
Chapter 9
Current Trends in Automotive Software
Architectures

Abstract Cars have evolved a lot since their introduction and will evolve even
more. Today’s cars would not work without the software that is embedded in their
electronics. Although the physical processes are often the same as in the cars’ of
the 1990s (combustion engines, servo steering), they become computer platforms
and are able to “think” and drive autonomously. In this chapter we look into a few
trends which shape automotive software engineering—autonomous driving, self-*
systems, big data and new software engineering paradigms. We look into how these
trends can shape the future of automotive software engineering.

9.1 Introduction

Automotive software evolves over time and requires changes to the methods used
to develop it. The evolution of software means that we can use new functions
which require more software, but also that we can use more advanced software
development methods.

If we look at the history of electronics and software in cars, we can see that
it is today that the big technological breakthroughs are happening. The cars of
today have become sophisticated computer platforms which can be used in multiple
ways. The powertrain technology has changed from traditional combustion engines
to electrical or hybrid (e.g. hydrogen technology).

Living in these interesting times, software engineers and architects will see a lot
of great possibilities and great potential. Let us then explore a few trends that seem
to shape current automotive software engineering. In particular, let us explore the
following trends:

• Autonomous driving—how the introduction of autonomous driving shapes the
automotive sector and the software needed to steer cars.

• Self-*—how the ability to develop self-healing and self-adaptive systems influ-
ences the way in which we can design software in modern cars.

• Big data—how the ability to communicate and process large quantities of data
changes the way we think about decision making in cars.

• New software development paradigms—how new software engineering methods
influence the way we develop software for automotive systems.

In the remainder of this chapter we go through these trends.
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9.2 Autonomous Driving

Undoubtedly the main trend in modern software in cars’ is autonomous driving
software. Autonomous driving software allows drivers to skip controlling the
car or some of its functions. The NHSTA (National Highway Safety Traffic
Administration) in the United States recognizes the following levels of autonomous
functionality in cars [AC13]:

• Level 0, No automation—there are no functions in the car that can drive the car
or support the driver.

• Level 1, Function-specific automation—according to the definition “automation
at this level involves one or more specific control functions”, meaning that certain
functions can be autonomous, e.g. adaptive cruise control.

• Level 2, Combined function automation—where a group of functions can be
automated and be autonomous. The driver, however, is still responsible for the
control of the vehicle and must be prepared to take control of the vehicle on very
short notice. Example functions are self-driving on highways.

• Level 3, Limited self-driving automation—the vehicle is able to drive
autonomously under certain conditions and monitor the conditions; the drivers
might need to occasionally take control, but the transition time is comfortably
longer than at level 2.

• Level 4, Full self-driving automation—the vehicle is able to perform the entire
trip autonomously; the driver is only expected to enter constraints and the
destination for the trip. The level applies to both manned and unmanned vehicles.

One can see that modern vehicles already provide functions for automation Level
2 (combined function automation) and some even for level 3 (e.g. Tesla’s autopilot
functionality, [Pas14, Kes15]). This kind of functionality puts a lot of constraints on
the automotive software.

First of all, this drives the complexity of software and therefore the cost
of its development, verification, validation and certification. As the self-driving
functionality is safety-critical it requires specific validation. It also requires complex
reasoning in traffic situations on a very abstract level—e.g. whether it is better to
save lives of the car’s passengers or the lives of others in the accident.

Second of all, this kind of functionality drives the need for large quantities of
data to process, which drives the need for processing power in modern cars. The
processing power requires efficient CPUs and electronic buses of high throughput,
which require more advanced infrastructure (e.g. cooling fans), that is often suscep-
tible to environmental influences such as vibrations, humidity and temperature. This
means that new components need to be develop especially for the cars, which drives
costs.

Third of all, we need to understand that the quality of the sensors today is
insufficient for advanced scenarios. Cameras are able to see clearly in specific
conditions, but the human eye is still better synchronized with the human brain in
all situations. Therefore cameras are not able to work effectively in low light or bad
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weather conditions [KTIC05]. Using high-end cameras and sophisticated equipment
would drive up the cost and still not guarantee the same quality as from human eyes
and brains.

And finally, this kind of autonomous functionality requires acting on higher
abstraction levels. Information about distance to the nearest obstacle needs to be
transformed to a worldview which can be compared to a map view to determine the
best course of action in a specific situation [BT16]. This requires more advanced
algorithms which can be based on heuristics. The heuristics, however, are very
challenging to prove to work correctly in all kinds of traffic situations, thus posing
problems for safety certification.

9.3 Self-*

Self-healing is the ability of the system to autonomously change its structure so that
its behaviour stays the same. An example concept of self-healing can be seen in
the work of Keromytis et al. [Ker07], who define the self-healing as the ability to
autonomously recover from erroneous execution.

One of the most prominent mechanisms used in self-healing systems is the
MAPE-K (Measure, Analyse, Plan and Execute + Knowledge, [MNSKS05]). It is
shown in Fig. 9.1 as an overwatch algorithm for an ECU realizing the adaptive cruise
control functionality.

The algorithm in short is based on monitoring the execution of the algorithm
for correctness. In the example of adaptive cruise control, we can monitor the radar
to confirm it provides reliable results (e.g. no distortion is present). The analysis
component checks whether one of the failure conditions has been detected (e.g. too
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Fig. 9.1 Realization of MAPE-K for ECU software
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much noise in the radar readings) and sends a signal to the plan component which
plans appropriate action based on the reading and analysis. One of the actions can
be to disable the adaptive cruise control and inform the user. Once the component
makes a decision about the recovery strategy it moves to the execution and executes
the repair strategy (i.e. informs the user and disables the adaptive cruise control
algorithm).

This trend of using self-adaptation is used increasingly in safety-critical systems
as it allows us to change the operation of a component in the presence of errors
and failures. It can provide the ability to the system to self-degrade the functionality
(e.g. temporarily change the operation of the engine, as discussed in Chap. 6).

However, there are still challenges which need to be addressed in order to make
self-adaptation even more applicable to automotive systems. One of the major
challenges is the ability to prove that the system is “safe” (in the sense of ISO/IEC
26262) during self-adaptation. Another is the fact that self-adaptation algorithms
can be complex and need to be validated, but in many situations the failure modes
cannot be replicated in real life. For example, it is difficult to safely replicate the
situation where a radar in adaptive cruise control is broken when a vehicle drives at
150 km/h.

Nevertheless, we can perceive more self-* algorithms entering automotive
systems as they need to monitor the increasingly complex decision algorithms in
modern cars (e.g. related to autonomous driving).

9.4 Big Data

With the ability of modern cars to communicate with each other and the ability to
use their own sensors in decision making, the amount to data used in modern cars
has increased exponentially. At the same time, the field of computer science has
evolved and started to tackle challenges related to storing, analysing and processing
large quantities of data [MCBC11, MSC13].

Big Data systems are often characterized by the so-called five Vs:

• Volume—big data systems have large amounts of data (e.g. tera- or petabytes),
which makes storage and processing a challenging task requiring new types of
algorithms.

• Variety—the data comes from heterogeneous sources, has different formats, and
has multiple semantic models, which require preprocessing before the data can
be fed to analysis algorithms.

• Velocity—the data is provided at high speeds and requires processing realtime
(e.g. from multiple sensors in the car and needs to be used to make safety-
critical decisions). The speed requires large processing power, which might not
be available in such systems as the automotive software.

• Value—the data collected has some business value (e.g. data about the driv-
ing routines of cars) which makes the storage, privacy and security issues
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challenging, especially in combination with the velocity of processing and the
next V—veracity.

• Veracity—the data has varying degree of quality, e.g., in terms of accuracy and
trustworthiness. This varying degree of accuracy makes it challenging for the
systems to use.

The challenges of using big data in automotive systems are related to all of
the above V’s. The large volume of data which comes from the car’s own sensors
needs to be processed and often stored, which puts requirements on storage in cars.
Before the popularization of the SSD (Solid State Disk) technology it was rather
challenging to use hard disks to store data (durability problems due to vibrations).
Now, it is possible to store more data and also to process more data.

The high speed of processing requires more processing power, more efficient
processors which take power and more connectivity. This drives the cost of
automotive hardware since the more efficient processors require more infrastructure
(stability, cooling), which is prone to problems in the automotive environment
(humidity, vibrations). The hardware price is so important in the automotive domain
(as opposed to other domains, where hardware is considered cheap) that one usually
takes a calculation (a rule of thumb) that one dollar more expensive hardware per
ECU can lead to 100 dollars more expensive cars.

The veracity of the data is a challenge as in many cases the “true” values
cannot be measured but computed. For example, the slippage of the road in winter
conditions cannot be measured but are derived either from ABS usage or the steering
wheel friction. In some cases the data is obfuscated in order to secure privacy
(e.g. triangulation algorithms to hide the true position of a car), which prevent the
algorithms from “knowing” the true value of the data point [SS16].

In the future we will see more of big data, as large quantities of data are needed
for autonomous driving and for advanced algorithms for collision prevention and
avoidance.

9.5 New Software Development Paradigms

Software engineering for automotive systems has evolved the pace of the automotive
domain. So, let us look into a few of the trends which shape the field today and will
potentially shape the field in the future.

Agility in Specification Development Agile software development has been used
in many domains outside of the automotive and now there is evidence that it is
used increasingly in the automotive domain. In particular, at the lower part of the V-
model suppliers work more agilely with their requirements engineering and software
development [MS04]. We can also observe these trends scaling up to complete
vehicle development [EHLB14] and [MMSB15]. With this increased adoption
of Agile principles we can foresee the increased ability to specify requirements
alongside software development, especially as the trends in automotive electronics
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increasingly contain more commodity (or off-the-shelf) components. AUTOSAR
also prescribes a standardized approach to development, which eases the use of
iterative development principles as the development of electronics/hardware is
decoupled from the development of functions/software.

Increased Focus on Traceability The increased amount of software in cars and
their increased presence in safety systems leads to stricter processes for keeping
track of requirements for safety-critical systems. ISO 26262 (Road vehicles—
Functional Safety) is one example of this. In the automotive domain this means that
the increased complexity of software modules [SRH15] leads to more fine-grained
traceability management. One of the enablers of this increased traceability is the
increased integration between the tools—tool chaining [BDT10] and [ABBC12].

Increased Focus on Non-functional Properties The increased use of software
for active safety systems calls for increased focus on non-functional properties of
software. The increased traffic on communication buses within the car, and the
increased capacity of the communication buses call for more synchronization and
verification. Safety analyses such as control path monitoring, safety bits and data
complexity control, are just a few examples [Sin11]. As the focus of requirements
engineering research in the automotive domain was mainly (or implicitly) in the
functional requirements, we foresee an increased growth of research and emphasis
on the non-functional requirements.

Increased Focus on Security Requirements A dedicated group of requirements
is the security requirements, as our cars are increasingly connected and therefore
prone to hacker attacks [SLSC13] and [Wri11]. The recent demonstration of the
possibility of steering a Jeep Wrangler vehicle offroad showed that the threat is real
and related to the safety of cars and transport systems. We therefore perceive that
the ability to prevent attacks will the focus of the automotive software development
increasingly more in the coming decade.

9.5.1 Architecting in the Age of Agile Software Development

Architecture development in software development is usually conducted by experi-
enced architects, and the larger the product, the more the experience required. As
each type of system has its specific requirements, the architectural design requires
attention to specific aspects like realtime properties or extensibility. For example,
in the telecom domain the extensibility and performance are the main aspects,
whereas in the automotive domain it is safety and performance that are of the
utmost priority. The architecture development efforts are dependent to some extent
on the software development process adopted by the company, e.g. the architecture
development methods differ in the V-model and Agile methodologies. In the V-
model the architecture work is mostly prescriptive and centralized around the
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Fig. 9.2 Feature development in Lean/Agile methods

architects whereas in the Agile methods the work can be more descriptive and
distributed into multiple self-organized teams.

As Agile software development principles spread in industry, architecture devel-
opment evolved. As Agile development teams became self-organized, architecture
work became more distributed and harder to control centrally [Ric11]. The dif-
ficulties stem from the fact that Agile teams value independence and creativity
[SBBC09] whereas architecture development requires stability, control, trans-
parency and proactivity [PW92]. Figure 9.2 presents an overview of how the
functional requirements (FR) and non-functional requirements (NFR) are packaged
into work packages and developed as features by teams. Each team delivers code to
the main branch. Each team has the possibility to deliver the code to any component
of the product.

The requirements come from the customers and are prioritized and packaged into
features by product management (PM), which communicates with system manage-
ment (SM) on the technical aspects of how the features affect the architecture of the
product. System management communicates with the teams (DM, Test) that design,
implement and test (functional testing) the feature before delivering it to the main
branch. The code in the main branch is tested thoroughly by dedicated test units
before being release [SM11].

9.6 Other Trends

Bosch has presented three trends which shaped software engineering in the mid-
2010s [Bos16]: speed of software development, ecosystems and data-driven devel-
opment. He predicted that the companies which are the first ones on the market
would be more successful than others as the innovation model is based on the shark’s
tail rather than the traditional technology adoption curve. In particular, the majority
of new, innovative software products are adopted by the market at a tremendous
pace, and then companies need to be prepared to be ready for the market. Followers
do not have the same ability to attract customers [DN14]. Ecosystem thinking (e.g.
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Apple’s App store or Google’s Play store) has been present in the automotive sector
from way back in the hardware domain (e.g. customers of BMW are bound to
buy spare parts from manufacturer) but not in the software domain. And finally
we have data-driven development and the Lean innovation thinking [Rie11] where
customers provide the companies with the data on how to develop their products.
With connected cars and the ability to update the car software over the air we
will probably see more data-driven development in the automotive industry in the
coming decade.

Burton and Willis from Gartner identified five mega-trends which have the
potential of shaping software engineering in the coming decades [BW15]. These
mega-trends are:

• Digital Business Moves Toward the Peak of Inflated Expectations
• IoT, Mobility and Smart Machines Rapidly Approach the Peak
• Digital Marketing and Digital Workplace Quickly Move Up
• Analytics Are at the Peak
• Big Data and Cloud Make Big Moves Toward the Trough of Disillusionment

In short, these trends will drive the need for more advanced functionality of cars
and the use of big data for decision making and even the development of the cars
(finding out the requirements from the data rather than focus group interviews).
However, they predict that the era of wearables (e.g. smartwatches) will reach the
so-called “pit of disillusion” where they will probably reach the state where no more
development is of interest to the customers.

In their 2016 report, Gartner Associates provide even more focus on Artificial
Intelligence, Machine Learning and autonomy. We perceive these technologies as
new hype in automotive software engineering, especially when combined with
different levels of autonomy and self-adaptation algorithms. This will mean even
more complexity and software in future cars.

9.7 Summary

To conclude this chapter let us make a speculation that future cars will be more like
computer platforms where different third party companies can build applications.
We can see the self-driving car of Google as an example of such a move [Gom16].

The telecommunication domain has evolved from proprietary solutions in mobile
phones of the 1990s to standardized platforms and ecosystems of the smartphones of
the 2010s—Android and iOS leading the field in this direction. Customers buying a
new mobile phone buy a device which they can load with apps of their own choice—
some free and some paid. We can see that the ability to update car’s software will
lead to similar trends (already visible in the infotainment domain.)

These possibilities of opening up for third party software in cars is expected to
change the face of the automotive industry in the future. Commoditizing platforms
and portability between vendors on the application level can cause cars to become
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much safer and much more fun. We can expect the cars to become hubs for all kinds
of devices and integrated with wearables to provide drivers and passengers with an
even better driving experience than today’s. We need to live and see what the future
of software in cars will bring.
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