
Chapter 2
Software Architectures: Views and
Documentation

Abstract Software architecture is the foundation for automotive software design.
Being a high-level design view of the system it combines multiple views on the
software system, and provides the project teams with the possibility to communicate
and make technical decisions about the organization of the functionality of the entire
software system. It allows also us to understand and to predict the performance of
the system before it is even designed. In this chapter we introduce the definitions
related to software architectures which we will use in the reminder of the book. We
discuss the views used during the process of architectural design and discuss their
practical implications.

2.1 Introduction

As the amount of software in modern cars grows we observe the need to use more
advanced software engineeringmethods and tools to handle the complexity, size and
criticality of the software [Sta16, Für10]. We increase the level of automation and
increase the speed of delivery of software components. We also constantly evolve
software systems and their design in order to be able to keep up with the speed of
the changes in requirements in automotive software projects.

Software architecture is one of the cornerstones of successful products in
general, and in particular in the automotive industry. In general, the larger the
system, the more difficult it is to obtain a good quality overview of its functions,
subsystems, components and modules—simply because of the limitations of our
human perception. In automotive software design we have more specific challenge,
related to the safety of the software embedded in the car and the distribution of the
software—both distribution in terms of the physical distribution of the computing
nodes and distribution of the development among the car manufacturers and their
suppliers.

In this chapter we discuss the concept of software architecture and explain
it with the examples of building architectures. Once we know more about what
constitutes software architecture, we go into the details of different views of
software architecture and how they come together. We then move on to describing
the most common architectural styles and explain where they can be seen in
automotive software. Finally we present the ways of describing architectures—the

© Springer International Publishing AG 2017
M. Staron, Automotive Software Architectures,
DOI 10.1007/978-3-319-58610-6_2

19



20 2 Software Architectures: Views and Documentation

architecture modelling languages. We end the chapter with references to further
readings for readers interested in more details.

2.2 Common View on Architecture in General and in the
Automotive Industry in Particular

The concept of architecture is well rooted in our society and its natural association
is to the styles of buildings. When thinking about architecture we often recall large
cathedrals, the gothic and modern styles of churches, or other large structures. One
of the examples of such a cathedral is the “Sagrada Familia” cathedral in Barcelona
with its very characteristic style.

However, let us discuss the concept of the architecture with a considerable
smaller example—let us take the example of a pyramid. Figure 2.11 presents a
picture of the pyramids in Gizah.

The form of the pyramid is naturally based on a triangle. The fact that it is based
on a triangle is one of the architectural choices. Another choice is the type of the
triangle (e.g. using the golden number 1.619 as the ratio between the slant height to
half the base length). The decision is naturally based on mathematics and illustrated

Fig. 2.1 All Gizah pyramids: a picture represents an external view of the product

1Author: Ricardo Liberato, available at Wikipedia, under the Creative Commons License: https://
creativecommons.org/licenses/by-sa/2.0/.

https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/


2.2 Common View on Architecture in General and in the Automotive Industry. . . 21

Fig. 2.2 Internal view of the architecture of a pyramid

Fig. 2.3 Volvo XC 90, another example of the external view of the product

using one of the views of the pyramid—call it an early design blueprint as presented
in Fig. 2.2.

Figure 2.2 shows the first design principles later on used to detail the design
of the pyramid. Instead of delving deeper into the pyramid construction, let us
now consider the notion of architecture and software architecture in the automotive
industry.

One obvious view of the architecture of the car is the external view of the product,
as with the view of the pyramid (Fig. 2.3).2

2Author: Albin Olsson, available at Wikipedia, under the Creative Commons License: https://
creativecommons.org/licenses/by-sa/4.0/deed.en.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en


22 2 Software Architectures: Views and Documentation

Fig. 2.4 A blueprint of the design principles of a car

We can observe the general architectural characteristics of a car—the placement
of the lights, the shape of the lights, the shape of the front grill, the length of the car,
etc. This view has to be complemented with a view of the internal design of the car.
An example of such a blueprint is presented in Fig. 2.4.3

This blueprint shows the dimensions of the car, hiding other kinds of details.
Another blueprint can be a view of the electrical system of a car, its electronics and
its software.

2.3 Definitions

Software architecting starts with the very first requirement and ends with the last
defect fix in the product, although its most intensive period is in the early design
stage where the architects decide upon the high-level principles of the system
design. These high-level principles are documented in the form of a software
architecture document with several views included. We could therefore define the
software architecture as the high-level design, but this definition would not be just.
The definition which we use in this book is:

3Figure source: pixbay.com.

pixbay.com


2.4 High-Level Structures 23

Software architecture refers to the high-level structures of a software system, the
discipline of creating such structures, and the documentation of these structures.
These structures are needed to reason about the software system

The definition is not the only one, but it reflects the right scope of the
architecture. The definition comes from Wikipedia (https://en.wikipedia.org/wiki/
Software_architecture).

2.4 High-Level Structures

The definition presented in this chapter (“Software architecture refers to the high-
level structures of a software system: : :”) talks about “high-level structures” as a
means to generalize a number of different entities used in the architectural design.
In this chapter we go into details about these structures, which are:

1. Software components/Blocks—pieces of software packaged into subsystems and
components based on their logical structure. Examples of such components could
be UML/C++ classes, C code modules, and XML configuration files.

2. Hardware components/Electronic Control Units—elements of design of the
computer system (or platform) on which the software is executed. Examples of
such elements include ECUs, communication buses, sensors and actuators.

3. Functions—elements of the logical design of the software described in terms
of functionality, which is then distributed over the software components/blocks.
Examples of such elements are software functions, properties and requirements.

All of these elements together form the electrical system of the car and its
software system. Even though the hardware components do not “belong” to the
software world, it is the often the job of the architect to make sure that they are
visible and linked to the software components. This linking is important from the
process perspective—it must be know which supplier should design the software
for the hardware. We talk more about the concept of the supplier and the process in
Chap. 3.

In the list of high-level structures, when introducing functions, we indicated
the interrelation between these entities—“functions distributed over the software
components”. This interrelation leads us to an important principle of architecting—
the use of views. An architectural view is a representation of one or more structural
aspects of an architecture that illustrates how the architecture addresses one or
more concerns held by one or more of its stakeholders [RW12].

One could see the process of architecting as a prescriptive design, the process
continuous as the design evolves. Certain aspects of design decisions influence
the architecture and are impossible to know a priori—increased processing power
required to fulfill late function requirements or safety-criticality of the designed
system. If not managed correctly the architecture has a tendency to evolve into a
descriptive documentation that needs to be kept consistent with the software itself
[EHPL15, SGSP16].

https://en.wikipedia.org/wiki/Software_architecture
https://en.wikipedia.org/wiki/Software_architecture


24 2 Software Architectures: Views and Documentation

2.5 Architectural Principles

The second part of the definition of the software architecture (“: : :the discipline of
creating such structures: : :”) refers to the decisions which the software architects
make in order to set the scene for the development. The software architects create
the principles by defining such things as what components should be included in
the system, which functionality each component should have (but not how it should
be implemented—this is the role of the design discipline, which we describe in
Chap. 5) and how the components should communicate with each other.

Let us consider the coupling as an example of setting the principles. We can
consider an example of a communication between the component representing the
controller of the windshield wipers and the component representing the hardware
interface to the small engine controlling the actual windshield wiper arm. We could
have a coupling in one way, as presented in Fig. 2.5.

In the figure we can see that the line (association) between the blocks is directed
from WindshieldWiper to WndEngHW. This means that the communication can
only happen in one way—the controller can send signals to the hardware interface.
This seems logical, but it raises challenges when the controller wants to know the
status of the hardware interface without pulling the interface—it is not possible as
the hardware interface cannot communicate with the controller. If an architect sets
this principle then this has the consequences on the later design, such as the need
for extra signals on the communication bus (pulling the hardware for the status).

However, the software architect might make another decision—to allow commu-
nication both ways, which is shown in Fig. 2.6.

Fig. 2.5 An example principle—unidirectional coupling between two blocks

Fig. 2.6 An example principle—bidirectional coupling between two blocks



2.6 Architecture in the Development Process 25

The second architectural alternative allows the communication in both ways,
which solves the challenges related to pulling the hardware interface component
for the status. However, it also brings in another challenge—tight coupling between
the controller and the hardware interface. This tight coupling means that when one
of these two component changes, the other should be changed (or at least reviewed)
as the two are dependent on one another.

In the reminder of this chapter we discuss several of such principles when
discussing architectural styles.

2.6 Architecture in the Development Process

In order to put the process of architecting in context and describe the current
architectural views in automotive software architectures, let us first discuss the
V-model as shown in Fig. 2.7. The V-model represents a high-level view of a
software development process for a car from the perspective of OEMs. In the most
common scenario, where there is no OEM in-house development, component design
and verification is usually entirely done by the suppliers (i.e., OEMs send empty
software compositions to the suppliers, who populate them with the actual software
components).

The first level is the functional development level, where we encounter two types
of the architectural views—the functional view and the logical system view. Now,
let us look into the different architectural views, their purpose and the principles
of using them. When discussing the views we also discuss the elements of these
views.

Function design

System design

Component design

Implementation

OEMs

Suppliers

Functional
architecture

System
architecture

Component
architecture

Detailed
design

Fig. 2.7 V-model with focus on architectural views and evolution



26 2 Software Architectures: Views and Documentation

2.7 Architectural Views

As we show in the process when starting with the development from scratch,
the requirements of or ideas for functions in the car come first—the product
management has the ideas about what kind of functionality the car should have.
Therefore we start with this type of the view first and gradually move on to more
detailed views on the design of the system.

2.7.1 Functional View

The functional view, often abbreviated to functional architecture, is the view where
the focus is on the functions of the vehicle and their dependencies on one another
[VF13]. An example of such a view is shown in Fig. 2.8.

As we can see from the example, there are three elements in this diagram—the
functions (plotted as rounded-edge rectangles), the domains (plotted as sharp-edged
rectangles) and the dependency relations (plotted as dashed lines), as the functions
can depend on each other and they can easily be grouped into “domains” such as
Powertrain and Active Safety. The usual domains are:

1. Powertrain—grouping the elements related to the powertrain of the car—engine,
engine ECU, gearbox and exhaust.

2. Active Safety—grouping the elements related to safety of the car—ADAS
(Advanced Driver Assistance Systems), ABS (Anti-lock Braking System) and
similar.

Fig. 2.8 Example of a functional architecture—or a functional view



2.7 Architectural Views 27

3. Chassi and body—grouping the elements related to the interior of the car—
seats, windows and other (which also contain electronics and software actua-
tors/sensors).

4. Electronic systems—grouping the elements related to the functioning of the car’s
electronic system—main ECU, communication buses and related.

In modern cars the number of functions can reach more than 1000 and is
constantly growing. The largest growth in the number of functions is related to new
types of functionality in the cars—autonomous driving and electrification. Examples
of functions from the autonomous driving area are:

1. Adaptive Cruise Control—basic function to automatically keep a distance from
the preceding vehicle while maintaining a constant maximum velocity.

2. Lane Keeping Assistance—basic function to warn the driver when the vehicle is
crossing the parallel line on the road without the turn indicator.

3. Active Traffic Light Assistance—medium advanced function to warn the driver
of a red light ahead.

4. Traffic Jam Chauffeur—medium/advanced function to autonomously drive dur-
ing traffic jam conditions.

5. Highway Chauffeur/pilot—medium/advanced function to autonomously drive
during high-speed driving.

6. Platooning—advanced function to align a number of vehicles to drive
autonomously in a so-called platoon.

7. Overtaking Pilot—advanced function to autonomously drive during an overtake
situation.

These advanced functions build on top of the more basic functionality of the car,
such as the ABS (Anti-lock Braking System), warning lights and blinkers. The basic
functions that are used by the above functions can be exemplified by:

1. Anti-lock Braking System (ABS)—preventing the car from locking the brakes
on slippery roads

2. Engine cut-off—shutting down the engine in situations such as after crash
3. Distance warning—warning the driver about too little distance from the vehicle

in front.

The functional view provides the architects with the possibility to cluster
functions, and distribute them to the right department to develop and to reason about
these kinds of functionality. An example of such reasoning is the use of methods
such as the Pareto front [DST15].

2.7.1.1 How-To

The process of functional architecture design starts with the development of the
list of functions of the vehicle and their dependencies, which can be documented
in block diagrams, use case diagrams or SysML requirements diagrams [JT13,
SSBH14].



28 2 Software Architectures: Views and Documentation

Once the list and dependencies are found, we move to organizing the functions
to the domains. In the normal case these domains are known and given. The
organization of the functions is based on how they are dependent on each other with
the principle that the number of dependencies that cross-cut the domains should be
minimized. The result of this process is the development of the diagram as shown
in Fig. 2.8.

2.7.2 Physical System View

Another view is the system view on the architecture, usually portrayed as a view of
the entire electrical system at the top level with accompanying lower-level diagrams
(e.g. class diagrams in UML). Such an overview level is presented in Fig. 2.9. In
this view we could see the ECUs (rounded rectangles) of different sizes placed on
two physical buses (lines). This view of the architecture provides the possibility to
present the topology of the electrical system of the car and provides the architects
with a way to reason about the placement of the computers on the communication
buses.

In the early days of automotive software engineering (up until the late 1990s)
this view was quite simple and static as there were only a few ECUs and a
few communication buses. However, in the modern software design, this view
gets increased importance as the number of ECUs grows and the ability to
give an overview becomes more important. The number of communication buses
also increases and therefore the topologies of the components in the physical
architectures have evolved from the typical star topologies (as in Fig. 2.9) to more
linked architectures with over 100 active nodes. The modern view on the topology

Fig. 2.9 Example of a
system architecture—or a
system view

Main
ECU

ABS ADAS

HMI

Steering

Display

Keypad



2.7 Architectural Views 29

also includes information about the processing power and the operating system (and
its version) of each ECU.

2.7.2.1 How-To

Designing this view is usually straightforward as it is dictated by the physical
architecture of the car, where the set of ECUs is often given. The most important
ECUs are often predetermined from the previous projects—usually the main
computer, the active safety node, the engine node, and similar. A list of the most
common ECUs present in almost all modern cars is (https://en.wikipedia.org/wiki/
Electronic_control_unit):

• Engine control unit (EnCU)
• Electric power steering control unit (PSCU)
• Human-machine interface (HMI)
• Powertrain control module (PCM)
• Telematic control unit (TCU)
• Transmission control unit (TCU)
• Brake control module (BCM; ABS or ESC)
• Battery management system

Depending on the car manufacturer, the other control modules can differ
significantly. It is also the case that many of the additional control units are part
of the electrical system, meaning that they are included only in certain car models
or instances, depending on the customer order.

2.7.3 Logical View

The focus of the view is on the topology of the system. This view is often
accompanied by the logical component architecture as presented in Fig. 2.10. The
rationale behind the logical view of the system is to focus solely on the software of
the car. In the logical view we show which classes, modules, and components are
used in the car’s software and how they are related to each other. The notation used
for this model is often UML (Unified Modelling Language) and its subling SysML
(Systems Modelling Language).

For the logical view, the architects often use a variety of diagrams (e.g. commu-
nication diagrams, class diagrams, component diagrams) to show various levels of
abstraction of the software of the car—usually in its context. For the detailed design,
these architecturalmodels are complementedwith low-level executablemodels such
as Matlab/Simulink defining the behaviour of the software [Fri06].

https://en.wikipedia.org/wiki/Electronic_control_unit
https://en.wikipedia.org/wiki/Electronic_control_unit


30 2 Software Architectures: Views and Documentation

F
ig
.2

.1
0

E
xa
m
pl
e
of

a
lo
gi
ca
lv

ie
w
—

a
U
M
L
cl
as
s
di
ag
ra
m

no
ta
ti
on



2.7 Architectural Views 31

2.7.3.1 How-To

The first step in describing the logical view of the software is to identify the
components—these are modelled as UML classes. Once they are identified we
should add the relationships between these components in the form of associations.
It is important to keep the directionality of the associations correct as these will
determine the communication between the components added during the detailed
design.

The logical architecture should be refined and evolved during the entire project
of the automotive software development.

2.7.4 Relation to the 4+1 View Model

The above-mentioned three views presently used in automotive software engineer-
ing evolved from the widely known principles of 4+1 view architecture model
presented in 1995 by Kruchten [Kru95]. The 4+1 view model postulates describing
software architectures from the following perspectives:

• logical view—describing the design model of the system, including entities such
as components and connectors

• process view—describing the execution process view of the architecture, thus
allowing us to reason about non-functional properties of the software under
construction

• physical view—describing the hardware architecture of the system and the
mapping of the software components on the hardware platform (deployment)

• development view—describing the organization of software modules within the
software components

• scenario view—describing the interactions of the system with the external actors
and internal interactions between components.

These views are perceived as connected with the scenario view overlapping the
other four, as presented in Fig. 2.11, adapted from [Kru95].

The 4+1 view model has been used in the telecommunication domain, the
aviation domain and almost all other domains. Its close relation to the early
version of UML (1.1–1.4) and other software development notations of the 1990s
contributed to its wide spread and success.

In the automotive domain, however, the use of UML is rather limited to
class/object diagrams and therefore this view is not as common as in the telecom-
munication domain.



32 2 Software Architectures: Views and Documentation

Fig. 2.11 4+1 view model of
architecture

Development viewLogical view

Process view Physical view

Scenario view 

2.8 Architectural Styles

As the architecture describes the high-level design principles of the system, we can
often observe how these design decisions shape the system. In this case we can
talk about the so-called architectural styles. The architectural styles form principles
of software design in the same way as building architecture shapes the style of a
building (e.g. thick walls in gothic style).

In software design we distinguish between a number of styles in general, but
in the automotive systems we can only see a number of those, as the automotive
software has harder requirements on reliability and robustness than, for example,
web servers. Therefore some of the styles are not applicable.

In this section, let us dive deeper into architectural styles and their examples.

2.8.1 Layered Architecture

This architectural style postulates that components of the system are placed in a
hierarchy on top of each other and function calls (API usage) are made only from
higher to lower levels, as shown in Fig. 2.12.

We can often see this type of layered architecture in the design of microcon-
trollers and in the upcoming AUTOSAR standard where the software components
are given specific functions such as communication. An example of this kind of
architecture is presented in Fig. 2.13.

A special variant of this kind of style is the two-tier style as presented by Steppe
et al. [SBGC04], with one layer for the abstract components and the other one for
the middleware details. One example of middleware can be found in Chap. 4 in the
description of the AUTOSAR standard. Examples of the functionality implemented
by the middleware are logging diagnostic events, handling communication on the
buses, securing data and data encryption.

An example of such an architecture can be seen in the area of autonomous driving
when dividing decisions into a number of layers, as shown in Fig. 2.14 extended
from [BCLS16].



2.8 Architectural Styles 33

Fig. 2.12 Layered architectural style—boxes symbolize components and lines symbolize API
usage/method calls

Fig. 2.13 An example of a layered architecture



34 2 Software Architectures: Views and Documentation

Fig. 2.14 Layered architecture example—decision layers in autonomous driving

In this figure we can see that the functionality is distributed in different layers and
the higher layers are responsible for mission/route planning while the lower levels
are responsible for steering the car. This kind of modular layered architecture allows
the architects to distribute competence into the vertical domains. The blue arrows
indicate that this architecture is abstract and that these layers can be connected either
directly or indirectly (i.e. there may be other layers in-between).

We quickly realize the this kind of architectural style has limitations caused by
the fact that the layers can communicate only in one way. The components within
the same layer are often not supposed to communicate. Therefore, there is another
style which is often used—component-based.

2.8.2 Component-Based

This architectural style is more flexible than the layered architecture style and
postulates the principle that all components can be interchangeable and independent
of each other. All communication should go through well-defined public interfaces



2.8 Architectural Styles 35

Fig. 2.15 Component-based architectural style

and each component should implement a simple interface, allowing for queries
about which interfaces are implemented by the component. In the non-automotive
domain this kind of architecture has been populated byMicrosoft in its WindowsOS
through the usage of DLLs (Dynamic Linked Libraries) and the IUnknown interface.

An abstract view of this kind of style is presented in Fig. 2.15.
The component-based style is often used together with the design-by-contract

principle, which postulates that the components should have contracts for their
interfaces—what the API functions can and cannot do. This component-based
style is often well suited when describing the functional architecture of the car’s
functionality.

In contemporary cars we can see this architectural style in the Infotainment
domain, where the system is divided into the platform and the application layer
(thus having layered architecture), and for the application layer all the apps which
can be downloaded onto the system are designed according to component-based
principles. These principles mean that each app can use another one as long as the
apps have the right interface. For example a GPS app can use the app for music to
play sound in the background without leaving the GPS. As long as the music app
exposes the right interface, it makes no difference to the GPS app which music app
is used.



36 2 Software Architectures: Views and Documentation

Fig. 2.16 Monolithic architectural style

2.8.3 Monolithic

This style is the opposite of that of component-based architecture as it postulates
that the entire system is one large component and that all modules within the system
can use each other. This style is often used in low-maturity systems as it leads to high
coupling and high complexity of the system. An abstract representation in shown in
Fig. 2.16.

The monolithic architecture is often used for implementing parts of the safety-
critical system, where the communication between components needs to be done in
real time with as little communication overhead as possible. Typical mechanisms in
the monolithic architectures are the “safe” mechanisms of programming languages
such as use of static variables, no memory management and no dynamic structures.

2.8.4 Microkernel

Starting in the late 1980s, software engineers started to use microkernel architecture
when designing operating systems. Many of the modern operating systems are built
in this architectural style. In short, this architectural style can be seen as a special
case of the layered architecture with two layers:

• Kernel—a limited set of components with the higher execution privileges, such
as task scheduler, memory manager, and basic interprocess communication



2.8 Architectural Styles 37

Fig. 2.17 Microkernel architectural style

manager. These components have the precedence over the application layer
components.

• Application—components such as user application processes, device drivers, or
file servers. These components can have different privilege levels, but always
lower than that of the kernel processes.

The graphical overview of such an architectural style is show in Fig. 2.17.
In this architectural style it is quite common that applications (or components)

communicate with each other over interprocess communications. This type of
communication allows the operating system (or the platform) to maintain control
over the communications.

In the automotive domain, the microkernel architecture is used in certain
components which require high security. It is argued that the minimality of the
kernel allows us to apply the principles of least privilege, and therefore remain
in control of the security of the system at all times. It is also sometimes argued
that hypervisors of the virtualized operating systems are build according to this
principle. In the automotive domain the use of virtualization is currently in the
research stage, but seems to be very promising as it would allow us to minimize
the costs of hardware while at the same time retain the flexibility of the electrical
system (imagine all cars had the same hardware and one could only use different
virtual OSs and applications for each brand or type of car!).



38 2 Software Architectures: Views and Documentation

Fig. 2.18 Pipes and filters architectural style

2.8.5 Pipes and Filters

Pipes and filters is another well-known architectural style which fits well for
systems that operate based on data processing (thus making its “comeback” as
Big Data enters the automotive market). This architectural style postulates that
the components are connected along the flow of the data processing, which is
conceptually shown in Fig. 2.18.

In contemporary automotive software, this architectural style is visible in such
areas as image recognition in active safety, where large quantities of video data
need to be processed in multiple stages and each component has to be independent
of the other (as shown in Fig. 2.18) [San96].

2.8.6 Client–Server

In client-server architectural style the principles of the design of such systems
prescribe the decoupling between componentswith designated roles—servers which
provide resources upon the request of the clients, as shown in Fig. 2.19. These
requests can be done in either the pull or the push manner. Pulled requests mean that
the responsibility for querying the server lies with the client, which means that the
clients need to monitor changes in resources provided by the server. Pushed requests
mean that the server notifies the relevant clients about changes in the resources (as
in the event-driven architectural style and the published subscriber style).

In the automotive domain, this style is seen in specific forms like publisher-
subscriber style or event-driven style. We can see the client-server style in such



2.8 Architectural Styles 39

Fig. 2.19 Client-server architectural style

components as telemetry, where the telematics components provide the information
to the external and internal servers [Nat01, VS02].

2.8.7 Publisher–Subscriber

The publisher–subscriber architectural style can be seen as a special case of the
client–server style, although it is often perceived as a different style. This style
postulates the principle of loose coupling between providers (publishers) of the
information and users (subscribers) of the information. Subscribers subscribe to
a central storage of information in order to get notifications about changes in the
information. The publisher does not know the subscribers and the responsibility of
the publisher is only to update the information. This is in clear contrast to the client–
server architecture, where the server sends the information directly to a known client
(known as it is the client that sends the request). The publisher–subscriber style is
illustrated in Fig. 2.20.

In automotive software, this kind of architectural style is used when distributing
information about changes in the status of the vehicle, e.g. the speed status or the
tire pressure status [KM99, KB02]. The advantage of this style is the decoupling
of information providers from information subscribers so that the information
providers do not get overloaded as the number of subscribers increases. However,
the disadvantage is the fact that the information providers do not have control of
which components use the information and what information they possess at any
given time (as the components do not have to receive updates synchronously).



40 2 Software Architectures: Views and Documentation

Abstract 
representation of 

the system

Windshield wipers
speed

Speed sensor

Store speed: 
speed = 10 kmph

Publish speed: 
speed = 10 kmph

Speed aware radio 
volume control

Lane departure
warning

Main vehicle ECU

Notice:
speed change

Notice:
speed change

Notice:
speed change

Storage

Fig. 2.20 Publisher–subscriber architectural style

2.8.8 Event-Driven

The event-driven architectural style has been popularized in software engineering
together with graphical user interfaces and the use of buttons, text fields, labels and
other graphical elements. This architectural style postulates that the components
listen for (hook into) the events that are sent from the component to the operating
system. The listener components react upon receipt of the event and process the data
which has been sent together with the event (e.g. position of the mouse pointer on
the screen when clicked). This is conceptually presented in Fig. 2.21.

The event driven architectural style is present in a number of parts of the
automotive software system. Its natural placement with the user interface of the
infotainment or the driver assist systems (e.g. voice control), which is also present
in the aviation industry [Sar00] is obvious. Another use is diagnostics and storage of
the error codes [SKMC10]. Using Simulink to design software systems and using
stimuli and responses, or sensors and actuators, shows that event-driven style has
been incorporated.

2.8.9 Middleware

The middleware architectural style postulates the existence of a common request
broker which mediates the usage of resources between different components. The



2.8 Architectural Styles 41

Abstract 
representation of 

the system

UI visualizationListeners

Platform (OS)

Infotainment 
controller

Fig. 2.21 Event-driven architectural style

Middleware broker

Abstract 
representation of 

the system

Volume server File accessInternet access

Infotainment Driver support

Fig. 2.22 Middleware architectural style

concept has been introduced into software engineering together with the initiative
of CORBA (Common Object Request Broker Architecture) by Object Management
Group [OPR96, Cor95]. Although the CORBA standard itself is not relevant for
the automotive domain, its principles are present in the design of the AUTOSAR
standard with its meta-model to describe the common elements of automotive
software. The conceptual view of middleware style is shown in Fig. 2.22.



42 2 Software Architectures: Views and Documentation

In automotive software, the middleware architecture is visible in the design of the
AUTOSAR standard, which is discussed in detail later on in this book. The usage of
middleware becomes increasingly important in automotive software’s mechanisms
of adaptation [ARCC07] and fault tolerance [JPR08, PKYH06].

2.8.10 Service-Oriented

Service-oriented architectural style postulates loose coupling between component
using internet-based protocols. The architectural style puts emphasis on interfaces
which can be accessed as web services and is often depicted as in Fig. 2.23.

Here the services can be added and changed on-demand during the runtime of
the system.

In automotive software, this kind of architecture style is not widely used, but
there are areas where the on-demand or ad hoc services are needed. One examples
is vehicle platooning which has such an architecture [FA16], and is presented in
Fig. 2.24.

Since vehicle platooning is done “spontaneously” during driving, the architecture
needs to be flexible and needs to allow vehicles to link to and unlink from each other
without the need to recompile or restart the system. The lack of available interfaces
can lead to change in the vehicle operation mode, but not to disturbance in the
software operation.

Now that we have introduced the most popular architectural styles, let us discuss
the languages used to describe software architectures.

Abstract
representation of 

the system

Map license
service

Map license
service

Infotainment map serviceInfotainment map service

Authentication
service

Authentication
service

IAuthILic

Fig. 2.23 Service-oriented architectural style



2.9 Describing the Architectures 43

Vehicle
platooning

Safe distance
planning

Safe distance
planning

Platoon drive planningPlatoon drive planning

Leader status 
perception

Leader status 
perception

ISetFollowerTrackDistanceISafeDistance

IPlatoonDrive

IGetSpeedLeader

Fig. 2.24 An example of a service-oriented architecture—vehicle platooning

2.9 Describing the Architectures

In this book we have seen multiple ways of drawing architectural diagrams
depending on the purpose of the diagram. We used the formal UML notation in
Fig. 2.10 when describing the logical components of the software. In Fig. 2.8 we
used boxes and lines, which are different from the boxes and lines used in Figs. 2.12,
2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, and 2.22. It all has a purpose.

By using different notations we could see that there is no unified formalism
describing a software architecture and that software architecture is a means of
communication. It allows architects to describe the principles guiding the design
of their system and discuss the implications of the principles on the components.
Each of these notations could be called ADL—Architecture Description Language.
In this section we introduce the most relevant ADLs which are available for soft-
ware architects, with the focus on two formalisms—SySML (Systems Modelling
Language, [HRM07, HP08]) and EAST-ADL [CCGC07, LSNT04].

2.9.1 SysML

SySML is a general-purpose language based on Unified Modelling Language
(UML). It is built as an extension of a subset of UML to include more diagrams



44 2 Software Architectures: Views and Documentation

(e.g. Requirements Diagram) and reuse a number of UML symbols with the profile
mechanism. The diagrams (views) included in SySML are:

• Block definition diagram—an extended class diagram from UML 2.0 using
stereotyped classes to model blocks, activities, their attributes and similar. As the
“block” is the main building block in SySML, it is reused quite often to represent
both software and hardware blocks, components and modules.

• Internal block diagram—similar to the block definition diagram, but used to
define the elements of a block itself

• Package diagram—the same as the package diagram from UML 2.0, used to
group model elements into packages and namespaces

• Parametric diagram—diagram which is a special case of the internal block
diagram and allows us to add constraints to the elements of the internal block
diagram (e.g. logical constraints on the values of data processed).

• Requirement diagram—contains user requirements for the system and allows us
to model and link them to the other model elements (e.g. blocks). It is one of the
diagrams that adds a lot of expressiveness to SySML models, compared to the
standard Use Case diagrams of UML.

• Activity diagram—describes the behaviour of the system as an activity flow.
• Sequence diagram—describes the interaction between block instances in a nota-

tion based on MSC (Message Sequence Charts) from the telecommunications
domain.

• State machine diagram—describes the state machines of the system or its
components.

• Use case diagram—describes the interaction of the system with its external actors
(users and other systems).

An example of a requirement diagram is presented in Fig. 2.25 from [SSBH14].
The diagram presents two requirements related to each other (Maximum Accel-

eration and Engine Power) with the dependency between them. Blocks like the
“6-Cylinder Engine” are linked to these requirements with the dependency “satisfy”
to show where these requirements are implemented.

As we can quickly see from this example, the requirements diagram can be used
very effectively to model the functional architecture of the electrical system of a car.

The block diagram was presented when discussing the logical view of the
architecture (Fig. 2.10) and it can be further refined into a detailed diagram for a
particular block, as shown in Fig. 2.26.

The diagram fulfills a similar purpose as the detailed design of the block, which
is often done using the Simulink modelling language. In this book we look into the
details of Simulink design in Chap. 6.

The behavioral diagrams of SySML are important for the detailed design of
automotive systems, but they are out of the scope of this chapter as the architecture
model is supposed to focus on the structure of the system and therefore kept on a
high abstraction level.



2.9 Describing the Architectures 45

Fig. 2.25 Example requirements diagram

Fig. 2.26 Internal block diagram

2.9.2 EAST ADL

EAST ADL is another modelling language based on UML which is intended
to model automotive software architectures [CCGC07, LSNT04]. In contrast to
SySML, which was designed by an industrial consortium, EAST ADL is the result



46 2 Software Architectures: Views and Documentation

of a number of European Union-financed projects which included both research and
development components.

The principles of EAST ADL are similar to those of SySML in the sense that
it also allows us to model automotive software architecture in different abstraction
levels. The abstraction levels of EAST ADL are:

• Vehicle level—architectural model describing the vehicle functionality from an
external perspective. It is the highest abstraction level in EAST ADL, which is
then refined in the Analysis model.

• Analysis level—architectural model describing the functionality of the vehicle
in an abstract model, including dependencies between the functions. It is an
example of a functional architecture, as discussed in Sect. 2.7.1.

• Design level—architectural model describing the logical architecture of the
software, including its mapping to hardware. It is similar to the logical view from
Fig. 2.10.

• Implementation level—detailed design of the automotive software; here EAST
ADL reuses the concepts from the AUTOSAR standard.

The vehicle level can be seen as a use case level of the specification where the
functionality is designed from a high abstraction level and then gradually refined
into the implementation.

Since EASTADL is based on UML, the visual representation of models in EAST
ADL is very similar to the models already presented in this chapter. However, there
are some differences in the structure of the models and therefore the concepts used
in SySML and EAST ADL may differ. Let us illustrate one of the differences with
the requirements model in Fig. 2.27.

Fig. 2.27 Feature (requirements) diagram in EAST ADL



2.12 Summary 47

The important difference here is the link of the requirement—in EAST ADL the
requirements can be linked to Features, a concept which does not exist in SySML.

In general, EASTADL is a modelling notation more aligned with the characteris-
tics of the automotive domain and makes it easier to structure models for a software
engineer. However, EAST ADL is not as widely spread as SySML and therefore not
as widely adopted in industry.

2.10 Next Steps

After the architecture is designed in the different diagrams, it should be transferred
to the product development database and linked to all the other elements of
the electrical system of the car. The product development database contains the
design details of all software and hardware components, the relationships between
them and the deployment of the logical software components onto the physical
components of the electrical system.

2.11 Further Reading

The architectural views, styles and modelling languages, discussed in this section,
are the most popular one used in the software industry today. However, there are
also others, which we encourage the interested reader to explore.

Alternative modelling languages which are used in industry are the UML
MARTE profile [OMG05, DTAC08]. The MARTE profile has been designed to
support modelling of real-time systems in all domains where they are applicable.
Therefore there is a significant body of knowledge from using this profile, including
executable variants of it [MAD09].

Readers interested in extending modelling languages can find more information
in our previous work on language customization [SW06, SKT05, KS02, SKW04]
and the way in which these extension can be taught [KS05].

An interesting review of future directions of architectures in general has been
conducted by Kruchten et al. [KOS06]. Although the review was conducted over a
decade ago, most of its results are valid today.

2.12 Summary

In this chapter we presented the concept of software architecture, its different
viewpoints, and its architectural styles and introduced two notations used in
automotive software engineering—SySML and EAST ADL.



48 2 Software Architectures: Views and Documentation

An interesting aspect of automotive software architectures is that they usually
mix a number of styles. The overall style of the architecture can be layered
architecture within an ECU, but the architecture of each of the components in the
ECU can be service-oriented, pipes and filters or layered. A concrete example is the
AUTOSAR architecture. AUTOSAR provides a reference three layer architecture
where the first “application” layer can implement service-oriented architecture, the
second layer can implement a monolithic architecture (just RTE) and the third,
“middleware”, layer can implement component-based architecture.

The reasons for mixing these styles is that the software within a modern car
has to fulfill many functions and each function has its own characteristics. For the
telematics it is the connectivity which is important and therefore client-server style
is the most appropriate. Now that we have discussed the basics of architectures,
let us dive deeper into other activities in automotive software development, to
understand why architecture is so important and what comes before and next.

References

ARCC07. Richard Anthony, Achim Rettberg, Dejiu Chen, Isabell Jahnich, Gerrit de Boer, and
Cecilia Ekelin. Towards a dynamically reconfigurable automotive control system
architecture. In Embedded System Design: Topics, Techniques and Trends, pages 71–
84. Springer, 2007.

BCLS16. Manel Brini, Paul Crubillé, Benjamin Lussier, and Walter Schön. Risk reduction of
experimental autonomous vehicles: The safety-bag approach. InCARS 2016 workshop,
4th International Workshop on Critical Automotive Applications: Robustness and
Safety, 2016.

CCGC07. Philippe Cuenot, DeJiu Chen, Sebastien Gerard, Henrik Lonn, Mark-Oliver Reiser,
David Servat, Carl-Johan Sjostedt, Ramin Tavakoli Kolagari, Martin Torngren, and
Matthias Weber. Managing complexity of automotive electronics using the EAST-
ADL. In 12th IEEE International Conference on Engineering Complex Computer
Systems (ICECCS 2007), pages 353–358. IEEE, 2007.

Cor95. OMGCorba. The common object request broker: Architecture and specification, 1995.
DST15. Darko Durisic, Miroslaw Staron, and Matthias Tichy. Identifying optimal sets of

standardized architectural features – a method and its automotive application. In 2015
11th International ACM SIGSOFT Conference on Quality of Software Architectures
(QoSA), pages 103–112. IEEE, 2015.

DTAC08. Sébastien Demathieu, Frédéric Thomas, Charles André, Sébastien Gérard, and
François Terrier. First experiments using the UML profile for MARTE. In 2008
11th IEEE International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC), pages 50–57. IEEE, 2008.

EHPL15. Ulf Eliasson, Rogardt Heldal, Patrizio Pelliccione, and Jonn Lantz. Architecting in the
automotive domain: Descriptive vs prescriptive architecture. In Software Architecture
(WICSA), 2015 12th Working IEEE/IFIP Conference on, pages 115–118. IEEE, 2015.

FA16. Patrik Feth and Rasmus Adler. Service-based modeling of cyber-physical automotive
systems: A classification of services. In CARS 2016 workshop, 4th International
Workshop on Critical Automotive Applications: Robustness and Safety, 2016.

Fri06. Jon Friedman. MATLAB/Simulink for automotive systems design. In Proceedings
of the conference on Design, Automation and Test in Europe, pages 87–88. European
Design and Automation Association, 2006.



References 49

Für10. Simon Fürst. Challenges in the design of automotive software. In Proceedings of
the Conference on Design, Automation and Test in Europe, pages 256–258. European
Design and Automation Association, 2010.

HP08. Jon Holt and Simon Perry. SysML for systems engineering, volume 7. IET, 2008.
HRM07. Edward Huang, Randeep Ramamurthy, and Leon F McGinnis. System and simulation

modeling using SysML. In Proceedings of the 39th conference on Winter simulation:
40 years! The best is yet to come, pages 796–803. IEEE Press, 2007.

JPR08. Isabell Jahnich, Ina Podolski, and Achim Rettberg. Towards a middleware approach for
a self-configurable automotive embedded system. In IFIP International Workshop on
Software Technolgies for Embedded and Ubiquitous Systems, pages 55–65. Springer,
2008.

JT13. Marcin Jamro and Bartosz Trybus. An approach to SysML modeling of IEC 61131-3
control software. In Methods and Models in Automation and Robotics (MMAR), 2013
18th International Conference on, pages 217–222. IEEE, 2013.

KB02. Jörg Kaiser and Cristiano Brudna. A publisher/subscriber architecture supporting
interoperability of the can-bus and the internet. In Factory Communication Systems,
2002. 4th IEEE International Workshop on, pages 215–222. IEEE, 2002.

KM99. Joerg Kaiser and Michael Mock. Implementing the real-time publisher/subscriber
model on the controller area network (can). In 2nd IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, 1999, pages 172–181. IEEE,
1999.

KOS06. Philippe Kruchten, Henk Obbink, and Judith Stafford. The past, present, and future for
software architecture. IEEE software, 23(2):22–30, 2006.

Kru95. Philippe B Kruchten. The 4 + 1 view model of architecture. Software, IEEE, 12(6):42–
50, 1995.

KS02. Ludwik Kuzniarz and Miroslaw Staron. On practical usage of stereotypes in UML-
based software development. the Proceedings of Forum on Design and Specification
Languages, Marseille, 2002.

KS05. Ludwik Kuzniarz and Miroslaw Staron. Best practices for teaching uml based software
development. In International Conference on Model Driven Engineering Languages
and Systems, pages 320–332. Springer, 2005.

LSNT04. Henrik Lönn, Tripti Saxena, Mikael Nolin, and Martin Törngren. Far east: Modeling
an automotive software architecture using the east adl. In ICSE 2004 workshop on
Software Engineering for Automotive Systems (SEAS), pages 43–50. IET, 2004.

MAD09. Frédéric Mallet, Charles André, and Julien Deantoni. Executing AADL models with
UML/MARTE. In Engineering of Complex Computer Systems, 2009 14th IEEE
International Conference on, pages 371–376. IEEE, 2009.

Nat01. Martin Daniel Nathanson. System and method for providing mobile automotive
telemetry, July 17 2001. US Patent 6,263,268.

OMG05. UML OMG. Profile for modeling and analysis of real-time and embedded systems
(marte), 2005.

OPR96. Randy Otte, Paul Patrick, and Mark Roy. Understanding CORBA: Common Object
Request Broker Architecture. Prentice Hall PTR, 1996.

PKYH06. Jiyong Park, Saehwa Kim, Wooseok Yoo, and Seongsoo Hong. Designing real-
time and fault-tolerant middleware for automotive software. In 2006 SICE-ICASE
International Joint Conference, pages 4409–4413. IEEE, 2006.

RW12. Nick Rozanski and Eóin Woods. Software systems architecture: Working with
stakeholders using viewpoints and perspectives. Addison-Wesley, 2012.

San96. Keiji Saneyoshi. Drive assist system using stereo image recognition. In Intelligent
Vehicles Symposium, 1996., Proceedings of the 1996 IEEE, pages 230–235. IEEE,
1996.

Sar00. Nadine B Sarter. The need for multisensory interfaces in support of effective attention
allocation in highly dynamic event-driven domains: the case of cockpit automation.
The International Journal of Aviation Psychology, 10(3):231–245, 2000.



50 2 Software Architectures: Views and Documentation

SBGC04. Kevin Steppe, Greg Bylenok, David Garlan, Bradley Schmerl, Kanat Abirov, and
Nataliya Shevchenko. Two-tiered architectural design for automotive control systems:
An experience report. In Proc. Automotive Software Workshop on Future Generation
Software Archtiecture in the Automotive Domain, 2004.

SGSP16. Ali Shahrokni, Peter Gergely, Jan Söderberg, and Patrizio Pelliccione. Organic
evolution of development organizations – An experience report. Technical report, SAE
Technical Paper, 2016.

SKMC10. Chaitanya Sankavaram, Anuradha Kodali, Diego Fernando Martinez, Krishna Pattipati
Ayala, Satnam Singh, and Pulak Bandyopadhyay. Event-driven data mining techniques
for automotive fault diagnosis. In Proc. of the 2010 Internat. Workshop on Principles
of Diagnosis (DX 2010), 2010.

SKT05. Miroslaw Staron, Ludwik Kuzniarz, and Christian Thurn. An empirical assessment
of using stereotypes to improve reading techniques in software inspections. In ACM
SIGSOFT Software Engineering Notes, volume 30, pages 1–7. ACM, 2005.

SKW04. Miroslaw Staron, Ludwik Kuzniarz, and Ludwik Wallin. Case study on a process
of industrial MDA realization: Determinants of effectiveness. Nordic Journal of
Computing, 11(3):254–278, 2004.

SSBH14. Giuseppe Scanniello, Miroslaw Staron, Håkan Burden, and Rogardt Heldal. On the
effect of using SysML requirement diagrams to comprehend requirements: results from
two controlled experiments. In Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering, page 49. ACM, 2014.

Sta16. Miroslaw Staron. Software complexity metrics in general and in the context of ISO
26262 software verification requirements. In Scandinavian Conference on Systems
Safety. http://gup.ub.gu.se/records/fulltext/233026/233026.pdf, 2016.

SW06. Miroslaw Staron and Claes Wohlin. An industrial case study on the choice between
language customization mechanisms. In Product-Focused Software Process Improve-
ment, pages 177–191. Springer, 2006.

VF13. Andreas Vogelsanag and Steffen Fuhrmann. Why feature dependencies challenge the
requirements engineering of automotive systems: An empirical study. In Requirements
Engineering Conference (RE), 2013 21st IEEE International, pages 267–272. IEEE,
2013.

VS02. Pablo Vidales and Frank Stajano. The sentient car: Context-aware automotive
telematics. In Proceedings of the Fourth International Conference on Ubiquitous
Computing, pages 47–48, 2002.

http://gup.ub.gu.se/records/fulltext/233026/233026.pdf

	2 Software Architectures: Views and Documentation
	2.1 Introduction
	2.2 Common View on Architecture in General and in the Automotive Industry in Particular
	2.3 Definitions
	2.4 High-Level Structures
	2.5 Architectural Principles
	2.6 Architecture in the Development Process
	2.7 Architectural Views
	2.7.1 Functional View
	2.7.1.1 How-To

	2.7.2 Physical System View
	2.7.2.1 How-To

	2.7.3 Logical View
	2.7.3.1 How-To

	2.7.4 Relation to the 4+1 View Model

	2.8 Architectural Styles
	2.8.1 Layered Architecture
	2.8.2 Component-Based
	2.8.3 Monolithic
	2.8.4 Microkernel
	2.8.5 Pipes and Filters
	2.8.6 Client–Server
	2.8.7 Publisher–Subscriber
	2.8.8 Event-Driven
	2.8.9 Middleware
	2.8.10 Service-Oriented

	2.9 Describing the Architectures
	2.9.1 SysML
	2.9.2 EAST ADL

	2.10 Next Steps
	2.11 Further Reading
	2.12 Summary
	References


