
Chapter 4
AUTOSAR Standard

Darko Durisic
Volvo Car Group, Gothenburg, Sweden

Abstract In this chapter, we describe the role of the AUTOSAR (AUTomotive
Open System ARchitecture) standard in the development of automotive system
architectures. AUTOSAR defines the reference architecture and methodology for
the development of automotive software systems, and provides the language (meta-
model) for their architectural models. It also specifies the architectural modules
and functionality of the middleware layer known as the basic software. We
start by describing the layers of the AUTOSAR reference architecture. We then
describe the proposed development methodology by identifying major roles in the
automotive development process and the artifacts they produce, with examples of
each artifact. We follow up by explaining the role of the AUTOSAR meta-model
in the development process and show examples of the architectural models that
instantiate this meta-model. We also explain the use of the AUTOSAR meta-model
for configuring basic software modules. We conclude the chapter by showing trends
in the evolution of the AUTOSAR standard and reflect on its future role in the
automotive domain.

4.1 Introduction

The architecture of automotive software systems, as software-intensive systems, can
be seen from different views, as presented in Sect. 2.7 and described in more detail
by Kruchten in the 4+1 architectural view model [Kru95]. Two of these architectural
views deserve special attention in this chapter, namely the logical and the physical
views, so we describe them briefly here as well.

Logical architecture of automotive software systems is responsible for defining
and structuring high-level vehicle functionalities such as auto-braking when a
pedestrian is detected on the vehicle’s trajectory. These functionalities are usually
realized by a number of logical software components, e.g., the PedestrianSensor
component detects a pedestrian and requests full auto-brake from the BrakeControl
component. These components communicate by exchanging information, e.g.,
about the pedestrian detected in front of the vehicle. Based on the types of
functionalities they realize, logical software components are usually grouped into
subsystems that in turn are grouped into logical domains, e.g., active safety and
powertrain.

© Springer International Publishing AG 2017
M. Staron, Automotive Software Architectures,
DOI 10.1007/978-3-319-58610-6_4

81



82 4 AUTOSAR Standard

The physical architecture of automotive software systems is usually distributed
over a number of computers (today usually more than 100) referred to as Electronic
Control Units (ECUs). ECUs are connected via electronic buses of different
types (e.g., Can, FlexRay and Ethernet) and are responsible for executing one or
several high-level vehicle functionalities defined in the logical architecture. This
is done by allocating logical software components responsible for realizing these
functionalities to ECUs, thereby transforming them into runnable ECU application
software components. Each logical software component is allocated to at least one
ECU.

Apart from the physical system architecture that consists of a number of ECUs,
each ECU has its own physical architecture that consists of the following main
parts:

• Application software that consists of a number of allocated software components
and is responsible for executing vehicle functionalities realized by this ECU, e.g.,
detecting pedestrians on the vehicle’s trajectory.

• Middleware software responsible for providing services to the application soft-
ware, e.g., transmission/reception of data on the electronic buses, and tracking
diagnostic errors.

• Hardware that includes a number of drivers responsible for controlling different
hardware units, e.g., electronic buses and the CPU of the ECU.

The development of the logical and physical architectural views of automotive
software systems and their ECUs is mostly done following the MDA (Model-Driven
Architecture) approach [Obj14]. This means that the logical and physical system
architecture and the physical ECU architecture are described by means of archi-
tectural models. Looking into the automotive architectural design from the process
point of view, car manufacturers (OEMs, Original Equipment Manufacturers) are
commonly responsible for the logical and physical design of the system, while
a hierarchy of suppliers is responsible for the physical design of specific ECUs,
implementation of their application and middleware software and the necessary
hardware [BKPS07].

In order to facilitate this distributed design and development of automotive
software systems and their architectural components, the AUTOSAR (AUTomotive
Open Systems ARchitecture) standard was introduced in 2003 as a joint partnership
of automotive OEMs and their software and hardware vendors. Today, AUTOSAR
consists of more than 150 global partners [AUT16a] and is therefore considered a
de facto standard in the automotive domain. AUTOSAR is built upon the following
major objectives:

1. Standardization of the reference ECU architecture and its layers. This increases
the reusability of application software components in different car projects
(within one or multiple OEMs) developed by the same software suppliers.

2. Standardization of the development methodology. This enables collaboration
between a number of different parties (OEMs and a hierarchy of suppliers) in
the software development process for all ECUs in the system.



4.2 AUTOSAR Reference Architecture 83

3. Standardization of the language (meta-model) for architectural models of the
system/ECUs. This enables a smooth exchange of architectural models between
different modeling tools used by different parties in the development process.

4. Standardization of ECU middleware (basic software, BSW) architecture and
functionality. This allows engineers from OEMs to focus on the design and
implementation of high-level vehicle functionalities that can, in contrast to ECU
middleware, create competitive advantage.

In the next four sections (4.2–4.6), we show how AUTOSAR achieves each
one of these four objectives. In Sect. 4.6, we analyze trends in the evolution of
AUTOSAR and how it can be measured. In Sect. 4.7, we present current initiatives
regarding the future role of AUTOSAR in the development of automotive software
systems. Finally, in the last two sections (4.8 and 4.9), we provide guidelines for
further readings and conclude this chapter with a brief summary.

4.2 AUTOSAR Reference Architecture

The architectural design of ECU software based on AUTOSAR is done according to
the three-layer architecture that is built upon the ECU hardware layer, as presented
in Fig. 4.1.

The first layer, Application software, consists of a number of software compo-
nents that realize a set of vehicle functionalities by exchanging data using interfaces

Fig. 4.1 AUTOSAR layered software architecture [AUT16g]



84 4 AUTOSAR Standard

defined on these components (referred to as ports). This layer is based on the
logical architectural design of the system. The second layer, Run-time environment
(RTE), controls the communication between software components, abstracting the
fact that they may be allocated onto the same or different ECUs. This layer is usually
generated automatically, based on the software component interfaces. If the software
components are allocated to different ECUs, transmission of the respective signals
on the electronic buses is needed, which is done by the third layer (Basic software).

The Basic software layer consists of a number of BSW modules and it is
responsible for the non-application-related ECU functionalities. One of the most
important basic software functionalities is the Communication between ECUs,
i.e., signal exchange. It consists of BSW modules such as COM (Communication
Manager) that are responsible for signal transmission and reception. However,
AUTOSAR basic software also provides a number of Services to the Application
software layer, e.g., diagnostics realized by DEM (Diagnostic Event Manager)
and DCM (Diagnostic Communication Manager) modules that are responsible for
logging error events and transmitting diagnostic messages, respectively, and the
Operating System for scheduling ECU runnables. The majority of BSW modules
are configured automatically, based on the architectural models of the physical
system [LH09], e.g., periodic transmission of a set of signals packed into frames
on a specific electronic bus.

Communication between higher-level functionalities of ECU Basic software and
drivers controlling the ECU hardware realized by the Microcontroler Abstraction
BSW modules is done by the ECU Abstraction BSW modules, e.g., bus interface
modules such as CanIf, which is responsible for the transmission of frames
containing signals on the CAN bus. Finally, AUTOSAR provides the possibility
for application software components to communicate directly with hardware, thus
bypassing the layers of the AUTOSAR software architecture, by means of custom
implementations of Complex Drivers. This approach is, however, considered non-
standardized.

Apart from the Complex Drivers, RTE and modules of the Basic Software
layer are completely standardized by AUTOSAR, i.e., AUTOSAR provides detailed
functional specifications for each module. This standardization, together with the
clear distinction between the Application software, RTE and Basic software layers,
allows ECU designers and developers to specifically focus on the realization of high-
level vehicle functionalities, i.e., without the need to think about the underlying
middleware and hardware. Application software components and BSW modules
are often developed by different suppliers who specialize in one of these areas, as
explained in more detail in the following section.



4.3 AUTOSAR Development Methodology 85

4.3 AUTOSAR Development Methodology

On the highest level of abstraction, automotive vendors developing architectural
components following the AUTOSAR methodology can be classified into one of
the following four major roles in the automotive development process:

• OEM: responsible for the logical and physical system design.
• Tier1: responsible for the physical ECU design and implementation of the

software components allocated to this ECU.
• Tier2: responsible for the implementation of ECU basic software.
• Tier3: responsible for supplying ECU hardware, hardware drivers and corre-

sponding compilers for building the ECU software.

In most cases, different roles represent different organizations/companies
involved in the development process. For example, one car manufacturer plays the
role of OEM, two software vendors play the roles of Tier1 and Tier2, respectively,
and one “silicon” vendor plays the role of Tier3. However, in some cases, these roles
can also be played by the same company, e.g., one car manufacturer plays the role of
OEM and Tier1 by doing logical and physical system design, physical ECU design
and implementation of the allocated software components (in-house development),
or one software vendor plays the role of Tier1 and Tier2 by doing implementation
of both the software components and the BSW modules. The development process
involving all roles and their tasks is presented in Fig. 4.2.

OEMs start with logical system design (1) by modeling a number of composite
logical software components and their port interfaces representing data exchange
points. These components are usually grouped into subsystems that are in turn

Fig. 4.2 AUTOSAR development process



86 4 AUTOSAR Standard

Fig. 4.3 Example of the logical system design done by OEMs (1)

grouped into logical domains. In the later stages of the development process, usually
in the physical ECU design (3), composite software components are broken down
into a number of atomic software components, but this could have been done
already in the logical system design phase by OEMs. An example of the logical
system design of the minimalistic system created for the purpose of this chapter that
calculates vehicle speed and presents its value to the driver is presented in Fig. 4.3.

The example contains two subsystems, Break and Info, each of which consists
of one composite software component, SpeedCalc and Odometer, respectively. The
SpeedCalc component is responsible for calculating vehicle speed and it provides
this information via the VehicleSpeed sender port. The Odometer component is
responsible for presenting the vehicle speed information to the driver and it requires
this information via the VehicleSpeed receiver port.

As soon as a certain number of subsystems and software components have been
defined in the logical system design phase (1), OEMs can start with the physical
system design (2), which involves modeling a number of ECUs connected using
different electronic buses and deployment of software components to these ECUs. In
case two communicating software components (with connected ports) are allocated
to different ECUs, this phase also involves the creation of system signals that will
be transmitted over the electronic bus connecting these two ECUs. An example of
the physical system design of our minimalistic system is presented in Fig. 4.4.

The example contains two ECUs, BreakControl and DriverInfo, connected using
the Can1 bus. The SpeedCalc component is deployed to the BreakControl ECU
while the Odometer component is deployed to the DriverInfo ECU. As these two
components are deployed to different ECUs, information about vehicle speed is
exchanged between them in a form of system signal named VehicleSpeed.

After the physical system design phase (2) is finished, detailed design of the car’s
functionalities allocated to composite software components deployed to different
ECUs (physical ECU design) can be performed by the Tier1s (3). As different ECUs
are usually developed by different Tier1s, OEMs are responsible for extracting the
relevant information about the deployed software components from the generated
SWC system model (A) into the SWC ECU model (B), known as the ECU Extract.
The main goal of the physical ECU design phase is to break down the composite
software components into a number of atomic software components that will in the



4.3 AUTOSAR Development Methodology 87

Fig. 4.4 Example of the physical system design done by OEMs (2)

Fig. 4.5 Example of the physical ECU design done by the Tier1s (3). (a) BreakControl ECU. (b)
DriverInfo ECU

end represent runnable entities at ECU run-time. An example of the physical ECU
design of our minimalistic system is presented in Fig. 4.5.

The example shows detailing of the SpeedCalc and Odometer composite soft-
ware components into a number of atomic software components that will represent
runnables in the final ECU software. SpeedCalc consists of the RpmSensor sensor
component that measures the speed of axis rotation, the RpmValue atomic software



88 4 AUTOSAR Standard

component that calculates the value of the rotation and the BreakControl atomic
software component that calculates the actual vehicle speed based on the value of
the axis rotation. Odometer consists of the InfoControl atomic software component
that receives information about the vehicle speed and the Odometer atomic software
component that presents the vehicle speed value to the driver.

The ECU design phase is also used to decide upon the concrete implementation
data types used in the code for the data exchanged between software components
based on the choice of the concrete ECU hardware (C) delivered by the Tier3s. For
example, data can be stored as floats if the chosen CPU has support for working
with the floating points.

Based on the detailed SWC ECU model containing the atomic software com-
ponents (D), the Tier1s can continue with the functional development of the car’s
functionalities (4) allocated onto these components. This is usually done with a help
of behavioral modeling with modeling tools such as Matlab Simulink, as explained
in Sect. 5.2, that are able to generate source SWC code for the atomic software
components (E) automatically from the Simulink models [LLZ13]. This part is
outside of the AUTOSAR scope.

During the physical ECU design and functional development phases performed
by the Tier1s, OEMs can work on the physical COM design (5) that aims to complete
the system model with packing of signals into frames that are transmitted on the
electronic buses. This phase is necessary for configuring the communication (COM)
part of the AUTOSAR basic software configuration (6). An example of the physical
COM design of our minimalistic system is presented in Fig. 4.6.

The example shows one frame of eight bytes namedCanFrm01 that is transmitted
by the BreakControl ECU on the Can1 bus and received by the DriverInfo ECU. It
transports the VehicleSpeed signal in its first two bytes.

After the physical COM design phase has been completed for the entire system,
OEMs are responsible for creatingCOMECUmodel extracts (G) from the generated

Fig. 4.6 Example of the physical COM design done by OEMs (5)



4.3 AUTOSAR Development Methodology 89

COM system model (F) for each ECU that contains only ECU-relevant information
about the COM design. This step is similar to the step taken after the logical and
physical system design, related to the extraction of ECU-relevant information about
application software components. These ECU extracts are then sent to the Tier1s,
which use them as input for configuring the COM part of the ECU basic software
configuration (6) and, together with configuring the rest of BSW (diagnostics
services, operating system, etc.), generate the complete BSW configuration code
(H) for the developed ECU. An example of the BSW configuration design of our
minimalistic system is presented in Fig. 4.7.

The example shows different groups of BSW modules, i.e., Operating System;
Services including modules such as DEM and DCM; Communication including
modules such as COM; and ECU Abstraction including modules such as CanIf
needed for the transmission of frames on the Can bus in our example.

The actual ECU basic software development (7) is done by the Tier2s, based
on the detailed specifications of each BSW module provided by the AUTOSAR
standard, e.g., COM, CanIf or DEM modules. The outcome of this phase is a
complete BSW code (I) for the entire basic software that is usually delivered by
the Tier2s in the form of libraries. The hardware drivers for the chosen hardware
(J), in our example the CAN driver, are delivered by the Tier3s.

The last stage in ECU software creation (8) is to compile and link the functional
SWC code (E), the BSW configuration code (H), the functional BSW code (I) and
the hardware drivers (J). This is usually done using the compiler and linker (K)
delivered by the Tier3s.

Fig. 4.7 Example of the BSW configuration design done by the Tier1s (6). (a) BreakControl ECU.
(b) DriverInfo ECU



90 4 AUTOSAR Standard

Despite the fact that the described methodology of AUTOSAR is reminiscent
of the traditional waterfall development approach, except from the decoupled
development of the ECU functional code and the ECU BSW code, in practice
it represents just one cycle of the entire development process. In other words,
steps (1)–(6) are usually repeated a number of times, adding new functionalities
to the system and its ECUs. For example, new composite software components are
introduced in the logical system design (1), requiring new signals in the physical
system design (2); new atomic software components are introduced as part of
the new composite software components in the physical ECU design (3) and
implemented in the functional development (4); and new frames to transport the
new signals are introduced in the physical COM design (5) and configured in the
BSW configuration design (6) phase. Sometimes even the ECU hardware (C) and
its compiler/linker (K) and drivers (J) can be changed between different cycles, in
case it cannot withstand the additional functionality.

Examples of AUTOSAR based logical system design (1), physical system design
(2), physical ECU design (3) and physical COM design (5) are presented in
Sect. 4.4. Examples of AUTOSAR-based basic software development (7) and basic
software configuration (6) are presented in Sect. 4.5. As already stated, functional
development of software components (4) is outside of the scope of AUTOSAR and
this chapter.

4.4 AUTOSAR Meta-Model

As we have seen in the previous section, a number of architectural models, as
outcomes of different phases in the development methodology, are exchanged
between different roles in the development process. In order to ensure that modeling
tools used by OEMs in the logical (1), physical (2) and system design commu-
nication (5) phases are able to create models that could be read by the modeling
tools used by the Tier1s in the physical ECU design (3) and BSW configuration
phases (6), AUTOSAR defines a meta-model that specifies the language for these
exchanged models [NDWK99]. Therefore, models (A), (B), (D), (F) and (G)
represent instances of the AUTOSARmeta-model that specifies their abstract syntax
in the UML language. The models themselves are serialized into XML (referred to
as ARXML, the AUTOSAR XML), which represents their concrete syntax, and are
validated by the AUTOSAR XML schema that is generated from the AUTOSAR
meta-model [PB06].

In this section, we first describe the AUTOSAR meta-modeling environment
in Sect. 4.4.1. We then show an example use of the AUTOSAR meta-model in
the logical system design (1), physical system design (2), physical ECU design
(3) and physical COM design (5) phases in Sect. 4.4.2 using our minimalistic
system presented in the previous section and present examples of these models in
the ARXML syntax. Finally, we discuss the semantics of the AUTOSAR models
described in the AUTOSAR template specifications in Sect. 4.4.3.



4.4 AUTOSAR Meta-Model 91

4.4.1 AUTOSAR Meta-Modeling Environment

As opposed to the commonly accepted meta-modeling hierarchy of MOF [Obj04]
that defines four layers [BG01], the AUTOSAR modeling environment has a five-
layer hierarchy, as presented below (the names of the layers are taken from the
AUTOSAR Generic Structure specification [AUT16f]):

1. The ARM4: MOF 2.0, e.g., the MOF Class
2. The ARM3: UML and AUTOSAR UML profile, e.g., the UML Class
3. The ARM2: Meta-model, e.g., the SoftwareComponent
4. The ARM1: Models, e.g., the WindShieldWiper
5. The ARM0: Objects, e.g., the WindShieldWiper in the ECU memory

The mismatch between the number of layers defined by MOF and AUTOSAR
lies in the fact that MOF considers only layers connected by the linguistic instantia-
tion (e.g., SystemSignal is an instance of UML Class), while AUTOSAR considers
both linguistic and ontological layers (e.g., VehicleSpeed is an instance of System-
Signal) [Küh06]. To link these two interpretations of the meta-modeling hierarchy,
we can visualize the AUTOSAR meta-modeling hierarchy using a two-dimensional
representation (known as OCA—Orthogonal Classification Architecture [AK03]),
as shown in Fig. 4.8. Linguistic instantiation (“L” layers corresponding to MOF
layers) are represented vertically and ontological layers (“O” layers) horizontally.

The ARM2 layer is commonly referred to as the “AUTOSAR meta-model” and
it ontologically defines, using UML syntax (i.e., AUTOSAR meta-model is defined
as an instance of UML), AUTOSAR models residing on the M1 layer (both the

Fig. 4.8 AUTOSAR meta-model layers [DSTH16]



92 4 AUTOSAR Standard

AUTOSAR meta-model and AUTOSAR models are located on the L1 layer). The
AUTOSAR meta-model also uses a UML profile that extends the UML meta-model
on the ARM3 layer, which specifies the used stereotypes and tagged values.

Structurally, the AUTOSAR meta-model is divided into a number of top-
level packages referred to as “templates”, where each template defines how to
model one part of the automotive system. The modeling semantics, referred to
as design requirements and constraints, are described in the AUTOSAR template
specifications [Gou10]. The AUTOSAR templates and their relations are presented
in Fig. 4.9.

Probably the most important templates for the design of automotive software
systems are the SWComponentTemplate, which defines how to model software
components and their interaction; SystemTemplate, which defines how to model

Fig. 4.9 AUTOSAR templates [AUT16f]



4.4 AUTOSAR Meta-Model 93

ECUs and their communication; and ECUCParameterDefTemplate and ECUCDe-
scriptionTemplate, which define how to configure ECU basic software. In addition
to these templates, AUTOSAR GenericStructure template is used to define general
concepts (meta-classes) used by all other templates, e.g., handling different varia-
tions in architectural models related to different vehicles. In the next subsection, we
provide examples of these templates and AUTOSAR models that instantiate them.

4.4.2 Architectural Design Based on the AUTOSAR
Meta-Model

A simplified excerpt from the SWComponentTemplate that is needed for the logical
system and physical ECU design of our minimalistic example that calculates vehicle
speed and presents its value to the driver is presented in Fig. 4.10.

The excerpt shows the abstract meta-class SwComponent that can be either
AtomicSwComponent or CompositeSwComponent, which may refer to multiple
AtomicSwComponents. Both types of SwComponents may contain a number of
Ports that can either be ProvidedPorts providing data to the other components
in the system, or RequiredPorts requiring data from the other components in

Fig. 4.10 Logical and ECU design example (SwComponentTemplate)



94 4 AUTOSAR Standard

the system. Ports on the CompositeSwComponents are connected to the ports
of the AtomicSwComponents using DelegationSwConnectors that belong to the
CompositeSwComponents, i.e., DelegationSwConnector points to an outerPort of
the CompositeSwComponent and an innerPort of the AtomicSwComponent. Finally,
Ports refer to a corresponding PortInterface, e.g., SenderReceiverInterface or
ClientServerInterface, that contains the actual definition of the DataType that is
provided or required by this port (e.g., unsigned integer of 32 bits or a struct that
consists of an integer and a float).

The model of our example of the logical system design presented in Fig. 4.3 that
instantiates the SWComponentTemplate part of the meta-model is shown in Fig. 4.11
in ARXML syntax. We chose ARXML as it is used as a model exchange format
between OEMs and Tier1s, but UML could be used as well.

The example shows the definition of the SpeedCalc composite software com-
ponent (lines 1–11) with the VehicleSpeed provided port (lines 4–9), and the
Odometer composite software component (lines 12–22) with the VehicleSpeed

Fig. 4.11 AUTOSAR model example: logical design



4.4 AUTOSAR Meta-Model 95

required port (15–20). Both ports refer to the same sender-receiver interface (lines
23–33) that in turn refers to the unsigned integer type of 16 bits (lines 34–36) for
the provided/required data.

According to the AUTOSAR methodology, these composite software compo-
nents are, after their allocation to the chosen ECUs, broken down into a number
of atomic software components during the physical ECU design phase. The partial
model of our minimalistic example of the physical ECU design presented in Fig. 4.5
that instantiates the SWComponentTemplate part of the meta-model is shown in
Fig. 4.12 in ARXML syntax.

The example shows the definition of the BreakControl atomic software com-
ponent (lines 31–41) with the VehicleSpeed provided port (lines 34–39) that is
referenced (lines 12–17) from the SpeedCalc composite software component (lines
1–30). We can also see the delegation connector Delegation1 inside the SpeedCalc

Fig. 4.12 AUTOSAR model example: ECU design



96 4 AUTOSAR Standard

Fig. 4.13 Physical and COM design (SystemTemplate)

composite software component (lines 20–28) that connects the provided ports in the
SpeedCalc and BreakControl software components.

A simplified excerpt from the SystemTemplate that is needed for the physical and
COM system designs of our minimalistic example is presented in Fig. 4.13.

Related to the physical system design, the excerpt shows the EcuInstance
meta-class with the diagnosticAddress attribute which may contain a number of
CommunicationConnectors that represent connections of EcuIstance to a Phys-
icalChannel (e.g., CanCommunicationConnector connects one EcuInstance to a
CanPhysicalChannel). A number of SwComponents (CompositeSwComponents or
AtomicSwComponents) created in the logical designs can be allocated to one
EcuInstace by means of SwcToEcuMappings.



4.4 AUTOSAR Meta-Model 97

Related to the physical COM design, the excerpt shows the SenderReceiver-
ToSignalMapping of the VariableData created in the logical design of a SystemSig-
nal. It also shows that one SystemSignal can be sent to multiple buses by creating
different ISignals and mapping them to IPdus, which are in turn mapped to Frames.
IPdu is one type of Pdu (Protocol Data Unit) that is used for transporting signals,
and there may be other types of Pdus, e.g., DcmPdu for transporting diagnostic
messages.

The model of our example of the physical system design presented in Fig. 4.4
that instantiates the SystemTemplate part of the meta-model is shown in Fig. 4.14.

The example shows the definition of the BreakControl ECU with diagnostic
address 10 (lines 1–9) that owns a CAN communication connector (lines 5–7).
It also shows the mapping of the SpeedCalc composite software component onto
the BreakControl ECU (lines 10–14). Finally, it shows the definition of the Can1
physical channel (lines 15–24) that points to the CAN communication connector of
the BreakControl ECU (lines 19–21), thereby indicating that this ECU is connected
to Can1.

The model of our example of the COM system design presented in Fig. 4.6 that
instantiates the SystemTemplate part of the meta-model is shown in Fig. 4.15.

The example shows the definition of the VehicleSpeed system signal (lines 1–
3) that is mapped to the SpeedCalc variable data element defined in the logical
design phase (lines 4–12). The example also shows the creation of the ISignal
VehicleSpeedCan1 (lines ) with initial value of 0 that is meant to transmit the vehicle
speed on the Can1 bus defined in the physical design phase. This ISignal is mapped
to Pdu1 (lines 20–22) using ISignalToIPduMapping (23–27) that in turn is mapped
to CanFrame1 (lines 28–30) using IPduToFrameMapping (lines 31–35).

Fig. 4.14 AUTOSAR model example: physical design



98 4 AUTOSAR Standard

Fig. 4.15 AUTOSAR model example: COM design

4.4.3 AUTOSAR Template Specifications

Like other language definitions, the AUTOSAR meta-model defines only syntax for
different types of architecturalmodels, without explaining how its meta-classes shall
be used to achieve certain semantics. This is done in natural language specifications
called templates [Gou10], e.g., SwComponentTemplate and SystemTemplate, that
explain different parts of the AUTOSAR meta-model. These templates consist of
the following main items:

• Design requirements that should be fulfilled by the models (specification items).
• Constraints that should be fulfilled by the models and checked by modeling tools.
• Figures explaining the use of a group of meta-classes.
• Class tables explaining meta-classes and their attributes/connectors.

As an example of a specification item related to our minimalistic example
that calculates vehicle speed and presents its value to the driver, we present



4.5 AUTOSAR ECU Middleware 99

specification item no. 01009 from the SystemTemplate that describes the use of
CommunicationConnectors:

[TPS_SYST_01009] Definition of CommunicationConnector [An EcuInstance
uses CommunicationConnector elements in order to describe its bus interfaces and
to specify the sending/receiving behavior.]

As an example of a constraint, we present constraint no. 1032 from the SwCom-
ponentTemplate that describes the limitation in the use of DelegationSwConnectors.

[constr_1032] DelegationSwConnector can only connect ports of the same
kind [A DelegationSwConnector can only connect ports of the same kind, i.e.
ProvidedPort to ProvidedPort and RequiredPort to RequiredPort.]

The majority of constraints including constr_1032 could be specified directly in
the AUTOSAR meta-model using OCL (Object Constraint Language). However,
due to the complexity of OCL and thousands of automotive engineers in more
than hundred OEM and supplier companies that develop automotive software
components based on AUTOSAR, natural language specifications are considered
a better approach for such a wide audience [NDWK99].

Meta-model figures show relationships between a number of meta-classes using
UML notation and they are similar to Figs. 4.10 and 4.13 presented in the previous
section. These figures are usually followed by class tables that describe the meta-
classes in the figures in more detail, e.g. description of the meta-classes, their parent
classes and attributes/connectors, so that the readers of the AUTOSAR specification
do not need to look directly into the AUTOSAR meta-model which is maintained
by the Enterprise Architect tool.

In addition to specification items, constraints, figures and class tables,
AUTOSAR template specifications also contain a substantial amount of plain
text that provides additional explanations, e.g., introductions to the topic and notes
about specification items and constraints.

4.5 AUTOSAR ECUMiddleware

AUTOSAR provides detailed functional specifications for the modules of its
middleware layer (basic software modules). For example, the COM specification
describes the functionality of the Communication Manager module that is mostly
responsible for handling the communication between ECUs, i.e., transmitting
signals received from the RTE onto electronic buses and vice versa. These speci-
fications consist of the following main items:

• Functional requirements that should be fulfilled by the implementation of the
BSW modules.

• Description of APIs of the BSW modules.



100 4 AUTOSAR Standard

• Sequence diagrams explaining the interaction between BSW modules.
• Configuration parameters that are used for configuring the BSW modules.

The functional side of the AUTOSAR BSW module specifications (functional
requirements, APIs and sequence diagrams) is outside of the scope of this chapter.
However, we do describe here the general approach to configuration of the BSW
modules as it is done based on the AUTOSAR meta-model and its templates.

Two of the AUTOSAR templates are responsible for specifying configuration of
the AUTOSAR basic software—ECUCParameterDefTemplate and ECUCDescrip-
tionTemplate on the ARM2 layer. ECUCParameterDefTemplate specifies the gen-
eral definition of configuration parameters, e.g., that parameters can be grouped into
containers of parameters and that they can be configured at different configuration
times (e.g., before or after building the complete ECU software). ECUCDescrip-
tionTemplate specifies modeling of concrete parameter and container values that
reference their corresponding definitions from the ECUCParameterDefTemplate.

The values of configuration parameters from the ECUCDescriptionTemplate
models can be automatically derived from the models of other templates, e.g.,
SoftwareComponentTemplate and SystemTemplate. This process is called “upstream
mapping” and it can be done automatically with support from the ECU configuration
tools [LH09]. A simplified example of the ECUCParameterDefTemplate and
ECUCParameterDefTemplate and their models, including the upstream mapping
process, is shown in Fig. 4.16 in UML syntax.

The ECUCParameterDefTemplate on the ARM2 layer (left blue box) specifies
modeling of the definition of configuration parameters (ECUCParameterDef s) and
containers (ECUCContainerDef s), with an example of the integer parameter def-
inition (ECUCIntegerParameterDef ). The ECUCDescriptionTemplate (left yellow
box) specifies modeling of the values of containers (ECUCContainerValues) and

Fig. 4.16 Example of the AUTOSAR templates and their models



4.6 AUTOSAR Evolution 101

parameters (ECUCParameterValues), with an example of the integer parameter
value (ECUCIntegerParameterValue). As with the elements from the SwCompo-
nentTemplate and the SystemTemplate, the elements from these two templates are
also inherited from the common element in the GenericStructureTemplate (green
box) named Identifiable, which provides them with a short name and unique
identifier (UUID).

The standardized model (i.e., provided by AUTOSAR) of the ECUCParame-
terDefTemplate can be seen on the ARM1 layer (right blue box). It shows the
ECUCContainerDef instance with shortName “ComSignal” that refers to the
ECUCParameterDef instance with shortName “ComSignalInitValue”. These two
elements both have the tagged value named UM, denoting Upstream Mapping. The
UM tagged value for the “ComSignal” container instance refers to the ISignalmeta-
class from the SystemTemplate. TheUM tagged value for the “ComSignalInitValue”
parameter instance refers to the initValue attribute of the ISignal. This implies that
for every ISignal instance in the SystemModel, one ECUCContainerValue instance
in the ECUCDescriptionModel shall be created with an ECUCParameterValue
instance. The value of this parameter instance shall be equal to the initValue attribute
of that SystemSignal instance.

Considering the “VehicleSpeedCan1” ISignal with “initValue” 0 (orange box)
that we defined in our SystemModel shown in Fig. 4.15 (COM design phase), the
ECUCDescriptionModel (right yellow box) can be generated. This model contains
one instance of the ECUCContainerValue with shortName “VehicleSpeedCan1”
that is defined by the “ComSignal” container definition and refers to one instance of
the ECUCParameterValue with shortName “initValue” of value 0 that is defined by
the “ComSignalInitValue” parameter definition.

AUTOSAR provides the standardized ARM1 models of the ECUCParameter-
DefTemplate for all configuration parameters and containers of the ECU basic
software. For example, the ComSignal container with ComSignalInitValue are
standardized for the COM BSW module. On the smallest granularity, standardized
models of the ECUCParameterDefTemplate are divided into a number of packages,
where each package contains configuration parameters of one Basic software
module. At the highest level of granularity, these models are divided into different
logical packages, including ECU communication, diagnostics, memory access and
IO access.

4.6 AUTOSAR Evolution

The development of the AUTOSAR standard started in 2003 and its first release
in mass vehicle production was R3.0.1 from 2007. In this section, we show trends
in the evolution of the AUTOSAR meta-model and its requirements (both template
and basic software) from its first release until release 4.2.2 from 2016, with a focus
on the newer releases (R4.0.1–R4.2.2).



102 4 AUTOSAR Standard

4.6.1 AUTOSAR Meta-Model Evolution

From the architectural modeling point of view, the most important artifact to be
analyzed through different releases of AUTOSAR is the AUTOSAR meta-model,
as it defines several different types of AUTOSAR models such as SWC, COM and
BSW configuration models. We start the analysis of the AUTOSAR meta-model
evolution by showing its increase in size from the initial release until the latest one.
Figure 4.17 shows the number of AUTOSAR meta-classes in all of its templates
(left) and the number of standardized BSW configuration parameters, as instances
of the ECUCParameterDefTemplate (right) [DSTH14].

The figure indicates relatively even evolution of the AUTOSAR application
software and AUTOSAR basic software, except for the R1.0, where no BSW
configuration parameters have been standardized. We can also ascertain that there
is a significant increase in the number of meta-classes and configuration parameters
starting from R4.0.1, and relatively small change between R3.0.1 and R3.1.5. This
is because the development of AUTOSAR R4.0.1 started in parallel to that of R3.1.1
and continued to develop as independent branches, namely the 3.x branch and the
4.x branch, for a couple of years until all AUTOSAR OEMs switched to 4.x. The
main development focus, such as the introduction of new AUTOSAR features, was
on the 4.x branch, and the 3.x branch was considered to be in the maintenance
mode, focusing mostly on fixing errors in the meta-model and specifications and
implementing the most important features from the 4.x branch.

AUTOSAR R4.0.1 was made public in 2009 and brought significant changes
to almost all specifications, including the AUTOSAR meta-model. These changes
included a number of new features, referred to as concepts by AUTOSAR, such
as for supporting the LIN 2.1 electronic bus and concept enabling the existence of
different variants in AUTOASARmodels related to different vehicle lines. However,
it also included clean-up activities of the meta-classes and configuration parameters
of unused or broken concepts. Because AUTOSAR 4.x releases are used today by
the majority of AUTOSAR OEMs, we provide in the rest of this section a more
detailed analysis of the evolution trends of the 4.x branch. Figure 4.18 shows the
number of added, modified and removed meta-classes between different releases
of 4.x.

Fig. 4.17 Number of classes (TPS) and objects (BSW)



4.6 AUTOSAR Evolution 103

Fig. 4.18 Number of added, modified and removed classes (TPS)

At least three important conclusions about the evolution of the AUTOSAR meta-
model can be derived from this figure. First, we can see that the evolution is
mostly driven by modifications and additions of meta-classes, while removals are
very seldom. The main reason behind this is the strong requirement for backwards
compatibility of the AUTOSAR schema that is generated from the AUTOSAR
meta-model, e.g., R4.0.2 models should be validated by the R4.0.3 schema or later.
Second, we can see that the initial three releases, R4.0.1 to R4.1.1, all have increased
the number of added, modified and removed meta-classes, indicating that it took a
couple of releases to stabilize the 4.x branch. Finally, we can see that generally
only minor AUTOSR releases (second digit changed, e.g., R4.1.1 vs. R4.2.1) bring
a lot of new meta-classes. This is related to the AUTOSAR’s policy that only major
(first digit changed) and minor (second digit changed) releases may introduce new
features while revisions (third digit changed) are mostly responsible for fixing errors
in the meta-model related to the existing features.

In order for the automotive engineers to be able to make a preliminary assessment
of the impact of adopting a new AUTOSAR release, or a subset of its new features,
on the used modeling tools, a measure of meta-model change (NoC—Number of
Changes) has been developed [DSTH14]. NoC considers all possible changes to the
meta-classes, meta-attributes, and meta-connectors that need to be implemented by
the vendors of the AUTOSAR tools used by OEMs and Tier1s. We use this measure
to present the estimated effort needed to update the AUTOSARmodeling tool-chain
in order to switch from one AUTOSAR release to another (e.g., 3.x to 4.x). The
measurement results are presented in Fig. 4.19.

As expected, the highest effort is needed when switching from the older
AUTOSAR releases (e.g., R1.0 and R2.0) to the newer ones (e.g., R4.2.1 and
R4.2.2). However, the figure also shows that there is a significantly higher effort
caused by the AUTOSAR releases in branch 4.x than in releases from the previous
branches. This indicates that the functional “big bang” of AUTOSAR started with
branch 4.x and it still continues to expand.



104 4 AUTOSAR Standard

Fig. 4.19 Number of changes between releases (TPS)

Due to the fact that this expansion is mostly driven by new features incorporated
into the minor releases of the AUTOSAR branch 4.x, we continue our analysis of the
AUTOSAR evolution by presenting the impact of 14 new concepts of AUTOSAR
R4.2.1. A brief description of each concept is presented below (more details can be
found in [AUT16i]).

1. SwitchConfiguration: Enables full utilization of Ethernet and Ethernet
switches as a communication medium between ECUs.

2. SenderReceiverSerialization: Enables mapping of complex data to single
signal entities by means of byte array serialization. The goal is to reduce the
number of signals and minimize the signal processing time.

3. CANFD: Introduces a new communication protocol for the CAN bus with
higher bandwidth and payload for large signals.

4. EfficientCOMforLargeData: Enables faster transmission of large signals
through the ECU by avoiding overhead of the COM module.

5. E2E Extension: Reworks the modeling of safety communication (e.g., indica-
tor about modified or missing data during transport) between ECUs so that it
does not require additional non-standardized code.

6. GlobalTimeSynchronization: Provides a common time base that is distributed
across various buses for accurate ECU data correlation.

7. SupportForPBLAndPBSECUConfiguration: Enables simultaneous configu-
ration of several ECU variants in a car and different car lines.

8. SecureOnboardCommunication: Provides mechanisms for securing the com-
munication on in-vehicle networks (e.g., communication between the car and
the outside world).

9. SafetyExtensions: Provides mechanisms to realizing and documenting func-
tional safety of AUTOSAR systems (e.g. according to ISO 26262).



4.6 AUTOSAR Evolution 105

10. DecentralizedConfiguration: Extension of the AUTOSARmeta-model to sup-
port transfer of diagnostic needs of OEMs to suppliers by use of AUTOSAR-
complaint models.

11. IntegrationOfNonARSystems: Enables integration of non-AUTOSAR sys-
tems, e.g., Genivi, into an AUTOSAR system during development.

12. NVDataHandlingRTE: Provides efficient mechanisms for the software com-
ponents to handle non-volatile data.

13. EcuMFixedMC: Provides support for ECU state handling on ECUs with
multiple cores.

14. AsilQmProtection: Provides means for protecting modules developed accord-
ing to safety regulations from other potentially unsafe modules (i.e., it reduces
the chance of error propagation to safety-critical modules).

Figure 4.20 shows the results of the NoC measure calculated for each of these 14
features for all AUTOSAR meta-model templates.

This figure shows two important aspects of the AUTOSARmeta-model evolution
related to new concepts. First, they have very different impact on the AUTOSAR
meta-model (see left part of the figure), i.e., some concepts have no impact at all,
such as the concept of IntegrationOfNonARSystems, while some have a significant
impact, such as the concept of DecentralizedConfiguration. Second, we can see that
the vast majority of changes in R4.2.1 is related to new concepts (see right part of
the figure) and only a small part to other changes, e.g., fixes of errors related to
existing concepts.

Finally, in order to present the results of role-based assessment of impact of
the AUTOSAR R4.2.1 concepts, we considered the following design roles in
AUTOSAR-based development, whose work is described in Sect. 4.3 [DST15]:

• Application Software Designer: Responsible for the definition of software
components and their data exchange points (involved in the phases of physical
system and physical ECU design; see (2) and (3) in Fig. 4.2).

Fig. 4.20 Number of changes per concept (TPS)



106 4 AUTOSAR Standard

• Diagnostic Designer: Responsible for the definition of diagnostic services
required by software components (involved in the phases of physical system and
physical ECU design; see (2) and (3) in Fig. 4.2).

• ECU Communication Designer: Responsible for the definition of signals and
their transmission on electronic buses in different frames (involved in the phase
of physical COM design; see (5) in Fig. 4.2).

• Basic Software Designer: Responsible for the design of BSW modules and their
interfaces (involved in the phase of BSW development; see (7) in Fig. 4.2).

• COM Configurator: Responsible for the configuration of communication BSW
modules (involved in the phase of BSW configuration; see (6) in Fig. 4.2).

• Diagnostic configurator: Responsible for the configuration of diagnostic BSW
modules (involved in the phase of BSW configuration; see (6) in Fig. 4.2).

Figure 4.21 shows the impact of 13 new concepts of AUTOSAR R4.2.1 (all
except the concept of SupportForPBLAndPBSECUConfiguration, as it causes a
significantly higher number of changes in comparison to other concepts, thereby
obscuring the results) on these six roles.

This figure shows the following interesting points. First, the COM Configurator
role followed by the ECU Communication Designer role are mostly affected by the
concepts, i.e., roles related to the communication between different ECUs. Then,
we can see that the majority of concepts do not have impact on all roles, except for
the concept of DecentralizedConfiguration. Finally, we can see that some concepts,
e.g., IntegrationOfNonARSystems and AsilQmProtection, do not have impact on
any of the major roles. The concept of IntegrationOfNonARSystems represents a
methodological guideline without the actual impact on the models while the concept
of AsilQmProtection has impact on other safety-related basic software modules that
are not explicitly related to ECU communication and diagnostics.

Number of changes per concept per role

Concept

R
ol

e

Application Software Designer

Diagnostics Designer

ECU Communication Designer

Basic Software Designer

COM Configurator

Diagnostics Configurator

Switc
hC

on
fig

ura
tio

n

Sen
de

rR
ec

eiv
erS

eri
ali

z

CANFD

Effic
ien

tC
OMfor

La
rge

Data

E2E
 Exte

ns
ion

Glob
alT

im
eS

yn
ch

ron
iza

tio
n

Sec
ure

Onb
oa

rdC
om

mun

Safe
tyE

xte
ns

ion
s

Dec
en

tra
lize

dC
on

fig
ura

tio
n

Int
eg

rat
ion

OfN
on

ARSys

NVData
Han

dli
ng

RTE

Ecu
MFixe

dM
C

AsilQ
mProt

ec
tio

n

0

200

400

600

800

1000

1200

1400

Fig. 4.21 Number of changes per concept affecting different roles



4.6 AUTOSAR Evolution 107

4.6.2 AUTOSAR Requirements Evolution

As already explained, AUTOSAR defines two main types of requirements:

• Design requirements in the AUTOSAR template specifications (TPS require-
ments) that define semantics for the AUTOSAR meta-model elements. They
include both specification items and constraints checked by the modeling tools.

• Functional middleware requirements in the AUTOSAR basic software specifi-
cations (BSW requirements) that define functionality of the AUTOSAR BSW
modules, e.g., Com, Dem and Dcm.

The evolution of the AUTOSAR TPS requirements is tightly related to the
evolution of the AUTOSAR meta-model, as the introduction, modification and
removal of meta-classes also require introduction, modification and removal of the
supporting requirements for their use. This evolution mostly affects the work of
OEMs and Tier1s in the system, ECU and COM design phases of the development.
The evolution of the AUTOSAR BSW requirements indicates the functional
changes in the ECU middleware that is developed by Tier2s in the basic software
development phase and to some extent Tier3s related to the development of drivers
for the chosen hardware. In this subsection, we present the analysis of evolution of
both types of AUTOSAR requirements for different AUTOSAR releases in branch
4.x [MDS16]. We first show in Fig. 4.22 the increase in the number of requirements
in the AUTOSAR templates (left) and BSW specifications (right).

There are two interesting points that can be observed from this figure. First, we
can see a constant increase in the number of both TPS and BSW requirements
in the new AUTOSAR releases. This indicates that the standard is still growing,
i.e., new features are being incorporated into the standard. Second, we can see a
relatively steady increase in the number of BSW requirements without disruptive
changes in their number between consecutive releases. On the other hand, we
can see a big increase (almost three times) in the number of TPS requirements
between AUTOSAR R4.0.2 and R4.0.3 and then again almost a double increase
between R4.0.3 and R4.1.1 that indicates that the evolution of the TPS and
BSW requirements does not follow the same trend. This large increase in the

Fig. 4.22 Number of TPS and BSW requirements



108 4 AUTOSAR Standard

number of TPS requirements is partially related to the immaturity of the older
AUTOSAR template specifications, where a lot of plain text had to be converted
into specification items and constraints.

We already showed that AUTOSAR continues to grow by standardizing new
features. In order to assess the influence of new features on the evolution of both
template and BSW specifications, we analyzed the number of added, modified and
removed TPS and BSW requirements. Figure 4.23 shows the results for the TPS
requirements for different releases of the AUTOSAR 4.x branch.

We can see that the evolution of the AUTOSAR TPS specifications is mostly
driven by introduction of new requirements (specification items and constraints).
This is especially the case with minor releases of AUTOSAR, but also in R4.0.3.
Removal of TPS requirements is not common, similarly to removal of meta-classes
from the AUTOSAR meta-model, as it may affect backwards compatibility of the
AUTOSOAR models that is kept high within one major release.

Figure 4.24 shows the number of added, modified and removed BSW require-
ments for different releases of the AUTOSAR 4.x branch.

The results confirm that the evolution of the AUTOSAR BSW specifications is
also mostly driven by the introduction of new BSW requirements (i.e., new basic
software features). However, we can see that there are generally more modifications

Fig. 4.23 Number of added, modified and removed requirements (TPS)

Fig. 4.24 Number of added, modified and removed requirements (BSW)



4.7 Future of AUTOSAR 109

and removals of BSW requirements than was the case with TPS requirements.
High modification to the BSW requirements could indicate lower stability of the
AUTOSAR basic software. High removals of the BSW requirements could indicate
that certain features become obsolete, probably due to the introduction of newer
features that provide the same or similar functionality. Another reason behind more
removals of BSW requirements in comparison to TPS requirements is related to
the relaxed backwards-compatibility requirements of the AUTOSAR basic software
in comparison to the AUTOSAR models, as AUTOSAR models are exchanged
between several roles in the development process (e.g., OEM and Tier1) while basic
software modules are usually developed by the role of Tier2 only.

4.7 Future of AUTOSAR

The results of the AUTOSAR evolution analysis presented in the previous section
show that it is strongly driven by innovations in the form of new features incor-
porated into the standard. This trend is expected to continue in the future and will
be expanded, considering the plans of AUTOSAR for maintaining two platforms
in parallel—a classic platform that represents the continuation of the work on the
branch 4.x and an adaptive platform that represents a new platform with the goal
to satisfy future needs of the automotive industry. The classic platform aims to
stabilize and improve the existing AUTOSAR features while the adaptive platform
aims to anticipate the future by identifying technological trends and key features for
AUTOSAR.

The subsequent release of the classic platform was R4.3.0, planned for the last
quarter of 2016. Examples of new concepts that will be supported in this release are
presented below:

1. MacroEncapsulationOfLibraryCalls: Simplifies handling of interpolation rou-
tines provided by libraries (automated selection and parametrization).

2. CryptoInterface:Develops the strategy for security SW-/HW-Interface to support
technology trends such as Car-2-X communication and autonomous drive.

3. V2XSupport: Enables implementation of Intelligent Transportation Systems
(ITS) applications [ETS16] as AUTOSAR software components and their inte-
gration into an AUTOSAR ECU (Ethernet-based V2X-stack).

4. ProfilesForDataExchangePoints: Improves the interoperability between
AUTOSAR tools by providing means for describing which data is expected
for a given data exchange point.

5. DecentralizedConfigurationExt01: Extends the concept of “Decentralized Con-
figuration”, which provides a top-down configuration of diagnostics via diagnos-
tic extract, with features such as On-Board Diagnostics (OBD).

6. ExtendedBufferAccess: Extends the existing rapid prototyping functionality
(quick validation of a software algorithm in an ECU context without the need
for a production build) with support for bypassing the RTE.



110 4 AUTOSAR Standard

7. PolicyManager:Allows specification of security policies in AUTOSARARXML
(e.g., insurance company can read data but not modify it).

8. DLTRework: Improves the Development Error Tracer (DLT) module that pro-
vides generic logging and tracing functionality for the software components,
RTE, DEM module, etc.

9. SOMEIPTransportProtocol: Defines a protocol for segmentation of Scalable
Service-OrientedMiddleware over IP (SOME/IP) [Völ13] packets that are larger
than 128 kBytes.

Together with these new features, the release will bring improvements to the
existing features by fixing a number of issues in the related specifications.

The first release of the adaptive platform is planned for the first quarter of
2017 and will be following a different naming schema that consist of the release
year and month, e.g., R17-03. Its main goal is to ensure the fulfillment of the
2020 expectations from the automotive industry which state that all major vehicle
innovations will be driven by electrical systems. The list of selected main functional
drivers for the AUTOSAR’s adaptive platform is presented below [AUT16b]:

1. Highly automated driving: Support driving automation levels 3–4 according to
the NHSTA (National Highway Safety Traffic Administration) [AUT13], i.e.,
limited driving automation where the driver is occasionally expected to take the
control and full driving automation where the vehicle is responsible for perform-
ing the entire trip. This includes support for cross-domain computing platforms,
high-performancemicro-controllers, distributed and remote diagnostics, etc. The
levels of autonomous functionality are described further in Sect. 9.2.

2. Car-2-X applications: Support interaction of vehicles with other vehicles and
off-board systems. This includes support for designing automotive systems with
non-AUTOSAR ECUs based on Genivi, Android, etc.

3. Vehicle in the cloud: Support vehicle to cloud communication. This includes
the development of secured on-board communication, security architecture and
secure cloud interaction.

4. Increased connectivity: Support increased connectivity of the automotive soft-
ware systems and other non-AUTOSAR and off-board systems. This includes
support for dynamic deployment of software components and common method-
ology of work regardless of whether the system is on-board or off-board.

The idea behind adaptive cars is depicted in Fig. 4.25 [AUT16b]. The figure
shows several classic AUTOSARECUs (“C”) that are responsible for common vehi-
cle functionalities, e.g., engine or brake control units. The figure also shows several
non-AUTOSAR ECUs (“N”) that are responsible for infotainment functionalities
or communication with the outside world (e.g., Genivi or Android ECUs). Finally,
the figure shows certain adaptive AUTOSAR ECUs (“A”) that are responsible for
realization of advanced car functionalities that usually require inputs or provide
outputs to both classic and non-AUTOSAR ECUs, such as car-2-X applications.
These ECUs are commonly developed following agile development methodologies
and require more frequent updates and run-time configuration.



4.7 Future of AUTOSAR 111

Fig. 4.25 Adaptive AUTOSAR vehicle architecture

Considering the functional drivers for the adaptive platform and the idea behind
the adaptive vehicle architecture explained above, adaptive ECUs are expected
to be designed using the following principles and technologies (the list is not
exhaustive):

• Agile software development methodology based on dynamic software updates.
This enables a continuous functional development mode that starts with a
minimum viable product.

• Fast addition of new features (application software components) deployed in
different packages. This enables fast software innovation cycles.

• Secured service-oriented point-to-point communication. This enables dynamic
updates of application software, where new software components subscribe to
existing services via a service discovery protocol.

• Wireless updates of the application software. This enables “on the road” software
updates without the need for taking the car to a workshop.

• Support for run-time configuration. This enables dynamic adaption of the system
based on available functionality.

• High bandwidth for inter-ECU communication (Ethernet). This enables faster
transmission of large data.

• Switched networks (Ethernet switches). This enables smart data exchange
between different Ethernet buses.

• Micro-processors with external memory instead of micro-controllers. This
enables higher amounts of memory and peripherals that can be extended.

• Multi-core processors, parallel computing and hardware acceleration. This
enables faster execution of vehicle functions.



112 4 AUTOSAR Standard

• Integration with classic AUTOSAR ECUs or other non-AUTOSAR ECUs (e.g.,
Genivi, Android). This enables unanimous design of heterogeneous automotive
software systems.

• Execution models of access freedom, e.g. full access or sandboxing. This enables
security mechanism for separating running programs from each other, e.g.,
safety- and security-critical programs from the rest.

AUTOSAR plans to achieve this using the adaptive ECU architecture presented
in Fig. 4.26 [AUT16b]:

As was the case with classic AUTOSAR platform, AUTOSAR standardizes
the middleware layer of the adaptive platform that is referred to as the Adaptive
AUTOSAR Services layer. However, this layer is organized in functional clusters
rather than as a detailed description of the modules (internal structure of the
clusters), which enables platform-independent design of the software architectures.
Orange clusters represent parts of the ECU architecture that will be standardized in
the first release of the adaptive platform, while gray clusters represent parts of the
ECU architecture that will be standardized in the later releases.

We can see that, apart from the Operating system that is based on POSIX and
standardized Bootloader for downloading software to the ECU, AUTOSAR plans
to deliver Execution Management, Logging and Tracing, Diagnostics and Com-
munications functional clusters. The Execution Management cluster is responsible
for starting/stopping applications related to different car modes and it is based on
threads rather than runnables. The Logging and Tracing cluster is responsible for
collecting information about different events such as the ones related to safety or

Adaptive AUTOSAR Foundation

(Virtual) Machine / Hardware

Adaptive AUTOSAR Services 

Operating 
system

Bootloader
Hardware 

Acceleration
Platform Health 
Management

Execution 
Management Software 

Configuration 
Management

Security
Management Diagnostics

Communications

Adaptive Application

Logging and 
Tracing

Persistency

API API

API

API API API API

Service Service Service

Fig. 4.26 AUTOSAR adaptive ECU architecture



4.8 Further Reading 113

security. As in the classic AUTOSAR platform, the Diagnostics cluster is respon-
sible for collection of diagnostic event data which is now possible to exchange
with the diagnostic backend. Finally, the Communications cluster is responsible for
service-oriented communication between ECUs connected via Ethernet (SOME/IP
protocol).

The big improvement in the standardization process of the AUTOSAR adaptive
platform is the validation of new features before their standardization. This means
that AUTOSARwill form a group of engineers that will create prototypes of the new
features based on specifications that are planned to be released and provide feedback
to AUTOSAR about their feasibility. This ensures agility of the development process
within the AUTOSAR consortium as well.

4.8 Further Reading

For those who would like details about AUTOSAR, it is important to understand
that AUTOSAR is a huge standard with over 200 specifications and more than
20,000 requirements, so it is nearly impossible to be an expert in all of its features.
AUTOSAR’s specifications are divided into standard and auxiliary specifications,
where only the standardized ones are required to be followed for achieving full
AUTOSAR compliance. Nevertheless, both standardized and auxiliary specifica-
tions could be of interest to the readers who would like to learn specifics about the
AUTOSAR standard.

We recommend all AUTOSAR beginners to start reading the Layered Software
Architecture document [AUT16g], as it defines high-level features of AUTOSAR
that should be known before diving deeper into other specifications. The
AUTOSAR’s Methodology specification [AUT16h] could be a natural continuation
as it contains descriptions of the most important artifacts that are created by different
roles in the AUTOSAR development process. However, it also containsmany details
that may not be understandable at this point, so it should be skimmed through, with
us focusing on the familiar topics.

The rest of the readings are specific to the interest topic of the reader. Readers
interested in the architectural design of automotive software systems should look
into AUTOSAR’s template specifications (TPSs). For example, if they are interested
in the logical system/ECU design, they should take a look at the AUTOSAR
Software Component template [AUT16j] in order to understand how to define
application software components and their data exchange points. Some general
concept used in all templates could be found in the Generic Structure template
[AUT16f], but it is probably best to follow references from the template that is being
read to the concrete section in the Generic Structure templates. This is because
understanding the entire document at once could be challenging. There is no real
need to look at the actual AUTOSAR meta-model specified in UML, as all relevant
information and diagrams are exported to the AUTOSAR template specifications.



114 4 AUTOSAR Standard

Readers interested in the functionalities of the AUTOSAR basic software should
read the software specifications (SWS) of the relevant basic software modules. For
example, if they are interested in the ECU diagnostic functionality, they should take
a look at the AUTOSAR Diagnostic Event Manager [AUT16d] and Diagnostic
Configuration Manager [AUT16c] specifications. Requirements applicable to all
basic software modules can be found in theGeneral Requirements on Basic Software
Modules specification [AUT16e].

On a higher granularity level, design requirements from the TPS specifications
can be traced to the more formalized requirements from the requirements speci-
fications (RS) documents. Similarly, functional basic software requirements from
the SWS specifications can be traced to the more formalized requirements from
the software requirements specifications (SRS) documents [MDS16]. RS and SRS
requirements can be traced to even higher-level specifications such as the ones
describing general AUTOSAR features and AUTOSAR’s objectives. However, we
advise AUTOSAR beginners to stick to the TPS and SWS specifications, at least at
the beginning, as they are the ones that contain explanations and diagrams needed
for understanding the AUTOSAR features in detail.

There are two additional general recommendations that we could give to readers
who want to learn more about AUTOSAR. First, AUTOSAR specifications are not
meant to be read from the beginning until the end. It is therefore recommended
to switch between different specifications in a search for explanations related to
a particular topic. Second, the readers should always read the latest AUTOSAR
specifications as they contain up-to-date information about the current features of
the AUTOSAR standard.

Apart from the specifications released by AUTOSAR, readers interested in
knowing more about the AUTOSAR standard could find useful information in a few
scientific papers. Related to the AUTOSAR methodology, Briciu et al. [BFH13] and
Sung et al. [SH13] show an example of how AUTOSAR software components shall
be designed according to AUTOSAR and Boss et al. [Bos12] explain in more detail
the exchange of artifacts between different roles in the AUTOSAR development
process, e.g., OEMs and Tier1s.

Related to the AUTOSAR meta-model, Durisic et al. [DSTH16] analyze the
organization of the AUTOSAR meta-model and show possible ways in which it
could be re worked in order to be compliant with the theoretical meta-modeling
concept of strict meta-modeling. Additionally, Pagel et al. [PB06] provide more
details about the generation of the AUTOSAR’s XML schema from the AUTOSAR
meta-model, and Brorkens et al. [BK07] show the benefits of using XML as an
AUTOSAR exchange format.

Related to the configuration of AUTOSAR basic software, Lee et al. [LH09]
explain further the use of the AUTOSAR meta-model for the configuration of
AUTOSAR basic software modules. Finally, Mjeda et al. [MLW07] connect the
phases of automotive architectural design based on AUTOSAR and functional
implementation of the AUTOSAR software component in Simulink.



References 115

4.9 Summary

Since its beginning in 2003, AUTOSAR soon became a world-wide standard in
the development of automotive software architectures, accepted by most major car
manufacturers in the world. In this chapter, we explained the reference layered
system architecture defined by AUTOSAR that is instantiated in dozens of car
ECUs, and how different architectural components are usually developed according
to the AUTOSAR methodology.We showed the role of the AUTOSAR meta-model
in the design of the architectural components and the exchange of architectural
models between different parties in the automotive development process. We also
described major components of the AUTOSAR middleware layer (basic software)
and how they could be configured.

Towards the end of the chapter, we visualized the evolution of the AUTOSAR
standard by analyzing its meta-model and requirements changes between the latest
AUTOSAR releases, and showed that the standard is still growing by standardizing
new features. We also showed how AUTOSAR plans to support future cars func-
tionalities, such as autonomous drive and car-to-car communication, by presenting
ideas behind the AUTOSAR adaptive platform.

In our future work we plan to further analyze the differences between AUTOSAR
classic and adaptive platforms on the meta-model and requirements levels, and the
impact of using both platforms in the design of the automotive software systems.

References

AK03. C. Atkinson and T. Kühne. Model-Driven Development: AMetamodeling Foundation.
Journal of IEEE Software, 20(5):36–41, 2003.

AUT13. AUTOSAR, http://www.nhtsa.gov. National Highway Traffic Safety Administration,
2013.

AUT16a. AUTOSAR, www.autosar.org. Automotive Open System Architecture, 2016.
AUT16b. AUTOSAR, www.autosar.org. AUTOSAR Adaptive Platform for Connected and

Autonomous Vehicles, 2016.
AUT16c. AUTOSAR, www.autosar.org. Diagnostic Communication Manager v4.2.2, 2016.
AUT16d. AUTOSAR, www.autosar.org. Diagnostic Event Manager v4.2.2, 2016.
AUT16e. AUTOSAR, www.autosar.org. General Requirements on Basic Software Modules

v4.2.2, 2016.
AUT16f. AUTOSAR, www.autosar.org. Generic Structure Template v4.2.2, 2016.
AUT16g. AUTOSAR, www.autosar.org. Layered Software Architecture v4.2.1, 2016.
AUT16h. AUTOSAR, www.autosar.org. Methodology Template v4.2.2, 2016.
AUT16i. AUTOSAR, www.autosar.org. Release Overview and Revision History v4.2.2, 2016.
AUT16j. AUTOSAR, www.autosar.org. Software Component Template v4.2.2, 2016.
BFH13. C. Briciu, I. Filip, and F. Heininger. A New Trend in Automotive Software: AUTOSAR

Concept. In Proceedings of the International Symposium on Applied Computational
Intelligence and Informatics, pages 251–256, 2013.

BG01. Jean Bézivin and Olivier Gerbé. Towards a Precise Definition of the OMG/MDA
Framework. In International Conference on Automated Software Engineering,
pages 273–280, 2001.



116 4 AUTOSAR Standard

BK07. M. Brörkens and M. Köster. Improving the Interoperability of Automotive Tools by
Raising the Abstraction from Legacy XML Formats to Standardized Metamodels. In
Proceedings of the European Conference on Model Driven Architecture-Foundations
and Applications, pages 59–67, 2007.

BKPS07. M. Broy, I. Kruger, A. Pretschner, and C. Salzmann. Engineering Automotive
Software. In Proceedings of the IEEE, volume 95 of 2, 2007.

Bos12. B. Boss. Architectural Aspects of Software Sharing and Standardization: AUTOSAR
for Automotive Domain. In Proceedings of the International Workshop on Software
Engineering for Embedded Systems, pages 9–15, 2012.

DST15. D. Durisic, M. Staron, and M. Tichy. ARCA - Automated Analysis of AUTOSAR
Meta-Model Changes. In International Workshop on Modelling in Software Engineer-
ing, pages 30–35, 2015.

DSTH14. D. Durisic, M. Staron, M. Tichy, and J. Hansson. Evolution of Long-Term Industrial
Meta-Models - A Case Study of AUTOSAR. In Euromicro Conference on Software
Engineering and Advanced Applications, pages 141–148, 2014.

DSTH16. D. Durisic, M. Staron, M. Tichy, and J. Hansson. Addressing the Need for Strict Meta-
Modeling in Practice - A Case Study of AUTOSAR. In International Conference on
Model-Driven Engineering and Software Development, 2016.

ETS16. ETSI, www.etsi.org. Intelligent Transport Systems, 2016.
Gou10. P. Gouriet. Involving AUTOSAR Rules for Mechatronic System Design. In

International Conference on Complex Systems Design & Management, pages 305–
316, 2010.

Kru95. P. Kruchten. Architectural Blueprints - The “4+1” View Model of Software Architec-
ture. IEEE Softwar, 12(6):42–50, 1995.

Küh06. T. Kühne. Matters of (Meta-) Modeling. Journal of Software and Systems Modeling,
5(4):369–385, 2006.

LH09. J. C. Lee and T. M. Han. ECU Configuration Framework Based on AUTOSAR ECU
Configuration Metamodel. In International Conference on Convergence and Hybrid
Information Technology, pages 260–263, 2009.

LLZ13. Y. Liu, Y. Q. Li, and R. K. Zhuang. The Application of Automatic Code Generation
Technology in the Development of the Automotive Electronics Software. In Inter-
national Conference on Mechatronics and Industrial Informatics Conference, volume
321–324, pages 1574–1577, 2013.

MDS16. C. Motta, D. Durisic, and M. Staron. Should We Adopt a New Version of a Standard?
- AMethod and its Evaluation on AUTOSAR. In International Conference on Product
Software Development and Process Improvement, 2016.

MLW07. A. Mjeda, G. Leen, and E. Walsh. The AUTOSAR Standard - The Experience of
Applying Simulink According to its Requirements. SAE Technical Paper, 2007.

NDWK99. G. Nordstrom, B. Dawant, D. M.Wilkes, and G. Karsai. Metamodeling - Rapid Design
and Evolution of Domain-Specific Modeling Environments. In IEEE Conference on
Engineering of Computer Based Systems, pages 68–74, 1999.

Obj04. Object Management Group, www.omg.org. MOF 2.0 Core Specification, 2004.
Obj14. Object Management Group, http://www.omg.org/mda/. MDA guide 2.0, 2014.
PB06. M. Pagel and M. Brörkens. Definition and Generation of Data Exchange Formats in

AUTOSAR. In European Conference on Model Driven Architecture-Foundations and
Applications, pages 52–65, 2006.

SH13. K. Sung and T. Han. Development Process for AUTOSAR-based Embedded System.
Journal of Control and Automation, 6(4):29–37, 2013.

Völ13. L. Völker. SOME/IP - Die Middleware für Ethernet-basierte Kommunikation. Hanser
automotive networks, 2013.

http://www.omg.org/mda/

	4 AUTOSAR Standard
	4.1 Introduction
	4.2 AUTOSAR Reference Architecture
	4.3 AUTOSAR Development Methodology
	4.4 AUTOSAR Meta-Model
	4.4.1 AUTOSAR Meta-Modeling Environment
	4.4.2 Architectural Design Based on the AUTOSAR Meta-Model
	4.4.3 AUTOSAR Template Specifications

	4.5 AUTOSAR ECU Middleware
	4.6 AUTOSAR Evolution
	4.6.1 AUTOSAR Meta-Model Evolution
	4.6.2 AUTOSAR Requirements Evolution

	4.7 Future of AUTOSAR
	4.8 Further Reading
	4.9 Summary
	References


