
Chapter 3
Automotive Software Development

Abstract In this chapter we describe and elaborate on software development pro-
cesses in the automotive industry. We introduce the V-model for the entire vehicle
development and we continue to introduce modern, agile software development
methods for describing the ways of working of software development teams.
We start by describing the beginning of all software development—requirements
engineering—and we describe how requirements are perceived in automotive
software development using text and different types of models. We discuss the
specifics of automotive software development such as variant management, different
integration stages of software development, testing strategies and the methods used
for these. We review methods used in practice and explain how they should be used.
We conclude the chapter with discussion on the need for standardization as the
automotive software development is based on client-supplier relationships between
the OEMs and the suppliers developing components of vehicles.

3.1 Introduction

Software development processes are at the heart of software engineering as they
provide structure and rigor to the practices of developing software [CC90]. Soft-
ware development processes consist of phases, activities and tasks which prescribe
what actors should do. The actors can have different roles in software development
such as software construction designers, software architects, project managers and
quality managers.

The software development processes are organized in phases where the focus is
on a specific part of software development. Historically these phases include:

1. requirements engineering—the phase where ideas about the functions of the
software are created and broken down into requirements (atomic pieces of
information about what should be implemented)

2. software analysis—the phase where the system analysis is conducted and high-
level decisions about the allocation of functionality to the logical part of the
system are made

3. software architecting—the phase where the software architects describe the high-
level design of the software including its components and allocate them to
computational nodes (ECUs)
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4. software design—the phase where each of the components is designed in detail
5. implementation—the phase where the design for each component is imple-

mented in programming languages relevant for the design.
6. testing—the phase where the software is tested in a number of different ways, for

example through unit and component tests.

These phases are often done in parallel as modern software development
paradigms postulate that it is best to design, implement and test software iteratively.
However, the prevalent software development model in the automotive industry is
the so-called V-model where these phases are aligned to a V-shaped curve, where
the design phases are on the left-hand side of the V and the testing phases are on the
right-hand side of the V.

3.1.1 V-Model of Automotive Software Development

The V-model is illustrated in Fig. 3.1. This model is prescribed by international
industry standards for development of safety-critical systems, like the ISO/IEC
26262 [ISO11].

In the figure, we also make a distinction between the responsibilities of OEMs
(vehicle manufactures) and those of their suppliers. This distinction is important as
it is often the phase where the handshaking between the suppliers and OEMs takes
place, and therefore the requirements are used during the contract negotiations. In
this context a detailed, unambiguous and correct requirements specification prevents
potentially unnecessary costs related to the changes in requirements caused by
misunderstandings between the OEMs and suppliers.

Fig. 3.1 V-shaped model of software development process in automotive software development
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In the remainder of this chapter we go through the requirements engineering
phase and the testing phase. The analysis and architecture phase are included in the
next chapter while the detailed design phase is included in the latter part of the book.

3.2 Requirements

Requirements engineering is a discipline of vehicle development on the one hand
and on the other hand a subdomain of software engineering and an initial phase of
the software development lifecycle. It deals with the methods, tools and techniques
for eliciting, specifying, documenting, prioritizing and quality assuring the require-
ments. The requirements themselves are very important for the quality of software
in multiple senses as the quality is defined as “The degree to which software fulfills
the user requirements, implicit expectations and professional standards.” [CC90].

Requirements engineering in the automotive sector is increasingly about the
software since the software is the source of the innovations. According to Houdek
[Hou13] and a report about the innovation in the car industry [DB15], the number of
functions in an average car grows much faster than the number of devices, with the
number of systematic innovations growing faster than the individual innovations.
The systematic innovations are systems of software functions rather than individual
functions.

Therefore the discipline of requirements engineering is more about engineering
than it is about innovation.

The length of an automotive requirements specification is in the range of 100,000
pages for a new car model according to Houdek, based on his study at Mercedes-
Benz [Hou13], with ca. 400 documents of 250 pages each at the lowest specification
level (component specifications), which are sent over to a large number of suppliers
(usually over 100 suppliers, one for each ECU in the car).

Weber and Weisbrod [WW02] showed the complexity and size of requirements
specifications in the automotive domain based on their experiences at Daimler-
Chrysler. Their large software development projects can have as many as 160
engineers working on a single requirement specification and producing over 3 GB
of requirements data. Weber and Weisbrod describe the process of requirements
engineering in the following way: “Textual requirements are only part of the game –
automotive development is too complex for text alone to manage.” This quote
reflects the state-of-the-practice of requirements engineering—that the requirements
form only one part of the construction database. However, let’s look at how the
requirements are specified in the automotive domain. Similar challenges of linking
requirements to other parts of the construction database can be also found in our
previous studies in [MS08].

The requirements are often defined as (1) A condition or capability needed by a
user to solve a problem or achieve an objective. (2) A condition or capability that
must be met or possessed by a system or system component to satisfy a contract,
standard, specification, or other formally imposed documents. (3) A documented
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representation of a condition or capability as in (1) or (2) [CC90]. This definition
stresses the link between the user of the system and the system itself, which is
important for a number of reasons:

• Testability of the system—it should be clear how a requirement should be tested,
e.g. what is the usage scenario realized by the requirement?

• Traceability of the functionality to design—it should be possible to trace
which parts of the software realize the requirement in order to provide safety
argumentation and enable impact/change management

• Traceability of the project progress—it should be possible to get an overview
of which requirements have already been implemented and which are still to be
implemented in the project

It is a very technical definition for something that is intuitively well known—
a requirement is a way of communicating what we, the users, want in our dream
car. In this sense it seems that the discipline of requirements engineering is simple.
In practice, working with requirements is very complex as the ideas which we,
users, have need to be translated to one of the millions of components of the car
and its software. So, let’s look at how the automotive companies work with our
requirements or dreams.

We talk about software requirements engineering because the automotive indus-
try has recognized the need to move innovation from the mechanical parts of the
car to the electronics and software. The majority of us, the customers, buy cars
today because they are fast (sporty), safe or comfortable. In many cases these
properties are realized by adjusting the software that steers the parts of modern
cars. For example we can have the same car with a software package that makes it
extremely sporty—look at Tesla’s “Insane” acceleration package or Volvo’s Polestar
performance package. These represent just two challenges which lead to two very
important trends in automotive software requirements engineering:

1. Growing amount of software in contemporary cars—as the innovation is driven
by software, the amount of software and its complexity grow exponentially. For
example the amount of software in the 1990s was a few megabytes of binary
code (e.g. Volvo S80) and today reaches over one gigabyte, excluding maps and
other user data (e.g. Volvo XC90 of 2016).

2. Safety requirements posed by such standards as ISO 26262—as software steers
more parts of the car, there is a larger probability that it can interfere with our
driving and cause accidents and therefore it has to be safety-assured just like
the software in airplanes and trains. The contemporary standard for functional
safety (ISO/IEC 26262, Road vehicles—Functional safety) prescribes methods
and processes to specify, design and verify/validate the software.

Automotive software requirements engineering therefore requires rigid processes
for handling the construction of software for a car and therefore is very different
from other types of software requirements engineering, such as for telecom or web
design.
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This chapter takes us through the theory of requirements engineering in automo-
tive development by looking into two types of requirements—textual specifications
and models used as requirements. It also helps us to explore the evolution of
requirements engineering in automotive software development to finally draw on
current trends and challenges for the future.

3.2.1 Types of Requirements in Automotive Software
Development

When designing software for a car, the designers (who are often referred to as
constructors) gradually break down the requirements from car level to component
level. They also gradually refine them from textual requirements to models of
behaviour of the software. This gradual refinement is due to the fact that the
requirements have to be sent to Tier 1 suppliers for development and therefore
should be as detailed as possible to enable their validation. In the automotive domain
we have a number of tiers of suppliers:

• Tier 1—suppliers working directly with OEMs, usually delivering complete
software and hardware subsystems and ECUs to the OEMs

• Tier 2—suppliers working with Tier 1 suppliers, delivering parts of the sub-
products which are then delivered by Tier 1 suppliers to the OEMs; Tier 2
suppliers usually do not work directly with OEMs, which makes it even more
important for the requirements to be detailed so that they can be correctly broken
down by Tier 1 suppliers for Tier 2.

• Tier 3—suppliers working with Tier 2 suppliers, similarly to Tier 2 suppliers
working with Tier 1 suppliers. Usually silicon vendors who deliver the hardware
together with the drivers.

In this section we describe these different types of requirements, which can be
found in these phases.

3.2.1.1 Textual Requirements

AUTOSAR is a great source of inspiration for research in automotive software
development, and therefore let us look at the requirements in this standard—they are
mostly textual. We use the same template as AUTOSAR for specifying requirements
to provide an example of a requirement for keyless entry to the vehicle, as presented
in Fig. 3.2.

The structure of the requirement is quite typical for requirements in general—
it contains the description, the rationale and the use cases. So far we do not see
anything specific. Nevertheless, if we look at the sheer size of such a specification—
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Type Valid

Description It should be able to open the car with an RFID key

Rationale The cars of our brand should all have the possibility to be
opened using keyless solution. The majority of our competitors
have an RFID sensors in the car that opens and starts the car 
based on the proximity of the designated driver who has the
RFID sender (e.g.a card).

Use case Keyless start‐up

Dependencies REQ‐11: RFID implementation

Supporting material ‐‐‐

REQ‐1: Keyless vehicle entryt

Fig. 3.2 An example AUTOSAR requirement

over 1000 pages—we can see that we might confront issues; so let’s discuss the kind
of issues we can discover.

Rationale The textual requirements are used when describing high-level prop-
erties of cars. These types of requirements are mostly used in two phases—the
requirements phase, when the specification of the car’s functionality at a high level
takes place, and at the component design phase, where large software requirements
specification documents are sent to suppliers for development (although the textual
requirements are often complemented by model-based requirements).

Method Specifying this kind of requirement rarely happens from scratch. Textual
requirements are often specified based on models (e.g. UML domain models) and
are intended to describe details of the inner workings of software systems. They
are often linked to verification methods describing how the requirements should be
verified—e.g. describing the test procedure for validating that the requirement is
implemented correctly. Quite often it is the suppliers who do the verification, as
many requirements demand specific test equipment to test their implementation. If
this is the case, the OEMs choose a subset of requirements and verify them to check
the correctness of the verification procedure on their side.

Format The text for the requirement is specified in the format which we can see
in Fig. 3.2—tables with text. This format is very good if we can specify the details,
but they are not very good when we want to communicate overviews and provide
the context for the requirements. For that we need other types of requirements—use
cases or models.

3.2.1.2 Use Cases

In software engineering the golden standard for specifying requirements is using
use cases as defined by Jacobson, together with his Objectory methodology, in the
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Keyless start-up

Fig. 3.3 An example use case specification with one use case

driver:Actor

MyCar:System

approach()

isValidDriver = checkValidity()

[isValidDriver] openDoors()

[isValidDriver] startEngine()

Fig. 3.4 An example specification of a use case using the message sequence charts/sequence
diagrams

1990s [JBR97]. The use cases describe a course of interaction between an actor and
the system under specification, for example as shown in Fig. 3.3, where the actor
interacts with the car in the use case “Keyless start-up”. The corresponding diagram
(called the use case diagram in UML) is used to present which interactions (use
cases) exist and how many actors are included in these interactions.

In the automotive industry this kind of requirements specification is the most
common when describing the functions of the vehicles and their dependencies. It
is used to describe how the actors (drivers or other cars) interact with the designed
vehicle (the system) in order to realize a specific use case. This kind of specification
is often described using the sequence diagrams of UML and we can see an example
of such a specification in Fig. 3.4.

Rationale The use case specifications provide a high-level overview of the func-
tionality of the designed system, such as a car, and therefore are very useful in the
early phases of vehicle development. Usually these early phases are the functional
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design (use case diagrams) and the beginning of the system design (use case
specifications).

Method Using the high-level descriptions of product properties, the functional
designers break down these properties into usage scenarios. These usage scenarios
provide a way to identify which of the functions (use cases) are of value to the
customers and which are too cumbersome.

Format These kinds of specifications consist of three parts—(1) the use case
diagram, (2) the use case specification using a sequence diagram, and (3) the textual
specification of a use case detailing the steps of the interaction using somewhat
structured natural language.

3.2.1.3 Model-Based Requirements

One method to provide more context to the requirements is to express them as mod-
els. This kind of representation can be done in two types of formalisms—UML-like
models and Simulink models. In Fig. 3.5 we present an excerpt of a Simulink model
for an ABS system from [Dem] and [RSBC13a].

The model shows how to implement the ABS system, but the most important
property is that the model shows how the algorithm should behave and therefore
how it should be verified.

Rationale Using models as requirements has been recognized by practitioners, and
in an automotive software project up to 23% of models are used as requirements

Fig. 3.5 An example Simulink model which can be used as a requirement to describe how to
implement the ABS system
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according to our previous studies [MS10b] and [MS10a]. According to the same
studies, up to 13% of effort is spent in the software project to design these kinds of
requirements.

Method The simulation models used for requirements engineering are often used
as part of the process of system design and function design, where the software and
system designers develop algorithms that describe how functions in modern cars are
to be realized. These models can be automatically translated to C/C++ code using
code generation, but it is rather uncommon. The reason is that these models describe
entire functions which are often partitioned into different domains and spread over
multiple components. Quite often these kinds of requirements are translated into
textual specifications, shown in the previous subsection.

Format The models are expressed using Simulink or a variation of statechart such
as Statemate or Petri nets. These simulation models detail the functions described in
the use cases by adding the system view of the interaction—the blocks and signals.
The blocks and signals represent the realization of the functionality in the car and
are focused on one function only. These models are often used as specifications
which are then detailed and often used to generate the source code automatically.

3.3 Variant Management

Having a good database of requirements and construction elements is key to success
in automotive software engineering. This is dictated by the fact that the automotive
market is based on variability—i.e. the locations in the product (software) where it
can be configured. As customers we expect the ability to configure our car with the
latest and greatest features of hardware, electronics and software.

There are two basic kinds of variability mechanisms in automotive software:

• Configuration—when we configure parameters of the software without modify-
ing its internal structure. This kind of variability is often seen in the non-safety
critical functions such as engine calibration or in configuring the availability of
functions (e.g. rain sensors).

• Compilation—when we change the internal structure of the software, compile
it and then deploy on the target ECU. This kind of variability is used when we
need to ensure that the software always behaves in the same way, for example the
availability of the function for collision avoidance by breaking.

In this section we explain the basics of these two mechanisms.
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Fig. 3.6 Variability through
configuration

Software 
component 

(e.g. windshield 
wipers controller)

Variability point: speed controller

3.3.1 Configuration

Configuration is often referred to as runtime variability as changing the software
can be done after the software is compiled. Figure 3.6 presents the conceptual view
of this kind of variability.

In Fig. 3.6 we can see that we have one variant of the software component
(rectangle) with one variability point (the dotted line triangle) which can be
configured using two different configurations—without the rain sensor and with the
rain sensor. This means that we compile the code for the software component once
and then use two different configuration files when deploying the software.

The configuration as a variability mechanism has important implications for the
designers of the software. The main implication is that the software has to be tested
using multiple scenarios—i.e. the software designers need to be able to prevent use
of the software component with invalid configurations.

3.3.2 Compilation

The compilation as a variability mechanism is fundamentally different as it results in
a software component which cannot be modified (configured) after its compilation,
during runtime. Therefore it is an example of so-called design time variability as
the designers must decide during design which variant is being developed. This is
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Fig. 3.7 Variability through
compilation Software 

component var1 
(e.g. windshield 

wipers controller)

Variant 1: no rain sensor

Software 
component var2
(e.g. windshield 

wipers controller)

Variant 2: with rain sensor

conceptually shown in Fig. 3.7 where we can see two different versions of the same
component—with and without the rain sensor.

As Fig. 3.7 suggests, there are two different code bases for the software
component—one with and one without the rain sensor. This means that the
development of these two variants can be decoupled from each other, but that
also means that the designers have to maintain two different code bases at the same
time. This parallel maintenance means that if there are defects in the common code
then both code bases need to be updated and tested.

The main advantage of this kind of variability mechanism is the assurance that the
code is not tampered with in any way after the compilation. The code can be tested,
and once deployed there is no way that an incorrect configuration can break the
quality of the component. However, the main disadvantage of this type of variability
management mechanism is the high cost of maintenance of the code base—parallel
maintenance.

3.3.3 Practical Variability Management

Both of the above variability management mechanisms are used in practice.
Compile time variability is used when the software is an integral part of an ECU
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whereas configuration is used when the software can be calibrated to different
types of configurations during deployment (e.g. configuration on the assembly line,
calibration of the engine and gearbox depending on the powertrain performance
settings).

3.4 Integration Stages of Software Development

On the left-hand side of the V-model the main type of activity is refinement of
requirements in multiple ways. On the right-hand side of the model the main activity
type is integration followed by testing.

In short, integration is the activity where software construction engineers inte-
grate their code with the code of other components and with the hardware. In the first
integration stages the hardware is usually simulated hardware in order to allow for
unit and component testing (described in Sect. 3.5). In the later integration phases
the software code is integrated together with the target hardware, which is then
integrated into a complete electrical/electronic system of the car (Table 3.1).

Figure 3.8 shows an example software integration of software modules and
components into an electrical system. What is important to notice is the fact that the
integration steps (vertical solid black lines) are not synchronized as the development
of different software modules is done at different pace.

In practice this figure is even more complicated, as the integration plan is often
a document with several dimensions. Each integration cycle (which is what we
show in Fig. 3.4) is done several times during the project. First, the so-called basic

Table 3.1 Types of integration

Type Description

Software integration This type of integration means that two (or more) software
components are put together and their joint functionality is tested.
The usual means of integration depend on the what is integrated—it
can be merging of the source code if the integration is on the source
code level; it can be linking of two binary code bases together; or it
can be parallel execution to test interoperability. The main testing
techniques are unit and component testing, described in Sect. 3.5

Software-hardware
integration

This type of integration means that the software is integrated
(deployed) to the target hardware platform. In this type of
integration, the focus is on the ability of the complete ECU to be
executed and the main testing type is component testing, described
in Sect. 3.5

Hardware integration This type of integration means that the focus is on the integration of
the ECUs with the electrical system. In this type of integration the
focus is on the interoperability of the nodes and basic functionality,
such as communication. The testing related to this type of
integration is system testing
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Module 1

Project time

Module 2

Module 3

Module 4

Compo
nent A

Compo
nent A

Compo
nent A

Vehicle 
software 
system

Fig. 3.8 Software integration with integration steps

software is integrated (functionality like the boot code, and communication) and
then higher level functionality is added, according to the functional architecture as
described in Chap. 2.

3.5 Testing Strategies

Requirements engineering progresses from higher abstraction levels towards more
detailed, lower abstraction levels. Testing is the opposite. When the testers test the
software they start from the most atomic type of testing—unit testing—where they
test each function and each line of code. Then they gradually progress by testing
entire components (i.e. multiple units linked together), then the entire system and
finally each function. Figure 3.9 shows the right-hand side of the V-model with a
focus on the testing phases.

In the coming subsections we look deeper into the testing phases of the
automotive software.

3.5.1 Unit Testing

Unit test is the basic test, which is performed on individual entities of software such
as classes, source code modules and functions. The goal of unit testing is to find
defects related to the implementation of atomic functions/methods in the source
code.

The basic scheme of unit testing is the creation of automated test cases which
combine individual methods with the data that is needed to achieve the needed
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Implementation & 
unit test

Component test

System test

Functional test

Customer test

OEMs

Suppliers

Fig. 3.9 Testing phases in automotive software development

Fig. 3.10 Example unit test for testing the status of windshield wiper module

quality. The result is then compared to the expected result, usually with the help
of assertions. An example of a unit test is presented in Fig. 3.10.

The unit test presented in Fig. 3.10 is a test for correctness of the creation of
object “WindshieldWiper”—a unit under test (UAT). This particular test code is
written in C# and in practice the test code can be written in almost any programming
language. The principles, however, are the same for all unit tests.
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Of interest for our chapter are lines 14–23, as they contain the actual test code.
Line 15 is the arrangement line which prepares (sets up) the test case—in our
example it declares a variable which will be assigned to the object of the class
WindshieldWiper. Line 18 is the actuation line which executes the actual test code—
in our example creates the object of the WindshieldWiper class.

The most interesting are lines 21–23 since they contain the so-called assertion.
The assertion is a condition which should be fulfilled after the execution of the test
code. In our example the assertion is that the status of the newly created object (line
21) is “closed” (line 22). If it is not the case, then the error message is logged in the
testing environment (line 32) and the execution of the new test cases continues.

Unit testing is often perceived as the simplest type of testing and is most
often automated. Frameworks like CppUnit, JUnit or Google test framework can
orchestrate the execution of unit tests, allowing us to quickly execute the entire set
of tests (called test suites) without the need for manual intervention.

Automated unit tests are also reused in several ways, for example to create
nightly regression test suites or to create the so-called “smoke testing” where testers
randomly execute test cases to check whether the system exposes random behavior.

It is also important to notice that reuse of test cases needs to be accompanied by
the methods to prioritize test cases, e.g. by identifying risky areas in source code
[ASMC14] or focusing on code that was changed since the last test run [KSMC15,
SHFC13]. It is also important to trace the test process in the context of software
reliability growth [RSMC13, RSBC13b].

We can also see that if the test case finds a problem (fails), then troubleshooting is
relatively simple—we know which code was executed and under which conditions.
This knowledge allows the testers to quickly describe where the defect is or even
suggest how to fix it.

3.5.2 Component Testing

This is sometimes also called integration testing, as the goal of this type of testing
is to test the integrations, i.e. links, between units of code within one of many
components. The main characteristic which differentiates component tests from unit
tests is that in component testing we use stubs to simulate the environment of the
tested component or the group of the components. This is illustrated in Fig. 3.11.

In contrast to unit tests, component tests focus on the interaction between the
stubs and the component under test. The goal of this type of testing is to verify that
the structure and behavior of the interfaces is implemented correctly.

We should also mention that the number of stubs in the system decreases as
the development project progresses. With the progress of the development, new
components are designed and they replace the stubs. Hence the nickname of this
type of testing—“integration testing”.

In automotive systems this type of testing is often done by simulating the
environment using either models (the so-called Model-In-the-Loop or MIL testing)
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Component Under Test (CUT):
Windshield activator

Stub HW interface

Stub HMI 
Stub 

movement

Fig. 3.11 Component under test with the simulated environment

or hardware simulators (the so-called Hardware-In-the-Loop or HIL testing). An
example of equipment for HIL testing is presented in Fig. 3.12.

Figure 3.12 shows a testing rig from dSpace, which is widely used in the
automotive industry to test components by simulating the external environment.

Since the environment of the components is simulated, the non-functional prop-
erties of the components are often hard to test or require very detailed simulations.
The very detailed simulations, however, also tend to be very costly.

3.5.3 System Testing

System testing is the phase of testing when the entire system is assembled and tested
as a whole. The focus of system testing is on checking whether the system fulfills
its specifications in a number of ways. The system testing focuses on verifying the
following aspects:

1. functionality—testing whether the system has the functionality as specified in
the requirements specification

2. interoperability—testing whether the system can connect to the other systems
which are designed to interact with the system under test

3. performance—testing whether the system under test performs within the speci-
fied limits (e.g. timing limits, capacity limits)

4. scalability—testing whether the system’s operation scales up and down (e.g.
whether the communication buses operate with 80 and 120 ECUs connected)

5. stress—testing whether the system operates correctly under high load (e.g. when
the maximum capacity of the communication buses is reached)

6. reliability—testing whether the system operates correctly during a specific period
of time

7. regulatory and compliance—testing whether the system fulfills legal and regula-
tory requirements (e.g. carbon dioxide emissions)
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Fig. 3.12 HIL testing
rig—Image source: dSPACE
GmbH. Copyright 2015
dSPACE GmbH—reprinted
with permission

System testing is usually the first testing phase when the above aspects can be
tested and therefore it is usually the most effective way of testing. However, it is
also very costly way of testing and very inefficient, as fixing the defects found in
this phase requires frequent changes in multiple components.

In the automotive software this type of testing is often done using the so-called
“box cars”—the entire electrical system being set up on tables without the chassi
and the hardware components.
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Test ID T0001

Description Test of the basic function of windshield wipers. The goal of the test is to 
verify that the windshield wipers can make one sweep with the engine 
turned off. 

Action/Step Expected result

Start ignition Battery icon on the dashboard lit red; windshield wipers are in the 

Push the windshield wipers 
level one step forward

Wait 20 seconds

Turn off ignition

Fig. 3.13 Example of a functional test

3.5.4 Functional Testing

The functional testing phase focuses on verifying that the functions of the system
work according to their specification. They correspond to the functional require-
ments in the form of use cases and are quite often specified according to the use
cases. Figure 3.13 presents an example of a functional test—specified as a table.

What is important in this example is the specification, which is similar to the
specification of a use case—the description of the action (step) on the left-hand side
together with the expected outcome on the right-hand side. We can also observe that
the functional test does not require the knowledge of the actual construction of the
system under test (SUT), which led to the nickname of these tests as “black-box
testing”.

We should not focus on the simplicity of the example because functional testing
is often the most effort-intensive type of testing. It is often done in a manual manner
and requires sophisticated equipment to conduct.

Examples of sophisticated functional test cases are safety test cases where OEMs
test their safety systems. To be able to test such a function, car manufacturers need to
recreate the situation where the system could be activated and check whether it was
activated. They also need to recreate the situation when it should not be activated
and test that it was not activated.

When the functional test fails, it is rather difficult to find the defect, as the
number of construction elements which take part in the interaction can be quite
large—in our example the failure of the functional test case could be caused by
anything from mechanical failure of the battery to design defect in the software.
Therefore functional testing is often used after the other tests are conducted to
validate functionality rather than to verify the design.
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3.5.5 Pragmatics of Testing Large Software Systems: Iterative
Testing

As the electrical system of contemporary cars is very complex, OEMs often apply
concepts of interactive testing to their development. Concept of iterative testing
means that the functionality of the software is divided into levels (as prescribed by
the functional architecture described in Chap. 2) and the functions are tested using
unit, component, system and functional testing per layer. This means that the basic
functionality such as booting up of the electronics, starting up of the communication
protocols, running diagnostics, etc. are tested first and the more advanced functions
such as lighting, steering, and braking are tested later, followed by more advanced
functions such as driver alerts.

3.6 Construction Database and Its Role in Automotive
Software Engineering

All these types of requirements need to come together somehow and that’s why we
have the process and the infrastructure for requirements engineering. Let us start
with the infrastructure—usually named the design or construction database. In the
light of work of Weber and Weisbrod [WW02] it is called the common information
model. Figure 3.14 shows how this design database is used. The construction

Fig. 3.14 Design database
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database contains all elements of the design of the electrical system of the vehicle—
components, electronic control units, systems, controllers, etc. The structure of such
a database is hierarchical and reflects the structure of the vehicle. Each of the
elements in the database has a set of requirements linked to it. The requirements are
also linked to one another to show how they are broken down. Such a database grows
over time and is version-controlled as different versions of the same elements can
be used in different vehicles (e.g. different year models of the same car or different
cars).

An example of such a system is described by Chen et al. [CTSC06] and has been
developed by the company Systemite, which specializes in databases for vehicle
construction. Such a database structures all the elements of the construction of the
electronics of the vehicle and links all artifacts to the construction elements. An
example of a construction element is the engine’s electronic control unit, and all the
functions that use this control unit are linked to it.

Such a database usually has a number of views which show the required
set of details—functional view, architectural view, topological view and software
components’ view. Each view provides the corresponding entry point and shows the
relevant elements, but the database is always in a consistent state where all the links
are valid.

The database is used to generate construction specifications for different actors.
For each supplier that delivers an ECU, the database generate the set of all
requirements which are linked to the ECU and all models which describe the
behaviour of the ECU. Sometimes, depending on the situation, the documentation
contains even the simulation models for the functions which are to be included in
the ECU.

One of the commercial tools available on the market which is used as a
construction database is the tool SystemWeaver provided by Systemite. The main
strength of such a tool is the ability to link all elements together. In Fig. 3.15 we
can see how the requirements are linked to the software architecture model. On the
left-hand side we can see that the requirements are part of an element (e.g. “Adjust
speed” as part of the “Adaptive cruise control”), and on the right-hand side another
requirement visualized as a diagram.

Such tools provide specific views, for example listing all requirements linked to a
specific function as shown in Fig. 3.16. As part of that view we can see that the text
is complemented with figures which allow the analysts to be more specific when
specifying requirements and allow the designers to understand the requirements
better.

The ability to link the elements from different views (e.g. requirements and
components) and provide a graphical overview of these elements allows the
architects to quickly perform change impact analyses and reason about their
architectural choices. Such a dynamic creation of views is very important when
assessing architectures (e.g. during ATAM assessments). An example of such a view
is one showing a set of architectural components used in realization of a specific user
function, as shown in Fig. 3.17.
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Fig. 3.15 Design database linking requirements to architectural elements. Copyright 2016,
Systemite—reprinted with permission

Fig. 3.16 Design database listing requirements for a specific function. Copyright 2016,
Systemite—reprinted with permission
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Fig. 3.17 Design database showing architectural components used when designing a specific
function. Copyright 2016, Systemite—reprinted with permission

The system construction database can also help us in linking requirements to test
cases during the test planning phase—as shown in Fig. 3.18.

It can also assist us in tracking the progress of testing—Fig. 3.19. Since the
number of requirements is so large in automotive systems, tracking the progress of
whether they are tested is also not trivial. Therefore a unified view is needed where
the project can track the test cases that are planned to cover certain requirements, as
well as those that they were executed and what the result of the execution was.

The construction database and modelling tool provide the project teams with a
consistent view on their software system. In the case of software architectures this
tool allows us to link together all the views presented in Chap. 2 (such as physical,
logical, and deployment) and therefore avoid unnecessary work to keep documents
in a steady and consistent state. Most of the tools available for this purpose provide
the possibility to handle multiple parallel versions and baselines, which is essential
in the development of automotive software.
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Fig. 3.18 Linking test cases to requirements. Copyright 2016, Systemite—reprinted with
permission

Fig. 3.19 Tracking test progress. Copyright 2016, Systemite—reprinted with permission
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3.7 Further Reading

In this chapter we outlined the practical aspects of automotive software development
from a bird’s eye perspective. Interested readers can turn to more literature in the
area to dive deeper into details.

For the automotive software processes we recommend the book by Schäuffele
and Zurawka [SZ05], which presents a classical view on automotive software
development, starting from low-level processor programming and moving on to
advanced functionality development.

The classical paper by Broy [Bro06] describing the challenges in automotive
software engineering is the next step to understanding the dynamics of automotive
software engineering in general. This reading can be complemented by the paper by
Pretschner et al. [PBKS07], where the focus is on the future of automotive software
development.

Readers interested in the management of variability in general should explore
the work of Bosch et al. [VGBS01, SVGB05] or [BFGC01]. The work is based on
software product lines, but applies very well to the automotive sector. This can be
complemented with more recent developments in this area—software ecosystems
and their realization in the automotive sector [EG13, EB14].

Otto et al. [Ott12] and [Ott13] presents a study on requirements engineering
at Mercedes-Benz, where they classified over 5800 requirement review protocols
to their quality model. Their results showed that textual requirements (or natural
language requirements as they are called in the publication) are prone to such
problems as inconsistency, incompleteness and ambiguity—with about 70% of
defects in requirements falling into these categories. In the light of this article we
can see the need for complementing the textual requirements with more context,
provided by use case models, user stories and use cases.

Törner et al. [TIPÖ06] presented a similar study but of the requirements at Volvo
Car Group. In contrast to the study of Otto et al. [Ott12], these authors studied the
use case specifications and not the textual requirements. The results, however, are
similar, as the main types of defects are missing elements (correctness in Otto et
al.’s model) and incorrect linguistics (ambiguity in Otto et al.’s model).

Eliasson et al. [EHKP15] described further experiences from Volvo Car Group
where they explored challenges with requirements engineering at large in a mecha-
tronics development organization. Their findings showed that there is a lot of
communication in parallel to the requirements specification. The stakeholders in the
requirements specification frequently mentioned the need to have a good network in
order to specify the requirements correctly. This indicates the challenges described
previously in this chapter that the requirements need more context than is usually
provided in just the specification (especially the textual specification).

Mahally et al. [MMSB15] identified requirements to be the main barriers and
enablers in moving towards Agile mechatronics organizations. Although today
OEMs try to move towards fast development of mechatronics and reduce the cycle
time by using Agile software development approaches, the challenges are that we
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do not know upfront whether a requirement requires the development of electronics
or is only a software requirement. According to Mahally et al. that kind of problem
needs to be solved, and based on the prediction of Houdek [Hou13] this kind of
issue might be coming to an end as device development flattens out and most of
the requirements become software requirements. Similar challenges were presented
by Pernstål et al. [PGFF13] who found that requirements engineering is one of
the top improvement areas for automotive OEMs. The ability to communicate via
requirements was also an important part.

At Audi, Allmann et al. [AWKC06] presented the challenges in the requirements
communication on the boundary between the OEMs and their suppliers. They
identified the need for better communication and the challenges of communicating
through textual representations. They recognized the need for tighter partnerships
as there is an inherent deficiency in communicating through requirements—
transferring knowledge through an intermediate medium. Therefore they recom-
mended integrating systems to minimize knowledge loss via transfer of documents.

Siegl et al. [SRH15] presented a method for formalizing requirements specifica-
tions using the Time Usage Model and applied it successfully to a requirements
specification from one of the German OEMs. The evaluation study showed an
increase in test coverage and increased quality of the requirements specification.

At BMW, Hardt et al. [HMB02] demonstrated the use of formalized domain
engineering models in order to reason about the dependencies between requirements
in the presence of variants. Their approach provided a simplistic, yet powerful,
formalism and its strength was industrial applicability.

A study of the functional architecture of a car project at BMW and the
requirements linked to the functions by Vogelsang and Fuhrmann [VF13] showed
that 85% of functions are dependent on one another and that these dependencies
cause a significant number of problems in software projects. This study shows
the complexity of the functional decomposition of the vehicle’s design and the
complexity of its description.

At Bosch, the longitudinal study of a 5-year project by Langenfeld et al. [LPP16]
showed that 61% of defects in requirements come from the incompleteness or
incorrectness of the requirements specifications.

One of interesting trends in requirements engineering is the automatization of
tasks of requirements engineers. One of such tasks is the discovery of non-functional
requirements. This task is based on reading the specifications of functional require-
ments and identifying phrases which should transform into non-functional require-
ments. A study on the automation of this task has been conducted by Cleland-
Huang et al. [CHSZS07]. The study showed that the automated classification of
requirements could be as good as 90%, but at this stage cannot replace the manual
classifiers.
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3.7.1 Requirements Specification Languages

A model for requirements traceability [DPFL10] DARWIN4Req has been proposed
to address the challenges related to the ability to follow the requirements’ lifecycle.
The model allows us to link requirements expressed in different formalities (e.g.
UML, SySML) and connect them to one another. However, to the best of our
knowledge, the model and the tool have not been adopted on a wider scale yet.

EAST-ADL [DSLT05] is an architecture specification language which contains
elements to capture requirements and link them to the architectural design. The
approach is similar to that of SySML but with the difference that there is no
dedicated requirements specification diagram. EAST-ADL has been demonstrated
to work in industry; however, it is not a standard for automotive OEMs yet.
Mahmud [MSL15] presented a language ReSA that complements the EAST-ADL
modelling language with the possibility to analyze and validate requirements (e.g.
basic consistency checks).

For non-functional requirements in the domain of safety, Peraldi [PFA10] has
proposed another extension of the EAST-ADL language which allows for increased
traceability of requirements and their linking to non-functional properties of the
designed embedded software (e.g. Safety).

Mellegård and Staron [MS09] and [MS10c] conducted an empirical study on
the impact of using hierarchical graphical requirements specification on the quality
of change impact assessment. For this purpose they designed a requirements’
specification language based on the existing formalism—Requirements Abstraction
Model. The results showed that the graphical overview of the dependencies between
requirements introduces significant improvement [KS02].

Finally, the use of models as core artifacts in software development in the
automotive domain has been studied in the context of MDA (Model-Driven
Architecture) [SKW04a, SKW04b, SKW04c]. The important aspect is the evolution
of models throughout the lifecycle.

3.8 Summary

Correct, unambiguous and consistent requirements specifications are foundations
for high-quality software in general and in the automotive embedded systems in
particular. In this chapter we introduced the most common types of requirements
used in this domain and provided their main strengths.

Based on the current state of evolution of automotive software we could observe
three trends in requirements engineering for automotive embedded systems—
(1) agility in requirements specification, (2) increased focus on non-functional
requirements and (3) increased focus on security as a domain for requirements.
Towards the end of the chapter we also provided an overview of the requirements
practices at some of the vehicle manufacturers (Mercedes Benz, Audi, BMW and
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Volvo) based on documented experiences at these companies. We have also pointed
out a number of directions for further reading for the interested.

In our future work we plan to review the requirements engineering practices in
the main automotive OEMs and identify their differences and commonalities.
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