of the single deter-
ministic finite automata, that is, of the local transition function, and we will
speak in this context of locally reversible CAs. For partitioned cellular automata
and unbounded computations it is known [15,19] that such automata are glob-
ally reversible if and only if they are locally reversible if and only if they are
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locally injective. Apart from a theoretical interest in locally reversible compu-
tations, there is also a practical interest to investigate such CAs, since in this
case the devices are composed of reversible components. Here, we will study
local reversibility with regard to language recognition for weak cellular devices,
namely, we will focus on real-time computations in one-way CAs (OCAs). More-
over, we consider OCAs having Mealy automata in their cells instead of deter-
ministic finite automata. This generalization allows in particular a comparison
with the notion of partitioned cellular automata. The paper is organized as fol-
lows. In Sect. 2 we summarize basic notions and introduce weakly and strongly
reversible Mealy automata which are subsequently used to define one-way Mealy
cellular automata with weakly or strongly reversible cells. Moreover, we provide
an example of a non-semilinear language that is accepted by some real-time
OCA with strongly reversible cells. Section 3 is devoted to investigating real-
time OCAs with weakly reversible cells and it turns out that every real-time
OCA can be converted to the former model. This means that every real-time
OCA computation can be simulated by a real-time OCA with weakly reversible
cells. In Sect. 4 we study reversible one-way partitioned CAs working in contrast
to [14] on finite configurations with fixed boundary conditions. We first discuss
how this notion is related to our concept of Mealy cellular automata. Then,
it is shown that every regular language (reversible or not) is accepted by such
automata. Moreover, it is possible to accept a certain context-free, non-regular
language. Finally, we give a short conclusion. We would like to note that some
proofs are omitted due to space considerations.

2 Preliminaries and Definitions

We denote the set of non-negative integers by N. The reversal of a word w is
denoted by wR. For the length of w we write |w|. We write ⊆ for set inclusion,
and ⊂ for strict set inclusion. In order to avoid technical overloading in writing,
two languages L and L′ are considered to be equal, if they differ at most by the
empty word. Throughout the article two devices are said to be equivalent if and
only if they accept the same language.

A deterministic finite Mealy automaton (DFMA) is a deterministic finite
automaton that emits a symbol during each transition performed. So, it is par-
ticularly composed of a finite state set S, a finite input alphabet A, a finite
output alphabet B, and a partial transition function δ that maps from S × A to
S ×B. In this way, the new state and the symbol emitted during a transition are
given. Let πS denote the projection on the first component and πB denote the
projection on the second component of pairs from S × B. A state in a DFMA is
called a sink state, if the state can never be left once entered.

A DFMA is said to be weakly reversible (WREV-DFMA) if every pair (a, b)
from A×B induces an injective partial mapping from the state set S to itself via
the mapping δ(a,b) : S → S where δ(a,b)(s) = s′ if and only if b = πB(δ(s, a)) and
s′ = πS(δ(s, a)). In this case, the reverse transition function δ← : S ×A×B → S
defined by δ←(s′, a, b) = s if and only if δ(s, a, b) = s′ induces for every pair
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Fig. 1. A weakly reversible deterministic finite Mealy automaton, where an edge from p
to q labeled by a, b means δ(p, a) = (q, b). Example transitions are δ(s1, 1) = (s̄0, 1),
δ(1,1)(s1) = s̄0, δ←(s̄0, 1, 1) = s1 and δ←

(1,1)(s̄0) = s1.

(a, b) from A × B a (partial) injective function δ←
(a,b) : S → S (see Fig. 1). A

WREV-DFMA can also be considered as a (partial) permutation automaton.
A DFMA is said to be strongly reversible (SREV-DFMA) if every letter a

from A induces an injective partial mapping from the state set S to itself via the
mapping δa : S → S where δa(s) = s′ if and only if s′ = πS(δ(s, a)). In this case,
the reverse transition function δ← induces for every letter a from A a (partial)
injective function δ←

a : S → S. The property of being strongly reversible is also
known as being codeterministic.

Next, we consider one-way cellular automata whose cells are DFMAs. A one-
way cellular automaton with Mealy cells (one-way Mealy cellular automaton)
is a linear array of identical deterministic finite Mealy machines, called cells.
Except for the rightmost cell each one is connected to its nearest neighbor to the
right. The state transition of a cell depends on its current state and the latest
output that has been emitted by its neighbor. We say that this output is the
message sent to the neighbor. Initially, a distinguished initial message is sent.
The rightmost cell receives information associated with a boundary symbol on
its free input line. The state changes take place simultaneously at discrete time
steps. The input mode for cellular automata is called parallel. One can suppose
that all cells fetch their input symbol during a pre-initial step.

Formally, a one-way Mealy cellular automaton (OMCA) is a system given as
〈S, F,A,B,⊥, #, δ〉, where S is the finite, nonempty set of cell states, F ⊆ S is
the set of accepting states, A ⊆ S is the nonempty set of input symbols, B is
the finite, nonempty set of messages, ⊥ ∈ B is the initial message, # ∈ B is the
boundary message, and δ : S × B → S × B is the local transition function.

A configuration of a one-way Mealy cellular automaton 〈S, F,A,B,⊥, #, δ〉
is a mapping c : {1, 2, . . . , n} → (S × B), for n ≥ 1, that assigns a state and
a message to each cell, where it is understood that the state is the current
state of the cell and the message is the latest message sent by its neighbor. As
before, given some c(i) = (s,m), the projection on its state part s is denoted
by πS(c(i)) and the projection on its message part m is denoted by πB(c(i)).
The operation starts in a so-called initial configuration, which is defined by the
given input w = a1a2 · · · an ∈ A+. We set c0(i) = (ai,⊥), for 1 ≤ i ≤ n − 1, and
c0(n) = (an, #). Successor configurations are computed according to the global
transition function Δ. Let c be a configuration with n ≥ 1, then the successor
configuration c′ is
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c′ = Δ(c) ⇐⇒
⎧
⎨

⎩

πS(c′(i)) = πS(δ(c(i))), i ∈ {1, 2, . . . , n}
πB(c′(i)) = πB(δ(c(i + 1))), i ∈ {1, 2, . . . , n − 1}
πB(c′(n)) = #

.

An input w is accepted by a one-way Mealy cellular automaton M if at
some time step during the course of its computation the leftmost cell enters
an accepting state. The language accepted by M is denoted by L(M). If all
w ∈ L(M) are accepted with at most |w|+1 time steps, then M is said to operate
in real-time. The family of languages accepted by some device X operating in
real-time is denoted by Lrt(X).

Note that the state transitions of cells in an OMCA depend on the current
state and the latest output symbol emitted by the neighbor. So, taking a single
cell as DFMA, its input alphabet is equal to its output alphabet B.

Now the structural restriction of one-way Mealy cellular automata we are
interested in is that the single cells have to be reversible deterministic finite
Mealy automata. These cellular automata are referred to by one-way Mealy
cellular automata with strongly or weakly reversible cells and are denoted by
SRC-OMCA and WRC-OMCA. In general, the transition functions for reversible
deterministic finite Mealy automata may be partial in order to cope with sit-
uations that would drive the automaton into a rejecting sink state. Instead of
entering the sink state, now the DFMA simply stops and rejects since it could
not process the input entirely. However, since the concept of cellular automata
does not allow single cells to stop, here, a rejecting sink state of the cells can-
not be avoided in general. So, we slightly soften the notion of reversibility by
disregarding rejecting sink states and say that an OMCA is an RC-OMCA if its
cells are deterministic finite automata that are reversible with the exception of
a possible rejecting sink state. However, it turns out in the next section that the
disregarding of rejecting sink states is no restriction at least for WRC-OMCAs.

These definitions are justified and compared with related concepts after the
following example that should clarify the notation.

Example 1. The non-semilinear language {anbk·2n | k, n ≥ 1} is accepted by
the following one-way Mealy cellular automaton with strongly reversible cells
M = 〈S, F, {a, b}, B,⊥, #, δ〉 in real time. We set S = {a, a1, b, s−, s+}, where
B = {1, 0, s, s−, s+,⊥, #}, F = {s+}, is the sole accepting state, and s− is a
rejecting sink state. The transition function δ is defined through:

1. δ(b,⊥) = (b, 1)
2. δ(b, 1) = (b, 1)
3. δ(b, #) = (b, s)
4. δ(b, s) = (b, s)

5. δ(a,⊥) = (a, 0)
6. δ(a, 0) = (a, 0)
7. δ(a, 1) = (a1, 0)
8. δ(a, s) = (s−, s−)
9. δ(a, s−) = (s−, s−)

10. δ(a, s+) = (s−, s−)

11. δ(a1, 0) = (a1, 0)
12. δ(a1, 1) = (a, 1)
13. δ(a1, s) = (s+, s+)
14. δ(a1, s−) = (s−, s−)
15. δ(a1, s+) = (s+, s+)

and δ(s−, x) = (s−, s−) and δ(s+, x) = (s−, s−), for all x ∈ B.
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By inspecting the transition function, it is verified that the cells are in fact
SREV-DFMAs. An example computation on input a3b8 is depicted in Fig. 2.
Basically, the consecutive b-cells stay in their state, where message 1 is trans-
mitted in every step. Additionally, a message s is sent by the rightmost cell upon
receiving the border message. This message moves through the b-cells one cell
per time step.

The consecutive a-cells set up a binary counter with the least significant bit
in the rightmost a-cell. To this end, state a is used to represent digit zero and
state a1 is used to represent digit one. A message 1 indicates a carry-over and a
message 0 indicates no carry-over. Finally, when the signal s meets the a-cells, it
becomes signal s+ as long as it only sees digits one, that is, states a1. Otherwise,
it turns to signal s− which is rejecting.

So, in order to accept an input, the leftmost cell has to enter state s+. This
is only possible if message s+ has moved through a counter that represents a
binary number of the form 1n, that is, 2n − 1. Since due to the initial step, the
counter starts to increase at time step one, this is only possible if message s has
passed through a sequence of b-cells whose length is a multiple of 2n. �

Fig. 2. Space-time diagram of a real-time computation of a one-way Mealy cellular
automaton with strongly reversible cells on input a3b8.

Another related concept has been studied in [10]. Based on the observation,
that in reversible one-way cellular automata information flow is from right to left
in a forward computation and from left to right in a backward computation, a
one-way cellular automaton is said to be reversible if there exists a reverse local
transition function that computes the predecessor states. Due to the domain S2
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and the range S, obviously, the local transition function cannot be injective in
general. However, since for reverse computation steps the flow of information is
reversed as well, for the reverse transition function, each cell receives the state
of its left neighbor. For example, let s1s1s2s1 be the states of four adjacent
cells, and δ(s1, s1) = s1, δ(s1, s2) = s2, and δ(s2, s1) = s1, then the successor
states of the three left cells are s1s2s1. So, for the reverse transition function δR

we obtain δR(s1, s2) = s1 and δR(s2, s1) = s2 and, thus, such a behavior is
possible in reversible one-way cellular automata. However, the single cell is not
a reversible finite automaton, since δ←(s1, s1) = s1 and δ←(s1, s1) = s2. On the
other hand, let s1s2s2 as well as s2s3s3 be the states of three adjacent cells,
and δ(s1, s2) = s1, δ(s2, s2) = s′

2, δ(s2, s3) = s1, and δ(s3, s3) = s′
2. Then the

successor states of the two left cells are s1s
′
2 in both cases. So, a reverse transition

function δR cannot exist since it must map (s1, s′
2) to s2 and to s3. However, the

transitions δ←(s1, s2) = s1, δ←(s′
2, s2) = s2, δ←(s1, s3) = s2, and δ←(s′

2, s3) = s3
do not violate the reversibility of the finite automaton used as single cell.

3 The Computational Capacity of One-Way Mealy
Cellular Automata with Weakly Reversible Cells

Here, we explore the computational capacity of WRC-OMCA. To this end, we
start to shed light on the role played by the sink states in such devices.

Lemma 2. Let M be a WRC-OMCA whose cells are reversible disregarding sink
states. Then an equivalent WRC-OMCA where all cells are reversible including
sink states can effectively be constructed.

Proof. Let M = 〈S, F,A,B,⊥, #, δ〉 be a WRC-OMCA whose cells are reversible
except for sink states (see Fig. 3).

We consider the state graph of a cell of M . For every sink state s the following
steps are repeated. Let G be the part of the graph that does neither include s
nor any edge to s. The first step is to remove irreversibility for the edges that
enter the sink state from some states in G. To this end, state s is copied as many
times as there are incoming edges from states in G. Now these edges are directed
to different copies of s.

The next step is to remove the irreversibility caused by the looping edges and
the incoming edge from a state in G. To this end, a new copy B̄ = {b̄ | b ∈ B} of B
is used. Each edge from a copy of a sink state to itself labeled a, b is relabeled by
a, b̄. The state graph obtained so far is weakly reversible. However, by providing
a copy of B the number of messages that may be sent to neighboring cells is
increased. Since A = B, additional edges have to be included. To overcome this
problem, for every edge in G labeled a, b, an additional edge between the same
states labeled ā, b is included in G′. Again, this step preserves weak reversibility.
Altogether, we have constructed an equivalent WRC-OMCA, since every pair
(a, b) from B × B induces an injective partial mapping from the state set S to
itself. �
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Fig. 3. How to make an automaton with sink state reversible. Automaton G is
reversible except for the sink state s, where 0 ≤ i, j ≤ |B| − 1 (left). Automaton
G′ is reversible including the two sink states s1 and s2 (right). Every edge in G labeled
a, b is labeled a, b and ā, b in G′ which preserves weak reversibility.

The idea used to prove Lemma 2 can in fact be generalized. So, it turns out
that even WRC-OMCAs have the full computational capacity of OMCAs.

Theorem 3. Let M be an OMCA. Then an equivalent WRC-OMCA with all
cells reversible including sink states can effectively be constructed.

4 Reversible One-Way Partitioned Cellular Automata

Now we turn to discuss the details of the definitions in comparison with another
related model. In [18] reversible two-way partitioned cellular automata are stud-
ied in terms of language recognition. The important concept of partitioned cel-
lular automata is well-suited to define the notion of reversibility of cellular
automata computations. In detail, the cells of a one-way partitioned cellular
automaton have partitioned states that is, a state consists of a state part that
represents the actual state and a message part the represents the message to
be sent to the left neighbor. This message is created by the transition function
during a transition. So, as for Mealy cellular automata the transition depends on
the current state part and the current message part of its neighbor, and gives the
new state part and the message part to be sent to the left, where initially each
cell sends a message corresponding to its input symbol and the rightmost cell
receives information associated with a boundary symbol on its free input line. So
far, Mealy and partitioned cellular automata formalize similar concepts, but in
partitioned cellular automata the message to be sent is a part of the state, while
in Mealy cellular automata it is not. This makes a difference for reversibility
considerations.

Formally, a one-way partitioned cellular automaton (OPCA) is a system
〈S, F,A, #, δ〉, where S = T ×C is the finite, nonempty set of cell states, where T
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is the message part and C is the state part, F ⊆ S is the set of accepting states,
# ∈ T is the distinguished boundary message, A is the nonempty set of input
symbols with A ⊆ C and A ⊆ T , and δ : C × T → T × C is the local transition
function.

Given some cell state s = (t, c), the projection on its message part t is denoted
by πT (s) and the projection on its state part c is denoted by πC(s).

A configuration of a one-way partitioned cellular automaton 〈S, F,A, #, δ〉 is
a mapping c : {1, 2, . . . , n} → S, for n ≥ 1, that assigns a state to each cell. The
operation starts in a so-called initial configuration, which is defined by the given
input w = a1a2 · · · an ∈ A+. We set c0(i) = (ai, ai), for 1 ≤ i ≤ n. Successor
configurations are computed according to the global transition function Δ. Let c
be a configuration with n ≥ 1, then the successor configuration c′ is

c′ = Δ(c) ⇐⇒
{

c′(i) = δ(πC(c(i)), πT (c(i + 1))), i ∈ {1, 2, . . . , n − 1}
c′(n) = δ(πC(c(n)), #) .

A partitioned cellular automaton is said to be (locally) reversible (REV-OPCA)
if and only if its local transition function is injective. So, given a state (s,m) and
a transition δ(s, �) = (m′, s′), by the injectivity, from (m′, s′) the predecessor
state s of the cell and the message � received in the previous step are uniquely
determined. The latter is part of the predecessor state of the right neighbor. In
particular, the message part m of the cell cannot be determined. Instead, it is
uniquely determined from the left neighbor. So, looking at the whole configura-
tion, the predecessor configuration can be computed. However, the single cell is
not necessarily a reversible finite automaton.

In RC-OMCAs the single cells have to be reversible OMCAs. So, for exam-
ple, transitions δ(s1, a1) = (s, b) and δ(s2, a2) = (s, b) are allowed, where
δ←(s, a1, b) = s1 and δ←(s, a2, b) = s2. These transitions are forbidden in
reversible partitioned cellular automata since they violate the injectivity of δ.

The next theorem marks a lower bound for the computational capacity of
real-time OPCAs. It says that a real-time OPCA is at least as powerful as a
deterministic finite automaton (DFA), where a DFA is a DFMA with a singleton
output alphabet, thus, the output is omitted from the transition function. Since it
is well known that there are regular languages that are not accepted by reversible
DFAs [2,20], the next theorem provides a construction of a reversible cellular
device that simulates any possibly irreversible regular language.

Theorem 4. Let L be a regular language. Then L is accepted by a real-time
REV-OPCA.

Proof. Since the regular languages are closed under reversal, we may assume that
language LR is accepted by some DFA M with state set S, input alphabet A,
initial state s0, set of accepting states F , and transition function δ : S ×A → S.
Moreover, we may assume that the initial state s0 is left with the very first
transition and never reentered.

The idea for the simulation of M by a real-time OPCA M ′ is straightforward.
The cells of M ′ run through a loop that keeps their initial states, while at
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the right end a signal is set up that moves through the array with maximum
speed and computes and sends the states of the simulated REV-DFA M . A little
extra attention has to be paid for implementing the local transition function of
M ′ = 〈S′, F ′, A, #, δ′〉 injectively. Depending on M we identify the boundary
symbol # of M ′ with the initial state s0 of M and define # = s0, T = S ∪ A,
C = A ∪ (S × A), F ′ = {(s, a) ∈ S × A | δ(s, a) ∈ F}, and δ′(a, b) = (b, a), for
all a, b ∈ A, δ′(a, #) = (δ(s0, a), (s0, a)), for all a ∈ A, δ′(a, s) = (δ(s, a), (s, a)),
for all a ∈ A and s ∈ S\{s0}, and δ′((s, a), #) = (#, (s, a)), for all (s, a) ∈ S × A
(see Fig. 4).

Fig. 4. A real-time REV-OPCA accepting a regular language, where si+1 = δ(si, a5−i),
for 0 ≤ i ≤ 4. The input is accepted if δ(s4, a1) = s5 is an accepting state in M .

An inspection of the transition function δ′ and taking into account that the
initial state of M is left in the very first transition and never reentered shows
the injectivity of δ′. Let the input be a1a2 · · · an. At time step 1, the rightmost
cell n initiates the signal by calculating and sending s1 = δ(s0, an). In general,
for 0 ≤ i ≤ n − 1, the signal reaches cell n − i at time i + 1 and calculates and
sends state si+1 = δ(si, an−i). The accepting states of M ′ are defined as those
states sending an accepting state of M . So, M ′ accepts L(M)R = (LR)R = L. �

The next construction shows that real-time REV-OPCAs are also able to
accept non-regular context-free languages.

Lemma 5. There is a non-regular context-free language that is accepted by some
real-time REV-OPCA.

Proof. We use a language L over alphabet {a, b}∗ as witness that has the prop-
erty L ∩ a∗b∗ = {ambn | n ≥ m ≥ 1}. Since the regular languages are closed
under intersection and {ambn | n ≥ m ≥ 1} is not regular, L is not regular
either.

First, we partially construct a real-time REV-OPCA M = 〈S, F,A, #, δ〉 that
accepts inputs from {ambn | n ≥ m ≥ 1}. The basic idea is to send a signal
with half speed from the rightmost a-cell to the left and a second signal that
moves with maximum speed from the rightmost b-cell to the left. Whenever
the second signal reaches a cell that already has seen the first signal, the cell
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enters the accepting state. The crucial point is to implement this behavior with
an injective transition function. To this end, we set A = {a, b}, T = {#} ∪ A,
C = A ∪ {1, 2}, and F = {(#, 1)}.

General transitions and transitions that implement the half-speed signal are

1. δ(a, a) = (a, a),
2. δ(b, b) = (b, b),

3. δ(a, b) = (a, 1), and
4. δ(1, b) = (b, 1).

The second signal is identified with the message #. It is implemented by

5. δ(b, #) = (#, b), 6. δ(a, #) = (#, a), and 7. δ(1, #) = (#, 1).

By inspection of the right-hand sides of the transition function it is evident that δ
is injective so far.

In order to provide further transition rules for inputs not of the form ambn,
we extend δ injectively by

8. δ(b, a) = (b, 2), 9. δ(2, a) = (a, 2), and 10. δ(2, #) = (#, 2).

Now inputs of the form bman are treated similarly as inputs of the form ambn.
However, in the b-cells now state parts 2 are used that are not part of accepting
states.

Since the #-signal is transmitted further to the left, one may obtain further
accepting computations if the inputs are appropriately extended to the left.
However, every input of the form bman, for m,n ≥ 1, is rejected, and every
input of the form ambn, for n ≥ m ≥ 1, is accepted. In particular, we derive that
L(M) ∩ a∗b∗ = {ambn | n ≥ m ≥ 1}, which shows the lemma. �

5 Conclusions

We have introduced and discussed several notions of local reversibility for real-
time OCAs. We have shown that weak reversibility can always be achieved, that
is, every possibly irreversible real-time OCA computation can be realized by
a real-time OCA composed of weakly reversible components. Concerning the
other two notions, namely, strong reversibility and reversible partitioned OCAs
we have the conjecture that both models are less powerful. However, both models
are still able to accept complex languages such as the non-semilinear language
given in Example 1 and the context-free, non-regular language used in Lemma 5.
Apart from the question of whether both language classes can be separated from
the general model, it would clearly be of interest to identify further language
classes which can be accepted by these models. Finally, the strength of a model
is to some extent documented by the undecidability of the usually investigated
decidability questions such as emptiness, finiteness, inclusion, or equivalence.
While all such questions are undecidable for real-time OCAs and hence also for
real-time OCAs with weakly reversible cells, nothing is known yet on the status
of the decidability questions for real-time OCAs with strongly reversible cells
and real-time reversible partitioned OCAs.
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Abstract. We consider the problem of enumerating pairs of bipermutive
cellular automata (CA) which generate orthogonal Latin squares. Since
the problem has already been settled for bipermutive CA with linear
local rules, we address the general case of nonlinear rules, which could be
interesting for cryptographic applications such as the design of cheater-
immune secret sharing schemes. We first prove that two bipermutive
CA generating orthogonal Latin squares must have pairwise balanced
local rules. Then, we count the number of pairwise balanced bipermutive
Boolean functions and enumerate those which generate orthogonal Latin
squares up to n = 6 variables, classifying them with respect to their
nonlinearity values.

Keywords: Cellular automata · Latin squares · Bipermutivity · Pair-
wise balancedness

1 Introduction

The construction of orthogonal Latin squares is a challenging combinatorial prob-
lem. Indeed, besides being one of the most researched topics in combinatorial
design theory, orthogonal Latin squares also have numerous applications in cryp-
tography, coding theory and the design of experiments [3,6,14].

Recently, a new construction of orthogonal Latin squares based on bipermu-
tive cellular automata (CA) with linear local rules has been proposed in [10]. In
particular, the authors proved that two linear bipermutive local rules generate a
pair of orthogonal Latin squares if and only if their associated polynomials are
relatively prime.

In this paper, we address the generalized problem of enumerating orthogonal
Latin squares induced by nonlinear bipermutive CA, which could have interest-
ing cryptographic applications. As a matter of fact, orthogonal Latin squares
generated through nonlinear constructions can be employed in the design of
cheater-immune secret sharing schemes [15].
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After covering in Sect. 2 the necessary preliminary notions about Latin
squares and cellular automata, in Sect. 3 we first prove that the basic reversal
and complementation operations on local rules preserve the orthogonality rela-
tion of the resulting Latin squares. Then, we show that two bipermutive local
rules that give rise to orthogonal Latin squares must be pairwise balanced, which
basically means that the four pairs (0, 0), (1, 0), (0, 1) and (1, 1) must occur an
equal number of times in the superposition of their truth tables. Additionally,
we prove that pairwise balancedness is a property preserved from the generating
functions to the corresponding bipermutive rules, but not vice versa. In Sect. 4
we derive a formula for the number of pairwise balanced bipermutive rules, and
apply a combinatorial algorithm to enumerate all those pairs which generate
orthogonal Latin squares up to n = 6 variables. Finally, we classify these pairs
with respect to their nonlinearity values. In Sect. 5 we sum up the contributions
of this paper.

2 Preliminaries

In this section, we first recall the basic definitions about orthogonal Latin squares
and cellular automata used throughout the paper. We then review the construc-
tion of orthogonal Latin squares based on linear bipermutive cellular automata
described in [10].

2.1 Basic Definitions

In what follows, we denote by [N ] the set of the first N positive integer numbers,
i.e. [N ] = {1, · · · , N}. We begin by defining the basic combinatorial objects of
our interest, namely Latin squares:

Definition 1. Let N ∈ N. A Latin square of order N is a N ×N matrix L such
that each element of [N ] occurs exactly once in every row and in every column.
Two Latin squares L1 and L2 of order N are called orthogonal if

(L1(i1, j1), L2(i1, j1)) �= (L1(i2, j2), L2(i2, j2)) (1)

for all distinct pairs of coordinates (i1, j1), (i2, j2) ∈ [N ] × [N ].

Hence, two Latin squares are orthogonal if their superposition yields all the
ordered pairs of the Cartesian product [N ] × [N ].

In this work, we consider a basic one-dimensional model of cellular automaton
which can be considered as a special kind of vectorial Boolean function. For this
reason, we first cover the necessary notions from the theory of cryptographic
boolean functions, referring the reader to [1,2] for a more thorough presentation
of the topic.

Let F2 and F
n
2 respectively denote the finite field with two elements and the n-

dimensional vector space over F2 (that is, the set of all binary n-tuples). In what
follows, we assume that the 2n vectors of Fn

2 are lexicographically ordered, using
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least significant bit notation. A Boolean function of n variables is a mapping
f : Fn

2 → F2. The truth table of f is the vector Ω(f) ∈ F
2n

2 defined as

Ω(f) = (f(0, 0, · · · , 0), f(1, 0, · · · , 0), · · · , f(1, 1, · · · , 1)), (2)

that is, Ω(f) specifies the output values of f for each of the possible 2n values of
the input vectors. Consequently, the set of all 2n binary vectors coincides with
the space of Boolean functions of n variables Fn, which thus has size 22

n

.
Let f : F

n
2 → F2. The reversal fR : F

n
2 → F2 and the complementation

fC : Fn
2 → F2 of f are defined as

fR(x1, · · · , xn) = f(xR) = f(xn, · · · , x1), (3)
fC(x1, · · · , xn) = f(x1, · · · , xn) ⊕ 1, (4)

for all x = (x1, · · · , xn) ∈ F
n
2 . Clearly, both reversal and complementation are

idempotent operations, i.e. (fR)R = f and (fC)C = f .
A Boolean function f : Fn

2 → F2 is called affine if it is defined as:

f(x1, · · · , xn) = a ⊕ a1 · x1 ⊕ · · · ⊕ an · xn (5)

for all x = (x1, · · · , xn) ∈ F
n
2 , where a, a1, · · · , an ∈ F2 and ⊕ and · respectively

denote the XOR and AND operations. If a = 0, then the function is called linear.
The nonlinearity of a Boolean function f : F

n
2 → F2 is defined as the

minimum Hamming distance of f from the set of affine functions of n vari-
ables, a property which can be expressed using the Walsh transform of f . Given
f : Fn

2 → F2, the Walsh transform of f is the function Wf : Fn
2 → R defined as

Wf (ω) =
∑

x∈F
n
2

(−1)f(x)⊕ω·x (6)

for all ω ∈ F
n
2 , where ω · x = ω1x1 ⊕ · · · ⊕ ωnxn is the scalar product between ω

and x. The spectral radius of f , denoted as Wmax(f), is the maximum absolute
value of its Walsh transform Wf over all vectors ω ∈ F

n
2 . Then, the nonlinearity

of f is formally defined as:

Nl(f) = 2n−1 − 1
2
Wmax(f). (7)

In this work, we focus mainly on CA based on bipermutive local rules. Formally,
a bipermutive Boolean function is defined as follows:

Definition 2. A boolean function f : Fn
2 → F2 is called bipermutive if, by fixing

either the leftmost or the rightmost n−1 input coordinates to any value x̃ ∈ F
n−1
2 ,

the resulting restriction on the remaining coordinate is a permutation over F2.
Equivalently, function f : Fn

2 → F2 is bipermutive if there exists ϕ : Fn−2
2 → F2

such that

f(x1, x2, · · · , xn−1, xn) = x1 ⊕ ϕ(x2, · · · , xn−1) ⊕ xn (8)

for all x = (x1, x2, · · · , xn−1, xn) ∈ F
n
2 .
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The function ϕ appearing in Eq. (8) is also called the generating function of f .
Hence, the output of f is computed by XORing the leftmost and rightmost vari-
ables with the value of ϕ evaluated on the central variables. In [9], it has been
shown that the nonlinearity of a bipermutive Boolean function is four times the
nonlinearity of its generating function, i.e. Nl(f) = 4 ·Nl(ϕ). Notice that a linear
Boolean function is bipermutive if and only if its leftmost and rightmost coeffi-
cients a1 and an are nonzero.

Vectorial Boolean functions generalize the concept of Boolean functions to
multiple outputs. Given n,m ∈ N, a vectorial Boolean function (or (n,m)-
function) is a mapping F : F

n
2 → F

m
2 . For all i ∈ [m], the i-th coordinate

function of F is the Boolean function fi : Fn
2 → F2 that specifies the i-th output

bit of F , i.e. fi(x) = F (x)i for all x ∈ F
n
2 .

Using the above notions on Boolean functions, we can now give a formal
definition of cellular automaton.

Definition 3. Let m,n ∈ N such that m ≥ n, and let f : Fn
2 → F2 be a Boolean

function. A one-dimensional cellular automaton (CA) of length m with local rule
f is a vectorial Boolean function F : Fm

2 → F
m−n+1
2 defined as

F (x1, · · · , xm) = (f(x1, · · · , xn), · · · , f(xm−n+1, · · · , xm)) (9)

for all x = (x1, · · · , xm) ∈ F
m
2 .

The local rule of a CA is usually identified by its Wolfram code, which is the
decimal encoding of its truth table. On account of Definition 2, we call a CA
bipermutive if its local rule is a bipermutive Boolean function.

A CA can be viewed as a vectorial Boolean function where each coordinate
function fi is the local rule f evaluated on the n input variables xi, · · · , xi+n−1.
From a different perspective, one can consider the input variables of the CA as
cells whose state can be either 0 or 1, and where each of the first m − n + 1
cells updates in parallel its state by evaluating the local rule on the neighborhood
formed by itself and the n − 1 cells to its right. Notice that the rightmost n − 1
input cells are not updated, hence there is no need to enforce any boundary
condition. Remark also that, for the purposes of our work, we do not consider
the iterated behavior of a CA produced by the repeated application of the local
rule in successive time steps.

2.2 Latin Squares Generated by Cellular Automata

We now review the method for constructing Latin squares through bipermu-
tive cellular automata, following the notation of [10]. Let us consider a CA
F : F

2(n−1)
2 → F

n−1
2 based on a local rule f : Fn

2 → F2 of n variables. Thus,
F associates configurations of length 2(n − 1) to configurations of length n − 1.
We can define a square matrix SF by using the leftmost and rightmost n − 1
input variables of F to index respectively the rows and the columns of SF , while
the n − 1 output variables of F are employed to represent the entries of SF at
the respective input coordinates. More formally, let N = 2n−1 and assume that
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φ : Fn−1
2 → [N ] is a one-to-one mapping between F

n−1
2 and [N ], and let ψ be the

inverse mapping of φ. Then, the square associated to a CA of length 2(n − 1) is
defined as follows:

Definition 4. Let F : F2(n−1)
2 → F

n−1
2 be a CA with local rule f : Fn

2 → F2.
The square associated to F is the square matrix SF of size N × N defined for
all 1 ≤ i, j ≤ N as:

SF (i, j) = φ(F (ψ(i)||ψ(j))), (10)

where ψ(i)||ψ(j) ∈ F
2(n−1)
2 is the concatenation of vectors ψ(i), ψ(j) ∈ F

n−1
2 .

We remark that this particular representation has been adopted in several works
in the CA literature, even though under a different guise. Indeed, one can con-
sider the square associated to a CA as the Cayley table of an algebraic structure
(A, ◦), where A is a set of size 2n−1 isomorphic to F

n−1
2 , and ◦ is a binary oper-

ation over A. The two operands x, y ∈ A are represented by the vectors respec-
tively composed of the leftmost and rightmost n− 1 input cells of the CA, while
the n − 1 output cells represent the result z = x ◦ y. To the best of our knowl-
edge, the first who employed this algebraic characterization of cellular automata
were Pedersen [13] and Eloranta [4], respectively for investigating periodicity and
partial reversibility of CA. Other works in this line of research include Moore
and Drisko [12], which studied the algebraic properties of the square represen-
tation of CA, and Moore [11], which considered the computational complexity
of predicting CA whose local rules define solvable and nilpotent groups.

Depending on the underlying local rule, different algebraic structures can
arise from the Cayley table of a CA. The case of quasigroups is especially inter-
esting for the purposes of our work, since they are related to Latin squares. An
algebraic structure (Q, ◦) is a quasigroup if for all x, y ∈ Q the two equations
x◦z = y and z ◦x = y have a unique solution for every z ∈ Q. When the support
set Q is finite, the structure (Q, ◦) is a quasigroup if and only if its Cayley table
is a Latin square of order |Q| [14].

A natural question to investigate is what classes of CA generate Latin squares
(or equivalently, quasigroups). The following result shows that this is the case
for bipermutive CA:

Lemma 1. Let F : F2(n−1)
2 → F

n−1
2 be a bipermutive CA with rule f : Fn

2 → F2.
Then, the square SF induced by F is a Latin square of order N = 2n−1.

A proof of this fact which uses the characterization of quasigroups can be found
in [4], while [10] reports a similar proof directly based on Latin squares.

Since bipermutive CA induce Latin squares, one could additionally investi-
gate which pairs of them are orthogonal. This problem has been settled in [10] for
the case of linear bipermutive CA. Considering Eq. (8), this means that the gen-
erating functions of the local rules are linear. More precisely, let f, g : Fn

2 → F2 be
bipermutive Boolean functions with linear generating functions ϕ, γ : Fn−2

2 → F2

respectively defined as:

ϕ(x2, · · · , xn−1) = a2x2 ⊕ · · · ⊕ an−1xn−1, (11)
γ(x2, · · · , xn−1) = b2x2 ⊕ · · · ⊕ bn−1xn−1, (12)
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where ai, bi ∈ F2 for i ∈ {2, · · · , n − 1}. In this case, we can associate to f and
g two polynomials pf (X), pg(X) ∈ F2[X] of degree n − 1 using the coefficients
of their generating functions as follows:

pf (X) = 1 + a2X ⊕ · · · ⊕ an−1X
n−2 + Xn−1, (13)

pg(X) = 1 + b2X ⊕ · · · ⊕ bn−1X
n−1 + Xn−1. (14)

The following result proved in [10] gives a necessary and sufficient condition on
the polynomials pf and pg in order for F and G to generate orthogonal Latin
squares:

Theorem 1. Let F,G : F2(n−1)
2 → F

n−1
2 be two bipermutive CA with linear local

rules f, g : Fn
2 → F2, and let pf and pg be their associated polynomials. Then,

the Latin squares SF and SG respectively associated to F and G are orthogonal
if and only if pf and pg are coprime.

3 Main Results

Since the problem of characterizing pairs of bipermutive CA which generate
orthogonal Latin squares has already been solved in [10] when the underlying
local rules are linear, we now consider the more general case of nonlinear biper-
mutive CA. In order to tackle this problem, in this section we prove some results
that allow us to reduce the search space of all bipermutive functions pairs. Then,
we will use these results to enumerate all pairs of bipermutive CA that give rise
to orthogonal Latin squares, with local rules of up to n = 6 variables.

Let Bn be the set of all pairs of bipermutive Boolean functions of n variables. As
bipermutive functions are defined by their generating functions of n− 2 variables,
for all n ≥ 2 it follows that |Bn| = |Gn|, where Gn = {(ϕ, γ) ∈ Fn−2 × Fn−2}.
Since |Fn−2| = 22

n−2
, the size of Gn is 22

n−2 · 22
n−2

= 22
n−1

, meaning that Gn is
isomorphic to Fn−1, i.e. the set of Boolean functions of n − 1 variables.

Clearly, if two bipermutive CA induced by a pair of local rules (f, g) give
rise to orthogonal Latin squares, then the CA defined by the swapped pair (g, f)
will generate the same orthogonal Latin squares in reverse order. We now show
that the basic transformations of reversal and complementation introduced in
Sect. 2.1 preserve the orthogonality relation as well:

Lemma 2. Let F,G : F
2(n−1)
2 → F

n−1
2 be two bipermutive CA respectively

defined by local rules f, g : Fn
2 → F2 of n variables, and let SF , SG be the asso-

ciated Latin squares of order 2n−1. Additionally, let FR, GR and FC , GC be the
CA respectively defined by the reverses fR, gR and the complements fC , gC of
f, g, and let SFR

, SGR
and SFC

, SGC
be the corresponding Latin squares. Then,

the following hold:

– SF and SG are orthogonal if and only if SFR
, SGR

are orthogonal.
– SF and SG are orthogonal if and only if SFC

, SGC
are orthogonal.
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Proof. Since both reversal and complementation are idempotent transformations,
it suffices to show only one direction of the implications, i.e. assuming that SF

and SG are orthogonal. This means that

(F (x||y), G(x||y)) �= (F (x′||y′), G(x′||y′))

for all distinct pairs (x, y), (x′, y′) ∈ F
n−1
2 × F

n−1
2 , since the mapping φ which

associates binary vectors of length n − 1 to positive integers in the range
{1, · · · , 2n−1} is bijective.

Let us now consider the CA FR induced by the reversed local rule fR. Then,
for all (x, y) ∈ F

n−1
2 × F

n−1
2 with x = (x1, · · · , xn−1) and y = (y1, · · · , yn−1), it

follows that

FR(x||y) = (fR(x1, · · · , xn−1, y1), · · · , fR(xn−1, y1, · · · , yn−1)) =
= (f(y1, xn−1, · · · , x1), · · · , f(yn−1 · · · , y1, xn−1)) = F (yR||xR)R,

i.e., the output value of the reversed CA FR is obtained by computing the reversed
output of F evaluated on the reversed input yR||xR. Analogously, the same fact
holds for GR with respect to G. Since for all (x, y), (x′, y′) ∈ F

n−1
2 × F

n−1
2 such

that (x, y) �= (x′, y′) one has that (yR, xR) �= (y′
R, x′

R), it follows that

(F (yR||xR)R, G(yR||xR)R) �= (F (y′
R||x′

R)R, G(y′
R||x′

R)R),

which means that SFR
and SGR

are orthogonal Latin squares.
Next, let us consider the CA FC induced by the complemented local rule fC .

The output value of FC over x||y is

FC(x||y) = (fc(x1, · · · , xn−1, y1), · · · , fc(xn−1, y1, · · · , yn−1)) =
= (1 ⊕ f(x1, · · · , xn−1, y1), · · · , 1 ⊕ f(xn−1, y1, · · · , yn−1)) =
= 1 ⊕ F (x||y),

where 1 = (1, · · · , 1) ∈ F
n−1
2 . Similarly for GC , one has GC(x||y) = 1⊕G(x||y).

Given two pairs (x, y), (x′, y′) ∈ F
n−1
2 ×F

n−1
2 such that (x, y) �= (x′, y′), it clearly

holds that (1 ⊕ x, 1 ⊕ y) �= (1 ⊕ x′, 1 ⊕ y′), from which it follows

(1 ⊕ F (x||y), 1 ⊕ G(x||y)) �= (1 ⊕ F (x′||y′), 1 ⊕ G(x′||y′)).

As a consequence, the Latin squares SFC
and SGC

are orthogonal. 	

We now turn to analyze the truth tables of bipermutive rules whose CA gen-

erate orthogonal Latin squares. As an example, consider the pair of functions
f, g : F3

2 → F2 defined as f(x1, x2, x3) = x1 ⊕x3 and g(x1, x2, x3) = x1 ⊕x2 ⊕x3,
namely rules 90 and 150 usingWolfram’s numbering convention.The Latin squares
of order N = 4 induced by the corresponding bipermutive CA F,G : F4

2 → F
2
2 are

orthogonal, since by Theorem 1 f and g are linear and their associated polynomi-
als pf (X) = 1 + X2 and pg(X) = 1 + X + X2 are coprime. The truth tables
Ω(f), Ω(g) ∈ F

8
2 are the following:

Ω(f) = (0, 1, 0, 1, 1, 0, 1, 0), (15)
Ω(g) = (0, 1, 1, 0, 1, 0, 0, 1). (16)
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Placing side by side these truth tables, one can see that there are 23−2 = 2
occurrences of each of the four pairs (0, 0), (1, 0), (0, 1) and (1, 1). We call this
property pairwise balancedness, formally defined below:

Definition 5. Two Boolean functions f, g : Fn
2 → F2 of n variables are pairwise

balanced if the (n, 2)-function (f, g) : Fn
2 → F

2
2 defined as (f, g)(x) = (f(x), g(x))

is balanced, that is |(f, g)−1(y1, y2)| = 2n−2 for all (y1, y2) ∈ F
2
2.

We now prove that pairwise balancedness is a necessary condition for a pair of
bipermutive local rules whose CA generate orthogonal Latin squares:

Lemma 3. Let F,G : F2(n−1)
2 → F

n−1
2 be bipermutive CA respectively induced

by local rules f, g : Fn
2 → F2, and suppose that the associated Latin squares SF ,

SG are orthogonal. Then, f and g are pairwise balanced.

Proof. Let H : Fn−1
2 × F

n−1
2 → F

n−1
2 × F

n−1
2 be the function defined as

H(x, y) = (F (x||y), G(x||y)) (17)

for all (x, y) ∈ F
n−1
2 × F

n−1
2 . Since SF and SG are orthogonal, it follows that H

is bijective.
Consider two vectors c, d ∈ F

n−1
2 and, without loss of generality, suppose

that the first components of c and d, namely c1, d1 ∈ F2, are fixed. We want to
compute the number of preimages (x1, · · · , xn−1, y1) ∈ F

n
2 which map to (c1, d1)

under (f, g). In order to do so, we evaluate the ratio N/M , where:

– N is the number of input pairs (x, y) ∈ F
n−1
2 × F

n−1
2 such that the first

components of the respective output pairs H(x, y) equal (c1, d1).
– M is the number of input pairs (x, y) ∈ F

n−1
2 × F

n−1
2 where x and the first

component of y are fixed.

In this way, we count the total number of preimages of H which map to (c1, d1)
and normalize it by the number of preimages where the first n components of H
are fixed, thus determining the number of preimages of (c1, d1) under (f, g).

As H is bijective, N corresponds to the number of pairs of binary vectors of
length n−1 where the first components are fixed, which are 2n−2 ·2n−2 = 22(n−2).
On the other hand M = 2n−2, since we only have n − 2 free variables in the
input configuration of the CA. Hence, it follows that |(f, g)−1(y1, y2)| = N/M =
22(n−2)/2n−2 = 2n−2. 	

In the next Lemma, we show that pairwise balanced generating functions induce
pairwise balanced bipermutive CA:

Lemma 4. Let ϕ, γ : Fn−2
2 → F2 be pairwise balanced functions of n − 2 vari-

ables, with n > 2. Then, the bipermutive rules f, g : Fn
2 → F2 induced by ϕ and

γ are pairwise balanced.
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Proof. Let (y1, y2) ∈ F
2
2. One has that |(ϕ, γ)−1(y1, y2)| = 2n−4, since ϕ and

γ are balanced. Additionally, for all x̃ = (x2, · · · , xn−1) ∈ (ϕ, γ)−1(y1, y2),
let (x1, x̃, xn) = (x1, x2, · · · , xn−1, xn). Then, by Eq. (8) it follows that (0, x̃, 0)
∈ (f, g)−1(y1, y2) and (1, x̃, 1) ∈ (f, g)−1(y1, y2). Similarly, for all vectors
x̃ ∈ (ϕ, γ)−1(ȳ1, ȳ2) where ȳ1 = 1 ⊕ y1 and ȳ2 = 1 ⊕ y2, it holds that (1, x̃, 0)
∈ (f, g)−1(y1, y2) and (0, x̃, 1) ∈ (f, g)−1(y1, y2). Since the fiber of (y1, y2) under
(f, g) is given by

(f, g)−1(y1, y2) = {(0, x̃, 0) : x̃ ∈ (ϕ, γ)−1(y1, y2)} ∪
∪ {(1, x̃, 0) : x̃ ∈ (ϕ, γ)−1(ȳ1, ȳ2)} ∪
∪ {(0, x̃, 1) : x̃ ∈ (ϕ, γ)−1(ȳ1, ȳ2)} ∪
∪ {(1, x̃, 1) : x̃ ∈ (ϕ, γ)−1(y1, y2)} (18)

and since the four sets in Eq. (18) are disjoint and have the same cardinality of
(ϕ, γ)−1(y1, y2), we can finally conclude that

|(f, g)−1(y1, y2)| = 4 · |(ϕ, γ)−1(y1, y2)| = 4 · 2n−4 = 2n−2. (19)

	

Remark that the converse of Lemma 4 does not hold. As a matter of fact, already
for n = 4 variables there exist several instances of bipermutive functions pairs
which produce orthogonal Latin squares (and hence are pairwise balanced) but
whose generating functions are not pairwise balanced. An example is given by
the two following linear rules:

f(x1, x2, x3, x4) = 1 ⊕ x1 ⊕ x3 ⊕ x4,

g(x1, x2, x3, x4) = x1 ⊕ x4.

The generating function of g in this case is the constant function defined as
γ(x) = 0 for all x ∈ F

2
2. Hence, the pairs (0, 1) and (1, 1) never occur when

superimposing the truth tables of the two generating functions of f and g.

4 Enumeration of Pairwise Balanced Bipermutive Rules

In this section, we enumerate all bipermutive rules pairs generating orthogonal
Latin squares up to n = 6 variables and we classify them according to their
nonlinearity.

The space of pairs of pairwise balanced generating functions is easily charac-
terizable from the combinatorial point of view. In fact, for n > 2, each pairwise
balanced pair ϕ, γ : Fn−2

2 → F2 can be represented by a string s of length 2n−2

over the alphabet A = {1, 2, 3, 4}, where each symbol in s corresponds to the
decimal encoding of one of the possible four pairs (0, 0), (1, 0), (0, 1) and (1, 1)
occurring in the superposition of the truth tables. Since ϕ and γ are pairwise
balanced, the string s must be balanced as well, meaning that the number of
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occurrences of each of the four symbols of A must be 2n−4. Hence, the number
of pairwise balanced pairs of generating functions of n − 2 variables equals

#BalGn =
(

2n−2

2n−4

)
·
(

3 · 2n−4

2n−4

)
·
(

2n−3

2n−4

)
. (20)

As a matter of fact, to construct a balanced quaternary string of length 2n−2

one has first to select the positions of the 2n−4 occurrences of the first symbol,
which can be chosen in

(
2n−2

2n−4

)
different ways. Next, the 2n−4 occurrences of the

second symbol must be chosen among the 2n−2 − 2n−4 = 3 · 2n−4 remaining
positions, which can be done in

(
3·2n−4

2n−4

)
different ways. Finally, for the 2n−4

occurrences of the third symbol one has to choose among 2n−2 −2 ·2n−4 = 2n−3

remaining positions, corresponding to
(
2n−3

2n−4

)
possible choices. At this point, the

occurrences of the fourth symbols are fixed.
However, we saw at the end of Sect. 3 that pairwise balancedness is not

a necessary condition on the generating functions to obtain pairwise balanced
bipermutive rules. Consequently, by enumerating all balanced quaternary strings
of length 2n−2 one only explores a subset of the space of pairwise balanced biper-
mutive rules of n variables, and thus in turn a subset of the space of bipermutive
CA pairs generating orthogonal Latin squares of order 2n−1.

We thus have to resort to a combinatorial characterization of pairwise bal-
anced bipermutive functions. To this end, we adopt the graph representation of
bipermutive rules, originally introduced in [8]. Given n ∈ N, consider an undi-
rected graph G = (V,E) where V = F

n
2 . Two nodes v1, v2 ∈ V are connected

by an edge if and only if they differ either in their leftmost or rightmost coor-
dinates, while they agree on the remaining ones. Thus, G is composed of 2n−2

connected components, and each connected component is composed of 4 nodes
all having degree 2. A Boolean function f : Fn

2 → F2 can be represented as a
labeling function lf : V → {0, 1} on the nodes of G. If f is bipermutive, then
the labels of adjacent nodes must differ, while the labels of two nodes separated
by a path of length 2 must be equal.

Clearly, given a pair of bipermutive functions f, g : Fn
2 → F2, we can still

represent them on the graph as a labeling function lf,g : V → {0, 1}2 on the
nodes, where the labels are pairs specifying the outputs of the two functions.
Assume that f and g are pairwise balanced: then, each pair (y1, y2) ∈ F

2
2 occurs

2n−2 times as a label on G. As an example, Fig. 1 depicts the graph representation
of rule 90 and 150, which are pairwise balanced. Additionally, due to the property
of different labels on adjacent nodes, it follows that exactly half of the connected
components contain all (0, 0) and (1, 1) labels, while the remaining half contain
all (1, 0) and (0, 1) labels. Since there are only two types of connected components
with respect to the labels ((0, 0)/(1, 1) and (1, 0)/(0, 1)), it means that we can
choose them in

(
2n−2

2n−3

)
different ways. Moreover, let C = {v1, v2, v3, v4} be a

connected component where (v1, v2), (v1, v3), (v4, v2), (v4, v3) ∈ E, and assume
that the labels on the nodes are either (0, 0) or (1, 1). Then, the two labels
can be arranged in two different ways, namely (lf,g(v1), lf,g(v4)) = (0, 0) and
(lf,g(v2, v3)) = (1, 1) or (lf,g(v1), lf,g(v4)) = (1, 1) and (lf,g(v2), lf,g(v3)) = (0, 0).
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In the same way, the labels on the nodes of a connected component of the type
(1, 0)/(0, 1) can be placed in two different ways. As a consequence, each of the(
2n−2

2n−3

)
ways for choosing the connected components with labels (0, 0)/(1, 1) and

(1, 0)/(0, 1) gives rise to 22
n−3 · 22

n−3
= 22

n−2
pairwise balanced bipermutive

functions. We have thus proved the following result:

Lemma 5. The number of pairwise balanced pairs of bipermutive Boolean func-
tions f, g : Fn

2 → F2 of n variables is:

#BalBn =
(

2n−2

2n−3

)
· 22

n−2
. (21)

000

0,0

100

1,1

101

0,0

001

1,1

110

1,0

111

0,1

011

1,0

010

0,1

Fig. 1. Graph representation of the pairwise balanced bipermutive rules 90 and 150.

Table 1 reports the sizes of the search spaces for the sets of all pairs of biper-
mutive functions, the set of pairwise balanced generating functions and the set
of pairwise balanced bipermutive functions of up to n = 7 variables.

One can notice that for n ≥ 7 the resulting search space is too large to be
exhaustively searched, even by focusing on the subsets of pairwise balanced gener-
ating functions. For this reason, we enumerated the set of pairwise balanced biper-
mutive functions BalBn only up to n = 6 variables. To this end, we implemented

Table 1. Sizes of the search spaces for the different types of sets of bipermutive func-
tions pairs of up to n = 7 variables.

n #Bn #BalGn #BalBn

3 16 0 8

4 256 24 96

5 65536 2520 17920

6 4294967296 63006300 843448320

7 ≈1.84 · 1019 ≈9.96 · 1015 ≈2.58 · 1018
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Table 2. Distribution of CA-based orthogonal Latin squares up to n = 6.

n LS size #total #linear #nonlinear nl distribution

3 4 × 4 1 1 0 –

4 8 × 8 9 5 4 (4, 4, 4)

5 16 × 16 213 21 192 (4, 4, 96), (8, 8, 96),
(4, 4, 512), (8, 8, 4020), (12, 12, 17992)

6 32 × 32 66685 85 66600 (16, 16, 28388), (20, 20, 14384), (4, 12, 8),
(8, 16, 160), (12, 20, 128), (16, 24, 88)

an algorithm by Knuth [7] to generate all balanced binary strings of length 2n−2,
where the positions set to 0 and 1 respectively correspond to the (0, 0)/(1, 1) and
(1, 0)/(0, 1) connected components. Then, for each balanced combination of con-
nected components we generated all possible 22

n−2
arrangements of the labels, con-

structed the resulting pairs of bipermutive functions, and computed their respec-
tive nonlinearity values through the Walsh transform. Finally, we generated the
associated Latin squares of order N = 2n−1, and checked for their orthogonality.

We remark that the enumeration of BalB6 is a computationally intensive
task, since it took approximately 22 h to complete under our Java implementa-
tion on a 64-bit Linux machine with 40 Intel Xeon cores running at 2.4 GHz.

Table 2 reports the distribution of linear and nonlinear pairs of orthogonal
Latin squares. For each value of n, the corresponding size of the Latin squares
is reported, along with the number of linear and nonlinear pairs of bipermutive
functions generating orthogonal Latin squares. Additionally, in the last column
we report the distribution of nonlinearity values in triplets (nl(f), nl(g),#num)
where nl(f) and nl(g) respectively denote the nonlinearity values of f and g,
while #num is the number of pairs generating orthogonal Latin squares that
achieve those values. Notice that all reported numbers are divided by 8, since
we have to take into account the pairs with swapped order, which halve the
resulting sets, and the reversal and complementation transformations, which by
Lemma 2 additionally reduce them to a quarter.

As a qualitative remark on the distributions reported in Table 2, one may
observe that linear pairs become more sparse as the number of variables n
increases, while the majority of the pairs are nonlinear. Moreover, one can see
that for n = 6 there are pairs with functions of different nonlinearities. This find-
ing falsified our initial belief that two bipermutive functions inducing orthogonal
Latin squares must have the same value of nonlinearity, an empirical observation
which held up to n = 5 variables.

5 Conclusions

In this work, we considered the problem of exhaustively enumerating pairs of
orthogonal Latin squares generated through bipermutive CA. We first proved
that all pairs of bipermutive rules inducing orthogonal Latin squares must be
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pairwise balanced, meaning that the superposition of their truth tables must
yield an equal number of occurrences of the four pairs (0, 0), (1, 0), (0, 1) and
(1, 1). We then used a combinatorial algorithm to enumerate all pairwise bal-
anced Boolean functions of up to n = 6 variables, finding those which generate
orthogonal Latin squares and classifying them with respect to their nonlinear-
ity values. The results of our computer search showed that, as the number of
variables of the local rules increases, most of the orthogonal pairs are nonlinear.
This could have interesting applications from the cryptographic point of view,
since as mentioned in the Introduction orthogonal Latin squares arising from
nonlinear constructions have relevance in the design of cheater-immune secret
sharing schemes. We plan to study this issue in future research, in particular
by investigating sufficient conditions that two nonlinear bipermutive CA must
satisfy in order to generate orthogonal Latin squares. Another direction worth
investigating is to analyze the pairs of nonlinear rules found in this paper from
the perspective of pseudorandom number generation, and compare them with
others stemming from different classifications, like those presented in [5,9].
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Abstract. In many constructions on cellular automata, information is
transmitted with signals propagating through a defined background. In
this paper, we investigate the possibility of using aperiodic tiling inside
zones delimited by signals. More precisely, we study curves delineated
by CA-constructible functions and prove that most of them can be filled
with the NW-deterministic tile set defined by Kari [1]. The achieved
results also hint a new possible way to study deterministic tile sets.

1 Introduction

Cellular automata are studied as a computation model with a theoretical com-
puter science approach [2], and as a dynamical complex system with a multi-
disciplinary approach [3]. The former approach uses specific portions of the whole
configuration to encode computation and manages to achieve strong results on
complexity or decidability. The latter looks at all configurations and try to prove
results on the global behaviour. Roughly speaking, most results for computation
deal with the existence of a specific configuration, whereas dynamics study the
evolution for all of them.

It is a matter of fact there exists a few results that exploit the computational
tools to prove behaviours on all configurations. The key example of such a result
is the undecidability of nilpotency by Kari [1] in which he uses an aperiodic tiling
to recursively embed everywhere in the configuration some parts of computation
of arbitrary size. Using this tool, he can send ill-formed configurations “into
a sink-hole” and work on the correct ones. More recently, a result has been
obtained in the context of synchronisation using the same aperiodic tiling [4].
This construction generates linear zones embedding the aperiodic tiling is used.

In this paper, we investigate the possibility of constructing zones of various
shapes embedding aperiodic tiling. Intuitively, we wonder whether we can fill
inside of curves generated by methods similar to those used in [5,6] with Kari’s
tiling. The results also open interesting questions on determinism of tile sets.

The paper is organised as follow: in Sect. 2, we present the two used models
(cellular automata and tile sets) along with notions of constructing and filling.
In Sect. 3, we focus on determinism in tiling and look with more details at Kari’s
tiling. In Sect. 4, we state several results about aperiodic filling. At last, we
propose some perspectives in Sect. 5.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Dennunzio et al. (Eds.): AUTOMATA 2017, LNCS 10248, pp. 165–175, 2017.
DOI: 10.1007/978-3-319-58631-1 13
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2 Constructions and Fillings

2.1 Cellular Automata

In this paper, we consider cellular automata in dimension one with nearest
neighbours. Therefore, a cellular automaton is a pair (Q, δ) where Q is a finite
set of states and δ : Q3 → Q is the local transition function. We assume
that the automaton has a quiescent state B ∈ Q satisfying δ(B,B,B) = B.
The global dynamics is achieved by applying uniformly and synchronously
the local transition function to a bi-infinite line of cells: a space-time dia-
gram D is an element of SZ×N satisfying for all (i, j) ∈ Z × N,D(i, j + 1) =
δ (D(i − 1, j),D(i, j),D(i + 1, j)). One can note that the space-time diagram is
fully determined by the initial line {D(i, 0) | i ∈ Z}. In this paper, we shall look
at the space-time diagram Dq generated by an initial state q ∈ Q, defined as
Dq(0, 0) = q and Dq(i, 0) = B for i �= 0. By the previous remark, this is sufficient
to define the whole space-time diagram.

We want to look at functions which can be constructed by cellular automaton
as depicted in Fig. 1: in the space time diagram generated from a configuration
containing only one cell in q and all other cells blank, the curve f is drawn with
a subset of marked states M ⊂ Q. The portion above the curve is filled with
non-marked non-blank symbols whereas the portion below the curve is filled with
blanks.

Definition 1. A function f : N → N is constructible if there exists a cellular
automaton (Q ∪ {B}, δ), q ∈ Q, and M ⊂ Q, such that Dq satisfies:

– Dq(i, j) = B for i < 0 and j ∈ N;
– Dq(i, f(i)) ∈ M for i > 0;
– Dq(i, j) = B for i > 0 and j < f(i);
– Dq(i, j) ∈ Q\M for i ∈ N and j > f(i).

Fig. 1. A basic example of constructible function

It can be seen that the definition only makes sense for function f : N → N

that are strictly increasing and satisfy f(0) = 0.
This notion of constructibility has already been investigated, leading to hier-

archy results [7] or even impossibility results [6]. Here, we will focus on filling
the zone above the curve with an aperiodic tiling.
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2.2 Tile Set

A Wang tile t is a square tile with coloured edges, as represented in Fig. 2.
Formally, it is given by a quadruplet (te, tw, tn, ts) of symbols chosen among a
finite alphabet. A tile set τ is a finite set of Wang tiles. A tiling of the plane
by τ is a map T : Z2 → τ from the discrete plane to the tile set so that two
tiles that share a common edge agree on the colour: For all integers i, j we have
T (i, j)e = T (i + 1, j)w and T (i, j)n = T (i, j + 1)s. A tiling T is said periodic if
there exists p, p′ > 0 such that for any i, j ∈ Z, T (i, j) = T (i+p, j) = T (i, j+p′).

Fig. 2. Wang tiles

Given a constructible function, we want to see in which case the portion
above the curve can be (in a constructive way) filled with tiles from a chosen
tile set.

Definition 2. A function f is fillable by a tile set τ if it is constructible by a
cellular automaton (Q ∪ {B}, δ) and there exists a projection π : Q → τ and a
tiling T such that for any i ∈ N and j > f(i), π(Dq(i, j)) = T (i, j).

With this definition, it is not so difficult to prove that any constructible
function can be filled by a tile set which has a periodic tiling.

Proposition 1. Let τ be a tile set which admits a periodic tiling, then any
constructible function f is fillable with τ .

Proof. Let us take a tile set τ and T : Z → τ , T (i[p], j[p′]) = τ(i,j) be one of
its periodic tiling. Let f be a constructible function by a cellular automaton
(Q ∪ {B}, δ). We extend this automaton by adding a new layer containing the
tiling ((Q ∪ {B}, τ ∪ {C}), δ′) where

δ′((ql, tl), (qc, tc), (qr, tr)) = (δ(ql, qc, qr), t(δ(ql, qc, qr), tl, tc))

and

t(q, tl, tc) =

⎧
⎨

⎩

τ(i,j+1[p′]) if q ∈ Q\M and tc = τ(i,j)
τ(i+1[p],j+1[p′]) if q ∈ M and tl = τ(i,j)

C otherwise

If we set B′ = (B,C) and q′
0 = (q0, τ(0,0)) then it is easy to show by recurrence

over j and i that the cellular automaton fills f . ��



168 G. Richard

This notion of fillable can be extended to get rid of the constructible con-
straint. This extension can model the fact that the curve dominated by an exter-
nal action.

Definition 3. A function f is loosely fillable with a tile set τ if there exists, a
cellular automaton (Q ∪ {B}, δ), q ∈ Q, a tiling T , a diagram D̃ ∈ Z × N → Q,
and a projection π : Q → τ such that,

if we define the diagram D̃ ∈ Z × N → Q as

– D̃(i, j) = B for i < 0 and j ∈ N;
– D̃(i, j) = B for any i ≥ 0 and j < f(i);
– D̃(0, 0) = q;
– D̃(i, j) = δ(D̃(i − 1, j − 1), D̃(i, j − 1), D̃(i + 1, j − 1)) otherwise,

we have for any i ∈ N and j > f(i), π(D̃(i, j)) = T (i, j)

As previously, this definition makes sense only for functions f : N → N that
are strictly increasing and satisfy f(0) = 0.

Remark that even if this definition removes the set M to mark the points
(i, f(i)), it is possible to construct an automaton having this additional property
since those points are the first ones in the column which are not in state B. The
last remark implies that the construction of Proposition 1 applies as well to this
extension.

Proposition 2. Let τ be a tile set which admits a periodic tiling, then any
function f is loosely fillable with τ .

Proof. Just replace the test q ∈ M by q �= B and tc = C in the previous
construction.

3 Aperiodic Tile Set

Since filling is easy when the tile set admits a periodic tiling, let us look at what
happens in the other case: A tile set τ is said to be aperiodic if there exists at
least a valid tiling of the plane but no periodic tiling. A tile set of this kind was
first found by Berger [8] to prove undecidability of the AEA fragment of logic.
Since, several other aperiodic tile sets have been found [9–12].

3.1 From Tile Set Determinism to Cellular Automaton

In our case, the filling by cellular automata introduces some kind of determinism
in the tiling. The corresponding notion has been introduced by Jarkko Kari: a
tile set is said to be north-west deterministic if there is at most one possible tile
(te, tw, tn, ts) for every possible choice of (te, ts). To keep the original terminology,
north is going down.

This definition introduces one difficulty: the determinism has defined pre-
viously does not go in the same direction than the one induced by cellular
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Fig. 3. From tile set determinism to cellular automata

automata. To overcome this problem, we shift each column of 1 relative to the
previous one as depicted in Fig. 3.

With this operation, for any x, y ∈ N, the point at coordinates (x, y) is
mapped to the position (i, j) = (x, y+x). Since we have taken f strictly increas-
ing, f(n) ≥ n and thus those points are the only ones used in the definition of
filling.

We slightly alter the definition of fillable to match this transformation:

Definition 4. A function f is fillable by a north-west deterministic tile set τ
if it is constructible by a cellular automaton (Q ∪ {B}, δ) and there exists a
projection π : Q → τ and a tiling T such that for any i ∈ N and j > f(i),
π(Dq(i, j)) = T (i, j − i).

The loose fillable variant can be adapted in the same way.
This transformation achieves one easy implication from tile set determinism

to cellular automata determinism: if a tile set is north-west deterministic, it can
be “simulated” by a cellular automata. The converse is also true: any cellular
automata can be “simulated” by a north-west deterministic tiling.

3.2 A NW-Deterministic Aperiodic Tile Set

This part is devoted to present the north-west deterministic tile set constructed
by Kari in [1] which is built over the tiling from Robinson [9]). The reader can
refer to those papers for the formal proof of aperiodicity.

This tile set can be described with two layers (corresponding to a Cartesian
product). The first one is just a regular 4 coloured grid. The second one is usually
depicted using lines. The tiles are depicted in Fig. 4.

Theorem 1 (Kari [1]). The tile set depicted in Fig. 4 is north-west determin-
istic and aperiodic.

Proof (Idea). The north-west deterministic property is easy to check. The ape-
riodicity is more complex but relies on the following fact: the first layer forces
a 4-periodic background supporting squares of size 2 on the second layer. The
second layer is designed such that squares of size n force the existence of squares
of size 2n. ��
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Fig. 4. A north-west deterministic aperiodic tile set

We are particularly interested in the specific tiling depicted in Fig. 5. Due
to the auto-similar characteristic of the tile set, we can see (as represented in
Fig. 6) that the tiling can be extended to the infinite quarter of plan. Also note
that we can even construct a full tiling of the plan but this will not be of use
here. The main useful point of this partial tiling is that its regularity will allow
to achieve filling.

Fig. 5. A valid quarter of the plan tiling

4 Aperiodic Filling

In this section, we shall fill curves using Kari’s tile set τK presented in the
previous section and especially the portion of the tiling depicted in Fig. 5. To
better see what happens in this tiling, Fig. 6 decorates the lines with different
widths (that are not present in the tile set) to highlight the hierarchical structure
in which squares assemble themselves into larger squares.
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Fig. 6. Hierarchical vision of Kari’s tiling

Since the tile set is NW deterministic, we define as K : τK × τK → (τK ∪ ∅)
the application which associate to two tiles, the unique one fitting in the NW
corner (if it exists).

4.1 Linear Functions

The first result concerns identity function and corresponds to the case used in [4].

Proposition 3. The function f(n) = n is fillable by Kari’s tile set.

Proof. The constructibility of f is trivial.
To fill the curve, we shall add a layer similarly than in the proof of Proposition 1.

This layer correspond to the tiling depicted previously. Inside the curve,we useNW
determinism to guess the tile; On the borders (vertical on the left and diagonal on
the right), we use the property that this correspond to lines over which the tiling
has periodic behaviour of period 2 (see Fig. 6. Let us call τ l

0 = T (0, 2i), i ≥ 0,
τ l
1 = T (0, 2i + 1), i ≥ 0, τ r

0 = T (2i, 0), i > 0, and τ r
1 = T (2i + 1, 0), i ≥ 0.

Let f(n) = n be constructible by a cellular automaton (Q ∪ {B}, δ). We
extend this automata by adding a new layer containing the tiling ((Q∪{B}, τK ∪
{C}), δ′) where δ′((ql, tl), (qc, tc), (qr, tr)) = (δ(ql, qc, qr), t(δ(ql, qc, qr), tl, tc))
and

t(q, tl, tc) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

K(tl, tc) if q ∈ Q\M, tl �= C and K(tl, tc) �= ∅
τ r
i+1[2] if q ∈ M and tl = τ r

i

τ r
1 if q ∈ M and tl = τ l

0

τ l
i+1[2] if q ∈ Q\M , tl = C and tc = τ l

i

C otherwise
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If we set B′ = (B,C) and q′
0 = (q0, T (0, 0) = τ l

0), we can see that the forth
case of t correspond to cells which are on the Y-axis of both the tiling and the
space-time diagram; the second case correspond to the X-axis of the tiling and
the marked diagonal of the space-time diagram (the third case is the specific
case happening at (0, 0). At last, the first case cover the inside of the tiling and
the curve.

As we have chosen a valid tiling, it can be noted that the condition K(tl, tc) �=
∅ is always valid in the first case and thus C only occurs outside the curve. It
follows that our conditions do correctly match boundaries and fill it with correct
tiles. ��

The previous proof relies on the fact that the tiling we use has two non-
collinear lines on which it is periodic. It may be interesting to search whether
this condition is sufficient or necessary to achieve the result and eventually look
at aperiodic deterministic tile set not exhibiting such condition if they exists.

The previous result can be extended to linear functions for which the coeffi-
cient is a rational number.

Corollary 1. For any α ∈ Q, α > 1 The function f(n) = αn is fillable by an
aperiodic tile set.

Proof. Constructing f consist on a signal of slope 1/α which is the most simple
one to construct.

To fill, it is sufficient to apply a grouping by bloc of (n × m) where α = m/n
to Kari’s tiling and reuse the previous proof. The grouping preserves the NW-
determinism and the regular lines in the tiling are shifted to the correct place.

��

4.2 Over-Logarithmic Growth Functions

For now, we haven’t still make use of the regularity visible in the tiling. This
will allow us to gave a more general result:

Proposition 4. Let f be a constructible function such that, for all n ∈ N,
f(n + 1) − f(n) > 2 log2(n), then f is fillable with Kari’s tile set.

Proof. Once again, we shall use the same method as in the proof of Proposition 3.
In fact, the only difference is in the second and third case in the definition of t
(the method to find the correct tile on the curve). All other cases are unchanged.
Thus, the only case posing problem is to find the tile to put at positions marked
(i, f(i)).

Let us look at the corresponding part in the tiling (see Fig. 7). It can be
easily seen that among the information needed, most of it can be deduced from
the cell to the bottom left of it (the east one). In fact, the background colour,
the diagonal and the horizontal signals can be deduced leaving only the vertical
signal.
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Fig. 7. Guessing the correct tile at position (i, f(i))

Looking more in detail at Fig. 6, we can see that this signal has a high
regularity: if we consider the x-th vertical line, the signal is periodic of period
2i+2 where i is the least significant non-zero bit of x+1 (that is, all odd columns
have period 4, all even but not multiple of 4 have period 8, . . . ). More specifically,
the signal alternates every 2i on a cycle of 4 colours with the same starting point
on the X-axis. Thus, to find the last missing piece of information, it is sufficient
to keep track of x+1 and y (Y-value) corresponding to the position in the tiling
and extract the correct bits.

Let us now look if it is possible to compute such values inside the interval. To
do this, it is possible to maintain two integers recording x and y. To increment
the value of y at each time steps, we need to use an increment with a lazy carry
as in Fig. 8a. In this setup, the value of the counter can be read diagonally. It
is also possible to shift the counter to the right keeping the same value as in
Fig. 8b. The counter x is done in a similar way. Once both counters are present,
the value needed can be easily extracted in 2 log(n) steps as depicted in Fig. 8c.

The previous method is correct but gives the result with a 2 log(n) delay
(which explain the condition on the growth of f). However, since there are only
4 possibilities, it is easy to try all of them simultaneously and erase the incorrect
one when the result arrives. To be fully coherent with our definition, which
require the projection to know exactly which is the tile, the previous method
can be slightly altered to guess one vertical line in advance and keep it in addition
to the current tile.

One last point to underline is that our proof assume that there is always
enough place to keep the counters. If it is true for x, it may not be the case for
y. However, in the latter case, it means that y = O(2x) and since the vertical
strip of width x the tiling is periodic of period 4x, we can forget the high bits of
y and still fill with a valid tiling. ��

Even if our proof only use the marked M subset from the constructible
function, this set can be emulated also in loose fill which allows to extend the
result to this case.

Corollary 2. Let f be a function such that, for all n ∈ N, f(n + 1) − f(n) >
2 log2(n), then f is loosely fillable with Kari’s tile set.
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Fig. 8. Finding missing information for a new tile

For the constructibility, there exists a gap between n−log(n) and n where any
function is not constructible [6]. At the moment, our result would suggest that
there may be a similar gap for filling. This kind of result could prove interesting
to better understand computation by cellular automata.

5 Conclusions and Perspectives

In this paper, we have shown that Kari’s tile set can be used deterministically
to fill curves. This method may open new possibilities to results on the whole
set of configuration using computability tricks since it is easy to force this tile
set to embed computation.

With respect to this specific tile set, the question of optimality of results in
Sect. 4 is still an open question. The logarithmic growth condition is due to the
maximal complexity of our method to find the next valid tile. It can be noted
that the mean complexity is constant so there is perhaps room for improvement
even using our proof.

All those results are based on the “regularity” of one tiling in periodic or
Kari’s tile set. This leads directly to try and generalise this for a wider range of
tile set. In particular, one question is to find if there exists tile set for which the
set of fillable function is different and understand why.

In this way, one class of tile set which may prove interesting are the one
that can be depicted using substitutions. One first look at this set was done by
Fernique and Ollinger [13]. The introduction of determinism and fill may allow
to further discriminate into this class.

At last, one cannot end without asking how results extend in dimension two.
Here, the main point is that this changes a lot the problem since the determinism
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is no more inside the tiling but only on its frontier and that it involves more
complex geometric concepts since the border is no longer restricted to two points.
Although very different, it may also be interesting in particular linking with the
concept of self-assembly tile sets [14].
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Abstract. We investigate some computational limits of trellis
automata. Reusing a counting argument introduced in [4], we show that:

{x1 . . . xny1 . . . yn : xiyi ∈ {ab, ba, bb} for i = 1, . . . , n}
is not a trellis language.

1 Introduction

Trellis automata are one of the simplest parallel language recognizer. Introduced
by Dyer [3], as real-time one-way bounded cellular automata, they represent
a significant class of formal languages with low complexity. Notably, they are
equivalent to the linear conjunctive grammars [5]. In spite of their simplicity,
they have a rich computational ability and recognize various languages. In this
regard, the linear context free, the visible pushdown, the poly-slender context
free languages are known to be all recognized by trellis automata [1,2,6,8,11].

On the other side, some limits are known. Trellis automata are not closed
under concatenation and do not contain all (and even deterministic) context-free
languages. To support these claims, several languages have been shown not to
be trellis languages [8–10]:

– the context free language L1L1 square of L1 = {1k0u10k : k > 0, u ∈ {0, 1}∗}
– the language {uvu : u, v ∈ {0, 1}∗, |u| > 1},
– the deterministic context free (and LL(1)) language

{cmal0bal1b · · · almb · · · alzbdn : m,n, li ≥ 0, z ≥ 1, lm = n}.

The proofs rely on counting arguments which set conditions on the structure of
trellis languages.

Here we will reuse another counting argument introduced in [4] in the context
of functional computation, which demonstrated that the reverse operation is not
realizable in minimal time on cellular automata. This argument will allow to
exhibit some new prerequisite for a language to be recognized by trellis automata.
As an application, we will prove that the language
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{x1 . . . xny1 . . . yn : xiyi ∈ {ab, ba, bb} for i = 1, . . . , n}

is not a trellis language.
The paper is organized as follow. Section 2 recalls the basic definitions about

trellis automata. Section 3 describes the notion of language factors diagram
which can be interpreted as the language counterpart of trellis computation.
Section 4 considers the patterns which may occur in the trellis computation
and the ones which may occur in the factors diagrams, and also their corre-
lation. Section 5 states a necessary condition regarding the patterns for a lan-
guage to be recognizable by trellis automata. Section 6 shows that the language
{x1 . . . xny1 . . . yn : xiyi ∈ {ab, ba, bb} for i = 1, . . . , n} does not fulfill such a
condition.

2 Trellis Automaton

A trellis automaton is one of the simplest parallel language recognizer. Its under-
lying structure is a triangular array with sites arranged in staggered rows, as
shown below.

x1 x2 x3 x4 x5 x6

the result is read on the topmost site

the input is fed to the bottom row

A trellis automaton on an input of size 6

Formally, a trellis automaton is specified by a tuple (Q,Σ,Qacc, δ) where

– Q is the finite set of states
– Σ ⊂ Q is the input alphabet
– Qacc ⊂ Q is the set of accepting states
– δ : Q2 → Q is the transition function

If n is the length of w, the trellis has height n and contains on its i-th row, the
n + 1 − i values

δ(x1 . . . xi), δ(x2 . . . x1+i), . . . , δ(xn+1−i . . . xn)

A trellis automaton is said to accept (resp. reject) a word w ∈ Σ∗, if on input
w the topmost cell enters an accepting (resp. non-accepting) state.
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Definition 1 (Trellis language). A language L over an alphabet Σ is a trel-
lis language if there exists some trellis automaton (Q,Σ,Qacc, δ) which accepts
exactly the words w ∈ L.

Example 1. The trellis automaton ({a, b, c}, {a, b}, {a}, δ) accepts the set of
strings of odd length whose middle symbol is a: Mia = {uav : u, v ∈
{a, b}∗ and |u| = |v|}

a a b a b b a b a a b b
c b c b b c b c c b b
a b a b b a b a a b

b c b b c b c c b
b a b b a b a a
c b b c b c c
a b b a b a

b b c b c
b b a b
b c b
b a
c

Computation on input w = aababbabaababb

The transition
function δ:

a b c

a c b
b c b b
c a a

The accepting state a marks the topmost cell of every triangle whose basis is a
factor in Mia.

Example 2. The trellis automaton ({a, b, d, r}, {a, b}, {d}, δ) recognizes the set
of Dyck words over {a, b}

a a b a b b a b a a b b
a d r d b r d r a d b
a a b b r b a r a b
a d b r b r a r d
a b r b r r a b
d r b r r r d
a b r r r b
d r r r b
a r r b
a r b
a b
d

Computation on input w = aababbabaababb

The transition
function δ:

a b d r

a a d a a
b r b r
d b a
r r b b r

The accepting state d marks the Dyck words, a marks the proper prefixes of
Dyck words, b marks the proper suffixes of Dyck words, r marks all the other
words.

A fundamental feature of trellis automata has been noticed by Čuĺık:

Property 1 (Outside-context independence [1]). The computation of any word
contains the computations of all its factors.

As it can be seen in Example 1 or 2, the automaton which tests the input w
processes together all its factors.
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3 Factors Diagram for a Language

As a matter of fact, Property 1 has strong implications on the structure of
languages recognized by trellis automata. To make them explicit, let us first
introduce the language counterpart of trellis computation.

Definition 2 (Factors diagram). Let L be a language on an alphabet Σ.
The indicator function of L, noted 1L, is defined by

1L : Σ∗ → {0, 1}
w →

{
1 if w ∈ L
0 if w /∈ L

Let w = x1 . . . xn be a word. The factors diagram of w for the language L,
denoted ΓL(w), is a triangular array which records the values of all slices of w.
If n is the length of w, the factors diagram has height n and contains on its i-th
row, the n + 1 − i values

1L(x1 . . . xi),1L(x2 . . . x1+i), . . . ,1L(xn+1−i . . . xn)

Fig. 1. Factors diagram ΓL(w) on word w = aababbabaababb for the language L

Example 3. Looking at Examples 1 and 2 where the automata evolutions on
the same string are drawn, we observe that the above factors diagrams are sim-
ply projections of these automata computations. Indeed, a trellis automaton
which recognizes a language L, must enter accepting states exactly on the fac-
tors belonging to L.

The following proposition formally describes the relationship between
automaton evolutions and factors diagrams.
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Fig. 2. The factors diagram is the projection of the automaton computation

Proposition 1. Let A = (Q,Σ,Qacc, δ) be any trellis automaton, L be the lan-
guage accepted by A and 1acc be the indicator function of the set of accepting
states:

1acc : Q → {0, 1}
q →

{
1 if q ∈ Qacc

0 if q /∈ Qacc

For any word w ∈ Σ∗, given its automaton computation CA(w) and its factors
diagram ΓL(w), we have:

1acc(CA(w)) = ΓL(w)

4 Trellis Automaton Patterns and Language Patterns

Therefore, a prerequisite for a language to be a trellis one, is the following. All
patterns which occur in the factors diagrams of such a language, must arise in the
evolutions of some trellis automaton. Let us focus at the patterns of triangular
shape.

Definition 3 (Characteristic pattern). Let L be a language. A characteristic
pattern of height h is any triangle of height h extracted from a factors diagram
of L.
PL(h) will refer to the set of all distinct characteristic patterns of height h.

Example 4. Consider Mia the language of strings with a in the middle. The
factors diagrams of Mia consist of vertical stripes of only 0 or only 1.

By instance,
0 0
0 0
1

1
is a characteristic pattern of height 3, but not

0 0

0
0 0
1

.

We may describe the automaton patterns in the same way:

Definition 4 (Automaton patterns). Let A = (Q,Σ,Qacc, δ) be a trel-
lis automaton. An automaton pattern of height h is any triangle of height h
extracted from a computation of A.
PA(h) will refer to the set of all distinct automaton patterns of height h.



Some Computational Limits of Trellis Automata 181

However, trellis automata are deterministic local devices. So, for an automata
pattern, the bottom row completely determines the subsequent rows. In other
words, an automata pattern of height h can be viewed as a row pattern of length
h complemented with its consequences.

Example 5. The automaton pattern
d r d b
a b b
d b
b

extracted from the compu-

tation of Example 2, is entirely defined by its bottom row d r d b (and,
of course, by the automaton rules).

As shown earlier in [9], it entails a necessary condition for a language to be
recognizable by a trellis automaton, regarding to the number of its characteristic
patterns:

Lemma 1. If L is a trellis language then the number of characteristic patterns
of height h, |PL(h)|, is in 2O(h).

Proof. Assume that L is a language accepted by some trellis automaton A =
(Q,Σ,Qacc, δ). According to Proposition 1, the characteristic patterns match
the projection of the automaton patterns: PL(h) = 1acc(PA(h)). In terms of
cardinal, it means that |PL(h)| ≤ |PA(h)|. Moreover, the number of automaton
patterns of height h is bounded by the number of distinct rows of length h where
values range in Q: |PA(h)| ≤ |Q|h.

Now, as the area of a characteristic pattern of height h is in Θ(h2) and its
values are 0 or 1, we can find languages whose set of characteristic patterns
grows larger than 2O(h). Using this counting argument, it has been shown that
the following languages are not trellis ones:

– The context-free language L1L1, square of the linear language L1 =
{1k0u10k : k > 0, u ∈ {0, 1}∗}, since |PL1L1(h)| ∈ 2Θ(h2). See [9].

– The deterministic context-free language (and even LL(1) language) L =
{cmal0bal1b · · · almb · · · alzbdn : m,n, z ≥ 1, li ≥ 0, lm = n}, since |PL(h)| ∈
Ω(h!). See [8].

Of course, this criterion is only a necessary condition and not a sufficient
one. Another drawback of this approach is that to estimate the growth rate of
the characteristic patterns number of height h as h grows large, is not usually
an easy task. By the way, the previous witness languages are ad hoc languages
to fulfill the counting requirement. And the status of more common languages
remains as yet unknown. Two candidates are currently mentioned:

– The balanced language over {a, b} defined as the set of strings with the same
number of symbols a and b:

Eq = {w ∈ {a, b}∗ : �a(w) = �b(w)}
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– The copy language defined as the set of words repeated twice:

Copy = {ww : w ∈ {a, b}∗}
Here we will look at the language MiaMia and the variant MiaMib where Mia

(resp. Mib) stands for the set of odd length words with a (resp. b) in the middle:

Mia = {xay ∈ {a, b}∗ : |x| = |y|}
Making use of an approach introduced in [4], we will show that MiaMia and
MiaMib are not trellis languages. But although they are closely related to the
Copy language and its negative variant:

Copy = (MiaMib)� ∩ (MibMia)� ∩ {aa, ab, ba, bb}∗

{ww : w ∈ {a, b}∗} = (MiaMia)� ∩ (MibMia)� ∩ {aa, ab, ba, bb}∗ = Eq ∩ (MiaMia)�

it will not allow us to determine whether they are trellis languages or not.

5 Counting Argument

Here we will focus on a subfamily of the characteristic patterns composed of
horizontal stripes.

Definition 5 (Stripes patterns). A stripes pattern is a characteristic pattern
such that all the values within each row are equal. The characteristic string of a
stripes pattern of height h is the binary string c = c1 · · · ch of length h where ci

is the 0 or 1 value of the i-th row of the stripes pattern.
An automaton pattern π would be said to have a characteristic string c if its

projection 1acc(π) is a stripes pattern of characteristic c.

Note that the characteristic string completely characterizes the stripes pat-
tern. And so, whatever the language, the number of its stripes patterns of height
h is bounded by 2h. Regardless of the fact that the subfamily of stripes patterns
is not so large and even within the bound defined in Lemma 1, it has been proved
that any trellis automaton could not display all of them:

Proposition 2 (Grandjean, Richard, Terrier [4]). For any trellis automa-
ton A, there exist some stripes patterns which never occur in the space-time
diagrams of A.

Along the same lines, Proposition 2 could be refined to deal with languages
exhibiting not necessarily all stripes patterns.

Definition 6. For any language L, CL will refer to the set of characteristic
strings whose corresponding stripes patterns occur in L.
Give, any subset F ⊂ CL, the integer αF

h will refer to the minimal number of
double length extensions of every string of length 2h within F :

αF
h = min

c∈F,|c|=2h
(|{d ∈ F : c is a prefix of d and |d| = 2|c|}|)
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Proposition 3. If L is a language which admits a subset F of characteristic
strings such that the sequence (αF

h ) is monotonic and divergent, then L is not a
trellis language.

The counting argument used to prove the proposition is based on the next
technical fact.

Fact 1. Let (αh) be any monotonic sequence of positive integers which is diver-
gent: αh+1 ≥ αh for all h, and lim

h→∞
αh → ∞. Let C be any positive constant.

Then the sequence (uh) defined recursively by:

u0 = C and uh+1 =
u2

h

αh

converges to 0.

Proof. First, observe that

uh = C2h/

h−1∏
i=0

α2h−i−1

i

Second, by assumption, there exists an index H such that αh ≥ C + 1, for all
h ≥ H. Then for h ≥ H,

uh ≤ C2h/

h−1∏
i=H

(C + 1)2
h−i−1

= C2h/(C + 1)2
h−H

So the sequence (uh) converges to 0.

Proof (Proposition 3). Assume that L is a language accepted by some trellis
automaton A = (Q,Σ,Qacc, δ). We will construct a sequence of strings wi of
length 2i belonging to F such that the number of automaton patterns with
characteristic wi is bounded by ui. Then, according to Fact 1, we will have
uI < 1 for I large enough. That means there will be no automaton pattern with
characteristic uI and hence wI would not be a characteristic string of L. Thus
the assumption that L is a trellis language, would lead to a contradiction.

The construction of the sequence of strings wi is done by recurrence:

The base case. For i = 0, the automaton patterns of height 1 are reduced to
one site and their number is bounded by the cardinal of Q. So there are at
most C = |Q| automaton patterns with characteristic string 0 or 1. Let set
w0 be a string of length 1 belonging to F and u0 be |Q|.

The inductive step. Consider all automaton patterns of height 2i+1 having a
characteristic string within F which is a double length extension of wi. As
depicted in Fig. 3, we can divide such a kind of pattern in four sub-patterns X,
Y , Z and T where X, Y and Z are of height 2i and also where X and Y share
the characteristic wi. By recurrence assumption, the number of automaton
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patterns of characteristic wi is bounded by ui and so the number of couples
(X,Y ) is at most u2

i . Furthermore the sub-patterns Z and T depend only on X
and Y . That is to say the number of automaton patterns whose characteristic
strings are extensions of wi is bounded by u2

i . Now, since the minimal number
of extensions of wi within F is αi, the average number of automaton patterns
per extension is bounded by ui+1 = u2

i /αi. In other words, there is one
extension wi+1 of wi with length 2i+1 and belonging to F such that the
number of automaton patterns with characteristic wi+1 is bounded by ui+1.

Fig. 3. Subdivision of an automaton pattern in four patterns X, Y , Z and T

6 Some Non Trellis Language

Now we will apply the previous criterion to show that the language NOaa =
{x1 . . . xny1 . . . yn : xiyi ∈ {ab, ba, bb} for i = 1, . . . , n} ∪ {w ∈ {a, b}∗ :
w is of odd length} is not a trellis language. As an aside, notice that NOaa is
not a context-free language although its complement MiaMia is a context-free
one.

As preliminary, let us look at an example. Figure 4 depicts the factors diagram
on the input word ωbab12abbbabaaabbabω. The dark sites mark the 0 values (i.e.,
the factors not in NOaa), the light sites mark the 1 values. We observe that the
black horizontal stripes in the upper part match the symbols a of the input.

More generally, the NOaa factors diagrams exhibit the following stripes
patterns:

Fact 2. For any binary string c1c2 . . . ck, there exists a stripes pattern of NOaa

with characteristic string c11c21 . . . 1ck1.

Proof. Given any binary string c1c2 . . . ck of length k, we consider the word
w = bm+k−1abmx1 · · · xkbm+k−1 where m is any integer greater than k and, the
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Fig. 4. The factors diagram on ωbab12abbbabaaabbabω for the language NOaa

symbols xi are a if ci = 0 and b otherwise. As it is defined, each symbol xi decides
whether the m + i factors with length 2(m + i) of bm+i−1abmx1 · · · xkbm+2i−k−1

are all in NOaa (in case of xi = b) or are all outside of NOaa (in case of xi = a).
Therefore the factors diagram of w contains on its 2(m + i)-row a sequence of
m + i consecutive values ci and that for all i = 1, · · · , k. Besides, all values of
the odd rows are 1 since any odd length factor is in NOaa. At last, choosing m
large enough, we can extract from the factors diagram of w a stripes pattern of
characteristic c11c21 . . . 1ck1.

Proposition 4. The language NOaa = {x1 . . . xny1 . . . yn : xiyi ∈
{ab, ba, bb} for i = 1, . . . , n} ∪ {w ∈ {a, b}∗ : w is of odd length} is not a trellis
language.

Proof. According to Fact 2, every string of F = {01, 11}∗ is a characteris-
tic string of NOaa. Besides, within F , every string c11 . . . c2h−11 of length 2h

is the prefix of 2h−1 strings of double length: {c11 . . . c2h−11e11 . . . e2h−11 :
e1, . . . , e2h−1 ∈ {0, 1}} ⊂ F . Hence αF

h = 2h−1 and so the sequence (αF
h ) is

monotonic and divergent. Then it follows from Proposition 3 that NOaa is not a
trellis language.

As a matter of fact, it can be shown in the same way that the language
NOab = {x1 . . . xny1 . . . yn : xiyi ∈ {aa, ba, bb} for i = 1, . . . , n} ∪ {w ∈ {a, b}∗ :
w is of odd length} is not a trellis language. At the same time, neither MiaMia

nor MiaMib are trellis languages.
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7 Conclusion

As illustrated in this paper, to make explicit limitations on the computational
ability of trellis automata, the analysis of the characteristic patterns associated
to trellis languages, is a significant approach. But we are still far from having
fully exploited such tools.

The language MiaMia and its derived forms have been shown not to be trellis
ones. Despite the fact it gives us good reason to believe that the Copy language,
coinciding with (MiaMib)� ∩ (MibMia)� ∩ {aa, ab, ba, bb}∗, is not recognizable by
trellis automata, the question remains still open. Regarding the Okhotin’s gram-
mars hierarchy, another challenge would be to determine whether the language
(MiaMia)� is representable by a conjunctive grammar or not [7].
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Abstract. Asynchronous Boolean totalistic cellular automata have
recently attracted attention as promising models for the implementation
of reaction-diffusion systems. It is unknown, however, to what extent
they are able to conduct computation. In this paper, we introduce the
so-called non-camouflage property, which means that a cell’s update is
insensitive to neighboring states that equal its own state. This prop-
erty is stronger than the Boolean totalistic property, which signifies the
existence of states in a cell’s neighborhood, but is not concerned with
how many cells are in those states. We argue that the non-camouflage
property is extremely useful for the implementation of reaction-diffusion
systems, and we construct an asynchronous cellular automaton with this
property that is Turing-complete. This indicates the feasibility of com-
putation by reaction-diffusion systems.

1 Introduction

Recent efforts towards the molecular implementation of reaction-diffusion sys-
tems have resulted in the characterization of cellular automata that are suitable
for this purpose [2,3]. A possible implementation for this kind of CA uses a
porous material, such as an alginate or polyacrylamide gel, as the framework of
the cellular space. In this type of material, many small (millimeter scale) holes
are arranged as a lattice, each of which is employed as a cell, with boundaries
made of this material. Artificial DNA molecules are then used to represent cell
states, whereby their chemical reactions represent transition rules acting upon
these states. These DNA molecules are broadly divided into two types according
to their size. Small molecules are able to pass through the porous material at
a cell’s boundary, but big molecules are not. Big molecules are thus suitable to
be used for representing the state of a cell, whereas small molecules can act as
transmitters to neighboring cells. The reactions between molecules are designed
according to the transition rule of the implemented CA. A computation on the
CA is then initiated by injecting the designed molecules into each cell (hole)
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
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depending on the initial state of the CA. Computational cellular systems cre-
ated by the above procedure are called Gellular Automata [1,6].

In the scheme outlined above, the implemented CA must satisfy certain
requirements to allow it to exploit the characteristics of molecular implemen-
tations. Since it is difficult to synchronize the chemical reactions in all cells, the
CA should be asynchronous, rather than an ordinary synchronous CA. In addi-
tion, it is also difficult for reaction-diffusion systems to recognize the direction
from which DNA molecules have come, so, rather than identifying the state of
each neighboring cell, we merely use the number of neighboring cells in certain
states (totalistic CA). This is not sufficient, though, since it is quite difficult
to estimate the amount of diffused DNA molecules in cells, and even to estab-
lish how many neighboring cells are in a certain state. For this reason, it was
proposed to refine the totalistic CA to so-called Boolean totalistic CA [2], in
which the mere presence and absence of states among the neighbors of a cell are
sufficient in the definition of transition rules.

There is an additional difficulty in this scheme, however. Imagine that a cell
in a certain state is supposed to change to another state if there is a neighboring
cell whose state is identical to the current state of the cell. Such a transition
rule is allowed in a conventional asynchronous Boolean totalistic CA. However,
in a reaction-diffusion implementation, a cell cannot recognize the existence of a
neighboring cell in the same state since the cell itself is emitting the transmitter
indicating its state. To resolve this difficulty, we define the non-camouflage prop-
erty in this paper, which in effect ignores a state of a cell’s neighbor if the state
equals the state of the cell itself. This property is stronger than the Boolean
totalistic property. We present an asynchronous non-camouflage CA and prove
that it is Turing-complete.

This paper is organized as follows. Section 2 gives the formal definitions of the
used concepts. This is followed by a description of the proposed CA in Sect. 3,
and the proof that it is Turing-universal. This paper finishes with a discussion
in Sect. 4.

2 Preliminaries

2.1 Asynchronous CA

In this paper, we follow the terminology used in [5]. State transition systems,
which are pairs of a set and a binary relation on the set, are called state-
systems. We then define synchronous and asynchronous CA as state-systems.
Note that ordinary CA are synchronous CA while in this paper, we only deal with
asynchronous CA.

Definition 1 (State-system). A state-system A is a pair A = (T,→), where
T is a set of states, and →∈ T ×T is a binary relation meaning state transition.

For (t1, t2) ∈→, we write t1 → t2 and say “the state t1 is changed to t2.” Let
t0, tn ∈ T be states. If there are states t1, . . . , tn−1 and ti → ti+1 holds for each
i = 0, . . . , n − 1, we write t0 →∗ tn.
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To prove that a state-system B is computationally more powerful than a
state-system A or equally powerful as A, we need to show that B can simulate
A. Here is the definition of simulation derived from [5] but slightly modified for
our purpose.

Definition 2 (Simulation). A state-system B = (TB ,→B) simulates a state-
system A = (TA,→A) if there is a function F : TA → TB and

(i) ∀t1, t2 ∈ TA. t1 →A t2 =⇒ ∀t′ ∈ TB . F (t1) �F t′ =⇒ t′ �F F (t2)
(ii) ∀t1, t2 ∈ TA. F (t1) →∗

B F (t2) =⇒ t1 →∗
A t2

where �F denotes the binary relation over TB that is defined as

t′ �F t′′ ⇐⇒ ∃n ∈ N. ∃t′0, . . . , t
′
n ∈ TB.

t′ = t′0 →B t′1 →B · · · →B t′n = t′′ ∧ ∀i ∈ [1, n − 1]. t′i /∈ F (A).

The function F in this definition is called a simulation function (or simply a
simulation) of A by B.

Intuitively, (i) means that for any transition t1 →A t2, there is a sequence of
transitions from F (t1) to F (t2), which does not go through the image of A by
F . Since the binary relation �F is reflexive, (i) implies

∀t1, t2 ∈ TA. t1 →A t2 =⇒ F (t1) →∗
B F (t2).

This corresponds to one of the original conditions of simulation in [5]. (ii) means
that any sequence of transitions from F (t1) to F (t2) in B corresponds to a
sequence of transitions from t1 to t2 in A.

Next, we define a CA. A CA is a state-system whose states can be considered
as an arrangement in a certain topology1 of cell states, whereby the transition
relation is determined by applying a local transition rule to each cell simultane-
ously. We define asynchronous CA, which are discussed mainly in this paper.

Definition 3 (Asynchronous CA). A state-system A = (T,→) is called an
asynchronous CA if the following two conditions are satisfied.

(i) There is a set SA of cell states such that T = SZ×Z

A .
(ii) There is a function fA : S5

A → SA such that for any two states t1, t2 ∈ T ,

t1 → t2 ⇐⇒ ∀x, y ∈ Z. (t2(x, y) = fA(t1(x, y), t1(x + 1, y), t1(x, y + 1),
t1(x − 1, y), t1(x, y − 1))

∨ t2(x, y) = t1(x, y)).

For an asynchronous CA A, SA and fA are called the space of cell states and
the transition rule, respectively.

1 We discuss CA with the two-dimensional lattice arrangement using the von Neumann
neighborhood.
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2.2 Requirements

Here, we define the requirements for asynchronous CA to be implemented by
reaction-diffusion systems. The following definitions are about asynchronous CA
but the word “outer totalistic” can also be applied to synchronous CA.

Definition 4 (Outer totalistic). The function tot : S5
A → SA×N

SA is defined
by tot(s0, s1, s2, s3, s4) = (s0, h), where

h(s) =
4∑

k=1

g(sk, s), g(s, s′) =
{

1 if s = s′

0 otherwise

are functions h : SA → N and g : SA × SA → N. An asynchronous CA A is
(outer) totalistic if there is a function f ′

A : SA × N
SA → SA and fA = f ′

A ◦ tot.

Definition 5 (Boolean totalistic). Let the symbol 2 denote the set of Boolean
values. The function bol : S5

A → SA × 2SA is defined by bol(s0, s1, s2, s3, s4) =
(s0, h), where

h(s) =
4∨

k=1

(sk = s)

is a function h : SA → 2. An asynchronous CA A is Boolean totalistic if there
is a function f ′′

A : SA × 2SA → SA and fA = f ′′
A ◦ bol.

If an asynchronous CA A is Boolean totalistic, the transition rule is deter-
mined by the function f ′′

A : SA × 2SA → SA. We identify the transition rule
fA with f ′′

A and represent it by a list of the form like s0(si, . . . ,¬sj , . . . ) → s′
0.

This expression means that a cell with state s0 can be changed to state s′
0 when

in its neighborhood there are cells with state si, . . . and there is no cell with
state sj , . . . . If there is no form whose left-hand side is applicable to a situa-
tion (s0, . . . , s4), then f ′′

A returns s0. A cell in such a situation (s0, . . . , s4) will
not change its state by a transition of A. If there is more than one form whose
left-hand side are applicable to a situation (s0, . . . , s4), then f ′′

A follows the first
one.

Since there is a function g : SA × N
SA → SA × 2SA such that bol = g ◦ tot,

an asynchronous Boolean totalistic CA is outer totalistic. In other words, the
Boolean totalistic property is stronger than the outer totalistic property.

As discussed in Sect. 1, the Boolean totalistic property is still not strong
enough for our purposes. We define stronger property, non-camouflage.

Definition 6 (Non-camouflage). An asynchronous Boolean totalistic CA A
is non-camouflage if its transition rule f ′′

A satisfies

∀s0 ∈ SA. ∀h0, h1 ∈ 2SA .

(∀s ∈ SA. s �= s0 =⇒ h0(s) = h1(s)) =⇒ f ′′
A(s0, h0) = f ′′

A(s0, h1),

If an asynchronous Boolean totalistic CA is non-camouflage, it is called an
asynchronous non-camouflage CA.
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2.3 Priese System

In Sect. 3, we construct an asynchronous non-camouflage CA, and prove that it is
Turing-complete. In [5], Priese defined a Turing-complete system, which we call
a Priese System in this paper and define in this subsection. Note that a Priese
System is suitable for our purposes because it does not require synchronization
of its elements.

First, we define s-automata (named after sequential automata).

Definition 7 (s-automaton). A tuple A = (I,O, S,→) is called an s-
automaton if

(i) I and O are finite sets with I ∩ O = ∅.
(ii) S is a set.
(iii) →⊂ (I × S) × (O × S) is a transition relation.

An s-automaton A = (I,O, S,→) is thus a machine that has a set I of
input terminals, a set O of output terminals, and a set S of inner states. Let
x ∈ I, y ∈ O and s, s′ ∈ S be an input terminal, an output terminal and inner
states, respectively. ((x, s), (y, s′)) ∈→ is denoted as (x, s) → (y, s′). This state
transition is interpreted as follows. If the input terminal x receives a signal and
the s-automaton A is in the inner state s, then A can remove the signal on the
input terminal x, change its inner state from s to s′ and add a signal to the
output terminal y.

An s-automaton A = (I,O, S,→) can be considered as a state-system ((I �
O) × S,→)2.

Two s-automata called K and E are used to define the Priese System. The
s-automaton K = (IK, OK, SK,→K) is defined by

IK = {0, 1}, OK = {2}, SK = {0},→K= {((0, 0), (2, 0)), ((1, 0), (2, 0))}.

This s-automaton has two input terminals. Whichever input terminal receives
a signal, it flows to the unique output terminal. The s-automaton E =
(IE, OE, SE,→E) is defined by

IE = {s, t}, OE = {s′, tu, td}, SE = {u, d},

→E= {((s, u), (s′, d)), ((s, d), (s′, u)), ((t, u), (tu, u)), ((t, d), (td, d))}.

This s-automaton has two inner states. When a signal arrives at the input ter-
minal t, it flows to the output terminal tu or td depending on the inner state of
the s-automaton E. When a signal arrives at the input terminal s, it flows to the
output terminal s′ and the inner state is flipped at the same time.

Both of the s-automata K and E are too simple to simulate a universal Turing
machine on their own, but a system constructed by connecting them turns out to
be powerful enough. To connect s-automata each other, we define two operations
over s-automata, product and feed-back.

The product of s-automata A and B is the s-automaton given by arranging
them in a parallel configuration.
2 � denotes a disjoint union.
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Definition 8 (Product). Let s-automata A = (IA, OA, SA,→A), B = (IB ,
OB , SB ,→B) be given. The product A ⊗ B is the s-automaton (IA � IB, OA �
OB , SA×SB ,→A⊗B) with →A⊗B= {((x, (s, t)), (y, (s′, t))) | (x, s) →A (y, s′), t ∈
SB} ∪ {((x, (s, t)), (y, (s, t′))) | (x, t) →B (y, t′), s ∈ SA}.

Let s-automaton A be given. The feed-back of the output terminal y to the
input terminal x is the s-automaton given by connecting y to x.

Definition 9 (Feed-back). Let an s-automaton A = (IA, OA, SA,→A), an
input terminal x ∈ IA, and an output terminal y ∈ OA be given. The feed-
back Ax

y of the output terminal y to the input terminal x is the s-automaton
(IA\{x}, OA\{y}, SA,→Ax

y
) with

→Ax
y
= Cl(→A ∪{((y, s), (x, s))|s ∈ SA}) ∩ ((IA\{x} × SA) × (OA\{y} × SA)),

where Cl denotes the transitive and reflexive closure of a binary relation.

If one wants to make a machine that is made of s-automata A1, . . . , An, he
or she can put them in parallel by the operation product and connect them to
each other by the feed-back operation. The class of s-automata generated by
such operations is called Normed Networks.

Definition 10 (Normed Network). Let s-automata A1, . . . , An be given. The
Normed Network over A1, . . . , An is the smallest set of s-automata that

(i) contains A1, . . . , An and
(ii) is closed under feed-back and product.

Priese System is defined as the Normed Network over s-automata K and E.
It is known that any finite-state s-automaton belongs to Priese System [5]. Next
we define the infinite chain made of two s-automata A and B, where A and
infinite copies of B are connected in sequence.

Definition 11 (Infinite chain). Let s-automata A = (IA � ĪA, OA � ŌA, SA,
→A) and B = (IB � ĪB, OB �ŌB , SB ,→B) be given and |ĪA| = |OB | = |ĪB | = m,
|ŌA| = |ŌB | = |IB | = n. Let B(i) = (I(i)B � Ī

(i)
B , O

(i)
B � Ō

(i)
B , S

(i)
B ,→(i)

B ) be disjoint
copies of B and ĪA = {x̄1, . . . , x̄m}, ŌA = {ȳ1, . . . , ȳn}, I

(i)
B = {x

(i)
1 , . . . , x

(i)
n },

O
(i)
B = {y

(i)
1 , . . . , y

(i)
m }, Ī

(i)
B = {x̄

(i)
1 , . . . , x̄

(i)
m }, Ō

(i)
B = {ȳ

(i)
1 , . . . , ȳ

(i)
n }. The

infinite chain made of A and B is an s-automaton (S, I,O,→) where S =
{(s, t0, t1, . . . ) | s ∈ SA, ti ∈ S

(i)
B }, I = IA, O = OA, and

→ = Cl({((x, (s, t0, t1, . . . )), (y, (s′, t0, t1, . . . ))) | (x, s) →A (y, s′)}
∪ {((x, (s, t0, . . . , ti, . . . )), (y, (s, t0, . . . , t′i, . . . ))) | (x, ti) →(i)

B (y, t′i)}
∪ {((ȳk, u), (x(0)

k , u)) | ȳk ∈ ŌA, x
(0)
k ∈ I

(0)
B }

∪ {((y(0)
k , u), (x̄k, u)) | y

(0)
k ∈ O

(0)
B , x̄k ∈ ĪA}

∪ {((ȳ(i)
k , u), (x(i+1)

k , u)) | ȳ
(i)
k ∈ Ō

(i)
B , x

(i+1)
k ∈ I

(i+1)
B }

∪ {((y(i+1)
k , u), (x̄(i)

k , u)) | y
(i+1)
k ∈ O

(i+1)
B , x̄

(i)
k ∈ Ī

(i)
B })

∩ ((I × S) × (O × S)).
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It is also known that any computation of a Turing machine from a finite initial
configuration can be simulated by a computation of an infinite chain of finite-state
s-automata. An argument showing this fact can be found, for instance, in [4].

3 Proposing Asynchronous Non-camouflage CA

3.1 Proposed CA M

In this subsection, we present an asynchronous non-camouflage CA.
Table 1 shows the transition rule of our asynchronous non-camouflage CA

in the asynchronous Boolean totalistic form. For simplicity, we call this asyn-
chronous CA M. By the definition of asynchronous CA, M is a state system
M = (SZ×Z

M ,→M). The number of cell states becomes |SM| = 21 by adding a
state 0 to the 20 states appearing in the table of transition rules.

Table 1. The transition rule of M.

1 1 (2,¬C1,¬E0) → Z 13 Z (3, U0,¬L,¬D0,¬E1) → u

2 1 (W,¬K) → Z 14 Z (3, D0,¬L,¬U0,¬E1) → d

3 1 (u,¬E0) → Z 15 C0 (Z) → C1

4 1 (d,E0) → Z 16 C1 (4) → C0

5 2 (3, Z,¬U0,¬D0) → Y 17 W (3, Z) → Y

6 3 (4, Y ) → X 18 U0 (1, 2, E0) → D1

7 4 (X,¬C1,¬U1,¬D1) → 1 19 D1 (1, 4, E0) → D0

8 X (1, Y,¬4) → 4 20 D0 (1, 2, E0) → U1

9 Y (4, Z) → 3 21 U1 (1, 4, E0) → U0

10 Z (3,¬C0,¬L,¬D0,¬U0) → 2 22 u (3, Z) → Y

11 Z (3, L) → W 23 d (3, Z) → Y

12 Z (3, E1,¬L) → 2

In the table of transition rules, state s0 of each rule does not appear in the
bracket (si, . . . ,¬sj , . . . ). This fact implies that M is non-camouflage.

Since a cell in the state 0 will never be changed to another state or influence
transitions of neighboring cells, we assume that almost all cells are in the cell
state 0 and such cells are not drawn in the figures.

3.2 Simulation of s-automaton

In this subsection, we show that M simulates any s-automaton belonging to the
Priese System. M can also simulate an infinite chain made of two s-automata
in Priese System with an initial configuration that is periodic except for a finite
area. The Turing-completeness of M follows from this fact.
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Fig. 1. A wire.

Fig. 2. A signal on a wire. Fig. 3. An image of wire-based simulation.

Wires and Signals. Cells with the state 1 ∈ SM extending linearly are called
a wire. Figure 1 shows an image of a wire. Three cells in the states 2, 3, 4 ∈ SM

arranged in this order are called a signal. This order makes a signal directed.
A signal on a wire progresses along the wire (see Fig. 2). A signal on a finite
wire reaches the end of the wire in a finite number of transitions if there is no
influence from the outside on the wire.

Let A = (IA, OA, SA,→A) be an s-automaton. Recall that A is simulated as
a state-system ((IA � OA) × SA,→A). A state (io, s) ∈ (IA � OA) × SA of A is
regarded as a situation in which a machine with an inner state s has a signal
on a terminal io. Wire-based simulation functions are simulation functions of s-
automata by M , and represent such situations. Figure 3 shows how a wire-based
simulation represents a transition (x, s) → (y, s′) of an s-automaton with one
input terminal x and one output terminal y.

Definition 12 (Wire-based simulation). Let A = (IA, OA, SA,→A) be an
s-automaton and F : (IA � OA) × SA → ℘(SZ×Z

M ) be a simulation function
of A by M. F is called a wire-based simulation function if there are functions
G : SA → SZ×Z

M , g : IA � OA → Z × Z and integers xmin, xmax, ymin, ymax ∈ Z

such that

(i) for each state s ∈ SA of A, there is no transition from G(s),
(ii) ∀s ∈ SA. ∀x, y ∈ Z. G(s)(x, y) = 0∨(xmin ≤ x ≤ xmax∧ymin ≤ y ≤ ymax),
(iii) ∀io ∈ IA � OA. ∀x, y ∈ Z. g(io) = (x, y) =⇒

((x = xmin − 1 ∨ x = xmax + 1) ∧ (ymin < y < ymax))
∨((y = ymin − 1 ∨ y = ymax + 1) ∧ (xmin < x < xmax)),

(iv) for each input terminal i ∈ IA and state s ∈ SA of A, the state F (i, s) is
identical with the state constructed by replacing a series of three cells with
states (0, 0, 0) in G(s), which is extended toward the outside from the coor-
dinate g(i), with an inwardly directed signal (2, 3, 4), and replacing series
of three cells with states (0, 0, 0), which are extended toward the outside
from the coordinate g(io) for each terminal io ∈ (IA\{i}) � OA, with wires
(1, 1, 1), and
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(v) for each output terminal o ∈ OA and state s ∈ SA of A, there is no dif-
ference between the procedure of constructing the state F (o, s) and (iv) but
placing the signal in the opposite direction.

In this definition, the rectangle region {(x, y) ∈ Z × Z | xmin ≤ x ≤ xmax ∧
ymin ≤ y ≤ ymax} is called the frame of F .

Note that if functions G and g are given, the wire-based simulation function
F is uniquely determined by the conditions (iv) and (v) of Definition 12. So we
regard the pair of G and g as F . In figures, G(s) for a state s ∈ SA is shown as
an arrangement of cell states and g(io) is shown by an arrow pointing at the cell
corresponding to the input/output terminal io.

Simulation of K. We construct a wire-based simulation of the s-automaton K
now. Figure 4 shows the state GK(0) and the coordinate gK(io) for each terminals
io ∈ IK �OK. They give wire-based simulation FK of the s-automaton K in state
0 ∈ SK. Figure 5 shows the state FK(0, 0). The states simulating K with a signal
in the other input/output terminals are also constructed in the same way.

Fig. 4. GK(0) and gK. Fig. 5. FK(0, 0).

Now we confirm that the function FK determined by Fig. 4 and the conditions
of Definition 12 is a wire-based simulation function of K. Since there is no rule in
Table 1 that is applicable to a cell in GK(0), the state GK(0) cannot be changed.
Thus, the condition (i) of Definition 12 is satisfied. Recall that the cells which
are not drawn in figures are assumed to be in state 0 ∈ SM. That means the
condition (ii) of Definition 12 is satisfied if the frame of FK is determined by
xmin, xmax, ymin and ymax in Fig. 4. The condition (iii) of Definition 12 is also
satisfied because of the way to interpret the figure. The conditions (iv) and (v)
are satisfied because the function FK is constructed by these conditions. Thus,
if the function FK is a simulation function of K, FK is a wire-based simulation
function.

Figure 6 shows the transitions that can be made if the initial state is FK(0, 0).
Many transitions are presented by →∗ to save space. These omitted transitions
are almost the same as the transitions shown in Fig. 2. Any state t′ which satisfies
FK(0, 0) �FK t′ appears in the transitions shown in Fig. 6, and any state t′ in
this transitions satisfies t′ �FK FK(2, 0). A similar argument holds for transition
(1, 0) →K (2, 0), so the condition (i) of Definition 2 is satisfied.
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Fig. 6. The transitions from FK(0, 0) to FK(2, 0).

Since there is no transition of M to the states FK(0, 0) or FK(1, 0) and there
is no transition of M from the state FK(2, 0), the condition (ii) of Definition 2 is
also satisfied.

Therefore the function FK is a simulation function of K.

Simulation of E. The s-automaton E with the inner state u or d is simulated
by the arrangement of cell states shown in Fig. 7 or Fig. 8, respectively. The
unique difference of these two states is whether the state of the center cell is in
state U0 or in state D0. As in the case of K, we can confirm that the function
FE determined by Figs. 7 and 8 is a wire-based simulation of E.

The procedures to confirm that transitions starting from a state on M sat-
isfy conditions of Definition 2 are mechanical but complicated. In practice, we
conducted these procedures by using a computer program, which simulates tran-
sitions on M and checked the conditions of Definition 2.

Crossing. Since we are dealing with two-dimensional space, it may be difficult
to connect two terminals with a wire. We solve this problem by constructing
a crossing, which allows two wires to cross each other. The construction of a
crossing is shown in Fig. 9.

Fig. 7. GE(u). Fig. 8. GE(d). Fig. 9. Crossing.
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Fig. 10. A signal on a crossing.

Figure 10 shows how a signal progresses across another wire. A wire cell in
state 1 is usually changed to state Z when a cell in state 2 is in its neighborhood.
However, a wire cell in contact with a cell in state C1 is not changed because
of rule 1 of Table 1. That is the reason why a signal progresses straight at the
center of a crossing. These transitions are non-deterministic, but any succeeding
state transfers to the state having a signal in the opposite side of the initial
state. Thanks to crossings, we can connect terminals freely.

Product and Feed-Back. We have proved that there are wire-based simula-
tion functions of K and E. Next we will explain how to combine them.

Let A = (IA, OA, SA,→A) and B = (IB , OB , SB ,→B) be s-automata.
Assume that there are wire-based simulation functions FA of A and FB of B.
Then, we can construct a wire-based simulation FA⊗B of A⊗B by the following
procedure.

First, we assume that all coordinates corresponding to terminals adjoin the
right edge of the frame of the wire-based simulation functions. This assumption
is possible because we can extend wires freely. Second, we construct GA⊗B(s, s′)
for state (s, s′) ∈ SA × SB by putting GA(s) and GB(s′) in parallel vertically in
such a way that the right sides are aligned. Then, gA⊗B indicates the coordinates
to which the wires have been extended in the first step. The function FA⊗B

determined by these GA⊗B and gA⊗B is a wire-based simulation of A ⊗ B. The
left figure of Fig. 11 shows the image of GA⊗B(s, s′).

Let A = (IA, OA, SA,→A), x ∈ IA and y ∈ OA be an s-automaton, its
input terminal and its output terminal, respectively. Assume that there is a
wire-based simulation function FA of A. A wire-based simulation function FAx

y

of the feed-back Ax
y is constructed as follows. First, a wire is extended from

gA(y) to gA(x). Next, the frame of FAx
y

is installed so that it includes the whole
frame of FA and the wire extended in the first step. Finally, for each terminal
io ∈ (IA\{x}) � (OA\{y}), a wire is extended outward from gA(io), and the
coordinate gAx

y
(io) is determined by the end of the extended wire. If necessary,

wires cross each other by using a crossing.
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Fig. 11. Left and right figures show GA⊗B(s, s′) and GAa
d
(s), respectively. Their frames

are represented by rectangles drawn with double lines.

The right figure of Fig. 11 shows an image of the feed-back Aa
d. Two terminals

a and d are connected by a wire. The connecting wire crosses the wire extended
from gA(b), so the crossing must be used at the point.

Infinite Chain. Let A and B be s-automata in Priese System. There exist
wire-based simulation functions FA and FB . Assume that A and B satisfy the
assumptions of Definition 11. A wire-based simulation of the infinite chain made
of A and B can be constructed by putting GA and infinite copies of GB in
sequence and connecting the corresponding terminals to each other.

4 Discussion

This paper has presented an asynchronous non-camouflage CA, which is suit-
able for implementation by a reaction-diffusion system. The automaton has been
obtained by making some changes to the asynchronous totalistic CA presented
in [2]. The asynchronous CA presented in this paper is Turing-complete as
expected.

The transition function of the asynchronous CA proposed in this paper is
represented by less rules than the previous one is; 23 rules of the transition
function of the former CA are less than half of 57 rules of that of the latter
CA. This is a surprising result because the non-camouflage property is stronger
than the outer totalistic property. This result will make it easy to design DNA
reactions corresponding to the transition function.

The factor that can be credited for this result is the high expressiveness of
the Boolean totalistic form. For example, the transition from cell state 2 to cell
state Y is common in both of asynchronous CA. In outer totalistic form, this
transition is represented by 7 rules. The number of states of neighboring cells
changes depending on where the wire cell is, so a distinct rule corresponding
to each situation is required. In our Boolean totalistic form, the transition is
represented by just one rule (see rule 5 in Table 1).

We succeeded in constructing an asynchronous CA suitable for implementa-
tion by a reaction-diffusion system, but several practical obstacles remain until
this implementation can be realized. The proposed cellular automaton has 21
cell states, but it is necessary to reduce the number of cell states to actually be
able to implement the CA by a reaction-diffusion system with DNA molecules.
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It is also necessary to further simplify the transition rule so that the number
of reactions is reduced. Finally, the intrinsic universality of non-camouflage CA,
i.e., its Turing-completeness restricted to finite configurations is an interesting
open problem.
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